
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2003 

Shortest Path Problems in a Stochastic and Dynamic Environment Shortest Path Problems in a Stochastic and Dynamic Environment 

Jae Il Cho 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Cho, Jae Il, "Shortest Path Problems in a Stochastic and Dynamic Environment" (2003). Theses and 
Dissertations. 4323. 
https://scholar.afit.edu/etd/4323 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Fetd%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4323?utm_source=scholar.afit.edu%2Fetd%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


 

SHORTEST PATH PROBLEMS IN A STOCHASTIC AND

DYNAMIC ENVIRONMENT

THESIS

Jae I. Cho, Captain, Republic of Korea Army

AFIT/GSE/ENS/03-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense or
the United States Government.



AFIT/GSE/ENS/03-01

SHORTEST PATH PROBLEMS IN A STOCHASTIC AND
DYNAMIC ENVIRONMENT

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Jae I. Cho, B.S.

Captain, Republic of Korea Army

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GSE/ENS/03-01

SHORTEST PATH PROBLEMS IN A STOCHASTIC AND
DYNAMIC ENVIRONMENT

Jae I. Cho, B.S.
Captain, Republic of Korea Army

Approved:

Dr. Jeffrey P. Kharoufeh
Thesis Advisor

Date

Dr. James T. Moore
Committee Member

Date



Acknowledgements

I would like to express my deepest appreciation to my thesis advisor Dr. Jeff

Kharoufeh for giving me an valuable opportunity to study problem and for providing

ardent guidance throughout my research. His passionate encouragement and pro-

found expertise inspired me and enabled me to reach this state of accomplishment.

Dr. James Moore also provided me very productive and constructive comments

which made my research to be complete.

I also thank all of the world-class AFIT faculty members who raised a laymen

to the level of this achievement and inspired me to infatuate with all valuable courses.

I am deeply indebted to my Korean Army for providing me this precious op-

portunity to pursue a master’s degree with which I hope to better serve the further

advancement of my Army.

Finally, I am deeply grateful for my parents who have heartened me to advance

throughout my life and for being constantly concerned about my well-being in a

foreign country. Also, I want to thank my fiancee for her persistent encouragement

and love for me which supported me to delve into my studies. I would finally like to

thank everyone around me here and in Korea for their help and support throughout

my studies at AFIT.

Jae I. Cho

iv



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Problem definition and Methodology . . . . . . . . . . 1-3

1.2.1 Problem statement . . . . . . . . . . . . . . . 1-3

1.2.2 Research Objectives . . . . . . . . . . . . . . 1-3

1.2.3 Research Methodology . . . . . . . . . . . . . 1-4

1.2.4 Contribution . . . . . . . . . . . . . . . . . . . 1-4

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . 1-5

2. Review of the Literature . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Review of Deterministic Shortest Path Problems . . . 2-2

2.3 Stochastic and Static Shortest Path Problems . . . . . 2-4

2.4 Stochastic and Dynamic Shortest Path Problems . . . 2-9

2.5 Stochastic Model for Individual Links . . . . . . . . . . 2-14

2.5.1 Transient analysis . . . . . . . . . . . . . . . . 2-18

2.5.2 Asymptotic analysis . . . . . . . . . . . . . . 2-20

v



Page

3. Formal Mathematical Model . . . . . . . . . . . . . . . . . . . . 3-1

3.1 Extension to stochastic network model . . . . . . . . . 3-1

3.1.1 The generator matrix . . . . . . . . . . . . . . 3-1

3.1.2 Velocity function . . . . . . . . . . . . . . . . 3-2

3.1.3 Initial distribution . . . . . . . . . . . . . . . 3-3

3.1.4 Stochastic and dynamic network model . . . . 3-4

3.2 Independent Expected Shortest Path Methodology . . 3-4

3.3 Dependent Expected Shortest Path Methodology . . . 3-6

3.3.1 Method of Expected Terminal distribution . . 3-7

3.3.2 Method of Expected Terminal State . . . . . . 3-14

3.3.3 Method of Asymptotic dependence . . . . . . 3-17

3.4 Algorithms for the Expected Dependent Shortest Path 3-19

3.4.1 Explicit Enumeration . . . . . . . . . . . . . . 3-19

3.4.2 Linear Programming . . . . . . . . . . . . . . 3-20

3.4.3 The K-shortest path heuristic . . . . . . . . . 3-23

3.5 Algorithms for the Stochastically Shortest Path . . . . 3-29

3.5.1 Method of Convolution . . . . . . . . . . . . . 3-29

3.5.2 Parametric Approximations . . . . . . . . . . 3-32

3.5.3 Finding the Stochastically Shortest Path . . . 3-34

4. Numerical Experimentation and Results . . . . . . . . . . . . . 4-1

4.1 Dependence Analysis . . . . . . . . . . . . . . . . . . . 4-1

4.1.1 Dependence and the transient period . . . . . 4-2

4.1.2 Initial distribution impact . . . . . . . . . . . 4-5

4.1.3 Dependence experiment . . . . . . . . . . . . 4-9

4.2 Expected Shortest Path Problem I . . . . . . . . . . . 4-14

4.2.1 Independent network links . . . . . . . . . . . 4-16

4.2.2 Dependent network links: Dependent I . . . . 4-19

vi



Page

4.2.3 Dependent network links: Dependent II . . . . 4-20

4.2.4 Asymptotic network links . . . . . . . . . . . 4-22

4.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . 4-24

4.3 Expected Shortest Path Problem II . . . . . . . . . . . 4-26

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Appendix A. Algorithm Codes . . . . . . . . . . . . . . . . . . . . . A-1

A.1 Hierarchy of MATLAB Functions . . . . . . . . . . . . A-1

A.2 Transient Stochastic K-shortest path heuristic . . . . . A-3

A.3 Generation of Q matrices in Problem in Section 4.2 . . A-9

A.4 Laplace Transform of Lower Moments . . . . . . . . . A-11

A.5 Numerical Inversion of Lower Moment Transforms . . . A-12

A.6 Laplace Transform of CTMC Marginal Probabilities . . A-14

A.7 Numerical Inversion of CTMC Marginal Probabilities . A-15

A.8 Double Sweep Algorithm . . . . . . . . . . . . . . . . . A-17

A.9 Generalized Minimization Procedure . . . . . . . . . . A-23

A.10 Generalized Addition Procedure . . . . . . . . . . . . . A-23

A.11 Decomposition of Initial Estimate Matrix . . . . . . . A-24

A.12 Path Tracing Procedure (Double sweep algorithm) . . A-26

A.13 Asymptotic Stochastic K-shortest Path Heuristic . . . A-28

A.14 Asymptotic Variance Parameter . . . . . . . . . . . . . A-34

Appendix B. Cycle Path Reduction in Double Sweep Algorithm . . B-1

Appendix C. Dependence on Distinct CTMC Sample Space . . . . . C-1

Appendix D. Q Matrices . . . . . . . . . . . . . . . . . . . . . . . . D-1

D.1 Q matrices for the Expected Shortest Path Problem I . D-1

D.2 Q matrices for the Expected Shortest Path Problem II D-3

vii



Page

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB-1

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VITA-1

viii



List of Figures
Figure Page

2.1. A path p from origin node 1 to destination node N [20]. . . . . . 2-13

2.2. Estimated trajectory of vehicle using piece-wise, linear functions [25]. 2-14

2.3. A sample path of the environment process,{Z(t) : t ≥ 0}. . . . . . 2-15

2.4. Relationship between non-zero qij and recurrence of transition. . . 2-20

3.1. Dynamic in a network. . . . . . . . . . . . . . . . . . . . . . . 3-4

3.2. An arbitrary path shortest path in a stochastic network. . . . . . 3-4

3.3. Expected probability of preceding link. . . . . . . . . . . . . . . 3-7

3.4. A sample path η in a stochastic network. . . . . . . . . . . . . . 3-11

3.5. A dependent stochastic network . . . . . . . . . . . . . . . . . 3-22

3.6. Convolution of all link travel times along a path. . . . . . . . . . 3-30

4.1. Sample network link (i, j). . . . . . . . . . . . . . . . . . . . . 4-5

4.2. Graphical depictions of the transient period. . . . . . . . . . . . 4-7

4.3. Mean travel time variation with respect to link length. . . . . . . 4-8

4.4. Dependence numerical example. . . . . . . . . . . . . . . . . . . 4-10

4.5. The behavior of α(t) of link (2, 3) from (1′, 2′) with respect to various

z0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

4.6. Experiment problem network topology. . . . . . . . . . . . . . 4-15

4.7. The independent shortest path travel time distribution. . . . . . 4-18

4.8. Experiment problem network topology. . . . . . . . . . . . . . 4-26

4.9. The independent shortest path travel time distribution. . . . . . 4-29

A.1. Hierarchy of codes for transient methodologies. . . . . . . . . . . A-1

A.2. Hierarchy of codes for asymptotic methodologies. . . . . . . . . . A-2

B.1. Triangular inequality . . . . . . . . . . . . . . . . . . . . . . . B-1

ix



Figure Page

C.1. Expected terminal distribution approach . . . . . . . . . . . . . C-2

C.2. Expected terminal state approach . . . . . . . . . . . . . . . . . C-2

x



List of Tables
Table Page

4.1. Sensitivity experiment configuration. . . . . . . . . . . . . . . . 4-6

4.2. Transient period time under various governing CTMC. . . . . . . 4-6

4.3. Mean travel time variation experiment configuration. . . . . . . . 4-8

4.4. Experiment Configuration. . . . . . . . . . . . . . . . . . . . . 4-10

4.5. The experiment result. . . . . . . . . . . . . . . . . . . . . . . 4-12

4.6. Mean travel time of link (2,3) with distinct velocity function. . . 4-14

4.7. Experiment problem configuration. . . . . . . . . . . . . . . . . 4-15

4.8. Independent shortest path results. . . . . . . . . . . . . . . . . 4-17

4.9. Normal distribution parameters of the path 1 → 3 → 5. . . . . . 4-17

4.10. Dependent I shortest paths. . . . . . . . . . . . . . . . . . . . . 4-19

4.11. Dependent I dominated paths. . . . . . . . . . . . . . . . . . . 4-20

4.12. Dependent II shortest paths. . . . . . . . . . . . . . . . . . . . 4-21

4.13. Dependent II dominated paths. . . . . . . . . . . . . . . . . . . 4-21

4.14. Asymptotic shortest paths. . . . . . . . . . . . . . . . . . . . . 4-23

4.15. Asymptotic Dependent I shortest paths. . . . . . . . . . . . . . 4-23

4.16. Asymptotic Dependent II shortest paths. . . . . . . . . . . . . . 4-24

4.17. Dependent expected travel time differences with independent case. 4-24

4.18. Optimality and computational time of the heuristic with respect to

varying K value and approaches. . . . . . . . . . . . . . . . . . 4-25

4.19. Experiment problem configuration. . . . . . . . . . . . . . . . . 4-27

4.20. Independent shortest paths. . . . . . . . . . . . . . . . . . . . 4-28

4.21. Dependent I shortest paths. . . . . . . . . . . . . . . . . . . . . 4-29

4.22. Dependent II shortest paths. . . . . . . . . . . . . . . . . . . . 4-30

xi



AFIT/GSE/ENS/03-01

Abstract

In this research, we consider stochastic and dynamic transportation network

problems. Particularly, we develop a variety of algorithms to solve the expected

shortest path problem in addition to techniques for computing the total travel time

distribution along a path in the network. First, we develop an algorithm for solving

an independent expected shortest path problem. Next, we incorporate the inherent

dependencies along successive links in two distinct ways to find the expected shortest

path. Since the dependent expected shortest path problem cannot be solved with

traditional deterministic approaches, we develop a heuristic based on the K−shortest

path algorithm for this dependent stochastic network problem. Additionally, tran-

sient and asymptotic versions of the problem are considered. An algorithm to com-

pute a parametric total travel time distribution for the shortest path is presented

along with stochastically shortest path measures. The work extends the current

literature on such problems by considering interactions on adjacent links.

xii



SHORTEST PATH PROBLEMS IN A STOCHASTIC AND

DYNAMIC ENVIRONMENT

1. Introduction

1.1 Background

Deterministic network theory has produced immense applications and contri-

butions not only in mathematical solution techniques, but also in many technolog-

ical areas ranging from communications systems to modern internet infrastructure.

Particularly, finding the shortest path in a network has allured researchers and prac-

titioners in a wide variety of applications involving the transport of materials from

an origin to a destination.

In this thesis, we deal with the shortest path problem in a transportation

network. Our approach to the transportation network problem can be applied in

several other network areas such as telecommunication systems or manufacturing

systems. For the transportation network, the deterministic shortest path problem

still has great significance; however, it does not truly reflect the probabilistic nature

of the varying cost of using arcs in a network. Intrinsically, the cost of an arc in

the network of a deterministic shortest path problem is assumed to be static and

constant, regardless of the environment in which the real network resides. However,

in the real world, the cost of an arc in a network can hardly be deterministic or

constant. For example, the required time to traverse an arc is not constant. Thus,

one of the most commonly used ways of incorporating the varying aspect of cost in

a network is a probabilistic approach to the cost.

One of the earliest researchers to impose the probabilistic property on arcs was

Frank [1] who introduced a means to compute the shortest path cumulative distribu-

1-1



tion function. Since then, a great deal of stochastic shortest path problem research

has been done. Particularly, stochastic network applications have recently become

very widely used in computer science especially in modern internet infrastructure

development. Despite variations in how to capture the uncertainty of link weight

in a network, all models have in common some sort of probability associated with

link weight. This probabilistic association is an improvement over the deterministic

assumption in that it provides a way to capture the uncertain nature of the real

world network.

In this thesis, we focus specifically on the transportation network problem and

the associated stochastic network where each link is governed by some probabilistic

measure. In our work, we use the terminology link instead of the standard arc when

we focus on our primary subject, transportation networks as opposed to general

networks.

Numerous efforts have been made to incorporate the reality of network un-

certainty in stochastic models. One approach is the naive fitted model approach

for each varying link weight based on observed data in the real world. Another is

to capture the stochastic link weight evolution over some time period. Adding the

dynamic nature of the network increases the reality of the network model; however,

the analysis becomes more complicated. In most dynamic and stochastic network

models, it is assumed that the probability distribution of all link weights is known a

priori. This demands arduous effort to collect observed data.

To incorporate the probabilistic link weight behavior with a minimum data

collection effort, many researchers utilize stochastic process models where the link

weight is governed by a stochastic process model. Some stochastic models used to

capture the traffic environmental variation affecting the link travel time are provided

in [11] and [20].

One recent contribution due to Kharoufeh and Gautam [25] considered the

modelling of the link travel time distribution using continuous time stochastic pro-

1-2



cesses to govern the velocity of a vehicle traversing a link. This work uniquely

incorporated the environmental effect on the velocity of the traversing vehicle. Fur-

ther, the environment process approach enables one to compute the distribution of

random travel times explicitly. However, this work has yet to be extended to an

entire network problem for the purpose of finding the stochastic and dynamic short-

est path across the network with a given origin node and destination node. In this

thesis, we extend the environment process approach developed by Kharoufeh and

Gautam [25] to construct a stochastic network and to find the shortest path across

this network using the environment process model.

1.2 Problem definition and Methodology

1.2.1 Problem statement

In this thesis, we extend the environment process model developed by Kharoufeh

and Gautam [25] and consider an entire network. Further, we incorporate real-world

effects such as traffic intensity and other conditions. Next, we study the inherent

dependency between successive links in a path of the stochastic network and develop

various algorithms to find the expected shortest path from the source node to the

destination node. Finally, we examine the travel time distribution along a path for

the sake of completeness and consider the stochastically shortest path problem.

1.2.2 Research Objectives

The objectives of this research may be summarized as follows. First, we en-

hance the characteristics of the environment process model to build the stochastic

network model in accordance with real-world conditions. Next, we develop an al-

gorithm to find the expected shortest path from source node to destination node

assuming independence along links in the path. Then we propose various approaches

to impose dependence between successive links in the path by considering real-world

1-3



dependence and develop an algorithm to find this dependent expected shortest path

in a stochastic network. Finally, we develop an algorithm to find a total travel time

distribution along a path. Once a path travel time distribution is found, we use

it to find the stochastically shortest path in a network using various stochastically

optimal shortest path measures.

1.2.3 Research Methodology

This research requires knowledge of the theory of continuous-time Markov

chains (CTMC), Laplace transforms and deterministic network shortest path the-

ory. To build the stochastic network model using the environment process approach,

we will use CTMC analysis to model the effects of the environment on the travel

time. We use the traditional deterministic shortest path procedures to build the

independent expected shortest path algorithm in a stochastic network. We analyze

the behavioral aspects of the environment process to incorporate the dependency

between successive links in a path.

Once the dependency has been imposed, we develop a heuristic algorithm to

find the dependent expected shortest path using a deterministic K-shortest path

algorithm. Finally, convolution of individual link travel time along a path is studied,

and we build the path travel time distribution extending the parametric result of

Kharoufeh and Gautam [24]. Moreover, with approximated parametric distribution

of the path travel time, we develop a stochastically shortest path optimality concept.

1.2.4 Contribution

This research explicitly extends the work of Kharoufeh and Gautam [25],[24]

to model a stochastic network and constructs unique ways of finding the expected

shortest path in the stochastic network based on individual environment process

properties. Further, by imposing the dependency of a real traffic situation with

two approaches, this study presents a very efficient and unique heuristic to find the

1-4



dependent expected shortest path. Finally, in this thesis, we introduce a method

of finding the total travel time distribution of a path in a stochastic network that

models on environment process. No such approaches exist in the operations research

literature to date.

1.3 Outline of the thesis

The next chapter reviews the literature relevant to stochastic shortest path

problems. In Chapter 3, the formal mathematical development of the models is

presented. Chapter 4 presents numerical experimentation and implementation using

the models of Chapter 3. In Chapter 5, we discuss the insights gained from the

analysis of this problem, summarize the contributions of the work, and provide some

directions for future research.

1-5



2. Review of the Literature

2.1 Introduction

The shortest path problem has been studied extensively in many fields in-

cluding computer science, operations research, and transportation engineering. All

stochastic shortest path works have the following in common: random arc length

modelled as either a discrete or continuous random variable whose distribution is

time-varying or time-invariant. Most of these works use a deterministic shortest

path foundation to develop the algorithm to solve the stochastic shortest path prob-

lem. Thus, we first briefly review a standard deterministic shortest path algorithm

along with some important deterministic network techniques used in our research.

Then we examine the evolution of these approaches to a stochastic approach while

primarily focusing on stochastic shortest path problem studies. Finally, we review

the work of Kharoufeh and Gautam [25] which is the foundation of the dynamic and

stochastic network modelling.

According to traditional deterministic shortest path studies, any deterministic

shortest path algorithm can be categorized as either a label setting algorithm or

label correcting algorithm depending on how the current solution (path) is iteratively

improved. The most well known label setting shortest path algorithm is Dijkstra’s

algorithm. However, our problem is a dynamic and stochastic network shortest

path problem. It has been accepted that the standard shortest path algorithms is

applicable to compute the shortest paths in time-dependent (but not stochastic)

networks [20]. But if the link weight is random and evolves over time, standard

deterministic algorithms are not guaranteed to find the optimal path [11], [20]. In

this context, for stochastic shortest path problem, we review the stochastic-static

case and the stochastic-dynamic case separately. In the next section we review

deterministic shortest path problems along with some of the network representation

techniques used in our research.

2-1



2.2 Review of Deterministic Shortest Path Problems

A network algorithm’s efficiency is heavily influenced by the network represen-

tation. The effective use of data structures can significantly improve the run times

of an algorithm [9]. We introduce two of the network representation structures to

be used in our research before reviewing Dijkstra’s algorithm.

When we need to store the information about all arcs connected with a node,

we use node-arc incidence matrix to store this information. For a graph G(N, E)

where N = node set and E=edge set, n = |N | and m = |E|, this representation

stores the networks in a n×m matrix which contains one row for each node of the

network and one column for each arc as follows [9].

Node-Arc Incidence Matrix [9]: For an undirected graph G(N, E), let V be an

n × m matrix whose element vij = 1 if edge j is incident with node i and 0

otherwise.

In addition, we develop a new network representation to store the distance (arc

length) between nodes in a undirected graph as follows.

Distance matrix: For an undirected graph G(N,E), let D be an n × n matrix

whose element dij = cij if nodes i and j are connected with length cij and ∞
otherwise.

We use these two network representations to code algorithms in the Matlab environ-

ment.

Before we review a deterministic shortest path algorithm in detail, we review

some relevant network definitions and the deterministic optimality condition of short-

est path:

• A cut is a partition of the node set N into two parts, S and S̄ = N −S. Each

cut defines a set of arcs consisting of those arcs that have one endpoint in S

2-2



and another endpoint in S̄. Therefore, we refer to this set of arcs as a cut and

represent it by the notation [S, S̄].

• A tree is a connected graph that contains no cycles.

• A tree T is a spanning tree of graph G if T spans all the nodes N of G.

The optimality condition of shortest path in a deterministic network is as

follows,

Optimality condition [12]: Suppose a graph G(N, E). Then, for every node j∈
N , let d(j) denote the length of some directed path from the source node to

node j. Then the numbers d(j) represent shortest path distances if and only

if they satisfy the following shortest path optimality conditions:

d(j) ≤ d(i) + cij for all (i, j) ∈ A.

This condition is used in our study, particularly in developing the stochastic expected

shortest path algorithm. Next, we briefly describe Dijkstra’s algorithm which utilizes

the above optimality condition iteratively to attain the shortest path.

Dijkstra algorithm [12].

Let S = permanent node set. S̄ = Temporary node set. S
⋃

S̄ = N . d(i) = Distance

label of node i. P (i) = predecessor of node i .

Step 0 Initialization.

S = ∅ ; S̄ = N ;

d(i) = ∞ for each node i ∈ N ;

d(s) = 0; and P (s) = 0 where s = source node.

Step 1 Node selection.

let i ∈ S̄ be a node for which d(i) = min{d(j) : j ∈ S̄}.

Step 2 Distance Update.

S := S
⋃{i};

S̄: = S̄ −{i};

2-3



for each (i, j) ∈ A(i) where A(i) adjacent arc list to node i,

if d(j) > d(i) + cij then d(j) = d(i) + cij and P (j) := i.

If |S| = n, terminate otherwise goto Step 1.

Dijkstra’s algorithm finds the shortest paths from the source node to all other nodes

in a network with nonnegative arc lengths. This algorithm maintains a directed

out-tree T rooted at the source that spans the nodes with finite distance labels

[12]. This algorithm maintains every arc (i, j) to satisfy the optimality condition

d(j) = d(i) + cij with respect to current distance labels. Further, we need to note

that at termination when distance labels represent shortest path distances, T is a

shortest path tree [12].

There is an assumption in using Dijkstra’s algorithm: a network must have

non-negative arc lengths. All networks in our research satisfy this condition. Even

though there have been lots of deterministic shortest path algorithms developed,

this algorithm is fast and relatively simple to run. We will use this algorithm as

a sub-algorithm to develop the expected shortest path algorithm in a stochastic

network.

In the next section, we review relevant research pertaining to the stochastic

shortest path problem, particularly the stochastic and static variety.

2.3 Stochastic and Static Shortest Path Problems

In this section, first we consider relevant literature dealing with stochastic

path distribution. One of the earliest works on stochastic shortest path found the

cumulative probability distribution of shortest path in a network whose each arc

weight is assumed to be probabilistic [1]. In this work, the author presented how to

estimate the cumulative distribution function (CDF) of the shortest path along which

each arc has a random weight. This work is considered to be one of the foundations

of stochastic shortest path in terms of the research of shortest path distribution in a

2-4



stochastic network. The author basically considered two cases to build a stochastic

network: each arc having an unknown distribution with available observational data

and each arc having a normal distribution. The former was a non-parametric analysis

and the latter was a parametric analysis. Using statistical analysis and exponential

transformation, he was able to construct the estimated CDF of the random length

of the shortest path. However, while he introduced how to estimate the CDF of the

possible shortest path in a network, he did not suggest how to find the shortest path.

He only suggested the comparison of all path distributions in a network to find the

shortest one. When each arc weight is assumed to be a normal random variable,

he introduced how to compare two disjoint s− t (source node to termination node)

paths. This comparison method is relevant to our stochastic network model where

each link travel time asymptotically follows a normal distribution [24] which is in

Section 2.5. His comparison method is summarized below.

Let π1 and π2 be disjoint s− t paths. In addition, let |πi| denote the length of

path πi. Then, the criterion to compare two paths is

P{|π1| ≥ l0} < P{|π2| ≥ l0}

where l0 is a positive number. In other words, we could say the |π1| is l0 better

than |π2|. Since all costs in the network are assumed to be normal random variables,

obviously the sum of costs in the network is also normally distributed. Further, those

arcs in a path are thought to be independent. If variances of two normal random

s− t path travel times are equal, σ2
1 = σ2

2, then

P{|π1| ≥ l0} < P{|π2| ≥ l0} iff µ1 < µ2.

2-5



If variances of two normal random s − t path travel times are not equal, σ2
1 6= σ2

2,

then P{|π1| > t} ≤ P{|π2| > t} for t such that





if σ1 > σ2 : t ≤ σ2µ1−σ1µ2

σ2−σ1

if σ1 < σ2 : t ≥ σ2µ1−σ1µ2

σ2−σ1

This result is related to utilizing the path travel time distribution to find the stochas-

tically shortest path in Section 3.5. Another relevant random variable distribution

comparison concept is a stochastic ordering based on the following definition [15].

Definition A random variable X is said to be stochastically less than Y , written

X ≤st Y , if P{X > t} ≤ P{Y > t} for all −∞ < t < ∞.

Frank’s research [1] informs us that if the path travel time is normally distributed,

we cannot find the stochastically shortest path because of the distinct variance of

individual arcs all across the stochastic network. However, the above two concepts

help us to develop a stochastically shortest path measure in Chapter 3.

