
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2003

Gaussian Mixture Reduction of Tracking Multiple Maneuvering Gaussian Mixture Reduction of Tracking Multiple Maneuvering

Targets in Clutter Targets in Clutter

Jason L. Williams

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Electrical and Electronics Commons, and the Probability Commons

Recommended Citation Recommended Citation
Williams, Jason L., "Gaussian Mixture Reduction of Tracking Multiple Maneuvering Targets in Clutter"
(2003). Theses and Dissertations. 4246.
https://scholar.afit.edu/etd/4246

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholar.afit.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=scholar.afit.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4246?utm_source=scholar.afit.edu%2Fetd%2F4246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

GAUSSIAN MIXTURE REDUCTION

FOR TRACKING MULTIPLE MANEUVERING TARGETS

IN CLUTTER

THESIS

Jason L. Williams, Flight Lieutenant, RAAF

AFIT/GE/ENG/03-19

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, United States Department

of Defense, United States Government, Royal Australian Air Force, Australian De-

partment of Defence, Australian Commonwealth Government, or the corresponding

agencies of any other government, or any other defense organization.

AFIT/GE/ENG/03-19

GAUSSIAN MIXTURE REDUCTION

FOR TRACKING MULTIPLE MANEUVERING TARGETS

IN CLUTTER

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jason L. Williams, BE(Electronics)(Hons) BInfTech QUT

Flight Lieutenant, RAAF

March, 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/03-19

GAUSSIAN MIXTURE REDUCTION

FOR TRACKING MULTIPLE MANEUVERING TARGETS

IN CLUTTER

Jason L. Williams, BE(Electronics)(Hons) BInfTech QUT

Flight Lieutenant, RAAF

Approved:

Dr Peter S. Maybeck, Ph.D
Thesis Advisor

Date

Maj Roger L. Claypoole, Jr, Ph.D
Committee Member

Date

Maj John F. Raquet, Ph.D
Committee Member

Date

Acknowledgments

Faith is to believe what you do not yet see; the reward for this faith is
to see what you believe.

St. Augustine

The past 18 months have presented a truly unique opportunity to study chal-

lenging problems in a world-class institution. I am greatly indebted to the Royal

Australian Air Force and the United States Air Force for making this wonderful

opportunity possible.

I offer the sincerest of thanks to Professor Peter Maybeck, my thesis advisor,

teacher and mentor. Your input, guidance, encouragement and support over the

past 18 months have been nothing short of astounding. To my committee members,

Major Roger Claypoole and Major John Raquet, many thanks for your valuable

input and encouragement. To my sponsor, Mr Stan Musick, AFRL/SNAT, thanks

for your perspective.

To my friends in the Control and Navigation sequence, Craig, Tina, Terry, Alec,

Jae and Aydin, thanks for helping to keep me sane through a gruelling academic load.

We’ve made it! To Flight Lieutenant Ngoya Pepela, whom I now count more as a

brother than a friend, thanks for everything.

To my family, thanks for your continual support over this time. To my wife,

you have walked every step of this journey by my side. This achievement is as much

yours as it is mine. Thanks for your patience, encouragement, support and love.

To the Lord God, thanks for creating me, saving me, leading me and sustaining

me. Thanks for answering my every prayer. I now look back on the moments of

despondency when I felt far from your presence, and see that You were only leading

me to better things. May I trust in You always.

Jason L. Williams

iii

Table of Contents

Page

Acknowledgments . iii

List of Figures . viii

List of Tables . xiv

List of Abbreviations . xv

Notation . xvi

Abstract . xix

I. Introduction . 1-1

1.1 Motivation . 1-2

1.2 Research Goal . 1-6

1.3 Assumptions . 1-6

1.4 Thesis Organization 1-7

II. Background . 2-1

2.1 Introduction . 2-1

2.2 Tracking Filters . 2-1

2.2.1 Introduction 2-1

2.2.2 Ad Hoc Techniques 2-1

2.2.3 Kalman Filter 2-3

2.2.4 Nonlinear Filters 2-10

2.3 Gaussian Mixtures . 2-12

2.4 Multiple Model Adaptive Estimation 2-15

iv

Page

2.4.1 Non-Switching Models 2-17

2.4.2 Switching Models 2-22

2.4.3 First-Order Generalized Pseudo-Bayesian Esti-

mator . 2-24

2.4.4 Second-Order Generalized Pseudo-Bayesian Es-

timator . 2-27

2.4.5 Interacting Multiple Model Estimator 2-30

2.4.6 Summary . 2-33

2.5 Data Association . 2-35

2.5.1 Measurement Gating 2-37

2.5.2 Association Event Probability 2-38

2.5.3 Forming Joint Hypotheses 2-45

2.5.4 Joint Target State 2-47

2.5.5 State Update 2-51

2.5.6 Global Nearest Neighbor 2-53

2.5.7 Probabilistic Data Association 2-55

2.5.8 Correlation Between Targets 2-57

2.5.9 Maximum Likelihood Methods 2-61

2.5.10 Multiple Hypothesis Tracking 2-61

2.5.11 Controlling the Number of Hypotheses 2-63

2.5.12 Multidimensional Techniques 2-68

2.5.13 Interacting Multiple Model–Multiple Hypothe-

sis Tracker . 2-69

2.5.14 Summary . 2-72

2.6 Optimization Methods 2-72

III. Analysis . 3-1

3.1 Introduction . 3-1

v

Page

3.2 PDA Bias and Coalescence 3-1

3.3 Gaussian Mixture Reduction 3-10

3.3.1 Cost Measures 3-13

3.3.2 Analysis of Integral Square Difference Measure 3-19

3.3.3 Iterative Optimization 3-24

3.3.4 Initialization Algorithm 3-33

3.4 Summary . 3-42

IV. Simulation Results . 4-1

4.1 Introduction . 4-1

4.2 Initialization Algorithm 4-1

4.3 Iterative Optimization 4-7

4.4 Single Target in Clutter 4-10

4.4.1 Comparison with Pruning Algorithm 4-16

4.4.2 Comparison with Salmond’s Joining and Clus-

tering Algorithms 4-20

4.4.3 Comparison with Lainiotis Algorithm 4-36

4.4.4 Comparison with Iterative Optimization Algo-

rithm . 4-39

4.4.5 Comparison with PDA Algorithm 4-42

4.5 Multiple Targets in Clutter 4-47

4.6 Single Maneuvering Target 4-47

4.7 Summary . 4-53

V. Conclusions and Recommendations 5-1

5.1 Restatement of Research Goal 5-1

5.2 Summary of Results 5-1

5.2.1 Single Target Tracking Performance 5-1

5.2.2 Multiple Target Tracking Performance 5-2

vi

Page

5.2.3 Maneuvering Target Tracking Performance . . 5-2

5.3 Significant Contributions of Research 5-3

5.4 Recommendations for Future Investigations 5-5

Appendix A. Derivations . A-1

A.1 Product of Two Gaussians of Same Dimension A-1

A.2 Modified Gating Algorithm A-5

A.3 Switching Bayesian Transition Probability A-7

Appendix B. Matrix Reference Manual B-1

Appendix C. Source Code . C-1

C.1 ISDInit.c . C-2

Bibliography . BIB-1

Vita . VITA-1

vii

List of Figures
Figure Page

1.1 The difficulty of data association: the origin of each measure-

ment is not known, hence the system does not know which mea-

surement belongs to which target, and which measurements are

false alarms (due to radar clutter). 1-2

1.2 An example of a Gaussian mixture: the individual weighted

Gaussian component PDFs are shown using dashed lines; the

overall PDF (the sum of the components) is shown using a solid

line. 1-3

1.3 Approximating a Gaussian mixture using fewer mixture com-

ponents. The original mixture is shown in the top left figure,

alongside approximations using four components (top right),

three components (bottom left) and two components (bottom

right). 1-4

2.1 Block diagram of non-switching multiple model estimation al-

gorithm. 2-20

2.2 MMAE probability flow with and without a lower probability

bound. Note the logarithmic scale used in each of the plots. . 2-21

2.3 Block diagram of full order Markov switching estimator. . . 2-25

2.4 Block diagram of GPB-1 algorithm. 2-27

2.5 Block diagram of GPB-2 algorithm. 2-29

2.6 Block diagram of IMM algorithm. 2-34

2.7 The data association problem: how to update target state given

a series of unlabelled measurements. 2-36

2.8 Measurement gating in a multiple target environment. 2-37

2.9 Pseudocode to form all joint association events for two targets. 2-46

2.10 Pseudocode to form all joint association events for an arbitrary

number of targets. 2-48

viii

Figure Page

2.11 One-dimensional multiple target data association example. . . 2-57

2.12 Correlation arising due to combining of hypotheses. 2-59

2.13 The impact of forcing independence between targets in a mul-

tiple hypothesis system: resultant joint target PDF contains

a hypothesis for each pairing of hypotheses from each target,

rather than only the actual joint hypotheses as shown in Figure

2.12(a). 2-69

2.14 Gradient of the cost function indicating the direction of the

minimum. 2-73

2.15 Operation of the Newton-Raphson algorithm: each step moves

to be minimum of the local approximating parabola. 2-76

3.1 Pairs of equally valid tracking solutions in joint target state

space. 3-7

3.2 Coalesced joint target state estimate and covariance using

JPDA algorithm. 3-8

3.3 Joint target state PDF, (a) disallowing correlation between tar-

gets, and (b) allowing correlation between targets (correlation

coefficient = −0.9). 3-10

3.4 Joint target state snapshot from Monte Carlo simulation. . . 3-11

3.5 Comparison of various even nonlinearities. 3-16

3.6 Block diagram of proposed Gaussian mixture reduction initial-

ization algorithm. 3-36

3.7 Elements of ISD cost function. Each square represents a mul-

tivariate Gaussian evaluation to measure the similarity of the

respective components of the two mixtures. Shaded squares

represent the components that need to be re-evaluated if the

second component in the reduced mixture is modified. 3-38

3.8 Execution times for various implementations for evaluating the

match between all pairings of 500 randomly generated four-

dimensional Gaussian multivariate PDFs. 3-42

ix

Figure Page

3.9 Execution times for various implementations of cost function

Gaussian mixture reduction initialization algorithm to simplify

60-component four-dimensional Gaussian mixture to 10 compo-

nents. 3-43

4.1 Reduction of a five-component Gaussian mixture to four-, three-

and two-component approximations using the ISD initialization

algorithm. 4-3

4.2 Reduction of a five-component Gaussian mixture to four-, three-

and two-component approximations using Salmond’s joining al-

gorithm. 4-5

4.3 Reduction of a five-component Gaussian mixture to four-, three-

and two-component approximations using Salmond’s clustering

algorithm. 4-6

4.4 Iterative optimization of a 3-component approximation (shown

in solid line) to a 5-component Gaussian mixture (shown in

dashed line). The top left figure shows the starting point for the

optimization, calculated using the ISD initialization algorithm.

Remaining figures show the refined solution after 1, 2, and 12

gradient iterations. 4-8

4.5 Cost function trajectory and step size adjustment. The top

figure shows the cost reduction as the PDF approximation is

optimized iteratively, while the bottom figure shows the gradient

step size adaptation. 4-9

4.6 Iterative optimization of a 3-component approximation (shown

in solid line) to a 5-component Gaussian mixture (shown in

dashed line). The top left figure shows the starting point for the

optimization, calculated using the ISD initialization algorithm.

The remaining figures show the refined solution after 4, 9, and

29 gradient iterations. 4-10

4.7 Cost function trajectory and step size adjustment. The top

figure shows the cost reduction as the PDF approximation is

optimized iteratively, while the bottom figure shows the gradient

step size adaptation. 4-11

x

Figure Page

4.8 Average track life for various merging and pruning algorithms. 4-15

4.9 Performance of ISD initialization algorithm compared to the

standard MHT pruning algorithm. 4-16

4.10 Performance of 25-component ISD initialization algorithm com-

pared to 25-component pruning algorithm. 4-18

4.11 Performance of 25-component ISD initialization algorithm com-

pared to 100-component pruning algorithm. 4-19

4.12 Performance of ISD initialization algorithm compared to

Salmond joining algorithm. 4-22

4.13 Performance of 5-component ISD initialization algorithm com-

pared to 5-component Salmond joining algorithm. 4-23

4.14 Performance of 30-component ISD initialization algorithm com-

pared to 30-component Salmond joining algorithm. 4-24

4.15 Performance of 35-component ISD initialization algorithm com-

pared to 35-component Salmond joining algorithm. 4-25

4.16 Performance of ISD initialization algorithm compared to

Salmond clustering algorithm. 4-27

4.17 Performance of ISD initialization algorithm compared to

Salmond clustering and joining algorithms with the maximum

number of hypotheses spawned by any parent hypothesis

limited to 50. 4-28

4.18 Average track life for scenario using extended clutter population

region. 4-29

4.19 Histogram of track life for ISD initialization and Salmond’s join-

ing and clustering algorithms, utilizing 25, 30 and 35 mixture

components. Plots labelled “ECPR” describe the Monte Carlo

simulations utilizing the extended clutter population region; the

remaining plots describe the original scenario. 4-31

4.20 Performance of ISD initialization algorithm compared to

Salmond joining and clustering algorithms, with clutter

population region increased in size by ten times in both x and

y axis directions. 4-32

xi

Figure Page

4.21 Performance of 25-component ISD initialization algorithm com-

pared to 25-component Salmond joining algorithm, with clutter

population region increased in size by ten times in both x and

y axis directions. 4-33

4.22 Performance of 30-component ISD initialization algorithm com-

pared to 30-component Salmond joining algorithm, with clutter

population region increased in size by ten times in both x and

y axis directions. 4-34

4.23 Performance of 35-component ISD initialization algorithm com-

pared to 35-component Salmond joining algorithm, with clutter

population region increased in size by ten times in both x and

y axis directions. 4-35

4.24 Performance of ISD initialization algorithm compared to modi-

fied Lainiotis algorithm. 4-38

4.25 Performance of ISD initialization algorithm compared to same

algorithm utilizing iterative optimization to refine the approxi-

mation. 4-40

4.26 Comparison of track life for simulations of 10-component ISD

initialization algorithm, and the same algorithm utilizing itera-

tive optimization to refine the approximation. 4-41

4.27 Performance of PDA compared to other algorithms using a sin-

gle Gaussian component. 4-43

4.28 Performance of PDA compared to other algorithms using a sin-

gle Gaussian component. 4-45

4.29 Histograms of track life for PDA algorithm and

single-component ISD initialization algorithm. 4-46

4.30 RMS position and velocity error of system utilizing Bayesian

switching model approximation. Filter-predicted RMS error

shown in dashed line. 4-51

4.31 RMS position and velocity error of IMM system.

Filter-predicted RMS error shown in dashed line. 4-52

xii

Figure Page

A.1 Measurement gating: the gating equation describes an ellipse as

shown in (a); the smallest circle enclosing the ellipse is shown in

(b); the square aligned with coordinate axes enclosing the circle

is shown in (c). A-8

xiii

List of Tables
Table Page

4.1 Parameters of the one-dimensional Gaussian mixture used to

test the initialization algorithm. 4-1

4.2 Reduction steps for Gaussian mixture example. 4-2

4.3 Number of Monte Carlo simulations run for each algorithm and

number of mixture components. 4-14

4.4 Parameters for maneuvering target scenario. 4-49

xiv

List of Abbreviations
Abbreviation Page

PDF Probability Density Function . 2-4

EKF Extended Kalman Filter . 2-10

MMAE Multiple Model Adaptive Estimator 2-17

GPB-1 First-Order Generalized Pseudo-Bayesian 2-24

GPB-2 Second-Order Generalized Pseudo-Bayesian 2-27

IMM Interacting Multiple Model . 2-30

GNN Global Nearest Neighbor . 2-54

PDA Probabilistic Data Association 2-55

JPDA Joint Probabilistic Data Association 2-55

JPDAC Joint Probabilistic Data Association Coupled 2-60

CPDA Coupled Probabilistic Data Association 2-60

MHT Multiple Hypothesis Tracker . 2-61

SB-MHT Structured Branching Multiple Hypothesis Tracker 2-62

PMHT Probabilistic Multiple Hypothesis Tracker 2-69

ISD Integral Square Difference . 3-15

EM Expectation Maximization . 3-18

RMS Root-Mean-Square . 4-50

SPRT Sequential Probability Ratio Test 5-6

xv

Notation

Notation Usage

z, Z, etc. vectors are shown in boldface italic text

P, H, etc. matrices are shown in boldface roman text

x̂, etc. estimates are indicated using the ‘hat’ augmentation

x(t) a continuous-time signal, where the indexing t is a continuous

variable representing the time in seconds

x(k) a discrete-time signal, where the indexing k is the sample num-

ber, and the k-th sample is taken at time tk

x̂(k|k − 1) the estimate of the signal at sample k, using information only

up to the (k − 1)-th measurement

ẑ(k|k − 1) the predicted value of the measurement at sample k, using

information only up to the (k − 1)-th measurement

Zk the entire measurement history from sample 1 to sample k

Zk all measurements provided to the system in the k-th set of

measurements (i.e., the k-th scan)

zj(k) the j-th measurement from the k-th set of measurement (i.e.,

the k-th scan)

P{·} the probability of the discrete event specified in {·}
f{·} the probability density function of the continuous parameter

specified in the argument {·}
N{x; µ,P} denotes a Gaussian probability density function for variable

x, distributed with mean µ and covariance P:

N{x; µ,P} = |2πP|− 1

2 exp
{

− 1

2
(x − µ)TP−1(x − µ)

}

E{·} the expectation operation, finding the expected value of the

argument:

E{·} =
∫

{·}f{·} d{·}

xvi

Notation Usage

Nf the number of filters (or models) in the system

Mj the event in which model j is in force in a non-switching mul-

tiple model system (no time argument is supplied, as this is

the non-switching case, in which the model in force does not

change with time)

Mk,j the event in which model j is in force at sample k in a switching

multiple model system

Mk,l the l-th model history event in a switching multiple model

system — consists of a single time step event (e.g., Mk,j) for

each sample time from 1 to k

x̂j, Pj the state estimate and covariance of the j-th filter in a multiple

model system, or of the j-th target

x̂j, Pj the modified state of the j-th model after mixing; provided as

the input to the j-th filter in the IMM algorithm

X̂, P the joint state estimate of all targets, and the covariance of

the joint state estimate

Nm(k) the number of measurements in the k-th set (i.e., the k-th

scan)

Nt the number of targets under track

θji(k) a single measurement association event, indicating the associ-

ation of measurement j with target i at sample k

Θl(k) the l-th joint association event for measurement set k, con-

taining a single measurement event for each of the Nm(k)

measurements received in the k-th scan

Ψu(k) the u-th association history event, which contains a joint as-

sociation event for each scan from 1 to k

xvii

Notation Usage

Nh(k) the number of association hypotheses in the tracking system

after incorporation of the k-th set of measurements

ΩNh
(k) the full parameters (weights, means, covariances) of the Nh

association hypotheses after incorporation of the k-th set of

measurements

Nr(k) the number of association hypotheses at the end of the k-th

processing cycle, after hypothesis reduction has been applied

Ω̄Nr
(k) the parameters of the reduced set of Nr hypotheses

xviii

AFIT/GE/ENG/03-19

Abstract

The problem of tracking multiple maneuvering targets in clutter naturally leads

to a Gaussian mixture representation of the Probability Density Function (PDF)

of the target state vector. State-of-the-art Multiple Hypothesis Tracking (MHT)

techniques maintain the mean, covariance and probability weight corresponding to

each hypothesis, yet they rely on ad hoc merging and pruning rules to control the

growth of hypotheses. This thesis investigates the performance benefit achievable

by applying a structured cost function-based approach to the hypothesis control

problem.

A new cost function, the Integral Square Difference (ISD) cost, is proposed

for measuring the difference between the full target state PDF and a reduced-order

approximation. The ISD cost function is physically meaningful, and, unlike any pre-

viously proposed cost function, it is also mathematically tractable, requiring neither

numerical integration nor approximation for evaluation. A reduction algorithm is

proposed which selects components for merging or pruning to minimize the increase

in the ISD cost. This solution is used directly, and also as the starting point for an

iterative gradient-based optimization.

The performance of the ISD-based algorithm for tracking a single target in

heavy clutter is compared to that of Salmond’s joining filter, which previously had

provided the highest performance in the scenario examined. For a large number of

mixture components, it is shown that the ISD algorithm outperforms the joining

filter remarkably, yielding an average track life more than double that achievable

using the joining filter. The results indicate that the tracking performance of the

ISD-based filter in heavy clutter is significantly higher than achievable using any

previously published algorithm.

xix

GAUSSIAN MIXTURE REDUCTION

FOR TRACKING MULTIPLE MANEUVERING TARGETS

IN CLUTTER

I. Introduction

In their early inception, radar systems were able to track a single target in a

clutter-free environment. The limited surveillance capability essentially presented

the operator with a raw display of measurements, leaving it up to the human to

interpret the display and infer information such as velocity. Early tracking radars

illuminated the target continually to ensure that knowledge of the target position

did not deteriorate, causing loss of track. This prevented the radar from performing

any other tasks at the same time, such as tracking multiple targets or maintaining

surveillance capability during track.

The vast body of theory of stochastic estimation developed since the 1960s has

enabled revolutionary changes to the design and capability of radar systems. Modern

radar systems, such as those utilizing Electronically Scanned Array (ESA) antenna

technology [5, 7, 51], can perform multiple functions at once, simultaneously pro-

viding high quality tracking estimates for some targets while maintaining wide-area

surveillance of the entire operational theater. Virtually every modern surveillance

radar operates in Track While Scan (TWS) mode, in which the radar continually

searches for existence of new targets, but once detected, targets are also tracked

using data filtering techniques [5:3].

The essential function of a modern radar system is to maintain as much knowl-

edge of the target state1 as possible. The success of modern tracking techniques is

1i.e., position, velocity, acceleration, etc.

1-1

Targets

Measurements+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

Figure 1.1. The difficulty of data association: the origin of each mea-
surement is not known, hence the system does not know
which measurement belongs to which target, and which
measurements are false alarms (due to radar clutter).

largely determined by their ability to compute and store the Probability Density

Function (PDF) of target state in an efficient manner. This study cuts to the core of

this problem: how can the PDF of the target state vector be reduced in complexity

such that the system remains computationally tractable, while causing the smallest

possible change in the overall structure of the PDF.

1.1 Motivation

In order to maintain knowledge of a target’s kinematic state, a radar system

must be able to update its target state model using the radar detections produced

during each scan interval. Data association algorithms are the tools utilized to

perform this update. The difficulty in such algorithms is illustrated in Figure 1.1:

the system is provided with a set of detections, each of which indicates the possible

presence of a target. However, the system does not know which measurement belongs

to which target, or which measurements are actually false alarms (the result of radar

clutter), hence the best way to update the state estimates for each target using the

measurements is unclear.

A Gaussian mixture, consisting of a weighted sum of Gaussian PDFs, each

with different means and covariances, is the natural form of the PDF of target

1-2

−10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Gaussian Mixture PDF

Figure 1.2. An example of a Gaussian mixture: the individual
weighted Gaussian component PDFs are shown using
dashed lines; the overall PDF (the sum of the compo-
nents) is shown using a solid line.

state in this problem. Using such a structure, a mixture component is created for

every possible association event,2 with the mean and covariance calculated assuming

that the particular hypothesis is true, and the weight calculated to represent the

probability that the particular hypothesis is true. An example of a Gaussian mixture

is shown in Figure 1.2, with the individual weighted component PDFs shown using

dashed lines, and the overall PDF (the sum of the components) shown using a solid

line.

The difficulty of data association is that every association hypothesis from the

previous processing cycle must be paired with every association event from the cur-

rent set of measurements, and a new association hypothesis must be created for each

pairing. For example, if a system commences with a single association hypothesis,

and the first set of measurements received gives rise to 20 possible association events,

2i.e., every possible pairing of targets and measurements.

1-3

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Original Density

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
4−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
3−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
2−Component Approximation

Figure 1.3. Approximating a Gaussian mixture using fewer mixture
components. The original mixture is shown in the top
left figure, alongside approximations using four compo-
nents (top right), three components (bottom left) and
two components (bottom right).

then there will be 20 association hypotheses. If the following set of measurements

produces 30 possible association events, then the number of hypotheses will increase

to 600: one for each pairing of previous hypothesis and new association event. Each

hypothesis will require a corresponding Gaussian mixture component, each with a

different mean, covariance and probability weight; and the number of components

will grow exponentially with time. It is therefore necessary to employ methods of

reducing the complexity of the mixture while maintaining its overall form as well as

possible. Typically many of the hypotheses are very similar, or contribute a very

small probability weight, hence it is possible to reduce the number of mixture com-

ponents without modifying the PDF structure significantly. This is illustrated in

Figure 1.3, which shows optimized approximations of the PDF of Figure 1.2 (which

has five mixture components) using four, three and two mixture components.

1-4

The Multiple Hypothesis Tracker (MHT) [4:334–340, 6:283–300, 7:360–369,

40] is the state-of-the-art tracking algorithm for modern civilian and military radar

systems. The algorithm directly maintains the Gaussian mixture representation of

the target state PDF, retaining multiple association hypotheses, each represented

by a mixture component, with a probability weight, mean vector and covariance

matrix. The concept of the MHT is to provide a deferred decision-making structure,

such that target-measurement association decisions, which are uncertain at a given

processing cycle, can be made at a later time after further information has been

received [8]. Although the correct hypothesis may not be the most likely at a given

instant in time, as more sets of measurements are received, hypotheses due to random

clutter will become less likely, making the correct hypothesis comparatively more

likely. Since the number of hypotheses grows exponentially with time, any practical

implementation must apply some form of simplification to the PDF, most commonly

performed by merging similar hypotheses together, and deleting (pruning) unlikely

hypotheses. The effectiveness of the deferred decision-making structure is completely

dependent on whether the correct hypothesis remains in the Gaussian mixture when

clarifying measurements are received, a function which is determined purely by the

merging and pruning logic.

Few mixture reduction algorithms have been published in open literature.

Salmond [44–47] proposes an algorithm which combines the mixture components

which are closest in the sense of a given ad hoc distance measure. Salmond notes

that the ideal solution would be to search for the solution which optimizes a mean-

ingful cost function, but concludes that the computational expense of such an un-

dertaking would be problematic. Fifteen years later, the simulations once performed

on a Cray 1S supercomputer can now be run on a common home computer, so it

would seem appropriate to challenge such assumptions.

The essence of this study is to reduce a Gaussian mixture model from a larger

number of components to a smaller number of components, while modifying the PDF

1-5

as a whole as little as possible, as illustrated in Figure 1.3. Although the application

of interest in this study is target tracking, the algorithm is equally relevant to any

of the rich class of research areas to which the Gaussian mixture has been applied.

