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AFIT/GM/ENP/03-03 

Abstract 

 
 This research produces better forecast tools for SOUTHCOM’s 25th Operational 

Weather Squadron (OWS) over multiple areas of operation in South America.  Heavy 

rainfall and low-cloud base events along the northeastern Andes foothills are examined, 

as well as, mesoscale convective complexes (MCCs) in Central South America (CSA).  

Low clouds, fog, and flooding rains hamper daily Department of Defense (DoD) counter-

drug operations in Northwestern South America (NWSA).  In addition, fierce MCCs 

interfere with joint-military exercises in CSA.   

Climatological relationships of heavy rain with low clouds and fog in NWSA, 

relationships of excessive rainfall with upper-level divergence, low-level convergence, 

and vertical velocity in NWSA, and verification of Corfidi’s method (Corfidi et al. 1996) 

of MCC movement for CSA are investigated.  Ceilings and visibilities associated with 

low clouds and fog lower much more frequently following heavy rainfall in NWSA.  In 

addition, findings prove that specific ceiling heights and visibilities relate to certain 

precipitation intensities.  Findings indicate certain synoptic and meso-alpha scale features 

and specific minimum thresholds of upper-level divergence, low-level convergence, and 

vertical velocities are shown necessary to produce excessive rainfall events.  Finally, 

Corfidi’s method of forecasting MCC movement for North America is verified for 

applicability over CSA.  Both propagation and advective cloud component vectors are 

examined for forecast use.

 xiv



FORECASTING EXCESSIVE RAINFALL AND LOW-CLOUD BASES EAST OF 

THE NORTHERN ANDES AND MESOSCALE CONVECTIVE COMPLEX 

MOVEMENT IN CENTRAL SOUTH AMERICA 

 

I. Introduction 

 

One of the greatest challenges in today’s high-operations tempo Air Force is the 

challenge to forecast anywhere around the globe regardless of forecaster experience.  One 

area of responsibility (AOR) for forecasters is the AOR for Southern Command 

(SOUTHCOM), which includes all of the Americas south of Mexico.  The most volatile 

region of SOUTHCOM is Northwest South America (NWSA), where the military 

performs counter-drug and humanitarian aid operations.  The military also participates in 

joint exercises in various parts of the AOR to include Central South America (CSA).  

Forecasting for such operations in data-sparse regions with limited weather knowledge 

can be difficult. 

The Air Force Weather Agency (AFWA) and the 25th Operational Weather 

Squadron (OWS) at Davis-Monthan Air Force Base (AFB), Arizona (weather forecast 

center for the AOR) seek forecasting knowledge of these critical, data-sparse regions.  

Heavy precipitation events and low-cloud bases hamper both Air Force and Army 

operations along the eastern foothills of the northern Andes and adjacent highlands from 

7˚ N to 7˚ S.  In addition, powerful mesoscale convective complexes (MCCs) traversing 

Northern Argentina, Paraguay, Uruguay, and Southern Brazil disrupt important joint-

military exercises in these regions.  The goal of this research is three-fold:  to develop 

 1



forecasting tools for fog and low-cloud base events in the Columbian Highlands and 

Western Amazon Basin, to develop forecasting guidance to predict excessive rainfall in 

the Columbian Highlands and Western Amazon Basin, and to predict MCC movement in 

CSA.  Figures 1 and 2 display topographical and geographical/political locations referred 

to throughout this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Topography and associated geographical features of South America. 
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Fig. 2.  Political map of South America (modified from Maps.com, 2002). 
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1.1.   Excessive Rainfall, Fog, and Low-Cloud Bases over Columbia, Ecuador, and 
Northern Peru east of the Andes.  
 
 

1.1.1.  Statement of the Problem.  Excessive rainfalls (24 hour rainfall of 6” or 

more) commonly disrupt military operations in NWSA.  Intense tropical squall lines, 

trade wind surges, and monsoon surges associated with the passage and oscillation of the 

near equatorial trough (NET), in concert with tropical air masses, orographic lift, and 

diurnal changes can create enormous amounts of precipitation in a short period of time 

over the region.  Heavy rainfall events adversely affect electro-optical and infrared 

sensors for surveillance and weapon deployment operations, inhibit aircraft recovery 

processes, and interfere with communications.  Such events can also flood runways and 

cause the military to switch its focus from military operations to humanitarian relief 

operations.  A 4-6” 24-hour rainfall can create significant flooding and landslides in the 

region (Zipprich 2002).  Unfortunately, numerous military locations lie within 150 nm of 

the windward (eastward) side of the Cordillera Oriental (Eastern Andes range), where 

orographic uplift further enhances unsettled weather systems.   

 In addition to heavy rain, low-cloud bases and fog can unfavorably affect military 

operational flights.  Intense rainfall and radiational cooling create widespread low-cloud 

bases and fog events.  Mission requirements in Columbia, Ecuador, and Northern Peru 

generally necessitate the need for low-flying aircraft and helicopters for surveillance and 

rescue operations.  Fog or low clouds lowering to below aircraft landing minimum 

requirements over runways may force aircraft to land at unfavorable locations.  In 

addition, surveillance flights usually require a cloud-free line-of-sight to the ground. 

Therefore, if clouds restrict viewing, operators are forced to lower their flight levels or 
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cancel missions.  Very low flight levels could even prove hazardous in high-risk areas, 

especially if the level is within reach of weapon fire from unfriendly forces. 

1.1.2.  Research Objectives.  The 25th OWS requires forecasting guidelines for 

accurate prediction of low-clouds, fog, and heavy rainfall events in NWSA.  The goal of 

this particular topic is two-fold:  to develop climatological tables from surface 

observations for fog and low cloud base events in the Columbian Highlands and Western 

Amazon Basin, and to develop forecasting guidance from surface observations and model 

reanalysis data to predict excessive rainfall in the Columbian Highlands and Western 

Amazon Basin.  Due to data restrictions, the period of record (POR) only encompasses 

1995-2002 for the fog and low cloud studies and 1995-1996 for the excessive rainfall 

study.  All studies within this topic utilize extensive literature reviews, climatological 

studies, data analysis, and archived surface observations to achieve specific objectives.  

Although general seasonal characteristics are present with heavy rainfall and low clouds, 

this study focuses on daily (rather than seasonal) forecasting techniques.  In addition, this 

study focuses on meso-alpha cloud scale and synoptic scale events.   

Specific objectives necessary to achieve the fog and low-cloud studies are: 

1. Gather and examine surface observations for NWSA east of the Andes from 

the Air Force Climatology Combat Center (AFCCC 1995-2001) and 25th 

OWS (2001-2002) for the POR 1995-2002; 

2. Pick out observations with reports of 1” or more of 24-hour accumulated 

precipitation provided the observation site has a valid 12 UTC observation on 

the following morning; 
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3. Determine the probability of occurrence of falling below certain airfield 

minimum categories (3000/3; 1500/3; 1000/2; 300/1; 200/0.5) from surface 

observations;   

4. Separate all precipitation observations by intensity (drizzle, light rain, 

moderate rain, and heavy rain); 

5. Determine the probability of occurrence of falling below certain airfield 

minimum categories (using the same categories as objective 3) given that a 

certain precipitation intensity occurs; 

6. Determine a range of ceilings and visibilities based on probabilities given a 

certain precipitation intensity occurs; 

7. Incorporate all forecast guidelines into a forecast predictive tool. 

The specific objectives necessary to achieve the excessive rainfall study are: 

1. Gather and examine all surface observation data from AFCCC (1995-2001) 

for the POR 1995-1996; 

2. Segregate all observations reporting 24-hour accumulated precipitation of 1-

2” and 6” or greater;  

3. Gather and analyze archived satellite imagery from the National Climatic 

Data Center (NCDC 2002) and National Geophysical Data Center (NGDC 

2002), as well as, raw Global Data Assimilation System (GDAS) reanalysis 

data from the National Center for Atmospheric Research (NCAR 1995-1996); 

4. Collect raw reanalysis data from the National Center for Atmospheric 

Research (NCAR 1995-1996) and interpolate the raw data onto a 45 km 

Mercator projection grid;  
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5. Analyze divergence values, vertical velocity values, and wind vector charts 

from the reanalysis data; 

6. Compare upper-level divergence, low-level convergence, and vertical 

velocities of 1-2” events to 6” or greater rainfall events; 

7. Create forecasting guidelines to include a summary of synoptic and meso-

scale excessive rainfall precursors and generic divergence and vertical 

velocity thresholds for excessive rainfall events. 

 
1.2.  Forecasting Mesoscale Convective Complex Movement in Northern Argentina, 
Southern Brazil, Paraguay, and Uruguay. 
 
 

1.2.1.  Statement of the Problem.  MCCs in CSA interfere with pertinent military 

exercises and disrupt military operations.  Numerous meteorological ingredients work in 

concert to produce mammoth MCCs that yield extensive areas of heavy rainfall and low-

cloud bases primarily at night.  The military requires extensive lead-time with MCC 

forecasts to properly re-locate or postpone exercise missions.  Failing to foresee MCC 

development or failing to forecast its movement with enough lead-time could cost the 

service lost training and resources, as well as, aborted missions. 

1.2.2.  Research Objectives.  The 25th OWS requires forecasting guidelines to 

forecast MCCs in CSA.  An extensive background review on MCCs and the differences 

between South American and North American MCCs are provided to aid in predicting 

the formation of MCCs one to two days in advance.  However, the main objective of this 

research topic is to predict MCC and large mesoscale convective system (MCS) 

movement.  This research exploits Corfidi et al.’s (1996) technique of MCC movement 

for North America (NA) MCCs and applies and verifies the technique to movement of 
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South America (SA) MCCs.  Twenty-two cases (20 MCCs and 2 MCSs) from Jan 2001 

and Sep - Dec 2002 are examined in full detail for MCC and MCS movement. 

The specific objectives necessary to achieve this study are: 

1. Gather and analyze archived satellite imagery from the Cooperative Institute 

for Research in the Atmosphere (CIRA 2002) and National Aeronautical and 

Space Administration (NASA 2002) to determine evolution, intensity, 

movement, and decay of MCCs and MCSs for the 22 case studies; 

2. Gather and analyze upper-level reanalysis charts from the Fleet Numerical 

Meteorological and Oceanography Detachment (FNMOD 2001-2002); 

3. Exploit Corfidi et al.’s (1996) NA method of tracking the movement of MCCs 

and MCSs to the 22 SA MCC and MCS cases by examining relationships 

between forecasted and observed speeds, as well as, directions of MCCs and 

MCSs; 

4. Compare the findings to Corfidi’s NA results;   

5. Summarize the found forecasting technique guidelines into an appendix. 
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II. Literature Review and Background Information 

 
 
2.1.  Excessive Rainfall, Fog, and Low-Cloud Bases over Columbia, Ecuador, and 
Northern Peru east of the Andes. 
 
 

2.1.1.  Synoptic-Scale and Meso-Alpha Scale Features.  Numerous larger scale 

features drive the tropical climate in NWSA.  Perhaps the most important feature is the 

continental interaction with the inter-tropical convergence zone (ITCZ).  The region of 

the ITCZ in NWSA is commonly referred to as the near equatorial trough (NET) or 

monsoon trough (Gilford et al. 1992; Walters et al. 1989).  The Glossary of Meteorology 

(GOM) (2000) defines an equatorial trough as a “quasi-continuous belt of low pressure 

lying between the subtropical high pressure belts” of both hemispheres.  The GOM 

(2000) defines a monsoon trough as a location of “relatively minimum sea level pressure 

in a monsoon region,” which includes the NWSA since it experiences a seasonal shift in 

wind direction.  Countless authors refer to the trough as the NET while the Air Force 

Technical Notes use both terms.  While both terms are correct, this research uses NET. 

 The NET oscillates meridionally throughout the year.  Figs. 3a-3d show the mean 

position of the NET broken in several locations due to land-ocean differential heating.  It 

moves south during the austral summer (Fig. 3a), then migrates northward to the 

Columbian Highlands, an area east of the Andes ranging from 700 to 2000 ft in elevation, 

from Jun – Nov (Figs. 3c and d).  The migration is closely linked to the seasonal 

movement of the solar declination.  The NET fragments into multiple troughs over land 

chiefly due to terrain differences (the Andes and Venezuelan Highlands) breaking up the 

trades.  Climatologically, most convection occurs 600 nautical miles (nm) north and 300 

 9



nm south of the NET placement.  Stronger convection occasionally occurs as the NET 

surges north and south for the season.  After NET passage, boundary level winds change 

direction as the trade winds flow from a different hemisphere (Gilford et al. 1992). 

 

 

 

 

 

    a.  December – February    b.  March – May   

 

 

 

 

    

           c.  June – August      d.   September – November 

 

Fig. 3.  Climatological NET placement (modified from Walters et al. 1989).  

 

 When exceptionally strong trades develop, intense squall lines form enhancing 

convection along the NET.  Gamache and Houze (1982) define tropical squall lines as 

discrete propagating mesoscale disturbances.  Gamache et al. (1994) adds that squall lines 

are “discontinuous lines or arcs of discrete clusters of cells.”  Fig. 4 shows a typical cross 

section of a squall line.  Dryer mid-tropospheric flow entrains the squalls causing 

downdrafts and convergence with the trades.  The outflow from the leading squall line 

element (LE) converges with surface trades triggering more storms ahead of the main LE.  

The older LE then decays coalescing with the trailing anvil sector.  Constant regeneration 

along with translation with respect to easterly flow results in the squall line’s westward 

progress (Gamache and Houze 1982; Gilford et al. 1992).     
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Gamache and Houze (1982) and Gilford (1992) discuss divergence and vertical 

velocity fields.  The strongest convergence typically occurs from 900 to 700 mb.  

Divergence from 500 to 300 mb over the leading squall elements enhances upward 

motion while convergence at the same levels in the anvil sector enhances downward 

motion preventing development from eastward moving outflow converging with low-

level easterly trades (Fig. 4).  The divergence-convergence couplets produce areas of 

maximum upward and downward vertical velocities adjacent to each other (Gamache  

 
Fig. 4.  Vertical cross section of a tropical squall line.  Dashed lines denote updrafts and 
downdrafts while solid lines denote horizontal flow.  Lighter circles are areas of 
convergence and darker circles are areas of divergence. 
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and Houze 1982).  Upward vertical velocities in the leading element can exceed 20 – 30 

cm s-1 while downward vertical velocities in the anvil sector approach 10 cm s-1.  In 

addition, surface to 700 mb convergence tilts eastward with height towards the direction 

of the 700 mb jet inflow.   

Ramage (1995) theorized the possibility of nocturnal land breezes off the coast of 

Guyana, Suriname, French Guiana, and extreme Northeastern Brazil (from 8º N to 5º S) 

converging with easterly trades.  However, the strongest squalls form from daytime sea 

breeze circulation convergence along the same coastline (Garstang et al. 1994).  Garstang 

et al. (1994) discussed the stages for an Amazon tropical squall line.  Onshore sea breeze 

winds converging with predominant southerly or southwesterly trades cause coastal 

genesis of the squalls.  The strongest squalls form along and south of the NET and in 

areas of concave coastline structures such as just north and south of the Amazon River 

Delta.  South of the NET, southeasterly trades cross the equator and turn southwesterly 

due to Coriolis changes.  As the trades increase, surface convergence increases creating 

greater potential for stronger squall lines (Cohen et al. 1995).  With enough initial 

convergence, the squalls regenerate line elements (20-40 km wide) within their own 

structure (as described previously) forming new LEs.  Daytime heating also enhances 

convection.  Eventually, the MCSs mature with a 100-500 km wide anvil section forming 

from decaying leading LEs.  Numerous heavy rainfall events result from tropical squall 

lines.  Cells then diminish with loss of daytime heating as they propagate through the 

Central Amazon Basin.  Cluster size diminishes, clouds edges become more ragged, 

cloud tops warm, and LE width decreases.  In addition, less vertical momentum transfer 

leads to less convergence ahead of the LE and, therefore, less discrete movement.  Given 
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enough low-level convergence, cells may regenerate in the Western Amazon Basin with 

the following day’s solar heating but dissipate again with nightfall (Garstang et al. 1994).   

Figs. 5a-b show the distinct difference between two stages of squall line 

development along the coasts of Suriname, French Guiana, and extreme Northeastern 

Brazil.  The recently formed squall line propagates inland (Fig. 5a) then intensifies six 

hours later (Fig. 5b).  Trailing LEs are embedded in the developing anvil behind the 

leading LE with the trailing anvil increasing as the system materializes.  Also, the squall 

line intensifies at night.  Although squall line intensity typically follows the diurnal 

differences in sensible heating, local topography (highlands in Suriname and French 

Guiana), and synoptic scale changes also affect its intensity.   Figs. 6a-f illustrate the 

changes in a squall line life cycle.  Notice the discontinuous nature and longevity of the 

squall lines (Figs 6a-6f).   

 

 

 

 

 

 

 

 

a.  0330 UTC  26 Apr 87   b. 1000 UTC  26 Apr 87 

 
Fig. 5.  IR satellite imagery of a developing Amazon coastal squall line (ACSL) for       
26 Apr 87.   Coldest tops are repeat white (< -81º C).  Letters are non-applicable 
(modified from Garstang et al. 1994). 
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  a.  1800 UTC  5 May 87    b.  0000 UTC  6 May 87      c.  0600 UTC  6 May 87 

 

 

 

 

 

 

 

  d.  1200 UTC  6 May 87    e.  1800 UTC  6 May 87      f.  0600 UTC  7 May 87 

 

Fig. 6.  IR satellite imagery of tropical squall lines for 5 to 7 May 87 (modified from 
Cohen et al. 1995).  Arrows point to a specific squall line that was tracked across the 
continent.  Notice the subtle differences with respect to sensible heating.  

 

 

Gamache and Houze (1982), Garstang et al. (1994), Gilford et al. (1992), and 

Houze (1977) summarized the important characteristics of tropical squall lines over SA in 

Table 1. 
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Table 1.  Characteristics of tropical squall lines. 

- Entire squall line moves west at nearly 25-30 knots 

- Squalls typically progress 10º of longitude per day 

- More intense squall lines propagate faster than slower ones 

- Highest tops reach over 50,000 ft  

- Entire squall line lengths average 500-1500 statute miles (sm) long and 100-
200 sm wide (although only about half of length contains active convection)  

- Leading LE produces cloud bases and visibilities around 500 ft and ¼ sm  

- Stratified anvil sector produces bases above 1000 ft and 2-4 sm visibilities   

- Surface temperature drops 3º to 6º C for several hours following initial LE 

- Absolute humidity decreases 2-3 g/kg for several hours following initial LE 

- Relative humidity increases 5-15 % for several hours following initial LE 

- Pressure decreases 1-2 mb for several hours following initial LE followed by a 
1 mb increase 

- Gusty outflow surface winds can reach or exceed 25 kts  

- Surface wind shift common 

- Leading LE lies along westward boundary of coldest infrared (IR) cloud tops 

- IR cloud top temperatures usually  -47º C ≤

- Rainfall rates in leading LE average 110 mm/hr (~ 4.33”/hr) but can exceed 
200 mm/hr (~ 8”/hr) 

- Rainfall length varies from 2 to 8 hours depending on width, strength, and 
speed of entire system 

- Radar reflectivity ≥  38 dBZ in leading LEs but 28-38 dBZ in trailing anvil 

- LE last 2-3 hours before decaying possibly yielding to newer LEs 

- Organized squall lines usually last 24-48 hours 

- Anvils produce 40-50 % of total squall line rainfall 

 

 

Forecasting squall line occurrences can be a challenge in the data-sparse tropical 

regions.  Previously mentioned, sea breeze convergences initiate convection; however, 

there are various other factors that distinguish a strong 48-hour lasting squall line from 
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one that forms for a few hours with the sea breezes then dissipates.  Cohen et al. (1995) 

discuss the atmospheric dynamics necessary to sustain these systems.   

The largest factor is mass convergence from mid-level winds.  Cohen et al. (1995) 

found that intense squall lines develop from a maximum zonal easterly wind or low-level 

jet (LLJ) between 800–700 mb of at least 30 kts while weaker squall lines may develop 

from a LLJ of 15-20 knots.  Intense squall lines usually hold together and re-intensify 

over the interior with the following day’s diurnal heating.  Marginal events (easterlies 20-

25 kts) produce coastal squall lines; however, the line usually dissipates before traveling 

far inland.  Easterlies less than 20 kts seldom have lasting effects on squall line 

development.  Another factor is the wind direction of the easterly LLJ.  Intense squalls 

will not form if the easterlies parallel the coast.  Winds must cross the land at an angle to 

converge with the predominant southwesterly trades (Cohen et al. 1995).   

Figs. 7a-c illustrate classical examples for squall line formation.  Easterlies 

strengthen and become more onshore during the three days.  The feature most influencing 

the strength of the easterlies is the southern migration of an anticyclone just east of 

Puerto Rico and the Lesser Antilles.  The stronger easterlies link to a stronger pressure 

gradient and stronger high pushing south.  Consequently, Fig. 7c relates to the time frame 

of Fig. 6f.  In this instance, squalls greatly intensified and lasted longer than squalls that 

developed two days earlier (Fig. 7a) (Cohen et al. 1995).  
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a. 1200 UTC  4 May 87 

 

 

 

 

 

 

 

 

 

b. 1200 UTC  5 May 87 

 

 

 

 

 

 

 

c. 1200 UTC  6 May 87 

 

 
Fig. 7.  700 mb wind and isotach (m s-1) analysis for 4 to 6 May 87 (modified from 
Cohen et al. 1995). 
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In addition to increasing easterlies, one must look at other factors such as 

divergence aloft and upward vertical motion fields advecting onto the coast with the 

increase in mass convergence.  Cohen et al. (1995) found a tilt in the convergence-

divergence pattern with divergence tilting westward to 200 mb.  Low-level convergence 

from the easterlies relates to strong upward vertical motion.  Frictional differences 

between sea and land also aid in the speed convergence of easterly winds.  In addition, 

sea breezes help advect moisture inland raising the equivalent potential temperature thus 

creating instability and upward motion along the convergence zone (Cohen et al. 1995).   

Finally, one must examine the vertical profile and movement of the squall lines.  

Squall lines intensify from vertical shear.  Garstang et al. (1994) found surface winds 

around 5 kts increasing to 15-30 kts around 800 mb as the most ideal for development.  

Stronger vertical wind differences (wind shear) may result in LEs failing to re-initiate 

convection ahead of the parent LE.  Winds typically back from 700-500 mb in response 

to evaporative cooling of the mid-tropospheric air while winds veer above this layer to 

300 mb in response to latent heat warming.  The mid-level cooling further destabilizes 

the atmosphere (Cohen et al. 1995; Garstang et al. 1994). 

Garstang et al. (1994) found that storms within the LEs typically move almost due 

west at about 40º-60º to the right of the mean normal vector of the squall line.  The 

translation speed of the individual storms is about 12-20 kts.  Including both translation 

and propagation speeds, storms move rapidly at 25-35 kts to occasionally 40 kts (Cohen 

et al. 2000). 

