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Abstract

Given a finite collection of classifiers one might wish to combine, or fuse, the classifiers in
hopes that the multiple classifier system (MCS) will perform better than the individuals. One
method of fusing classifiers is to combine their final decision using Boolean rules (e.g., a logical OR,
AND, or a majority vote of the classifiers in the system). An established method for evaluating
a classifier is measuring some aspect of its Receiver Operating Characteristic (ROC) curve, which
graphs the trade-off between the conditional probabilities of detection and false alarm. This work
presents a unique method of estimating the performance of an MCS in which Boolean rules are
used to combine individual decisions. The method requires performance data similar to the data
available in the ROC curves for each of the individual classifiers, and the method can be used to
estimate the ROC curve for the entire system. A consequence of this result is that one can save time

and money by effectively evaluating the performance of an MCS without performing experiments.

viii



EVALUATING THE PERFORMANCE OF MULTIPLE CLASSIFIER SYSTEMS:
A MATRIX ALGEBRA REPRESENTATION OF BOOLEAN FUSION RULES

1. Introduction
1.1  General Discussion and Background

The ability to accurately detect and identify targets is an important issue for the U. S. Air
Force and the Department of Defense. The military departments traditionally wish to determine
whether a particular object is hostile or friendly (target or clutter, foe or friend, etc.). Similar
problems exist in many fields. For example, members of the medical community may wish to
distinguish between cancerous and benign cells, or a mortgage company might attempt to discern

a fit borrower from one who is likely to default on a loan.

All these problems are a part of a broad field called classification, a field which includes
several approaches for solving problems like these. Methods could include something as simple as a
visual inspection of the object of interest or a more scientific approach, like the linear discriminant
function developed by Fisher [7]. Another common approach to modern classification problems is
the use of artificial neural networks, which use algorithms that learn how to classify data. In the
early 1980s, scientists and engineers began examining the idea of using groups of classifiers, or
multiple classifier systems (MCSs), in hopes of increasing accuracy, and research in this area of the

field continues today [23].

1.2 Problem Description

Researchers are often concerned with evaluating the performance of a classifier or an MCS.
The systems employed in these applications are usually systems using sensors to collect data and

other mechanisms, called classifiers, to classify each observation. Figure 1 shows a notional single
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Figure 1:  Notional Single Classifier System.

classifier system. The data collected by the sensor, called features, are typically converted by the
classifier to some numerical value. If this value is greater than a nominal threshold value, the

observation is placed into one class. Otherwise the observation is placed into the other class.

A multiple classifier system is one in which multiple sensor/classifier ensembles collect data
and reach conclusions independently. Those decisions are then combined in some manner to reach a
decision for the system. A system designer might want to build a system that makes use of multiple

classifiers for various reasons. Different classifiers may be trained to detect:

e Different types of targets.
e Different attributes of the same target.
e The same target under different operating conditions.

In a multiple classifier system there are potentially several events observed and several streams
of data collected. Figure 2 depicts the design of a notional two-classifier system in which the final
classifier decisions are combined. Combining the final decision of each classifier in the system is not
the only method of combination in an MCS, but discussion in Chapter 2 explains why researching

this type of classifier combination is a worthwhile pursuit, especially for military applications.
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Figure 2:  Notional Multiple Classifier System with Two Classifiers.

1.8 Research Objectives

The goal of this research is to provide some mathematical insight into the process of evaluating
MCSs. Specifically, the purpose of the research is to identify properties that may aid the analyst or
engineer in evaluating an MCS by using the data available in the Receiver Operating Characteristic
(ROC) curves from the individual classifiers in the ensemble. The primary contribution of the
thesis is a formula for computing ROC curve values for an MCS using (a) the ROC curves from
the individual classifiers in the system, and (b) any Boolean rule for combining the decisions from

the individuals.



II. Literature Review
2.1 Introduction/QOverview

This chapter reviews the literature regarding two-class classification or detection. Receiver
operating characteristic (ROC) curves are described as a visual method for evaluating classifier
performance, and methods for comparing classifiers using ROC curves are discussed. Then the
concepts of combining and fusing classifiers are introduced, followed by a discussion of various
systems of multiple classifiers and the different methods used to bring together results from the
individual classifiers to optimize the performance of the system. This discussion will include an
introduction to the concept of constant false alarm rate (CFAR) fusion, where the system is designed
to yield the best possible detection rate while maintaining an acceptable number of false alarms.
There will also be considerable discussion of simple logical, or Boolean, rules for combining classifier

outputs.

2.2 Receiver Operating Characteristic (ROC) Curves

2.2.1 ROC Curve Background. Receiver operating characteristic (ROC) curves are one
way of describing the performance of a classifier. Once the classifier makes a decision (friendly or

hostile), there are four possible results, or output states. The classifier can:

1. Correctly identify a hostile target.

2. Misclassify a hostile target as friendly.

3. Misclassify a friendly target as hostile.

4. Correctly identify a friendly object or clutter.

Using Egan’s terminology [6], the probability of scenario one (conditional upon the existence
of a hostile target) corresponds with the hit rate or probability of detection and will be denoted

Pp. Scenario two corresponds with the miss rate and will be represented by Pj;. Scenario three



Table 1:  Conditional Classification Probabilities.
Scenario Notation Meaning
1. Hit Rate Pp Pr {Hostile Classification | Hostile Target Present}
2. Miss Rate Py Pr {Friendly Classification | Hostile Target Present}
3. False Alarm Rate Py Pr {Hostile Classification | No Hostile Targets Present}
4. Correct Rejection Rate Pe Pr {Friendly Classification | No Hostile Targets Present}
1.0 .
Notional ROC More Aggressive
0.8 1 Varying
Decision
0.6 1 Threshold
[a)
a 2
04 g Chance
g
021¢
o
=
0.0 | T T T
0.0 0.2 04 0.6 0.8 1.0
Pra
Figure 3:  Typical Receiver Operating Characteristics (ROC) Curve.

corresponds with the false alarm rate and will be denoted Ppy. Finally, the term Pg is used to

signify scenario four, a correct rejection. Table 1 lists the conditional probabilities for a classifier.

Note that Pp + Py =1 and Ppy + Po = 1.

The ROC curve is a graph of the trade-off between the target detection rate (Pp) and the false
alarm rate (P4 ) for a particular classifier. A notional ROC curve is shown in Figure 3. Typically,
the ROC curve is constructed by varying the decision threshold (6) for the classifier and plotting

the observed values for Pp and Pjyy; therefore, a ROC curve for a typical classifier is actually a

two-dimensional projection of an object in 3-space (8, Pp,Pra) [2]



Egan notes that the slope at any point on a ROC curve is equal to the likelihood ratio for a
particular observation x. The likelihood ratio is computed with the function

_ Pr{z | H}

L) = 5Ty

and is a measure of the strength of the evidence carried by the observation. He points out that
a decision rule can be based on this measure (e.g., if L(x) > (), conclude hostile). That is, if
the evidence is stronger than some predetermined value 6r,,), the classifier will determine that the
observation is hostile. Thus, higher values of 6y, correspond with more conservative decisions,

because the classifier requires more evidence. Decreasing 01, yields a more aggressive fusion rule.

The alternative is for the classifier to base its decision on the actual observation x. If L(z) is
monotonic with respect to = these decision rules are similar (e.g., if L(z) > 6(,) or > 6, conclude
that the object is hostile). However, if L(x) is not monotonic with respect to x one can still define
a decision rule based on z that is equivalent to the rule based on L(z). In such cases the classifier
would conclude that the observation is hostile if the value x was included in specified subintervals.
(Egan provides an example of such a case which, for brevity, is omitted here.) Constructing a ROC

curve by varying 6, across x in a case like this may result in an ill-behaved ROC curve.

If the decision rule is based on L(z) rather than z, the slope of the ROC curve must be
nonincreasing with respect to Ppy since the decisions are always more aggressive as 0/1,(,) decreases.
Egan refers to a ROC curve constructed in this manner as a proper ROC curve, and he notes that
the slope of a proper ROC curve is nonincreasing with respect to P 4. That is, a proper ROC curve
is always concave down. Logically, if the evidence that the object is hostile is strong, Pp >>Pjy,

and as the strength of the evidence decreases Pp will approach Ppy.