This includes a wide variety of statistical classification problems such as speech and

speaker recognition [14, 41], lip recognition [14, 55], face recognition [14] and image

segmentation [14, 58], to name a few.

1.2 Research Goal

The goal of this study is to develop techniques of maintaining the PDF of joint

target state with higher fidelity than allowed by existing methods. The major focus

of the research is to concentrate on the efficiency of the representation in order to

provide the best description of the target distribution using the most compact set of

parameters possible.

Considering this focus on efficiency, the study will commence by examining

the difficulties associated with algorithms based on Probabilistic Data Association

(PDA) [2, 4], which provide an extremely compact representation of the target state,

retaining only a single Gaussian component. Subsequently, methods will be devel-

oped to reduce the number of components in a Gaussian mixture while effecting the

smallest change possible in the overall PDF structure. In this way, these techniques

will provide a generalization of PDA which will provide the best representation pos-

sible of the target state PDF for a given number of Gaussian mixture components.

1.3 Assumptions

The assumptions made in this study arise out of the probabilistic model of joint

association events presented in Section 2.5.2. Firstly, the problem of target existence

is not addressed, and the algorithms developed assume knowledge of the number of

targets present. Through this assumption, we concentrate the research effort on

developing the best possible method of maintaining knowledge of the target state

1-6

PDF; target existence considerations can be incorporated later as presented in [42].

Secondly, the measurement model assumes that each measurement belongs to one

target and one target only, hence ignoring the possible case in which two targets

are within the same radar resolution cell and provide a single merged measurement.

While this assumption will be violated in situations in which targets are extremely

closely-spaced, such cases can be handled as an exception (as presented in [27, 28]),

and the overall solution form is unchanged. Finally, the measurement model assumes

that each target gives rise to no more than one measurement, hence ignoring the

possible case in which a large, near target spans multiple resolution cells and gives

rise to several measurements. Again, extensions can be derived to handle such cases

explicitly, and the overall form of the solution remains unchanged.

The simulations presented in Chapter IV also assume a linear Cartesian mea-

surement model in order to employ the standard Kalman filter, as presented in

Section 2.2.3. The linear measurement model was selected in order to concentrate

the study on the impact of data association; the linear model could be replaced by

a nonlinear polar measurement model (as provided by conventional radar systems)

by replacing the Kalman filters in the structure with extended Kalman filters, as

discussed in Section 2.2.4. The results presented in [44] utilize a linear measurement

model for similar reasons.

1.4 Thesis Organization

Chapter II examines the background of target tracking, comparing and con-

trasting current techniques and highlighting areas of possible improvement. Section

2.2 reviews the basic structures of single-target non-maneuvering tracking filters,

presenting the background of the Kalman filter. Section 2.3 briefly considers the

theory and practice of Gaussian mixture models, which are utilized throughout the

remainder of the thesis. Section 2.4 outlines the extensions which have been made

to the Kalman filter to address the issue of maneuvering targets, deriving the algo-

1-7

rithm which is currently considered state-of-the-art, the Interacting Multiple Model

(IMM) estimator [3:461–465, 10]. Section 2.5 derives in detail the probabilistic model

of joint association events, and then uses this model to highlight the differences and

similarities of the current generation of data association algorithms. Section 2.5.13

briefly outlines some of the methods which have been proposed in open literature

to combine the maneuvering techniques of Section 2.4 with the data association

techniques of Section 2.5 to aid tracking of multiple maneuvering targets in clutter.

Finally, Section 2.6 briefly reviews some of the techniques of numerical optimization

which will be utilized in Chapter III.

Chapter III commences by analyzing some of the difficulties observed with the

Joint Probabilistic Data Association (JPDA) [2, 4] and Coupled Probabilistic Data

Association (CPDA) [12] algorithms, providing new insight into the target bias and

track coalescence phenomena examined in [12, 16]. Subsequently, an algorithm is

developed for reducing the number of components in a Gaussian mixture, starting in

Section 3.3.1 by considering possible cost measures which could be used to measure

the deviation from the original PDF caused by the reduction. Section 3.3.2 analyzes

our chosen cost function, the Integral Square Difference (ISD) cost, in detail before

Section 3.3.3 applies the iterative optimization techniques presented in Section 2.6

to find the set of parameters for the reduced PDF which minimizes the cost. Section

3.3.4 proposes an algorithm which can be used to initialize the iterative optimization,

a function which is very important, considering the multi-modal structure of the cost

function.

Chapter IV commences by testing the initialization and iterative optimization

techniques on a simple one-dimensional problem, providing a graphical demonstra-

tion of their operation. Sections 4.4 to 4.6 then present results of computer simu-

lations applying the algorithm to the problems of tracking a single target in clut-

ter, tracking multiple targets in clutter and tracking a single maneuvering target.

1-8

Chapter V concludes by summarizing the results and suggesting areas for further

investigation.

1-9

II. Background

2.1 Introduction

The discipline of target tracking spans a wide range of theory, incorporating

basic state estimation, multiple model estimation techniques, and data association

methods. Almost all modern tracking systems utilize the Kalman filter as the central

tool for state estimation; this method is described in Section 2.2. When a target

is maneuvering, the success of the standard Kalman filter can be limited severely.

Alternative structures using several Kalman filters in parallel have proven successful

in this problem; these are described in Section 2.4. The ambiguity of the origin of

measurements is unavoidable in tracking systems; the most common methodologies

of dealing with this problem are discussed in Section 2.5. Section 2.3 briefly outlines

the Gaussian mixture, which is the statistical model that arises naturally in these

problems, and Section 2.6 reviews the theory of iterative optimization which will be

employed in Chapter III.

2.2 Tracking Filters

2.2.1 Introduction. The following sections review the fundamental tools of

target tracking, most importantly, the Kalman filter. The material presented is not

intended to be a complete coverage of the topic area; rather, major outcomes are

stated and pointers are given to useful reference material that describe the field in

more detail.

2.2.2 Ad Hoc Techniques. The concept that commenced the revolution in

surveillance radar performance was that of incorporating dynamics models into the

tracking system. By utilizing the equations of Newtonian dynamics, such models

make it possible to predict the future location of the target, freeing the radar to

perform other tasks between updates. The dynamics models can be based on simple

2-1

constant velocity assumptions, such as:

x(k) = x(k − 1) + v(k − 1) · [tk − tk−1]

v(k) = v(k − 1) (2.1)

where x is the position of the target, v is the velocity and [tk − tk−1] is the time

difference between the k-th and (k − 1)-th measurement instants. If the velocity of

the target is not well modelled as constant, then constant acceleration models can

be employed such as:

x(k) = x(k − 1) + v(k − 1) · [tk − tk−1] + 1

2
a(k − 1) · [tk − tk−1]

2

v(k) = v(k − 1) + a(k − 1) · [tk − tk−1]

a(k) = a(k − 1) (2.2)

where a is the acceleration of the target. Early tracking methods based upon these

models estimated the position, velocity, and where necessary, acceleration, of the

target using a weighted average of the current measurement and the value predicted

using Eq. (2.1) or (2.2). The tracking filter based on the constant velocity assumption

is referred to as the α-β tracker, and operates as follows [50:260]:

x̂(k|k) = x̂(k|k − 1) + α[z(k) − x̂(k|k − 1)]

v̂(k|k) = v̂(k|k − 1) +
β

tk − tk−1

[z(k) − x̂(k|k − 1)] (2.3)

where z(k) is the k-th measurement of target position, occurring at time tk. The

notation x̂(k|k− 1) is used to represent the estimated position of the target at time

tk, predicted using Eq. (2.1) and measurements up to time tk−1, and x̂(k|k) repre-

sents the estimated position of the target after incorporation of the measurement

z(k). Similarly, v̂(k|k − 1) is the estimated velocity before incorporation of the new

measurement, and v̂(k|k) is the estimated velocity after incorporation of the mea-

2-2

surement. The α-β tracker receives its name from the coefficients, α and β, that

are used as weighting factors to perform the updates. If α and β are zero, then the

system relies purely on the predictions provided by the dynamics model embedded

in the system. Conversely, if α and β are one, then the system ignores the system’s

dynamics model, and relies purely on the latest measurement. Thus, by adjusting

α and β, the designer has a trade-off between the weight that the system places on

the past measurements, as propagated through the dynamics model, and the weight

that the system places on the newly introduced measurement.

The α-β-γ tracker operates similarly, incorporating an additional weighting

factor to aid in estimation of the acceleration (which is assumed constant) [6:21]:

x̂(k|k) = x̂(k|k − 1) + α[z(k) − x̂(k|k − 1)]

v̂(k|k) = v̂(k|k − 1) +
β

tk − tk−1

[z(k) − x̂(k|k − 1)]

â(k|k) = â(k|k − 1) +
γ

(tk − tk−1)2
[z(k) − x̂(k|k − 1)] (2.4)

These equations operate as per the α-β tracker with the prediction between mea-

surement intervals performed using the constant acceleration model of Eq. (2.2), and

γ representing the weighting coefficient used to update the acceleration estimate of

the model.

The α-β and α-β-γ trackers can exhibit very good performance, provided that

the weighting coefficients are selected carefully [3:288–289]. However, rules for se-

lecting these coefficients are largely ad hoc, relying more on trial and error than on

mathematical theory.

2.2.3 Kalman Filter. The Kalman filter is the tool which provides a math-

ematical basis for ad hoc methods such as the α-β and α-β-γ trackers, and at the

same time gives a mechanism for calculating the optimal values of the weighting

2-3

coefficients. The filter is based on the simple linear state model:1

x(k) = Φ(k, k − 1)x(k − 1) + Gd(k − 1)w(k − 1)

z(k) = H(k)x(k) + v(k) (2.5)

where x(k) is the true state of the system at sample instant k; z(k) is the noise

corrupted measurement supplied to the estimator at time instant k; Φ, Gd and H

are known system matrices; and w(k) and v(k) are two mutually independent white

Gaussian noise processes (also independent of prior knowledge of x) such that:

E{w(k)w(l)} = Qd(k) δkl

E{v(k)v(l)} = R(k) δkl

where δkl is the Kronecker delta function (unity when k = l, zero otherwise).

If the prior knowledge of x indicates that it follows a Gaussian Probability

Density Function (PDF) with mean x̂(k − 1|k − 1) and covariance P(k − 1|k − 1):

f{x(k − 1)|Zk−1} = |2πP(k − 1|k − 1)|− 1

2 ·

· exp{− 1

2
[x(k − 1) − x̂(k − 1|k − 1)]T ·

·P(k − 1|k − 1)−1[x(k − 1) − x̂(k − 1|k − 1)]}

, N{x(k − 1); x̂(k − 1|k − 1),P(k − 1|k − 1)}

then it can be shown that the PDF of the state of x propagated forward to sample

period k remains Gaussian [34:208–209]:

f{x(k)|Zk−1} = N{x(k); x̂(k|k − 1),P(k|k − 1)}

1Shown in discrete-time form, even though there will inevitably be an underlying continuous-
time system.

2-4

where the mean x̂(k|k − 1) and covariance P(k|k − 1) are described by the Kalman

filter propagation equations:

x̂(k|k − 1) = Φ(k, k − 1)x̂(k − 1|k − 1)

P(k|k − 1) = Φ(k, k − 1)P(k − 1|k − 1)Φ(k, k − 1)T +

+ Gd(k − 1)Qd(k − 1)Gd(k − 1)T (2.6)

Although Kalman first derived the measurement update algorithm using in-

sights from orthogonal projection [24], it is easily understood for the case of Gaussian

PDFs by applying Bayes’ rule:

f{x(k)|Zk} = f{x(k)|z(k),Zk−1}

=
f{x(k),z(k)|Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|x(k),Zk−1}f{x(k)|Zk−1}

f{z(k)|Zk−1}
(2.7)

The first term in the numerator of Eq. (2.7) represents the PDF of the measure-

ment vector conditioned on the true value of the target state vector, as well as the

previous measurement history. Given the relationship of Eq. (2.5), this PDF will

thus be Gaussian with a mean of Hx(k) (the true value of the state vector), and

covariance R. The latter term in the numerator of Eq. (2.7) represents the knowl-

edge of the current state conditioned on the previous measurements: this will be the

Gaussian function propagated from the previous processing cycle with parameters

as per Eq. (2.6). The denominator of Eq. (2.7) is simply the marginal density of the

measurements, calculated as the integral of the numerator over all x:

f{z(k)|Zk−1} =

∫ ∞

−∞

f{x(k),z(k)|Zk−1}dx(k)

=

∫ ∞

−∞

f{z(k)|x(k),Zk−1}f{x(k)|Zk−1}dx(k)

2-5

where the vector limits (−∞,∞) remind us that the integration is to be performed

over every element of the vector x(k).

Collecting these results, Eq. (2.7) can (after much algebra) be simplified to be

a Gaussian PDF, with mean x̂(k|k) and covariance P(k|k) [34:212–217]:

f{x(k)|Zk} = N{x(k); x̂(k|k),P(k|k)}

where the mean x̂(k|k) and covariance P(k|k) are described by the Kalman filter

measurement update equations:

x̂(k|k) = x̂(k|k − 1) + K(k)[z(k) − H(k)x̂(k|k − 1)]

P(k|k) = P(k|k − 1) − K(k)H(k)P(k|k − 1) (2.8)

with K(k) referred to as the Kalman filter gain:

K(k) = P(k|k − 1)H(k)T [H(k)P(k|k − 1)H(k)T + R(k)]−1 (2.9)

The form of the measurement update expression in Eq. (2.8) gives rise to the defini-

tion of the filter residual, also referred to as the innovation [34:218]:

ν(k) = z(k) − H(k)x̂(k|k − 1) (2.10)

Considering the form of Eq. (2.10), the residual consists of the difference between

the actual measurement, and the best prediction of the measurement: hence it em-

bodies the new information that the measurement provides to the system. If the

assumptions of the algorithm summarized in Eq. (2.5) are satisfied, then the residual

2-6

series should possess the following properties [34:228–229]:

Zero-mean : E{ν(k)} = 0

White : E{ν(k)ν(l)T} = 0, k 6= l

Covariance : E{ν(k)ν(k)T} , S(k) = H(k)P(k|k − 1)H(k)T + R(k)

Gaussian : f{ν(k)} = N{ν(k);0,S(k)} (2.11)

If the residual series does not display these characteristics, then there is a high

probability that the assumptions of the algorithm have not been satisfied. There

are two common causes of this in the target tracking application: target maneuver

and measurement ambiguity. If the maneuver that the target is exhibiting does not

match the maneuver described in the Kalman filter dynamics model (i.e., the matrix

Φ being used in the Kalman filter does not match the true Φ matrix), then the

mismatch will produce a residual series which does not possess the characteristics

described in Eq. (2.11). Methods of dealing with the problems caused by target

maneuver are described in Section 2.4. Similarly, if the system uses the incorrect

measurement then the residual series will not possess the characteristics of Eq. (2.11).

This is common in radar systems which produce several measurements during each

processing interval (some due to different targets, some due to clutter), but only

one measurement is correct, and the system does not know which is the correct

measurement. Methods for dealing with the problems of measurement uncertainty

and data association are described in Section 2.5.

Following from the properties of Eq. (2.11), the likelihood that a given residual

vector will occur is described by the PDF:

N{ν(k);0,S(k)} = |2πS(k)|− 1

2 exp
{

− 1

2
ν(k)TS(k)−1

ν(k)
}

(2.12)

Following from this expression, we can define a region in ν(k) space such that the

probability that a valid residual (resulting from the correct measurement and a

2-7

correctly modelled system) is outside of this region is very small. For example, if we

want the region V to contain the most likely set of residuals such that the probability

that a residual lies within V is Pg:
2

Pg =

∫

ν(k)∈V

|2πS(k)|− 1

2 exp
{

− 1

2
ν(k)TS(k)−1

ν(k)
}

dν(k) (2.13)

then the region will be defined by:

V = {ν(k) : ν(k)TS(k)−1ν(k) ≤ γ} (2.14)

where γ is a threshold calculated to produce the desired probability Pg. There are

many interpretations of the distance measure defined by ν(k)TS(k)−1ν(k). If the co-

variance S(k) is an identity matrix, then the distance measure reduces to the norm

of the residual, or alternatively the Euclidean distance between the measurement

and the predicted value of the measurement. In the multidimensional case, it seems

appropriate then to weight each principal axis according to the relative level of cer-

tainty in that direction. Thus the inclusion of the predicted covariance modifies the

Euclidean distance inner product to a generalized inner product utilizing appropri-

ate weightings. The impact of the covariance inverse is to make the elements of the

vector independent, thus the resultant test statistic is distributed according to a χ2

PDF, for which the number of degrees of freedom is the number of measurement

variables.

The Kalman filter is the optimal solution (according to almost any error crite-

rion) to the tracking problem if the system is linear and known, with additive white

Gaussian noise. The Kalman filter is also the optimal linear linear solution (accord-

ing to the minimum variance unbiased criterion) for any linear tracking problem,

regardless of the characteristics of the noise process [34:235].

2As discussed in Section 2.5.1, Pg represents the probability that a measurement will lie within
a gating region.

2-8

There is much more to be said about the Kalman filter; this section has merely

stated the equations of the discrete-time variant. There are many topics which

should be understood in order to address the target tracking problem, particularly

generation of the discrete-time model for an underlying continuous-time system, and

modelling of time-correlated noise processes. Countless books have been written on

these subjects, and the interested reader is directed to the thorough coverage of the

area which can be found in [34].

The continuous-time system underlying the discrete-time system of Eq. (2.5)

will be of the form:

ẋ(t) = F(t)x(t) + G(t)w(t)

z(k) = H(k)x(k) + v(k) (2.15)

where x(k) , x(tk) for notational convenience, and w(t) is a continuous-time white

noise process such that:

E{w(t)w(t′)} = Q(t) δ(t− t′)

and δ(t− t′) is the Dirac delta function:

δ(t) = 0, t 6= 0

∫ ∞

−∞
δ(t)dt = 1

2-9

The Kalman filter propagation equations for this system are equivalent to

Eq. (2.6) [34:209]:

x̂(k|k − 1) = Φ(tk, tk−1)x̂(k − 1|k − 1)

P(k|k − 1) = Φ(tk, tk−1)P(k − 1|k − 1)Φ(tk, tk−1)
T +

+

∫ tk

tk−1

Φ(tk, τ)G(τ)Q(τ)G(τ)TΦ(tk, τ)
Tdτ (2.16)

which gives rise to the definition of Gd and Qd matrices which satisfy:

Gd(k − 1)Qd(k − 1)Gd(k − 1)T ,

∫ tk

tk−1

Φ(tk, τ)G(τ)Q(τ)G(τ)TΦ(tk, τ)
Tdτ

The state transition matrix Φ(t|t0) is the solution of the deterministic differential

equation [34:40]:
dΦ(t, t0)

dt
= F(t)Φ(t, t0)

from the initial condition Φ(t0, t0) = I, and Φ(k|k − 1) , Φ(tk|tk−1) for notational

convenience. If the dynamical system is time invariant such that F(t) = F, then

Φ(t|t0) can be shown to be [34:42]:

Φ(t|t0) = exp(F · [t− t0])

where exp(·) denotes the matrix exponential operation.

2.2.4 Nonlinear Filters. While the body of knowledge for dealing with

linear systems is very extensive, few systems are truly linear in reality, but rather

they can be modelled as linear within certain operating regions. When it is necessary

to operate outside these regions, linear techniques break down and more advanced

nonlinear estimator forms become necessary. The most common nonlinear estimation

algorithm is the Extended Kalman Filter (EKF) [3, 35].

2-10

The EKF is designed to address nonlinearities of the following form:

ẋ(t) = f [x(t), t] + G(t)w(t)

z(k) = h[x(k), k] + v(k) (2.17)

where the first equation is in continuous-time form, similarly to Eq. (2.15), as nonlin-

ear systems cannot in general be converted to equivalent discrete-time systems. The

vector function f [x(t), t] represents the nonlinear dynamics model of the system,

while the vector function h[x(k), k] represents the nonlinear measurement model of

the system. The noise processes for both equations remain additive, this being the

major restriction of the EKF technique.

Using the EKF, time propagation between measurement samples (k − 1) (oc-

curring at time tk−1) and k (occurring at time tk) must be performed using numerical

integration of the following expressions [35:44–45]:

˙̂x(t|tk−1) = f [x̂(t|tk−1), t]

Ṗ(t|tk−1) = F[x̂(t|tk−1), t]P(t|tk−1) +

+ P(t|tk−1)F[x̂(t|tk−1), t]
T + G(t)Q(t)G(t)T

(2.18)

where the matrix F[x̂(t|tk−1), t] represents the linearization of the vector function

f [x̂(t|tk−1), t] with respect to the parameter x̂(t|tk−1), reevaluated over each numer-

ical integration step:

F[x̂(t|tk−1), t] ,
∂f [x̂(t|tk−1), t]

∂x̂(t|tk−1)

2-11

The measurement update equation for the EKF is very similar to the standard

Kalman filter measurement update form of Eq. (2.8) [35:44]:

x̂(k|k) = x̂(k|k − 1) + K(k){z(k) − h[x̂(k|k − 1), k]}

P(k|k) = P(k|k − 1) − K(k)H[x̂(k|k − 1), k]P(k|k − 1)

(2.19)

where the Kalman filter gain remains as per the standard Kalman filter:

K(k) = P(k|k − 1)H[x̂(k|k − 1), k]T ·

· {H[x̂(k|k − 1), k]P(k|k − 1)H[x̂(k|k − 1), k]T + R(k)}−1

(2.20)

and the matrix H[x̂(k|k − 1), k] is the linearization of the vector function

h[x̂(k|k − 1), k] with respect to the parameter x̂(k|k − 1):

H[x̂(k|k − 1), k] ,
∂h[x̂(k|k − 1), k]

∂x̂(k|k − 1)

If either the dynamics model or the measurement model is linear, then the

standard Kalman filter equations may be used for that portion of the processing cycle.

In this study, we will neglect the effect of nonlinearities in order to concentrate purely

on the impact of the problems caused by target maneuver and data association.

2.3 Gaussian Mixtures

The Gaussian mixture is a powerful modelling tool for characterizing the PDF

of variables which follow complicated multi-modal distributions. The basic form of

2-12

a Gaussian mixture containing N components is:

f{x} =
N

∑

i=1

piN{x; x̂i,Pi} (2.21)

where {pi} are the relative weights of each Gaussian component (pi ≥ 0 ∀ i,
∑N

i pi = 1), {x̂i} are the means of each component, and {Pi} are the covariances.

As will be seen in the following sections, Gaussian mixture models arise nat-

urally as the solution to several problems in target tracking, including maneuvering

target tracking and data association. In the coming sections it will often be neces-

sary to calculate the overall mean and overall covariance of a Gaussian mixture. The

overall mean can be calculated using the expectation operation:

µc = E{x} =

∫ ∞

−∞

{

N
∑

i=1

pixN{x; x̂i,Pi}
}

dx

=
N

∑

i=1

pi

∫ ∞

−∞

xN{x; x̂i,Pi}dx

=
N

∑

i=1

pix̂i (2.22)

The overall covariance can be calculated similarly:

Pc = E{(x − µc)(x − µc)
T} = E{xxT} − µcµ

T
c

=

∫ ∞

−∞

{

N
∑

i=1

pixxTN{x; x̂i,Pi}
}

dx − µcµ
T
c

=
N

∑

i=1

pi

∫ ∞

−∞

xxTN{x; x̂i,Pi}dx − µcµ
T
c

=
N

∑

i=1

pi(Pi + x̂ix̂i
T) − µcµ

T
c

=
N

∑

i=1

pi
[

Pi + (x̂i − µc)(x̂i − µc)
T
]

(2.23)

2-13

The major theme of this thesis is to simplify a Gaussian mixture with many

components to a reduced form with fewer components. One of the common building

blocks for performing this function will be to merge two similar mixture components

together. In order to maintain the same overall mean and covariance for the mixture,

the parameters of the combined component will be [6:293]:

Weight : pc = p1 + p2

Mean : µc =
1

p1 + p2

{p1x̂1 + p2x̂2}

Covariance : Pc =
1

p1 + p2

{

p1P1 + p2P2 +
p1p2

p1 + p2

(x̂1 − x̂2)(x̂1 − x̂2)
T

}

(2.24)

The derivation of µc in Eq. (2.24) is obvious following from Eq. (2.22); Pc in

Eq. (2.24) is derived from Eq. (2.23) by:

Pc =

∑2
i=1 pi

[

Pi + (x̂i − µc)(x̂i − µc)
T
]

p1 + p2

= [p1P1 + p1(x̂1 − µc)(x̂1 − µc)
T +

+ p2P2 + p2(x̂2 − µc)(x̂2 − µc)
T]/(p1 + p2) (2.25)

Expanding µc using Eq. (2.24):

x̂1 − µc = x̂1 − (p1x̂1 + p2x̂2)/(p1 + p2)

= (p1x̂1 + p2x̂1 − p1x̂1 − p2x̂2)/(p1 + p2)

= p2(x̂1 − x̂2)/(p1 + p2) (2.26)

2-14

Similarly:

x̂2 − µc = x̂2 − (p1x̂1 + p2x̂2)/(p1 + p2)

= (p1x̂2 + p2x̂2 − p1x̂1 − p2x̂2)/(p1 + p2)

= −p1(x̂1 − x̂2)/(p1 + p2) (2.27)

Substituting these expressions into Eq. (2.25) we obtain:

Pc = [p1P1 + p1p2
2(x̂1 − x̂2)(x̂1 − x̂2)

T/(p1 + p2)
2 +

+ p2P2 + p2p1
2(x̂1 − x̂2)(x̂1 − x̂2)

T/(p1 + p2)
2]/(p1 + p2)

= [p1P1 + p2P2 +
p1p2(p1 + p2)

(p1 + p2)2
(x̂1 − x̂2)(x̂1 − x̂2)

T]/(p1 + p2)

= [p1P1 + p2P2 +
p1p2

p1 + p2

(x̂1 − x̂2)(x̂1 − x̂2)
T]/(p1 + p2) (2.28)

which matches the result shown in Eq. (2.24).

2.4 Multiple Model Adaptive Estimation

The techniques described in Section 2.2 are extremely effective at tracking

moving objects when the assumptions of the algorithm are satisfied. However, one

assumption inherent to those methods is that the dynamics model of the target is

known for all time. In any scenario of practical interest, this will never be the case,

and thus any claim of optimality (or even near-optimality) is lost.

In the target tracking application, there are two fundamental classes of models:

maneuvering and non-maneuvering. Non-maneuvering models are used to exploit the

fact that most aircraft fly along straight paths most of the time: such knowledge

brings intrinsic certainty into the estimation problem, which can be used to reduce

the bandwidth of the tracking filter and greatly increase the precision of state esti-

mates.