Squall lines are very important features, for they provide almost half of the 

rainfall to the Amazon Basin from April to August (Garstang et al. 1994).  Squall lines 
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are especially frequent during April and May when the NET migrates or surges 

northward.  Because squall lines last up to 48 hours, they can retain their structure as far 

west as the Andes.  Squall lines can still produce large amounts of rainfall in Eastern 

Columbia and Eastern Peru during their wet season.  Satellite imagery is pertinent for the 

detection of squall lines. 

Trade wind surges can also enhance convection along the NET.  They result from 

decaying polar fronts and shear lines often originating from pressure differences within 

the semi-permanent hemispheric sub-tropical highs (Fig. 8).  The surge appears with 

slightly higher pressures behind the line.  Satellite imagery becomes crucial for detection 

over the data-sparse jungle.  Trade wind surge features are similar to tropical squall lines 

except trade wide surges only stretch in width 100-200 sm (Walters et al. 1989).  

  

 

 

 

 

 

 

 

 

 
Fig. 8.  Trade wind surges in northeast and southeast Atlantic trades (modified from 
Walters et al. 1989). 

 

Another major synoptic scale feature is the Bolivian High.  The upper-level high 

forms, as the name suggests, over the Bolivian Altiplano (the high plateau between the 

Cordillera Occidental and Cordillera Oriental).  The Bolivian High dominates much of 
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South America (SA) during the austral summer.  Figs. 9a-d illustrate the change in 

intensity and movement throughout the year.  During the austral summer, the high builds 

due to intense release of sensible and latent heat (Davison 1999a).  Due to the high 

altitude of the Altiplano (roughly 12000 ft), more sensible heat can reach the 300-200 mb 

levels than sensible heat originating near sea level.  This is possible since the source of 

sensible heat is roughly 12000 ft closer to the 200-300 mb levels than heat released from 

a location near sea level.  Also, large amounts of latent heat released principally from the 

NET also contribute to the high’s formation.  As the NET migrates northward, the high 

loses its source of latent heat, weakens, and migrates north with the NET.  The high also 

weakens because of solar insulation decreasing over the Altiplano during the austral 

winter.  The upper-level high aids in convective development by providing exhaust to 

squall lines or other thunderstorm clusters (Davison 1999a). 

The sub-equatorial ridge and Amazon Low also enhance convection, upper-level 

divergence, and outflow.  The east-west oriented upper-level ridge lies just north of the 

equator and aids in thunderstorm outflow (Figs. 9b-d).  The sub-equatorial ridge 

strengthens during the austral winter as the Bolivian High weakens.  The Amazon Low, a 

thermal low in the West Amazon Basin, aids in drawing the northeast trades towards and 

converging with the southeast trades.  The low is a focus for convection and moisture and 

strengthens during the high sun-angle season (Davison 1999a).  Figs. 10a and b depict the 

relationship between the low and the NET.  The position of the low causes a maximum of 

rain in its vicinity (Walters et al. 1989).  

Trade wind inversions are another major feature in the tropics.  They change with 

the passing of the NET.  As the dry season approaches, the inversion lowers and 
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strengthens with the southward migration of the North Atlantic sub-tropical high making 

updraft penetration into the inversion harder.  Winds tend to back with height during the 

dry season vs. veering winds in the wet season.  A weaker and higher inversion from the 

retreating North Atlantic sub-tropical high during the wet season allows for updraft 

penetration as more moist air rises mixing with dryer air aloft.  Upper-level subsidence 

from sub-tropical mid to upper-level high pressure causes the inversions (Gilford et al. 

1992; Ramage 1995).  Inversion heights in NWSA typically range from 10,000 to 11,000 

ft in Jul (wet season) to 8000 to 9000 ft in Jan (dry season) (Walters et al. 1989). 

 

 

 

 

 

 

 

  a.  January          b.  April 

 

 

 

 

 

 

 

 

c.  July      d.  October 

Fig. 9.  Mean 200 mb positions of the Bolivian High, sub-equatorial ridge, and Brazilian 
tropical upper tropospheric trough (modified from Davison 1999a). 
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a.  January 

 

 

 

 

 

 

 

 

 

 
b.  July 

 
Fig. 10.  Mean Amazon Low, NET (bold lines), and surface streamline (thin arrows) 
positions (modified from Davison 1999a). 

 

Other features affecting the region include upper-level closed vortices, polar 

outbreaks, and the El Niño Southern Oscillation (ENSO).  Virgi (1981) found occasional 

vortices propagating westward at the rate of 4˚ to 6˚ longitude per day.  These vortices, 

seen well in satellite imagery, suppress outflow for convection.  Strong Antarctic polar 

fronts occasionally push as far north as the Amazon Basin, especially in northern Peru 

and Ecuador, and less frequently crossing the equator into Columbia.  Modified polar 
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outbreaks north of the Tropic of Capricorn, called friagens (friagem for singular), only 

occur with the strongest of cold surges during the austral winter.  Unusually cool, dry, 

stable air and low stratus accompany the outbreak, which can occur once to several times 

per austral winter.  Northern Peru and Ecuador experience severe weather with frontal 

passage on rare occasions (Walters et al. 1989).  Finally, there is ENSO.  A decrease in 

the NET intensity over the landmass from increased subsidence occurs with the negative 

phase of ENSO, El Niño, as the ITCZ strengthens on the other side of the Andes in the 

Pacific. Consequently, convection increases with the positive phase, La Niña 

(Schwerdtfeger 1976). 

2.1.2.  Local Effects.  Local effects also control weather in different parts of the 

region.  For example, the Columbian Highlands experience different cloud cover and 

rainfall distributions than the Western Amazon Basin in extreme Eastern Columbia and 

Eastern Peru.  One very important factor, which influences weather in different locations 

along the Andes foothills, is the terrain.   

 The sharp, sudden rise in terrain in Columbia directly affects the easterly trades.  

The easternmost Andes range, the Cordillera Oriental, stretches the length of Columbia 

and Peru with heights ranging from 8000 to 14,000 ft.  The direction of the terrain alters 

the low-level winds by channeling the Northern Hemisphere (NH) trades from the east-

northeast and northeast and Southern Hemisphere (SH) trades from the south (Fig. 10b) 

(Kendrew 1942).  The terrain also affects the Amazon Low.  Although the Amazon Low 

is a thermal low, the convexity of the Andes Mountains plays a factor in the low’s 

formation.  The altered flow aids trade-wind convergence associated with the Amazon 

Low (Davison 1999a).  Sometimes, the easterlies rise with topographic lift helping to 
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wring out more moisture over the foothills.  If the direction of the low-level trades 

changes to southeasterly, then the flow becomes more perpendicular to the terrain in 

Columbia creating more uplift, producing larger rain amounts (Lenters and Cook 1999). 

 Katabatic flow, cooler air surging down the mountain at night and early morning, 

converges with easterlies producing localized convection along and just east of the 

foothills (Schwerdtfeger 1976).  Edson and Condray (1989) found a double diurnal 

maximum in precipitation over the foothills region with one maxima occurring with 

daytime heating and another with katabatic flow convergence in early morning.  Anabatic 

flow, warm air flowing up a mountain, usually develops around mid-morning terminating 

the down slope flow.  Consequently, cumulus clouds start building over the mountains 

earlier in the day than over the foothills while storms disintegrate in the highlands east of 

the mountains.  Local canyon and gap winds also aid in convergence. 

 Perhaps the most important driving factor in this region is the moisture 

availability.  The vast Amazon Basin is a wealthy source of moisture.  It is no surprise 

that roughly half the atmospheric water vapor content over this region results from a great 

deal of evapo-transpiration (Walters et al. 1989).  The Western Amazon Basin comprises 

of endless mangrove trees, extensive rain forest, and tall swamp grass all of which are 

abundant in quantity and hold tremendous moisture.  The Columbian and Ecuadorian 

Highlands, which contains less aerial coverage of jungle than the basin, still support the 

adjacent environment with moisture from tropical savanna (Walters et al. 1989).  

Absolute humidities over the entire region quite often exceed 20 g/m3 (Edson and 

Condray 1989). 
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 Localized differential heating also causes disparities in storm locations.  Regions 

with less vegetative moisture may yield more conduction causing diurnal storm flare-ups 

earlier in the day than locations still shrouded in morning fog and stratus (in areas of 

higher vegetative moisture).  This is due to dryer land heating faster than moister areas of 

land.  Local heating of the foothills can also contribute to conduction and steeper lapse 

rates due to differential heating of the mountainsides (Schwerdtfeger 1976). 

2.1.3.  Climatology of Columbia, Ecuador, and Northern Peru east of the Andes. 

The region of interest receives annual rainfall amounts from 120” to 150” per year.  Table 

2 shows the distribution of rainfall per region throughout the year (AFCCC 2002; Gilford 

et al. 1992; Walters et al. 1989).  One can relate the migration of the NET to rainfall 

amounts.  Note how the West Amazon Basin in Columbia never experiences a true dry 

season while the highlands have a marked dry season.  This is due to the fragmentation of 

the NET and presence of the Amazon Low.  Also, moisture surges during the initial onset 

of the rainy season occur with the initial northward passing of the NET causing even 

higher rainfall amounts than shown in Table 2.  On average, rainfall occurs almost every 

day during the wet season and once in about four days during the dry season (Walters et 

al. 1989).  
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Table 2.  Average monthly and seasonal rainfall distributions for NWSA. 

Eastern Andes Foothills and Western Columbian Highlands (0º-7º N / 73º-77º W 
including Columbian locations: Apiay Air Base, Florencia, Larandia, Puerto Asis, 

and Villavicencio) 

Month Season Rain per month (inches) 

Apr-Nov Wet 14-20 

Dec Transition 6-8 

Jan-Feb Dry 2-5 (0º-3º N for Feb: 6”-8”) 

Mar Transition 6-8 (0º-3º N: 10”-15”) 

Eastern Columbian Highlands (0º-7º N / 70º-75º W including Iauarete, Brazil and 
San José del Guaviare and Tres Equinas, Columbia) 

Month Season Rain per month (inches) 

Apr-Oct Wet 9-15 

Nov-Dec Transition 4-6 

Jan-Feb Dry 1-3 

Mar Transition 4-6 

West Amazon Basin (0º-5º S / 70º-75º W including Benjamin Constant, Brazil; 
Iquitos, Peru; and Leticia, Columbia) 

Month Season Rain per month (inches) 

Oct-May Wet 10-15 

Jun Transition 8-10 

Jul-Aug Dry 5-8 

Sep Transition 8-10 

  

 Surface and tropospheric winds generally remain easterly throughout the year 

with some exceptions.  For the Columbian Highlands and the foothills, surface winds are 

southerly and southeasterly during the wet season and northeasterly during the dry season 

with a magnitude of 5-10 knots.  Direction changes with the passage of the NET.  The 

West Amazon Basin, however, experiences only subtle meridional fluctuations and 

weaker wind magnitudes.  Surface winds can become westerly very close to mountain 

gaps with katabatic flows and just north of the Amazon Low (Fig. 10b).  Winds generally 
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remain easterly throughout the lower and middle troposphere (up to 500 mb).  Above this 

level, winds turn with the passage of the Bolivian High and sub-equatorial ridge.  

Westerly winds are prevalent in Northern Peru as the high migrates north (Figs. 9b-d).  

Also, NH mid to upper-level westerlies penetrate into Columbia during boreal winter 

with the onset of the dry season (Figs. 9a).  Upper-level easterlies are strongest just north 

of the Bolivian High.  The added momentum can aid in tropical development.  Winds 

speeds are generally around 20-30 knots except stronger winds of 35-45 knots are 

possible in areas just north of the Bolivian High (AFCCC 2002; Gilford et al. 1992; 

Walters et al. 1989).  

 Cloud bases and stratus are major hindrances for military operations.  Typically 

low stratus is a problem in the early to mid-morning hours (03-09 local time (L)) with 

bases lowering to 300-1000 ft.  These ceilings occur, on average, 15-25% of the time in 

the early to mid-morning in all locations, except 5-15% from Dec-Feb in the Columbian 

Highlands and foothills.  Lower moisture content likely causes the seasonal minimum.  

Bases also lower to 500-1000 ft with thunderstorms.  On average, cloud bases of 500-

1000 ft during the afternoon occur 10-20% of the time during the wet season and about 5-

10% of time during the dry season in the highlands and foothills but 5-10% year-round in 

the basin.  Bases lower than 1000 ft occur only 3-5% during all other times in all 

locations.  Although katabatic rains do occur, they seldom produce rain intensities and 

cloud bases as low as afternoon rains.  On a side note, Villavicencio experiences 

percentages slightly less than those mentioned (AFCCC 2002; Edson and Condray 1989; 

Gilford et al. 1992; Walters et al. 1989).   
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Cloud bases lower than 3000 ft occur frequently.  On average, they occur 20-30% 

of the time during the dry season in the highlands and foothills, 33-50% during the dry 

season in the basin, and 33-50% during the wet season everywhere from early morning to 

sunset except with slightly less probability during late morning (09-12 L) and after 

sunset.  Low ceilings occur at night because of fog and katabatic rains and during the day 

because of convection.  One major exception is Villavicencio, which experiences 

occurrences roughly half of other locations.  Villavicencio’s close proximity to the Andes 

(approximately 20 nm) likely adds localized affects to the averages.  Over the Amazon 

Basin, katabatic winds aren’t the problem; fog and low stratus becomes an increased 

factor due to higher moisture content.  Dry season fog can occur from increased 

radiational cooling and SH polar outbreaks in Northern Peru, Ecuador, and, less 

frequently, in Southern Columbia.  Night-time drizzle and low stratus decks with bases 

about 1000 ft accompany the friagens that last from 24 to as much as 96 hours on 

extreme occasions (AFCCC 2002; Edson and Condray 1989; Gilford et al. 1992; Walters 

et al. 1989).   

As discussed, fog is a problem in the region of study.  Edson and Condray (1989) 

found fog (with visibility less than one mile) occurring about 1-2% of the time, but 

mainly during the early to mid morning hours.  Naturally, fog thickens as nighttime hours 

increase.  Bases less than 300 ft, although rare, do occur mainly in the more moisture rich 

West Amazon Basin.  Occurrences with bases less than 300 ft are about 3-5% in the basin 

during the wet season and 5-10% in the basin during the dry season to less than 1% in the 

highlands for all seasons.  The higher frequency (5-10%) is likely due to more radiational 
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cooling during the dry season.  Fog (with visibility greater than one mile) occurs an 

additional 1-2% of the time in both the basin and highlands. 

Another deterrent to operations is visibility and heavy rains.  Low visibilities, 

previously mentioned, occur during the early-mid AM hours with fog and low stratus.  

Low visibilities also occur with daily rainfall.  When heavy rains occur, visibility can 

quickly become ¼ to ½ sm or less; however, the intense rains are short lived.  Visibilities 

of 2-5 sm are much more common with stratified moderate rains following the intense 

rains and with weaker convection.  Edson and Condray (1989) found the maximum of 

intense rainfall to occur around sunset (near maximum heating) about 2% of the time.  

The maximum probability of total rainfall is actually in the early to mid-morning hours in 

the highlands and foothills (about 15-20% for wet season AM vs. 10-15% for the wet 

season late afternoon).  The basin experiences a uniform 10-15% for all times during the 

wet season.  Probabilities decrease by half for the dry season for all locations (AFCCC 

2002; Edson and Conroy 1989).  As discussed above, katabatic wind convergence 

initiates the less intense nocturnal rains.  Occurrences of nocturnal rains are less in the 

West Amazon Basin. 

 

2.2.  Forecasting Mesoscale Convective Complexes in Northern Argentina, Southern 
Brazil, Paraguay, and Uruguay. 

 

2.2.1.  Structure and Behavior of Mesoscale Convective Complexes.  Maddox 

(1980) and the Glossary of Meteorology (2000) define an MCC as an MCS exhibiting a 

large, circular, cold, long-lived cloud shield meeting the following requirements:  Size:  

Cloud shield continuously having an infrared (IR) temp  -32º C and size  100,000 ≤ ≥
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km2 (roughly the size of Iowa) with interior region having IR temp  -52º C and size  

50,000 km

≤ ≥

2 and eccentricity (minor axis/major axis) of ≥ during time of maximum 

extent.  Duration:  The above criteria must remain for at least 6 hours.  The maximum 

extent occurs when the ≤  -32º C cloud shield reaches its maximum size.  Initiation and 

termination of the MCC occurs with respect to the above size criteria.   

7.0

 MCCs are elliptical, warm core systems exhibiting a low surface pressure and 

strong anticyclonic flow aloft.  The longer an MCC persists, the more elliptical it 

becomes.  Like tropical storms, they are not baroclinic in the sense that they don’t 

transport sensible heat poleward.  MCCs can also alter their surrounding environment 

(Maddox et al. 1986). 

 MCCs develop from initial convection during the maximum heating hours and 

blossom into their elliptic structure during the night.  MCCs must develop in a region 

with weak to moderate shear and moist, strong, warm low-level inflow or jet (LLJ) 

converging with a predominately east-west oriented boundary (e.g. squall line, quasi-

stationary front, outflow boundary).  There is usually a weak to moderate upper-level 

short wave accompanied by weak positive vorticity advection (PVA) and diffluence aloft.  

Anticyclonic flow aloft prevails from 200-100 mb.  The lack of surface radiational 

cooling and high albedoes from cloud top cooling both aid in destabilizing the system.  

MCCs terminate once they move into a more stable environment (Maddox et al. 1986).   

 MCCs usually develop a mesocyclonic rotation within their structure.  If 

convection occurs long enough, a meso-scale warm-core vortex forms.  This vorticity can 

remain after the MCC dies and can spawn new development the following day (Velasco 

and Fritsch 1987). 
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 MCCs, like supercells, generally move equatorward toward the inflow and toward 

the equivalent potential temperature ridge, which lies just east and equatorward of the 

system.  Like tropical storms, latent heat drives the MCC.  MCCs move, with some 

exceptions, equatorward of the 700-500 mb mean flow and equatorward of the mean 850-

300 mb thickness lines (or 850-300 mb thermal wind) at about 10-20 m/s.  Although 

individual cells move with the mean flow, new cells developing along the equatorward 

and western flank cause the system to propagate equatorward of the mean flow.  An 

MCC, which has ceased to produce new convection, is more likely not to turn 

equatorward of the mean flow (Maddox et al. 1986).   

 Although severe downbursts, large hail, and tornadoes are common during the 

initial stages of MCC development, flooding is the main concern.  Severe weather 

probabilities diminish significantly once the MCC fully organizes.  The strongest 

precipitation typically occurs in the eastern and equatorward sectors (within the coldest 

IR temps) with an expansive stratified rain region extending beyond the initial flank 

(Maddox et al. 1986). 

2.2.2.  Comparison between North and South American MCCs.  MCCs in SA 

exhibit many similarities and differences to their NA counterpart.  Tables 3 and 4 are 

adapted from Velasco and Fritsch (1987). 
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Table 3.  Similarities between NA and SA MCCs. 

- Nocturnal maxima in intensity  

- Moist low level flow advecting poleward 

- Mountain chain to west helps initiate convection and channel LLJ 

            (20-30% of systems originate over mountains) 

- MCCs form in sub-tropics and mid-latitudes  

- Documented nocturnal maxima in rainfall 

- Rainfall accounts for a large portion of the region’s total rainfall 

- Most MCCs occur in late spring to early summer 

- Comparable surface temperatures   

- Exhibit same dynamic structure and basic causes of formation  

- Favored region of initiation shifts west in summer 

- Speed of the LLJ is comparable among NA and SA MCCs 

 

Table 4.  Differences between NA and SA MCCs. 

- SA MCCs are about 60% larger then NA MCCs 

- MCCs develop later and last longer in SA 

- Surface dewpoint values average 18º to 20º in NA but 20º to 24º in SA 

- MCCs initiate and migrate seasonally from 30º to 50º in NA but 25º to 35º in 
SA 

- Higher surface dewpoints and similar surface temperatures imply greater 
thermodynamic potential for instability in SA 

- MCCs form around the 20º C isodrosotherm in SA compared to 15º C in NA 

- Average 500 mb temperature is -10º C in NA but -8º C in SA 

- Tropopause is around 100 mb in SA MCCs vs. 150 to 200 mb in NA MCCs 

- LLJ develops earlier in the day and is longer lived in SA 

- Terrain is much steeper in SA (Andes rise to over 20,000 ft) 

- Unlike NA, SA MCCs can occur well into late summer and autumn 

- Source of moisture is Amazon Basin (land) in SA vs. Gulf of Mexico in NA 

To explain the differences, one must first understand the governing large-scale features. 
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2.2.3.  Synoptic-Scale Features.  The placement and strength of the Bolivian High 

and the sub-tropical jet (STJ) work in concert to aid MCC development.  The high 

interacting with the STJ and the Eastern Brazilian tropical upper tropospheric trough 

(also called the Nordeste Low) work in concert to provide upper-level shortwaves and 

outflow for MCCs (Fig. 9a).  The high shifting southward adds to the upper-level 

geopotential gradient, which, in turn, strengthens the STJ.  The region south and east of 

the high is favorable for diffluence aloft from STJ divergence.  A stronger, nearly zonal 

STJ results in more kinetic energy crossing the very high Andes at a perpendicular angle 

resulting in shortwave perturbations and increased potential vorticity (Davison 1999b).  

Consequently, the favored region for MCC development and movement (discussed later) 

lie in the same area. 

 The South Atlantic High also affects CSA.  Fig. 11 shows the location of the ridge 

associated with the high (located just east of the map).  The high strengthens in summer 

and migrates south.  The northerly flow around the high, through Bolivia and the Gran 

Chaco region (N. Argentina and Paraguay), is critical for LLJ formation (discussed later).  

When the high shifts westward, the northerly flow increases as it interacts with the North 

Argentine depression (NAD), therefore, increasing the strength of the LLJ (Nogues-

Paegle at al. 2002). 
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Fig. 11.  Mean positions of the NAD, SACZ (dashed line), South Atlantic ridge, and 850 
mb vectors (m s-1) during Dec to Feb (modified from Lenters and Cook 1999).  

  

 The NAD forms into a lee-side, thermal trough that remains nearly stationary 

throughout the summer.  Westerlies crossing the Andes create the lee-trough and strong 

adiabatic compression.  The very hot, dry westerly foehn winds in CSA are called 

Zondas.  Temperatures quite often reach 110º-115º F nearly every summer in Gran Chaco 

partly because of the winds.  The localized maximum in sensible heat strengthens the 

shallow low.  Sea-level pressures often drop to 980 mb (much lower than the Southwest 

US thermal low).  The low lies nearly underneath the powerful Bolivian High making 

this an amazingly strong warm-core system.  The NAD strengthens during the day 

reaching a maximum around sunset and weakens during the night reaching a minimum 

by dawn.  Consequently, the LLJ intensifies late in the afternoon into the night as the 

thermal low reaches its maxima (Kendrew 1942; Schwerdtfeger 1976).  Wind speed 

intensity lags the NAD intensity by several hours.  The low, in concert with the South 
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Atlantic High (Fig. 11), creates a strong low-level pressure gradient, which favors a 

stronger LLJ (Saulo et al. 2000).  