2.2.2 Comparing ROC Curves. There are several methods for comparing ROC curves.

The most obvious comparison is visual. If one curve always has a higher P, than another for a



given Py, then the classifier corresponding to the higher curve is superior. These cases are not
very interesting, however, and other methods of comparison exist for evaluation in cases where one
curve is not always superior. One commonly used method is to compare the area under the curve
(AUCQ) [6], [12], [3]. Classifiers that correspond with curves having greater AUCs are considered
better. The AUC can be computed using a trapezoidal approximation of the area. Another method
is to compute the average metric distance between the ROC curve and the chance line [1]. This
distance can be computed by

S (P (6) Pea (6)) — (03,00,
MD ==

n

where (Pp (6;) , Pra (6;)) denotes the i*" point sampled from the ROC curve and ||-||; is the 1-norm
on R?. The classifier with the larger M D is considered superior. A detailed discussion of ROC curve
comparison methods (including the derivation of the average metric distance and a multinomial

selection algorithm) is found in Alsing [1].

2.8 Fusing Classifiers

Saranli and Demirekler note that “decision combination systems are of considerable interest
to a large number of pattern recognition fields” [25]. They also noted some potential benefits
that may be gained by combining classifiers. Bayesian classifiers work by estimating the posterior
probability of a particular observation belonging to a particular class, and in statistical estimation
there is inherent variance in the estimate because it is based on sample data. Tumer and Ghosh
showed that averaging the estimates from several different classifiers reduces this variance [26].
Saranli and Demirekler also pointed out the rather obvious notion that some classifiers may work
better than others for certain observations or particular types of problems [25]. By using several

experts the system designer hopes to have a better chance at correct classification.



2.3.1 Categories of Decision Combination.  Dasarathy notes that classifier decision fusion
is a subset of sensor fusion. He defines sensor fusion as “the study of optimal information processing
in distributed multisensor environments through intelligent integration of the multisensor data” [5],
and he notes that there is a three-level hierarchy of fusion, comprised of data, feature, and decision
fusion. Data is defined as raw information which can be organized or combined to create features
relating to a particular observation. The features can then be used by a classifier to arrive at a
decision. Dasarathy defines five separate categories of fusion problems based on input and output

modes.

1. Data input/Data output

2. Data input/Feature output

3. Feature input/Feature output
4. Feature input/Decision output
5. Decision input/Decision output

The final category, where individual decisions are used as input to arrive at a system decision,
is an especially important category and the focus of this research. Dasarathy notes that this type
of fusion is applicable no matter what types classifier systems are employed. By using only the
final decision from each classifier, the system is not hindered by instances of incompatibility. The
individuals may be designed using different architectures, methodologies, or philosophies; but a
system combining the discrete decision values is not affected by such disparities in design. Further,
Varshney notes that many problems have practical limitations on the amount of data that can be
transferred from the individual classifiers to the fusion center [28]. In these problems, the geograph-
ical proximity of the individual classifiers and the bandwidth available for electronic communication

contribute to a situation in which it may be beneficial to transmit as little data as possible.



Table 2:  Conditions for Statistical Independence.

Conditions for Statistical Independence
Pr{A| B} =Pr{A}
Pr{B | A} =Pr{B}
Pr{AN B} = Pr{A} Pr{B}

The paper by Xu et al is a seminal work in the field [30]. They further categorized the types
of decision combination into three groups [30]. In Type I, only the final decision made by each
classifier is sent to the fusion center (e.g., Class = B). In Type II each classifier reports a ranked
list of possibilities, and the combiner uses the ranked list to make a decision (e.g., 1st Choice = B,
2nd Choice = A, etc.). A Type III combiner accepts a list of possible decisions along with some
measure of confidence in those decisions (e.g., A = 0.60, B = 0.25, C = 0.15). The focus of their

work was on Type I decision combination “due to its generality”.

2.3.2 Independence.  Analysis of multiple classifier systems often includes some discussion
on independence. However, the research often seems conflicted about what type of independence is
important. Some of the literature discusses statistical independence between the classifiers [21] [14],
while other works are more concerned with the classifiers making independent errors [13] [24].
Others point out that combining classifiers that make negatively correlated errors can enhance

system performance [17].

Statistical independence between two events A and B is defined if any of the conditions in
Table 2 are true [29]. The primary reason for an assumption of statistical independence is that
it makes computing joint probabilities much simpler. With this assumption, analysts can easily
examine MCSs by computing joint probabilities without accounting for correlation between the
individual classifiers. It may also make sense to ignore correlation in a notional analysis unless
a realistic estimate of dependence is available. That said, an in-depth analysis of a specific MCS
should probably include an analysis and discussion of classifier dependence. That is, general analy-

ses should probably assume statistical independence, and specific analyses should not.



Hansen and Salamon assumed that the individual classifiers in a theoretical MCS made inde-
pendent random errors [13], and many other researchers followed suit. Furthermore, Giacinto et al,
observe that “most combination methods described in the literature assume that MCSs are made
up of classifiers making independent classification errors” [10]. However, Kuncheva and her col-
leagues point out that negatively correlated errors can enhance MCS performance [17], so perhaps

it is not independent errors, but opposing errors that are a key element in MCS construction.

2.4 Different Methods for Fusing Classifiers

This section presents a brief overview of some of the philosophies for fusing decisions. These
methodologies were selected based on their foundations in optimization theory or their applicability

to the remainder of the thesis.

2.4.1 Constant False Alarm Rate.  When the objective of the classifier system is to detect
a target in clutter it is conceivable that the clutter patterns might vary from target to target.
Furthermore, if a target is mobile the clutter patterns around that particular target may not be
stationary. One philosophy for detecting targets in scenarios like these is called Constant False
Alarm Rate (CFAR) [28]. In CFAR fusion, the decision thresholds used by the classifiers in the
MCS are allowed to vary in such a way that the detection probability is maximized while the system
maintains a specified false alarm rate. Two popular approaches for CFAR are Cell Averaging CFAR
(CA-CFAR) and Order Statistics CFAR (OS-CFAR). A typical method for CFAR optimization is

the use of the Lagrangian expression given by

L(91,92, ...,Qk) = PD(91,92, ...,Qk) — /\(P]A (91,92, ...,Qk) —p),

10



where p is the maximum allowable false alarm rate for the system and the 6; are the decision
thresholds for the individual classifiers. Setting the gradient of L equal to the zero vector and

solving for A and the 6; yields candidates for the optimal threshold values.

2.4.2 Boolean Fusion Rules. One method for combining classifier decisions is to use
Boolean, or simple, rules. One simple rule is for the system to conclude that a hostile target is
present if and only if all the classifiers in the system conclude that their observations both indicate
hostile targets. This rule is heretofore referred to as the AND rule. Another simple rule is for the
system to conclude that a hostile target is present if any of the individual classifiers indicate hostile
targets. This rule is called the OR rule. When the system includes more than two classifiers, other
simple rules are possible. For example, in a system where each classifier can only output two
labels (f or h), the number of possible Boolean rules is 22" where K is the number of individual

classifiers.

Liggins gives a subset of the possible Boolean rules for a three classifier system in a table
similar to Table 3 [18]. The first three columns of the table indicate the decisions of the individual
classifiers (1 for hostile, 0 for friendly). The remaining columns are vector representations of the
fusion rules. A “1” in a particular row indicates that the system will conclude hostile if the outputs
of the individual classifiers correspond with those in the first three columns. For example, under
rule r2 the system will only classify an object as hostile if all three classifiers conclude the same,
and under r4 the system ignores the decision of classifier A3 and classifies an object as hostile if

Ajand As decide hostile.

He notes that the 256 theoretical rules for the 3-detector case can be reduced to 18 rules by
application of the monotonicity rule, which assumes that Pp must be greater than Pp,. The 18
relevant rules represent “all possible physical contingencies.” For example, a rule represented by
(0,1,0,0,0,0,0,0)7 is not a relevant rule. Under such a rule the system would conclude hostile only

if A concluded hostile and the other classifiers concluded friendly. This rule would be illogical,

11



Table 3:  Relevant Fusion Rules for a 3-Classifier MCS.

Classifiers Monotonic Fusion Rules

Ay | Ay | Ag | rl r2 r4 r6 r8 | rl6 118 120 r22 124
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 1 1 0 0 1 1
1 1 0 0 0 1 0 1 1 0 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1

Ay | Ao | A3 | r34 152 156 164 186 | r88 196 1120 1128 1256
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0 1 0 1 1
1 0 1 1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

because it ignores other cases where A3 decides that the target is hostile. Thus, any relevant fusion
rule represented with a 1 in the second row will also have a 1 in the fourth, sixth and eighth rows.
Also note that rules r1 and r256 are not relevant fusion rules. They were included merely to bound

the set of relevant rules.