2-15

Maneuvering models are needed in an estimation system to describe the motion

of the target when it is not non-maneuvering. The rich variety of maneuvers that a

target may exhibit (particularly in a military setting) comparatively raises the level

of uncertainty in the system. While some segments may be able to be predicted with

some accuracy for short periods of time, to some extent the maneuver will need to

be modelled as a noise process with appropriately selected strength and bandwidth

(through an appropriately designed noise process shaping filter).

Fundamentally, target trackers may use two strategies to adapt to changing

dynamics models. The first approach is to use the measurement to estimate the

unknown maneuver parameters (often using batch processing or sliding window-

type methods), and then correct the state estimates using these parameters. The

disadvantage of this method is that it is slow to adapt to change: it takes several

sample periods after the onset of a maneuver to be able to estimate the maneuver

parameters with any level of accuracy. Iterative reprocessing of the last measurement

or the last N measurements can reduce this lag, but not without a significant increase

in computational complexity.

The second approach for adapting to changing target dynamics is to use a par-

allel bank of non-adaptive estimators, each tuned to a different operating condition

(e.g., type and level of maneuver, etc.), and then to combine the outputs into a sin-

gle weighted average estimate based on the apparent performance of each elemental

filter. This latter architecture has a major advantage over the former in regards

to adaptation speed: the question of “what is the maneuver?” has effectively been

changed to “is the maneuver best represented by model a, model b, or model c?”,

thereby re-posing the question as a detection problem, rather than an estimation

problem. Virtually all multiple model techniques share this same basic architecture,

and differ only in the manner in which the model weights are calculated, and in the

mixing of model-conditioned estimates between processing cycles.

2-16

2.4.1 Non-Switching Models. The “basic” form of Multiple Model Adaptive

Estimator (MMAE) [3, 37] is derived when one assumes that the model in force does

not change with time. While at first this may seem to defeat the purpose of employing

multiple model methods, the result reveals insight into ad hoc modifications which

can be used to transform the structure into an effective adaptive algorithm.

2.4.1.1 Calculation of Model Probabilities. The event Mj is defined

to represent the condition that dynamics model j is in force. No time argument

is required, as the model is assumed not to switch with time. The a posteriori

probability that model j is in force conditioned on the measurement history up to

and including sample time k is represented by:

µj(k) , P{Mj|Zk} (2.29)

Expanding Zk in Eq. (2.29) into the combination of the previous measurement

history Zk−1 combined with the current measurement z(k), and then using Bayes’

rule in both z(k) and Mj yields:

µj(k) = P{Mj|Zk−1,z(k)}

=
f{Mj,z(k)|Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mj,Z

k−1}P{Mj|Zk−1}
f{z(k)|Zk−1}

(2.30)

where the notation P{·} refers to the probability of a discrete event, whereas f{·}
refers to the density function of a continuous variable. The denominator in Eq. (2.30)

can be expanded using the total probability expansion over all models:

f{z(k)|Zk−1} =

Nf
∑

i=1

f{z(k)|Mi,Z
k−1}P{Mi|Zk−1} (2.31)

2-17

where Nf is the number of hypothesized models (and thus the number of elemental

filters in the structure). This gives the following recursive equation for the model

probabilities µj(k):

µj(k) =
f{z(k)|Mj,Z

k−1}µj(k − 1)
∑Nf

i=1 f{z(k)|Mi,Z
k−1}µi(k − 1)

(2.32)

The representation of the parameter space by a number of discrete models is

effectively an employment of the total probability theorem, representing the PDF

of the new measurement as a weighted sum over each possible model. The total

probability theorem rule requires two characteristics of the event space partitioning:

the partitions should be mutually exclusive (they should not overlap within the

space), and they should be complete (they should span the entire event space).

Although these requirements will seldom be met in practical multiple model filter

designs, they remain valuable design guidelines: that the models chosen should be

distinct, such that a single model should be predominantly responding at any one

time, and complete, such that the elemental filters adequately model all possible

hypotheses that may feasibly occur.

The calculation of f{z(k)|Mj,Z
k−1} is a simple matter for the non-switching

model case; this density function represents the match between the incoming mea-

surement and the previous measurement history assuming that model j has been in

force throughout. Assuming the standard linear Kalman filter measurement model,

this is evaluated as:

f{z(k)|Mj,Z
k−1} = N{z(k);Hjx̂j(k|k − 1),HjPj(k|k − 1)HT

j + Rj} (2.33)

where x̂j(k|k − 1) and Pj(k|k − 1) are the state estimate and covariance of the

filter for model j, and Hj and Rj are the measurement matrix and measurement

covariance under model j.

2-18

2.4.1.2 Calculation of Combined Estimate. The central conditional

mean estimate is formed as a weighted average of the elemental filter estimates using

the model probabilities µj(k) as the weights:

x̂(k|k) =

Nf
∑

j=1

µj(k)x̂j(k|k) (2.34)

Though generally not required, the covariance of this estimate can also be

formed using a weighted average, but adding the correction term which takes into

account the spreading introduced by the different estimates:

P(k|k) =

Nf
∑

j=1

µj(k)
{

Pj(k|k) + [x̂j(k|k) − x̂(k|k)][x̂j(k|k) − x̂(k|k)]T
}

(2.35)

Figure 2.1 shows the structure of the non-switching MMAE algorithm. The

model-conditioned estimates calculated by each elemental filter at each processing

cycle are passed directly into the same filter at the following processing cycle, as it

is assumed that the model in force does not change with time. The overall combined

estimate is calculated as a weighted average, as shown in Eqs. (2.34) and (2.35).

2.4.1.3 Ad Hoc Modifications. The assumption of the algorithm that

the model in force will not change is evident in the form of Eq. (2.32): the recursive

nature of the formulation implies that the certainty of the system will grow with

time, as the a priori model probabilities are multiplied by the model-conditioned

measurement density function at each processing cycle. To illustrate the difficulty

that this can cause, consider a model which consistently performs poorly (as it is

badly mismatched to the true system). As time progresses, the probability of the

model decreases exponentially, as the certainty with which the model is rejected

grows. If the true system switches models (e.g., a non-maneuvering target com-

2-19

Next processing cycle

Propagate
with model 1

Propagate
with model 2

Propagate
with model Nf

Combined
estimate

Weighted
combination

z(k) z(k) z(k)

x̂1(k − 1|k − 1)
P1(k − 1|k − 1)

x̂2(k − 1|k − 1)
P2(k − 1|k − 1)

x̂Nf
(k − 1|k − 1)

PNf
(k − 1|k − 1)

x̂1(k|k − 1)
P1(k|k − 1)

x̂2(k|k − 1)
P2(k|k − 1)

x̂Nf
(k|k − 1)

PNf
(k|k − 1)

x̂1(k|k)
P1(k|k)

x̂2(k|k)
P2(k|k)

x̂Nf
(k|k)

PNf
(k|k)

x̂(k|k)
P(k|k)

Update
with model 1

Update
with model 2

Update
with model Nf

Figure 2.1. Block diagram of non-switching multiple model estima-
tion algorithm.

mences an evasive maneuver), then many orders of magnitude of certainty with

which the new model was being rejected (through the recursion) must be overcome

before a significant amount of probability will return to it. If the probability of

the model had decreased to such a level that a numerical underflow condition had

occurred and the value had been rounded to zero, then the model probability will

never recover.

An obvious method of overcoming this difficulty is to impose a lower bound

on the model probabilities such that any probabilities that fall below the bound are

increased back to that level. The level of the bound can be adjusted experimentally,

providing a trade-off between speed of adaptation, and level of certainty accrued by

the estimator. Higher bounds will increase the agility of probability flow between

models while making the system more susceptible to incorrect probability flow due

to noise, whereas lower bounds will slow the adaptation process while providing more

2-20

0 10 20 30 40 50 60 70 80 90 100
10

−100

10
−50

10
0

Probability Flow − No Lower Bound

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−2

10
0

Time (samples)

Probability Flow − 10−3 Lower Bound

Nonmaneuvering
Maneuvering

Figure 2.2. MMAE probability flow with and without a lower prob-
ability bound. Note the logarithmic scale used in each of
the plots.

robustness against noise. An example of this is shown in Figure 2.2, in which the

non-maneuvering model is in effect from samples 0 to 20 and from 61 to 100, and the

maneuvering model is in effect from samples 21 to 60. The top diagram shows the

difficulty experienced when no lower bound is applied: by the time the maneuvering

model comes into force (at the 21st sample), its probability has reduced to 10−75,

and it takes nearly 30 samples for this probability to recover and return to being

competitive with the non-maneuvering model. The bottom diagram shows the same

scenario, but with a lower bound of 10−3 applied to the model probabilities. The

use of the lower bound reduces the time required to respond to the model switch to

around five sample periods.

2-21

The second ad hoc modification required to use the algorithm in practice is

to monitor the estimates of badly-performing models for divergence, and reinitialize

them if this is sensed to occur. Traditionally the trigger used for this has been the

normalized residual, νj
TS−1

j νj, as utilized in Eq. (2.14). As discussed in Section

2.2.3, this value provides an indication of the match between the measurement and

the value predicted by the model, hence if this value is large (above some threshold),

then the model can be assumed to have diverged and should be reinitialized using the

combined estimate from the non-divergent filters. An alternative trigger which could

be used for reinitializing models is to restart them whenever the lower probability

bound is applied [57]. In this way, elemental filters which are not contributing to the

overall estimate are continually reset such that they are ready when the respective

model comes into force.

2.4.2 Switching Models. To allow for model switching, the model in force

is permitted to change at any sample instant, and model history events are used to

characterize the transitional behavior of the system with time. Such events take the

form:3

Mk,l =
{

M1,m1l
,M2,m2l

, . . .Mk,mkl

}

(2.36)

The notation is interpreted as meaning that the l-th possible model history at time

k consists of model m1l
at sample time 1, model m2l

at sample time 2, etc., where

each mjl is the index to a model number between 1 and Nf .

If transitions are allowed to any of the Nf models at any sample instant,

then every model history event at time k will give rise to Nf new events at time

(k + 1), hence the number of possible model histories increases exponentially with

time according toNf
k. The PDF of the target state conditioned on the measurements

3Note that superscripts are used to indicate a model history event, whereas subscripts indicate
a single time step event.

2-22

must then be calculated as a total probability expansion over all model history events:

f{x(k)|Zk} =

Nf
k

∑

l=1

f{x(k)|Mk,l,Zk}P{Mk,l|Zk} (2.37)

The model history probability P{Mk,l|Zk} is expanded as:

P{Mk,l|Zk} = P{Mk,l|z(k),Zk−1}

=
f{Mk,l,z(k)|Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,l|Zk−1}

f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,j,M

k−1,l′ |Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,j|Mk−1,l′ ,Zk−1}P{Mk−1,l′ |Zk−1}

f{z(k)|Zk−1}
(2.38)

where l is the index of the current model history (between 1 and Nf
k), l′ is the

index of the previous model history (between 1 and Nf
k−1), and j is the index of the

current model (between 1 and Nf) hypothesized by the model history event Mk,l.

The denominator is expanded as a total probability expansion over all model history

events as in Eq. (2.37).

The method commonly used to evaluate model history event probabilities is

to assume that the model transition process is a Markov process, such that the

probability of transition depends only on the previous model number mk−1l′
, and

2-23

not on the prior model history or prior measurements:

P{Mk,j|Mk−1,l′ ,Zk−1} = P{Mk,j|Mk−1,l′}

= P{Mk,j|M1,m1
l′
,M2,m2

l′
, . . .Mk−1,mk−1

l′
}

= P{Mk,j|Mk−1,mk−1
l′
}

, pmk−1
l′
j(k) (2.39)

Thus pmk−1
l′
j(k) is the probability of transitioning from model indexmk−1l′

at sample

time (k−1) to model index j at sample time k, where each index is a model number

between 1 and Nf .

While the assumption of Eq. (2.39) provides a mechanism for computation of

the model history probability, the conditioning in Eq. (2.38) of the new measurement

probability on the model history still produces an exponentially increasing number

of hypotheses with time, hence further approximation (such as combining branches)

is required. The most commonly used algorithms are described in the following

sections. The structure of the full order Bayesian switching estimator is shown

in Figure 2.3. The diagram demonstrates the growing number of filters which is

required: the output of every filter at the current processing cycle must be processed

in the following processing cycle using every model, hence the number of filtering

operations at the k-th cycle is Nf
k.

2.4.3 First-Order Generalized Pseudo-Bayesian Estimator. The First-

Order Generalized Pseudo-Bayesian (GPB-1) estimator [3:454–456] limits the mem-

ory of the model history events by combining the estimates from all models into a

single estimate at the end of each processing cycle. At the start of each processing

cycle, the information carried forward from the previous measurement interval is

a single combined estimate: any conditioning on previous model history events has

been discarded. Hence the PDF of the estimate is modified from the switching model

2-24

Next processing cycle

x̂(0)

P(0)

x̂1(1|0)

P1(1|0)

x̂Nf
(1|0)

PNf
(1|0)

x̂(1|1)

P(1|1)

x̂1(1|1)

P1(1|1)

x̂Nf
(1|1)

PNf
(1|1)

x̂1,1(2|1)

P1,1(2|1)

x̂1,Nf
(2|1)

P1,Nf
(2|1)

x̂Nf ,1(2|1)

PNf ,1(2|1)

x̂Nf ,Nf
(2|1)

PNf ,Nf
(2|1)

x̂1,1(2|2)

P1,1(2|2)

x̂1,Nf
(2|2)

P1,Nf
(2|2)

x̂Nf ,1(2|2)

PNf ,1(2|2)

x̂Nf ,Nf
(2|2)

PNf ,Nf
(2|2)

x̂(2|2)

P(2|2)

z(1) z(1)

z(2) z(2) z(2) z(2)

Propagate
with model 1

Propagate
with model 1

Propagate
with model 1

Propagate
with model Nf

Propagate
with model Nf

Propagate
with model Nf

Combined
estimate

Combined
estimate

Weighted
combination

Weighted
combination

Update
with model 1

Update
with model 1

Update
with model 1

Update
with model Nf

Update
with model Nf

Update
with model Nf

Figure 2.3. Block diagram of full order Markov switching estimator.

2-25

of Eq. (2.37):

f{x(k)|Zk} =

Nf
k

∑

l=1

f{x(k)|Mk,l,Zk}P{Mk,l|Zk}

to the simplified version:

f{x(k)|Zk} =

Nf
∑

j=1

f{x(k)|Mk,j,Z
k}P{Mk,j|Zk} (2.40)

where the total probability expansion over the entire model history event Mk,l is

replaced by expansion over the single most recent model event Mk,j. Expanding

Eq. (2.40), we further approximate that the previous measurement history Zk−1

is adequately represented by the single estimate and covariance from the previous

processing cycle, {x̂(k − 1|k − 1),P(k − 1|k − 1)}:

f{x(k)|Zk} =

Nf
∑

j=1

f{x(k)|Mk,j,Z
k}P{Mk,j|Zk}

=

Nf
∑

j=1

f{x(k)|Mk,j,z(k),Zk−1}P{Mk,j|Zk}

=

Nf
∑

j=1

f{x(k)|Mk,j,z(k), x̂(k − 1|k − 1),P(k − 1|k − 1)} ·

· P{Mk,j|Zk} (2.41)

In effect, the approximations of Eq. (2.40) and (2.41) mean to say that the entire

model transition history and measurement history are representable through the

single estimate from the previous processing cycle. Once the conditional model

probability in Eq. (2.41) has been evaluated using the developments of Eq. (2.38)

and (2.39), the combined estimate is then calculated as per Eqs. (2.34) and (2.35)

and the cycle repeats.

2-26

Next processing cycle

Propagate
with model 2

Propagate
with model 1

Propagate
with model Nf

Combined
estimate

Weighted
combination

z(k) z(k) z(k)

x̂1(k|k − 1)
P1(k|k − 1)

x̂2(k|k − 1)
P2(k|k − 1)

x̂Nf
(k|k − 1)

PNf
(k|k − 1)

x̂1(k|k)
P1(k|k)

x̂2(k|k)
P2(k|k)

x̂Nf
(k|k)

PNf
(k|k)

x̂(k|k)
P(k|k)

x̂(k − 1|k − 1)
P(k − 1|k − 1)

Update
with model 1

Update
with model 2

Update
with model Nf

Figure 2.4. Block diagram of GPB-1 algorithm.

The structure of the GPB-1 algorithm is shown in Figure 2.4. The outputs of

all filters are merged into a single estimate at each processing cycle, which is used as

the input to each of the filters at the next processing cycle, providing a very coarse

approximation of the optimal system shown in Figure 2.3.

2.4.4 Second-Order Generalized Pseudo-Bayesian Estimator. The Second-

Order Generalized Pseudo-Bayesian (GPB-2) estimator [3:457–460] operates on sim-

ilar principles to the first-order variant, except that the memory is allowed to extend

an additional processing cycle. Again, the PDF of the estimate is modified from the

full order switching model of Eq. (2.37):

f{x(k)|Zk} =

Nf
k

∑

l=1

f{x(k)|Mk,l,Zk}P{Mk,l|Zk}

2-27

to the simplified version, which this time incorporates the previous model Mk−1,i in

addition to the current model Mk,j:

f{x(k)|Zk} =

Nf
∑

i=1

Nf
∑

j=1

f{x(k)|Mk−1,i,Mk,j,Z
k}P{Mk−1,i,Mk,j|Zk} (2.42)

Manipulating Eq. (2.42) and assuming that the history {Mk−1,i,Z
k−1} is ade-

quately represented by the combined estimates from the i-th model in the previous

processing cycle {x̂i(k−1|k−1),Pi(k−1|k−1)}, and that (according to the Markov

model) the model transition depends only on the previous model, and not on the

measurement history:

f{x(k)|Zk} =

Nf
∑

i=1

Nf
∑

j=1

f{x(k)|Mk,j,z(k), {Mk−1,i,Z
k−1}} ·

·P{Mk,j|Mk−1,i,Z
k}P{Mk−1,i|Zk}

=

Nf
∑

i=1

Nf
∑

j=1

f{x(k)|Mk,j,z(k), x̂i(k − 1|k − 1),Pi(k − 1|k − 1)} ·

·P{Mk,j|Mk−1,i}P{Mk−1,i|Zk} (2.43)

Hence the operation of the GPB-2 algorithm is such that the estimate from

each model in the previous processing cycle is processed using each dynamics model,

giving Nf
2 total elemental filters. At the end of each processing cycle, the Nf

2

estimates are combined down to Nf estimates, combining estimates from different

models in the previous processing cycle to leave one estimate for each model in the

latest processing cycle. This is illustrated in Figure 2.5, which shows the structure

of the algorithm. Comparing the structure to the GPB-1 algorithm shown in Figure

2.4, the GPB-2 algorithm uses Nf
2 filters, thus it is able to maintain Nf estimates

and propagate each estimate with each of the Nf filters at each processing interval,

rather than collapsing the PDF of target state down to a single estimate at each

processing interval.

2-28

Next processing cycle

Propagate
with model 1

Propagate
with model 1

Propagate
with model Nf

Propagate
with model Nf

Combined
estimate

Weighted
combination

z(k) z(k) z(k) z(k)

x̂1(k − 1|k − 1)
P1(k − 1|k − 1)

x̂Nf
(k − 1|k − 1)

PNf
(k − 1|k − 1)

x̂1,1(k|k − 1)
P1,1(k|k − 1)

x̂1,Nf
(k|k − 1)

P1,Nf
(k|k − 1)

x̂Nf ,1(k|k − 1)
PNf ,1(k|k − 1)

x̂1,1(k|k)
P1,1(k|k)

x̂1,Nf
(k|k)

P1,Nf
(k|k)

x̂Nf ,1(k|k)
PNf ,1(k|k)

x̂Nf ,Nf
(k|k)

PNf ,Nf
(k|k)

x̂1(k|k)
P1(k|k)

x̂Nf
(k|k)

PNf
(k|k)

x̂(k|k)
P(k|k)

x̂Nf ,Nf
(k|k − 1)

PNf ,Nf
(k|k − 1)

Update
with model 1

Update
with model 1

Update
with model Nf

Update
with model Nf

Figure 2.5. Block diagram of GPB-2 algorithm.

2-29

2.4.5 Interacting Multiple Model Estimator. The Interacting Multiple

Model (IMM) estimator [3:461–465, 10] is a methodology which achieves compa-

rable performance to the GPB-2 estimator using only Nf elemental filters, rather

than Nf
2 as required by the latter. The algorithm can be derived by considering the

limitations inherent to the problem: if only Nf elemental filters are allowable, then

the input to the j-th filter should be the best estimate of the state at time instant

(k− 1), conditioned on the event that model j is in force at time instant k (the new

sample time), f{x(k − 1)|Mk,j,Z
k−1}. Using this expression as a starting point,

we follow a single iteration of the algorithm, through to the calculation of the same

function at the following sample period.

Following a standard Kalman filter propagate-update cycle at the k-th sample

time, the output of the j-th elemental filter will be f{x(k)|Mk,j,Z
k}. The require-

ment for the IMM algorithm is thus to combine the estimates from the Nf elemental

filters to calculate the inputs f{x(k)|Mk+1,i,Z
k} of each elemental filter for the next

processing cycle.

The overall PDF formed using the information from all Nf filters represents

the total information contained by the system at time k:

f{x(k)|Zk} =

Nf
∑

j=1

f{x(k)|Mk,j,Z
k}P{Mk,j|Zk} (2.44)

The goal of the intermixing is thus to massage Eq. (2.44) into the expansion necessary

at the input to the next processing cycle:

f{x(k)|Zk} =

Nf
∑

i=1

f{x(k)|Mk+1,i,Z
k}P{Mk+1,i|Zk} (2.45)

2-30

The last factor in Eq. (2.45) is easily evaluated using the Markov assumption as per

Eq. (2.39):

P{Mk+1,i|Zk} =

Nf
∑

j=1

P{Mk+1,i|Mk,j,Z
k}P{Mk,j|Zk}

=

Nf
∑

j=1

P{Mk+1,i|Mk,j}P{Mk,j|Zk} (2.46)

Note that if T(k + 1|k) is the Markov transition matrix such that:

{T}ij = P{Mk+1,i|Mk,j}

then Eq. (2.46) is simply a matrix multiplication of T(k + 1|k) by the vector with

elements that are the probabilities P{Mk,j|Zk}, yielding the vector of components

that represent the probabilities P{Mk+1,i|Zk}.

The leading factor in the sum of Eq. (2.45) is then expanded using the total

probability theorem over the previous model index j:

f{x(k)|Mk+1,i,Z
k} =

Nf
∑

j=1

f{x(k)|Mk+1,i,Mk,j,Z
k}P{Mk,j|Mk+1,i,Z

k} (2.47)

where the backward transition probabilities are calculated by:

P{Mk,j|Mk+1,i,Z
k} =

P{Mk,j,Mk+1,i|Zk}
P{Mk+1,i|Zk}

=
P{Mk+1,i|Mk,j,Z

k}P{Mk,j|Zk}
P{Mk+1,i|Zk}

=
P{Mk+1,i|Mk,j,Z

k}P{Mk,j|Zk}
∑Nf

n=1 P{Mk+1,i|Mk,n,Z
k}P{Mk,n|Zk}

(2.48)

According to the Markov assumption, the transition probability P{Mk+1,i|Mk,j,Z
k}

does not depend on the measurement history Zk, hence this conditioning is dropped.

2-31

Assuming that the estimator history Zk is adequately modelled by the Nf

estimates from the previous processing cycle (each estimate conditioned on a different

model Mk,j), Eq. (2.47) is then approximated by a single Gaussian density:4

f{x(k)|Mk+1,i,Z
k} ≈

Nf
∑

j=1

f{x(k)|Mk+1,i, x̂j(k|k),Pj(k|k)}P{Mk,j|Mk+1,i,Z
k}

≈ N{x(k); x̂i(k|k),Pi(k|k)} (2.49)

where the mean and variance of the Gaussian are given by:

x̂i(k|k) =

Nf
∑

j=1

P{Mk,j|Mk+1,i,Z
k}x̂j(k|k)

Pi(k|k) =

Nf
∑

j=1

P{Mk,j|Mk+1,i,Z
k}{Pj(k|k) +

+ [x̂j(k|k) − x̂i(k|k)][x̂j(k|k) − x̂i(k|k)]T} (2.50)

The a posteriori model probabilities P{Mk,j|Zk} required for Eq. (2.48) are

calculated recursively using the expressions:

P{Mk,j|Zk} = P{Mk,j|z(k),Zk−1}

=
f{Mk,j,z(k)|Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mk,j,Z

k−1}P{Mk,j|Zk−1}
f{z(k)|Zk−1} (2.51)

4Note that {x̂j(k|k),Pj(k|k)} is taken to refer to the filter estimate at the output of the previous
processing cycle, while {x̂i(k|k),Pi(k|k)} represents the mixed estimates to be provided at the input
to the next processing cycle.

2-32

As discussed in Eq. (2.46), P{Mk,j|Zk−1} can be expanded using the total probability

theorem as:

P{Mk,j|Zk−1} =

Nf
∑

i=1

P{Mk,j|Mk−1,i,Z
k−1}P{Mk−1,i|Zk−1}

=

Nf
∑

i=1

P{Mk,j|Mk−1,i}P{Mk−1,i|Zk−1} (2.52)

where the assumption that the model transition probability does not depend on the

measurement history is again invoked.

Thus by substituting in Eq. (2.52) and expanding the denominator using the

total probability theorem, Eq. (2.51) becomes:

P{Mk,j|Zk} =
f{z(k)|Mk,j,Z

k−1}∑Nf

i=1 P{Mk,j|Mk−1,i}P{Mk−1,i|Zk−1}
∑Nf

n=1 f{z(k)|Mk,n,Z
k−1}P{Mk,n|Zk−1}

(2.53)

(Note that the denominator is simply the scaling factor necessary to ensure that the

conditional model probabilities sum to unity.)

As per the preceding multiple model techniques, the combined estimate is

calculated at each processing cycle to give the output of the estimator. A block

diagram of the IMM algorithm is shown in Figure 2.6. The structure is very similar

to the non-switching MMAE structure shown in Figure 2.1: there are Nf filters, each

of which is supplied with a different input. However, rather than passing the output

of each filter directly into the same filter at the next processing cycle, the algorithm

mixes the estimates according to the Markov transition model in order to allow the

system to react to changes to the model in force.