A unique feature of SA weather is the presence of the South Atlantic or South 

American convergence zone (SACZ).  The SACZ is a zone of mass convergence 

climatologically stretching from the Atlantic Ocean northwestward into Southern Brazil 

and eventually reaching Northern Bolivia (Fig. 11).  The SACZ forms from convergence 

from the South Atlantic High and flow channeling east of the NAD and Andes.  Large 

amounts of precipitation are generated from this primarily summer feature.  Fig. 11 also 

shows a surface ridge parallel and north of the SACZ.  The strength and placement of this 

ridge influences the SACZ placement.  When the ridge and high build west, the SACZ 

moves west increasing the low-level northerly flow east of the Andes (Lenters and Cook 

1999).   

 Cold-core upper level troughs over Uruguay and Eastern Argentina displace the 

Bolivian High southwestward helping to intensify the SACZ (Nogues-Paegle et al. 2002).  

However, cool southerly winds accompany the cold-core low.  These winds stabilize the 

air mass aiding in an eastward placement of the SACZ, which weakens the low-level 

pressure gradient and LLJ (Lenters and Cook 1999). 

 South American MCCs owe their existence, like their NA counterpart, to a LLJ.  

Saulo et al. (2000) found the average velocity of the South American low-level jet 

(SALLJ) to be around 20 m s-1 with its maximum located around 5000 to 5500 ft 

(approximately 850 mb).  This is comparable in strength and level of placement to that 

found in the United States (US) (Bonner 1968).  The SALLJ, perhaps one of the most 

studied features in the continent, is more persistent and lasts longer into the season than 
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the LLJ found in the US.  The SALLJ transports tremendous amounts of moisture from 

the Amazon Basin southward into the region, which is unique in that the moisture source 

is over land versus the Gulf of Mexico.  Since the source region experiences more direct 

radiation than the Gulf of Mexico, the moisture is much warmer, which increases thermal 

instability.  Dewpoints often exceed 24º C and equivalent temperatures reach or exceed 

340º K in the Gran Chaco region (Baetghen et al. 2001; Davison 1999b).   

The SALLJ actually maintains a presence year round, although it strengthens 

considerably during the summer (Fig. 12).  Saulo et al. (2000) defined the SALLJ as a 

maximum of northerly winds at least 12 m s-1 near 850 mb with at least a 6 m s-1 shear 

between 850 or 900 mb and 700 mb.  Fig. 13 illustrates the nocturnal behavior of the 

SALLJ.  The SALLJ increases towards sunset (00 UTC) as the intensifying thermal low 

(NAD) approaches its maxima.  The SALLJ reaches its maximum between 00 and 06 

UTC when the NAD begins weakening.  Loss of sensible heating weakens the NAD then 

weakens the SALLJ, which eventually reaches a minimum speed around 18 UTC.  The 

process differs from the US, for the US LLJ doesn’t strengthen at sunset and doesn’t exist 

primarily from a thermal low presence. 
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Fig. 12.  Mean monthly northerly wind components (m s-1) at 850 mb at 00 UTC from 
Sep 1997 to Feb 1998.  Shading represents isotachs (modified from Saulo et al. 2000). 
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Fig. 13.  Mean monthly vertical meridional (v-component) wind profile (m s-1) for Santa 
Cruz, Bolivia from Sep 1997 to Feb 1998.  Vertical axis represents pressure (mb).  Each 
profile corresponds to a different time (00 UTC-open circles; 06 UTC-filled circles; 12 
UTC-open squares; 18 UTC-filled squares) (modified from Saulo et al. 2000). 
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Fig. 14.  Profile of meridional wind speed and zonal wind direction of the mean Santa 
Cruz, Bolivia sounding from Jan to Mar 1998 (modified from Douglas et al. 1998). 

 

Fig. 14 illustrates the sharp switch around 4 km from northerly winds to 

southwesterly winds, which are caused by flow around the Bolivian High.  Figs. 13 and 

14 both show the maximum in wind speeds around 1.5 km to 2 km, which compares well 

to the US LLJ.  The SALLJ reaches its maximum intensity near Santa Cruz, Bolivia 

(Figs. 13 and 14) and remains there year round.  During austral summer, the SALLJ 

strengthens and extends southward to the Gran Chaco region.  The SALLJ typically turns 

southeastward in response to the Coriolis force and placement of the SACZ.  Fig. 12 

depicts winds drastically weakening just south of the SALLJ maximum (exit region) 

(Douglas et al. 1998; Saulo et al. 2000).  The exit region creates speed convergence thus 

becoming the area of severe weather formation (Schwerdtfeger 1976). 
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As was previously mentioned, the SALLJ placement and intensity is related to the 

NAD, South Atlantic High, and SACZ.  Decreases in frictional drag from air sliding 

above a nocturnal inversion versus land classically increase speeds of LLJs (Bonner 

1968).  In addition, migratory mid-latitude systems crossing the Andes help channel flow 

southward ahead of trough passage.  The SALLJ advects warmer, moister air underneath 

a shortwave further destabilizing the atmosphere.  The opposite effect occurs once the 

shortwave moves east.  Fig. 15 illustrates how the area of maximum upward vertical 

motion migrates east and northward as the surface low and associated shortwave passes.  

The SALLJ converges with the flow around the surface low.   Garreaud and Wallace 

(1998) found that migratory low interaction with the SALLJ lowers the level of free 

convection (LFC) to 780 mb versus the climatological average of 600 mb.   

 

 

 

 

                         

 

 

 

     

         a.  Day 1             b.  Day 2                     c.  Day 3  

 

Fig. 15.  500 mb geopotential height (contours) and areas of maximum upward vertical 
motion (hatched circles) for a migratory shortwave passage over three days.  Contour 
interval is 100 m with maximum value of 5800 m.  Arrows represent 500 mb wind flow. 
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Polar fronts interacting with the SALLJ help create upward vertical motions 

producing the most dangerous thunderstorms in the continent (winds 50-80 kts, large hail 

and tornadoes).  Squall lines and other MCSs occur more often than MCCs with strong 

northward polar pushes, for the shear is too great to sustain MCC development.  

Pamperoes, cold southerly winds, along with the Argentine continental polar high 

stabilize the atmosphere behind polar fronts preventing convection.  However, when 

polar fronts stall or weaken into shear lines, mid to upper-level shear may weaken enough 

for MCC development.  The strength of the associated upper-level shortwave should 

either lead to a squall line severe weather outbreak, MCC development, or an MCS not 

quite attaining MCC status (Gilford et al. 1992). 

Finally, the ENSO has a documented significant impact on MCC frequency.  El 

Niño generates a tremendous domino effect.  The Bolivian High strengthens creating a 

tighter geopotential gradient in the STJ leading to more shortwave perturbations sliding 

off the Andes.  The stronger high also aids in more diffluence.  At the surface, the South 

Atlantic High strengthens building further west and creating stronger pressure gradients 

with the NAD, which is also stronger.  The NAD increases due to higher condensational 

and sensible heating of CSA.  Latent and sensible heat increases generate greater 

geopotential heights and, therefore, more adiabatic compression.  Increases in convection 

over Chili and Peru provide latent heat into the Bolivian High.  MCCs generate more 

latent heat thus creating a positive feedback.  MCCs can more than double in frequency 

during a very strong El Niño.  Alternately, MCC frequency declines with strong La Niña 

events (Lenters and Cook 1999; Velasco and Fritsch 1987). 
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2.2.4.  South American MCC Climatology and Features.  As listed in section 

2.2.2., MCCs differ from NA MCCs for various reasons.  The increased size and longer 

duration both relate to higher surface dewpoints, a longer lasting LLJ, and MCCs forming 

more equatorward than in NA.  MCCs exist well into the austral summer and autumn 

from the yearly presence of the SALLJ.  The US LLJ forms much further from the 

Rockies and with the absence of a thermal low.  The SALLJ forms only within 300 sm of 

the much steeper Andes and with the aid of a thermal low (the NAD), which both greatly 

aid in channeling more mass poleward.  Finally, the nearly constant placement of the STJ 

limits the meridional extent of SA MCC formation; therefore, many MCCs occur in the 

same areas year round (Velasco and Fritsch 1987).  

The vast majority of MCCs initiate along or just east of the Andes foothills.  Fig. 

16 depicts the areas of initiation and movement for storms over two seasons.  Initiation 

favors the Parana River Basin (NE Argentina) and Paraguay in Nov with initiation areas 

shifting westward into Gran Chaco with the season.  MCCs almost always track eastward 

and turn left (toward the low level inflow) with respect to the mean mid-upper level flow 

as the system matures.  Most systems track into the Parana Basin, Uruguay, and 

Southeastern Brazil before termination (Fig. 16).   The MCC’s maximum extent (Fig. 17) 

and, consequently, the lion’s share of rainfall occurs here.  Occasionally, MCCs do track 

into the Rio de la Plata (Montevideo and Buenos Aires region).  Very few MCCs, 

however, survive the trip to the Atlantic Ocean.  Although Fig. 16 illustrates a maximum 

in Nov from a two season study, Jan climatologically receives the most MCC occurrences 

with Dec and Feb following second and third respectively in monthly frequency (Velasco 

and Fritsch 1987). 
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Fig. 16.  Tracks of mid-latitude South American MCCs from the 1981-82 and 1982-83 
austral summers.  Dashed lines indicate tracks of first thunderstorms.  Numbers labeled 
on the tracks are non-applicable (modified from Velasco and Fritsch 1987). 

 

Velasco and Fritsch (1987) note an interesting occurrence:  the time of first 

convection actually has a double maxima (Fig. 18) with the second maxima probably 

caused by katabatic winds from the Andes colliding with synoptic low level flow.  MCCs 

reach their maximum intensity around 04 L, about four hours later than NA MCCs.  

Termination also occurs later, around 10 L versus 06 L in NA.  SA MCCs average 11.5 

hours in life span versus about 9 to 9.5 hours for NA MCCs (Maddox et al. 1986; 

Velasco and Fritsch 1987).   
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Fig. 17.  Locations of South American MCC maximum extent from the 1981-82 and 
1982-83 austral summers (modified from Velasco and Fritsch 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18.  Average life cycle of mid-latitude South American MCCs from the 1981-82 and 
1982-83 austral summers (modified from Velasco and Fritsch 1987). 
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The average size of SA MCCs is much larger than NA MCCs.  The main 

difference is the enormous extent of the -32º C cloud shield.  Velasco and Fritsch (1987) 

found this shield to average around 400,000 km2 but around 500,000 km2 during an El 

Niño year while NA MCCs average only 300,000 km2.  The inner core shield (-52º C) 

average, however, matched the NA average of 190,000 km2.  Higher moisture fluxes and 

energy availability likely caused the larger shields during the intense ‘82-’83 negative 

ENSO year.  In addition, higher tropopauses with SA MCCs are likely linked to colder 

cloud tops (Velasco and Fritsch 1987).  

MCCs provide most of the rainfall from late spring to autumn in Northern Argentina, 

Paraguay, and Uruguay.  Climatologically, 4”-6” per month fall in Gran Chaco and the 

Parana Basin during the summer with about 2”-4” in Uruguay.  Spring and autumn yield 

opposite rainfall distributions.  Enormous 6”-12” 24-hour rainfall amounts have occurred 

in the Parana Basin, Uruguay, and the Rio de la Plata from intense MCSs and MCCs 

(Gilford et al. 1992).  Low cloud bases just less than 1000 ft, cloud tops exceeding 50,000 

ft, and visibility much less than one statute mile often accompany MCCs and intense 

MCSs (Gilford et al. 1992). 
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III. Data 
 
 
 

3.1.  Excessive Rainfall, Fog, and Low-Cloud Bases over Columbia, Ecuador, and 
Northern Peru east of the Andes.  
 
 

3.1.1. Satellite and Reanalysis Data.  This research utilized satellite imagery 

and reanalysis charts to find common precursors to heavy rainfall events.  Satellite 

imagery used is from both geostationary and polar-orbiting satellites.  Due to data and 

cost restrictions, limited archived visible and infrared Geostationary Operational 

Environmental Satellite (GOES) imagery from GOES-7 and GOES-8 were available 

from 1995 and 1996 from NCDC (NCDC 2002).  However, the Space Physics Interactive 

Data Resource (SPIDR) supplied an ample amount of polar-orbiting visible and infrared 

imagery through the NGDC (NGDC 2002).  Imagery was available for the length of the 

POR using DMSP F10-F15 satellites.  Despite the irregular schedule of polar-orbiting 

images, there were enough DMSP images available through the SPIDR from multiple 

passes and all available satellites to view and analyze a weather system’s evolution, 

intensity, movement, and decay.   

 NCAR supplied a binary format of reanalysis data that’s taken from the Global 

Data Assimilation System (GDAS) model at the former National Meteorological Center 

(now called the National Center for Environmental Prediction (NCEP)).  NCAR received 

the data from the NMC and stored the data in a binary format, Office Note 84 (ON84).  

ON84 is simply formatted NMC grid point data derived from the global reanalysis 

(NCAR 1995-1996).  Grid points of the ON84 data are distributed evenly by latitude and 

longitude with a 2.5° spacing.  This research analyzed the reanalysis data for periods of 
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1995 and 1996 after the ON84 data was ingested and interpolated to a 45 km Mercator 

projection grid.   

 3.2.1.  Observation Data.  Observation data was obtained from AFCCC 

throughout the POR for several locations within the region of study (Table 5) to create 

conditional climatology tables for forecasting low clouds and fog (AFCCC 1995-2001).  

Observations, both synoptic and METAR, include winds, visibility, present and/or past 

weather, sky condition, temperature, dewpoint, lowest ceiling, altimeter setting, and 

accumulated precipitation (3, 6, 12 and 24 hour).  However, there were many pitfalls:  

available stations report a mix of both synoptic and METAR through the POR, synoptic 

observations usually don’t include altimeter setting, accumulated precipitation was not 

reported in all observations and not for all available days, some observations were 

missing one or more reportable fields, observations are taken by developing nations in 

potentially hostile territory, and frequency of the observations were inconsistent with 

observation times with hours, days, and, occasionally, weeks or months missing.  Most 

stations only reported from 12 to 00 UTC in three-hour increments.  The only stations to 

report on a 24-hour basis and report almost every hour are the most reliable:  Leticia, 

Columbia and Iquitos, Peru.  However, both stations are in the Western Amazon Basin.  

Unfortunately, no station reported hourly in the Columbian Highlands.  The most reliable 

station in the highlands was Villavicencio.  All other stations listed in Table 5 reported 

too sporadically to draw any conclusive results.  The only stations that reported 

accumulated precipitation were Benjamin Constant and Iauarete, Brazil; Iquitos, Peru; 

Leticia and Villavicencio, Columbia.  A station that reports more consistently with fewer 

time gaps in between observations and with fewer missing reportable data fields is a more 
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reliable station than one that reports with more gaps in between observations and with 

more reporting fields missing.   

Table 5.  Observation stations in region of study (NWSA).  Stations are not co-located 
with actual military installations except Apiay Air Base. 

 

Number 
in 

Fig. 19 

Station Country Latitude

(°) 

Longitude

(°) 

Elevation 

(ft) 

Location 

1 Apiay Air Base Columbia 4.15 N 73.50 W 1200 Highlands

2 Benjamin 
Constant 

Brazil 4.38 S 70.03 W 213 Basin 

3 Gaviotas Columbia 4.55 N 70.92 W 548 Highlands

4 Iauarete Brazil 0.62 N 69.20 W 394 Basin 

5 Iquitos Peru 3.75 S 73.25 W 413 Basin 

6 Leticia Columbia 4.17 S 69.95 W 275 Basin 

7 Mitu Columbia 1.13 N 70.05 W 679 Basin 

8 Puerto Asis Columbia 0.50 N 76.50 W 833 Highlands

9 San José 
Guaviare 

Columbia 2.57 N 72.63 W 509 Highlands

10 Tabatinga Int’l Brazil 3.67 S 69.67 W 280 Basin 

11 Villavicencio Columbia 4.17 N 73.62 W 1414 Highlands
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Fig. 19.  Geography of observation locations.  Numbers correspond to locations in    
Table 5. 
 

 The 25th OWS also provided observations for Apiay Air Base (AB) (17 nm east of 

Villavicencio) whenever a team deployed there (25th OWS 2001-2002).  Observations are 

full METAR observations complete with accumulated precipitation, remarks and 

extensive additive data.  Because the US military provided the observations, they are 

assumed to be much more reliable than in-country observations.  In addition, the 

observations were reported hourly whenever the airfield was open (usually daylight hours 

only).  Obviously, since the observation data only encompass 2001 and 2002, this 

research relied heavily on AFCCC observation data.   

 The largest pitfall to using any observation data is that the station’s localized 

features can impact observations.  This pitfall was impossible to avoid given the region of 

study encompasses a large flat basin and hilly terrain adjacent to the Andes.  Naturally, 

various localized phenomena such as low clouds, fog, and localized rainfall are very 

tough to study and predict especially in a data-starved region.  Therefore, this research 

focused on non-localized occurrences of low cloud bases, fog, and heavy rainfall. 
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3.2.  Forecasting Mesoscale Convective Complex Movement in Northern Argentina, 
Southern Brazil, Paraguay, and Uruguay. 

 
 
 Twenty-two MCC and MCS cases were analyzed to verify Corfidi et al.’s (1996) 

method of MCC movement for SA.  Two of the cases are in Jan 2001 with the remaining 

from Sep to Dec 2002.  Twenty of the 22 cases are MCCs.  The other two cases are 

MCSs that almost obtained MCC status.  They were included in this study.  The 

International Desks section of the Hydrometeorological Prediction Center (HPC) at 

NCEP provided GOES-8 satellite imagery for the 2001 case studies courtesy of Davison 

(2002) while the Cooperative Institute for Research in the Atmosphere (CIRA) provided 

GOES-8 satellite imagery for the 2002 cases (CIRA 2002).  Additional higher-resolution 

data from NOAA GOES (NASA 2002) supplemented the full-disk imagery from the 

HPC and CIRA.  This study only utilized three-hourly, channel four IR imagery for the 

detection of cold cloud tops. 

 Due to very sporadic and inconsistent upper-air sounding data in the region of 

study, this research utilized upper-air reanalysis data from FNMOD (FNMOD 2001-

2002) for verification of Corfidi’s method.  The U.S. Navy runs the Navy Operational 

Global Atmospheric Prediction System (NOGAPS) model to produce reanalysis data 

twice per day (00 and 12 UTC).  The FNMOD stores the archived reanalysis data for 

access via the Fleet Historical Fields Display System. 
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IV. Methodology and Results 
 
 
 

4.1.  Excessive Rainfall, Fog, and Low-Cloud Bases over Columbia, Ecuador, and 
Northern Peru east of the Andes.   

 
 

4.1.1. Relationship between Fog and Low-Cloud Bases to Precipitation 
Occurrences. 
 
4.1.1.1.  Methodology.  This objective focuses on producing conditional 

climatology to aid forecasters in predicting low ceilings and visibilities associated with 

fog and low-cloud bases on the mornings following heavy precipitation events by 

categorizing each event according to ceilings and visibilities.  The standard categories 

break into the same airfield minimum categories used in the Operational Climatic Data 

Summary (OCDS) provided by AFCCC (2002).  According to the OCDS, the highest 

probability of dropping below category is during the early to mid morning hours for all 

locations due to temperatures approaching the dewpoint level.  Probabilities of dropping 

below category should increase following a heavy rainfall event with an increased 

availability of ground moisture.   

After sorting through AFCCC (1995-2001) observation data sets from 1995 to 

2001 for four locations:  Iquitos, Peru; Benjamin Constant, Brazil; Leticia and 

Villavicencio, Columbia, accumulated precipitation events greater than 1” in 24 hours 

were selected.  Apiay Air Base (AB), Columbia wasn’t selected due to its very limited 

database.  The 24-hour period begins and ends at 06 UTC (approximately midnight local 

time).  Observations without a 12 UTC observation following the precipitation event or 

12 UTC observations missing ceiling or visibility fields were excluded.  For 24-hour 

reporting stations, Iquitos and Leticia, randomly selected 11 UTC or 13 UTC 
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observations replaced all missing or incomplete 12 UTC observations.  Furthermore, each 

heavy precipitation event was subdivided into two events, accumulated rainfall equal or 

greater than 1” but less than 2” in 24 hours and accumulated rainfall equal or greater than 

2” in 24 hours.  Finally, summing the amount of occurrences in each category and 

dividing by the number of occurrences categorizes the data. 

4.1.1.2.  Results.  Appendix A outlines the frequency of ceilings or visibilities 

falling within an airfield minimum category at and around 12 UTC given one inch or 

greater precipitation fell within the previous 24-hour period ending at 06 UTC.  Data are 

broken into three tables, one for each location except Villavicencio.  The data set includes 

141 observations (AFCCC 1995-2001) for Benjamin Constant, 168 observations for 

Iquitos, 204 observations for Leticia, and 175 observations for Villavicencio.  This study 

includes Benjamin Constant for representation of locations in the Amazon Basin.  This 

was important because of the small population size for nearby Leticia, Columbia.  For the 

locations in the West Amazon Basin, the frequencies generally exceeded the annual 

climatological mean by 110% to 300%.  This makes sense since more available moisture 

adds to the probability of occurrence of receiving morning fog or low clouds.  However, 

frequencies were lower than the climatological means for Villavicencio as illustrated in 

Table 6.   

 
Table 6.  Climatology of airfield minimum categories for 12 UTC following 1” or greater 

24-hour accumulated precipitation for Villavicencio, Columbia. 
Ceilings (ft) / Visibility (sm) 

Categories 
Frequency of Occurrence 

(%) 
Annual Climatology for 

12 UTC (%) 
Less than 3000 / 3 5.7 14.0 
Less than 1500 / 3 3.4 7.0 
Less than 1000 / 2 1.1 5.0 
Less than 300 / 1 < 1.0 1.0 

Less than 200 / 0.5 < 1.0 1.0 
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As previously mentioned, the only hourly reporting stations were Iquitos and 

Leticia.  All other stations reported every three to six hours only from 12 to 00 UTC.  The 

results in Table 6 and the fact that Villavicencio reported every three to six hours raises 

concerns about the validity of Villavicencio observations.  The 25th OWS (2001-2002) 

deployed observers to disseminate hourly observations sporadically throughout the period 

for Apiay AB.  Although the observational database for Apiay AB is limited, there were 

enough observations to compare to Villavicencio.  Apiay AB is located 17 sm east of 

Villavicencio and differs only 200 ft in elevation.  Although it’s reasonable to assume 

certain localized conditions occur with two stations separated by 17 sm, many similarities 

should arise with observations from both locations.  Differences among 189 observations 

reported at the same date and time were compiled for available periods during 2001 by 

calculating the mean error of temperature, visibility, precipitation intensity, and 

accumulated precipitation.  These periods include only times of deployment by the 25th 

OWS:  Jan-Feb, May-Jun, and Aug-Sep 2001.   