Many stochastic shortest path problems are related to stochastic PERT (Pro-

gram Evaluation and Review Technique) networks. One early stochastic PERT

network study to find the shortest path computed the probability distribution of

project duration in a stochastic project network [7]. However, most of these early

PERT studies assumed the task duration (arc) was a discrete random variable so

that they can easily condition the successive arc duration with the preceding arc

duration which would lead to the total duration distribution [7]. Since most task

durations are expected to have a discrete value, this type of network makes sense,

yet it does not provide an efficient technique in the continuous arc case. However,

the discrete stochastic network approach enabled the authors to utilize discrete time

Markov chain analysis techniques to compute the shortest path distribution [15]. In

our research, each arc weight in a stochastic network is assumed to be a continuous

random variable and is governed by a continuous time Markov chain model.

2-6



Next, Elliot, et al. [4] provided a formal performance measure for selecting

a path of a stochastic network. In this work, the authors presented an analytic

derivation of path optimality indices for directed acyclic networks. This concept

contributed greatly to the evaluation of a path in a stochastic network. Prior to this

work, most results focused on constructing a path length probability distribution

[4]. In this work, the authors introduced an approach to account for the dependence

among all paths sharing certain arcs and to find the optimality indices introduced

by them in a stochastic network. This work is relevant to our study in terms of

utilizing an estimated path travel time distribution of our stochastic network model.

However, their research stopped short of a method to find the actual optimal path

based on their path performance measure.

Harilos and Tsitskikls [11] introduced the environment variable concept which

attempts to capture the environmental impacts on the random arc length. The

environment variable concept was based on the motivation that the motion of a

vehicle across a stochastic terrain is under the effect of favorable or unfavorable

weather conditions. Their work was directly motivated by the routing of a ship

across the ocean under uncertain and dynamically changing weather conditions. The

network nodes represent geographical regions across which the ship will travel. Thus,

this environment variable can be said to be a meteorological variable describing

the status of condition affecting the random duration of sojourn. Their primary

objective was to determine the vehicle’s best action as a function of the state of the

environment that prevails at a given node of the network. Following is their approach

to incorporate the environment effect on random length establishing in order to find

the shortest path. Define,

ei, fi: Environment variable at state i ∈ S = 1, 2, ..., K and fi is each corresponding

cost.

Xm: The minimum achievable total expected cost of going across the arc given that

the state of the environment is em, m ∈ S.

2-7



C: Waiting cost.

pmk: Probability that the environment transitions from state m to k.

The objective function of the problem is,

Xm = min

(
fm, C +

K∑
k=1

pmkXk

)
, m = 1, ..., K.

It is clear that there are two possible choices for the vehicle at any node: either

depart immediately, and incur a cost of fm, or wait, and incur an immediate waiting

cost of C, and a residual expected cost of
∑K

k=1 pmkXk. When waiting until favorable

environment state, the expected sum is, over each possible ’next’ environment state

ek, the minimal expected cost associated with the vehicle facing a variable of state

ek after the transition and assuming an optimal policy thereafter. The environment

variable evolvement is modelled as a DTMC with transition probability matrix [pmk]

[11].

As solutions to find the shortest path according to above nonlinear equations,

they presented three kinds of methods: successive approximations, policy iterations

and parametric linear programming [11]. While this work has a unique contribution

of incorporation of environment effect on random arc as a Markov process in a

stochastic network, the cost of the arc cannot be modelled in continuous space and

this approach intrinsically cannot capture the dependence between successive lengths

which exist in real-world environment.

A very recent model extending the work of Harilos and Tsitsiklis [11] is the

paper by Amir and Farhad [26]. They assumed the environmental variable evolves

in accordance with independent semi-Markov processes instead of Markov processes.

Further, they assume the length of each arc is an exponential random variable whose

parameter is a function of the environmental variable of its initiative node instead of

deterministic function. So the transitions of each environmental variable influence

the parameters of the exponential distributions of the lengths of the related emanat-

ing arcs and, consequently, the expected lengths of the outgoing arcs. In this work

2-8



they consider two cases to find the optimal strategy at each node; when arriving at

a node, either the state of environmental variables of adjacent nodes or all nodes in

a network are assumed to be known. The authors developed algorithms for optimal

strategy of movement in each node of acyclic networks in terms of expected arrival

time from source to sink node using semi-Markov decision process techniques and

linear programming. However, their major drawback is the exponential explosion of

the complexity of the relevant algorithms when they consider the case where each

node’s environmental variable state is assumed to be known upon arrival to any node.

This work successfully generalized the work by Harilos and Tsitsklis [11]. However,

this approach tends to be very complex as the size of problem grows and it still fails

to capture the dependency of adjacent arcs in a stochastic network which exists in

the real world.

In the next section, we review research pertaining to stochastic shortest path

problems in a dynamic environment which is directly related to our problem.

2.4 Stochastic and Dynamic Shortest Path Problems

Several works address the problem of determining the shortest path in stochas-

tic, yet static networks. By static, we mean that the time-invariance property of a

random arc in any kind of stochastic network. Many works address the determina-

tion of the probability distribution, or expected value, of minimum path length in

stochastic, static networks including the efforts of finding the paths with maximum

utility value [22]. We need to first clarify the meaning of dynamic before discussing

this class of problem. According to Stochastic and Dynamic Networks and Routing

(Ball,T.L et al [16]), a problem is dynamic if one or more of its parameters is a

function of time. One of the breakthrough works to incorporate the time-varying

reality of arc length is the work by Miller-Hooks and Mahmassani [21]. At first, they

sought the least possible time paths in stochastic, time-varying networks based on

the perception of non-FIFO (First in First out) networks. ”In non-FIFO networks,

2-9



the travel time on a path may be shorter if one arrives at an intermediate node

later than it would be if one arrived earlier”. This is mainly due to the time-varying

property of random arcs in a network. Their major contributions are the develop-

ment of algorithms to find the least possible time paths in a network with stochastic,

time-varying arc weights, including computation of the probabilities. In terms of ex-

plicit consideration of the time-varying aspect of a random arc, their work has great

significance. Following are the main contributions of their work.

Miller-Hooks and Mahmassani [21] consider a scenario in which the travel time

distribution function along an arc does not change over all possible time horizons,

rather, it evolves over time during certain intervals (e.g. peak period: t0 ≤ t ≤ t0+Iδ,

stationary period: t > t0 + Iδ). Further, they discretiezed the time unit during peak

period i.e.)t ∈ {t0 + nδ}, where n = 0, 1, ..I. Their algorithm can be summarized

as follows: Define,

Graph G(ν,A,L, T ,P): ν=finite set of nodes. A= a set of arcs. L=a set of discrete

times {t0 +nδ}, n = 1, 2..., I. T =nonnegative real valued possible travel times.

P= a set of probabilities associated with travel times,T .

τ k
i,j(t): Traversing time from node i to j at time t where k = 1, ..., Ki,j(t).

Ki,j(t): The number of possible distinct travel time values on arc (i, j) at time t.

ρk
i,j(t): The probability associated with the occurrence of τ k

i,j(t).

λj(t): The upper bound on the minimum travel time from node j at time t.

ηi(t): The temporary label of λi(t).

The methodology recursively updates the least possible travel time from the current

node to destination node with the following objective function.

ηi(t) = minp{τ p
i,j + λj(t + τ p

i,j(t))}

2-10



where p is the set of indices of possible travel times on arc (i, j) at time t. The main

concept in this work is to update the temporary label of an arc using a deterministic

label correcting algorithm [12] iteratively until all nodes are permanently updated

(least possible time from source node to sink node found ).

After this work, the least expected time path research was done by the same

authors [23]. In a manner similar to the above approach, they develop a label

correcting algorithm to find the least expected shortest time path in a so-called

stochastic time-varying network. Yet, this research also limited the time-varying

range of a random arc distribution function in a stochastic network to certain peak

periods and beyond it, it was assumed to be stationary. While this limited range of

time-varying random arc distribution function incorporated the time-varying reality

of the world, it does not sufficiently cover all possible time intervals. In summary, the

authors’ work established a significant step to incorporate the time-varying reality

although it does not sufficiently incorporate the whole range of the time-varying

domain.

A dynamic, stochastic and dependent stochastic shortest path approach was

addressed in a paper by Fu and Rillet [20]. Their work is unique in terms of the

dependence they imposed in their stochastic network. This paper is greatly relevant

to our study for several reasons which will become apparent. We briefly review their

work next. The main contributions of the paper is the extension of the shortest

path problem in dynamic and stochastic networks (DSSPP) where link travel times

evolve according to a continuous-time Markov chain (CTMC). Moreover, it explicitly

incorporates the dependency between successive arcs on a path which is very useful

and significant to our study. In addition, they demonstrated that the traditional

deterministic shortest path algorithms may not guarantee the optimal shortest path

in a DSSPP. This failure of traditional deterministic shortest path algorithms mainly

is due to the dependency of successive arcs in DSSPP. Next we present a brief

description of their main works [20].

2-11



Consider a directed graph in which each link weight is represented by a random

travel time with an associated probability distribution. Link travel time distribution

is dependent on the time of day (i.e the time a link is entered). The travel time

on these links is modelled as a CTMC. Further, travel time on each link is not

independent which is realistic and is a significant factor in developing the expected

travel time approximation.

Let {Xa(t), t ∈ T} be a stochastic process where Xa(t) is the travel time for

vehicles entering link a at time t, and T is a continuous parameter set T = [0,∞).

Assume T to be time range limited. Then there exists probability density function,

fXa(xa, t) at any possible time range t. Let µXa(t) be the mean of the stochastic

process {Xa(t), t ∈ T} as follows:

µXa(t) = E[Xa(t)] =
∫∞

0
xafxa(xa, t)dxa.

Similarly the variance of the individual random variable Xa(t) is;

νXa(t) = E[(Xa(t)− µXa(t))
2] =

∫∞
0

(xa − µXa(t))
2fXa(xa, t)dxa.

The problem is to find the expected shortest path p∗ from origin node to

destination node. This problem is referred to as a dynamic and stochastic shortest

path problem (DSSPP). Let Wp denote the total travel time on path p and fWp(Wp)

denote the PDF of Wp where p ∈ P , and P is set of paths. Then the formal problem

statement is

(DSSPP) p∗ = argminp∈P E[Wp].

The main concept of this work is first to let random variable Yi denote the

arrival time at node i. Yi is assumed to be equal to the departure time at node i or

the time link a is entered. Let Za be the random travel time on link a. Then, the

final random route travel time to node j from source node is given by the following

recursive expression:

Yj = Yi + Za.

2-12



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

i 

j 

N 

Figure 2.1 A path p from origin node 1 to destination node N [20].

The mean route travel time is found as follows,

E[Yj] = E[Yi] + E[Za]

= E[Yi] + E [E[Za|Yi]]

= E[Yi] + E[µxa(Yi)].

Using the Taylor series approximation of the function µxa(t) above at t = E[Yi],

they establish approximation formulas for the above equations and found out that

in successive links in a DSSPP, there exists explicit dependence coming from the

variance of the preceding link travel time. Further, due to this dependency, they

showed that traditional deterministic algorithms may not be applicable to find the

optimal shortest path. Consequently, they provide a heuristic to find the optimal

shortest path in a DSSPP.

The expected travel time on individual link, µXa varies drastically depending

on the preceding path chosen. Consequently, they capture the dependence between

successive links in a DSSPP in their model and develop the algorithm to solve it.

Finally, imposing the dependence of links along a path in DSSPP has great relevance

to our research.

2-13



2.5 Stochastic Model for Individual Links

In this section, we review the stochastic model for individual travel times [24],

[25]. This stochastic model for travel time on an individual link is called the en-

vironment process methodology. Kharoufeh and Gautam [25] derived an analyti-

cal expression for the cumulative distribution function (CDF) of travel time on a

stochastic transportation link. This approach explicitly captures the effect of envi-

ronmental factors (e.g., roadway geometry, traffic density, weather condition, etc.)

on the velocity of a vehicle traversing the link. These possible environmental factors

are melted into a random environment stochastic process controlling the velocity of

vehicle. Figure 2.2 gives a dual relationship between the random time to traverse

a link of length x, T (x) and the cumulative distance travelled up to time t, D(t).

In this figure, the slope of each chord corresponds to the speed of the vehicle which

T(x)

x

D
is

ta
nc

e

Time

D(t)

Figure 2.2 Estimated trajectory of vehicle using piece-wise, linear functions [25].

is governed by the stochastic environment process over continuous time. We can

induce the following the dual relationship between T (x) and D(t) which allows one

to find the distribution of T (x) by deriving the distribution of D(t).

Lemma 2.1 Event {D(t) ≤ x} ≡ Event {T (x) ≥ t} ∀x, t ≥ 0.

This relationship is obvious from Figure 2.2. The environment process is mod-

elled as a continuous time Markov chain (CTMC) governing the velocity of vehicle

2-14



traversing the link. A random environment is thought to evolve over continuous time

staying in one state of the finite dimensional state space before making a transition

to a different state. Each environment state corresponds to a unique velocity of

the vehicle through any mapping function from environment state to velocity of the

vehicle.

Let {Z(t) : t ≥ 0} denote the random environment process modelled as a

CTMC and ν = {V1, V2, V3, ..., VK} denote the possible velocity set of a vehicle.

We can partition actual continuous velocity values into a discretized velocity range

or value. This simplification is necessary to maintain one-to-one mapping between

the finite environment state and the corresponding velocity of the vehicle. Figure

2.3 depicts this mapping between the environment process and the velocity of the

vehicle. Consider a link having length, x > 0. The velocity of a vehicle at time

Time, t

Z(t)

V3

V5

V4

V1

V2

1

2

3

4

5

Figure 2.3 A sample path of the environment process,{Z(t) : t ≥ 0}.

t is governed by a random environment process, {Z(t) : t ≥ 0}. The finite state

space of the environment process, S = {1, 2, ...., K} maps to finite velocity set,

ν = {V1, V2, V3, ..., VK}. The mapping function f : S → ν describes how the speed

varies as the environment process evolves. Defining this function can be specific

to the particular scenario. The probability distribution of travel time for a link of

length x is defined as,

G(x; t) ≡ P{T (x) ≤ t} (2.1)

2-15



Using Lemma 1, it is seen that

G(x; t) ≡ P{T (x) ≤ t} = 1− P{D(t) ≤ x}, x, t ≥ 0. (2.2)

Now define the following joint probability distribution,

Hi(x, t) = P{D(t) ≤ x, Z(t) = i}, i ∈ S (2.3)

where Hi(x, t) is the joint probability that the vehicle has travelled a distance no

more than x and the environment process is in state i ∈ S at the time. The procedure

to find the eventual travel time distribution is to find the joint distribution Hi(x, t)

and apply it in Equation (2.2) to find the travel time distribution. This procedure

can be summarized as

G(x; t) ≡ P{T (x) ≤ t} = 1− P{D(t) ≤ x} (2.4)

= 1−
∑
i∈S

Hi(x, t). (2.5)

The main results of this model, which form the basis of our methodology, are

given in Theorem 2.1.

Theorem 2.1 (Kharoufeh and Gautam [25]) If the random environment process

{Z(t) : t ≥ 0} governing vehicle speed is a continuous-time Markov chain with in-

finitesimal generator, Q = [qi,j], then Hi(x, t) satisfies the partial differential equation

∂Hi(x, t)

∂t
+

∂Hi(x, t)

∂x
Vi =

∑
j∈S

qjiHi(x, t), i ∈ S (2.6)

with initial condition

Hi(x, 0) = Bi(x) = P{Z(0) = i}.

2-16



The differential equation is not easily solved so the Laplace transform technique

was employed to obtain a solution. Following are results of the two dimensional

transform over x and t.

H̃∗(s1, s2) = B̃(s1)(s1V + s2I −Q)−1 (2.7)

where H∗(x, s2) = [H∗
i (x, s2)]i∈S is the row vector of the Laplace transform of H∗(x, t)

with respect to t, B̃(s1) is a 1×K row vector, s1 and s2 are complex transform vari-

ables with Re(s1) > 0, Re(s2) > 0 and V ≡ diag(V1, V2, ..., VK). This result is

obtained through twice Laplace transformation where s2 corresponds to the Laplace

transformation variable with respect to t and s1 is the Laplace-Stieltjes transforma-

tion variable with respect to x.

Finally, in order to obtain the distribution of travel time, we need to invert

the above matrix and sum over all possible i ∈ S states. This requires us to use two

dimensional numerical inversion.

P{T (x) ≤ t} = 1− P{D(t) ≤ x}

= 1− L−1

{∑
i∈S

1

s1

H̃∗
i (s1, s2)

}

where L−1 denotes the inverse Laplace operator.

For the purposes of this research, it is necessary to describe the three required

elements in the model for link travel time distribution:

Velocity Function: The velocity function maps a particular environment state,

i ∈ S, to a corresponding velocity, Vi. Hence, the velocity function is a function

of environment state, namely f(i). It can be of any form as long as it maintains

a one-to-one mapping from S to ν.

2-17



Q Matrix: The infinitesimal generator matrix, Q, incorporates the rate of transition

from state i to j. In a practical sense, those rates can be estimated statistically

from observations of the vehicle’s speed transitions [25].

Initial State Distribution: Initial distribution vector, z0, describes the initial en-

vironment state a vehicle undergo. This can also be estimated through ob-

served data of the initial speed of vehicles. The function f(i) allows us to

directly estimate the initial state distribution from initial velocity data.

Next we review the analysis of link travel time moments for this stochastic environ-

ment process model which is used to develop the algorithm of expected shortest path

in Chapter 3. First we present the transient analysis result and then the asymptotic

analysis.

2.5.1 Transient analysis

We need to analyze this model in depth to obtain important measures such as

moments and steady state distribution. We review the moments of random travel

time by utilizing the Laplace transform property. In general, the rth moment of the

Laplace transform function is obtained by

mr(x) ≡ E[(T (x))r] = (−1)r dr

dsr
G̃(s)

∣∣∣∣
s=0.

(2.8)

where G̃(s) is the Laplace-Steiltjes transform of G(.), the CDF of x.

By the above relationship, the general expression for the rth moment of the

conditional travel time was given as [24].

K̃r
0(s1) = r!z0(s1V −Q)−re. (2.9)

where z0 is the initial distribution vector. This equation gives an exact analytical

expression for the LST of the rth moment of the random travel time, provided that

2-18



all derivatives exist at s2 = 0. The actual numeric value of the moment can be

obtained though one-dimensional numerical Laplace inversion. In most cases, we are

interested in 1st and 2nd moments by which we can find the mean travel time and

variance. Hence, the mean travel time and variance of travel time on a link are as

follows,

Mean travel time, m1(x):

m1(x) = L−1[s−1
1 z0(s1V −Q)−1e], (2.10)

the second moment of travel time, m2(x):

m2(x) = L−1
[
2s−1

1 z0(s1V −Q)−1(s1V −Q)−1e
]
, (2.11)

the variance of travel time, v(x):

v(x) = m2(x)−m1(x)2. (2.12)

It is important to note that these are direct results where the initial distribution

vector (z0) influences the moments of travel time. The analysis of a CTMC in which

the initial distribution is considered is called a transient analysis compared to an

asymptotic analysis where CTMC behavior is independent of the initial distribution,

we call the above measures transient mean and variance, respetively. This transient

analysis explicitly considers the impact of initial environment distribution on the

travel time. However, as the travel length grows, one expects the impact of the

initial environment state to diminish. This environment process which is a CTMC

will have a steady-state distribution provided the infinitesimal generator matrix Q

is ergodic. In a practical sense, as the travel length grows, surely the impact of the

initial speed of a vehicle on the travel time should dwindle as long as the vehicle is

2-19



supposed to change its speed often enough. In the next subsection, we review the

asymptotic results of Kharoufeh and Gautam [25].

2.5.2 Asymptotic analysis

According to basic CTMC analysis, if an embedded DTMC is irreducible and

positive recurrent, then it is called ergodic for which there always exists a steady-state

distribution. That means as long as all non-diagonal elements in the infinitesimal

generator Q matrix are non-zero values, this CTMC system is ergodic and this can

be easily seen by following Figure 2.4. According to the fundamental CTMC analysis 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

j i 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−

−

nn

nn

n

n

n

n

ji

ij

n q

q

q

q

q

q

q
q

q

q

q

q

q

1

2

1

12

11

22

12

1

21

11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
 

Q matrix State Transition diagram 

qji 

qij 

Figure 2.4 Relationship between non-zero qij and recurrence of transition.

[15], let p = [pj] be the steady state distribution for j ∈ S where S is the sample

space of the CTMC. Then,

pQ = 0
∑
j∈S

pj = 1.

Using the above result, we can easily derive the steady state distribution of envi-

ronment process {Z(t) : t ≥ 0}. We combine the above two equations into one

matrix equation for computational purposes. Since there are n unknowns and n + 1

2-20



equations, one of the n + 1 equations is redundant. Hence,

[pk]1×n · [Q̃i,j]n×n−1 = [ẽ]n×1

where [Q̃ij] = 


−q1 q12 q1n−1 1

q21 −q2 q2n−1 1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

qn1 qn2 qnn−1 1




and [ẽ] = 


0

·
·
·
1




By replacing the last column of the Q matrix with a unit column [1, 1, ..., 1], we make

one matrix equation as above. Next, we look into the asymptotic mean of T (x).

According to formal proof (Kharoufeh and Gautam [25]), as x −→∞,

m1(x)

x
−→ 1

pv
. (2.13)

where v is the velocity vector i.e.) v = V e. The second moment of asymptotic travel

time was derived in a similar manner, so as x −→ ∞, it can be shown (Kharoufeh

and Gautam [25])

m2(x)

x2
−→ 1

(pv)2
.

2-21



The above results, along with Chebyshev’s inequality prove [24] that , as x →∞,

T (x)

x
−→ 1

pv
.

This is intuitive result that as x → ∞ the travel time asymptotically converges to

x/pv. However, we still need to capture the behavior of the variance of travel time

as the length of the link tends toward infinity in order to estimate the asymptotic

distribution and asymptotic variation. Hence, Laplace-stieltjes transform approach

to asymptotic variance is used and shows that the standard deviation of travel time

(T (x)) in the asymptotic region is proportional to the square root of the link length

(Kharoufeh and Gautam [24]).

Let ηi, i = 1, 2, . . . , K, denote the K eigenvalues of V −1Q, and let li (ri),

i = 1, 2, . . . , K, denote their corresponding left (right) eigenvectors. Of the K eigen-

values, one eigenvalue is zero and the remaining K − 1 are strictly negative. In

particular, we note that the vector p̂ is the left eigenvector corresponding to the zero

eigenvalue.

lim
x→∞

V ar[T (x)]

x
= − 2

pv

K∑
i=2

1

ηi

(pri)(liV
−1e)

liri

.

For detailed proof, refer to Kharoufeh and Gautam [24]. Therefore, for large x the

asymptotic mean and variance can be obtained as follows,

Asymptotic mean travel time, m1(x):

m1(x) =
x

pv
(2.14)

Asymptotic second moment of travel time, m2(x):

m2(x) =

(
x

pv

)2

(2.15)

2-22



Asymptotic variance of travel time,v(x):

v(x) = −2x

pv

K∑
i=2

1

ηi

(pri)(liV
−1e)

liri

(2.16)

Since computational effort and time to obtain the numerical inversion of travel

time distribution can be excessive and the inversion process itself is at times unstable,

we need to approximate the distribution parametrically in order to extend to the

network problem where the CDF of each link is needed to compute shortest paths.

According to Kharoufeh and Gautam’s [25] work, to solve a 10-state problem, it

requires about 8.5 × 1011 floating point operations in Matlab for two-dimensional

inversion.

By using a surrogate distribution, we can utilize approximated parametric

properties to compute the total path travel time distribution with computational

feasibility. Since we have already developed the formulas for computing moments of

the conditional travel time distribution (transient and asymptotic), we can parame-

terize each individual link travel time distribution with the three required elements

mentioned earlier; Q matrix, initial distribution, and velocity function f(i). Then

we can use far less computational effort to compute the total travel time distribution

utilizing the parameterized distribution.

In this chapter, we reviewed several important contributions regarding the

stochastic shortest path problem and individual link travel time methodology. The

objective of this work is to extend the main work of Kharoufeh and Gautam [25], [24]

to an entire stochastic and dynamic network rather than a single link. The ultimate

objective is to develop a general framework for a stochastic and dynamic shortest

path algorithm in which the arc costs are random and dynamic travel times.

2-23



3. Formal Mathematical Model

In this chapter, we present the formal extension of the environment process method-

ology for a stochastic and dynamic network. This involves the models for the static

and dynamic expected shortest path as well as models for the stochastically shortest

path.

3.1 Extension to stochastic network model

There are three factors required for the stochastic environment process model:

initial environment state distribution, generator matrix (Q) and the velocity func-

tion. With these three elements, we attempt to capture the realistic and intrinsic

traffic characteristics into our stochastic and dynamic network model. Each of the

three factors is presented in detail next.

3.1.1 The generator matrix

The elements of the generator matrix represent the transition rate from envi-

ronment state i to j in unit time. Practically, this can obtained from observed data

of the speed change rate (Kharoufeh and Gautam [25]). In our study, we generate

realistic representations of the Q matrix reflecting various traffic types which exist in

the real world. Suppose a frequently congested traffic environment exists on certain

links. Then one can imagine that the more frequent velocity changes and higher

variance of velocity would exist on this link. On the other hand, on a fairly stable

link such as interstate freeway, a vehicle would undergo fewer velocity transitions

and its velocity range would be limited. These interpretations of traffic phenomena

give us a logical idea about how to construct the Q matrix according to various types

of traffic conditions.

We need to recall that the off-diagonal elements in the Q matrix, qij correspond

to the transition rate from state i to j which can be directly interpreted as velocity

3-1



transition from Vi to Vj accordingly. These ideas lead us to set the general Q matrix

definitions.

High density traffic link: Large number of environment state spaces, wide range

of qij. Example-Arterial road networks, computer networks.

Moderate density traffic link: Medium number of environment state spaces, medium

range of qij. Example-Suburban roadways.