2.4.6 Summary. The previous sections have presented the commonly used

multiple model estimation structures. The traditional MMAE is based on the as-

2-33

Next processing cycle

Hypothesis mixing

Propagate
with model 1

Propagate
with model 2

Propagate
with model Nf

Combined
estimate

Weighted
combination

z(k)z(k)z(k)

x̂
1(k − 1|k − 1)

P1(k − 1|k − 1)
x̂

2(k − 1|k − 1)
P2(k − 1|k − 1)

x̂
Nf (k − 1|k − 1)

PNf (k − 1|k − 1)

x̂1(k|k − 1)
P1(k|k − 1)

x̂2(k|k − 1)
P2(k|k − 1)

x̂Nf
(k|k − 1)

PNf
(k|k − 1)

x̂1(k|k)
P1(k|k)

x̂2(k|k)
P2(k|k)

x̂Nf
(k|k)

PNf
(k|k)

x̂
1(k|k)

P1(k|k)
x̂

2(k|k)
P2(k|k)

x̂
Nf (k|k)

PNf (k|k)

x̂(k|k)
P(k|k)

Update
with model 1

Update
with model 2

Update
with model Nf

Figure 2.6. Block diagram of IMM algorithm.

2-34

sumption that the model in force does not change with time; ad hoc modifications

extend the algorithm to provide adequate performance in a switching model envi-

ronment. The switching model estimators all utilize a Markov model for transition

probabilities; the most commonly used algorithm is the IMM, which provides similar

performance to the GPB-2 at a fraction of the computational cost.

2.5 Data Association

Surveillance radar systems5 typically operate by steering the radar beam in

a repetitive scan pattern, such as a circular scan (in which the radar antenna is

rotated around 360◦ in the horizontal plane at a constant rate), a sector scan (in

which the antenna is moved forwards and backwards across a fixed horizontal arc) or

a two-dimensional raster scan (effectively a number of sector “scan bars”, separated

in the vertical plane). At the end of each scan interval, a series of radar detections

will have been made, which indicate the possible presence of a target at a particular

location. The data supplied with each measurement may include angle (azimuth

and/or elevation), range and Doppler shift, each of which will be corrupted by noise.

At the same time, the radar is maintaining a track file, containing a listing

of known targets alongside state information such as location, velocity and acceler-

ation, and possibly identification information. Fundamentally, the role of the data

association algorithm is to determine how to update the existing tracks using the

incoming block of measurements. The difficulty is that the measurements are not

labelled: the radar system does not know to which target the measurements belong,

or whether they belong to a target at all (i.e., they may be false detections, such

as those caused by radar clutter). This is illustrated in Figure 2.7: the solution

of how to update the target states (as illustrated by the solid dots) for the given

measurements (illustrated by the plus marks) is neither obvious nor simple.

5Especially mechanically scanned radar systems.

2-35

Targets

Measurements+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

Figure 2.7. The data association problem: how to update target state
given a series of unlabelled measurements.

The performance of the radar system as a whole is impacted greatly by the

data association algorithm. The data association algorithm handles tasks from ini-

tial track forming (when targets are first detected), to track update (maintaining

accurate state estimates while targets are under track), and finally track deletion.

The characteristics of the data association algorithm are able to change the ability

of the system to reject false measurements, the accuracy of the track maintained by

the system, and the likelihood of loss of track (when the estimate deviates unrecov-

erably from the actual target position, or the system incorrectly declares that the

target no longer exists). Maintaining continuity of tracks is a high priority for radar

systems, as this provides a much clearer view to the radar operator and systems that

use the radar output, and it helps to keep the link between target position data and

identification information.

The following sections derive the probabilistic model utilized in almost ev-

ery modern tracking algorithm, and then they describe the different approximations

applied by the various techniques. While the initial descriptions of each of the con-

ventional techniques lead to terribly inefficient implementations, they are in fact

algebraically equivalent to the more efficient implementations presented in the var-

ious references given. Although manner of presentation is unlike any reference of

which the author is aware, it is our opinion that it leads to a clearer understanding

2-36

Targets

Measurements

Association gate

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

Figure 2.8. Measurement gating in a multiple target environment.

of the approximations inherent to the various techniques used in modern tracking

systems, and the consequent strengths and weaknesses of the algorithms.

2.5.1 Measurement Gating. Measurement gating is a technique used in

virtually all data association algorithms to avoid the computation time of processing

association possibilities which are kinematically impossible or statistically improb-

able. The concept of measurement gating is that, if a measurement is not within

some predefined distance of a track (i.e., within the track’s association gate), then

that measurement-track pairing is extremely unlikely to be correct, and thus it is not

considered for association. This is illustrated in Figure 2.8: only those measurements

within the shaded region around each target are processed. In order to have the data

association algorithm consider all plausible assignment options, the association gate

is generally selected to be quite large, typically designed to incorporate at least 98%

of the hypervolume under the PDF of the predicted location. This hypervolume is

the probability that the target-originated measurement will fall within the gate, and

hence it is denoted as Pg. Throughout this document the terms measurement gate

and association gate will be used interchangeably.

The calculations for measurement gating are performed using the expression of

Eq. (2.14). If ẑi(k|k − 1) is the predicted location of the measurement belonging to

2-37

target i, and Si(k) is the covariance of the residual formed using the measurement

belonging to target i, then the j-th measurement will be considered for association

with target i if:6

[zj(k) − ẑi(k|k − 1)]TSi(k)
−1[zj(k) − ẑi(k|k − 1)] ≤ γ (2.54)

where γ is the threshold calculated from the desired value of the probability that the

correct measurement is in the gate (Pg) using χ2 tables as described in [4:95–96].

Measurement gating also provides a mechanism to break the data association

problem up into manageable portions, or clusters. A cluster contains all targets

which have common measurements within their association gates. For example, if

there are four targets, and targets 1 and 2 share a measurement (as illustrated by the

measurements contained within both association gates in Figure 2.8), targets 2 and

3 share a measurement and target 4 does not share any measurements, then targets

1, 2 and 3 will be in one cluster and target 4 will be in its own cluster. When targets

do not share measurements, the separate clusters may be processed as independent

tracking problems, greatly reducing the number of joint hypotheses, as introduced

below.

2.5.2 Association Event Probability. The basis of each of the data as-

sociation algorithms discussed in this chapter is the probabilistic model for joint

association events, such as that described in [2, 4, 6, 7]. The model is derived in

detail in the next pages, followed by descriptions of the approximations utilized by

the various conventional tracking algorithms.

We use the notation Θl(k) to denote the l-th joint association event at sample

period k. Each joint association event represents a hypothesis on the origin of each

6i.e., the j-th measurement is inside target i’s association gate.

2-38

measurement.7 For example, a typical joint hypothesis might be:

Θl(k) = {θ12, θ21, θ34, θ40}

where the elemental event θji represents the association of measurement j with target

i, and θj0 represents the event that no target is associated with measurement j, indi-

cating that measurement j is clutter-originated. In the example above, measurement

1 has been associated with target 2, measurement 2 with target 1, measurement 3

with target 4, and measurement 4 is the result of clutter. When combined with the

knowledge of the number of targets present at time k, knowledge of which targets

have and have not been detected is implicitly contained in the event; in the example

above targets 1, 2 and 4 were detected, thus if there were four targets under track

at time k then target 3 was missed.

The requirements placed on joint association events provide a mechanism to

embed physically meaningful stipulations into the probabilistic model. The most

common requirements used are that each measurement can be associated with no

more than one target, and each target can be associated with no more than one

measurement. These requirements overlook possibilities in which two targets are

within the same radar resolution cell and produce a single merged measurement,

and possibilities in which a target is close enough that it occupies multiple radar

resolution cells and produces multiple measurements. However, they also preclude

associations which are obviously invalid, such as two broadly spaced targets giving

rise to a single common measurement, or a single target giving rise to two broadly

spaced measurements, and where necessary the previously discussed possibilities may

be handled as exceptions.

7Only those measurements inside the union of the measurement gates of each target in the
cluster are considered.

2-39

Following the development of [4:314–317], probability of a joint association

event can be evaluated using two successive applications of Bayes’ rule:

P{Θl(k)|Zk} = P{Θl(k)|Zk, Nm(k),Zk−1}

=
f{Zk,Θl(k)|Nm(k),Zk−1}

f{Zk|Nm(k),Zk−1}

=
f{Zk|Θl(k), Nm(k),Zk−1}P{Θl(k)|Nm(k),Zk−1}

f{Zk|Nm(k),Zk−1}
(2.55)

where Nm(k) is the number of measurements in the combined gating region at scan

k, which is inherent in the knowledge of the measurements themselves.

The leading term in the numerator of Eq. (2.55) amounts to the a priori likeli-

hood of the measurements received in scan k, conditioned on the past measurements

(Zk−1), the number of measurements in the current cycle (Nm(k)) and the joint

association event (Θl(k)). The notation of the capital Zk is used to represent the

joint state of all measurements, rather than the marginal PDF of a single measure-

ment. If the j-th measurement is hypothesized to be clutter-originated (such that

θj0 ∈ Θl), then its PDF is modelled as uniform within the combined measurement

gate. Denoting V(k) as the union of the measurement gating regions of all targets

in the cluster, and V (k) as the volume of this region, the individual measurement

PDFs of clutter-originated measurements can be evaluated as:8

f{zj(k)|Θl(k), Nm(k),Zk−1} =

V −1 : zj(k) ∈ V(k)

0 : zj(k) /∈ V(k)

(2.56)

The evaluation of the components of this PDF which are target-originated is dis-

cussed in Section 2.5.4.

8Note that the measurement is guaranteed to be within the combined association region by the
prior application of gating, hence the second case is defunct.

2-40

The second term in the numerator of Eq. (2.55), P{Θl(k)|Nm(k),Zk−1}, is the

probability of the joint association event Θl(k) for the current scan, conditioned only

on the number of measurements in the association gate (Nm(k)) and the measure-

ment history prior to the current sample period. In the absence of any information

about the value of the current measurements, the prior measurement history is as-

sumed to contain no information about the current association event such that:

P{Θl(k)|Nm(k),Zk−1} = P{Θl(k)|Nm(k)}

This prior event probability is evaluated by considering the target detections,

missed detections and clutter measurements hypothesized in the event Θl(k). Denot-

ing δ(Θl) as the vector of target detection indicators,9 and φ(Θl) as the number of

measurements originating from clutter,10 both of which are intrinsic in the knowledge

of the association event Θl(k):

P{Θl(k)|Nm(k)} = P{Θl(k), δ(Θl), φ(Θl)|Nm(k)}

= P{Θl(k)|δ(Θl), φ(Θl), Nm(k)}P{δ(Θl), φ(Θl)|Nm(k)}

(2.57)

The first term in Eq. (2.57) is evaluated by assuming that all joint association

events that contain the same set of detected targets and the same number of clutter

measurements are equally likely. The count of such events is the number of permu-

tations possible when selecting ψ(Θl) =
∑

i δi(Θl) = Nm(k) − φ(Θl) (the number of

detected targets) measurements out of Nm(k) (the total number of measurements).

This is the classic “balls out of an urn” problem without replacement and considering

9i.e., the i-th element of δ is ‘1’ if target i is hypothesized as being detected in event Θl(k), or
‘0’ if target i is hypothesized to have been missed in event Θl(k).

10i.e., the total number of measurements minus the number of targets hypothesized as having
been detected.

2-41

order, and is evaluated as [32:44]:

P
Nm(k)
ψ(Θl)

=
Nm(k)!

[Nm(k) − ψ(Θl)]!
=
Nm(k)!

φ(Θl)!

Subsequently the probability of each equally likely event is:

P{Θl(k)|δ(Θl), φ(Θl), Nm(k)} =

(

Nm(k)!

φ(Θl)!

)−1

=
φ(Θl)!

Nm(k)!

In the traditional development of the algorithm, as presented in [2:226]

and [4:315], the second term in Eq. (2.57) is evaluated by assuming independence

among δ(Θl) and φ(Θl) such that:

P{δ(Θl), φ(Θl)|Nm(k)} = P{δ(Θl)}P{φ(Θl)} (2.58)

Strictly, this assumption of independence is invalid when conditioned on the number

of measurements Nm(k), because once given the target detection vector δ(Θl) and

the number of measurements Nm(k), one implicitly knows φ(Θl) by the relationship:

φ(Θl) = Nm(k) −
∑

i

δi(Θl)

However, one can arrive at essentially the same result by applying Bayes’ rule

twice to remove the conditioning, resulting in:

P{δ(Θl), φ(Θl)|Nm(k)} =
P{δ(Θl), φ(Θl), Nm(k)}

P{Nm(k)}

=
P{Nm(k)|δ(Θl), φ(Θl)}P{δ(Θl), φ(Θl)}

P{Nm(k)}

=
P{δ(Θl)}P{φ(Θl)}

P{Nm(k)} (2.59)

where P{Nm(k)|δ(Θl), φ(Θl)} is cancelled in the final step as it will evaluate to

unity for any consistent association event, and the independence of δ(Θl) and φ(Θl) is

2-42

assumed this time without conditioning on Nm(k). The denominator term P{Nm(k)}
may be evaluated through the total probability expansion:

P{Nm(k)} =
∑

P{Nm(k)|δ, φ}P{δ, φ}

=
∑

P{δ}P{φ}

where the sum is over all possible {δ, φ} such that φ +
∑

i δi = Nm(k). However,

since the denominator is identical for all association events, the term will contribute

a constant scaling factor to all terms, which will be cancelled when the association

events are normalized to sum to unity.

The a priori probability of the target detection vector P{δ(Θl)} is evaluated

by assuming independence between each of the target detection possibilities; e.g., if

the target detection vector proposes that ψ of the Nt targets were detected, then:

P{δ} = Pdg
ψ (1 − Pdg)

Nt−ψ (2.60)

where Pdg is the probability that any one of the Nt targets will be detected, and

that the resulting measurement is within the association gate. If Pd is the target

detection probability and Pg is the probability that the target-oriented measurement

is within the association gate, then:

Pdg = PdPg

and thus:

P{δ} = (PdPg)
ψ (1 − PdPg)

Nt−ψ (2.61)

The a priori probability of the number of clutter measurements P{φ(Θl)} is

evaluated utilizing a Poisson model [4:135] with parameter λV , where λ represents

the density of false measurements within the validation region (i.e., the expected

2-43

number of clutter detections per unit hypervolume in measurement space), and V is

the hypervolume of the combined gating region for all targets:

P{φ} =
(λV)φ

φ!
e−λV

Collecting terms from Eq. (2.55) we arrive at the following expression: (time

arguments are omitted where unambiguous)

P{Θl(k)|Zk} =
f{Zk|Θl, Nm,Z

k−1}P{Θl|δ, φ,Nm}P{δ}P{φ}
f{Zk|Nm,Z

k−1}P{Nm}

=
1

c
f{Zk|Θl, Nm,Z

k−1} φ!

Nm!
· (λV)φ

φ!
e−λV Pψ

dg(1 − Pdg)
Nt−ψ

=
1

c ′
f{Zk|Θl, Nm,Z

k−1}(λV)φPψ
dg(1 − Pdg)

Nt−ψ (2.62)

where c is the denominator of the first expression in Eq. (2.62), evaluated as the

sum of all numerators using the total probability expansion and the simplifications

of Eqs. (2.57)–(2.59):

c = f{Zk|Nm(k),Zk−1}P{Nm(k)}

=
∑

l

f{Zk|Θl, Nm,Z
k−1}P{Θl|Nm,Z

k−1}P{Nm}

=
∑

l

f{Zk|Θl, Nm,Z
k−1}P{Θl|Nm}P{Nm}

=
∑

l

f{Zk|Θl, Nm,Z
k−1}P{Θl|δ, φ,Nm}

P{δ}P{φ}
P{Nm}

P{Nm}

=
∑

l

f{Zk|Θl, Nm,Z
k−1}P{Θl|δ, φ,Nm}P{δ}P{φ} (2.63)

As the above expression (after applying the summation) is the same for all association

events, the term c merely functions as a normalization constant, ensuring that the

probabilities of all joint association events sum to unity. The constant is modified

to c ′ after the incorporation of the Poisson exponential term e−λV and the factorial

2-44

of the number of measurements Nm!:

c ′ =
cNm!

e−λV

The volume of the combined validation region for the targets, V (k), is not

easily calculated. However, considering that Eq. (2.62) contains a V φ term (arising

from the Poisson model for clutter), and that f{Zk|Θl, Nm,Z
k−1} will include a

V −1 term for each measurement believed to be the result of clutter (as discussed

in Eq. (2.56)), of which there are φ, the V (k) terms will cancel, leaving only terms

involving the clutter density λ.

Eq. (2.62) can be easily modified to admit the case of different detection prob-

abilities for each target (as is motivated physically by the variation of detection

probability with radar return power level and signal to noise ratio). However, the

simplification should be a fair approximation when considering targets of similar

physical size (and radar cross section) within a relatively small cluster.

2.5.3 Forming Joint Hypotheses. As will be described in Section 2.5.5, to

update the estimate of the target state, all joint association events must be formed.

If there is only a single target in the cluster, then this is a simple task, and the asso-

ciation events are that the target is associated with each measurement in the gate,

or that the target is not associated with any measurement (i.e., it is hypothesized to

have been missed).

If there are two targets in a cluster, then the number of joint association

hypotheses is roughly squared compared to the single target case. If the results of

the measurement gate tests are stored in the “valid” matrix such that the (i,j)

entry is a binary flag indicating whether measurement j is inside the association

region for target i, then the pseudocode in Figure 2.9 will form all joint events.

2-45

% Loop for first target -- associate measurement zero (missed

% detection), then each of the measurements

for m1 = 0 to numMeas do

% Check that measurement m1 is inside association gate for

% target 1

if m1 = 0 or valid(1,m1) then

% Loop for second target - associate measurement zero (missed

% detection), then each of the measurements

for m2 = 0 to numMeas do

% Check that measurement m2 is inside association gate for

% target 2 and that measurement m2 is not associated with

% target 1

if m2 = 0 or (valid(2,m2) and m1 != m2) then

% Create a new association event

associate target 1 with measurement m1

and target 2 with measurement m2

endif

endfor

endif

endfor

Figure 2.9. Pseudocode to form all joint association events for two
targets.

2-46

In the case of Nt targets, one level of for loop will be required for each target in

the cluster being processed. The easiest way of implementing this for the general case

will be using recursion. The pseudocode shown in Figure 2.10 recursively generates

all joint association events for an arbitrary number of targets. The operation of the

code is to associate each target with every possible measurement recursively until all

targets have measurements associated with them, at which stage the joint event is

finalized and stored in whichever form is required for the algorithm being utilized.

As association events are formed, the target-measurement pairings for the event are

progressively collected in the “assoc” structure, which will contain the complete

association list for the event when the recursion reaches its stopping point.

2.5.4 Joint Target State. In the previous development, the a priori prob-

ability of the measurements was expressed using the joint PDF, and little further

attention was paid to its evaluation. If the state vectors of the targets are assumed

independent, then the PDF of the joint target state (which is required to perform a

Kalman filter measurement update) can be expressed as:

f{X(k)|Zk−1} =
Nt
∏

i=1

f{xi(k)|Zk−1} (2.64)

where the PDF of the state of target i is assumed Gaussian with mean x̂i(k|k − 1)

and covariance Pi(k|k− 1). In this case, the a priori knowledge of the measurement

vectors, conditioned on an association event (as required for Eq. (2.62)), is also

independent and can be expressed as:

f{Zk|Θl(k), Nm(k),Zk−1} =
Nm
∏

j=1

f{zj(k)|Θl(k), Nm(k),Zk−1} (2.65)

where the PDF of the measurement associated with target i is Gaussian with mean

Hx̂i(k|k − 1) and covariance HPi(k|k − 1)HT + R, and the PDFs of measurements

hypothesized to be the result of clutter are uniform as per Eq. (2.56). In this case,

2-47

function associate(freeMeasurements, freeTargets, assoc)

% Function is called initially with freeMeasurements containing a

% listing of all measurements in the cluster, freeTargets containing

% a listing of all targets in the cluster, and assoc containing an

% empty list which will be used to construct the association events

% recursively

if freeTargets list is empty then

% Association event is complete: store in appropriate global

% structure

calculate probability of joint event described by assoc

add assoc to the list of joint association events

else

% Select the first free target to associate, delete from free list

t = first entry in freeTargets

newFreeTargets = freeTargets with first entry deleted

% Associate target with measurement zero -- i.e., hypothesize

% that a missed detection occurred for the target

assocNew = assoc with appended entry (t,0)

associate(freeMeasurements, newFreeTargets, assocNew)

% Associate all remaining measurements with target

for j = 1 to length of freeMeasurements do

m = j-th element of freeMeasurements

% Check that measurement is inside target’s association gate

if valid(t,m) then

% Create new list of free measurements

newFreeMeasurements =

freeMeasurements with j-th element deleted

% Create updated association list

assocNew = assoc with appended entry (t,m)

associate(newFreeMeasurements, newFreeTargets, assocNew)

endif

endfor

endif

Figure 2.10. Pseudocode to form all joint association events for an
arbitrary number of targets.

2-48

the estimates conditioned on a given association event can be updated from sample

period (k − 1) to sample period k with the standard Kalman filter update equation

of Eq. (2.8), using the measurement assigned to the target in the association event

Θl(k) and the measurement matrix H. Targets which are hypothesized to have been

missed under the association event are left unchanged.

In the case in which target state vectors are correlated,11 the entire update

must be performed in one step, using an augmented measurement matrix H. As an

example, consider the same joint association event used in Section 2.5.2:

Θl(k) = {θ12, θ21, θ34, θ40}

where we recall that the elemental event θji represents the association of measure-

ment j with target i, such that our sample event indicates that measurement 1 has

been associated with target 2, measurement 2 with target 1, measurement 3 with

target 4 and measurement 4 is the result of clutter, and there were four targets un-

der track, hence target 3 was missed. The joint target state is in block form, with a

single block for each target:

X(k) =

x1(k)

x2(k)

x3(k)

x4(k)

11The motivation for admitting correlation between targets will become apparent in Section 2.5.8.

2-49

Similarly, the joint measurement vector is in block form, with a single block for each

measurement:

Zk =

z1(k)

z2(k)

z3(k)

z4(k)

Given that measurement 4 is hypothesized to be the result of clutter, under the

association event Θl(k) we discard it, defining the modified target-originated mea-

surement vector as:

Zk
′ =

z1(k)

z2(k)

z3(k)

Denoting H as the matrix which describes the relationship between the a single

measurement and the state of a single target, the block measurement matrix H

which describes the relationship between the joint measurement vector and the joint

target state vector for this association event is:

H(Θl(k)) =

0 H 0 0

H 0 0 0

0 0 0 H

such that:

Zk
′ = H(Θl(k))X(k) + V (k)

and thus the standard Kalman filter update expression of Eq. (2.8) is employed using

these augmented structures to find the updated joint target state conditioned on the

particular association event Θl(k). To evaluate Eq. (2.62) when correlation exists

between targets, we use the expression:

f{Zk|Θl, Nm,Z
k−1} = N{Zk

′; HX̂,HPH
T + R}V −φ (2.66)

2-50

where P is the matrix containing the covariance of the joint target state estimate X̂,

R is the block-diagonal matrix containing the covariance of the augmented measure-

ment noise V (k), and V is the volume of the combined gating region.12 The latter

term incorporates the uniform density of clutter-originated measurements (of count

φ), as discussed in Eq. (2.56).

2.5.5 State Update. The PDF of the joint target state stored by the

tracking system at the end of sample period (k−1) is denoted by f{X(k−1)|Zk−1}.
Assuming that the prior state PDF is a single Gaussian function, the standard linear

propagation model presented in Section 2.2.3 can be used to propagate the PDF to

the k-th sample period, resulting in f{X(k)|Zk−1}. This expression then has the

measurements from the k-th sample period incorporated, resulting in the new PDF

f{X(k)|Zk}, which is the same as the original PDF except one sample period later,

thus the process is able to be repeated recursively. The probability of the joint

association event, as developed in Section 2.5.2, is utilized to perform this state

update using the total probability expansion:

f{X(k)|Zk} =
∑

l

f{X(k)|Zk,Θl(k)}P{Θl(k)|Zk} (2.67)

The expression f{X(k)|Zk,Θl(k)} represents the updated joint target state

conditioned on the new measurement history and a specific association event. If

the prior target state density was a single Gaussian PDF, then this is easily calcu-

lated using the standard Kalman filter update equations as per Eq. (2.8), with the

augmented joint measurement matrix H, as described in Section 2.5.4.

Even if the original joint target density was a single Gaussian PDF, the up-

dated density of Eq. (2.67) is a Gaussian mixture, with one component for each joint

12Note the difference in notation between the boldface V (k), which is the vector of the augmented
measurement noise for all target-oriented measurements, and V (not boldface), which is the scalar
volume of the combined gating region.

2-51

association event. Accordingly, some means is necessary to perform this measure-

ment update when the input is a Gaussian mixture, rather than a single Gaussian

function. If each component of the Gaussian mixture at the input of the update cycle

is interpreted as the result of an earlier association hypothesis, denoted Ψu(k− 1),13

then the PDF at sample period (k − 1) can be expanded as:

f{X(k − 1)|Zk−1} =
∑

u

f{X(k − 1)|Zk−1,Ψu(k − 1)}P{Ψu(k − 1)|Zk−1} (2.68)

Each component of the PDF in Eq. (2.68) can be propagated using the same

linear propagation equations as a single Gaussian function to find the set of compo-

nent Gaussian functions {f{X(k)|Zk−1,Ψu(k− 1)}}. The state update will then be

performed by modifying the PDF update equation of Eq. (2.67) to:

f{X(k)|Zk} =
∑

l

∑

u

f{X(k)|Zk,Θl(k),Ψu(k − 1)} ·

·P{Θl(k)|Zk,Ψu(k − 1)}P{Ψu(k − 1)|Zk−1} (2.69)

In this expression the term f{X(k)|Zk,Θl(k),Ψu(k − 1)} once again represents

the update of a single Gaussian PDF using a single association event, hence the

standard Kalman filter update equation can be used, and the result is again a single

Gaussian. The result of Eq. (2.69) is therefore another Gaussian mixture, with a

single component for each {Ψu(k − 1),Θl(k)} pair, i.e., each previous hypothesis is

updated using each current association event. The number of components in the new

mixture is equal to the number of previous components multiplied by the number of

current association hypotheses.

13The notation Ψu(k − 1) is used to distinguish the previous hypotheses, which are association
histories, from the latest single-event association hypotheses, Θl(k). For example, a single associ-
ation history event Ψu(k − 1) may consist of the history {Θ5(1),Θ16(2),Θ7(3), . . .}, in which the
element Θl(k) indicates that the association history hypothesizes the joint association event Θl at
sample time k. The variable ‘u’ was chosen arbitrarily for the index so as not to conflict with other
notation in this document.