The rules in Table 3 can be grouped into three classes: 1-classifier rules, 2-classifier rules and
3-classifier rules. Liggins notes that rules r16, r52 and r86 make up the subset of 1-classifier rules
(e.g., for r16 the system concludes hostile if classifier A; concludes hostile). He also notes that the
2-classifier rules can be broken into AND rules and OR rules. From this point forward, AND rules
may be indicated with a A, and OR rules may be represented with V. Liggins also categorizes AND
and OR rules for the 3-classifier case, as well as the majority vote and a case Liggins defines as
sensor dominance, where the system always accepts the decision of one classifier but accepts the
decisions of the other two classifiers only if they both agree that a hostile target is present. He fails
to categorize the remaining three rules (r8, r20 and r22), all of which are similar. In these rules

one sensor must conclude hostile and at least one of the others must agree. Such a configuration

12



Table 4:  Categories of Relevant Boolean Fusion Rules for a 3-Classifier System

Category Rule Meaning
1-Classifier Rules
rl6 Aq
r52 As
r86 Az
2-Classifier Rules
AND Rules r4 AiNAg
r6 Al /\A3
rl8 AoNA3
OR Rules r64 A1VAy
r96 Aq VA3
r120 AoV Az
3-Classifier Rules
AND Rule r2 AiNAsNA3
OR Rule r128 A1VAsv A3
Majority Vote 124 (A1ANA2)V(A1NA3)V(A2AAs3)
Sensor Dominance r34 A1Vv(AgNA3)
r56 AQ\/(A]/\A3)
r88 A3V(A1/\A2)
Sensor Corroboration 18 Ai1n(AgVAs)
120 Ag/\(Al\/A3)
r22 A3/\(A1\/Ag)

will henceforth be called Sensor Corroboration, because at least one sensor must corroborate the
decision of the primary sensor. A practical example of case where sensor corroboration would be
appropriate is a threat detection scenario in which one classifier is trained to detect movement and
the other two are each trained to identify a certain type of enemy vehicle. If the first classifier
detects movement and one of the others confirms that the object is an enemy vehicle, then the

object should be classified as a viable threat. Table 4 categorizes the 18 relevant rules.

A majority vote among the available classifiers is a simple rule that has received much at-
tention in the literature [13] [30] [8] [15] [19] [9] [16] [?]. Voting rules are among the easiest to
conceptualize, because everyday decisions are often made in this manner. Xu et al noted that all
voting rules are not necessarily majority votes. One can specify a more conservative rule (e.g.,
require a 2/3 majority) or a less conservative rule such as a multi-class problem where the system

decision is the class with the largest number of votes, whether or not there is a majority.
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Table 5:  Ralston’s Performance Matrix.

Output State Truth
Classifier k Friend Hostile
1 Pr{l| F} Pr{l| H}
mg Pr{my | F} | Pr{my | H}

Most theoretical analysis has been on the majority vote. Hansen and Salamon showed that
the performance of the system will be greater than the performance of the best individual classifier
under certain assumptions [13]. They noted that the classification accuracy of the system increases
with the number of classifiers under the assumptions that (a) each classifier is right at least half
the time, (b) the classifiers make independent errors. Matan gives both upper and lower bounds
on classification accuracy for the more general case of a “k-of-n special majority”, where n is the
number of classifiers in the MCS and k is any integer greater than n/2 [19]. Kuncheva et. al
also derive upper and lower bounds for the majority vote, but their work also takes into account
the pairwise dependence between the classifiers in the MCS [16]. None of the literature discusses

theoretical limits on the ROC curve of a majority voting system or any other MCS for that matter.

2.4.8 Identification System Operating Characteristic Curves. Ralston adapted the con-
cepts of likelihood ratios to determine the best choice of combined classifier output states [22].
Given K classifiers, each with my output states, the purpose of Ralston’s combat identification
system is to determine whether an exemplar is a friend or hostile. Each classifier k € {1,2,..., K}
has a performance matriz (denoted PM and determined via system testing, etc.) with two columns.
The first column corresponds to the probability of a particular output state given that the exem-
plar is truly a friend. The second column gives the probability of each output state given that the

exemplar is hostile. Table 5 shows an example PM.

There is a system output state corresponding with each possible combination of outputs from

the individual classifiers in the system. Thus, if there are nj; output states for each classifier k,
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there are
K
N = H Nk
k=1

output states for the system. Assuming that the classifiers in the system are not correlated, the
conditional probability that a friendly object will yield any output state can be computed as the
product of the appropriate cells from the first column of the PM. For example, one output state
for a notional system occurs when classifier Aq is in state ¢, As is in state r, and Az is in state s.
The probability that a friendly object puts the system in this state is the product of the (g,1) cell
of the PM for Ay, the (r,1) cell of the of the PM for As, and the (s,1) cell of the PM for As. The
probability that a hostile object will yield a particular output state can be computed in a similar

manner.

Also worth mentioning is Ralston’s representation of possible output state combinations. He
suggests representing each rule or output state combination as a vector R of length N. If the
rule indicates that a particular output state j will force the system to conclude that an object is
hostile, the vector R contains a 1 in the j** element of R. Otherwise, R contains a 0. With this
representation of the fusion rule, Ralston was able to determine Pp and P, with the following

formulas:

Pp :ZPr{j | H} - R(j)

Ppa =Y Pr{j| F}- R(j)
i=1
Ralston then defines an Identification System Operating Characteristic (ISOC) curve by com-
puting the likelihood ratio Pr{j | H}/Pr{j | F'} for each system output state j ordering the likeli-
hood ratios from greatest to least. The output state with the highest likelihood ratio is the most
conservative output state and will produce the best possible Pp for its P 4. The next output state

is a combination of the previous state with the next most conservative state, and so on. By plotting
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the Pp and P4 values for these successive combinations of output states Ralston is able to provide
the optimal combination of states for each P4 without enumerating all oN possible output state
combinations. This is analogous to a ROC curve for a single classifier whose decision is based on

L(z). Instead, Ralston treats z as a single output state instead of a single observation [6].

2.4.4 ROC Fusion. Oxley and Bauer presented a novel approach for classifier system
evaluation by showing that it is possible to analytically construct the ROC curve for an MCS based
on certain fusion rules (AND and OR) using only data from the ROC curves for the individual
classifiers in the system [20]. The purpose of the classifier systems researched in their work was to
determine if the system was in one of two states, (e.g., friendly or hostile). Their work resulted in

four primary contributions.

First they defined the difference between fusion within and across target types. A system of
classifiers that are fused within is a system in which all classifiers are trained to detect a particular
type of target. Thus, they share the same prior probability of detection. Moreover, there are only
two possibilities for truth in such a system. Either the target is present, or it is not. A system that
is fused across target types includes classifiers trained to detect a number of target types. Each
of these types of targets may have a different prior probability of detection, and since the system
seeks different types of targets, it can accidentally arrive at the correct conclusion if a classifier
seeking target type A incorrectly detects a target when a target type B is present. For reasons

such as these, an across system may be more difficult to analyze than a within system.

The second contribution was the derivation of formulas for Pp and Py, for logical AND and
OR rules in within and across systems. The third and fourth contributions were very closely related.
Rather than a traditional definition for a ROC curve (Pp vs. Ppy), Oxley and Bauer defined a ROC
curve as the maximum value of Pp for each possible Py for that particular classifier. Although
this contribution may seem trivial, it allowed Oxley and Bauer to analytically determine the ROC

curves for logical AND and OR rules.
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The example used was a system designed to solve a two-class problem in which there were
(a) two-classifiers, (b) each classifier could output two labels, and (c) the system could output
two labels. However, Chapter 3 of this document shows that the results for AND and OR can be

extended to any number of classifiers and labels.
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III. Research Methodology and Derivation
3.1 Introduction

This chapter provides a matrix algebra representation for evaluating the performance of
Boolean fusion rules in an MCS designed for two-class classification. The representation is general
in that it accommodates rules for fusing within and across target types and that it allows for any

number of classifiers, each of which can output any number of labels.

