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AFIT/GNE/ENP/03-09 

Abstract 

 
 Modern semiconductor devices are principally made using the element 

silicon.  In recent years, silicon carbide (SiC), with its wide band-gap, high 

thermal conductivity, and radiation resistance, has shown prospects as a 

semiconductor material for use in high temperature and radiation environments 

such as jet engines and satellites.  A limiting factor in the performance of many 

SiC semiconductor components is the presence of lattice defects formed at oxide 

dielectric junctions during processing.  Recent theoretical work has used small 

quantum mechanical systems embedded in larger molecular mechanics 

structures to attempt to better understand SiC surfaces and bulk materials and 

their oxidation. 

 This research uses quantum mechanical models to calculate geometries 

and electronic properties of small SimCnO molecular clusters of silicon carbide 

oxides with 0 ≤ m,n ≤ 4.  Calculations are primarily done using Hartree-Fock and 

Density Functional Theory (DFT) with the B3LYP exchange and correlation 

functionals.  Møller-Plesset Second Order Perturbation (MP2), Configuration 

Interaction (CI), Multi-Configurational Self-Consistent Field (MCSCF), and 

Coupled Cluster (CC) are used on the CSi2O molecule to confirm the accuracy of 

selected levels of DFT .  Molecular properties examined include ground state 

multiplicity, vibrational modes and frequencies, and geometry for both the neutral 

and anion, adiabatic and vertical electron affinities, and thermodynamic heats of 

 xv



 xvi

formation.  Qualitative predictions are made regarding the photoelectron 

spectrum experimentalists may see.  Finally, preferred geometries, functional 

groups, and bonding locations are qualitatively determined.  Later research will 

be able to use these results to study the oxidation of larger SiC structures and 

surfaces and their defects. 



 

 
 
 

QUANTUM MECHANICAL CALCULATIONS OF MONOXIDES OF SILICON 
 

CARBIDE MOLECULES 
 
 
 

I.  Introduction 
 
 

1.1.  Problem Statement 

 Modern semiconductor devices are made principally using the element 

silicon.  In recent years, there has been interest in investigating the prospects of 

silicon carbide (SiC) as a semiconductor material.  With its wide band-gap, high 

thermal conductivity, and radiation resistance, SiC has particular promise for use 

in high temperature and radiation environments.  Such applications include 

devices in jet engines and satellites.  An important type of semiconductor device 

in which SiC may be used is the MOSFET (metal-oxide semiconductor field 

effect transistor) which has an oxide layer on the semiconductor surface. 

 A limiting factor in the performance of MOSFETs and other semiconductor 

components is the presence of lattice defects.  Recent experimental research 

has used photoluminescence and cathodluminescence spectroscopy to examine 

the nature of SiC-SiO2 interfaces (Li, Burggraf, et al, 2000; Burggraf, Weeks, 

Duan, 2002).  Theoretical work has used small quantum mechanical systems 

embedded in larger molecular mechanics structures to attempt to better 

understand SiC surfaces and bulk material (Shoemaker, 1999; Shoemaker, 

2000).  To better understand the chemistry of SiC oxidation, the properties of the 

 1



 

oxides of SiC must be determined.  The purpose of this research is to use 

quantum mechanical calculations to predict properties of small molecular clusters 

of SiC monoxides.  Later research will then be able to use these results to study 

the oxidation of larger SiC structures and surfaces. 

 

1.2.  Background 

 Previous research on clusters has centered primarily on silicon, silicon 

oxides, and SiC.  Theoretical work on silicon clusters began in the early to mid-

1980s.  Important early research in this area was done by Dr Raghavachari of 

AT&T Bell Labs (Raghavachari, 1986).  He examined Sin clusters with n=2-7,10 

using Hartree-Fock, Møller-Plesset Fourth Order Perturbation (MP4), and 

Coupled Cluster (CC) calculations.  He considered many isomers of these 

clusters and successfully identified the ground state geometries and electronic 

structures. 

 Numerous other studies have also been done on silicon and silicon 

oxides.  This work includes etching of silicon cations and anions by O2 (Bergeron 

and Castleman, 2002), a theoretical study of Si3O2 and its anion using CAS-MP2 

and QCISD(T) (Dupuis and Nicholas, 1999), a study of small Sin molecules for 

n=2-8 using DFT/PW and MP4 (Fournier et al, 1992), an experimental study of 

ionization potentials for Sin n=2-200 (Fuke, 1993), experimental studies of the 

luminescence of small silicon clusters (Kanemitsu et al, 1993; Kanemitsu et al, 

1994; Kanemitsu et al, 1995), a theoretical study of oxygen adsorption on silicon 

surfaces using the semiempirical method MNDO (Oshiro et al, 1996), and 
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theoretical studies of silica clusters using DFT (Pereira et al, 1999a; Pereira et al, 

1999b). 

 Further applicable work on silicon was done here at AFIT by Jim 

Shoemaker (Shoemaker, 1999; Shoemaker, 2000).  He used ab initio clusters 

buried in a molecular mechanics bulk to investigate the properties of silicon 

surfaces.  This is part of a method to eventually build up to devices.  His method, 

surface integrated molecular orbital molecular mechanics (SIMOMM), will 

ultimately be used for the SiC clusters studied in this work. 

 There is extensive work that has been done on SiC clusters including that 

done by the Gordon group at Iowa State (Rintelman and Gordon, 2001) and our 

group at AFIT (Duan et al, 2002).  The most applicable of this work is the 2001 

thesis by Ms. Jean Henry (Henry, 2001).  She successfully modeled the 

geometry and energy of SimCn clusters with m,n ≤ 4 using the AM1 semi-

empirical method, Hartree-Fock Self-Consistent-Field theory, and Density 

Functional Theory.  Figure 1 shows a map of the ground state singlet geometries 

that she produced.  This map has since been updated and confirmed by Dr. 

Xiaofeng Duan using higher levels of theory.  By determining the energy of both 

the neutral and singlely charged anion of each molecule, she predicted the 

adiabatic electron affinity of each molecule.  Her predicted electron affinities 

match those obtained experimentally by Dr. Carl Lineberger at the University of 

Colorado using photoelectron spectroscopy (Duan et al, 2002; Davico et al, 

2001).  A diagram of his experimental setup is shown as Figure 2.  He produces 

SimCn anions using a cold cathode discharge of a SiC rod.  After being 
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Si        m=1 

accelerated and mass selected, the anions interact with a laser that ejects a 

photoelectron and leaves the cluster with no net charge.  An example of the 

photoelectron spectrum produced is shown in Figure 3.  Peaks A-G are produced 

by linear C3Si.  Peak A is produced by a transition between the vibrational ground 

states of the anion and neutral.  Peaks B-G are produced by transitions between 

the anion’s vibrational ground state and higher vibrational states of the neutral.  

Most of the intensity is in Peak A, showing that the geometries of the anion and 

neutral are very similar. 

n=

C 

2 

3 

4 

4 2 3

T0 S0
S0 S0

S0 
S0 S0 S0

S0T0 S0S0

T0S0 

S0 
S0

Figure 1.  Map of the Ground State Geometries of SimCn Clusters (Henry, 
2001:63) 
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Figure 2.  Photoelectron Spectrosopy Experimental Setup (Lineberger, 2002)

Figure 3.  364 nm photoelectron spectrum of C3Si- (Davico, 2001:1790).

300 

3^ 3.1 3.0 2.9 2.8 2.7 2.6 

Electron Binding Energy (eV) 
2.5 



 

 6

 The only theoretical SiC oxide cluster work has been done by the group 

led by Dr. Schaefer at the University of Georgia (Petraco et al, 2000a; Petraco et 

al, 2000b).  They used high level ab initio calculations to determine the geometry 

and energy of the ground and first excited states of neutral SiCO and CSiO.  This 

work provides a useful accuracy check for the smallest cluster that I shall 

consider.  The only other work is unpublished surface and bulk oxidation work 

done by Dr. Duan at AFIT. 

 Experimental work on SiC oxides is also fairly limited.  This includes two 

studies of the electron spin resonance and optical spectra of SiCO by Lembke et 

al in 1977 and 1987 (Lembke et al, 1977; van Zee et al, 1987).  To date, no 

research that I can find has looked at clusters larger than SiCO or at any SimCnO 

anions. 

 

1.3.  Scope 

 This research examines SimCn O clusters with 0 ≤ m,n ≤ 4.  For each of 

these 25 molecules several properties will be determined.  First, I will determine 

whether the neutral, ground state multiplicity is a singlet or triplet.  Next, by 

examining as many isomers as is practical, I will determine the ground state 

geometry and energy for both the neutral and anion.  These ground state 

geometries will be used to create ground state maps similar to Figure 1.  For both 

the neutral and the anion the ground state, vibrational modes and frequencies 

will be identified.  Finally, I will calculate both the adiabatic and vertical electron 

affinities.  The vertical electron affinities and neutral vibrational frequencies will 
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then allow us to make some predictions regarding the expected photoelectron 

spectrum that Dr Lineberger will see.  This research will also qualitatively 

determine preferred geometries, functional groups, and bonding locations. 

 This theoretical research will support experimental work on SiC oxides 

being done by Dr. Lineberger.  He will use the same method previously 

described, but will introduce atomized oxygen into the discharge chamber.  This 

oxygen will hopefully react with and attach itself to the silicon-carbide clusters.  In 

this way, Dr. Lineberger will hopefully confirm the electron affinities that this 

current work will determine. 

 

1.4.  Research Approach 

 I will be using the General Atomic and Molecular Electronic Structure 

System (GAMESS) to do most calculations (Schmidt et al, 1993).  Some higher 

level post-Hartree-Fock calculations will also use Gaussian 98 (Gaussian, 2002).  

Hartree-Fock calculations will be done using GAMESS and the DZV, cc-pVDZ, 

and aug-cc-pVDZ basis sets (Dunning and Hay, 1977; Basis sets, 2002; 

Dunning, 1989; Woon and Dunning, 1993; Kendall et al, 1992).  These same 

basis sets will then be used in GAMESS with density functional theory (DFT) 

B3LYP hybrid method of exchange and correlation functionals (Becke, 1993; 

Stephens et al, 1994; Hertwig and Koch, 1997).  For the CSi2O cluster, post-

Hartree-Fock calculations will be done to confirm the accuracy of the DFT 

calculation.  These calculations include Møller-Plesset Second Order 
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Perturbation (MP2), Configuration Interaction (CI), Multi-Configurational Self-

Consistent Field (MCSCF), and Coupled Cluster (CC). 

 Simple calculations on small clusters were done using my personal 

computer running an Athlon XP 1800 CPU and 256 Mb of PC2700 RAM using 

the PC version of GAMESS (Granovsky, 2002).  DFT calculations on small 

clusters were done using an AFIT Silicon Graphics workstation.  Calculations on 

larger clusters were performed at the Aeronautical System Center (ASC) Major 

Shared Resource Center (MSRC).  Calculations at the MSRC were principally 

run in parallel on a Compaq ES40/ES45 

 

1.5.  Thesis Outline 

Chapter I:  Chapter one is introductory material, including a problem statement, 

some background material, the scope of the research, and a brief outline of the 

research approach. 

 

Chapter II:  The second chapter presents the theory that will be used in this 

research.  It is divided into basic quantum mechanics, single and many electron 

atoms, the Hartree-Fock approximation, post-Hartree-Fock methods, and density 

functional theory. 

 

Chapter III:  Chapter three details the research methodology I have used.  This 

chapter uses the Si2CO cluster as an example of all the steps and calculations 

used in this research. 
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Chapter IV:  My results are given in the fourth chapter.  A map of ground state 

geometries is presented along with corresponding electron affinities.  An analysis 

of preferred functional groups will also be presented. 

 

Chapter V:  The final chapter will present a summary, conclusions, and 

suggestions for future research. 



 

 
II.  Theory 

 
 

2.1.  Introduction 

 Since the beginning of the twentieth century, the study of physics and 

chemistry has become more and more a study of quantum mechanics.  By the 

end of the nineteenth century, scientists studying the fields of atomic and 

radiation physics had reached the limit of classical physics.  This limit was 

overcome in the first decades of the 1900s by men such as Plank, Einstein, 

Schrödinger, and Heisenberg who laid the foundations for and discovered 

quantum mechanics.  Since then, quantum mechanics has been found to be the 

best theory to describe matter. 

 This chapter will give an overview of quantum mechanics and its 

application to the simplest atoms.  It will then move to more complex polyatomic 

systems and explain a number of approximations and methods used to describe 

them.  These theories will then be used in Chapter 3 to develop a method of 

examining the monoxide molecules of silicon carbide that are the focus of this 

research.  The discussion assumes that the reader has a background in calculus 

and differential equations and has a basic understanding of fundamental physics 

and chemistry. 

 

2.2.  Single Particle Quantum Mechanics 

 (The primary references for this section are Chapters three and five of 

Gasiorowicz’s Quantum Physics.) 
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 The basic assumption of quantum mechanics is that the behaviors of all 

particles can be described by a wavefunction, ),( trvψ .  When ),( trvψ  is multiplied 

by its complex conjugate, ),( trv∗ψ  (formed by replacing every ι in ), tr(vψ  with -ι), 

the probability of finding the particle at position rv  at time  is found.  The biggest 

step in the discovery of quantum mechanics was finding an equation which gives 

t

),( trvψ .  This was accomplished in 1926 by Erwin Schrödinger. 

 The fundamental equation of quantum mechanics, showing the space and 

time relationship of the wavefunction, is known as the Schrödinger Equation.  

This equation was essentially postulated by Schrödinger and cannot be derived 

from classical physics.  The Schrödinger equation in its full form for a single 

particle is shown as Equation 1. 

 ),()(),(
2

),( 2
2

trrVtr
mt

tr vvvvh
v

h ψψψι ⋅+∇−=
∂

∂  (1) 

where 

 rv  = position vector ( ) kzjyix ˆˆˆ ⋅+⋅+⋅

  = time t

 ),( trvψ  = probability wave function 

 ι = imaginary number ( 1− ) 

  = Plank’s constant/2π h

 m = mass of the particle 

 ∇
v

 = k
x

j
x

i
x

ˆˆˆ
∂
∂

+
∂
∂

+
∂
∂  

 )(rV v  = external potential 
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If the functional form of V )(rv  is known, Schrödinger’s equation can, in theory, be 

solved for ),( trvψ .  Unfortunately, there are only a few special cases of V )(rv  for 

which an analytical solution for ),( trvψ  can be found.  In the next section we will 

look at one of the simplest solvable cases: the single electron atom, the solution 

of which is basic to approximate multi-electron solutions. 

 Before we actually solve Schrödinger’s equation it will be helpful to first 

examine a few properties of the wavefunction.  As stated earlier, a wavefunction 

is related to the probability of finding the particle at a certain place and time.  This 

is expressed as a probability rdtrP vv 3),(  which is the probability of finding the 

particle in the cube of space between rv  and r rd vv 3+  at time .  Mathematically 

this is  

t

 rdtrtrrdtrP vvvvv 33 ),(),(),( ψψ ⋅= ∗  (2) 

where 

 ),( trP v  = Probability Density 

 The probabilistic interpretation of the wavefunction leads to several 

restrictions on acceptable wavefunctions.  First, for the probability to be sensical, 

it must be normalized, i.e., the probability of finding the particle somewhere must 

be unity.  Mathematically this is 

  (3) 1),(),(),( 33 =⋅=∫ ∫ ∫ ∫ ∫ ∫
∞

∞−

∞

∞−

∗ rdtrtrrdtrP vvvvv ψψ

Secondly, because the wavefunction appears twice in a product in the middle of 

Equation 3, it must be square integrable.  This requires that it be continuous and 

equal to zero at its infinite extrema. 
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 An important mathematical tool used extensively in quantum mechanics is 

operator algebra.  An operator is any mathematical entity that operates on 

another.  For instance, 
dx
d  is an operator which takes the derivative of whatever 

is to the right of it.  In quantum mechanics any observable quantity can be 

expressed as an operator.  Notationally, an operator is signified by a “hat” over 

the operator’s symbol, as in , which may be pronounced as “p hat”.  The 

average value of an observable property represented by an operator for a given 

wavefunction is found by taking its expectation value.  This is defined for a 

general function  as 

p̂

)(xf

 ),()(),(),()(),()( txxftxdxtxxftxxf ψψψψ == ∫
∞

∞−

∗  (4) 

The middle expression is in the standard integral form.  The right expression is in 

Dirac notation, which is also called bracket notation.  Bracket notation is 

especially useful for the large, cumbersome integrals encountered in quantum 

mechanics.  In this notation ψ  is called a “ket”.  Its complex conjugate, ψ  is 

called a “bra” (hence the term “bra-ket” or “bracket” notation). 

 There are several operators that are especially important in using the 

Schrödinger equation.  Their derivations are relatively straightforward and can be 

found in standard quantum textbooks (Gasiorowicz, 45-46,49-51,54)(Eisberg and 

Resnick, 144-145).  These are the linear momentum ( p̂v ), energy ( Ê ), and 

Hamiltonian ( Ĥ ) operators given by 

 ∇−=
v

h
v ip̂  (5) 
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t

iE
∂
∂

= hˆ  (6) 

 )(
2

ˆˆ
2

rV
m
pH v
v

+=  (7) 

 These operators allow us to rewrite the Schrödinger equation in a simpler, 

more compact form as 

 ),()(ˆ),()(ˆ trtEtrrH vvv ψψ =  (8) 

where I have explicitly shown the position and time dependence of the operators.  

To solve this equation let’s assume that the wavefunction is separable in space 

and time (if this is an incorrect assumption it will merely give us a nonsensical 

answer or no answer at all): 

 )()(),( trtr ψψψ ⋅= vv  (9) 

Substituting this into Equation 8 gives us 

 )()(ˆ)()()(ˆ)( ttErrrHt ψψψψ ⋅=⋅ vvv  (10) 

If we now divide both sides by )()( tr ψψ ⋅v  we get 

 
)(

)()(ˆ

)(
)()(ˆ

t
ttE

r
rrH

ψ
ψ

ψ
ψ

=v

vv
 (11) 

The left side of Equation 11 depends only on position, while the right side 

depends only on time.  Therefore, for the equation to hold for any position 

independent of time and vice versa, each side must be equal to a constant, 

which we call E  (note the difference between this constant, E , without a hat, 

and the operator, Ê , which has a hat).  The solution of the right side 
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 )()()()(ˆ tEt
dt
dittE ψψψ == h  (12) 

is 

 h

iEt

eCt
−

⋅=)(ψ  (13) 

where  is an undetermined constant.  The left side of Equation 11 is C

 )()(ˆ rErH vv ψψ =  (14) 

or written out 

 )()()()(
2

2
2

rErrVr
m

vvvvvh ψψψ =+∇−  (15) 

Notice that Equations 14 and 15 depend only on position.  These are called the 

time-independent Schrödinger equation.  Because the solutions we are looking 

for are stationary states (i.e., they are not going anywhere), from now on this is 

the equation that we shall use. 

 The time-independent Schrödinger equation is what is called an 

eigenvalue equation.  An eigenvalue equation is one in which an operator acts on 

a function to return a constant, or eigenvalue, multiplied by the original function.  

This property of the Hamiltonian operator is key to quantum mechanics and leads 

to the quantization of energy. 

 

2.3.  Single Electron Atoms 

 (The primary references for this section and its subsections are Chapters 

Ten through Twelve of Gasiorowicz’s Quantum Physics, Chapter Seven of 
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Eisberg and Resnick’s Quantum Physics, and lecture notes by Dr. Dave Weeks 

from Chemistry 662) 

 We now turn to real world cases of actual atoms.  We first look at the 

simplest case of single electron atoms known as hydrogen-like atoms.  A single-

electron atom is a two-body system with an electron and a nucleus with a much 

larger mass.  Because of the large mass difference, the system can be treated as 

an infinitely massive and unmoving nucleus orbited by a reduced mass electron.  

If the mass of an electron is  and the mass of the nucleus is m M , the electron’s 

reduced mass, µ  is  

 
Mm
Mm

+
⋅

=µ  (16) 

 We now have a single particle of mass µ  and charge  moving in the 

spherically symmetric Coulombic potential field created by the nucleus of charge 

.  This creates a potential in spherical coordinates of  

e

Ze

 
r

ZerV
0

2

4
)(

πε
−

=  (17) 

where 

 r  = distance between electron and nucleus 

 Z  = atomic charge of nucleus 

  = elementary charge e

 0ε  = permittivity of free space 
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 Before we plug this potential into the Schrodinger equation and attempt to 

find a wavefunction, we also need to express ∇2v  in spherical coordinates to 

make it easier to separate the variables.  The form that we will use is 

 2

2

222
2

2
2

sin
1sin

sin
11

ϕθθ
θ

θθ ∂
∂

+







∂
∂

∂
∂

+







∂
∂

∂
∂

=∇
rrr

r
rr

v
 (18) 

This can be simplified to  

 ),(ˆ1)(ˆ 2
2

2 ϕθL
r

r +=∇ R
v

 (19) 

where 

 







∂
∂

∂
∂

=
r

r
rr

r 2
2

1)(R̂  (20) 

 2

2

2
2

sin
1sin

sin
1),(ˆ

ϕθθ
θ

θθ
ϕθ

∂
∂

+







∂
∂

∂
∂

=L  (21) 

 This now allows us to express the Schrödinger equation as 

 ),,(),,(
4

),(ˆ
2

)(ˆ
2 0

2
2

2

22

ϕθϕθ
πε

ϕθ
µµ

rEr
r

Ze
r

r Ψ=Ψ







−−− L

hh
R  (22) 

We now perform a separation of variables by letting 

 ),()(),,( ϕθϕθ YrRr =Ψ  (23) 

If we substitute this into Equation 22 and multiply by 
),()(

2
2

2

ϕθ
µ
YrR
r

h
−  we get 

 
),(

),(),(ˆ

4
2

)(
)()(ˆ 2

0

2

2

22

ϕθ
ϕθϕθ

πε
µ

Y
Y

r
ZeEr

rR
rRrr L−

=







++

h

R  (24) 

The left side of this equation depends only on r  while the right side depends only 

on θ  and ϕ .  Therefore each side must equal a constant which, for reasons that 
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will be clear later, we will call )1( +ll  where l  is a constant.  This gives us two 

equations 

2

2 E



h

µ

,(), θϕθ Y

R




(ll

),
+




θ
ϕθ

,(

2

∂
Y

)ϕθ ⋅Y

sin)(
θ
θ

+



∂
Θ

 2
0

2 )()1()(
4

)()(ˆ
r

rRr
r

ZerRr +
=++

ll

πε
R  (25) 

  (26) ),()1)(ˆ2 ϕθϕ Y+−=L

Equation 25 depends only on the radial variable and is called the radial equation.  

Equation 26 depends only on the two angular variables and is called the angular 

equation.  We will now solve each of these separately. 

 

2.3.1.  Angular Solution 

 We start the solution of the angular equation by rewriting Equation 26 in its 

full differential form. 

 0),()1(),(
sin

1(sin
sin

1
22 =++

∂




∂
∂

∂
∂ ϕθ

ϕ
ϕθ

θ
θ

θθ
YY

ll  (27) 

We now perform another separation of variables by letting 

 )(() ϕθ ΦΘ=  (28) 

If we now substitute this into Equation 28 and multiply by 
)()(

sin 2

ϕθ
θ

ΦΘ
 we get 

 2

2
2 )(

)(
1)()1(sin

)(
sin

ϕ
ϕ

ϕ
θθ

θθ
θ

∂
Φ∂

Φ
−=+


 ∂

∂
∂

Θ
ll  (29) 

Once again the variables are separated and we can set each side equal to a 

constant we call .  This gives us two equations to solve 2m
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 0
sin

)1(sinsin 2

2

=Θ







−++





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 Θ

θ
θ

θ
θ

θ
m

d
d

d
d

ll  (30) 

 02
2

2

=Φ+
Φ m

d
d

ϕ
 (31) 

which are called the polar and azimuthal equations. 

 We next solve the azimuthal equation.  By inspection this has the solution 

  (32) ϕϕ mie=Φ )(

The allowable values of  are found by using the boundary condition that m

)2()0( πΦ=Φ .  This works only for positive and negative integers, i.e., 

 K,3,2,1,0 ±±±=m  (33) 

 Now we solve the polar equation.  From Equation 30, the polar equation is 

significantly more complex than the azimuthal equation.  Fortunately, with a 

simple substitution, the polar equation can be written in a form that is identified 

as an associated Legendre equation.  The solution steps are fairly involved (the 

interested reader is directed to the references cited at the beginning of the 

section), and result in the polar equation as  

 )(cos
)!(
)!(

4
12)(

2
1

θ
π

εθ mP
m
m

l
l

ll













+

−+
=Θ  (34) 

where 

 )()1()( 22 wP
dw
dwwP

m

mm
m

ll −=  (35) 

 1)(0 =wP  (36) 

 wwP =)(1  (37) 
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ll ll
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wPwwPwP  (38) 

  (39) 




≤
>−

=
0for        1

0for    )1(
m
mm

ε

 Kl ,2,1,0=  (40) 

 llKKll ,1,,0,,1, −+−−=m  (41) 

Equation 35 creates the associated Legendre polynomials which are part of the 

solution in Equation 34.  Equation 38 is a recursion relation that uses Equations 

36 and 37 to create the Legendre polynomials.  Because of the derivative in 

Equation 35, a further restriction is made on the values of .  The new 

restriction is shown in Equation 41. 

m

 If we now combine the solutions of Equations 32 and 34, we obtain the 

complete angular solution Y .  These functions are known as spherical 

harmonics.  It is important to note that for each combination of  and m  a new 

function is obtained which is orthogonal to all other functions with different ’s 

and ’s.  Mathematically this is expressed as 

),( ϕθl
m

l

l

m

 mmmm mmddYY ,,

2

0 0
sin),(),( ′′

∗′
′ =′′=∫ ∫ δδϕθθϕθϕθ

π π

ll
ll ll  (42) 

where mm ,′δ  is the Kronekar delta function such that 

 


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=′ mm
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,δ  (43) 
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2.3.2.  Radial Solution 

 Having solved the angular dependence of the wavefunction, we now turn 

to the radial function.  In differential form the radial equation is 

 2
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2
2
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h πε
µ  (44) 

Simplifying the differential and collecting terms gives 
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The solution steps of this differential equation are rather involved; the reader 

interested in seeing the solution is referred to the references cited at the 

beginning of the section.  After making appropriate substitutions and a series 

expansion, the radial solution is found to be 
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where 
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 K,3,2,1=n  (51) 
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 1,,1,0 −= nKl  (52) 

A portion of the radial solution, shown in Equation 49, is a set of polynomials 

called the Laguerre polynomials.  Equation 50, together with the Bohr radius of 

Equation 47, provides the recursion relation for the Laguerre polynomials.  The 

solution also limits the allowable values of l  to those non-negative integers less 

than . n

 

2.3.3.  Total Hydrogen-Like Atomic Wave Functions 

 (In addition to the references at the head of this section, this subsection 

uses material from Gasiorowicz, Chapter 17) 

 With Equations 32, 34, and 46 we have solutions that can be combined for 

a complete set of solutions.  Each complete solution is defined by three quantum 

numbers.  The first, , is called the principal quantum number.  This is what 

defines the energy levels since the energy, 

n

 2
00

22

8 na
ZeE

πε
−=  (53) 

depends only on this quantum number.  Within each energy level there are  

states that are degenerate or have the same energy.  The allowed values of  

are all positive integers. 

2n

n

 The second quantum number is the orbital quantum number l .  Together 

with the principal quantum number, l  determines the shape and number of 

nodes of the wavefunction.  The allowed values of  are non-negative integers 

less than .  The different values of  are commonly associated with letters 

l

n l
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originating in spectroscopy.  l K,5,4,3,2,1,0=  are referred to as s, p, d, f, g, h, …, 

respectively.   

m

m

 The third quantum number is .  This is referred to as the magnetic 

quantum number since the degeneracy of these states is lifted in the presence of 

a magnetic field.  The allowable values of  are integers smaller than or equal 

to . l

 As stated previously, the energy states of one electron atoms depend only 

on , and not  or .  When other effects are considered or included as 

corrections to V

n l

(

m

)rv  in the Hamiltonian, the degeneracy of states with the same  

is lifted.  The first effect to consider is that the Schrödinger equation does not 

consider relativistic effects.  When the Schrodinger equation is reformulated with 

relativistic considerations, the Dirac equation is obtained.  The Dirac equation 

includes the fact that particles have a completely non-classical property called 

spin.  As an electron moves around the nucleus its spin interacts with the 

magnetic field caused by the relative motion of the nucleus from the electron’s 

perspective in an interaction called spin-orbit coupling.  This splits the states, or 

orbitals, based upon their angular momentum which, in part, is determined by the 

orbitals’  values.  This splitting is often called fine structure splitting. 

n

l

 The degeneracy of orbitals with differing l  values is completely lifted by 

the Lamb shift.  This is an effect of the electron interacting with its own magnetic 

field and quantum-vacuum fluctuations.  It is an effect of quantum 

electrodynamics theory. 
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 A final splitting is called hyperfine splitting.  This is described by a fourth 

quantum number m , which is the spin of the electron.  The allowable values for 

 are 

s

sm 2
1

± .  Hyperfine splitting splits an orbital based on its value of .  This is 

caused by the interaction of the electron with the spin of the nucleus. 

sm

 

2.4.  Many Electron Wave Functions 

 Having solved the simple case of atoms with a single electron, we now 

move on to atoms and molecules with two or more electrons.  This is known as 

the many-body problem.  Two-body problems such as the one we considered in 

the previous section are generally able to be solved in a closed analytical 

fashion.  For example, the positions of two bodies in their mutual gravitational 

field can be predicted for all past and future times using equations developed by 

Newton.  In the late 1800s Henri Poincaré proved that, except for some special 

cases, this can not be done for three or more bodies.  Similarly, the Schrödinger 

equation can not be solved analytically for systems larger than the hydrogen-like 

atoms.  For these systems we make certain simplifying approximations and find a 

solution numerically.  This section presents these approximations and the tools 

and methods which will be used to solve many-electron systems. 

 

2.4.1.  Atomic Units 

 From the equations and solutions of the previous section, one may notice 

that there are a large number of constants complicating the equations.  The 
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situation is greatly simplified by switching to a unit system called atomic units.  In 

atomic units the charge of the electron, e ; the mass of the electron, ; Plank’s 

constant barred, h ; and the dielectric constant,

em

04πε , are set equal to unity.  The 

unit of length is the bohr which is 0.529 Å.  The unit of energy is the hartree 

which is 27.2 eV or 627.5 kcal/mol (Ratner and Schatz, 2001: back cover).  For 

the rest of this chapter I will use atomic units to simplify the equations.  In later 

chapters, where specific units are not specified, atomic units are assumed. 

 

2.4.2.  Many Electron Hamiltonian 

 (The primary references for this section and its subsections are Chapters 

Ten through Twelve of Gasiorowicz’s Quantum Physics, Chapter Seven of 

Eisberg and Resnick’s Quantum Physics, and lecture notes by Dr. David Weeks 

from Chemistry 662) 

 The first step in solving a molecular system using the Schrödinger 

equation is to define the Hamiltonian for the system.  As defined previously, the 

general Hamiltonian is 

 )(
2
1ˆ 2 rV
m

H vv
+∇−=  (54) 

For a general molecular system with  electrons and N M  nuclei, there are 

 spatial coordinates to which the second derivative must be taken.  The 

total potential is composed of terms formed by the potential between each pair of 

particles.  This gives us a total general Hamiltonian of  

)(3 NM +

 
 

25



 

 
444 3444 21

vv

44 344 21

vv

44 344 21

vv
44 34421

v

43421

v

Repulsion
Nuclei-Nuclei

1

Repulsion
Electron-Electron

1

Attraction
Nuclei-Electron

1 1

Energy
KineticNuclear 

1

2

Energy
Kinetic
Electronic

1

2 1
2

1
2
1ˆ ∑∑∑∑∑∑∑∑

= >= >= === −
+

−
+

−
−∇−∇−=

M

A

M

AB BA

BA
N

i

N

ij ji

N

i

M

A Ai

A
M

A
A

A

N

i
i RR

ZZ
rrRr

Z
M

H  (55) 

where 

  = number of electrons (56) N

 M  = number of nuclei (57) 

 2
i∇

v
 = Laplacian with respect to spatial coordinates of th electron (58) i

 2
A∇

v
 = Laplacian with respect to spatial coordinates of th nuclei (59) A

  = mass of AM A th nuclei (in atomic units) (60) 

  = atomic number of th nuclei (61) AZ A

 ir
v  = spatial position of i th electron (62) 

 AR
v

 = spatial position of th nuclei (63) A

(Szabo and Ostlund, 1996, 40-41). 

