Air Force Institute of Technology AFIT Scholar

Theses and Dissertations

Student Graduate Works

3-2003

An Analysis of the Efficacy of the Logistics Composite Model in Estimating Maintenance Manpower Productive Capacity

Kirk B. Pettingill

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Aviation Commons

Recommended Citation

Pettingill, Kirk B., "An Analysis of the Efficacy of the Logistics Composite Model in Estimating Maintenance Manpower Productive Capacity" (2003). *Theses and Dissertations*. 4279. https://scholar.afit.edu/etd/4279

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact AFIT.ENWL.Repository@us.af.mil.

AN ANALYSIS OF THE EFFICACY OF THE LOGISTICS COMPOSITE MODEL IN ESTIMATING MAINTENANCE MANPOWER PRODUCTIVE CAPACITY

THESIS

Kirk B. Pettingill, Captain, USAF

AFIT/GLM/ENS/03-11

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

AFIT/GLM/ENS/03-11

AN ANALYSIS OF THE EFFICACY OF THE LOGISTICS COMPOSITE MODEL IN ESTIMATING MAINTENANCE MANPOWER PRODUCTIVE CAPACITY

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

Kirk B. Pettingill, BS

Captain, USAF

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GLM/ENS/03-11

AN ANALYSIS OF THE EFFICACY OF THE LOGISTICS COMPOSITE MODEL IN ESTIMATING MAINTENANCE MANPOWER PRODUCTIVE CAPACITY

Kirk B. Pettingill, BS

Captain, USAF

Approved:

Stephen M. Swartz, Lt Col, USAF (Advisor)

Date

Stephan P. Brady, Lt Col, USAF (Reader)

Date

Acknowledgments

I would like to express my sincerest appreciation to my thesis advisor, Lt Col Stephen M. Swartz. "Word up, as it were;" Lt Col Swartz kept me on track with a well timed, albeit in frequent, swift kick when I truly needed it. More importantly he provided ongoing support throughout this effort by way of expertise, patience, guidance and selflessness. Without his support this thesis, and my subsequent graduation, would not have been possible.

I would also like to thank Lt Col Brady for providing me with objective feedback as a reader on my committee.

I leaned on quite a few people and agencies throughout this effort. First I'd like to thank Mr. Frank Erdman and Mr. Mark Goldschmidt (ASC/ENMS, LCOM Branch, WPAFB) for taking me under their wings as I struggled to learn about the LCOM. I was fortunate to have two people on base that were always enthusiastic in their quest to help. Secondly, I'd like to thank Mr. Phillip Stone (ACC's LCOM office, Langley AFB VA) who provided me a copy of his Block 30 LCOM model. He was always eager to entertain questions and showed a genuine interest in my endeavor. Thirdly, I'd like to thank Col Atkinson (Cannon AFB's Maintenance Group Commander) for allowing me to gather data from the helpful personnel in his group.

Most importantly, I'd like to thank my lovely wife who proudly endured the last 18 months while I pursued my master's degree. Our journey started off with a bang as she gave birth to our wonderful son in August, and we've been running ever since. My wife and son kept my life balanced and it was refreshing to know that I could always go

iv

home to smiling faces at the end of the day. Their patience, support, and love carried me through this effort and for that I will be forever, truly grateful.

Table of Contents

	Page
Acknowledgments	iv
List of Figures	viii
List of Tables	ix
Abstract	X
I. Introduction	1
Background	
Problem Statement	
Research Question	
Investigative Questions	
Research Methodology	
Scope and Limitations of the Research	
Summary	
II. Literature Review	13
Chapter Overview	
Capacity and Demand in Aviation: Manpower	
Tools for Managing Capacity in Service Operations	
LCOM Description	
Relevant Research	
Summary	
III. Methodology	27
Chapter Overview	27
Test Subjects	
Data	
Development of the LCOM model	
Modeling Techniques	
Statistical Methodology	
Summary	

Page

IV. Analysis and Results	46
Chapter Overview	46
Results of Simulation Scenarios	
Validity of the LCOM	
Validation of Baseline Models	51
Multifactor ANOVA	54
Comparison of Each Simulation Scenario	56
Investigative Questions Answered	
Summary	
V. Conclusions and Recommendations	67
Chapter Overview	67
Conclusions of Research	
Significance of Research	69
Recommendations for Action	
Recommendations for Future Research	70
Summary	71
Appendix A. Manpower Conversion Worksheets	
Appendix B. Changecard Example	79
Appendix C. Forms 30 – 75 Example	
Appendix D. Cannon's Excel Spreadsheet	90
Appendix E. Simulation SEEDS	92
Appendix F. Raw Results of the 24 Scenarios	94
Bibliography	112
Vita	

List of Figures

	F	Page
Figure 1.	LCOM Simulation Logic (ASC/ENM, 1997)	. 18
Figure 2.	522nd Warmup Period	. 41
Figure 3.	523rd Warm up Period	. 41
Figure 4.	524th Warm up Period	42

List of Tables

	Page
Table 1. Skill Level Productivity Factors (French and Steele, 1979)	
Table 2. Modeling Scenario Matrix	
Table 3. 522nd LCOM Results	
Table 4. 523rd LCOM Results	
Table 5. 524th LCOM Results	50
Table 6. LCOM Baseline Model vs. Cannon's Actual Sortie Count	53
Table 7. LCOM Baseline Model vs. Cannon's Actual NMCS Rate	54
Table 8. 522nd Analysis of Variance	54
Table 9. 523rd Analysis of Variance	55
Table 10. 522nd Manpower Pairwise Comparison	57
Table 11. 523rd Manpower Pairwise Comparison	59
Table 12. 522nd Shift Pairwise Comparison	59
Table 13. 523rd Shift Pairwise Comparison	60
Table 14. 522nd NMCS Pairwise Comparison	60
Table 15. 523 NMCS Pairwise Comparison	61
Table 16. 522nd Factor Effect Tests	
Table 17. 523rd Factor Effect Tests	65

AFIT/GLM/ENS/03-11

Abstract

The Logistics Composite Model (LCOM) is the tool of choice for many MAJCOM's (ACC, USAFE, AFMC) in determining maintenance manpower requirements. The LCOM is a simulation program capable of modeling the manpower, equipment, supplies, and facilities required to conduct aircraft maintenance activities. Manpower studies conducted with the LCOM result in manpower estimates that end up in Unit Manning Documents (UMD) as "LCOM earned," authorized positions. This research effort focuses on whether the LCOM can also be used to determine maintenance manpower's current capacity.

Three different flying units at Cannon AFB, NM were modeled to determine if the LCOM, when programmed with historical data, would imitate the actual sortie production of those units that were realized during the previous annual flying period (FY2002).

Based on the analysis and results presented, the researcher concludes that the LCOM can be a viable tool for this purpose but recommends that a standard set of "best practices" be developed and implemented by LCOM analysts to standardize the methodology and improve the reliability of results.

Х

AN ANALYSIS OF THE EFFICACY OF THE LOGISTICS COMPOSITE MODEL IN ESTIMATING MAINTENANCE MANPOWER PRODUCTIVE CAPACITY

I. Introduction

Background

The combat readiness level of Air Force (AF) units has fallen dramatically from meeting the standard of 92% in 1996 to declining significantly below the standard to approximately 69% in 2001 (SAF/FM, 2002). The Assistant Secretary of the Air Force, Financial Management and Comptroller (SAF/FM) cites the reasons for this decline as a higher tempo, an aging fleet of aircraft, marginal resources, and a shortage of personnel due to retention & recruitment problems (SAF/FM, 2002). A key component of the combat readiness level equation, the fleet wide aircraft mission capable (MC) rate, has also declined. The MC rate is expressed as a percentage of the number of serviceable aircraft divided by the number of possessed aircraft. Specifically, the average MC rate during the period from 1988 to 1992 remained in the low 80's but this rate steadily declined reaching an average of 72.7% in 2000 (USAFE, 2002).

It is interesting to note that the decline in MC rate coincides with a drop in the percentage of skilled maintenance labor (5-level) and an increase in unskilled labor (3-level). In particular, the percentage of 5-levels in maintenance Air Force Specialty Codes (AFSC) fell from 52.8% to 44.1% while the percentage of 3-levels rose from 21.6% to 27.8% over the same period. Seven-level manning however, remained relatively stable during this period (Dahlman et.al, 2002). This is not to suggest that a reduction in the experience base of aircraft mechanics is a primary cause for the MC rate decline. It is

likely that the same factors proposed by the SAF/FM that have led to declines in combat readiness--higher tempo, an aging fleet of aircraft, marginal resources, and a shortage of personnel due to retention and recruitment problems--have also contributed to a decline in MC rates.

The AF believes it can address aging aircraft, marginal resources, and retention and recruitment problems through spending. For example, new weapon systems such as the C-17, F-22, and Joint Strike Fighter are being purchased or are under development to assume the roles currently performed by aging weapon systems. In addition, the AF hopes to mitigate problems in retention and recruitment with pay raises, targeted bonuses, and an increase in spending on military housing (SAF/FM, 2002). However, even if these problems were resolved with increased spending, the problem of high tempo would remain.

The "high tempo" the SAF/FM alludes to is the marked increase in the number of deployments without a corresponding increase in its end strength.

"One difficulty facing the Air Force is that it has just completed the largest sustained drawdown in its 53-year history and is at its lowest strength since the late 1940s. At the same time, it is being tasked with contingency operations, peacekeeping missions, and humanitarian deployments on a scale unprecedented in peacetime." (Callander, 2000)

A high tempo created by an increase in deployments exacerbates the problems associated with an aging fleet, marginal resources, and personnel retention and recruitment. The reason problems are worsened for the AF's aging fleet and equipment is due to the additional wear and tear induced by the repeated packing, shipping, and unpacking caused by an increased deployment load. To add to the problem many deployments end up in austere locations where aircraft and equipment are subject to marginal support facilities, temperature extremes, and local elements such as sand exposure. Retention and recruitment are also adversely impacted by high tempo as personnel work longer hours and spend more time away from home. "Taking on added responsibilities with fewer people has stressed both active duty and reserve forces and has many members looking longingly at the 9-to-5 civilian jobs" (Callander, 2000).

The problems associated with operating under a high tempo are being addressed by the implementation of the Expeditionary Aerospace Force (EAF) concept, which is designed to provide predictability and stability to Air Force units subject to deployment. Under this concept, combat units were reorganized into 10 Aerospace Expeditionary Forces (AEF), two of which, will be "on call" maintaining the capability to respond to a crisis anywhere in the world within 48 hours. The remaining eight AEFs will be at home station conducting normal peacetime operations. "The AEFs provide joint force commanders with ready and complete aerospace force packages that can be tailored to meet the spectrum of contingencies" (AF Vision 2020,2000). The two AEFs will be on call for a period of 90 days, every 15 months, which should create predictability and stability for personnel and equipment. The benefits of avoiding back-to-back deployments or extended deployment periods lasting over 90 days should provide immediate relief to aging aircraft, equipment, and retention and recruitment issues.

While the EAF concept should bring predictability and stability to the AF in terms of deployment load, there is another phenomenon the EAF will not entirely mitigate. As weapon systems and resources age, the burden placed on the personnel charged with their upkeep also begins to increase; this increasing upkeep naturally drives manpower requirements up whether deployed or at home. The AF, recognizing this phenomenon, periodically reviews and updates manpower requirements to keep pace with this increasing burden. This typically results in manpower increases (Davis, 2002). The reality however is that manpower increases "on the books" do not equate to a body in that position (Davis, 2002). The AF is having a hard enough time recruiting and keeping the personnel it has, much less filling positions that have been recently added. Air Combat Command (ACC), for example, only fills approximately 80% of their current, funded manpower authorizations in maintenance Air Force Specialty Codes (AFSCs) (Davis, 2003). When a plus-up on the books appears it will obviously not be filled until a unit reaches 100% of its current authorizations (Davis, 2002). While the procurement of new weapon systems may alleviate the burden of aging weapon systems on the maintenance community in the long run, the short-term problem will persist.

Aging weapon systems and resources have a negative impact on the maintenance community at home or abroad but the problems do not stop there. The retention and recruitment problems the maintenance community faces are worsened by the fact that the "USAF is having no problem accessing rated trainee's, DiBattiste said, but retaining experienced fliers is a continuing difficulty" (Callander, 2002). In other words, an operational unit typically has 100% of their aircrew positions filled but with pilots that are less experienced resulting in sortie requirements that remain high (Cilento, 2002). The high tempo of peacetime home station operations is driven by the AF's need to train aircrews, and the need to train aircrews creates a need for sorties, and sorties naturally

create work for maintainers. Theoretically the relationship between the aircrew and maintainer works well when maintenance crews are manned at 100% of their authorizations while supporting aircrews manned at 100% of their authorizations. In reality the relationship is somewhat constrained due to the fact that 80% of maintainers are supporting 100% of aircrews. When aging aircraft and marginal resources are brought into the equation the picture begins to look bleak for maintainer workload, aircrew training, and aircraft readiness. In the long term, if the AF's retention and recruitment efforts prevail and manpower levels approach 100% of authorizations, then the personnel aspect which has an additive effect on declining aircraft readiness levels should be mitigated. In the short term, however, maintenance manpower issues especially at home station continue to be a problem.

Interviews with maintenance supervisors at the unit level indicate that the typical home station, peacetime workweek for maintenance personnel can be characterized as a week filled by 10 to 12 hour shifts followed by an average of 1 day of weekend work a month. This demanding work schedule can be attributed, they believe, to the high demands placed on a limited manpower pool in support of aggressive flying schedules at home (Adams, 2002; Thompson, 2002). The consensus of the maintenance supervisors interviewed is that current retention problems are due in part to the demands being placed on their maintainers at home station (Adams, 2002; Thompson, 2002).

In the near term retention and recruitment for aircraft maintainers may wind up in a "death spiral." The spiral begins with a reduced maintenance manpower pool (without a corresponding reduction in aircrews) vying to support a relatively stable number of aircrews which leads to longer hours and weekend work for maintainers. The spiral continues as maintainers, fed up with working longer hours (increased tempo) begin to seek employment elsewhere causing a reduction in experience level (that cannot be quickly recovered with new recruits), compounding the problems associated with an already constrained manpower pool. If the stable flying requirement (demand) is not reduced to provide relief for maintainers then the spiral will seemingly continue. Obviously, reducing the flying requirement by reducing the number of aircrews is not an option, but can the number of hours that aircrews fly be reduced to more accurately match current maintenance capacity? If maintenance's capacity to produce sorties can be estimated, given a finite amount of manpower, it might be worth experimenting with a reduction of flying hours to match that capacity (for some period) to observe its affect on aircraft readiness in addition to retention and recruitment.

Problem Statement

A disconnect seems to exists between what the AF expects in terms of the demand for sorties/hours and what operational units can realistically deliver in terms of maintenance capacity. As of now, the only tool maintainers have to determine their capacity is by exploiting the experience of seasoned senior noncommissioned officers and officers. This "seat of the pants" methodology pales in comparison to the tools available to aircrews to determine training requirements. The Ready Aircrew Program (RAP), for example, is a tool that lists the sorties required to build basic and combat mission skills. Added to this number are "non-RAP" sorties that build basic pilot skills (e.g. instrument and advanced handling flights). In addition to these tools, MAJCOMs

and Numbered Air Forces (NAFs) publish a litany of instructions to prescribe weapons system and mission specific training guidance (AFI11-102, 2002). Needless to say, when maintainers meet at the negotiating table with operations to develop the annual flying hour contract it can be difficult for maintainers to articulate their instincts on what they believe is attainable. An unbiased, reliable tool that can estimate maintenance's current capacity would be extremely helpful for AF planners to objectively determine annual flying hour capabilities. The AF currently uses the Logistics Composite Model (LCOM) to estimate maintenance manpower requirements for its weapon systems in the aggregate. Through simulation, the LCOM is used to model various scenarios (e.g. wartime, peacetime, and etc) to converge on manpower numbers required to support the weapon system under study. After running various scenarios the scenario representing the largest manpower requirement (usually wartime) is determined to be the required end strength number, which is then incorporated into the Unit Manning Document (UMD) (Sandkula, 2002). For example, ACC has its own LCOM office charged primarily with estimating maintenance manpower requirements. These manpower requirements are then forwarded to the manpower office that in turn builds the UMD (Davis, 2002). The UMD is built by merging the numbers from the LCOM with additional manpower positions (determined by command standards and expert opinion) to account for overhead positions such as support and supervision (Davis, 2002). The LCOM has been used by the AF since the 1960's and is recognized as the official tool for manpower determination. If the LCOM can be used on the front end to determine manpower requirements why isn't it being used to determine maintenance's present capacity?

Research Question

The purpose of this research effort is contained in the overarching question "Can the LCOM be modified by using the actual peacetime maintenance manpower numbers, shift schedules, and parts availability numbers from an active duty squadron to assess that squadron's current maintenance capacity to execute flying schedules?" The following investigative questions must be answered first in pursuit of the answer to the overarching question.

Investigative Questions

1) Given previous year data from an F-16 wing (manpower level, flying schedule, and supply rates) will LCOM produce the same sortie rates that the wing actually attained?

2) Is the LCOM sensitive enough to produce differences in the number of sorties as manning levels are varied between authorized and assigned?

3) Is the LCOM sensitive enough to produce differences in the number of sorties as shift-scheduling philosophies are varied between 10-hour shifts/weekend work and 8-hour shifts/no weekend work?

4) Is the LCOM sensitive enough to produce differences in the number of sorties as parts availability is varied?

5) What factors (manpower, shift scheduling, or parts availability) are most influential to the LCOM in terms of sortie production?

Research Methodology

The methodology of this research revolved around the development of two separate LCOM models to simulate two Block 30 and one Block 40 F-16 squadrons at Cannon AFB NM. The F-16 models used in this thesis were actual models used by ACC to conduct manpower studies and as such, had to be modified to change their wartime flying missions into the two basic peacetime missions (air-to-air and air-to-ground). Once the models were modified to reflect peacetime missions, Cannon's annual flying data had to be incorporated into the scenario. A total of 24 different simulation scenarios were modeled to investigate the affect of varying manpower, shifts, and supply levels while holding the flying schedule constant. A baseline model was built that modeled Cannon's actual manpower, shift schedules (10 hour shifts and weekend work on Saturday), and NMCS rates. Once the baseline model was built for each squadron, successive runs were conducted (while varying each factor) and the results analyzed.

Scope and Limitations of the Research

This research was conducted in pursuit of finding a tool that can be used at the squadron level to assist maintenance planners in building realistic flying schedules. Realistic flying schedules for the purpose of this research is defined as a flying schedule that relieves some of the pressure being placed on a constrained maintenance workforce. The limitations of this research are addressed briefly in the following paragraphs. A more comprehensive discussion of each will be discussed throughout the document where appropriate.

Each F-16 LCOM model developed will only apply to that block model (i.e. Block 30 or 40) and squadron from which the historical data was obtained.

Each of the three squadron's studied at Cannon were subject to split operations at different times throughout FY2002 characterized by aircraft and personnel operating from two different locations. Due to the complexity in the task of modifying the LCOM models to model split operations the decision was made to model all sorties as if they occurred at home station using the aggregate annual numbers for each squadron. Split operations present more of a strain to the maintenance community while supporting flying operations by reducing the effective manpower in both locations. This is due to that fact that supervisory personnel are required in both locations thus requiring senior maintainers to step into supervisory positions at either location thereby reducing the overall manning numbers by an equal amount. In other words, if each squadron scheduled and accomplished a certain number of sorties while enduring split operations it is logical to assume they could meet or exceed that amount if accomplished entirely at home station.

The day-to-day manpower numbers in a unit fluctuate throughout the year as personnel arrive and leave. Capturing this level of detail in terms of fluctuating, daily manpower strengths for LCOM would be near impossible. Average manpower strengths for the period modeled will be used to conduct the simulation.

The LCOM does not model the various skill levels of maintenance personnel (i.e. 3-, 5-, and 7- Levels). The assumption in an LCOM scenario is that all personnel

modeled are fully qualified. For this reason the researcher could not capture the true essence of each unit's maintenance productive capability.

The LCOM is rarely, if at all, used to conduct tail number scheduling due its complexity. Because of this there are very few LCOM analysts who can perform this type of modeling (Stone, 2003). Tail number scheduling in the LCOM is the process of creating a schedule and assigning a specific aircraft to fill each item in that schedule. This process is similar to what occurs in a flying unit on a weekly basis. Flying units build weekly schedules with tail number assignment to help manage their fleet of aircraft by selecting aircraft purposefully to control aircraft hourly accrual for phase purposes and to schedule maintenance. The researcher attempted to perform tail number scheduling in the LCOM but lacked the experience necessary to pull it off.

The limitation in not modeling tail number scheduling is the possibility that an undue burden is placed on the simulated workforce, which may lead to an overestimation of the workforce required. This burden is created by the practice of pulling aircraft "off of the shelf" on a continuing basis to meet the flying schedule during simulation regardless of the number of aircraft that are currently broke. A weekly schedule in a flying unit is typically followed without deviation even if it means that sorties will be lost due to scheduled aircraft that are broke. This practice is necessary to maintain the health of the fleet by helping flying unit's resist the urge to pull an aircraft off of the shelf just to meet a scheduled sortie. If aircraft are broke to the point that a flying unit is having a hard time meeting the schedule then adding an aircraft to the schedule which has its own probability of failure when flown will only exacerbate the problem.

Summary

This chapter covered the background, the problem, the research question and investigative questions, the methodology, and the scope and limitations of this thesis document. The remaining four chapters of this thesis include the Literature Review, Methodology, Findings and Analysis, and Conclusions.

The literature review provides an overview of the AF's method in determining capacity (manpower) to meet flying hour needs (demand) as well as a discussion of previous research relevant to this area. This information will be used to help resolve key issues, refine the scope of this research, and lay the groundwork for the thesis methodology chapter. The methodology chapter will provide an overview of the LCOM and the process in which it was used. The findings and analysis chapter presents answers to the investigative questions and the overarching research question. The final chapter will provide findings, conclusions and recommendations for future research.

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide a thorough review of literature relevant to this research effort. This chapter begins with a basic discussion of capacity and demand in civil aviation firms and the AF as service operations. The chapter will then move to a brief discussion of the tools available to help managers of service firms estimate optimal capacity vs. demands tradeoffs. A general description of the AF's manpower determination tool called the Logistics Composite Model (LCOM) will ensue. The final portion of this chapter will involve a discussion of the research relevant to this area of study. The data gleaned from the literature review will be used to resolve key issues presented in Chapter 1, which revolve around whether LCOM can be used in the field to estimate current maintenance capacity.

Capacity and Demand in Aviation: Manpower

The AF must maintain an excess capacity of resources (equipment, parts, and personnel) that would bankrupt commercial aviation firms. More specifically, commercial aviation firms must balance this capacity with consumer demand to ensure profitability whereas the AF must position its capacity for the peak demand of war (Swartz, 2002).

A commercial firm that positioned itself to handle peak demand at all times as the AF does would operate very effectively but extremely inefficiently. The firm would be able to absorb any variation in demand (effectiveness) but at the cost of an overabundance of capacity when the variance is at a low point in demand (inefficiency).

Successful firms that effectively balance capacity and demand experience cyclic patterns of excess capacity followed by insufficient capacity situations. In the aggregate, however, these firms will enjoy profitability as long as flying operations are sustained and customers are served (Swartz, 2002).

During peacetime the AF is not unlike its civilian counter part in terms the relatively stable flying schedules each face. As a result of this stability the AF should enjoy excess capacity since the flying demands during peacetime are less than the flying demands of war.

Aircraft maintenance in either the AF or a commercial firm is a service-oriented business in which the resource capacity of personnel, parts, and equipment determine the demand that can be satisfied. A limitation in any one resource constrains aircraft maintenance's productive potential. For instance, given an infinite supply of parts and equipment, but limited in manpower, an organization will only produce up to the limit of the manpower's capability. There are various tools available to industry to aid in determining the capacity required to support varying demand and visa versa.

Tools for Managing Capacity in Service Operations

There are three types of tools that managers can use to manage the capacity of service operations. The first type of tool is to experiment with the actual system and is the most basic tools used by managers. A manager who understands the business in which they manage and has gained insight into the daily operations of his business can make capacity planning decisions based on his own experience. For instance, the owner of a small dry cleaning business with an established clientele knows enough about his

business to make decisions on his own. Once the manager's plan is implemented he can observe the outcome to see the effect of his plan. As businesses increase in size and complexity, however, this type of decision-making process is often inadequate (Law and Kelton, 1992).

The second type of tool available to managers is an analytical queuing model. Analytical queuing models are mathematical equations that help managers evaluate alternative courses of action by predicting system performance. With a minimum amount of information such as the mean arrival rate and the mean service rate, the equations can generate exact characteristics of the system under study. The problem with these types of models is their limited capacity to model very complex systems (Law and Kelton, 1992).

When the characteristics of a system are too complex for actual or analytical modeling managers can use a third type of tool: computerized simulation modeling. Simulation is useful in trying to gain an insight into the various components of the system under study by running various "what-if" scenarios (Fitzsimmonds and Fitzsimmonds, 2001).

"From a practical viewpoint, simulation is the process of designing and creating a computerized model of a real or proposed system for the purpose of conducting numerical experiments to give us a better understanding of the behavior of that system for a given set of conditions." (Kelton et al.,2002).

Aircraft maintenance is an extremely complex activity involving stochastic and deterministic issues that can only be modeled, in its entirety, through simulation. It is for this reason that the AF uses simulation modeling to make aircraft maintenance manpower decisions.

LCOM Description

Overview

"The LCOM is a stochastic discrete-event simulation of a maintenance organization used to identify optimal base-level resources." (HQACC, 2000). The LCOM was originally designed through a joint effort between the Rand Corporation and the Air Force Logistics Command in the late 1960's to provide an analysis tool for planners to "relate base-level logistics resources with each other and with sortie generating capability" (Boyle, 1990). The logistics resources modeled in the LCOM include the parts, equipment, manpower, and facilities used during a sortie generation effort.

There are currently two versions of the LCOM in use today. The "official" and most prevailing is the Air Force Management and Innovations Agency (AFMIA) version of the software (Juarez, 2002). The LCOM Program Office within AFMIA, Randolph AFB TX, maintains this version of the software. The second version of the software, developed by the Aeronautical Systems Center's (ASC's) Systems Supportability Analysis Branch, Wright-Patterson AFB OH, is the version used for this research. The two versions perform exactly the same function. The essential difference between the two versions lies in the interface with the user (Erdman, 2003).

Conducting Manpower Studies

The LCOM is versatile enough to study the interaction of several logistics factors but has evolved into one of the AF's primary methods in establishing maintenance manpower requirements. The manpower positions derived by LCOM which end up in manpower standards and are designated by a "L" which signifies that they were "LCOM earned" (AFI 38-201, 2002). This differentiates those manpower positions that were added to the manpower standards to compensate for the fact that LCOM does not simulate personnel within an organization that are not involved in maintenance (e.g. supervisors, support personnel, and etc.) (Boyle, 1990).

Conducting a manpower study using LCOM is an iterative process, which involves manipulating the independent variables of supply, manpower, facilities, and equipment until a desired Sortie Generation Rate (SGR) is attained as outlined in the classified USAF War Mobilization Plan (WMP) (ACC F-16 C/D Final report, 1998).

During a manpower study, supply resources are adjusted in the LCOM until the command standard expressed as a Not Mission Capable for Supply (NMCS) rate is reached. In the case of the F-16 block 30 and block 40 aircraft the ACC standard is eight percent. In other words, an aircraft is expected to be non-mission capable (NMC) due to a lack of supplies (parts) only eight percent or less of the time. For this reason supplies are added and removed until the LCOM simulation results show that aircraft experienced an eight percent NMCS rate.

The most important independent variable in an LCOM-based manpower study is obviously the manpower level. Manpower levels are adjusted during each run and the resulting effect on the SGR is analyzed in addition to the utilization levels of each AFSC. If utilization levels are too low then the analyst has over estimated the manpower required and if utilization levels are too high then manpower has been underestimated.

This process continues until realistic manpower utilization levels and the SGR standard is achieved (Boyle, 1990)

Facility and equipment levels are programmed into the LCOM database and held constant at levels, which mirror the base under study.

LCOM Model Description

The LCOM software, which consists of a preprocessor program (input module), a simulation program (main module), and a postprocessor module, was written primarily using SIMSCRIPT II.5. In general Aircraft are flown, serviced, repaired, and returned to the available pool of aircraft as depicted in Figure 1. The following paragraphs are designed to provide the reader with a brief overview of the LCOM. Readers desiring more detailed information can consult The LCOM Users Manual (ASC/ENM, 1997).

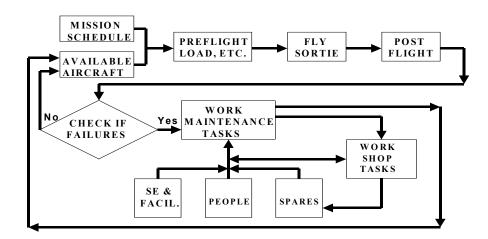


Figure 1. LCOM Simulation Logic (ASC/ENM, 1997)

Input Module

The input module constitutes the database of the simulation. This is where analysts perform the majority of the work to ensure that the scenario will represent the reality of aircraft maintenance. The database includes input data called "Forms." The most commonly used forms are described in the following paragraphs.

Form 15 is the Resource Definitions database designed to define the aircraft, manpower (by AFSC), parts, facilities and equipment that the analyst desires to model during simulation (ASC/ENM, 1997).