2-52

The double summation of Eq. (2.69) can be expressed as an equivalent single

summation for propagation to the next processing cycle. The new mixture will then

be represented as:

f{X(k)|Zk} =
∑

u′

f{X(k)|Zk,Ψu′(k)}P{Ψu′(k)|Zk} (2.70)

where the new indexing u′ covers all new mixture components, with:

f{X(k)|Zk,Ψu′(k)} = f{X(k)|Zk,Θl(k),Ψu(k − 1)}

P{Ψu′(k)|Zk} = P{Θl(k)|Zk,Ψu(k − 1)}P{Ψu(k − 1)|Zk−1}

This strategy is the optimal Bayesian data association solution, and the tran-

sition from Eq. (2.68) to Eqs. (2.69) and (2.70) reveals the major problem associated

with it: at each sample period, the previous number of hypotheses is multiplied by

the number of joint association hypotheses in the current sample period, hence the

number of hypotheses required to be maintained grows exponentially, with the rate

of growth according to the number of joint association hypotheses in each sample

period. Thus the optimal Bayesian solution is clearly intractable, and some form of

simplification will be necessary to reduce the number of components in the Gaussian

mixture to a manageable level.

2.5.6 Global Nearest Neighbor. Possibly the easiest way of addressing the

problem of the increasing number of hypotheses would be simply to take the Gaus-

sian mixture component corresponding to the most likely hypothesis and discard

the rest of the mixture, leaving only a single component. At each sample period,

the PDF of target state propagated from the previous sample period will be a sin-

gle Gaussian PDF, hence the update process consists of calculating the probability

of all joint association events, and then updating the joint target state with the

most likely hypothesis. This algorithm is referred to as Global Nearest Neighbor

2-53

(GNN), to indicate that the best global (i.e., joint) association hypothesis is to be

selected [7:338–342].

If only a single target is present, then the equations of the joint association

events will be very similar to each other, and the algorithm can be simplified to

the standard Nearest Neighbor (i.e., not global). The simplified algorithm performs

the association of the measurement with the smallest distance, according to the

Mahalanobis distance measure, similar to the exponent of a Gaussian PDF:

d2
j = (zj − ẑ)TS−1(zj − ẑ) (2.71)

where zj is the j-th measurement, ẑ is the predicted measurement for the single

target, and S = HPHT + R is the predicted covariance of the residual formed with

the correct measurement. Comparing Eq. (2.71) with Eq. (2.14) reveals that the

square of the Mahalanobis distance is actually the normalized residual quadratic,

which, in Section 2.4, was used to indicate how well the tracking model matched the

measurements, and is now used to indicate how well the measurements match the

tracking model.

Nearest neighbor association techniques are sometimes referred to as hard as-

signment methods, indicating that hard decisions have been made: the system as-

signs target-measurement associations, and progresses in processing assuming that

the assignments were indeed correct. The following sections describe techniques

which use probabilistically weighted (soft) decisions. The performance of hard as-

signment methods is very limiting. As highlighted by Streit and Luginbuhl [53:1],

the hard decisions associated with techniques such as GNN introduce opportunities

for decision mistakes, and hence necessarily increase estimation error. Intuitively,

one can see that much of the information carried by the joint target PDF is being

discarded, hence logically one would expect the success of the method to be limited.

2-54

2.5.7 Probabilistic Data Association. The single target Probabilistic Data

Association (PDA) algorithm [2:163–170] and its multiple target extension, the Joint

Probabilistic Data Association (JPDA) algorithm [4:310–319], are two more tech-

niques which reduce the joint target state PDF down to a single mixture component

at the end of each sample period. Rather than taking the most likely association

hypothesis at each processing interval, these techniques take the weighted average of

all association hypotheses.

Thus, the approximation inherent to the PDA/JPDA algorithm is:

f{X(k)|Zk} =
∑

l

f{X(k)|Zk,Θl(k)}P{Θl(k)|Zk}

≈ N{X(k); X̂(k|k),P(k|k)} (2.72)

where X̂(k|k) is the weighted average of the means of the Gaussian sum as according

to Eq. (2.22), and P(k|k) is the weighted average of the covariances of the Gaussian

sum as according to Eq. (2.23):

X̂(k|k) =
∑

l

P{Θl(k)|Zk}X̂(k|k,Θl(k))

P(k|k) =
∑

l

P{Θl(k)|Zk}
[

P(k|k,Θl(k))+

+ (X̂(k|k,Θl(k)) − X̂(k|k))(X̂(k|k,Θl(k)) − X̂(k|k))T
]

Unless it is explicitly prevented, the combined covariance of Eq. (2.72) will

have correlation between targets, as induced by the “spreading of the means” terms

on the final line of the above expression. The implication of this is discussed further

in Section 2.5.8; the JPDA algorithm discards any correlation between targets in

order to reduce computational complexity.

The equations above represent one possible method of implementing the JPDA

algorithm. However, because all estimates are combined into a single overall mean

2-55

and covariance at each sample period, and correlation terms are discarded, the

Kalman weights and covariances for a given target under each event will be identical,

and thus the implementation can be optimized substantially.

The common implementation of the JPDA algorithm uses the following alge-

braically equivalent equations to update the state estimate and covariance of target

i [4]:

x̂i(k|k) = x̂i(k|k − 1) + Ki(k)ν̄i(k)

Pi(k|k) = Pi(k|k − 1) − αiKi(k)HPi(k|k − 1) + P̃i(k) (2.73)

where ν̄i(k) represents the combined residual for target i and P̃i(k) represents the

spreading of the variance due to the combination of multiple Gaussian components:

ν̄i(k) =
Nm
∑

j=1

βjiνji(k)

νji(k) = zj(k) − Hx̂i(k|k − 1)

αi =
Nm
∑

j=1

βji

P̃i(k) =
Nm
∑

j=1

βjiνji(k)νji(k)
T − ν̄i(k)ν̄i(k)

T

νji(k) represents the residual formed with measurement j and target i, and βji is the

combined probability of all events in which measurement j is associated with target

i:

βji =
∑

l:θji∈Θl(k)

P{Θl(k)|Zk}

The PDA/JPDA algorithm has been applied to a vast array of problems in

open literature, and has proven itself to be very effective in less demanding tracking

environments (for example, [4:320–327]). In more demanding tracking problems

(such as high clutter density and targets which remain close for extended periods of

2-56

Target 1 Target 2

Meas. 1 Meas. 2

(a)

T1/M1 T2/M2

Updated
Position

(b)

T1/M2

T2/M1

(c)

Figure 2.11. One-dimensional multiple target data association exam-
ple.

time), the simplification applied to the joint target state PDF begins to prove too

much [27], and the more detailed representations described in the following sections

are necessary.

2.5.8 Correlation Between Targets. Although it initially seems unusual

to allow correlation to develop between the state estimates of two physically inde-

pendent targets, detailed consideration of the joint PDF of target state reveals the

motivation for doing so, and the potential benefit that may be obtained. The fol-

lowing one-dimensional tracking example, illustrated in Figures 2.11 and 2.12, helps

to explain.

Figure 2.11(a) shows the a priori position of the two targets, marked by ‘•’,
and the two newly received measurements, marked by ‘×’. Considering only asso-

ciation events in which each target is associated with a single measurement, there

are two possible associations: either each target will be associated with the mea-

2-57

surement closer to it, or each target will be associated with the measurement farther

from it. The first joint association event is illustrated in Figure 2.11(b), in which

the rounded arrows indicate the associations, and the gray dots indicate the updated

state of the targets, moved toward the measurements used to update them. The sec-

ond association event is illustrated similarly in Figure 2.11(c): the greater disparity

between each target-measurement pairing will tend to produce a larger update in

the position of each target; in practice the probability of this event will be smaller

as the associations are less likely.

The updated states corresponding to the two association events of Figures

2.11(b) and (c) are illustrated in joint target space in Figure 2.12(a). The updated

state corresponding to each possible joint association event maps to a point in the

joint target space, and the resultant joint target PDF will consist of a Gaussian sum

with weighted Gaussian functions at each of these points, and different covariance

matrices determining the spread about these points. Under the approximation of

JPDA, these joint hypotheses are to be represented by a single Gaussian PDF. If

this simplified PDF is forced to be independent between targets, then the resultant

function will be as illustrated in Figure 2.12(b): the coordinates of the covariance

must be aligned with the target state coordinate systems, hence a broad approxima-

tion is necessary, representing a great loss of information. If correlation is allowed

between targets, then the covariance takes the form illustrated in Figure 2.12(c): the

marginal covariance in each target coordinate system remains identical, but the high

degree of correlation between the coordinate systems greatly increases the informa-

tion retained.

The intuitive understanding of the benefit of allowing covariance such as that

illustrated in Figure 2.12(c) is this: if later measurements confirm that target 2 was

further in fact to the right, then this indicates that target 1 was actually further

to the left. Likewise, if later measurements indicate that target 1 was further to

the left, then this serves to confirm that target 2 was actually further to the right.

2-58

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

(a)

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

(b)

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

(c)

Figure 2.12. Correlation arising due to combining of hypotheses.

2-59

In this way, correlation between hypotheses allows later measurements to resolve

uncertainties left over from earlier processing cycles, much like the deferred decision-

making capability of the Multiple Hypothesis Tracker described in Section 2.5.10.

Joint Probabilistic Data Association Coupled (JPDAC) and Coupled Proba-

bilistic Data Association (CPDA) are two extensions of JPDA which allow correlation

to develop between targets for periods during which targets are in the same region

(i.e., cluster). JPDAC [4:328–329] was the initial implementation of the concept,

allowing correlation to develop between state estimates in a cluster containing two

targets. In the reference cited, however, there is no mention of how to approach joint

association events in which detection of one or both of the targets is hypothesized to

have been missed. Such events may be of minor concern if the probability of detec-

tion is close to unity and the association gate is selected to be very large. However,

if the probability of detection becomes significantly less than unity, such an omission

can have a devastating impact on the performance of the system.

The CPDA algorithm described in [9, 12] is a full implementation of the ap-

proximation of Eq. (2.72) admitting correlation between targets. Implementation

of this algorithm directly (without calculating the full mean and covariance indi-

vidually for each hypothesis before merging) is rather difficult, and necessitates the

somewhat opaque notation found in these articles.

Correlation in PDA implementations was initially developed to fix the problem

of tracks belonging to nearby targets tending to coalesce into a single track midway

between the two. However, as discussed in [12], both JPDAC and CPDA perform

more poorly in this respect than the original uncorrelated JPDA algorithm. The

explanation of this phenomenon provided in the cited article is that CPDA develops

strong correlation between the targets, hence it tends to keep the two tracks together

between competing measurements. However, as illustrated in the example of Figure

2.12, the coupling which develops between targets is almost guaranteed to be negative

2-60

correlation, hence such an explanation would seem unsatisfactory. The causes of bias

and coalescence in PDA algorithms are examined in depth in Section 3.2.

2.5.9 Maximum Likelihood Methods. The systems described in [25, 26] bear

much resemblance to the CPDA technique described above: they both reduce the dis-

tribution of the target to a single Gaussian mixture, and they both explicitly model

the correlation which develops between targets. Rather than using the Gaussian

function with the parameters derived as the weighted mean over all possible associa-

tions, these methods instead select the state estimate as the value which maximizes

the likelihood of receiving the measurements (considering all possible associations),

with the covariance evaluated using the Fisher information matrix. Other novel in-

clusions of these techniques are that they consider association over several sets of

measurements [25], and that they propose an approximation of the Kronecker delta

function which avoids the necessity of generating all joint association events [26].

2.5.10 Multiple Hypothesis Tracking. The Multiple Hypothesis Tracker

(MHT) is an algorithm that has been discussed in literature in many different forms,

starting with [40] and [49]. The basic concept of the algorithm is to maintain hy-

potheses for every plausible association event; each hypothesis consists of the prob-

ability of the event, and the mean and covariance of the target state conditioned

on the event. In this way, the algorithm essentially maintains the Gaussian mixture

representation of the PDF of target state as developed in Section 2.5.5. To alleviate

the exponential explosion of hypotheses, pruning and merging algorithms are applied

to the hypothesis tree to eliminate those hypotheses that become implausible, and

merge those which produce similar results.

The original presentation of the multiple target algorithm [40] proceeds in a

measurement oriented manner, whereby the algorithm is driven by considering the

possible origins of each measurement individually. The growth of association hy-

potheses inherently follows a tree structure [6:285], in which each leaf node indicates

2-61

a hypothesis for the existence and location of the targets at the current time instant.

Measurements from the same scan are processed together to avoid assigning two

measurements to a target. When considering each measurement, there are always

at least two possibilities: the measurement may be a false alarm (as from clutter),

or it may represent a new target, hence each measurement generates at least two

new nodes for each entry in the hypothesis list. For hypotheses that contain existing

tracks, the measurement may also represent a continuation of each of these (assum-

ing that the measurement gate is satisfied), hence more hypotheses can potentially

be generated.

A more readily understood track-oriented development of the MHT algorithm

is presented in [30], and similarly in [8], where it was termed the Structured Branch-

ing Multiple Hypothesis Tracker (SB-MHT). The structure of this algorithm is to

create single-target hypotheses for each of the possible measurements with which a

target can be associated at each processing cycle. One accounts for joint hypotheses

by maintaining lists of compatible single-target hypotheses, providing an efficient

means of keeping track of a large number of joint hypotheses, each pointing to a

series of single target hypotheses containing the target parameters.

The key step in ensuring the performance and computability of an MHT al-

gorithm is efficient hypothesis pruning and merging algorithms, yet the majority of

these are based largely on ad hoc methods. Several different pruning methods are

suggested in [6:291], such as deleting those hypotheses whose probabilities are less

than a certain threshold, retaining the Nh most likely hypotheses, or retaining the

most likely hypotheses such that the total probability of the set retained is greater

than some threshold (close to unity). Merging of hypotheses may be performed on

the basis of shared measurements over a period of time (e.g., if the associations in

two hypotheses are identical over the last three scans, they are merged), or after di-

rect state comparison. Merging may be performed either using replacement (deleting

2-62

the lower probability hypothesis and adding its probability to the other), or by some

form of weighted averaging.

2.5.11 Controlling the Number of Hypotheses. Of the algorithms discussed,

the MHT is the only algorithm which is able to maintain more than a single associ-

ation hypothesis between measurement intervals. Although the MHT represents the

state-of-the-art in modern target tracking, the most vital task to the algorithm, selec-

tion of which hypotheses to retain, is largely ad hoc in most implementations. Most

commonly, a Maximum Likelihood strategy is adopted whereby the Nh most likely

tracks (or all tracks with probabilities that exceed a given threshold) are maintained,

and the remainder deleted.

Few merging strategies are discussed in open literature: the most common is

n-scan merging [49], which merges the hypotheses that incorporate identical mea-

surement histories over the last n processing cycles, effectively limiting the maximum

number of processing cycles for which decision making can be deferred. As the length

of the memory is increased, the merging has less impact: the average number of hy-

potheses will increase exponentially with the length of the memory, and will soon

need to be controlled by deleting less likely hypotheses, returning us largely to the

Maximum Likelihood pruning strategy where we started.

Other merging methods based on similarity of target state distributions have

been suggested [6, 7, 40] but the little detail given indicates that the simplifications

rely on ad hoc state comparisons such as [6:293]:

|{x̂1}i − {x̂2}i| ≤ β
√

{P1}ii + {P2}ii ∀ i

{P1}ii < γ{P2}ii ∀ i

{P2}ii < γ{P1}ii ∀ i

2-63

with β = 0.1 and γ = 2.0. Interpreting the algorithm, in order to be merged, the

state estimates of the hypotheses must be within roughly 0.1 standard deviations of

each other,14 and the covariance trace elements must differ by no more than a factor

of two.

In benign tracking environments, the hypothesis selection strategy is of little

importance, as long as the number of hypotheses maintained is adequate to ensure

that the correct hypothesis is maintained with a high probability. In more adverse

tracking environments, the correct association hypothesis may appear less likely than

false hypotheses for several consecutive processing intervals. Hence, to maintain

the correct hypothesis, either a much larger number of hypotheses will need to be

maintained (increasing exponentially with the number of processing cycles over which

the association remains ambiguous), or a more efficient hypothesis selection method

will be required.

2.5.11.1 Early Methods. The approach of the early methods proposed

in [1] and [31] appears on the surface to be very similar to that detailed in Section

3.3.4. Alspach [1] selects the Kolmogorov variational distance as the cost function,

defined as:

JK =

∫

∣

∣f{X(k)|ΩNh
(k)} − f{X(k)|Ω̄Nr

(k)}
∣

∣ dX(k) (2.74)

where f{X(k)|ΩNh
(k)} represents the full target state PDF, containing Nh(k) hy-

potheses, and f{X(k)|Ω̄Nr
(k)} represents the reduced PDF, containing Nr(k) com-

ponents (Nr < Nh), which is being fitted to the full PDF.15 The algorithm continues

14The comparison is performed in standard coordinates rather than rotated principal coordinates,
in order to avoid the computational loading associated with a matrix inverse for each pair of mixture
components.

15i.e., ΩNh
(k) represents the full parameters of the distribution (containing Nh mixture com-

ponent weights, means and covariances), and Ω̄Nr
(k) represents the equivalent reduced set of

parameters for Nr mixture components.

2-64

by merging and pruning mixture components until the cost exceeds a certain thresh-

old.

The method of Lainiotis and Park [31] uses the Bhattacharyya coefficient as

the similarity measure:

JB =

∫

√

f{X(k)|ΩNh
(k)}f{X(k)|Ω̄Nr

(k)}dX(k) (2.75)

Computation of these functions for Gaussian mixtures is a formidable task,

and the various implementations of [1, 31, 56] rely heavily on mathematical approx-

imations to be able to evaluate the functions without explicit numerical integration.

One of the assumptions invoked by Alspach [1] is that all components have the same

covariance. If different hypotheses in the filter propose that the target has and has

not had missed detections, then the resultant covariance matrices of the mixture

components will be different, hence this approximation is undesirable. Furthermore,

once mixture components are merged, the covariance matrices will be modified by the

spreading terms of Eq. (2.24), again making the assumption of identical covariance

matrices problematic.

Lainiotis [31] uses mathematical approximations to evaluate the cost of merg-

ing and deleting components. As discussed in [31:625], the Bhattacharyya coefficient

between the original Gaussian mixture, and the same mixture with a single compo-

nent deleted is bounded below by:

ρa ≥ 1 − 1

2
pn (2.76)

where pn is the weight of the deleted component. Similarly, the Bhattacharyya

coefficient between the original Gaussian mixture and the same mixture with a single

pair of components merged is bounded below by:

ρa ≥ 1 − (pi + pj)
√

1 − ρi,j2 (2.77)

2-65

where pi and pj are the weights of the two components to be merged, and ρi,j is the

Bhattacharyya coefficient between the two components to be merged (which, unlike

the Bhattacharyya coefficient between two Gaussian mixtures, is easily evaluated).

Using the expressions in Eqs. (2.76) and (2.77), the algorithm operates by merging

and deleting components which produce a worst-case reduction in the Bhattacharyya

coefficient that is smaller than a given threshold.16

2.5.11.2 Mixture Reduction Algorithm. In the context of the problem

of tracking a single target in clutter, Salmond proposed two algorithms [44–47] for

reducing the number of hypotheses by systematically merging hypotheses based on

certain similarity criteria. The focus of the study was to produce algorithms which

were computationally feasible using the hardware available at the time.

The first algorithm is referred to as the joining algorithm. The operation of

the algorithm is to merge pairs of mixture components successively until the desired

level of reduction has been achieved. The distance measure utilized to gauge the

similarity of hypotheses i and j is a Mahalanobis-type distance measure:

d2
ij =

pipj
pi + pj

(x̂i − x̂j)
TP−1(x̂i − x̂j) (2.78)

where the covariance P is the combined covariance for the entire mixture, as in

Eq. (2.23):

P =

Nh
∑

i=1

pi
[

Pi + (x̂i − µ)(x̂i − µ)T
]

µ =

Nh
∑

i=1

pix̂i

The leading fraction in Eq. (2.78) provides a weighting which tends to favor merging

hypotheses that carry lower probability weight over those with higher probability.

16Separate thresholds are used for merging and deleting.

2-66

The term acts as a smooth interpolation of the minimum of the two probabilities,

and may also be expressed as (pi
−1 + pj

−1)−1.

The algorithm functions by calculating the distance between all pairs of hy-

potheses, and merging the pair with the smallest distance. The operation continues

until the minimum distance is above a threshold:

T = 0.001 dim(x)

which was determined based on visual inspection. The threshold is designed to

ensure that the mixture structure is not modified beyond an acceptable level. If the

desired level of reduction has not been achieved when this threshold is reached, then

the operation continues until the mixture has been simplified to the desired number

of components.

The second algorithm proposed is the clustering algorithm, which combines

mixtures into groups (clusters) rather than pairs. The algorithm operates by se-

lecting a principal component for a cluster, denoted as component c (initially the

component with the largest probability weight), and merging all components that

are within a certain distance of the principal component. The distance measure used

is the alternative definition:

D2
i =

pipc
pi + pc

(x̂i − x̂c)
TP−1

c (x̂i − x̂c) (2.79)

which normalizes using the covariance Pc of the principal component, rather than the

total mixture covariance as in Eq. (2.78). Considering the measure of Eq. (2.79) as

the normalized distance of the i-th component mean from the principal component,

the threshold T1 used for the distance test can be based on a χ2 test [7:429], with

the recommended value:

T1 = 0.05T1
′

2-67

where T1
′ is such that {D2

i : D2
i < T1

′} contains 99% of the χ2 PDF, where the

number of degrees of freedom is the number of states.

The clustering algorithm continues iteratively, selecting the largest unclustered

component as the principal component of the new cluster at each stage. If the process

completes before the desired amount of reduction has been achieved, the algorithm is

repeated with a larger threshold. The computational load of the clustering algorithm

is significantly lower than that of the joining algorithm, as at each stage the distance

of each component to the principal component is calculated, rather than the distance

between every pair of components.

In [38], Pao extends Salmond’s work to admit the case of multiple sensors

and multiple targets. This extension is analogous to the extension from PDA to

JPDA: while the probabilistic model is updated to account for joint association events

probabilities, it does not maintain correlation between target estimates, and it does

not maintain lists of compatible tracks, hence it intrinsically forces independence

between target estimates. For example, if the hypotheses for two targets are forced

to be independent, then the PDF of joint target state will contain elements for each

pairing of hypotheses from the two targets, as illustrated in Figure 2.13, rather than

restricting the uncertainty to the actual joint hypotheses as illustrated in Figure

2.12(a).

2.5.12 Multidimensional Techniques. The techniques described thus far

have one aspect in common: they all process one frame of data (i.e., the measure-

ments resulting from a single complete radar scan) at a time. An alternative approach

which has gained popularity recently is to use multiple frames of data at once, re-

solving measurement uncertainty using a sequence of data rather than a single scan

frame.

Multidimensional assignment is a recently developed extension of the GNN

algorithm described in Section 2.5.6, in which multiple sets of data (either multiple

2-68

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

Figure 2.13. The impact of forcing independence between targets in a
multiple hypothesis system: resultant joint target PDF
contains a hypothesis for each pairing of hypotheses
from each target, rather than only the actual joint hy-
potheses as shown in Figure 2.12(a).

scans from a single sensor, or data from multiple sensors) are simultaneously con-

sidered for association. As with GNN, the technique uses hard assignment, with the

assignment selected after a global optimization considering all possible joint associ-

ation events over all data sets. As one would expect, such techniques are computa-

tionally demanding, but recent algorithms such as Lagrangian relaxation [39] appear

to provide a near-optimal solution for a more acceptable computational burden [7].

Other recent suggestions include multiple-scan JPDA [43], in which joint as-

sociation events over several scans are probabilistically averaged in one step, and

the Probabilistic Multiple Hypothesis Tracker (PMHT) [53], in which measurement-

target association probabilities for multiple scans are estimated from a block of data

using the Estimation-Maximization (EM) algorithm.

2.5.13 Interacting Multiple Model–Multiple Hypothesis Tracker. In the

preceding sections, algorithms were described which are able to track maneuvering

targets in situations in which the measurement is of known origin, as were algorithms

2-69

which are able to track multiple non-maneuvering targets in clutter, with measure-

ments of unknown origin. The obvious extension of these two separate developments

is to unify the two to create a system which is able to track maneuvering targets in

the presence of clutter, with measurements of unknown origin.

The systems described in [15, 17] represent a unification of the two preferred

techniques from each section: the IMM filter for maneuvering target tracking, and

the MHT for data association. As opposed to the strategy proposed in [30:53], the

IMM-based approach maintains multiple state estimates within a single hypothesis

branch, thus limiting another source of exponentially increasing hypotheses.

The method described in [17] uses IMM only for state prediction and update,

and utilizes the single combined IMM estimate for measurement gating and hypoth-

esis likelihood evaluation. Gating is performed to validate each measurement j for

consideration with each hypothesis i using the combined estimate from the IMM for

the hypothesis. Thus the standard gating equation is used:

d2
j,i = (zj − ẑi(k|k − 1))TS−1

i (zj − ẑi(k|k − 1)) ≤ γ (2.80)

where zj is the j-th measurement, ẑi is the predicted measurement for hypothesis

i, and Si is the covariance of the residual formed using these two. The details of

the algorithm are omitted from [17], however if the models in the IMM differ only in

model dynamics (such that the measurement models are identical), then the elements

2-70

in Eq. (2.80) could be evaluated using:

ẑi(k|k − 1) = Hx̂i(k|k − 1)

= H

Nf
∑

m=1

µi,m(k|k − 1)x̂i,m(k|k − 1)

Si = HPi(k|k − 1)HT + R

Pi(k|k − 1) =

Nf
∑

m=1

µi,m(k|k − 1){Pi,m(k|k − 1)

+ [x̂i,m(k|k − 1) − x̂i(k|k − 1)][·]T} (2.81)

where x̂i,m(k|k − 1), Pi,m(k|k − 1) and µi,m(k|k − 1) are the predicted estimate,

covariance and probability of the m-th model from the IMM for hypothesis i, cal-

culated as described in Section 2.4.5. Using the expressions in Eq. (2.81) for the

combined predicted measurement, the measurement-to-track association likelihoods

can be calculated identically to the single-model case, as per Section 2.5.10.

The IMM–MHT can also be evaluated using a slightly different approach, as

described in [15]. Rather than performing measurement gating and hypothesis prob-

ability calculation using a single combined estimate, the alternative strategy modi-

fies the gating to be based on the lowest distance of the IMM filters (i.e., the filter

demonstrating the best match):

min
m

dj,i,m ≤ γ (2.82)

where dj,i,m is the Mahalanobis distance between the j-th measurement and the

measurement predicted by the m-th model for the i-th track.

The measurement-to-track association likelihood proposed by [15] also differs

from the technique in [17], utilizing a weighted average of the match likelihoods for

each of the IMM models, rather than a single match likelihood to the combined IMM

2-71

estimate:

Λ =
Pd
λ

Nf
∑

m=1

µi,m|2πSi,m|−
1

2 exp(− 1

2
d2
j,i,m) (2.83)

where µi,m is the probability of the m-th model for the hypothesis i, dj,i,m is the

Mahalanobis distance from the m-th model of hypothesis i to measurement j (similar

to Eq. (2.80)), Si,m is the covariance of the residual formed from measurement j and

the measurement prediction from model i, Pd is the probability of detection, and λ

is the false alarm density.