Low density traffic link: Small number of environment state spaces, narrow range

of qij. Example-Interstate freeway segment.

These descriptions are in accordance with traffic theory. In the next chapter, we

generate the Q matrix of each link based on the network topology.

3.1.2 Velocity function

Our approach implicitly captures the time-dependency of velocity and the en-

vironmental effect which can also reflect the number of vehicles on road. However,

there are certain requirements for this velocity function. It should maintain a one-to-

one mapping and be a function of the environment state. As long as this functional

requirement is met, the velocity function may assume many forms. In our study, we

consider the following two kinds of velocity functions possible.

For arbitrary constant C,

Linear model:

V =
C

i
∀ i ∈ S

Exponential model:

V =
C

ei
∀ i ∈ S

where S is the sample space of CTMC {Z(t) : t ≥ 0}. For example, for five envi-

ronment state space case such that S = {1, 2, ..., 5} with C = 25 (miles/hour), the

3-2



mapped linear velocity space V = {25
1
, 25

2
, .., 25

5
}. In both models, as the environment

state (i) value increases, the velocity decreases. As we can foresee the different ef-

fects of each of the above models, the exponential model would cause more dramatic

velocity differences between varying environment states which eventually reinforce

the effect of transition rate on the travel time on a link. We examine in greater detail

this sensitivity. The above models are computationally simplistic and incorporate

the varying velocity as it depends on the environment state.

3.1.3 Initial distribution

The initial state of the environment, {Z(0) = i}, implies that at time 0, the

velocity is Vi. In an individual link, one can legitimately assume that initial velocity

is zero or at least the lowest velocity (V1). We need to recall the environment state

definition in terms of a vehicle traversing a link. The environment state is a reflection

of the condition that a vehicle undergoes on a link at a specific time Z(t). Further,

the environment process of a link is initiated at the time a vehicle enters the link

(more precisely, the starting node). Thus, the time t of environment state Z(t)

explicitly is the time elapsed from the departure of a vehicle from the starting node

of a link. Suppose a vehicle travels two consecutive links in a network (0, 1), (1, 2)

as in Figure 3.1. It started from node 0 at T = 0 where T is the random travel time

on the path. Then the travel time T at certain time t after passing the intermediate

node is the summation of two time segments t1, t2. As noted above, since there are

two distinct CTMC: {Z01(t)}, {Z12(t)}, there exist two distinct random travel times

on the path 0 → 1 → 2: t1, t2.

When considering dependence of successive random link travel times t1, t2, the

initial state Z(0) of following links in a path might not be the lowest state and this

is studied in Section 3.3.

3-3



 
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 

       T= t 

 
2 

 
0 

 t1  t2  

{ Z01(t1) }        { Z12(t2) }        

Figure 3.1 Dynamic in a network.

3.1.4 Stochastic and dynamic network model

With the variation of these three factors (Q matrix, velocity function and

initial distribution) in environment process CTMC depending on each distinct link’s

characteristics, we are able to model an environment stochastic network. In Figure

3.2, we show how each link can have unique variations of CTMC governing its travel

time.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s 
t 

i j 

. . . . 
. . . . 

       
    CTMC {Zij(t) ; t � 0}:  Qij , Vij  ,  {Zij(0)} 
 

Figure 3.2 An arbitrary path shortest path in a stochastic network.

In the above s-t path, each link possesses a distinct environment process

CTMC.

Next, based on these modelling approaches, we study the expected shortest

path in a stochastic network and examine the dependency between successive travel

time links.

3.2 Independent Expected Shortest Path Methodology

In this section, we present an algorithm to find the optimal expected shortest

path when each link in the network is assumed to be independent. In other words,

3-4



on a given path, each link’s travel time Tij is independent so that preceding link

travel history does not affect the subsequent link travel time. Thus, each link has

its own environment process; initial state distribution Z(0), generator matrix Q and

velocity function f(·). Since our objective is to find the expected shortest path in

a given network, once we find the mean travel time of all links, we can treat this

problem as a traditional deterministic shortest path problem where all arc weights

are given as the mean static travel time. We use both the transient and asymptotic

mean travel time in finding the expected shortest path in a network for comparison

purposes. The algorithm for this problem consists of 3 stages as follows:

Stage 0: Initialization.

Let X = [xij] be distance matrix, where xij= distance along link (i, j).

Let Qij, Vij be generator matrix (Q) and velocity function matrix, respec-

tively, for each link (i, j)

Stage 1: Finding the transient and asymptotic mean travel time of all links in a

network. Matrix A = [aij] where aij is the mean travel time of link (i, j).

Transient mean travel time: aij = L−1
[
s−1
1 z0(s1Vij −Qij)

−1e
]

Asymptotic mean travel time: aij = m1(xij) =
xij

pv
.

Stage 2: Finding the shortest path using a traditional algorithm based on mean

travel time of each link.

To find the shortest path based on the mean travel time of each link, we use the

traditional Dijkstra’s algorithm [12]. Dijkstra’s algorithm is a well-known algorithm

to find the deterministic shortest path between a given pair of nodes using the

following optimality condition iteratively to form the shortest spanning tree.

d(j) ≤ d(i) + cij, ∀ (i, j) ∈ A

3-5



where d(j) denotes the distance to node j from the source node. In this approach,

we use the mean travel time as the deterministic constant length of each link (i, j)

and apply the Dijkstra’s algorithm to find the expected shortest travel time path.

Next we study the more realistic problem involving link dependencies.

3.3 Dependent Expected Shortest Path Methodology

Thus far, we have assumed that link travel times are mutually independent. In

this section, we relax this assumption and capture the dependency of downstream

links on a path.

In the environment process model, the environment state {Z(t) : t ≥ 0} is a

CTMC which evolves over continuous time starting with initial distribution, Z0 =

[P{Z(0) = i}]i∈S. The state Z(t) at any time t determines the unique velocity

value of a vehicle traversing the link. So, the initial state distribution determines

the initial velocity of the vehicle. In the independent network case, we arbitrarily

assumed that the initial distribution of the environment is P{Z(0) = 1} = 1 and

P{Z(0) = i; ∀i 6= 1} = 0. In our nondecreasing velocity model (either linear or

exponential) with increasing state value, this means that initial velocity of the vehicle

is the lowest velocity at time 0.

However, with this initial distribution approach, distinct paths in a network

contain no history of previous links travelled. In real-world context, the history of

the previous links the vehicle travelled affects the following link travel time. In a

continuous travel on a path, the initial velocity on a successive link varies according

to the preceding link. For this reason, we must incorporate this dependency in finding

the expected shortest path in a network. Yet, there are several ways to impose this

dependency into our model. For example, we can incorporate this dependency by

considering the expected environment state at the completion of one sojourn of a

3-6



link. Another approach is to consider the probability distribution of the environment

state at the end of the sojourn.

3.3.1 Method of Expected Terminal distribution

This approach is based on the following arguments. All definitions are in

reference to Figure 3.3:

Define,

T (xij) := Random time to travel along link (i, j).

tij := A realization of the random variable T (xij).

{Zij(t) : t ≥ 0} := The environment process governing link (i, j).

Qij := Generator matrix for link (i, j).

Sij := Sample space for {Zij(t) : t ≥ 0}.

Assumption : Sij = Sjk = S where S= the sample space of the CTMC.

 
 
 
 
  
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 j k   ……… 
 

T(xjk) T(xij)  
  ……… 
 

 i 

 

{ Zij(tij) , tij � 0 }  { Zjk(tjk) , tjk � 0}  

xij 

 
xjk 

 

Figure 3.3 Expected probability of preceding link.

In Figure 3.3, our objective is to impose a downstream dependency on link

travel time T (xjk) on the given path via the initial distribution of the environment

state {Zjk(0)}. First, it is important to note that an additional assumption for this

approach is the sample spaces of the adjacent arcs are identical. In other words,

Sij = Sjk holds so that the distribution of the environment state of the preceding

3-7



link at the time the vehicle enters the following link becomes the initial distribution

of the environment state of the next link. Then suppose at time tij the vehicle enters

the next node through link (i, j) to begin its travel on the following link, (j, k). Each

link has its own environment process {Zij(tij)}, {Zjk(tjk)}, respectively. Then our

dependency approach is described as follows,

P{Zjk(0) = m} = P{Zij(T (xij)) = m} (3.1)

=
∑

h∈Sij

P{Zij(T (xij)) = m|Zij(0) = h}P{Zij(0) = h} (3.2)

where m ∈ Sjk, Sij. Thus, for the initial state distribution vector [P{Zjk(0)}],

[P{Zjk(0)}]Sjk
= [P{Zij(0)}]Sij

· [P{Zij(tij) = h|Zij(0) = g}]Sij

= [P{Zij(0)}]Sij
· [Pgh{Zij(tij)}]Sij

(3.3)

where h, k ∈ Sij and Pgh{Zij(tij)} is the transition probability from state g to h for

time tij and g, h ∈ Sij.

The realization of T (xij), tij is the time the vehicle enters the node j after

traversing link (i, j). In other words, we impose the explicit dependency of the

following link environment process on the preceding environment process evolvement

at entering time tij. Thus, we only need to determine the time tij of entering the

following link to impose dependency.

As a first approach, we decide to take the expected probability distribution of

environment state from the preceding arc as the initial distribution of the following

link, namely

[P{Zjk(0)}]Sjk
= [E[P{Zij(T (xij))}]]Sij

This method is defined as the expected terminal distribution approach because of

the dependence on the expected terminal environment process distribution of the

preceding link (i, j).

3-8



Finally our method of expected terminal distribution is stated as follows. The

initial probability of the environment state m upon random arrival time T (xij) at

node j is given by,

[P{Zjk(0)}]Sjk
= [E[P{Zij(T (xij))}]]Sij

(3.4)

However, finding [E[P{Zij(T (xij))}]]Sij
is not trivial. For a state h ∈ Sij,

E [P{Zij(T (xij)) = h}] is clearly a function of random travel time T (xij). Thus, this

is given as follows,

E [P{Zij(T (xij)) = h}] =

∫ ∞

0

P{Zij(tij) = h}fT (xij)(tij)dtij (3.5)

Obviously Equation (3.5) can only be applied when the probability density function

(PDF) of random travel time, fT (xij)(tij), is available. There is not an explicit closed

PDF form available. So, fT (xij)(tij) must be estimated by either parametric methods

or empirical methods (Section 3.5). In addition, somehow we have to determine the

tij, the realization of T (xij) when a vehicle completes its sojourn on link (i, j).

So, we can either use an approximate technique to find the Equation (3.5) or

arbitrarily specify the time tij such as tij = E[T (xij)]. One approximate technique

for finding the function P{Zij(tij)} would be a Talylor expansion at tij = E[T (xij)]

as follows,

P{Zij(tij) = h} = P {Zij(E[T (xij)]) = h}+ P ′ {Zij(E[T (xij)]) = h} (tij − E[T (xij)]) +

1

2
P ′′ {Zij(E[T (xij)]) = h} (tij − E[T (xij)])

2 + · · · (3.6)

provided that P{Zij(tij) = h} is infinitely differentiable at tij = E[T (xij)]. If we

truncate at the linear term by assuming the second and higher order derivatives are

3-9



negligible, we obtain the first order approximation,

P{Zij(tij) = h} ' P {Zij(E[T (xij)]) = h}+ P ′ {Zij(E[T (xij)]) = h} .

·(tij − E[T (xij)]) (3.7)

Then we substitute into Equation (3.5) as follows:

∫ ∞

0

P{Zij(tij) = h}fT (xij)(tij)dtij '
∫ ∞

0

{
P {Zij(E[T (xij)]) = h} fT (xij)(tij)dtij

}
+

∫ ∞

0

{
tijP

′ {Zij(E[T (xij)]) = h} fT (xij)(tij)dtij
}

−
∫ ∞

0

E[T (xij)]P
′ {Zij(E[T (xij)]) = h}

·fT (xij)(tij)dtij

= P {Zij(E[T (xij)]) = h}
∫ ∞

0

{
fT (xij)(tij)dtij

}
+

P ′ {Zij(E[T (xij)]) = h}
∫ ∞

0

{
tijfT (xij)(tij)dtij

}

−E[T (xij)]P
′ {Zij(E[T (xij)]) = h}

·
∫ ∞

0

{
fT (xij)(tij)dtij

}

= P {Zij(E[T (xij)]) = h}+

P ′ {Zij(E[T (xij)]) = h} (E[T (xij)]− E[T (xij)])

= P {Zij(E[T (xij)]) = h}+ 0 (3.8)

Hence, with the first order approximation of P{Zij(tij) = h}, we are able to approx-

imate Equation (3.5)

Proposition 3.1 The approximated initial environment state distribution of link

(j, k), [P{Zjk(0)}]Sjk
is given as,

[P{Zjk(0)}]Sjk
= [E[P{Zij(T (xij))}]]Sij

' [P{Zij(m1(xij))}]Sij
(3.9)

where m1(xij)=E[T (xij)] provided that Sjk = Sij.

3-10



Proof. This is a direct result of Equations (3.5), (3.8), (3.4). Q.E.D.

By using the above result, we incorporate the dependency of the successive

downstream link travel time. In this approach, we implicitly reflect the preced-

ing path history into the successive travel time through the initial distribution. In

order to compute the [P{Zij(tij)}]Sij
, we need the initial distribution of CTMC

{Zij(T (xij)) : T (xij) ≥ 0}, [P{Zij(0) = h}]h∈Sij
, and this is also obtained from

its preceding expected travel time probability and so on. Thus, the following link

travel time, m1(tjk) explicitly depends on the preceding link environment process

probability vector, [P{Zij(tij)}]Sij
.

Suppose there is a path η in a network as shown in Figure 3.4. Then we can

make a node set N(η)= the set of all nodes on path η. Further, if we arrange the node

set N(η) in an ascending order number of nodes such that N(η) = {0, 1, ··j ··, k−1, k}
where 0 denotes the source node, k denotes the sink node and j is the jth node in

N(η). Let Yj be the total travel time up to node j ∈ N(η) and let Tj−1,j be the

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 0  1   j k-1   k . . . . . . 

T0, 1 Tk-1, k 

Y1 

Yj 

Yk-1 

Yk 

A Path η   

Figure 3.4 A sample path η in a stochastic network.

random travel time from the (j − 1)st node to the jth node. Then, our objective is

to find the total dependent travel time Yk. For Yk, Equation (3.10) holds.

Yk = Yk−1 + Tk−1,k (3.10)

3-11



In other words, the sum of the total travel time up to node k − 1 and the last link

travel time, Tk−1,k, is the total travel time to sink node k, Yk. Since we seek the

expected total travel time, E[Yk],

E[Yk] = E[Yk−1] + E[Tk−1,k] (3.11)

= E[Yk−1] + E [E[Tk−1,k|Tk−2,k−1]] (3.12)

Namely, due to the dependence of successive links in the path from node 0 to k,

we can condition upon the preceding link random travel time Tk−2,k−1 to find the

expected travel time of Tk−1,k.

Since the random travel time of the next link on a path only depends on the

current link travel time via the expected probability method, this concept is similar

to the Markovian property where transition occurs in the same manner. We can find

the dependent expected travel time E[Yk] by using the above formula recursively as

follows.

E[Yk] = E[Yk−1] + E[Tk−1,k]

= E[Yk−2 + Tk−2,k−1] + E [E[Tk−1,k|Tk−2,k−1 = tk−2,k−1]]

= E[T0,1] + E [E[T1,2|T0,1 = t0,1]] + · · ·+ E [E[Tk−1,k|Tk−2,k−1 = tk−2,k−1]]

= E[T0,1] + µT1,2(t0,1) + · · ·+ µTk−1,k
(tk−2,k−1) (3.13)

= E[T0,1] +
k−1∑
j=1

µTj,j+1
(tj−1,j) (3.14)

where µTj,j+1
(tj−1,j) = E [E[Tj,j+1|Tj−1,j = tj−1,j]], the expected travel time on link

(j, j + 1) given the travel time of the preceding link (j − 1, j) is tj−1,j.

Hence, the total travel time sums up expected total travel time at the preceding

node, E[Yj] and the expected travel time on the current link, µTj,j+1
(tj−1,j). We can

compute the total expected travel time E[Yk] recursively using Equation (3.14).

3-12



Next, in order to compute the dependent expected travel time µTj,j+1
(tj−1,j),

we need to define the Laplace-Stieltjes transform of the initial distribution of the

next link (j, j + 1).

In Chapter 2, we introduced the joint probability distribution Hi(x, t) = P{D(t) ≤
x, Z(t) = i}, i ∈ S. Now, the initial joint probability distribution in a dependent

network is given as follows provided H(xj,j+1, tj,j+1) = [Hi(xj,j+1, tj,j+1)]i∈Sj,j+1
,

Hi(xj,j+1, 0) = P{D(0) ≤ xj,j+1, Zj,j+1(0) = i}
= P{Zj,j+1(0) = i}

At time tj−1,j (the time a vehicle enters link (j, j + 1)), the random travel time of

link (j, j + 1), tj,j+1 is initiated. Further, using Equation (3.9),

P{Zj,j+1(0) = i} = P{Zj−1,j(E[tj−1,j]) = i} = Hi(xj,j+1, E[tj−1,j])

Taking the Laplace-Stieltjes transform of H(xj,j+1, E[tj−1,j]) with respect to xj,j+1,

LST (H(xj,j+1, E[tj−1,j])) =

∫ ∞

0

es1xj,j+1dH(xj,j+1, E[tj−1,j])

= B̃(s1, E[tj−1,j])

where H(xj,j+1, E[tj−1,j]) is the vector of Hi(xj,j+1, E[tj−1,j]). Now µTj,j+1
(tj−1,j) is

computed as follows,

µTj,j+1
(tj−1,j) = E [E[Tj,j+1|Tj−1,j = tj−1,j]]

= L−1
[
s−1
1 B̃j,j+1(s1, E[tj−1,j])(s1V −Qj,j+1)

−1e]
]

(3.15)

Equation (3.15) enables us to compute the conditional expected travel time of fol-

lowing links successively. Each index (j, j +1) refers to the (j +1)th link in the path

N(η).

3-13



The above computation procedures are seemingly tedious; however, practically

the above procedures only differ from independent method (section 3.1) in terms of

the variation of the initial distribution [B̃] in Equation (2.10).

Finally we summarize the algorithm for computing the expected total travel

time on a path with terminal distribution dependency on successive links.

Approach I: Expected terminal distribution.

Step 1 Compute the expected travel time E[Tij] on link xij ⇒ m1(xij)

Step 2 Compute the expected environment state probability vector of link (i, j),

[P{Zij(m1(xij)}]

Step 3 Equate the initial environment state probability vector of link xjk with the

expected probability vector found in step 2. ⇒ [P{Zjk(0)}] = [P{Zij(m1(xij)}]

Step 4 Compute the expected travel time on link xjk with Equation (3.15). ⇒
µTjk

(tij) = L−1
[
s−1
1 B̃ij(s1, E[tij])(s1V −Q)−1e

]
.

Step 5 Compute the total expected travel time by Equation (3.14). ⇒ E[Yk] =

E[T0,1] +
k−1∑
j=1

µTj,j+1
(tj−1,j).

Next, we present another dependence model which may possibly more accurately

reflect the dependency of network travel times.

3.3.2 Method of Expected Terminal State

A vehicle traversing the link xjk in Figure 3.3 initially starts the travel with

a specific initial environment state, i. That is P{Zjk(0) = i}i∈S2 = 1. In the

previous approach, we imposed the dependency of the next link travel time through

the expected initial state probability vector of link xjk provided that the vehicle

arrives from link xij. In this section, we focus more on a specific initial state the

vehicle should begin with rather than the probability distribution of the initial state.

In other words, we seek the expected state of the initial distribution and not the

3-14



distribution itself. Thus, we want to find the E[Zjk(0)] and we assume that a vehicle

begins its travel on link xjk at state E[Zjk(0)] with probability 1.

However, in general, this expected terminal state is not an integer value cor-

responding to one of the states of the following link (j, k). In order to maintain the

matching of this expected terminal state to the initial state by the following link’s

CTMC, {Zjk(tjk) : tjk ≥ 0}, we utilize a function nint[u] which denotes the nearest

integer to u.

In this section, we seek E[Zij(T (xij))], the expected terminal state given by,

E[Zij(T (xij))] =
∑

h∈Sij

{Zij(T (xij)) = h}P{Zij(T (xij)) = h}

=
∑

h∈Sij

hP{Zij(T (xij)) = h} (3.16)

As shown above, E[Zij(T (xij))] is a function of T (xij) and via conditioning upon

T (xij) it can be represented as,

E[Zij(T (xij))] =
∑

h∈Sij

hP{Zij(T (xij)) = h}

=
∑

h∈Sij

h

∫ ∞

0

P{Zij(T (xij)) = h|T (xij) = tij}fT (xij)(tij)dtij

=
∑

h∈Sij

h

∫ ∞

0

P{Zij(tij) = h}fT (xij)(tij)dtij (3.17)

where fT (xij)(·) is the PDF of tij which is the time of finishing the travel on link

(i, j).

As in the previous section, we can approximate the above probability function

P{Zij(tij) = h} with a second order Taylor series expansion (Equations (3.7), (3.8))

3-15



as follows,

E[Zij(T (xij))] =
∑

h∈Sij

h

∫ ∞

0

P{Zij(tij) = h}fT (xij)(tij)dtij (3.18)

'
∑

h∈Sij

hP{Zij(E[T (xij)]) = h} (3.19)

Finally, the following proposition holds,

Proposition 3.2 The first order approximated expected terminal state of preceding

link (i, j) at tij = E[T (xij)] is given as,

E[Zij(T (xij))] ' nint


 ∑

h∈Sij

hP{Zij(m1(xij)) = h}

 (3.20)

where m1(xij) = E[T (xij)] and nint[.] is the nearest integer function.

Proof. This is a direct result of Equations (3.17) and (3.19). Q.E.D.

Since the expected value of a state may not be an integer value, we round off

to make an integer value matching the environment state. Proposition 3.2 states

that the following link (j, k)’s initial environment state is the state of preceding link

(i, j) at the expected travel time of link (i, j). So the initial state probability vector

of the following link xjk is,

[P{Zjk(0) = 1}, P{Zjk(0) = 2}, ., P{Zjk(0) = i}, ...P{Zjk(0) = K}]
= [0, 0, ., P{Zjk(0) = i}, ...0]

where P{Zjk(0) = i} = 1, i = E[Zjk(0)]. This dependency has a dramatic impact

on the following link travel time depending on the preceding link as we will show

in Chapter 4. Instead of imposing the dependency of the probability distribution of

3-16



the initial state of the following link, this approach explicitly seeks the dependency

of the expected initial state.

Finally this approach is summarized as follows.

Approach II: Expected Terminal State.

Step 1 Compute the expected travel time E[Tij] on link (i, j).

Step 2 Compute the environment state probability vector of link (i, j), [P{Zij(m1(xij)}].

Step 3 Compute the rounded expected state,

E[Zij(tij)] ⇒ nint
[∑

h∈Sij
hP{Zij(m1(xij)) = h}

]
.

Step 4 Compute the expected travel time on link xjk with Equation (3.15)⇒ µTjk
(tij) =

L−1
[
s−1
1 B̃ij(s1, E[tij])(s1Vjk −Qjk)

−1e
]
.

Step 5 Compute the total expected travel time by Equation (3.14) ⇒ E[Yk] =

E[T0,1] +
k−1∑
j=1

µTj,j+1
(tj−1,j).

Next, we consider another dependence approach which would require less com-

putational effort while imposing the same kind of dependence used thus far.

3.3.3 Method of Asymptotic dependence

Thus far we have imposed the dependence of the following link’s CTMC on

the preceding terminal state and the expected terminal state probability distribution.

Since the time a vehicle enters a downstream link is the key to impose the dependency

between successive links, we consider the asymptotic behavior of the subsequent link.

Due to the limiting behavior of an ergodic CTMC, this approach is computationally

much more efficient. The key concept of this approach is imposing the dependency

via the asymptotic behavior of CTMC.

First, for the method of expected terminal distribution, consider two successive

links on a path (Figure 3.3), (i, j) and (j, k). The distribution of the environment at

3-17



the start of the sojourn of link (j, k) is given by,

[P{Zjk(0) = h}]h∈Sjk
= lim

t→∞
[
E[P{Zij(t) = h}]h∈Sij

]

=
[
E[πh

i,j]h∈Sij

]

= πh
i,j (3.21)

where πh
ij = lim

t→∞
P{Zij(t) = h} is the steady-state distribution of CTMC of link

(i, j) and provided Sij = Sjk. We omit both sample space notations; Sij, Sjk for

convenience henceforth.

Next, for the method of expected terminal state, we can use the following

Equation (3.22).

lim
t→∞

E[Zij(t)] ' nint


 ∑

h∈Sij

hπh
ij


 (3.22)

Next is the link’s CTMC initial distribution for m ∈ Sjk,

P{Zjk(0) = m} = 1 where m = nint

[
∑

h∈Sij

hPZij
(h)

]

With this asymptotic approach, we can still use both methods developed in

earlier sections as shown above: the method of expected terminal distribution and

method of expected terminal state. The only difference is to use the asymptotic

probability vector of the preceding link [πh
ij] instead of the transient probability vec-

tor [P{Zij(tij)}]. In fact, using the asymptotic measures would considerably reduce

computational time because imposing the dependence between successive links in-

stead of computing the mean travel time of the preceding link (i, j) in computing

the transient state probability [P{Zij(E(tij))}] requires less effort. We can easily

compute the steady state probability πh
ij using the Equations (3.23) and (3.24),

[πh
ij][Qij] = 0 (3.23)

[πh
ij]e = 1 (3.24)

3-18



This method differs from the two previous methods in terms of the termination

time of the preceding link’s CTMC (T (xij)). Computationally, this method is much

easier and further, if the CTMC is well behaved (converging quickly to steady state),

then this approach would be much different from previous approaches.

Next, we study algorithms for the expected dependent shortest path utilizing

two dependency approaches.