Form 20 is the Attribute Definitions database designed to define the characteristic of an aircraft or the system. Typical attributes include either a time accumulating attribute or an incrementing attribute (ASC/ENM, 1997).

Form 25 is the Task Definitions database used to define each task used during the simulation (ASC/ENM, 1997).

Form 30 is the Task Networks database, which provides the intricate detail of the sequencing of task performance during simulation. Examples of the types of tasks in this database are: scheduled maintenance, unscheduled maintenance, and "mainline tasks" such as reconfiguring aircraft and preflight inspections (ASC/ENM, 1997).

Form 35 is the Clock Decrements database used to define the interval (e.g. days) that maintenance actions or resource failures will be clocked (ASC/ENM, 1997).

Form 40 is the Empirical Distribution Definitions database that can be used in to define the parameters of entries in Forms 15, 20, 25, or 75 (ASC/ENM, 1997).

Form 45 is the Shift Change Policy database used to define shift durations, shift repetitions, and shift authorizations (ASC/ENM, 1997).

Form 50 is the Priority Specification Definitions database designed to assign a priority level of 1, 2, or 3 to tasks for resource prioritization (ASC/ENM, 1997).

From 55 is the Mission/Activity Definitions database designed to list the activities (e.g. phase inspections) or aircraft missions (e.g. air-to-air) utilized during the simulation (ASC/ENM, 1997).

Form 60 is the Search Pattern Definitions database designed to list the specific sequence that the simulation will follow when searching for aircraft to assign to missions or activities. This database is written so that a search is conducted for the aircraft that presents the least amount of reconfiguration to meet the next sortie (ASC/ENM, 1997).

Form 75 is the Sortie Generation Data database that defines all of the mission and activity requirements that the analyst wishes to model (ASC/ENM, 1997).

The input module, once run, prepares an initialization file, which compiles all of the data from the forms necessary to describe the maintenance environment. An exogenous file is also created which contains all of the information necessary to execute the flying schedule and maintenance activities. These files are used by the main module to run the simulation (Boyle, 1990).

Main Module

The main module contains the software required to execute the scenario and produces the reports as requested by the user. Reports are requested through the use of a "change card file" at the beginning of the simulation. The change card file is also used to specify the length of the simulation and is used to vary the level of resources during subsequent runs.

Post Processor Module

The post processor module produces summary statistics for the following categories: operations (e.g. sorties flown), activities (e.g. number of aircraft phases), personnel (e.g. man hours used), supply (e.g. average NMCS rate), shop repair (e.g. number of items repaired), AGE (e.g. AGE used), aircraft (e.g. number of aircraft days available), and facilities (e.g. facilities used) (Boyle, 1990).

Relevant Research

The relevant research to this thesis can be broken down into three categories. The first category includes the research that examined LCOM's ability to perform other forms of analysis such as its ability to measure the effectiveness of various flying schedules (Boyd and Toy, 1975) and its ability to project the monthly sortie effectiveness of an F-15 wing (Davis and Smith, 1977). The second category of research includes a recent (2002) RAND corporation report that examined LCOM's ability to estimate manpower requirements. The third category of research examines productivity as a function of skill and explores incorporating skill level (i.e. 3-,5-,and 7-level) into LCOM. The following paragraphs describe this research and their conclusions.

LCOM's Ability to Perform Other forms of Analysis

In 1975, Boyd and Toy conducted thesis research to examine LCOM's ability to "measure the effectiveness of aircraft flying schedules" (Boyd and Toy, 1975). Their study involved using the previous version of LCOM to simulate 26 weekly flying

schedules of F-4E wings. Manpower during their study was held to a level that reflected the wing's authorizations. Boyd and Toy's handling of aircraft parts availability was not discussed in write-up. Boyd and Toy concluded that the LCOM was not an accurate tool that could be used to predict the scheduling effectiveness on a weekly basis but concluded that the LCOM may provide more accuracy when looking at the 26-week period in the aggregate (Boyd and Toy, 1975). Boyd and Toy recommended that monthly schedules be explored next to help narrow the time required to gain scheduling accuracy.

Davis and Smith conducted thesis research in 1977 as a follow-on to Boyd and Toy's research to examine the capability of the LCOM to predict the monthly sortie effectiveness of an F-15 wing. Their study involved using the LCOM to input monthly maintenance and flying schedules from a previous six month period from the 1 TFW at Langley AFB VA to determine if the LCOM accurately predicted the number of sorties the wing actually generated during that period. Manpower for their study was held at the authorized level for the 1 TFW; however, their handling of aircraft parts availability was not mentioned. Davis and Smith's concluded that the LCOM could not be used to accurately predict the actual sortie scheduling effectiveness of an F-15 wing and that the LCOM would not be suitable to as a tool for evaluating alternative monthly flying and maintenance schedules. Davis and Smith mentioned that a possible reason for LCOM's lack of accuracy in their study might have been due to the newness of the F-15 as a weapons system during that time and the fact that several new F-15's were delivered to the wing during the period of their study.

LCOM: Manpower Estimation

A recent RAND report (Dahlman et. al., 2002) published in April of 2002 discusses the AF's methods in setting maintenance manpower requirements. The RAND study not only discovered problems with LCOM but also discovered several problems in the AF's methodology regarding issues that serve as critical assumptions before conducting an LCOM study. The following paragraphs describe some of the recommendations to the problems described in the RAND report.

The First recommendation is for LCOM studies to begin including more realistic scenarios characterized by lengthy deployments and split ops with considerable home station resource shortages and time consuming peacetime tasks coupled with providing enough sorties to absorb junior pilots. RAND believes that this scenario could be even more stressful for the maintenance force than the wartime scenarios currently modeled (Dahlman et.al., 2002).

Another recommendation the RAND report provides is to allow LCOM analysts the ability to model actual field practices as opposed to written policy. One such example is requiring analysts to hold NMCS rates at the command standard rather than letting them program actual NMCS rates into the scenario. Rand believes that this will allow analysts to examine the manpower implications of this phenomenon (Dahlman et. al., 2002).

A third recommendation the RAND report makes is for LCOM analysts to introduce skill level mixtures and on-the-job training (OJT) processes into the scenario. The LCOM models currently used for manpower studies do not have the capability of utilizing varying skill level mixtures. In other words, the manpower in LCOM's resource pools is assumed to be fully qualified. This assumption poses a problem when the final manpower numbers end up in manning documents because the reality of aircraft maintenance is that at approximately 20 percent of authorized maintenance manpower is filled by unqualified 3-levels who cannot perform 100 percent of the tasks required of them (Dahlman et. al, 2002). In addition these 3-levels require OJT, which takes a fully qualified 5- or 7-level to train them, in essence further reducing the effective manpower available on the flightline.

A final recommendation from the RAND report is for the AF to evaluate the relevance of the Man-hour Availability Factor (MAF) published in AFMAN 38-201, Vol 2. The MAF is "the average number of man-hours per month an assigned individual is available to do primary duties" and accounts for the amount of time a person is away from his primary duties by considering activities such as leave, medical, Permanent Change of Station (PCS) related issues, organizational duties, education and training, and etc (AFMAN 38-201, 2002). Since the LCOM does not models leave and etc. these MAF's are utilized extensively to translate the raw manpower numbers derived from a manpower study into actual numbers that end up in manpower standards as "LCOM earned" positions. For example, the MAF for sustained wartime operations of 1.461 is multiplied against the numbers generated by an LCOM study. If an LCOM study determines that 55 crew chiefs are required to support a weapon system this number is multiplied by the MAF of 1.461 to generate the final number (55 x 1.461 = 80.355 crew chiefs). The RAND report believes that the MAF, which applies to personnel in all

AFSC's, may not be accurate when looking specifically at personnel in the maintenance AFSC's.

Manpower Productivity

In 1979, French and Steele published research designed to relate AF skill levels (3-, 5-, and 7-level) to productivity factors. Their conclusion was that there is a significant difference between what we should expect in terms of productivity of 3-, 5-, and 7-level personnel in a maintenance organization. They developed the following factors (Table 1) to equate each skill level to a productivity factor:

 Table 1. Skill Level Productivity Factors (French and Steele, 1979)

7-Level	1.155
5-Level	1.000
3-Level	0.869

By using a 5-level as the referent skill level, French and Steele concluded that a 3level should be expected to produce approximately 13 percent less than the referent 5level and approximately 15.5 percent less than a 7-level (French and Steele, 1979).

In 1981, Garcia and Racher published research designed to incorporate skill level effects into the LCOM. Garcia and Racher's conclusions included creating two separate manpower pools in LCOM; one qualified pool (5-, and 7-levels) and one unqualified pool (3-levels). In addition to the 2 separate manpower pools a separate task of networks were developed to account for the slower speed of unqualified technicians. Garcia and Racher tested these recommendations in the LCOM and determined that there was a strong correlation between productivity and skill level mixture (Garcia and Racher, 1981).

Summary

The purpose of this chapter was to provide a thorough review of literature relevant to this research effort. This chapter began with a basic discussion of capacity and demand in civil aviation firms and the AF as service operations. The discussion moved to the tools available to help managers of service firms estimate optimal capacity vs. demands tradeoffs and a general description of the AF's manpower determination tool called the Logistics Composite Model (LCOM). The final portion of this chapter covered the research relevant to this area of study. Chapter #3 will cover the methodology used in answering the overarching research question of this thesis and its subordinating investigative questions.

III. Methodology

Chapter Overview

The purpose of this chapter is to provide a description of the quantitative methodology used to answer the research question presented in Chapter 1. In general the research is designed to analyze the efficacy of the LCOM in estimating maintenance manpower productive capacity. The chapter will begin with a discussion of the subjects and data used to conduct the research. The chapter will then proceed through a discussion of how the two different F-16 models were modified to reflect the characteristics (manpower, aircraft, supply, and flying schedule data) of three Cannon F-16 squadrons for FY2002. The discussion will then move to a description of the process used to create the 24 different models used to conduct this research. The chapter will conclude with a description of the statistical methods used to analyze the research results.

Test Subjects

The subject population of this research includes two active duty squadrons of Block 30 F-16's and one active duty squadron of Block 40 F-16's from Cannon AFB NM. Due to the unique deployment schedules and annual flying requirements of F-16 squadrons in the AF the researcher sought to conduct research on F-16 units that experienced only home station flying activities. Unfortunately, during FY2002, none of the operational F-16 units were fortunate enough to avoid deployments. Due to this fact Cannon AFB NM was selected as the basis of this study essentially due to their responsiveness in providing all the data necessary vital to this research effort.

Data

The data collected for this research effort falls into one of four categories: manpower, aircraft, supply, and flying schedule. The form of this data is discussed in the following paragraphs; however, the discussion of the use of this data will be contained in the section regarding the LCOM model development.

Manpower

Manpower information comes in various forms across the AF depending on whether the information pertains to authorized or assigned manpower. Authorized manpower is the easiest information to come by as it is developed by a respective unit's MAJCOM and changes infrequently. This data can be attained from either the MAJCOM or the base. Accurate assigned manpower information, on the other hand, is more difficult to attain since it constantly changes as personnel separate and PCS coupled with the fact that manpower assignments at the base level involve a certain amount of "horsetrading" between different units (Hogue, 2002). This data is available, in accurate form, only at the base level.

Authorized

The Authorized manpower information used in the research came in the form of a Unit Manning Document provided by Cannon's personnel office. Five different UMD's were used to collect the data for this research; one from each of the flying units (522nd, 523rd,and 524th Aircraft Maintenance Units (AMUs)) and one from each of the backshop squadrons (Component Maintenance Squadron (CMS)-formerly know as the Component Repair Squadron (CRS), and the Equipment Maintenance Squadron (EMS)).

Fortunately, Cannon's personnel office still had the manpower authorizations that applied to these units before they restructured under the new wing structure at the end of FY2002. The new wing structure moved all maintenance activities under a maintenance group. The most noticeable change to maintenance manpower positions, in the flying units, was the movement of aircraft phase inspections and the associated manpower to EMS.

Assigned

The assigned manpower information was compiled by Cannon's manpower and assumed to be current and complete for all AFSC's except for a limitation in crew chief manning. Unfortunately, the office did not carry historical numbers but did provide the current assigned manpower numbers for each of the 5 units. Since maintenance manpower numbers AF wide have remained relatively stable over the last two years the researcher believes it is reasonable to assume that the current manpower numbers at Cannon are similar to the numbers they possessed during FY2002 (Davis, 2002).

Aircraft

There are essentially two categories of aircraft assignments in an operational unit. The first category of aircraft is called Chargeable Primary Authorized Aircraft (PAA). PAA is the number of aircraft authorized by Headquarters, United States Air Force (HQ USAF) and is used as the basis for determining manpower authorizations and flying hour program numbers. The second category of aircraft is called Backup Aircraft Inventory (BAI). BAI are used to backfill PAA that are in Depot maintenance and etc (USAFEI 11-101, 1995). The numbers provided by Cannon reflect a PAA breakdown per squadron, per month.

Supply

The supply information was provided by the wing's analysis office in the form of an Excel spreadsheet, which is a collection of statistics compiled on a month-by-month basis and reported to the MAJCOM. The statistic of focus for this research regarding supply information was the NMCS rates that the each flying unit experienced throughout the year.

Flying Schedule

Flying schedule information for each of the flying units was also taken from the wing's monthly analysis spreadsheet. This research focused on the number of scheduled flights vs. the number of flights actually flown and the resultant sortie generation rate (expressed as a ratio of the number of sorties schedules divided by the number actually flown).

Development of the LCOM model

The following paragraphs describe the methodology used to transform each wartime F-16 model into Cannon's peacetime mission. The Block 30 and 40 models are similar so the discussion applies to both models unless specified otherwise. The modifications that needed to be made fall into the four categories mentioned previously in the data section. The first category involves modifications to each model to incorporate Cannon's authorized or assigned manpower numbers and shift schedule. The second category involves incorporating Cannon's aircraft numbers. The third category involves modifications that incorporated Cannon's historical NMCS rates. And the final category involves modifying the model to accommodate flying schedule changes. In some cases the modifications were necessary to change the scenario from wartime to peacetime and in others, the modifications were necessary to incorporate Cannon's historical data. These will be specified, where applicable, in the following paragraphs. Appendices B and C provide examples of the changes made to Forms 15 through 75 or the changecards, respectively. Due to the length of the data (over 400 pages each) complete copies of each model are not included in the Appendices, however, the complete models that were used for this research can be obtained from AFIT/ENS.

Manpower

The data provided for crew chief manning did not reflect crew chief manning assignments before they were combined under EMS. The researcher attempted to contact the supervisors of the respective flying units to attain manpower number by interview but ran into roadblocks stemming from the fact that each unit had recently undergone a management turnover designed to "shake things up" (Bove, 2002). To avoid using interview data from some sources and estimating where interview data was not available the researcher compensated by using a proportional assignment of existing manpower based on authorizations. In short, each flying unit's crew chief authorizations for both the flightline and phase were converted into a percentage of total authorizations. These percentages were then applied to the assigned manpower numbers of crew chiefs that still worked either flightline or phase under the new wing alignment. For example, if eight percent of the total authorizations of crew chiefs were authorized to work in the 522's phase dock before the reorganization then eight percent of the total assigned crew chiefs were allocated to the phase dock for simulation purposes. Appendix A contains the

spreadsheets used for these conversions and Appendix B provides an example of the changecards used to allocate manpower.

As briefly discussed in the previous chapter, raw manpower numbers that are generated from an LCOM manpower study are converted using a MAF to account for time spent away from work. The MAF used to convert the current UMD numbers from the sustained wartime LCOM scenario was 1.461. In order to convert the UMD number supplied by Cannon into a number suitable for use in LCOM, the reciprocal of 1.461 was used. For example, if a unit's UMD shows that 100 crew chiefs are either authorized or assigned, a factor of 1/1.461 was multiplied to this number to attain the number that would be modeled in LCOM. So the resultant manpower modeled in LCOM would be derived as follows: $1/1.461 \times 100 = 68.45$, or 69 crew chiefs would be used to run the scenario. Appendix A contains a listing of the numbers used to run the LCOM scenarios for each flying unit.

A problem was confronted on how to model the manpower distribution for the manpower contained in either EMS or CMS as scenarios were run for each individual flying unit. These manpower positions are considered a pooled resource that can be used for any asset requiring work regardless of the squadron from which it came. For instance, how should the nine personnel authorized in the hydraulic shop (CMS) be modeled in each simulation scenario? One solution is to divide the authorizations by three, thereby allocating 1/3 of the total manpower to each of the flying units. This solution would possibly underestimate the manpower actually available for any one squadron's assets and would pose problems in the LCOM where minimum manning

32

requirements are specified for certain tasks. Another solution is to use the total authorization of each backshop AFSC for simulation purposes. This solution would possibly overestimate the manpower available for any one squadron's assets. Since the true manpower contribution from pooled AFSC's supporting several flying units is impossible to assess the researcher decided to use 50 percent of the authorized or assigned (depending on the simulation scenario) manpower numbers for simulation purposes.

There were two exceptions to the 50 percent manpower distribution process. The first exception was CMS's fuel shop. Since the fuel shop at an F-16 base is commonly very busy with F-16's from all squadrons the researcher allocated 1/3 of the authorized or assigned manpower to each unit during the scenario. The same procedure was used for the structural shop ("sheet metal"). Appendix B contains an example of a changecard utilized for each simulation scenario.

Finally, the wartime models were written to model two, 12 hours shifts seven days a week. In a peacetime environment shifts are usually split into three, eight-hour shifts with one day of weekend work. The models had to be changed to reflect this change of assumption. Appendix C, Form 40, provides an example of this change.

Aircraft

Since LCOM manpower studies are based on PAA figures, the researcher used each squadron's PAA average annual figures to conduct each study. According to Cannon's spreadsheets the 522nd, 523rd, and the 524th had an average of approximately 18, 17, and 24 PAA, respectively, throughout FY2002.

33

Supply

Average monthly NMCS rates will be used instead of parts actually consumed throughout the year. The LCOM stochastically chooses aircraft systems failures and repair times to determine unscheduled maintenance tasks. Each failure prompts the LCOM to run through a predefined task network that mimics maintenance on the flightline. To mimic flightline operations the LCOM continues through the task network until the probable cause of the malfunction is randomly chosen. This cause typically results in a demand placed on supply to facilitate the removal and replacement of a part to fix the problem. Since the LCOM cannot be modified to model the actual maintenance tasks that occurred during FY 2002 it will not be able to model actual parts consumption. In lieu of modeling parts consumption for Cannon, NMCS rates were used instead. To effectively reflect the demand for supplies at Cannon, the numbers of parts available in supply "on the shelf" were varied until the simulation output reflected similar NMCS rates. Appendix B provides an example of the changecard used to implement these changes.

Flying schedule

There are three basic methods used to run the LCOM for manpower studies: flywhen-ready, composite, and scheduled. The following paragraphs briefly describe each method.

Typical LCOM manpower studies involve flying under a "wartime" scenario to simulate the worst-case scenario. This scenario is modeled in the LCOM by running the simulation under fly-when-ready guidance. In other words, all available aircraft will fly, land, undergo maintenance (if necessary), get serviced, and returned to the pool of available aircraft to fly again. This type of scenario is incidentally the easiest to simulate, but too far from the reality of home station operations.

The second is a composite mission where a combination of different aircraft types can be modeled (e.g. F-15 and F-16) for the same mission.

The final method is by building a flying schedule. Under this scenario the LCOM will simulate the number of sorties and turn scheme specified by pulling aircraft from the available pool of aircraft (24 in the case of a 24 PAA squadron). Under this scenario all scheduled maintenance actions (e.g. phase inspections and aircraft washes) for the Block 40 model are scheduled by the analyst on Form 75 based on the frequency of occurrence at the unit under study. The Block 30 model uses attributes to determine when scheduled maintenance is performed. For example, the Block 30 model uses an attribute named PHASEDUE to track the hours accrued on each aircraft. After each sortie, the hourly value is checked to see if the phase inspection is due based on a 300 hourly requirement (Stone, 2003). Other scheduled maintenance tasks follow the same logic in the Block 30 model based on either an hourly or calendar clock established by maintenance requirements in the applicable -06 Technical Order (TO).

This research utilized the final method discussed above where the flying schedule (in terms of number of sorties and turn scheme) for each unit was input into the LCOM. The fly-when-ready approach first discussed would not capture reality close enough for this research. The second approach, composite scheduling, did not apply. The final method was well suited to model to determine capabilities based on alternative flying schedules. The following paragraphs provide a discussion of the methodology used to incorporate Cannon's flying schedule into LOCM.

Ideally, the most accurate way to model Cannon's flying activity for FY2002 would be to build a flying schedule that matched Cannon's day-to-day flying activity. This type of scenario would have been extremely tedious to perform since it would have involved making a separate entry for each flying day for the entire year. In addition, it would have required modeling hot pits, exercises, and split operations. To compensate for the lack of precision in the scheduling process the researcher decided to use each flying unit's sortie utilization rate (UTEs). The sortie UTE is expressed as the number of sorties flown per aircraft per month and is usually spoken of in terms of an annual figure. In other words, a squadron with 24 PAA that must fly a UTE of 18, means that the unit must fly 5184 sorties for the year (24 aircraft x 18 UTE x 12 months = 5184 sorties). This figure is a programmed UTE rate; scheduled UTE rate figures will be higher to compensate for historical attrition rates (e.g. weather, maintenance cancels). UTEs are goals expressed by each MAJCOM's headquarters for each weapon system and is a function of aircrew training needs and aircraft availability issues such as depot maintenance (USAFEI 11-101, 1995).

For the purposes of this research, the annual scheduled sortie numbers for each squadron was used to determine the scheduled sortie UTE and then converted into a standard daily flying requirement. The following discussion describes this process for each flying unit.

522nd Flying Schedule

The 522nd scheduled and flew 4489 and 3922 sorties, respectively, during FY2002 for a 87.37 percent SGR. In order to convert the aggregate scheduled number into a flying schedule the scheduled sortie number was divided by 12 (the number of months in a year).

4489/12 = 374 sorties per month

Once the number of sorties per month was determined a schedule had to be built that reflected what each unit expects it can fly on a recurring basis. For instance, the schedulers in the 522nd expect to be able to fly a 10 front Monday through Friday. Monday through Thursday they expect to fly a 10 turn 8 and on Fridays a single go (McGowan, 2003). This equated to a scheduled sortie number for LCOM simulation purposes of 4484; four short of what the unit actually scheduled.

523rd Flying Schedule

The 523rd scheduled and flew 4092 and 3778 sorties, respectively, during FY2002 for a 92.33 percent SGR. In order to convert the aggregate scheduled number into a flying schedule the scheduled sortie number was divided by 12 (the number of months in a year).

4092/12 = 341 sorties per month

The schedulers in the 523rd expect to be able to fly similar numbers as the 522nd so the same methodology to construct a schedule that could be written to LCOM was used (Cochran, 2003). Since the 523rd flew less than the 522nd and they had fewer

37

aircraft the schedule was paired back a bit to attain a similar scheduled number that the 523rd actually scheduled. In the end, 4074 sorties were scheduled in the LOCM scenario.

524th Flying Schedule

The 524th scheduled and flew 5682 and 5179 sorties, respectively, during FY2002 for a 91.15 percent SGR. In order to convert the aggregate scheduled number into a flying schedule the scheduled sortie number was divided by 12 (the number of months in a year).

5682/12 = 475 sorties per month

The schedulers in the 524th expect to be able to fly a 12 front on Monday through Friday with two go's each day. In order to converge on a schedule in the LCOM which will equate to similar numbers as what the 524th actually scheduled, a 12 turn 12 was simulated Monday through Thursday and a 12 turn 6 was scheduled on Friday. In the end, 5672 sorties were scheduled in the LOCM scenario.

Modeling Techniques

After the three basic models for each flying unit had been modified to reflect peacetime missions and flying schedules, the process of running various iterations for each of the three models ensued. The iterative techniques involved four groups of scenarios, which are depicted in Table 2. The first group involved varying manpower numbers to reflect Cannon's authorized or assigned end strength while keeping shifts and supply numbers the same as the baseline. The second group involved varying manpower numbers again, however, shift philosophies were modified to reflect no overtime or weekend work. Supplies were kept the same as the baseline. The third group also involved varying manning numbers, however, supplies were increased and shifts were reverted back to the use of overtime and weekends. The fourth group involved manning variations while modifying shift philosophy and increasing the number of parts. The iterative techniques (eight total) were used for each flying unit (522nd, 523rd, 524th), which resulted in 24 different scenarios. The following paragraphs discuss the initial conditions, initialization seed values, warm up period, and the basic techniques used to run each scenario. Since the eight iterative techniques for each unit was the same the following discussion applies to them all.

Tab	le 2.	Mo	deling	Scenar	io Matrix
-----	-------	----	--------	--------	-----------

Shift Philosophy	Manpower	Parts Availability Baseline (B)	Parts Availability Extra (U)
		Group 1	Group 3
Overtime (O)	Assigned (AS)	AS/O/B	AS/O/U
	Authorized (AU)	AU/O/B	AU/O/U
		Group 2	Group 4
Normal (N)	Assigned (AS)	AS/N/B	AS/N/U
	Authorized (AU)	AU/N/B	AU/N/U

Initial Conditions

At the beginning of each simulation run each aircraft was assumed to be mission capable and supplies were on the shelf in the numbers specified. The only preconditions the researcher modeled was to pre-configure aircraft for flight based on each unit's pending flying schedule. The practice of pre-configuring aircraft is common practice in flying units. The pre-configurations for each model were handled by adding this information to the changecard prior to running each scenario an example of which is in Appendix B.

SEEDS

The ASC LCOM program used for this research provides the capability to establish initialization seeds for production runs. To reduce the variability introduced by using a random draw of initialization seeds, 75 seed values were generated and used for each of the 24 scenarios. Specifically, replications 1 through 75 for each of the 24 scenarios started at the same successive seed value as presented in Appendix E.

Warm up

A warm up of 30 days was selected to overcome the initialization bias introduced by having a fleet of servable aircraft and all supplies on hand at the beginning of each simulation. According to Law and Kelton, the "simplest and most general technique" to determine an appropriate warm up period is to graph the output of the simulation to determine where the graph "flattens out" (1992). In other words, the graph should display an obvious transient period at the beginning of the simulation period due to input conditions that don't mirror reality followed by the graph settling down. Figures 2 through 4 display the average daily sorties produced after running 75 replications of the baseline models for the 522nd, 523rd, and the 524th, respectively. The 522nd and the 523rd simulation models appear to reach steady state after approximately one week, however, the 524th appears to reach steady state after a month. The apparent drop in sortie out put for the 522nd and the 523rd at around the 210-day point can be attributed to scheduled maintenance (one aircraft enters full paint) scheduled for that time. The researcher believes that a 30-day warm up period was sufficient to overcome initialization bias.

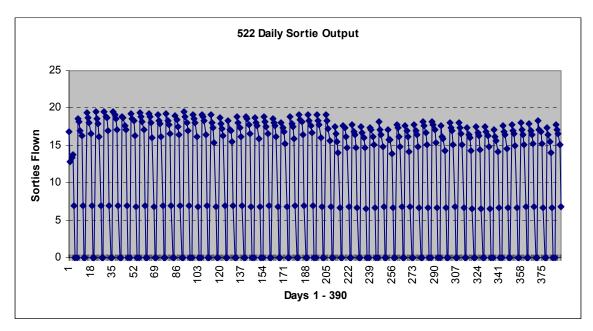


Figure 2. 522nd Warmup Period

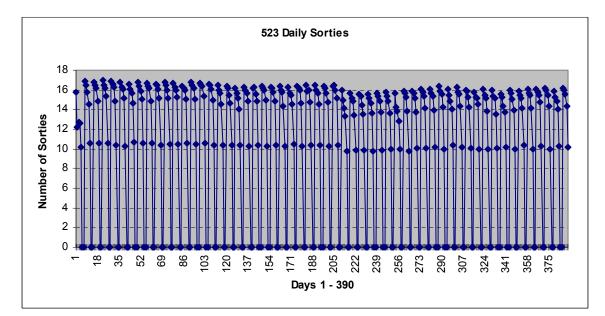


Figure 3. 523rd Warm up Period

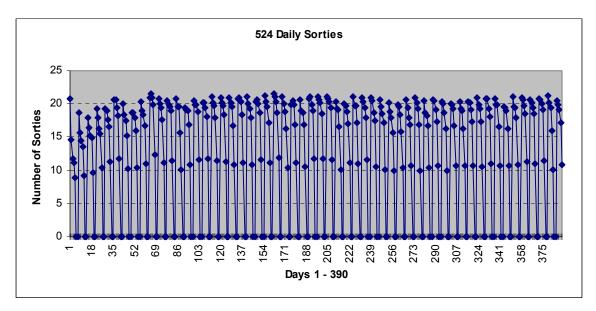


Figure 4. 524th Warm up Period

Actual Manning Scenario: Baseline (Group 1)

The first simulation conducted for each squadron was to establish a baseline simulation scenario that incorporated Cannon's actual manning, shifts, and NMCS rates. This meant that the simulation scenario should reflect actual manpower numbers dispersed over three shifts of maintenance on Monday through Friday and one shift on Saturday. Day shift (0800-1600) and swing shift (1600-2400) had the largest proportion of the total maintenance manpower allocated to them with mid shift (2400-0800) comprising the balance of the manpower. One limitation to this research involved how to model 10-hour shifts in the LCOM (Cannon maintainers currently work a standard 10 hour shift). When modeling shifts in the LCOM, the 24-hour day must be split such that the sum of the shifts equals 24 hours. To overcome this limitation the researcher elected to allow overtime of two hours for personnel, which allowed maintenance personnel to continue working on tasks instead of being preempted at the end of a shift. The researcher believes this is comes closer to modeling 10-hour shifts for simulation purposes. This manpower allocation reflects Cannon's actual maintenance practices throughout FY2002. Supply information was varied until the actual NMCS rates for each unit were attained. The results from this simulation scenario were used as a baseline for comparison as manning and shift alternatives were explored during alternative runs.