Mean error calculations showed a reasonable difference between the two stations 

for most data fields except the ceilings and precipitation intensity.  Temperatures and 

dewpoints differed only by an average of 0.5º to 0.75º C and visibilities merely differed 

by about 0.25 sm, which are very reasonable for a 17 sm difference.  Values were 

assigned to each value of precipitation intensity (0:  no reporting precipitation; 1:  drizzle; 

2:  light rain; 3:  moderate rain; 4:  heavy rain).  Apiay AB registered almost a value of 

precipitation intensity higher than Villavicencio while ceilings measured almost 3000 feet 

lower than Villavicencio.  This disparity seemed high for the 17 sm difference in a 

tropical regime.  Furthermore, Apiay AB observations reported other height levels of 
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clouds in its observations while its neighbor station provided little additional information 

on few and scattered cloud decks.  The difference in reporting standards between two 

sites from different countries (US Air Base vs. Columbian civilian airport) with 

subjective reporting categories (i.e. ceilings and precipitation intensity) is a likely cause 

for the difference.  Ceilings and precipitation intensities are not completely objective 

reporting fields like temperature and precipitation accumulation.  When a station (e.g. 

Villavicencio) frequently reports heavy rain with ceilings of 15000 ft, one must certainly 

question the validity of the observation.  Winds and altimeter settings weren’t evaluated 

due to various missing data fields in Villavicencio’s observations.  To conclude, 

Villavicencio was excluded from this study and Appendix A. 

4.1.2. Determining Ceilings and Visibilities from Precipitation Events. 

4.1.2.1.  Methodology.  The objective of developing climatology to determine 

ceilings and visibilities given a certain intensity of precipitation occurred is broken into 

two parts.  The first part develops climatology of airfield minimum categories for drizzle, 

light rain, moderate rain, and heavy rain for three locations where the military operate 

aircraft:  Iquitos, Peru and Leticia and Apiay AB, Columbia.  Given Leticia’s large 

database and its close proximity to Benjamin Constant, Benjamin Constant data were 

excluded from this particular study.  In addition, the U.S. military uses Leticia, not 

Benjamin Constant for landing purposes.  This study also excluded Villavicencio because 

of its questionable ceilings.   

After sorting through AFCCC (1995-2001) observation data sets from 1995 to 

2001 for Iquitos and Leticia and sporadic deployed data sets from the 25th OWS (2001-

2002) for 2001 and 2002, all observations reporting precipitation were selected.  
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Whenever observations reported multiple precipitation intensities within the same 

observation, only the dominant precipitation intensity was used for this study.  

Precipitation was divided into four categories:  drizzle, light rain, moderate rain, and 

heavy rain.  Any observation not reporting ceilings and visibilities was excluded.  

Observations were then categorized into airfield minimum categories using the same 

process as in section 4.1.1. to determine frequency of occurrences given a certain 

intensity of precipitation.  Table 7 illustrates the number of occurrences for each 

precipitation intensity and location.   

 
Table 7.  Sample sizes for precipitation intensities from 1995-2002. 

Location Total  
Precip. 

Obs. 

Drizzle 
Occurrences 

Light Rain 
Occurrences 

Moderate 
Rain 

Occurrences 

Heavy Rain 
Occurrences 

Iquitos,  
Peru 

2417 950 935 434 98 

Leticia, 
Columbia 

2630 1118 805 587 120 

Apiay Air 
Base, 

Columbia 

260 26 175 34 25 

 
 

Part two of this objective develops climatological ranges of ceilings and 

visibilities for the same locations and observational database as the first part of the 

objective (Table 7) given a certain intensity of precipitation occurred.  The range consists 

of the middle 80% probability based on percentile plots of each data set.  The 10% and 

90% percentiles and additional “forecaster tidbits” in section 2 of Appendix B provide 

the forecaster ranges to forecast ceilings and visibilities in a specific location given a 

certain precipitation intensity.  After separating observations by precipitation intensity 
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using the same process as the first objective in this section, a histogram and distribution 

fitted all data within each intensity category for both ceilings and visibilities.   

All data sets for ceilings were not evenly distributed.  Fig. 20 illustrates the 

possibility that two or three samples (subsets of populations) could exist within a 

population.  Ceiling data were split into two sets, one for ceilings below 6000 ft (low 

clouds) and the other for ceilings 6000 to 20,000 ft (mid-level clouds).  As seen in Fig. 

20, a lack of occurrences falls between 4000 and 7000 ft.  Other data sets showed the 

same distinct differences at and around 6000 ft.  Although some data sets show a third 

sample around 13,000 – 15,000 ft (Fig. 20), the difference from mid to high ceilings are 

not operationally significant for most military missions. 
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Fig. 20.  Illustration of multiple samples within a population of ceilings associated with 
light rain at Leticia, Columbia (interval 250 ft.). 
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Administering a t-test verified the two sample sets within the population were 

indeed different.  This research chose the t-test over the z-test because the population 

variance was unknown.  Instead, the t-test uses the variance as an approximation of the 

population variance to assume normality.  The p-level, calculated from the t-test, 

determines whether the null hypothesis is rejected or not.  If the p-value is less than an 

acceptable level of significance (LOS) (α = 0.05 or 0.05/2 for a two-tailed t-test), then the 

t-test leads the researcher in rejecting the null hypothesis that the mean of both samples 

are approximately equal (Devore 2000).  This research followed traditional scientific 

researchers in using 0.05 for an acceptable LOS (Devore 2000).  P-values for all ceiling 

data sets for all three locations were 0.0001, which fails to exceed the LOS of 0.05/2.  

The null hypothesis was easily rejected; therefore, this study treated all ceiling data sets 

as two separate populations. 

Normal quantile plots tested for normality for each data set.  Figs. 21 through 24 

illustrate a couple of examples for normality tests.  For normality, the data should fit 

within the 95% confidence intervals.  Fig. 22 shows an example of a population not 

meeting normality.  The lognormal distribution, a distribution that computes the natural 

log of the data to best fit a normal distribution, best represents the population in Figure 21 

over similar distributions like the gamma and beta distributions.  Although the normality 

distribution in Fig. 23 is far from a perfect fit, the quantile plot in Fig. 24 is sufficient to 

use to assume normality for this particular distribution.   Fig. 25 depicts an example 

where no distribution appropriately fits the data.  In many cases, including Fig. 25, 

empirical methods were developed to best fit the data.  Tables 8 through 10 lists the 

distributions used for each population.  As seen, the empirical technique was the only 
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suitable choice in most data sets, especially smaller populations such as Apiay AB and 

populations that were too far spread for any non-empirical distribution.   
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Fig. 21.  Lower range of ceilings associated with drizzle for Iquitos, Peru (interval 100 
ft.).  Curve represents the fitted lognormal distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 58



 
 

 

 

 

 

 

 

 

 

Fig. 22.  Normal quantile plot for lower range of ceilings associated with drizzle for 

ile the 

 

 

 

 

 

 

Fig. 23.  Lower range of ceilings associated with heavy rain for Iquitos, Peru (interval 50 
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Iquitos, Peru.  Straight line and curved lines represent the normal line and 95% 
confidence intervals respectively.  Vertical dashed line represents the median wh
top axis represents the cumulative distribution function. 
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ft.)  Curved line represents the fitted normal distribution. 
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Fig. 24.  Normal quantile plot for lower range of ceilings associated with heavy rain for 

ile the 

 

 
ig. 25.  Visibilities associated with light rain for Apiay AB, Columbia (interval ½ sm).   
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Iquitos, Peru.  Straight line and curved lines represent the normal line and 95% 
confidence intervals respectively.  Vertical dashed line represents the median wh
top axis represents the cumulative distribution function. 
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Table 8.  Sample Sizes and Distribution Methods for Iquitos, Peru. 
Precipita

Range or Visibility Distribution 
tion Ceiling (CIG) Sample Range of Values 

Intensity 
(VIS) 

Size CIG (ft) or VIS 
(sm) or Method 

Applied 
normal 

Drizzle Upper Range CIG 356 5000 – 15,000 Empirical 
Drizzle VIS 950 1/2 – 7 Empirical 
Light Rain r Range CIG  Lowe 692 0 – 3100 Normal 
Light Rain Upper Range CIG 243 7000 – 15,000 l Empirica
Light Rain VIS 935 5/8 – 7 Empirical 
Moderate Rain r Range CIG 00 Lowe 370 300 – 20 Normal 
Moderate Rain Upper Range CIG 64 7000 – 10,000 l Empirica
Moderate Rain VIS 434 1/16 – 7 Empirical 
Heavy Rain Lower Range CIG 0 87 100 – 150 Normal 
Heavy Rain Upper Range CIG 11 7000 – 8000 l Empirica
Heavy Rain VIS 98 0 – 7 Empirical 
 

Drizzle Lower Range CIG 594 0 – 4000 Log

Table 9.  Sample sizes and distribution methods for Leticia, Columbia. 
Precipi

Range or Visibility Distribution 
tation Ceiling (CIG) Sample Range of Values 

Intensity 
(VIS) 

Size CIG (ft) or VIS 
(sm) or Method 

Applied 
normal 

Drizzle Upper Range CIG 346 6000 – 20,000 Empirical 
Drizzle VIS 1118 3/8 – 7 Empirical 
Light Rain r Range CIG 00 Lowe 592 400 – 31 Normal 
Light Rain Upper Range CIG 213 7000 – 15,000 l Empirica
Light Rain VIS 805 1/4 – 7 Empirical 
Moderate Rain r Range CIG 00 Lowe 510 100 – 50 Lognormal 
Moderate Rain Upper Range CIG 77 6000 – 15,000 Empirical 
Moderate Rain VIS 587 1/4 – 7 Empirical 
Heavy Rain Lower Range CIG 00 115 400 – 17 Normal 
Heavy Rain Upper Range CIG 5 8000 – 8000 l Empirica
Heavy Rain VIS 120 1/16 – 7 Empirical 
 

Drizzle Lower Range CIG 772 500 – 4000 Log
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Table 10.  Sample sizes and distribution methods for Apiay AB, Columbia. 
Preci

Range or Visibility Distribution 
pitation Ceiling (CIG) Sample Range of Values 

Intensity 
(VIS) 

Size CIG (ft) or VIS 
(sm) or Method 

Applied 
pirical 

Drizzle Upper Range CIG 16 6500 – 13,000 Empirical 
Drizzle VIS 26 3 – 7 Empirical 
Light Rain r Range CIG  5500 Lowe 123 500 – Normal 
Light Rain Upper Range CIG 52 6000 – 14,000 l Empirica
Light Rain VIS 175 1 1/2 – 7 Empirical 
Moderate Rain 0 CIG 34 400 – 550 Normal 
Moderate Rain VIS 34 3/4 – 7 Empirical 
Heavy Rain CIG 25 200 – 4900 Normal 
Heavy Rain VIS 25 1/2 – 7 Empirical 
 

Drizzle Lower Range CIG 10 2000 – 5500 Em

The basic empirical technique provides a distribution-free method to determine 

the probability of occurrence, F(ti), by dividing the number of observations observed at a 

certain point, i, by the total number of data points within the population, n (Ebeling 

1997): 

   (1) 

Given the probability of occurrence (e.g. F(ti) = 10% and 90%) and the n-value, this 

method determines i, the rank of a value with respect to the total number of observations.  

After sorting and ranking data, the i value directly relates to an actual ceiling or visibility 

value.  This ceiling or visibility value then represents the percentile used, F(ti) (Ebeling 

1997). 

4.1.2.2.  Results.  The results for the first part of this objective are presented in 

section 1 of Appendix B.  Section 1 of Appendix B outlines the frequency of occurrences 

of ceilings or visibilities falling within an airfield minimum category given a certain 

precipitation intensity is forecast to occur.  Data for the first part of this objective are 

)1/()( += nitF i
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broken into three tables with each table corresponding to Iquitos, Leticia, and Apiay AB.  

Frequencies of occurrences within a category naturally increased with the intensity of 

precipitation as ceilings and visibilities lower.  Probabilities increased more for the basin 

locations than for Apiay AB.  Localized differences, especially differences in ground 

moisture, between the basin locations and the highlands where Apiay AB sits likely cause 

the differences.  Although Apiay AB lacks a significant database, its results should steer 

the forecaster in the proper direction.   

The results for the second part of this objective are presented in section 2 of 

Appendix B.  Section 2 of Appendix B summarizes the frequency of ceilings and 

visibilities falling below a certain ceiling or visibility for three locations:  Iquitos, Leticia, 

and Apiay AB.  The results are broken into 24 tables, one for each population.  As 

expected, all percentiles generally yielded lower ceilings and visibilities with more 

intense precipitation.   

All percentages derived from a non-empirical technique were verified using 

empirical methods.  Empirical method verification values matched all normal distribution 

values and were within 60 ft of lognormal distribution values.  Since observers report 

ceilings in hundreds of feet, 60 ft is within one reporting interval (100 ft).  Therefore, the 

empirical verification validates the usefulness of lognormal percentile results. 

The percentiles used correspond to the specific distribution used in each 

population.  The 10% and 90% percentiles for the lower range of ceilings generate a tight 

fit for Iquitos and Leticia but a much wider range for Apiay AB due to its smaller 

population sizes.  Due to enormous percentile spreads and operational insignificance, 

10% and 90% percentiles were not generated for the upper range of ceilings.  The 10% 
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and 90% percentile spread for visibilities is quite large due to large variability in the 

visibility.  No relationship can explain the large spread in visibilities.  Due to the 

extremely weak correlations (not shown) found between low visibilities and low ceilings 

and between high visibilities and high ceilings, both variables were treated independently 

in this research.  

Despite visibilities and ceilings lowering with more intense rainfall, there were a 

few exceptions.  Moderate and heavy rain populations produced outlier visibilities around 

7 sm and ceilings around 8000 ft.  However, these outliers generally lie above the 97.5% 

percentile; therefore, they do not significantly impact the 10% to 90% percentile groups. 

Forecasters must first determine which range, lower or upper, ceilings will occur 

in before predicting the ceiling.  The lower range of ceilings represent ceilings less than 

6000 ft and the upper range of ceilings represent ceilings 6000 – 20,000 ft.  Section 2 of 

Appendix B also outlines the frequency of occurrence in both categories.  Probabilities of 

falling into the lower range of ceilings increased with increased precipitation intensity.  

Apiay AB registered no upper ceiling range occurrences for moderate to heavy rain.  The 

problem now arises of what range to forecast ceilings in. 

25th OWS (2001-2002) observers deployed to Apiay AB disseminated Apiay AB 

observations with copious information.  The additional data yielded invaluable 

information about the placement of storms with respect to the point of observation.  Mid-

level ceilings typically occur on the stratified edges and trailing sectors of convective 

storms instead of the center or main updraft region of the convective cloud elements as 

illustrated in Fig. 4 (Section 2.1.1.).  Observations reporting vicinity showers (VCSH), 

vicinity thunderstorms (VCTS), cumulonimbus (CB), and towering cumulus (TCU) 
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within one hour of occurrence of light rain or drizzle were investigated.  CB and TCU 

were included since observers typically report these clouds only when they can see the 

vertical extent of CB or TCU clouds.  To accurately view and report CB or TCU, the 

clouds should not typically lie overhead; therefore, the possibility exists that their 

associated mid-level decks could produce light precipitation.  Moderate and heavy rain 

reports weren’t examined due to lack of any reports in the upper range of ceilings.  This 

makes sense since the main convective element should lie overhead with almost all 

reports of moderate and heavy rain.  This study also included any report of CB or distant 

TS in the remark section of the observation.  Finally, this study used reports of very light 

precipitation (PCPN VRY LGT) in the remark section whenever observers witness light 

rain or drizzle. 

The vast majority of mid-level cloud observances did occur simultaneously or 

within one hour of the conditions described above (i.e. VCTS, VCSH, CB, TCU, PCPN 

VRY LGT, and distant TS).  Ten out of 16 of the upper ceiling range of drizzle reports 

and 24 out of 52 of the upper ceiling range of light rain reports occurred simultaneously 

with or within one hour of the same conditions described above.  However, within these 

data, all 8 ceiling reports of 8500 ft or higher with drizzle and 17 out of 20 ceiling reports 

of 10,000 ft or higher with light rain were associated with the conditions described above.  

Hardly any reports of these conditions were associated with ceilings less than 6000 ft.  

Although the study was limited in data and requires more research, these findings depict 

a strong indication that mid-level ceilings are associated with edges of convective storms 

and very light precipitation. 
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Unfortunately, civilian observation stations in NWSA don’t report additive 

observation data or complete observations on a consistent basis; therefore, no concrete 

relationship arises.  However, all locations in Northern SA lie within the tropics and 

experience similar climate conditions:  moist, unstable, convective tropical systems; 

therefore, this study safely assumed that the same reasoning for separating the lower and 

upper ranges of ceilings for Apiay AB also applies to other locations within the AOR.   

In addition, the subjectiveness of reporting precipitation intensity arises even 

among USAF observers, let alone foreign country observers.  For example, Air Force 

Manual 15-111 specifies light rain as several drops only partially wetting the ground to a 

light steady-falling rainfall wetting the ground (DAF 1998).  The disparity in 

precipitation intensity reporting might also explain differences among ceiling heights, for 

ceilings will typically lower more for a steady fall versus sprinkles.   

This study utilized percentiles instead of standard deviations due to high 

variability and lack of normal distributions in the samples.  This study also used 

percentiles instead of confidence intervals because the confidence intervals (not shown) 

produced unrealistic results for many samples.  In addition, percentiles produce an easy 

to interpret understanding of the conditional climatology for the layman forecaster versus 

confidence intervals.  Forecasters must apply caution with Appendix B.  Length of 

precipitation event, different meteorological patterns, and localized terrain differences 

likely account for some of the variability among the populations.   
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4.1.3. Forecasting Excessive Rainfall Events. 

4.1.3.1.  Methodology.  This objective develops guidelines for forecasting 

excessive rainfall of approximately 6” or greater within 24 hours over NWSA east of the 

Andes.  Although various meteorological factors such as moisture availability, thermal 

instability, and triggering mechanisms are necessary to produce copious quantities of 

rain, this research only focused on two necessary triggering mechanisms:  divergence and 

vertical velocities.   In addition to analyzing divergence and vertical velocities, specific 

precursory features seen on isobaric wind vector analysis charts could warn forecasters of 

impeding heavy rainfall.  The guidelines include precursors seen on wind vector 

analyses, divergence, and vertical velocity value charts associated with excessive rainfall.  

Due to data availability, this study only utilized 24-hour accumulated precipitation data 

from AFCCC (1995-2001) surface observation data from the 1995 and 1996 PORs for 

three locations:  Benjamin Constant and Iauarete, Brazil and Villavicencio, Columbia.  

Fortunately, all three stations are spread throughout the AOR covering both the Western 

Amazon Basin and Columbian Highlands.   

Questions about Villavicencio’s observational validity arose again with 

precipitation amounts.  Precipitation values were compared between 189 observations in 

2001 between Villavicencio and Apiay AB to determine the validity of Villavicencio 

precipitation data.  Only three events registered 1” or greater in both locations.  With 

each event, Apiay AB preceded its neighbor station with heavy rainfall reports by three 

hours.  This makes sense given both stations only report rainfall amounts every three 

hours and easterly flow drives storms westward.  Although there isn’t enough data to 

accurately correlate the amounts between the two stations, both stations reporting 
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amounts of at least 1” within three hours of each other and the fact that precipitation 

accumulation is an objective reporting field (unlike ceilings and precipitation intensity), 

yielded enough confidence to utilize Villavicencio accumulated precipitation reports for 

this study.    

After isolating 24-hour precipitation amounts for days with approximately 6” or 

greater (smallest value used was 5.76”) for the desired locations, values of divergence 

and vertical velocities were found from interpolating the reanalysis data (ON84 data from 

the GDAS model) onto a 45 km Mercator projection and analyzing it.  The reanalysis 

data from NCAR (1995-1996), originating from the former National Meteorological 

Center (NMC) (now called NCEP), was developed from the GDAS model.  The GDAS is 

the same system that NMC ran for the Aviation model and Medium Range Forecast 

model.  In 1995 and 1996, GDAS produced a T62 resolution model with 28 vertical 

layers (Shih 2002).  This resolution corresponds to the model resolving waves no smaller 

than roughly 350 nm; therefore, features smaller than the model resolution (i.e. meso-beta 

and small meso-alpha scale features) may yield erroneous values.  Given the great lack of 

upper-air network over SA, greater resolution may not necessarily resolve smaller 

features anyway. 

Verification of storm size from DMSP satellite imagery (NGDC 2002) was 

necessary before ingesting the ON84 data onto a 45 km Mercator projection for specific 

dates.  Due to the GDAS model’s resolution restraints, any system not at least 350 nm in 

width or length was subjectively excluded from the study.  This reduced the number of 

available events with 6” or more in 24-hours by roughly 40%.  In other words, 
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approximately 40% of the 6” events were too small in size and were excluded from this 

study. 

TERRAIN and REGRID, vital programs of the Fifth Generation Pennsylvania 

State University/NCAR Mesoscale Model (MM5), ingests and interpolates reanalysis 

data.  The TERRAIN program interpolates latitude, longitude, and terrain onto an 

operator specified mesoscale map.  In this research, TERRAIN mapped a Mercator 

projection encompassing all of SA north of 12º S and west of 55º W with a spatial 

resolution of 45 km (different from the GDAS 350 nm resolution).  The REGRID 

program consists of two parts, pregrid and regridder.  Pregrid inputted the NMC ON84 

reanalysis data while regridder interpolated the data onto the specified MM5 TERRAIN 

grid.  Regridder only ran data for the parameters, levels, and times specified in a file.  

Both REGRID and TERRAIN programs were run using a UNIX Operating System on 

Solaris 8. 

Various charts were displayed at several isobaric levels at both 00 UTC and 12 

UTC for days reporting excessive 24-hour accumulated precipitation.  They include:  

divergence value charts at 850, 700, 600, 500, 400, and 300 mb; vertical velocity charts at 

700, 500, and 300 mb; wind vector analysis charts at 1000, 850, 700, 500, 400, and 300 

mb; and cross sections of isotach analysis from the surface to 300 mb from 10º N to 10º S 

at 70º W and 55º W.  The divergence charts displayed values with intervals of             

0.25 x 10-5 s-1 while vertical velocity charts displayed values with intervals of 0.5 cm s-1.   

Maximum values of divergence and vertical velocities corresponding to the 

tropical mesoscale convective system (MCS) were collected from the reanalysis data 

charts and recorded for both 00 UTC and 12 UTC.  To partially account for errors from 
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low spatial resolution and analysis, a range of maximum values were documented.  The 

maximum ranges recorded were a range of 0.25 x 10-5 s-1 for divergence and 1 cm s-1 for 

vertical velocities.  The recording process required careful analysis of satellite imagery of 

the system to ensure the MCS corresponded to the areas of maximum divergence and 

vertical velocity values.  In addition, the MCS and maximum range of values crossed the 

station prior to the 12 UTC observation of 24-hour accumulated precipitation to ensure 

the values recorded pertain to the same MCS.  Occasionally, this process required further 

subjective analysis of both the reanalysis and satellite imagery if the maximum range of 

values crossed the surface observation location prior to or following the time of 

reanalysis (00 UTC and 12 UTC).  The time (either 00 UTC or 12 UTC) that displayed 

the highest values was also noted. 