 

2.4.3.  Born-Oppenheimer Approximation 

 If we examine Equation 55, we see that the Hamiltonian has a total of 

22
33

22 MNNMMN ++++  terms for each possible spatial configuration of 

electrons and nuclei.  To make a solution more manageable, we start by making 

some approximations to reduce the number of terms. 

 For the first approximation, we consider the difference in mass between 

an electron and nucleus.  Even the lightest nucleus is more than 1800 times 
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more massive than an electron.  Because of this large difference in mass, nuclei 

move much slower than electrons.  Therefore, we can consider the nuclei to be 

fixed and immovable with the electrons moving through the field setup by the 

nuclei.  This approximation is called the Born-Oppenheimer approximation. 

 Since the nuclei are not moving, the second term in Equation 55 is zero.  

In addition, the fifth term, which gives the nuclear-nuclear repulsion, is a 

constant.  Removing these two terms makes the problem significantly more 

manageable.  The remaining three terms make up what is called the electronic 

Hamiltonian. 

 

2.4.4.  Potential Energy Surfaces 

 While the Born-Oppenheimer approximation allows us to more easily 

calculate the energy for a system at a fixed nuclear geometry, we are left with the 

question of what happens as the nuclear geometry is varied.  To examine this, 

we start by examining the simplest molecular system of H2
+.  This ion has one 

electron and two hydrogen nuclei.  For this molecule, a single variable, the 

nuclear separation, can specify the nuclear geometry.  The number of variables, 

or reaction coordinates, required to specify a given nuclear geometry depends on 

the number of nuclei.  In general M  nuclei require 3 6−M  reaction coordinates 

to completely specify their geometry.  For a linear molecule, including all diatoms, 

 reaction coordinates are required.  If the molecule has symmetry, fewer 

coordinates are required. 

53 −M
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Figure 4.  Potential Energy Curve for H2
+ 

 The energy of H2
+ is composed of two components shown in Figure 4.  

The first component is the nuclear-nuclear repulsion energy.  When the nuclei 

are close together the energy is very high.  As they get further apart the energy 

quickly decreases, eventually reaching zero.  The second component is the 

electronic energy.  When the nuclei are far apart, the electron is essentially 

bound to one of them and the energy is simply that of a single hydrogen atom, -

13.6 eV.  When the nuclei are very close together, they appear to the electron 

like a helium nucleus and the energy is that of helium, -54.4 eV.  When these two 

components are added together, the curve produced starts out high, quickly 
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decreases to a minimum around 1 Å, and then gradually increases, 

asymptotically reaching -13.6 eV.  The molecule is most stable when the nuclear 

separation is such that the energy is minimized, since if it is displaced in either 

direction from the minima, it will quickly be returned to the minima. 

 The total curve in Figure 4 is called a potential energy curve.  For 

molecules with more than one reaction coordinate, a potential energy surface is 

formed.  In general, any molecule with more than two nuclei will require more 

than three dimensions to plot the energy and the reaction coordinates, making it 

essentially unplottable and unimaginable. 

 A potential energy curve or surface may have one, many, or no minima.  If 

there is only one, that will be the stable geometry.  If there are multiple minima, 

there will be multiple stable configurations called isomers.  In this case the global 

minimum will be the most stable isomer.  If there are none, the molecule is not 

stable and will dissociate into other molecules and/or atoms. 

 

2.4.5.  Molecular Vibration and Rotation 

 The minima of the potential energy curve is the geometry where the 

molecule is most stable, but the molecule still has motion at the minima.  Due to 

quantization, the lowest allowable energy level is somewhere above the minima.  

This energy level is called the zero-point energy.  Above this, there are additional 

energy levels which have their energy stored in nuclear motion. 

 There are three types of nuclear motion: translational, vibrational, and 

rotational.  The first, translational, is motion of the entire molecule.  This is the 
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kinetic energy of the molecule and is measured only relative to an external point.  

While this is important for thermodynamics, we are concerned only with energy 

internal to the molecule’s frame of reference. 

 The second energy is vibrational energy.  As its name indicates, this is 

from the vibration of atoms about the equilibrium point of the potential energy 

minima.  Classically, this motion is analogous to that of a weight on a frictionless, 

massless spring, since it is approximately symmetric about the minimum.  This 

situation is known as a harmonic oscillator.  The harmonic oscillator is one of the 

few quantum mechanical problems for which a solution is obtainable.  From this 

solution, the allowable energy levels are found to be (in atomic units) 

 
M

nE vvib 4
1

2
1







 +≈  (64) 

(Gasiorowicz,1996: 338).  These levels are generally on the order of tens of 

meV’s.  An important thing to note is that the lowest level is with  which is 

slightly above the bottom of the minimum.  This is called the zero point energy. 

0=vn

 The final form of energy is rotational energy.  This is from rotations of the 

atoms around the bond.  For this energy, the molecule is treated as a rigid rotor 

similar to a dumbbell.  The energy obtained is 

 
M
nn

E rr
rot 4

)1( +
≈  (65) 

(Gasiorowicz,1996: 336-337).  These rotational levels exist for each of the 

vibrational levels.  The energy of the rotational states is in the sub-meV range.  
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Seeing individual rotational energy levels requires very high resolution 

spectroscopic equipment.  Rotational states are not considered in this research. 

 

2.4.6.  Variational Principle 

 (The primary reference for this subsection is Ratner and Schatz pp 105-

106) 

 An important theorem for the calculation of wavefunctions and quantum 

mechanical properties is the variational principle.  This principle states that if ϕ  is 

a normalized wavefunction that fits the problem’s boundary conditions, but not 

necessarily an eigenfunction of the Hamiltonian, the energy associated with it, 

, will be greater than or equal to the ground state energy, , of the system.  

This is shown in Equation 66. 

trialE 0E

 0
ˆ EHEtrial ≥= ϕϕ  (66) 

The importance of this theorem is that for any wavefunction, the energy will 

always be higher than the actual energy unless the wavefunction is the exact 

wavefunction.  This gives us a measure of the quality of a wavefunction:  the 

lower the energy, the better the wavefunction.  It also allows a method of 

improving a given wavefunction.  If the wavefunction depends on a parameter α , 

the best value of α  is the one for which  is minimized; i.e., trialE

 0=
∂

∂
α
trialE  (67) 
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2.4.7.  Pauli Exclusion Principle, Aufbau Principle, and Multiplicity 

 As we have seen, exact solutions to the Schrödinger Equation produce an 

infinite number of energy levels or orbitals.  This presents the question of how 

electrons fill these orbitals.  For atoms, it is easiest and relatively accurate to 

assume that they have a hydrogen-like orbital structure.  Therefore, the orbitals 

are designated as 1s, 2s, 2p, 3s, 3p, 3d, etc. where there is one ‘s’ orbital per n, 

three ‘p’ orbitals per n, five ‘d’ orbitals per n, and so on.  The number of electrons 

that can be put into a single orbital is determined by the Pauli exclusion principle.  

This states that for the class of particles called fermions, which includes 

electrons, only one can be in any given state at a time.  Each orbital is defined by 

the three quantum numbers , , and .  In addition to these, there is one 

remaining quantum number that defines the state of an electron:  the spin, .  

This has two allowable values of 

n l m

sm

2
1

± .  Each orbital can therefore hold up to two 

electrons of opposite spin. 

 The order that electrons fill orbitals is determined by the Aufbau principle.  

This states that electrons fill the lowest energy orbitals first.  This makes the 

order of filling orbitals 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, etc.  This principle is 

responsible for the shape of the periodic table. 

 While the Aufbau principle holds very well for small atoms, there are some 

larger atoms and molecules that do not fill orbitals in their Aufbau order.  For 

example, copper should have two 4s and nine 3d electrons.  Instead, it has one 

4s and ten 3d electrons.  This is because the full 3d shell in the latter 
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configuration is slightly lower in energy than a full 4s shell in the former.  

Similarly, with molecules, electrons do not always add in pairs or in the order 

expected.  This can affect what is known as the multiplicity of an atom or 

molecule.  Multiplicity is determined by the formula 12 +s  where  is the net 

absolute spin of the atom or molecule.  This is determined by adding together the 

spin of all the orbitals in the atom or molecule.  Orbitals that are filled with a pair 

of electrons have no net spin, since the electrons have opposite spin.  Orbitals 

that have only one electron have net spin of 

s

2
1 .  If all of the orbitals are filled with 

pairs, there is no net spin and the multiplicity is a singlet.  If there is a single 

unpaired electron, the net spin is 
2
1  and the multiplicity is a doublet.  For atoms 

or molecules that have two unpaired electrons the multiplicity is a triplet, and so 

on.  The name comes from the number of possible spin states the atom or 

molecule can have.  For instance, a triplet has total net absolute spin of 1.  But 

there are four ways the two unpaired electrons can be oriented.  If they are both 

spin up (
2
1

+ ), the spin is 1.  If they are both spin down (
2
1

− ), the spin is -1.  If 

one is up and the other is down, the spin is 0.  In the presence of a magnetic field 

these three states have different energies and will produce three separate 

spectroscopic lines. 
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2.4.8.  Perturbation Theory 

 (The primary references for this subsection are Ratner and Schatz pp 82-

83, Bernath pp 96-98, and Gasiorowicz Chapter 16.) 

 As stated previously, most systems and potentials do not have analytic 

solutions.  In order to obtain relatively accurate estimates for these systems, 

certain approximation techniques can be used.  One of these methods is 

perturbation theory. 

 We start by breaking the Hamiltonian into two pieces. 

  (68) VHH ˆˆˆ
0 λ+=

The first is  which has solutions  and energies  that can be found. 0Ĥ
)0(

nϕ )0(
nE

  (69) )0()0()0(
0

ˆ
nnn EH ϕϕ =

The next step is to apply a perturbation that is small relative to the first part.  λ  is 

a parameter that we use for the method.   

 Next, we do a series expansion of the actual, exact wavefunction, nψ , and 

energy, , in terms of nE λ  and : nϕ

  (70) K++++= )3(3)2(2)1()0(
nnnnn ϕλϕλλϕϕψ

  (71) K++++= )3(3)2(2)1()0(
nnnnn EEEEE λλλ

 Now, we substitute these into 

  (72) nnn EH ψψ =ˆ

and equate like powers of λ .  This gives us a system of equations 

  (73) )0()0()0(
0

ˆ
nnn EH ϕϕ =
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  (74) )1()0()0()1()1(
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nnnnnn EEHV ϕϕϕϕ +=+

  M

  (75) ∑
=

−− =+
j

k

kj
n

k
n

j
n

j
n EHV

0

)()()(
0

)1( ˆˆ ϕϕϕ

 Equation 73 is simply our given of Equation 68.  To solve Equation 74, we 

expand  in terms of : )1(
nϕ )0(

kϕ

 )0()1()1(
k

nk
nkn C ϕϕ ∑

≠

=  (76) 

 We now substitute Equation 76 into Equation 74, switch to Dirac notation, 

and multiply by )0(
nϕ  to get 

 )0()1()0()0()0()1()0()0()1(
0

)0()0()0( ˆˆ
k

nk
nknnnnnk

nk
nknnn CEECHV ϕϕϕϕϕϕϕϕ ∑∑

≠≠

+=+  (77) 

Since 

 knkn ,
)0()0( δϕϕ =  (78) 

Equation 77 can be simplified to 

 )1()0()0( ˆ
nnn EV =ϕϕ  (79) 

 If we now substitute Equation 76 into Equation 74, switch to Dirac 

notation, and multiply by )0(
jϕ , we get 

 )0()1()0()0()0()1()0()0()1(
0

)0()0()0( ˆˆ
k

nk
nknjnnjk

nk
nkjnj CEECHV ϕϕϕϕϕϕϕϕ ∑∑

≠≠

+=+  (80) 

which simplifies to 

 )1()0()1()0()0()0( ˆ
njnnjjnj CECEV =+ϕϕ  (81) 
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This can then be solved for C  )1(
nj

 )(for  
ˆ

)0()0(

)0()0(
)1( nj

EE

V
C

jn

nj
nj ≠

−
=

ϕϕ
 (82) 

 Similar methods can be done for the higher order perturbation terms.  In 

general, the more higher order terms that are included, the more accurate the 

solution. 

 

2.4.9.  Self Consistent Field (SCF) 

 Many of the equations we will develop in the next section are not easily 

solvable.  Obtaining a solution often requires some special mathematical tricks.  

One of these is the self consistent field method.  This is an iterative method 

where an initial guess is made, the equation is solved, this solution becomes the 

new guess, the equation is solved, and so on.  This process is repeated until the 

guess and the solution are the same or differ by less than some tolerance. 

 As an very simple mathematical example, we solve the equation e .  

By inspection the solution is 

1=x

0=x , but if we rearrange it and add x  to either side 

to get , we can use an SCF to solve it.  We start with a guess of 

 which we put into the right side of the equation to get 

1+−= xexx

2=x 389.4−=x .  The 

iterations are shown in Table 1.  Within ten iterations the correct solution is 

obtained to within fifteen decimal places. 

 Many of the methods developed in the following section are solved in a 

similar manner.  In these instances, we guess a set of initial orbitals, and then 
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1+−= xexTable 1.  SCF Iterations for x  

Iteratio
n x 
0 2.000000000000000
1 -4.389056098930650
2 -3.401468538738610
3 -2.434792834728060
4 -1.522408730867070
5 -0.740594433718539
6 -0.217424820918350
7 -0.022012911758287
8 -0.000240516089578
9 -0.000000028921676

10 0.000000000000000
11 0.000000000000000
12 0 000000000000000

solve iteratively until we reach some tolerance.  The result is a wavefunction 

solution to the equations we are using. 

 

2.4.10.  Basis Sets 

 (The primary reference is class notes prepared for CHEM 662 by Dr Alan 

Yeates and Ratner and Schatz pp 165-167.) 

 Another important method to approximating a function that we have 

already used is expanding it in terms of another set of functions.  If the set of 

other functions, known as a basis set, is a complete set, the function we are 

looking for can be exactly expressed.  As an example, the set of functions 

 is a complete basis set and a function such as  can be expanded 

in terms of these as 

K,,,,1 32 xxx xe

K+++++=
!4!3!2

1
432 xxxxxe .  Unfortunately, this requires an 
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infinite number of basis functions to exactly express the other function and is 

therefore impossible to fully implement for a calculation.  While truncating the 

expansion at some point does not give the exact answer, the answer produced 

can get relatively close if the expansion is large enough.  Therefore, since a 

larger expansion requires more calculation time and effort, the key is to chose 

the basis functions such that as few as possible are needed to get an answer 

that is as accurate as wanted.  Toward this end, special sets of functions have 

been developed which allow accurate calculation of wavefunctions while keeping 

the size of the expansion reasonable.  Once the basis set is chosen, the only 

remaining problem to solve is to find the coefficient in front of each individual 

basis function. 

 The first type of basis set is the Slater-type orbitals (STOs).  These have 

an exponential form of 

  (83) ),(1 ϕθξ ζ
m

rn
mn YeNr ll

−−=

where  

 ξ  = basis function (84) 

  = normalization constant (85) N

 ζ  = orbital exponent (86) 

STOs are similar to hydrogen wavefunctions without the complicated radial nodal 

structure.  Due to the 1−nr  term, STOs go to infinity at the nucleus, which makes 

them very difficult to integrate.  In general, these do not accurately reproduce the 

wavefunction near or far from the nucleus. 
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 A second type of basis set is the Gaussian-type orbitals (GTOs).  These 

are Gaussian functions centered on the nucleus of the form 

  (87) 0,,
2

>= − cbaezyNx rcba ζ
ζξ

GTOs are much easier to integrate since the product of two or more Gaussians is 

another gaussian, but a single GTO, known as a primitive gaussian, generally 

does not accurately reproduce an actual wavefunction.  Instead, GTOs are 

usually put together in linear combinations called a contracted gaussian.  The 

fixed coefficients used to make the linear combination are called contraction 

coefficients.  By choosing the right primitives for the linear combination, a GTO 

can be made that accurately reproduces actual wavefunctions.  GTOs are the 

most common type of orbitals and the only type used in this research. 

 While most basis sets use GTOs, the way they are used varies.  A 

minimal basis set uses only one contracted GTO for each atomic shell.  Higher 

zeta basis sets such as the double-zeta or triple-zeta use more contracted GTOs 

per atomic shell (in these cases two or three).   

 Many basis sets add extra basis functions to the main part of the set.  One 

of these is polarization functions.  These are Gaussian functions with high 

angular momentum so that electrons involved in a bond between atoms of 

differing electronegativity are skewed toward the more electronegative atom.  

The cc-p which appears in basis sets such as cc-pVDZ means that correlation-

consistent polarization functions with higher angular momentum have been 

added to an orbital.  For instance a p orbital will have d or f functions added to it. 
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 Another type of function often added to a basis set is diffuse functions.  

These are Gaussian functions with small exponential coefficients, ζ , which allow 

for electron densities far from the nuclei.  These are especially important for 

anions and electronically excited states.  The aug- which appears in basis sets 

such as aug-cc-pVDZ means that diffuse functions have been added. 

 The contraction coefficients and orbital exponents are variationally 

optimized for each element.  Once this is done, sets of basis sets for groups of 

elements are published for general use.  Favorite sets are the STO-#G (which 

use contracted GTOs to approximate STOs), Pople sets, Atomic Natural Orbitals 

(ANOs) (good for post-Hartree-Fock calculations), and Dunning sets.  In this 

research, I use Dunning sets exclusively.  Collections of basis sets can be found 

online at http://www.emsl.pnl.gov:2080/forms/basisform.html .   

 

2.4.11.  Spin Orbitals 

 (The primary references for this subsection are Ratner and Schatz pp 110- 

129 and Szabo and Ostlund pp 46-53.) 

 The final topic we must look at before examining the calculational theory 

that we will use is the type of orbitals that we will use.  The first thing we must 

note is the presence of electron spin and the Pauli Exclusion Principle.  We have 

already noted that electrons can be either spin up or spin down.  Mathematically, 

we denote these respectively as nα  and nβ , where the subscript indicates which 

electron it is applied to.  As an example, we consider the He atom.  This has two 

electrons whose spatial wavefunctions in the He ground state can be 
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represented by hydrogen-like 1s orbitals.  As previously stated, the Pauli 

Exclusion Principle requires that these two electrons have differing spin.  This 

gives two possible total wavefunctions: 

 2111 )2()1( βϕαϕ ss=Ψ  (88) 

 2111 )2()1( αϕβϕ ss=Ψ  (89) 

where the number in parentheses after the spatial wavefunctions indicates the 

electron to which they apply.  Unfortunately, neither of these two wavefunctions 

satisfy another requirement of the Pauli Exclusion Principle.  This requires that 

for a fermion, such as an electron, exchanging two particles changes the sign of 

the wavefunction.  A proper wavefunction can be made from Equations 88 and 

89 by a process called antisymmetrization.  This produces a wavefunction of the 

form 

 ))(2()1(
2

1
212111 αββαϕϕ −=Ψ ss  (90) 

 For larger systems, antisymmetrization is easily done with a Slater 

determinant.  This is the determinant of a matrix formed with the possible states 

making up the different columns and each electron in a different row.  As an 

example of a larger system, the Be ground state produces a wavefunction 
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The determinant in Equation 91 will also be denoted in the simpler notation 
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 ssssBe 2211!4
1)( ϕϕϕϕ=Ψ  (92) 

where the bar over a wavefunction denotes that it is a β  spin state. 

 

2.5.  Hartree-Fock (HF) Approximation 

 (The primary references for this section are Ratner and Schatz pp 130-

134, Szabo and Ostlund pp 108-131, and class notes prepared for CHEM 662 by 

Dr Alan Yeates.) 

 We are now prepared to develop the theories we will use in the 

calculations.  We start with the electronic Hamiltonian that we developed in 

Section 2.4.3. 

 ∑∑
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 jiij rrr vv −=  (95) 

 We now consider a three electron wavefunction  

 cba
!3

1)3,2,1( =Ψ  (96) 
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 (97) 

By definition the energy of this system is  
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 )3,2,1(ˆ)3,2,1( ΨΨ= HE  (98) 

 We first consider the  terms.  The wavefunction on each side of the 

Hamiltonian in Equation 98 has six terms, while there are three s.  This gives 

108 separate integrals that must be performed.  For simplicity, we start by 

considering only .  This gives us 

ih

ih

1=i

 )3,2,1(ˆ)3,2,1( 11 ΨΨ≡ hh  (99) 
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 Because h  operates only on wavefunctions of electron one, the terms in 

the bracket can be simplified by separating the integrals of each term by electron.  

For the first term this gives us 

i

 )3()3()2()2()1()1()3()2()1()3()2()1( 11 ccbbahacbahcba =  (101) 

The right side of this simplifies to 

 ahaha ≡)1()1( 1  (102) 

 For the second  term,  ih

 )3()3()2()2()1()1()3()2()1()3()2()1( 11 accbbhaacbhcba =  (103) 

The second and third integral on the right side of this are both zero.  Similarly all 

terms that do not couple terms of the same electron are zero.  Since h  can also 

be obtained from the  

a

 )3()3()2()2()1()1()3()2()1()3()2()1( 11 bbccahabcahbca =  (104) 
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term and  and  terms also survive bh ch

 ]222[
6
1

1 cba hhhh ++=  (105) 

 Now we look at the other ih ’s.  These all have the same form as 1h .  

Therefore, 

 321 hhh ==  (106) 

and  

 ]666[
6
1)3,2,1()3,2,1(

3

1
cba

i
i hhhh ++=ΨΨ ∑

=

 (107) 

 Next we turn to the 
ijr
1  term in the Hamiltonian.  We start by looking at 

12

1
r
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 Because −r  operates only on wavefunctions of electrons one and two, 

the terms in the bracket can be simplified by again separating the integrals of 

each term by electron.  For the first term this gives us 

1
12

 )3()3()2()1()2()1()3()2()1()3()2()1( 1
12

1
12 ccbarbacbarcba −− =  (110) 
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The right side of this simplifies to 

 )()2()1()2()1( 12
1

12 ababTbarba ≡−  (111) 

 For the second  term,  ih

 )3()3()2()1()2()1()3()2()1()3()2()1( 1
121 accbrbaacbhcba −=  (112) 

The final integral on the right side of this is zero.  Similarly all terms that do not 

couple terms of the same electron are zero.  )(12 ababT  can also be obtained from 

the  

 )3()3()2()1()2()1()3()2()1()3()2()1( 1
12

1
12 ccabrabcabrcab −− =  (113) 

term.  It is important to note that  

 )()3()3()2()1()2()1()3()2()1()3()2()1( 12
1

12
1

12 baabTccabrbacabrcba ≡= −−  (114) 

is a different term and is not the same as )(12 ababT .  The standard notation for 

these is  

 abJababT ≡)(12  (115) 

which is called the Coulomb integral and  

 abKbaabT ≡)(12  (116) 

which is called the exchange integral. 

As before, T  and T  terms also survive.  Since all  all have the same form 

as , 

bc ac
1−

ijr

1
12
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1
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−−− == rrr  (117) 

In addition, 
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This gives us  
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 For the general case 
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 For an individual orbital iϕ , we can define an operator, which we call the 

Fock operator 

 ∑ −+≡
j

jj iKiJihif )](ˆ)(ˆ[)()(ˆ  (122) 

This allows us to create an eigenvalue equation 

 iiif ϕεϕ =ˆ  (123) 

which is called the Hartree-Fock equation.  Unfortunately, this is not a standard 

eigenvalue equation since the Fock operator itself depends on the orbitals used.  

This makes it a highly nonlinear equation.  To solve the Hartree-Fock equation, 

basis sets are used to create a set of initial wavefunctions.  The equation is then 

solved using the SCF method. 

 The method exactly as described above is called an unrestrictred Hartree-

Fock or UHF calculation.  UHF calculations have the problem of orbitals differing 

only by their spin ending up with different energies.  This result is generally 
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incorrect and is called spin contamination.  To correct this, another method called 

restricted Hartree-Fock or RHF forces orbitals differing only by their spin to have 

the same energy.  RHF works only for singlet states but the more general 

restricted open-shell Hartree-Fock or ROHF works for all multiplicities. 

 

2.6.  Post-Hartree-Fock Methods 

 The Hartree-Fock method produces energies and properties that are 

reasonably accurate for some uses, which is good since it is a fairly fast 

calculation to perform (fast, of course, being a relative term).  Unfortunately, the 

Hartree-Fock equation does not calculate all of the energy of a system.  To get 

more accurate results, other methods can be used which generally build upon 

the Hartree-Fock theory.  As a class, these methods are called Post-Hartree-

Fock methods. 

 The difference in the exact energy, which we are looking for, and the 

Hartree-Fock energy is called the correlation energy: 

 HFexactcorr EEE −=  (124) 

Correlation is what results from the probability of a particular event depending on 

another event.  For orbitals, the probability density for one electron depends on 

the probability density of every other electron.  This is taken into account by 

using a complete set of orbitals.  For example, in the Be atom that we used 

earlier, the wavefunction must include not only the 1s and 2s orbitals, but the 2p, 

3s, 3p, 3d, 4s, etc. orbitals.  For a basis set of  orbitals used to describe  N n
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electrons, an atom will have 
2
n  occupied orbitals and 

2
nN −  unoccupied or virtual 

orbitals.  Important terms related to these orbitals are the Highest Occupied 

Molecular Orbital or HOMO and the Lowest Unoccupied Molecular Orbital or 

LUMO.  In excited states electrons from the occupied orbitals are moved into the 

virtual orbitals.  Including at least some of these is necessary for retrieving part of 

the correlation energy.  Notation for these excited states is 0Ψ  for the ground 

state,  for a singly excited state where an electron is moved from orbital  to 

orbital 

r
aΨ a

r ,  for a doubly excited state where an electron is moved from orbital 

 to orbital 

rs
abΨ

a r  and another electron from orbital  to orbital , etc. b s

 When working with excited states, an important theorem is Brillouin’s 

Theorem which states that singly excited states do not mix with Hartree-Fock 

ground states (Szabo and Ostlund, 1996: 128-129).  In addition, states that are 

triply or more excited do not mix with the ground state since the Hamiltonian only 

includes one and two electron operators which causes highly excited states to 

produce only integrals involving orthogonal states which are zero.  While excited 

states other than doubles do not directly interact with the ground state, they do 

indirectly by interacting with the doubly excited states and including them can be 

important. 

 There are four types of Post-Hartree-Fock calculations that we will look at.  

In this research these methods will be used only rarely to compare with DFT 

results.  Therefore, we will look only briefly at each of them. 
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2.6.1.  Møller-Plesset Second Order Perturbation Theory (MP2) 

 (The primary references for this section are Szabo and Ostlund pp 350-

353, Ratner and Schatz pg 171, and class notes prepared for CHEM 662 by Dr 

Alan Yeates.) 

 The first and computationally easiest Post-Hartree-Fock method is MP2.  

As the name indicates, MP2 uses the second order of the perturbation theory 

described in Section 2.4.8.  This is based on Hartree-Fock in that the HF 

Hamiltonian is used as  where 0H

 ∑∑ +==
i

HF

i
ivihifH )]()([)(0  (125) 

The perturbation, V , is set to  

 ∑∑∑ −=−=
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ji
ij ivrVrV )(11  (126) 

 The second order correction to the Hartree-Fock energy is found to be 

 ∑
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1
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)2(
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The derivation of this can be found in Szabo and Ostlund pp 350-352. 

 MP2 is a fast calculation that can be done with relatively small 

computational resources.  But, the results tend not to be extraordinarily accurate. 
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2.6.2.  Configuration Interaction (CI) 

 (The primary references for this section are Szabo and Ostlund pp 231-

245, Ratner and Schatz pg 172, and class notes prepared for CHEM 662 by Dr 

Alan Yeates.) 

 The second type of Post-Hartree-Fock calculation is Configuration 

Interaction.  The CI method incorporates excited states by including them in a 

wavefunction which includes all possible states.  The wavefunction is of the form 

 K+++=Ψ ∑∑
srba

rs
ab

rs
ab

ra

r
a

r
a DcDcDc

,,,,
00  (128) 

where the ’s are Slater determinants with the excitations shown in the 

subscripts and superscripts and the c ’s are coefficients which are variationally 

optimized.  A full CI, which includes all possible excitations, is the exact energy 

for a system in the given basis set. 

D

 If there are K2  single electron spin orbitals and N electrons, there are 

)!2(!
)!2(2
NKN

K
N
K

−
=







  terms in the wavefunction.  For even a relatively small 

molecule and a reasonably small basis set, the number of terms in a full CI is 

such that a calculation will take many years of CPU time to obtain an answer.  

For this reason, CI expansions are generally truncated at some level.  Common 

truncations include those that include up to doubles, called CISD, and those that 

have up to triples, called CISDT.  While these do not recover all of the correlation 

energy, as a full CI does, they generally recover most of it.  These CI’s usually 
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recover more correlation energy than MP2, but take considerably more 

computational time. 

 

2.6.3.  Multi-Configuration Self-Consistent Field (MCSCF) 

 (The primary references for this section are Szabo and Ostlund pp 258-

259 and Ratner and Schatz pp 172-173.) 

 MCSCF is a method that is very similar to CI.  Like CI the wavefunction is 

composed of a sum of determinants truncated at some level of excitation.  The 

important difference between MCSCF and CI is that instead of variationally 

optimizing just the expansion coefficients, the orbitals that make up each of the 

determinants are also variationally optimized.  This added step increases the 

complexity and time required considerably beyond the large amount of time 

already required for a CI calculation.  This is helped somewhat by reducing the 

number of orbitals that electrons can be excited from and to.  These orbitals 

make up what is called the active space.  A calculation where the active space 

includes all orbitals is called a Complete Active Space SCF (CASSCF).  MCSCF 

generally produces results that are better than CI, but can take considerably 

more computational time. 

 

2.6.4.  Coupled Cluster (CC) Theory 

 (The primary references for this section are Szabo and Ostlund pp 286-

296 and Ratner and Schatz pg 173.) 
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 The final type of Post-Hartree-Fock calculation considered is coupled 

cluster theory.  This uses a wavefunction of the form 

  (129) 0Ψ=Ψ T
CC e

where 

 21 TTT +=  (130) 

 ∑=
ra
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r
a aacT ~

1  (131) 
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rs
ab aaaacT ~~

4
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2  (132) 

and where  is an operator that removes an electron from orbital .  aa a sa~  is an 

operator that puts an electron in orbital .  The utility of this method is shown by 

expanding part of  the exponential as 

s

K+++= 2

2
11 xxe  to give x

 K+++= ∑∑
rstu
abcd

dacutabsr
tu
cd

rs
ab

abrs
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rs
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T aaaaaaaaccaaaace ~~~~
32
1~~

4
112  (133) 

and similarly for e .  Therefore, a coupled cluster expansion includes at least 

some contribution from all possible excitations. 

1T

 CC produces results that are generally better than the other methods and, 

time-wise, is roughly comparable to MCSCF. 

 An important characteristic of HF, CC, and MP2 but not of CI or MCSCF is 

size extensivity.  Size extensive, or size consistent, theories produces the same 

level of accuracy regardless of the size of the system.  For instance, for a set of 

 
 

52



 

two identical systems infinitely far apart, a size extensive theory produces a 

result that is exactly twice that of a single system. 

 

2.7.  Density Functional Theory (DFT) 

 The final theory that we will look at, and, along with HF, the method that 

this research will focus upon, is Density Functional Theory (DFT).  All of the 

methods that we have looked at so far are what are called ab initio theories.  

These are theories that are developed and calculated completely from first 

principles of physics.  In theory, DFT is also an ab initio method.  Unfortunately, 

as we shall see, DFT is, in practice, a semi-empirical method.  Empirical methods 

are the opposite of ab initio methods.  These use some set of known 

experimental data as a given and extrapolate unknown data based upon this.  A 

semi-empirical method is derived from first principles, but is then somehow fit to 

some known data.  This is the case for DFT. 

 

2.7.1.  Early DFT Theory 

 (The primary references for this section are Koch and Holthausen pp 29-

32 and class notes prepared for CHEM 662 by Dr Alan Yeates.) 