2.5.14 Summary. The previous sections have described the techniques

commonly used to address the problem of the ambiguity of measurement origin in

tracking systems. The probabilistic model for association events presented in Section

2.5.2 is utilized by the majority of the data association algorithm in common use; the

various approximations applied by these algorithms were described in the pursuing

sections. Section 2.5.12 briefly discussed some of the recent developments which aim

to consider the association of several frames of data at once, while Section 2.5.13

outlined a technique which combines the IMM algorithm with the MHT to be able

to track maneuvering targets in the presence of clutter.

2.6 Optimization Methods

In Chapter III we will define a cost function that describes the fidelity of the

representation of the target state probability density provided by a reduced order

PDF. The goal of this study will then be to maximize the fidelity of the simplified

representation by minimizing the value of the cost function. If the cost function were

simple in form, it might be possible to solve exactly for the PDF parameters which

produce the minimum cost solution. However, in this problem, any meaningful cost

function will be highly nonlinear, and numerical optimization procedures will be

unavoidable.

2-72

Cost
function

Gradient > 0Gradient < 0

Figure 2.14. Gradient of the cost function indicating the direction of
the minimum.

Numerical optimization involves techniques which iteratively converge on an

optimal solution that cannot be found exactly using analytic methods. In the context

of this thesis, we will be seeking the minimum value of the cost function, and the

iterative techniques employed will be designed to descend as close to the minimum

as possible, in as few steps as possible.

Gradient techniques [36:33] are numerical optimization methods which use the

first derivative (gradient) of the cost function to step iteratively towards the mini-

mum. Their operation in a one-dimensional problem is illustrated in Figure 2.14: if

the gradient is positive, then the cost function is increasing to the right, hence the

minimum must be to the left; conversely, if the gradient is negative, then the cost

function is increasing to the left, hence minimum must be to the right.

The update step for the standard gradient algorithm is described by the fol-

lowing equation [36:33]:

xk+1 = xk − sk
gf (xk)

|| gf (xk)||
(2.84)

2-73

where gf (x) is the gradient of the cost function f(x):17

gf (x) =
∂f(x)

∂x
= ∇f(x)

and sk is the scalar step size for the k-th iteration of the algorithm. The update

moves a distance of sk in parameter space, in the direction of the negative of the

gradient vector. The step size provides a trade-off between the speed of convergence

and the accuracy of the final result. Using a large step size at the beginning of the

search assists in increasing the rate of convergence; reducing the step size as the

search progresses helps to refine the solution to provide a very accurate final result,

and avoid overshooting the solution. A gradient algorithm step should be guaranteed

to decrease the value of the cost function, hence if the cost function value increases,

then the step size was too large, and should be reduced. If several sequential steps

produced by the algorithm move in the same or a very similar direction, then the step

size should be increased; conversely, if sequential steps move in the opposite direction,

then the step size is too large and should be decreased. If the step size is close to its

optimal value, then the gradient vector should be approximately orthogonal to the

value at the previous step. One ad hoc algorithm for step size control based on these

observations calculates the angle between successive gradient vectors βk [36:40]:

cos βk =
gf (xk)

Tgf (xk−1)

|| gf (xk)|| · || gf (xk−1)||
sk+1 = [1 + 0.9 cos βk]sk (2.85)

The Newton-Raphson method operates similarly to the gradient technique,

but uses information provided by the second derivative to converge on the minimum

value at a much faster rate close to the solution. The standard Newton-Raphson

17For convenience we choose to define the derivative of a scalar with respect to a vector as a
column vector, as opposed to the convention that this result is a row vector.

2-74

step (for the vector parameter case) is given by [36:55]:

xk+1 = xk − A(xk)
−1gf (xk) (2.86)

where A(xk) is the Hessian matrix:

{A(xk)}ij =
∂2f(xk)

∂{xk}i∂{xk}j
= {A(xk)}ji

The operation of the Newton-Raphson algorithm is to step to the minimum of

the parabola which approximates the cost function at the current point. If the cost

function in the region of the current parameter value is well approximated by the

second order Taylor series terms (i.e., the locally fitted parabola), then the result

of the step will move very close to the solution. This is illustrated in Figure 2.15:

the cost function shown is x4; the step illustrated moves from the original parameter

value to the minimum of the parabola with first and second derivatives that match

those of the cost function at the original point.

One obvious requirement of the Newton-Raphson method is that the Hessian

matrix must be non-singular. If this is not the case, then A(xk)
−1 will not be able

to be evaluated, and the technique cannot be used.

Even if the full Hessian is not calculated, it can be beneficial to utilize some of

the information from the second derivative matrix in the computation. For example,

if a diagonal weighting matrix is utilized in order to force the cost function contours

in the local region to be roughly circular, then the resulting weighted gradient step

will move directly toward the solution, overshooting less and taking fewer steps to

converge [36:34]. Thus, using a Hessian matrix with only diagonal terms, or a block-

diagonal Hessian matrix, may speed convergence somewhat.

2-75

Cost
function

Initial New
valuevalue

Figure 2.15. Operation of the Newton-Raphson algorithm: each
step moves to be minimum of the local approximating
parabola.

The various techniques described in these sections will converge to a minimum

provided that the algorithm is commenced from within the region of convergence.

The gradient method is guaranteed to converge to a local optimum from anywhere

in the search space. The region of convergence for for the Newton-Raphson method

is a finite-sized convergence ball; diagonal or block-diagonal Newton-Raphson ap-

proximations will be somewhere between the two. If the cost function has a single

global minimum and it increases from that point in every direction, then the solution

found by the iterative algorithm is guaranteed to be the global minimum. The cost

function forms defined in Chapter III do not have this characteristic, but rather they

are extremely multi-modal, with many maxima and minima. In this situation, the

algorithms will converge (assuming that the starting point supplied to the algorithm

is inside the region of convergence) to a local minimum (most likely the minimum

closest to the starting point given to the algorithm), and there is no guarantee that

this point will indeed represent the global minimum.

2-76

III. Analysis

3.1 Introduction

As outlined in Section 1.2, the goal of this study is to develop techniques which

are able to maintain a high fidelity representation of the PDF of target state, focusing

on the efficiency of this representation. The most compact PDF representation in

common use is that of a single Gaussian function; Section 3.2 examines some of the

difficulties which are commonly experienced using such a coarse approximation.

Section 3.3 then develops an algorithm which aims to provide the best possible

representation of the target state PDF using any given number of components in

a Gaussian mixture. The algorithm is based on the minimization of a cost func-

tion; possible selections for this cost function are considered in Section 3.3.1. The

cost function selected for our algorithm, the Integral Square Difference (ISD) cost,

is examined in detail in Section 3.3.2, before iterative optimization techniques are

applied in Section 3.3.3. Finally, it is apparent that iterative optimization of such

a multi-modal function is highly dependent on the starting point provided to the

algorithm; a methodology for deriving a near-optimal starting point is developed in

Section 3.3.4.

3.2 PDA Bias and Coalescence

The JPDA algorithm is computationally desirable when compared to more

modern MHT algorithms, as the tracking system is required to maintain only a sin-

gle Gaussian PDF rather than a Gaussian mixture with a component corresponding

to each hypothesis, with the number of hypotheses growing at an exponential rate.

However, the original formulation of the JPDA algorithm exhibits significant diffi-

culty in tracking closely-spaced targets. Hong, et al. [16, 19, 22] suggest that the

difficulty in tracking closely-spaced targets exhibited by JPDA is due to a bias inher-

ent in the algorithm, arising from the Kalman filter measurement update equation:

3-1

x̂i(k|k) = x̂i(k|k − 1) − Ki(k)[z̄i(k) − αi(k)Hx̂i(k|k − 1)] (3.1)

where z̄i(k) is the combined measurement for target i, Hx̂i(k|k− 1) is the predicted

measurement for target i, and αi(k) is the scaling factor which accounts for events

under which the target is not detected and no update is performed.

Despite the suggestion above, if the estimate prior to incorporation of the mea-

surement is unbiased, and the residual in Eq. (3.1) is zero-mean, then the updated

estimate is guaranteed to be unbiased. To determine whether a bias will be intro-

duced, we need to take the expected value of the residual. Denoting the expected

value of the residual for target i as bi(k), and expanding using the definitions of

Section 2.5.7:

bi(k) = E{z̄i(k) − αi(k)Hx̂i(k|k − 1)}

= E

{

∑

l

P{Θl(k)|Zk}[zm(Θl(k),i)(k) − Hx̂i(k|k − 1)]

}

(3.2)

where the summation is taken over all joint events in which target i is hypothesized

to have been detected, and m(Θl(k), i) is the measurement associated with target i

under the event Θl(k).

The expectation of Eq. (3.2) could be taken over a number of different variables.

Since we are concentrating on the bias arising from only a single processing cycle,

the measurements from previous cycles are assumed known, and the expectation is

taken only over the measurements from the processing cycle under consideration.

Cong [16, 22] also takes the expectation over the number of measurements (Nm(k))

in the cycle under consideration. Observing that the number of measurements will

be known exactly at run-time when this processing is performed, this would seem

unnecessary, and furthermore since:

Ex,y{g(x, y)} = Ey {Ex{g(x, y)| y}} (3.3)

3-2

as is derived by:

Ey {Ex{g(x, y)| y}} =

∫
[
∫

g(x, y)f{x|y}dx
]

f{y}dy

=

∫∫

g(x, y)f{x|y}f{y}dxdy

=

∫∫

g(x, y)f{x, y}dxdy

= Ex,y{g(x, y)}

Thus, if the expression obtained by assuming conditioning on the number of mea-

surements is shown to be unbiased (such that bi(k) = 0), then the equivalent result

also taking expectation over the number of measurements will also be unbiased.

Evaluating Eq. (3.2) assuming conditioning on the previous measurement

history and the number of measurements in the current cycle, and expanding

P{Θl(k)|Zk} using Eq. (2.55), we obtain:

bi(k) =

∫ ∞

−∞

{

∑

l

P{Θl(k)|Zk}[zm(Θl(k),i)(k) − Hx̂i(k|k − 1)]

}

·

· f{Zk|Nm(k),Zk−1}dZk

=

∫ ∞

−∞

{

∑

l

f{Zk|Θl(k), Nm(k),Zk−1}P{Θl(k)|Nm(k)}
f{Zk|Nm(k),Zk−1}

·

· [zm(Θl(k),i)(k) − Hx̂i(k|k − 1)]

}

f{Zk|Nm(k),Zk−1}dZk

=

∫ ∞

−∞

{

∑

l

f{Zk|Θl(k), Nm(k),Zk−1}P{Θl(k)|Nm(k)} ·

· [zm(Θl(k),i)(k) − Hx̂i(k|k − 1)]

}

·

· 1

f{Zk|Nm(k),Zk−1}f{Zk|Nm(k),Zk−1}dZk (3.4)

where, as in Section 2.2.3, the vector limits (−∞,∞) remind us that the inte-

gration is to be performed over every element of the vector Zk. Cancelling the

3-3

f{Zk|Nm(k),Zk−1} terms in the numerator and denominator, and exchanging the

order of integration and summation:

bi(k) =

∫ ∞

−∞

{

∑

l

f{Zk|Θl(k), Nm(k),Zk−1}P{Θl(k)|Nm(k)} ·

· [zm(Θl(k),i)(k) − Hx̂i(k|k − 1)]

}

dZk

=
∑

l

{

P{Θl(k)|Nm(k)} ·

·
∫ ∞

−∞

f{Zk|Θl(k), Nm(k),Zk−1}[zm(Θl(k),i)(k) − Hx̂i(k|k − 1)] dZk

}

(3.5)

The integral in Eq. (3.5) can then be broken up into the following difference:

∫ ∞

−∞

f{Zk|Θl(k), Nm(k),Zk−1}[zm(Θl(k),i)(k) − Hx̂i(k|k − 1)] dZk

=

∫ ∞

−∞

zm(Θl(k),i)(k)f{Zk|Θl(k), Nm(k),Zk−1} dZk

−
∫ ∞

−∞

Hx̂i(k|k − 1)f{Zk|Θl(k), Nm(k),Zk−1} dZk (3.6)

The first term in Eq. (3.6) amounts to the predicted mean of the measurement asso-

ciated with target i under association event Θl(k), which is merely the measurement

prediction Hx̂i(k|k − 1). The second term has no variables in Zk other than the

density itself, hence the integral of the density evaluates to unity, again leaving

Hx̂i(k|k − 1). These two terms obviously cancel, such that the bias of JPDA for

target i is:

bi(k) =
∑

l

P{Θl(k)|Nm(k)} · 0

= 0 (3.7)

3-4

Thus it has been shown that, according to the measurement model presented

in Section 2.5.2, JPDA is in fact unbiased. Following identical steps for the CPDA

algorithm, allowing correlation between targets, will arrive at a similar result. The

scarce details provided in [16, 22] for the evaluation of the JPDA bias make it very

difficult to compare the result derived above with those previously published. One

mistake which is easily made1 is to treat the denominator of Eq. (2.55) as a constant

(with respect to the measurement values), thereby evaluating the integral of Eq. (3.5)

by the approximation:
∫

f1(x)

f2(x)
dx ≈

∫

f1(x)dx
∫

f2(x)dx
(3.8)

In this case, the measurement PDF due to the expectation operation is not cancelled

with the measurement PDF in the denominator of the event probability. Instead,

the denominator of the event probability is treated as a constant and neglected as

per the development of Section 2.5.2,2 leaving the product of the two PDFs, which

can be evaluated with some difficulty. The cancellation of the measurement PDFs

would not have been possible if the expectation operation had been extended initially

across the number of measurements — this further suggests that this error may have

been made in [16, 22]. However, the expression of Eq. (3.8) is without mathematical

basis, hence one would expect that the robustness of any apparent performance gain

induced by introducing the approximation would be highly questionable. The results

obtained in this study using this approximation appeared promising in some areas,

but any overall improvement in any realistic scenario was not evident.

The puzzling aspect of this result is that the JPDA algorithm does exhibit

a form of “bias” when targets are closely spaced: to such an extent that the two

estimates can essentially converge to the mid-point between the targets in scenarios

in which targets are closely spaced for extended periods of time. This phenomenon,

1Indeed a substantial amount of time was lost during this study due to this very error.
2In Section 2.5.2, it was argued that the denominator is constant across all association events: it

is not constant across measurements values, which are the variables of integration in this expression.

3-5

referred to as coalescence, was examined in [9, 11, 12], in which it was concluded

that [12:256]:

...the conditional density of the targets’ joint state has a particular mul-
timodality: in addition to the local optimum for the nonswapped tracks,
often other local optima exist for track swap possibilities. The approach
of centering a Gaussian optimally (in the MMSE sense) between these
local optima implies a preference to track coalescence over track swap.

Hence this multi-modality explains how the JPDA can be unbiased yet still have

difficulties with track coalescence. As further suggested by Blom and Bloem [12],

the major source of uncertainty in this particular scenario is the identity of the

target. In this case, there will be two primary joint hypotheses: one will be correct,

and the other will be identical, but with the two targets exchanged (which is equally

valid as far as the tracker is concerned since measurements are not labelled). Thus

for all the system knows (from the set of measurements it has been given), either of

these two primary joint hypotheses could be the correct one, hence the best unbiased

answer in a minimum mean square error sense is to “hedge your bets” either way.

In other words, the system no longer knows which target is which, so it simply

takes the average of the two possibilities, tracking the mid-point between them.

As highlighted by Blom and Bloem, in virtually any practical situation it is more

desirable to track the targets with the incorrect identity than to track the mid-point

between the targets, hence it is desirable to force the system to choose one joint

hypothesis or the other — irrespective of whether the correct hypothesis is selected,

the result will be preferable over allowing the tracks to coalesce. This is effectively

what is done by the JPDA* and CPDA* algorithms3 presented in [9, 11, 12]: for

each proposed set of detected targets and target-originated measurements, only the

best association event is maintained, hence avoiding the situation described above.

The problem of track coalescence can be illustrated by considering the position

of two targets in joint state space, as per the example discussed in Section 2.5.8. The

3As proposed in [12:248], the ‘*’ notation is short for “track-coalescence-avoiding”.

3-6

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

Figure 3.1. Pairs of equally valid tracking solutions in joint target
state space.

difficulty of the tracking problem is that the measurements are unlabelled. Accord-

ingly, as far as the radar system is concerned, there are two equally valid tracking

solutions: the correct solution, and the same situation with the identity of the two

targets exchanged. These solutions are illustrated in the depiction of joint target

state space shown in Figure 3.1: for each point in joint target state space (such as

the sample points shown by ‘•’), the reflection in the 45◦ line (mapping the sample

points to the locations shown by ‘◦’) represents an equally valid tracking solution,

with the identity of the two targets exchanged.

When the estimated target position is far from the 45◦ line, the presence of

this alternative tracking solution does not affect the performance of the algorithm,

because the alternative solution will be weighted with a very low probability.4 If

the targets move close together, then the joint state moves close to the 45◦ line,

which brings the two tracking solutions close together, increasing the probability of

the alternative solution. As this probability increases, the weighted mean estimate

is drawn increasingly towards the centroid of the two tracking solutions, resulting

4The weight applied to the alternative solution will be zero if the solution does not satisfy the
gating equations.

3-7

T
ar

ge
t

1
P
os

it
io

n

Target 2 Position

Figure 3.2. Coalesced joint target state estimate and covariance using
JPDA algorithm.

in a single coalesced track between the two possibilities. When the targets begin

to separate after being close together (as in the case of two crossing tracks), the

tracking algorithm will attempt, as far as the PDF representation is able, to fit a

single Gaussian component to the two hypotheses. If the two hypotheses are equally

likely, then the resulting estimate will be between the two tracking solutions, with

a covariance that attempts to encompass both identity possibilities. Such a case is

illustrated in Figure 3.2: this is a typical example of coalescence using the JPDA

algorithm.

As discussed in Section 2.5.8, CPDA introduces correlation between targets in

an effort to improve performance when tracking closely spaced targets, but the in-

clusion of correlation actually causes track coalescence to worsen. This phenomenon

is very difficult to explain. Blom and Bloem [12:254] suggest that it is caused by the

strong correlation which develops between targets, making the algorithm prefer to

keep estimates between competing measurements. However, as discussed in Section

2.5.8, the correlation which develops is inevitably negative correlation, which would

tend to prefer to separate the targets (as compared to JPDA), rather than keeping

them together.

3-8

Considering the discussion above, the conclusion of this study is similar to that

of Blom and Bloem: the reduced coalescence performance of the CPDA algorithm

is caused by correlation arising from the two tracking hypotheses with exchanged

target identity. However, it is not that the correlation makes the tracker attempt to

keep the targets together that causes the difficulty, but rather that correlation allows

the system to keep both tracking hypotheses within its field of view. The correlation

between the target state vectors operates like blinders on a horse, concentrating the

field of view of the algorithm on the area containing the two primary association

possibilities, and excluding the distraction caused by other less likely association

hypotheses. It is this very distraction that rescues JPDA from coalescence: a com-

paratively lower weighting will be applied to the two major modalities, hence other

association hypotheses will tend to enter, and the estimate will be pulled away from

the 45◦ line, resolving the coalescence.

The two PDFs in Figure 3.3 illustrate an example in which allowing correlation

between targets results in a high amount of correlation, with the correlation coeffi-

cient at −0.9, as shown in Figure 3.3(b). Figure 3.3(a) shows the same region of the

same PDF, where the correlation between targets has been discarded. Both PDFs

are clipped to a maximum value of 0.005 to illustrate the relative size and shape

of equally likely contours of the joint target state. As can be seen, the skewness

produced by the correlation prolongs the shape of the function towards the two valid

tracking possibilities, hence ensuring that both hypotheses remain relatively likely

as compared to other possible association events.

Figure 3.4 is a snapshot of the joint target position in a Monte Carlo simula-

tion. The scenario is a two-dimensional tracking problem with two slowly-crossing

targets, crossing in the y axis. The dynamics noise was set close to zero in the x

axis, essentially making the problem one-dimensional. The diagram shows the joint

position of the two targets after coalescence has occurred (both position and veloc-

ity are estimated). The ‘×’ marks indicate the association hypotheses, which are

3-9

(a) (b)

Uncorrelated Correlated

Figure 3.3. Joint target state PDF, (a) disallowing correlation be-
tween targets, and (b) allowing correlation between tar-
gets (correlation coefficient = −0.9).

combined into the single estimate marked by ‘◦’. The covariance of the combined

estimate with correlation is illustrated through the error ellipse, demonstrating the

high degree of negative correlation between targets which results from combining

the hypotheses. If correlation between targets was not admitted, then this ellipse

would be roughly circular, and the probability of the association hypotheses would

be drawn towards the central estimates, before being dragged off by one primary

hypothesis or the other. The correlation allows the two primary hypotheses, which

are identical other than a switch in tracks, to remain probable, drawing probability

away from incorrect hypotheses, which would resolve the deadlock.

3.3 Gaussian Mixture Reduction

As discussed in Section 2.5, the common methods utilized in modern tar-

get tracking techniques apply different simplifications to the PDF of target state

given the set of received measurements. Techniques such as JPDA [4:310–319] and

3-10

1.1 1.102 1.104 1.106 1.108 1.11 1.112 1.114 1.116 1.118 1.12 1.122

x 10
4

1.1

1.105

1.11

1.115

1.12

x 10
4

Target 1 Position

T
ar

ge
t 2

 P
os

iti
on

Joint Target State for 1−D Tracking Scenario

True joint target position

Tracking
hypotheses

Estimated
joint target
position

1−σ error
ellipse
(covariance)

True joint target trajectory

Estimated joint
target trajectory

45° line

Figure 3.4. Joint target state snapshot from Monte Carlo simulation.

3-11

GNN [7:338–342] perform a vast simplification, reducing the entire Gaussian mixture

to a single Gaussian component, maintaining independence between targets. Tech-

niques including JPDAC [4:328–329], CPDA [12] and Maximum Likelihood meth-

ods [25] also reduce the Gaussian mixture PDF to a single component, but by al-

lowing correlation between the target states, information about target relationships

is maintained.

While Salmond’s mixture reduction algorithms [44–47] and Pao’s multiple tar-

get extension [38] are able to retain any number of Gaussian mixture components,

as discussed in Section 2.5.11.2, the marginalization of target PDFs results in loss of

all information concerning the relationships between targets, forcing independence

between targets. The common MHT implementations permit this dependence by

maintaining hypothesis compatibility listings, but the ad hoc simplification methods

employed to merge and prune hypotheses (such as those described in [6:292–294])

potentially limit the usefulness of the retained mixture components.

Given the extreme rate of growth of hypotheses that results from the MHT

algorithm, some form of hypothesis control is unquestionably necessary. The ideal

implementation would be to maintain the set of hypotheses which is small enough to

be readily computable by the system in question, yet carries the information about

the original target PDF to the highest fidelity possible.

To proceed, we first define the original joint PDF of target state, containing

Nh(k) joint hypotheses as to the possible locations of the targets, as:

f{X(k)|ΩNh
(k)}

where ΩNh
(k) represents the parameters of the Nh(k) hypotheses derived from the

measurements up to the current sample period. Our goal is thus to reduce these

Nh(k) hypotheses to a simplified representation, containing Nr(k) hypotheses,5 re-

5The subscript ‘r’ denoting ‘reduced’.

3-12

sulting in the simplified PDF:

f{X(k)|Ω̄Nr
(k)}

where Ω̄Nr
(k) represents the reduced set of parameters, containing, as closely as

possible, the same information as the original set ΩNh
(k).

3.3.1 Cost Measures. In order to simplify the PDF while making the

smallest possible overall change, the first step is to select a scalar cost function

which measures the difference between two PDFs in order to evaluate whether one

PDF approximation is “better” than another. Once such a function has been defined,

a wide variety of well-understood optimization methods can be applied to determine

the parameters of the reduced PDF which minimize the cost (and hence loss of

fidelity) caused by the reduction.

One can conceive of any number of constructs which would serve as an effective

cost function. Two which have been previously proposed were discussed in Section

2.5.11.1, the Kolmogorov variational distance and the Bhattacharyya coefficient.

3.3.1.1 Bhattacharyya Distance. The Bhattacharyya coefficient and

the closely related Bhattacharyya distance are a measure of similarity of two PDFs,

made popular by [23]. The definition of the Bhattacharyya coefficient is as given by

Eq. (2.75):

JB =

∫

√

f{X(k)|ΩNh
(k)}f{X(k)|Ω̄Nr

(k)}dX(k)

while the Bhattacharyya distance is given by BD = − ln JB.

The application in [23] is the maximization of the distance between the two

distributions, such as that in the communications problem of determining whether

the transmitted bit was a ‘0’ or a ‘1’. Comparing the expected distribution of the

received signal when a ‘0’ is transmitted to that when a ‘1’ is transmitted results

in information closely related to the probability of error for the system. If this

3-13

comparison is performed utilizing a good distance measure, then optimization of

the system to maximize the distance between the two distributions will effectively

minimize the probability of error.

Computation of the Bhattacharyya distance is an easy matter for the case of

two single Gaussian PDFs as the measure takes the product of the two PDFs, which

results directly in another Gaussian (with scaled volume) after completing the square

(similarly to the development in Appendix A.1). As all terms are multiplicative,

the square root can be taken of each term individually, thus the result is indeed a

Gaussian form.

In the case of Gaussian mixtures, the product of the two PDFs results in a

sum with a term for each pairing of mixture components from the two PDFs, as

per the cost function component Jhr, expanded in Eq. (3.22). The square root of

this expression will not be able to be simplified in general, and intractable numerical

integration methods will be necessary.

3.3.1.2 Kolmogorov Variational Distance. The Kolmogorov varia-

tional distance, defined in Eq. (2.74), is the integral of the absolute difference between

the two probability density functions:

JK =

∫

∣

∣f{X(k)|ΩNh
(k)} − f{X(k)|Ω̄Nr

(k)}
∣

∣ dX(k)

The measure provides an indication of the amount of probability mass by which

the two PDFs differ. If the two functions are identical throughout the probability

space, then the cost will be zero. Conversely, if the two functions are entirely disjoint,

then the difference will merely be the sum of the integral of each PDF individually

(each evaluating to unity).

Like the Bhattacharyya distance, the Kolmogorov variational distance is not

easily evaluated. The absolute value function requires piecewise definition, thus the

3-14

integral must be divided into the two portions: where the original PDF is larger

in value than the approximation, and where the approximation is larger in value

than the original PDF. While the integral over an entire Gaussian function is easily

evaluated (indeed it is unity by definition), the integral over an arbitrary portion

of a Gaussian function is extremely difficult to evaluate, and resorting to numerical

techniques or even Monte Carlo methods will be inevitable.