3.4 Algorithms for the Expected Dependent Shortest Path

In contrast to the independent network case, it is now noted that the classical

deterministic algorithm may not find the expected dependent shortest path due to

the dependency between two consecutive link travel times. In fact, the standard

deterministic shortest path algorithm may not guarantee the shortest path as shown

in following proposition.

Proposition 3.3 If a successive individual link travel time in a network depends on

a preceding link travel time, the standard shortest path algorithm may fail to find the

expected shortest path between two nodes.

It is a well-known fact that a greedy algorithm such as Dijkstra’s algorithm may

fail to find the shortest path in a dependent network [20]. Thus, we present two

algorithms to solve this dependent expected shortest path problem along with a

linear programming approach.

3.4.1 Explicit Enumeration

One naive approach would be to compute expected travel times for all possible

paths from the source to the sink. This would be computationally inefficient as the

number of nodes grows. However, an explicit enumeration algorithm would give the

exact solution of the dependent expected shortest path.

3-19



Let ϕ be the set of all distinct paths from the source node to the sink node. Fur-

ther, let p be a path in set P . That is, P = {p : p is a path from the source to sink node}.
All path enumeration algorithm

Step 1 Enumerate all paths p (trees) emanating from the source node.

Step 2 Compute the total travel time of each p. For each link (i, j) ∈ p successively

find the expected total travel time E[Yp] using Equation (3.14).

Step 3 Rank all E[Yp] according to each value and choose the minimum E[Yp∗ ]

Thus, p∗ is the optimal expected shortest path.

These procedures require intensive computational effort not only to compute

each path’s travel time, but also to find all possible paths.

In the next subsection, we present a similar approach using linear programming

method to show how even a simple dependent stochastic network can be intractable.

3.4.2 Linear Programming

In general, the linear programming approach to the deterministic shortest path

problem tends to be computationally slower than a network algorithm [12]. However,

in this section we present a general linear programming approach to the shortest path

problem in a stochastic network to complete the research work.

At first, for a general dependent stochastic network G(N, E) where N is the

node set and E is the link set of graph G, define linear programming variables as

follows,

s:= Source node and t:= Sink node.

ψ̃:= The independent links set in graph G(N, E). The independent links are always

the links emanating from source node s (Initial links).

ψ:= The dependent links set in graph G(N,E). Further, ψ∪ ψ̃ = E and ψ∩ ψ̃ = ∅.

3-20



A(j, k):= The set of preceding nodes to link (j, k).

c(i,j):= The mean random travel time to traverse the independent link (i, j) for all

(i, j) ∈ ψ̃.

ci,(j,k):= The mean random travel time to traverse the dependent link (j, k) from

node i for all (j, k) ∈ ψ.

Xi,(j,k):= 1 if the link (j, k) (dependent link) from node i is in the shortest path,

otherwise, 0.

X(i,j):= 1 if the link (i, j) (independent link) is in the shortest path, otherwise, 0.

Then, the general linear integer programming formulation of expected shortest

path in a dependent stochastic network is stated as follows,

Minimize
∑

(s,j)∈ eψ
c(s,j)X(s,j) +

∑
(j,k)∈ψ

∑
i∈A(j,k)

ci,(j,k)Xi,(j,k)

Subject to∑
(j,k)∈ eψ

X(j,k) = 1 (For source node j = s)

∑
i∈A(k,j)

∑
(k,j)∈ψ

Xi,(j,k) −
∑

(j,k)∈ψ

∑
i∈A(j,k)

Xi,(j,k) = 0

(For all node j ∈ N − {s, t})∑
(k,j)∈ψ

∑
i∈A(k,j)

Xi,(k,j) = 1 (For sink node j = t)

∀ Xi,(j,k), X(j,k) ∈ {0, 1}

In our stochastic dependent network, depending on the preceding link, the mean

travel time of the next link varies. This leads to the above formulation. As shown

above, the number of decision variables in the linear program dramatically increases

with respect to the cardinality of the dependent link set ψ and the number of pre-

ceding nodes set to each link (j, k) ∈ ψ.

In general, the actual number of distinct links Xi,(j,k) in a dependent stochastic

network is found as follows,

|ψ̃|+
∑

(j,k)∈ψ

|A(j, k)| (3.25)

3-21



where the notation |S| is the cardinality of set S. Again, the number of decision

variables Xi,(j,k) increases with respect to the product of |A(j, k)| × |ψ|.

For example, we consider the following undirected graph in Figure 3.5. This

graph consists of 5 nodes and 8 arcs as shown.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 3 

4 

2 

5 

Figure 3.5 A dependent stochastic network

For this graph, the dependent link set ψ and independent links set ψ̃ are given

as follows,

ψ = {(2, 5), (3, 5), (4, 5), , (2, 3), (3, 2), (3, 4), (4, 3)}
ψ̃ = {(1, 2), (1, 3), (1, 4)}

The preceding nodes set for link (3, 5), for example, is A(3, 5) = {2, 1, 4}. The

number of decision variables for this problem is,

|ψ̃|+
∑

(j,k)∈ψ

|A(j, k)| = 3 + 14

= 17

This LP approach requires us to enumerate all possible distinct links and com-

pute all the dependent mean random travel times ci,(j,k) of dependent link (j, k)

in advance. While this approach gives us the exact solution, this becomes very

intractable as the number of links and nodes increases. Therefore, in the next sub-

3-22



section, a heuristic algorithm is developed to find the expected shortest path of a

dependent network.

3.4.3 The K-shortest path heuristic

The basic idea of this heuristic is to identify the first dominating path set

in terms of independent expected travel time and then, determine the dependent

expected shortest path among them depending on the dependency approach.

In order to find the dominated path set, we use the K-shortest path algorithm

based on independent expected travel time. Before proceeding to this algorithm, we

need to understand this K-shortest path algorithm. Next, we briefly describe the

algorithm.

K shortest path algorithm

We present the double sweep algorithm developed by Shier [3] in 1979. This

algorithm finds the K shortest path lengths between a specified node and all other

nodes in a graph. This algorithm consists of exclusively generalized addition and

minimization set operations. These operations are performed on sets of K distinct

numbers representing the lengths of paths or arcs.

Initially, for a graph G(N,E) where |N | = n, we construct an initial esti-

mate vector of K shortest distance from the source node to all nodes. The double

sweep algorithm method successively reduces these estimates until an optimal set of

distances is found using two set operations; generalized minimization and addition.

First, let RK denote the set of all vectors (d1, d2, ....., dK) with the property

that d1 < d2 < .... < dK . Thus,the components (estimates of distance) of a member

of RK are distinct and arranged in ascending order.

Let a = (a1, a2, ...., aK) and b = (b1, b2, ...., bK) be two members of RK . Then,

generalized minimization, denoted by ⊕, is defined as

3-23



a⊕ b = mink{ai, bi : i = 1, 2, ...., K} (3.26)

where minK(X) means the K smallest distinct members of the set X.

Generalized addition, denoted by ⊗ is defined as

a⊗ b = minK{ai + bj : i, j = 1, 2, ..., K} (3.27)

The following example aids in understanding generalized minimization and addition.

Suppose there are two vectors, a = [-4,0,1,∞] and b = [1, 7, 8, 9]. Clearly the two

vectors are arranged in ascending order. In this case the generalized minimization

is,

a⊕ b = [−4, 0, 1, 7]

The generalized addition can be easily found by using the cross sum of both of

elements in vector a and b,

b⊗ a -4 0 1 ∞
1 -3 1 2 ∞
7 3 7 8 ∞
8 4 8 9 ∞
9 5 9 10 ∞

The set of cross sums is therefore,

[−3, 1, 2,∞, 3, 7, 8,∞, 4, 8, 9,∞, 5, 9, 10,∞] or

[−3, 1, 2, 3, 4, 5, 7, 8, 9, 10,∞] so

b⊗ a = [−3, 1, 2, 3]

Thus, the generalized minimization defines a set formed with the elements of two

given vectors of equal dimension used to construct a third vector of the same di-

mension by putting elements in the set in strictly increasing order. The generalized

addition defines a set formed with the cross sum of the elements of two given vectors

3-24



of equal dimension, and then constructs a third vector of the same dimension, with

the minimal element of the set of cross sums in the first position.

Given three vectors such that,

a = [a1, a2, ..., aK ] , f = [0,∞,∞, ...,∞] , v=[∞,∞,∞, ...,∞].

Clearly the following relations hold:

a ⊕ v = a

a ⊗ v= v

a ⊗ f = a

Now, let d0
ij = (d0

ij1, d
0
ij2, ..., d

0
ijK) ∈ RK denote the initial lengths of the K

shortest paths from node i to node j. If two paths from node i to node j have the same

length, then this length appears only once in d0
ij. If there are less than K paths from

i to j, then fill up the remaining components with ∞. Let dl
ij = (dl

ij1, d
l
ij2, ..., d

l
ijK)

∈ RK denote the K shortest distinct path lengths from node i to j acquired at lth

iteration. Let Dl denote the matrix whose i,jth element is the dl
ijvector. Lastly, let

d∗ij = (d∗ij1, d
∗
ij2, ..., d

∗
ijK) ∈ RK denote the K shortest path lengths from node i to j.

These path lengths are called the optimal path lengths.

Consequently, let D∗ denote the matrix whose i,jth element is the d∗ij vector.

This double sweep algorithm starts with an initial solution of K shortest path lengths

from node i to j such as d0
ij = (0,∞,∞, ...,∞).

At each iteration, it employs a sequence of alternating forward and back-

ward iterations. During the forward iteration, the nodes are examined in the order

1, 2, ...., n, while the nodes are examined in the order n, ..., 2, 1 during the back-

ward iteration. Moreover, when examining a node j during the forward iteration,

only arcs (i, j) with i < j are processed. Similarly, only arcs (i, j) with i > j are

processed during the backward iteration. By processing, we mean that the current

K-vector for node j will be improved if possible by a path to node j which extends

3-25



first node i and then uses the arc (i, j). More precisely, if any of the quantities

{d1im + cij : m = 1, .., K} where m is the order of shortest paths vector, provides

a smaller path length than any one of the tentative K shortest path lengths in dl
1j

at the lth iteration, the current K vector dl
1j is updated by inclusion of this smaller

path length [3].

To attain the above forward and backward sweep improvement, we need to

construct two matrices L and U . Let matrix L be formed from matrix D0 by replacing

every component of every element d0
ij by ∞ whenever i ≤ j. Let matrix U be formed

from matrix D0 by replacing every component of every element d0
ij by ∞ whenever

i ≥ j. So matrices L and U are the lower and upper triangular portions of D0.

The double sweep algorithm is initiated with any estimate d0
ij = (d0

ij1, d
0
ij2, ..

, d0
ijK) of d∗ij = (d∗ij1, d

∗
ij2, .., d

∗
ijK) in which each value is not less than the correspond-

ing optimal value. For example, all values could be set equal to ∞ except d0
111 = 0.

The algorithm computes new improved (reduced) estimates of d∗ij by processing dij

if any of the K values in d0
1j ⊗ d0

ji are less than any of the K values in the current

estimate d0
1i. If so, the smallest K values are chosen. This process implemented for

all j incident to node i, yielding a new improved estimate d0
1i of d1i∗ (optimal).

The termination condition is that two successive estimates (di
11, d

i
12, ..., d

i
1n)

and (di+!
11 , di+1

12 , ..., di+1
1n ) are the same in every component for i ≥ 1. Then this final

estimate is the optimal value. The detail of this algorithm can be found in Shier [3].

Following is a brief description of the double sweep algorithm:

Step 0 Initialization. Let the initial estimate d0
1 = (d0

11, d
0
12, ...., d

0
1n) of d∗1 consist of

values that equal or exceed the corresponding optimal values. For all diagonal

element vectors, d0
ii = [0,∞,∞, ...,∞].

Step 1 Given an estimate d2r
1 of d∗1, calculate new estimates d2r+1

1 and d2r+2
1 as fol-

lows:

Backward sweep:

3-26



d2r+1
1 = d2r+1

1 ⊗⊕L⊕ d2r
1

Forward sweep:

d2r+2
1 = d2r+2

1 ⊗⊕U ⊕ d2r+1
1 (r = 0, 1, 2, ...).

Step 2 If two successive estimates dt−1
1 and dt

1 are identical for t > 1, terminate,

otherwise go to step 1.

Note that the multiplication operation in the first part in both sweep consists of

generalized minimization of each set, dij ⊕ Lji and generalized addition of all such

sets. Once we found the K shortest path lengths from the source node to all nodes

in matrix D∗, we need to find each path corresponding to the length of the path.

This tracing procedure is nontrivial since we cannot trace the path at each iteration

because of arbitrarily larger than optimal estimate values.

Thus, tracing can be done once after we have found the optimal K shortest

path lengths. Suppose we want to find the pth shortest path from the source node

to some node j. The tracing procedure follows:

Step 1 Identify the incident node (penultimate node) to j where any of K shortest

path lengths in the distance vector satisfies Equation (3.28),

d∗1jp = d∗1it + d0
ij1 (3.28)

where d∗1it is the tth shortest path length, t ≤ p corresponding to node j. d0
ij1=

the arc length from node i to j.

Step 2 Repeat Step 1 until we reach the source node.

However, in practice we can encounter a tied situation choosing the penultimate node

i or may have a cycle path. These cases need to be resolved in the implementation.

One of the cycle reduction techniques is presented in Appendix B. Finally using

3-27



this K shortest path algorithm, we present the dependent expected shortest path

heuristic next.

Dependent expected shortest path heuristic

Based on the K shortest paths algorithm, we develop the following K-shortest

path heuristic to find the dependent expected shortest path for a stochastic network:

Step 0 Construct the matrix A = [aij] where aij=E[T (xij)], the mean travel time

on arc (i, j) using Equations (2.10) and ( 2.14).

Step 1 Find the K shortest paths based on the above matrix A.

• Finding K shortest paths from source node to sink node using double

sweep and tracing procedures.

• Restore the K sets of paths from source to sink node in a list P .

Step 2 Set i = 1; start with the longest path from list P and set it to p∗. Cal-

culate the dependent expected travel time t∗ based on one of two approaches:

expected terminal distribution or expected terminal state.

Step 3 If i > K, p∗ is the optimal path with t∗. Otherwise goto Step 4.

Step 4 Set i = i + 1, take the ith path from P and set it to pi. If the calculated

dependent expected travel time value ti < t∗, then p∗ = pi. Go to Step 3.

At Step 1, we use Shier’s K-shortest path algorithm [12]; called double sweep

algorithm, based on the independent expected travel time of each link. The efficiency

of this algorithm relies on the K value, the number of paths to be selected. Obviously,

as the value of K increases, the chance of finding the optimal dependent expected

shortest path increases, but required computational effort also increases.

The underlying concept in this heuristic is to find a subset of paths PK ⊂ P

based on independent mean travel time. This concept is similar to Fu and Rilett’s

work [20] to find the expected shortest path in dynamic networks. The authors

3-28



obtained good results even with small K in a problem with 1400 nodes. We demon-

strate the effect of the value of K on finding the optimal dependent shortest path in

Chapter 4.

3.5 Algorithms for the Stochastically Shortest Path

In this section, we analyze methods to compute the stationary travel time

distribution on any given path in the stochastic network and develop the algorithm

to find the stochastically shortest path. The first subsection considers the case of

independent link travel times.

3.5.1 Method of Convolution

In order to find the total travel time distribution of any given path, we have

to sum all the travel time random variables on each link of the path. This problem

reduces to finding the distribution of the sum of random variables.

Let T (xij) denote the random travel time to traverse link (i, j). Let ϕ de-

note the set of all paths from the source node to sink node k. Then, ϕ = {p :

p is a path from node 1 to node k}. Further, let γp be the total random travel time

of path p ∈ ϕ. That is γp =
∑

i,j∈p T (xij). Finally our objective is to find the

cumulative distribution function of γp,

Fγp(t) = P{γp ≤ t}.

There are numerous methods to find this seemingly simple sum of random variables.

Since we first assume independent link travel time, convolution is one method to

solve the problem.

For a given path p ∈ ϕ, Figure 3.6 depicts the travel time random variable of

each link. Let us seek the survival function of the total travel time of the above path,

namely Gγp(t) = 1−Fγp(t). For path p ∈ ϕ, the distribution of γp is the convolution

3-29



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1  2 
 n-1 

 n 
  ……… 
 

T(x12) T(x2i) T(xj n-1) T(xn-1 n) 

  i   j 

Figure 3.6 Convolution of all link travel times along a path.

of all travel time distributions for each link (i, j) ∈ p. That is,

Gγp(t) = GT (x12)(t) ∗GT (x2i)(t) ∗ · · · ∗GT (xn−1n)(t) (3.29)

where the survival function of the random travel time of link (i, j) is defined as,

GT (xij)(t) =
∑

h∈Sij

Hh(xij, t)

Taking the Laplace transformation of Equation (3.29) with respect to t with complex

s2,

G∗
γp

(s2) = G∗
T (x12)(s2) ·G∗

T (x2i)
(s2) · · · · ·G∗

T (xn−1n)(s2)

= [H(x12, s2)e] · [H(x2i, s2)e] · · · · · [H(xn−1n, s2)e] (3.30)

where H(xij, s2) is the vector of Hh(xij, s2), h ∈ Sij. If we recall Theorem 2.1 in

Chapter 2, in order to find the solution of [H(xij, t)] we took the transformation

twice with respect to t and xij, respectively (Kharoufeh and Gautam [25]). Hence,

using the solution of H(xij, t) found by twice transformation, Equation (3.30) can

be computed as follows,

G∗
γp

(s2) = [H(x12, s2)] · [H(x2i, s2)] · · · [H(xn−1n, s2)]

= L−1|x12[s
−1
1 H̃∗(s1, s2)e] · L−1|x2i[s

−1
1 H̃∗(s1, s2)e] · · · (3.31)

·L−1|xn−1n[s−1
1 H̃∗(s1, s2)e]

3-30



where L−1|xij
is the Laplace transform inversion with respect to the length of link

(i, j). This apporach becomes intractable even with a small number of convolutions.

Suppose a path p where the link set of path p is given as E(p) = {(1, 2), (2, 3)}.
We seek the convolution of two independent random travel times of links (1, 2) and

(2, 3). This is computed as follows,

G∗
γp

(s2) = G∗
T (x12)

(s2) ·G∗
T (x23)

(s2)

= [H(x12, s2)] · [H(x23, s2)]

= L−1|x12 [s
−1
1 H̃∗(s1, s2)e] · L−1|x23 [s

−1
1 H̃∗(s1, s2)e]

=
L−1|x12 [s

−1
1 B̃(s1)(s1V12 + s2I −Q12)

−1e]·
L−1|x23 [s

−1
1 B̃(s1)(s2V23 + s2I −Q23)

−1e]
(3.32)

where Vij, Qij are the diagonal velocity matrix and Q matrix of link (i, j), respec-

tively. Once we compute Equation (3.32), we still have to inverse Laplace transform

one more time to compute the distribution of Gγp(t) as follows,

Gγp(t) = L−1{G∗
γp

(s2)}

In fact, this approach requires 2n Laplace transformations and n times one dimen-

sional Laplace inversion as the number of links in a path, n increases. Thus, total

of 3n Laplace transformation and inversions are needed. This computation is very

intractable and not feasible in reality where certain paths often have hundreds of

links.

We can attain computational feasibility using a research result [25] that the

travel time distribution of this CTMC model can be parameterized with acceptable

statistical criteria. We present this result in the next section.

3-31



3.5.2 Parametric Approximations

In this section we review some results from Kharoufeh and Gautam [24] that

parameterized the distribution of travel time using the environment process model.

They assumed the normal distribution as an approximate parametric distribution

of random travel time. As shown in Chapter 2, there are two types of parameters

of normal approximated distributions; transient parameters and asymptotic param-

eters.

At this point, we need to recall the definition of the transiently parameterized

normal distribution and the asymptotically parameterized normal distribution. The

transient normal distribution of random travel time is defined as a parameterized

normal distribution, N(µ, σ2) with transient parameters where

µ = m1(x) = L−1[s−1
1 B̃(s1)(s1V −Q)−1e]

σ2 = m2(x)−m1(x)2

The asymptotic normal distribution of random travel time is defined as a parame-

terized normal distribution, N(µ, σ2)with asymptotic parameters where

µ = m1(x) =
x

pv

σ2 = −2x

pv

K∑
i=2

1

ηi

(pri)(liV
−1e)

liri

These are defined in Chapter 2 (Equations (2.14) and (2.16)). Thus, the transient

normal distribution is based on the transient behavior of a CTMC of environment

process. The asymptotic distribution is based on the asymptotic behavior of the

CTMC.

Once we have parameterized the travel time distribution of each individual link

as a normal distribution, we can compute the path distribution more simply than

3-32



the convolution approach as follows:

γp ∼ N(
∑

(i,j)∈p

µij,
∑

(i,j)∈p

σ2
ij) (3.33)

where µij and σ2
ij are the mean and the variance of link (i, j) ∈ p, respectively. This

result is based on the fact that the sum of normal random variables is again normal

with mean equal to the sum of the means, and variance equal to the sum of the

variances.

The simple algorithm proceeds as follows:

Step 0 Initialization.

• Distance matrix. X = [xij] where xij is the length of link (i, j) if nodes

i, j are adjacent and 0 otherwise.

• CTMC sample space Sij of each link (i, j).

• Generator matrix Qij for each link (i, j).

• Velocity matrix Vij for each link (i, j).

Step 1 Compute the parameters of the normal path distribution.

• Find the asymptotic m1(xij) and transient m1(xij) using Equations (2.14)

and (2.10) respectively.

• Find the asymptotic σ(xij) and transient σ(xij) using Equations (2.16)

and (2.12), respectively.

• Let m1(xp) =
∑

(i,j)∈p

m1(xij), σ(xp) =
∑

(i,j)∈p

σ(xij) where xp is the total

length of path p ∈ ϕ.

Step 2 Then, path p travel time γp ∼ N (m1(xp), σ(xp)).

Because of the normality assumption, we can approximate the total random travel

time distribution of any path in an independent stochastic network.

3-33



In the next subsection, we utilize this parametric approximation result to find

the stochastically shortest path.

3.5.3 Finding the Stochastically Shortest Path

The above result of the normality of the travel time of a path enables us to

utilize some path optimality measures. First, suppose we are interested in finding

the optimal path p∗ such that,

p∗ = argmaxp∈ϕP{γp ≤ γq} (3.34)

where p, q ∈ ϕ. In other words, Equation (3.34) is stated as finding the stochastically

shortest path over other paths. Thanks to the normality of our model, the above

problem turned out to be equivalent to finding the independent expected shortest

path as shown in proposition 3.4.

Proposition 3.4 Assuming all link travel times are independent and normally dis-

tributed, the stochastically shortest path problem is equivalent to the independent

expected shortest path problem, i.e,

p∗ = argmaxp∈ϕP{γp ≤ γq} ⇔ p∗ = minp∈ϕE[γp] (3.35)

Proof. Suppose at stage n − 1 in dynamic programming, to find a link to be

included in the optimal path p∗ and there is a candidate links set h where h = {i :

i is the incident link to the n-1 stage link}. Let pn−1 be the link set chosen at stage

n− 1 where pn−1 = {j : j ∈ p at stage n-1} and γpn−1 be the random travel of path

p up to stage n− 1.

Our objective is to find the link i such that

p∗ = argmaxi∈hP{γpn−1,i ≤ γpn−1,j : ∀j ∈ h}

3-34



where γpn−1,i is random travel time of path p with link i at stage n.

Then, the following equations hold.

P{γpn−1,i ≤ γpn−1,j} = P{γpn−1 + T (xn−1,i) ≤ γpn−1 + T (xn−1,j)}
= P{γpn−1 − γpn−1 + T (xn−1,i)− T (xn−1,j) ≤ 0}
= P{T (xn−1,i)− T (xn−1,j) ≤ 0}
= P{Zi,j ≤ 0} (3.36)

where Zi,j = T (xn−1,i)−T (xn−1,j). We have to find the link i such that maxP{Zi,j ≤
0∀j ∈ h}. Since Zi,j ∼ N

(
m1(xn−1,i)−m1(xn−1,j), σ

2
T (xn−1,i)

+ σ2
T (xn−1,j)

)
, if we

compare all possible pairs of links in candidate link set h, clearly the following

relationship holds,

Proposition 3.5 For two normal random variables γpn−1,i and γpn−1,j ,

P{γpn−1,i ≤ γpn−1,j} ≥ P{γpn−1,j ≤ γpn−1,i} iff m1(xn−1,i) ≤ m1(xn−1,j).

Proof.

P{γpn−1,i ≤ γpn−1,j} ≥ P{γpn−1,j ≤ γpn−1,i}
P{Zi,j ≤ 0} ≥ P{Zj,i ≤ 0} (3.37)

The distribution of Zi,j and Zj,i are respectively,

Zi,j ∼ N
(
m1(xn−1,i)−m1(xn−1,j), σ

2
T (xn−1,i)

+ σ2
T (xn−1,j)

)

Zj,i ∼ N
(
m1(xn−1,j)−m1(T (xn−1,i)), σ

2
T (xn−1,j)

+ σ2
T (xn−1,i)

)

3-35



As shown the variances of two distribution are the same. Hence, continuing Inequal-

ity (3.37),

P{Zi,j ≤ 0} ≥ P{Zj,i ≤ 0} ⇔ m1(xn−1,i)−m1(xn−1,j) ≤ m1(xn−1,j)−m1(xn−1,i)

⇔ m1(xn−1,i) ≤ m1(xn−1,j).

Finally the following dual relationship is drawn,

maxiP{Zi,j ≤ 0 : ∀j ∈ h} ⇔ mini{m1(xn−1,i) : i ∈ h} Q.E.D.

Hence, due to the normality property of our model, finding the optimal shortest

path defined in Equation (3.34) is equivalent to finding the independent expected

shortest path. Further, this result is one of the major developments we found in

this research using the environment process to model a network where the normality

property of the environment process leads to the above result.