In addition to divergence and vertical velocities, wind vector analysis charts and 

cross sections portrayed various precursory mesoscale and synoptic scale features 

associated with tropical systems in Northern SA.  The charts yielded important 

information about common features (i.e. convergence zones, mesoscale circulations, 

waves in upper-level easterly flow, etc.) that lead to significant convergence and 

divergence values.  Since forecasters can detect certain features on analyses and model 

charts, a summary of the precursory features would prove invaluable to the forecaster 

predicting heavy rainfall events.   

To validate any results, a comparison to non-heavy rainfall events was necessary.  

A non-heavy rainfall event in the tropics is defined here as an event less than 2” in 24-

hours.  For comparison purposes, only wet-season 24-hour precipitation events of 1-2” 
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from the same locations and POR were utilized.  The process of obtaining values was 

similar to the process for 6” events with one notable exception. 

The problem of low spatial resolution arose again with 1-2” events.  As with the 

6” events, only systems that were at least 350 nm wide or long were studied.  Since 

smaller-scale systems can easily produce lighter amounts, a criterion for comparison 

needed to be established.  Many large-scale systems greater than 350 nm can indeed 

produce only 1-2” events, especially if they possess weaker atmospheric dynamics or are 

accompanied by a much stronger system that does not directly progress over the surface 

observational location but around the station.   In this scenario, divergence and vertical 

velocity values were only gathered from the sector of the storm affecting the location of 

observation.  In all cases, the maximum values associated with the storms missed the 

surface observation site.  This provided evidence those 1-2” rainfall events either 

occurred with small-scale systems or on the periphery of larger-scale systems. 

Finally, t-tests were administered to both 1-2” event populations and 6” or greater 

event populations to verify any significant differences between the two.  The process and 

level of significance used was the same as the process described in Section 4.1.2.2.  

Before performing the t-tests, a test for normality was necessary to determine if the 

populations fit a normal distribution.  This was necessary to establish a usable mean and 

standard deviation for all populations of divergence and vertical velocities for both 1-2” 

events and 6” or greater events.  

 4.1.3.2.  Results.  Results for this section are presented in Tables 11 and 12 and 

are summarized in Table C4 in Appendix C.  Appendix C provides forecaster guidance 

on predicting the dynamical precursors to excessive rainfall events.  Results are broken 
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into two areas:  north of the Equator and south of the Equator.  Villavicencio and Iauarete 

represent locations north of the Equator while Benjamin Constant represents locations 

south of the Equator.  Both locations were treated separately from each other mainly due 

to different wet seasons and the slight difference in dynamics between storms forming in 

the two locations (discussed later in this section). 

 A t-test to determine a significant difference between the 6” events and 1-2” 

events resulted in rejecting the null hypothesis of treating the two populations as the 

same.  P-values for all divergence and vertical velocity categories were 0.0001 or less, 

less than this study’s LOS for a two-tailed t-test, 0.05/2 (α=0.05).   

 Tables 11 and 12 outline the results for 6” events and 1-2” events respectively.  

Since normal quantile plots for all populations resulted in treating the populations as 

having a relatively normal distribution, averages and standard deviations were computed 

for all divergence and vertical velocity populations.  Fig. 26 illustrates an example of one 

population noticeably meeting normality.  As demonstrated in both tables, separating the 

two locations helped to lower the standard deviations for each location.  Table 12 depicts 

the difference between 6” and 1-2” rainfall events.  Since 1-2” events produced 

divergence and vertical velocity values only about 30-50% of those for 6” events, it’s 

clearly evident that stronger divergence and vertical velocities significantly contribute to 

the dynamics of excessive rainfall events. 
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Table 11.  Mean ranges and standard deviations (std. dev.) of divergence (DIV) and 
upward vertical velocities (UVV) for excessive rainfall events (approximately 6” or 

greater in 24 hrs).  Upper-level DIV represents the level of strongest divergence. 
Locations north of the Equator 

(based on 22 occurrences) 
 Lower range 

mean  
Lower range 

std. dev. 
Upper range 

mean 
Upper range 

std. dev. 
850 mb DIV  

(10-5 s-1) 
-1.67 0.49 -1.94 0.52 

700 mb DIV 
(10-5 s-1) 

-1.43 0.47 -1.68 0.47 

Upper-level DIV 
(10-5 s-1) 

1.63 0.39 1.88 0.39 

700 mb UVV 
(cm s-1) 

2.86 0.77 3.86 0.77 

500 mb UVV 
(cm s-1) 

3.09 1.23 4.09 1.23 

Locations south of the Equator 
(based on 5 occurrences) 

 Lower range 
mean  

Lower range 
std. dev. 

Upper range 
mean 

Upper range 
std. dev. 

850 mb DIV  
(10-5 s-1) 

-1.25 0.43 -1.50 0.43 

700 mb DIV 
(10-5 s-1) 

-2.00 0.59 -2.25 0.59 

Upper-level DIV 
(10-5 s-1) 

1.90 0.65 2.15 0.65 

700 mb UVV 
(cm s-1) 

3.40 1.67 4.40 1.67 

500 mb UVV 
(cm s-1) 

2.60 1.14 3.60 1.14 

All locations 
(based on 27 occurrences) 

 Lower range 
mean  

Lower range 
std. dev. 

Upper range 
mean 

Upper range 
std. dev. 

850 mb DIV 
(10-5 s-1) 

-1.59 0.50 -1.86 0.53 

700 mb DIV 
(10-5 s-1) 

-1.54 0.53 -1.79 0.53 

Upper-level DIV 
(10-5 s-1) 

1.68 0.45 1.93 0.45 

700 mb UVV 
(cm s-1) 

2.96 0.98 3.96 0.98 

500 mb UVV 
(cm s-1) 

3.00 1.21 4.00 1.21 
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Table 12.  Mean ranges and standard deviations (std. dev.) of divergence (DIV) and 
upward vertical velocities (UVV) for 1-2” in 24-hours rainfall events.  Upper-level DIV 
represents the level of strongest divergence.  Percent of lower and upper range means are 

the percent of 6” or greater event lower and upper range means. 
Locations north of the Equator (based on 31 occurrences) 

 Lower 
range 
mean  

Lower 
range  

std. dev.

% of lower 
range mean 

of ≥ 6” events

Upper 
range 
mean 

Upper 
range  

std. dev. 

% of upper 
range mean 

of ≥ 6”events
850 mb DIV  

(10-5 s-1) 
-0.76 0.31 45% -1.01 0.31 52% 

700 mb DIV 
(10-5 s-1) 

-0.71 0.33 49% -0.95 0.33 56% 

Upper-level 
DIV (10-5 s-1) 

0.94 0.30 57% 1.19 0.30 63% 

700 mb UVV 
(cm s-1) 

1.03 0.60 36% 2.03 0.60 52% 

500 mb UVV 
(cm s-1) 

1.54 0.92 50% 2.55 0.92 62% 

Locations south of the Equator (based on 13 occurrences) 
 Lower 

range 
mean  

Lower 
range  

std. dev.

% of lower 
range mean 

of ≥ 6” events

Upper 
range 
mean 

Upper 
range  

std. dev. 

% of upper 
range mean 

of ≥ 6”events
850 mb DIV  

(10-5 s-1) 
-0.46 0.22 37% -0.71 0.22 47% 

700 mb DIV 
(10-5 s-1) 

-0.63 0.53 32% -0.85 0.65 38% 

Upper-level 
DIV (10-5 s-1) 

0.73 0.30 38% 0.98 0.30 46% 

700 mb UVV 
(cm s-1) 

0.85 0.37 25% 1.85 0.37 42% 

500 mb UVV 
(cm s-1) 

0.69 0.63 27% 1.69 0.63 47% 

All locations (based on 44 occurrences) 
 Lower 

range 
mean  

Lower 
range  

std. dev.

% of lower 
range mean 

of ≥ 6” events

Upper 
range 
mean 

Upper 
range  

std. dev. 

% of upper 
range mean 

of ≥ 6”events
850 mb DIV  

(10-5 s-1) 
-0.67 0.32 42% -0.92 0.32 49% 

700 mb DIV 
(10-5 s-1) 

-0.68 0.39 44% -0.92 0.44 52% 

Upper-level 
DIV (10-5 s-1) 

0.88 0.31 52% 1.13 0.31 58% 

700 mb UVV 
(cm s-1) 

0.98 0.55 33% 1.98 0.55 50% 

500 mb UVV 
(cm s-1) 

1.30 0.93 43% 2.30 0.93 57% 
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Fig. 26.  Example of a divergence population meeting normality.  Population is for the lower 
range values for 700 mb divergence for 6” or greater rainfall events for all locations.  Straight 
line and curved lines represent the normal line and 95% confidence intervals respectively.  
Vertical dashed line represents the median while the top axis represents the cumulative 
distribution function. 

 
 

In addition to divergence values produced, the magnitude of differences from the 

strongest level of divergence and convergence can aid the forecaster in determining to 

forecast excessive rainfall or not.  Divergence differences, as explained in Appendix C, 

between the two levels produced an average value of approximately 4 x 10-5 s-1 for both 

locations for 6” events with a standard deviation of 0.54 x 10-5 s-1 for the north and     0.94 x 

10-5 s-1 for the south.  One outlier from the southern location was primarily responsible for 

the higher standard deviation.  As expected, the 1-2” events produced a divergence difference 

value that was half that of the 6” events with a standard deviation of 0.40 to 0.45 x 10-5 s-1 for 

both locations.  This, however, raised concern about what level to use for maximum 

convergence and divergence values. 
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The level of strongest divergence and convergence varies among tropical systems and 

locations.  In both locations, both low-levels displayed very similar convergence values.  As 

shown in Tables 11 and 12, locations south of the Equator slightly favor 700 mb over 850 mb 

while the opposite is true for the northern locations.  Gamache and Houze (1982) and 

Garstang et al. (1994) also found convergence values strongest from 850 to 700 mb.  Slight 

differences between the 700 and 850 mb levels are difficult to explain; however, the 

influences of low-level subtropical high placement, time of year, and trade wind inversion 

heights may account for the differences.  The upper-level differences are, however, more 

defined.   

The 400 mb level is a common level to produce the strongest outflow or divergence 

values.  400 mb was the level of strongest divergence values for almost two-thirds of the 6” 

events.  300 and 500 mb proved the level of strongest divergence in roughly 20% and 15% of 

the total 6” events respectively.  The 1-2” events exemplified a different result.  Only half the 

1-2” events had strongest divergence values at 400 mb while 500 mb contained the strongest 

divergence values for over 40% of the events and 300 mb for less than 10% of the events.  

The difference is likely related to the extent of upward growth.  Since weaker storms usually 

exhibit less vertical extent, the level of divergence is naturally lower while the level of 

outflow is higher with increased growth and intensity of storms.  Research by Gamache and 

Houze (1982) and Garstang et al. (1994) also found uppermost divergence values from 400 

to 300 mb for powerful tropical systems in SA.   In addition, they found 600 mb the level of 

non-divergence, which matches findings in this research. 

Vertical velocities, however, showed no bias toward either 700 or 500 mb.  Both 

levels proved equally as strong for vertical velocities.  Vertical velocity values for 850 mb 
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and levels above 500 mb, not presented here, were actually lower than upward vertical 

velocity values for 700 and 500 mb.  Gamache and Houze (1982) and Garstang et al. (1994) 

additionally found vertical velocities strongest from 700 to 500 mb.     

While the levels of strongest convergence, divergence, and vertical velocity values 

matched those found in previous research, the magnitudes did not.  Gamache and Houze 

(1982) and Garstang et al. (1994) discovered values more than double of those found in this 

study.  The difference may be due to lack of spatial resolution in the reanalysis data fields.  

Gamache and Houze (1982) and Garstang et al. (1994) exploited insitu and remote sensor 

measurements with Amazon Basin MCSs such as tropical squall lines to measure various 

parameters to include divergence and vertical velocities.  They were able to separate the 

leading convective elements of the MCS, which yielded values for divergence and vertical 

velocities that were at least double those found in this study, from the anvil sector of the 

MCS.  The low resolution reanalyses, however, cannot distinguish between leading 

convective elements and trailing stratified anvils.  Instead, the reanalyses interpolates 

divergence and vertical velocity values smoothed over a larger region; therefore, generating 

lower values of divergence and vertical velocity. 

Figs. 27 through 34 demonstrate a classic tropical squall line event generating 10” of 

rain in 24 hours over Iauarete, Brazil (0.6º N 69.2º W).  Vector analysis from Figs. 28 and 30 

line up with the negative divergence values (convergence) corresponding to Figs. 27 and 29 

respectively.  Fig. 28 illustrates a distinct maximum of directional and speed convergence 

over Iauarete.  Air from both sides of the Equator tends to merge close to the Equator.  This 

convergence near the Equator is likely the NET.  Both directional and speed divergence at 
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400 mb over Eastern Columbia and Northwest Brazil (Fig. 32) correspond to the same 

maximum areas of divergence presented in Fig. 31.   

 
  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 27.  850 mb divergence (10-5 s-1) for 00 UTC on 18 May 95.  Negative values are 
dashed. 
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Fig. 28.  850 mb vector analysis for 00 UTC on 18 May 95. 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 29.  700 mb divergence (10-5 s-1) for 00 UTC on 18 May 95.  Negative values are 
dashed. 
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Fig. 30.  700 mb vector analysis for 00 UTC on 18 May 95. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 31.  400 mb divergence (10-5 s-1) for 00 UTC on 18 May 95.  Negative values are 
dashed. 

 80



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 32.  400 mb vector analysis for 00 UTC on 18 May 95. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33.  500 mb vertical velocity (cm s-1) for 00 UTC on 18 May 95.  Negative values are 
dashed. 
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Fig. 34.  DMSP IR satellite imagery for 02 UTC on 18 May 95. 

 
 

A tilt eastward with height of the maximum areas of convergence from 850 to 700 mb 

is evident in Figs. 27 and 29.  This tilt is common among tropical squall lines as the trailing 

stratified (anvil) sector intercepts the 700 mb easterly inflow (refer to Fig. 4 in section 2.1.1.).  

Areas of maximum convergence at 700 mb typically lie 100 to 200 nm east of those at 850 

mb.  Gamache and Houze (1982) and Garstang et al. (1994) also found this feature common 

to tropical squall lines with the associated level of maximum inflow at 700 mb.  Cross 

section analyses in this research revealed a maximum of winds at 700 mb of 25 to 40 kts in 

all excessive rainfall events with lesser velocities in 1-2” events.  In addition, divergence 

analyses revealed that over 90% of squall lines tilted with height.  With the exception of a 

couple of events, all 6” and 1-2” precipitation events north of the Equator in this study were 

associated with tropical squall lines. 

 With a well-developed tropical squall line, areas of strongest low-level convergence, 

upper-level divergence, and upward vertical velocities are collocated with the strongest 

convection.  Due to the tilt of convergence areas in the lower levels, concentrated convection 

usually occurs between the 850 mb maximum convergence area and 700 mb maximum 

convergence area.  The maximum areas of 700 mb convergence (Fig. 29), 400 divergence 
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(Fig. 31), and 500 mb vertical velocities (Fig. 33) directly correspond to the same location as 

the immense convection on the satellite imagery (Fig. 34).  In addition, notice a less intense 

but noticeable line of 700 mb convergence (Fig. 29), 400 divergence (Fig. 31), and 500 mb 

vertical velocities (Fig. 33) in Northwest Brazil.  This banding of convergence areas is a 

common feature with squall lines that form in succession with one another.  Incidentally, the 

convergence band in Northwest Brazil is associated with the smaller clusters of convection 

southeast of the main area in the satellite image (Fig. 34).  Lines of strong convergence and 

divergence couplets associated with strong upward vertical velocities can align themselves 

almost parallel with one another as they discretely propagate westward across the continent.   

 As expected, diurnal differences are also present.  Over 90% of the 6” and 1-2” 

events north of the Equator experienced stronger convection at 00 UTC versus 12 UTC.  

Although squall lines typically follow the diurnal cycle by weakening at night and 

rejuvenating during the day, storms from a few cases were able to overcome the loss of 

sensible heating due to radiational cooling.  These select storms often formed in the presence 

of strong low-level convergence and upper-level divergence.  In addition, other atmospheric 

factors not studied here, such as vorticity and instability for example, may have contributed 

to the nocturnal occurrences. 

 Tropical convective rainfall events south of the Equator exhibit some differences 

from those north of the Equator.  While Iauarete and Villavicencio experience similar wet 

seasons and atmospheric characteristics associated with squall lines, the same is not always 

true for Benjamin Constant and other locations south of the Equator (i.e. Iquitos and Leticia).  

The NET is well south of the Equator when locations north of the Equator experience their 

dry season.  In addition, this study found that almost half of all precipitation events were not 
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associated with squall lines, but rather with the Amazon Low and a convergence of the NET 

with the SACZ.  Fig. 35 illustrates an example of the influence of the NET and SACZ with 

negative divergence values (convergence) at 700 mb.  Vector convergence associated with 

these values and features are easily seen in Fig. 36.  The NET is located just south of the 

Equator and the SACZ is diagonally located on a line stretching from Northeast Peru 

southeastward to about 10º S and 60º W. 

 Another difference between locations north and south of the Equator is diurnal 

heating.  About 40% to 45% of the storms associated with the cases south of the Equator 

experienced their strongest convection during the early morning hours (12 UTC).  Diurnal 

heating may not be a primary factor for time of convection probably due to smaller diurnal 

temperature differences in the moisture rich Amazon Basin.  Very large evapo-transpiration 

rates in the basin likely limit the amount of surface sensible heating.  As in the northern 

areas, triggering mechanisms strong enough over the region during the morning hours could 

spark convection regardless of diurnal heating.  Localized factors could also favor night-time 

convection in the basin. 
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Fig. 35.  700 mb divergence (10-5 s-1) for 00 UTC on 13 Nov 95.  Negative values are 
dashed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 36.  700 mb vector analysis for 00 UTC on 13 Nov 95.  Dashed and dotted lines 
represent locations of the NET and SACZ respectively. 
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 Although Appendix C provides forecasting guidance, forecasters must utilize all 

forecasting tools at their disposal.  Wind vector analysis is very useful in determining 

features responsible for convection; however, only those charts that display divergence and 

vertical velocity values can truly distinguish the areas of potential convective growth.  

Additionally, Tables C1 and C2 and Figs. C1 through C4 in Appendix C exemplify very 

general features common to many events analyzed in this research.  Not every feature listed 

and shown need be present for strong convection.  The NET, SACZ, strong low-level 

pressure gradients with convergence, migrating high-pressure systems at all levels, and 

upper-level divergence are the main general triggers to convection.   

 This research did not, however, take into account thermodynamics and dry season 

events.  Tremendous moisture, which is usually present in the tropics during the wet season, 

and thermal instability are both necessary ingredients for strong convection.  Although 

excessive rainfall events primarily occur during the wet and transition seasons, they can 

occur during the dry seasons as well.  However, the few dry season cases analyzed in this 

research were all on a scale too small for the model to accurately resolve.   

 As previously mentioned, GDAS model resolution was a big limiting factor.  The 

lack of resolution from the GDAS model in 1995 and 1996 likely produced divergence and 

vertical velocity values much lower in comparison to previous research.  In addition, the 

reanalyses from the model produced smoothed values over the entire domain.  The 

smoothing of the data along with the low GDAS model resolution likely introduced errors 

into the computation of divergence and vertical velocity values.  However, the extent of the 

errors is unknown.  The guidelines in Table C4 are those only associated with a model with a 

T62 resolution.  With present models producing resolutions three to four times higher, it’s 
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possible that the values recorded in Appendix C may not necessarily produce excessive 

rainfall when applied to higher resolution model analyses.  As a counteracting statement, 

however, model resolution is related to actual analysis resolution.  The severe lack of a South 

American upper-air network would limit the efficiency of present-day higher resolution 

models over SA; therefore, further studies with current models are needed to validate results 

presented in this research. 

  
4.2.  Forecasting Mesoscale Convective Complex Movement in Northern Argentina, 
Southern Brazil, Paraguay, and Uruguay. 
 
 
 4.2.1.  Methodology.  Corfidi et al. (1996) proposed a solution to determine 

movement of MCCs in the U.S. by the simple principle that movement of MCCs is affected 

by both the propagation and cloud layer advection components.  A very similar method can 

be applied to South American MCCs by utilizing the same principle.  This research verified 

the Corfidi method for SA by applying a very similar process that Corfidi et al. (1996) used 

to predict MCC movement in the U.S. 

 For verification, Corfidi et al. (1996) tracked the meso-beta scale convective elements 

(MBE) of 99 MCCs and 4 MCSs using both radar and hourly satellite imagery.  Corfidi et al. 

(1996) followed the centroid of heavy precipitation echoes on hourly radar imagery and then 

constructed a straight line of best fit from the beginning to the end of the imagery.  Satellite 

imagery was used to verify MCC or MCS observation using the same definition of an MCC 

given in section 2.2.1.  In addition, Corfidi et al. (1996) verified mean cloud layer speed and 

direction against individual cells off of radar imagery.  This verification was necessary to 

prove that the mean 850-300 mb cloud layer flow affects the movement of MCCs and MCSs.  
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Corfidi et al. (1996) only studied those individual cells that would rapidly grow into MCCs 

or MCSs. 

 This research verified forecasted MCC and MCS movement and individual cell 

movement for SA, but by a slightly different process.  Due to data limitations, no radar 

imagery is available.  Moreover, only 20 km full-disk IR imagery from GOES-8 at three-hour 

intervals was available for this study (CIRA 2002; Davison 2002).  However, the lack of 

radar and hourly satellite imagery did not undermine verification of Corfidi’s method. 

 Satellite imagery was used to track 20 MCCs and 2 MCSs merely by tracking the 

centroid of the system.  Maddox (1980) states that the coldest cloud tops relate to the areas of 

most intense precipitation.  By zooming on individual satellite images, one can detect the 

area or pixels of coldest temperatures.  The pixels would then, by Maddox’s theory, 

correspond to the centroid of heavy precipitation echoes used by Corfidi et al. (1996).  Only 

satellite images meeting MCC criteria and very large MCSs (MCSs almost obtaining the size 

of an MCC) were used in this study.  The black dots in Figs. 37-40 illustrate an example of 

tracking the centroid of an MCC over a nine-hour period.  The actual distance, direction, and 

speed of the MCC was determined by first interpolating the latitude and longitude of the 

black dot off of satellite imagery.  The starting and ending latitude and longitude was then 

converted to distance and azimuthal angle using Snyder’s (1987) spherical equations.  The 

same process was used separately whenever two different MCCs occurred within the same 

time period.  Fig. 41 shows an example of multiple MCCs. 

 Individual cells were also tracked using the same method as the MCCs and MCSs.  