 The most important difference between DFT and the other methods is that 

the principle variable is the electron density rather than the wavefunction.  The 

initial DFT theory was developed by Thomas and Fermi in 1927.  They developed 

an energy functional (a function of a function) of the form 
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 A few years later in 1930, Dirac introduced an exchange term to the 

Thomas-Fermi model to give 

 ][][)]([ ρρρ DTFTFD KErE −=v  (135) 

 ∫= rdrKD
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3][ vρ

π
ρ  (136) 

Unfortunately, this Thomas-Fermi-Dirac theory worked even worse than the 

original.  This was helped in 1935 by Weisacker who added gradient correction 

terms to the Thomas-Fermi kinetic energy functional of the form 

 ∫
∇

= rd
r

r
Tw

3

2

)(

)(

8
1][ v

vv

ρ

ρ
ρ  (137) 

to account for nonlocal effects in a nonuniform density. 

 A final early addition to the theory was in 1951 by Slater.  In this method, 

called the Xα method, a semi-empirical constant, α , is added to Dirac’s 

exchange term to make it 

 ∫= rdrKDS
33

4
3
1

)()3(
8
9][ vρα

π
ρ  (138) 

Typical values of α  are between 
3
2  and 1 (Koch and Holthausen, 2001: 32). 
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2.7.2.  Hohenberg-Kohn Theorems 

 (The primary references for this section are Koch and Holthausen pp 33-

40, class notes prepared for CHEM 662 by Dr Alan Yeates and the 1964 

Hohenberg and Kohn paper.) 

 Modern DFT theory is based on two theorems developed by Hohenberg 

and Kohn in 1964.  The first Hohenberg-Kohn theorem states that “the external 

potential V )(rext
v  is (to within a constant) a unique functional of )(rvρ ; since, in 

turn V )r(ext
v  fixes Ĥ

)

 we see that the full many particle ground state is a unique 

functional of (rvρ ” (Hohenberg and Kohn, 1964: B865).  Essentially, this states 

that no two external potentials that differ by more than a constant will produce the 

same electron density. 

 The proof of this theorem is fairly straightforward.  Two different external 

potentials produce two different Hamiltonians which are associated with two 

different ground state wavefunctions and energies.  By taking the Hamiltonians of 

each of these wavefunctions and assuming that they can produce the same 

electron density, the inequality  

 0000 EEEE +′<′+  (139) 

is obtained, which leads to 0 .  This is obviously wrong and therefore, by 

reduction ad absurdum the theorem is proven.  The consequence of this theorem 

is that once the electron density is determined, the ground state properties of the 

system are uniquely determined.  This now leaves us with the question of how to 

find the ground state density.  This is handled by the second theorem. 

0<
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 The second Hohenberg-Kohn theorem is the equivalent of the variational 

principle applied to densities rather than wavefunctions.  This states that if 

][ρHKE  is the ground state energy functional, )(rvρ  is the exact ground state 

density, and )(rvρ′

)(′ r

 is an approximate density that satisfies the boundary 

conditions of 0≥vρ  and Nrdr =′∫ 3)(vρ , then  

 ][][ ρρ ′≤ HKHK EE  (140) 

The consequence of this is that since the energy is broken down as 

 ][][][ ρρρ extelectronHK VEE +=  (141) 

and ][ρextV  completely fixes the Hamiltonian, ][ρelectronE  is a universal functional.  

If we know the form of this functional we can find the exact ground state density, 

)r(g
vρ  by the variational principle, i.e., 

 0][
=

= g

HKE

ρρδρ
ρδ  (142) 

 

2.7.3.  Kohn-Sham Approach 

 (The primary references for this section are Koch and Holthausen pp 41-

64, class notes prepared for CHEM 662 by Dr Alan Yeates, and the 1965 Kohn 

and Sham paper.) 

 The Hohenberg-Kohn theorems showed that an electron density can be 

used to find the energy and properties of a system if the energy functional is 

known.  The basic modern form of this functional was put forward by Kohn and 

Sham in 1965. 
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 The Hohenberg-Kohn theorems lead to an expression for the energy of 

the form 

 ( )∫+=
→

rdVrFE NeN

3
0 )(][min vρρ

ρ
 (143) 

where V  is the external potential produced by the nuclei.  Ne ][ρF  is the universal 

energy functional 

 )]([)]([)]([)]([ rErJrTrF nc
vvvv ρρρρ ++=  (144) 

where )]([ rT vρ  is the kinetic energy, )]([ rJ vρ  the classical Coulomb interaction, 

and )]([ rncE
vρ  the non-classical effects which include electron self-interaction, 

electron exchange, and electron correlation. 

 An important step Kohn and Sham made was to make an analogy 

between DFT and HF.  They introduced the use of a Slater determinant to 

describe the electron density.  The orbitals that make up the determinant are 

related to the electron density by  

 ∫= NN rdrdrrrNr v
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vvv 3
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 Using these orbitals we can now begin to examine the individual 

functionals.  First, we look at the kinetic energy functional.  As a start, we use the 

HF form of the kinetic energy for non-interacting electrons: 
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This does not include contributions due to correlation of the electron motions, 

which will be handled in another term. 

 Likewise, the classical Coulomb term is 

 ∫∫ −
= 2

3
1

3

21

21 )()(
2
1][ rdrd

rr
rrJ vv

vv ρρ
ρ  (148) 

This is only the classical electron-electron repulsion and does not include 

electron exchange or correlation.  It also includes electron self-interaction which 

must be removed. 

 The key to the Kohn-Sham approach is the redefinition of the functional as  

 )]([)]([)]([)]([ rErJrTrF XC
vvvv ρρρρ ++=  (149) 

)]([ rEXC
vρ , called the exchange-correlation functional, includes the non-classical 

effects from Equation 144, as well as the exchange, correlation, and removal of 

self-interaction effects that are missing from Equations 147 and 148. 

 If we now set the functional derivative of the energy to zero, we get the 

Kohn-Sham equations: 

 iiieff rV ϕεϕ =

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2.7.4.  Exchange-Correlation Functional 

 (The primary references for this section are Koch and Holthausen pp 65-

92 and class notes prepared for CHEM 662 by Dr Alan Yeates.) 

 If we knew the form of the exchange-correlation functional, the Kohn-

Sham equations would give us an exact solution for the ground state of the 

system.  Unfortunately, to date, no exact form of this functional has been found.  

Since the introduction of the Kohn-Sham approach, theoretical work has focused 

on developing approximations for it.  There are three types of approximations 

that we will look at. 

 The first type of approximation for the exchange-correlation functional is 

called the local density approximation or LDA.  It is also know as the SVWN 

method, for Slater, Vosko, Wilk, and Nusair, whose work it is based upon.  This 

method uses a form for the functional of 

 ∫= rdrrE XC
LDA
XC

3)]([)(][ vv ρερρ  (153) 

where 

 )]([)]([][ rr CXXC
vv ρερερε +=  (154) 

The right side of Equation 154 has two components.  The first is the exchange 

part.  For this, the exchange energy of a uniform electron gas is used: 

 3
)(3

4
3][

π
ρρε rLDA

X

v
−=  (155) 

This is the same term that Dirac introduced to the Thomas-Fermi model. 

 The second component of Equation 154 is the correlation term.  There is 

no explicit expression for this.  Instead, LDA uses a functional fit to numerical 

 
 

59



 

quantum Monte-Carlo simulations of a uniform electron gas.  Examples of LDA 

functionals include VWN and VWN5. 

 The second type of approximation for the functional are the generalized 

gradient approximations or GGA.  Like LDA, GGA is spit into two pieces: 

 )]([)]([][ rr GGA
C

GGA
X

GGA
XC

vv ρερερε +=  (156) 

The exchange term is 
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where the local inhomogeneity parameter  is σs
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The function  is determined empirically and there are several methods and 

many fits available.  One important class of fits was developed by Becke in 1988 

who created the B or B88 functional 
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where β  is found to be 0.0042 by a least squares fit to rare gas exchange 

energies.  Other functionals that are similar are FT97, PW91, CAM(A), and 

CAM(B).  A second class of exchange functionals includes B86, P, LG, P86, or 

PBE.  The  for P86 has the form F
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 GGA correlation functionals are similar to, but more complicated than the 

exchange functionals and will not be explicitly shown.  Popular functionals 

include P86, PW91, and LYP. 

 Complete GGA functionals combine an exchange functional with a 

correlation functional.  Common combinations are B88 and P86 to give BP86, 

B88 and LYP to give BLYP, and B88 and PW91 to give BPW91. 

 The final type of functional is hybrid functionals.  These combine GGA 

functionals with exact HF exchange.  An example, which will be the only 

functional that we will use in this research, is B3LYP.  This has a functional form 

of 

  (161) LSD
C

LYP
C

B
XXC

LSD
X

LYPB
XC ccbaa εεεεερε λ )1()1(][ 8803 −++++−= =

where , , and 20.0=a 72.0=b 81.0=c  are parameters that found by Becke to fit 

a set of experimental data.  Other examples of hybrid functionals are BPW91, 

B1B95, B97 and B98. 



 

 
III.  Methodology 

 
 

3.1.  Introduction 

 As stated in Chapter 2, quantum mechanical calculations of molecular 

systems are not solvable analytically.  They require specialized computer 

programs, usually running on fast computers with large amounts of memory, to 

numerically solve the millions of integrals each calculation requires.  One of 

these programs, and the major one I have used for this research, is the General 

Atomic and Molecular Electronic Structure System (GAMESS) (Schmidt et al, 

1993).  In addition, the program Gaussian 98 has been used for CC calculations 

(Gaussian, 2002). 

 In this chapter I will present the method that I have used in a stepwise 

fashion.  I will begin by giving an example of GAMESS input and output files and 

explanations of each.  I will then give a step-by-step explanation of the method 

that I have used for each of the molecules that I have examined.  A list of all the 

steps is shown in Table 2.  For illustrative purposes, I will use the Si2CO 

molecule as an example. 

 This chapter presents the general method of calculations and assumes 

that no problems are encountered.  For various reasons, not all calculations 

successfully produce a result.  Some troubleshooting methods that I have used 

to complete problematic calculations are presented in Appendix E. 
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4, ≤n
Table 2.  Steps used in my method for determining ground state geometries of 
CmSinO, m , molecules. 

1 Identify all possible isomers 
2 Optimize geometry using GAMESS, ROHF, and VDZ basis set for singlet and 

triplet neutral as well as doublet anion 
3 Identify all stable isomers and rank order by increasing energy 
4 Choose lowest energy structures and neutral multiplicity (if possible) 
5 Optimize geometry using GAMESS, ROHF, and cc-pVDZ basis set 
6 Identify all stable isomers and rank order by increasing energy 
7 Choose lowest energy structures and neutral multiplicity (if 

possible/necessary) 
8 Optimize geometry using GAMESS, ROHF, and aug-cc-pVDZ basis set 
9 Identify all stable isomers and rank order by increasing energy 
10 Choose lowest energy structures and neutral multiplicity (if 

possible/necessary) 
11 Optimize geometry using GAMESS, DFT, and VDZ basis set 
12 Identify all stable isomers and rank order by increasing energy 
13 Choose lowest energy structures and neutral multiplicity (if 

possible/necessary) 
14 Optimize geometry using GAMESS, DFT, and cc-pVDZ basis set  
15 Identify all stable isomers and rank order by increasing energy 
16 Choose lowest energy structures and neutral multiplicity (if 

possible/necessary) 
17 Optimize geometry using GAMESS, DFT, and aug-cc-pVDZ basis set  
18 Identify all stable isomers and rank order by increasing energy 
19 Choose lowest energy structures and neutral multiplicity (if necessary) 
20 Calculate Hessian using GAMESS, DFT, and aug-cc-pVDZ basis set 
21 Confirm structures are minima by looking for imaginary frequencies 
22 Assign vibrational frequencies to respective modes 
23 If suspect or “interesting” geometry, continue; otherwise skip to Step 26 
24 Calculate geometry and energy using aug-cc-pVDZ basis set and post-HF 

methods 
25 Compare geometries from different methods/determine “best” geometry 
26 Calculate single point energy of neutral using ground geometry of doublet 
27 Determine electron affinities 
 

3.2.  GAMESS Input 

 Figure 5 shows an example of a GAMESS input file.  The input file is 

contained within the box with dots (·) representing spaces.  For illustrative 

purposes, line numbers appear on the left of the input.  The order of keyword 
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1 ·$DATA 
2 SiCO··ROHF/aug-cc-pVDZ 
3 C1··1 
4 ·O····8.0···0.0···0.0··-1.2 
5 ·C····6.0···0.0···0.0···0.0 
6 ·Si··14.0···0.0···0.0···2.2 
7 ·$END 
8  
9 !·$BASIS··GBASIS=DZV··$END 

10 !·$BASIS··GBASIS=CPVDZ··EXTFIL=.T.··$END 
11 ·$BASIS··GBASIS=ACPVDZ··EXTFIL=.T.··$END 
12  
13 !·$DFT·DFTTYP=B3LYP·NRAD=128·NTHE=32·NPHI=64·NRAD0=32·NTHE0=24·NPHI0=48·$END
14  
15 ·$CONTRL 
16 ICHARG=-1 
17 MULT=2 
18 RUNTYP=OPTIMIZE 
19 SCFTYP=ROHF 
20 COORD=UNIQUE··NZVAR=0··UNITS=ANGS 
21 MAXIT=200 
22 !····EXETYP=CHECK 
23 ·$END 
24  
25 ·$SCF··MAXVT=50··SHIFT=.T.··$END 
26  
27 ·$SYSTEM··TIMLIM=10000··MWORDS=100··$END 
28  
29 ·$STATPT··NSTEP=100··HESS=CALC··IHREP=0··HSSEND=.T.··$END 
30  
31 ·$GUESS··GUESS=HUCKEL··$END 
32 

Figure 5.  Sample GAMESS input.  Calculation shown is HF/aug-cc-pVDZ for 
a SiCO doublet anion.  Line numbers are shown only for illustrative purposes. 
(“·” represent spaces) 

sections (those preceded by a dollar sign) is unimportant.  The order shown here 

is simply the one that I have personally found to be most useful.  I will here be 

explaining only the basic input used for HF and DFT calculations.  Additions to 

the input file for doing post-HF calculations will be addressed later in this chapter.  

I will only be explaining those keywords and sections that I have had to use.  

There are a great many more that I have either not used, or the default value was 

sufficient.  For these and further explanations, please see the GAMESS User 

Manual, the most recent version of which can be found at the GAMESS website 

at http://www.msg.ameslab.gov/gamess/gamess.html.   
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 (NOTE:  For ease of understanding, throughout this chapter, words which 

are taken from the example input appear in the COURIER font.) 

 All sections start with a “$” in the second column, followed immediately by 

the keyword label for the section.  Each section is ended by a $END which may 

appear anywhere on a line.  Any line that starts with an exclamation point or that 

is outside of a section and does not have a dollar sign in the second column is 

treated as a comment and is not processed.  Blank lines between sections are 

not needed, but are useful for readability. 

 The first seven lines of the example input are the data section.  This is 

where information is placed about the atoms making up the molecule of interest.  

Line 1 is the data tag.  Line 2 gives the title of the calculation.  This has no 

bearing on the actual calculation to be done, but is useful when reading output 

files.  Line 3 gives the symmetry.  For most calculations I have used C1 

symmetry (i.e., no symmetry) as shown here.  If any symmetry other than C1 is 

used, the next line must be blank.  Lines 4 through 6 give atomic information.  

The input shown uses Cartesian coordinates, though a z-matrix may also be 

used instead.  The first column gives an atomic label.  This label can be anything 

and has no effect on the actual calculation.  For obvious reasons, I have always 

used the chemical symbol of the atom.  The second column is the nuclear charge 

of the atom.  This is what tells the program what atom to use.  Columns 3 

through 5 give the x, y, and z Cartesian coordinates of the atom.  Finally, Line 7 

ends the data section. 
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 Lines 9 through 11 give the basis set.  After the $BASIS section label, two 

keywords are used.  The first, GBASIS, gives the name of the basis set to be 

used.  If this is not a built-in basis set, EXTFIL=.T. must be included to tell the 

program to get the basis set from an external file given by the external 

environment variable EXTBAS.  In the example, three basis options are given.  

Before running the input, two of these must be commented out (in this case, 

Lines 9 and 10).  Uncommenting Line 9 gives Dunning’s VDZ basis set which is 

built-into GAMESS.  Using Line 10 tells GAMESS to use the user-defined basis 

set CPVDZ which, in this case, is Dunning’s cc-pVDZ basis set given in an 

external basis set file.  In the example, Line 11 is processed doing the calculation 

with Dunning’s aug-cc-pVDZ basis set. 

 Line 13 gives the parameters for doing a DFT calculation.  The example 

input is for a HF calculation, so Line 13 is commented out.  The first keyword in 

this section, DFTTYP, gives the DFT functional to be used.  The functional in the 

example is the B3LYP functional that I have used for all DFT calculations and 

which was described in Chapter 2.  The next six keywords give the number of 

grid points to use for the DFT calculation.  Each atom will be spherically 

surrounded by NRAD*NTHE*NPHI grid points.  NRAD0, NTHE0, and NPHI0 give an 

initial grid to be used.  Once the change between iterations of the density matrix 

falls below some threshold value (3.0E-4 is the default) the finer grid given by 

NRAD, NTHE, and NPHI is used.  As with basis sets, the computed energy 

depends on the size of the DFT grid used.  Therefore calculations done with 

different size grids cannot be compared. 
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 Lines 15 through 23 are the $CONTRL section which tells GAMESS what 

to do.  Lines 16 and 17 give the charge and multiplicity of the molecule, in this 

case, a doublet anion.  Line 18 specifies the type of calculation.  In the example, 

OPTIMIZE tells the program to find the optimized molecular geometry.  This is 

the option that I used most often.  Other options that I used were ENERGY, which 

computes the molecule’s single point energy with no geometry change, and 

HESSIAN, which calculates the single point energy and does a vibrational 

analysis.  Line 19 specifies the type of wavefunction to use.  I set this to ROHF for 

all HF and DFT calculations.  Line 20 gives several coordinate options.  COORD 

sets the type of coordinates to be used in the $DATA section.  The example 

specifies UNIQUE which requires only the symmetry unique atoms to be specified 

in Cartesian coordinates.  The only other option I used here was ZMT which 

allows the input of the molecule using a z-matrix.  NZVAR specifies what type of 

internal coordinates to use.  Here 0 means Cartesian coordinates.  UNITS gives 

the type of distance units to use.  I have used Angstroms throughout.  MAXIT 

gives the maximum number of SCF iterations before nonconvergence is 

declared.  The default is 30, but to allow for some particularly troublesome 

molecules I have set this to 200, which is the maximum allowable setting at the 

MSRC, where I did most of my calculations.  The final line within the $CONTRL 

section is EXETYP=CHECK.  For actual calculation runs, this is left commented 

out.  If this line is uncommented, the program will set up the calculation but not 

actually do it.  This allows for making sure a complex or lengthy calculation is 

properly setup before potentially wasting time running an incorrect input.  I have 
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found this particularly useful for checking non-C1 symmetry inputs to ensure that 

I have chosen the correct symmetry and that there are no extra atoms being 

added. 

 Line 25 gives parameters for the SCF routine.  MAXVT sets the maximum 

number of iterations within each SCF step.  I have increased the number to 50 

from the default of 20.  SHIFT=.T. tells the program to shift levels in the Fock 

matrix that are close together.  This helps to prevent convergence problems. 

 Line 27 gives system control information.  TIMLIM gives the maximum 

time the calculation is allowed to take in minutes.  MWORDS gives the maximum 

amount of memory to use in 8Mb units.  Both of these are set to large values to 

prevent problems or a premature abort of the program.  At the MSRC, these 

values are reset by user input at job submittal time. 

 The $STATPT group on line 29 controls the optimization search.  NSTEP 

gives the maximum number of geometry optimization steps to take.  I have set 

this to 100 rather than the default of 20.  HESS selects what type of Hessian 

matrix to start with.  Setting this to GUESS uses a positive definite diagonal 

matrix.  Setting this to CALC, as in the example, tells it to compute the initial 

matrix.  IHREP specifies how many steps to take before recomputing the 

Hessian.  Setting this to 0 means that only the initial Hessian is calculated.  

HSSEND=.T. is a flag which tells GAMESS to calculate the Hessian at the 

optimized geometry and to output the vibrational analysis. 

 The final line, the $GUESS section, specifies the initial orbitals to use.  

GUESS=HUCKEL uses a calculated guess as the initial orbitals.  Replacing this 
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with GUESS=MOREAD allows for reading in orbitals from a previous run.  If 

MOREAD is used, NORB must also be specified.  NORB gives the number of orbitals 

to be read.  Also, if MOREAD is used, a $VEC group must be given.  This is a 

formatted group that is taken from the .dat file of a previous run and is not 

editable by the user. 

 

3.3.  GAMESS Output 

 The output produced by even a small GAMESS calculation is extremely 

large.  Running the input from Figure 5 with the built-in VDZ basis set produces 

38 pages of output. 

 The beginning of the output file starts with a citation for the program and 

some information about the computer on which it is running.  Then are several 

pages of setup options and variable definitions.  Once the calculation is setup, a 

single point energy calculation is done, the eigenvectors are output, and the 

gradient at the initial geometry is determined.  If an optimization is being done, 

there will then be a series of optimization steps.  One of the important parts of the 

output is at the end of the optimization after the keyword “***** EQUILIBRIUM 

GEOMETRY LOCATED *****”.  Here is the optimized geometry and energy.  The 

optimized orbitals are next.  After the orbitals is some bond information.  Finally 

at the end, if requested, is Hessian information, including vibrational information 

and thermodynamic data. 
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Figure 6.  Initial 23 isomers for Si2CO calculation.  These isomers were 
calculated at HF/VDZ level.  Tan atoms are silicon, orange atoms are carbon, 
and red atoms are oxygen.  All but the last are planar 

3.4.  Step 1: Identify Isomers 

 The first step in optimizing a molecule’s geometry is to identify the 

possible isomers.  For small molecules such as Si2CO this is relatively simple 

and all possible isomers can be examined.  But for larger molecules the number 

of possible isomers is too large to allow examination of all of them.  For Si2CO I 

examined the 23 isomers shown in Figure 6.  Once the isomers are identified, the 

initial Cartesian coordinates of each must be assigned.  The rules I have used for 

this are Si-Si bonds are 2.2Å, Si-C bonds are 1.8Å, Si-O bonds are 1.5Å, C-C 

bonds are 1.2Å, C-O bonds are 1.2Å, and the molecules should be as symmetric 

as possible.  These bond lengths are approximately those that are normally seen 

for bonds between those atoms.  If the atoms are not reordered in some way, the 

final bond lengths are expected to be about these values. 
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3.5.  Steps 2-10: Hartree-Fock Optimization 

 Once the input files are prepared, the first calculations can be performed.  

The initial calculations are done with the Hartree-Fock method using the VDZ 

basis set.  The calculated final energy is then extracted from each output file.  

For small numbers of output files this can be done by manually searching 

through each output file for the message “EQUILIBRIUM GEOMETRY 

LOCATED” and copying the following total energy.  For larger numbers of output 

files, I have created a small batch file that automatically extracts the energy from 

all the output files in a directory.  This batch file, and a further description of its 

use, is included in Appendix D.  Once all the energies are extracted, they are 

sorted from lowest to highest.  The final geometry for each unique energy is then 

determined by reading the output files into the visualization program Molden 

(Schaftenaar and Noordik: 2000) running on a PC with an X-Windows emulator.  

Depending on the number of stable isomers found, either all stable isomers will 

be identified or only those that are lowest in energy.  For Si2CO there are nine 

anion and thirteen neutral stable geometries.  These are shown with their 

energies and multiplicities in Figure 7.   

 The next step is to identify which isomers will continue on for further 

calculations.  First, singlet and triplet energies for similar geometries are 

compared.  If there is a significant difference in energy, the lower energy 

multiplicity can be declared the ground state neutral multiplicity.  What constitutes 

a significant energy difference is subjective.  Generally, at low levels of theory, I 

used around 0.5 eV.  At higher levels of theory, I used around 0.2 eV.  

 71



 

 72

Anion Neutral 

Isomer Energy 
(Hartrees
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Figure 7.  Stable isomers for Si2CO calculation using HF/VDZ.  Isomers are 
ordered with most stable at the top.  Isomers above the line proceeded to the 
next level of calculation.  Tan atoms are silicon, orange atoms are carbon, and 
red atoms are oxygen.  All are planar. 
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The stable isomers with the lowest neutral and anion energies are then selected 

for the next step.  In Figure 7 this cutoff is shown by the lines.  For Si2CO, four 

isomers in both singlet and triplet were chosen. 

 Once the isomers for the next set of calculations are chosen, the input 

files are prepared.  Each of the candidate isomers is calculated in all remaining 

multiplicities.  The files are the same as those prepared earlier except that line 

nine is now commented out and line ten is uncommented.  This sets up a 

Hartree-Fock calculation using the cc-pVDZ basis set.  As before, the 

calculations are performed, the energies are extracted and sorted, and the stable 

isomers are identified.  Figure 8 shows the results of these calculations.  There 

were four anion and seven neutral stable geometries.  The cc-pVDZ calculations 

produced five distinct geometries all of which were selected to continue to the 

next level of calculations.  

 For the third set of calculations input files are prepared with line ten 

commented and line eleven uncommented to give a Hartree-Fock calculation 

with the aug-cc-pVDZ basis set.  Again, the calculations are done and analyzed.  

The results are shown in Figure 9.  For Si2CO there were five anion and eight 

neutral stable isomers.  At this point I was able to identify the neutral ground 

multiplicity as a singlet and narrow the geometry to four isomers.  

 

3.6.  Steps 11-19: Density Functional Theory Optimization 

 The next step is to perform density functional theory calculations.  The 

input files are prepared the same as in the beginning with line nine 
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Anion Neutral 

Isomer Energy 
(Hartrees

)

Isomer Energy 
(Hartrees

)

Multiplicity 

-690.502 S0 
-690.533 D0 

-690.481 S0 

-690.520 D0 -690.473 T0 

-690.481 D0 -690.449 T0 

-690.427 S0 -690.465 D0 

-690.408 T0 

-690.346 T0 

Figure 8.  Stable isomers for Si2CO calculation using HF/cc-pVDZ.  Isomers 
are ordered with most stable at the top.  Isomers above the line proceeded to 
the next level of calculation.  Tan atoms are silicon, orange atoms are carbon, 
and red atoms are oxygen.  The four-membered rings are slightly non-planar.  
All others are planar. 

uncommented to use the VDZ basis set and line thirteen uncommented to 

perform a DFT calculation.  For Si2CO, five isomers were calculated in the singlet 

and doublet multiplicities.  The results of these calculations are shown in Figure 

10.  There were four doublet and three singlet stable geometries.  The top two of 

each were chosen for the next level of calculation. 

 The next set of calculations is then prepared by uncommenting lines ten 

and thirteen giving a DFT calculation using the cc-pVDZ basis set.  Four isomers 
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Anion Neutral 

Isomer Energy 
(Hartrees

)

Isomer Energy 
(Hartrees

)

Multiplicity 

-690.512 S0 
-690.554 D0 

-690.497 S0 

-690.551 D0 

-690.494 S0 

-690.547 D0 -690.485 T0 

-690.489 D0 -690.483 T0 

-690.463 D0 -690.464 T0 

-690.448 S0 

-690.388 T0 

Figure 9.  Stable isomers for Si2CO calculation using HF/aug-cc-pVDZ.  
Isomers are ordered with most stable at the top.  Isomers above the line 
proceeded to the next level of calculation.  Tan atoms are silicon, orange 
atoms are carbon, and red atoms are oxygen.  The four-membered rings are 
slightly non-planar.  All others are planar. 

were calculated in the singlet and doublet multiplicities giving the results shown in 

Figure 11.  There were four doublet and three singlet stable geometries.  

 The final DFT calculations were prepared by uncommenting lines eleven 

and thirteen giving a DFT calculation using the aug-cc-pVDZ basis set.  This 

calculation resulted in two doublet and three singlet stable geometries as shown 

in Figure 12.   
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identified.  For the doublet anion the ground state geometry is a symmetric three-

Figure 10.  Stable isomers for Si2CO calculation using DFT/B3LYP/VDZ.  
Isomers are ordered with most stable at the top.  Isomers above the line 
proceeded to the next level of calculation.  Tan atoms are silicon, orange 
atoms are carbon, and red atoms are oxygen.  The four-membered rings are 

(Hartrees
)

(Hartrees

-692.08574 D0 

-692.07931 D0 

-692.04887 D0 

-692.04634 D0 

-692.01824 S0 

Isomer Energy Isomer Energy Multiplicity 
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)

-692.01152 S0 

-691.98392 S0 

At this point, a ground state geometry for each multiplicity can be 

slightly non-planar.  All others are planar. 

m ered ring composed of two silicons and one carbon.  The oxygen is

bonded to the carbon nearly symmetrically (7° off of symmetric).  For the neutral 

singlet, the ground state geometry also has a three-membered ring of two 

silicons and a carbon, but one of the carbon-silicon bonds is shorter than the 

other.  Also different for the singlet is that the oxygen bonds to the carbon s

the oxygen-carbon bond and the shorter carbon-silicon bond is nearly linear 

(177.6°). 

emb  

o that 
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Figure 11.  Stable isomers for Si2CO calculation using DFT/B3LYP/cc-pVDZ.  
Isomers are ordered with most stable at the top.  Isomers above the line 
proceeded to the next level of calculation.  Tan atoms are silicon, orange 
atoms are carbon, and red atoms are oxygen.  The four-membered rings are 
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Figure 12.  Stable isomers for Si2CO calculation using DFT/B3LYP/ 
aug-cc-pVDZ. Isomers are ordered with most stable at the top.  Isomers above 
the line proceeded to the next level of calculation.  Tan atoms are silicon, 
orange atoms are carbon, and red atoms are oxygen.  All are planar. 
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3.7.  Steps 20-22: Vibrational Analysis 

 The next step is to perform a vibrational analysis and confirm that the 

ground state structures are minima.  This is done by preparing an input file as 

before with DFT and the aug-cc-pVDZ basis set, the final ground state geometry, 

and changing line eighteen to “RUNTYPE=HESSIAN”.  This will compute a 

Hessian and vibrational analysis at the given geometry. 

 Once the calculation is performed, the vibrational frequencies near the 

end of the output file are examined.  If all of the frequencies are real numbers, 

the geometry is a minima.  If one of the frequencies is imaginary and all of the 

Figure 13.  Vibrational modes of Si2CO using DFT/B3LYP/aug-cc-pVDZ.  Tan 
atoms are silicon, orange atoms are carbon, and red atoms are oxygen.  An 
“X” indicates a mode into the plane. 

137 cm-1

X 424 cm-1

611 cm-1 
(Si-C-O asym stretch) 

1878 cm-1

(C-O tch) stre

477 cm-1

478 cm-1
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others are real, the geometry is a transition state.  If more than one frequency is 

imaginary, the geometry is not a stationary point.  For Si2CO, both the doublet 

and singlet were minima. 

 If the identified ground state geometry is a minima, the vibrational 

frequencies can then be assigned to vibrational modes.  This is done by reading 

the output file into Molden and looking at each vibrational frequency/mode.  The 

results of this for the ground state singlet are shown in Figure 13. 

 

3.8.  Steps 23-25: Post-Hartree-Fock Analysis 

 The next set of calculations is done only if the ground geometries are 

suspect or interesting.  For Si2CO these were done because of the difference in 

g

 Ø

Perturbation Theory (MP2).  This is done in GAMESS by adding “MPLEVL=2” and 

“CITYP=NONE” to the $CONTRL group and adding a line reading “ $CIDRT 

GROUP=C1 IEXCIT=2 NFZC=7 NDOC=14 NALP=0 NVAL=20 

mxnint=10000000 $END”.  For descriptions of the contents of the $CIDRT 

group, please see the GAMESS manual.  An MP2 geometry optimization can 

only be done for the singlet since GAMESS does not have an ROHF MP2 

gradient. 

 The next post-Hartree-Fock calculation is Configuration Interaction (CI).  

Two CI calculations can be done: a CISD and a CISDT.  The CISD is done in 

GAMESS by adding “CITYP=GUGA” to the $CONTRL group and adding a line 

eometries between the singlet and doublet and the asymmetry of the singlet. 