In this chapter, we have developed various methodologies to find the expected

shortest path in a stochastic and dynamic environment. These methodologies range

from a basic independent stochastic network to successively dependent stochastic

networks. We also develop the path total travel time distribution through parametric

approximations [25] with an independence assumption. Further, we developed a

stochastically shortest path optimality measure and found that the approximated

normal distribution of each link makes the stochastically shortest path equivalent to

the expected shortest path in an independent stochastic network environment. In

Chapter 4, we experiment and analyze these methodologies with numerical examples.

3-36



4. Numerical Experimentation and Results

The primary objective of this chapter is to demonstrate the methodologies

of Chapter 3. If the initial distribution does not affect the mean travel time of

the link significantly, then our dependence methodologies through the initial dis-

tribution may note justify the additional computational effort as compared to the

independence methodology. Consequently, one should consider when the dependence

is significant. For the purpose of validation of the K shortest path heuristic, we also

study the robustness of the K shortest path heuristic for dependent stochastic net-

works with respect to variation of the K parameter along with CTMC behavioral

aspects: transient approach and asymptotic approach.

First, we determine when the dependence on the initial distribution of the

CTMC makes a difference through analyzing the impact of the initial distribution

on the expected travel time of a link with some notional Q matrices. Then, we present

a sample problem imposing the dependence. After we address the dependence anal-

ysis, we present two formal numerical examples and apply the independence and

dependence methodologies, respectively, to the problem as well as the total path

travel time distribution. In the first formal numerical example, Q matrices have

erratic structure and we solve the problem as well as study the complexity of the

K-shortest path heuristic. In the second numerical example, we present an example

problem where the sample space of the CTMC of all links are distinct, and the Q

matrices are more moderate.

4.1 Dependence Analysis

In this section, we analyze the impact of varying the initial distribution on

mean travel time of an individual link. Then, we experiment with the dependence

methodologies with a simple small problem before extending to a general network

problem case.

4-1



4.1.1 Dependence and the transient period

In our dependent network models, the dependence of successive links lies on

the initial distribution of the CTMC governing the vehicle velocity. In other words,

our two dependence methods rely on the preceding CTMC’s termination conditions;

either expected terminal distribution (dependent I) or expected terminal state (de-

pendent II) in Section 3.3.

This leads to the following natural question: How much does the variation of

the initial distribution of the CTMC governing link xij impact the final expected

travel time of the subsequent link? Intuitively, this question directly leads to how

fast the CTMC converges to steady-state. The faster the CTMC converges to steady-

state, the faster the impact of the initial state of CTMC vanishes [15]. Once the im-

pact of initial state distribution vanishes, our dependence concept would be thought

to not make much difference. Thus, naturally this issue leads to analysis of validity

of our dependence concept through the initial distribution impact on mean travel

time.

If the transient period of the CTMC is shorter than the expected travel time,

then obviously the initial state distribution is expected to not impact the expected

travel time because the CTMC already converged to steady-state before the expected

travel time. Consequently, our dependence concept considers only the case where this

transient period is thought to be long enough to make the initial state distribution

have an impact. In order to analyze the transient period duration with respect to

various initial distributions, we need to study the transient probability behavior.

The CTMC transition probability matrix P (t) is the unique solution to

d

dt
P (t) = P (t)Q = QP (t)

where pij(t) = P{Z(t) = j|Z(0) = i} and P (t) = [pij(t)]. To solve above the

differential equation, numerous methods are available [15] from N th order differential

4-2



equation solution method to the uniformization method. However, since we seek the

matrix solution and considering the possibility of numerical instability for numerical

inversion of Laplace transforms, we instead use matrix exponentiation as follows [15].

P (t) = exp{Qt}
= A exp{Dt}A−1 (4.1)

where D = diag(µ1, µ2, ..., µn) whose µi denotes the ith eigenvalue of Q and A is the

matrix of right eigenvectors. Then, if we define the marginal state probability as

follows,

α(t) = [αj(t)]

where αj(t) = P{Z(t) = j}, the marginal state probability vector is found as,

α(t) = z0P (t). (4.2)

where z0 is the initial distribution of the CTMC.

Consider the following example of a two state CTMC with S = {1, 2} [15],

Q =


 −λ λ

µ −µ


 .

The conditional probability matrix P (t) is given as,

P (t) =




λ
λ+µ

e−(λ+µ)t + µ
λ+µ

λ
λ+µ

(1− e−(λ+µ)t)

µ
λ+µ

(1− e−(λ+µ)t) λ
λ+µ

+ µ
λ+µ

e−(λ+µ)t


 .

The marginal state 1 probability, P{Z(t) = 1}, denoted by α1(t) is derived via

Equations (4.1) and (4.2) as follows,

α1(t) = z01

(
λ

λ + µ
e−(λ + µ)t +

µ

λ + µ

)
+ z02

(
µ

λ + µ
(1− e−(λ + µ)t)

)
. (4.3)

4-3



where z0i
denote the initial probabilities, P{Z(0) = i}, i ∈ S. The impact of

the initial distribution z01 , z02 clearly decreases asymptotically and the steady-state

distribution becomes independent of the initial distribution as follows,

lim
t→∞

α1(t) = lim
t→∞

p12(t) = lim
t→∞

p21(t). (4.4)

Equation (4.4) indicates that the transition probability and marginal probability

asymptotically converge to the same value, removing the dependence on the initial

distribution z0.

Consequently, the expected mean travel time of individual link becomes in-

dependent of the initial distribution as t approaches infinity. This was shown by

Kharoufeh and Gautam [24] as follows.

lim
s1→0

s1[z0(s1V −Q)−1e] = (pv)−1 (4.5)

Consequently, as t →∞ and x →∞ [24],

m1(x)

x
−→ 1

pv
. (4.6)

As t approaches infinity, since the [P (t)] → [p], the transient mean travel time

becomes asymptotic mean travel time which is independent of the initial distribution.

Therefore, our dependence methodologies rely on the transient period of CTMC of

the individual link where the initial distribution will produce a different mean travel

time value.

Next, we consider the initial distribution impact on the duration of the tran-

sient period through a notional numerical example.

4-4



4.1.2 Initial distribution impact

The CTMC transient period study mainly involves the Q matrix and the ini-

tial distribution. Instead of a formal theoretical study of the factors affecting the

duration of transient period of the CTMC, in this effort we only study the analysis

of mean travel time as it depends on the initial distribution and Q matrix to model

the dependent stochastic network. Particularly, the duration of the transient period

is directly related to the Q matrix structure, specifically each transition rate in the Q

matrix. Thus, this subsection provides an empirical sensitivity analysis of the mean

travel time to the initial distribution of an individual link with a given Q matrix

structure. We need to note again the objective of this sensitivity experiment is to

identify when imposing the dependence would make a significant difference in mean

travel time with regard to the structure of the Q matrix.

Consider the following small problem. We generated three different representa-

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i j 

CTMC { Z(t) : t � 0 } 

x

Figure 4.1 Sample network link (i, j).

tive Q matrices (Q(1), Q(2), Q(3)) and various initial distributions (Table 4.1). The

objective of this experiment is to identify the Q matrix structure whose transient pe-

riod is the longest, or equivalently whose impact of initial distribution is the longest

so that our dependence methodologies would be valid enough to make a critical dif-

ference in mean travel time. The experiment configuration is given in Table 4.1. In

this experiment we only focus on the behavior of CTMC and do not yet consider the

distance of the above link, x. For the Q matrix, we made two distinct structures,

an erratic and an uniform structure. For Q(1), we purposely make state 1 a semi-

absorbing state where once the CTMC enters this state, it rarely exits. Compared

to the other state’s transition rate range, 100 ∼ 200, state 1’s transition rate falls

4-5



Table 4.1 Sensitivity experiment configuration. 
 

 
Q(1)(Erratic structure) 

  
Q(2)(Uniform structure) Q(3)(Erratic structure) 

Q matrix 
variation 

�
�
�

�

�

�
�
�

�

�

224.1818- 100.8422  123.3395  

131.6689  291.0460- 159.3771  

0.7688     0.0850    0.8538-    

 

�
�
�

�

�

�
�
�

�

�

369.1385- 197.7600  171.3785  

126.3214  250.0779- 123.7565  

178.1962   171.4797   -349.6759

 

�
�
�

�

�

�
�
�

�

�

0.9479-    0.3063      0.6416    

182.0644 348.8950-  166.8306   

180.2098  184.8057  -365.0155

 

z0 (1) z0 (2) z0 (3) 

Factors 

Initial  
distribution 

variation 
                 [ 1 , 0 , 0 ] [ 0.33 , 0.33 , 0.34 ] [ 0 , 0 , 1 ] 

Response 

Marginal 
probability 

& 
Transient  

Period 

• The marginal probability of state 1 : P{ Z(t) = 1 } 
• Transient period : | P { Z(t) =1 } -  P1 |  < 0.01 

 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

within 0 ∼ 1 which makes the Q(1) structure erratic. State 3 of Q(3) matrix is also

made in a similar manner. For Q(2), all transition rates are generated uniformly

within 100 ∼ 200 which is referred to as uniform structure. This Q matrix structure

plays an important role in terms of the initial distribution impact on mean travel

time. The result is summarized in Figure 4.2 and Table 4.2.

Table 4.2 Transient period time under various governing CTMC.

 
 
 
 
 
 
 

Distinct Q matrix Q(1) Q(2) Q(3) 

Estimated Transient 
Period (min) 0.048 0.009 0.025 

 
                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each figure in Figure 4.2 represents the transient behavior of the marginal

probability of state 1, P{Z(t) = 1} with respect to time t depending on varying the

initial distribution, z0(1), z0(2), z0(3). Clearly, the uniformly generated Q matrix

(Q(2)) has the shortest transient period compared to the others. Thus, we can

conclude that the initial distribution variation has the least impact period on CTMC

with the Q(2) matrix.

4-6



 
                                                      
 
 

 
 
 
 

9937.01)(1lim ==
∞→

ptp
t

 

Transient period 
� 0.048 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transient period 
� 0.009 

2901.01)(1lim ==
∞→

ptp
t

 

 
 
 
 
 

 
 

Transient period 
� 0.025 

0028.0)(lim 11 ==
∞→

ptp
t

 

Figure 4.2 Graphical depictions of the transient period.

We conclude that the state of CTMC with Q matrix having uniform structure

converges to steady state the fastest compared to other structures. Hence, if a link

in a network has such an uniformized Q matrix, the dependency impact would be

very negligible.

Next, we can legitimately infer that if the mean travel time, m1(x) exceeds

the transient period of the other CTMCs with erratic Q matrix (Q(1),Q(3)), the

dependency impact could also be negligible. We verify this aspect of our model with

respect to the variation of the length of a link.

4-7



Let us consider the CTMC with Q(3) matrix case where we seek the length of

link beyond which the variation of initial distribution has no effect on the mean travel

time, m1(x). We design the experiment as follows (Table 4.3). Figure 4.3 describes

Table 4.3 Mean travel time variation experiment configuration.
 
 
 

z0(1) z0(2) z0(3) 
Initial distribution 
variation [ 1, 0 , 0 ] [ 0.33 , 0.33 , 0.34 ] [ 0 , 0 , 1 ] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the mean travel time m1(x) variation according to distinct initial distributions: z0(1),

z0(2), z0(3). The different mean travel times do not seem to converge to one value.

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Mean travel time variation with respect to link length.

Rather, the difference between these different mean travel times seems to remain

constant. In fact, numerically the differences very slowly increase as the distance of

length increases. Further, this difference increases very negligibly within ±6× 10−6

as the distance increases ten times which indicates the difference between three

4-8



distinct mean travel times and asymptotic mean travel time tends to be stationary

with respect to the change of the distance.

Finally, in this experiment we come to conclude that the transient period

mainly relies on the Q matrix structure. Specifically, the more erratic structure

the Q matrix has, the longer the transient period tends to last.

Thus far, experiments indicate that when the Q matrix of a certain link in a

path is erratic, the dependence on the preceding link makes a difference in mean

travel time of that link. Further, we found that the difference in a mean travel time

caused by dependence on preceding link tends to remain constant regardless of the

length of the link.

These results give us insight as to when our dependence model would be more

valid and makes a significant difference in finding the shortest path. In the next

subsection, we experiment with a simple numerical example to see the difference

between independence and dependence approaches.

4.1.3 Dependence experiment

In this subsection, we present the dependence experiment results with a small

numerical problem. The objective of this subsection is to show how the dependence

methods developed in Chapter 3 make difference in finding the shortest path with a

small problem.

Let us consider the small network problem shown in Figure 4.4. The graph

G(N, E) whose node set is N = {1, 2, 3} and arc set is E = {(1, 2), (1′, 2′), (2, 3)}
has two distinct links between node 1 and 2; (1, 2) and (1′, 2′). Our objective is to

find the shortest 1 → 3 path in this network.

The problem configuration is given in Table 4.4. We assume both sample

space of CTMC of each link and the velocity function to be the same, S = {1, 2, 3},
ν = {vi : vi = 25

i
, i ∈ S}, respectively. The generator matrices Qij of all links

4-9



 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 3 2 
( 2 , 3 )   
 

( 1 , 2 )  
 

Paths :    Path 1   = {  (1 , 2 ) , ( 2 , 3 ) }  

             Path 2   = {  (1’ , 2’ ) , ( 2 , 3 ) }  
 

( 1’  , 2’  )   

Figure 4.4 Dependence numerical example.

Table 4.4 Experiment Configuration.
 
 

 
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Link 
Factors (1,2) (1’ ,2’ ) (2,3) 

CTMC { Z12 (T(x12))  ; T(x12) � 0 }  { Z1’2’ (T(x1’2’)) ; T(x1’2’) � 0 }  { Z23 (T(x23)) ; T(x23) � 0 }  

xij 
( mile) 0.82 0.61 0.03 

Qij 
[qij] 

-483.7981  223.1139  260.6843 
 

   3.0000      -5.0000     2.0000 
   
  245.6468   201.8504  -447.4971 
 

   -1000.0    500.0       500.0 
 
    0.1          -300.1      300.0 
 
    5.0           100.0    - 105.0 
 

-1.0000     0.5000    0.5000 
 

   10.0000   -5.0000    8.0000 
 
  113.8891  120.2765 -234.1656 

in the network have quite erratic structure. The transition rates qij, i 6= j are

not uniformly generated which leads to erratic behavior of CTMC {Zij(T (xij)); t ≥
0}, (i, j) ∈ E. We made these ill-conditioned generator matrices purposefully to

maximize the initial distribution impact on the expected travel time of each link.

Assuming independence, since the travel history of a vehicle does not affect

the mean travel time of following link (2, 3), the mean travel time of link (2, 3),

m1(x23), is a constant value. In contrast to the dependent case, as we already stated

in Proposition 3.3, the value of m1(x23) varies depending on the preceding link

travel history; either link (1, 2) or (1′, 2′). Thus, we experiment with how much the

dependency of successive links would change the total expected shortest path and

4-10



whether or not it can change the 1 → 3 expected shortest path. The LP formulation

of this problem is as follows: Define,

cjk: The independent mean travel time of link (j, k).

ci(jk): The dependent mean travel time of link (j, k) emanating from node i or trav-

elling from link (i, j).

Xij: If link (i, j) is in the shortest path, then 1 otherwise 0.

Xi(jk): If link (j, k) connected from link (i, j) is in the shortest path, then 1 otherwise

0.

If the links are independent, then the weight and the link binary variable have

two indices. If the links are dependent, then they have three indices, indicating the

preceding link history as we have shown in Section 3.4.

The independent expected 1 → 3 shortest path problem is formulated as,

Minimize c12X12 + c1′2′X1′2′ + c23X23

Subject to

X12 + X1′2′ = 1

X23 −X12 −X1′2′ = 0

X23 = 1

X12, X1′2′ , X23 ∈ {0, 1}

The dependent expected 1 → 3 shortest path problem is formulated as,

Minimize c12X12 + c1′2′X1′2′ + c1(23)X1(23) + c1′(23)X1′(23)

Subject to

X12 + X1′2′ = 1

X1(23) + X1′(23) −X12 −X1′2′ = 0

X1(23) + X1′(23) = 1

X12, X1′2′ , X1(23), X1′(23) ∈ {0, 1}

Clearly depending on preceding link to (2, 3), the link variable and weight of link

(2, 3) varies in the dependent case. Even with this |N | = 3, |E| = 3 graph, the

number of decision variables is 4.

4-11



In this problem, we experiment with three cases of this expected shortest path

problem; the independent case, the dependent of expected terminal distribution

(dependent I) and the expected terminal state (dependent II) cases. Mainly, we

focus on how the expected shortest path change based on different approaches and

some of the important performance measures of link (2, 3) as varying methods.

Table 4.5 The experiment result.

 
 
 
 
 
 
 
 
 

Probability measures of link ( 2 ,3 ) 
  

            Responses 
 
 

Variation Initial distribution 
Marginal distribution at  

m1(x23) 

Expected  
travel time 
(  m1(x23) ) 

Expected   
total travel 

time of 
shortest path. 

 
Path I 

 

3.9345 
 

Independent 

Path II 

[ 1     0     0 ] 
[ 0.9396    0.0579    0.0025 ] 

 
0.0742 

 
3.9435 

 

Path I 
 

[0.0112    0.9806    0.0082 ] 
 

[ 0.5756    0.4163    0.0081] 
 

0.1139 
3.9751 

 
Dependent I 

 
Path II 

[ 0.0037    0.2537    0.7426] 
 

[0.6733    0.3201    0.0066] 
 

0.0999 3.9700 
 

Path I 
[0      1      0 ] 

 

[0.5923    0.4017    0.0061] 
 
 

0.1610 
4.0141 

 
Dependent II 

 
Path II [0      0       1] 

[0.7591    0.2368    0.0041] 
 

0.1159 3.9860 
 

Path I 3.1875 
Asymptotic 
Measures 

Path II 

 [0.8809    0.1178    0.0012] 0.0766 

3.9485 

 
   
 
 
 
 
 
 
 
 
 
 
 
 

As seen in Table 4.5, the shortest path changed by imposing the dependence

from path I to path II and from the asymptotical perspective, path I turns out to

be the shortest path again. Table 4.5 shows the various initial distributions of final

link (2, 3) and its corresponding marginal transient probability as well as the mean

travel time of the link m1(x23). Next we analyze the behavioral aspects of CTMC

governing link (2, 3) with the marginal state transient probability to see how fast the

marginal state transient probability converges to steady state.

4-12



As we already showed in an earlier section, the marginal state probability of

the final link (2, 3) with initial state distribution can be found using Chapman-

Kolmogorov equation as follows (Equations (4.1) and (4.2)),

α(t) = [P{Z23(0)}] [A exp{Dt}A−1
]

(4.7)

Figure 4.5 shows the behavior of the marginal state probability of link (2, 3) de-

pendent on preceding link (1′, 2′) with respect to various initial distribution due to

methodologies: independent, dependent I (expected terminal distribution) and de-

pendent II (expected terminal state). Considering the mean travel times of link (2, 3)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transient period (estimate) 

Figure 4.5 The behavior of α(t) of link (2, 3) from (1′, 2′) with respect to various z0.

based on the dependence we clearly see each mean travel time of link (2, 3) lies before

the termination of the transient period (approximately 0.48(min)). Consequently,

we confirm that the dependency impact lies in the transient period.

4-13



Next, along with Q matrix factor, the velocity function also turns out to en-

hance the impact of initial distribution when we use the exponential velocity instead

of linear velocity function (Table 4.6) for link (2, 3). Using the exponential velocity

Table 4.6 Mean travel time of link (2,3) with distinct velocity function.
 

Dependent I Dependent II         Methodologies               
                
Velocity 
Function 

Independent 
 Path 1 Path 2 Path 1 Path 2 

Asymptotic 

Linear velocity case 
( V = 25 / i,   i∈ S) 

 
0.0742 

 
0.1139 0.0999 0.1610 0.1159 0.0766 

Exponential velocity case 
(V = 25 / exp(i),  i ∈ S) 0.2036  0.2800   0.2590 0.2811 0.2517 0.2055 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

function model made a more dramatic difference in the mean travel time of link

(2, 3) between the independent case and the dependent case. Next, we present more

formal numerical examples of our independent and dependent link methodologies.

4.2 Expected Shortest Path Problem I

In this section, we consider a numerical example in which most of the links

contain an erratic CTMC structure so that the initial distribution impact persists.

First, we find the independent expected shortest path in this network configuration

and then we impose two distinct dependencies to find the expected shortest path:

the dependence through the expected terminating state approach and dependence

through the expected terminating distribution approach.

The numerical problem is the one introduced in Section 3.4 in the linear pro-

gramming approach. The problem network and topology is shown in the Figure 4.6.

There are length and traffic conditions for each link in Table 4.7. This network has

5 nodes and 8 links. The numbers in the generator matrix represent the range of the

uniform distribution used to create the matrices. Thus, in the case of high density

traffic II condition the second column of each row are generated from 200 ∼ 300 and

the last column of each row is generated from 1 ∼ 10. The sample space of CTMC

4-14



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

4 

5 3 (0.42 , 4) 
 

 (0.15 , 4) 
 

(0.45 , 4)  (0.17 , 1) 
 

 (0.46 , 3) 
  (0.14 , 1) 

 

 (0.02 , 2) 
 

 (0.03 , 2) 
 

( xij(miles)  ,  Traffic condition ) 
 

Figure 4.6 Experiment problem network topology.

Table 4.7 Experiment problem configuration.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Configuration 
 
Factors 

Configuration 

High density 
traffic I 

(3) 

High density 
traffic II 

(4) 

Moderate 
density traffic 

(2) 

Low density 
traffic 

(1) 
Generator 
matrix 
(Q) 
Random 
transition rate 
range 
 �

�
�

�

�

�
�
�

�

�

100~50  

 

�
�
�

�

�

�
�
�

�

�

10

~

1

300

~

200

300

~

200

 

�
�
�

�

�

�
�
�

�

�

40~20

1.0~0

40~20

 
�
�
�

�

�

�
�
�

�

�

10~0

1.0~0

10~0

 

 
 
 
 
 
 
 
 
 
 
 
 

of each link and the velocity space are assumed to be homogeneous and each is given

as,

S = {1, 2, 3}, ν = {vi : vi =
25

exp(i)
, i ∈ S}.

First, we compute the independent expected shortest path in the network. We

could use the methodology developed in Section 3.2 in which we use Dijkstra’s algo-

rithm to find the shortest path using the independent mean travel time of each links.

However, for the purpose of comparison with dependent approaches where we use the

K-shortest path heuristic, we decide to use one of the steps in the K-shortest path

heuristic: the K shortest path algorithm with independent mean travel time of all

4-15



links. This provides us more information by ranking paths than Dijkstra’s algorithm

with which we only get the shortest path. In addition, the K shortest path algorithm

encompasses the Dijkstra’s algorithm in terms of finding the dominant shortest path

set. Then we solve the dependent I and II with K-shortest path heuristic. We

seek to observe the variation of K dominant paths’ total travel time with respect to

methodologies: independent, dependent I and dependent II approach. This obser-

vation is thought to give us an idea about the appropriate choice of K when using

the K shortest path heuristic for dependent network problems, since the computa-

tional time is mainly determined by the K value. We also study performance of

the K-shortest path heuristic in finding the optimal path with respect to behavioral

aspects of CTMC: transient and asymptotic.

Finally, our objective is to find the expected shortest path from node 1 to 5

with respect to independent, dependent I and dependent II approach. Further, we

experiment with different values of K for the dependent network cases.

4.2.1 Independent network links

We assume all links in the network are independent of each other and each has

its own environment process unaffected by any adjacent environment. We use the

methodology developed in Section 3.2. to find the expected shortest path along with

the K shortest path algorithm introduced in step 1 in K-shortest path heuristic. In

addition, we use the independent parametric total travel time distribution algorithm

developed in Section 3.4.

First, we find the shortest path using the independent methodology and in or-

der to compare the results of dependent cases, we use the K shortest path algorithm.

Initially, we set K = 4 for this algorithm which means we compute the 4 shortest

paths with the K shortest path algorithm.

The results are shown in Table 4.8. It turns out that path 1 → 3 → 5 is the

expected shortest path with expected total travel time of 5.8036 min. We need to

4-16



Table 4.8 Independent shortest path results.

 
 
 
 
 

Independent  
Approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest 1      �        3     �       5  
   (4.3198)      (1.4839) 

5.8036 

2nd shortest 1      �        2     �       5  
   (3.4242)     (2.4396)      5.8638 

3rd shortest 1      �        2      �       3      �       5  
   (3.4242)     (1.3972)      (1.4839) 6.3053 

4th shortest 1      �        4      �       5   
   (4.6079)     (2.4115)      7.0194 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

note that the result in Table 4.8 is also the K dominant set in the K-shortest paths

heuristic which is used to find the shortest dependent path among them in next two

subsections.

Next we compute the parametric travel time distribution of this shortest path

1 → 3 → 5 with both transient measures and asymptotic measures as follows (Table

4.9). The distribution of either transient normal and asymptotic normal travel time

Table 4.9 Normal distribution parameters of the path 1 → 3 → 5.

 
 
 
 
 
 
                 Link 
Measures (1,3) (3,5) Total path 

Transient 4.3198 1.4839 5.8036 Mean 
(min) Asymptotic 4.3178 1.4818 5.7995 

Transient 0.00444 0.00126 0.0057 Variance 
(min) Asymptotic 0.0100 0.0084 0.0184 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the shortest path is given in Figure 4.7. With the asymptotic perspective, we can

expect larger variance than in the transient perspective which matches our result in

Figure 4.7. In addition, assuming asymptotic steady-state CTMC of all links the

mean travel time of each link becomes independent of the initial distribution which

in this problem reduces the mean travel time of all links in path 1 → 3 → 5 as

4-17



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 The independent shortest path travel time distribution.

compared to the transient state assumption. Both transient and asymptotic vari-

ance are relatively very small compared to mean and the coefficient variation of the

transient and asymptotic normal distributions is 0.0130 and 0.0234, respectively, and

coefficient variation of asymptotic normal distribution is bigger than the transient

normal distribution in this problem. We can utilize this parameterized travel time

distribution of the independent expected shortest path to gain useful information

about this path travel time such as the probability that a vehicle can finish the trip

on the path in less than some desired time.