Assume there is a classifier trained to detect a hostile target. Formally, consider a set of
events £, which can be divided into two subsets. One subset consists of instances of a hostile target
(En C &). The other subset (£ C &) consists of objects not belonging to £, and corresponds to
friendly objects. A sensor S maps an event to a feature set X'. Thus, each feature vector z is a
random vector since is is the image of the random variable S. Events in the subset £, map to a
subset of X called X}, and events in £y map to Xy C X. Let x be a threshold set (or a set of
parameters) used by A(x,0 € x) to map each feature vector to a label set £ = {f, h}. That is,

= A(z,0) and A(z,0) : X — L for each 6 € x. Figure 4 illustrates this process.

3.2 Notation

Throughout the discussion assume there are a finite number, K, of classifiers, and each
classifier is, in fact, a family of classifiers dependent upon a parameter, 6, € ©,. Each classifier

Ay is coupled with a sensor S, which maps events to the feature set X}, and outputs a label in

Sensor

Event Feature Classifier Label
Set Set Set
X L
& s X | A8 |
x —> x D — ///
g, x 1 [ ~ o h

Figure 4:  Event, Feature and Label Sets for a Single Classifier System.
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Table 6:  Conditional Performance Matrix for a Classifier with Two Labels.
Feature Set (Truth)
T € Xkyf T € Xk,h
1 Pr{Ak(xk) =1z € Xk’f} PI‘{Ak(l’k) =1|xp € Xk,h}
Output 2 Pr{Ag(zr) =2 | ax € X}c,f} Pr{Ak(zr) =22 € Xk,h}

Label

mp Pr{Ak(xk) = my | T € Xk’f} PI‘{Ak(l’k) = Mg ‘ T € Xk,h}

the label set L. The cardinality of the label set Ly is my (i.e., there are my, labels). A feature
vector zp € Xj can indicate a friendly or hostile target, and there are two corresponding subsets
of Ay. Ay p is the subset containing feature vectors that should indicate hostile targets, and A%, ¢
is the subset containing feature vectors that should indicate friendly targets. A classifier output
denoting a hostile target is denoted by a lower case h (Ag(xr) = hi), and the output denoting a
friendly target is denoted by a lower case f (Ar(xxr) = fr). The event, feature, and label sets for

the system will be denoted by a subscript .S, not to be confused with the sensor S.

8.8 Classifier Performance

The following sections provide the reader with some tools for evaluating classifier performance.
These tools are applicable to any classifier designed to solve a two-class problem; however, the

examples presented are for a classifier that only outputs two labels (f and h).

3.3.1 Conditional Performance Matriz.  One can summarize the performance of a classifier
operating at a particular decision threshold 6 in terms of the conditional probabilities in Table 1
by recording them in a matrix equivalent to the performance matrix defined by Ralston [22].
This matrix will be called the Conditional Performance Matrix (CPM). For each classifier k €
{1,2,..., K}, let C) denote the CPM corresponding to the k" classifier. Table 6 shows that each

column corresponds with truth and each row corresponds with a particular output label.

To be consistent, the first row should correspond with the friendly label and the last row should

correspond with the hostile label. Similarly, the first column should correspond with instances of
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friendly objects, and the second column should correspond with instances of hostile targets. If this
convention is kept, the last row of a 2 x 2 CPM identifies the Pr4 and Pp for the classifier, and

the set of CPMs for all § € O, can be used to construct the ROC curve for that classifier.

Pr {Ak(xk) = fk\xk S Xk’f} Pr{lk = fk\xk S Xk,h}

Pr {Ak(xk) = hk\xk S X}c,f} Pr {lk = hk|xk S Xk,h}

Por  Puk

Prar  Ppi

1—Ppar 1—Ppy

Prg Pp i

)

Definition III.1. A Conditional Performance Matriz (CPM) for a classifier k is an my X 2
matriz in which the columns correspond with truth, the rows correspond with the classifier’s output
labels, and the (i,7) cell is the conditional probability of the classifier outputting label i when the
true state of the system is j. The sum of each column of the CPM is unity (i.e., the CPM is column

stochastic).

3.3.2  Prior Probabilities Matriz.  Using the definition of conditional probability,

Pr{AN B}

Pr{AIB) = =

one can compute the joint probability Pr{ AN B} by simply multiplying the conditional probability
by the a priori probability Pr{B}. Consequently, one can multiply each column of the CPM by
the appropriate a prior: probability to determine the unconditional probability of each output
state. Since the two subsets Xy, and Xy 5 are complementary, the probabilities Pr{zy € X}
and Pr{z, € X ;} are also complementary. Thus, one could multiply the first column of the CPM

by Pr{zj € Xk s} and the second column by Pr{z; € X} 5} to determine the joint probabilities of

20



the output labels coinciding with a particular true state. The result is a matrix with the following

construction.

Pr {Ak(xk) = fxNxy € Fk} Pr {Ak(xk) = feNay € Hk}

Pr{Ak(xk) =hpNaxp € Fk} Pr{Ak(xk) =hpNxp € Hk}

Let ag, = Pr{zy € Hy}, and (1 — ag) = Pr{zy € Fi}. Define a 2 x 2 diagonal matrix p as

follows.

(1 — Oék) 0
0 Qe

The matrix py is called the Prior Probabilities Matrix for classifier k.

Definition II1.2. The Prior Probabilities Matriz (PPM) for a particular type of target is a
2 x 2 diagonal matriz in which the (2,2) cell is the probability of observing that type of target, and

the (1,1) cell is a complementary value. Thus, the trace of a PPM is unity.
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3.3.8 Joint Performance Matriz. ~ Now we can define the Joint Performance Matrix (JPM)

for a two-label classifier as follows.

Jk

Pr {Friendly Label N No Target} Pr{Friendly Label N Target Present}

Pr {Hostile Label N No Target}  Pr{Hostile Label N Target Present}

Pr{Ak(xk) = fk Nxr € Fk} Pr{Ak(xk) = fk Nxr € Hk}

Pr{Ak(xk) =hyNxp € Fk} Pr {Ak(xk) =hpNaxg € Hk}
Crpr
Pr{Ak(xk) = fk|xk S Xk7f} Pr{lk = fk|l’k € Xk,h} Pr{xk € Xk’f} 0

Pr{Ak(xk) = hk|l’k S Xk’f} Pr{lk = hk\xk € Xk,h} 0 Pr{xk S Xk,h}

1—Ppax 1—Ppy (I—ag) O

Pra i Pp i 0 ag

(1 —ag)(1—Pray) oax(l—Ppy)

(1 — ) Pra i arPp

The events associated with each element of the JPM are mutually exclusive and exhaustive,

and the probabilities define the entire set of outcomes for the classifier k, or the probability of each

region shown in the shaded portion of Figure 5. Note that the sum of the elements of Ji equals

one, and the trace of a square JPM represents the classification accuracy for the classifier.

Definition IT1.3. The Joint Performance Matrixz (JPM) for a classifier k is a my X 2 matriz

in which the columns correspond with truth, the rows correspond with the classifier’s output labels,

and cell (i, ) is the probability of the classifier outputting label i when the system is in state j. The

JPM gives the probabilities of all possible outcomes for the classifier. One can construct the JPM

from the CPM and PPM using the formula Ji, = Cipr, and the sum of the elements of the JPM is

unaty.
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Figure 5:  Classification Errors for a Single Classifier System

3.4 Across Fusion State Probabilities

Consider a system made up of K classifiers with similar constructions. Reconsider the set of
events £, which is now partitioned into k subsets: & ; consists of all hostile targets of type k (for
all k € K), and & includes all events that are not elements of £, 1, Ep 2, ..., or &y, k. Each classifier
in the system seeks different types of hostile targets (e.g., one is trained to detect trucks, another
is trained to detect artillery, etc.) The decisions from each classifier are sent to a fusion center or
combiner, where a fusion rule is applied to the labels. The result is the decision for the classifier
system in terms of the system label set Ls = {fs,hs}. Figure 6 shows a two-classifier system in

which each classifier can output two labels for an arbitrary fusion rule R(ly,ls).

3.4.1 Joint State Probabilities Matrix. For the example, each classifier has 4 possible
output states, and the associated probabilities are defined in their JPMs. Thus, there are 4-4 = 16
possible combinations of output states for a two-classifier system in which each classifier outputs

two labels. In general, there are

K K
H 2~mk = 2K Hmk
k=1 k=1
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Figure 6:  Event, Feature and Label Sets for a Two-Classifier System Combining Decisions Across
Target Types

combinations of output states. Assuming statistical independence between the individual classifiers,
one could compute the probability of a particular scenario by multiplying the probabilities of
the associated output states. One way of accomplishing this is to enumerate all combinations of
individual output states to determine the probability of the system being in a particular state, but
a mathematical mechanism for determining the state combinations might enable the application of

analysis techniques to help evaluate the performance of various fusion rules.