Authorized Manning Scenario (Group 1)

The second simulation involved incorporating the authorized manning for each squadron into the LCOM scenario while leaving everything else the same.

Actual Manning with No Overtime and Baseline Parts (Group 2)

The third simulation scenario involved modeling assigned manning numbers and incorporating the shift policy as published in AFI21-101_ACCSUP1_INT which states that maintenance will "limit third-shift manning to small servicing crews, essential maintenance personnel, and weapons load training" (HQ ACC, 2003). In addition, the instruction states "maintenance personnel will be scheduled for duty based on a 40-hour workweek" (HQ ACC, 2003). In lieu of this policy the researcher chose to model shifts which reflect the spirit of AFI21-101 by eliminating mid shift, reducing shifts to eight-hours, and eliminating weekend work. Eliminating weekend work is not stated in the instruction; however, the assumption is that working weekends is not desirable. Manning previously allocated to mid shift was redistributed to the remaining two shifts and supply numbers were unchanged.

Authorized Manning with No Overtime and Baseline Parts (Group 2)

The fourth simulation scenario involved modeling authorized manning numbers and incorporating the reduced shift policy used in the third scenario while utilizing the parts established by the baseline model.

Actual Manning with Overtime and More Parts (Group 3)

The fifth simulation scenario involved modeling assigned manning numbers working the shifts used in the baseline model. Parts were increased to a level established in Group 4's scenarios.

Authorized Manning with Overtime and More Parts (Group 3)

The sixth simulation scenario involved modeling authorized manning numbers working the shifts used in the baseline model. Parts were increased to a level established in Group 4's scenarios.

Actual Manning with No Overtime and More Parts (Group 4)

The seventh simulation scenario involved modeling actual manning numbers and working them under reduced man-hours while increasing the number of supplies to reach the actual NMCS rate that was realized during FY2002. This scenario was used as the parts baseline for Groups 3 and 4 since it represents the most constraining in terms of manpower and shift philosophy.

Authorized Manning with No Overtime and More Parts (Group 4)

The eighth simulation scenario involved modeling authorized manning numbers and working them under reduced man-hours while increasing the number of supplies as discussed in the seventh scenario.

Statistical Methodology

Once the 24 different scenarios were executed and the SGR and NMCS data collected, a methodology had to be developed to analyze the results and draw conclusions. The analysis, which will be covered in detail in the next chapter, was separated into three portions. The first portion deals with validating the baseline model's ability to reflect what actually occurred in each unit during FY2002. This analysis will use hypothesis testing to determine whether the SGR of the baseline model is statistically equivalent to Cannon's actual SGR. The second portion of the analysis uses factor analysis to determine if any of the factors (manpower, shifts, or parts availability) affect the number of sorties produced during simulation. The final portion of the analysis will use paired t-tests to determine which factors influence the simulation model's sortie output.

Summary

This chapter covered the methodology used to construct the simulation scenarios used in this research effort. The chapter began with a discussion of the test subjects and data used to conduct the research. The chapter then addressed the modification of the Block 30 and Block 40 models (acquired from ACC) to incorporate Cannon's FY2002 characteristics. The chapter then discussed the iterative process utilized to model the 18 different scenarios used for this research. The chapter concluded with a brief description of the statistical methodology used to analyze results and draw conclusions. Chapter 4 will discuss, in detail, the analysis and results of the research.

45

IV. Analysis and Results

Chapter Overview

The purpose of this chapter is to report the results and analysis of the simulation scenarios conducted according to the methodology discussed in the previous chapter. The results and analysis presented in this chapter are broken down into four areas. The first area simply presents the results of the simulation runs from each of the 24 different scenarios. The second area is dedicated to validating the baseline models for each of the flying units. This will entail determining whether the baseline simulation scenarios, which modeled Cannon's actual FY2002 maintenance parameters, are statistically equivalent to what Cannon realized during the period. The baseline models that pass the first test will then move into the third area of analysis. The third area will concern itself with an analysis of the 24 scenarios to determine if any of the factors (manpower, shifts, or parts availability) has an affect on LCOM's sortie producing capability. A multifactor analysis of variance (ANOVA) will be used to perform the analysis. Assuming that the ANOVA shows that at least one factor has an effect, the fourth area of analysis will use difference of means tests to determine which factors produced different sortie numbers in LCOM. The chapter will conclude with a restatement of the investigative questions presented in Chapter #1 followed by conclusions to those questions in light of the analysis.

Results of Simulation Scenarios

The following paragraph explains the coding used to abbreviate the simulation scenarios found in throughout this document. Each simulation scenario is identified by

four parameters separated by a "/". The first parameter identifies the squadron (i.e. 522 or 523rd). The second parameter identifies whether the manpower modeled was authorized (AU) or assigned (AS). The third parameter identifies whether the shifts modeled were actual (O depicting overtime; 10 hours and Saturday weekend work) or as per command guidance (N depicting 8 hours and no weekends). The fourth parameter identifies whether the number of parts modeled are equal to the amount of parts developed under the baseline scenario (B) or unlimited (U). For example, 522/AS/O/B, means that the scenario modeled the 522nd with their FY2002 assigned manning (AS), shift policy (O), and the baseline parts availability (used to recreate their FY2002 NMCS rate).

Tables 3 through 5 display the results for the simulation scenarios for each respective squadron. A more detailed analysis will be included later in the chapter; however, a general discussion based on inspection will ensue.

522nd Results

The first four rows of Table 3 (522nd results) show the results from the scenarios where the number of parts was established by the baseline model (522/AS/O/B) and left alone while manpower was adjusted from assigned to authorized and shifts were varied between overtime and normal. When comparing the first row to the second row where manpower was raised from assigned to authorized there appears to be an increase in the number of sorties flown. The slight increase in NMCS rate from the baseline model to the authorized manning model is statistically insignificant. The third and fourth rows display the results after reducing shift hours to eight and eliminating weekend work while

still modeling the parts established by the baseline model. Note the significant decrease in the sortie output coupled with a significant increase in the respective NMCS rates of these two scenarios when compared to the first two scenarios. The significant increase in the NMCS rates can be directly attributed to the reduction in backshop personnel productivity (reduced shifts). This increase in the NMCS rate directly contributes to the decline in sortie production.

The last four rows of Table 3 show the results from the scenarios where the number of parts was established by a baseline model, which modeled eight-hour shifts and no weekend work (522/AS/N/U). A "U" was used as a symbol for these scenarios since virtually an unlimited number of parts had to be modeled (over 25 of each part) to reach the FY2002 NMCS rate of that squadron. Note the apparent increase in sorties of these four scenarios when compared to their counter part in the first four scenarios. Also note the significant reduction in the NMCS rate (at or near zero) at these parts levels when shifts are raised to 10 hours and weekend work. Finally, note within groups, as manpower is varied between assigned and authorized, there is an apparent increase in sorties produced.

Squadron &	Sorties	Avg Sorties	Sortie	Percentage	Average	NMCS
Scenario	Scheduled	Flown	Std Dev	Sorties Flown	NMCS Rate	Std Dev
522/AS/O/B	4484	3881.27	338.91	86.56	11.19	9.55
522/AU/O/B	4484	4085	273	91.10	13.47	8.56
522/AS/N/B	4484	1935.2	415.61	43.16	56.02	8.88
522/AU/N/B	4484	1844.01	426.54	41.12	59.16	8.99
522/AS/O/U	4484	4225.97	29.92	94.25	0	0
522/AU/O/U	4484	4409.95	17.71	98.35	0.056	0.41
522/AS/N/U	4484	3882.27	316.69	86.58	11.49	7.39
522/AU/N/U	4484	3935.19	338.62	87.76	12.13	7.80

Table 3. 522nd LCOM Results

523rd Results

Table 4 displays the results of the 523^{rd} , however, please refer to the previous discussion of the 522^{nd} 's results in view of the fact that they are the similar.

Squadron &	Sorties	Avg Sorties	Sortie	Percentage	Average	NMCS
Scenario	Scheduled	Flown	Std Dev	Sorties Flown	NMCS Rate	Std Dev
523/AS/O/B	4074	3715.17	285.26	91.19	10.25	9.07
523/AU/O/B	4074	3858.05	228.25	94.70	12.91	9.25
523/AS/N/B	4074	1682.55	411.37	41.30	60.10	9.06
523/AU/N/B	4074	1720.97	365.99	42.24	59.91	8.07
523/AS/O/U	4074	3971.51	20.50	97.48	0	0
523/AU/O/U	4074	4062.45	6.02	99.72	0	0
523/AS/N/U	4074	3683.21	247.15	90.41	10.46	6.66
523/AU/N/U	4074	3662.87	340.18	89.91	12.09	8.76

Table 4. 523rd LCOM Results

524th Results

Table 5 displays the results of the 524th. Similar to the first two models, an apparent increase exists in the number of sorties produced as manpower is raised from assigned to authorized and all else is left at baseline levels. The difference lies in the second two scenarios where shifts are reduced to eight hours and no weekends and all else is modeled the same. Note that there is virtually no difference between sortie output between the first scenario where manpower is modeled as assigned (with overtime) and the third scenario where manpower is modeled as assigned (with no overtime). Also note that the NMCS rate of the third scenario is twice that of the NMCS rate from the first scenario without a corresponding decrease in sortie output. The scenario's where authorized manpower was modeled behaved similarly to the 522nd and 523rd models, although, there was less of an increase in the NMCS rates. The last four scenarios where parts were increased, however, behaved in the same manner as the 522nd and the 523rd.

These apparent differences between the models are troubling and will be readdressed later in this chapter.

Squadron &	Sorties	Avg Sorties	Sortie	Percentage	Average	NMCS
Scenario	Scheduled	Flown	Std Dev	Sorties Flown	NMCS Rate	Std Dev
524/AS/O/B	5672	4542.97	140.76	80.09	10.55	2.82
524/AU/O/B	5672	5097.19	208.37	89.87	13.72	4.29
524/AS/N/B	5672	4533.24	283.88	79.92	21.08	5.86
524/AU/N/B	5672	4594.96	313.22	81.01	21.45	5.87
524/AS/O/U	5672	4907.65	209.84	86.52	2.41	4.49
524/AU/O/U	5672	5359.33	223.57	94.49	4.19	6.08
524/AS/N/U	5672	4796.91	322.73	84.57	13.60	7.32
524/AU/N/U	5672	4857.73	345.29	85.64	14.07	7.38

Table 5. 524th LCOM Results

Validity of the LCOM

A basic discussion of simulation model validation is required before the specifics of validating the baseline models are discussed. According to Law and Kelton there are three steps to validate a simulation model. The first step involves developing a model with high face validity. The second step involves testing the assumptions of the model empirically. The third step involves a common sense approach to determine if the output results resemble the system under study (Law and Kelton, 1992).

Developing a model with face validity means that the model, "on the surface, seems reasonable to people who are knowledgeable about the system under study." (Law and Kelton, 1992). The researcher spent some time reviewing the task networks (Form 30's) in the models provided to see if they were reasonable with respect to task times, resources, and equipment. The size and detail of the models prohibited a thorough analysis. The LCOM analysts who developed the respective studies used for this research routinely conduct field audits to verify that the information is accurate (Stone, 2002). Since the models used for this research were provided by ACC and, in fact, used to conduct actual manpower studies the researcher assumed that the models had face validity.

According to Law and Kelton the second step in validating a model involves testing the assumptions of the model empirically (1992). Again the models provided are assumed to have undergone this analysis during their development.

"The most definitive test of a simulation model's validity is establishing that its output data closely resemble the output data that would be expected from the actual (proposed) system." (Law and Kelton, 1992). Again, it is assumed that the models provided passed this test during manpower studies, however, since the models were modified as part of this research the focus of this research, is to perform this type of validity testing on the modified models.

Validation of Baseline Models

It is important to this research effort that the baseline models reflect the reality that they were modeled to portray. In the case of this research effort, one baseline model was built to reflect the manpower, shift schedules and parts availability for each flying unit studied at Cannon (522nd, 523rd, 524th). The main dependent variable of concern was the number of sorties actually flown during FY2002 at Cannon by each flying unit. For the LCOM to be considered a viable tool for predicting maintenance capability it was important for each model to produce results that mirrored Cannon's FY2002 reality. In order to determine whether LCOM produced valid results, a z test was performed to test the following hypothesis for each respective flying unit. 522nd:

H_o: $\mu = \mu_0$ (3922 sorties that the 522nd actually flew during FY2002) H_A: $\mu \neq \mu_0$ (3922 sorties)

523rd:

H_o: $\mu = \mu_0$ (3778 sorties that the 523rd actually flew during FY2002) H_A: $\mu \neq \mu_0$ (3778 sorties)

524th:

H_o: $\mu = \mu_0$ (5179 sorties that the 524th actually flew during FY2002) H_A: $\mu \neq \mu_0$ (5179 sorties)

where:

$$\mu$$
 = Population mean of the number of sorties produced by the baseline model.

A z test is reserved for populations that are normally distributed. Since there were 75 data points, the Central Limit Theorem was invoked with the assumption that the distribution was approximately normal (Devore, 2000). Under this assumption the following formula taken from the Devore text could be used to determine the test statistic for each flying unit's results.

$$Z = \frac{\overline{X} - \mu_o}{\frac{S}{\sqrt{n}}}$$

where:

 \overline{X} = population mean of sorties produced by squadron (LCOM) μ_o = Actual number of sorties produced (Actual FY2002) S = Standard deviation of the population mean of sorties produced (LCOM) n = 75 replications

The null hypothesis states that the LCOM sortie mean is the same as Cannon's actual FY2002 sorties. By using a two-tailed test with an $\alpha = .05$ level of significance the rejection region for the null hypothesis is established by the following inequalities: $z \le -1.96$ or $z \ge 1.96$. In other words, if the absolute value of the z statistic exceeds 1.96 then it would be reasonable to assume that the LCOM simulation scenario was not capturing the reality of Cannon's flying hour program. Table 6 lists the results of this analysis.

Table 6. LCOM Baseline Model vs. Cannon's Actual Sortie Count

	FY2002	LCOM					Reject
Squadron	Sorties	Sortie µ	%	LCOM σ	Reps	Z Score	Null?
522	3922	3881.27	98.96	338.91	75	-1.0408	No
523	3778	3715.17	98.34	285.26	75	-1.9076	No
524	5179	4542.97	87.72	140.76	75	-39.13	Yes

After analyzing the results from the z test presented in Table 6 above, the researcher concluded that there is insufficient evidence to reject the null hypothesis (the number of sorties produced by LCOM are equivalent to FY2002) for the 522nd and the 523rd. Also note that the 522nd and the 523rd simulation scenarios produced 98.96 and 98.34 percent, respectively, of the sorties that actually occurred during FY2002.

On the other hand there is sufficient evidence to suggest that the baseline model for the 524th does not produce the same number of sorties as reality. Since the 524th model failed to produce favorable results and the fact that there were troubling results as previously discussed in the results section, the 524th's model is suspect and will not be subject to further analysis. As explained previously, trial and error through repeated adjustment of available parts was used to determine the NMCS rate of each squadron's baseline model. This trial and error process was conducted using only one replication of each model to save time so the possibility existed that after 75 replications this number could be different than anticipated. Table 7 presents the results after conducting a z test as described above but replaces the sortie statistics with NMCS statistics from each squadron.

Table 7. LCOM Baseline Model vs. Cannon's Actual NMCS Rate

Squadron	FY2002 NMCS	LCOM NMCS μ	LCOM σ	Reps	Z Score	Reject Null?
522	11.9	11.1871	9.547	75	-0.647	No
523	10.4	10.2545	9.067	75	-0.1385	No
524	10.2	10.5589	2.821	75	1.105	No

After analyzing the results from the z test presented in Table 7 above, the researcher concluded that there is sufficient evidence to suggest that the null hypothesis (the NMCS rates are equivalent) cannot be rejected for any of the squadrons.

Multifactor ANOVA

The second phase of the analysis involved conducting a multifactor ANOVA on the three different factors (manning, shifts, and parts availability) to determine whether or not they affect the response variable (sorties) (Devore, 2000). Since the 522nd and the 523rd passed the baseline validation the following tables (Tables 8 and 9) present the results of the analysis followed by a discussion of the results.

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	6	552042268	92007045	965.3625
Error	593	56517812	95308.284	Prob > F
C. Total	599	608560080		<.0001

Table 8. 522nd Analysis of Variance

The conclusions regarding this test for the 522nd are based on a whole model F test. To form a whole model F test, the JMP software divides the Mean Square for the Model by the Mean Square for Error. In this case, this quotient yields: 92,007,045 \div 95,308.284 = 965.363 as the F-ratio. Using 6 degrees of freedom (DF) in the numerator and 593 DF in the denominator, the critical value (taken from the F distribution table in the Devore text) is F~ 2.12 at a 0.05 level of significance. Since 965.363 \ge 2.12 we can say that at least one of the factors (manpower, shifts, or parts availability) has a significant effect of the number of sorties produced for the 522nd simulation scenarios (Devore, 2000).

Table 9. 523rd Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	6	517786096	86297683	1126.45
Error	593	45429904	76610.294	Prob > F
C. Total	599	563216000		0.0000

Similarly for the 523rd, the quotient yields: $86,297,683 \div 76,610.294 = 1126.45$ as the F-ratio. Using 6 degrees of freedom (DF) in the numerator and 593 DF in the denominator, the critical value (taken from the F distribution table in the Devore text) is $F\sim 2.12$ at a 0.05 level of significance. Since $1126.45 \ge 2.12$ we can say that at least one of the factors (manpower, shifts, or parts availability) has a significant effect of the number of sorties produced for the 523^{rd} simulation scenarios (Devore, 2000).

Comparison of Each Simulation Scenario

This phase of the analysis focused on LCOM's ability to react to variations in manpower, shift scheduling and part availability. Since the baseline model for the 524th did not produce favorable results when measuring its ability to replicate reality, the results from successive tests for that model will not be analyzed. The results and analysis of the remaining two squadrons, which incidentally were modeled with the modified block 30 databases, will be discussed in the following paragraphs. To avoid confounding the results by the introduction of increased randomness, the researcher ran comparative analysis on models where only one factor was manipulated while the remaining two factors were held constant between pairwise comparisons.

The analysis and results for this phase of the research focused on comparing the sortie means of each of the models where factors were varied. There are six different tables (three for the 522nd and three for the 523rd) used in the following text to display the results of 24 hypothesis tests used to compare the sortie means of the models. The Central Limit Theorem was invoked and the synchronization of the model random number streams enabled the used of a paired t-test to determine if a difference existed between the means of each model studied (Devore, 2000). The following hypotheses were used for each of the 24 tests.

H_o: $\mu_d = 0$ (The is no difference between the sortie count means) H_a: $\mu_d \neq 0$ (There is a difference between the sortie count means)

56

The test statistic used to calculate the t value was:

$$t = \frac{\overline{d} - \Delta_o}{\frac{S_d}{\sqrt{n}}}$$

where:

 \overline{d} = Sample mean of the differences in sortie count (LCOM) Δ_o = Null hypothesis value (zero for all tests) s_d = Sample standard deviation of the differences in sortie count (LCOM) n = 75 replications

By using a two-tailed test with an α = .05 level of significance the rejection

region for the null hypothesis is established by the following inequalities: $t \le -2.00$ or $t \ge 2.00$. In other words, if the absolute value of the t statistic exceeds 2.00 then it would be reasonable to assume that the differences between the baseline model and the comparison model are statistically significant.

Effect of Manpower Variation (522nd)

Table 10 shows the results of comparing the sortie means of simulation runs of

the 522nd where manpower was varied between AU and AS, and shifts and parts

availability were held constant between pairwise comparisons.

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
522/AS/O/B- 522/AU/O/B	-203.573	409.85	75	-4.302	Y
522/AS/O/U- 522/AU/O/U	-183.973	35.745	75	-44.573	Y
522/AS/N/B- 522/AU/N/B	91.187	538.9	75	1.465	Ν
522/AS/N/U- 522/AU/N/U	-52.92	448.95	75	-1.021	Ν

Table 10. 522nd Manpower Pairwise Comparison

The results in the first two rows show that there is a statistically significant difference between the number of sorties produced when manpower levels are varied between authorized and assigned. Specifically, the number of sorties increases as manpower levels are raised from assigned to authorized. This increase reflects what should actually occur at a unit where manpower is a constraint.

The results in the last two rows show that we cannot reject the null hypothesis that the sortie means are the same. The difference between the scenarios in the first two rows and the scenarios in the last two rows lies in the shift philosophies modeled. The first two rows modeled "O" which means that they worked 10-hour shifts and weekends. The last two rows modeled "N" which means that they worked eight hours shifts and no weekends. The results of the last two rows are interesting as they suggest that reducing shift hours and eliminating weekend work minimizes the effect of an increase in manning.

Effect of Manpower Variation (523rd)

Table 11 shows the results of comparing the sortie means of simulation runs of the 523rd where manpower was varied between AU and AS, and shifts and parts availability were held constant between pairwise comparisons.

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
523/AS/O/B- 523/AU/O/B	-142.88	375.566	75	-3.295	Y
523/AS/O/U- 523/AU/O/U	-90.947	19.908	75	-39.563	Y
523/AS/N/B- 523/AU/N/B	-38.427	483.851	75	-0.688	Ν
523/AS/N/U- 523/AU/N/U	20.347	435.724	75	0.404	Ν

Table 11. 523rd Manpower Pairwise Comparison

The results for the 523rd mirror the results for the 522nd discussed above.

Effect of Shift Variation (522nd)

Table 12 shows the results of comparing the sortie means of simulation runs of the 522nd where shifts were varied between O and N, and manpower and parts availability were held constant between pairwise comparisons.

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
522/AS/O/B- 522/AS/N/B	1946.067	498.045	75	33.839	Y
522/AU/O/B- 522/AU/N/B	2240.827	455.912	75	42.566	Y
522/AS/O/U- 522/AS/N/U	343.707	315.333	75	9.44	Y
522/AU/O/U- 522/AU/N/U	474.76	337.183	75	12.194	Y

Table 12. 522nd Shift Pairwise Comparison

The results of the hypothesis testing show, in all cases, that there is a significant difference between the number of sorties produced when shifts are varied from O (10-hours and weekends) to N (8-hours and no weekends). These results reflect what we should expect to see when the number of available man-hours is reduced.

Effect of Shift Variation (523rd)

Table 13 shows the results of comparing the sortie means of simulation runs of the 523rd where shifts were varied between O and N, and manpower and parts availability were held constant between pairwise comparisons.

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
523/AS/O/B- 523/AS/N/B	2032.627	491.6	75	35.808	Y
523/AU/O/B- 523/AU/N/B	2137.08	426.099	75	43.435	Y
523/AS/O/U- 523/AS/N/U	288.293	244.921	75	10.194	Y
523/AU/O/U- 523/AU/N/U	399.587	339.453	75	10.194	Y

Table 13. 523rd Shift Pairwise Comparison

The results for the 523rd mirror the results for the 522nd discussed above.

Effect of Parts Availability Variation (522nd)

Table 14 shows the results of comparing the sortie means of simulation runs of the 522nd where parts were varied between B and U, and manpower and shifts were held constant between pairwise comparisons.

TC 1 1 1	4 500 1	301000	D ' '	a ·
Tabla I	1 5 1 Ind		DOIMINICO	Comportion
I ADIE I	4)///////		Pan wise	Comparison
1 4010 1	1. <i>J – – – – – – – – – – – – – – – – – – </i>		1 411 11100	Companyon

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
522/AS/O/B- 522/AS/O/U	-344.707	336.8	75	-8.864	Y
522/AU/O/B- 522/AU/O/U	-325.107	275.517	75	-10.219	Y
522/AS/N/B- 522/AS/N/U	-1947.067	472.467	75	-35.689	Y
522/AU/N/B- 522/AU/N/U	-2091.173	465.679	75	-38.89	Y

The results of the hypothesis testing show, in all cases, that there is a significant difference between the number of sorties produced when parts available are varied from B (NMCS rate determine by the baseline) to U (virtually unlimited as determined by the most constraining scenario). These results reflect what we should expect to see when the number of available man-hours is reduced.

Effect of Parts Availability Variation (523rd)

Table 15 shows the results of comparing the sortie means of simulation runs of the 523rd where parts were varied between B and U, and manpower and shifts were held constant between pairwise comparisons.

Squadron & Scenario	Sample mean of Differences	Sample Std Dev of Differences	Number of Reps	t-score	Reject Null?
523/AS/O/B- 523/AS/O/U	-256.333	288.864	75	-7.685	Y
523/AU/O/B- 523/AU/O/U	-204.4	228.368	75	-7.751	Y
523/AS/N/B- 523/AS/N/U	-2000.667	436.898	75	-39.658	Y
523/AU/N/B- 523/AU/N/U	-1941.893	516.451	75	-32.563	Y

Table 15. 523 NMCS Pairwise Comparison

The results for the 523rd mirror the results for the 522nd discussed above.

Summary of Factor Variation Effects

The following paragraph summarizes the effect on the LCOM's sortie output as analyzed during the pairwise comparisons (Tables 10 through 15) where manpower, shifts, or parts were varied. In general, when manpower levels were raised from assigned to authorized there were marginal gains in the numbers of sorties produced (~ 190 sortie increase). When shifts were reduced from overtime to normal shifts there was a

significant decrease in the number of sorties produced (loss of ~2000 sorties). Finally when the number of parts was increased from baseline levels there was a significant increase in the number of sorties produced (~ 2000 sorties).

Investigative Questions Answered

The purpose of this research effort is contained within the overarching research question: "Can the LCOM be modified by using the actual peacetime maintenance manpower numbers, shift schedules, and parts availability numbers from an active duty squadron to assess that squadron's current maintenance capacity to execute flying schedules?" To answer this question several investigative questions had to be answered first. The following paragraphs restate the investigative questions and provide the researcher's answers to those questions base on the analysis previously discussed.

Given previous year data from an F-16 wing (manpower level, flying schedule, and supply rates) will LCOM produce the same sortie rates that the wing actually attained?

The answer to this question is based on the results of the baseline model analysis. Two of the three baseline models that simulated the 522nd, 523rd, and 524th's actual FY2002 parameters provided sufficient evidence to suggest that the sorties rates from the LCOM are same as the actual sortie rate. The two baseline models that met the comparison were the 522nd and the 523rd, which were built using the Block 30 model provided by ACC. The third baseline model, which simulated the 524th, provided sufficient evidence to suggest that the simulated sortie rate and the actual sortie rate were different. For this reason, answers to the following investigative questions will only consider the 522^{nd} and the 523^{rd} .

Is the LCOM sensitive enough to produce differences in the number of sorties as manning levels are varied between authorized and assigned?

The answer to this question is mixed. The first two rows in Tables 10 and 11 show the results of scenarios for the 522nd and the 523rd, respectively, where shifts and parts availability simulated Cannon's FY2002 numbers. The results for both squadrons suggest that there is a difference between sortie outputs when manpower is increased from assigned to authorized. These results pass Law and Kelton's third validity test, which is designed to compare the simulation output with reality (Law and Kelton, 1992). In other words, we should expect to see the increase in the number of sorties produced with an increase in manpower.

The last two rows in the tables show the results from scenarios where shifts were reduced to match command guidance (8 hours and no weekends). Parts availability, in this case, were held at Cannon's FY2002 numbers. These results suggest that we cannot reject the null hypothesis, which states that the two sortie outputs are equal. These results cause problems when relating them to Law and Kelton's third validity test since we should expect to see an increase in the number of sorties produced with an increase in manpower. An explanation for the absence of a sortie increase might be explained by the possibility that shift variances have a larger impact on sortie production than do manpower increases from assigned to authorized.

Is the LCOM sensitive enough to produce differences in the number of sorties as shift-scheduling philosophies are varied between 10-hour shifts/weekend work and 8-hour shifts/no weekend work?

Tables 12 and 13 show the results of scenarios for the 522nd and the 523rd, respectively, where manpower and parts availability were held constant between each pairwise comparison while the different shift scenarios were compared against one another. The results for both squadrons suggest that there is a significant difference between sortie outputs when shifts are varied between overtime and normal hours. In every case a reduction in shift hours resulted in a corresponding decrease in the number of sorties produced. These results pass Law and Kelton's third validity test, which is designed to compare the simulation output with reality (Law and Kelton, 1992). In other words, we should expect to see a decrease in the number of sorties produced with a decrease in the number of available man-hours. A concern, however, exists in the differing NMCS rate results realized between the Block 30 and Block 40 models. These concerns will be addressed in Chapter 5.

Is the LCOM sensitive enough to produce differences in the number of sorties as parts availability is varied?

Tables 14 and 15 show the results of scenarios for the 522nd and the 523rd, respectively, where manpower and shifts were held constant between each pairwise comparison while the different parts scenarios were compared against one another. The results for both squadrons suggest that there is a significant difference between sortie outputs when parts are varied between baseline levels and more parts. In every case an

increase in parts resulted in a corresponding increase in the number of sorties produced. These results pass Law and Kelton's third validity test, which is designed to compare the simulation output with reality (Law and Kelton, 1992). In other words, we should expect to see an increase in the number of sorties produced with an increase in the number of available parts.