Next, we impose the dependence on successive links in the network and find

the dependent expected shortest path. First we seek the shortest path with the

dependent I approach.

4-18



4.2.2 Dependent network links: Dependent I

We impose the dependence through the expected terminal distribution of pre-

ceding link (Dependent I approach). In our K-shortest path heuristic, we set K=4

and the step 1 result is shown above (Table 4.8). For comparison purposes, we show

the dependent expected travel time of dominant independent shortest path set in

Table 4.10. As we see in Table 4.10, imposing the dependence through expected

Table 4.10 Dependent I shortest paths.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent I 
Approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2      �       3      �       5  
   (3.4242)     (0.7707)      (1.4833) 5.6782 

2nd shortest 1      �        3     �       5  
   (4.3198)     (1.4822)      5.8020 

3rd shortest 1      �        2      �       5  
   (3.4242)     (2.3824)     5.8066 

4th shortest 1      �        4      �       5   
   (4.6079)     (2.3490)      6.9569 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

terminal distribution causes a difference in the expected total travel time. However,

overall expected travel time of the first K = 4 expected shortest paths tends to

remain around 5 ∼ 6 minutes.

The expected shortest path turned out to be path 1 → 2 → 3 → 5 with

expected travel time of 5.6782 minutes which was the 3rd expected shortest path in

the independence case (Table 4.8). This is caused by the highly erratic structure of

CTMC along most of the links.

However, we need to note that this result is theoretically not guaranteed to be

the optimal solution because we only choose the shortest path among the dominant

set of paths based on independent mean travel time. Namely, among the dominant

paths in set P = {(1, 3, 5), (1, 2, 5), (1, 2, 3, 5), (1, 4, 5)} shown in the independent

case above we recalculate the dependent mean travel time of each path and rank

them (K-shortest path heuristic, Section 3.4). In order to find the optimal solution,

4-19



an enumeration algorithm should be used so that the mean travel time of all possible

non-cyclic paths are computed. However, based on the analysis results in Section

4.1 where dependence impact tends to be negligible for non-erratic Q matrix, we can

infer that the solution would be the actual optimal solution and it is not likely that

the optimal path is contained in the dominated paths set P̄ where P̄ = E − P .

Hence, in order to verify the above heuristic solution, we enumerate the rest of

the dominated path set and compute the mean travel times and rank them. Table

Table 4.11 Dependent I dominated paths.

 
 
 
 
 
 

Dependent I 
Path 
(Mean travel time) 

Total mean travel time 
(min) 

5th shortest 1      �        4      �       3      �       5  
   (4.6079)     (0.9975)     (1.4835) 7.0889 

6th shortest 1      �        3     �       4      �       5  
    (4.3198)     (0.7159)     (2.4417) 7.4774 

7th shortest 
1      �        2     �        3      �       4    �     5  
  (3.4242)     (0.7707)    (0.8517)    (2.4368)   

 
7.4834 

8th shortest 
 1      �        3     �       2      �       5  
    (4.3198)     (0.7604)     (2.4480) 

  
7.5281 

Longest 
1      �        4     �        3      �       2    �     5 
  (4.6079)     (0.9975)      (1.0176) (2.4451)   

  
9.0681 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.11 agrees with our intuition that no other dominated path in the set P̄ in terms of

independence mean travel time turns out to be shorter than any dominated path in

set P .

Next, we impose the dependence approach II on this problem to find the ex-

pected shortest path.

4.2.3 Dependent network links: Dependent II

We impose the dependence through the expected terminal state of the preced-

ing link on the initial distribution of the following link CTMC. The result is given

in Table 4.12.

The expected shortest path turns out to be 1 → 2 → 3 → 5 with total mean

travel time 5.4593 minutes. The path 1 → 2 → 3 → 5 exactly matches that of

4-20



Table 4.12 Dependent II shortest paths.

 
 
 
 
 
 

Dependent II 
Approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2      �       3      �       5  
   (3.4242)     (0.5521)      (1.4830) 5.4593 

2nd shortest 1      �        3     �       5  
   (4.3198)     (1.4830)      5.8028 

3rd shortest 1      �        2      �       5  
   (3.4242)     (2.4526)     5.8768 

4th shortest 

 
1      �        4     �       5  
   (4.6079)     (2.4524)      
 

7.0603 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dependent I case above with a difference of required expected travel time 0.2489

minutes.

For the Dependent II approach, we enumerate the dominated path set P̄ ,

compute the mean travel time with Dependent II approach to verify the optimality

of the solution, and rank them with dominated path set P . The result is given in the

Table 4.13. Interestingly, the path (1, 4, 5) which was selected as the 4th dominant

Table 4.13 Dependent II dominated paths. 
 

Dependent II 
Approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

4th shortest 1      �        4      �       3      �       5  
   (4.6079)     (0.5520)     (1.4839)   6.6438 

5th shortest 1      �        2     �        3      �       4    �     5  
  (3.4242)     (0.5521)   (0.5520)    (2.4524)  6.9808 

6th shortest 

 
1      �        4     �       5  
   (4.6079)     (2.4524)      
 

7.0603 

7th shortest 

  
 1      �        3     �       4      �       5  
    (4.3198)     (0.5520)     (2.4524)  

 

7.3242 

8th shortest  1      �        3     �       2      �       5  
    (4.3198)     (0.5521)     (2.4526)  7.3245 

Longest 
1      �        4     �        3      �       2    �     5 
  (4.6079)     (0.5520)      (1.3972) (2.4396)  

  
8.9967 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

path in Table 4.8 in terms of independent mean travel time turns out to be the 6th

shortest path following the paths (1, 4, 3, 5) and (1, 2, 3, 4, 5). However, the shortest

4-21



path (1, 2, 3, 5) turns out to be the optimal path. If we are interested in finding the

actual 4th dependent shortest path, we should have at least set the parameter K = 6

for the K-shortest path heuristic.

Finally, in the Dependent II case, the shortest path found with the K-shortest

path heuristic also turns out to be the actual optimal dependent shortest expected

path. Through the two types of dependence results we can state that reflecting the

reality (dependence) produces significant difference not only in the expected total

travel time, but also the expected shortest path.

Thus far, we have used the transient distribution in imposing the dependence

for subsequent links in the network as well as the transient mean travel time. Next,

we present the asymptotic results of the independent, Dependent I and Dependent

II expected shortest path in the following section.

4.2.4 Asymptotic network links

This section implements the method of asymptotic dependence developed in

Section 3.3. There are three kinds of asymptotic expected shortest paths possible.

First, we can be interested in the asymptotically expected shortest path where mean

travel time of each link is computed based on the limiting behavior of the CTMC

of the link in the network. In this case, since we focus on the limiting behavior of

CTMC, the impact of the initial distribution is assumed to vanish. Consequently,

asymptotic mean travel time becomes independent of preceding link. Otherwise, we

can compute the asymptotic termination conditions of the preceding link: asymptotic

expected terminating probability and asymptotic expected terminating state.

We use the same K-shortest path heuristic where instead of transient mea-

surement we use asymptotic measurements. The asymptotic mean shortest paths

result is given in Table 4.14. Compared to the independent shortest path (Table

4.8), overall the mean travel time down to the 4th shortest path reduces within the

range ±0.1 minutes.

4-22



Table 4.14 Asymptotic shortest paths.

 
 
 
 
 
 
 
 
 

Asymptotic independent 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest 
 1      �        2      �       3      �       5  
   (3.4223)     (0.8684)      (1.4818) 5.7724 

2nd shortest 1      �        3     �       5  
   (4.3178)     (1.4818)      5.7995 

3rd shortest  1      �        2      �       5   
   (3.4223)     (2.4481)      5.8703 

4th shortest   1      �        4      �       3      �       5  
   (4.6027)     (0.8839)      (1.4818) 6.9684 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, Tables 4.15 and 4.16 show the asymptotic dependent expected shortest

path.

Table 4.15 Asymptotic Dependent I shortest paths.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Asymptotic dependence I 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2      �       3      �       5  
   (3.4242     (0.7707)      (1.4835) 5.6784 

2nd shortest 1      �        3     �       5  
   (4.3198)     (1.4822)      5.8020 

3rd shortest  1      �        2      �       5   
   (3.4242)     (2.3824)      5.8066 

4th shortest   1      �        4      �       3      �       5  
   (4.6079)     (0.9975)      (1.4835) 6.9569 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We need to note that these asymptotic dependent approaches use the asymp-

totic termination condition of the preceding link (steady-state) to impose the de-

pendence for the initial distribution of the following link. We still computed the

transient mean travel time as opposed to the asymptotic mean travel time (Ta-

ble 4.14) while using only the asymptotic termination condition for the dependence

models ( expected terminal distribution or expected terminal state).

With the exception of the asymptotic mean travel time case, the shortest path

of the asymptotic dependent links are identical to that of the transient dependent

links (Tables 4.10 and 4.12).

4-23



Table 4.16 Asymptotic Dependent II shortest paths.

 
 
 
 
 
 
 
 
 
 
 
 

Asymptotic dependence II 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2      �       3      �       5  
   (3.4242)     (0.5521)      (1.4839) 

5.4602 

2nd shortest 1      �        3     �       5  
   (4.3198)     (1.4830)      5.8028 

3rd shortest  1      �        2      �       5   
   (3.4242)     (2.4526)      5.8768 

4th shortest   1      �        4      �       3      �       5  
   (4.6079)     (0.5520)      (1.4839) 6.6438 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, we analyze the impact of the different dependence approaches on the

shortest path and the K shortest path algorithm along with the K value analysis.

4.2.5 Analysis

As expected, the Dependent II approach of expected termination state caused

more dramatic differences in mean travel time than Dependent I approach of ex-

pected termination distribution as shown in the Table 4.17. Particularly, the most

Table 4.17 Dependent expected travel time differences with independent case.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Dominant paths 
 
Approaches 

1  �    3  �    5 
 

1 �   2  �    5 
 

1 �    2 �    3 �    5 
 

1  �   4  �     5 
 

Dependence I 
Difference 

-0.0016 -0.0572 -0.6271 -0.0625 

Dependence II 
Difference 

-0.0008 +0.013 -0.846 +0.0409 

 
 
 
 
 
 
 

significant difference along the path (1, 2, 3, 5) exists. In detail, this is mainly caused

along the link (2, 3) whose Q matrix is shown in Appendix D.

Next, we found that with K = 4 for the K-shortest path heuristic, we actually

have the optimal dependent expected shortest path based on enumeration of all path

travel times (Tables 4.10 and 4.11 for dependent I, Table 4.12 and 4.13 for depen-

dent II). Since the rank of K dominant paths chosen based on independent measures

4-24



Table 4.18 Optimality and computational time of the heuristic with respect to varying
K value and approaches.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Approaches 
K value 

 
Transient approach 

Shortest 
path 

Asymptotic  
approach 

Shortest 
path 

2 13.0690(sec) 
Not 

optimal 
9.1630(sec) Optimal 

4 18.0360(sec) Optimal 
 

10.8660(sec) 
 

Optimal 
 

6 23.7940(sec) Optimal 18.3960(sec) Optimal 

change little when imposing the dependence, we can conjecture that we would have

found the optimal dependent shortest path with a smaller value of K with less com-

putational time. In addition, when computing each mean travel time (independent,

Dependent I and Dependent II), we use either transient measures or asymptotic

measures. The K shortest path heuristic with the asymptotic dependence approach

is thought to solve the problem much faster than with the transient dependence

approach. Thus, we analyze the performance of the heuristic with respect to the

K value along with transient and asymptotic approaches. In this experiment, we

seek the computational time of the heuristic with varying K value and two distinct

types of link dependence: transient and asymptotic. Finally, we solve the dependent

I approach problem again with varying K value and distinct CTMC behavioral ap-

proaches. This algorithm complexity and effectiveness comparison result is given in

Table 4.18. Clearly, the computational time with asymptotic measures is less than

that of the transient measures. The optimal path clearly changes according to the

method we use to find the shortest expected path. The optimality of the shortest

path found with varying K values is determined by comparing it to the true optimal

shortest path found through all enumerations. Thus, this result suggests that for the

network problem the K shortest path heuristic with asymptotic measures tends to

need a smaller K value than with transient measures. Further, this result matches

our insight that using asymptotic measures makes the expected shortest path less

variable because of its independence of time.

4-25



4.3 Expected Shortest Path Problem II

In this section, we present another problem where the sample space of CTMC of

each link is distinct across the network and the Q matrix structure is more moderate

than previous problems. By moderate Q matrix structure, we mean each transition

rate element qij remains within a certain comparably narrow range. In addition,

the topology of the problem is bigger than the previous problem. Since we already

analyzed various aspects of the expected shortest path problem in Section 4.2, in

this section we state the problem and present the results directly.

The network topology and the problem configuration are as in Figure 4.8

and Table 4.19, respectively. We explicitly construct this problem according to the

 
 

 
 
 
 
 
 
 
 
 
 
 
 

2 

3 1 7 

6 

4 

 

5 

(6 , L) 

(4 , M) 

(5 , H) 
(3 , L) (3 , H) 

(3 , M) 

(3 , L) 

(1 , M) (2 , H) 

(2 , H) 

Legend: (Distance , Traffic Condition) 

Figure 4.8 Experiment problem network topology.

stochastic network model developed in Section 3.1 where we introduced three kinds

of traffic density (and corresponding Q matrices) and the sample space of CTMC:

high density, moderate density and low density traffic link. However, obviously these

are tentative categorizations and are not validated with the real world data. For each

traffic density condition, the distinct Q matrix and sample space are specified in Ta-

ble 4.19. Now, we run the K-shortest path algorithm to find the independent optimal

K expected shortest paths and dependent K expected shortest paths. Based on the

4-26



Table 4.19 Experiment problem configuration.

 
 
 
 
 
 
 
 
 
 
 

      Configuration 
 
Factors Configurations 

 Velocity function 
(VZ(T)) (mile/hour) V = 65 / (Exp(Z(T)) ,   For  ∀  Z(T)  ∈   S  

Traffic 
condition 

High density traffic 
(H) 

Moderate density 
traffic 
(M) 

Low density traffic 
(L) 

Q matrix 
random rate 
generation �

�
�

�

�

�
�
�

�

�

200~100  

�
�
�

�

�

�
�
�

�

�

100~50  

�
�
�

�

�

�
�
�

�

�

50~0  

Q matrix & 
Sample Space  

CTMC 
Sample Space 

(Z(T) ∈  S)  

S =  { 1, 2, 3, 4, 5, 
6 ,7 } 

S =  { 1, 2, 3, 4, 5 } S =  { 1, 2, 3} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

previous experiment (Figure 4.6, Table 4.7), we knew K-shortest path heuristic is

comparably robust to find the dependent expected shortest path in terms of K value.

Thus, we specified K = 3 for this problem which means that we seek down to the

3rd expected shortest path.

The purpose of this experiment is first to consider the problem where the

sample space is not identical across network links as it was assumed to be in the

previous problem. That is, for a graph G(N, E), there exist links (i, j),(j, k) such

that

Sij 6= Sjk (i, j), (j, k) ∈ E

where Sgh denotes the sample space of the CTMC of link (g, h) ∈ E. In addition,

no Q matrices in the network are erratic as in the previous problem. The transition

rates in each Q matrix comparably remain within stable ranges according to each

traffic condition (Table 4.19).

Dependence of initial CTMC condition on the terminal condition of the preced-

ing link’s CTMC should be applied while we have to match two distinct successive

4-27



sample spaces accordingly. Terminal condition of the preceding link’s environment

process may no longer directly be interpreted as the initial condition of the next

link’s environment process whose sample space might be distinct. However, consid-

ering the fact that we still use homogeneous velocity functions across the network,

we are easily able to match two distinct sample spaces. Details about how to impose

the dependence across distinct sample spaces are given in Appendix C.

With K = 3, we run the K shortest path algorithm to find the K independent

expected shortest path and run the K shortest paths heuristic to find the dependent

expected shortest paths in the next section. The independent, dependent I and de-

pendent II expected shortest path across distinct environment CTMC sample spaces

in the network are found in Table 4.20. The independent expected shortest path

Table 4.20 Independent shortest paths. 

Independent 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2       �       6       �       7  
   (32.8284)    (14.9380)     (23.3108) 

71.0772 

2nd shortest 1      �        3     �       7  
   (37.8604)     (37.9644)      75.8247 

3rd shortest  1      �        2      �       3      �      7 
  (32.8284)   (8.1168)        (37.9644) 78.9095 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

turned out to be 1 → 2 → 6 → 7 with mean travel time 71.0772 minutes and vari-

ance 1.2474 minutes. It is interesting to note that the path (1, 2, 6, 7) is the longest

path from node 1 to node 7 in terms of only distance, 6+3+3 = 12 miles. However,

in terms of the traffic density level, the path (1, 2, 6, 7) has the overall lowest density

level, {L,L, M}. Hence, this result reflects the reality that traffic conditions play an

important role in travel time on certain paths.

The parametric approximated travel time along the path (1, 2, 6, 7) is given in

the Figure 4.9.

4-28



65 66 67 68 69 70 71 72 73 74 75 76
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Travel time (min) 

P
ro

ba
bi

lit
y 

de
ns

ity

Mean = 71.0772 (min) 

Variance = 1.2474 (min) 

Figure 4.9 The independent shortest path travel time distribution.

Next, the Dependent I and II expected shortest paths are given in Table 4.21

and Table 4.22, respectively. In fact, the variation of expected travel time with

Table 4.21 Dependent I shortest paths.

 
 
 
 

Dependent I 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2       �       6       �       7  
   (32.8284)    (14.9284)     (23.3065) 71.0633 

2nd shortest 1      �         3        �       7  
   (37.8604)     (37.9625)      75.8229 

3rd shortest  1      �        2        �        3      �      7 
  (32.8284)     (8.1128)        (37.9622) 78.9034 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

respect to dependence impact on successive link travel time turned out to be neg-

ligible in this problem. The expected shortest path does not change as we impose

the various dependency models in computing the expected travel time of successive

links. The path (1, 2, 6, 7) still remains as the expected shortest path with depen-

dence approaches. Moreover, the difference between independence expected travel

4-29



Table 4.22 Dependent II shortest paths.

 
 
 
 
 
 
 
 

Dependent II 
approach 

Path 
(Mean travel time) 

Total mean travel time 
(min) 

1st shortest  1      �        2       �       6       �       7  
   (32.8284)    (14.9337)     (23.3077) 71.0698 

2nd shortest 1      �         3        �       7  
   (37.8604)     (37.9635)      75.8238 

3rd shortest  1      �        2        �        3      �      7 
  (32.8284)     (8.1131)        (37.9635) 78.9049 

 
 
 
 

time and dependence travel time falls within ±0.01 minutes for the top 3 expected

shortest paths.

In the configuration of this problem (Table 4.19), the Q matrix elements are

generated to be moderate compared to the way it was generated in the problem

in section 4.2 (Table 4.7). The structure of the Q matrices of each link can be

compared in Appendix D. The impact of variation of initial distribution according

to the preceding link tends to vanish so fast that the dependence on the preceding

link travel history does not make significant differences in expected travel time on

the following link.

4-30



5. Conclusions

In this research, we considered stochastic and dynamic transportation net-

work problems. First, we built a stochastic network model and developed methodolo-

gies to solve the expected shortest (least-time) path in the network. In the expected

shortest path problem, we had to capture the dependent nature of successive links

in the network. Further, the shortest path total travel time distribution was sought

in the stochastic network.

For modelling of a stochastic network, the environment process methodology

was extended for individual link to an entire stochastic network reflecting various

traffic conditions in the real-world by utilizing the three factors of the environment

process: initial distribution, velocity function and Q matrix. For the expected short-

est path problem, we first developed an algorithm for the independent network using

a deterministic shortest path algorithm. Further, by capturing the interaction be-

tween the termination condition of the preceding link and the initial condition of

subsequent link, we invented two kinds of dependence concepts for successive links

travelling: expected terminal distribution and expected terminal state. Because of

the dependence along the successive travel time on links, the Dijkstra type greedy

algorithm may not provide the optimal solution. Thus, we developed the K-shortest

path heuristic inspired by Fu and Rillet [20] to find and compute the dependent

expected shortest path. Further, we introduced a possible asymptotic approach for

both independent and dependent expected shortest path methodologies. Finally, we

developed an algorithm to find the total travel time distribution of the shortest path

with an approximated parametric distribution, and found that the expected shortest

path is also a stochastically shortest path when employing the normality assumption

for parametric distributions.

We provided three types of algorithms to find the expected shortest path in

a stochastic network: independent, dependent I and dependent II expected short-

5-1



est path algorithms. For each of these approaches, we also considered the asymp-

totic behavioral aspect of the underlying CTMC of the environment process. These

methodologies were implemented through two numerical example problems along

with two other numerical examples executed for dependence analysis purposes.

Our model of expected shortest path and travel time distribution is a unique

methodology for the stochastic network model built with the environment process.

Since the expected shortest path along with its travel time distribution is found

through our methodologies for stochastic networks, this path information along with

its distribution is quite significant for transportation networks. This is considered to

be a significant improvement for shortest path problems in a stochastic and dynamic

network in that with velocity function for the entire network and Q matrix estima-

tion for individual link, we can find the expected shortest path while capturing the

dependence nature and its travel time distribution.

In the real world application, our model only requires us to collect data for

the transition rates along each link. Considering the outputs of our model: the

various expected shortest paths and the travel time distribution, the level of effort

required to use our methodology is moderate. In military applications, one of the

valuable applications would be the case where the velocity is interpreted as a rate

of work completion such as the case of a project management network. Then, we

might want to find the expected longest path (the critical path) which can easily

be found with slight modifications to our algorithms. With a small effort of data

collection and modifying the algorithm, we can easily find either independent or

dependent expected longest path along with the parametric probability distribution

of expected longest path.

However, our analysis of the model might still need to be verified and gener-

alized through statistical experiments. Further, we need to use our methodologies

with real-world data to validate and verify our analysis in this thesis. In addition

to generalization and validation, for the methodology improvement we need to note

5-2



that dependence did not make a significant difference unless Q matrix structure of

subsequent link’s CTMC is erratic or semi-absorbing. This is caused by our funda-

mental concept to capture the dependence of initial condition of subsequent link’s

CTMC on the terminal condition of preceding CTMC. Initial condition impact tends

to vanish as time goes on which also matches what we might find in the real world.

However, we do not capture the possible interaction of two successive link’s CTMC

such as Q matrix interaction. As opposed to our dependence where each subsequent

link depends on preceding link, in the real world the preceding link might be affected

significantly by the following link, for instance a traffic congestion caused from down-

stream links. Future work might involve these possible mutual interactions between

successive stochastic links. Furthermore, our parametric approximated probability

distribution of independent expected shortest path travel time demands some re-

strictive assumptions while making a simplified parametric distribution. We might

need to find a more accurate distribution reflecting the dependence impact on total

travel time distribution. Thus, it is worthwhile to study the dependent travel time

distribution in a stochastic and dynamic network.

5-3



Appendix A. Algorithm Codes

A.1 Hierarchy of MATLAB Functions
 
 

 

Experiment 
 
(Main experiment script file) 

ex1generation 
 
(Q matrix, Steady-state Probability P) 

vgenerateeq 
 
 
( LT{E[T(x)]}, LT{E[T(x)2]}, V(velocity) ) 

ltofp 
 

(     LT [Pij(T(x))]  ) 
 

invt_pzt 
 

( Inversion of  LT{P(T(x))} )   

chodoublesweep3 
 
 

( Double Sweep algorithm) 

invt_lap0 
 

( Inversion of  LT {E[T(x)]}, LT{E[T(x)2]} )    

pathfinder2 
 
 

( Path tracing procedure) 

addition 
 

(Generalized addition) 

minimization 
 

(Generalized minimization) 

decompose 
 

( L, U matrix decompostion) 

 stochasticpath 
 
 

(Transient K heuristic & distribution) 

File name 
 

(Function) 

Legend: 

Figure A.1 Hierarchy of codes for transient methodologies.

A-1



 
 

 

Experiment 
 
(Main experiment script file) 

ex1generation 
 
(Q matrix, Steady-state Probability P) 

vgenerateeq1 
 
 

( LT{E[T(x)]} V(velocity) ) 

chodoublesweep3 
 
 

( Double Sweep algorithm) 

invt_lap0 
 

( Inversion of  LT {E[T(x)]} )    

pathfinder2 
 
 

( Path tracing procedure) 

addition 
 

(Generalized addition) 

minimization 
 

(Generalized minimization) 

decompose 
 

( L, U matrix decompostion) 

 asymptoticbig 
 
 

(Asymptotic K heuristic & distribution) 

File name 
 

(Function) 

Legend: 

generateeqk 
 

( Asymptotic variance paramter,k )   

Figure A.2 Hierarchy of codes for asymptotic methodologies.

A-2



A.2 Transient Stochastic K-shortest path heuristic

**************************************************************************

Function program Matlab code: stochasticpath

This function program code is to compute and find the expected

K-independent, expected dependent1,2 shortest paths in a given network.

This algorithm provides ALL useful measures of the stochastic

network;

steady state of probability, transient & asymptotic mean travel time and

all K shorest expected paths information as well as the distribution of

the expected shortest path with both transient and asymptotic parameters.

Algorithm procedure is following.

Step 0 : Initialization & independent mean travel time of each link

Step 1 : Double sweep algorithm to find K shortest paths.

Step 2 : Computing the distribution of independent shortest path.

Step 3 : Computing dependent mean travel time of all shortest paths.

Step 4 : Ranking K shortest paths & printing results

Input arguments

A = distance matrix where Aij=if i and j are adjacent,distance between

node i and j otherwise, Aij=inf

D = Traffic condition matrix where Dij= traffic condition of link (i,j).

st = Number of state of the CTMC across the network.

kth = K paramter value of K shortest path algorithm, down to kth shortest

path.

Output arguements

Q = Q matrix cell array where Qij= Q matrix of CTMC of link(i,j)

V = Velocity diagonal matrix where Vii= velocity of vehicle

at state i in CTMC.