The Kronecker product is an operation that makes this possible. The Kronecker product, or
tensor product, of two matrices multiplies each element of one matrix by each element of the other

matrix in the following manner [11]. Assume A and B are 2 X 2 matrices. The Kronecker product
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of A and B is

a11b11
a1B ai2B a11b21
an1B a2 B a21b11
a21b21

Note that A ® B consists of all possible products of an A-matrix entry with B-matrix entry.
Some fundamental properties of the Kronecker product are given in [4] and [11], and Van Loan
notes the widening use of the operation and lists some areas where Kronecker product research is
thriving: signal processing, image processing, semidefinite programming, quantum programming,
and fast Fourier transforms [27]. The Kronecker product is defined for any pair of matrices of any

dimensions, but for this application we will only be working with the my x 2 CPMs and JPMs.

Given the JPMs for any two classifiers (1 and 2) seeking different types of targets, the Kro-
necker product of the two gives an mymsg X 4 matrix in which each element contains the probability
of a particular output state combination. This matrix is called the Joint State Probabilities Matrix

(JSPM). If we denote the complement of z as T = (1 — z), the JSPM for two 2 x 2 JPMs is below.

(1—0&1)(1—]3]?/1’]) al(l—PDyl)
J1 ® Ja

[0
(1— o) Ppa.; a1Pp 1

As the rows and columns of the CPM and JPM correspond with labels and truth, respectively,

the rows of the JSPM correspond with specific pairs of labels, and the columns correspond with
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a11bi2
a11b22
a21by2

a21b22

(1 — 042) (1 — PFAfg)

(1 —a2) Ppa.»

a2b11
a12b21
a22b11

a22b21

a1 Ppa, i 02Pra s Q1Prpa10aPp2 a1 Ppi0aPry s
a1 Ppy 0aPrs s 1 Ppa1caPpa o1 Ppi1aaPry s
a1 Prpp 102 Pryy @1 Prpaa2Pp2 a1 Pp1daPrg s

a1 Pra,1a2Pra2 @i Pra10aPp2 a1 Pp10iaPry »

a12b12
a12b22
a22b12

a22b22

a1Pp1asPppo
a1 Ppi1aaPp o
a1 Pp1aaPp 2

a1 Pp1ooPp o

a9 (1 — PDyg)

agPp o




Table 7

Joint State Probabilities Matrix Composed from 2 x 2 JPMs.

Feature Sets
Ay X Ko A1 p X Xy Xin X o X1n X Koy
fi,fo | @Ppa, i @2Ppa s | @iPpa102Pp2 | a1PpidaPras | caPpiasPpo
Label | fi,hy | @1 Ppa, 1%Ppa 2 | @1Ppa100Pp2 | caPpidaPra s | arPpiasPpyo
Sets | hy,fo | @1 Pra,102Pra,s | @1 Pra,100Pp2 | aqPp10aPrsp | a1PpioaaPpo
hi,ho | @1Ppa, ;@2Pra s | @@ Ppa,1aPp2 | cnPp1@aPra s | a1PpiasPp 2

specific occurrences in truth, or Cartesian products of the different feature sets. Table 7 illustrates

this point.

Definition II1.4. The Joint State Probabilities Matrixz (JSPM), denoted Sy, for a system of
classifiers {1,2, ..., K} seeking K different targets is an Hfle my, X 25K matriz in which the columns
correspond with truth, the rows correspond with combinations of output labels from the individual
classifiers, and cell (i,7) gives the probability of the classifier system outputting the combination
of labels i when the true state of the system is j. The JSPM gives the probabilities of all possible

states for the classifier system, and the sum of the elements of the JSPM is unity.

Lemma III.1. Consider an MCS in which each individual classifier is charged with identifying
a different type of target. Assuming statistical independence between the individual classifiers, the

JSPM is formed by the Kronecker product of the JPMs for each classifier in the system.

Proof IIL.1. Let I be a generic output label for each classifier k € K, and let Xy 1rue be a generic
true state relative to the target sought by classifier k. Since the classifiers are statistically indepen-
dent and each classifier seeks a different type of target, the probability for a given combination of

labels and truth is

Pr{ll X l2 XX lK N Xl,t'r’ue X XQ,t'r’ue XX XK,t'rue} = Pr{ll N Xl,t'rue XX lK N XK,t'rue}

- Pr{ll N Xl,t'rue} .
K

- H Pr{lk N Xk,t'rue}
k=1

v Pr{lg N Xk true

(1)
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Note that each of the terms in the product defined in Equation 1 is an element of a different JSPM,
Ji. Since the Kronecker product of several matrices consists of all possible products of the entries
of the individual matrices, the product in 1 must be an element of the Kronecker product defined by

J1®wJ®- - ®Jk.

Furthermore, it can be shown that the sum of the elements of a matrixz formed from the
Kronecker product of several JPMs (or for that matter, any matrices whose elements sum to one)
18 unity. Given Cpxg and Fgx g, the Kronecker product Cpxg ® Faxg is a DG x EH matriz
whose elements represent each combination of the cells in C and F (i.e., cqefqn for any allowable

values of d,e, g, and h). The sum of the elements can be written

D E G H

Sum of the Elements in Cpyg ® Fgxg = ZZZ chefgh

d=1e=1g=1 h=1

D E G H
=2 D ) D I @)

d=le=1  g=1h=1

Recall that the sum of the elements in C' and F is also unity. That is, ZdDzl Zle cge = 1 and
Zle Zle fon = 1. Inserting these results into Equation 2 gives the simple result that 1(1) = 1.
Since the elements of J1 ® Jo® -+ - ® Ji correspond with the appropriate values in the JSPM 1, and

since J1 ® Jo ® - - - ® Ji satisfies the properties of a JSPM 2, J1 ® Jo ® - - - ® Jg must be a JSPM.

3.4.2 Combined Prior Probabilities Matrix. Note that the JSPM is equal to J; ® Jo ®
e ® Jg = C1p1 ® Copa ® - - ® Copa. One property of the Kronecker product is that AB 0 CD =
(A® C) (B ® D) for any matrices A, B,C and D [11]. Thus, the JSPM can be decomposed into
the matrix product of 41 ® Ca ® -+ - ® Cx and p1 ® p2a ® - - ® px. We will call the matrix composed

by p1 ® pa ® - - - ® pg the Combined Prior Probabilities Matrix (CPPM) and represent it with P.
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A CPPM for a system in which two classifiers seek two types of targets is given by

(1—0(1) (1—@2) 0 0 0
0 (1—a1)an 0 0
P=p1®p=
0 0 (e%1) (1—61(2) 0
0 0 0 Q109

The elements of P represent the a priori probabilities of each of the feature set combinations defined

by the columns of the JSPM.

Definition II1.5. The Combined Prior Probabilities Matriz (CPPM) for a system of clas-
sifiers {1,2, ..., K} seeking K different targets is a 2% x 25 diagonal matriz in which the diagonal

elements (j,j) give the a priori probability of the true state combinations defined in the j*" column

of the JSPM. The trace of a CPPM is unity.

Lemma IIL.2. Consider an MCS in which each individual classifier is charged with identifying
a different type of target. Assuming statistical independence between the individual classifiers, the

CPPM is formed by the Kronecker product of the PPMs for each classifier in the system.

Proof II1.2. The proof is similar to the proof of Lemma III.1.

3.4.8 Conditional State Probabilities Matriz.  Recall that the JSPM for an MCS in which

each classifier seeks a different type of target is given by

Js=J1®Jh®..®Jk
= C1p1 ® Cap2 ® ... ® Copa

=(C10C2®..0CK) (1 ®p2®..QpK).

(3)

The matrix, C; ® Cy ® ... ® Cy, is called the Conditional State Probabilities Matrix (CSPM) and

will be represented with S¢. The JSPM (S¢P) will henceforth be denoted S;. The relationship

28



Table 8:

Conditional State Probabilities Matrix Composed from 2 x 2 CPMs.