The first post-Hartree-Fock calculation is M ller-Plesset Second Order 

 79



 

reading “ $CIDRT GROUP=C1 IEXCIT=2 NFZC=7 NDOC=14 NALP=0 

NVAL=87 mxnint=10000000 $END”.  The CISDT input would be the same 

except “IEXCIT=2” in the $CIDRT group is changed to “IEXCIT=3”.  For Si2CO, 

essor 

onfiguration 

elf Consistent Field (MCSCF).  MCSCF is started by doing a single point 

d state geometry using the 
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ck/aug-cc-pVDZ single-point energy calculation.  In addition, 

UESS

 

I did only the CISD since CISDT requires a very significant amount of proc

time.  Like MP2, CI optimization can only be done for the singlet since GAMESS 

does not have an ROHF CI gradient implemented. 

 The third post-Hartree-Fock calculation to be done is Multi-C

S

Hartree-Fock energy calculation at the DFT groun

aug-cc-pVDZ basis set.  Then, by examining the orbitals in the output file and

using the Molden visualization software to view the orbitals, each orbital is 

identified as being an unbonded electron pair, a sigma bond, or a pi bond.  The

d n must then be made as to how large an active space you want and wh

electrons to include in this active space.  As the active space is made larger, the 

time required for the calculation grows exponentially.  For Si2CO, the six pi-li

valence orbitals and the six corresponding pi-like virtual orbitals w

the active space.  This was found to be about the largest practical size for the

active space.  The next calculation was done to produce a set of modified virtu

orbitals.  To do this, “MVOQ=6” was added to the $SCF group of a standard 

Hartree-Fo

“G =MOREAD” and “IORDER(27)=28,27” in the $GUESS group are used to 

read in the vectors from the previous Hartree-Fock calculation and reorder them

so that the active space orbitals are contiguous.  The modified virtual method 
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uses a highly charged cation (in this case a +6 charge) to obtain the virtua

orbitals.  This produces virtual orbitals that are much cleaner looking and more

well-behaved (Bauschlicher, 1980).  For the actual MCSCF calculation, several 

modifications must be made to the standard input file.  First, the SCFTYP in the 

$CONTRL group is set to “SCFTYP=MCSCF”.  Next, the lines  

l 

 

 $DRT GROUP=C1 FORS=.T. NMCC=15 NDOC=6 NVAL=6 $END 

erly 

or 

  

e 

lculation 

 $DET NCORE=15 NACT=12 NELS=12 $END 
 $MCSCF CISTEP=GUGA SOSCF=.T. $END 

are added to the input.  Again, for a description of these keywords, see the 

GAMESS User Manual.  Finally, “GUESS=MOREAD” is used to read in the prop

reordered vectors from the modified-virtual calculation.  MCSCF can be done f

both the singlet and doublet. 

 The final post-Hartree-Fock calculation is Coupled-Cluster (CC).  Similar 

to CI, CC can be done as either a CCSD or CCSD(T) calculation but for reliable 

results CCSD(T) should be done.  CC calculations must be done using Gaussian.

A sample input is shown in Figure 14.  For a description of the Gaussian input 

format, please see the Gaussian manual or website. 

 Once all of the post-Hartree-Fock calculations are done, the geometry 

results are compared and a “best” geometry is selected.  The singlet geometry 

results for all of the levels of calculation using the aug-cc-pVDZ basis set ar

shown in Figure 15.  The highest level and therefore the most reliable ca

is the CCSD(T) which is in relatively good agreement with the DFT results.  This 

confirms that the DFT results are reliable. 
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3.9.  Steps 26-27: Determine Electron Affinities 

 The final steps are to calculate the molecule’s electron affinities.  The 

adiabatic electron affinity is the difference in the anion and neutral ground states.  

This is calculated by subtracting the DFT/aug-cc-pVDZ ground energy of the 

singlet from the doublet.  The vertical electron affinity is the difference in energies 

T 

-

n 

at the anion geometry.  The first step to find this is to perform a single-point DF

energy calculation for the singlet using the ground doublet geometry and the aug

cc-pVDZ basis set.  The DFT/aug-cc-pVDZ ground energy of the doublet is the

subtracted from this energy.  Once this is done, this map point is complete and 

the process is repeated for each molecule.  

1 

4 

7 
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10 
11 

13 
14 
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6 
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20 

2 
3 

5 
6 

9 

12 

%mem=64mw 
%chk=gaussian-CCSDT.chk 

nosym 
 

0··1 

Si··2··r2··1··a1  

1
1

2.277107 
1.204345 

18 61.103436 
19 110.535 

%nproc=4 

#n·ccsd(t)/aug-cc-pVDZ opt 

CCSD-T·for·cyc3_C-Si-Si_O.singlet 
 

C 
Si··1··r1 

O···1··r3··3··a2··2··d1  
 
r1=1.808810 
r2=
r3=
a1=
a2=
d1=180.000000 

Figure 14.  Sample Gaussian 98 d Cluster calculation.  
Calculation shown is CCSD(T)/aug-cc-pVDZ for a Si CO singlet neutral.  Line 
numbers are shown only for illustrative purposes. (“·” represent spaces) 
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2

 82



 

 83

 

Figure 15.  Geometry comparison for Si2CO at several levels of theory.  All 
calculations use aug-cc-pVDZ basis set.  Tan atoms are silicon, orange atoms 
are carbon, and red atoms are oxygen. 

CCSD(T): 2.277 

Theory Length 
HF 2.551 

T/B3LYP: 2.254 
SD(T): 2.259 

Theory Length 
HF 1.876 
MP2: 1.809 
CISD: 1.828 
MCSCF: 1.869 
DFT/B3LYP: 1.810 
CCSD(T): 1.835 

Theory Length 
HF 2.225 
MP2: 2.277 
CISD: 2.236 

DFT/B3LYP: 2.253 

Theory Length 
HF 1.124 
MP2: 1.204 
CISD: 1.157 
MCSCF: 1.143 
DFT/B3LYP: 1.175 
CCSD(T): 1.187 

MP2: 2.116 
CISD: 2.309 
MCSCF: 2.492 
DF
CC

MCSCF: 2.240 
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IV.  Results and Analysis 

 
 

4.1.  Introduction 

 Having explored some theories and methods of computational quantum 

chemistry in Chapter 2 and developed a method of calculation using these 

theories in Chapter 3, we are now prepared to examine the results I have 

obtained.  The method described in the previous chapter was applied to 25 

molecules of the formula CmSinO where 4, ≤nm .  This chapter will begin by 

examining each molecule individually.  For each of these molecules, I will present 

my calculated values for the ground state geometry, multiplicity, and vibrational 

analysis for both the neutral and anion.  I will then present the adiabatic electron 

affinity and vertical electron affinity for the molecule.  Where experimental results 

are available, I will compare my results with these. 

 Each molecule’s section will be accompanied by a figure which will 

graphically show the ground state geometry, bond lengths, and multiplicity for 

both the neutral and anion.  In addition for small molecules, non-scaled arrows 

(or X’s for movement in/out of the paper) are used to show vibrational modes.  

Associated with each arrow is the frequency for that mode.  When room allows, 

the IR intensity is shown in parentheses beneath the frequency in units of 

Debye2/AMU- Å2.  As before, in the figures, oxygen atoms are red, carbon atoms 

are orange, and silicon atoms are tan. 
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 After examining all of the molecules in detail, the next section of this 

chapter will examine several trends and chemical preferences including 

functional groups, geometries, and electron affinities. 

 Finally, the last section presents the results of thermodynamics 

calculations.  Here, I examine the heats of formation for both silicon carbide and 

monoxides of silicon carbide and the enthalpies of reaction for 15 important 

reactions. 

 Throughout this chapter the results presented are, unless otherwise noted, 

calculated with the DFT method using the B3LYP functional and aug-cc-pVDZ 

basis set since this has been shown to produce accurate results for the similar 

CnSim clusters (Duan, 2002).  Energy values produced by GAMESS are output to 

ten decimal places in hartrees.  Bond lengths are output to seven decimal places 

in Å.  While these numbers are exact to this many decimal places given the 

method and basis set, the accuracy to the actual value is significantly less.  For 

the sake of consistency, I will report electron affinities to three significant figures 

and bond lengths to three decimal places.  For vibrational frequencies, I will 

report them to the nearest wavenumber.  Data for all calculations performed is 

included in Appendix C.  In Appendix B are figures showing all isomers that were 

examined for each molecule. 

 

4.2.  O, CO, and SiO 

 The first three molecules I looked at were the simplest, in that there is only 

one isomer per molecule.  The simplest molecule I examined was 0, =nm  which 
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is atomic oxygen.  The ground state multiplicities of oxygen are doublet and 

triplet for the anion and neutral respectively.  Because atoms have no reaction 

coordinates, the adiabatic and vertical electron affinities are the same.  Using 

DFT-B3LYP/aug-cc-pVDZ, I found the oxygen triplet electron affinity to be 1.59 

eV.  The experimental value from the NIST Webbook is 1.46198 ± 0.00043 eV 

(Hotop and Lineberger, 1985: 731). 

 The first molecule I examined was CO, carbon-monoxide.  Like an atom, a 

diatom has only one geometric isomer.  This geometry and the calculated 

parameters are shown in Figure 16.  The neutral bond length differs from 

experiment by about 0.006 Å which is relatively good agreement.  Also shown in 

the figure are the vibrational frequencies.  The frequency of 2184 cm-1 is in good 

agreement with the experimental value of 2169.8 cm-1 (Huber and Herzberg, 

1979).  I calculated the adiabatic electron affinity to be -1.16 eV and the vertical 

electron affinity to be -1.01 eV.  This compares to an experimental adiabatic 

Figure 16.  Calculated geometry and vibrational modes for ground state CO 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2.  Experimental 
data from Huber and Herzberg. 

Bond Length 
(Å) 

Order 

a 1.187 1.945 
a’ 1.134 2.921 
a’ 
Experiment 

1.1283*  

 

Anion 

a 

D0 

1670 cm-1 

(16.912) 

Neutral 

a’ 

S0 

2184 cm-1 

(1.916) 
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value of -1.3261 eV (Refaey and Franklin, 1976: 19).  As expected, this predicts 

that CO- is not stable. 

 The next molecule that I looked at was SiO or silicon-monoxide.  Again, 

this has only one isomer.  The calculated data for this molecule is shown in 

Figure 17.  The calculated bond length for the neutral is off significantly:  over 

0.035 Å.  However, the vibrational frequency of 1189 cm-1  is fairly close to the 

experimental value of 1241.6 cm-1 (Huber and Herzberg, 1979).  The calculated 

adiabatic electron affinity is 0.188 eV.  The vertical electron affinity is 0.245 eV.  

The difference in bond length between the anion and neutral is about 0.05 Å, 

which is reasonably small. 

 

4.3.  CSiO 

 The next molecule examined was CSiO.  For this, I examined all four 

possible isomers: O-centered, C-centered, Si-centered, and a three-membered 

Figure 17.  Calculated geometry and vibrational modes for ground state SiO 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2.  Experimental 
data from Huber and Herzberg. 

Bond Length 
(Å) 

Order 

a 1.593 1.487 
a’ 1.545 2.094 
a’ 
Experiment 

1.5097*  

 

Anion 

a 

D0 

1022 cm-1 

(2.934) 

Neutral 

a’ 

S0 

1189 cm-1 
(1.399) 
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ring.  This molecule was calculated very early in the research using the VTZ 

family of basis sets.  This was done so that the results could be compared with 

the published results of the Schaefer group (Petraco, et al, 2000b).  My ground 

state results for this molecule, which matched Schaefer’s well, are shown in 

Figure 18.  The ground state for both the anion and neutral is a linear 

arrangement with carbon in the middle, which gives it the name silaketenylidene.  

The ground state neutral is a triplet.  This isomer is significantly lower in energy 

than the other isomers.  Using DFT-B3LYP and the aug-cc-pVTZ basis set, the 

C-O vibrational stretch frequency of 1963 cm-1 is in agreement with experimental 

results of 1898.1 cm-1.  However, the 570 cm-1 prediction for the Si-C vibrational 

mode is off of the estimated actual value of 800 cm-1  (Petraco, et al, 2000b).  

Figure 18.  Calculated geometry and vibrational modes for ground state SiCO 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2. 

Bond Length (Å) Order 
a 1.193 1.529 
a’ 1.157 1.986 
b 1.767 2.387 
b’ 1.820 2.047 

a 

1774 cm-1 

(28.844) 
647 cm-1 
(0.0025) 

b 

Anion 

D0 

421 cm-1 
(1.013) 

377 cm-1 
(0.0445) 

X 

 a’ b’ 

Neutral 

T0 

1963 cm-1

(17.453) 
570 cm-1 

(0.0089) 

343 cm-1 

(0.0028) 
X
 



 

 89

The adiabatic electron affinity is calculated to be 1.38 eV.  The vertical electron 

affinity is 1.46 eV.  Again the differences in bond lengths are relatively small. 

 

4.4.  C2O 

 C2O was the next molecule I looked at.  I examined all three possible 

isomers: C-centered, O-centered, and a three-membered ring.  The ground state, 

shown in Figure 19, is a linear isomer with oxygen terminal.  For the ground state 

the multiplicity is triplet.  Other isomers and multiplicities are significantly higher 

in energy.  The calculated vibrational frequencies are extremely close to 

experimental values: 2034 cm-1 vs 1970.86 cm-1 for the asymmetric stretch (Pitts, 

1981), 1086 cm-1 vs 1063 cm-1 for the symmetric stretch (Pitts, 1981), 380 cm-1 

Figure 19.  Calculated geometry and vibrational modes for ground state C2O 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2. 

Bond Length (Å) Order 
a 1.224 1.658 
a’ 1.166 2.083 
b 1.311 1.618 
b’ 1.371 0.128 

Anion 

D0 

a 

1169 cm-1 

(1.512) 1920 cm-1 
(9.365) 

b 

503 cm-1 
(0.0182) 

448 cm-1 
(0.664) 

X 

 

Neutral 

T0 

a’

1086 cm-1

(0.475) 2034 cm-1 
(4.264) 

b’ 

395 cm-1 
(0.785) 

380 cm-1 
(0.774) 

X
 -3 
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vs 379.53 cm-1 (Ohashi, 1993), and 395 cm-1 vs 381 cm-1 (Jacox, 1965) for the 

bent modes.  The calculated adiabatic electron affinity is 2.22 eV.  This is in good 

agreement with the experimental value of 2.289 ± 0.018 eV (Zengin, 1996).  The 

predicted vertical electron affinity is 2.42 eV.  The bond lengths for the neutral 

and anion are significantly different with the C-C bond changing by over 0.2 Å.  

The chemical name for the ground state geometry is ketenylidene. 

 

4.5.  Si2O 

 Next, I looked at Si2O.  Again, I examined all three possible isomers.  As 

shown in Figure 20, the anion and neutral have different ground state 

geometries.  For the neutral, the ground geometry is a linear, symmetric isomer 

with oxygen in the middle and triplet multiplicity.  This is 0.45 eV lower in energy 

than the isomer with oxygen terminal.  For the anion, the linear isomer with 

oxygen terminal is the ground state.  This is 0.92 eV lower in energy than the O-

centered isomer.  For Si-O-Si, the adiabatic electron affinity is 0.609 eV.  The 

vertical electron affinity is 0.616 eV.  For Si-Si-O, the adiabatic electron affinity is 

1.98 eV.  Its vertical electron affinity is 2.05 eV.  Si-O-Si has only small 

differences in geometry between the neutral and anion.  However, Si-Si-O has 

large geometry differences. 
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Figure 20.  Calculated geometry and vibrational modes for ground state Si2O 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2. 

Bond Length (Å) Order 
a 1.582 1.720 
a’ 1.549 2.059 
b 2.208 1.742 
b’ 2.301 1.190 
c 1.701 0.953 
c’ 1.685 1.125 

Anion 

D0 

a 

442 cm-1 

(0.00602) 
1079 cm-1 

(6.056) 

b 

176 cm-1 
(0.00808) 

165 cm-1 
(0.137) 

X 

 

Neutral 

T0 

c’

531 cm-1

(0.00053)
738 cm-1 
(12.827) 

c’ 

223 cm-1 
(0.254) 

X 

 

c c 

231 cm-1 
(0.132) 

X 

 a’ b’ 

372 cm-1

(0.0371)
1171 cm-1

(2.802) 

143 cm-1 
(0.298) 

X
 

509 cm-1

(0.00322)
673 cm-1 
(18.044) 

269 cm-1 
(0.878) 

Low-lying non-ground 
isomer 0.45 eV above 
ground state geometry 

Low-lying non-ground 
isomer 0.92 eV above 
ground state geometry
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4.6.  C2SiO 

 C2SiO was the next molecule examined.  I examined 25 different initial 

isomers.  The ground state isomer was found to be a linear molecule with an 

oxygen and silicon terminal and singlet neutral multiplicity.  Other isomers and 

multiplicities were significantly higher in energy.  Figure 21 shows the ground 

state geometry and vibrational data.  The adiabatic electron affinity is calculated 

to be 0.907 eV and the vertical electron affinity is 1.05 eV.  The geometries of the 

anion and neutral have significant differences in their bond lengths, particularly 

for the C-Si bond which is over 0.06 Å longer for the anion. 

Figure 21.  Calculated geometry and vibrational modes for ground state C2SiO 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Numbers in 
parentheses are vibrational IR intensities in Debye2/AMU- Å2. 

Bond Length (Å) Order 
a 1.208 1.714 
a’ 1.169 0.674 
b 1.282 2.151 
b’ 1.300 -5.655
c 1.751 1.818 
c’ 1.684 4.423 

Anion 

D0 

Neutral 

S0 

a’
656 cm-1 

(0.819) 2202 cm-1

(41.385) 

b’

127 cm-1 
(0.0618) 

X 

 c’ 

614 cm-1

(0.579) 
X
 

1538 cm-1

(1.305) 

a 
591 cm-1 

(2.027) 2108 cm-1 
(53.602) 

b 

135 cm-1 
(0.00195) 

X 

c 

486 cm-1

(0.243) 
X 

 

1397 cm-1 

(0.576) 

604 cm-1 

(0.419) 
118 cm-1 

(0.00364) 
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4.7.  CSi2O 

 Figure 22 shows CSi2O, the next molecule that was calculated.  This 

molecule was calculated at 23 different initial isomer geometries.  The ground 

state geometry for both the neutral and anion was found to be a three-membered 

ring of two silicons and one carbon with a carbonyl oxygen attached to the 

carbon.  A bent-linear isomer of Si-C-Si-O was found to also be relatively low in 

Figure 22.  Calculated geometry and vibrational modes for ground state CSi2O 
neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Both molecules 
are planar. 

Bond Length (Å) Order 
a 1.213 1.786 
a’ 1.175 2.176 
b 1.996 1.055 
b’ 1.810 1.735 
c 2.273 1.485 
c’ 2.253 1.230 
d 1.893 1.335 
d’ 2.254 0.666 

Anion 

D0 

Neutral 

S0 

137 cm-1 X 

 425 cm-1 

611 cm-11878 cm-1

478 cm-1 

477 cm-1

a’ 

b’ 

c’

d’
300 cm-1 

X 

 414 cm-1 

1658 cm-1 

167 cm-1 

a 

b 

c 

d 

422 cm-1 
553 cm-1 
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energy.  For the doublet, this was 0.34 eV higher than the ground isomer.  The 

singlet bent-linear was 0.46 eV higher than the singlet ground isomer.  Other 

isomers and multiplicities were higher in energy.  For the lowest energy 

molecule, I calculated the adiabatic electron affinity to be 1.75 eV and the vertical 

electron affinity to be 2.55 eV.  The adiabatic electron affinity was also calculated 

using CCSD(T) and the aug-cc-pVDZ basis set and found to be 1.60 eV. 

 For the ground state geometries, there are significant differences between 

the doublet and singlet.  The doublet is much more symmetric with the oxygen 

bond only 7° off of symmetric.  For the singlet, the oxygen-carbon bond is nearly 

co-linear with one of the carbon-silicon bonds (177.6°).  This is due, in part, to the 

presence of a strong pi bonding in the singlet.  This is not as strong in the doublet 

due to the extra electron causing the pi bonds to be weaker. 

 These geometries were also optimized with post-Hartree-Fock methods.  

This was done both because of the interesting difference in geometry between 

the neutral and anion and as a small test case to evaluate the accuracy of DFT.  

The singlet was optimized with MP2, CISD, MCSCF, CCSD, and CCSD(T).  The 

doublet was optimized with CCSD(T).  All these calculations produced results 

similar to DFT-B3LYP.  In particular, for the highest level results, CCSD(T), the 

geometry was in good agreement with DFT.  Figure 15 from the previous chapter 

shows the results for the singlet using the various methods. 
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4.8.  C2Si2O 

 For C2Si2O, I started with 167 different initial isomers.  The lowest energy 

isomers for these calculations are shown in Figure 23.  The neutral ground state 

multiplicity is a singlet.  The ground state geometry for both the neutral and anion 

has a three-membered ring of two silicons and one carbon with =C=O attached 

Figure 23.  Calculated geometry and vibrational modes for ground state 
C2Si2O neutral and anion.  Performed with DFT/B3LYP/aug-cc-pVDZ.  Also 
shown is a low-lying non-ground isomer.  All molecules are planar. 

Bond Length (Å) Order 
a 1.196 1.808 
a’ 1.161 1.263 
b 1.295 1.478 
b’ 1.321 -3.417
c 1.921 0.962 
c’ 1.870 1.257 
d 2.302 1.466 
d’ 2.413 1.065 

Anion 

D0 

Neutral 

S0 

531 cm-1

X
 156 cm-1 

1357 cm-1

62 cm-1 
515 cm-1 

a’

b’

c’ 

d’

343 cm-1 

2168 cm-1

c’

X
634 cm-1

689 cm-1

Low-lying non-ground 
isomer 0.19 eV above 
ground state geometry 

Low-lying non-ground 
isomer 0.21 eV above 
ground state geometry

X 

 164 cm-1 

641 cm-1

79 cm-1 
641 cm-1

a 

b 

c 

d 

 365 cm-1 

525 cm-1 

502 cm-1 

c 

X 

2094 cm-1 

419 cm-1 
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to the carbon.  In both cases the geometry is symmetric.  There is also a low 

energy, asymmetric, five-membered ring that is a stable isomer.  This geometry 

has the oxygen situated between the two silicons and the two carbons opposite 

the oxygen.  A view of this isomer is also shown in Figure 23.  For the ground 

state, my calculations show that the adiabatic electron affinity is 1.68 eV and the 

vertical electron affinity is 1.86 eV. 

 

4.9.  C3O 

 Next I looked at C3O.  For this molecule I started with eight different initial 

isomers.  The results of these calculations are shown in Figure 24 and Table 3.  

The neutral ground state multiplicity is a singlet.  The ground state geometries for 

the neutral and anion are significantly different.  The neutral ground state is 

Figure 24.  Calculated geometry for ground state C3O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Both molecules are planar. 

Bond Length (Å) Order 
a 1.216 2.003 
a’ 1.155 2.455 
b 1.372 -0.421 
b’ 1.304 1.796 
c 1.273 0.594 
c’ 1.281 1.877 

Anion 

D0 

Neutral 

S0 

Bonds Angle (°) 
ab 141.1 
bc 167.1 
abc 180.0 

a’ b’ c’ 

a 
b 

c 
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linear with an oxygen terminal.  However, the anion ground state is a bent-linear 

structure with a terminal oxygen.  My calculations show that the bent neutral and 

non-bent anion are not stable isomers.  For the ground state geometries, my 

calculations show that the adiabatic electron affinity is 1.12 eV which is relatively 

close to an experimental value of 1.34 ± 0.15 eV (Oakes and Ellison, 1986: 

6263).  The vertical electron affinity that I obtained is 2.24 eV.  The large 

difference between the electron affinities is due to the very large difference in 

geometry. 

 

4.10.  Si3O 

 I next looked at Si3O.  For this molecule I started with eight different initial 

isomers.  The lowest energy isomers for these calculations are shown in Figure 

25 and Table 4.  The neutral ground state multiplicity is a triplet.  The ground 

state geometry for both the anion and neutral is a three-membered ring of 

silicons with the oxygen bonded to two of the silicons in an epoxide-like fashion.  

Table 3.  Vibrational analysis for C3O.  Calculated with DFT/B3LYP/aug-cc-
pVDZ.  Neutral modes one and three are doubly degenerate. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 208 0.147  1 137 0.150 
2 241 0.126  2   
3 533 0.0856  3 590 0.530 
4 916 0.103  4 962 0.0592 
5 1755 8.802  5 1964 0.700 
6 1957 11.122  6 2331 38.160 
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For the anion, there is also another isomer that is only 0.17 eV higher in energy.  

This is a three-membered ring of silicons with the oxygen attached to one of 

them.  For the ground state, this second isomer is over an electron-volt higher in 

energy.  While these two isomers are very similar, and the reaction coordinate 

Figure 25.  Calculated geometry for ground state Si3O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Also shown is a low-lying non-
ground isomer.  The ground state isomer is non-planar.  The low-lying isomer 
is planar.

Anion 

D0 

Neutral 

T0 

a’ a’ 

b’

c’ 
c’

a a 

b 

c c 

d 

e e 

f 

d’ 

e’ e’ 

f’ 

Bond Length (Å) Order 
a 1.774 0.591 
a’ 1.745 0.736 
b 2.444 0.893 
b’ 2.551 0.594 
c 2.349 1.133 
c’ 2.425 0.943 
d 1.580 1.160 
d’ 1.560 1.377 
e 2.310 0.916 
e’ 2.337 0.834 
f 2.318 1.607 
f’ 2.305 1.600 

Low-lying non-ground 
isomer 0.17 eV above 
ground state geometry 

Low-lying non-ground 
isomer 1.06 eV above 
ground state geometry



 

 99

between them is very simple, my calculations show that they are both stable 

geometries.  For the ground state, my calculations show that the adiabatic 

electron affinity is 2.16 eV and the vertical electron affinity is 2.39 eV.  For the 

second isomer the adiabatic electron affinity is 3.06 eV and the vertical electron 

affinity is 3.07 eV.  The electron affinities of the second isomer are very close due 

to their similar geometries. 

 

4.11.  C3SiO 

 C3SiO, with 47 different initial isomers, was the next molecule I examined.  

The lowest energy isomer for these calculations is shown in Figure 26 and Table 

5.  The neutral ground state multiplicity is a triplet.  The ground state geometries 

for the neutral and anion are fairly similar.  They are both linear molecules with 

the oxygen and silicon terminal, differing only slightly in bond lengths.  All other 

geometries and multiplicities are significantly higher in energy.  For the ground 

Table 4.  Vibrational analysis for Si3O.  Calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 159 0.0516  1 213 0.0865 
2 305 0.389  2 270 0.145 
3 375 0.324  3 328 0.143 
4 451 0.483  4 408 0.379 
5 464 0.0417  5 580 0.0188 
6 725 2.487  6 756 1.822 
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state geometries, my calculations show that the adiabatic electron affinity is 2.01 

eV.  The vertical electron affinity that I obtained is 2.11 eV.  

 

Table 5.  Vibrational analysis for C3SiO.  Calculated with DFT/B3LYP/aug-cc-
pVDZ.  Modes one through three are doubly degenerate. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 114 0.00688  1 105 0.00156 
2 371 0.159  2 335 0.0703 
3 537 0.166  3 495 0.233 
4 428 0.266  4 520 0.204 
5 1122 5.640  5 1105 0.527 
6 1700 1.198  6 1862 0.896 
7 2209 64.970  7 2268 54.909 

 

Figure 26.  Calculated geometry for ground state C3SiO neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ. 

 

Bond Length (Å) Order 
a 1.210 1.668 
a’ 1.174 2.145 
b 1.274 -13.105 
b’ 1.294 1.512 
c 1.326 -12.166 
c’ 1.288 2.742 
d 1.720 4.249 
d’ 1.757 2.661 

Anion 

D0 

Neutral 

T0 

a’ b’ c’ d’ 

a b c d 

•O^D=0=^ 
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4.12.  CSi3O 

 For the CSi3O molecule, I started with 47 different initial isomers.  The 

lowest energy isomer for these calculations is shown in Figure 27 and Table 6.  

The neutral ground state multiplicity is a singlet.  The ground state geometries for 

the neutral and anion are similar geometries but have significantly differing bond 

lengths.  They are both four-membered rings with the silicons opposite each 

other and only weakly bonded, the oxygen between the two silicons, a carbon 

Figure 27.  Calculated geometry for ground state CSi3O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Singlet is planar.  Doublet is non-
planar with a planar four-membered ring. 

Bond Length (Å) Order 
a 1.753 1.921 
a’ 1.713 2.386 
b 1.896 1.048 
b’ 1.920 1.049 
c 2.630 0.212 
c’ 2.576 0.228 
d 1.767 0.667 
d’ 1.739 0.788 

Anion 

D0 

Neutral 

S0 

a’ 

b’ 
b’ 

c’ 
d’

a 

b b 

c 
d 

d d’ 
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between the two silicons and the final silicon outside the ring and bonded to the 

carbon.  All other geometries and multiplicities are significantly higher in energy.  

For the ground state geometries, my calculations show that the adiabatic electron 

affinity is 1.06 eV.  The vertical electron affinity that I obtained is 1.38 eV.  Once 

again the relatively large difference in electron affinities is due to significant 

differences in bond lengths. 

 

4.13.  C3Si2O 

 Next, I looked at C3Si2O.  For this molecule, I started with 195 different 

initial isomers.  The lowest energy isomers for these calculations are shown in 

Figure 28 and Table 7.  The neutral ground state multiplicity is a singlet.  The 

ground state geometries for the neutral and anion are different isomers.  For the 

doublet, the ground state is a four-membered ring with oxygen between the two 

silicons, a carbon opposite the oxygen, and the remaining two carbons linearly 

Table 6.  Vibrational analysis for CSi3O.  Calculated with DFT/B3LYP/aug-cc-
pVDZ.  Mode five is doubly degenerate. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 74 0.158  1 74 0.00013 
2 102 0.0870  2 132 0.00363 
3 223 0.260  3 233 0.0319 
4 428 0.0293  4 379 0.0803 
5 549 0.177  5 474 0.572 
6 622 0.619  6 728 6.500 
7 701 0.987  7 759 2.778 
8 938 0.804  8 1161 8.897 
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Figure 28.  Calculated geometry for ground state C3Si2O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Since the ground state isomers 
differ, the corresponding isomer is also shown.  Another low-lying non-ground 
isomer is also shown.  Singlet four-membered ring isomer is non-planar with a 
planar ring.  All other isomers shown are planar.   
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attached to the carbon within the ring.  The ground state geometry for the neutral 

has a linear body of O-C-C-C-Si which is bent at the center carbon, and the 

remaining silicon attached to both the second and third carbon.  The anion 

isomer which corresponds to the neutral ground geometry is 0.22 eV lower than 

the ground.  There is also a third anion isomer which is low-lying in energy.  This 

a symmetric, five-membered ring with oxygen between two silicons, two carbons 

opposite the oxygen, and the remaining carbon attached to both the carbons in 

the ring.  This isomer is 0.27 eV above the doublet ground state.  The 

corresponding singlet isomer is the second lowest neutral geometry, 1.17 eV 

above the neutral ground state.  The neutral isomer which corresponds to the 

anion ground geometry is the third lowest singlet state at 1.57 eV above ground.  

For the four-membered ring, anion ground state, my calculations show that the 

Table 7.  Vibrational analysis for C3Si2O.  Calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 80 0.00199  1 94 0.0181 
2 126 0.174  2 116 0.0151 
3 174 0.105  3 233 0.0157 
4 371 0.00396  4 350 0.0309 
5 430 0.322  5 373 0.692 
6 445 0.0100  6 444 0.283 
7 463 0.223  7 507 0.755 
8 525 0.120  8 653 1.268 
9 706 3.184  9 695 0.709 
10 741 2.417  10 1089 0.391 
11 1238 0.156  11 1597 0.157 
12 1918 8.206  12 2213 52.848 
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adiabatic electron affinity is 2.95 eV and the vertical electron affinity is 3.04 eV.  