ASYM = Asymptotic mean travel time matrix where ASYM(i,j)=asymptotic

mean travel time of link (i,j)

INM,DEM,DEM2 = Independent, dependent I and dependent II mean travel

time matrix where INM(i,j),DEM(i,j),DEM2(i,j)=mean travel

time of each link (i,j).

EPT = Expected proability vector matrix where EPT(i,j)=the value of

link(i,j):Dependent I

EST = Expected state proability vector matrix where EST(i,j) =the value

of link (i,j):Dependent II.

PST = Steady state probability cell matrix where PST{i,j}= steady state

probability vector of link (i,j).

Dep1dis,Dep2dis,Dep1tot = Distance information storages for K paths of

A-3



dependentI and dependent II

fD = Shortest paths value matrix whose element fD(ij)is a vector of

k shortest paths from node i to j.

a = Mean of independent expected shortest path travel time

distribution.

b = Variance of independent expected shortest path travel time

distribution

Kpath = K shortest path cell array where Kpath{i}= ith shortest path

nodes storage

Associated sub algorithm files

-ex1generation.m file: Generation of Q matrix, steady state probability P.

-vgenerateeq.m file: Transform of LT{E{T(x)},LT{E[T(x)]^2}.

-ltofp.m file: Tranform of LT[P(T(x))].

-invt_lap0.m file: Inversion of LT{E{T(x)},LT{E[T(x)]^2}.

-invt_pzt.m file: Inversion of LT[P(T(x))].

-chodoublesweep3.m file: Core algorithm file( K shortest paths).

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

**************************************************************************

function

[Q,V,ASYM,INM,DEM,DEM2,EPT,EST,Z0,PST,Kpath,dis,Dep1dis,Dep2dis,Dep1tot,

Dep2tot,fD,a,b]=stochasticpath(A,D,st,kth)

%Step 0: Initialization & independent mean travel time of each link

n=size(A,2); Q=cell([n,n]); ASYM=zeros(n,n); INM=zeros(n,n);

VARI=zeros(n,n); DEM=zeros(n,n); DEM2=zeros(n,n); EPT=cell([n,n]);

EST=cell([n,n]); Z0=cell([n,n]); PST=cell([n,n]);

tic; % Computation time intiated

%Generation of Q matrix, all initial measures;Mean,Steadystate probability etc.

for i=1:n

for j=1:n

if A(i,j)~=inf & i < j

[Q1,P]=ex1generation(D(i,j),st)

%[Q1,P]=ex2generation(D(i,j),st)

A-4



z0=zeros(1,st);

z0(st)=1;

[LTm1,LTm2,V]=vgenerateeq(st,Q1,z0);%Find the LT{E{T(x)},LT{E[T(x)]^2}.

m=invt_lap0(A(i,j),LTm1); %Find the E{T(x)}.

m2=invt_lap0(A(i,j),LTm2); %Find the E[T(x)]^2.

v=m2-m^2; %Var[T(x)]

%Independent transient mean & variance

INM(i,j)=m

INM(j,i)=m

VARI(i,j)=v

VARI(j,i)=v

% Asymptotic mean time.

ASYM(i,j)=A(i,j)/sum(P*V);

ASYM(j,i)=ASYM(i,j);

%steady-state distribution & Q matrix.

PST{i,j}=P;

PST{j,i}=P;

Q{i,j}=Q1

Q{j,i}=Q1;

%For only initial arcs emanating from source node.

if i==1

Z0{i,j}=z0;

Z0{j,i}=Z0(i,j);

%Expected probability at E[T(x)]:dependent I

Ltp=ltofp(Q1); %Generating LT[P[Z(t)}]

Pt=invt_pzt(m,Ltp); %Finding P(m)

EPT{i,j}=z0*Pt;

%Expected state at E[T(x)]:dependent II

EST{i,j}=zeros(1,st);

est=round(EPT{i,j}*[1:st]’);

EST{i,j}(1,est)=1;

end

end

end

end

A-5



%Step 1: Double sweep algorithm to find K shortest paths.

%Modifying the INM matrix to fit the input form of chodoublesweep3.m file.

for i=1:n

for j=1:n

if INM(i,j)==0

INM(i,j)=inf;

end

end

end

%dijkstra(INM);

[L,U,fD,Kpath,dis,tot]=chodoublesweep3(INM,kth);

%Step 2: Computing the distribution of independent shortest path.

distrimean=tot(1); distrivari=0; for i=1:size(Kpath{1},2)-1

distrivari=distrivari+VARI(Kpath{1}(i),Kpath{1}(i+1)); end

%Step 3 : Computing dependent mean travel time of all shortest paths.

%Computing of expected dependent travel time of each selected

%shortest path in K paths.

Dep1dis=cell([1,kth]); Dep2dis=cell([1,kth]);

Dep1tot=zeros(1,kth); Dep2tot=zeros(1,kth); for i=1:kth

%Starting link mean travel time.

Dep1dis{i}(1)=INM(Kpath{i}(1),Kpath{i}(2))

Dep2dis{i}(1)=INM(Kpath{i}(1),Kpath{i}(2))

for j=2:size(Kpath{i},2)-1

g=Kpath{i}(j)

h=Kpath{i}(j+1)

%Expected probability at E[T(x)]:dependent I

z0=EPT{Kpath{i}(j-1),Kpath{i}(j)}; %EPT: Expected terminal probability

[LTe]=vgenerateeq(st,Q{g,h},z0);

DEM(g,h)=invt_lap0(A(g,h),LTe); %Dependent I mean travel time of link (g,h)

Ltp=ltofp(Q{g,h}); %Generating LT[P[Z(t)}]

A-6



Pt=invt_pzt(DEM(g,h),Ltp); %Finding P(t) at E[T(x)]

EPT{g,h}=z0*Pt;

%Expected state at E[T(x)]:dependent II

z02=EST{Kpath{i}(j-1),Kpath{i}(j)}; %EST : Expected terminal state

[LTe]=vgenerateeq(st,Q{g,h},z02);

DEM2(g,h)=invt_lap0(A(g,h),LTe);

EST{g,h}=zeros(1,st);

est=round(EPT{g,h}*[1:st]’);

EST{g,h}(1,est)=1;

Dep1dis{i}(j)=DEM(g,h);

Dep2dis{i}(j)=DEM2(g,h);

end

Dep1tot(i)=sum(Dep1dis{i});

Dep2tot(i)=sum(Dep2dis{i});

end

%Step 4 : Ranking K shortest paths & printing results

%Sort and keep indices of rank.

[sorted1,index1]=sort(Dep1tot);

[sorted2,index2]=sort(Dep2tot);

t=toc;

%Printing all necessary results !

fprintf(’Independent Case!’)

for i=1:kth

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,Kpath{i})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,dis{i})

fprintf(’Independent total travel time :total: %3.4f\n’,tot(i))

end

disp(’’)

disp(’’)

fprintf(’Dependent I Case!’)

A-7



for i=1:size(index1,2)

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,Kpath{index1(i)})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,Dep1dis{index1(i)})

fprintf(’Dependent I total travel time : %3.4f\n’,Dep1tot(index1(i)))

end

disp(’’)

disp(’’)

fprintf(’Dependent II Case!’) for i=1:size(index2,2)

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,Kpath{index2(i)})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,Dep2dis{index2(i)})

fprintf(’Dependent II total travel time : %3.4f\n’,Dep2tot(index2(i)))

end

fprintf(’The independent expected shortest path distribution\n’)

distrimean distrivari a=distrimean; b=distrivari;

fprintf(’Computational time’)

t

A-8



A.3 Generation of Q matrices in Problem in Section 4.2

*******************************************************************************

Function program Matlab code: ex1generation.m

This function code is to generate various somewhat erratic Q matrix based on

traffic condition number associated with each link(Refer to Chapter 4.2 problem

configuration). For real application, this Q matrix should be generated

based on tranistion rate estimate with collected data. Thus, this file

is only for the experiment problem in Chapter 4.2.

Input arguments

a = Traffic condition number(Refer to Chapter 4.2 problem configuration.

k = The number of state.

Output arguements

Q = Q matrix generated.

P = Steady state probability distribution vector associated above Q

matrix.

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

%Only associated with experiment4-2.

function [Q,P] = ex1generation(a,k) A=zeros(k,k); if a==1

b=0;

c=10;

d=0;

elseif a==2

b=20;

c=40;

d=0;

elseif a==3

b=50;

c=100;

d=0

else

b=200;

c=300;

d=1;

e=10;

end for i=1:k

for j=1:k

A-9



A(i,j)=unifrnd(b,c);% Generation of random variates

end

end

if a==2

for i=1:k

%A(1,i)=unifrnd(300,500);

A(2,i)=unifrnd(0,0.1);

A(k,i)=unifrnd(0,0.1);

end

end if a==1

for i=1:k

%A(1,i)=unifrnd(50,70);

A(2,i)=unifrnd(0,0.1);

end

end if d~=0

for i=1:k

A(i,k)=unifrnd(d,e);

end

end

for i=1:k

A(i,i)=0;%Making diagonal empty

end

Ai=[]; Ai=sum(A,2); for i=1:k

%Substituting negative of sum of offdiagonal elements into diagonal.

A(i,i)=-Ai(i,1);

end

p=zeros(1,k);% Generating P

Q1=zeros(k,k);%Generating Q

e=ones(k,1);%Generating e

Q1=[A(1:k,1:k-1),e];% Generating Q~ : all Q elements but last all 1 column

b=zeros(1,k);

b1=[b(1,1:k-1),1];% Generating right hand side

p=b1*inv(Q1);%Solving linear equation for steady state distribution.

Q=A; P=p;

A-10



A.4 Laplace Transform of Lower Moments

*******************************************************************************

Function Matlab code:vgenerateeq.m

This function program code is to generate the diagonal velocity matrix

and find the LT{E[T(x)]}, LT{E[T(x)^2]}. We can generate the velocity

matrix in accordance with various possible velocity function. Here we

set two functions; linear and exponential function(exponential is

default).

Input arguments

a = The number of state in sample space of CTMC

Q = Q matrix of CTMC

z0 = Initial probability distribution vector of CTMC

Output arguements

LTmeq = LT{E[T(x)]}

LTm2eq= LT{E[T(x)^2]}

V = Velocity diagonal matrix where Vii= velocity of vehicle

at state i in CTMC.

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function [LTmeq,LTm2eq,V]=vgenerateeq(a,Q,z0) syms s v=[]; for

i=1:a

%v(i)=25/(i*60); % Linear velocity function

v(i)=25/(60*exp(i)); % Exponential velocity function

end V=diag([v]); e1=ones(a,1);

D=s*V-Q; if nargout < 3

LTmeq=(1/s)*z0*inv(D)*e1; % LT{m(t(x))}

else if nargout ==3

LTmeq=(1/s)*z0*inv(D)*e1; % LT{m(t(x))}

LTm2eq=(1/s)*2*z0*(inv(D)*inv(D))*e1; else disp(’Number of output

argument is wrong’) end end

A-11



A.5 Numerical Inversion of Lower Moment Transforms

*************************************************************************

Function program Matlab code: invt_lap0.m

The purpose of this MATLAB program is to inverse the LT of E[T(x)]

to E[T(x)] numerically.

Input arguments

- b : LT{E[T(x)]}

- t : Length of arc x

Output arguments

- f1 : E[T(x)] where length of x is given an input(t)

Author: Dr. Kharoufeh

Date : 11/24/02

Last Revision: 01/24/03(Capt Cho)

*************************************************************************

function f1 = invt_lap0(t,b) syms s x y

eq=b; s=x+y*i;

rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m;

for k=0:m

d=nchoosek(m,k);

c=[c d];

end

for t = t; %50.0; %t=0.5:0.5:20.0

tx = t; %[tx t];

ntr=15;

u=exp(A/2)/t;

x=A/(2*t);

h=pi/t;

su=zeros(m+2);

y=0; %!

s=x+y*i;

sm=eval(eq)/2;% Modified ! .

for k=1:ntr

x=A/(2*t);

y=k*h;

s=x+y*i;

A-12



sm=sm+((-1)^k)*real(eval(eq)); % !

end

su(1)=sm;

for k=1:12

n=ntr+k;

x=A/(2*t);

y=n*h;

s=x+y*i;

su(k+1)=su(k)+((-1)^n)*real(eval(eq)); %!

end

av1=0; av2=0;

for k=1:12

av1=av1+c(k)*su(k);

av2=av2+c(k)*su(k+1);

end

f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2];

end

A-13



A.6 Laplace Transform of CTMC Marginal Probabilities

*******************************************************************************

Function Matlab code:ltofp.m

This function program code is to find the Laplace transform of transient

conditional state probability, LT[Pij(t)]. This function program code is

to find the Laplace transform of transient conditional state probability,

LT[Pij(t)]. This conditional state probability is used to compute the

marginal transient state probability at mean travel time

(terminal probability).

Input arguments

Q = Q matrix of CTMC

Output arguements

LTp = LT[Pij(t)]

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function [LTp]=ltofp(Q)% Q=Qmatrix, b=z0 intial distribution vector

syms s

c=size(Q,1); %Number of rows of Q matrix

I=eye(c); %Generating identity matrix based on number of rows of Q matrix

D=s*I-Q; %Generating SI matrix and minus Q matrix.

LTp=inv(D); % LT of [P{Z(t)=i|Z(0)=j}] for all (i,j) in sample space.

A-14



A.7 Numerical Inversion of CTMC Marginal Probabilities

*******************************************************************************

Function Matlab code: invt_pzt.m

This function program code is to inverse the Laplace transform of

transient conditional state probability, LT[Pij(t)].

Input arguments

-Ltp = LT[Pij(t)]

-t = Time (mean travel time for terminal probability).

Output arguements

-f2 = Conditional probability matrix [Pij(t)].

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

%When input argument Ltp is matrix:default.

function f2 = invt_pzt(t,Ltp)

n1=size(Ltp,2); %number of columns in b.

Pzt=[];

for f=1:n1 %For every element in p array find the P(z(t)).

for g=1:n1

b=Ltp(f,g);

syms s x y

eq=b; s=x+y*i;

rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m;

for k=0:m

d=nchoosek(m,k);

c=[c d];

end

for t = t; %50.0; %t=0.5:0.5:20.0

tx = t; %[tx t];

ntr=15;

u=exp(A/2)/t;

x=A/(2*t);

A-15



h=pi/t;

su=zeros(m+2);

y=0; %!

s=x+y*i;

sm=eval(eq)/2;% Modified !Calling generateeq m. which contain LT(m(t)).

for k=1:ntr

x=A/(2*t);

y=k*h;

s=x+y*i;

sm=sm+((-1)^k)*real(eval(eq)); % !

end

su(1)=sm;

for k=1:12

n=ntr+k;

x=A/(2*t);

y=n*h;

s=x+y*i;

su(k+1)=su(k)+((-1)^n)*real(eval(eq)); %!

end

av1=0; av2=0;

for k=1:12

av1=av1+c(k)*su(k);

av2=av2+c(k)*su(k+1);

end

f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2];

end

Pzt(f,g)=f1;

end

end

f2=Pzt; %f2 = matrix of p(t).

A-16



A.8 Double Sweep Algorithm

*******************************************************************************

Function program Matlab code: chodoublesweep3

The purpose of this MATLAB program is to compute the K shortest paths

for all distance and find the source to destination K shortest paths.

This is based on ’double sweep algorithm’ introduced by Shirer

in ’On algorithms for finding the k shortest paths in a network’

[Networks9],1979 p195~p214 and slightly modified for cycle path

reduction and path tracing procedures.

Algorithm procedure is following.

Step 0 : Initialization

Step 1 : Double sweep algorithm

Step 3 : Path tracking algorithm

Input arguments

- C : Distance matrix whose element Cij is the independent mean

travel time between two node Cij=inf for i=j.

- k : Required k shortest paths value,k.

Output arguments

- L: Lower triangular portions of fD matrix

- U: Upper trigngular portions of fD matrix

- fD: shortest paths value matrix whose element fD(ij)is a vector

of k shortest paths from node i to j.

- Path: Path list cell array whose row is a j path nodes list.

- distant: cell array whose row is a successive distance between

two successive nodes.

- tot: Total distance list from 1st to kst shortest path from

source to sink node.

Associated sub algorithm files.

-minimization.m: Generalized minimization set operation with same

same dimensional two vectors.

-addition.m: Generalized addition set operation with same dimensional

two vectors.

-decompose.m: Decomposition of estimates matrix into L and U matrix

-pathfinder.m: Path tracing algorithm for k shortest path values

Author: Capt. Jae Il Cho

Date : 11/24/02

A-17



Last Revision: 01/24/03

**************************************************************************

Note! the order of element in distant[] is opposite of that of

path[]. Only difference with chodouble sweep are the lines around

188 Difference with chodoublesweep2 is whether sweeping the

diagonal element or not(here we skip the diagonal element to

minimize the cycle risk).

function [L,U,fD,Path,distant,tot]=chodoublesweep3(C,k)

%Step 0: Initialization

n=size(C,2);

%Consturcting k paths matrix [Dij] between node i,j where

%Dij= vector of k shortest paths between node i,j.

D=cell(n,n); for i=1:n

for j=1:n

if i==j

D{i,j}(1)=0;

else if C(i,j) ~= 0

D{i,j}(1)=C(i,j);

else

D{i,j}(1)=inf;

end

end

for h=2:k

D{i,j}(h)=inf;

end

end

end

D0=D;

%Constructing semi-upper and lower triangular matrix of D.

[L,U]=decompose(D);

A-18



%Step 1 : double sweep algorithm

v=1; iter=1; BackD=D;

%As long as there is any differecne in two successive estimates.

while v~=0

%Backward estimates sweep.

different=zeros(n,n);

for i=1:n %Row

D{i,n}=D{i,n};

for j=n-1:-1:1

if i~= j %Skip the diagonal element in D.

added=cell(1,n); %Number of addition

for h=1:n

added{h}=addition(D{i,h},L{h,j});

end

minimized=added{1};

for o=1:n-1

minimized=minimization(minimized,added{o+1});

end

%Backward new replacement of element.

D{i,j}=minimization(minimized,D{i,j});

end

%Termination condition test.

difference=setdiff(D{i,j},BackD{i,j});

different(i,j)=~isempty(difference);

end

end

% Number of nonzero elements in matrix different(termination condition)

v=nnz(different);

BackD=D; celldisp(D)

%Forward estimates sweep.

for i=1:n %Row

A-19



D{i,1}=D{i,1};

for j=2:n

if i~= j

added=cell(1,n); %Number of addition

for h=1:n

added{h}=addition(D{i,h},U{h,j});

end

minimized=added{1};

for o=1:n-1

minimized=minimization(minimized,added{o+1});

end

D{i,j}=minimization(minimized,D{i,j});

%Checking the difference.

end

end

end

iter=iter+1;

end

fD=D;

%Step 2: Path trakcing algorithm

%Tracking k shortest paths from source to sink.

%Initialization of storage of information.

cho_Adjacent=cell(n,1); P=cell(1,k); Path=cell(1,k);

dis=cell(1,k); distant=cell(1,k);

%Making adjacent matrix where column vector is the adjacent node list.

for i=1:n

cho_Adjacent{i}=find(C(:,i)~=0 & C(:,i)~=inf)

end

A-20



%Beginning of path tracking algorithm

for i=1:k %kth shortest path.

x=1;

penulti=[];%index vector of successive node’s distance.

scan=[];

%Starting with the first row of fD matrix(source to sink).

%Finding eligible nodes in first row of fD satisfying the tracing equation.

for j=1:size(cho_Adjacent{n,1})

%Most core part of the path tracing procedure

penultimate=find(D{1,cho_Adjacent{n}(j)}(1:i)+C(cho_Adjacent{n}(j),n)

== D{1,n}(i));

if ~isempty(penultimate)

scan(x)=cho_Adjacent{n}(j);

penulti(x)=penultimate;

D{1,cho_Adjacent{n}(j)};

x=x+1;

end

end

%’scan’ = list of eligible nodes to be tracked repeatedly in following.

if ~ismember(1,scan) %Only the node is not the source node.

for j=1:size(scan,2)

[P{i},dis{i}]=pathfinder2(n,penulti(j),cho_Adjacent,D,C,scan(j));

Path{i}=[P{i},scan(j)];

distant{i}=[dis{i},C(scan(j),n)];

end

else

Path{i}=1;

distant{i}=C(1,n);

end

Path{i}(size(Path{i},2)+1)=n;

end

A-21



tot=[ ];

for i=1:k

tot(i)=sum(distant{i});

end

%Printing results.

for i=1:k

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f %2.0f’,Path{i},size(C,2))

fprintf(’\nDistances\n’)

fprintf(’%5.2f\t’ ,distant{i})

fprintf(’total: %3.2f\n’,tot(i))

end

A-22



A.9 Generalized Minimization Procedure

*******************************************************************************

Function Matlab code: minimization

The purpose of this MATLAB program is to perform the geneeralized minimization

set operation explainde in Chapter 3.4(Double sweep algorithm).

Associated higher algorithm file

-chodoublesweep3.m: Double sweep algorithm file.

Input arguments

- a,b: Same dimensional vectors

Output arguments

- d: Generalizde minimization result vector.

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function d=minimization(a,b) c=union(a,b); if size(c,2) <

size(a,2)

i=size(a,2)-size(c,2);

c((size(c,2)+1):(size(c,2)+i))=inf;

end d=c(1:size(a,2));

A.10 Generalized Addition Procedure

*******************************************************************************

Function Matlab code: addition

The purpose of this MATLAB program is to perform the generalized addition

set operation explainde in Chapter 3.4(Double sweep algorithm).

Associated higher algorithm file

-chodoublesweep3.m: Double sweep algorithm file.

Input arguments

- a,b: Same dimensional vectors

Output arguments

- d: Generalizde minimization result vector.

A-23



Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function d=addition(a,b) c=[]; k=[]; h=1; for i=1:size(a,2)

for j=1:size(b,2)

k(j)=b(j)+a(i);

end

c(1,h:(h+size(b,2)-1))=k;

h=h+size(b,2);

end

c1=unique(c); if size(c1,2) < size(a,2)

i=size(a,2)-size(c1,2);

c1((size(c1,2)+1):(size(c1,2)+i))=inf;

end d=c1(1:size(a,2));

A.11 Decomposition of Initial Estimate Matrix

*******************************************************************************

Function Matlab code: decompose

The purpose of this MATLAB program is to decompose the initial estimate

of K shortest path value vector matrix into lower part and upper part.

However, they are not strictly lower and upper triangular matrix which is

why we built this code for decomposition (Refer to double sweep algorithm

in chapter 3.4)

Associated higher algorithm file

-chodoublesweep3.m: Double sweep algorithm file.

Input arguments

- A: K shortest path estimate cell matrix.

Output arguments

- L: Lower triangular style matrix of A.

- U: Upper triangular style matrix of A.

Author: Capt. Jae Il Cho

Date : 11/24/02

A-24



Last Revision: 01/24/03

*******************************************************************************

function [L,U]=decompose(A)

L=tril(A); U=triu(A);

k=size(A{1,1},2) for i=1:size(A,2)

for j=1:size(A,2)

if i==j

L{i,i}(1:k)=inf;

U{i,i}(1:k)=inf;

else if i<j

L{i,j}(1:k)=inf;

else

U{i,j}(1:k)=inf;

end

end

end

end

A-25



A.12 Path Tracing Procedure (Double sweep algorithm)

*******************************************************************************

Function program Matlab code: pathfinder2

The purpose of this MATLAB program is to find the actual K shortest paths

with an input of K shortest path distance values vector. This algorithm is

to track each of actual K shortest path based on the input of K shortest path

distance values Chapter 3.4(Double sweep algorithm).

Associated higher algorithm file

-chodoublesweep3.m: Double sweep algorithm file.

Input arguments

-n = Number of nodes in the graph.

-k = The index of penultimate node(kth distance of penultimate node).

-cho_Adjacent = n by 1 cell array in which cho_Adjacent{i} = Adjacent nodes

to node i for all nodes i in the graph.

-cho_D = Final double sweep cell matrix where cho_D{i,j}= a vector

having K shortest path distance values from node i to j.

-cho_C = n by n matrix where cho_C(i,j}= the mean travel time(fixed

distance) from node i to j.

-ini = Penultimate node.

Output arguments

- p: Node list vector where p(i) is the ith node in path to ’ini’.

- dis: Distance vector where dis(i) is the distance from i-1th node

to ith node in the path to ’ini’.

#This file is explicitly related to higher algorithm

file,chodoublesweep3.m without which tis file can not work separately.

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function [p,dis]=pathfinder(n,k,cho_Adjacent,cho_D,cho_C,ini)

Adjcent=[]; p=[]; x=1; dis=[];

s=ini; Adjacent=cho_Adjacent{ini}

while s~=1

for j=1:size(Adjacent,1) % For all incident node to penultimate node s.

A-26



cho_D{1,Adjacent(j)}(1:i);

penultimate=find(cho_D{1,Adjacent(j)}(1:k)+cho_C(Adjacent(j),s)==cho_D{1,s}(k))

% penultimate=index of what shortest path in Adjacent(j) node vector.

if ~isempty(penultimate)

% if it found the penultimate node and it’s not a member which

% we already found (we need to prevent cycle).

dis(x)=cho_C(Adjacent(j),s);

s=Adjacent(j) %proceeding node

break

end

end

k=penultimate; % index of what shortest path in penultimate node

p(x)=s %Path list

Adjacent=cho_Adjacent{s}

x=x+1;

end

%Arrange the order of element of each path and distant vector.

p=p(end:-1:1)

dis=dis(:,end:-1:1);

A-27



A.13 Asymptotic Stochastic K-shortest Path Heuristic

*******************************************************************************

Function program Matlab code: asymptoticpathbig

This function program code is to compute and find the expected

K asymptotic, asymptotic expected dependent1,2 shortest paths in a given

network. This algorithm differs from ’stochasticpath’ in asymptotical

approaches. Except this asymptotical approaches, most of measures are

all the same.