What factors (manpower, shift scheduling, or parts availability) are most influential to the LCOM in terms of sortie production?

Tables 16 and 17 for the 522nd and the 523rd, respectively, show the F-Ratios from the multifactor ANOVA test performed earlier. A comparison of each factor's F-Ratio to the F critical value of 2.12 (determined in prior analysis) suggests that all of the factors have significant influence on the number of sorties produced except for the crossed term of manning * parts. A rank order of the basic terms in the analysis reveals that shifts have the most influence followed by parts and then manning.

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Manning	1	1	1143717	12.0002	0.0006
Shifts	1	1	234877769	2464.4	<.0001
Manning*Shifts	1	1	1699847	17.8352	<.0001
Parts	1	1	207804058	2180.336	<.0001
Manning*Parts	1	1	145330	1.5248	0.2174
Shifts*Parts	1	1	106371546	1116.079	<.0001

Table 16. 522nd Factor Effect Tests

Table 17. 523rd Factor Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Manning	1	1	594909	7.7654	0.0055
Shifts	1	1	221213890	2887.522	<.0001
Manning*Shifts	1	1	436375	5.6960	0.0173
Parts	1	1	181771802	2372.681	<.0001
Manning*Parts	1	1	114900	1.4998	0.2212
Shifts*Parts	1	1	113654221	1483.537	<.0001

Summary

The purpose of this chapter was to report the results and analysis of the simulation scenarios conducted according to the methodology discussed in the previous chapter. The results and analysis presented in this chapter were broken down into four areas designed to answer the investigative questions presented in Chapter 1. The chapter concluded with a restatement of the investigative questions followed by conclusions to those questions in light of the analysis.

V. Conclusions and Recommendations

Chapter Overview

The purpose of this chapter is to discuss the conclusions and recommendations of this research effort. The chapter will begin with a discussion of the conclusions to the overarching research question followed by a discussion of the significance of those conclusions. The chapter will then move to a discussion of the recommendations for action based on these conclusions. The chapter will conclude with recommendations for future research.

Conclusions of Research

The purpose of this research effort was guided by the pursuit of an answer to the overarching research question "Can the LCOM be modified by using the actual peacetime maintenance manpower numbers, shift schedules, and parts availability numbers from an active duty squadron to assess that squadron's current maintenance capacity to execute flying schedules?" The conclusions to the investigative questions derived from the research question were addressed at the end of Chapter 4. The following paragraphs focus on the conclusions to the research question.

The simulation scenarios used to conduct this research provided mixed results. The squadrons simulated with the Block 30 model (522nd and the 523rd) provided favorable results. In other words, these models when modified to reflect the actual manpower numbers, shifts, and NMCS rate, produced the same numbers through simulation that each squadron realized during FY2002. Which indicates that the Block

30 model (provided by ACC), under these conditions, would be a useful tool in estimate maintenance manpower capacity for a Block 30 F-16 squadron.

The Block 40 model which was modified to simulate the 524th, failed to provide sortie numbers that mirrored FY2002. In fairness to the Block 40 model and the analysts who built it, the reason for this may be due to a lack of understanding of the total model on the researcher's part. Another reason could be attributed the possibility that the 524th, which is the unit that the Block 40 model was built to simulate, performed a "Herculean" feat by executing a schedule that the LCOM indicates was too much. A final reason could be the relative instability of the model, which was characterized by peculiar results as presented in Table 5.

The main area of concern when discussing the differences between the Block 30 and Block 40 model lies in the NMCS rate difference realized between the results of scenarios where shift policy was reduced from 10-hour shifts and weekend work to 8-hour shifts and no weekend work. When the Block 40 model was modified to the reduced shift policy while leaving parts availability at baseline levels the NMCS rate for either authorized or assigned manpower averaged approximately 21%. The NMCS rates for the Block 30 model under the same conditions, on the other hand, ranged from 56 to 60 %. The difference between these two outcomes causes this researcher some concern in light of the fact that the backshop manpower modeled under all scenarios was exactly the same. Recommendations for action, which address these concerns, will be discussed later in this chapter.

Significance of Research

A tool that could be used in the field to estimate the current capacity of an aircraft maintenance unit to produce sorties may prove to be extremely useful for a number of reasons. First, maintainers currently compensate for the lack of accurate annual flying hour planning by working weekends and long hours, which contributes to the AF's retention problems. Second, by planning more accurately, maintainers would work fewer hours and avoid weekend work, which would alleviate this negative retention component. The LCOM is a tool that the researcher believes would fit this need.

Recommendations for Action

Recommendations for action revolve around the differing sortie production and NMCS rate results found while using two different software models (Block 30 and 40). One of the differences between the Block 30 and Block 40 models that could lead to differing sortie and NMCS rate results is the methodology used to model scheduled maintenance tasks such as phase inspections. The Block 30 model uses attributes to track and schedule these inspections where as the Block 40 model relies heavily on the analyst to schedule these events.

Another difference between the two models is the manner in which task networks were developed in the Block 30 or Block 40 models. This researcher believes that the task networks between nearly identical aircraft (Block 30 and Block 40 F-16's) should be of a similar nature. The 40 Percentage point swing in the results of NMCS rates between these two models suggests that the task networks are substantially different. As discussed

before, this researcher believes that a shift reduction policy should have impacted each model in a similar manner.

While the researcher does not claim to be an expert on the LCOM it seems logical that standard procedures for developing models for manpower studies should be developed. These procedures should, at a minimum, standardize the methods and procedures used in modeling scheduled maintenance tasks by either scheduling them manually or utilizing attributes. In addition, the methodology and assumptions used to build task networks should be the same. Standardization of these processes for LCOM manpower studies would eliminate differences induced by individual analyst's modeling practices resulting in more reliable analysis.

Recommendations for Future Research

Several opportunities for future research into the LCOM maintenance capability phenomenon exist. The short list below represents the topics most interesting to the researcher.

1. Conduct an LCOM study to determine the affect of skill level mixture (3-, 5-, and 7-level) on maintenance capability. Skill level productivity factors would need to be developed as discussed in Chapter 2 to transform actual manning numbers from a unit into aggregate numbers that the LCOM can employ.

2. Conduct an LCOM study to determine the affect that specific AFSC's have on the simulated sortie count and NMCS rates. Seek to identify which AFSC's are constraining LCOM's ability to produce sorties when actual manpower numbers from a

unit are used. Verify that the constraining AFSC is the same as what the unit actually believes is constraining.

3. Conduct an LCOM study to determine if the wartime scenarios used to conduct manpower studies represent the most demanding schedule maintainers face. Since peacetime schedules are generally built around 8, 10, or 12 fronts, determine if this presents a greater demand for the maintenance workforce.

4. Conduct an LCOM study to determine the affect that split operations has on maintenance capacity. This would entail converging on manpower, aircraft and, equipment numbers that accurately depict split operations.

5. Conduct an LCOM study to determine the affect of tail number scheduling on sortie output. This would entail learning how to model tail number scheduling in the LCOM.

6. Conduct an LCOM study to assess LCOM's usefulness in the field. This would entail travel to an operational unit to educate potential users on the LCOM model and then assessing their perceptions on the ease of use and accuracy of the model.

7. Conduct a study to explore the various techniques used by LCOM analysts used to build aircraft models. Determine if a set of "best practices" can be developed to standardize the process.

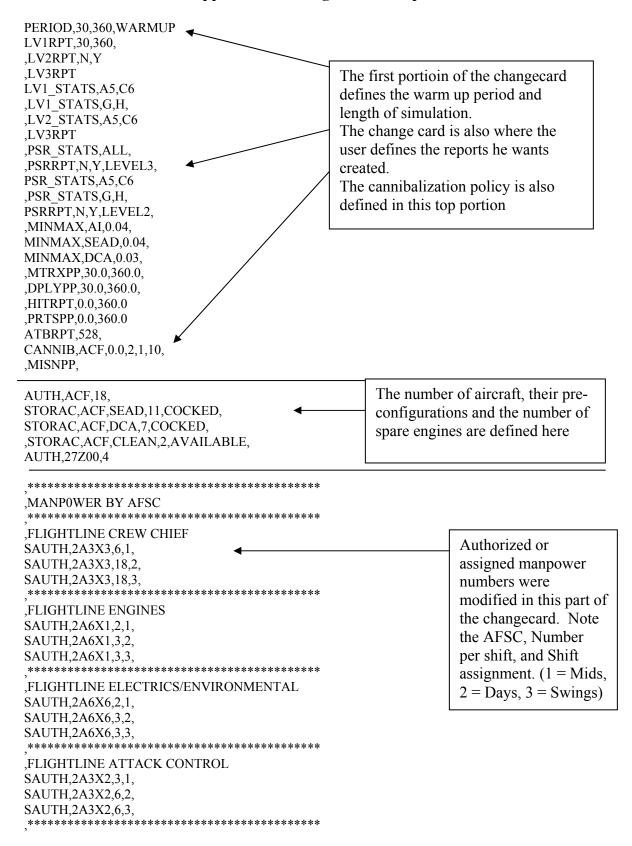
Summary

The purpose of this chapter was to discuss the conclusions and recommendations of this research effort. The chapter began with a discussion of the conclusions to the

overarching research question followed by a discussion of the significance of those conclusions. The chapter then moved to a discussion of the recommendations for action based on these conclusions. The chapter concluded with recommendations for future research.

			١	WING T	OTAL				
					Y	LCOM			
				%	norm	norm	1.461		
AFSC	NAME	Auth	Assign	of Auth	Auth	Assign	522%	523%	524%
2A332	Avionics	31	29	93.55%	21.22	19.85	26.00%	29.00%	45.00%
2A352	Avionics	85	48	56.47%	58.18	32.85	25.00%	25.00%	50.00%
2A372	Avionics	21	11	52.38%	14.37	7.53	24.00%	24.00%	52.00%
	Total	137	88	64.23%	93.77	60.23	25.00%	25.00%	
2A333	Crew Chief	77	146	189.61%	52.70	99.93	29.00%	34.00%	38.00%
2A353	Crew Chief	169	92	54.44%	115.67	62.97	33.00%	30.00%	37.00%
2A373	Crew Chief	42	30	71.43%	28.75	20.53	31.00%	31.00%	38.00%
	Total	288	268	93.06%	197.13	183.44	31.00%	31.00%	38.00%
2A333	F/L Crew Chief	60	114				77.00%	81.00%	76.00%
2A353	F/L Crew Chief	123	67				75.00%	73.00%	71.00%
2A373	F/L Crew Chief	27	19				62.00%	62.00%	69.00%
	Total	210	200						
2A333	Phs Crew Chief	17	32				23.00%	19.00%	24.00%
2A353	Phs Crew Chief	46	25				25.00%	27.00%	29.00%
2A373	Phs Crew Chief	15	11				38.00%	38.00%	31.00%
	Total	78	68						
2A631	Engines	13	13	100.00%	8.90	8.90	31.00%	31.00%	38.00%
2A651	Engines	33	18	54.55%	22.59	12.32	33.00%	30.00%	36.00%
2A671	Engines	6	5	83.33%	4.11	3.42	17.00%	33.00%	50.00%
	Total	52	36	69.23%	35.59	24.64			
21636	Elec/Env	6	18	300.00%	4.11	12.32	33.00%	33.00%	34.00%
2A656	Elec/Env	21	12	57.14%	14.37	8.21	33.00%	33.00%	34.00%
2A676	Elec/Env	6	4	66.67%	4.11	2.74	33.00%	33.00%	34.00%
2A070	Total	33		103.03%	22.59	23.27	55.0070	55.0070	34.0070
	I Utal	55	34	103.03 /0	22.39	23.21			
2W131	Weapons	53	70	132.08%	36.28	47.91	33.00%	33.00%	34.00%
2W151	Weapons	128	67	52.34%	87.61	45.86	33.00%	33.00%	34.00%
2W171	Weapons	44	28	63.64%	30.12	19.16	33.00%	33.00%	34.00%
	Total	225	165	73.33%	154.00	112.94			

Appendix A. Manpower Conversion Worksheets


				522			
AFSC	NAME	Auth	Assign	% of Auth	LCOM norm Auth	LCOM norm Assign	1.461
2A332	Avionics	8.00	7.54	94.25%	5.48	5.16	
2A352	Avionics	21.00	12.00	57.14%	14.37	8.21	
2A372	Avionics	5.00	2.64	52.80%	3.42	1.81	
	Total	34.00	22.00	64.71%	23.27	15.06	
2A333	Crew Chief	22.00	42.34	192.45%	15.06	28.98	
2A353	Crew Chief	55.00	30.36	55.20%	37.65	20.78	
2A373	Crew Chief	13.00	9.30	71.54%	8.90	6.37	
	Total	90.00	82.00	91.11%	61.60	56.13	
2A333	F/L Crew Chief	17.00	32.60	191.78%	11.64	22.31	
2A353	F/L Crew Chief	41.00	22.77	55.54%	28.06	15.59	
2A373	F/L Crew Chief	8.00	5.77	72.08%	5.48	3.95	
	Total	66.00	61.14	92.63%	45.17	41.85	
2A333	Phs Crew Chief	5.00	9.74	194.76%	3.42	6.67	
2A353	Phs Crew Chief	14.00	7.59	54.21%	9.58	5.20	
2A373	Phs Crew Chief	5.00	3.53	70.68%	3.42	2.42	
	Total	24.00	20.86	86.93%	16.43	14.28	
2A631	Engines	4.00	4.03	100.75%	2.74	2.76	
2A651	Engines	11.00	5.94	54.00%	7.53	4.07	
2A671	Engines	1.00	0.85	85.00%	0.68	0.58	
	Total	16.00	10.82	67.63%	10.95	7.41	
2A636	Elec/Env	2.00	5.94	297.00%	1.37	4.07	
2A656	Elec/Env	7.00	3.96	56.57%	4.79	2.71	
2A676	Elec/Env	2.00	1.32	66.00%	1.37	0.90	
	Total	11.00	11.22	102.00%	7.53	7.68	
2W131	Weapons	17.00	23.10	135.88%	11.64	15.81	
2W151	Weapons	43.00	22.11	51.42%	29.43	15.13	
2W171	Weapons	15.00	9.24	61.60%	10.27	6.32	
	Total	75.00	54.45	72.60%	51.33	37.27	
2W131	Weapons MX	4.00	5.31	132.83%	2.74	3.64	
2W151	Weapons MX	8.00	5.09	63.57%	5.48	3.48	
2W171	Weapons MX	5.00	2.13	42.50%	3.42	1.45	
	Total	17.00	12.52	73.67%	11.64	8.57	
2W131	Weapons Load	13.00	17.79	136.82%	8.90	12.17	
2W151	Weapons Load	35.00	17.02	48.64%	23.96	11.65	
2W171	Weapons Load	10.00	7.11	71.15%	6.84	4.87	
	Total	58.00	41.93	72.29%	39.70	28.70	

				523			
AFSC	NAME	Auth	Assign	% of Auth	LCOM norm Auth	LCOM norm Assign 1	1.461
2A332	Avionics	9.00	8.41	93.44%	6.16	5.76	
2A352	Avionics	21.00	12.00	57.14%	14.37	8.21	
2A372	Avionics	5.00	2.64	52.80%	3.42	1.81	
	Total	35.00	23.05	65.86%	23.96	15.78	
2A333	Crew Chief	26.00	49.64	190.92%	17.80	33.98	
2A353	Crew Chief	51.00	27.60	54.12%	34.91	18.89	
2A373	Crew Chief	13.00	9.30	71.54%	8.90	6.37	
	Total	90.00	86.54	96.16%	61.60	59.23	
2A333	F/L Crew Chief	21.00	40.21	191.47%	14.37	27.52	
2A353	F/L Crew Chief	37.00	20.15	54.45%	25.33	13.79	
2A373	F/L Crew Chief	8.00	5.77	72.08%	5.48	3.95	
	Total	66.00	66.12	100.19%	45.17	45.26	
2A333	Phs Crew Chief	5.00	9.43	188.63%	3.42	6.46	
2A353	Phs Crew Chief	14.00	7.45	53.23%	9.58	5.10	
2A373	Phs Crew Chief	5.00	3.53	70.68%	3.42	2.42	
	Total	24.00	20.42	85.07%	16.43	13.98	
2A631	Engines	4.00	4.03	100.75%	2.74	2.76	
2A651	Engines	10.00	5.40	54.00%	6.84	3.70	
2A671	Engines	2.00	1.65	82.50%	1.37	1.13	
	Total	16.00	11.08	69.25%	10.95	7.58	
2A636	Elec/Env	2.00	5.94	297.00%	1.37	4.07	
2A656	Elec/Env	7.00	3.96	56.57%	4.79	2.71	
2A676	Elec/Env	2.00	1.32	66.00%	1.37	0.90	
	Total	11.00	11.22	102.00%	7.53	7.68	
2W131	Weapons	19.00	23.10	121.58%	13.00	15.81	
2W151	Weapons	42.00	22.11	52.64%	28.75	15.13	
2W171	Weapons	14.00	9.24	66.00%	9.58	6.32	
	Total	75.00	54.45	72.60%	51.33	37.27	
2W131	Weapons MX	4.00	5.31	132.83%	2.74	3.64	
2W151	Weapons MX	8.00	5.09	63.57%	5.48	3.48	
2W171	Weapons MX	5.00	2.13	42.50%	3.42	1.45	
	Total	17.00	12.52	73.67%	11.64	8.57	
2W131	Weapons Load	13.00	17.79	136.82%	8.90	12.17	
2W151	Weapons Load	35.00	17.02	48.64%	23.96	11.65	
2W171	Weapons Load	10.00	7.11	71.15%	6.84	4.87	
	Total	58.00	41.93	72.29%	39.70	28.70	

			524				
AFSC	NAME	Auth	Assign	% of Auth	LCOM norm Auth	LCOM norm Assign	1.461
2A332	Avionics	14.00	13.05	93.21%	9.58	8.93	
2A352	Avionics	43.00	24.00	55.81%	29.43	16.43	
2A372	Avionics	11.00	5.72	52.00%	7.53	3.92	
	Total	68.00	42.77	62.90%	46.54	29.27	
2A333	Crew Chief	29.00	55.48	191.31%	19.85	37.97	
2A353	Crew Chief	63.00	34.04	54.03%	43.12	23.30	
2A373	Crew Chief	16.00	11.40	71.25%	10.95	7.80	
	Total	108.00	100.92	93.44%	73.92	69.08	
2A333	F/L Crew Chief	22.00	42.16	191.66%	15.06	28.86	
2A353	F/L Crew Chief	45.00	24.17	53.71%	30.80	16.54	
2A373	F/L Crew Chief	11.00	7.87	71.51%	7.53	5.38	
	Total	78.00	74.20	95.13%	53.39	50.79	
2A333	Phs Crew Chief	7.00	13.32	190.22%	4.79	9.11	
2A353	Phs Crew Chief	18.00	9.87	54.84%	12.32	6.76	
2A373	Phs Crew Chief	5.00	3.53	70.68%	3.42	2.42	
	Total	30.00	26.72	89.07%	20.53	18.29	
2A631	Engines	5.00	4.94	98.80%	3.42	3.38	
2A651	Engines	12.00	6.48	54.00%	8.21	4.44	
2A671	Engines	3.00	2.50	83.33%	2.05	1.71	
	Total	20.00	13.92	69.60%	13.69	9.53	
2A636	Elec/Env	2.00	6.12	306.00%	1.37	4.19	
2A656	Elec/Env	7.00	4.08	58.29%	4.79	2.79	
2A676	Elec/Env	2.00	1.36	68.00%	1.37	0.93	
	Total	11.00	11.56	105.09%	7.53	7.91	
2W131	Weapons	17.00	23.80	140.00%	11.64	16.29	
2W151	Weapons	43.00	22.78	52.98%	29.43	15.59	
2W171	Weapons	15.00	9.52	63.47%	10.27	6.52	
	Total	75.00	56.10	74.80%	51.33	38.40	
2W131	Weapons MX	4.00	5.47	136.85%	2.74	3.75	
2W151	Weapons MX	8.00	5.24	65.49%	5.48	3.59	
2W171	Weapons MX	5.00	2.19	43.79%	3.42	1.50	
	Total	17.00	12.90	75.90%	11.64	8.83	
2W131	Weapons Load	13.00	18.33	140.97%	8.90	12.54	
2W151	Weapons Load	35.00	17.54	50.12%	23.96	12.01	
2W171	Weapons Load	10.00	7.33	73.30%	6.84	5.02	
	Total	58.00	43.20	74.48%	39.70	29.57	

		CO	MPON	NENT R	EPAIR	SQUAD	RON			
AFSC	NAME	Auth	Assign	% assign	LCOM AUTH	LCOM ASSIGN	1.461			
2A636	Elec/Env	7	10.00	142.86%	4.79	6.84				
2A656	Elec/Env	19	9.00	47.37%	13.00	6.16				
2A676	Elec/Env	4	3.00	75.00%	2.74	2.05				
		30	22.00	73.33%	20.53	15.06				
2A634	Fuels	13	24.00	184.62%	8.90	16.43				
2A654	Fuels	35	17.00	48.57%	23.96	11.64				
2A674	Fuels	9	7.00	77.78%	6.16	4.79				
		57	48.00	84.21%	39.01	32.85				
2A633	Egress	11	21.00	190.91%	7.53	14.37				
2A653	Egress	22	12.00	54.55%	15.06	8.21				
2A673	Egress	5	5.00	100.00%	3.42	3.42				
		38	38.00	100.00%	26.01	26.01				
2A635	Hydraulics	2	2.00	100.00%	1.37	1.37				
2A655	Hydraulics	5	5.00	100.00%	3.42	3.42				
2A675	Hydraulics	2	3.00	150.00%	1.37	2.05				
		9	10.00	111.11%	6.16					
AFSC	NAME	Access	Shop	Support	Test cell	Auth Total	Assign Total	%	LCOM AUTH	LCOM ASSIGN
2A631	Engines	1	6	2.00	0	9	13.00	144.44%	6.16	8.90
2A651	Engines	2	9	6.00	12	29	21.00	72.41%	19.85	14.37
2A671	Engines	1	9	1.00	3	14	24.00	171.43%	9.58	16.43
		4	24	9.00	15	52	58.00	111.54%	35.59	39.70
					LCOM	LCOM	1.461			
					AUTH	ASSIGN				
2A137	E/W	6	5.00	83.33%	4.11	3.42				
2A157	E/W	20	16.00	80.00%	13.69	10.95				
2A177	E/W	6	5.00	83.33%	4.11	3.42				
		32	26.00	81.25%	21.90	17.80				
2A131	Sensors	4	3.00	75.00%	2.74	2.05				
2A151	Sensors	10	8.00	80.00%	6.84	5.48				
2A171	Sensors	4	3.00	75.00%	2.74	2.05				
		18	14.00	77.78%	12.32	9.58				
2A031	Test Station	6	5.00	83.33%	4.11	3.42	1			
2A051	Test Station	17	13.00	76.47%	11.64	8.90	1			
2A071	Test Station	6	5.00	83.33%	4.11	3.42				
		29	23.00	79.31%	19.85	15.74				

			EQUIP	MENT N	IAINTE	NANCE	SQUADI	RON			
AFSC	NAME	Auth	Assign	% assign	LCOM AUTH	LCOM ASSIGN	1.461				
2A734	Survival	3	2.00	66.67%	2.05	1.37					
2A754	Survival	3	4.00	133.33%	2.05	2.74					
2A774	Survival	4	3.00	75.00%	2.74	2.05					
		10	9.00	90.00%	6.84	6.16					
2A731	Metals Tech	7	9.00	128.57%	4.79	6.16					
2A751	Metals Tech	15	7.00	46.67%	10.27	4.79					
2A771	Metals Tech	4	2.00	50.00%	2.74	1.37					
		26	18.00	69.23%	17.80	12.32					
2A732	NDI	3	5.00	166.67%	2.05	3.42					
2A752	NDI	15	7.00	46.67%	10.27	4.79					
2A772	NDI	3	1.00	33.33%	2.05	0.68					
		21	13.00	61.90%	14.37	8.90					
2A733	Structural Mx	15	20.00	133.33%	10.27	13.69					
2A753	Structural Mx	39	16.00	41.03%	26.69	10.95					
2A773	Structural Mx	12	11.00	91.67%	8.21	7.53					
		66	47.00	71.21%	45.17	32.17					
		LGMRA	LGMRB	LGMRC	LGMRD	LGMRS	Total Auth	Assign		LCOM Auth	LCOM Assign
2W131	Armament	4	4	4.00	0	1	13.00	16	123.08%	8.90	10.95
2W151	Armament	5	5	7.00	4	3	24.00	11	45.83%	16.43	7.53
2W171	Armament	3	2	2.00	1	1	9.00	5	55.56%	6.16	3.42
		12					46.00	32	69.57%	31.49	21.90
2A333	W&TIRE	4	3.00	75.00%	2.74	2.05					
2A353	W&TIRE	8	6.00	75.00%	5.48	4.11					
2A373	W&TIRE	3	2.00	66.67%	2.05	1.37					
		15	11.00	73.33%	10.27	7.53					
2W031	Munitions	41	35	85.37%	28.06	23.96					
2W051	Munitions	107	91	85.05%	73.24	62.29					
2W071	Munitions	148	126	85.14%	101.30	86.24					
		296.00	252	85.14%	202.60	172.48					

Appendix B. Changecard Example

FLIGHTLINE WEAPONS MAINTENANCE SAUTH,2W1X1,2, 1, SAUTH,2W1X1,4, 2, SAUTH,2W1X1,3, 3, FLIGHTLINE WEAPONS LOADERS SAUTH,2W1L1,5, 1, SAUTH,2W1L1,12, 2, SAUTH,2W1L1,12, 3, ,CRS ELECTRICS/ENVIRONMENTAL SAUTH,2A6S6,0, 1, SAUTH,2A6S6,4, 2, SAUTH,2A6S6,4, 3, ****** ******* ,CRS FUELS SAUTH,2A6S4.3, 1, SAUTH,2A6S4,4, 2, SAUTH,2A6S4,4, 3, ***** ,CRS EGRESS SAUTH,2A6S3,3, 1, SAUTH,2A6S3,3, 2, SAUTH,2A6S3,3, 3, ***** ,CRS HYDR0 SAUTH,2A6S5,0, 1, SAUTH,2A6S5,2, 2, SAUTH,2A6S5,2, 3, ,CRS ENGINE ACCESSORIES SAUTH,2A6M1,2, 1, SAUTH,2A6M1,2, 2, SAUTH,2A6M1,2, 3, ***** ,CRS ENGINE SUPPORT SAUTH,2A6E1,2, 1, SAUTH,2A6E1,2, 2, SAUTH,2A6E1,2, 3, ****** ,CRS JEIM SAUTH,2A6S1,2, 1, SAUTH,2A6S1,2, 2, SAUTH,2A6S1,2, 3, ***** ,CRS ENGINE TEST CELL SAUTH,2A6T1,0, 1, SAUTH,2A6T1,3, 2, SAUTH,2A6T1,2, 3, ***** ***** ,CRS ELECTRONIC WARFARE SAUTH,2A1S7,2, 1, SAUTH,2A1S7,2, 2, SAUTH,2A1S7,2, 3,

,CRS SENSOR/LANTIRN ,SAUTH,2A1S1,1, 1, ,SAUTH,2A1S1,2, 2, ,SAUTH,2A1S1,2, 3, ****** ,CRS AVIONICS TEST STATIONS SAUTH,2A0S1,2, 1, SAUTH,2A0S1,3, 2, SAUTH,2A0S1,3, 3, EMS SURVIVAL EQUIPMENT SAUTH,2A7S4,0, 1, SAUTH,2A7S4,4, 2, SAUTH,2A7S4,0, 3, ***** ******* ****** ,EMS METALS TECH SAUTH,2A7S1,1, 1, SAUTH,2A7S1,2, 2, SAUTH,2A7S1,2, 3, ***** ,EMS NDI SAUTH,2A7S2,1, 1, SAUTH,2A7S2,1, 2, SAUTH,2A7S2,1, 3, ****** ,EMS STRUCTURAL REPAIR SAUTH,2A7S3,3, 1, SAUTH,2A7S3,4, 2, SAUTH,2A7S3,4, 3, ,EMS STRUCTURAL REPAIR SAUTH,2A7X3,3, 1, SAUTH,2A7X3,4, 2, SAUTH,2A7X3,4, 3, ****** ************ ,EMS STRUCTURAL REPAIR SAUTH,2A7C3,3, 1, SAUTH,2A7C3,4, 2, SAUTH,2A7C3,4, 3, ****** ,EMS ARMAMENT SHOP SAUTH,2W1S1,0, 1, SAUTH,2W1S1,3, 2, SAUTH,2W1S1,3, 3, ***** ,EMS WHEEL & TIRE SAUTH,2A3W3,1, 1, SAUTH,2A3W3,1, 2, SAUTH,2A3W3,2, 3, ***** PHASE APG SAUTH,2A3P3,0, 1, SAUTH,2A3P3,7, 2, SAUTH,2A3P3,7, 3,

,LANDING GEAR 7	ICTO'S
SAUTH,2A3T3,0,	1,
SAUTH,2A3T3,4,	2,
SAUTH,2A3T3,4,	3,
*************	******
,2B0GS	
SAUTH,2B0GS,0,	1,
SAUTH,2B0GS,10,	2,
SAUTH,2B0GS,10,	3,
************	**********

AUTH,11AAF, 7 AUTH,11ABA, 7 AUTH, 11CAF, 6 AUTH,11CEA, 7 AUTH,11EDD, 6 AUTH, 11EDJ, 7 AUTH,11EDR, 7 AUTH, 11EEF, 6 AUTH, 11EEL, 7 AUTH,11EFE, 6 AUTH,11GAH, 7 AUTH,11GAR, 7 AUTH,11GAS, 6 AUTH,11GBH, 7 AUTH,11GBK, 6 AUTH, 11GCK, 7 AUTH, 11GDC, 7 AUTH,11GDD, 6 AUTH,11GDE, 7 AUTH,11GDJ, 7 AUTH,11GDR, 7 AUTH,11GDS, 6 AUTH,11GEB, 6 AUTH,11GEJ, 7 AUTH,11GGP, 7 AUTH,11JCA, 6 AUTH,11JCB, 7 AUTH,11JDA, 7 AUTH,11LAK, 7 AUTH,11LBE, 6 AUTH,11LDA, 7 AUTH,11LEA, 6 AUTH,11LEF, 7 AUTH,11MAG, 6 AUTH,11MDA, 6 AUTH,11MEA, 7 AUTH,11MEF, 7 AUTH,11MEM, 6 AUTH,12AAA, 7 AUTH,12AAF, 6 AUTH,12AAH, 7 AUTH,12AAJ, 6 AUTH,12ABA, 7 AUTH,12ACA, 7

Quantities of spare parts on the shelf at Cannon were modified here to bring the baseline models to NMCS rate to the squadron's fy2002 level. Note, parts on the shelf are annotated by a five digit Work Unit Code.