Feature Sets
KX x Aoy | XpxXon | Xin X Aoy | Xin X Ao
fi,f2 | PeaiPrae | PraiPpg2 | PpaPraz | PpiPpge
Label | fi,hs2 | Ppa,iPras | PraiPp2 | PoaPras | PpiPpe
Sets | hi,fo | Pra,iPra2 | Pra,iPp2 | PpaPra2 | PpiPpy
hi,ha | Prpa,iPras | Pra,iPp2 | Ppi1Pras Pp1Ppo

between the CSPM and the CPM is analagous to the relationship between the JSPM and the JPM.
The columns of S¢ correspond with combinations of feature sets, and the rows correspond with

combinations of labels. Table 8 gives an example of a CSPM.

Definition II1.6. The Conditional State Probabilities Matriz (CSPM) for a system of
classifiers {1,2, ..., K'} seeking K different targets is an Hi{:l my X 25K matriz in which the columns
correspond with truth, the rows correspond with combinations of output labels from the individual
classifiers, and cell (i,j) gives the conditional probability of the classifier system outputting the
combination of labels i when the true state of the system is j. The sum of the elements in each

column of the CSPM is unity.

Lemma II1.3. Consider an MCS in which each individual classifier is charged with identifying
a different type of target. Assuming statistical independence between the individual classifiers, the

CSPM is formed by the Kronecker product of the CPMs for each classifier in the system.

Proof II1.3. The proof is similar to the proof of Lemma III.1. However, one must show that the
Kronecker product of several stochastic matrices is also stochastic. This is a known result for the

Kronecker product [27].

3.4.4 Truth Matriz.  Recall the 4 x 4 matrices presented in Tables 7 and 8, and note that
the rightmost three columns correspond with the presence of at least one type of target. Further
recall that the goal of the system is to determine if any targets are present. In the instance of
Since

any of the state combinations on these columns, at least one type of target is present.

the states in the JSPM are mutually exclusive, the probability of either of two states occurring
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Table 9:  Result After Post-Multiplying a JSPM by a Truth Matrix.
Truth

No Target Target Present

fi, f2 S7.0,1) Sy0,2) +S50,3 + 5504

Label | fi,ho S7.2,1) Sr22 t 5523 + Sie4

Sets | hi, fo S7.3.1) S532) t 55,33 +S534)

hy, ho S7,4,1) S 4,2) 55,43 + 5744

is the sum of the probabilities of the two states. Therefore, we can add the last three columns
(S7,(-2) + S4,(,3) +54,(,4)) to arrive at the probability of a target being present under each possible
label set. Conversely, the sum of the first column gives us the probability of no targets present.

We can calculate both of these values by post-multiplying S; by a truth matrix 7', which takes the

form _ .
1 0
01
T =
01
01

Now we are left with a 4 x 2 matrix in which the rows correspond with each possible combination of
labels, the first column corresponds with the absence of targets, and the second column corresponds
with the presence of a target (or targets). Table 9 illustrates the resulting matrix for the 2 x 2
example. The cells of the matrix shown in Table 9 give the probabilities of a particular label when
the system is in a particular state (target or not). For example, cell (3,2) gives Pr{Target Present

m(hla fQ)}

Definition IIL.7. A Truth Matriz T for an MCS combining decisions across target types is a
2K % 2 matriz containing binary values in which row i corresponds with a column in the JSPM,
the first column corresponds with the absence of hostile targets, and the second column corresponds
with the presence of hostile targets. The columns of the Truth Matriz must be orthogonal. That is,
if the i column of the JSPM corresponds with the presence of at least one target, the (i,2) cell of

the Truth Matriz will contain o 1. Otherwise, the (i,1) cell of the Truth Matriz will contain a one.
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Lemma IIL.4. Consider an MCS in which each individual classifier is charged with identifying a
different type of target. The truth matriz for such a system always has a one in the (1,1) cell and
zeros in all other cells of the first column. Consequently, the truth matriz also always has a zero in

the (1,2) cell and ones in the remaining cells of the second column.

Proof I11.4. Assuming the CPMs for the individual classifiers were built with the previously de-
fined convention (i.e., the first column corresponds with the absence of a target, the second column
corresponds with the presence of a target, and the last row corresponds with the hostile label), the

only column of the JSPM corresponding with a complete absence of targets must be the first column.

3.4.5 Fusion Rule Matriz.  Recall that a logical fusion rule selects combinations of labels
for which the system concludes that a target is present. For example, the AND fusion rule will
conclude that a target is present only if all classifiers in the ensemble conclude that a target is
present. The AND rule corresponds with only the last row of the matrix in Table 9 (hi, ho).
Since the AND rule will lead the system to conclude a target is present if and only if all classifiers
determine a target is present, AND is a generally a conservative rule, which makes a false alarm
less likely but also gives a lower probability of detection. A visual depiction of the results of the

AND rule for the previous example is given in Figure 7.

The OR rule will decide that a target is present if any of the classifiers identify a target. The
OR rule corresponds with rows two through four of the matrix in Table 9, or the intersection of the
label sets (f1,h2) U (h1, f2) U (h1, h2). The OR rule is more aggressive than the AND rule, usually
yielding a higher false alarm rate as well as a higher detection probability. An illustration of the

results of the OR rule for the previous example is given in Figure 8.

Once again we use the fact that the events defined by the cells of the matrix in Table 9 are
mutually exclusive. If we want to determine the probability of identifying a target under a particular
fusion rule we can add the appropriate cells from the second column If we want to determine the

probability of identifying a target when none exists we can add the corresponding three cells from
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Figure 7.  Classification Errors for a Two-Classifier System in Which Decisions are Combined
Using the Logical AND Rule.
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Figure 8:  Classification Errors for a Two-Classifier System in Which Decisions are Combined
Using the Logical OR Rule.
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the first column. Recall that the V rule corresponds with the last three rows of the matrix in Table
9. Now we can define a fusion vector as a column vector of zeros and ones, the ones corresponding

to the rows appropriate for that rule. The fusion vector for the OR rule for our 2 x 2 example is

TOR =

This fusion vector is similar to the “rule of engagement” defined in [22] and the rule vectors (for

three classifiers) defined in [?].

Pre-multiplying the matrix in Table 9 (which was computed with the formula S¢cPT) by
the transpose of the fusion vector (to preserve dimensionality) gives us a vector containing the
probabilities of correctly identifying a hostile target and misclassifying a friendly object, and pre-
multiplying S¢ PT by the complementary vector to rog, Fg r = (1,0,0,0), gives us the probabilities

of misclassifying a hostile target and correctly identifying a friendly object.

roRScPT = { Pr{hg N No Target} Pr{hgN Target Present} ]

and

ToRScPT = [ Pr{fs N No Target} Pr{fsnN Target Present} ]

When the two vectors of are augmented in the form [Fo RTO R], the result is the fusion rule matrix
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01
0 1

A more general definition is given by the following.

Definition I11.8. A Fusion Rule Matrixz R is a 2% x mg matriz containing binary values in
which row i corresponds with a row in the JSPM, the first column corresponds with combinations of
output labels for which the system concludes there is no target present, the last column corresponds
with combinations of output labels for which the system concludes a hostile target is present, and the
columns in between (if mg > 2) correspond with intermediate fuzzy labels. For example, if the system
is to conclude that a hostile target is present for a combination of output states corresponding with
the ith row of the JSPM, the (i,mg) cell of the Fusion Rule Matriz will contain a 1. The columns

of a Fusion Rule Matrix must be orthogonal.

3.4.6  System Joint Performance Matriz.

Theorem IIL.1. Consider an MCS in which each individual classifier is charged with identifying
a different type of target. If the classifiers are statistically independent, the system JPM, Js, can
be computed with the formula RTScPT, where Sc and P are computed using Lemmas II1.8 and

1.2

Proof III.1. Recall the proofs of Lemmas II.3 and III.2 and the result that S; = ScP. Then
pre- and post-multiplying Sy by RT and T, respectively, simply computes the sums of appropriate
mutually exclusive probabilities. These sums correspond to the appropriate probabilities summarized

in the JPM.

o The (1,1) cell is equivalent to RY STy, which computes the sum of the cells of Sy that (a)

are labeled friendly (by the rule matriz), and (b) are actually friendly (by the truth matriz).
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o The (1,2) cell is equivalent to RTS;Ty, which computes the sum of the cells of Sy that (a)

are labeled friendly, and (b) are actually hostile.

o The (2,1) cell is equivalent to R S;Ty, which computes the sum of the cells of Sy that (a)

are labeled hostile, and (b) are actually friendly.

o The (2,2) cell is equivalent to RIS Ty, which computes the sum of the cells of Sy that (a)

are labeled hostile, and (b) are actually friendly.