With only three-hourly satellite imagery, however, it was very difficult to discern between 

individual cells and a cluster of cells coalesced together.  Only 12 of the 22 cases produced 
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cells distinctly visible for two consecutive three-hourly images.  The white arrows in Figs. 42 

and 43 show an example of tracking individual cells over a three-hour period.  These cells, 

forming prior to MCC genesis, eventually blossomed into the same MCC shown in Figs. 37-

40.  Cells not preceding MCC or MCS development were not included in this study.  

Distance, direction, and speed were computed using the exact method previously described 

for tracking MCCs and MCSs.  Finally, the speeds and directions of the 12 cases were 

compared to the 850-300 mb mean flow (the method of finding the mean flow is described 

later) to verify that cells move downwind with respect to the velocity of the mean flow.  If 

true, then the mean cloud layer velocity would not only govern movement of the individual 

cells but also of the MCCs and MCSs. 

 

 
Fig. 37.  MCC over SA at 0245 UTC on 25 Nov 02.  Black dot represents the centroid of the 
system (coldest cloud tops).  
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Fig. 38.  MCC over SA at 0545 UTC on 25 Nov 02.  Black dot represents the centroid of the 
system (coldest cloud tops). 
 

 
Fig. 39.  MCC over SA at 0845 UTC on 25 Nov 02.  Black dot represents the centroid of the 
system (coldest cloud tops). 
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ig. 40.  MCC over SA at 1145 UTC on 25 Nov 02.  Black dot represents the centroid of the 

 
ig. 41.  Two separate MCCs over SA at 2345 UTC on 5 Dec 02.  Black dots represent the 

F
system (coldest cloud tops). 
 

F
centroids of the systems (coldest cloud tops). 
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ig. 42.  Individual convective cell (white arrows point to cell) over SA at 1745 UTC on 24 
ov 02.  Cell would eventually coagulate with other cells to form an MCC. 

 
Fig. 43.  

ov 02.  Cell would eventually coagulate with other cells to form an MCC.  

F
N
 

Individual convective cell (white arrows point to cell) over SA at 2045 UTC on 24 
N
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 Winds associated with the MCC or MCS are necessary for implementation of 

Corfidi’s method.  Upper-level wind speed and direction at the location of MCC or MCS 

genesis were interpolated from 850, 700, 500, and 300 mb NOGAPS wind vector reanalysis 

charts (FNMOD 2001-2002).  This differs from Corfidi et al.’s (1996) research of utilizing 

the nearest rawinsonde station.  As in Corfidi’s method, this study utilized the 00 UTC wind 

data since 00 UTC usually occurred within six hours of MCC or MCS genesis.  Per Corfidi et 

al. (1996), the wind speeds and directions of each level are then inserted into equations 2 and 

3 respectively to produce the mean advective, cloud layer component (speed and direction 

respectively) of the MCC or MCS.  The component is simply the mean 850-300 mb wind 

speed and direction and acts as the component that advects the system downwind (Fig. 44).  

The advective component increases with increased cloud layer flow.  To arrive at a 

representable mean direction, 360º was added to any 850 and 700 mb wind east of north or 

south (between 001º and 180º).  The process of calculating the advective component was also 

the same process used in verifying cell movement against the mean 850-300 mb mean flow. 

4
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 Corfidi et al. (1996) hypothesized that storms propagate further with stronger LLJs.  

Although factors such as orographic influences, thermodynamic instability, and outflow 

boundaries, to name a few, influence propagation, storms mainly form and regenerate in the 

exit region of the LLJ due to low-level mass and moisture flux convergence.  Corfidi et al. 

(1996) found the propagation component equal in magnitude but opposite in direction of the 

low-level inflow or LLJ (Fig. 44).  In this research, the maximum wind speed and direction 
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near the location of MCC or MCS genesis were interpolated from 850 mb NOGAPS vector 

reanalysis charts (FNMOD 2001-2002).  Since MCC’s typically propagate toward the level 

of inflow or into the LLJ, this study used the maximum wind speed at 850 mb within 100 nm 

upwind of the MCC or MCS genesis region.   

 While Corfidi et al. (1996) strictly followed Bonner’s (1968) criteria for the LLJ, this 

study assumed a LLJ level of 850 mb for all events.  This was a valid assumption since Saulo 

et al. (2000) found the average maximum wind speed associated with the SALLJ to occur 

approximately at 850 mb.  Among LLJ occurrences, Saulo et al. (2000) found an average of 

20 m s-1 at 850 mb compared against an average of 8 m s-1 at 700 mb.  Since Saulo et al. 

based their findings by meticulously following Bonner’s criteria; this research used 850 mb 

as a representable level of maximum inflow.   

This research followed Corfidi et al.’s (1996) procedure in verifying the relationship 

between the direction of the LLJ and the direction of propagation.  To verify that the LLJ and 

propagation components are 180º different in direction with each other, the propagation 

component must be calculated by inserting the observed mean advective component speed, 

VCL, observed MCC or MCS speed, VMCC, and α angle into equation 4.  Fig. 45 illustrates 

how the angle, α, between the mean cloud layer and observed MCC velocities influences the 

magnitude of the propagation component.  Equation 5 then uses the calculated propagation 

component to determine the angle between the actual MCC and propagation components.  

Fig. 45 depicts how this angle, γ, relates to the actual direction of propagation.  If a strong 

correlation between the actual propagation and LLJ vectors exists, then this suggests that the 

LLJ is a very good indicator of the direction of propagation of MCC and MCS movement.  
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Fig. 44.  Conceptual model of the vector components and angles used to predict MCC or 
MCS velocity, VMCC.  The magnitude and direction of the propagation component, VPROP are 
equal and opposite to the low-level jet, VLLJ.  Angles α and β are related to the forecasted 
MCC or MCS direction and are calculated in equations 8 and 6 respectively.  The V  
vector component is the forecasted component of the MCC or MCS motion.  VMCC, 
calculated in equation 7, is the vector sum of the VCL and VPROP components.  The circle at 
the intersection of the E-W and N-S axes denotes the starting MCC or MCS location.  
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Fig. 45.  Conceptual model of the vector components and angles used to predict propagation 
velocity, VPROP.  The VMCC vector component is the observed MCC or MCS motion.  VPROP, 
computed in equation 4, is the vector sum of the VCL and VMCC components.  Angle α 
represents the difference in direction between VCL and VMCC.  Angle γ, calculated in equation 
5, is related to the propagation direction.  The circle at the intersection of the E-W and N-S 
axes denotes the starting MCC or MCS location.   
 
 
 After showing that both advective and propagation components relate to the mean 

flow and LLJ respectively, a relationship between forecasted and observed MCC or MCS 

speed and direction can be formulated.  This relationship serves to prove that forecasted 

MCC and MCS velocities verify against the actual movement of MCCs and MCSs.  

 Solving equations 6 through 8 creates a forecast of MCC or MCS movement.  To 

compute the magnitude of the system speed, the β angle must first be computed.  The angle, 

illustrated in Fig. 44 and computed in equation 6, is simply the angle between the mean 

advective and propagation components.  360º was added to either the direction of the LLJ, 
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DIRLLJ, or mean cloud layer flow, DIRCL, for proper representation.  Next, the β angle along 

with the propagation (or LLJ) and mean cloud layer magnitudes are inserted into equation 7 

to arrive at the predicted speed of the MCC or MCS.  Finally, the propagation, mean cloud 

layer, and predicted MCC or MCS magnitudes are inserted into equation 8 to determine the 

angle, α, between the cloud layer flow and predicted MCC movement.  This angle directly 

relates to the actual direction in which the convective system is heading towards (Fig. 44).   
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 The process for determining predicted MCC or MCS motion differs slightly from 

Corfidi’s method.  As illustrated in Figs. 44 and 45, simple right-angle trigonometry does not 

apply in determining magnitudes and directions.  Corfidi et al. (1996) calculated all angles 

and magnitudes using the law of sines and cosines; however, Corfidi’s method leads to 

errors.  Because sine is positive in both the first and second quadrant, any angle over 90º 

produces erroneous answers.  Corfidi et al. (1996) calculated the β angle using the law of 

sines.  This is possible provided the angle between the advective and propagation 

components isn’t obtuse.  Although obtuse angles are infrequent, they did occur in one case 

in this research.  To eliminate confusion, this research utilized the law of cosines in equation 

8 since cosine exhibits opposite signs within the first two quadrants.  To ensure uniformity 

and accuracy, the law of cosines is also utilized in equations 4, 5, and 7. 

 Once predicted MCC and MCS magnitudes and directions are calculated, correlations 

between actual and predicted values are found and compared to Corfidi’s research.  In 
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addition, mean speeds, directions, and absolute errors of both observed and forecasted values 

are computed to compare against Corfidi’s results.  Standard deviations of the speeds, 

directions, and average absolute errors are also calculated and compared.  Finally, the 

average absolute directional error between the observed and predicted MCC or MCS 

directions was translated into distances by multiplying the average absolute directional error 

by the averaged observed MCC or MCS speed and average length of time of MCC 

occurrence (11.5 hours in SA).  This result, yielding an absolute horizontal distance error, 

would warn forecasters of the margin of error this process exhibits.   

4.2.2. Results.  Verification of Corfidi’s method was applied to SA.  The first step in 

verifying Corfidi’s method for SA was to separately describe the results for the two 

components that comprise MCC and MCS movement, the advective and propagation 

components.  After component verification, observed MCC and MCS velocities are 

compared against forecasted velocities.  Finally, results of all findings are compared to 

Corfidi’s method.  This research also includes an outline of the SA method for forecasting 

MCCs and MCSs in Appendix D.  This appendix, written in lay terminology, also includes 

an example from which forecasters can apply to forecast MCCs and MCSs in Central and 

Southern SA (south of 15º S). 
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The advective component verified very well against the mean cloud layer (850-300 

mb) speed and direction.  Figs. 46 and 47 illustrate the correlations and scatter plots for 12 

cases.  The other ten cases lacked two consecutive satellite images with distinct cell 

visualizations; therefore, they weren’t used.  Both scatter plots represent a near linear 

relationship between the observed cell movement and 850-300 mb mean velocity.  These 

strong correlations mean that the advective component plays a major role in determining 

MCC and MCS movement.   

Straight line: x = y 

ρ = 0.90  

 
Fig. 46.  Scatter plot of observed cell speed versus mean 850-300 mb wind speed for 12 
cases during the MCC or MCS genesis stage.  Included is the correlation coefficient     (ρ-
value).  Straight line indicates a perfect one-to-one relationship. 
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Straight line: x = y 

ρ = 0.87  

 
Fig. 47.  Scatter plot of observed cell direction versus mean 850-300 mb wind direction for 
12 cases during the MCC or MCS genesis stage.  Included is the correlation coefficient (ρ-
value).  Straight line indicates a perfect one-to-one relationship. 
 
 
 The correlations for the advective component were much stronger than those 

presented in Corfidi et al.’s (1996) research.  This research found correlation coefficients of 

0.90 and 0.87 for the speeds and directions respectively versus 0.71 and 0.76 for Corfidi’s 

NA method (Table 13).  A couple of hypotheses could explain the stronger correlations for 

SA.  Stronger westerlies in NA could account for larger variations in the mean flow, 

therefore, leading to more error in predicting cell movement.  However, the more likely 

hypothesis concerns the difference in system height.  In computing mean layer velocity, 

Corfidi et al. (1996) equally weighted all four levels presented in equations 2 and 3.  

Although the mid-levels of the troposphere drive the storm’s movement, Corfidi et al. (1996) 

placed equal weight on the lowest levels, 850 and 700 mb, because most air entraining 
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thunderstorms enters at the lowest levels.  Equal weight is also placed on the highest level, 

300 mb.  This level could be causing the differences in correlations between the Corfidi’s 

method and the SA method.  In SA, warm season tropopauses average around 100 mb, 50-

100 mb higher than NA tropopauses.  Higher tropopauses likely contribute to the larger MCC 

sizes in SA (Velasco and Fritsch 1987).  The higher, larger convective storms in SA would 

place the 300 mb level nearly in the middle of the storm’s vertical extent; therefore, making 

300 mb a significant steering level.  On the other hand, 300 mb would not play as large of a 

part in steering convective cells in NA since it would lay in the top quarter to third of the 

storm.  To summarize, the equal weight of 300mb in equations 2 and 3 may be more accurate 

for SA than NA. 

 Fig. 46 shows all values either near or below the line of a perfect one-to-one 

relationship.  The plots below the line represent mean layer speeds stronger than the speeds 

of the cells.  This makes physical sense since cell propagation, though not as strong as MCC 

propagation, decreases cell speeds to less than the mean layer speed. 

 The propagation component also verified better than Corfidi et al’s (1996) results.  

The scatter plot for observed propagation direction versus LLJ direction for SA is illustrated 

in Fig. 48 for 21 cases.  One out of the 22 cases wasn’t used due to an abnormally weak LLJ 

speed.  This figure demonstrates that the LLJ direction is a clear indication of the propagation 

component.  In addition to better correlation coefficients (0.75 for SA vs. 0.65 for NA (Table 

13)), there is much less variance in the entire population of LLJ directions.  The absolute 

variation, maximum value minus minimum value, is only 80º for SA cases but almost 180º 

for NA cases (Corfidi et al. 1996).  Less variation in the ocean-dominated SH westerlies, 

 101



steeper terrain in SA, and smaller SA continent width likely cause the smaller variance 

among SALLJ directions.   

 

Straight line: x+180 = y 

ρ = 0.75 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 48.  Scatter plot of actual MCC and MCS propagation direction versus mean LLJ 
direction for 21 cases.  Included is the correlation coefficient (ρ-value).  Straight line 
indicates a perfect 180º  relationship between the LLJ and propagation directions.  LLJ 
directions between 000º and 040º are plotted between 360º and 400º. 
 
 
 The forecasted MCC and MCS speeds and directions compared well to the observed 

speeds and directions.  Figs. 49 and 50 depict the scatter plots for the speeds and directions 

respectively for all 22 cases.  Both graphs exhibit a semi-linear fit of observed versus 

forecasted magnitudes and directions.  Correlation coefficients of 0.72 and 0.81 for the 

speeds and directions respectively for the SA method results are comparable to Corfidi’s 

correlation coefficients of 0.80 and 0.78 for speeds and directions (Table 13).  Although the 
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correlation is weaker in this study for SA MCC speed comparisons versus Corfidi’s MCC 

speed comparisons, the coefficient increases from 0.72 to 0.84 upon omission of the three-

point grouping in the upper-left part of Fig. 49.  These points, however, were not outliers; 

therefore, this study included them.   

 

 

 

 

 

 

 

 

 

 

 
 

Straight line: x = y 

ρ = 0.72  

 
Fig. 49.  Scatter plot of observed versus forecasted MCC and MCS speeds for 22 cases.  
Included is the correlation coefficient (ρ-value).  Straight line indicates a perfect one-to-one 
relationship. 
 
 
 An interesting observation in Fig. 49 is that most of the plots favor the upper half of 

the scatter plot.  Values above the line represent underforecasting of the MCC or MCS speed.  

Synoptic scale features could account for the disparity.  Several MCCs and MCSs in this 

study were associated with transient squall lines or fronts.  Others associated themselves with 

moderate to strong shortwaves.  Although this study does not disclose  the synoptic details of 
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each case, it is hypothesized that synoptic factors not accounted for in Corfidi’s method for 

either NA or SA cause faster observed motion of MCCs and MCSs. 

Straight line: x = y 

ρ = 0.81  

 
Fig. 50.  Scatter plot of observed versus forecasted MCC and MCS directions for 22 cases.  
Included is the correlation coefficient (ρ-value).  Straight line indicates a perfect one-to-one 
relationship. 
 
 

Observed means, standard deviations, and average absolute errors for MCC and MCS 

speeds for both Corfidi’s NA method and the SA method are presented in Table 14.  Results 

compare well between both methods with a couple of exceptions.  Both observed and 

forecasted mean MCC and MCS speeds were less in SA likely from the weaker SH 

westerlies inhibiting the advective component of motion.  Also, the standard deviation of 

observed MCC and MCS speeds is much less in SA than NA.  The smaller variance in SH 

westerlies probably accounts for the lesser standard deviation for observed SA MCC and 
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MCS speeds.  In addition, MCCs and MCSs generally form from 25º to 35º S compared to 

NA MCCs forming between 30º and 50º N (Velasco and Fritsch 1987).  The greater latitude 

variation in NA could also cause greater speed variances between NA MCC and MCS cases 

since mid-latitudes experience stronger effects from the polar jet than sub-tropical latitudes.  

Furthermore, SA MCCs and MCSs occur more frequently in lower latitudes where westerlies 

are climatologically lower.  To summarize, less variation in latitude and upper-level westerly 

speed among SA MCC and MCS cases probably attributes to the lower speed standard 

deviation. 

 
Table 13.  Comparison of correlation coefficients between Corfidi’s method for NA and the 

method developed for SA.  Number of observations is represented by the n-values and 
correlation coefficients are represented by the ρ -values. 

 Method for NA  
(Corfidi’s method) 

Method for SA 

 n-value ρ-value n-value ρ-value 
Cell speed vs. 850-300 mb 

mean wind speed 
74 .71 12 .90 

Cell direction vs. 850-300 mb 
mean wind direction 

74 .76 12 .87 

Propagation direction vs. 
LLJ direction 

103 .65 21 .75 

Observed vs. forecasted 
MCC or MCS speed 

103 .80 22 .72 

Observed vs. forecasted 
MCC or MCS direction 

103 .78 22 .81 

 
 
 Comparisons between MCC and MCS directions computed from both methods also 

show some interesting results (Table 14).  The observed and forecasted directions from Table 

14 show that the MCCs and MCSs move equatorward in both hemispheres, which is more 

evidence that propagation indeed occurs.  This is of no surprise given that the level of moist 

inflow originates equatorward from MCC and MCS formation.  Furthermore, the Coriolis 
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parameter contributes to equatorward motion of the MCC or MCS over an extended period of 

time.   

The average absolute error for directions (Table 14) differs from both continents.  A 

smaller mean error and standard deviation occurs in SA MCC and MCS cases.  Greater 

directional variation in the U.S. LLJ could explain the greater average absolute error in NA.  

The propagation direction, linked to the LLJ direction, alters the movement of the MCCs and 

MCSs.  Although Corfidi et al.’s (1996) average absolute error is sufficiently small, less error 

in SA more than justifies use of Corfidi’s technique to forecast SA MCC and MCS 

movement. 

Average absolute errors in both speed and direction are acceptably small to use in 

forecasting MCCs and MCSs.  The directional average absolute error would, however, yield 

the greater potential for incorrect forecasted MCC and MCS placement. An average absolute 

directional error for SA of 16.4º translates into an average absolute horizontal distance error 

of 134 km (Avg. observed mean speed  x  sin(16.4)  x  11.5 hrs).  11.5 hours is the average 

lifespan of SA MCCs (Velasco and Fritsch 1987).  This error indicates the MCC or MCS will 

be, on average, 134 km from the MCC or MCS forecasted position at 11.5 hours.  Of course, 

re-application of the method throughout the MCC or MCS lifespan will significantly 

decrease the absolute horizontal error.  This error compares very well to the absolute 

horizontal distance error of roughly 138 km for NA.  Despite the seemingly large distance 

error, this still places the MCC within its 300 km diameter heavy rain band (Corfidi et al. 

1996; Maddox et al. 1986).   
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Table 14.  Comparison of observed and forecasted MCC and MCS speeds and directions for 
both Corfidi et al.’s (1996) method for NA and the method developed for SA.  Comparison 
includes standard deviations (Std. dev.) and average absolute errors.  Average absolute error 

is the sum of the absolute errors for all cases divided by the total number of events. 
 Method for NA  

(Corfidi’s method) 
(based on 103 cases) 

Method for SA 
(based on 22 cases) 

MCC or MCS Speed (m s-1) 
 Mean Std. dev. Mean Std. dev. 

Observed 13.6 4.7 13.3 2.9 
Forecasted 13.0 3.5 11.9 3.3 

Avg. absolute error 2.0 1.8 2.1 1.8 
MCC or MCS Direction (degrees) 

 Mean Std. dev. Mean Std. dev. 
Observed 295.3 32.8 258.7 34.6 

Forecasted 294.8 30.7 257.0 29.4 
Avg. absolute error 17.2 12.3 16.4 11.8 
 
 
 There are, as usual, shortcomings to every forecast technique.  Corfidi’s method is 

based only on quasi-stationary or backward propagating MCSs such as MCCs.  This method 

doesn’t apply to forward propagating MCSs such as derechoes, bow echoes or squall lines.  

Also, MCC and MCS propagation processes require further understanding.  In addition to a 

LLJ, Corfidi (1998) states that high moisture content must be present through a deep layer for 

propagation to occur.  Very high dewpoints, high equivalent potential temperatures, and 

greater precipitable water contents in the Gran Chaco and Parana Basin region leads to 

propagation of MCCs and MCSs in that very direction.  Direction of propagation also 

depends on additional knowledge of the environment in which MCCs and MCSs form.  For 

example, the advective component may dominate in a faster westerly flow with a strong 

shortwave or with a transient squall line or front.  On the other hand, quasi-stationary fronts, 

meso-highs caused by outflow boundaries, and terrain-induced wind flows such as katabatic 

flow could enhance propagation.  Additionally, the area of strongest low-level convergence 
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may not necessarily coincide with the area of convergence associated with the LLJ, but with 

the area of greatest system-relative low-level convergence (Corfidi 1998).  Although 

Corfidi’s method for both continents is highly effective, forecasters must always be vigilant 

for any mesoscale and synoptic scale changes that adversely affect the advective and 

propagation components.  
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V.  Conclusions and Recommendations 
 
 

5.1.  Excessive Rainfall, Fog, and Low-Cloud Bases over Columbia, Ecuador, and Northern 
Peru east of the Andes.   

 
 

5.1.1. Conclusions. 
 
5.1.1.1.  Relationship between Fog and Low-Cloud Bases to Precipitation 

Occurrences.  Appendix A outlines the frequency of occurrences of low ceilings and 

visibilities for the mid-morning (12 UTC) following a 24-hour precipitation event of 1” or 

greater which ends approximately at 06 UTC into three tables:  Benjamin Constant, Brazil; 

Iquitos, Peru; and Leticia, Columbia.  Results from all three locations show higher 

accumulated precipitable water content yielding a greater probability of reaching saturation 

following radiational cooling.  These locations bear a greater probability than climatology of 

low ceilings and visibilities or fog occurring after a 1” or more precipitation event.  This 

study excludes Villavicencio due to its questionable ceilings and Apiay AB due to its small 

sample size. 

Appendix A provides forecasters at the SOUTHCOM weather forecast center an 

indication of the likelihood of dropping below a certain category given an inch or more of 

precipitation has occurred.  The frequencies also apply to any event that yields close to an 

inch of rain in 24 hours.  Although the probability tables are based on actual observations, 

forecasters can treat the probabilities as a perfect-prognostic forecast in forecasting ceilings 

and visibilities when they are also forecasting precipitation intensities.  However, caution 

must apply with this approach since no verification of forecasted ceilings and visibilities 

based on forecasted precipitation intensities was presented in this research.  Forecasters must 

be aware of other meteorological factors that could affect the probability of dropping below a 
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certain category since the frequencies listed in Appendix A do not favor any certain 

meteorological pattern.  In addition, forecasters must pay attention to the time of day 

precipitation ends.  A precipitation event ending around midnight local time has a much 

higher probability of producing ceilings and visibilities below a certain category than 

precipitation ending much earlier in the day since any significant amount of drying or diurnal 

heating following a heavy rainfall event could diminish the likelihood of observing fog and 

low-cloud bases the subsequent morning. 