AUTH,12ACB, 6	AUTH,13BAL, 6	AUTH,14CB0, 6	AUTH,24EAH, 7
AUTH,12ADA, 7	AUTH,13BAN, 7	AUTH,14CBB, 7	AUTH,24EAM, 7
AUTH,12ADB, 7	AUTH,13BAQ1, 6	AUTH,14D00, 7	AUTH,24EBA, 6
AUTH,12AEB, 7	AUTH,13BAR1, 7	AUTH,14DA0, 6	AUTH,24EC0, 7
			· · · ·
AUTH,12AED, 7	AUTH,13BBE, 7	AUTH,14DAA, 7	AUTH,271AC, 7
AUTH,12AEF, 6	AUTH,13BBF, 6	AUTH,14DAC, 6	AUTH,271AH, 7
AUTH,12AEG, 6	AUTH,13BBJ, 7	AUTH,14DAH, 7	AUTH,271AJ, 6
AUTH,12AFB, 6	AUTH,13BBR1, 7	AUTH,14DC0, 7	AUTH,271AK, 7
AUTH,12AFE, 7	AUTH,13BBS1, 6	AUTH,14DFA, 6	AUTH,271AL, 7
AUTH,12AFF, 7	AUTH,13BCA, 7	AUTH,14DFE, 7	AUTH,271BK, 6
AUTH,12AFG, 6	AUTH,13BCB, 7	AUTH,14DH0, 7	AUTH,271BL, 7
AUTH,12AGA, 7	AUTH,13BCF, 6	AUTH,14DL0, 6	AUTH,271BR, 6
AUTH,12AGB, 6	AUTH,13BCH, 6	AUTH,14DM0, 7	AUTH,271BS, 7
AUTH,12AHB, 7	AUTH,13BDA, 7	AUTH,14ED0, 7	AUTH,271DL, 7
AUTH,12C99, 7	AUTH,13BDB, 7	AUTH,14EF0, 7	AUTH,271DM, 6
AUTH,12CA0, 6	AUTH,13BDC, 6	AUTH,14EGA, 7	AUTH,271DN, 7
AUTH,12CAC, 7	AUTH,13BDD, 7	AUTH,14FB0, 7	AUTH,271DP, 6
AUTH,12CAG, 7	AUTH,13BDF, 7	AUTH,14FC0, 6	AUTH,271EE, 7
AUTH,12CAH, 6	AUTH,13BDG, 6	AUTH,14FD0, 6	AUTH,271EF, 7
AUTH,12CBB, 7	AUTH,13CA1, 7	AUTH,14FG0, 7	AUTH,271F0, 7
AUTH,12CCA, 7	AUTH,13CA2, 7	AUTH,14GA0, 7	AUTH,271FB, 6
· · · · · ·	AUTH,13CAA, 6	AUTH,14GB0, 6	
AUTH,12CEA, 6	· · · · ·		AUTH,271HB, 7
AUTH,12CGA, 7	AUTH,13CAB1, 7	AUTH,24A00, 7	AUTH,27ACA, 7
AUTH,12DCB, 7	AUTH,13CAG, 7	AUTH,24AA0, 6	AUTH,27AG0, 6
AUTH,12EAA, 6	AUTH,13CAG1, 6	AUTH,24AAB, 7	AUTH,27AGA, 7
AUTH,12EAC, 7	AUTH,13CBA, 7	AUTH,24AC0, 7	AUTH,27AH0, 6
AUTH,12EAD, 6	AUTH,13CCB, 7	AUTH,24AD0, 7	AUTH,27AN0, 7
AUTH,12EAE, 7	AUTH,13CCC, 6	AUTH,24BA0, 6	AUTH,27BFA, 6
AUTH,12EF0, 6	AUTH,13DA0, 7	AUTH,24BAC, 7	AUTH,27EAD, 7
AUTH,12EHA, 7	AUTH,13DB0, 7	AUTH,24BAD, 7	AUTH,27EAL, 7
AUTH,12EJA, 7	AUTH,13E00, 6	AUTH,24BAE, 6	AUTH,27EAM, 6
AUTH,13AAC, 7	AUTH,13EAA, 7	AUTH,24BAF, 7	AUTH,27EAN, 7
AUTH,13AAD, 6	AUTH,13EAB, 6	AUTH,24BD0, 7	AUTH,27EAP, 7
AUTH,13B00, 7	AUTH,13EAD, 7	AUTH,24BE0, 6	AUTH,27EAS, 7
AUTH,13BAB, 7	AUTH,13EAF, 6	AUTH,24CB0, 7	AUTH,27EC0, 6
		· · ·	
AUTH,13BAB1, 7	AUTH,13EAG, 7	AUTH,24DA0, 7	AUTH,27ECP, 7
AUTH,13BAC, 6	AUTH,13EAH, 7	AUTH,24DAA, 6	AUTH,27EDA, 7
AUTH,13BAC1, 7	AUTH,13EAU, 6	AUTH,24DBA, 7	AUTH,27EDB, 6
AUTH,13BAC2, 7	AUTH,13EAZ, 7	AUTH,24DBB, 7	AUTH,27EDL, 7
AUTH,13BAC3, 7	AUTH,13FAA, 7	AUTH,24DBF, 6	AUTH,27GAA, 6
AUTH,13BAD, 6	AUTH,13FAE, 6	AUTH,24DC0, 7	AUTH,27GAD, 7
AUTH,13BAD1, 7	AUTH,13G00, 7	AUTH,24DDA, 6	AUTH,27GAH, 7
AUTH,13BAD2, 7	AUTH,13GAA, 7	AUTH,24DDD, 7	AUTH,27GAL, 6
AUTH,13BAD3, 7	AUTH,13GAF, 7	AUTH,24DDE, 7	AUTH,27GAW, 7
AUTH,13BAE1, 6	AUTH,14AA0, 6	AUTH,24DDJ, 7	AUTH,27GAX, 7
AUTH,13BAE2, 7	AUTH,14AD0, 6	AUTH,24DDL, 6	AUTH,27GBB, 6
AUTH,13BAE3, 7	AUTH,14AE0, 7	AUTH,24DDN, 7	AUTH,27GBF, 7
AUTH,13BAF1, 6	AUTH,14AED, 7	AUTH,24DEA, 7	AUTH,27GDC, 7
AUTH,13BAF2, 7	AUTH,14AF0, 7	AUTH,24DFB, 7	AUTH,27GDH, 6
AUTH,13BAG, 6	AUTH,14AG0, 6	AUTH,24DFD, 7	AUTH,27GDP, 7
AUTH,13BAH, 6	AUTH,14AR0, 7	AUTH,24DGC, 7	AUTH,27GJH, 7
AUTH,13BAJ, 7	AUTH,14BA0, 6	AUTH,24DGD, 6	AUTH,27GJV, 6
AUTH,13BAJ1, 7	AUTH,14BB0, 7	AUTH,24EA0, 7	AUTH,27GJY, 7
AUTH,13BAK, 7	AUTH,14BC0, 7	AUTH,24EAB, 7	AUTH,27GMC, 6
AUTH,13BAK1, 7	AUTH,14CA0, 7	AUTH,24EAD, 6	AUTH,27GMD, 6
- ,, '	- , , ,	- ,, ~	,, 0

AUTH,27GP*, 7	AUTH,42EB0, 6	AUTH,46AMA, 7	AUTH,47AAA, 6
AUTH,27GPH, 7	AUTH,42GAA, 7	AUTH,46AN0, 7	AUTH,47ABC, 7
AUTH,27GPJ, 7	AUTH,42GB0, 7	AUTH,46AP0, 6	AUTH,47ABD, 7
AUTH,27GPK, 6	AUTH,42HC0, 6	AUTH,46APA, 7	AUTH,47ABF, 7
AUTH,27GPL, 7	AUTH,42HCE, 7	AUTH,46AV0, 7	AUTH,47AD0, 6
AUTH,27GPM, 7	AUTH,42JA0, 7	AUTH,46BAA, 7	AUTH,47AE0, 7
AUTH,27GPN, 6	AUTH,42JBA, 6	AUTH,46BB0, 7	AUTH,49AA0, 7
AUTH,27GPP, 7	AUTH,44AAA, 7	AUTH,46BC0, 6	AUTH,49ABA, 6
AUTH,27GPQ, 7	AUTH,44AAB, 7	AUTH,46BD0, 7	AUTH,49ABB, 7
AUTH,27GPT, 6	AUTH,44AAC, 7	AUTH,46BFA, 7	AUTH,49ABD, 6
AUTH,27GPU, 7	AUTH,44AAD, 7	AUTH,46BHA, 7	AUTH,49BBB, 7
AUTH,27GPV, 7	AUTH,44AAE, 6	AUTH,46BRA, 7	AUTH,49BBC, 7
AUTH,27GSA, 7	AUTH,44AAF, 7	AUTH,46BT0, 6	AUTH,49BBE, 6
AUTH,27GSB, 6	AUTH,44AAG, 7	AUTH,46BU0, 7	AUTH,51AA0, 7
AUTH,27GSC, 7	AUTH,44AAH, 6	AUTH,46BV0, 6	AUTH,51AB0, 7
AUTH,27GSE, 7	AUTH,44AAJ, 7	AUTH,46BW0, 7	AUTH,51AC0, 7
AUTH,27GSF, 6	AUTH,44AAK, 6	AUTH,46BX0, 7	AUTH,51BA0, 6
AUTH,27GT0, 7	AUTH,44AB0, 7	AUTH,46BY0, 6	AUTH,51BB0, 7
AUTH,27GTA, 6	AUTH,44AC0, 7	AUTH,46C00, 7	AUTH,51BC0, 6
AUTH,27GTL, 6	AUTH,44BA0, 7	AUTH,46CA0, 7	AUTH,51CB0, 7
AUTH,27Z00, 7	AUTH,44BAA, 6	AUTH,46CB0, 6	AUTH,51CC0, 7
AUTH,41AAA, 7	AUTH,44BB0, 7	AUTH,46CCA, 7	AUTH,51DA0, 7
AUTH,41AAB, 6	AUTH,44BC0, 7	AUTH,46CDA, 7	AUTH,51DB0, 7
AUTH,41AAD, 7	AUTH,44BD0, 7	AUTH,46CEA, 6	AUTH,51EAD, 6
AUTH,41AAE, 7	AUTH,44BE0, 6	AUTH,46CHA, 7	AUTH,51FA0, 7
AUTH,41AAF, 7	AUTH,44CA0, 6	AUTH,46CKA, 7	AUTH,55DB0, 7
AUTH,41AAL, 7	AUTH,44CB0, 7	AUTH,46CN0, 6	AUTH,62CD0, 7
AUTH,41AAQ, 6	AUTH,44CH0, 7	AUTH,46CP0, 7	AUTH,63BM0, 6
AUTH,41AAS, 7	AUTH,45AAA, 6	AUTH,46DA0, 7	AUTH,63CBA, 7
AUTH,41ABD, 7	AUTH,45AAB, 7	AUTH,46DAA, 6	AUTH,63CBB, 7
AUTH,41ABE, 7	AUTH,45AAC, 7	AUTH,46DAB, 7	AUTH,64AD0, 7
AUTH,41ABF, 6	AUTH,45AAD, 6	AUTH,46DB0, 7	AUTH,65AA0, 6
AUTH,41ABM, 7	AUTH,45AAE, 7	AUTH,46DG0, 7	AUTH,69AA0, 7
AUTH,41ABN, 7	AUTH,45ACA, 7	AUTH,46DHA, 6	AUTH,69AB0, 6
AUTH,41ACA, 6	AUTH,45ACB, 7	AUTH,46EB0, 7	AUTH,69AC0, 7
AUTH,41ACK, 7	AUTH,45AEB, 6	AUTH,46EC0, 7	AUTH,71AA0, 7
AUTH,41ADA, 7	AUTH,45AEN, 7	AUTH,46ED0, 6	AUTH,71AB0, 6
AUTH,41ADB, 6	AUTH,45AG0, 6	AUTH,46EE0, 7	AUTH,71AF0, 6
AUTH,41ADH, 7	AUTH,45AH0, 7	AUTH,46EG0, 6	AUTH,71BA0, 7
AUTH,41ADL, 7	AUTH,45AJ0, 7	AUTH,46EJ0, 7	AUTH,71BD0, 6
AUTH,41ADM, 7	AUTH,45AJA, 7	AUTH,46EMA, 7	AUTH,74AM0, 7
AUTH,41BBA, 6	AUTH,45AK0, 7	AUTH,46EP0, 6	AUTH,74AN0, 7
AUTH,41BBD, 7	AUTH,45AKA, 6	AUTH,46EQA, 7	AUTH,74AP0, 7
AUTH,41CBA, 7	AUTH,45AL0, 7	AUTH,46EUA, 7	AUTH,74AQ0, 6
AUTH,42A00, 6	AUTH,45ALA, 7	AUTH,46EV0, 7	AUTH,74AS0, 7
AUTH,42AA0, 7	AUTH,45BAB, 7	AUTH,46EY0, 6	AUTH,74AU0, 7
AUTH,42AAD, 6	AUTH,46AB0, 6	AUTH,46F00, 7	AUTH,74BE0, 7
AUTH,42ACA, 6	AUTH,46AC0, 7	AUTH,46FA0, 7	AUTH,74BP0, 6
AUTH,42AE0, 7	AUTH,46AE0, 7	AUTH,46FAA, 6	AUTH,74BQ0, 7
AUTH,42AJ0, 7	AUTH,46AF0, 7	AUTH,46FAH, 7	AUTH,74BQP, 7
AUTH,42AK0, 6	AUTH,46AFA, 7	AUTH,46FCC, 7	AUTH,74BQI, 7 AUTH,74BR0, 7
AUTH,42AN0, 7	AUTH,46AGA, 6	AUTH,46FD0, 7	AUTH,74CC0, 6
AUTH,42CB0, 7	AUTH,46AH0, 7	AUTH,46FE0, 6	AUTH,74DF0, 7
AUTH,42DBC, 7	AUTH,46AJ0, 7	AUTH,46FEF, 7	AUTH,74DG0, 7
AUTH,42EA0, 7	AUTH,46AK0, 6	AUTH,46FEJ, 7	AUTH,74GA0, 6

AUTH,74GAB, 7	AUTH,97EAB, 7
AUTH,74GB0, 7	AUTH,97EAC, 6
AUTH,74HA0, 7	AUTH,97EAE, 7
AUTH,74JA0, 6	AUTH,97EAF, 7
AUTH,74JB0, 7	AUTH,97EAG, 7
AUTH,74JC0, 6	AUTH,97EAK, 7
AUTH,74JF0, 7	AUTH,97EAL, 7
AUTH,74KA0, 7	AUTH, AAIS, 2
AUTH,74KB0, 6	AUTH,MULE, 1
AUTH,74LA0, 7	AUTH,RACFT, 1
AUTH,74Z00, 7	STOP,390.0
AUTH,75AA0, 7	,
AUTH,75AAD, 6	
AUTH,75ABA, 7	
AUTH,75BA0, 7	
AUTH,75BB0, 7	
AUTH,75BD0, 7	
AUTH,75CA0, 6	
AUTH,75CB0, 7	
AUTH,75CJ0, 7	
AUTH,75CK0, 7	
AUTH,75CL0, 7	
AUTH,75CN0, 6	
AUTH,75CP0, 7	
AUTH,75DD0, 7	
AUTH,75DJ0, 6	
AUTH,75EC0, 7	
AUTH,76BA0, 6	
AUTH,76CE0, 6	
AUTH,76DC0, 7	
AUTH,76DD0, 7	
AUTH,76DG0, 7	
AUTH,76EA0, 7	
AUTH,76EB0, 6	
AUTH,76EC0, 7	
AUTH,76ED0, 7	
AUTH,76EE0, 7	
AUTH,76EG0, 7	
AUTH,76EK0, 6	
AUTH,76EL0, 7	
AUTH,76EW0, 7	
AUTH,97AM0, 7	
AUTH,97AN0, 6	
AUTH,97AP0, 7	
AUTH,97AS0, 7	
AUTH,97AT0, 7	
AUTH,97AU0, 7	
AUTH,97AV0, 7	
AUTH,97BY0, 6	
AUTH,97BYB, 6	
AUTH,97CD0, 7	
AUTH,97CG0, 6	
AUTH,97CH0, 7	
AUTH,97EAA, 7	
, , , , , ,	

Appendix C. Forms 30 – 75 Example

C30 ************************************	Form 30: Reconfiguration networks.
C30 ************************************	
C30 PST_SEAD to SEAD 30 REC300 REC301 GEICT 1 30 REC300 REC302 LSICT 1 30 REC301 L0ADED D 30 REC302 REC303 D C30 REC303 L0AD_AGM88 REC304 E .150 30 REC303 L0AD_AGM65 REC304 E .200 30 REC303 L0AD_CBU REC304 E .050 30 REC303 JN0_L0AD REC304 E .750 20 REC304 L0AD 1 A JM0 REC305 E .050	
30 REC304 L0AD_1_AIM9 REC305 E .050 30 REC304 L0AD 2 AIM9 REC305 E .050	
C30 REC304 L0AD 2 AIM120 REC305 E .050	
30 REC304 JN0 LOAD REC305 E .900	
30 REC305 L0AD_20MM REC306 E .020	
30 REC305 JN0 L0AD REC306 E .980	
30 REC306 L0AD_CHF_FLR A .400	
30 REC306 L0AD_TANKS A .050	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Form 45 : Manpower and Shift Philosophy. In this scenario there are 200 people authorized on each shift (Monday through Friday) and 5 people authorized on Saturday (0 on Sunday). Mon through Fri are 8-hour shifts; Sat and Sun are 12-hour shifts. Authorized or assigned numbers were changed by making input via changecard
45 2A6T1 200 200 5 000 45 2A6X1 200 200 5 000 45 2A6X6 200 200 5 000	(Appendix B).
45 2A7C3 200 200 200 5 000	

45 2A7S1 200 200 200 5 000 45 2A7S2 200 200 200 5 000 45 2A7S3 200 200 200 5 000 45 2A7S4 200 200 200 5 000 45 2A7X3 200 200 200 5 000 45 2B0GS 200 200 200 5 000 45 2W1S1 200 200 200 5 000 45 2W1X1 200 200 200 5 000 45 2W1L1 200 200 200 5 000 45 GENSB 0 0 45 2CHIP 200 200 200 5 000	
50 5001 10 5002 20 5003 30 5004 3 2 1 5005 .25 .50 .75 5006 2.0 2.0 2.0 48 5007 20 48 48 5008 1.0 5009 1.0 5010 5	Form 50: Models 2 hours of overtime per shift
55C55 CASMN0001 CASPST_CASSP_CASACFC55 AIMN0001 AIPST_AISP_AIACF55 DCAMN0001 DCAPST_DCASP_DCAACF55 SEADMN0001 SEADPST_SEADSP_SEADACF55 DAYAA DAYAACF55 TAC9A TAC9ACF55 PAINTA PAINTACF55 WASHA WASHACF55 DAYNN DAYNSCHED	Form 55: Missions and scheduled maintenance identifiers
60 60 SP_DCA C DCA 60 C A DCA 0.1 C60 C C FLY_DCA DCA_DNF C60 C A FLY_DCA DCA_DNF 0.1 0.1 60 C A PST_DCA REC200 0.1 60 C A PST_CAS REC220 0.1 C60 C A PST_CAS REC220 0.1 C60 C A PST_AI REC230 0.1 60 C A PST_SEAD REC240 0.1 C60 C A CAS REC250 0.1 C60 C A AI REC260 0.1 60 C A SEAD REC270 0.1	Form 60: Aircraft search patterns

60 C60 C60 C60 C60 C60 C60 C60 C60 C60 C	(C SE C ((C C (C C (C C C C C C C C C C	C C AI R C SEAD A D C SEA A SEAD C C FLY_SE C A FLY_SE C A FLY_SE C A PST_CA C A PST_CA C A PST_DCA C A CAS C A AI R A DCA I C C CAS C C AI R C DCA F	AD AD REC30 S REC31 REC320 A REC330 REC340 EC350 REC360 REC340 EC350 REC360	0 (0.	.1	****	*****	****
<u> </u>								
75 75 1	1	0800 ACF	SEAD	24 11.4H 0	C701	.0 1007999		
75 1	1	0830 ACF	SEAD	2 2 1 1.4H 0		.0 1007999		
75 1	1	0900 ACF	DCA	2 4 1 1.4H 0		.0 1007999		
75 1	1	1600 ACF	SEAD	24 11.4H 0		.0 1007999		
75 1	1	1630 ACF	SEAD	22 11.4H 0		.0 1007999		
75 1	1	1700 ACF	DCA	24 11.4H 0		.0 1007999		
C75 1	1	0900 ACF	DAYV	V 1		01999		
75 1	1	1800 SCHE	D DAY	N 1	20	07999		
75 1	1	0715 ACF	PAINT	1	2042	.999		
75 1	1	1900 ACF	DAYA			07999		
75 2	1	0800 ACF	SEAD	24 11.4H 0		.0 1007999		Form 75: Sortie
75 2	1	0830 ACF	SEAD	2 2 1 1.4H 0		.0 1007999		Generation data
75 2	1	0900 ACF	DCA	2 4 1 1.4H 0		.0 1007999	◀	(i.e. Flying
75 2	1	1600 ACF	SEAD	24 11.4H 0		.0 1007999		schedule and
752	1	1630 ACF	SEAD	22 11.4H 0		.0 1007999		scheduled
75 2 75 2	1	1700 ACF	DCA	24 11.4H 0		.0 1007999		maintenance)
75 2 75 2	1	1800 SCHE	D DAY DAYA)07999)07999		
75 2 75 3	1 1	1900 ACF 0800 ACF	SEAD	ALL 24 11.4H 0		.0 1007999		
753 753	1	0800 ACF 0830 ACF	SEAD	2 4 1 1.4H 0 2 2 1 1.4H 0		.0 1007999		
753	1	0000 ACF	DCA	2 4 1 1.4H 0		.0 1007999		
753	1	1600 ACF	SEAD	2 4 1 1.4H 0		.0 1007999		
75 3	1	1630 ACF	SEAD	2 2 1 1.4H 0		.0 1007999		
75 3	1	1700 ACF	DCA	24 11.4H 0		.0 1007999		
75 3	1	1800 SCHE				07999		
75 3	1	1900 ACF	DAYA			07999		
75 4	1	0800 ACF	SEAD	24 11.4H 0	C7.0 1	.0 1007999		
75 4	1	0830 ACF	SEAD	22 11.4H 0		.0 1007999		
75 4	1	0900 ACF	DCA	24 11.4H 0		.0 1007999		
75 4	1	1600 ACF	SEAD	24 11.4H 0	C7.0 1	.0 1007999		

75 4	1	1630 ACF S	SEAD 22 11.4H 0	C7.0 1.0 1007999
75 4	1	1700 ACF D	DCA 24 11.4H 0	C8.0 1.0 1007999
75 4	1	1800 SCHED	DAYN 1	2007999
75 4	1	1900 ACF D	DAYA ALL	1007999
75 5	1	0800 ACF S	SEAD 23 11.4H 0	C7.0 1.0 1007999
75 5	1	0830 ACF S	SEAD 22 11.4H 0	C7.0 1.0 1007999
75 5	1	0900 ACF D	DCA 22 11.4H 0	C8.0 1.0 1007999
75 5	1	1900 ACF D	DAYA ALL	1007999
75 5	1	0900 ACF V	WASH 11	2014999
75 5	1	1800 SCHED	DAYN 1	2007999
75 8	1	0800 ACF T	TAC6 11	2102999
75 30	1	0800 ACF	ТАС9	

			522 FI	GHTEF	R SQUA	DRON	F-16 HIS	STORY I	-Y2002				
STAT	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	МАҮ	JUN	JUL	AUG	SEP	CURR FY
PAA	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
POSS HRS	14880.0	14400.0	16861.9	17100.0	15399.7	14731.3	12131.1	11890.0	11911.9	13126.3	12697.2	12558.9	167688.3
AVG POSS ACFT	20.0	20.0	22.7	23.0	22.9	19.8	16.8	16.0	16.5	17.6	17.1	17.4	19.1
MC HRS	11424.1	11648.2	12610.6	14865.4	12922.0	12264.7	9911.2	8980.5	10407.2	9310.6	8170.3	8087.8	130602.6
RATE/83%	76.8	80.9	74.8	86.9	83.9	83.3	81.7	75.5	87.4	70.9	64.3	64.4	77.9
FMC HRS	11133.7	11648.2	12610.6	14715.4	12656.3	11588.9	9844.7	8914.3	10407.2	9090.5	8147.9	8087.8	128845.5
RATE	74.8	80.9	74.8	86.1	82.2	78.7	81.2	75.0	87.4	69.3	64.2	64.4	76.8
NMC HRS	3455.9	2751.8	4251.3	2234.6	2477.8	2466.5	2220.0	2909.6	1504.8	3815.8	4526.8	4471.1	37086.0
RATE	23.2	19.1	25.2	13.1	16.1	16.7	18.3	24.5	12.6	29.1	35.7	35.6	22.1
TNMCM HRS	2218.8	1767.5	2364.8	1453.0	1542.2	1560.1	1267.0	1984.4	648.1	2799.5	3442.6	3750.4	24798.4
RATE/10%	14.9	12.3	14.0	8.5	10.0	10.6	10.4	16.7	5.4	21.3	27.1	29.9	14.8
TNMCS HRS	1906.8	1531.1	3012.8	1074.8	1237.4	1277.7	1255.0	1548.8	884.7	1938.4	2235.6	1985.9	19889.0
RATE/8%	12.8	10.6	17.9	6.3	8.0	8.7	10.3	13.0	7.4	14.8	17.6	15.8	11.9
ACTUAL UTE	24.6	16.1	17.7	18.2	22.8	15.4	18.2	19.3	13.8	18.9	15.8	17.1	18.2
AVG SRT DUR	1.3	1.3	1.6	1.7	1.4	1.3	1.6	1.5	2.5	1.3	1.3	1.7	1.5
SCH FLYHRS	588.6	444.2	465.8	814.5	732.4	697.7	521.1	511.2	712.3	509.9	514.4	415.9	6918.5
TOT HRS FLWN	583.4	377.3	524.7	545.0	573.9	363.6	527.6	534.5	632.5	426.5	363.4	521.7	5974.1
SORT FLWN	442	290	319	327	411	277	327	348	249	340	285	307	3922
TOT SCHD SORT	436	329	345	384	466	327	431	387	271	384	381	348	4489

Appendix D. Cannon's Excel Spreadsheet

	523 FIGHTER SQUADRON F-16 HISTORY FY 2002													
STAT	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	CURR FY	
РАА	18.0	18.0	15.0	14.0	14.0	15.0	18.0	18.0	18.0	18.0	18.0	18.0	16.8	
POSS HRS	12095.5	12776.7	11088.0	10416.0	9408.0	12362.9	13421.7	13270.1	12536.7	11901. 8	12273.7	12683.1	144234.2	
AVG POSS ACFT	16.3	17.7	14.9	14.0	14.0	16.6	18.6	17.8	17.4	16.0	16.5	17.6	16.5	
MC HRS	9575.8	10078.8	9463.5	8786.5	7997.1	10151.4	10818.8	10197.8	9605.9	9026.7	6958.9	9169.7	111830.9	
RATE/83%	79.2	78.9	85.3	84.4	85.0	82.1	80.6	76.8	76.6	75.8	56.7	72.3	77.5	
FMC HRS	9011.7	10010.0	9463.5	8419.4	7997.1	10109.6	10470.9	10037.8	9605.9	8711.9	6519.9	8959.9	109317.6	
RATE	74.5	78.3	85.3	80.8	85.0	81.8	78.0	75.6	76.6	73.2	53.1	70.6	75.8	
NMC HRS	2519.7	2697.9	1624.5	1629.6	1410.9	2211.4	2602.9	3072.3	2930.8	2875.1	5314.8	3513.4	32403.3	
RATE	20.8	21.1	14.7	15.6	15.0	17.9	19.4	23.2	23.4	24.2	43.3	27.7	22.5	
TNMCM HRS	1779.2	1743.8	837.0	1274.4	928.3	1603.0	1767.7	2303.4	1822.1	2049.5	4235.1	3063.4	23406.9	
RATE10%	14.7	13.6	7.5	12.2	9.9	13.0	13.2	17.4	14.5	17.2	34.5	24.2	16.2	
TNMCS HRS	1764.9	1329.7	1064.9	846.3	938.1	845.8	1164.0	1042.4	1680.2	998.1	2138.8	1132.0	14945.2	
RATE/8%	14.6	10.4	9.6	8.1	10.0	6.8	8.7	7.9	13.4	8.4	17.4	8.9	10.4	
ACTUAL UTE	24.8	14.1	14.9	19.2	18.4	13.2	24.8	24.6	19.7	18.7	16.7	13.8	18.7	
AVG SRT DUR	1.2	1.6	3.2	2.7	2.8	2.6	1.3	1.3	1.5	1.6	5.1	1.3	2.0	
SCH FLYHRS	635.9	405.0	338.9	727.7	717.8	626.5	627.7	646.4	560.8	564.6	1533.2	388.1	7764.5	
TOT HRS FLWN	529.4	412.3	719.3	727.7	717.8	521.2	591.8	569.5	517.3	526.6	1533.2	330.6	7696.7	
SORT FLWN	447	254	224	269	258	198	447	442	355	336	300	248	3778	
TOT SCHD SORT	471	300	251	300	279	218	472	468	372	361	306	294	4092	