The result is a matriz with the following contstruction:

PI{AS(:Es) =1lNxg € Xs,f} PI“{AS(Q?S) =1lNzg € XS,h}

RTSoPT = : : ,

PI‘{AS(.TS) =mgNxg € Xg,f} PI‘{As(xs) =mgNxg € XS,h}

which satisfies the definition of a JPM.

3.4.7 System Prior Probabilitiecs Matrix. Recall that the JPM for a classifier k£ can
be computed with J, = Cipir. Thus, one can post-multiply Jg by the inverse of the system
prior probabilities matrix to compute Cg, but pg has not yet been computed. Recall the matrix

P=p1 ®py®---® pg, or in terms of the example

(1—0(1) (1—@2) 0 0 0
0 (1—&1)0&2 0 0
P=p®ps=
0 0 (e5) (1—61(2) 0
0 0 0 a1

Theorem II1.2. Consider an MCS in which each individual classifier is charged with identifying
a different type of target. The system PPM, ps, can be computed by pre-multiplying the CPPM by

the transpose of the truth matriz TT and post-multiplying by the truth matriz T.
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Proof III.2. Recall that each row/column of the diagonal CPPM corresponds with a particular
combination of true events (i.e., the Cartesian product of two particular feature sets) defined by
the columns of the CSPM and JSPM. The last 25 — 1 rows/columns of the CPPM correspond with
any event where a target is present, and the first row/column corresponds with instances where no
target is present. Pre- and post-multiplying by the truth matriz T computes the sums of appropriate
mutually exclusive probabilities. These sums correspond to the appropriate probabilities summarized

in the PPM.

o The (1,1) cell is equivalent to T\ PTy, which computes the sum of the cells of P that coincide

with the absence of a target.

e The (1,2) and (2,1) cells are equivalent to T{ PTy and T4 PTy, respectively. The result for

either is always zero, since the columns of T are orthogonal.

o The (2,2) cell is equivalent to Ty PTy, which computes the sum of the cells of P that coincide

with the presence of at least one target.

The result is a matriz with the following construction,

- Pr{No Target} 0

0 Pr{ Target Present}

which satisfies the definition of a PPM.

3.4.8 System Conditional Performance Matriz.  Using the previously developed formula,

one can now compute
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PI"{AS(:ES) =1 | rg € Xsyf} Pr{As(Is) =1 | rg € XS,h}

Cs = Jspg' = RTScPTpg* =

PI‘{AS(.TS) =mg | xrg € Xsyf} PI‘{AS(.TS) =mg | xrg € XS,h}

(4)

3.4.9 Summary. This section provided definitions for the CPM, JPM, PPM, JSPM,
CPPM, CSPM, Truth Matrix, and Fusion Rule Matrix. Moreover, this section contained the
derivation of a formula for computing the system PPM, CPM, and JPM for an MCS in which
each individual classifier is charged with identifying a different type of target and the individual

decisions are combined using Boolean fusion rules.

3.5  Within Fusion State Probabilities

Consider a system made up of K classifiers, each trying to detect the same type of target.
The set of events £ is partitioned into 2 subsets: & consists hostile targets and & includes all
events that are not elements of £,. Assume that the CPM and JPM are available for each classifier,
and note that the classifiers all share the same PPM since they all seek the same type of target.
One would like to be able to compute the system CPM, PPM, and JPM as before, but this
scenario possesses some properties that necessitate some changes in the computations of the state
probabilities matrices (CSPM and JSPM) and the CPPM. The decisions from each classifier are
sent to a fusion center or combiner, where a fusion rule is applied to the labels. The result is the
decision for the classifier system in terms of the system label set L5 = {1,2,...,mg}. Figure 9
shows a two-classifier system in which each classifier can output two labels for an arbitrary fusion

rule R.
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Figure 9:  Event, Feature and Label Sets for a Multiple Classifier System Combining Decisions
Within Target Types.

3.5.1 Conditional State Probabilities Matriz. Reconsider the CSPM for the system of
classifiers fused across target types appearing in Table 8. This was the simplest example of a 4 x 4
CSPM, but it is adequate for illustrating the difference between the two cases. The second and
third columns of the CSPM in Table 8 correspond with events where one type of target is present
and the other type is not. A scenario such as this is impossible for the system presently being
considered, because all the classifiers are seeking the same type of target (i.e., there are only two
possible true states). One can use the Kronecker product to compute the possible combinations of
the elements from the CPMs, but the result must be modified to account for these impossibilities.
A simple way of removing them is to post-multiply the Kronecker product of the CPMs by a 2% x 2

matrix with ones in the (1,1) and (2%, 2) cells. The result is a 2% x 2 matrix consisting of the first
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and last columns of the Kronecker product term. For example,

_ . -
0 0
Sco,within = (C1 ® Ca)
0 0
01
1—Ppa,y 1—Ppp . 1—Prap 1—Ppp
Pry,i Pps 7 Pra g Pppo
Pypa.iPraz PraiPp2 PpiPras PpiPpp
Pra.iPras PpaiPp2 PpiPras PpiPpa
Ppa iPpas Ppa,iPp2 PpiPras PpiPppo
I Pra1Pras Pra1Pp2 PpiPrae PpiPpp |l ]
Pypa,iPrazs PpaiPpp
B Pra.iPraz PpiPpa
Pra,iPras PpiPpo
I Pra 1Pras PpiPpa ]

Definition II1.9. The Conditional State Probabilities Matriz (CSPM) for a system of clas-
sifiers {1,2, ..., K'} seeking one type of target is a 25 x 2 matriz in which the first column corresponds
with instances where the target is absent, the second column corresponds with instances where the
target is present, the rows correspond with combinations of output labels from the individual classi-
fiers, and cell (i,7) gives the conditional probability of the classifier system outputting the combina-
tion of labels i when the true state of the system is j (i.e. Pr{Ag(zs) = (I1,12, ..

Gr) [ xs € Xsj}).

The sum of the elements in each column of the CSPM is unity.
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Lemma IIL.5. Consider an MCS in which each individual classifier is charged with identifying
the same type of target. Assuming statistical independence between the individual classifiers, the
CSPM is formed by post-multiplying the Kronecker product of the CPMs for each classifier in the

system by a 2K x 2 matriz with ones in the (1,1) and (2%,2) cells.

Proof IIL.5. Let Iy be a generic output label for each classifier k € K, and let Xirye be a generic
true state relative to the target sought. Since the classifiers are statistically independent, the prob-

ability for a given combination of labels and truth is

Pr{ly xlo X ... x I[x N1 X T2 X ... X Tk € Xipue}
Pr{zy X 22 X ... X T € Xipue}

_ Pr{lin® € Xypue} - -Pr{lk Nax € Xipue}

o Pr{z1 € Xypue} - - - Pr{zk € Xipue}

Pr{ly xla X ... Xl | 1 X T2 X ... X K € Xppue} =

= Pr{l1 | xr1 € Xt'r'ue} E PI‘{ZK ‘ TR € Xt'r'ue}

= H Pr{lk | Ty € X} (5)

Note that each of the terms in the product defined in Equation 5 is an element of a different CPM.
Since the Kronecker product of several CPMs consists of all possible products of the entries of the
individual CPMs, the product in Equation 5 must be an element of the Kronecker product defined
by C; ® Cy ® ... ® Cx. Post-multiplying the result by a 2% x 2 matriz with ones in the (1,1) and
(2% 2) cells leaves only the first and last columns, the columns corresponding with the target being

absent or present, respectively.

3.5.2 Combined Prior Probabilities Matriz. In a within fusion system, computation of
the CPPM is trivial. Note that the CSPM is 2% x 2. Therefore, one needs to post-multiply the
CSPM by a 2 x 2 CPPM to arrive at a properly dimensioned JSPM. Since each classifier seeks the
same type of target the a priori probability of the system being in the hostile state is the same as
the a priori probabilities for all the classifiers in the system. Thus, the 2 x 2 matrix required is

simply the PPM shared by the individual classifiers in the system (i.e., P = p).
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Definition II1.10. The Combined Prior Probabilities Matriz (CPPM) for a system of
classifiers (1,2, ..., K) seeking one type of target is equivalent to the PPM for each classifier in the

system.

3.5.8 Joint State Probabilities Matriz.  The JSPM S; can now be computed with

S; = ScP.