For the neutral ground geometry isomer the adiabatic electron affinity is 1.19 eV 

and the vertical electron affinity is 1.48 eV.  Finally, for the five-membered ring, 

the adiabatic electron affinity is 2.29 eV and the vertical electron affinity is 2.38 

eV 

 

4.14.  C2Si3O 

 The next molecule examined was C2Si3O.  For this, I started with 195 

different initial isomer geometries.  The lowest energy isomer for these 

calculations is shown in Figure 29 and Table 8.  The neutral ground state 

multiplicity is a singlet.  The ground state geometries for the neutral and anion 

are similar geometries but have moderately differing bond lengths.  They are 

both planar five-membered rings with the oxygen between two silicons and the 

carbons together opposite the oxygen.  The carbons together with the third 

silicon form a planar three-membered ring.  All other geometries and multiplicities 

are significantly higher in energy.  For the ground state geometries, my 

calculations show that the adiabatic electron affinity is 1.90 eV.  The vertical 

electron affinity that I obtained is 1.99 eV. 
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Table 8.  Vibrational analysis for C2Si3O.  Calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 144 0.00628  1 118 0.00227 
2 246 0.0185  2 145 0.0365 
3 257 0.122  3 225 0.00010 
4 336 0.00001  4 238 0.00668 
5 389 0.0732  5 378 0.0150 
6 437 0.490  6 412 0.916 
7 449 0.427  7 453 1.361 
8 588 0.725  8 633 1.682 
9 608 1.133  9 764 4.737 
10 852 2.305  10 842 3.825 
11 931 3.558  11 925 3.403 
12 1223 0.0500  12 1402 1.846 

Figure 29.  Calculated geometry for ground state C2Si3O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Both molecules are planar. 
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4.15.  C3Si3O 

 For the C3Si3O molecule, I started with 1315 different initial isomer 

geometries.  The lowest energy isomer for these calculations is shown in Figure 

30 and Table 9.  The neutral ground state multiplicity is a singlet.  The ground 

state geometries for the neutral and anion are very similar geometries differing 

only slightly in their bond lengths.  They both have four-membered rings with the 

oxygen between two silicons and a carbon opposite the oxygen; the remaining 

two carbons are bonded linearly to the carbon in the ring; and the third silicon 

terminating the linear carbon branch.  All other geometries and multiplicities are 

significantly higher in energy.  For the ground state geometries, my calculations 

Figure 30.  Calculated geometry for ground state C3Si3O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Both molecules are planar. 
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show that the adiabatic electron affinity is 1.58 eV.  The vertical electron affinity 

that I obtained is 1.69 eV. 

 

4.16.  C4O 

 Next, I looked at C4O.  For this molecule, I started with 17 different initial 

isomers.  The lowest energy isomer for these calculations is shown in Figure 31 

and Table 10.  The neutral ground state multiplicity is a triplet.  The ground state 

geometries for the neutral and anion are similar geometries but have moderately 

differing bond lengths.  They are both linear molecules with a terminal oxygen.  

All other geometries and multiplicities are significantly higher in energy.  For the 

Table 9.  Vibrational analysis for C3Si3O, calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 59 0.00075  1 59 0.0745 
2 63 0.0639  2 60 0.00730 
3 89 0.0568  3 149 1.032 
4 190 0.0109  4 188 0.154 
5 249 0.0621  5 211 0.0343 
6 322 0.0481  6 322 0.579 
7 442 0.470  7 435 0.379 
8 475 0.0135  8 458 0.873 
9 476 0.216  9 547 0.157 
10 528 0.00219  10 606 0.00302 
11 697 3.388  11 743 16.020 
12 735 1.965  12 753 6.747 
13 742 3.290  13 789 4.359 
14 1380 1.863  14 1487 0.502 
15 1833 9.704  15 1990 66.335 
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ground state geometries, my calculations show that the adiabatic electron affinity 

is 2.87 eV, which is significantly higher than the experimental value of 2.05 ± 0.15  

(Oakes and Ellison, 1986: 6263).  The vertical electron affinity that I obtained is 

3.05 eV.  

 

4.17.  Si4O 

 Figure 32 and Table 11 show the lowest energy isomers for Si4O.  For this 

molecule, I started with 17 different initial isomers.  The neutral ground state 

Figure 31.  Calculated geometry for ground state C4O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ. 
 

Bond Length (Å) Order 
a 1.211 1.868 
a’ 1.169 2.241 
b 1.267 -1.684
b’ 1.293 -1.196
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d 1.284 0.245 
d’ 1.317 -0.217
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multiplicity is a triplet.  The ground state geometries for the neutral and anion are 

both five-membered rings.  For both, there are two conformations that are very 

close in energy.  For the doublet, the ground state is a planar, asymmetric 

conformation.  The second doublet conformation, only 0.11 eV above the ground 

isomer, has three silicons which form a central three-membered ring; the oxygen 

is bonded to two of these and bent up from the plane of the three-membered ring 

by about 10°; and the fourth silicon is bent up from the three-membered ring by 

about 75°.  The ground state singlet is similar to the ground state doublet except 

that one of the silicons opposite the oxygen is bent about 18° up from the oxygen 

and silicons next to it and the silicon furthest from the oxygen is bent about 21.5° 

up from the oxygen and the silicons next to it.  The second singlet conformation 

is a symmetric ring with the silicons not bonded to the oxygen having dihedral 

angles of +21.3° and -21.3°.  All other geometries and multiplicities are 

significantly higher in energy.  For the ground state geometries, my calculations 

Table 10.  Vibrational analysis for C4O, calculated with DFT/B3LYP/aug-cc-
pVDZ.  Modes one through three are doubly degenerate. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 132 0.184  1 131 0.165 
2 382 0.104  2 351 0.127 
3 492 0.0942  3 494 0.258 
4 751 0.211  4 771 0.126 
5 1458 2.973  5 1460 0.472 
6 1940 8.881  6 1979 8.969 
7 2260 21.315  7 2304 20.427 
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Figure 32.  Calculated geometry for ground state Si4O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Also shown is a second conformal 
isomer that is low-lying in energy.  The doublet ground state is planar.  All 
others are non-planar. 
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show that the adiabatic electron affinity is 1.89 eV.  The vertical electron affinity 

that I obtained is 2.00 eV.  For the low-lying conformation, my calculations show 

that the adiabatic electron affinity is 2.00 eV and the vertical electron affinity is 

2.44 eV. 

 

4.18.  C4SiO 

 C4SiO, with 128 different initial isomers, was the next molecule I looked at.  

The lowest energy isomer for these calculations is shown in Figure 33 and Table 

12.  The neutral ground state multiplicity is a singlet.  The ground state 

geometries for the neutral and anion are both linear with a terminal oxygen and 

silicon.  The bond lengths are roughly similar, as well.  All other geometries and 

multiplicities are significantly higher in energy.  For the ground state geometries, 

Table 11.  Vibrational analysis for Si4O, calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 96 0.0442  1 78 0.0323 
2 183 0.287  2 132 0.0378 
3 189 0.00928  3 155 0.155 
4 213 0.326  4 224 0.0821 
5 317 0.0894  5 293 0.649 
6 339 0.206  6 330 0.442 
7 499 0.0176  7 526 0.572 
8 621 0.00664  8 624 1.936 
9 661 1.401  9 752 0.438 
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Table 12.  Vibrational analysis for C4SiO, calculated with DFT/B3LYP/aug-cc-
pVDZ.  Modes one through four are doubly degenerate. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 80 0.107  1 67 0.0142 
2 196 0.00428  2 153 0.0370 
3 434 0.196  3 487 0.377 
4 529 0.263  4 548 0.230 
5 469 1.015  5 503 0.604 
6 939 0.310  6 1025 0.424 
7 1540 12.184  7 1641 12.722 
8 1977 4.534  8 2106 8.883 
9 2249 95.946  9 2312 109.535 

Figure 33.  Calculated geometry for ground state C4SiO neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ. 
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my calculations show that the adiabatic electron affinity is 1.61 eV.  The vertical 

electron affinity that I obtained is 1.73 eV. 

 

4.19.  CSi4O 

 I next looked at CSi4O.  For this molecule I started with 128 different initial 

isomer geometries.  The lowest energy isomer for these calculations is shown in 

Figure 34 and Table 13.  The neutral ground state multiplicity is a singlet.  The 

ground state geometries are similar shapes but with several very different bond 

lengths.  They are both a combination of a five-membered ring and a three-

membered ring.  The five-membered ring has an oxygen at its top between two 

silicons.  At the bottom are a silicon and carbon which, together with the final 

silicon, are also part of the three-membered ring.  All other geometries and 

multiplicities are significantly higher in energy.  For the ground state geometries, 

my calculations show that the adiabatic electron affinity is 2.08 eV.  The vertical 

electron affinity that I obtained is 2.23 eV. 

 

4.20.  C4Si2O 

 Next I looked at C4Si2O.  For this molecule I started with 28 different initial 

isomers.  The isomers chosen as initial points are not exhaustive, but were 

chosen based upon all previous results.  The lowest energy isomer for these 

calculations is shown in Figure 35 and Table 14.  The neutral ground state 

multiplicity is a singlet.  The ground state geometries are similar shapes but with 

several very different bond lengths.  They are both four-membered rings with the 
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oxygen between two silicons and a carbon opposite the oxygen; the remaining 

three carbons are bonded linearly to the carbon in the ring.  The singlet is planar.  

However, the oxygen in the doublet is bent up 35° from the plane of the ring.  All 

other geometries and multiplicities are significantly higher in energy.  For the 

ground state geometries, my calculations show that the adiabatic electron affinity 

Figure 34.  Calculated geometry for ground state CSi4O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  The doublet molecule is planar.  
The singlet molecule is non-planar. 
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Table 13.  Vibrational analysis for CSi4O, calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 74 0.00137  1 29 0.0109 
2 181 0.00290  2 82 0.00103 
3 185 0.0445  3 156 0.0656 
4 210 0.00686  4 185 0.0120 
5 253 0.0376  5 234 0.151 
6 340 0.136  6 318 0.226 
7 387 0.791  7 389 1.433 
8 456 0.640  8 465 0.709 
9 589 1.014  9 569 1.228 
10 625 0.344  10 706 0.650 
11 699 0.193  11 805 1.191 
12 1059 4.693  12 1041 6.271 

Figure 35.  Calculated geometry for ground state C4Si2O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  The doublet is non-planar.  The 
singlet is non-planar with a planar ring. 
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is 1.89 eV.  The vertical electron affinity that I obtained is 2.26 eV.  

 

4.21.  C2Si4O 

 For C2Si4O, I started with 170 different initial isomers.  The lowest energy 

isomers for these calculations are shown in Figure 36 and Table 15.  The neutral 

ground state multiplicity is a singlet.  The ground state geometries for the neutral 

and anion are very similar geometries differing only slightly in their bond lengths.  

They are both five-membered rings with the oxygen between two silicons and the 

carbons together opposite the oxygen.  The carbons, together with the remaining 

two silicons, form a four-membered ring with one silicon 30° out of the five-

Table 14.  Vibrational analysis for C4Si2O, calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 76 0.0350  1 77 0.144 
2 91 0.147  2 84 0.122 
3 157 0.0618  3 139 0.0110 
4 189 0.373  4 184 0.0290 
5 257 0.0596  5 219 0.0284 
6 344 0.775  6 367 0.700 
7 363 0.506  7 391 0.562 
8 377 0.641  8 459 1.216 
9 421 1.392  9 465 0.113 
10 478 0.223  10 564 0.177 
11 565 0.112  11 752 7.095 
12 736 2.686  12 761 2.791 
13 1013 0.176  13 1065 2.333 
14 1790 4.139  14 1828 3.196 
15 2005 21.599  15 2149 66.400 
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Figure 36.  Calculated geometry for ground state C2Si4O neutral and anion.  
Performed with DFT/B3LYP/aug-cc-pVDZ.  Several other low-lying non-
ground isomers are also shown.  Of particular note is the very low-lying non-
ground singlet isomer at 0.06 eV above ground.  Ground state isomers are 
non-planar.  All low-lying isomers are planar. 
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membered ring’s plane and the other 30° into the plane.  There is also another 

very low-lying singlet isomer only 0.059 eV above the ground.  This has a five 

membered ring like the ground state, but with one silicon asymmetrically bonded 

to the two carbons and the other bonded to a carbon and silicon of the ring.  

Another low-lying singlet, at 0.36 eV above ground, is a symmetric five 

membered ring like the ground state, but with the two remaining silicons bonded 

to a carbon and silicon on either side of the ring.  The reaction coordinate 

connecting these three isomers is very simple, but at the B3LYP/aug-cc-pVDZ 

level of theory, they are all stable states.  Neither of the two low-lying, non-

ground singlet states appears to have corresponding stable anion isomers.  

There is a low-lying anion isomer 0.35 eV above the ground state.  This is a six 

Table 15.  Vibrational analysis for C2Si4O, calculated with DFT/B3LYP/aug-cc-
pVDZ. 

Anion Ground  Neutral Ground 
Mode Frequency 

(cm-1) 
IR Intensity 

(Debye2/ 
AMU- Å2) 

 Mode Frequency 
(cm-1) 

IR Intensity 
(Debye2/ 
AMU- Å2) 

1 80 0.0708  1 79 0.0487 
2 86 0.0690  2 103 0.0177 
3 178 0.184  3 175 0.00224 
4 241 0.00416  4 192 0.00409 
5 250 0.0107  5 249 0.244 
6 366 0.223  6 346 0.00187 
7 378 0.138  7 372 0.166 
8 403 0.0619  8 419 0.436 
9 488 1.454  9 507 1.267 
10 491 1.026  10 530 1.201 
11 608 1.066  11 628 1.428 
12 631 0.107  12 754 2.988 
13 784 0.305  13 824 0.915 
14 914 1.827  14 954 2.464 
15 1097 0.531  15 1148 5.037 
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membered ring with the oxygen between two silicons; one of the silicons is 

bonded to another silicon; the two carbons are opposite the oxygen; and the 

remaining silicon is outside the ring bonded to the carbon nearer the oxygen.  

This isomer does not appear to have a corresponding stable neutral isomer.  For 

the ground state geometries, my calculations show that the adiabatic electron 

affinity is 1.84 eV.  The vertical electron affinity that I obtained is 1.95 eV.  I also 

obtained a vertical electron affinity for the six-membered ring of 2.16 eV. 

 

4.22.  Functional Group Analysis 

 Now that we have examined each of the molecules in detail, we are 

prepared to examine the overall picture.  We start with Figures 40 and 41.  

Respectively, these are the complete maps for the ground state isomers of the 

neutral and anion. 

 By looking at these maps, we can determine what bonds and functional 

groups are preferred.  First we look at oxygen placement.  Among stable, low-

energy isomers, only three oxygen configurations exist.  The rarest of these is a 

sila-ketene, where the oxygen is terminally bonded to a silicon ( OSiR −− &&& ).  

Other than silicon-monoxide, where it is the only option, this appears in a ground 

state isomer only once: for the Si2O anion.  For all other molecules, this is a high 

energy structure. 

 The next most common oxygen configuration is a ketene, where the 

oxygen is terminally bonded to a carbon ( OCR == ).  This is the most stable 

bond for molecules with zero or one silicon.  It is also seen as a ground state in 
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some molecules with two silicons and three or fewer carbons.  For other 

molecules, this is a stable structure, but tends to be relatively high in energy.   

 The most common oxygen bond is a disilyl-ether, where the oxygen is 

bonded between two silicon atoms ( 'RSiOSiR −−−− ).  For molecules with three 

Figure 37.  Neutral ground state isomers for CmSinO, 4, ≤nm  with 
DFT/B3LYP/aug-cc-pVDZ 
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or more silicons, this is the most stable and only ground state configuration.  The 

SiOSi −−  three atom group occurs in three primary configurations.  First, is a 

linear configuration which occurs when one of the silicon atoms is terminal.  

While stable, this is not generally a very low-energy structure.  The next most 

Figure 38.  Anion ground state isomers for CmSinO, 4, ≤nm  with 
DFT/B3LYP/aug-cc-pVDZ.  All anion ground states have doublet multiplicity. 
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common configuration is as part of a four-membered ring.  In these isomers, 

SiOSi −−  has a characteristic angle of about 95°.  This is usually a ground or 

low-lying configuration for molecules with two or three silicons.  The final and 

most common configuration is as part of a five-membered ring.  In five-

membered ring isomers, SiOSi −−  has a characteristic angle of about 125°.  For 

molecules with three or more silicons this is generally a stable and very low-lying 

isomer or the ground state. 

 Stable isomers with other oxygen configurations such as ethers 

( 'ROR −− ), silyl-ethers ( 'ROSiR −−− ), ketones ( OC => ), and strange 

configurations such as an oxygen with three separate bonding sites exist, but 

these are rare and always very high in energy.  Calculations with an initial ether 

or silyl-ether configuration almost always dissociate and form a ketene. 

 Next, we can look at bonds not involving oxygen.  Looking at the ground 

state isomers and other low-lying isomers that have been shown throughout this 

chapter, it can quickly be seen that carbon atoms are never separated from each 

other in low-lying isomers.  In addition, carbon atoms preferentially form linear 

chains over bent or cyclic structures.  With the single exception of the bent C3O 

doublet, the ground state of molecules with zero or one silicon is always a 

ketene, with the silicon, if present, terminal on the end opposite the oxygen.  For 

molecules with two or more silicons, the carbon atoms tend to form linear chains 

terminated on one end by silicon-oxygen cyclic structure. 

 Looking at the ground state structures, we can also see that silicons tend 

to avoid bonding with other silicons.  Silicon generally only bonds to another 
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silicon when the silicon to carbon ratio is high enough that it must, or when it 

forms a weak bond across a cyclic structure. 

 In addition to individual atom trends, there are also several larger scale 

functional trends among ground state isomers.  As previously stated, silicon poor 

molecules tend be linear with an oxygen and silicon on opposite ends of a carbon 

chain.  In molecules with two or more silicons, there are two particularly common 

functional groups.  The first is a four membered ring with the oxygen between 

two silicons and a carbon opposite the oxygen.  In these molecules, other atoms 

are bonded to the carbon.  The second is a five-membered ring with the oxygen 

between two silicons and two carbons opposite the oxygen.  In these molecules 

other atoms bond to the carbons or sometimes bridge-bond to a carbon and 

silicon. 

 Another point of analysis that can be examined is bond lengths.  For this I 

used all of the bonds tabulated in this chapter’s figures and found the average 

bond length for each bond combination.  For carbon-oxygen bonds, the span of 

bond lengths is relatively narrow, from 1.155 Å to 1.244 Å.  The average is 1.187 

Å.  Silicon-oxygen-silicon bonds had a bit more span varying from 1.677 Å to 

1.781 Å and averaging 1.739 Å.  There were only four silicon-oxygen bonds, but 

these averaged 1.568 Å.  Carbon-carbon bonds had a wider variance of lengths.  

They varied from 1.267 Å to 1.447 Å and averaged 1.321 Å.  For these, the 

length was very dependent on second-nearest neighbors.  When the second 

nearest neighbors were silicons, the carbon-carbon bonds were longer than if the 

second nearest neighbors were carbons or oxygens.  Carbon-silicon bonds had a 
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very large variance of from 1.684 Å to 2.254 Å.  They averaged 1.869 Å.  Silicon-

silicon bonds also had a very large span.  They varied from 2.184 Å up to 2.765 

Å.  The average silicon-silicon bond was 2.418 Å. 

 Also important, is the arrangement of electrons in the ground state neutral 

isomers.  This is what determines the multiplicity.  There are two separate 

multiplicity trends for two types of molecules.  The first is for nonlinear molecules.  

These are, with the single exception of Si3O, singlets.  The second is for linear 

molecules.  These depend on the number of atoms.  If the total number of atoms 

is odd, the molecule is a ground state triplet.  If the total number of atoms is 

even, the molecule is a ground state singlet. 

 Finally, we can also look at electron affinities for trends.  Tables 16 and 17 

show all of the adiabatic and vertical electron affinities, respectively.  While there 

are no trends in the electron affinities, most of them are in a fairly small range.  

Most of the adiabatic electron affinities are between 0.9 eV and 2.25 eV, while 

most of the vertical electron affinities are between 1.0 eV and 2.55 eV.  

 

4.23.  Vibrational Analysis Accuracy 

 Before presenting the final set of thermodynamic results, we must first 

consider the accuracy of the vibrational analysis.  This must be done because 

thermodynamics properties are derived from the vibrational states through a 

partition function.  The vibrational frequencies for which experimental data is 

available are shown in Table 18.  As can be seen, the calculated values are 

consistently two to four percent high.  According to Dr. Xiafeng Duan, it is 
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standard practice to multiply B3LYP vibrational frequencies by a factor of 0.97 to 

obtain accurate values.  If this is done to the values that I calculated, the 

corrected frequencies match experiment very closely. 

 

4.24.  Thermodynamics 

 The final set of results we can obtain from the calculations performed is 

some thermodynamics properties.  When a Hessian calculation is performed by 

GAMESS, along with the vibrational modes, it also outputs the standard enthalpy 

(H0), Gibb’s standard energy (G0), heat capacities (Cv, Cp), and standard entropy  

(S0).  These calculations were done using DFT with the B3LYP functional and 

Table 16.  Adiabatic electron affinities for CmSinO, 4, ≤nm  calculated with 
DFT/B3LYP/aug-cc-pVDZ.  For cells with two values, top value is for anion 
ground geometry to corresponding neutral isomer, bottom value is for neutral 
ground geometry to corresponding anion isomer. 

 Number of silicon atoms 
eV 0 1 2 3 4 

1.98 0 1.59 0.188 0.609 2.16 1.89 

1 -1.16 1.38 1.75 1.06 2.08 

2 2.22 0.907 1.68 1.90 1.84 

2.95 3 1.12 2.01 1.19 1.58  

N
um

be
r o

f c
ar

bo
n 

at
om

s 

4 2.87 1.61 1.89   
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the aug-cc-pVDZ basis set.  The values obtained assume an ideal gas partition 

function at 298.15 K.  The complete data obtained from these calculations are 

shown in Appendix F.  Here I will focus on two important quantities that can be 

obtained from this data:  heat of formation (∆fH0
g) and heat of reaction (∆rH0

g). 

 Heat of formation is “the heat evolved when a substance is formed from 

the elements in their standard states” (Brown, LeMay, and Bursten, 1991: G-8).  

The reactions of formation for silicon carbide monoxides and silicon carbide are 

shown in Equations 162 and 163 respectively. 

 OSiCOmSinC mn→++  (162) 

Table 17.  Vertical electron affinities for CmSinO, 4, ≤nm  calculated with 
DFT/B3LYP/aug-cc-pVDZ.  For cells with two values, top value is for anion 
ground geometry to corresponding neutral isomer, bottom value is for neutral 
ground geometry to corresponding anion isomer. 

 Number of silicon atoms 
eV 0 1 2 3 4 

2.05 0 1.59 0.245 0.616 2.39 2.00 

1 -1.01 1.46 2.55 1.38 2.23 

2 2.42 1.05 1.86 1.99 1.95 

3.04 3 2.24 2.11 1.48 1.69  

N
um

be
r o

f c
ar

bo
n 

at
om

s 

4 3.05 1.73 2.26   
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 mnSiCmSinC →+  (163) 

The calculated values of the heats of formation for silicon carbide monoxides and 

silicon carbide are shown in Tables 19 and 20 respectively.  Available 

experimental values are shown in parentheses. 

 If those heats of formation that have experimental values are compared to 

the calculated values, it can be seen that, except for the atoms and diatoms, the 

calculated values are consistently seven to twelve percent high.  This is due to 

the vibrational frequencies being consistently high.  The spread of accuracy is 

larger here than it was in the vibrational frequencies because of the complicated 

exponentials in the ideal gas partition function. 

Table 18.  Comparison of calculated vibrational frequencies with experimental 
values.  Calculated values were obtained using DFT/B3LYP/aug-cc-pVDZ.  
Experimental values are from webbook.nist.gov database. 
 

 

Molecule mode 
Calculated 
Frequency 

(cm-1) 

Experimental 
Frequency 

(cm-1) 

Relative 
Error 
(%) 

CO OC stretch 2184 2169.8 +0.65 
CCO OC stretch 2034 1970.86 +2.77 
CCO CC stretch 1086 1063 +2.16 
CCO bend 387 379.53 +2.10 
SiCO OC stretch 1963 1898.1 +3.42 

CCCO C2-C3 stretch 962 939.1 +2.44 
CCCO C1-C2 stretch 1964 1907.0 +2.99 
CCCO C2-C3 asy stretch 2331 2243 +3.92 
CCCO C3 bend 590 580 +1.72 

CCCCO C2-C4 stretch 771 774.8 -0.49 
CCCCO O-C3 stretch 1460 1431.5 +1.99 
CCCCO C3-C4 stretch 2304 2221.7 +3.70 
CCCCO O-C2 asy stretch 1979 1922.7 +2.93 
CCCCO C4 bend 494 484.0 +2.07 
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Table 20.  Ideal gas phase enthalpies of formation for CmSin neutral ground 
states at 298.15K calculated with DFT/B3LYP/aug-cc-pVDZ.  Experimental 
values from webbook.nist.gov in parentheses.  All values are in kJ/mol. 
 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

0   449.2 
(450.0) 

590.9 
(589.94) 

685.9 
(636.0) 729.6 

1 716.7 
(716.68) 

765.5 
(719.65) 

601.6 
(535.55) 700.7 866.7 

2 978.2 
(837.74) 

683.8 
(615.05) 771.8 850.2 939.6 

3  
(820.06) 891.7 810.2 998.1 1202 

N
um

be
r o

f c
ar

bo
n 

at
om

s 

4 1036 
(970.69) 912.1 983.1 1168 1313 

 

Table 19.  Ideal gas phase enthalpies of formation for CmSinO neutral ground 
states at 298.15K calculated with DFT/B3LYP/aug-cc-pVDZ.  Experimental 
values from webbook.nist.gov in parentheses.  All values are in kJ/mol. 
 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

0 248.8 
(249.18) 

-46.62 
(-100.42) 248.1 362.6 487.2 

1 -92.51 
(-110.53) 204.8 351.5 375.4 569.6 

2 365.1 
(286.60) 220.4 402.9 526.8 671.2 

3 329.9 452.8 546.3 581.2  

N
um

be
r o

f c
ar

bo
n 

at
om

s 

4 576.9 474.3 678.0   
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 The second set of thermodynamics values we can obtain are reaction 

enthalpies.  There are 15 important reactions I have chosen to examine.  The 

first three reactions are shown in Table 21 and are for the atomic oxidation of 

silicon carbide.  Table 22 shows six reactions for the molecular oxidation of 

silicon carbide.  These reactions show that, for atomic oxidation, the formation of 

a monoxide of silicon carbide is the preferred reaction.  Formation of carbon 

monoxide or oxidation with loss of a silicon is endothermic.  For molecular 

Table 21.  Ideal gas phase reaction enthalpies for atomic oxidation of CmSin 
neutral ground states at 298.15K calculated with DFT/B3LYP/aug-cc-pVDZ.  
All values are in kJ/mol. 
 

Top value:  CnSim + O → CnSimO 
Middle value:  CnSim + O → Cn-1Sim + CO 
Bottom value:  CnSim + O → CnSim-1O + Si 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

0.0 -738 -584 -563 -485 
     0 
 738 151 330 321 

-1045 -796 -487 -566 -539 
0.0 146 139 211 62.8 1 

 146 297 423 252 
-852 -693 -603 -563 -508 
249 436 92.8 73.4 95.1 2 

 582 263 325 300 
 -671 -502 -655  

542 122 120 167  3 
 321 351 412  

-690 -669 -545   
 307 35.0   N

um
be

r o
f c

ar
bo

n 
at

om
s 

4 
 542 249   

LEGEND: 
Most favored reaction 

Second most favored reaction 
Third most favored reaction 

Not all data available 
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Table 22.  Ideal gas phase reaction enthalpies for molecular oxidation of CmSin 
neutral ground states at 298.15K calculated with DFT/B3LYP/aug-cc-pVDZ.  
All values are in kJ/mol. 
 

Top value:  CnSim + ½O2 → CnSimO 
Middle value:  CnSim + ½O2 → Cn-1Sim + CO 
Bottom value:  CnSim + ½O2 → CnSim-1O + Si 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

0 252 
 

-486 
 

252 

-332 
 

-181 

-311 
 

18.3 

-233 
 

88.8 

1 -793 
-793 

-544 
-398 
-398 

-235 
-96.3 
62.2 

-314 
-103 
109 

-287 
-224 
-35.2 

2 -600 
-351 

-442 
-5.21 
141 

-351 
-258 
-87.8 

-311 
-238 
13.8 

-256 
-161 
43.9 

3  
 

-419 
-297 
-98.5 

-250 
-130 
101.5 

-403 
-236 
8.86 

 
-351 
-163 

N
um

be
r o

f c
ar

bo
n 

at
om

s 

4 
-438 

 
 

-417 
-110 
125 

-293 
-258 
-44.2 

 
-255 
-31.3 

 
-197 

 
LEGEND: 

Most favored reaction 
Second most favored reaction 

Third most favored reaction 
Not all data available 

Top value:  CnSim + O2 → CnSimO + O 
Middle value:  CnSim + O2 → Cn-1Sim + CO2 
Bottom value:  CnSim + O2 → CnSim-1 + SiO2 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

0 
504 

 
 

-234 
-614 

 

-80.3 
-310 

 

-59.5 
-264 

 

19.3 
-214 

 

1 -541 
-1075 

-292 
-680 
-220 

16.7 
-378 
-7.42 

-61.9 
-384 
-270 

-34.9 
-506 
-336 

2 -348 
-633 

-190 
-287 
126 

-99.2 
-540 
-260 

-59.1 
-520 
-249 

-4.50 
-443 
-259 

3  
 

-167 
-579 

2.18 
-412 
-93.2 

-151 
-518 
-356 

 
-633 
-374 N

um
be

r o
f c

ar
bo

n 
at

om
s 

4 
-186 

 
 

-165 
-392 
-51.4 

-41.4 
-540 
-241 

 
-537 
-352 

 
-478 
-316 
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oxidation, the preferred reaction is to form carbon dioxide.  Formation of silicon 

dioxide is also usually preferred over forming a monoxide of silicon carbide which 

is usually only slightly endothermic.  This tells us that in order to create 

monoxides of silicon carbide from silicon carbide, the oxygen should be atomized 

before the reaction takes place. 

 The second type of reaction I looked at was dissociation.  First, I looked at 

single-atom dissociation of silicon carbide.  The two possible reaction routes are 

shown in Table 23.  These reactions are all very endothermic.  This tells us that 

silicon carbide is stable at standard temperatures. 

Table 23.  Ideal gas reaction enthalpies for one-atom dissociation of  
CmSin neutral ground states at 298.15K calculated with DFT/B3LYP/aug-cc-
pVDZ.  All values are in kJ/mol. 
 

Top value:  CnSim → Cn-1Sim + C 
Bottom value:  CnSim → CnSim-1 + Si 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

     0  0 305 351 400 
0 395 697 690 569 1  395 607 344 279 

442 788 535 555 632 2  740 354 365 355 
 496 663 557 442 3   521 259 240 
 683 535 538 596 N

um
be

r o
f c

ar
bo

n 
at

om
s 

4  563 373 262 298 
LEGEND: 

Most favored reaction 
Second most favored reaction 

Not all data available 
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 The final set of reactions I looked at was dissociation of monoxides of 

silicon carbide.  The results of these calculations are shown in Table 24.  These 

calculations show that monoxides of silicon carbide are also stable at standard 

temperatures.  However, for some molecules, the loss of carbon monoxide is 

Table 24.  Ideal gas reaction enthalpies for dissociation of  
CmSinO neutral ground states at 298.15K calculated with DFT/B3LYP/aug-cc-
pVDZ.  All values are in kJ/mol. 
 

Top value:  CnSimO → Cn-1SimO + C 
Top middle value:  CnSimO → Cn-1Sim + CO 

Bottom middle value:  CnSimO → CnSim-1O + Si 
Bottom value:  CnSimO → CnSim-1 + SiO 

 Number of silicon atoms 
kJ/mol 0 1 2 3 4 

  
 

   

0  738 
0 

151 
151 

330 
176 

321 
147 

0 
0 

395 
146 

697 
139 

690 
211 

569 
62.8 1  146 

454 
297 
356 

423 
173 

252 
79.9 

442 
249 

788 
436 

535 
92.8 

555 
73.4 

632 
95.1 2  582 

696 
263 
219 

325 
190 

300 
126 

 
542 

496 
122 

663 
120 

557 
167 

442 
 3  321 

 
351 
285 

412 
176  

 683 
307 

535 
35.0 

538 
 

596 
 

N
um

be
r o

f c
ar

bo
n 

at
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s 

4 
 542 

495 
249 
181   

LEGEND: 
Most favored reaction 

Second most favored reaction 
Third favored 

Fourth favored 
Not all data available 
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only barely endothermic.  At higher temperatures, these molecules would be 

expected to begin dissociating into silicon carbide and carbon monoxide. 