	524 FIGHTER SQUADRON (block 40) F-16 HISTORY FY2002													
STAT	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	CURR FY	
PAA	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
POSS HRS	15064.3	16883.4	19007.2	18600.0	16796.4	18104.5	18000.0	18887.4	18154.1	18949. 7	18562.5	17701.9	214711.4	
AVG POSS ACFT	20.2	23.4	25.5	25.0	25.0	24.3	25.0	25.4	25.2	25.5	24.9	24.6	24.5	
MC HRS	12132.2	13677.5	15179.7	15159.0	13083.5	14454.8	14981.1	15044.8	14727.3	14901. 7	12664.3	12582.9	168588.8	
RATE/83%	80.5	81.0	79.9	81.5	77.9	79.8	83.2	79.7	81.1	78.6	68.2	71.1	78.5	
FMC HRS	11257.8	13036.3	14361.6	14993.8	13066.1	14384.7	14981.1	14637.3	12537.4	13948. 6	11111.9	12279.5	160596.1	
RATE	74.7	77.2	75.6	80.6	77.8	79.5	83.2	77.5	69.1	73.6	59.9	69.4	74.8	
NMC HRS	2932.1	3205.9	3827.4	3441.0	3712.9	3649.6	3018.9	3842.6	3426.8	4048.0	5898.1	5119.1	46122.4	
RATE	19.5	19.0	20.1	18.5	22.1	20.2	16.8	20.3	18.9	21.4	31.8	28.9	21.5	
TNMCM HRS	1780.0	2078.5	2647.7	2172.1	2584.8	2100.9	1905.7	2281.4	2115.1	2831.2	3734.4	3842.0	30073.8	
RATE/10%	11.8	12.3	13.9	11.7	15.4	11.6	10.6	12.1	11.7	14.9	20.1	21.7	14.0	
TNMCS HRS	1266.1	2139.9	1759.2	1368.5	1670.8	2335.7	1619.7	1863.5	1612.6	1625.7	2635.9	1962.9	21860.5	
RATE/8%	8.4	12.7	9.3	7.4	9.9	12.9	9.0	9.9	8.9	8.6	14.2	11.1	10.2	
ACTUAL UTE	18.1	15.8	13.7	18.3	18.7	18.3	21.7	19.8	17.8	20.9	19.5	13.4	18.0	
AVG SRT DUR	1.5	1.5	1.4	1.3	1.3	1.5	1.5	1.4	1.3	1.3	1.4	1.3	1.4	
SCH FLYHRS	623.7	644.0	473.0	668.4	611.1	849.6	768.7	633.8	590.0	649.2	629.6	431.3	7429.1	
TOT HRS FLWN	640.8	566.3	461.7	564.3	598.2	665.4	770.8	661.7	545.0	655.7	662.7	414.5	7207.1	
SORT FLWN	434	379	328	438	449	440	520	474	426	502	468	321	5179	
TOT SCHD SORT	462	477	361	514	523	431	527	485	464	561	512	365	5682	

Appendix E. Simulation SEEDS

The seed list below contains 75 rows (1 line for each replication) and eight

columns (A through H). The eight columns represent the starting seed values for various

parameters within the LCOM. Below is a list of the columns and their self-explanatory

titles (ASC-LCOM,2000).

Column A: Attribute initial values Column B: Task durations Column C: Failure clock operations Column D: Time accumulating attributes random setting Column E: Probability of air abort, attrition, or ram repair Column F: Task selection A, E, and G selection modes Column G: Random multiplier for initial failure clock settings Column H: Sortie length (task time option)

А В С D G Η E F 330847383 920646964 65982104 573275029 159001232 266507685 787433146 381822288 64658285 805640040 651725530 593876778 263699889 952899991 226791382 68142117 492515206 561620056 765133141 609610974 648626207 1734317 969448565 672690092 681312679 487903416 8255721 314325273 732237219 657639562 781517981 397126376 526070237 399431526 436269045 42492331 11114956 930869637 132237912 333736122 249932409 126770795 57473899 269209802 559966444 97303451 693971633 965429483 904168723 16112627 333296061 110200346 531623721 198444903 842207430 665741621 868173717 429273426 678286313 821811615 657043814 541422903 155558587 198832691 349466920 243694604 960120438 301016271 745308756 198991359 915763376 219487846 883692859 352442563 999599216 585411965 183625579 509529173 607685088 773117243 834621070 164208711 70648433 353221357 437326312 577040254 419312000 795756041 894146083 103309453 400318861 423292100 549867987 771153508 741757392 614064395 582287430 109686197 668786286 255096853 642832636 227122844 669259547 445327460 747189640 138905347 509351491 448733270 415927291 345827162 499181747 897455393 65122248 662158309 8440257 244924009 646983980 293770373 232012272 468983352 540479779 166261495 205603362 25016726 691959738 503081381 71364404 49071492 5781771 653656303 593516587 810984074 984936593 171514094 923976420 417504966 621672749 142409146 617980718 765423714 538121580 762447415 899711607 744693934 376922250 166211427 177921534 691558300 441846728 504885256 811558245 91673554 588424801 274379552 125389815 533235490 364569068 893456517 675629615 910103975 401199937 531854927 765561341 874927936 52870632 188415111 211163998 542270362 288392186 19203962 356736898 441733300 831458448 915639935 340524673 721082865 551271080 332618058 610342263 599374234 103164554 366634905 689199923 70076645 819231151 83913625 190928221 854198395 848945974 98528922 85803033 603411853 549791931 400532067 216170550 353178441 127884746 434075892 62072278 225873649 528597950 425539791 756870030 383912027 577187895 961654721 352870941 232872188 369418740 817628203 336952448 874621807 912187455 35269321 396187305 810442625 14148832 251113713 433468580 894155441 426340460 274548590 833134650 535245120 232807756 915937720 976594208 151985586 491228938 64746440 7951261 874564825 123540044 17666639 849630116 498209893 56559921 56741775 468000412 686311900

Squadron	Manning	O/T?	Parts?	Sorties	NMCS
522	AS	0	В	3902.00	
522	AS	0	B	4098.00	
522	AS	0	В	3614.00	
522	AS	0	В	4000.00	
522	AS	0	В	3565.00	
522	AS	0	В	4034.00	
522	AS	0	В	4124.00	
522	AS	0	В	4135.00	1.59
522	AS	0	В	3496.00	
522	AS	0	В	4122.00	
522	AS	0	В	4158.00	
522	AS	0	В	4051.00	3.45
522	AS	0	В	4149.00	4.98
522	AS	0	В	3557.00	20.29
522	AS	0	В	3393.00	26.1
522	AS	0	В	3902.00	9.81
522	AS	0	В	3761.00	15.92
522	AS	0	В	3862.00	12.19
522	AS	0	В	4152.00	1.01
522	AS	0	В	4208.00	1.68
522	AS	0	В	3692.00	19.86
522	AS	0	В	3076.00	32.66
522	AS	0	В	3813.00	16.13
522	AS	0	В	4181.00	2.21
522	AS	0	В	4159.00	1.53
522	AS	0	В	4078.00	4.86
522	AS	0	В	4157.00	2.07
522	AS	0	В	2886.00	35.81
522	AS	0	В	4079.00	5.43
522	AS	0	В	3857.00	13.46
522	AS	0	В	4189.00	2.57
522	AS	0	В	4041.00	8.85
522	AS	0	В	3391.00	26.45
522	AS	0	В	3970.00	8.21
522	AS	0	В	3847.00	12.81
522	AS	0	В	4201.00	2.06
522	AS	0	В	4194.00	2.03
522	AS	0	В	3420.00	25.1
522	AS	0	В	3090.00	29.77
522	AS	0	В	4091.00	5.01
522	AS	0	В	4234.00	1.73
522	AS	0	В	4124.00	5.92
522	AS	0	В	3424.00	25.18

Appendix F.	Raw Results	s of the 24 Scenarios
-------------	--------------------	-----------------------

522	AS	0	В	4227.00	0.69
522	AS	0	В	4187.00	1.23
522	AS	0	В	3697.00	16.15
522	AS	0	В	4074.00	9.81
522	AS	0	В	4138.00	2.9
522	AS	0	В	4071.00	5.43
522	AS	0	В	4156.00	4.34
522	AS	0	В	3805.00	12.61
522	AS	0	В	4011.00	8.16
522	AS	0	В	4097.00	4.46
522	AS	0	В	3051.00	34.13
522	AS	0	В	3826.00	12.47
522	AS	0	В	4226.00	2.22
522	AS	0	В	3164.00	29.5
522	AS	0	В	3089.00	31.68
522	AS	0	В	3983.00	8.88
522	AS	0	В	3960.00	11.09
522	AS	0	В	3713.00	17.11
522	AS	0	В	4157.00	3.13
522	AS	0	В	4052.00	5.78
522	AS	0	В	3920.00	11.48
522	AS	0	В	4092.00	1.99
522	AS	0	В	4183.00	0.39
522	AS	0	В	4124.00	4.53
522	AS	0	В	3926.00	9.89
522	AS	0	В	4055.00	6.61
522	AS	0	В	3476.00	22.1
522	AS	0	В	4190.00	1.72
522	AS	0	В	3502.00	23.68
522	AS	0	В	3946.00	9.19
522	AS	0	В	3598.00	19.47
522	AS	0	В	3922.00	13.63
522	AU	0	В	3686	22.38
522	AU	0	В	4071	14.05
522	AU	0	В	4079	17.34
522	AU	0	В	4294	8.46
522	AU	0	В	4387	1.95
522	AU	0	В	4335	4.44
522	AU	0	В	4033	14.74
522	AU	0	В	3263	31.69
522	AU	0	В	4268	9.06
522	AU	0	В	4333	3.59
522	AU	0	В	4293	5.97
522	AU	0	В	4359	2.05

522	AU	0	В	4304	6.42	522	AU	0	В	4218	8.63
522	AU	0	В	4319	9.14	522	AU	Ο	В	3678	28.74
522	AU	Ο	В	4323	4.83	522	AU	Ο	В	3827	20.79
522	AU	Ο	В	4264	7.65	522	AU	Ο	В	4293	5.07
522	AU	0	В	3701	27.92	522	AU	0	В	4112	13.55
522	AU	0	В	4343	4.51	522	AU	0	В	4039	18.01
522	AU	0	В	4164	10.35	522	AU	0	В	4187	11.96
522	AU	0	В	4230	8.73	522	AU	Ο	В	3423	33.16
522	AU	Ο	В	3827	24.59	522	AU	Ο	В	4275	10.19
522	AU	Ο	В	4226	10.38	522	AU	Ο	В	4096	12.81
522	AU	Ο	В	4262	8.42	522	AU	Ο	В	3924	19.58
522	AU	0	В	3955	18.75	522	AU	0	В	4210	10.42
522	AU	0	В	3866	22.33	522	AU	0	В	4125	14.36
522	AU	0	В	4397	2.89	522	AU	0	В	3961	17.18
522	AU	0	В	4364	4.98	522	AU	0	В	4116	13.74
522	AU	0	В	3434	34.03	522	AU	0	В	4096	14.46
522	AU	0	В	4262	9.76	522	AU	0	В	4222	7.31
522	AU	0	В	4279	6.99	522	AS	Ν	В	1859	58.12
522	AU	0	В	3947	18.75	522	AS	Ν	В	3025	32.22
522	AU	0	В	4083	14.01	522	AS	Ν	В	1834	57.34
522	AU	0	В	3926	20.25	522	AS	Ν	В	1815	57.8
522	AU	0	В	4316	5.6	522	AS	Ν	В	1812	58.55
522	AU	0	В	4270	8.02	522	AS	Ν	В	1670	63.11
522	AU	0	В	4400	1.22	522	AS	Ν	В	2205	49.15
522	AU	Ο	В	4273	8.12	522	AS	Ν	В	2634	42.38
522	AU	Ο	В	4268	7.09	522	AS	Ν	В	2378	45.38
522	AU	Ο	В	4238	6.54	522	AS	Ν	В	1886	58.28
522	AU	Ο	В	4050	15.65	522	AS	Ν	В	2106	53.21
522	AU	0	В	3685	24.55	522	AS	Ν	В	1739	59.85
522	AU	0	В	4341	5.47	522	AS	Ν	В	2757	39.01
522	AU	0	В	4265	5.62	522	AS	Ν	В	2264	50.69
522	AU	0	В	4233	9.8	522	AS	Ν	В	1465	63.7
522	AU	0	В	4142	11.81	522	AS	N	В	1770	59.36
522	AU	0	В	4296	5.66	522	AS	N	В	1282	70.81
522	AU	0	В	4025	18.29	522	AS	N	В	2027	54.27
522	AU	0	В	4398	2.16	522	AS	N	В	1271	70.6
522	AU	0	В	4107	14.06	522	AS	N	В	2002	54.49
522	AU	0	В	3890	19.65	522	AS	N	В	2428	44.49
522	AU	0	В	3921	15	522	AS	N	В	1799	58.23
522	AU	0	В	4348	3.88	522	AS	N	В	1988	54.97
522	AU	0	В	3501	30.02	522	AS	N	В	1816	58.84
522	AU	0	В	3888	23.87	522	AS	Ν	В	2292	47.03
522	AU	0	В	4083	13.58	522	AS	N	В	2226	50.31
522	AU	0	В	3464	30.77	522	AS	N	В	1609	63.43
522	AU	0	В	3433	32.26	522	AS	N	В	1516	64.52
522	AU	0	В	3849	19.87	522	AS	Ν	В	2230	50.6

522	AS	Ν	В	2331	46.21	522	AU	Ν	В	1908	57.7
522	AS	Ν	В	2330	47.6	522	AU	Ν	В	2030	54.6
522	AS	Ν	В	2251	49.95	522	AU	N	В	1755	58.9
522	AS	Ν	В	2171	50.07	522	AU	Ν	В	1955	55.9
522	AS	Ν	В	1992	53.87	522	AU	N	В	2015	57.6
522	AS	N	В	2205	49.68	522	AU	N	В	1735	60.7
522	AS	N	В	2678	40.65	522	AU	N	В	1525	65.5
522	AS	N	В	1887	56.49	522	AU	N	В	2149	52.8
522	AS	N	В	2075	53.98	522	AU	N	В	2273	49.5
522	AS	N	В	2116	51.51	522	AU	N	В	2498	45.2
522	AS	N	В	2257	47.85	522	AU	N	В	1774	59.1
522	AS	N	В	2699	41.96	522	AU	N	В	2335	49.0
522	AS	N	В	1168	73.52	522	AU	N	В	1926	56.4
522	AS	N	В	1714	61.63	522	AU	N	В	1577	64.7
522	AS	N	В	984	76.74	522	AU	N	В	1526	64.9
522	AS	N	В	3101	30.08	522	AU	N	В	1466	66.6
522	AS	N	В	1900	57.29	522	AU	N	В	2259	50.8
522	AS	N	В	2142	53.01	522	AU	N	В	1604	64.2
522	AS	N	В	1859	58.29	522	AU	N	В	1427	68.4
522	AS	N	В	2172	50.82	522	AU	N	В	2149	52.2
522	AS	N	В	1767	58.99	522	AU	N	В	2017	57.5
522	AS	N	В	1772	58.44	522	AU	N	В	1261	71.2
522	AS	N	В	1663	62.56	522	AU	N	В	2231	51.0
522	AS	N	В	2154	52.24	522	AU	N	В	1272	72.3
522	AS	N	В	1561	63.82	522	AU	N	В	1760	60.2
522	AS	N	В	1737	60.49	522	AU	N	В	1674	62.7
522	AS	N	В	1286	68.79	522	AU	N	В	1754	62.8
522	AS	N	В	1881	57.07	522	AU	N	В	2077	54.3
522	AS	N	В	1597	64.66	522	AU	N	В	2098	54.3
522	AS	N	В	1802	58.63	522	AU	N	В	1995	57.1
522	AS	N	В	2438	46.28	522	AU	N	В	1360	68.3
522	AS	N	В	1818	57.81	522	AU	N	В	1690	61.9
522	AS	N	В	2122	50.45	522	AU	N	В	1938	56.6
522	AS	N	В	1993	55.7	522	AU	N	В	1214	72.4
522	AS	N	В	1943	56.53	522	AU	N	В	2156	53.5
522	AS	N	В	1427	64.43	522	AU	N	В	1613	63.1
522	AS	N	В	1439	65.53	522	AU	N	В	2377	48.2
522	AS	N	В	1620	63.17	522	AU	N	В	2757	40.9
522	AS	N	B	1403	69.06	522	AU	N	В	2665	41.1
522	AS	N	В	1312	68.7	522	AU	N	В	971	78.1
522	AS	N	B	2179	51.93	522	AU	N	В	1292	71.2
522	AS	N	B	1793	58.95	522	AU	N	В	1979	55.4
522	AS	N	B	1570	64.23	522	AU	N	В	2333	50.0
522	AS	N	B	1417	66.3	522	AU	N	В	2054	56.0
522	AS	N	B	2008	54.18	522	AU	N	B	2294	49.6
522	AS	N	B	1701	60.26	522	AU	N	B	2644	40.4

522	AU	Ν	В	1898	58.34	522	AS	0	U	4257	0
522	AU	N	B	2468	45.71	522	AS	0	U	4215	0
522	AU	N	B	2408	53.25	522	AS	0	U	4200	0
522	AU	N	B	2454	46.34	522	AS	0	U	4229	0
522	AU	N	B	1495	65.26	522	AS	0	U	4178	0
522	AU	N	B	1539	66.1	522	AS	0	U	4265	0
522	AU	N	B	1296	70.72	522	AS	0	U	4236	0
522	AU	N	B	1290	65.2	522	AS	0	U	4127	0
522	AU	N	B	1238	72.19	522	AS	0	U	4195	0
522 522	AU	N	B	1330	70.59	522	AS	0	U	4238	0
522 522	AU	N	B	1901	58.61	522	AS	0	U	4208	0
522	AU	N	B	1412	67.71	522	AS	0	U	4254	0
522 522	AU	N	B	1909	57.3	522	AS	0	U	4252	0
522	AU	N	B	2170	53.87	522	AS	0	U	4247	0
522	AU	N	B	874	78.62	522	AS	0	U	4233	0
522	AU	N	B	2403	47.24	522	AS	0	U	4228	0
522	AU	N	В	2490	46.08	522	AS	0	U	4249	0
522	AU	N	В	2337	49.36	522	AS	0	U	4190	0
522	AU	N	В	1174	72.72	522	AS	0	U	4244	0
522	AU	N	В	1624	62.58	522	AS	0	U	4179	0
522	AU	N	В	2161	51.7	522	AS	0	U	4230	0
522	AU	Ν	В	1464	67.77	522	AS	0	U	4189	0
522	AU	Ν	В	1383	68.98	522	AS	0	U	4228	0
522	AU	Ν	В	1884	59.66	522	AS	0	U	4220	0
522	AU	N	В	1883	57.17	522	AS	0	U	4214	0
522	AU	N	В	1316	72.47	522	AS	0	U	4223	0
522	AU	N	В	1647	62.89	522	AS	0	U	4212	0
522	AU	Ν	В	1880	56.29	522	AS	Ο	U	4249	0
522	AU	Ν	В	1585	65.61	522	AS	0	U	4201	0
522	AS	0	U	4201	0	522	AS	0	U	4276	0
522	AS	Ο	U	4190	0	522	AS	Ο	U	4234	0
522	AS	Ο	U	4196	0	522	AS	Ο	U	4210	0
522	AS	Ο	U	4237	0	522	AS	Ο	U	4259	0
522	AS	Ο	U	4232	0	522	AS	Ο	U	4261	0
522	AS	Ο	U	4270	0	522	AS	Ο	U	4256	0
522	AS	Ο	U	4259	0	522	AS	Ο	U	4230	0
522	AS	Ο	U	4248	0	522	AS	Ο	U	4238	0
522	AS	Ο	U	4236	0	522	AS	Ο	U	4188	0
522	AS	Ο	U	4200	0	522	AS	Ο	U	4199	0
522	AS	Ο	U	4226	0	522	AS	Ο	U	4244	0
522	AS	0	U	4181	0	522	AS	0	U	4171	0
522	AS	0	U	4308	0	522	AS	0	U	4240	0
522	AS	0	U	4201	0	522	AS	0	U	4228	0
522	AS	0	U	4258	0	522	AS	0	U	4241	0
522	AS	0	U	4230	0	522	AS	0	U	4187	0
522	AS	0	U	4247	0	522	AS	0	U	4196	0

522	AS	О	U	4253	0	522	
522	AS	0	U	4222	0	522	
522	AS	0	U	4211	0	522	
522	AS	0	U	4200	0	522	
522	AS	0	U	4220	0	522	
522	AS	0	U	4224	0	522	
522	AS	0	U	4246	0	522	
522	AS	0	U	4262	0	522	
522	AS	0	U	4229	0	522	
522	AS	0	U	4271	0	522	
522	AS	0	U	4190	0	522	
522	AS	0	U	4252	0	522	
522	AU	0	U	4427	0	522	
522	AU	0	U	4398	0	522	
522	AU	0	U	4414	0	522	
522	AU	0	U	4423	0	522	
522	AU	0	U	4427	0	522	
522	AU	0	U	4410	0	522	
522	AU	0	U	4405	0	522	Ť
522	AU	0	U	4411	0	522	
522	AU	0	U	4429	0	522	
522	AU	0	U	4399	0	522	
522	AU	0	U	4423	0	522	
522	AU	0	U	4379	0	522	
522	AU	0	U	4370	0	522	
522	AU	0	U	4410	0	522	
522	AU	0	U	4326	3.52	522	
522	AU	0	U	4401	0	522	
522	AU	0	U	4419	0	522	
522	AU	0	U	4413	0	522	
522	AU	0	U	4400	0	522	
522	AU	0	U	4397	0	522	
522	AU	0	U	4412	0	522	
522	AU	0	U	4444	0	522	
522	AU	0	U	4407	0	522	
522	AU	0	U	4416	0	522	
522	AU	0	U	4398	0	522	
522	AU	0	U	4438	0	522	
522	AU	0	U	4398	0	522	
522	AU	0	U	4401	0	522	
522	AU	0	U	4426	0	522	
522	AU	0	U	4408	0	522	
522	AU	0	U	4432	0	522	
522	AU	0	U	4439	0	522	
522	AU	0	U	4412	0	522	ť
	14 1 0			1 1 1 4		544	1

522	AU	0	U	4392	0
522	AU	0	U	4400	0
522	AU	0	U	4413	0
522	AU	0	U	4406	0
522	AU	0	U	4429	0
522	AU	0	U	4415	0.14
522	AU	0	U	4415	0.14
522 522	AU		U	4413	0
522		0	U		0.05
	AU	0		4408	
522	AU	0	U	4414	0
522	AU	0	U	4388	0
522	AU	0	U	4430	0
522	AU	0	U	4436	0
522	AU	0	U	4395	0
522	AU	0	U	4421	0
522	AU	0	U	4427	0
522	AU	0	U	4402	0
522	AU	0	U	4419	0
522	AU	0	U	4422	0
522	AU	0	U	4422	0
522	AU	0	U	4427	0
522	AU	0	U	4406	0
522	AU	0	U	4415	0
522	AU	0	U	4397	0
522	AU	0	U	4431	0
522	AU	0	U	4385	0
522	AU	0	U	4408	0.52
522	AU	0	U	4394	0
522	AU	0	U	4404	0
522	AU	0	U	4416	0
522	AU	0	U	4396	0
522	AU	0	U	4416	0
522	AU	0	U	4406	0
522	AU	0	U	4399	0
522	AU	0	U	4406	0
522	AU	0	U	4406	0
522 522	AU	0	U	4384	0
522	AU	0	U	4432	0
522 522	AU	0	U	4404	0
522	AU	0	U	4394	0
522	AU	0	U	4409	0
522	AS	N	U	3337	23.86
522	AS	N	U	4210	0.88
522	AS	N	U	3910	12.21
522	AS	N	U	4237	2.66
522	AS	Ν	U	4132	6.47

522	AS	Ν	U	3856	13.94	522	AS	Ν	U	3901	10.38
522	AS	Ν	U	3663	15.09	522	AS	Ν	U	3597	17.44
522	AS	Ν	U	3676	16.22	522	AS	N	U	3644	17.24
522	AS	Ν	U	4278	1.08	522	AS	N	U	3430	22.76
522	AS	N	U	3792	13.81	522	AS	N	U	3227	25.05
522	AS	N	U	3651	16.71	522	AS	N	U	4238	1.55
522	AS	N	U	3910	10.07	522	AS	N	U	3566	17.91
522	AS	N	U	3562	17.07	522	AS	N	U	4159	5.28
522	AS	N	U	3865	13.2	522	AS	N	U	4108	6.11
522	AS	N	U	4198	2.3	522	AS	N	U	3701	16.22
522	AS	N	U	4251	1.81	522	AS	N	U	3781	13.31
522	AS	N	U	3959	9.32	522	AS	N	U	3885	11.85
522	AS	Ν	U	3614	18.12	522	AS	N	U	3389	22.85
522	AS	N	U	4316		522	AS	N	U	3604	18.76
522	AS	N	U	4092	6.76	522	AS	N	U	3990	9.13
522	AS	N	U	4117	6.27	522	AS	N	U	3028	29.78
522	AS	N	U	3826	13.81	522	AS	N	U	4029	8.6
522	AS	N	U	3923	10.07	522	AS	N	U	3645	15.52
522	AS	Ν	U	3196	27.11	522	AS	N	U	3860	11.65
522	AS	Ν	U	4130	3.73	522	AS	N	U	4119	6.13
522	AS	N	U	3344	23.87	522	AS	N	U	3676	18.34
522	AS	Ν	U	4220	3.05	522	AS	N	U	4177	4
522	AS	Ν	U	3537	20.55	522	AS	N	U	4162	4.22
522	AS	N	U	4150	5.25	522	AS	N	U	3684	16.85
522	AS	Ν	U	3769	13.95	522	AU	N	U	4120	8.05
522	AS	Ν	U	4228	2.97	522	AU	N	U	4214	4.46
522	AS	Ν	U	3993	9.26	522	AU	N	U	3428	21.83
522	AS	Ν	U	3671	16.66	522	AU	Ν	U	3819	14.17
522	AS	Ν	U	4300	0.01	522	AU	Ν	U	4390	0.76
522	AS	Ν	U	4291	2.22	522	AU	Ν	U	3851	14.44
522	AS	Ν	U	4282	0.74	522	AU	Ν	U	4033	10.25
522	AS	Ν	U	4129	4.51	522	AU	Ν	U	3539	20.64
522	AS	N	U	4103	6.68	522	AU	Ν	U	4310	2.69
522	AS	Ν	U	3592	18.03	522	AU	Ν	U	3193	27.77
522	AS	Ν	U	4042	8.05	522	AU	Ν	U	4099	8.14
522	AS	Ν	U	4190	3.7	522	AU	Ν	U	4123	8.86
522	AS	Ν	U	4028	6.98	522	AU	Ν	U	3877	12.81
522	AS	Ν	U	3728	13.89	522	AU	Ν	U	4350	1.71
522	AS	Ν	U	3569	18.26	522	AU	N	U	3682	18.37
522	AS	Ν	U	4241	2.99	522	AU	Ν	U	3971	10.06
522	AS	N	U	4254	2.76	522	AU	N	U	4352	1.38
522	AS	N	U	3436	21.15	522	AU	N	U	4140	7.4
522	AS	N	U	3842	13.71	522	AU	N	U	3211	27.68
522	AS	N	U	3459	19.32	522	AU	N	U	4355	0.42
522	AS	N	U	4347		522	AU	N	U	4095	8.39
522	AS	N	U	4124	6.78	522	AU	N	U	3439	24.07