Definition II1.11. The Joint State Probabilities Matrixz (JSPM) for a system of classifiers
{1,2,..., K} seeking one type of target is a 25 x 2 matriz in which the first column corresponds with
instances when the target is absent, the second column corresponds with instances when the target is
present, the rows correspond with combinations of output labels from the individual classifiers, and
cell (i,7) gives the probability of the classifier system outputting the combination of labels i when
the true state of the system is j (i.e. Pr{As(zs) = (l1,l2,...,lx) Nxs € Xs ;}). The sum of the

elements in the JSPM is unity.

Lemma II1.6. Consider an MCS in which each individual classifier is charged with identifying the
same type of target. Assuming statistical independence between the individual classifiers, the JSPM

is formed by post-multiplying the CPPM, S¢, by the CPPM, P.

Proof IIL.6. Using the definition of conditional probability, one can post-multiply a matriz with

the form

Pr{Label Combination 1| No Target}  Pr{Label Combination 1| Target}

Pr{Label Combination 2 | No Target}  Pr{Label Combination 2 | Target}

Pr{Label Combination 2% | No Target} Pr{Label Combination 2¥ | Target}
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by a matriz with the form

Pr{No Target} 0

0 Pr{ Target}

to yield a matriz with the form

Pr{Label Combination 1N No Target}  Pr{Label Combination 1N Target}

Pr{Label Combination 2N No Target}  Pr{Label Combination 2N Target}

Pr{ Label Combination 25X N No Target} Pr{Label Combination 2% N Target}

3.5.4 Truth and Fusion Rule Matrices. Using the definitions above for a within system,
the JSPM is a 2% x 2 matrix in which each column corresponds with truth. Thus, the truth matrix
is no longer necessary because of the structure of this special case. One could consider the 2% x 2
matrix used to compute the CSPM (i.e., the matrix with ones in the (1,1) and (2X,2) cells) the
truth matrix, because its purpose is to eliminate impossible scenarios leaving only the two possible
states (friend or hostile). Fusion rule matrices are defined in exactly the same way as in an across
fusion system, and the system PPM is equivalent to the PPM shared by the individual classifiers.

The formulae for computing the CPM and JPM are identical:

Js = RTScPT and

Cs = Jspgl.

3.5.5 Summary. This section provided definitions for the CPM, JPM, PPM, JSPM,
CPPM, CSPM, Truth Matrix, and Fusion Rule Matrix for an MCS fusing decisions within target
types. This section also reiterated the formulae for computing the system CPM and JPM for an

MCS in which the individual decisions are combined using Boolean fusion rules.
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3.6  Estimating ROC Curves

3.6.1 Owverview.  This section suggests methods for estimating the ROC curve using the
system CPM for an MCS combining decisions within or across target types. Oxley and Bauer’s
method of ROC fusion can be applied for Logical AND and OR rules; however, other techniques are
necessary for more complex rules (e.g., a majority vote). Liggins showed that there are 7 relevant
rules other than the AND and OR for combining the decisions of three classifiers [18]. Moreover,
as the number of classifiers in the system gets larger, there are even more relevant rules besides
the AND and OR rules. One might hope to find a way to estimate the ROC curves for systems
combined using more complex fusion rules. Of these, the majority vote seems to be the most

complex.
3.6.2 ROC Fusion.

3.6.2.1 Logical AND. One can employ Oxley and Bauer’s method to analytically
estimate the system ROC curve for a within or across MCS of any size if the system only outputs
two labels (friendly or hostile) [20]. The key to their formula for the AND rule was the observation
that, under an AND rule, the system probability for assigning a hostile label is equal to the product

of each of the individuals assigning a hostile label:

Pl"{hs} = Pr{hl} . Pr{hg}

(1 —as)Pras+asPps)=((1—o1)Ppas+01Pp1) (1 —ag)Ppa s +0aaPpy2).

Maximizing both sides of the last equation with respect to the individual threshold values and
manipulating the result allows one to derive a formula for the maximum Pp g for a given Ppg,s.

The property can easily be adapted to account for any number of classifiers by using the property

K
Pr{hs} = [ [ Pr{m}.
k=1
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3.6.2.2 Logical OR. Oxley and Bauer derived a similar formula for the OR rule.
The key to this formula was the observation that, under an OR rule, the system probability for

assigning a friendly label is equal to the product of each of the individuals assigning a friendly label:

Pr{fs} =Pr{fi} Pr{fo}
(1-as)(1—=Ppas)+as(l—Pps)=[(1—0ay)(l—=Ppa,s)+ai(l—-Ppi)]

. [(1 —Cl{g) (1 — PFA,Z) + ag (1 _PD’Q)].

Minimizing both sides of the last equation with respect to the individual threshold values and
manipulating the result gives a formula for min (—Pp g) which is equivalent to max Pp g. This

property can be adapted in a similar manner such that
K
Pr{fs} = [] Pr{/s}
k=1

3.6.8 Lagrangian Optimization.  Another method for estimating the system ROC curve is
to use a Lagrangian formulation like the one used in CFAR applications [28]. A typical Lagrangian

equation L = f(z) — A(g(z)) is appropriate in the following form:
L= Pps—NPpa,s —p),

where p is any allowable false positive rate. Differentiating with respect to the threshold values (or
Ppy) and the Lagrange multiplier gives a system of nonlinear equations (when K > 3) that can be

solved to determine the maximum Pp_s.

3.6.4 Brute Force. If no other option is available, one can enumerate a subset of possible
threshold (or Ppy) combinations and use the frontier of the results. This method is hardly scientific,

but the computational complexity is not such that the method is impractical. Depending upon the
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complexity of the fusion rule this method may be more practical than the others A drawback,

however, is that the upper bound of the ROC is not guaranteed.

3.7 Summary

This chapter provided the following definitions for MCSs in (a) each classifier sought different
types of targets and (b) each classifier sought the same type of target: Conditional Performance
Matrix (CPM), Joint Performance Matrix (JPM), Prior Probabilities Matrix (PPM), Conditional
State Probabilities Matrix (CSPM), Combined Prior Probabilities Matrix (CPPM), and Joint State
Probabilities Matrix (JSPM). Also provided were derivations of formulae for the system JPM, PPM,
and CPM for within and across fusion systems in which decisions are combined using Boolean fusion
rules. Lastly, the reader is presented several methods for estimating the ROC curve for an MCS in

which decisions are combined using Boolean fusion rules.

46



1V. Summary and Recommendations
4.1 QOverview

This chapter summarizes the contributions of this thesis as applied to Multiple Classifier
Systems in which decisions are combined using Boolean fusion rules. Additionally, the chapter will

suggest areas of future research.

4.2 Summary of Contributions

The primary contribution of this thesis is a matrix algebraic formula for computing the
Conditional and Joint Performance Matrices for a Boolean Multiple Classifier System. This thesis
is the first known use of the Kronecker product for evaluating classifier system performance. Also

presented were definitions and/or derivations for the following:

e Conditional Performance Matrix (CPM),

e Prior Probabilities Matrix (PPM),

e Joint Performance Matrix (JPM),

e Combined Prior Probabilities Matrix (CPPM),
e Conditional State Probabilities Matrix (CSPM),
e Joint State Probabilities Matrix (JSPM),

e Truth Matrix, and

e Fusion Rule Matrix.

Furthermore, several methods were presented for estimating an upper bound of the ROC
curve for the MCS using the system CPM. The individual CPMs were used previously to determine
optimal fusion rules [22]; however, that work did not take into account the possibility of varying

the decision thresholds for the individual classifiers, nor did that work provide a methodology for
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analyzing systems fusing across target types. Lastly, this thesis characterizes Sensor Corroboration

rules that were considered by Liggins [18].

4.8 Recommendations for Future Research

The results of this research identify several potential areas for further research. First, the
matrix algebraic formula for the system CPM suggests an underlying algebraic structure for Mul-
tiple Classifier Systems. Perhaps this structure can be extended to beyond Boolean MCSs to other

types of MCSs (e.g., weighted voting systems).

Second, future analysts, engineers, and mathematicians may be able to exploit the algebraic
structure in such a way as to improve classification accuracy. This might be accomplished by
developing more clever ways to maximize detection probability for a given false alarm rate or

through some other means entirely.

Third, this work took advantage of a commonly (ab)used assumption of statistical indepen-
dence, even though statistical independence is not likely for MCSs in which the individuals seek
similar target types. It may be possible to incorporate variance/covariance matrices to provide

more realistic estimates of MCS performance.
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