 



 

 
V.  Conclusions and Recommendations 

 
 

5.1.  Conclusions 

 The previous chapter presented the results that I have obtained in the 

course of this research.  As a conclusion, we now turn to a discussion of these 

results and the meaning they have with respect to experimental confirmation.  In 

particular, we are concerned with the outcome of Dr Lineberger’s PES 

experiments that were described in Chapter 1.  There are several questions that 

can be asked in regard to this experiment.  This section will address these. 

 The first question we can ask is What CmSinO anions will he produce?  

The method of producing anions is to first produce a CmSin cluster, which is then 

oxidized.  The CmSin clusters produced are expected to be the ground state 

isomers found by Jean Henry and shown in her CmSin map, an expanded version 

of which is shown as Figure 42.  If this map is compared with my CmSinO maps 

shown in Figures 40 and 41, it is seen that the ground state isomers of CmSin do 

not necessarily correspond to the ground state isomers of CmSinO.  Therefore, if 

the oxidation process is a very gentle one, the CmSinO cluster produced may not 

be the ground state isomer.  If, on the other hand, the process is more energetic, 

the oxidation process is likely to cause atomic rearrangement.  But even in this 

case, it is not guaranteed that the final cluster formed will be the lowest-energy 

state.  If other low-lying isomers have a simpler reaction coordinate from the 

CmSin ground state, are close in energy to the CmSinO ground state, and have a 

relatively high activation barrier to the CmSinO ground state, the final cluster 
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Figure 39.  Neutral ground state isomers for CmSin, m  with 
DFT/B3LYP/aug-cc-pVDZ.  Based on work by Henry; updated and expanded 
by Duan and the author. 

produced may not be the ground state isomer.  Therefore the answer to our 

question is It depends.  If the CmSin ground state is similar to the CmSinO ground 

state or the oxidation process is an energetic one, the CmSinO ground state 
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isomer will be produced.  Otherwise, it will depend on the energy of the reaction, 

where the oxygen attaches, and many other factors. 

 Once we have produced a CmSinO cluster we can ask the next question: 

What will the photoelectron spectrum look like?  This question is answered by 

comparing the neutral and anion maps of Figures 40 and 41 and the electron 

affinities of Tables 4 and 5.  From these, it can be seen that CmSinO, unlike 

CmSin, has significant differences in geometry between the anion and neutral.  

Therefore, when the electron is removed from the anion, the neutral cluster that 

is left will be in a very vibrationally excited state.  If the anion and neutral 

geometries are exactly the same, the vertical and adiabatic electron affinities are 

the same and the photoelectron spectrum will be a large peak at this energy and 

maybe some smaller vibrational peaks at lower energies.  For our case, the 

geometries differ, sometimes very significantly.  We therefore expect there to be 

a peak at the vertical electron affinity, vibrational peaks going up from there to 

the adiabatic electron affinity, and vibrational peaks down from there.  The 

relative intensity of the peaks will, in a complicated way, be dependent on the 

intensities of the various vibrational modes of the neutral cluster.  The spectrum 

is complicated even more by the fact that for some molecules, the ground anion 

isomer is not the ground neutral isomer, and for other molecules there are other 

low-lying isomers that the ground state may end up in.  Therefore, the vibrational 

structure seen in the spectrum may not be simply be that of a single isomer, but 

may be a superposition of the vibrational states of many modes of two or more 
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isomers.  The result is that, for many molecules, the photoelectron spectrum will 

be very complex with a large number of peaks. 

 

5.2.  Recommendations for Future Work 

 For almost any scientific endeavor, the work is never totally completed 

and there is always further work to do and questions to answer.  This work is no 

different.  Therefore, I will here present several avenues for future research 

based upon this work. 

 The first type of further research would be a further analysis of the 

calculations that I have performed.  During this research, I have performed over 

12,000 calculations (not including instances where a calculation had to be 

repeated to obtain a final result), collected over five gigabytes of data, and used 

over ten years of CPU time.  In the timeframe of this research project, it would be 

impossible to fully analyze this data.  There are several analysis projects that 

could be undertaken.  First, a further functional analysis could be done.  The 

functional analysis that I presented at the end of Chapter 4 was primarily based 

on ground state isomers.  The contribution of other isomers was only qualitative 

and based on the experience I have received while doing this research.  Further 

research could be done to determine not only what structures are ground states, 

but what structures are stable at all.  Using graph theory and an examination of 

how the energy changes with geometry and bonds, a more complete list of 

functional groups and characteristic energies could be developed.  As part of 
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this, or as a separate endeavor, the effects of second-nearest neighbor atoms on 

bond lengths, stability, and energy could be determined. 

 The second type of further research is new calculations based on my 

results.  This is the next step in eventually being able to model silicon-carbide 

semiconductor devices.  The next steps are to build larger and larger CmSinO 

clusters and to embed these into a molecular mechanics framework.  This will 

allow for the study of the properties of silicon-carbide bulk and surface materials.  

In addition, having oxygen present will allow for the study of defects in these 

materials. 

 Hopefully this research and future research will eventually result in the 

development of high-band-gap silicon-carbide semiconductors which can be 

used for devices in high radiation and temperature environments. 



 

 
Appendix A.  Glossary 

 
 

AFIT—Air Force Institute of Technology 
 
ASC—Aeronautical System Center 
 
aug-cc-pVDZ—double zeta valence basis set with correlation consistent and 
diffuse functions added (Dunning and Hay, 1977; Basis sets, 2002; Dunning, 
1989; Woon and Dunning, 1993; Kendall et al, 1992) 
 
CC—Coupled Cluster 
 
cc-pVDZ—double zeta valence basis set with correlation consistent functions 
added (Dunning and Hay, 1977; Basis sets, 2002; Dunning, 1989; Woon and 
Dunning, 1993; Kendall et al, 1992) 
 
CI—configuration interaction 
 
DFT—density functional theory 
 
DZV—double zeta valence basis set (same as VDZ) (Dunning and Hay, 1977; 
Basis sets, 2002; Dunning, 1989; Woon and Dunning, 1993; Kendall et al, 1992) 
 
GAMESS—General Atomic and Molecular Electronic Structure System (Schmidt 
et al, 1993) 
 
GTO—Gaussian Type Orbital 
 
HF—Hartree-Fock 
 
MCSCF—multi-configurational self-consistent field 
 
MOSFET—metal-oxide semiconductor field effect transistor 
 
MP2—Møller-Plesset second order perturbation 
 
MP4—Møller-Plesset fourth order perturbation 
 
MSRC—Major Shared Resource Center; large, parallel computing facility located 
at Wright-Patterson AFB 
 
PES—photoelectron spectroscopy 
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SCF—self-consistent field 
 
SIMOMM—surface integrated molecular orbital molecular mechanics 
 
STO—Slater Type Orbital 
 
VDZ— valence double zeta basis set (Dunning and Hay, 1977; Basis sets, 2002; 
Dunning, 1989; Woon and Dunning, 1993; Kendall et al, 1992) 
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Appendix B.  Initial Isomers for HF/VDZ Calculations 

 
 

This appendix is a series of figures which show the initial isomers used for 
HF/VDZ calculations.  Those molecules which are not shown are those for which 
there were few isomers and the name in the tables of Appendix B should be self-
explanatory. 
 

Figure 40.  Initial isomers for C2Si2O calculations with HF/VDZ.  Red marks 
are oxygen positions.  Blue marks are silicon positions 

 
 

 142



 

 

Figure 41.  Initial isomers for C3O and Si3O calculations with HF/VDZ.  Red 
marks are oxygen positions.  Si3O isomers are formed by replacing C with Si. 
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Figure 42.  isomers for C3SiO and CSi3O calculations with HF/VDZ.  Red 
marks are oxygen positions.  CSi3O isomers are formed by switching C and Si.

 
 
 
 
 
 

 144



 

 145

Figure 43.  Initial isomers for C3Si2O and C2Si3O calculations with HF/VDZ.  
Red marks are oxygen positions.  C2Si3O isomers are formed by switching C 
and Si. 

 

? 
M I 

I 

1 

I 

I 

if 

f   * 

"--J ^ ^ 

Ntj 

^.      ^' 

.. _^ 
\   / 

>-, *- '^ 
S 

y 

^1 

■   I 

t 

I 

o 

c 
\ 

^-M-^' 

^. * 

A 

I 

''^ 

,.i 
O 

i 

0? 

CJ      ■A       ^ 

•J\    v^   v\ 

^^^^ 

O 

1 

^sl    . 

*^ -^ ^"^r7 ^ -^ 

S, 

I 

k 

I 

1 

I 

■ — 

1 

-I 

*-; >- O ^ v\   ^ 
-,0: 

O - i* 
3 •n V\ 

IT- 
^ 1 

y 

1 

^ 
^ X t 

<     t 

f^ 
y' I 1        1 

o ■ 
1 1 0 * J       1 

o — .J 1         1              1 1 .•J ^^^ ?OW 
j' ff i^ ^ >: * ^-u - ^^ 

tT* X \^ \ -* 
/ 

I i               1 

■J 
S         1 

^r^ 
^ 

-O ..^--s'^ 1 

^ ^    .^ r [ <      ' 
^o- - J\ o^^ O J U    J 

) I 1     \ » I t      » 

.,0 
~^.v'^^'"'-'^-f ^ O ^ 1 



 

 146

 

Figure 43. (Continued).  Initial isomers for C3Si2O and C2Si3O calculations with 
HF/VDZ.  Red marks are oxygen positions.  C2Si3O isomers are formed by 
switching C and Si. 
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Figure 44.  Initial isomers for C3Si3O calculations with HF/VDZ.  Red marks 
are oxygen positions.  Blue marks are silicon positions.
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Figure 44. (Continued).  Initial isomers for C3Si3O calculations with HF/VDZ.  
Red marks are oxygen positions.  Blue marks are silicon positions. 
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Figure 44. (Continued).  Initial isomers for C3Si3O calculations with HF/VDZ.  
Red marks are oxygen positions.  Blue marks are silicon positions. 

u^ *J 

J     - 

.-^  '^ X 

^^''^ 

V"^^^ 
.1 
5 

tit S  V *^ 

"'/-«. •; 

'"N^ 

'•'x-- 

I 
*? 

^ 

0 
5^.- 

■-v:.> 

,'.."" v^-- 

'   V 

4  / 

; 

I      Q 

-    v» 

n     I 

y-r 

^  J 

> 

4  > 

■A 

1 

^i^ 
o 

n 
I 

r    ^    ^ 

1 «1 

4 I 

v;    -^   ^^ , 

i.' 

■*, -'j 

« ^ 

.tr 

.5 

'4r .—> 
I 

^^-^ 



 

 

Figure 45.  Initial isomers for C4O and Si4O calculations with HF/VDZ.  Red 
marks are oxygen positions.  Si4O isomers are formed by switching C and Si. 
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Figure 46.  Initial isomers for C4SiO and CSi4O calculations with HF/VDZ.  Red 
marks are oxygen positions.  CSi4O isomers are formed by switching C and Si.
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Figure 47.  Initial isomers for C4Si2O calculations with HF/VDZ. 
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Figure 48.  Initial isomers for C2Si4O calculations with HF/VDZ. 
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Figure 48. (Continued)  Initial isomers for C2Si4O calculations with HF/VDZ. 
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Figure 48. (Continued)  Initial isomers for C2Si4O calculations with HF/VDZ. 
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Figure 49.  Initial isomers for C4Si3O calculations with HF/VDZ  



 

 
 

 
Figure 50  Initial isomers for C3Si4O calculations with HF/VDZ 
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Figure 51.  Initial isomers for C4Si4O calculations with HF/VDZ 
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Figure 51.  (Continued)  Initial isomers for C4Si4O calculations with HF/VDZ 
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Appendix C.  Detailed Calculation Data 

 
 

 This appendix is a series of tables detailing most of the calculations that I 
have done in the course of this research.  The only calculations not shown are 
the initial HF/VDZ calculations done for the larger molecules.  This are left out 
due to their extremely large number. 
 
C.1.  O 

Table 25.  Detailed Calculation Data for O 

Final Energy 
Charge Mult Basis Set (hart) EA (eV) 

0 3 DVZ -74.80054632 1.252341
-1 2 DVZ -74.75450439  
0 1 DVZ -74.67855885  

-1 4 DVZ -74.06201896  
     

0 3 cc-pVDZ -74.78757634 1.870789
-1 2 cc-pVDZ -74.71879734  

     
0 3 aug-cc-pVDZ -74.79148377 0.499922

-1 2 aug-cc-pVDZ -74.77310426  
     

-1 2 DFT/VDZ -75.06245897 -0.30453
0 3 DFT/VDZ -75.05126304  

     
-1 2 DFT/cc-pVDZ -75.02098178 0.467356
0 3 DFT/cc-pVDZ -75.03816398  

     
-1 2 DFT/aug-cc-pVDZ -75.10534915 -1.58715
0 3 DFT/aug-cc-pVDZ -75.04699806  
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C.2.  CO 

Table 26.  Detailed Calculation Data for CO 

Final Energy 

 

 

Charge Mult Basis Set (hart) EA (eV) 
ZPE 

(hart) 
EA (eV) 
w/ZPE 

0 1 DVZ -112.6850703739 2.02121   
-1 2 DVZ -112.6107611990    
0 3 DVZ -112.5057371985    

       
0 1 cc-pDVZ -112.7505418517 3.153106   

-1 2 cc-pDVZ -112.6346188333    
       

0 1 aug-cc-pDVZ -112.7564277478 2.164022   
-1 2 aug-cc-pDVZ -112.6768681116    

       
0 1 DFT/DVZ -113.2256492384 1.535123   

-1 2 DFT/DVZ -113.1692108993    
       

0 1 DFT/cc-pDVZ -113.2709811734 2.520233   
-1 2 DFT/cc-pDVZ -113.1783255567    

       
0.00497

5 
1.15933

70 1 DFT/aug-cc-pDVZ -113.2809150378 1.191161
0.00380

5 -1 2 DFT/aug-cc-pDVZ -113.2371223526   
       

0 0049 1 00 46
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C.3.  SiO 

Table 27.  Detailed Calculation Data for SiO 

Final Energy 

 

Charge Mult Basis Set (hart) EA (eV) 
ZPE 

(hart) 
EA (eV) 
w/ZPE 

0 1 DVZ -363.7341927429 0.617643   
-1 2 DVZ -363.7114852831    
0 3 DVZ -363.6274052707    

       
0 1 cc-pVDZ -363.7905917065 1.06279   

-1 2 cc-pVDZ -363.7515185471    
       

0 1 aug-cc-pVDZ -363.8029257588 0.30346   
-1 2 aug-cc-pVDZ -363.7917691446    

       
0 1 DFT/VDZ -364.6152100352 0.390889   

-1 2 DFT/VDZ -364.6008391089    
       

0 1 DFT/cc-pVDZ -364.6533132241 0.6767   
-1 2 DFT/cc-pVDZ -364.6284345568    

       
0.00232

8 -1 2 DFT/aug-cc-pVDZ -364.6731376581 -0.17747 -0.18781
0.00270

8 0 1 DFT/aug-cc-pVDZ -364.6666129350   
       

0 002 0
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C.4.  CSiO 

 

 

  

       
  

       
  

       
  
  
  
  
  

      
       
       

   

     

Q M Input Geometry Output Geometry Basis Set 
Final Energy 

 (hart) EA (eV)
ZPE 

(hart) 
EA (eV) 
w/ZPE 

-1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363 -0.26656   
-1 2 O-C-Si cyc3 O-C-Si Linear DZV 

Table 28.  Detailed Calculation Data for CSiO 

 -401.5363 
0 3 O-C-Si Linear O-C-Si Linear 

 
DZV -401.5265    

 0 3 C-O-Si Linear Dissociated DZV -401.5177
 -1 4 O-C-Si Linear O-C-Si Linear 

 
DZV -401.4989 

 -1 4 C-O-Si Linear Dissociated DZV -401.4976
 0 1 O-C-Si cyc3 O-C-Si Linear 

 
DZV -401.4868 

 0 1 C-O-Si Linear Dissociated DZV -401.4579
 0 3 O-C-Si cyc3 O-C-Si cyc3 DZV -401.42 
 -1 2 O-Si-C Linear O-Si-C Linear DZV -401.384 
 0 3 O-Si-C Linear O-Si-C Linear DZV -401.3406 
 0 1 O-Si-C Linear O-Si-C Linear DZV -401.1909 
 0 1 O-C-Si Linear O-C-Si Linear 

 
DZV -401.1805 

  -1 2 C-O-Si Linear Dissociated DZV N/A
  -1 4 O-Si-C Linear

 
unconverged DZV

 -1 4 O-C-Si cyc2
 

unconverged
 

DZV
  

-1 2 O-C-Si Linear O-C-Si Linear cc-pVTZ -401.6566 -0.08976  
0 3 O-C-Si Linear O-C-Si Linear 

 
cc-pVTZ -401.6533    

 0 3 C-O-Si Linear Dissociated cc-pVTZ -401.6357
 -1 4 O-C-Si Linear O-C-Si Linear cc-pVTZ -401.6349 
 0 1 O-C-Si Linear O-C-Si Linear cc-pVTZ -401.6113 
 0 1 O-C-Si cyc4 O-C-Si Linear cc-pVTZ -401.6113 
 -1 4 O-C-Si cyc3 C-O-Si bent cc-pVTZ -401.6011 

-1 4 C-O-Si Linear C-O-Si Linear cc-pVTZ -401 5899
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-402.7121685 
     

Table 28.  Detailed Calculation Data for CSiO (continued) 

Q M Input Geometry 
 

Output Geometry 
 

Basis Set 
 

Final Energy 
 (hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

  0 1 C-O-Si Linear Dissociated cc-pVTZ -401.5784
 0 3 O-C-Si cyc3 O-C-Si cyc3 cc-pVTZ -401.5601 
 -1 2 O-Si-C Linear O-Si-C Linear cc-pVTZ -401.531 
 0 3 O-Si-C Linear O-Si-C Linear cc-pVTZ -401.4996 
 0 1 O-Si-C Linear O-Si-C Linear 

 
cc-pVTZ -401.3549 

  -1 2 C-O-Si Linear
 

Dissociated cc-pVTZ N/A
  -1 2 O-C-Si cyc4 unconverged cc-pVTZ

 -1 4 O-Si-C Linear
 

unconverged
 

cc-pVTZ
  

-1 2 O-C-Si Linear O-C-Si Linear DZV(DFT) -402.6557 -1.26208   
0 3 O-C-Si Linear 

 
O-C-Si Linear 

 
DZV(DFT) 

 
-402.6093 

 
   

-1 2 O-C-Si Linear O-C-Si Linear cc-pVTZ(DFT) -402.7534 -1.19952   
0 3 O-C-Si Linear 

 
O-C-Si Linear 

 
cc-pVTZ(DFT) 

 
-402.7093 

 
   
 

-1 2 O-C-Si Linear O-C-Si Linear DFT/aug-cc-pVDZ -402.7630095 -1.38288 0.00733 -1.38296
0 3 O-C-Si Linear O-C-Si Linear 

 
DFT/aug-cc-pVDZ 
 

 0.00734
 

 
 
0 3 O-C-Si Linear O-C-Si Linear SP -402.7094935 -1.45564 0.00734 -1.45572

 



 

C.5.  C2O 
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Table 29.  Detailed Calculation Data for C2O 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

0.02268
0 3 cyc3_CCO_

 
CCO DVZ -150.3907498

-1 2 CCO CCO DVZ -150.3899159
0 3 CCO CCO DVZ -150.3519609

-1 2 cyc3_CCO_ cyc3_CCO_ DVZ -150.3321428
0 1 cyc3_CCO_

 
cyc3_CCO_

 
DVZ -150.2854233

0 3 COC COC DVZ -150.267869
-1 2 COC COC DVZ -150.2380572
0 1 COC COC DVZ -150.2294428
0 1 CCO

 
CCO DVZ -150.132271

  
-1 2 CCO CCO cc-pVDZ -150.4346856 -0.41057

 0 3 CCO
 

CCO cc-pVDZ
 

-150.4195912
  

-1 2 CCO CCO aug-cc-pVDZ -150.4580926 -0.84043
 0 3 CCO

 
CCO aug-cc-pVDZ

 
-150.4271943

  
-1 2 CCO CCO DFT/DVZ -151.2309427 -2.19028

 0 3 CCO
 

CCO DFT/DVZ
 

-151.1504177
  

-1 2 CCO CCO DFT/cc-pVDZ -151.2598639 -1.63126
 0 3 CCO

 
CCO DFT/cc-pVDZ

 
-151.1998909

  
0.00920

2-1 2 CCO CCO DFT/aug-cc-pVDZ -151.2922503 -2.23011 -2.22116
0 0088
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C.6.  Si2O 
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Table 30.  Detailed Calculation Data for Si2O 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

1.38459
0 3 cyc3_SiSiO_

 
SiOSi DVZ -652.6341929

0 3 SiOSi SiOSi DVZ -652.5989505
-1 2 SiSiO SiSiO DVZ -652.5832887
0 1 cyc3_SiSiO_

 
SiOSi DVZ -652.5681732

0 1 SiOSi SiOSi DVZ -652.5681732
0 3 SiSiO Dissociated SiO Si 

 
DVZ -652.5640412    

-1 2 SiOSi SiOSi DVZ -652.5550341
-1 2 cyc3_SiSiO_

 
cyc3_SiSiO_

 
DVZ -652.54925

0 1 SiSiO
  

SiSiO
 

DVZ -652.2826507
  

-1 2 SiSiO SiSiO cc-pDVZ -652.6809203 -0.77526
 0 3 SiSiO SiSiO cc-pDVZ -652.652418

0 3 SiOSi SiOSi cc-pDVZ -652.6492582
1.12923

-1 2 SiOSi
  

SiOSi
 

cc-pDVZ
 

-652.6077423
  

-1 2 SiSiO SiSiO aug-cc-pDVZ -652.705904 -1.07228
0 3 SiOSi SiOSi aug-cc-pDVZ -652.6666006 -0.86456

 0 3 SiSiO SiSiO aug-cc-pDVZ -652.666482
-1 2 SiOSi

  
SiOSi
 

aug-cc-pDVZ
 

-652.6348153
  

-1 2 SiSiO SiSiO DFT/VDZ -654.0223633 -1.71274
-1 2 SiOSi SiOSi DFT/VDZ -654.0135768 -0.12645

 0 3 SiOSi SiOSi DFT/VDZ -654.0089279
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Table 30.  Detailed Calculation Data for Si2O (continued) 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 SiSiO SiSiO DFT/cc-pVDZ -654.0916116 -1.61878
-1 2 SiOSi SiOSi DFT/cc-pVDZ -654.0615291 -0.17967

 0 3 SiOSi SiOSi DFT/cc-pVDZ -654.0549235
0 3 SiSiO

  
SiSiO
 

DFT/cc-pVDZ
 

-654.0320977
  

0.00424
1-1 2 SiSiO SiSiO DFT/aug-cc-pVDZ -654.1183805 -1.98365 -1.98167

0.00383
1-1 2 SiOSi SiOSi DFT/aug-cc-pVDZ -654.0841303 -0.60684 -0.60902

0.00391
0 3 SiOSi SiOSi DFT/aug-cc-pVDZ -654.0618199

0.00416
0 3 SiSiO

  
SiSiO
 

DFT/aug-cc-pVDZ
 

-654.045452
  

0.00391
10 3 SiOSi SP DFT/aug-cc-pVDZ -654.061552 -0.61413 -0.6163

0.00416
80 3 SiSiO SP DFT/aug-cc-pVDZ -654.0429145 -2.05267 -2.05069
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Table 31.  Detailed Calculation Data for C2SiO 

Final Energy 
 

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 
Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 Si-C2-O Si-C2-O cc-pVDZ -439.473 -0.06577
 -1 2 cyc3_C-Si-O_C Si-C2-O -439.473

0 1 cyc3_C-Si-O_C
 

Si-C2-O cc-pVDZ -439.47
0 1 Si-C2-O Si-C2-O cc-pVDZ -439.47

-1 2 bent_C2-Si-_O
 

bent_C2-Si-O_
 

cc-pVDZ -439.435
0 3 Si-C2-O Si-C2-O cc-pVDZ -439.403
0 1 bent_C2-Si-_O cyc3_Si-C2_O cc-pVDZ -439.376

-1 2 bent_C2-O-_Si bent_C2-O-_Si cc-pVDZ -439.374
0 3 bent_C2-Si-_O bent_C2-Si-O_ cc-pVDZ -439.323
0 3 bent_C2-O-_Si bent_C2-O-_Si cc-pVDZ -439.317
0 3 cyc3_C-Si-O_C

 
bent_C2-O-_Si

 
cc-pVDZ -439.31

0
 

1
 

bent_C2-O-_Si
 

C2-O-Si
 

cc-pVDZ
 

-439.304
 

-1 2 bent_C2-Si-O_ bent_C2-Si-O_ aug-cc-pVDZ 1.250/1.608
0 1 bent_C2-Si-O_ cyc3_Si-C2_O aug-cc-pVDZ 1.269/2.648
0 3 bent_C2-Si-O_

 
bent_C2-Si-O_
 

aug-cc-pVDZ 1.202/-2.644
 0 1 Si-C2-O aug-cc-pVDZ

-1 2 Si-C2-O aug-cc-pVDZ
0 3 Si-C2-O aug-cc-pVDZ
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Table 31.  Detailed Calculation Data for C2SiO (continued) 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 Si-C2-O Si-C2-O VDZ-DFT -440.7246226409 -0.76489
 0 1 Si-C2-O Si-C2-O VDZ-DFT -440.6965018574

-1 2 bent_C2-Si-O_
 

bent_C2-Si-O_
 

VDZ-DFT -440.6839179849
0 3 Si-C2-O Si-C2-O VDZ-DFT -440.6055188272
0 1 bent_C2-Si-O_

  
Si-C2-O
 

VDZ-DFT
 

-440.5810485241
  

-1 2 Si-C2-O Si-C2-O cc-pVDZ-DFT -440.7789754434 -0.47811
 0 1 Si-C2-O

  
Si-C2-O
 

cc-pVDZ-DFT
 

-440.7613978973
  

0.01239
3-1 2 Si-C2-O Si-C2-O aug-cc-pVDZ-DFT -440.8050340469 -0.88029

 
-0.90741

 0 1 Si-C2-O
  

Si-C2-O
 

aug-cc-pVDZ-DFT
 

-440.7726703307
 

0.01339
  

0 Si-C2-O Si-C2-O aug-cc-pVDZ-DFT -440.7672547346 -1.0276 0.01339 -1.05472
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Table 32.  Detailed Calculation Data for CSi2O 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

 -1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O cc-pVDZ -690.533
-1 2 cyc4_Si-C-Si-O_

 
cyc4_Si-C-Si-O_

 
cc-pVDZ -690.52

-1 2 Si-C-Si-O Si-C-Si-O cc-pVDZ -690.481
-1 2 cyc3_C-Si-O_Si cyc3_C-Si-O_Si cc-pVDZ -690.465
0 1 cyc3_C-Si-O_Si bent_O-C-Si-Si_ cc-pVDZ -690.502
0 1 cyc3_C-Si-Si_O

 
bent_O-C-Si-Si_

 
cc-pVDZ -690.502

0 1 Si-C-Si-O Si-C-Si-O cc-pVDZ -690.481
0 3 cyc3_C-Si-Si_O cyc3_C-Si-Si_O cc-pVDZ -690.473
0 3 cyc3_C-Si-O_Si cyc3_C-Si-O_Si cc-pVDZ -690.449
0 1 cyc4_Si-C-Si-O_

 
cyc4_Si-C-Si-O_

 
cc-pVDZ -690.427

0 3 Si-C-Si-O Si-C-Si-O cc-pVDZ -690.408
0

 
3
 

cyc4_Si-C-Si-O_
 

cyc4_Si-C-Si-O_
 

cc-pVDZ
 

-690.346

-1 2 bent_O-C-Si-Si_ bent_O-C-Si-Si_ aug-cc-pVDZ -690.554 -1.1424
 -1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O aug-cc-pVDZ -690.551

-1 2 cyc4_Si-C-Si-O_
 

cyc4_Si-C-Si-O_
 

aug-cc-pVDZ -690.547
-1 2 Si-C-Si-O Si-C-Si-O aug-cc-pVDZ -690.489
-1 2 cyc3_C-Si-O_Si

 
cyc3_C-Si-O_Si

 
aug-cc-pVDZ -690.463

-1 2 Si-Si-C-O unconverged aug-cc-pVDZ
0 1 bent_O-C-Si-Si_ bent_O-C-Si-Si_ aug-cc-pVDZ -690.512
0 1 cyc3_C-Si-Si_O

 
bent_O-C-Si-Si_

 
aug-cc-pVDZ -690.512

0 1 Si-C-Si-O Si-C-Si-O aug-cc-pVDZ -690.497
0 1 cyc3_C-Si-O_Si O-_C-Si_-Si aug-cc-pVDZ -690.494
0 3 bent_O-C-Si-Si_ bent_O-C-Si-Si_ aug-cc-pVDZ -690.485
0 3 cyc3 C-Si-Si O cyc3 C-Si-Si O aug-cc-pVDZ -690 483
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Table 32.  Detailed Calculation Data for CSi2O (Continued) 

Final Energy 
 Q M Input Geometry 

 
Output Geometry 

 
Basis Set (hart) EA (eV)

 

ZPE 
(hart) 

EA (eV) 
w/ZPE 

0 3 cyc3_C-Si-O_Si
 

cyc3_C-Si-O_Si
 

aug-cc-pVDZ -690.464
0 1 Si-Si-C-O Si-Si-C-O aug-cc-pVDZ -690.459
0 3 Si-Si-C-O Si-Si-C-O aug-cc-pVDZ -690.449
0 1 cyc4_Si-C-Si-O_

 
cyc4_Si-C-Si-O_

 
aug-cc-pVDZ -690.448

0 3 Si-C-Si-O Si-C-Si-O aug-cc-pVDZ -690.424
0

 
3
 

cyc4_Si-C-Si-O_
 

cyc4_Si-C-Si-O_
 

aug-cc-pVDZ
 

-690.388

-1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O DFT-VDZ -692.085737
2 bent_O-C-Si-Si_

 
cyc3_C-Si-Si_O DFT-VDZ -692.085737-1 

2 Si-C-Si-O bent_O-Si-C-Si_ DFT-VDZ -692.079307-1 
-1 2 cyc4_Si-C-Si-O_

 
cyc4_Si-C-Si-O_

 
DFT-VDZ -692.048867

-1 2 O-_C-Si_-Si cyc3_C-Si-O_Si DFT-VDZ -692.046336
0 1 bent_O-C-Si-Si_

 
bent_O-C-Si-Si_ DFT-VDZ -692.018244

0 1 O-_C-Si_-Si bent_O-C-Si-Si_ DFT-VDZ -692.018244
1 cyc3_C-Si-Si_O

 
bent_O-C-Si-Si_

 
DFT-VDZ -692.0182440 

1 Si-C-Si-O Si-C-Si-O DFT-VDZ -692.0115240 
0 1 cyc4_Si-C-Si-O_ cyc4_Si-C-Si-O_ DFT-VDZ -691.983917
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Table 32.  Detailed Calculation Data for CSi2O (Continued) 

Q M Input Geometry 
 

Output Geometry 
 

Basis Set 
Final Energy 

 (hart) EA (eV)
 