Algorithm procedure is following.

Step 0 : Initialization , independent & asymptotic mean travel time of

each link.

Step 1 : Double sweep algorithm to find asymptotic K shortest paths.

Step 2 : Computing the distribution of asymptotic shortest path.

Step 3 : Computing asymptotically dependent mean travel time of all shortest

paths.

Step 4 : Ranking K asymptotically dependent expected shortest paths

& printing results

Input arguments

-A = distance matrix where Aij=if i and j are adjacent,distance between

node i and j otherwise, Aij=inf

-D = Traffic condition matrix where Dij= traffic condition of link (i,j).

-st = Number of state of the CTMC across the network.

-kth = K paramter value of K shortest path algorithm, down to kth shortest

path.

Output arguements

-Q = Q matrix cell array where Qij= Q matrix of CTMC of link(i,j)

-V = Velocity diagonal matrix where Vii= velocity of vehicle

at state i in CTMC.

-ASYM = Asymptotic mean travel time matrix where ASYM(i,j)=asymptotic

mean travel time of link (i,j)

-INM,ASYDEM,ASYDEM2 = Independent, asymptotic dependent I and

dependent II mean travel time matrix where INM(i,j),

ASYDEM(i,j),ASYDEM2(i,j)=mean travel time of each link (i,j).

-PST = Steady state probability cell matrix where PST{i,j}= steady state

probability vector of link (i,j).

-ADep1dis,ADep2dis,ADep1tot = Distance information storages for K paths of

asymptotic dependentI and dependent II.

-fD = Shortest paths value matrix whose element fD(ij)is a vector of

k shortest paths from node i to j.

A-28



-a = Mean of independent expected shortest path travel time

distribution.

-b = Variance of independent expected shortest path travel time

distribution

-aKpath = K shortest path cell array where Kpath{i}= ith shortest path

nodes storage

Associated sub algorithm files

-ex1generation.m file: Generation of Q matrix, steady state probability P

-vgenerateeq1.m file: Computation of LT{E{T(x)}.

-invt_lap0.m file: Inversion of LT{E{T(x)}.

-generateeqk.m file: Computation of asymptotic variance parameter,k.

-chodoublesweep3.m file: Core algorithm file( K shortest paths)

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function [Q,V,ASYM,INM,ASYDEM,ASYDEM2,Z0,PST,aKpath,dis,ADep1dis,

ADep2dis,ADep1tot,ADep2tot,fD,a,b]=asymptoticpathbig(A,D,st,kth)

n=size(A,2); ASYMDEM=zeros(n,n); ASYMDEM2=zeros(n,n);

ASYMEST=cell(n,n); Q=cell([n,n]); ASYM=zeros(n,n); INM=zeros(n,n);

Z0=cell([n,n]); PST=cell([n,n]);

tic; %Computation time initiated.

%Step 0 : Initialization , independent & asymptotic mean travel time of

% each link.

%Problem formulation and all initial measures;Mean,Steadystate probability etc.

for i=1:n

for j=1:n

if A(i,j)~=inf & i < j

[Q1,P]=ex1generation(D(i,j),st)

%[Q1,P]=ex2generation(D(i,j),st)

z0=zeros(1,st);

z0(st)=1;

[LTm1,V]=vgenerateeq1(st,Q1,z0); %Find the LT{E{T(x)},LT{E[T(x)]^2}.

m=invt_lap0(A(i,j),LTm1); %Find the E{T(x)}.

A-29



%Independent transient mean & variance

INM(i,j)=m

INM(j,i)=m

% Asymptotic mean time.

ASYM(i,j)=A(i,j)/sum(P*V);

ASYM(j,i)=ASYM(i,j);

%steady-state distribution & Q matrix.

PST{i,j}=P;

PST{j,i}=P;

Q{i,j}=Q1

Q{j,i}=Q1;

end

end

end

end

%Step1: Asymptotic k shortest path.

for i=1:n

for j=1:n

if INM(i,j)==0

INM(i,j)=inf;

end

end

end

%Computing the expected state vector of initial arcs.

for j=1:n

if ASYM(1,j)~=0

ASYMEST{1,j}=zeros(1,st);

est=round(PST{1,j}*[1:st]’);

ASYMEST{1,j}(1,est)=1;

end end [L,U,fD,aKpath,dis,tot]=chodoublesweep3(ASYM,kth);

A-30



%Step2: Asymptotic mean and variance.

adistrimean=tot(1); adistrivari=0;

for i=1:size(aKpath{1},2)-1

[ltk]=

generateeqk(V,Q{aKpath{1}(i),aKpath{1}(i+1)},PST{aKpath{1}(i),aKpath{1}(i+1)});

ASYMVARI(aKpath{1}(i),aKpath{1}(i+1))=A(aKpath{1}(i),aKpath{1}(i+1))*ltk;

adistrivari=adistrivari+ASYMVARI(aKpath{1}(i),aKpath{1}(i+1));

end

%Step3: Asymptotic dependent travel time.

%Computing of expected dependent travel time of each selected shortest path from

% K dominant paths.

ADep1dis=cell([1,kth]); ADep2dis=cell([1,kth]);

ADep1tot=zeros(1,kth); ADep2tot=zeros(1,kth); for i=1:kth

%Starting link mean travel time.

ADep1dis{i}(1)=INM(aKpath{i}(1),aKpath{i}(2))

ADep2dis{i}(1)=INM(aKpath{i}(1),aKpath{i}(2))

for j=2:size(aKpath{i},2)-1

g=aKpath{i}(j);

h=aKpath{i}(j+1);

%Asymptotic Expected probability at E[T(x)]:dependent I

z0=PST{aKpath{i}(j-1),aKpath{i}(j)}; %PST: steady state probabilitiy vector

[LTe]=vgenerateeq(st,Q{g,h},z0);

ASYMDEM(g,h)=invt_lap0(A(g,h),LTe); %Dependent I mean travel time of link (g,h)

%Asymptotic Expected state at E[T(x)]:dependent II

z02=ASYMEST{aKpath{i}(j-1),aKpath{i}(j)};

%ASYMEST : Asymptotic Expected state approach probability vector

[LTe]=vgenerateeq(st,Q{g,h},z02);

ASYMDEM2(g,h)=invt_lap0(A(g,h),LTe);

ASYMEST{g,h}=zeros(1,st);

est=round(PST{g,h}*[1:st]’);

ASYMEST{g,h}(1,est)=1;

A-31



ADep1dis{i}(j)=ASYMDEM(g,h);

ADep2dis{i}(j)=ASYMDEM2(g,h);

end

ADep1tot(i)=sum(ADep1dis{i});

ADep2tot(i)=sum(ADep2dis{i});

end

%Step4: Ranking procedures.

%Sort and keep indices of rank.

[sorted1,index1]=sort(ADep1tot);

[sorted2,index2]=sort(ADep2tot);

t=toc; %Computation time terminated.

%We are done and happy to print out all outputs needed!

fprintf(’Asymptotic mean Case!’)

for i=1:kth

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,aKpath{i})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,dis{i})

fprintf(’Asymptotic total travel time :total: %3.4f\n’,tot(i))

end

disp(’’)

disp(’’)

fprintf(’Asymptotic Dependent I Case!’)

for i=1:size(index1,2)

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,aKpath{index1(i)})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,ADep1dis{index1(i)})

fprintf(’Asymptotic Dependent I total travel time:

%3.4f\n’,ADep1tot(index1(i)))

end

disp(’’)

disp(’’)

A-32



fprintf(’Asymptotic Dependent II Case!’) for i=1:size(index2,2)

fprintf(’\n%1.0f st path nodes\n’,i)

fprintf(’%2.0f ’,aKpath{index2(i)})

fprintf(’\nDistances\n’)

fprintf(’%5.4f\t’ ,ADep2dis{index2(i)})

fprintf(’Dependent II total travel time : %3.4f\n’,ADep2tot(index2(i)))

end

fprintf(’The asymptotic expected shortest path distribution\n’)

adistrimean adistrivari a=adistrimean; b=adistrivari;

fprintf(’computational time’) t

A-33



A.14 Asymptotic Variance Parameter

*******************************************************************************

Function Matlab code: generateeqk

The purpose of this MATLAB code is to compute the asymptotic variance

paramter k which is used to compute the asymptotic variance(chapter 2).

Associated higher algorithm file

- asymptoticpathbig.m

Input arguments

- V: Diagonal velocity matrix.

- Q: Q matrix.

- P: Steady state probability distribution.

Output arguments

- k: Asymptotic variance parameter,k.

Author: Capt. Jae Il Cho

Date : 11/24/02

Last Revision: 01/24/03

*******************************************************************************

function [K]=generateeqk(V,Q,P)

syms s

av=sum(P*V); % P*V =expected asymptotic velocity

D=inv(V)*Q; iV=inv(V);

[Rv,Rei]=eig(D) ;% Right eigen vectors,values

[Lv,Lei]=eig(D.’); %Left eigen vectores,values

n=size(D,1);

%Making new left eigen vectors which exactly matches to same right eigen values.

Lvn=zeros(n,n);

Drei=diag(Rei);%Diagonal element

Lrei=diag(Lei);

for i=1:n

%To maintain allowable accuracy while matching the left eigenvector to the same

A-34



%location of right eigenvector with same eigenvalue,

%we had to make difference vector,Dei.

if Rei(i,i) ~= 0

Dei=Lrei-Rei(i,i) ;

[h]=find(-0.00001<Dei & Dei<0.00001);%Acceptable accuracy

%Making new lefteigen vector exactly corrsponding to same right eigen value.

Lvn(:,i)=Lv(:,h);

end

end

Lvnew=Lvn’; % Transpose. For computational purpose,product sum computation.

%Finding K value as followings.

su=[];

e1=ones(n,1); % e vector(summation)

for i=2:n

su(i)=(1/Rei(i,i))*(((P*Rv(:,i))*(Lvnew(i,:)*iV*e1))/(sum(Lvnew(i,:)*Rv(:,i))));

end

K=-(2/av)*(sum(su));

A-35



Appendix B. Cycle Path Reduction in Double

Sweep Algorithm

While we implement the double sweep algorithm, intrinsically we can encounter

unwanted cycle shortest path. Particularly for the network that the triangular in-

equality does not hold as follows, For any directly connected three nodes in a graph 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 

1 3 
x13 

x12 x23 

Figure B.1 Triangular inequality

G(N, E) {i, j, k}, the triangular inequality is defined as

(i, j) < (i, k) + (j, k)

In the graph (Figure B.1), if x13 < x12 + x23 then the triangular inequality holds.

Thus, for a graph that does not satisfy the triangular inequality for all links

the cycle path could be the shorter than non-cycle path. Even though the cycle

path is actually shorter than non-cycle path we may not want to have it as the

solution. Hence, in order to prevent this intrinsic cycle path from happening in

double sweep algorithm we made slight modification. While iteratively updating the

distance estimate vector dr
ij at r th iteration, we purposedly do not compute the self

distance estimate for all node. In other words, we do not update the estimate of dr
ii

for all node i.

B-1



Hence while we do backward and forward sweep, we skip all diagonal elements

of estimate array matrix [dij] where dij is the K-vector of shortest path estimates.

However, we still may have shorter cycle path in those graph where the trian-

gular inequality does not hold. But at least we reduce the computational time and

cycle path occasions.

B-2



Appendix C. Dependence on Distinct CTMC

Sample Space

While each link’s CTMC sample space might be distinct, the velocity function across

the network is assumed to be same. Thus, the basic idea of imposing the dependence

on terminal condition of a distinct CTMC sample space lies on how to maintain

legitimate velocity transition from the preceding condition to the following condition.

First, let us consider the case where a vehicle enters into a smaller number of

CTMC sample space from the larger number of CTMC sample space. If the expected

terminal state of this vehicle in the preceding is beyond the sample space of the

following link, then under totally new environment (CTMC) this vehicle can not

exceed the maximum state of the following CTMC’s space. For numerical example,

if E[Zij(T (xij))] = 5 where Sij = {1, 2, .., 5} and Sjk = {1, 2, 3}, the initial condition

under which a vehicle’s velocity is governed is P{Zjk(0) = 3} = 1. The initial state

of CTMC cannot beyond the sample of its CTMC (Zjk(0) 6> 3). In terms of velocity,

suppose V = 100/Z(T ), the terminal velocity was 20 and the initial velocity in new

environment will be 33 because it is the maximum speed that a vehicle can have in a

new environment. This matching concept leads us to the following methodologies of

imposing the dependence across distinct sample spaces (Figure C.1 and Figure C.2).

Suppose there are two successive link (i, j), (j, k) and distinct environment

process CTMC of each link where sample space are distinct, S(i,j) 6= S(j,k). Then, we

impose dependence of expected terminal distribution and expected terminal state on

subsequent link’s CTMC initial distribution ([Zjk(0)]) as the following Figure C.1

and Figure C.2. For each of methodologies, we consider two cases that the terminal

sample space is larger and initial sample space is larger.

C-1



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[ P1, P2, … Pg, Pg+1, .. Ph ]   

[ P1, P2, … Pg ]   

�
=

h

gl
lP  

[ P1, P2, … Pg ]   

[ P1, P2, … Pg, 0, .. 0 ]     

Terminal distribution: 
of link (i, j) 

 Initial distribution: 
of link (j, k) 

 S(i,j)={ 1, 2, … g, g+1, .. h}  

 S(j,k)={ 1, 2, … g}   S(j,k)={ 1, 2, … g, g+1, .. h}  

 S(i,j)={ 1, 2, … g}  

Figure C.1 Expected terminal distribution approach

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Terminal state: 
of link (i, j) 

 Initial state: 
of link (j, k) 

 S(i,j)={ 1, 2, … g, g+1, .. h}  

 S(j,k)={ 1, 2, … g}   S(j,k)={ 1, 2, … g, g+1, .. h}  

 S(i,j)={ 1, 2, … g}  

axTZE ijji =))](([ ),(  

1})0({ ),( == aZP kj  

For a � g For a > g 
 

1})0({ ),( == gZP kj  

axTZE ijji =))](([ ),(  

1})0({ ),( == aZP kj  

Figure C.2 Expected terminal state approach

Since the sample space of environment process CTMC reflects exactly the

possible velocity range of its terrain (link), the above matching procedure capture the

reality of transition to distinct environment while it seems to occur discontinuously.

C-2



Appendix D. Q Matrices

D.1 Q matrices for the Expected Shortest Path Problem I

Q{i, j} := Q matrix of CTMC of link (i, j) and Q{i, j} = Q{j, i}.

Q{2,1} =

-253.6056 247.9687 5.6369

261.5909 -268.0437 6.4528

268.5140 251.0153 -519.5293

Q{3,1} =

-236.8661 231.7751 5.0910

213.0202 -222.1647 9.1445

266.7846 201.3626 -468.1472

Q{4,1} =

-173.0152 73.8296 99.1856

96.1175 -178.7337 82.6162

88.6340 55.3088 -143.9428

Q{3,2} =

-49.1639 20.1372 29.0268

0.0907 -0.1411 0.0504

0.0759 0.0331 -0.1090

Q{5,2} =

D-1



-12.6397 7.7987 4.8410

0.0943 -0.1680 0.0737

5.7961 6.6650 -12.4612

Q{4,3} =

-69.8975 39.8190 30.0786

0.0219 -0.1007 0.0788

0.0105 0.0457 -0.0562

Q{5,3} =

-294.5767 290.8875 3.6892

258.8739 -265.9259 7.0519

231.3435 223.1159 -454.4594

Q{5,4} =

-6.8185 5.6296 1.1889

0.0479 -0.1271 0.0793

4.8559 9.5222 -14.3781

D-2



D.2 Q matrices for the Expected Shortest Path Problem II

Q{i, j} := Q matrix of CTMC of link (i, j) and Q{i, j} = Q{j, i}.

Q{2,1} =

-41.8991 11.5569 30.3421

24.2991 -62.4040 38.1048

22.8234 0.9252 -23.7486

Q{3,1} =

-353.3695 80.7716 89.5969 96.0906 86.9104

58.8133 -321.9455 96.7735 95.8452 70.5135

94.6825 52.8946 -288.7284 90.6583 50.4931

56.9445 60.1383 59.9361 -240.6283 63.6094

59.9407 50.7637 87.3393 72.2548 -270.2985

Q{4,1} =

1.0e+003 *

-0.9503 0.1419 0.1846 0.1525 0.1203 0.1672 0.1838

0.1020 -0.8872 0.1379 0.1832 0.1503 0.1709 0.1429

0.1305 0.1190 -0.8172 0.1682 0.1303 0.1542 0.1151

0.1698 0.1378 0.1860 -0.9926 0.1594 0.1497 0.1900

0.1822 0.1645 0.1818 0.1660 -0.9576 0.1290 0.1341

0.1534 0.1727 0.1309 0.1838 0.1568 -0.9680 0.1703

0.1547 0.1445 0.1695 0.1621 0.1795 0.1957 -1.0059

Q{3,2} =

-283.8240 58.6478 98.9873 63.5724 62.6165

D-3



93.7871 -295.8958 56.8259 50.5878 94.6949

59.9569 64.9362 -262.5747 64.2204 73.4612

53.2391 99.4167 79.1396 -307.5710 75.7756

66.6976 71.6453 61.2975 78.9903 -278.6307

Q{6,2} =

-42.4798 32.0263 10.4535

18.9909 -53.0332 34.0423

23.0548 28.3914 -51.4462

Q{6,3} =

-826.2888 160.2869 105.0269 141.5375 130.4999 187.4367 101.5009

176.7950 -969.7828 199.0083 178.8862 143.8659 149.8311 121.3963

164.3492 132.0036 -911.4626 172.6632 141.1953 174.4566 126.7947

143.9924 193.3380 168.3332 -965.8432 183.9238 162.8785 113.3773

120.7133 160.7199 162.9888 137.0477 -831.0017 145.1425 104.3895

102.7185 131.2685 101.2863 138.3967 168.3116 -745.5154 103.5338

161.2395 160.8540 101.5760 101.6355 119.0075 158.6918 -803.0044

Q{7,3} =

-306.2917 81.5726 85.8817 84.6335 54.2040

72.7178 -281.8428 67.6625 57.6803 83.7822

84.9607 86.3755 -305.1306 77.7421 56.0524

72.5377 85.7941 94.6421 -315.7124 62.7385

93.2802 61.6175 90.2436 95.4199 -340.5612

Q{5,4} =

D-4



-6.4069 2.4877 3.9192

32.0408 -74.2342 42.1935

8.6950 8.5396 -17.2347

Q{7,5} =

-812.3855 134.0048 131.4217 136.5078 139.3240 159.1525 111.9747

103.8129 -913.9837 186.9867 193.4237 126.4449 116.0300 187.2855

123.7880 164.5831 -856.5961 166.4931 187.0381 100.9927 113.7010

181.8756 143.0166 189.0322 -933.8714 168.7324 134.6112 116.6035

115.5613 119.1116 142.2452 185.5976 -890.1861 181.5935 146.0770

145.7354 145.0689 141.2219 190.1610 100.5584 -827.6619 104.9162

169.3180 165.0106 198.2988 155.2673 140.0074 119.8789 -947.7810

Q{7,6} =

-277.9645 68.7943 50.4938 70.9929 87.6835

89.6936 -331.3574 92.2361 68.3876 81.0401

86.5639 59.6947 -306.3083 78.4603 81.5895

61.7206 77.4391 96.5792 -318.5155 82.7766

69.5952 81.3657 84.9540 69.8592 -305.7742

4-5



Bibliography

1. H. Frank (1969). Shortest paths in a probabilistic graph. Operations Research,
17, 583-599.

2. D.R.Shier (1978). Iterative methods for determining the k shortest paths in a
network. Networks, 6, 205-225.

3. D.R.Shier (1979). On algorithms for finding the k shortest paths in a network.
Networks, 9, 195-214.

4. C. Elliott Sigal, A. Alan B. Pritsker and James J. Solberg (1979). The stochastic
shortest path problem. Operations Research, 28, 1122-1128.

5. Jerzy Kamburowski (1985). A note on the stochastic shortest path route prob-
lem. Operations Research, 33, 696-698.

6. Amir Eiger, pitu B. Mirchanani and Hossein Soroush (1985). Path preferences
and optimal paths in probabilistic networks.Transportation Science,1, 75-84.

7. Jane N. Hagstrom (1990). Computing the probability distribution of project
duration in a PERT network. Networks, 20, 231-244.

8. Dimitri P. Bertsekas and John N. Tsitsilkis (1991). An analysis of stochastic
shortest path problems.Mathematics of Operations Research,16, 580-595.

9. James R. Evans and Edward Minieka (1992). Optimization Algorithms For Net-
works and Graphs. 2nd ed., Marcel Dekker,Inc., New York.

10. Gehen A. Corea and Vidyadhar G. Kulkarni (1993). Shortest paths in stochastic
networks with arc lengths having discrete distributions.Networks, 23, 175-183.

11. Harilaos N. Psafatis and John N. Tsitsiklis (1993). Dynamic shortest paths in
acyclic networks with Markovian arc costs. Operations Research, 41, 91-101.

12. Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin (1993). Network
Flows Theory, Algorithms, and Applications. Prentice Hall, New Jersey.

13. JenYeng Cheah and J. MacGregor Smith (1994). Generalized M/G/C/C state
dependent queueing models and pedestrian traffic flows. Queueing Systems,15,
365-386.

14. Warren B. Powell and Raymond K. Cheung (1994). Stochastic programs over
trees with random arc capacities.Networks, 24, 161-175.

15. Vidyadhar G. Kulkarni (1995). Modeling and Anaysis of Stochastic Systems.
Chapman & Hall, New York.

BIB-1



16. M.O. Ball, T.L. Magnati, C.L. Monma and G.L Nemhauser,eds (1995).Stochas-
tic and dynamic networks and routing. Handbook in Operations Research and
Management Science.Networks,4,141-295.

17. Ishwar Murthy and Summit Sarkar (1996). A relaxation-based pruning technique
for a class of stochastic shortest path problmes. Transportation Science, 30, 220-
236.

18. Raymond K. Cheung and Warren B. Powell (1996). An algorithm for multistage
dynamic networks with random arc capacities, with an application to dynamic
fleet management. Operations Research, 6, 951-963.

19. Rajat Jain and Macgregor Smith (1997). Modeling vehicular traffic flow using
M/G/C/C state dependent queueing models. Transportation Science, 31, 324-
336.

20. Liping Fu and L.R. Rillet (1998). Expected shortest paths in dyanmic and
stochastic traffic networks. Transportation Research, 32, 499-516.

21. Elise D. Miller-Hooks and Hani S. Mahmassani (1998). Least possible time
paths in stochastic time-varying networks.Computers and Operations Research,
25, 1107-1125.

22. Ishwar Murthy and Summit Sarkar (1998). Stochastic shortest path problems
with piecewise-linear concave utility functions. Management Science,44, s125-
s136.

23. Elise D. Miller-Hooks and Hani S. Mahmassani (2000). Least expectd time paths
in a stochastic, time-varying trasnportation network. Transportation Science, 34,
198-215.

24. Jeffrey P. Kharoufeh and Natarajan Gautam (2002). First passage time anal-
ysis of a moving particle in a random environment. Working Paper, Dept. of
Operational Science, Air Force Institute of Technology.

25. Jeffrey P. Kharoufeh and Natarajan Gautam (2002). Deriving link travel time
distributions via stochastic speed processes. To appear in Transportation Sci-
ence.

26. Amir Azaron and Farhad Kianhar (2002). Dynamic shortest path in stochastic
dynamic networks: Ship routing problem. European Journal of Operational
Research, 144, 138-156.

BIB-2



Vita

Captain Jae Il Cho entered Republic of Korea Military Academy in 1991. He

graduated from the Academy in March of 1995 with a Bachelor of liberal arts in

French. Upon graduation, he was commissioned as a 2nd Lieutenant, Army Armor

Officer. After a six-month Basic Officer Course in Army Mechanized Unit School in

Kwang-ju Korea, he was assigned to 3rd Armored Brigade as an tank platoon leader.

After serving one year, he was selected for an assignment in Capital Defense Com-

mand, Seoul and was assigned in Presidential Guard regimental unit as an armored

platoon leader. His platoon was a strike force for Presidential Guard. He then at-

tended the Advanced Officer Course for company commander in Army Mechanized

Unit School.

He served as a tank company commander in 3rd Infantry Division deployed

along DMZ. He commanded the most front line Tank company for 18 months. Upon

completion of company commander, he applied for annual Army Graduate Education

Plan and entered the Air force Institute of Technology for Systems Engineering

program, USA in August 2001. He was inducted into Tau Beta Pi in his 4th quarter

in AFIT. Upon graduation, he will be assigned to field division in Korea.

VITA-1



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

25-03-2003 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 
Apr 2002 – Mar 2003 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
SHORTEST PATH PROBLEMS IN A STOCHASTIC AND DYNAMIC 
ENVIRONMENT. 
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Cho, Jae, I., Captain, Republic of Korea Army 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 P Street, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GSE/ENS/03-01 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
   
     N/A 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
In this research, we consider stochastic and dynamic transportation network problems.  Particularly, we develop a 
variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution 
along a path in the network.  First, we develop an algorithm for solving an independent expected shortest path problem.  Next, we 
incorporate the inherent dependencies along successive links in two distinct ways to find the expected shortest path.  Since the 
dependent expected shortest path problem cannot be solved with traditional deterministic approaches, we develop a heuristic based on 
the K-shortest path algorithm for this dependent stochastic network problem.  Additionally, transient and asymptotic versions of the 
problem are considered.  An algorithm to compute a parametric total travel time distribution for the shortest path is presented along with 
stochastically shortest path measures. The work extends the current literature on such problems by considering interactions on 
adjacent links.   
15. SUBJECT TERMS 
   Stochastic networks, Shortest path problem,  K shortest paths. 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Jeffrey P. Kharoufeh  (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

158 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4336; e-mail:  Jeffrey. Kharoufeh@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Shortest Path Problems in a Stochastic and Dynamic Environment
	Recommended Citation

	tmp.1605902604.pdf.ctsCf