5.1.1.2.  Determining Ceilings and Visibilities from Precipitation Events.  Section 1 

of Appendix B outlines the frequency of occurrences of low ceilings and visibilities, given a 

certain precipitation intensity has occurred, into three tables:  Iquitos, Peru; Leticia, 

Columbia; and Apiay AB, Columbia.  Results from all three locations show increased 

probabilities of low ceilings and visibilities as precipitation intensity increased.  The 

probability results show lower ceilings and visibilities for West Amazon Basin locations 

versus Apiay AB.  The difference in ground moisture availability and terrain (jungle and 

swamps in the basin to savanna in the highlands) likely cause the dissimilarity. 

Section 2 of Appendix B summarizes ranges of probabilities of forecasting ceilings 

and visibilities, given a certain precipitation intensity has occurred, into 24 tables.  Each table 

represents probabilities for either ceilings or visibilities associated with all four intensities for 

all three locations:  Iquitos, Leticia, and Apiay AB.  Ceilings and visibilities lowered with 

increased rainfall intensity.  In addition, the probability of occurrence within a lower range of 

ceilings (less than 6000 ft) also increased with increased precipitation intensity.  Apiay AB 

climatologically registers higher ceilings and visibilities than Iquitos and Leticia probably 

due to terrain and ground moisture differences.   
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Both sections of Appendix B provide SOUTHCOM forecasters guidance towards 

forecasting specific ceilings or visibilities or the likelihood of dropping below a certain 

category whenever forecasters predict or find observations of drizzle, light rain, moderate 

rain, or heavy rain for the same three specific locations.  The additional forecaster guidance 

(“forecaster tidbit”) located at the bottom of all tables in section 2 of Appendix B also serves 

as invaluable information about the likelihood of a certain ceiling or visibility occurring.  

However, forecasters must exercise vigilance of other meteorological factors that could affect 

the probability of dropping below a certain category or falling within a range, for the 

probabilities and ranges of ceilings and visibilities presented in Appendix B do not favor any 

certain meteorological pattern or time of year.  Factors such as length of precipitation event, 

time of year, and localized variability of atmospheric conditions with respect to terrain and 

location with convective storms could alter the probabilities.  Moreover, the probability and 

range tables are based on actual observations.  Forecasters can treat the probabilities and 

range of ceilings and visibilities as a perfect-prognostic forecast in forecasting ceilings and 

visibilities when they are also forecasting precipitation intensities.  However, caution must 

apply with the perfect-prognostic approach since no verification of forecasted ceilings and 

visibilities based on forecasted precipitation intensities was presented in this research.  

Although Apiay AB provides a guide to forecasting ceilings and visibilities, forecasters must 

exercise more caution with Apiay AB than the other two locations due to Apiay AB’s much 

smaller data set size. 

5.1.1.3.  Forecasting Excessive Rainfall Events.  Appendix C guides forecasters in 

predicting excessive rainfall events (events producing approximately 6” or greater in 24 

hours) over NWSA during the wet and transition seasons using careful analysis of divergence 
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fields, vertical velocity fields, and wind vector analysis charts.  Divergence and vertical 

velocity values for 6” or greater events were more than double those found in 1-2” events.  

These findings reveal a significant increase in the strength of atmospheric triggering 

mechanisms associated with rainfall events 6” or greater.   

Wind vector analysis charts illustrate important meso-alpha and synoptic scale 

features with 6” precipitation events.  Stronger trade winds with stronger low-level pressure 

gradients, migrating high pressure systems at all levels, placement of the NET and SACZ, 

upper-level shortwaves, thermal lows, and changing mesoscale flows work in concert with 

each other either directly or indirectly to produce strong low-level convergence, upper-level 

divergence, and upward vertical velocities.  These features are outlined and illustrated in 

Appendix C. 

Divergence values, vertical velocity values, and wind vector analyses provide 

guidance to forecasters in predicting heavy rainfall events.  Areas of both speed and 

directional divergence, which are not always intuitive from wind vector analysis charts, 

contribute to the magnitudes of divergence and vertical velocities.  Differences between 

convergence and divergence areas and between upward and downward vertical motion areas 

are more readily seen on charts graphically displaying these values.  However, wind vector 

analysis charts illustrate features associated with the divergence and vertical velocities by 

graphically displaying the magnitude and direction of the ageostrophic flow. 

Although Appendix C imparts invaluable knowledge for predicting excessive rainfall, 

forecasters must take into account additional factors that contribute to extreme convective 

events.  Instability, moisture availability, system progression on radar and satellite imagery, 

local terrain, and time of year are all factors that forecasters must analyze in addition to the 
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atmospheric dynamics that greatly affect formation, intensity, progression, and decay of 

tropical MCSs.    

5.1.2. Recommendations.  Despite the findings, limited databases yield higher 

variances among the samples, which lead to uncertainty within the results.  Since civilian 

reporting station observations transmit irregularly and with incomplete observations, all 

studies need to constantly incorporate more military observations from the 25th OWS to 

improve the capability of forecasting at the main forward deployed location east of the 

Andes, Apiay AB.  In addition, forecasters at weather forecast centers and deployed locations 

need to constantly document significant features (local and synoptic) affecting each 

location’s weather regime and incorporate them into case studies and future research.  

Finally, since this research only based probabilities from observed precipitation events, 

further research is needed for verification of probabilities of low ceilings and visibilities for 

forecasted precipitation events. 

Further research is necessary to validate the excessive rainfall results presented in this 

study.  Forecasters should consistently document distinctive features associated with 

excessive rainfall events for incorporation into case studies.  Moreover, incorporating higher 

resolution models could improve the divergence and vertical velocity values, especially if the 

resolution of observed upper-air data increases.   Also, precipitation observations from both 

surface observations and the Tropical Rainfall Measuring Mission satellite may be useful in 

verifying the results from improved resolution models. 
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5.2.  Forecasting Mesoscale Convective Complex Movement in Northern Argentina, 
Southern Brazil, Paraguay, and Uruguay. 
 
 
 5.2.1.  Conclusions.  Corfidi et al.’s (1996) NA empirical method for predicting MCC 

and MCS movement also applies to forecasting SA MCC and MCS movements.  MCC and 

MCS movement methods are based on the fact that both advective and propagation 

components sum to equal the movement of backward or quasi-stationary MCSs, such as 

MCCs (Corfidi et al. 1996; Corfidi 1998).  The advective component, defined by the mean 

motion of individual convective cells, strongly relates to the mean 850-300 mb cloud layer 

flow.  The propagation component, defined by the rate and location of new cell formation 

relative to existing cells, is related to the LLJ direction.  Application of the procedure to 22 

cases (20 of which were MCCs) revealed a correlation coefficient of 0.72 for the observed 

vs. forecasted MCC and MCS speeds and a correlation coefficient of 0.81 observed vs. 

forecasted MCC and MCS directions.  Mean absolute errors were small enough for the 

forecasted MCC or MCS location to lie well within the convective system’s heavy rain 

swath.  All correlation coefficients, means, variances, and absolute errors for the SA method 

were comparable to those performed in producing Corfidi et al.’s (1996) NA method. 

 This forecast procedure is very beneficial to operational forecasters of SA.  The 

procedure, outlined in Appendix D, will enhance prediction of the enormous convective 

MCCs of SA.  The biggest problem in determining convective system movement is 

predicting new cell generation at the expense of existing cells.  This procedure provides a 

tool to aid in predicting the often-elusive propagation component associated with MCSs.  In 

addition, forecasters can apply this technique only knowing the speed and direction of the 
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mean layer wind and the LLJ.  Finally, this technique will greatly aid in forecasting the 

location of heavy rain potential that exists with MCCs and large MCSs. 

 Despite the accuracy of Corfidi’s method applied to both NA and SA, there are 

evident errors.  Mesoscale and synoptic-scale systems can adversely affect the accuracy of 

MCC or MCS placement by altering the advective and propagation components.  In addition, 

terrain-induced flow influences storm system movement.  Moreover, this procedure requires 

further knowledge of the system relative convergence that may not necessarily correspond to 

the LLJ direction.  Finally, as in Corfidi’s method, this method does not apply to forward 

propagating systems such as bow echoes, derechoes, and squall lines (Corfidi 1998).   

 5.2.2.  Recommendations.  Although Corfidi’s method greatly improves MCC and 

MCS movement forecasting, further research is necessary towards forecasting MCC and 

MCS movement for SA.  This method requires application utilizing hourly radar imagery for 

more accurate depictions and verification of MCC and MCS movement.  Also, additional 

knowledge of the factors that govern propagation needs investigating, as well as, terrain 

effects.  Currently, there is a lack of knowledge of the extent that terrain features such as the 

Andes and Brazilian Highlands have on MCC intensity, formation, and movement.  There is 

also a need to improve the lack of spatial resolution of the upper-air observing network over 

SA.  Incorporating satellite-derived observations into the upper-air network and, eventually, 

into computer forecasting models, will greatly improve the forecasting of MCCs and MCSs.  

Finally, new research should discover if Corfidi’s method also applies to other active MCC 

areas of the world, such as China. 
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Appendix A:  Climatology of Ceilings and Visibilities following 1” of greater 24-Hour 
Precipitation Events 

 
 

Climatology to predict ceilings and visibilities at and around 12 UTC is conditional 

on receiving a 24-hour accumulated rainfall ≥ 1” ending at 06 UTC.  Given any rainfall 

amount approximately one inch or greater in a 24-hour period ending by 06 UTC 

(approximately midnight local time) at a specific location, the tables below aid the forecaster 

in determining the probability of receiving conditions below a certain ceiling and visibility 

category for the subsequent morning.  Note that probability of occurrence does not 

necessarily mean that both ceiling and visibility will drop below a certain category threshold.  

In addition, if the rainfall event ends early in the day, enough drying and diurnal heating 

could take place to lower the probability of occurrence of falling into a certain ceiling and 

visibility category.  Likewise, any rainfall event ending at night could increase the 

probabilities.  The frequency of occurrences is an average of all sampled 1-2” rainfall events 

(1995-2001) encompassing all times and all seasons. 

 
Table A1:  Climatology of airfield minimum categories for 12 UTC following 1” or greater 

24-hour accumulated precipitation for Benjamin Constant, Brazil (based on 141 
occurrences). 

Ceilings (ft) / Visibility (sm) Categories Frequency of Occurrence (%) 

Less than 3000 / 3 96.5 

Less than 1500 / 3 95.7 

Less than 1000 / 2 73.8 

Less than 300 / 1 53.2 

Less than 200 / 0.5 29.8 
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Table A2:  Climatology of airfield minimum categories for 12 UTC following 1” or greater 
24-hour accumulated precipitation for Iquitos, Peru (based on 168 occurrences). 

Ceilings (ft) / Visibility (sm) Categories Frequency of Occurrence (%) 

Less than 3000 / 3 73.8 

Less than 1500 / 3 72.0 

Less than 1000 / 2 50.0 

Less than 300 / 1 15.5 

Less than 200 / 0.5 11.3 

 

Table A3:  Climatology of airfield minimum categories for 12 UTC following 1” or greater 
24-hour accumulated precipitation for Leticia, Columbia (based on 204 occurrences). 

Ceilings (ft) / Visibility (sm) Categories Frequency of Occurrence (%) 

Less than 3000 / 3 59.3 

Less than 1500 / 3 57.4 

Less than 1000 / 2 42.2 

Less than 300 / 1 5.9 

Less than 200 / 0.5 3.4 
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Appendix B:  Climatology of Ceilings and Visibilities during Drizzle and Rain. 

 
1.  Climatology of Airfield Minimum Categories for Drizzle and Rain. 

 
Climatology to predict ceilings and visibilities is conditional upon forecasting certain 

precipitation intensities.  Given a certain precipitation intensity is forecasted at a specific 

location, the tables below aid the forecaster in determining the probability of receiving 

conditions below a certain ceiling and visibility category.  Note that probability of occurrence 

does not necessarily mean that both ceiling and visibility will drop below a certain category 

threshold.  Factors such as length of event occurrence or location with respect to a convective 

storm could alter the probabilities.  Receiving rainfall in the stratus sector of a tropical 

system may not lower ceilings as much as receiving rainfall in the convective sector.  The 

frequency of occurrences is an average of all sampled rainfall events (1995-2001) of a certain 

intensity encompassing all times and all seasons. 

 
Table B1.  Climatology of airfield minimum categories for precipitation intensity for Iquitos, 

Peru (based on 2417 occurrences). 
Ceilings (ft) / 
Visibility (sm) 

Categories 

Frequency of 
Occurrence for 

Drizzle (%) 

Frequency of 
Occurrence for 
Light Rain (%) 

Frequency of 
Occurrence for 
Moderate Rain 

(%) 

Frequency of 
Occurrence for 

Heavy Rain 
(%) 

≤ 3000 / 3 

 

61.9 78.5 95.9 100 

≤ 1500 / 3 

 

54.9 69.5 92.4 100 

≤ 1000 / 2 

 

12.1 16.9 44.9 88.8 

≤ 300 / 1 

 

0.3 0.4 9.0 62.2 

≤ 200 / 0.5 

 

0.2 0.1 2.3 23.5 
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Table B2.  Climatology of airfield minimum categories for precipitation intensity for Leticia, 
Columbia (based on 2630 occurrences). 

Ceilings (ft) / 
Visibility (sm) 

Categories 

Frequency of 
Occurrence for 

Drizzle (%) 

Frequency of 
Occurrence for 
Light Rain (%) 

Frequency of 
Occurrence for 
Moderate Rain 

(%) 

Frequency of 
Occurrence for 

Heavy Rain 
(%) 

≤ 3000 / 3 

 

69.6 78.7 93.3 100 

≤ 1500 / 3 

 

66.3 76.2 91.0 98.3 

≤ 1000 / 2 

 

35.7 41.2 57.3 92.5 

≤ 300 / 1 

 

0.4 1.0 9.4 58.3 

≤ 200 / 0.5 

 

0.1 0.2 2.0 16.7 

 
 

Table B3.  Climatology of airfield minimum categories for precipitation intensity for Apiay 
AB, Columbia (based on 260 occurrences)*. 

Ceilings (ft) / 
Visibility (sm) 

Categories 

Frequency of 
Occurrence for 

Drizzle (%) 

Frequency of 
Occurrence for 
Light Rain (%) 

Frequency of 
Occurrence for 
Moderate Rain 

(%) 

Frequency of 
Occurrence for 

Heavy Rain 
(%) 

≤ 3000 / 3 

 

3.8 24.6 85.3 100 

≤ 1500 / 3 

 

< 0.1 10.3 61.8 88.0 

≤ 1000 / 2 

 

< 0.1 3.4 32.4 88.0 

≤ 300 / 1 

 

< 0.1 < 0.1 < 0.1 52.0 

≤ 200 / 0.5 

 

< 0.1 < 0.1 < 0.1 < 0.1 

* CAUTION:  Use with caution due to limited observational database. 
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2.  Climatology of Ceilings and Visibilities for Drizzle and Rain. 
 
 Climatology to predict ceilings and visibilities is conditional upon forecasting certain 

precipitation intensities.  Given a certain precipitation intensity is forecasted at a specific 

location, the tables below aid the forecaster in determining the ceiling and visibility for a 

specific location.  The tables don’t yield specific ceilings and visibilities, only a range of 

ceilings and visibilities that would occur in concert with drizzle and rain. Ceilings only 

represent the lowest reportable ceiling.  This guide does not aid the forecaster in predicting 

multiple ceilings.  Due to a limited database, use Apiay AB results with caution.  Results are 

an average of all sampled rainfall events (1995-2001) of a certain intensity encompassing all 

times and all seasons. 

 
2.1.  Explanation of terms. 
 
Frequency Below Ceiling/Visibility:  This is the frequency of receiving a ceiling or 

visibility equal to or below the value given in the following columns.  The 0% and 100% 

thresholds are the minimum and maximum values recorded in that specific field.  The range 

between the 10% and 90% thresholds approximately represent the middle 80% of 

occurrences for that specific precipitation intensity and location.  In other words, this middle 

range represents approximately an 80% chance of a ceiling or visibility falling within the 

range.  For ceilings, the 10% and 90% thresholds only apply for the lower range (0 - 5999 ft). 

Lower Range:  This is the lower range of ceilings (0 - 5999 ft).   

Lower Range Frequency:  This frequency represents how often the forecaster can expect to 

fall in the lower range of ceilings versus the upper range.  This range applies most of the 

time, but specifically if forecasting steady precipitation or a convective storm over a station 

versus vicinity showers. 

 120



Upper Range:  This is the upper range of ceilings (6000 - 20,000 ft).   

Upper Range Frequency:  This frequency represents how often the forecaster can expect to 

fall in the upper range of ceilings versus the lower range.  This range applies if forecasting 

precipitation and the convective storm is not overhead, rather in the vicinity or approaching.  

This range also applies if forecasting precipitation in the trailing stratified sector of a tropical 

system.  Finally, this range applies if forecasting very light rain, very light drizzle, 

intermittent drizzle or intermittent light rain versus steady light rain or steady drizzle.   

 

CAUTION:  Low ceilings can still occur, though not likely, with very light precipitation.  

Forecasters must consider all meteorological factors.    

 
2.2.  Iquitos, Peru. 
 
 

Table B4.  Climatological ceilings for drizzle for Iquitos, Peru.  Lower and upper range 
frequencies are based on 594 and 356 occurrences respectively.  

 Lower Range Frequency: 
62.5 %  

Upper Range Frequency:  
37.5%  

Frequency (%) at or 
below Ceiling 

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 0 7000 
10% 760 - 
90% 1560 - 
100% 4000 15,000 

 Forecaster Tidbit:  96% probability ceilings 10,000 ft or lower in Upper Range 
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Table B5.  Climatological visibilities for drizzle for Iquitos, Peru (based on 950 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 1/2 
10% 3 
90% 7 
100% 7 

 Forecaster Tidbit:  Only 5% probability visibility less than 3 miles 
 
 

Table B6.  Climatological ceilings for light rain for Iquitos, Peru.  Lower and upper range 
frequencies are based on 692 and 243 occurrences respectively. 
 Lower Range Frequency:  

74.0% 
Upper Range Frequency:  

26.0%  
Frequency (%) at or below 

Ceiling  
Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 0 7000 
10% 700 - 
90% 1500 - 
100% 3100 15,000 

 Forecaster Tidbit:  98% probability ceilings 10,000 ft or lower in Upper Range 
 
 

Table B7.  Climatological visibilities for light rain for Iquitos, Peru (based on 935 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 5/8 
10% 2 1/2 
90% 5 
100% 7 

 Forecaster Tidbit:  22% probability visibility less than 3 miles 
 
 

Table B8.  Climatological ceilings for moderate rain for Iquitos, Peru.  Lower and upper 
range frequencies are based on 370 and 64 occurrences respectively. 

 Lower Range Frequency:  
85.3% 

Upper Range Frequency:  
14.7%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 300 7000 
10% 700 - 
90% 1300 - 
100% 2000 10,000 

 Forecaster Tidbit:  94% probability ceiling 7000 - 8000 ft in Upper Range 
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Table B9.  Climatological visibilities for moderate rain for Iquitos, Peru (based on 434 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 1/16 
10% 1 1/4 
90% 4 1/2 
100% 7 

 Forecaster Tidbit:  77% probability visibility 3 miles or less 
 
 
Table B10.  Climatological ceilings for heavy rain for Iquitos, Peru.  Lower and upper range 

frequencies are based on 87 and 11 occurrences respectively. 
 Lower Range Frequency:  

88.8% 
Upper Range Frequency:  

11.2%  
Frequency (%) at or below 

Ceiling  
Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 100 7000 
10% 600 - 
90% 1300 - 
100% 1500 8000 

 Forecaster Tidbit:  Near 100% probability ceilings 7000 - 8000 ft in Upper Range 
 
 

Table B11.  Climatological visibilities for heavy rain for Iquitos, Peru (based on 98 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 0 
10%  1/4 
90% 2 
100% 7 

 Forecaster Tidbit:  86% probability visibility 1 1/4 miles or less 
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2.3.  Leticia, Columbia. 
 
 

Table B12.  Climatological ceilings for drizzle for Leticia, Columbia.  Lower and upper 
range frequencies are based on 772 and 346 occurrences respectively. 

 Lower Range Frequency:  
69.0% 

Upper Range Frequency:  
31.0%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 500 6000 
10% 670 - 
90% 1330 - 
100% 4000 20,000 

 Forecaster Tidbit:  99% probability ceilings 15,000 ft or less in Upper Range 
 Forecaster Tidbit:  85% probability ceilings 6000 - 10,000 ft in Upper Range 
 
 

Table B13.  Climatological visibilities for drizzle for Leticia, Columbia (based on 1118 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 3/8 
10% 2 1/2 
90% 5 
100% 7 

 Forecaster Tidbit:  Only 13% probability visibility less than 3 miles  
 
 

Table B14.  Climatological ceilings for light rain for Leticia, Columbia.  Lower and upper 
range frequencies are based on 592 and 213 occurrences respectively. 

 Lower Range Frequency:  
73.4% 

Upper Range Frequency:  
26.6%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 400 7000 
10% 700 - 
90% 1300 - 
100% 3100 15,000 

 Forecaster Tidbit:  85% probability ceilings 7000 - 9000 ft in Upper Range 
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Table B15.  Climatological visibilities for light rain for Leticia, Columbia (based on 805 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 1/4  
10% 2  
90% 4 1/2 
100% 7 

 Forecaster Tidbit:  33% probability visibility less than 3 miles  
 
 

Table B16.  Climatological ceilings for moderate rain for Leticia, Columbia.  Lower and 
upper range frequencies are based on 510 and 77 occurrences respectively. 

 Lower Range Frequency:  
86.9% 

Upper Range Frequency:  
13.1%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 100 6000 
10% 560 - 
90% 1370 - 
100% 5000 15,000 

 Forecaster Tidbit:  88% probability ceilings 7000 - 8000 ft in Upper Range 
 
 
Table B17.  Climatological visibilities for moderate rain for Leticia, Columbia (based on 587 

occurrences). 
Frequency (%) at or below Visibility  Visibility (sm) 

0% 1/4  
10% 1 
90% 4 
100% 7 

 Forecaster Tidbit:  83% probability visibility 3 miles or less 
 
 
Table B18.  Climatological ceilings for heavy rain for Leticia, Columbia.  Lower and upper 

range frequencies are based on 115 and 5 occurrences respectively. 
 Lower Range Frequency:  

95.8% 
Upper Range Frequency:  

4.2%  
Frequency (%) at or below 

Ceiling  
Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 400 8000 
10% 600 - 
90% 1500 - 
100% 1700 8000 

 Forecaster Tidbit:  Near 100% probability ceilings around 8000 ft in Upper Range 
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Table B19.  Climatological visibilities for heavy rain for Leticia, Columbia (based on 120 
occurrences). 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 1/16 
10% 1/4  
90% 2 1/2 
100% 7 

 Forecaster Tidbit:  80% probability visibility 1 1/4 miles or less 
 
 
2.4.  Apiay Air Base, Columbia. 
 
 
Table B20.  Climatological ceilings for drizzle for Apiay AB, Columbia.  Lower and upper 

range frequencies are based on 10 and 16 occurrences respectively*. 
 Lower Range Frequency:  

38.5% 
Upper Range Frequency:  

61.5%  
Frequency (%) at or below 

Ceiling  
Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 2000 6500 
10% 3000 - 
90% 5500 - 
100% 5500 13,000 

* CAUTION:  Use with caution due to limited observational database. 
 