3.3.1.3 Integral Square Difference Measure. The use of the absolute

function in the Kolmogorov variational distance provides an even nonlinearity, to

force positive cost and negative cost to be handled identically. Another nonlinearity

which could be used in place of the absolute value is a square function, resulting in

the following modified cost:

JS =

∫

(

f{X(k)|ΩNh
(k)} − f{X(k)|Ω̄Nr

(k)}
)2

dX(k) (3.9)

where the subscript ‘S’ is used to denote the square nonlinearity. This measure will

be referred to as the Integral Square Difference (ISD) cost function. The nonlinearity

could be replaced with any even integer power, where higher powers will tend to treat

areas of larger error with increasingly higher weight than those of lower error. In

the limit, as the power approaches infinity (in an even sense), the cost function

will apply all priority to the largest error point, tending to minimize the maximum

error committed by the approximation. This is illustrated in Figure 3.5, which

compares the absolute value function to other even nonlinear functions, x2, x4 and

x6. To interpret the diagram, consider the case in which the maximum error of the

approximation is unity, which each function maps to the same value. The difference

between the various nonlinearities is then the amount of weight applied to points

with comparatively lower error: the absolute value function applies weight which

reduces linearly to lower errors, while x2, x4 and x6 apply weights which decrease at

a faster rate as the order of the nonlinearity increases.

3-15

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

f(
x)

Even Nonlinearities

f(x) = |x|
f(x) = x2

f(x) = x4

f(x) = x6

Figure 3.5. Comparison of various even nonlinearities.

The implication of Figure 3.5 to the ISD cost function is that the ISD measure

will behave very similarly to the Kolmogorov variational distance, but compara-

tively higher weight will be applied to areas of larger error, while comparatively

lower weight will be applied to areas with lower error. If the original PDF contains

components with very small variances producing large peaks alongside components of

similar probability weight with larger variances producing smaller and flatter peaks,

then one can expect that the square nonlinearity will give higher cost to the lower

variance components (with higher peaks) rather than the higher variance compo-

nents (with lower peaks), where the Kolmogorov variational distance would treat

the two identically.

3.3.1.4 Maximum Likelihood Measure. The field of Maximum Likeli-

hood estimation is based upon finding the parameters of a known distribution form

that maximize the likelihood of receiving a set of data, assuming that it was drawn

from the given form of distribution. If a single datum vector z is received, then the

3-16

most likely value of the parameter θ can be found from [48:210]:

θ̂ = arg max
θ

f{z|θ} (3.10)

It is often more convenient to perform this optimization in terms of the natural

logarithm of the density rather than the density itself. Since log x is a monotonically

increasing function for x > 0, the peak of the logarithm of the density occurs at

the same location as the peak of the density itself. The logarithm of the density is

commonly referred to as the log-likelihood function:

L(θ,z) = log f{z|θ} (3.11)

Assuming that a set of data vectors Z = {z1 . . . zn} were drawn from the

density of interest such that they are independent and identically distributed, the

joint density of the data may be written as:

f{Z|θ} =
n

∏

i=1

f{zi|θ} (3.12)

such that the most likely value for the parameter vector θ may be found by:

θ̂ = arg max
θ

f{Z|θ}

= arg max
θ

n
∏

i=1

f{zi|θ} (3.13)

3-17

This expression is conveniently simplified using the logarithm operation as

discussed above:

θ̂ = arg max
θ

log f{Z|θ}

= arg max
θ

log
n

∏

i=1

f{zi|θ}

= arg max
θ

n
∑

i=1

log f{zi|θ}

= arg max
θ

n
∑

i=1

L(θ,zi) (3.14)

The expression of Eq. (3.14) is used to derive the Expectation Maximization

(EM) algorithm for determining the parameters of the Gaussian mixture which best

match a given set of data [41]. As the data sample increases in size, it provides a

more detailed representation of the true data PDF, resulting in a set of parameters

which better represents the distribution. In the limit as the sample size approaches

infinity, the data sample converges to represent the true PDF:

θ̂ = arg max
θ

lim
n→∞

n
∑

i=1

log f{zi|θ}

= arg max
θ

∫

f{z} log f{z|θ}dz (3.15)

The above derivation, resulting in Eq. (3.15), provides a means for finding the

parameters θ of the density form f{z|θ} which best match the true data density

f{z}. This function is synonymous to that required for this study: we want to solve

for the parameters of a Gaussian mixture which provide the best fit to a mixture of

higher complexity. Hence a natural measure of the fit of the reduced density using

parameters Ω̄Nr
(k) to the higher-order density represented by parameters ΩNh

(k) is

3-18

provided by the cost function defined by:

JML =

∫

f{X(k)|ΩNh
(k)} log f{X(k)|Ω̄Nr

(k)}dX(k) (3.16)

Following from this interpretation, the author considers this expression to be the ideal

cost function for the application. However, the logarithm of a Gaussian mixture is

not able to be simplified, hence the cost function is unable to be evaluated without

numerical integration or approximation.

The expression of Eq. (3.16) somewhat resembles the divergence as defined

in [29:6]:

J(1, 2) =

∫

(f1{x} − f2{x}) log
f1{x}
f2{x}

dx

=

∫

(f1{x} log f1{x} − f1{x} log f2{x}

−f2{x} log f1{x} + f2{x} log f2{x}) dx (3.17)

The divergence is a measure of the difficulty of discriminating from which

distribution (f1{x} or f2{x}) a sample vector was drawn, and hence a measure of the

similarity between them. Comparing Eq. (3.17) to Eq. (3.16), the divergence consists

of four terms: the information content (entropy) [32:166] of each distribution, and

the “cross-entropy” terms, one of which can be seen to be the Maximum Likelihood

cost function, as defined in Eq. (3.16).

3.3.2 Analysis of Integral Square Difference Measure. After analyzing the

various cost function options, the ISD distance measure is the only option which leads

to a cost function that can be evaluated in closed form, without requiring expensive

numerical integration. Furthermore, as will be seen in Section 3.3.3, the derivatives

of the cost function with respect to each of the parameters can also be evaluated

in closed form, allowing iterative optimization techniques to be employed efficiently.

3-19

On an intuitive level, the cost function does not have the appealing probability

mass interpretation of the Kolmogorov variational distance, or the optimal reduced

parameter fit interpretation of the Maximum Likelihood measure; however, it is a

reasonable measure of the distance between the two PDFs. The function reaches its

lowest possible value of zero when the two PDFs are identical throughout the space,6

and its maximum possible value when the two PDFs are completely disjoint (i.e.,

when the product of the two PDFs is zero at every point in the space).

The ISD distance can be seen to be very similar in form to the Kolmogorov

variational distance, with the only disparity being the squaring of the integrand in

the former. Considering the impact of this squaring, it will tend to treat regions in

which the difference between the PDFs is smaller with lower weight than the absolute

difference method, and regions in which the difference is larger with higher weight.

Accordingly, we can expect that the result obtained using the ISD method will be

more averse to committing larger errors, and less averse to committing smaller value

errors, even if the volume contained in the errors is the same. Considering this in the

context of a Gaussian mixture PDF, we expect that the ISD measure will give more

consideration to mixture components with lower variance (and thus higher value)

over mixture components with higher variance, even if the probability weights are

identical.

Expanding the ISD distance measure equation yields the following terms:

JS =

∫

f{X(k)|ΩNh
(k)}2 +

− 2f{X(k)|ΩNh
(k)}f{X(k)|Ω̄Nr

(k)} +

+ f{X(k)|Ω̄Nr
(k)}2dX(k) (3.18)

The three terms of Eq. (3.18) each have their own interpretation. The first represents

the self-likeness of the original PDF — this term will be larger if the PDF is more

6Except at points of zero probability mass.

3-20

concentrated in space, and smaller if the PDF is more spread out. The second

represents the cross-likeness of the original PDF to the new PDF. This term is

critical to the function as it directly measures the volume of probability mass7 that

the two functions have in common. The final term is the self-likeness of the reduced

PDF, possessing similar characteristics to the other self-likeness term. The cross-

likeness term serves to balance the two self-likeness terms, cancelling the overall cost

function value to zero if the two functions are identical, and increasing the overall

cost function value as the difference between the functions increases.

Defining these three components as:

Jhr =

∫

f{X(k)|ΩNh
(k)}f{X(k)|Ω̄Nr

(k)}dX(k)

Jrr =

∫

f{X(k)|Ω̄Nr
(k)}2dX(k)

Jhh =

∫

f{X(k)|ΩNh
(k)}2dX(k) (3.19)

we can then write Eq. (3.18) as:

JS = Jhh − 2Jhr + Jrr (3.20)

In the problem of interest, the two PDFs are both Gaussian mixtures, which

can be expanded as:

f{X(k)|ΩNh
(k)} =

Nh(k)
∑

i=1

piN{X; µi,Pi}

f{X(k)|Ω̄Nr
(k)} =

Nr(k)
∑

i=1

p̄iN{X; µ̄i, P̄i} (3.21)

7Although it is in square units rather than the units typically associated with probability mass
measure.

3-21

where {pi,µi,Pi} are the weights, means and covariances of the Gaussian functions

composing the mixture for original PDF, and {p̄i, µ̄i, P̄i} are the same parameters

of the reduced PDF. Substituting these expressions into Eq. (3.19):

Jhr =

∫ Nh(k)
∑

i=1

Nr(k)
∑

j=1

piN{X; µi,Pi}p̄jN{X; µ̄j, P̄j}dX(k)

Jrr =

∫ Nr(k)
∑

i=1

Nr(k)
∑

j=1

p̄iN{X; µ̄i, P̄i}p̄jN{X; µ̄j, P̄j}dX(k)

Jhh =

∫ Nh(k)
∑

i=1

Nh(k)
∑

j=1

piN{X; µi,Pi}pjN{X; µj,Pj}dX(k) (3.22)

By linearity of the integration operation, the summation and integration of each of

the expressions in Eq. (3.22) can be reversed, resulting in:

Jhr =

Nh(k)
∑

i=1

Nr(k)
∑

j=1

pip̄j

∫

N{X; µi,Pi}N{X; µ̄j, P̄j}dX(k)

Jrr =

Nr(k)
∑

i=1

Nr(k)
∑

j=1

p̄ip̄j

∫

N{X; µ̄i, P̄i}N{X; µ̄j, P̄j}dX(k)

Jhh =

Nh(k)
∑

i=1

Nh(k)
∑

j=1

pipj

∫

N{X; µi,Pi}N{X; µj,Pj}dX(k) (3.23)

Following from the derivation of Appendix A.1, the product of two Gaussian

PDFs, which forms the basic building block of Eq. (3.23), can be simplified to the

following form:

N{x; µ1,P1}N{x; µ2,P2} = αN{x; µ3,P3} (3.24)

3-22

where α, µ3 and P3 are as given by Eq. (A.13):

α = N{µ1; µ2,P1 + P2}

P3 = (P1
−1 + P2

−1)−1

µ3 = P3(P1
−1µ1 + P2

−1µ2)

Substituting this simplification into the expressions of Eq. (3.23) and noticing that

the integral over a Gaussian PDF evaluates to unity, we find:

Jhr =

Nh(k)
∑

i=1

Nr(k)
∑

j=1

pip̄jN{µi; µ̄j,Pi + P̄j}
∫

N{X; µa,Pa}dX(k)

=

Nh(k)
∑

i=1

Nr(k)
∑

j=1

pip̄jN{µi; µ̄j,Pi + P̄j}

Jrr =

Nr(k)
∑

i=1

Nr(k)
∑

j=1

p̄ip̄jN{µ̄i; µ̄j, P̄i + P̄j}
∫

N{X; µb,Pb}dX(k)

=

Nr(k)
∑

i=1

Nr(k)
∑

j=1

p̄ip̄jN{µ̄i; µ̄j, P̄i + P̄j}

Jhh =

Nh(k)
∑

i=1

Nh(k)
∑

j=1

pipjN{µi; µj,Pi + Pj}
∫

N{X; µc,Pc}dX(k)

=

Nh(k)
∑

i=1

Nh(k)
∑

j=1

pipjN{µi; µj,Pi + Pj} (3.25)

where µa, µb, µc, Pa, Pb and Pc, are the combined means and covariances of the

respective Gaussian component pairs from Eq. (3.23), calculated as according to

Eq. (3.24). Interpreting Eqs. (3.20) and (3.25), the cost function consists of the

sum of similarity measures of all pairs of two components from the original mixture,

plus similarity measures of all pairs of two components from the reduced mixture,

balanced by the sum of similarity measures of all pairs of one component from the

original mixture and one component from the reduced mixture.

3-23

3.3.2.1 Normalization. While the ISD cost function will have a min-

imum value of zero (corresponding to the case in which the PDFs are identical), the

peak value of the cost (corresponding to the case in which the PDFs are essentially

disjoint) will vary depending on the PDFs under consideration. If it is desirable for

the cost function to be bounded, it could be normalized using an expression such as:

JS
′ =

∫ (

f{X(k)|ΩNh
(k)} − f{X(k)|Ω̄Nr

(k)}
)2

dX(k)
∫

f{X(k)|ΩNh
(k)}2 + f{X(k)|Ω̄Nr

(k)}2dX(k)

= 1 − 2

∫

f{X(k)|ΩNh
(k)}f{X(k)|Ω̄Nr

(k)}dX(k)
∫

f{X(k)|ΩNh
(k)}2 + f{X(k)|Ω̄Nr

(k)}2dX(k)
(3.26)

which will result in a function which is bounded between zero and one, a desirable

characteristic if a fixed threshold is to be utilized to limit the maximum allowable

cost incurred by the PDF reduction. In this study, the reduction was performed until

the desired number of components was achieved, hence bounding was not utilized.

3.3.3 Iterative Optimization. The cost function described in Section 3.3.2

provides a measure of the dissimilarity between two Gaussian mixtures, and has the

following desirable characteristics:

1. The equation for JS can be evaluated completely in closed form, resulting in

a sum of multivariate Gaussian functions with one term for each pairing of

components in the original and reduced mixtures.

2. The resulting closed form evaluation is continuously differentiable, hence stan-

dard gradient-based optimization techniques can be employed.

3. As we will see in the following pages, the expressions for the first gradient of

the cost function can also be written in closed form using standard vector-

matrix notation, again simplifying the employment of gradient-based iterative

optimization techniques.

3-24

Thus, by careful selection of cost function, we are able to apply the optimiza-

tion methods described in Section 2.6 to find the parameters of the reduced order

Gaussian mixture that provide the best fit to the higher order function. The param-

eters to be optimized are (recalling Eq. (3.21)):

1. The probability weights of the reduced mixture, {p̄i}.

2. The mean vectors of the reduced mixture, {µ̄i}.

3. The covariance matrices of the reduced mixture, {P̄i}.

In order to produce a valid Gaussian mixture as an output, there are three

constraints for the optimization:

1. The probability weights must be non-negative: p̄i ≥ 0 ∀ i.

2. The probability weights must sum to unity:
∑

i p̄i = 1.

3. The covariance matrices must be positive-definite: xT P̄ix > 0 ∀ i,x.

Such constraints complicate the optimization greatly, requiring the addition of

parameters such as Lagrange multipliers [36:152–153]. If the optimization is re-posed

in terms of transformed parameters such that these constraints are guaranteed to

be satisfied, this complexity is completely avoided, and much simpler unconstrained

optimization methods can be employed. One set of transformations which produces

this result is:

p̄i =
qi

2

∑

j qj
2

P̄i = LiLi
T (3.27)

The first line in Eq. (3.27) replaces the probability weights {p̄i} with a the

set of functions of {qi}, which, for the optimization performed in terms of these

transformed variables, guarantees that the resultant {p̄i} set will be non-negative

3-25

and sum to unity. The second line of Eq. (3.27) replaces each covariance matrix

with a matrix square, a form which is guaranteed to produce a positive semi-definite

matrix [52:333]. To ensure positive definiteness (i.e., no zero eigenvalues), we rely on

the premise that, if the original mixture to which we are fitting the reduced-order

density has no singular covariance components, then the optimization is unlikely

to pull towards such a solution. In other words, the positive definiteness of the

solution is not strictly guaranteed, but this is unlikely to cause difficulties in any

physically-motivated problem.

To commence the iteration, the transformed parameters can be determined

from the initial values of the reduced parameters by the following relationships:

qi =
√
p̄i

Li =
C
√

P̄i (3.28)

where C
√

P̄i denotes the Cholesky square root, as defined in [34:370].

After some experimentation, it was decided that the constraint for the prob-

ability weights to sum to unity was unnecessary. To understand this, consider the

problem in which a density that has several peaks, all of which are separated from

each other, is to be reduced to such an extent that not all of these peaks can be

modelled. If the probability weights are constrained such that they must sum to

unity, then the weights of the remainder of the components must be increased to

take up the weight of the components which are no longer being modelled, and this

increase in the remaining weights will create additional error in the area of the re-

maining components. Thus, if we want the only cost associated with the deletion

of a component to be the error induced in the region of that component, then the

other components weights should not be forced to be adjusted. Accordingly, during

the optimization process, we allow the weights be de-normalized, drifting to what-

ever total value (virtually always close to unity) provides the best fit to the original

3-26

function. Normalization is then applied as a final step after the optimization process

has been completed.

Following this discussion, the transformation of the probability weights of

Eq. (3.27) was changed to:

p̄i = qi
2 (3.29)

and the initial value of the {qi} parameters remains as per Eq. (3.28). The cost

function must then be re-written in terms of the transformed parameters, resulting

in the following expression:

JS = Jhh − 2Jhr + Jrr

where:

Jhr =

Nh(k)
∑

i=1

Nr(k)
∑

j=1

piq
2
jN{µi; µ̄j,Pi + LjLj

T}

Jrr =

Nr(k)
∑

i=1

Nr(k)
∑

j=1

q2
i q

2
jN{µ̄i; µ̄j,LiLi

T + LjLj
T}

Jhh =

Nh(k)
∑

i=1

Nh(k)
∑

j=1

pipjN{µi; µj,Pi + Pj} (3.30)

In the following sections, the derivatives of these components, Jhr, Jrr and Jhh,

are calculated separately with respect to each parameter. The Jhh equation contains

only components from the original mixture, hence the derivative of it with respect

to parameters of the reduced mixture evaluates to zero.

3.3.3.1 Derivatives with respect to weights. The expressions in

Eq. (3.31) below show the partial derivatives of the cost function components Jhr

3-27

and Jrr with respect to the probability weights {qj}:

∂Jhr
∂qj

=

Nh(k)
∑

i=1

pi · 2qjN{µi; µ̄j,Pi + LjLj
T}

= 2qj

Nh(k)
∑

i=1

piN{µi; µ̄j,Pi + LjLj
T}

∂Jrr
∂qj

= 2

Nr(k)
∑

i=1

i6=j

q2
i · 2qjN{µ̄i; µ̄j,LiLi

T + LjLj
T}

+ 4q3
jN{µ̄j; µ̄j,LjLj

T + LjLj
T}

= 4qj

Nr(k)
∑

i=1

q2
iN{µ̄i; µ̄j,LiLi

T + LjLj
T} (3.31)

3.3.3.2 Derivatives with respect to means. The derivative of a scalar

with respect to a vector is a vector in which each component is equal to the derivative

of the scalar with respect to the corresponding component of the vector:

{

∂J

∂µ

}

i

=
∂J

∂{µ}i
(3.32)

While the usual convention [34:23] is that the derivative of a scalar with respect to a

vector produces a row vector, the following development chooses for convenience to

define it as the column vector (the transpose of the conventional result). By applying

Eq. (3.32), one can derive relationships which allow calculation of the derivative of

common scalar-vector functions in terms of standard vector notation. One of the

most common examples of this is the vector quadratic product:

∂

∂µ

{

µTAµ
}

= 2Aµ (3.33)

3-28

where A is assumed symmetric. Using Eq. (3.33), we can arrive at the expressions:

∂Jhr
∂µ̄j

=

Nh(k)
∑

i=1

piq
2
j · −(Pi + LjLj

T)−1(µ̄j − µi)N{µi; µ̄j,Pi + LjLj
T}

= −q2
j

Nh(k)
∑

i=1

pi(Pi + LjLj
T)−1(µ̄j − µi)N{µi; µ̄j,Pi + LjLj

T}

∂Jrr
∂µ̄j

= 2

Nr(k)
∑

i=1

i6=j

q2
i q

2
j · −(LiLi

T + LjLj
T)−1(µ̄j − µ̄i)N{µ̄i; µ̄j,LiLi

T + LjLj
T}

= −2q2
j

Nr(k)
∑

i=1

q2
i (LiLi

T + LjLj
T)−1(µ̄j − µ̄i)N{µ̄i; µ̄j,LiLi

T + LjLj
T}

(3.34)

where the i = j term is included in the final equality for convenience, noting that it

will evaluate to zero anyway.

3.3.3.3 Derivatives with respect to covariances. In a manner similar

to the derivative of a scalar with respect to a vector, the derivative of a scalar with

respect to a matrix is defined as the matrix whose (i, j) element is the derivative of

the scalar with respect to the (i, j) element of the matrix:

{

∂J

∂A

}

ij

=
∂J

∂{A}ij
(3.35)

Expanding the Gaussian component of the form of Jrr terms:

|2π(LiLi
T + LjLj

T)|− 1

2 exp
{

− 1

2
(µ̄i − µ̄j)

T (LiLi
T + LjLj

T)
−1

(µ̄i − µ̄j)
}

(3.36)

we find that we need to calculate the derivative of the following two expressions:

Leading coefficient:
∂

∂Li

|LiLi
T + LjLj

T |− 1

2

Exponent:
∂

∂Li

(µ̄i − µ̄j)
T (LiLi

T + LjLj
T)−1(µ̄i − µ̄j) (3.37)

3-29

While the results of the above derivatives are not obvious, the following results

from [20:614] and [13] give the general form of the solution:

∂ log |XTAX|
∂X

= 2AX(XTAX)−1

∂tr[(XTAX)−1C]

∂X
= −AX(XTAX)−1(C + CT)(XTAX)−1 (3.38)

Defining X =
[

Li Lj

]T

, A = I and C = (µ̄i − µ̄j)(µ̄i − µ̄j)
T such that:

XTAX =
[

Li Lj

]

I

Li
T

Lj
T

= LiLi
T + LjLj

T (3.39)

and

tr[(XTAX)−1C] = tr[(LiLi
T + LjLj

T)−1(µ̄i − µ̄j)(µ̄i − µ̄j)
T]

= (µ̄i − µ̄j)
T (LiLi

T + LjLj
T)−1(µ̄i − µ̄j) (3.40)

we find forms that closely match our desired solution. Using the chain rule, we can

find the common expression:

def(x)

dx
=

def

df
· df(x)

dx

=
df(x)

dx
· ef(x) (3.41)

In order to utilize this expression, we define:

f(X) = log
[

|2π(XTX)|− 1

2 exp
{

− 1

2
(µ̄i − µ̄j)

T (XTX)
−1

(µ̄i − µ̄j)
}]

= −N
2

log (2π) − 1

2
log |XTX| − 1

2
(µ̄i − µ̄j)

T (XTX)−1(µ̄i − µ̄j) (3.42)

3-30

where N is the dimensionality of the the mixture, such that the derivative of

Eq. (3.36) is evaluated as:

∂

∂X
|2π(XTX)|− 1

2 exp
{

− 1

2
(µ̄i − µ̄j)

T (XTX)
−1

(µ̄i − µ̄j)
}

= −1

2
· ∂

∂X

[

log |XTX| + (µ̄i − µ̄j)
T (XTX)−1(µ̄i − µ̄j)

]

N{µ̄i; µ̄j,X
TX}

= −
[

X(XTX)−1 − X(XTX)−1(µ̄i − µ̄j)(µ̄i − µ̄j)
T (XTX)−1

]

N{µ̄i; µ̄j,X
TX}

= −X(XTX)−1
[

XTX − (µ̄i − µ̄j)(µ̄i − µ̄j)
T
]

(XTX)−1N{µ̄i; µ̄j,X
TX}

(3.43)

Substituting in the partitioned matrix X, taking the transpose and keeping only the

partition in which we are interested, we find:

∂

∂Li

N{µ̄i; µ̄j,LiLi
T + LjLj

T}

= N{µ̄i; µ̄j,LiLi
T + LjLj

T}(LiLi
T + LjLj

T)−1 ·

·
[

(µ̄i − µ̄j)(µ̄i − µ̄j)
T − (LiLi

T + LjLj
T)

]

(LiLi
T + LjLj

T)−1Li

(3.44)

The derivatives of Eq. (3.30) then become:

∂Jhr
∂Lj

=

Nh(k)
∑

i=1

piq
2
jN{µi; µ̄j,Pi + LjLj

T}(Pi + LjLj
T)−1 ·

·
[

(µi − µ̄j)(µi − µ̄j)
T − (Pi + LjLj

T)
]

(Pi + LjLj
T)−1Lj

∂Jrr
∂Lj

= 2

Nr(k)
∑

i=1

q2
i q

2
jN{µ̄i; µ̄j,LiLi

T + LjLj
T}(LiLi

T + LjLj
T)−1 ·

·
[

(µ̄i − µ̄j)(µ̄i − µ̄j)
T − (LiLi

T + LjLj
T)

]

(LiLi
T + LjLj

T)−1Lj

(3.45)

3.3.3.4 Verification. The above results were calculated by hand and

coded manually using MATLABr. To verify the expressions, the cost function ex-

3-31

pressions of Eq. (3.30) were entered symbolically and the derivative was calculated

with respect to each parameter using the MATLABr Symbolic Toolbox. The resul-

tant expressions were then subtracted from the hand-coded expressions with sym-

bolic variables, and it was verified that the results of each block cancelled to zero,

indicating the algebraic equivalence of the manual calculation to the computer-aided

solution.

3.3.3.5 Newton-Raphson Algorithm. As discussed in Section 2.6,

the Newton-Raphson algorithm operates similarly to the gradient algorithm, but

converges to the solution at a much faster rate (through from within a smaller ball of

convergence). Intuitively, utilizing full second derivative information is an extremely

desirable step, as it incorporates a great amount of information about the interaction

of the parameters into the optimization process. It was the hope of the author that,

using a carefully chosen starting point, the cost function would be well approximated

by a parabola, and the Newton-Raphson algorithm would reach the solution in one

or two iterations. These hopes were not realized, however, and the conclusion was

reached that the algorithm is inappropriate for this application.

The full Hessian matrix was calculated for the case of a scalar Gaussian mix-

ture, utilizing the constraint transformations described in Eq. (3.27),8 coded in

MATLABr and verified using the Symbolic Toolbox as described in Section 3.3.3.4.