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O DFT-aug-cc-pVDZ -692.189193
2 bent_O-C-Si-Si_

 
cyc3_C-Si-Si_O DFT-aug-cc-pVDZ -692.189193 -1.714528-1 

2 Si-C-Si-O bent_O-Si-C-Si_ DFT-aug-cc-pVDZ -692.17652 -1.834780
 

-1 
-1 2 bent_O-Si-C-Si_ bent_O-Si-C-Si_ DFT-aug-cc-pVDZ -692.17652

1 bent_O-C-Si-Si_ cyc3_C-Si-Si_O DFT-aug-cc-pVDZ -692.1261590 
1 bent_O-Si-C-Si_

 
bent_O-Si-C-Si_

 
DFT-aug-cc-pVDZ

 
-692.1090650 

0 1 cyc3_C-Si-Si_O
 

Si-C-Si-O DFT-aug-cc-pVDZ -692.108549
0

 
1
 

Si-C-Si-O
 

Si-C-Si-O
 

DFT-aug-cc-pVDZ
 

-692.108549
 

0 1 cyc3_C-Si-Si_O Single Point CISD-aug-cc-pVDZ -690.961661
Single Point 

 
0 1 cyc3_C-Si-Si_O-sym

 
CISD-aug-cc-pVDZ

 
-690.840537

 
0 1 cyc3_C-Si-Si_O

 
CISD-aug-cc-pVDZ

 
-690.962291

 
0 1 cyc3_C-Si-Si_O

 
MP2-aug-cc-pVDZ

 
-690.497138

 
0 1 cyc3_C-Si-Si_O

 
MCSCF-aug-cc-pVDZ

 
-690.668297

 
-1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O CCSD(T)-aug-cc-pVDZ -691.117416 -1.599442

 0 1 cyc3_C-Si-Si_O
 

cyc3_C-Si-Si_O
 

CCSD(T)-aug-cc-pVDZ
 

-691.058613
 

-1 2 cyc3_C-Si-Si_O cyc3_C-Si-Si_O DFT-aug-cc-pVDZ -692.189193 -1.714535
 

-1.745
 0

 
1
 

cyc3_C-Si-Si_O
 

cyc3_C-Si-Si_O
 

DFT-aug-cc-pVDZ
 

-692.126159
 

0.00913
 

0 1 cyc3 C-Si-Si O SP DFT-aug-cc-pVDZ -692 09662 -2 517991 0 00913 -2 54846



 

C.9.  C2Si2O 
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Table 33.  Detailed Calculation Data for C2Si2O 

Final Energy 
 

VDZ 
inputQ M Input Geometry Output Geometry Basis Set (hart) EA (eV)

0.59610
cyc3_C-Si2_-C-O -728.4058767916-1 2 cyc3_Si-C-(O)C-(Si)_

 
cc-pVDZ 

-1 2 cyc3_C-Si2_-C-O
 

cyc3_C-Si2_-C-O cc-pVDZ -728.4058767902 146
-1 2 O-C-C-(Si)(Si) cyc3_C-Si2_-C-O cc-pVDZ -728.4058767857 0

0.66434
cyc4_Si-(C)-C-Si-O_ -728.4044572886-1 2 C-cyc4_C-Si-O-Si_ cc-pVDZ 

-1 2 cyc5_C-Si-O-Si-C_ cyc4_Si-(C)-C-Si-O_ cc-pVDZ -728.4044572882 0
-1 2 bent_C2_-Si-bent_O-Si_ cyc5_Si-C2-Si-O_ cc-pVDZ -728.3965437324 6
-1 2 cyc3_C-Si2_-bent_C-O_ cyc3_C-Si2_-bent_C-O_ cc-pVDZ -728.3861431730 60

cyc3_C-Si2_-C-O -728.38396130740 1 cyc3_C-Si2_-bent_C-O_
 

cc-pVDZ 
0 1 cyc3_C-Si2_-C-O

 
cyc3_C-Si2_-C-O cc-pVDZ -728.3839613038 146

0 1 O-C-C-(Si)(Si) cyc3_C-Si2_-C-O cc-pVDZ -728.3839613022 0
0 1 cyc3_Si-C-(O)C-(Si)_

 
cyc3_C-Si2_-C-O

 
cc-pVDZ -728.3839613000 32

-1 2 Si2-C2-O Si2-C2-O cc-pVDZ -728.3831980908 0
cyc4_Si-(C)-C-Si-O_ -728.38003294130 1 bent_Si-C2-Si_-O cc-pVDZ 

0 1 cyc5_C-Si-O-Si-C_ cyc4_Si-(C)-C-Si-O_ cc-pVDZ -728.3800329071 121
0 1 C-cyc4_C-Si-O-Si_

 
C-cyc4_C-Si-O-Si_ cc-pVDZ -728.3788991870 6

-1 2 bent_Si-C2-Si_-O
 

bent_Si-C2-Si_-O cc-pVDZ -728.3758955907 45
0 3 O-C-C-(Si)(Si) cyc3_C-Si2_-C-O cc-pVDZ -728.3516846292 158
0 3 cyc3_C-Si2_-bent_C-O_

 
cyc3_C-Si2_-C-O cc-pVDZ -728.3516846243 88

0 3 cyc3_C-Si2_-C-O
 

cyc3_C-Si2_-C-O
 

cc-pVDZ -728.3516846175 0
0 3 Si2-C2-O Si2-C2-O cc-pVDZ -728.3406012015 1
0 3 cyc5_C-Si-O-Si-C_

 
cyc4_Si-(C)-C-Si-O_ cc-pVDZ -728.3249548962 137

0 3 bent_Si-C2-Si_-O bent_Si-C2-Si_-O
 

cc-pVDZ -728.3185631870 153
0 3 C-cyc4_C-Si-O-Si_ cc-pVDZ -728.3173459754 0
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Table 33.  Detailed Calculation Data for C2Si2O (continued) 

Final Energy ZPE 
(hart) 

EA (eV) 
w/ZPE 

 
Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

 0 1 Si2-C2-O Si2-C2-O cc-pVDZ -728.3009235116 56
bent_C2_-Si-bent_O-
Si_ 3 cc-pVDZ -728.2948571487 87

-1 2 Si-C2-O-Si Si-C2-bent_O-Si_
  

cc-pVDZ -728.2800723089 76
0 1 Si-C2-O-Si Dissociated cc-pVDZ -728.2615217268 0

0 1
bent_C2_-Si-bent_O-
Si_ 

 
Rot cc-pVDZ 0

 
-1 2 cyc4_Si-(C)-C-Si-O_ cyc4_Si-(C)-C-Si-O_ aug-cc-pVDZ -728.4289846652 -0.842589

 0 1 cyc4_Si-(C)-C-Si-O_
 

cyc4_Si-(C)-C-Si-O_
 

 aug-cc-pVDZ -728.3980071355
0 1 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O aug-cc-pVDZ -728.3922256877 0.391364

 -1 2 cyc3_C-Si2_-C-O
   

cyc3_C-Si2_-C-O
 

aug-cc-pVDZ
 

-728.3778373112
 

-1 2 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-VDZ -730.1565649507 -1.519037
-1 2 cyc4_Si-(C)-C-Si-O_

 
cyc5_Si-C2-Si-O_ DFT-VDZ -730.1508537272 -1.816903

 0 1 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-VDZ -730.1007179945
0 1 cyc4_Si-(C)-C-Si-O_
   

cyc5_Si-C2-Si-O_
 

DFT-VDZ
 

-730.0840558126
 

-1 2 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-cc-pVDZ -730.2487599817 -1.346664
-1 2 cyc5_Si-C2-Si-O_ cyc5_Si-C2-Si-O_ DFT-cc-pVDZ -730.2396750495 -1.448241

 0 1 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-cc-pVDZ -730.1992502917
0 1 cyc5_Si-C2-Si-O_
   

cyc5_Si-C2-Si-O_
 

DFT-cc-pVDZ
 

-730.1864309006
 

-1 2 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-aug-cc-pVDZ -730.2714063102 -1.657738 0.013921
 

-1.67945
 -1 2 cyc5_Si-C2-Si-O_ cyc5_Si-C2-Si-O_ DFT-aug-cc-pVDZ -730.2644589529 -1.672923

 0 1 cyc3_C-Si2_-C-O cyc3_C-Si2_-C-O DFT-aug-cc-pVDZ -730.2104600762 0.014708
 0 1 cyc5_Si-C2-Si-O_

 
cyc5_Si-C2-Si-O_ DFT-aug-cc-pVDZ -730.2029544188
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Table 34.  Detailed Calculation Data for C3O 

Final Energy 
 

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 
Q M Input Geometry 

 
Output Geometry 

 
Basis Set 
 

(hart) EA (eV)
-1 2 cyc3_CCC_ep_O_

 
bent_C3O_

 
DVZ -188.2861796 -0.74038

 -1 2 CCCO CCCO DVZ -188.2725308
0 1 CCCO CCCO DVZ -188.2589598
0 1 cyc3_CCC_O CCCO DVZ -188.2589598

-1 2 cyc3_CCC_O
 

cyc3_CCC_O DVZ -188.2289756
-1 2 CCC_2-O_ cyc3_CCC_O DVZ -188.2289756
-1 2 pyr_CCCO_

 
cyc3_CCC_O

 
DVZ -188.2289755

0 3 CCCO CCCO DVZ -188.1688034
0 3 bent_C3O_

 
DVZ -188.1660215

-1 2 CCOC CCOC DVZ -188.149131
-1 2 cyc3_CCO_C cyc3_CCO_C DVZ -188.1354337
0 3 cyc3_CCC_O cyc3_CCC_O DVZ -188.1321634

-1 2 cyc4_CCCO_
 

cyc4_CCCO_
 

DVZ -188.1141592
0 1 CCOC CCOC DVZ -188.0871662
0 1 cyc4_CCCO_

 
cyc3_CCO_C DVZ -188.0841369

0 1 pyr_CCCO_
 

cyc3_CCO_C
 

DVZ -188.0841369
0 3 CCC_2-O_

 
C-(C)(C)(O)

 
DVZ -188.0645197

0 3 CCOC CCOC DVZ -188.0609266
0 3 cyc3_CCO_C cyc3_CCO_C DVZ -188.0343991
0 3 cyc4_CCCO_

 
cyc4_CCCO_

 
DVZ -188.02696

0 1 CCC_2-O_ C-(C)(C)(O)
 

DVZ -188.0213933
0 1 cyc3_CCC_ep_O_

 
C-_CC_-O DVZ -188.0210255

0 3 pyr_CCCO_ pyr_CCCO_ DVZ -187.9521937
0 1 cyc3_CCO_C Dissociated C2O C DVZ -187.949104    
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Table 34.  Detailed Calculation Data for C3O (continued) 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 bent_C3O_ bent_C3O_ cc-pVDZ -188.3494177 -0.09678
 0 1 bent_C3O_ CCCO cc-pVDZ -188.3458594

0 1 CCCO CCCO cc-pVDZ -188.3458594
-1 2 CCCO

  
CCCO
 

cc-pVDZ
 

-188.335889
  

-1 2 bent_C3O_ bent_C3O_ aug-cc-pVDZ -188.3718727 -0.50276
 0 1 bent_C3O_ CCCO aug-cc-pVDZ -188.3533888

0 1 CCCO CCCO aug-cc-pVDZ -188.3533882
-1 2 CCCO

  
CCCO
 

aug-cc-pVDZ
 

-188.3041838
  

-1 2 CCCO bent_C3O_ DFT/VDZ -189.2958625 -1.04539
 -1 2 bent_C3O_ bent_C3O_ DFT/VDZ -189.2958625

0 1 CCCO bent_C3O_ DFT/VDZ -189.2574292
0 1 bent_C3O_

  
bent_C3O_
 

DFT/VDZ
 

-189.2574292
  

-1 2 bent_C3O_ bent_C3O_ DFT/cc-pVDZ -189.3348112 -0.46935
 -1 2 CCCO bent_C3O_ DFT/cc-pVDZ -189.3348112

0 1 CCCO CCCO DFT/cc-pVDZ -189.3175558
0 1 bent_C3O_

  
CCCO
 

DFT/cc-pVDZ
 

-189.3175558
  

-1 2 bent_C3O_ bent_C3O_ DFT/aug-cc-pVDZ -189.3663855
0.01278

1-1 2 CCCO bent_C3O_ DFT/aug-cc-pVDZ -189.3663855 -1.05221
 

-0.70456
 0 1 bent_C3O_ CCCO DFT/aug-cc-pVDZ -189.3277014

0.01528
0 1 CCCO

  
CCCO
 

DFT/aug-cc-pVDZ
 

-189.3277014
  

0.01528
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Table 35.  Detailed Calculation Data for Si3O 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 
 

(hart) EA (eV)
-1 2 cyc4_SiSiSiO_ cyc4_SiSiSiO_ DVZ -941.5054098 -0.55374

 -1 2 cyc3_SiSiO_Si
 

SiOSi-bent_Si_ DVZ -941.4913147
-1 2 pyr_SiSiSiO_

 
SiOSi-bent_Si_ DVZ -941.4913147

-1 2 SiSiSi_2-O_
 

SiOSi-bent_Si_
 

DVZ -941.4913147
-1 2 SiSiOSi SiSiOSi DVZ -941.4866073
-1 2 cyc3_SiSiSi_ep_O_

 
cyc4_SiSiSiO_ DVZ -941.4850519

0 3 cyc4_SiSiSiO_
 

cyc4_SiSiSiO_ DVZ -941.4824867
0 3 pyr_SiSiSiO_

 
cyc3_OSiSi_-Si

 
DVZ -941.4768068

0 3 SiSiSi_2-O_ bent_SiOSiSi_ DVZ -941.4755949
0 1 cyc4_SiSiSiO_

 
cyc4_SiSiSiO_ DVZ -941.4557649

0 1 pyr_SiSiSiO_ cyc4_SiSiSiO_ DVZ -941.4557649
0 3 cyc3_SiSiSi_ep_O_

 
cyc4_SiSiSiO_

 
DVZ -941.4551004

0 3 SiSiOSi SiSiOSi
 

DVZ -941.4532985
0 3 cyc3_SiSiO_Si Si2OSi DVZ -941.4517468
0 3 cyc3_SiSiSi_O

 
SiOSi-bent_Si_

 
DVZ -941.4322079

-1 2 SiSiSiO SiSiSiO DVZ -941.423246
0 1 cyc3_SiSiSi_O cyc4_SiSiSiO_ DVZ -941.4216268
0 1 cyc3_SiSiSi_ep_O_

 
cyc4_SiSiSiO_ DVZ -941.4216258

0 1 cyc3_SiSiO_Si
 

cyc3_SiOSi_-Si
 

DVZ -941.4186426
0 1 SiSiOSi SiSiOSi DVZ -941.4098155
0 1 SiSiSiO SiSiSiO DVZ -941.3680657
0 3 SiSiSiO SiSiSiO

 
DVZ -941.3531966

-1 2 cyc3_SiSiSi_O
 

DVZ
0 1 SiSiSi_2-O_ DVZ
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Table 35.  Detailed Calculation Data for Si3O (continued) 

Final Energy 
 

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 
Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 SiSiSiO SiSiSiO cc-pVDZ -941.5939432 -0.42353
 -1 2 bent_SiSiOSi_ bent_SiSiOSi_ cc-pVDZ -941.5875403

-1 2 cyc3_OSiSi_-Si
 

cyc3_OSiSi_-Si
 

cc-pVDZ -941.5849289
-1 2 SiSiOSi SiSiOSi cc-pVDZ -941.5816963
0 3 cyc3_OSiSi_-Si

 
cyc3_OSiSi_-Si

 
cc-pVDZ -941.5693578

0 3 SiSiOSi cc-pVDZ -941.552833
-1 2 cyc4_SiSiSiO_ cyc4_SiSiSiO_ cc-pVDZ -941.5054098
0 3 SiSiSiO Dissociated Si2 SiO 

 
cc-pVDZ -941.4919576    

0 3 cyc4_SiSiSiO_ cyc4_SiSiSiO_
 

cc-pVDZ -941.4824866
0

 
3
 

bent_SiSiOSi_
 

cc-pVDZ
 

-1 2 SiSiSiO Dissociated Si2 SiO 
 

aug-cc-pVDZ -941.6181058 -0.95596
 

  
-1 2 cyc3_OSiSi_-Si

 
bent_SiSiOSi_ aug-cc-pVDZ -941.6130745

-1 2 SiSiOSi bent_SiSiOSi_ aug-cc-pVDZ -941.6130741
-1 2 bent_SiSiOSi_ bent_SiSiOSi_ aug-cc-pVDZ -941.6130741
0 3 cyc3_OSiSi_-Si cyc3_OSiSi_-Si aug-cc-pVDZ -941.5779288
0 3 SiSiSiO Dissociated Si2 SiO 

 
aug-cc-pVDZ -941.5655282    

0 3 SiSiOSi SiSiOSi
 

aug-cc-pVDZ -941.564174
0

 
3
 

bent_SiSiOSi_
 

aug-cc-pVDZ
 

-1 2 SiSiSiO bent_SiSiSiO_
 

DFT/VDZ -943.4498909 -1.81807
 -1 2 bent_SiSiOSi_

 
SiSiOSi DFT/VDZ -943.4417407

-1 2 SiSiOSi SiSiOSi DFT/VDZ -943.4417405
-1 2 cyc3_OSiSi_-Si cyc3_OSiSi_-Si DFT/VDZ -943.441451
0 3 cyc3_OSiSi_-Si

 
cyc3_OSiSi_-Si

 
DFT/VDZ -943.3893895

0 3 bent_SiSiOSi_
 

bent_SiSiOSi_
 

DFT/VDZ -943.38305
0 3 SiSiOSi SiSiOSi DFT/VDZ -943.3708201
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Table 35.  Detailed Calculation Data for Si3O (continued) 

Q M Input Geometry 
 

Output Geometry 
 

Basis Set 
Final Energy 

 (hart) EA (eV)
ZPE 

(hart) 
 

EA (eV) 
w/ZPE 

 -1 2 SiSiSiO cyc3_Si3_-O DFT/cc-pVDZ -943.5751547 -1.73022
 -1 2 cyc3_OSiSi_-Si cyc3_OSiSi_-Si

 
DFT/cc-pVDZ -943.5208019

-1 2 bent_SiSiOSi_
 

SiSiOSi DFT/cc-pVDZ -943.5201904
-1 2 SiSiOSi SiSiOSi DFT/cc-pVDZ -943.5201904
0 3 SiSiSiO cyc3_Si-Si-(O)-Si_ DFT/cc-pVDZ -943.5115435
0 3 cyc3_OSiSi_-Si

 
cyc3_OSiSi_-Si

 
DFT/cc-pVDZ -943.46778

0 3 SiSiOSi SiSiOSi
 

DFT/cc-pVDZ -943.4524174
 0 3 bent_SiSiOSi_

  
DFT/cc-pVDZ
 

SCF
 

0.16675
-1 2 cyc3_Si-Si-(O)-Si_

 
cyc3_Si-Si-(O)-Si_

 
DFT/aug-cc-pVDZ -943.6047101 -2.15669

-1 2 cyc3_Si3_-O
 

cyc3_Si3_-O DFT/aug-cc-pVDZ -943.5985795 -3.04999
 -1 2 SiSiSiO cyc3_Si3_-O DFT/aug-cc-pVDZ -943.5985795

1.06005
0 3 cyc3_Si-Si-(O)-Si_

 
cyc3_Si-Si-(O)-Si_ DFT/aug-cc-pVDZ -943.52542

0 3 SiSiSiO cyc3_Si-Si-(O)-Si_
 

DFT/aug-cc-pVDZ -943.52542
0 3 cyc3_Si3_-O

  
cyc3_Si3_-O
 

DFT/aug-cc-pVDZ
 

-943.4864474
  

0.00564
7-1 2 cyc3_Si-Si-(O)-Si_ cyc3_Si-Si-(O)-Si_ DFT/aug-cc-pVDZ -943.6047101 -2.15669 -2.1614

0.00573
8-1 2 cyc3_Si3_-O cyc3_Si3_-O DFT/aug-cc-pVDZ -943.5985795 -3.04999

 
-3.05698

 0 3 cyc3_Si-Si-(O)-Si_ cyc3_Si-Si-(O)-Si_ DFT/aug-cc-pVDZ -943.52542 0.00582
0.00599

0 3 cyc3_Si3_-O
  

cyc3_Si3_-O
 

DFT/aug-cc-pVDZ
 

-943.4864474
  

0 3 cyc3_Si-Si-(O)-Si_ SP DFT/aug-cc-pVDZ -943.517053 -2.38427 0.00582 -2.38898
0.00599

50 3 cyc i3 -O S DFT/aug-cc-pVDZ -943.4858618 -3.06592 -3.07291
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Table 36.  Detailed Calculation Data for C3SiO 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

-1 2 SiC3O SiC3O cc-pVDZ -477.2962659 -0.90218
 0 3 SiC3O SiC3O cc-pVDZ -477.2630976

0 1 SiC3O
  

SiC3O
 

cc-pVDZ
 

-477.2407726
  

-1 2 SiC3O aug-cc-pVDZ SOLVCG #VALUE!
 0 3 SiC3O

  
SiC3O
 

aug-cc-pVDZ
 

-477.2711914
  

-1 2 SiC3O SiC3O DFT/VDZ -478.7732458 -1.94615
 0 3 SiC3O

  
SiC3O
 

DFT/VDZ
 

-478.701696
  

-1 2 SiC3O SiC3O DFT/cc-pVDZ -478.8390397 -1.67685
 0 3 SiC3O

  
SiC3O
 

DFT/cc-pVDZ
 

-478.7773906
  

0.01709
1-1 2 SiC3O SiC3O DFT/aug-cc-pVDZ -478.8617754 -2.00055 -2.0082

0.01737
0 3 SiC3O

  
SiC3O
 

DFT/aug-cc-pVDZ
 

-478.7882256
  

0.01737
20 3 SiC3O SP DFT/aug-cc-pVDZ -478.7845069 -2.1017 -2.10935
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C.13.  CSi3O 
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Table 37.  Detailed Calculation Data for CSi3O 

Final Energy 
Q M Input Geometry 

 
Output Geometry 

 
Basis Set 

 
(hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si cc-pVDZ -979.4896934 -0.1675162
 0 1 bent_SiCSiOSi_ cyc4_CSiOSi_-Si cc-pVDZ -979.4835347

0 1 cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si cc-pVDZ -979.4835347
-1 2 bent_SiCSiOSi_ cyc4_CSiOSi_-Si cc-pVDZ -979.4791341
0 3 cyc4_CSiOSi_-Si

 
cyc4_CSiOSi_-Si cc-pVDZ -979.4209231

0
 

3
 

bent_SiCSiOSi_
 

bent_SiCSiOSi_
 

cc-pVDZ
 

-979.4090203

-1 2 cyc4_CSiOSi_-Si cyc4_CSiOSi_-Si aug-cc-pVDZ -979.5287503 -0.7274689
 0

 
1
 

cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si
 

aug-cc-pVDZ
 

-979.5020051

-1 2 cyc4_CSiOSi_-Si cyc4_CSiOSi_-Si DFT/VDZ -981.5321682 -0.8552515
 0

 
1
 

cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si
 

DFT/VDZ
 

-981.5007252

-1 2 cyc4_CSiOSi_-Si cyc4_CSiOSi_-Si DFT/cc-pVDZ -981.6340063 -0.7237068
 0

 
1
 

cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si
 

DFT/cc-pVDZ
 

-981.6073994

0.00953
6-1 2 cyc4_CSiOSi_-Si cyc4_CSiOSi_-Si DFT/aug-cc-pVDZ -981.6629961 -1.0439950 -1.05819

0.01005
0

 
1
 

cyc4_CSiOSi_-Si
 

cyc4_CSiOSi_-Si
 

DFT/aug-cc-pVDZ
 

-981.6246139

0.01005
80 1 cyc4_CSiOSi_-Si SP DFT/aug-cc-pVDZ -981.6128696 -1.3634417 -1.37764
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C.14.  C3Si2O 

 

 
    
    
     
    
    
    
     
      
      
    
     
    

    
   
   
    
    
      
   

     
   
    
    
    
    
     

Table 38.  Detailed Calculation Data for C3Si2O 
Final Energy 

 
ZPE 

(hart) 
EA (eV) 
w/ZPE Q M Input Geometry Output Geometry Basis Set 

 
(hart) EA (eV)

 cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2-1 2 cc-pVDZ -766.2402089430
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ -1 2 cc-pVDZ -766.2330599676
cyc5_CSiOSiC_-C -1 2 cyc6_C3SiOSi_* cc-pVDZ -766.2314663063
cyc3_C-C_Si_-Si_-CO -1 2 cc-pVDZ -766.2181803430cyc3_C-C(Si)-Si_-CO 
cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO 0 1 cc-pVDZ -766.2016281967
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ 0 1 cc-pVDZ -766.1947137406
cyc5_CSiOSiC_-C 0 3 cyc6_C3SiOSi_ cc-pVDZ -766.1817321078
cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C20 3 cc-pVDZ -766.1701501448
cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C20 1 cc-pVDZ -766.1644350621
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ 0 3 cc-pVDZ -766.1522722035
cyc5_CSiOSiC_-C 0 1 cyc5_CSiOSiC_-C* cc-pVDZ -766.1224928064

0 3 cyc3_C-C_Si_-Si_-CO 
  

cyc3_C-C_Si_-Si_-CO* cc-pVDZ
 

-766.1080737179
  

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ -1 2 aug-cc-pVDZ -766.2553573714 -1.21
 cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO -1 2 aug-cc-pVDZ -766.2352200354

cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO 0 1 aug-cc-pVDZ -766.2118013825
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ 0 1 aug-cc-pVDZ -766.2108703100
cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2

 
0 1 aug-cc-pVDZ -766.1837713475

 -1 2 cyc4_CSiOSi_-C2 
  

aug-cc-pVDZ
 

 SCF
 

cyc3_C-C_Si_-Si_-CO 
 

cyc3_C-C_Si_-Si_-CO -1 2 DFT/VDZ -768.1792071041 -1.387
 cyc4_CSiOSi_-C3 cyc4_CSiOSi_-C3-1 2 DFT/VDZ -768.1742903741

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ -1 2 DFT/VDZ -768.1676939635
cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO 0 1 DFT/VDZ -768.1282138376
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-O_ 0 1 DFT/VDZ -768.0832866069
cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2  0 1 DFT/VDZ -768.0800613076 0
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Table 38.  Detailed Calculation Data for C3Si2O (continued) 

Final Energy 
 Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 cyc3_C-C_Si_-Si_-CO
 

cyc3_C-C_Si_-Si_-CO
 

-1 2 DFT/cc-pVDZ -768.2799760370 -0.9021
 cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2-1 2 DFT/cc-pVDZ -768.2780676269

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-
O_ -1 2 DFT/cc-pVDZ -768.2768322216

cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO0 1 DFT/cc-pVDZ -768.2468101308
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-

O_ 0 1 DFT/cc-pVDZ -768.2005457777
0 1 cyc4_CSiOSi_-C2

  
cyc4_CSiOSi_-C2
 

DFT/cc-pVDZ
 

-768.1787150209
  

cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2-1 2 DFT/aug-cc-pVDZ -768.3105024769 -2.9488
cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO-1 2 DFT/aug-cc-pVDZ -768.3026184818 -0.21444
cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-

O_ -1 2 DFT/aug-cc-pVDZ -768.3007494270 -0.26528
 cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO0 1 DFT/aug-cc-pVDZ -1.1662

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-
O_ 0 1 DFT/aug-cc-pVDZ -768.2167181116 -1.1703

0 1 cyc4_CSiOSi_-C2
  

cyc4_CSiOSi_-C2
 

DFT/aug-cc-pVDZ
 

-768.2020919690
 

-1.56813
  

cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2 0.01644
2-1 2 DFT/aug-cc-pVDZ -768.3105024769 -2.9488 -2.95315

cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO 0.01817
7-1 2 DFT/aug-cc-pVDZ -768.3026184819 -1.1662 -1.19005

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-
O_ 

0.01658
7-1 2 DFT/aug-cc-pVDZ -768.3007494270 -2.2857 -2.28826

cyc3_C-C_Si_-Si_-CO cyc3_C-C_Si_-Si_-CO 0.01905
0 1 DFT/aug-cc-pVDZ -768.2597437463

cyc5_Si-C-(C)-C-Si-O_ cyc5_Si-C-(C)-C-Si-
O_ 

0.01668
0 1 DFT/aug-cc-pVDZ -768.2167181116

cyc4_CSiOSi_-C2 cyc4_CSiOSi_-C2 0.01660
30 1 DFT/aug-cc-pVDZ -768.2020919690
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Table 39.  Detailed Calculation Data for C2Si3O 

Q M Input Geometry Output Geometry Basis Set 
 

Final Energy 
 (hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc5_Si-C-(Si)-C-Si-O_
 

cc-pVDZ -1017.352561059 -0.63
 

cyc5_Si-C-(Si)-C-Si-O_ 
-1 2 cyc4_CSiOSi_-CSi cyc4_CSiOSi_-CSi cc-pVDZ -1017.332433795
0 1 cyc5_Si-C-(Si)-C-Si-O_

 
cc-pVDZ -1017.329398018cyc5_Si-C-(Si)-C-Si-O_ 

-1 2 cyc6_Si2C2SiO_ cyc6_Si2C2SiO_ cc-pVDZ -1017.325276057
-1 2 bent_SiC2-SiOSi_ cyc6_Si2C2SiO_ cc-pVDZ -1017.325275982
0 3 cyc4_CSiOSi_-CSi cyc4_CSiOSi_-CSi cc-pVDZ -1017.294892659
0 3 cyc5_Si-C-(Si)-C-Si-O_

 
cc-pVDZ -1017.288587248cyc5_Si-C-(Si)-C-Si-O_ 

0 3 cyc6_Si2C2SiO_ cyc6_Si2C2SiO_ cc-pVDZ -1017.285975530
0 1 cyc4_CSiOSi_-CSi cyc4_CSiOSi_-CSi cc-pVDZ -1017.284715853
0 3 bent_SiC2-SiOSi_

 
bent_SiC2-SiOSi_ cc-pVDZ -1017.276869643

0 1 cyc6_Si2C2SiO_ cc-pVDZ -1017.267754584cyc5_Si-C-C-(Si)-Si-O_ 
0 1 bent_SiC2-SiOSi_

  
cc-pVDZ
 

-1017.267754549
 

cyc5_Si-C-C-(Si)-Si-O_ 
  

-1 2 cyc5_Si-C-(Si)-C-Si-O_ aug-cc-pVDZ -1017.373958779 -0.8149
 

cyc5_Si-C-(Si)-C-Si-O_ 
0 1 cyc5_Si-C-(Si)-C-Si-O_

  
aug-cc-pVDZ
 

-1017.344000595
 

cyc5_Si-C-(Si)-C-Si-O_ 
  

-1 2 cyc5_Si-C-(Si)-C-Si-O_ DFT/VDZ -1019.603466838 -1.8024
 

cyc5_Si-C-(Si)-C-Si-O_ 
0 1 cyc5_Si-C-(Si)-C-Si-O_

  
DFT/VDZ
 

-1019.537200793
 

cyc5_Si-C-(Si)-C-Si-O_ 
  

-1 2 cyc5_Si-C-(Si)-C-Si-O_ DFT/cc-pVDZ -1019.718118008 -1.6877
 

cyc5_Si-C-(Si)-C-Si-O_ 
0 1 cyc5_Si-C-(Si)-C-Si-O_

  
DFT/cc-pVDZ
 

-1019.656068851
 

cyc5_Si-C-(Si)-C-Si-O_ 
  

0.01471
4-1 2 cyc5_Si-C-(Si)-C-Si-O_ DFT/aug-cc-pVDZ -1019.740053078 -1.8912 -1.89581cyc5_Si-C-(Si)-C-Si-O_ 

0.01488
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C.16.  C3Si3O 
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Table 40.  Detailed Calculation Data for C3Si3O 

Final Energy ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

-
1.009717

-1 2 cyc4_CSiOSi_-CCSi cyc4_CSiOSi_-CCSi cc-pVDZ -1055.202749368
-

0.801819
-1 2 cyc6_CSiOSiCC_-Si cyc6_CSiOSiCC_-Si cc-pVDZ -1055.180315713
0 1 cyc4_CSiOSi_-CCSi cyc4_CSiOSi_-CCSi cc-pVDZ -1055.165627392
0

 
1
 

cyc6_CSiOSiCC_-Si
 

cyc6_CSiOSiCC_-Si
 

cc-pVDZ
 

-1055.150837065
 

-1 2 cyc4_CSiOSi_-CCSi aug-cc-pVDZ SCF #VALUE!
 0

 
1
 

cyc4_CSiOSi_-CCSi
 

aug-cc-pVDZ
 

SCF
 

-1 2 cyc4_CSiOSi_-CCSi DFT/VDZ SCF #VALUE!
 0

 
cyc4_CSiOSi_-CCSi
 

cyc4_CSiOSi_-CCSi
 

DFT/VDZ
 

-1057.609190431
 

-
1.290224

-1 2 cyc4_CSiOSi_-CCSi cyc4_CSiOSi_-CCSi DFT/cc-pVDZ -1057.782504370
0

 
1
 

cyc4_CSiOSi_-CCSi
 

cyc4_CSiOSi_-CCSi
 

DFT/cc-pVDZ
 

-1057.735069636
 

-
1.545696

3
0.01886

4-1 2 cyc4_CSiOSi_-CCSi cyc4_CSiOSi_-CCSi DFT/aug-cc-pVDZ -1057.810959018 -1.57766
0.02003