522	AU	N	U	4128	8	522	AU	Ν	U	3980	10.69
522	AU	Ν	U	4372	0.49	522	AU	Ν	U	3178	29.22
522	AU	Ν	U	3483	21.88	522	AU	Ν	U	4185	6.38
522	AU	Ν	U	4105	7.17	522	AU	Ν	U	3694	17.75
522	AU	Ν	U	3354	26.26	522	AU	Ν	U	4021	9.77
522	AU	Ν	U	4333	1.67	522	AU	Ν	U	4204	6.26
522	AU	Ν	U	4090	7.87	522	AU	Ν	U	4008	10.43
522	AU	Ν	U	4407	0.37	523	AS	Ο	В	3511	20.38
522	AU	Ν	U	4001	10.56	523	AS	Ο	В	3862	5.7
522	AU	Ν	U	4099	8.29	523	AS	Ο	В	3931	2.09
522	AU	Ν	U	3883	13.11	523	AS	Ο	В	3921	3.3
522	AU	Ν	U	4157	6.81	523	AS	Ο	В	3947	0.88
522	AU	Ν	U	4357		523	AS	Ο	В	3810	9.07
522	AU	Ν	U	4200	6.6	523	AS	0	В	3941	3.31
522	AU	Ν	U	3822	13.97	523	AS	Ο	В	3359	19.68
522	AU	Ν	U	4354		523	AS	Ο	В	3891	3.95
522	AU	Ν	U	4160	6.56	523	AS	0	В	2839	36.54
522	AU	Ν	U	3763	17.3	523	AS	0	В	3877	5.44
522	AU	Ν	U	3715	18.48	523	AS	0	В	3520	16.67
522	AU	Ν	U	3858	14.37	523	AS	0	В	3793	8.88
522	AU	N	U	4234	6.11	523	AS	0	В	3898	3.62
522	AU	Ν	U	3540	21	523	AS	0	В	3917	1.83
522	AU	Ν	U	3983	11.83	523	AS	0	В	3402	24.09
522	AU	N	U	4393	1.19	523	AS	0	В	3952	3.22
522	AU	Ν	U	4397	0.19	523	AS	0	В	3330	22.38
522	AU	Ν	U	3956	12.53	523	AS	Ο	В	3428	19.44
522	AU	Ν	U	3891	13.71	523	AS	Ο	В	3944	1.04
522	AU	Ν	U	4336	2.5	523	AS	Ο	В	3957	3.44
522	AU	Ν	U	3615	18.81	523	AS	Ο	В	3391	22.37
522	AU	Ν	U	4336	2.72	523	AS	Ο	В	3871	6.06
522	AU	Ν	U	3550	21.84	523	AS	Ο	В	3888	4.87
522	AU	Ν	U	3617	20.42	523	AS	Ο	В	3912	2.65
522	AU	Ν	U	2949	32.62	523	AS	Ο	В	3440	18.43
522	AU	Ν	U	3867	13.7	523	AS	Ο	В	3834	6.81
522	AU	Ν	U	3773	16.48	523	AS	Ο	В	3890	4.43
522	AU	Ν	U	3787	14.73	523	AS	Ο	В	3835	7.24
522	AU	Ν	U	3947	11.65	523	AS	Ο	В	3927	2.68
522	AU	Ν	U	3850	13.54	523	AS	Ο	В	3946	1.51
522	AU	Ν	U	3937	11.46	523	AS	Ο	В	3394	22.09
522	AU	Ν	U	3757	15.8	523	AS	Ο	В	3934	0.8
522	AU	Ν	U	3412	23.52	523	AS	0	В	3750	10.78
522	AU	N	U	3903	12.72	523	AS	0	В	3448	17.91
522	AU	N	U	3569	20.76	523	AS	0	В	3980	0.89
522	AU	N	U	4037	10.27	523	AS	0	В	3588	15.69
522	AU	N	U	4177	5.86	523	AS	0	В	3838	7.3
522	AU	N	U	3824	15.06	523	AS	0	В	3651	15.81

523	AS	0	в	3450	17.39	523	AU	0	в	4039	2.37
523	AS	0	В	3905	3.33	523	AU	0	В	4063	1.64
523	AS	0	В	3120	26.84	523	AU	0	В	3831	15.5
523	AS	0	В	3728	10.27	523	AU	0	В	3675	21.74
523	AS	0	В	3872	2.91	523	AU	0	В	4029	8.18
523	AS	0	В	3914	1.46	523	AU	0	В	3894	18.61
523	AS	Ο	В	3899	1.79	523	AU	Ο	В	3696	22.42
523	AS	Ο	В	3896	4.23	523	AU	Ο	В	3810	18.64
523	AS	0	В	3558	17.22	523	AU	0	В	3242	33.69
523	AS	0	В	3821	9.55	523	AU	0	В	3812	18.86
523	AS	0	В	3948	2.08	523	AU	0	В	4002	10.52
523	AS	0	В	3960	1.62	523	AU	0	В	3730	19.66
523	AS	Ο	В	3875	4.66	523	AU	Ο	В	3985	6.43
523	AS	0	В	3342	22.04	523	AU	0	В	3602	21.96
523	AS	0	В	3889	4.13	523	AU	0	В	4041	2.32
523	AS	Ο	В	3909	2.99	523	AU	Ο	В	3799	16.93
523	AS	Ο	В	3775	9.14	523	AU	Ο	В	2975	40.74
523	AS	0	В	3372	20.81	523	AU	0	В	4009	5.36
523	AS	Ο	В	3858	6.54	523	AU	Ο	В	3999	7.94
523	AS	Ο	В	3480	20.13	523	AU	Ο	В	4002	9.36
523	AS	Ο	В	3258	22.49	523	AU	Ο	В	4059	2.15
523	AS	0	В	3422	20.14	523	AU	Ο	В	3565	25.97
523	AS	Ο	В	3836	6.21	523	AU	Ο	В	4033	3.73
523	AS	0	В	3755	9.93	523	AU	Ο	В	4026	4.86
523	AS	0	В	3844	7.88	523	AU	0	В	4051	2.11
523	AS	0	В	3647	14.24	523	AU	0	В	3392	28.2
523	AS	0	В	3960	1.39	523	AU	0	В	3786	18.33
523	AS	Ο	В	3789	10.19	523	AU	Ο	В	3519	27.74
523	AS	Ο	В	3751	11.02	523	AU	Ο	В	4051	2.99
523	AS	Ο	В	3587	14.49	523	AU	Ο	В	4053	2.72
523	AS	Ο	В	3944	1.8	523	AU	Ο	В	3600	24.96
523	AS	Ο	В	2444	45	523	AU	Ο	В	3958	9.91
523	AS	0	В	3979	1.06	523	AU	0	В	4055	3.05
523	AS	0	В	3929	4.44	523	AU	0	В	3700	18.59
523	AS	Ο	В	3517	18.98	523	AU	Ο	В	3977	9.39
523	AS	0	В	3858	7.43	523	AU	0	В	3867	15.12
523	AU	0	В	3811	14.72	523	AU	0	В	4058	2.49
523	AU	0	В	3714	19.77	523	AU	Ο	В	3982	13.23
523	AU	0	В	3429	24.28	523	AU	0	В	4060	1.12
523	AU	0	В	3966	10.23	523	AU	0	В	4060	2.78
523	AU	Ο	В	3897	13.3	523	AU	Ο	В	3957	7.45
523	AU	0	В	4043	2.19	523	AU	0	В	3344	29.57
523	AU	0	В	3884	17.3	523	AU	0	В	4032	4.83
523	AU	0	В	4009	7.91	523	AU	0	В	4063	3.42
523	AU	0	В	3871	20.55	523	AU	0	В	4006	6.85
523	AU	0	В	3667	17.83	523	AU	0	В	4028	5.14

523	AU	0	В	4053	3.61	523	AS	Ν	В	2110	50.23
523	AU	0	В	4060	3.22	523	AS	Ν	В	1633	59.66
523	AU	0	В	3608	19.58	523	AS	Ν	В	1703	60.75
523	AU	0	В	4044	3.74	523	AS	Ν	В	1596	61.45
523	AU	0	В	3940	12.54	523	AS	Ν	В	1879	56.19
523	AU	Ο	В	3647	21.65	523	AS	Ν	В	1748	57.59
523	AU	0	В	3942	9.58	523	AS	Ν	В	1993	54.23
523	AU	0	В	3591	22.05	523	AS	Ν	В	1323	68.94
523	AU	0	В	3737	22.44	523	AS	Ν	В	1468	64.9
523	AU	0	В	3792	18.07	523	AS	Ν	В	1418	66.42
523	AU	0	В	3883	15.53	523	AS	Ν	В	1103	71.4
523	AU	0	В	3647	25.54	523	AS	Ν	В	1337	66.84
523	AU	0	В	4027	7.25	523	AS	Ν	В	971	77.62
523	AU	0	В	3484	27.59	523	AS	Ν	В	2744	35.48
523	AU	0	В	4008	5.32	523	AS	Ν	В	1224	70.06
523	AU	0	В	3988	7.9	523	AS	Ν	В	2559	42.61
523	AU	0	В	4055	1.95	523	AS	Ν	В	1737	59.57
523	AU	Ο	В	4016	9.18	523	AS	Ν	В	2051	51.93
523	AU	0	В	4024	3.99	523	AS	Ν	В	2062	52.85
523	AS	Ν	В	1835	56.65	523	AS	Ν	В	1532	63.44
523	AS	Ν	В	1047	72.47	523	AS	Ν	В	2058	52.03
523	AS	Ν	В	1278	68.45	523	AS	N	В	1210	70.94
523	AS	Ν	В	2213	49.07	523	AS	Ν	В	1360	65.84
523	AS	Ν	В	1241	70.08	523	AS	Ν	В	2002	52.52
523	AS	N	В	1241	69.8	523	AS	N	В	2284	48.04
523	AS	N	В	2199	48.16	523	AS	N	В	1681	59.33
523	AS	N	В	1688	58.48	523	AS	N	В	2105	48.85
523	AS	Ν	В	1757	57.97	523	AS	Ν	В	1479	65.98
523	AS	N	В	2010	52.06	523	AS	N	В	2412	45.26
523	AS	N	В	1827	57.56	523	AS	N	В	1195	72.78
523	AS	Ν	В	2086	50.7	523	AS	Ν	В	2194	49.31
523	AS	Ν	В	1937	54.79	523	AS	Ν	В	2112	50.25
523	AS	Ν	В	1518	63.02	523	AS	N	В	1573	63.22
523	AS	Ν	В	1955	53.9	523	AS	Ν	В	1331	68.24
523	AS	Ν	В	2152	50.56	523	AS	Ν	В	1773	57.39
523	AS	Ν	В	1709	58.94	523	AS	Ν	В	1151	70.63
523	AS	Ν	В	1433	65.82	523	AS	Ν	В	1676	58.39
523	AS	Ν	В	1079	73.8	523	AS	Ν	В	1162	72.76
523	AS	Ν	В	1850	55.5	523	AS	Ν	В	1495	64.5
523	AS	Ν	В	1371	66.32	523	AS	N	В	1863	56.03
523	AS	Ν	В	1226	69.58	523	AS	Ν	В	1392	67.47
523	AS	Ν	В	2154	49.52	523	AS	Ν	В	1773	59.97
523	AS	Ν	В	868	77.9	523	AS	Ν	В	1414	65.37
523	AS	Ν	В	2332	46.36	523	AS	Ν	В	2178	49.39
523	AS	Ν	В	1721	58.52	523	AS	Ν	В	1590	63
523	AS	Ν	В	1300	69.19	523	AS	Ν	В	1217	70.07

523	AS	Ν	В	1214	70.84	523	AU	Ν	в	2133	
523	AS	N	В	2079	51.97	523	AU	N	В	1317	
523	AU	N	B	1423	66.33	523	AU	N	B	1929	
523	AU	N	В	1632	61.69	523	AU	N	В	1601	
523	AU	N	В	1334	68.12	523	AU	N	В	1571	
523	AU	N	B	1769	59.56	523	AU	N	B	1758	
523	AU	N	В	2277	47.22	523	AU	N	В	1871	-
523	AU	N	B	1702	60.76	523	AU	N	B	1848	
523	AU	N	B	1731	58.66	523	AU	N	B	2210	
523	AU	N	В	1125	72.01	523	AU	N	В	2377	
523	AU	N	В	1892	54.32	523	AU	N	В	1131	
523	AU	N	В	2214	49.81	523	AU	N	В	1880	
523	AU	N	В	1611	62.28	523	AU	N	В	1321	
523	AU	N	В	1659	61.28	523	AU	N	В	2476	
523	AU	N	В	1547	62.6	523	AU	N	В	1486	
523	AU	N	В	2137	51.59	523	AU	Ν	В	1558	
523	AU	N	В	1905	56.29	523	AU	Ν	В	1651	
523	AU	Ν	В	1668	60.75	523	AU	Ν	В	1501	
523	AU	N	В	1590	62.58	523	AU	Ν	В	1493	
523	AU	N	В	1296	68.71	523	AU	Ν	В	2286	
523	AU	Ν	В	1562	64.36	523	AU	Ν	В	1206	
523	AU	N	В	2190	48.71	523	AU	Ν	В	1858	
523	AU	N	В	1456	66.07	523	AU	Ν	В	2131	
523	AU	N	В	1708	60.76	523	AU	Ν	В	1582	
523	AU	Ν	В	1661	62.02	523	AU	Ν	В	1708	
523	AU	Ν	В	1966	55.51	523	AU	Ν	В	1972	
523	AU	Ν	В	1551	63.31	523	AU	Ν	В	1572	
523	AU	Ν	В	1753	59.82	523	AU	Ν	В	971	
523	AU	Ν	В	1168	73.03	523	AU	Ν	В	1175	
523	AU	Ν	В	1612	62.82	523	AU	Ν	В	1368	
523	AU	Ν	В	1530	65.77	523	AU	Ν	В	2094	
523	AU	Ν	В	1452	64.88	523	AS	0	U	3957	
523	AU	Ν	В	2327	45.71	523	AS	0	U	3943	
523	AU	Ν	В	2594	40.61	523	AS	0	U	3961	
523	AU	Ν	В	2005	54.86	523	AS	0	U	3954	
523	AU	Ν	В	1517	64.88	523	AS	0	U	3951	
523	AU	Ν	В	1642	61.18	523	AS	0	U	3976	
523	AU	Ν	В	2030	52.47	523	AS	0	U	3968	
523	AU	Ν	В	1290	68.44	523	AS	0	U	3976	
523	AU	Ν	В	2085	53.19	523	AS	0	U	3972	
523	AU	Ν	В	2487	44.08	523	AS	0	U	4011	
523	AU	Ν	В	1569	63.9	523	AS	0	U	3957	
523	AU	Ν	В	1727	59.34	523	AS	0	U	3950	
523	AU	Ν	В	1447	68	523	AS	0	U	4010	
523	AU	Ν	В	2163	51.88	523	AS	0	U	3964	
523	AU	Ν	В	1034	75.39	523	AS	0	U	3970	

AS	0				
	0	U	3974	0	523
AS	0	U	3962	0	523
AS	0	U	3986	0	523
AS		U		0	523
AS	0	U		0	523
AS	0	U	3967	0	523
AS	0	U	3970	0	523
AS	0	U	3970	0	523
	0	U		0	523
				0	523
		U			523
	0				523
	0	U		0	523
			-		523
					523
					523
					523
					523
				-	523
					523
					523
					523
					523
					523
			1		523
				-	523
				-	523
					523
					523
					523
					523
					523
				-	523
					523
			1		523
		-			523
	-			-	523
				-	523
					523
					523
					523
				-	523
		-		-	523
	-			-	523
10	\sim		3980	0	523
	AS AS AS AS	ASO <td>ASOU<td>AS O U 3986 AS O U 3969 AS O U 3977 AS O U 3977 AS O U 3977 AS O U 3970 AS O U 3970 AS O U 3969 AS O U 3963 AS O U 3963 AS O U 3963 AS O U 3981 AS O U 3983 AS O U 3999 AS O U 3977 AS O U 3987 AS O U 3987 AS O U 3987 AS</td><td>ASOU$3986$0ASOU$3969$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3970$0ASOU$3970$0ASOU$3970$0ASOU$3969$0ASOU$3969$0ASOU$3969$0ASOU$3969$0ASOU$3976$0ASOU$3976$0ASOU$3976$0ASOU$3983$0ASOU$3999$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3987$0ASOU$3967$0ASOU$3967$0ASOU$3963$0ASOU$3995$0ASOU$3992$0ASOU$3992$0ASOU$3992$0ASO<!--</td--></td></td>	ASOU <td>AS O U 3986 AS O U 3969 AS O U 3977 AS O U 3977 AS O U 3977 AS O U 3970 AS O U 3970 AS O U 3969 AS O U 3963 AS O U 3963 AS O U 3963 AS O U 3981 AS O U 3983 AS O U 3999 AS O U 3977 AS O U 3987 AS O U 3987 AS O U 3987 AS</td> <td>ASOU$3986$0ASOU$3969$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3970$0ASOU$3970$0ASOU$3970$0ASOU$3969$0ASOU$3969$0ASOU$3969$0ASOU$3969$0ASOU$3976$0ASOU$3976$0ASOU$3976$0ASOU$3983$0ASOU$3999$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3977$0ASOU$3987$0ASOU$3967$0ASOU$3967$0ASOU$3963$0ASOU$3995$0ASOU$3992$0ASOU$3992$0ASOU$3992$0ASO<!--</td--></td>	AS O U 3986 AS O U 3969 AS O U 3977 AS O U 3977 AS O U 3977 AS O U 3970 AS O U 3970 AS O U 3969 AS O U 3963 AS O U 3963 AS O U 3963 AS O U 3981 AS O U 3983 AS O U 3999 AS O U 3977 AS O U 3987 AS O U 3987 AS O U 3987 AS	ASOU 3986 0ASOU 3969 0ASOU 3977 0ASOU 3977 0ASOU 3977 0ASOU 3970 0ASOU 3970 0ASOU 3970 0ASOU 3969 0ASOU 3969 0ASOU 3969 0ASOU 3969 0ASOU 3976 0ASOU 3976 0ASOU 3976 0ASOU 3983 0ASOU 3999 0ASOU 3977 0ASOU 3977 0ASOU 3977 0ASOU 3977 0ASOU 3977 0ASOU 3977 0ASOU 3987 0ASOU 3967 0ASOU 3967 0ASOU 3963 0ASOU 3995 0ASOU 3992 0ASOU 3992 0ASOU 3992 0ASO </td

523	AS	0	U	3931	0
523	AS	0	Ū	3983	0
523	AS	0	U	3993	0
523	AS	0	U	3955	0
523	AS	0	U	3948	0
523	AS	0	U	3980	0
523	AS	0	U	3956	0
523	AS	0	U	3973	0
523	AS	0	U	3981	0
523	AS	0	U	3967	0
523	AS	0	U	3980	0
523	AS	0	U	3967	0
523 523	AS	0	U	3994	0
		-			
523	AS	0	U U	3961	0 0
523	AU	0		4055	
523	AU	0	U	4064	0
523	AU	0	U	4065	0
523	AU	0	U	4053	0
523	AU	0	U	4067	0
523	AU	0	U	4060	0
523	AU	0	U	4062	0
523	AU	0	U	4049	0
523	AU	0	U	4064	0
523	AU	0	U	4054	0
523	AU	0	U	4064	0
523	AU	0	U	4052	0
523	AU	0	U	4061	0
523	AU	0	U	4064	0
523	AU	0	U	4052	0
523	AU	0	U	4058	0
523	AU	0	U	4057	0
523	AU	0	U	4054	0
523	AU	0	U	4062	0
523	AU	0	U	4061	0
523	AU	0	U	4068	0
523	AU	0	U	4069	0
523	AU	0	U	4068	0
523	AU	0	U	4066	0
523	AU	0	U	4063	0
523	AU	0	U	4070	0
523	AU	0	U	4064	0
523	AU	0	U	4068	0
523	AU	0	U	4062	0
523	AU	0	U	4068	0
523	AU	0	U	4068	0
523	AU	0	U	4065	0
545	110	<u> </u>	U	1005	v

523	AU	0	U	4066	0
523	AU	0	U	4068	0
523	AU	0	U	4066	0
523	AU	0	U	4055	0
523	AU	0	U	4053	0
					0
523	AU	0	U	4061	
523	AU	0	U	4055	0
523	AU	0	U	4056	0
523	AU	0	U	4068	0
523	AU	0	U	4063	0
523	AU	0	U	4057	0
523	AU	0	U	4048	0
523	AU	Ο	U	4069	0
523	AU	0	U	4066	0
523	AU	0	U	4068	0
523	AU	0	U	4062	0
523	AU	0	U	4060	0
523	AU	Ο	U	4064	0
523	AU	Ο	U	4069	0
523	AU	Ο	U	4068	0
523	AU	Ο	U	4067	0
523	AU	0	U	4063	0
523	AU	0	U	4061	0
523	AU	0	U	4059	0
523	AU	0	U	4063	0
523	AU	0	U	4062	0
523	AU	Ο	U	4068	0
523	AU	0	U	4068	0
523	AU	0	U	4068	0
523	AU	0	U	4053	0
523	AU	0	U	4068	0
523	AU	0	U	4063	0
523	AU	0	U	4048	0
523	AU	0	Ū	4064	0
523	AU	0	U	4069	0
523	AU	0	U	4067	0
523	AU	0	U	4063	0
523	AU	0	U	4072	0
523	AU	0	U	4072	0
523	AU	0	U	4073	0
					0
523	AU	0	U	4067	
523	AU	0	U	4051	0
523	AU	0	U	4064	0
523	AS	N	U	3533	13.92
523	AS	N	U	3852	3.88
523	AS	Ν	U	3813	8.13

523	AS	Ν	U	3995	0.65
523	AS	Ν	U	4000	2
523	AS	N	U	3999	0.85
523	AS	N	U	3559	16.31
523	AS	N	U	3505	15.92
523	AS	N	U	3724	9.99
523	AS	N	U	3716	8.59
523	AS	N	U	3324	20.02
523	AS	N	U	3842	6.03
523	AS	N	U	3964	2.79
523	AS	N	U	3947	4.71
523	AS	N	U	3721	8.34
523	AS	N	U	3960	2.63
523	AS	N	Ū	3683	9.28
523	AS	N	Ū	3280	22.37
523	AS	N	U	3139	23.74
523	AS	N	U	3886	5.03
523	AS	N	U	3790	7.6
523	AS	N	U	3937	3.39
523	AS	N	U	3552	14.59
523	AS	N	U	3690	9.33
523	AS	N	U	3972	2.58
523	AS	N	U	3771	8.54
523	AS	N	U	3758	9.57
523 523	AS	N	U	3684	10.84
523	AS	N	U	3455	16.74
523	AS	N	U	3755	8.8
523	AS	N	U	4029	0.81
523	AS	N	U	3905	5.34
523	AS	N	U	3378	18.31
523 523	AS	N	U	3470	15.38
523	AS	N	U	3601	12.63
523 523	AS	N	U	3945	2.64
523 523	AS	N	U	3475	17.14
			U		
523 522	AS	N	U	3481	15.99
523 522	AS	N		3708	7.56
523 522	AS	N	U	3509	15.69
523 522	AS	N	U	3957	2.93 9.59
523	AS	N	U	3719	
523 522	AS	N	U	3615	10.51
523	AS	N	U	3260	20.09
523	AS	N	U	3645	10.87
523	AS	N	U	3375	17.97
523	AS	N	U	3954	2.65
523	AS	N	U	3533	14.85
523	AS	Ν	U	3342	19.94

523	AS	N	U	3985	2.98	523	AU	Ν	U	3937	4.92
523	AS	N	U	3793	9.52	523	AU	N	U	3889	4.98
523	AS	N	U	3753	9.93	523	AU	N	U	4036	1.16
523	AS	N	U	3820	6.78	523	AU	N	U	4021	2.52
523	AS	N	U	3784	8.36	523	AU	N	U	3494	16.24
523	AS	N	U	3323	19.12	523	AU	N	U	3941	4.34
523	AS	Ν	U	3780	8.29	523	AU	Ν	U	3358	20.7
523	AS	N	U	3356	19.16	523	AU	Ν	U	3285	20.61
523	AS	Ν	U	3834	7.31	523	AU	N	U	2704	33.67
523	AS	N	U	3730	9.19	523	AU	N	U	3748	10.14
523	AS	Ν	U	3313	19.31	523	AU	N	U	3671	11.02
523	AS	N	U	3836	6.56	523	AU	N	U	3473	16.77
523	AS	Ν	U	3949	2.54	523	AU	Ν	U	3557	15.74
523	AS	Ν	U	3814	5.46	523	AU	Ν	U	3773	9.95
523	AS	Ν	U	3621	11.89	523	AU	Ν	U	3663	11.64
523	AS	Ν	U	2920	30.91	523	AU	Ν	U	3066	26.9
523	AS	Ν	U	3795	9.36	523	AU	Ν	U	3689	11.48
523	AS	Ν	U	3696	10.09	523	AU	N	U	3813	8.14
523	AS	Ν	U	3932	3.99	523	AU	Ν	U	2524	39.46
523	AS	Ν	U	3778	8.84	523	AU	Ν	U	3745	12.02
523	AS	Ν	U	4016	0.73	523	AU	Ν	U	3703	10.16
523	AS	Ν	U	3739	10.54	523	AU	Ν	U	2817	33.27
523	AS	Ν	U	3437	18.71	523	AU	Ν	U	3433	16.09
523	AS	Ν	U	3051	27.32	523	AU	Ν	U	3825	8.45
523	AS	Ν	U	3785	9.47	523	AU	Ν	U	3872	8.54
523	AS	Ν	U	3694	9.81	523	AU	Ν	U	3471	15.63
523	AU	Ν	U	3427	19.54	523	AU	Ν	U	4045	1.85
523	AU	Ν	U	3543	15.02	523	AU	Ν	U	3866	6.6
523	AU	Ν	U	3962	3.33	523	AU	Ν	U	3846	7.55
523	AU	Ν	U	3272	21.48	523	AU	N	U	4052	1.03
523	AU	N	U	3864	6.8	523	AU	N	U	3591	15.62
523	AU	Ν	U	3292	21.27	523	AU	N	U	3919	6.69
523	AU	N	U	3158	24.28	523	AU	N	U	3562	15.41
523	AU	N	U	3836	7.93	523	AU	N	U	4059	0.13
523	AU	N	U	3994	3.37	523	AU	N	U	3769	9.38
523	AU	N	U	3733	10.47	523	AU	N	U	2631	37.42
523	AU	N	U	4000	2.03	523	AU	N	U	3547	14.96
523	AU	N	U	4056	_	523	AU	N	U	3921	5.73
523	AU	N	U	3558	15.97	523	AU	N	U	3712	11.9
523	AU	N	U	4042	0.01	523	AU	N	U	3990	2.61
523	AU	N	U	3982	2.9	523	AU	N	U	3782	9.29
523	AU	N	U	3686	12.57	523	AU	N	U	3958	2.93
523	AU	N	U	3584	16.35	523	AU	N	U	3811	8.26
523	AU	N	U	3570	16.84	523	AU	N	U	3868	8.25
523	AU	N	U	4024	0	523	AU	N	U	3614	15.79
523	AU	Ν	U	3487	17.57	523	AU	Ν	U	3224	24.13

523	AU	Ν	U	3482	15.3	524	AS	0	В	4581	10.32
523	AU	N	U	3322	22.8	524	AS	0	B	4427	13.14
523	AU	N	U	3606	12.55	524	AS	0	B	4594	8.74
523	AU	N	U	3618	13.57	524	AS	0	B	4607	9.49
523	AU	N	U	3646	13.27	524	AS	0	B	4490	9.77
523	AU	N	U	3810	7.05	524	AS	0	B	4590	9.19
523	AU	N	U	3898	7.91	524	AS	0	B	4604	10.16
523	AU	N	U	4039	0.01	524	AS	0	B	4594	10.15
523	AU	N	U	3949	4.67	524	AS	0	B	4305	16.83
524	AS	0	В	4496	10.92	524	AS	0	В	4532	10.99
524	AS	0	В	4619	8.07	524	AS	0	В	4618	9.8
524	AS	0	В	4521	10.32	524	AS	0	В	4641	8.98
524	AS	0	В	4647	9.07	524	AS	0	В	4656	8.53
524	AS	Ο	В	4669	8.6	524	AS	Ο	В	4580	9.54
524	AS	0	В	4537	9.52	524	AS	0	В	4666	7.04
524	AS	0	В	4486	10.11	524	AS	0	В	4599	10.09
524	AS	0	В	4518	10.65	524	AS	0	В	4722	8.92
524	AS	0	В	4667	9.16	524	AS	0	В	4594	9.22
524	AS	0	В	4388	13.87	524	AS	0	В	4575	9.08
524	AS	Ο	В	4623	9.03	524	AS	Ο	В	4549	9.66
524	AS	Ο	В	4445	10.75	524	AS	0	В	4591	11.5
524	AS	0	В	4633	9.59	524	AS	0	В	4511	9.19
524	AS	Ο	В	4273	16.29	524	AS	0	В	4668	8.1
524	AS	0	В	4518	10.33	524	AS	0	В	4138	17.21
524	AS	Ο	В	4476	10.78	524	AS	Ο	В	4581	9.76
524	AS	0	В	4508	10.9	524	AS	0	В	4525	8.99
524	AS	Ο	В	4577	9.14	524	AS	Ο	В	4553	9.99
524	AS	Ο	В	4756	7.79	524	AS	Ο	В	4607	9.05
524	AS	Ο	В	4716	8.09	524	AS	Ο	В	4700	7.65
524	AS	0	В	4587	9.4	524	AS	0	В	4336	12.75
524	AS	0	В	4563	9.02	524	AS	0	В	4609	10.2
524	AS	0	В	4572	10.5	524	AS	0	В	4496	11.01
524	AS	Ο	В	4578	10.22	524	AS	0	В	4639	8.79
524	AS	0	В	4586	9.32	524	AS	0	В	4652	10.71
524	AS	0	В	4553	9.99	524	AS	0	В	4218	17.06
524	AS	0	В	4638	8.9	524	AS	0	В	4128	18.95
524	AS	0	В	4258	17.74	524	AS	0	В	4567	10.06
524	AS	0	В	4531	11.59	524	AS	0	В	4591	9.54
524	AS	0	В	4657	9.24	524	AU	0	В	5181	13
524	AS	0	В	4586	10.11	524	AU	0	В	5240	10.06
524	AS	0	В	3962	23.69	524	AU	0	В	5084	12.64
524	AS	0	В	4608	10.01	524	AU	0	B	5213	10.19
524	AS	0	B	4666	9.52	524	AU	0	B	5288	9.88
524	AS	0	B	4533	9.37	524	AU	0	B	5186	11.37
524	AS	0	B	4569	10.01	524	AU	0	B	5060	16.3
524	AS	0	В	4569	10.16	524	AU	0	В	5180	12.6