 

Table B21.  Climatological visibilities for drizzle for Apiay AB, Columbia (based on 26 
occurrences)*. 

Frequency (%) at or below Visibility  Visibility (sm) 
0% 3 
10% 5 
90% 7 
100% 7 

 Forecaster Tidbit:  Only 4% probability visibility of 3 miles  
* CAUTION:  Use with caution due to limited observational database. 
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Table B22.  Climatological ceilings for light rain for Apiay AB, Columbia.  Lower and upper 
range frequencies are based on 123 and 52 occurrences respectively. 

 Lower Range Frequency:  
70.3% 

Upper Range Frequency:  
29.7%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 500 6000 
10% 1300 - 
90% 4800 - 
100% 5500 14,000 

 Forecaster Tidbit:  34% probability ceilings less than 3000 ft in Lower Range 
 
 
Table B23.  Climatological visibilities for light rain for Apiay AB, Columbia (based on 175 

occurrences). 
Frequency (%) at or below Visibility  Visibility (sm) 

0% 1 1/2  
10% 4  
90% 7 
100% 7 

 Forecaster Tidbit:  Only 2% probability visibility less than 3 miles  
 
 

Table B24.  Climatological ceilings for moderate rain for Apiay AB, Columbia.  Lower and 
upper range frequencies are based on 34 and 0 occurrences respectively*. 

 Lower Range Frequency:  
100%  

Upper Range Frequency:  
0%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 400 - 
10% 1000 - 
90% 4300 - 
100% 5500 - 

 Forecaster Tidbit:  71% probability ceilings 3000 ft or less in Lower Range 
* CAUTION:  Use with caution due to limited observational database. 
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Table B25.  Climatological visibilities for moderate rain for Apiay AB, Columbia (based on 
34 occurrences)*. 

Frequency (%) at or below Visibility Visibility (sm) 
0% 3/4  
10% 1 1/2 
90% 4 
100% 7 

 Forecaster Tidbit:  77% probability visibility 3 miles or less  
* CAUTION:  Use with caution due to limited observational database. 
 
 

Table B26.  Climatological ceilings for heavy rain for Apiay AB, Columbia.  Lower and 
upper range frequencies are based on 25 and 0 occurrences respectively*. 

 Lower Range Frequency:  
100% 

Upper Range Frequency:  
0%  

Frequency (%) at or below 
Ceiling  

Ceiling (ft)-Lower Range Ceiling (ft)-Upper Range 

0% 200 - 
10% 800 - 
90% 3300 - 
100% 4900 - 

 Forecaster Tidbit:  80% probability ceilings 2000 ft or less in Lower Range 
* CAUTION:  Use with caution due to limited observational database. 
 
 
Table B27.  Climatological visibilities for heavy rain for Apiay AB, Columbia (based on 25 

occurrences)*. 
Frequency (%) at or below Visibility  Visibility (sm) 

0% 1/2 
10% 1/2 
90% 1 1/2 
100% 4 

 Forecaster Tidbit:  72% probability visibility 1 mile or less  
* CAUTION:  Use with caution due to limited observational database. 
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Appendix C:  Dynamical Guidelines to Forecasting Excessive Rainfall Events during 
the Wet Season 

 
 

 This appendix aids forecasters in predicting excessive rainfall (generally 6” or greater 

in 24 hours) for Columbia, Ecuador, Northern Peru, and Northwest Brazil east of the Andes.  

This forecasting tool is especially useful for large-scale events (length or width of cloud 

shield is 350 nm or greater) during the wet season.  First, forecasters must closely monitor 

large-scale convective development east of Columbia and Northern Peru, in particular, 

development occurring along the Near Equatorial Trough (NET) and just inland of the 

northeastern coast of South America (developing squall lines).  Forecasters then should 

carefully analyze current and available model wind vector analysis charts at all levels from 

the surface to 300 mb prior to making a forecast.  Graphical workstations can display wind 

vector analysis charts from data ingested from model analysis (e.g. AVN or MM5).  Tables 

C1 and C2 list common features seen on wind vector analyses charts that precursor heavy 

rainfall events.  Figs. C1 through C4 help to illustrate the forecaster guidelines presented in 

Tables C1 and C2.   

Precursor heavy rainfall features often yield strong convergence, divergence, and 

upward vertical velocities.  Low-level convergence typically causes upward vertical motions 

while upper-level divergence aids the outflow from storms, which indirectly triggers upward 

vertical motions.  Convergence and divergence are attributed either to directional 

convergence or divergence, speed convergence or divergence, or a combination of both 

direction and speed convergence or divergence; therefore, forecasters must carefully look for 

both speed and directional convergence and divergence on wind vector analysis charts.  To 

most accurately view magnitudes of divergence and upward vertical velocities, forecasters 
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must analyze constant pressure charts from 850 to 300 mb.  These charts are available from 

model analyses.  As in wind vector analyses, graphical workstations can display divergence 

and vertical velocity values from data ingested into the workstation from model analyses 

(e.g. AVN or MM5).  Forecasters should look for areas of maximum convergence at 850 and 

700 mb and areas of maximum divergence occurring in the same locations at 500, 400, and 

300 mb.  In addition, forecasters should examine 700 and 500 mb charts for strong upward 

vertical velocities in the same locations as low-level convergence and upper-level 

divergence.  If the areas of maximum convergence, maximum divergence, and maximum 

vertical velocities nearly line up with one another, then forecasters should consider these 

areas as a potential for an excessive rainfall occurrence.  Finally, forecasters should pay 

attention to important precursory information listed in Table C3.   

 

CAUTION:  Not all features listed in Tables C1 and C2 need be present for excessive 

rainfall events.  Due to model analysis spatial resolution constraints, the dynamics present for 

a heavy rainfall event may create such a storm near the desired location but missing the 

desired location; therefore, forecasters must closely monitor intensity changes and movement 

on satellite imagery.  In addition, storms may not produce rainfall greater than 6”, but rather 

an amount approximate to 6”.  Figures and Tables in this appendix do not take into account 

moisture availability or instability effects in the mid to upper-levels; therefore, forecasters 

must analyze all data available to include localized effects.  This appendix only serves, as 

one of many guidance tools forecasters should examine in producing rainfall forecasts.  
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Table C1:  Dynamical features leading to excessive rainfall (approximately 6” or greater) 
during the wet season (Mar-Nov) for locations north of the Equator.  Refer to Figs. C1 

and C2.  Applicable levels are in parentheses.  
- Strong convergence into the Near Equatorial Trough (1000 & 850 mb) 
 
- North Atlantic High extending to the Southern Caribbean Sea or Venezuela which 

increases the pressure gradient between the North Atlantic High and the South 
Atlantic High (1000, 850, 700, 500, 400 & 300 mb) 

 
- Increased gradient between South Atlantic and North Atlantic highs creating stronger 

speed convergence of the trade winds (850 & 700 mb) 
 
- Easterly wind max from increased pressure gradient of 25 to 40 kts (700 mb) 
 
- Venezuelan Highlands altering the low-level flow creating convergence over Western 

Venezuela and Eastern Columbia (1000 & 850 mb) 
 
- Increased low-level easterly flow creating more uplift east of Andes (1000, 850 & 

700 mb) 
 
- Migrating Amazon lows (lows are weaker from May-Oct but still present) moving 

convergence boundaries and enhancing convection (1000 & 850 mb) 
 
- Divergence in easterly flow southwest of North Atlantic High extension (500, 400 & 

300 mb) 
 
- Divergence on westward edge of troughs (waves) in easterly flow (500, 400 & 300 

mb) 
 
- Smaller meso-scale circulations creating convergence boundaries (1000, 850 & 700 

mb) 
 
- Smaller perturbation upper-level highs and lows creating localized divergence (500, 

400 & 300 mb) 
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Fig. C1.  Surface to 700 mb features during excessive rainfall events for locations north of 
the Equator during the wet season (Mar-Nov).  Arrows approximately represent the extent of 
location variability during heavy rainfall events.  This figure corresponds to the guidelines 
listed in Table C1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C2.  500 to 300 mb features during excessive rainfall events for locations north of the 
Equator during the wet season (Mar-Nov).  Arrows approximately represent the extent of 
location variability during heavy rainfall events.  This figure corresponds to the guidelines 
listed in Table C1. 
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Table C2:  Dynamical features leading to excessive rainfall (approximately 6” or greater) 
during the wet season (Sep-Jun) for locations south of the Equator.   Refer to Figs. C3 

and C4.  Applicable levels are in parentheses. 
- Strong convergence into the Near Equatorial Trough (1000 & 850 mb) 
 
- South Atlantic High strengthening and ridging to the west into Brazil (1000, 850, 700 

& 500 mb) 
 
- Increased convergence into the South Atlantic Convergence Zone (SACZ) (1000, 850 

& 700 mb) 
 
- Low-level flow following the terrain (Andes) helping to create the Amazon Low 

(1000 & 850 mb) 
 
- Migrating Amazon Low moving convergence boundaries and enhancing convection 

(1000 & 850 mb) 
 
- Increasing easterly wind max from increased pressure gradient (flow is weakest from 

Nov-Mar but still present) (700 mb) 
 
- Divergence associated with troughs (waves) in westerly flow (500, 400 & 300 mb) 
 
- Flow around Bolivian High and trough over Eastern Brazil enhancing divergence 

(500, 400 & 300 mb) 
 
- Deformation zones over the Western Amazon Basin enhancing divergence (500, 400 

& 300 mb) 
 
- Smaller meso-scale circulations creating convergence boundaries (1000, 850 & 700 

mb) 
 
- Smaller perturbation upper-level highs and lows that may create localized divergence 

(500, 400 & 300 mb) 
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Fig. C3.  Surface to 700 mb features during excessive rainfall events for locations south of 
the Equator during the wet season (Sep-Jun).  Arrows approximately represent the extent of 
location variability during heavy rainfall events.  This figure corresponds to the guidelines 
listed in Table C2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C4.  500 to 300 mb features during excessive rainfall events for locations south of the 
Equator during the wet season (Sep-Jun).  Arrows approximately represent the extent of 
location variability during heavy rainfall events.  This figure corresponds to the guidelines 
listed in Table C2. 

 134



Table C3.  Predictors for excessive rainfall events (approximately 6” or greater) using 
divergence and vertical velocities. 

- Search all levels for upper-level divergence.  Although the level of strongest 
divergence typically occurs at 400 mb, it may occur at 300 mb for very strong storms 
or 500 mb for weaker storms or storms that are in a weakening stage 

 
- Carefully analyze both 850 and 700 mb divergence fields north of the equator for an 

eastward tilt of maximum convergence with height.  The horizontal difference in the 
two fields is normally 100 – 200 nm.  700 mb acts as the level of rear inflow into the 
storm 

 
- Look for the strongest convection with squall lines north of the equator to occur 

between the 850 and 700 mb convergence areas 
 
- Look for the maximum upper-level divergence to lie nearly above the maximum 700 

mb convergence for all locations 
 
- Keep in mind diurnal differences.  There is over a 90% chance of excessive rainfall 

events north of the equator occurring around 00Z versus 12Z.  Time of day is not as 
significant south of the equator in the Western Amazon Basin 

 
- Approximately 90% of excessive rainfall events north of the Equator are associated 

with squall lines while most excessive rainfall events south of the equator are not 
associated with squall lines 
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CAUTION:  Table C4 displays results from data gathered in this research (explained in 

more detail in Section 4.1.3.2.).  Due to severe model resolution constraints, the divergence 

and vertical velocity values presented in table C4 are not realistic; therefore Table C4 should 

not be used in producing rainfall forecasts.  The actual divergence and vertical velocity 

values may be two to four or more times higher than those shown in Table C4. 

 
Table C4.  Divergence and upward vertical velocity values for excessive rainfall events 
(approximately 6” or greater).  All values mentioned must be associated with storms equal or 
greater than 350 nm in length or width.  Values may be much greater for individual elements 
within a mesoscale convective system.  Negative divergence values represent convergence. 

Geographical Area Locations north of the 
Equator 

Locations south of the 
Equator 

850 mb divergence  –2 x 10-5 s-1 or less –1.5 x 10-5 s-1 or less 
700 mb divergence –1.75 x 10-5 s-1 or less –2.25 x 10-5 s-1 or less 

Strongest upper-level 
divergence  

(usually 400 mb) 

2 x 10-5 s-1 or greater 2 x 10-5 s-1 or greater 

Difference of strongest low-
level and upper-level 

divergence 

4 x 10-5 s-1 or greater 4 x 10-5 s-1 or greater 

700 mb and 500 mb 
upward vertical velocities 

3.5 cm s-1 or greater 3.5 cm s-1 or greater 
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Appendix D:  Forecasting Movement of Mesoscale Convective Complexes in South 
America 

 
 

 Corfidi et al. (1996) proposed a solution to determine movement of MCCs in the U.S. 

by the simple principle that movement of mesoscale convective complexes (MCCs) is 

affected by both the cloud layer advection and propagation components.  A very similar 

method can be applied to South American MCCs by utilizing the same principle.  This 

appendix outlines the procedures in forecasting movement of MCCs along with an example.  

All that are required are wind vector analysis or model vector analysis charts of 850, 700, 

500, and 300 mb, infrared (IR) satellite imagery, a basic scientific calculator, and a protractor 

(optional). 

 Although this procedure is accurate in predicting the movement of the MCC and its 

associated heavy rain shield out to about 12 hours, errors can occur.  To minimize errors, this 

procedure should be applied at least every three hours to account for changing cloud layer 

wind and propagation components.  These changes could alter the results of the linear, 

empirical technique throughout the MCCs lifespan.  Moreover, this procedure applies only to 

MCCs and large elliptical mesoscale convective systems (MCSs) that occur south of 15º S.  

This procedure will not predict movement of forward propagating MCSs such as bow-

echoes, derechoes, and squall lines.  This procedure will not aid in forecasting the actual 

location of initial convection that may grow into an MCC or large MCS and the intensity of 

these systems nor will this aid in determining when the MCC or MCS decays.  Additionally, 

forecasters should be aware of fronts, squall lines, and upper-level shortwaves that may add 

speed to the system.  Moreover, forecasters should be aware of mesoscale features such as 

meso-highs, outflow boundaries, quasi-stationary fronts, and local terrain-induced wind 
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flows (e.g. katabatic flow) that could alter propagation.  Forecasters should also examine the 

amount of moisture in the atmosphere.  MCCs and large MCSs tend to propagate toward the 

region of higher dewpoints and precipitable water.  Finally, an MCS that exhibits potential to 

blossom into an MCC must first be present to forecast movement. 

  

Procedure. 

 
  

1) Locate the MCC or MCS on satellite imagery.  Locate the area of coldest cloud 

tops within the system using IR imagery.  Note the latitude, longitude, and time of 

the system. 

2) Find the same location on 850, 700, 500, and 300 mb wind vector analysis charts.  

The charts should be within six hours of MCC or MCS observation (step 1).  If 

the 00 UTC charts aren’t available, then proceed with the 12 UTC analysis charts 

or 00 UTC wind vector model charts.  The process must be updated once the 00 

UTC wind vector analysis charts are available.  Rawinsonde soundings may 

substitute wind vector analysis charts if the sounding is located within 50 nm of 

the MCC or MCS location.  A workstation and graphical display system can 

generate the wind vector analysis or model charts.  Note the speed (knots) and 

direction (degrees) of the wind at each level.  NOTE:  North is 360º, not 000º. 
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3) Locate the maximum wind speed of the low-level jet on the 850 mb wind vector 

analysis chart.  The maximum wind speed should be within 100 nm upwind of the 

MCC or MCS location (step 1).  Note the speed (knots), VLLJ, and direction 

(degrees), DIRLLJ, of this jet (may differ slightly from the speed and direction 

found in step 2).   

4) Calculate the magnitude of the advective component (or cloud layer mean wind 

speed) of the system from equation D1.  Substitute the wind speeds found in step 

2 into equation D1 to find the mean wind speed in the 850-300 mb layer, VCL, 

associated with the MCC or MCS.  V850, V700, V500, and V300 represents the wind 

speeds at 850, 700, 500, and 300 mb respectively.  Round the result to the nearest 

tenth of knot. 

4
)( 300500700850 VVVV

VCL
+++

=    (D1) 

5) Compute the direction of the advective component (or cloud layer mean wind 

direction) of the system from equation D2.  Substitute the wind directions found 

in step 2 into equation D2 to find the mean wind direction in the 850-300 mb 

layer, DIRCL, associated with the MCC or MCS.  DIR850, DIR700, DIR500, and 

DIR300 represents the wind directions at 850, 700, 500, and 300 mb respectively.  

Round the result to the nearest full degree.  NOTE:  If the DIR850 or DIR700 is 

between 001º and 180º, then it is necessary to add 360º to the either term or both 

terms before inserting them into equation D2.  Again, north is 360º, not 000º. 

4
)( 300500700850 DIRDIRDIRDIR

DIRCL
+++

=  (D2) 

 
 

 139



6) Determine the angle, β (Beta), between the mean cloud layer and propagation 

components (Fig. D1) from equation D3.  The propagation is simply the inverse 

of the low-level jet (Fig. D1).  The two are 180º different from each other and 

exhibit the same magnitude.  Simply insert the mean cloud layer direction, DIRCL, 

found in step 5 and the direction of the low-level jet, DIRLLJ, found in step 3 into 

equation D3.  NOTE:  If the DIRLLJ or DIRCL is between 001º and 180º, then it is 

necessary to add 360º to either term or both terms before inserting them into 

equation D3.    

)360()360( LLJCL DIRDIR −−−=β    (D3) 
 

7) Calculate the speed of the MCC or MCS from equation D4.  Insert the speed of 

the mean cloud layer, VCL, found in step 4, the speed of the low-level jet, VLLJ, 

found in step 3, and the β (Beta) angle found in step 6 into equation D4.  The 

result, VMCC, yields the predicted speed (knots) of the MCC or MCS.  Fig. D1 

graphically illustrates the forecasted MCC vector component. 

)cos())((2)()( 22 βLLJCLLLJCLMCC VVVVV −+=  (D4)  
 

8) Determine the angle, α (alpha), between the mean cloud layer and the projected 

MCC components (Fig. D1) from equation D5.  Insert the speed of the mean 

cloud layer, VCL, the speed of the low-level jet, VLLJ, and the predicted speed of 

the MCC or MCS, VMCC, found in the previous step into equation D5.  After 

subtracting, multiplying, and dividing the terms in brackets, calculate the inverse 

cosine, arccos, of the term in brackets. 









−

−−
=

))((2
)()()(

arccos
222

CLMCC

CLMCCLLJ

VV
VVVα   (D5) 
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9) Compute the actual direction that the MCC or MCS is heading towards by 

performing equation D6.  Insert the direction of the cloud layer, DIRCL, found in 

step 5 and the α (alpha) angle found in the previous step into equation D6.  

NOTE:  If the DIRCL is between 001º and 180º, then it is necessary to add 360º to 

the DIRCL before inserting it into equation D6.   The final result is the predicted 

direction (degrees) in which the MCC or MCS is heading towards. 

α−−= 180CLMCC DIRDIR     (D6) 
 

10) Steps 7 and 9 yield the projected speed and direction of the MCC or MCS 

respectively.  When converting knots to distance on a map, remember that 60 nm 

equals one degree latitude.  Multiply the predicted speed by the number of hours 

into the future you wish to forecast for.  For example a speed of 30 knots for 6 

hours will produce a 180 nm distance, which is equivalent to 3 degrees latitude.  

On a chart of South America (typically Lambert Conformal or Mercator 

projections), measure 3 degrees latitude with a ruler.  Then, put the beginning of 

the ruler on the location of observation of MCC or MCS (same location found in 

step 1).  The ending distance measured for 3 degrees corresponds to the projected 

location of the MCC or MCS in six hours.  Remember, that the ruler must lay in 

the same direction calculated in step 9.  Display the exact heading onto the map 

with a protractor, or estimate the heading onto the map.  
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Fig. D1.  Conceptual model of the vector components and angles used to predict MCC or 
MCS velocity, VMCC.  The magnitude and direction of the propagation component, VPROP are 
equal and opposite to the low-level jet, VLLJ.  Angles α and β are related to the forecasted 
MCC or MCS direction and are calculated in equations D5 and D3 respectively.  The VMCC 
vector component is the forecasted component of the MCC or MCS motion.  VMCC, 
calculated in equation D4, is the vector sum of the VCL and VPROP components.  The circle at 
the intersection of the E-W and N-S axes denotes the starting MCC or MCS location.   
 
 
Example. 
 
 

1) Coordinates of circular-looking cells on satellite imagery that have 

coagulated into a larger MCS are 30º S and 60º W.  Formation of MCS 

occurred at 0000 UTC. 

2) Speeds and directions of winds from vector analysis charts are as follows:  

V850=25, V700=20, V500=15, V300=60; DIR850=005º (or 365º), DIR700=325º, 

DIR500=280º, DIR300=280º.  Speeds are in knots. 
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3) Low-level jet maximum at 850 mb is 30 knots from 010º (or 370º). 

4) Mean cloud layer speed computed from equation D1 is 30.0 knots. 

5) Mean cloud layer direction computed from equation D2 is from 312º. 

6) β angle calculated from equation D3 is 58º (Fig. D2).  The VLLJ term is 

actually 370º since the angle is between 001º and 180º. 

7) Predicted MCC speed calculated from equation D4 is 29.0 knots.  Fig. D2 

graphically illustrates the forecasted vector component. 

8) α angle calculated from equation D5 is 61º (Fig. D2).   

9) Predicted MCC direction computed from equation D6 is 071º.   

10) The MCC is forecast to head towards 071º (or east northeastward) at 29 

knots (Fig. D2).  In six hours, the MCC is forecasted to travel 174 nm (29 

knots x 6 hours).  174 nm is equal to 2.9 degrees latitude (174 nm / 60 nm) 

or approximately 3 degrees latitude.  After measuring the distance and 

angle onto a South American map, this corresponds to a forecasted 

position at 0600 UTC of 29.0º S and 56.5º W.  
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Fig. D2.  Example of a conceptual model of the vector components and angles used to 
predict MCC or MCS velocity, VMCC.  The magnitude and direction of the propagation 
component, VPROP are equal and opposite to the low-level jet, VLLJ.  Angles α (61º) and β 
(58º) are calculated in equations D5 and D3 respectively.  The VMCC vector component (29.0 
knots), the forecasted component of the MCC or MCS motion, is calculated in equation D4.  
The angle (71º), computed in equation D6, is the direction in which the MCC is heading 
towards.  The circle at the intersection of the E-W and N-S axes denotes the starting MCC or 
MCS location.   
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