0
 

1
 

cyc4_CSiOSi_-CCSi
 

cyc4_CSiOSi_-CCSi
 

DFT/aug-cc-pVDZ
 

-1057.754131945
 

-

 185



 

C.17.  C4O 

 

  

    
   

      
     

    
    
    

   
    
    

   

  

  1  
     

  

Table 41.  Detailed Calculation Data for C4O 

Q M Input Geometry 
 

Output Geometry 
 

Basis Set 
Final Energy 

(hart) EA (eV)
ZPE 

(hart) 
 

EA (eV) 
w/ZPE 

 2 cc-pVDZ -1 C4O C4O -226.2014801812 -1.8174387
 0 

 
3 
 

cc-pVDZ 
 

C4O
 

C4O
 

-226.1346625808
 

2 aug-cc-pVDZ -1 C4O SCF #VALUE!
 0 

 
3 
 

aug-cc-pVDZ 
 

C4O
 

SCF
 

2 DFT/VDZ -1 C4O C4O -227.3623072854 -2.8797322
 0 

 
3 
 

DFT/VDZ 
 

C4O
 

C4O
 

-227.2564347756
 

2 DFT/cc-pVDZ -1 C4O C4O -227.4164335846 -2.4571667
 0 

 
3 
 

DFT/cc-pVDZ 
 

C4O
 

C4O
 

-227.3260965730
 

2 DFT/aug-cc-pVDZ 0.01918
6-1 C4O C4O -227.4429976092 -2.8683524 -2.87121

3 DFT/aug-cc-pVDZ 0.01929
0 

 
C4O
 

C4O
 

-227.3375434764
 

 

3 DFT/aug-cc-pVDZ 0.01929
10 C4O SP -227.3308137613 -3.0514006 -3.05426
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C.18.  Si4O 

 

 
  

   
    

     
     

     
     

     
     
    

      
      

    
    

    
    

   
   
   

     
   
   

    
      

Table 42.  Detailed Calculation Data for Si4O 

Final Energy 
 

ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry 

 
Output Geometry 

 
Basis Set (hart) EA (eV)

2 cc-pVDZ -1 cyc3_Si3_-OSi cyc3_Si3_-OSi -1230.551636241 -1.141
 2 -1 bent_Si3OSi_ cyc4_Si-Si-(Si)-Si-O_

 
 cc-pVDZ -1230.550178068

1 cc-pVDZ 0 bent_Si3OSi_ cyc5_Si4O_ -1230.509686342
1 cc-pVDZ 0 cyc5_Si4O_ cyc5_Si4O_ -1230.507863039
1 cc-pVDZ 0 cyc4_SiSiOSi_-Si cyc4_SiSiOSi_-Si* -1230.497529217
3 cc-pVDZ 0 cyc5_Si4O_ cyc5_Si4O_ -1230.493085175
1 cc-pVDZ 0 cyc3_Si3_-OSi cyc3_Si3_-OSi -1230.472303917
3 cc-pVDZ 0 bent_Si3OSi_ bent_Si3OSi_ -1230.471588539
3 cc-pVDZ 0 cyc4_SiSiOSi_-Si cyc4_SiSiOSi_-Si

 
-1230.466258136

 2 cc-pVDZ -1 cyc4_SiSiOSi_-Si SCF
2 cc-pVDZ -1 cyc5_Si4O_ SCF

0 
 

3 
 

cc-pVDZ 
 

cyc3_Si3_-OSi
 

SCF
 

2 aug-cc-pVDZ -1 cyc5_Si4O_ cyc5_Si4O_ -1230.572904503 -0.0282
 2 aug-cc-pVDZ -1 cyc3_Si3_-OSi cyc3_Si3_-OSi -1230.572644300

2 aug-cc-pVDZ -1 cyc4_SiSiOSi_-Si cyc4_Si-Si-(Si)-Si-O_ -1230.571867920
2 aug-cc-pVDZ -1 cyc4_Si-Si-(Si)-Si-O_ cyc4_Si-Si-(Si)-Si-O_ -1230.571867749
1 0 cyc4_Si-Si-(Si)-Si-O_ 

 
cyc4_Si-Si-(Si)-Si-O_ 

 
aug-cc-pVDZ -1230.525309990

1 aug-cc-pVDZ 0 cyc5_Si4O_ cyc5_Si4O_ -1230.522764218
1 aug-cc-pVDZ 0 cyc4_SiSiOSi_-Si cyc4_SiSiOSi_-Si* -1230.512242280
3 0 cyc4_Si-Si-(Si)-Si-O_ 

 
cyc4_Si-Si-(Si)-Si-O_ 

 
aug-cc-pVDZ -1230.493993531

1 aug-cc-pVDZ 0 cyc3_Si3_-OSi cyc3_Si3_-OSi
 

-1230.484036479
 3 aug-cc-pVDZ 0 cyc4_SiSiOSi_-Si SCF

3 aug-cc-pVDZ 0 cyc5_Si4O_ SOLVCG
3 aug-cc-pVDZ0 cyc3 Si3 -OSi SOLVCG
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Table 42.  Detailed Calculation Data for Si4O (continued) 

Q M Input Geometry Output Geometry 
 

Basis Set 
Final Energy 

 (hart) EA (eV)
ZPE 

(hart) 
 

EA (eV) 
w/ZPE 

 2 DFT/VDZ -1 cyc4_Si-Si-(Si)-Si-O_
 

cyc5_Si4O_ -1232.902573564 -1.9549
 2 DFT/VDZ -1 cyc5_Si4O_ cyc5_Si4O_ -1232.902573495

2 DFT/VDZ -1 cyc3_Si3_-OSi cyc3_Si3_-OSi -1232.883204930
1 DFT/VDZ 0 cyc5_Si4O_ cyc5_Si4O_ -1232.830703510
1 DFT/VDZ 0 cyc4_Si-Si-(Si)-Si-O_

 
cyc5_Si4O_ -1232.829923645

3 DFT/VDZ 0 cyc5_Si4O_ cyc3_Si3_-OSi -1232.811207913
1 DFT/VDZ 0 cyc3_Si3_-OSi cyc3_Si3_-OSi

 
-1232.808207605

3 DFT/VDZ 0 cyc4_Si-Si-(Si)-Si-O_
 

cyc5_Si4O_ -1232.801041979
3 DFT/VDZ 

 
0 cyc3_Si3_-OSi

  
cyc5_Si4O_
 

-1232.797300612
  

2 DFT/cc-pVDZ -1 cyc5_Si4O_ cyc5_Si4O_ -1233.034871105 -1.8883
 1 DFT/cc-pVDZ 

 
0 cyc5_Si4O_

  
cyc5_Si4O_
 

-1232.965447158
  

2 DFT/aug-cc-pVDZ -1 cyc5_Si4O_ cyc5_Si4O_ -1233.055475883 -1.8884 0.0071 -1.88811
2 DFT/aug-cc-pVDZ 0.00686

8-1 cyc5_Si4O_dih cyc5_Si4O_dih -1233.051336881 -1.9919 -1.99819
1 DFT/aug-cc-pVDZ 0.00709

0 cyc5_Si4O_ cyc5_Si4O_ -1232.986051144  
1 DFT/aug-cc-pVDZ 0.00709

0 cyc5_Si4O_dih
  

cyc5_Si4O_dih
 

-1232.978104959
 

 
 

1 DFT/aug-cc-pVDZ 0.00709
10 cyc5_Si4O_ SP -1232.981828762 -2.0032 -2.00296

1 DFT/aug-cc-pVDZ 0.00709
90 cyc5_Si4O_dih SP -1232.961716065 -2.4377 -2.44397

 



 

C.19.  C4SiO 
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Table 43.  Detailed Calculation Data for C4SiO 

Final Energy ZPE 
(hart) 

EA (eV) 
w/ZPE Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

-
1.0423203

 
-1 2 SiC4O SiC4O cc-pVDZ -515.1669635393
0

 
1
 

SiC4O
 

SiC4O
 

cc-pVDZ
 

-515.1286429386
 

-
1.2658726

 
-1 2 SiC4O SiC4O aug-cc-pVDZ -515.1840078605
0

 
1
 

SiC4O
 

SiC4O
 

aug-cc-pVDZ
 

-515.1374684255
 

-
1.5288184

 
-1 2 SiC4O SiC4O DFT/VDZ -516.8427935304
0

 
1
 

SiC4O
 

SiC4O
 

DFT/VDZ
 

-516.7865869690
 

-
1.2654844

 
-1 2 SiC4O SiC4O DFT/cc-pVDZ -516.9190990263
0

 
1
 

SiC4O
 

SiC4O
 

DFT/cc-pVDZ
 

-516.8725738641
 

-
1.5773054

0.02182
4-1 2 SiC4O SiC4O DFT/aug-cc-pVDZ -516.9421080680 -1.60932

0.02300
0

 
1
 

SiC4O
 

SiC4O
 

DFT/aug-cc-pVDZ
 

-516.8841188985
 

-
1.6949811

0.02300
10 1 SiC4O SP DFT/aug-cc-pVDZ -516.8797925839 -1.727

-
1.0423203

 
-1 2 SiC4O SiC4O cc-pVDZ -515.1669635393
0 1 SiC4O SiC4O cc-pVDZ -515.1286429386
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C.20.  CSi4O 
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Table 44.  Detailed Calculation Data for CSi4O 

Final Energy 
Q M Input Geometry 

 
Output Geometry Basis Set 

 
(hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si cc-pVDZ -1268.429544 -1.0949749
 -1 2 cc-pVDZ -1268.413558cyc3_CSiSi_-dih_SiOSi_ 

 
cyc3_CSiSi_-dih_SiOSi_ 

0 1 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si cc-pVDZ -1268.389287
3 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si cc-pVDZ -1268.376482

0 3 cc-pVDZ -1268.362225cyc3_CSiSi_-dih_SiOSi_ cyc3_CSiSi_-dih_SiOSi_ 
0

 
1
 

cc-pVDZ
 

-1268.359746cyc3_CSiSi_-dih_SiOSi_ 
 

cyc3_CSiSi_-dih_SiOSi_ 
 

-1 2 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si aug-cc-pVDZ -1268.451064 -1.3091976
 0

 
1
 

cyc5_CSiSiOSi_-Si
 

cyc5_CSiSiOSi_-Si
 

aug-cc-pVDZ
 

-1268.402932

-1 2 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si DFT/VDZ -1270.987713 -1.8786073
 0

 
1
 

cyc5_CSiSiOSi_-Si
 

cyc5_CSiSiOSi_-Si
 

DFT/VDZ
 

-1270.918647

-1 2 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si DFT/cc-pVDZ -1271.113956 -1.8863808
 0

 
1
 

cyc5_CSiSiOSi_-Si
 

cyc5_CSiSiOSi_-Si
 

DFT/cc-pVDZ
 

-1271.044604

0.01152
4-1 2 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si DFT/aug-cc-pVDZ -1271.135341 -2.0895317 -2.08458

0.01134
0

 
1
 

cyc5_CSiSiOSi_-Si
 

cyc5_CSiSiOSi_-Si
 

DFT/aug-cc-pVDZ
 

-1271.05852

0.01134
20 1 cyc5_CSiSiOSi_-Si cyc5_CSiSiOSi_-Si DFT/aug-cc-pVDZ -1271.053165 -2.2351975 -2.23025
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C.21.  C4Si2O 

 

Q M Input Geometry Output Geometry Basis Set 
Final Energy 

(hart) EA (eV) 
ZPE 

(hart) 
EA (eV) 
w/ZPE 

-1 2 cyc4_CSiOSi_-C3 cyc4_CSiOSi_-C3 cc-pVDZ -804.0839614149    
-1 2 cyc7_SiOSiC4_ cyc7_SiOSiC4_ cc-pVDZ -804.0679139722    
0 1 cyc4_C-Si-C(C)-Si_-CO cyc4_C-Si-C(C)-Si_-CO cc-pVDZ -804.0554767374    

0 1 cyc7_SiOSiC4_ cyc7_SiOSiC4_ cc-pVDZ -804.0453901535
0.05231177

4   
0 1 cyc4_CSiOSi_-C3 cyc4_CSiOSi_-C3 cc-pVDZ -804.0434669265    
0 1 bent_SiO-Si-C4_ cyc4_CSiOSi_-C3 cc-pVDZ -804.0434668181    
0 3 cyc4_C-Si-C(C)-Si_-CO cyc4_C-Si-C-(C)-Si_-CO cc-pVDZ -804.0081617243    
0 3 cyc7_SiOSiC4_ cyc7_SiOSiC4_ cc-pVDZ -803.9912664506    

-1 2 cyc4_C-Si-C(C)-Si_-CO  cc-pVDZ SCF    
0 3 cyc4_CSiOSi_-C3  cc-pVDZ SCF    

-1 2 bent_SiO-Si-C4_  cc-pVDZ SOLVCG    
0 3 bent_SiO-Si-C4_  cc-pVDZ SOLVCG    

         
0 1 bent_SiO-Si-C4_  aug-cc-pVDZ Rotation    
0 1 cyc4_C-Si-C(C)-Si_-CO  aug-cc-pVDZ -804.0680111933    
0 1 cyc4_CSiOSi_-C3  aug-cc-pVDZ Rotation    

-1 2 bent_SiO-Si-C4_  aug-cc-pVDZ Died    
-1 2 cyc4_C-Si-C(C)-Si_-CO  aug-cc-pVDZ SCF    
-1 2 cyc4_CSiOSi_-C3  aug-cc-pVDZ Rotation    
0 3 bent_SiO-Si-C4_  aug-cc-pVDZ Died    
0 3 cyc4_C-Si-C(C)-Si_-CO  aug-cc-pVDZ Died    
0 3 cyc4_CSiOSi_-C3  aug-cc-pVDZ Died    

 

Table 45.  Detailed Calculation Data for C4Si2O 
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   0.02165

         
0 1 cyc4_CSiOSi_-C3 SP DFT/aug-cc-pVDZ -806.3005182262 -2.2224369 0.02165 -2.26231

Table 45.  Detailed Calculation Data for C4Si2O (continued) 

Final Energy 
Q M Input Geometry 

 
Output Geometry Basis Set 

 
(hart) EA (eV)

 

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc4_CSiOSi_-C3
 

cyc4_CSiOSi_-C3 DFT/VDZ -806.2485623054
-1 2 bent_SiO-Si-C4_ bent_SiO-Si-C4_ DFT/VDZ -806.2478060428
0 1 cyc4_CSiOSi_-C3 cyc4_CSiOSi_-C3 DFT/VDZ -806.1768683379

-1 2 cyc4_C-Si-C(C)-Si_-CO
 

DFT/VDZ -806.1720602029cyc4_C-Si-C(C)-Si_-CO 
 0 1 bent_SiO-Si-C4_ bent_SiO-Si-C4_ DFT/VDZ -806.1471780185

0 3 bent_SiO-Si-C4_ bent_SiO-Si-C4_
 

DFT/VDZ -806.1176340294
 0 1 cyc4_C-Si-C(C)-Si_-CO DFT/VDZ SCF

0 3 cyc4_C-Si-C(C)-Si_-CO
 

DFT/VDZ SCF
0

 
3
 

cyc4_CSiOSi_-C3
 

DFT/VDZ
 

SCF
 

-1 2 cyc4_CSiOSi_-C3 DFT/cc-pVDZ SCF #VALUE!
 0 1 cyc4_CSiOSi_-C3

 
cyc4_CSiOSi_-C3 DFT/cc-pVDZ -806.2944168697

-1 2 bent_SiO-Si-C4_ bent_SiO-Si-C4_ DFT/cc-pVDZ -806.3389632746
0

 
1
 

bent_SiO-Si-C4_
 

bent_SiO-Si-C4_
 

DFT/cc-pVDZ
 

-806.2458565030
 

-
1.8541558

-1 2 cyc4_CSiOSi_-C3
 

cyc4_CSiOSi_-C3 DFT/aug-cc-pVDZ -806.3822254672
-1 2 bent_SiO-Si-C4_ bent_SiO-Si-C4_ DFT/aug-cc-pVDZ -806.3632700718
0 1 bent_SiO-Si-C4_ cyc4_CSiOSi_-C3 DFT/aug-cc-pVDZ -806.3140579731
0

 
1
 

cyc4_CSiOSi_-C3
 

cyc4_CSiOSi_-C3
 

DFT/aug-cc-pVDZ
 

-806.3140579731
 

-
1.8541558

4
0.02018

4-1 2
1

cyc4_CSiOSi_-C3
cyc4_CSiOSi_-C3 

cyc4_CSiOSi_-C3
cyc4_CSiOSi_

DFT/aug-cc-pVDZ
-C3 DFT/aug-cc-pVDZ 

-806.3822254672
-806.3140579731

-1.89403
 0



 

C.22.  C2Si4O 

 

Q M Input Geometry Output Geometry Basis Set 
Final Energy 

(hart) EA (eV) 
ZPE 

(hart) 
EA (eV) 
w/ZPE 

-1 2 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi cc-pVDZ -1306.248677 -0.7478997   
-1 2 cyc7_SiOSiSiSiCC_ cyc7_SiOSiSiSiCC_* cc-pVDZ -1306.247239    
-1 2 cyc5_Si-O-Si-C(Si)-C(Si)_ cyc5_Si-O-Si-C(Si)-C(Si)_ cc-pVDZ -1306.240316    
-1 2 cyc6_CSiOSiCSi_-Si cyc6_CSiOSiCSi_-Si cc-pVDZ -1306.236134    
-1 2 Si-(CSi)(CSi)(OSi) Si-(CSi)(CSi)(OSi)** cc-pVDZ -1306.226281    
0 1 cyc6_CSiOSiCSi_-Si cyc6_CSiOSiCSi_-Si cc-pVDZ -1306.22118    
0 1 cyc5_Si-O-Si-C(Si)-C(Si)_ cyc5_Si-O-Si-C(Si)-C(Si)_ cc-pVDZ -1306.220594    
0 1 cyc7_SiOSiSiSiCC_ cyc7_SiOSiSiSiCC_ cc-pVDZ -1306.210983    
0 1 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi cc-pVDZ -1306.198365    
0 1 Si-(CSi)(CSi)(OSi)* Si-(CSi)(CSi)(OSi) cc-pVDZ -1306.14348    

       
-1 2 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi aug-cc-pVDZ -1306.278717 -1.1454960   
-1 2 cyc5_Si-O-Si-C(Si)-C(Si)_  aug-cc-pVDZ SOLVCG    
-1 2 cyc6_CSiOSiCSi_-Si cyc6_CSiOSiCSi_-Si aug-cc-pVDZ -1306.258413    
0 1 cyc6_CSiOSiCSi_-Si cyc5_Si-O-Si-(Si)-C-(Si)-C_ aug-cc-pVDZ -1306.236603    
0 1 cyc5_Si-O-Si-C(Si)-C(Si)_  aug-cc-pVDZ Died    
0 1 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi aug-cc-pVDZ -1306.221502    
         
-1 2 cyc5_Si-O-Si-C(Si)-C(Si)_ cyc6_CCSiSiOSi_-Si DFT/VDZ -1309.012239 -1.2206647   
-1 2 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi DFT/VDZ -1308.998168    
0 1 cyc5_Si-O-Si-(Si)-C-(Si)-C_ cyc5_Si-O-Si-(Si)-C-(Si)-C_ DFT/VDZ -1308.967362    
0 1 cyc5_Si-O-Si-C(Si)-C(Si)_ cyc5_Si-O-Si-C(Si)-C(Si)_ DFT/VDZ -1308.961651    
0 1 cyc4_CSiOSi_-SiCSi cyc4_CSiOSi_-SiCSi DFT/VDZ -1308.92725    

-1 2 cyc5_Si-O-Si-(Si)-C-(Si)-C_  DFT/VDZ SCF   
 

Table 46.  Detailed Calculation Data for C2Si4O 
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Table 46.  Detailed Calculation Data for C2Si4O (continued) 

Final Energy 
Q M Input Geometry Output Geometry Basis Set (hart) EA (eV)

ZPE 
(hart) 

 

EA (eV) 
w/ZPE 

 -1 2 cyc6_CCSiSiOSi_-Si cyc6_CCSiSiOSi_-Si* DFT/cc-pVDZ -1309.156763 -1.3688935
 -1 2 DFT/cc-pVDZ -1309.147782cyc5_Si-O-Si-(Si)-C-(Si)-C_

 
cyc5_Si-O-Si-(Si)-C-(Si)-C_

0 1 cyc6_CCSiSiOSi_-Si DFT/cc-pVDZ -1309.106436cyc5_Si-O-Si-(Si)-C-(Si)-C_ 
0

 
1
 

DFT/cc-pVDZ
 

-1309.106436cyc5_Si-O-Si-(Si)-C-(Si)-C_
 

cyc5_Si-O-Si-(Si)-C-(Si)-C_
 

-1 2 DFT/aug-cc-pVDZ -1309.190293 -0.3451841
 

cyc5_Si-O-Si-(Si)-C-(Si)-C_ cyc5_Si-O-Si-C-(Si-Si)-C_
-1 2 DFT/aug-cc-pVDZ -1309.190293cyc5_Si-O-Si-C-(Si-Si)-C_ cyc5_Si-O-Si-C-(Si-Si)-C_ 

0.34518
-1 2 cyc6_CCSiSiOSi_-Si cyc6_CCSiSiOSi_-Si DFT/aug-cc-pVDZ -1309.177602
0 1 DFT/aug-cc-pVDZ -1309.122993cyc5_Si-O-Si-C-(Si-Si)-C_ cyc5_Si-O-Si-C-(Si-Si)-C_ 

0.05920
0 1 DFT/aug-cc-pVDZ -1309.120817cyc5_Si-O-Si-(Si)-C-(Si)-C_

 
cyc5_Si-O-Si-(Si)-C-(Si)-C_

0
 

1
 

cyc6_CCSiSiOSi_-Si
 

DFT/aug-cc-pVDZ
 

-1309.10973 0.36075
 

cyc5_O-Si-(Si)-C-C-(Si)-Si_ 
 

0.01593
7-1 2 DFT/aug-cc-pVDZ -1309.190293 -1.8305509 -1.84834cyc5_Si-O-Si-C-(Si-Si)-C_ cyc5_Si-O-Si-C-(Si-Si)-C_ 

0.01608
-1 2 cyc6_CCSiSiOSi_-Si cyc6_CCSiSiOSi_-Si DFT/aug-cc-pVDZ -1309.177602

0.01659
0 1 DFT/aug-cc-pVDZ -1309.122993cyc5_Si-O-Si-C-(Si-Si)-C_ cyc5_Si-O-Si-C-(Si-Si)-C_ 

0.01622
0 1 DFT/aug-cc-pVDZ -1309.120817cyc5_Si-O-Si-(Si)-C-(Si)-C_ cyc5_Si-O-Si-(Si)-C-(Si)-C_

0.01562
0

 
1
 

DFT/aug-cc-pVDZ
 

-1309.109982cyc5_O-Si-(Si)-C-C-(Si)-Si_ 
 

cyc5_O-Si-(Si)-C-C-(Si)-Si_ 
 

0.01659
10 1 SP DFT/aug-cc-pVDZ -1309.119119 -1.9359367 -1.95373cyc5_Si-O-Si-C-(Si-Si)-C_ 

-
2.1535182

1
0.01614

80 1 cyc6 CCSiSiOSi -Si SP DFT/aug-cc-pVDZ -1309 098429 -2 15511



 

 
Appendix D.  Tools Developed for Data Analysis 

 
 

 Figure 52 shows the batch file used to extract data from output files.  This 

file requires two DOS programs “grep32” and “sed”, equivalent to the UNIX 

programs of similar names, to be located at “I:\.  The batch file should be placed 

in the directory with the output files and run.  Output files should be named as 

Figure 52.  Batch file for extracting data from output files.  (“•” represent 
spaces, “→” represent tabs)
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 “isomer.multiplicity.basis.out”.  It returns a file “output.txt” with the isomer name, 

multiplicity, and basis on one line separated by tabs.  On the next line is the 

optimized energy.  If the energy is zero, the calculation reached the maximum 

number of steps before it found a minimum.  If the calculation failed for some 

other reason, the molecule will not appear in “output.txt”. 
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Appendix E.  Calculation Troubleshooting Guide 

 
 

 While calculations performed using the input template of Chapter 3 are 

usually successful, some calculations fail to complete correctly.  The purpose of 

this appendix is to list several methods that can be applied to get troublesome 

calculations to complete.  It should be pointed out that this list is not exhaustive 

and there are some calculations that will not converge regardless of what is 

done. 

 

1.  SOGTOL:  Add EXTRAP=.F. DAMP=.T. SOGTOL=0.00001 to the $SCF 

group.  This changes the parameters for the SCF routine, making it more stable.  

The SOGTOL keyword applies only to HF and may be left out for DFT 

calculations.  If the calculation still does not converge, the SOGTOL value may be 

lowered. 

2.  MOREAD:  If a calculation on a similar molecule with the same atoms and basis 

set works, the vectors from the .dat file of the working calculation can be used as 

the starting vectors for the unconvergent calculation.  This is described at the end 

of Section 3.2.  If possible, vectors can be taken from a working calculation of a 

different multiplicity, an anion or cation of the same molecule, or for a 

DFT/B3LYP calculation, from a HF or BLYP calculation. 

3.  RSTRCT:  Another change that can be made to the SCF routine parameters is 

to add RSTRCT=.T. to the $SCF group.  This is especially useful for 
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convergence problems where the energy is fluctuating up and down by very 

small amounts. 

4.  KDIAG:  If other methods do not work KDIAG=3 can be added to the $SYSTEM 

group.  This changes the diagonalization method to a Jacobian method.  This is 

more accurate, but can take significantly longer computation times. 

5.  QMTTOL:  For large molecules and large basis sets, the wavevectors can 

become linearly dependent.  In these cases QMTTOL=1.0E-5 can be added to 

the $CNTRL group.  This sets the tolerance below which linearly dependent 

wavevectors are removed.  The default is 1.0E-6.  It should be noted that 

removing vectors increases the energy by tens of microhartrees. 

6.  DIRSCF:  For very large molecules and very large basis sets, disk space can 

become a problem.  In these cases, DIRSCF=.T. can be added to the $SCF 

group.  This stores integrals in memory and recalculates them when necessary 

rather than storing them on disk.  For large molecules this can improve 

calculation times by requiring less frequent disk access. 
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Appendix F.  Detailed Thermodynamics Data 
 
 

 

Molecule E (kJ/mol) ZPE (kJ/mol) E (kJ/mol) H (kJ/mol) G (kJ/mol) CV (J/mol-K) CP (J/mol-K) S (J/mol-K) 
Si -759655.219161 0.000000 3.718 6.197 -41.336 12.472 20.786 159.427

Si2 -1519614.918109 2.923346 9.731 12.210 -56.381 26.121 34.435 230.057
Si3 -2279621.598266 6.634518 16.812 19.291 -67.947 44.130 52.445 292.597
Si4 -3039679.798157 11.957245 25.832 28.311 -67.009 64.458 72.773 319.705
C -99328.879599 0.000000 3.718 6.197 -38.188 12.472 20.786 148.870

CSi -859380.895931 5.796564 12.103 14.582 -51.109 22.511 30.825 220.330
CSi2 -1619646.883578 12.443325 22.301 24.780 -57.669 37.095 45.409 276.534
CSi3 -2379648.102064 18.006208 30.182 32.661 -57.202 57.157 65.472 301.402
CSi4 -3139583.424833 22.653929 37.904 40.383 -56.809 78.157 86.471 325.986

C2 -199109.255492 13.222032 19.42 21.899 -37.419 20.808 29.122 198.953
C2Si -959506.747912 16.494833 27.512 29.991 -51.437 40.297 48.611 273.112

C2Si2 -1719516.819324 24.055162 34.876 37.355 -47.142 49.518 57.833 283.405
C2Si3 -2479540.697746 29.981325 44.841 47.320 -49.512 70.860 79.174 324.776
C2Si4 -3239552.638776 34.796801 52.766 55.245 -47.934 93.850 102.165 346.063

C3 Unconverged  
C3Si -1059339.157257 29.300273 41.278 43.757 -38.913 54.826 63.140 277.277

C3Si2 -1819519.950534 39.113965 52.104 54.583 -29.846 62.066 70.380 283.177
C3Si3 -2579435.818809 41.789050 60.328 62.807 -46.278 87.989 96.303 365.871
C3Si4 -3339331.694083 46.772675 67.133 69.612 -41.821 104.134 112.448 373.748

C4 -399136.164532 32.841562 44.938 47.416 -31.296 53.323 61.637 264.001
C4Si -1159359.217581 43.048381 56.138 58.617 -25.825 61.312 69.627 283.220

C4Si2 -1919389.816652 48.228523 64.628 67.107 -27.900 81.295 89.609 318.656
C4Si3 -2679307.181454 50.309233 70.893 73.372 -34.972 108.251 116.565 363.384
C4Si4 -3439262.850558 56.576155 79.320 81.799 -34.848 118.837 127.151 391.239

Table 47.  Detailed Thermodynamics Data for CnSim 
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Molecule E (kJ/mol) ZPE (kJ/mol) E (kJ/mol) H (kJ/mol) G (kJ/mol) CV (J/mol-K) CP (J/mol-K) S (J/mol-K) 
O -197035.865200 0.000000 3.718 6.197 -39.257 12.472 20.786 152.454

SiO -957432.055169 7.110410 13.354 15.833 -47.318 21.674 29.989 211.808
Si2O -1717239.062251 10.268349 20.005 22.484 -55.685 44.004 52.319 262.183
Si3O -2477225.635551 15.281247 27.840 30.319 -62.821 60.184 68.499 312.395
Si4O -3237204.413754 18.616792 36.220 38.699 -65.876 82.676 90.991 350.744
CO -297418.999845 13.062475 19.261 21.739 -37.167 20.810 29.125 197.573

CSiO -1057222.489657 18.807809 27.572 30.051 -44.027 39.262 47.577 248.459
CSi2O -1817176.969130 23.970197 35.576 38.055 -49.776 54.053 62.367 294.587
CSi3O -2577255.054844 26.408180 41.726 44.205 -54.777 73.208 81.523 331.985
CSi4O -3337163.666673 29.777221 49.667 52.146 -60.448 95.424 103.739 377.644

C2O -397002.483515 23.297356 31.255 33.734 -35.822 34.578 42.893 233.293
C2SiO -1157248.467248 35.156303 46.108 48.587 -30.314 49.423 57.738 264.632

C2Si2O -1917167.288417 38.616687 52.603 55.082 -40.687 65.921 74.235 321.212
C2Si3O -2677144.580742 39.080766 56.040 58.519 -43.659 85.928 94.243 342.707
C2Si4O -3437101.926253 43.559972 64.007 66.486 -44.996 105.863 114.177 373.913

C3O -497079.808818 40.141792 50.819 53.298 -22.484 47.467 55.781 254.173
C3SiO -1257058.306336 45.610303 59.412 61.891 -26.872 67.353 75.668 297.715

C3Si2O -2017065.668388 50.025019 66.454 68.933 -31.733 81.424 89.738 337.633
C3Si3O -2777133.075773 52.611621 73.052 75.531 -37.698 101.542 109.857 379.771
C3Si4O 0.000000        

C4O -596874.634933 50.649176 63.734 66.213 -18.627 63.952 72.266 284.555
C4SiO -1357079.059852 60.388477 77.053 79.532 -15.471 80.341 88.656 318.642

C4Si2O -2116977.256085 56.842552 77.119 79.598 -30.715 100.727 109.042 369.990
C4Si3O 0.000000        
C4Si4O 0.000000        

O2 -394581.728322 9.832338 16.037 18.516 -42.595 20.974 29.288 204.968
CO2 -495000.328074 30.287118 37.181 39.660 -25.794 28.846 37.160 219.535
SiO2 -1154854.826919 17.3344 25.931 28.409 -42.481 37.252 45.566 237.769

Table 48.  Detailed Thermodynamics Data for CnSimO 
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