524	AU	0	В	5213	12.38	524	AU	0	в	5112	1
524	AU	0	B	4835	17.98	524	AU	0	B	5154	
524	AU	0	B	5203	12.24	524	AU	0	B	5004	
524	AU	0	B	5173	12.35	524	AU	0	B	5228	
524	AU	0	B	5275	11.08	524	AU	0	B	5201	
524	AU	0	B	4614	23.28	524	AU	0	B	5067	
524	AU	0	B	5067	14.3	524	AU	0	B	4555	
524	AU	0	В	4925	17.94	524	AU	0	В	5193	
524	AU	0	В	5145	11.59	524	AU	0	В	5207	
524	AU	0	В	5127	11.74	524	AU	0	В	5181	
524	AU	0	В	5284	10.03	524	AU	0	В	5147	
524	AU	0	В	5220	9.87	524	AU	0	В	5155	(
524	AU	0	В	4883	18.54	524	AU	0	В	4688	
524	AU	0	В	5119	11.76	524	AU	0	В	5198	
524	AU	Ο	В	5191	11.41	524	AU	0	В	5243	
524	AU	0	В	5203	10.49	524	AU	0	В	5160	
524	AU	0	В	5139	12.02	524	AU	0	В	5267	
524	AU	0	В	5177	11.54	524	AU	0	В	4677	
524	AU	Ο	В	5170	10.77	524	AU	0	В	4551	
524	AU	0	В	4654	24.26	524	AU	0	В	5135	
524	AU	Ο	В	5176	12.4	524	AU	0	В	5162	
524	AU	0	В	5187	12.62	524	AS	Ν	В	4271	
524	AU	Ο	В	5229	12.22	524	AS	Ν	В	4774	
524	AU	0	В	4255	30.9	524	AS	Ν	В	4803	
524	AU	Ο	В	5108	12.31	524	AS	Ν	В	4761	
524	AU	Ο	В	5253	10.34	524	AS	Ν	В	4847	
524	AU	0	В	5166	11.26	524	AS	Ν	В	4844	
524	AU	Ο	В	5094	13.5	524	AS	Ν	В	4334	
524	AU	Ο	В	5245	13.04	524	AS	Ν	В	4700	
524	AU	0	В	5143	14.34	524	AS	Ν	В	4806	
524	AU	0	В	4777	20.9	524	AS	N	В	4132	
524	AU	0	В	5224	11.49	524	AS	N	В	4406	4
524	AU	0	В	5324	10.31	524	AS	N	В	4948	
524	AU	Ο	В	5306	10.1	524	AS	N	В	5028	
524	AU	0	В	5184	12.66	524	AS	Ν	В	4006	ĺ
524	AU	0	В	5049	13.88	524	AS	N	В	4410	
524	AU	0	В	5265	11.13	524	AS	N	В	4207	
524	AU	0	В	4729	20.83	524	AS	N	В	4826	
524	AU	0	В	4925	17.79	524	AS	N	В	4532	
524	AU	0	В	5148	12.65	524	AS	N	В	4853	
524	AU	0	В	5233	10.76	524	AS	N	В	4440	
524	AU	0	В	5161	13.25	524	AS	N	В	4235	
524	AU	0	В	5058	15.23	524	AS	N	В	4333	
524	AU	0	В	5343	8.64	524	AS	N	В	4563	
524	AU	0	В	5206	11.8	524	AS	N	В	4806	
524	AU	0	В	5167	12.79	524	AS	Ν	В	4394	-

524	AS	Ν	в	4520	21.15	524	AS	Ν	в	401
524	AS	N	В	4860	14.42	524	AS	N	В	399
524	AS	N	В	4101	30.64	524	AS	N	В	4778
524	AS	N	В	4748	18.98	524	AS	N	В	477
524	AS	N	В	4800	16.09	524	AU	N	В	4357
524	AS	N	В	4472	22.91	524	AU	N	В	4866
524	AS	N	В	3833	36.59	524	AU	N	B	4851
524	AS	N	В	4564	20.74	524	AU	N	B	4867
524	AS	N	В	4660	18.35	524	AU	N	B	5059
524	AS	N	В	4627	17.18	524	AU	N	B	4941
524	AS	N	В	4404	22.93	524	AU	N	B	4402
524	AS	N	В	4749	15.6	524	AU	N	B	4756
524	AS	N	B	4416	23.12	524	AU	N	B	4822
524	AS	N	В	4142	30.31	524	AU	N	B	4177
524	AS	N	B	4597	18.64	524	AU	N	B	4489
524	AS	N	B	4641	19.46	524	AU	N	B	5097
524	AS	N	B	4582	20.16	524	AU	N	B	5116
524	AS	N	B	4300	25.64	524	AU	N	B	4028
524	AS	N	B	4467	21.93	524	AU	N	B	4444
524	AS	N	B	4571	22.52	524	AU	N	B	4235
524	AS	N	B	4031	30.56	524	AU	N	B	4848
524	AS	N	В	4158	29.38	524	AU	N	B	4589
524	AS	N	B	4622	19.72	524	AU	N	B	4910
524	AS	N	B	4692	18.6	524	AU	N	B	4491
524	AS	N	В	4418	23.44	524	AU	N	В	4254
524	AS	N	В	4361	24.05	524	AU	N	В	4455
524	AS	N	В	4990	10.97	524	AU	N	B	4596
524	AS	N	В	4902	12.05	524	AU	N	В	4919
524	AS	N	В	4485	20.8	524	AU	N	В	4449
524	AS	N	В	4730	17.71	524	AU	N	В	4543
524	AS	N	В	4933	13.19	524	AU	N	В	4940
524	AS	N	В	4269	26.44	524	AU	N	В	4120
524	AS	N	В	4403	23.7	524	AU	N	В	4860
524	AS	N	В	4605	18.56	524	AU	N	В	4883
524	AS	N	В	4326	24.59	524	AU	Ν	В	4554
524	AS	N	В	3931	31.86	524	AU	Ν	В	3782
524	AS	N	В	4596	21.04	524	AU	N	В	4595
524	AS	N	В	4769	14.77	524	AU	Ν	В	4700
524	AS	N	В	4631	19.11	524	AU	N	В	4720
524	AS	N	В	4502	22.1	524	AU	Ν	В	4437
524	AS	N	В	4582	19.27	524	AU	N	В	4896
524	AS	N	В	4303	24.45	524	AU	N	В	4426
524	AS	N	В	4881	15.05	524	AU	N	В	4169
524	AS	N	В	4718	16.28	524	AU	N	В	4694
524	AS	N	В	4293	25.95	524	AU	N	В	4732
524	AS	N	В	4984	14.08	524	AU	N	В	4600

524	AU	Ν	В	4365	25.21	524	AS	N	U	4229
524	AU	N	В	4513	22.97	524	AS	N	U	4637
524	AU	N	B	4586	23.08	524	AS	N	U	4462
524	AU	N	В	4050	32.58	524	AS	N	U	5113
524	AU	N	В	4192	29.02	524	AS	N	U	4766
524	AU	N	В	4637	20.53	524	AS	N	U	5121
524	AU	N	В	4769	19.89	524	AS	N	U	4701
524	AU	Ν	В	4478	24.09	524	AS	Ν	U	4482
524	AU	N	В	4375	24.49	524	AS	N	U	4659
524	AU	Ν	В	5103	12.29	524	AS	Ν	U	4844
524	AU	Ν	В	5111	12.77	524	AS	Ν	U	5155
524	AU	Ν	В	4565	20.63	524	AS	Ν	U	4682
524	AU	N	В	4724	18.32	524	AS	Ν	U	4743
524	AU	Ν	В	5054	12.96	524	AS	Ν	U	5149
524	AU	Ν	В	4319	26.32	524	AS	Ν	U	4365
524	AU	Ν	В	4458	23.86	524	AS	Ν	U	5077
524	AU	Ν	В	4614	19.37	524	AS	Ν	U	5188
524	AU	Ν	В	4431	26.03	524	AS	Ν	U	4734
524	AU	Ν	В	3994	32.26	524	AS	Ν	U	3913
524	AU	Ν	В	4588	21.47	524	AS	Ν	U	4855
524	AU	Ν	В	4933	15.26	524	AS	Ν	U	4948
524	AU	Ν	В	4643	19.52	524	AS	Ν	U	4890
524	AU	Ν	В	4565	21.88	524	AS	Ν	U	4657
524	AU	Ν	В	4655	19.79	524	AS	Ν	U	5144
524	AU	Ν	В	4353	24.93	524	AS	Ν	U	4643
524	AU	Ν	В	4950	15.8	524	AS	Ν	U	4332
524	AU	Ν	В	4902	15.72	524	AS	Ν	U	4926
524	AU	Ν	В	4292	26	524	AS	Ν	U	4916
524	AU	Ν	В	4997	14.61	524	AS	Ν	U	4907
524	AU	N	В	3998	31.62	524	AS	N	U	4544
524	AU	N	В	4008	34.57	524	AS	N	U	4633
524	AU	N	В	4982	15.13	524	AS	N	U	4822
524	AU	N	В	4749	18.87	524	AS	N	U	4255
524	AS	N	U	4561	18.93	524	AS	N	U	4359
524	AS	N	U	5044	8.36	524	AS	Ν	U	4845
524	AS	N	U	5040	6.48	524	AS	Ν	U	4902
524	AS	N	U	5072	7.26	524	AS	N	U	4669
524	AS	N	U	5208	3.9	524	AS	N	U	4574
524	AS	N	U	5172	5.55	524	AS	N	U	5293
524	AS	N	U	4485	18.13	524	AS	N	U	5308
524	AS	N	U	4954	8.77	524	AS	Ν	U	4720
524	AS	N	U	4995	7.4	524	AS	N	U	5007
524	AS	N	U	4285	25.27	524	AS	N	U	5179
524	AS	N	U	4677	16.17	524	AS	N	U	4555
524	AS	N	U	5240	0.11	524	AS	Ν	U	4674
524	AS	Ν	U	5394		524	AS	Ν	U	4894

524	AS	Ν	U	4566	19.48	524	AU	Ν	U	4769	
524	AS	N	U	4214	26.17	524	AU	N	U	3939	
524	AS	N	U	4832	13.06	524	AU	N	U	4882	
524	AS	N	U	5161	4.06	524	AU	N	U	4918	
524	AS	N	U	4757	12.67	524	AU	N	U	5039	
524	AS	N	U	4778	15.67	524	AU	N	U	4703	
524	AS	N	U	4777	12.19	524	AU	N	U	5295	
524	AS	N	U	4470	18.54	524	AU	Ν	U	4726	
524	AS	N	U	5143	5.25	524	AU	Ν	U	4373	
524	AS	N	U	5079	5.77	524	AU	Ν	U	5017	
524	AS	Ν	U	4538	20.08	524	AU	Ν	U	5007	
524	AS	Ν	U	5286	2.84	524	AU	Ν	U	5023	
524	AS	Ν	U	4273	25.56	524	AU	Ν	U	4558	
524	AS	Ν	U	4157	28.16	524	AU	Ν	U	4675	
524	AS	Ν	U	5152	6.41	524	AU	Ν	U	4856	
524	AS	Ν	U	4987	11.38	524	AU	Ν	U	4289	
524	AU	Ν	U	4668	19.33	524	AU	Ν	U	4416	
524	AU	Ν	U	5137	8.83	524	AU	Ν	U	4887	
524	AU	Ν	U	5128	7.33	524	AU	Ν	U	5048	
524	AU	Ν	U	5173	7.8	524	AU	Ν	U	4725	
524	AU	Ν	U	5252	4.16	524	AU	Ν	U	4658	
524	AU	Ν	U	5212	5.85	524	AU	Ν	U	5366	
524	AU	Ν	U	4584	19.37	524	AU	Ν	U	5355	
524	AU	Ν	U	5083	9.82	524	AU	Ν	U	4774	
524	AU	Ν	U	5096	7.83	524	AU	Ν	U	5055	
524	AU	Ν	U	4311	26.17	524	AU	Ν	U	5316	
524	AU	Ν	U	4695	16.09	524	AU	Ν	U	4557	
524	AU	Ν	U	5391	0.2	524	AU	Ν	U	4754	
524	AU	Ν	U	5416		524	AU	Ν	U	5015	
524	AU	Ν	U	4185	28.36	524	AU	Ν	U	4603	
524	AU	Ν	U	4768	15.5	524	AU	Ν	U	4292	
524	AU	Ν	U	4490	22.01	524	AU	Ν	U	4922	
524	AU	Ν	U	5257	5.3	524	AU	Ν	U	5254	
524	AU	Ν	U	4792	15.23	524	AU	Ν	U	4827	
524	AU	Ν	U	5169	7.52	524	AU	Ν	U	4757	
524	AU	Ν	U	4726	16.87	524	AU	Ν	U	4896	
524	AU	Ν	U	4508	22.34	524	AU	Ν	U	4511	
524	AU	Ν	U	4688	16.8	524	AU	Ν	U	5215	
524	AU	Ν	U	4836	13.3	524	AU	Ν	U	5265	
524	AU	Ν	U	5231	6.39	524	AU	Ν	U	4564	
524	AU	Ν	U	4723	16.59	524	AU	Ν	U	5317	
524	AU	Ν	U	4732	14.91	524	AU	Ν	U	4288	
524	AU	Ν	U	5235	6.65	524	AU	Ν	U	4148	
524	AU	Ν	U	4348	23.89	524	AU	Ν	U	5221	
524	AU	Ν	U	5183	8.38	524	AU	Ν	U	5012	

Bibliography

- Adams, Jack L. Aircraft Maintenance Unit (AMU) Chief, 333rd Fighter Squadron, Seymour Johnson AFB, NC. Telephone Interview. 20 November 2002.
- Aeronautical Systems Center. *LCOM Users Manual*. Wright-Patterson AFB OH: ASC/ENM, January 1997.
- Air Force Management Engineering Agency (AFMEA). *Military Man-Hour Availability Factors Update*. Final Report. Randolph AFB TX: AFMEA, March 1996.
- Asiala, Carl F. et al. Models of Maintenance Resources Interaction: Peacetime Operations: Final Report. AFHRL-TR-82-19. Brooks AFB TX: Air Force Systems Command, July 1983.
- Assistant Secretary of the Air Force, Financial Management and Comptroller (Honorable Michael Montelongo). Briefing to Congress on The Presidents FY2002 Budget. Washington: <u>http://www.saffm.hq.af.mil/</u>, 2002.
- Blancett, Robert S. "Learning From Productivity Learning Curves," *Research-Technology Management*, 54-58 (May—June 2002).
- Boyd, James A. and Gary J. Toy. An Evaluation of the Logistics Composite Model to Measure the Effectiveness of Aircraft Flying Schedules. MS Thesis, AFIT/SLSR 8-75B. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, August 1975.
- Boyle, Edward et. al. *Manpower Impacts of Job Aiding Technology: Interim Technical Paper for Period September 1990 – May 1991.* AL-TP-1991-0027. Brooks AFB TX: Air Force Systems Command, June 1991 (AD-A239307).
- Boyle, Edward. LCOM Explained: Interim Technical Paper for Period May 1990 June 1990. AFHRL-TO-90-58. Brooks AFB TX: Air Force Systems Command, July 1990 (AD-A224497).
- Callander, Bruce D. "The Recruiting and Retention Problems Continue," Air Force Magazine Online: Journal of the Air Force Association, Vol 83 No 6, n. pag. <u>http://www.afa.org/magazine/June2000/0600recruit.html</u>. June 2000.
- Cilento, John W. Flying Hour Team Programmer, Flight Management Branch, Flight Operations Division, Directorate of Aerospace Operations, HQ ACC, Langley AFB VA. Telephone Interview. 15 October 2002.

- Cochran, Phillip. NCOIC Plans and Scheduling 523rd AMU, 27 Aircraft Maintenance Squadron (AMXS), Cannon AFB NM. Telephone Interviews. November 2002 Jan 2003.
- Creswell, John W. *Research Design: Qualitative and Quantitative Approaches*. Thousand Oaks, CA.: Sage Publications, Inc., 1994.
- Dahlman, Carl J. et.al. Setting Manpower Requirements for Maintenance Manpower in the U.S. Air Force. Contract F49642-01-C-0003. Santa Monica CA: RAND, 2002.
- Davis, Charles G. and Clifford T. Smith. An Evaluation of the Capability of the Logistics Composite Model to Project the Monthly Aircraft Sortie Effectiveness of an F-15 Wing. MS Thesis, AFIT/LSSR 2-77B. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1977.
- Davis, Mark A. Programming And Requirements Chief, Mission Programs Section, Manpower Requirements Branch, Division of Manpower and Organization, ACC Langley AFB VA. Telephone Interviews. November 2002 – February 2003.
- DeGovanni, George and Donald M. Douglass. Estimation of F-15 Peacetime Maintenance manpower Requirements Using the Logistics Composite Model. MS Thesis, AFIT/GOR/SM/76D-5. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1976.
- Department of the Secretary of the Air Force (DSAF). *Management Reports on the Flying Hour Program*. AF Instruction (AFI) 11-101. Washington: DSAF, March 1994.
- Department of the Secretary of the Air Force. *Determining Manpower Requirements*. AFI 38-201. Washington: DSAF, March 2002.
- Department of the Secretary of the Air Force. *Flying Hour Program Management*. AFI 11-102. Washington: DSAF, April 2002.
- Department of the Secretary of the Air Force. *Manpower and Organization: MANPOWER*. AF Policy Directive 38-2. Washington: DSAF, March 1995.
- Devore, Jay L. *Probability and Statistics for Engineering and the Sciences* (1st Edition). Pacific Grove CA: Duxbury, 2000.
- Dooley, David. Social research Methods (4th Edition). New Jersey: Prentice-Hall, Inc., 2001.

- Erdman, Frank. LCOM Integrated Product Team Lead, Systems Supportability Analysis Branch, Modeling, Simulation, and Analysis Division, Engineering Directorate, Aeronautical Systems Center, Wright-Patterson AFB OH. Personal Interviews. October 2002 – March 2003.
- Fizsimmons, James A. and Mona J. Fitzsimmons. Service Management: Operations, Strategy, and Information Technology (3rd Edition). New York: McGraw-Hill, Inc., 2001.
- French, Bruce D. and Robert P. Steele. Productivity: A Function of Skill. MS Thesis, AFIT/LSSR 11-79B. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1979.
- Garcia, Robert and Joseph P. Racher Jr. An Investigation Into a Methodology to Incorporate Skill Level Effects Into the Logistics Composite Model. MS Thesis, AFIT/LSSR 29-81. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1981.
- Gilchrist, Michael H. An Evaluation of the Suitability of LCOM for Modeling The Base-Level Munitions Production Process. MS Thesis, AFIT/GSM/SM/76D-8. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, January 1982.
- Gililland, Billy J. Productivity Measurement in Aircraft maintenance Measurement. MS Thesis, AFIT/GLM/LSM/90S-20. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1990.
- Goldschmidt, Mark. LCOM Integrated Product Team Member, Systems Supportability Analysis Branch, Modeling, Simulation, and Analysis Division, Engineering Directorate, Aeronautical Systems Center, Wright-Patterson AFB OH. Personal Interviews. October 2002 – March 2003.
- Grobman, Jeffrey H. et.al. The Queuing Manpower Model (QMAN): Final Technical Paper for Period September 1992 – April 1994. AL/HR-TP-1995-0021. Brooks AFB TX: Human Resources Directorate, Manpower and Personnel Research Division, February 1996 (AD-A316799).
- Headquarters Air Combat Command (HQ ACC). *LCOM Explained*. Langley AFB VA: Directorate of Plans and Programs, Programs and Organization Branch, Logistics Analysis Section, August 2000.

- Headquarters ACC. ACC F-16 C/D Final report. Final Report. Langley AFB VA: HQ ACC/XP-SAS, February 1998.
- Headquarters ACC. Aerospace Equipment Maintenance Management. AFI21-101_ACCSUP1_INT. Langley AFB VA: HQ ACC/LGQM, January 2003.
- Headquarters ACC. Management Reports and Guidance for Flying Hour Program. ACC Instruction (ACCI) 11-103. Langley AFB VA: HQ ACC/DOTB, September 1998.
- Headquarters Pacific Air Forces (PACAF). *Flying Hour Program (FHP) Management*. PACAF Instruction (PACAFI) 11-101. HQ PACAF: DOTT, November 1996.
- Headquarters United States Air Forces Europe (HQ USAFE). Commander USAFE, Gen Martin's "Personnel Capability & Performance (PERSCAP)" briefing slides. Ramstein AFB GE: COMUSAFE staff, April 2002.
- Headquarters United States Air Forces Europe. USAFE Sortie and Flying Hour Utilization Program. USAFE Instruction 11-101. Ramstein AFB Germany: DOTO, October 1995.
- Howell, Lawrence D. Manpower Forecasts and Planned Maintenance Personnel Skill Level Changes. PhD Dissertation. Ohio State University, Columbus OH, 1980 (AD-AD-A125548).
- Jenkins, Richard C. A Mean Value Analysis Heuristic for Analysis of Aircraft Sortie Generation. MS Thesis/ AFIT/GOR/ENS/94M-07. Graduate School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1994.
- Juarez, Fred, Program Manager LCOM Program Office, Modeling and Simulation Flight, Air Force Manpower Requirements Utilization Squadron, Air Force Manpower and Innovation Agency, Randolph AFB TX. Telephone Interviews. October 2002.
- Katona, Ronald G. Programming And Requirements Chief, Mission Programs Section, Manpower Requirements Branch, Division of Manpower and Organization, ACC Langley AFB VA. Telephone Interviews. November 2002 – February 2003.
- Kelton, W. David et. al. *Simulation With Arena* (2nd Edition). New York: McGraw-Hill, 2002.
- Kheir, Naim A. *Systems Modeling and Computer Simulation* (2nd Edition). New York: Marcel Dekker, Inc., 1996.

- King, Kent K. NCOIC Plans and Scheduling 524th AMU, 27 Aircraft Maintenance Squadron (AMXS), Cannon AFB NM. Telephone Interviews. November 2002 – Jan 2003.
- Krajewski, Lee J. and Larry P. Ritzman. *Operations Management: Strategy and Analysis* (6th Edition). New Jersey: Prentice-Hall, Inc., 2002.
- Law, Averill M. and W. David Kelton. *Simulation Modeling & Analysis* (2nd Edition). New York: McGraw-Hill, Inc., 1991.
- McGowan, Dennis. NCOIC Plans and Scheduling 522nd AMU, 27 Aircraft Maintenance Squadron (AMXS), Cannon AFB NM. Telephone Interviews. November 2002 Jan 2003.
- Neter, John et. al. *Applied Linear Statistical Models* (4th Edition). New York: McGraw-Hill, 1996.
- Ng, Irene C.L. et. al. "The strategic role of unused service capacity," International Journal of Service Industry Management, Vol 10 No. 2: 211-238 (July 1998).
- Oleary, Patricia. Secretary to Col Atkinson, Maintenance Group Commander, Cannon AFB NM. Telephone Interview. November 2002 January 2003.
- Richards, Eugene R., Jr. Building and Operating the Logistics Composite Model (LCOM) for New Weapon Systems, Part A: Technical Report, November 1981-July 1982.
 ASD-TR-5033. Wright-Patterson AFB, OH: Aeronautical Systems Division, Air Force Systems Command, February 1983 (AD-A127538).
- Russell, Kevin J. "Rethinking Reduced Manning Design and Optimization Using a Modified Systems Approach," *Prepared for the Engineering the Total Ship (ETS)* 2000 Symposium held in Gathersburg MD. New London, CT: US Coast Guard Academy, March 2000 (AQ U00-07-1840).
- Sall, John et.al. JMP Start Statistics: A Guide to Statistic and Data Analysis Using JMP and JMP IN Software (2nd Edition). Canada: Duxbury, 2001.
- Sandkula, Sandy L. LCOM Analyst, Logistics Analysis Section, Manpower Requirements Branch, Division of Manpower and Organization, ACC Langley AFB VA. Telephone Interviews. November 2002 – February 2003.

- Stone, Philip T. LCOM Analyst, Logistics Analysis Section, Manpower Requirements Branch, Division of Manpower and Organization, ACC Langley AFB VA. Telephone Interviews. November 2002 – February 2003.
- Swartz, Stephen M. Class Lecture, LOGM 569, Maintenance and Production Management, Air Force Institute of Technology, Wright-Patterson AFB OH, (Spring Quarter 2002)
- Thompson, Steve. Aircraft Manager, F-16 Aircraft Branch, Directorate of Requirements Aircraft Division, ACC Langley AFB VA. Telephone Interview, 18 November 2002.

Vita

Captain Kirk B. Pettingill graduated from Duval High School in Lanham, Maryland in 1982. After two years of undergraduate studies he enlisted in the USAF in January of 1985. Capt Pettingill spent over nine years as an Electronic Warfare Technician. His first assignment was to Barksdale AFB LA for a year and then PCSed to Anderson AFB, Guam. After a three-year tour in Guam he PCSed to Hurlburt Field, FL. During his tour at Hurlburt Field as an instructor in his career field, Capt Pettingill finished his undergraduate degree in Electrical Engineering Technology.

In March of 1994, Capt Pettingill was commissioned after completion of Officers Training School. His first assignment was to the 1st Rescue Group (RG) at Patrick AFB, Fl. In June of 1997, Capt Pettingill accompanied the 1st RG on their move from Patrick AFB to Moody AFB GA. He served numerous positions while assigned to Moody AFB culminating in his service as the Squadron Maintenance Officer for the 68th Fighter Squadron (F-16's).

n August of 2001, he entered the Graduate Logistics Management program at the Air Force Institute of Technology. Upon graduation, he will be assigned to the Air Force Logistics Management Agency (AFLMA), Gunter Annex, Maxwell AFB AL.

	REP		Form Approved OMB No. 074-0188								
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of Iaw, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE											
			2. REPORT TYPE			3. DATES COVERED (From – To)					
	15-03-2003		Mas	ter's Thesis		Sept 2001– March 2003					
4. TITL	E AND SUBTI	ITLE				. CONTRACT NUMBER					
			EFFICACY OF		51105	. GRANT NUMBER					
			ESTIMATING		ANCE 50	. PROGRAM ELEMENT NUMBER					
MANPOWER PRODUCTIVE CAPACITY											
6. AUT	HOR(S)				5d	. PROJECT NUMBER					
Petting	ill, Kirk B.	, Captain	, USAF		5e	. TASK NUMBER					
					5f.	WORK UNIT NUMBER					
7. PFRFC			NAMES(S) AND ADD	RESS(S)		8. PERFORMING ORGANIZATION					
	orce Institu			11200(0)		REPORT NUMBER					
Grad	uate Schoo	l of Engi	neering and Man	agement (A	FIT/EN)	AFIT/GLM/ENS/03-11					
2950	P Street, E	Building 6	540								
	FB OH 45										
9. SPON	SORING/MON	IITORING A	GENCY NAME(S) AND	D ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)					
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTR	RIBUTION/AV	AILABILITY	STATEMENT								
APPI	ROVED FOR P	UBLIC RELE	ASE; DISTRIBUTION	UNLIMITED.							
13. SUPP	LEMENTARY	NOTES									
14. ABST		Composi	ta Madal (I COM) ;	a the teel of al	aioa far man	MAICOMPACACC LISAEE					
AEMC)						y MAJCOM's (ACC, USAFE,					
						simulation program capable of aircraft maintenance activities.					
						t end up in Unit Manning Documents					
						on whether the LCOM can also be					
			nanpower's current		fiort focuses (sh whether the Leoni can also be					
					determine if	the LCOM, when programmed with					
						e realized during the previous annual					
	eriod (FY200		1								
Based or	n the analysis	and result	s presented, the rese	archer concluc	les that the L0	COM can be a viable tool for this					
purpose	but recomme	ends that a s	standard set of "best	practices" be	developed an	d implemented by LCOM analysts to					
standard	ize the metho	odology and	d improve the reliab	ility of results.							
15, SUBJ	ECT TERMS										
		ite Model (LCOM), Maintenan	ce Manpower							
	RITY CLASSI	FICATION	17. LIMITATION	18.	19a. NAME (DF RESPONSIBLE PERSON					
OF:	· .		OF ABSTRACT	NUMBER OF		1. Swartz, Lt Col, USAF					
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES		HONE NUMBER (Include area code) -6565, ext 4285					
U	U	U	UU	131	(stephen.swa	·					
						Standard Form 209 (Bay 9.09)					

Γ

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18