Simulation results revealed major difficulties with the technique. In very few steps of

the algorithm, mixture components converged toward each other, at which point the

Hessian matrix became singular and the algorithm could not continue. This reveals

the inappropriateness of the technique to this application: there are simply too many

actions which produce an equivalent result in the overall function, and the method

is attracted to points producing singularities in the Hessian. This is a commonly

understood problem of the Newton-Raphson algorithm: the method converges to

8i.e., the probability weights were constrained to sum to unity.

3-32

a critical point [18:101] — whether that critical point is a maximum, minimum or

saddle point (producing a singular Hessian) depends purely on the structure of the

cost function in the local region.

Apart from the difficulties discussed above, implementation of a full Newton-

Raphson technique in any practical situation is computationally intractable. If

the Gaussian mixture contains 10 components, each of which is a six-dimensional

Gaussian PDF, then the optimization parameters will include 10 weights, 10 six-

dimensional means (60 parameters), and 10 covariance matrices which, if represented

in factored triangular form will each contain 21 parameters. The total number of

parameters is thus 280, even for this small problem, and each step will require a

280 × 280 matrix inversion.

While the Newton-Raphson algorithm was demonstrated to be inappropriate

for this application, the Newton-Raphson approximations (i.e., weighted gradient

algorithms) which utilize a diagonal or block-diagonal Hessian matrix (as discussed

Section 2.6) could potentially provide a significant improvement in the rate of con-

vergence of the search. For the purposes of this study, however, the gradient tech-

nique provided an adequate rate of convergence, and these modifications were not

attempted.

3.3.4 Initialization Algorithm. The cost function describing the fit of a

reduced complexity Gaussian mixture to a Gaussian mixture of higher order is an

extremely complicated multi-modal function with many peaks and troughs, of which

all but one represent local minima rather than the true global minimum. Consid-

ering the fact that virtually all gradient-based iterative optimization methods will

converge on a local minimum, this reveals that selecting the initialization point for

the optimization is in fact the most critical function for the algorithm, more so than

the iterative optimization itself.

3-33

One could conceive of any number of algorithms that could be used for this

function. Simple component pruning (keeping the hypotheses with the Nr highest

weights), as used in the standard MHT algorithm, would perhaps be the easiest

solution; any number of merging algorithms such as n-scan merging [49] or Salmond’s

mixture reduction [44] would supplement the pruning well. However, such algorithms

are purely ad hoc, and there is no guarantee that the result will lead the iterative

optimization to the global minimum. In fact, there is quite probably a local minimum

close to every initialization point we could propose using such methods, as can be

expected intuitively when one considers the case in which the Gaussian mixtures in

the original model are well-spaced. In such an environment, the result generated by

the iterative optimization is only as good as the initialization point provided to the

algorithm.

The cost function proposed in Section 3.3.2 provides a systematic means of

evaluating the relative merit of two possible solutions to the optimization. This

function is utilized extensively in the iterative algorithm described in Section 3.3.3,

and, considering the importance of the initialization, it is desirable to utilize the

cost function also in the algorithm that selects the starting point. It was observed

experimentally that the the optimal solution generally has most of its mixture com-

ponents similar to the respective components of the original mixture, and that the

major changes produced by the reduction are that similar components are merged,

and smaller probability weight or larger variance components are deleted.9 These ob-

servations support the merging and pruning methods commonly employed in MHT

implementations, but further guidance is needed towards selecting which components

should be merged, which should be deleted and which should remain unmodified.

The algorithm developed provides a systematic methodology of selecting com-

ponents for merging and deletion using the cost function described in Section 3.3.2.

9As discussed in Section 3.3.1.3, the ISD measure tends to favor keeping lower-variance compo-
nents and deleting higher-variance components.

3-34

The basis of the algorithm at each stage is to evaluate the cost of each possible ac-

tion, and then to select the lowest cost action. At each step, the possible actions are

to delete one of the remaining components or to merge a pair of remaining compo-

nents. This is illustrated in the block diagram of Figure 3.6. When two components

are merged, the parameters of the merged component are calculated according to

Eq. (2.24), such that the mean and covariance of the overall mixture remains un-

changed.

There is no claim that the algorithm will produce the optimal starting point,

nor that the starting point will lead the iterative algorithm to the global minimum.

Although the action taken at each step leads to the minimum cost increase for that

single step, there is no guarantee that the result over multiple steps is optimal, or

that there is not a better multiple-step solution which does not take the optimal

single step action at each step. However, the starting point obtained is the result of

a sensible algorithm which at each step selects the best action, taking into account

the full PDF rather than considering individual pairs of components in isolation,

hence the result is likely to produce significantly better results than algorithms which

consider only individual component pairs.

3.3.4.1 Implementation. The algorithm was implemented using

MATLABr version 6.5. As described in Section 3.3.2, the cost function consists

of three components: the self-likeness of the original mixture with itself, the

cross-likeness of the original mixture and the simplified mixture, and the

self-likeness of the simplified mixture with itself. Each of these components is the

sum over a matrix, the entries of which represent the likeness of pairs of individual

Gaussian components.

3-35

Y

N

Evaluate

Start

cost of
merging each pair of

remaining components

Evaluate cost of
deleting each

remaining component

Select lowest
cost action

Target number
of components

reached?

Finished

Figure 3.6. Block diagram of proposed Gaussian mixture reduction
initialization algorithm.

3-36

The individual entries of the matrices are of the form of a multivariate Gaussian

function evaluation:

p1p2N{µ1 µ2,P1 + P2}

= p1p2|2π(P1 + P2)|−
1

2 exp{− 1

2
(µ1 − µ2)

T (P1 + P2)
−1(µ1 − µ2)}

(3.46)

The original implementation evaluated the cost of each of the possible merging

and deletion possibilities at each processing cycle, with no regard for the calcula-

tions which do not change between cycles. Consequently, the speed of the original

implementation was very poor: even using MATLABr version 6.5 (using compiled

rather than interpreted code) the time required to simplify a 60-component, four-

dimensional Gaussian mixture down to 10 components was on the order of 349

seconds.10 Considering that, even in the simplest tracking environment with a single

target in clutter, this level of processing would need to be performed during every

measurement interval, this implementation is clearly unacceptable for practical use.

The elements of the cost function are illustrated in Figure 3.7: each square

represents an evaluation of the similarity measure between two single multivariate

Gaussian components from the respective mixtures, as according to Eq. (3.46). Con-

sideration of the components of the calculations that are able to be stored and not

repeated at every processing cycle leads to the following observations:

1. The original mixture self-likeness matrix does not change when simplification

steps are performed, hence the sum of this matrix can be calculated once and

never re-evaluated.

2. When a component is deleted, a column of the cross-likeness matrix will be

deleted. Similarly, when two components are merged, two columns will be re-

10All benchmarks discussed in this section were performed on a 1.4GHz AMD Athlon system.

3-37

1 2 · · ·

O
ri

gi
n
al

M
ix

tu
re

Original Mixture Reduced Mixture

Nr

Nh

1

2

3

···

1 2 · · ·

Reduced Mixture

R
ed

u
ce

d
M

ix
tu

re

Nr

Nr

1

2

···

1 2 3 · · ·
O

ri
gi

n
al

M
ix

tu
re

Nh

Nh

1

2

3

···

Cross-likeness
Original Mixture

Self-likeness

Reduced Mixture

Self-likeness

Figure 3.7. Elements of ISD cost function. Each square represents
a multivariate Gaussian evaluation to measure the simi-
larity of the respective components of the two mixtures.
Shaded squares represent the components that need to
be re-evaluated if the second component in the reduced
mixture is modified.

placed by a single new column, representing the cross-likeness of the original

Gaussian mixture to the newly merged component. To evaluate the cost of

every possible merge, the new columns will need to be calculated for every

possible merge. However, when a merge action is taken, only the new columns

for merge possibilities involving the modified component will need to be re-

calculated, rather than the new columns for every possible merge. There are

1

2
N(N − 1) total merge possibilities, where N is the number of components

in the reduced mixture at the current processing cycle, starting from Nh at

the commencement of the algorithm and successively reducing to Nr as com-

ponents are merged and deleted. Only (N − 1) of these merge possibilities

involve a given component.

3. When a component is deleted, one column and one row of the reduced self-

likeness matrix will be deleted. When two components are merged, two rows

and columns will be replaced with a single row and column representing the

3-38

newly merged component.11 To evaluate the cost for every possible merge, the

new column will need to be calculated for every pair of components. When

a merge action is taken, the full column will need to be recalculated for each

merge possibility involving the modified component, and the single entry cor-

responding to the modified component will need to be recalculated for all other

possibilities.

The implementation was modified to store the cost components for every pos-

sible merge and reuse wherever possible, reducing the complexity of the algorithm

to a stage at which the time to simplify a 60-component four-dimensional Gaussian

mixture down to 10 components was 30.3 seconds. Although this is a significant

improvement over the 349 second time of the original implementation, the algorithm

is still to be applied to problems significantly more complicated than this at every

measurement interval, hence it remains unacceptable for real-time application.

Analysis of the optimized implementation using the MATLABr Profiler re-

vealed that 78% the 30.3 second processing time was spent evaluating the multivari-

ate Gaussian function of Eq. (3.46) above. The MATLABr implementation used

for the equation was (the variable mud stores the difference between the two mean

vectors, µd, as seen in Eq. (3.47)):

mud = mu(:,i) - mu(:,j);

Pc = P(:,:,i) + P(:,:,j);

dist = ps(i)*ps(j)*exp(-0.5*mud’*inv(Pc)*mud)/...

real(sqrt(det(2*pi*Pc)));

The real() function call around the sqrt() is necessary to allow the expression

to be compiled using MATLABr version 6.5 due to the possibility of a complex result.

On the surface the code appears to allow little room for optimization; however, in

11Note that, since the matrix is symmetric, calculating the new column also gives the entries
required for the corresponding row.

3-39

the particular example discussed, the equation above was evaluated 291,726 times,

hence further consideration is warranted.

Considering the quadratic expression mud’*inv(Pc)*mud, the result is a single

scalar value, yet the full matrix inverse is calculated. Perhaps the most obvious sim-

plification possible is to replace the full matrix inverse with the MATLABr left ma-

trix divide command mud’*Pc\mud, which implements Gaussian elimination to reach

a triangular form, followed by back-substitution with the mean difference vector mud

without calculating the full matrix inverse [33]. Furthermore, the determinant func-

tion det() is commonly implemented as the product of the pivots, again found using

Gaussian elimination [33]. These same calculations have necessarily been performed

to find the inverse (or to perform back-substitution), hence implementation causes

the same calculations to be performed twice.

Neither of these implementation options exploit the positive-definite symme-

try of the Pc matrix. This could be exploited using the Cholesky square-root func-

tion [34:370] to factor the matrix into a triangular square root such that:

Pc = C
√

Pc
C
√

Pc

T

Using the MATLABr Cholesky square-root function,12 the expression could be re-

placed by:

PcChol = chol(Pc)’;

dist = ps(i)*ps(j)*exp(-0.5*sum((PcChol\mud).^2)/...

prod(sqrt(2*pi)*diag(PcChol));

where PcChol is the Cholesky square root of the matrix Pc. (Note that the deter-

minant has been simplified to the product of the diagonal terms of the triangular

Cholesky square root matrix.) This implementation leaves further room for opti-

12The MATLABr implementation of the Cholesky square root returns the transpose of the
conventional factorization, hence the transpose is taken of the result.

3-40

mization in that the left matrix divide command may not immediately recognize the

triangular form of the Cholesky square root matrix, and that the Cholesky factor-

ization routine performs several expensive square root evaluations [34:403–405].

For the above reasons, a U-D factorization routine was implemented [34:392],

followed by a custom back-substitution procedure. The U-D factorization routine

factors the covariance sum Pc into an upper triangular matrix and a diagonal matrix,

such that the quadratic can be simplified as:

µTdPc
−1µd = µTd (UDUT)−1µd

= µTdU
−TD−1U−1µd

= (U−1µd)
TD−1(U−1µd) (3.47)

where the vector (U−1µd) is evaluated using the custom back-substitution algorithm,

with the answer stored in a vector named Uimud. The expression is then evaluated

as:

dist = ps(i)*ps(j)*exp(-0.5*sum(Uimud.^2 ./ diag(D))/...

prod(2*pi*diag(D));

A simple test scenario was created, evaluating the expression for all possible

pairings of 500 randomly generated four-dimensional Gaussian mixture components.

The original implementation required 31.6 seconds to execute, the left matrix divide

method required 29.5 seconds to execute, the Cholesky square root method (avoiding

the redundant determinant calculation) required 21.5 seconds to execute, and the

custom U-D factorization method required 11.9 seconds to execute. The results

confirm the efficiency of the U-D factorization method, especially considering that

the time was far less than other methods even though a pure MATLABr script

implementation was used, incorporating three levels of nested for loops.13

13Analysis using the MATLABr version 6.5 profiler confirmed that the routine and surrounding
loops were indeed compiled completely.

3-41

Time Required for 250,000
Multivariate Gaussian Evaluations

31.6
29.5

21.5

11.9

0.03
0

5

10

15

20

25

30

35

40

Original LMDivide Cholesky UD Script UD MEX

Implementation

T
im

e
(s

ec
o

n
d

s)

Figure 3.8. Execution times for various implementations for evalu-
ating the match between all pairings of 500 randomly
generated four-dimensional Gaussian multivariate PDFs.

Following the above results, the U-D covariance factorization algorithm was

translated into the C language, using the MATLABr MEX interface. For the simple

test above, the highly optimized C implementation reduced the time to 0.03 seconds,

a 1000× saving over the original implementation (which required 31.6 seconds). The

MEX implementation was extended to implement the entire initialization algorithm,

reducing the time for reducing the same 60-component Gaussian mixture described

above from 30.3 seconds for the previous optimized version to 0.42 seconds, a further

72× improvement over the previous optimization, and an 831× improvement over the

original implementation (which required 349 seconds). The time reductions achieved

using the various optimization methods on these two problems are illustrated in

Figures 3.8 and 3.9.

3.4 Summary

This chapter has developed a structured, cost function-based technique which

reduces the number of components in a Gaussian mixture while modifying the overall

3-42

Time Required to Simplify 60-Component
Gaussian Mixture

349

30.3
0.42

0

50

100

150

200

250

300

350

400

Original Optimized MEX

Implementation

T
im

e
(s

ec
o

n
d

s)

Figure 3.9. Execution times for various implementations of cost
function Gaussian mixture reduction initialization algo-
rithm to simplify 60-component four-dimensional Gaus-
sian mixture to 10 components.

PDF structure less than any of the previously developed ad hoc methods. The pre-

sentation in Section 3.2 examined some of the problems commonly experienced with

the techniques utilizing the most compact target state representations, JPDA and

CPDA, providing new insight into the problem of the bias of the JPDA algorithm,

and the reason why CPDA exhibits track coalescence to a greater extent than JPDA.

Section 3.3 then developed the cost function-based optimization method. Selections

for the cost function were discussed in Section 3.3.1; our choice was the ISD measure,

which was found to be both physically meaningful and computationally tractable. A

gradient-based iterative optimization algorithm was then developed using this cost

function, as well as an initialization algorithm to find a near-optimal starting point.

3-43

IV. Simulation Results

4.1 Introduction

The following sections present the results of simulations performed to exam-

ine the implementation of the Gaussian mixture reduction algorithm described in

Sections 3.3.3 and 3.3.4. Section 4.2 presents the results of applying the initial-

ization algorithm to a simple one-dimensional problem with parameters chosen to

demonstrate several characteristics of the technique. Section 4.3 then illustrates the

refinement which may be gained through iterative optimization. Sections 4.4–4.6

present the results of simulations which examine the performance of the algorithms

in practical applications: first tracking a single target in clutter, then multiple targets

in clutter, and finally tracking a maneuvering target.

4.2 Initialization Algorithm

The initialization algorithm described in Section 3.3.4 provides a systematic

methodology of selecting mixture components for merging and deletion using the

Integral Square Difference (ISD) distance measure. The algorithm can be used to

provide a starting point for subsequent refinement using the iterative optimization

techniques described in Section 3.3.3. The following sections illustrate the applica-

tion of the initialization algorithm on a one-dimensional, five-component Gaussian

mixture. The parameters of the mixture are shown in Table 4.1. The main peak of

Component # Weight Mean Variance

1 0.083 1 0.1
2 0.167 2 20
3 0.25 3 2
4 0.333 4 2
5 0.167 10 2

Table 4.1. Parameters of the one-dimensional Gaussian mixture used
to test the initialization algorithm.

4-1

the mixture is produced by components 3 and 4, which have similar means and prob-

ability weights and the same variance. The peak at x = 10 has the same variance as

the two central components, and a weight half that of the larger central component.

The wide component at x = 2 with large variance has the same weight as the peak

on the right hand at x = 10, but its variance is 10 times that of the right-hand peak,

hence the size of the peak is much smaller. The tall, narrow peak at x = 1 has half

the probability weight of the previous two, and a variance which is one twentieth of

the components at x = 3, x = 4 and x = 10, and one two-hundredth of the larger

variance component at x = 2.

Figure 4.1 shows the original five-component Gaussian mixture (in the top-left

corner), and the approximations produced by the ISD initialization algorithm using

four, three and two components. The results are shown de-normalized, such that

the weights of the remaining components are not increased when a component is

deleted. The component weights are normalized at the end of each processing cycle

in the testing performed in Sections 4.4–4.6.

Table 4.2 shows the steps which are made to produce the approximations of

Figure 4.1, and the cost (using the ISD measure) of these steps. The first step is

to merge the two components (components 3 and 4 in Table 4.1) which combine to

produce the central peak. Visually, the approximation produced by this step appears

to be excellent, as illustrated in the top left plot in Figure 4.1. This subjective

assessment is supported by the small cost, 9.9 × 10−7, which is incurred by the

approximation. The parameters of the merged pair are placed in the lower component

Step Action Cost

1 Merge components 3 and 4 (of 5) 9.9 × 10−7

2 Delete component 2 (of 4) 1.8 × 10−3

3 Merge components 1 and 2 (of 3) 5.7 × 10−3

Table 4.2. Reduction steps for Gaussian mixture example.

4-2

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Original Density

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
4−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
3−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
2−Component Approximation

Figure 4.1. Reduction of a five-component Gaussian mixture to four-,
three- and two-component approximations using the ISD
initialization algorithm.

4-3

index, and the higher index component is deleted and indexing adjusted accordingly,

such that the newly merged component becomes number 3 of 4.

The second step in Table 4.2 is to delete the second mixture component. As dis-

cussed in Section 3.3.1.3, the ISD cost measure applies more cost to smaller variance

components (which produce large, narrow peaks) than to larger variance components

(with flatter, broader peaks) with the same probability weight. This reduction step

demonstrates this predisposition: even though the narrow peak produced by com-

ponent 1 carries half the probability mass of the much broader component 2 (which

has a variance 200 times that of component 1), the cost function prefers to discard

component 2. The cost of this step (1.8× 10−3) is three orders of magnitude greater

than the first approximation step, as reflected visually in the modification in the

overall function produced by the step.

The final step in the reduction is to merge components 1 and 2, which corre-

spond to the narrow peak discussed above, and the large peak produced by the first

merging step. The cost of this step (5.7×10−3) is on the same order of magnitude as

the previous approximation, as illustrated by the significant change produced in the

overall function. Interestingly, the cost of deleting component 1 (the narrow peak)

would have been 1.0 × 10−2, which is even larger than the cost of deleting compo-

nent 3 (the smaller, wider peak on the right), 8.4 × 10−3. This again demonstrates

the predisposition of the ISD measure towards giving more consideration to smaller

variance components than to larger variance components.

Figures 4.2 and 4.3 show the results of the same approximations using

Salmond’s joining and clustering algorithms, discussed in Section 2.5.11.2. Visually,

the representations provided by these approximations are poor compared to the

corresponding plots in Figure 4.1. This suggests that, on a visual level at least, the

approximations produced by the ISD initialization algorithm are superior to those

produced by Salmond’s joining and clustering algorithms.

4-4

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Original Density

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
4−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
3−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
2−Component Approximation

Figure 4.2. Reduction of a five-component Gaussian mixture to
four-, three- and two-component approximations using
Salmond’s joining algorithm.

4-5

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Original Density

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
4−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
3−Component Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
2−Component Approximation

Figure 4.3. Reduction of a five-component Gaussian mixture to
four-, three- and two-component approximations using
Salmond’s clustering algorithm.

4-6

4.3 Iterative Optimization

The iterative optimization techniques presented in Section 3.3.3 provide a

mechanism for converging to a local cost minimum which is close to the starting

point produced by the initialization algorithm. This iterative convergence acts as a

successive refinement of the PDF approximation, tuning the parameters in order to

provide a better representation of the original function. The operation of the opti-

mization algorithm is illustrated in Figure 4.4, using the same example discussed in

Section 4.2. The top left figure shows the starting point for the optimization, calcu-

lated using the ISD initialization algorithm. The result of the iterative optimization

is shown after 1, 2 and 12 iterations, providing successively closer approximations

to the original PDF (the approximation is shown using a solid line, while the origi-

nal PDF is shown using a dashed line). It is clear from Figure 4.4 that the overall

structure of the PDF is remaining unchanged: the changes made by the iterative

optimization represent more of a fine tuning than a large modification.

The cost function reduction as the optimization proceeds is shown in the upper

plot of Figure 4.5. The initial reduction is very significant, reducing the cost to

just 48% of its original value in two iterations, and 37% of the its original value

in four iterations; the reduction after this initial period is less significant. The

break in the line at the ninth iteration indicates that the gradient step caused an

increase in the cost function value, hence the step was discarded, and repeated

using a smaller step size. The adaptive step size control algorithm described in

Section 2.6 was implemented; its operation is shown in the lower plot of Figure

4.5. The algorithm was set to terminate after fifty optimization steps, or when the

improvement produced by an optimization step was less than 0.001 of the cost at the

starting point. Figures 4.5 and 4.7 suggest that a more aggressive stopping criterion

would be to terminate the optimization when a step that increases the cost is taken

(noting that most of the benefit of the optimization has been gained by this stage).

4-7

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Initialization Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 1 Step

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 2 Steps

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 12 Steps

Figure 4.4. Iterative optimization of a 3-component approximation
(shown in solid line) to a 5-component Gaussian mixture
(shown in dashed line). The top left figure shows the
starting point for the optimization, calculated using the
ISD initialization algorithm. Remaining figures show the
refined solution after 1, 2, and 12 gradient iterations.

4-8

0 2 4 6 8 10 12
0

0.5

1

1.5

2
x 10

−3 Iterative Cost Reduction

C
os

t

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

Iteration Number

S
te

p
S

iz
e

Figure 4.5. Cost function trajectory and step size adjustment. The
top figure shows the cost reduction as the PDF approx-
imation is optimized iteratively, while the bottom figure
shows the gradient step size adaptation.

4-9

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
Initialization Approximation

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 4 Steps

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 9 Steps

−10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2
After 29 Steps

Figure 4.6. Iterative optimization of a 3-component approximation
(shown in solid line) to a 5-component Gaussian mixture
(shown in dashed line). The top left figure shows the
starting point for the optimization, calculated using the
ISD initialization algorithm. The remaining figures show
the refined solution after 4, 9, and 29 gradient iterations.

The operation of the iterative optimization technique is more obvious when

the starting point provided to the algorithm is further from a minimum. Figures

4.6 and 4.7 illustrate such a situation, in which the starting point is far from a local

minimum. The example reveals that the same minimum is reached eventually; many

other starting points will not produce this result.

4.4 Single Target in Clutter

The single target scenario presented in [44] was reproduced to test the

performance of the ISD initialization and optimization algorithms in a realistic

4-10

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04
Iterative Cost Reduction

C
os

t

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Iteration Number

S
te

p
S

iz
e

Figure 4.7. Cost function trajectory and step size adjustment. The
top figure shows the cost reduction as the PDF approx-
imation is optimized iteratively, while the bottom figure
shows the gradient step size adaptation.

4-11

tracking environment. The scenario simulates a radar tracking a target flying

through dense clutter. The target state evolves according to the following constant

velocity state model:

x̂(k) =

p̂x(k)

v̂x(k)

p̂y(k)

v̂y(k)

=

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x̂(k − 1) +

T2

2
0

T 0

0 T2

2

0 T

w(k − 1)

z(k) =

zx(k)

zy(k)

 =

1 0 0 0

0 0 1 0

 x̂(k) + v(k) (4.1)

where T is the time between measurement intervals (k − 1) and k, and w(k) and

v(k) are two independent zero-mean white noise processes such that:

E{w(k)w(k)T} = Q = qI

E{v(k)v(k)T} = R = rI

The system is provided with noise-corrupted measurements of the target position

(x and y coordinates) through a linear measurement model; the system could be

extended to polar measurements (i.e., range and angle) using an extended Kalman

filter as described in Section 2.2.4.

To match the parameters presented by Salmond [44:16], T , q and r were all

normalized to unity, the clutter density λ was set to 0.012, and the probability of

detection (Pd) was set to unity. The gate size was reduced such that Pg = 0.99,

reducing computational complexity significantly over the value used in [44:43], Pg =

0.999. The target was initially located at the origin with a velocity of 10 units/sec

in each coordinate.

4-12

The measurement space was populated with false targets according to a Pois-

son distribution with density λ = 0.012 measurements per unit area. The region

populated was a square, centered on the actual target location, with side 200
√
r.

This value was chosen to be large such that hypotheses could be deceived by clutter

measurements for several processing cycles without leaving the populated region.

The expected number of false targets in each processing cycle for this configuration

is 480.

The criterion for loss of track suggested in [44:14–15] is that the target-origin-

ated measurement has not been incorporated into the measurement gate of any

hypothesis for the last five consecutive time steps, or that the combined estimate is

more than 10σ from the true target location for five consecutive time steps (the com-

parison being performed independently for each state element, ignoring off-diagonal

covariance elements), where σ is the standard deviation of the state estimate from

the Kalman filter without measurement origin ambiguity. The problem with the lat-

ter criterion is that the combined estimate can and will venture far from the correct

target location without the system losing track: as long as at least one hypothe-

sis remains within the vicinity of the actual target location, the combined estimate

will probably (or, at least, potentially) move back to the correct location when the

uncertainty is resolved using information from later measurement sets. To resolve

this difficulty, the latter criterion was modified such that loss of track is declared

if all hypotheses are more than 10σ from the correct target location for more than

five consecutive time steps, hence taking into account the deferred decision making

capability of the multiple hypothesis techniques.

It is worth noting that, using the original criteria proposed in [44], even the op-

timal Bayesian solution (with unbounded computational and memory requirements)

will potentially have a very limited track life. While the optimal solution is guar-

anteed1 to maintain a mixture component corresponding to the correct hypothesis,

1Although the use of measurement gating would weaken this guarantee.

4-13

Comp. 1 2 3–8 9 10 15 20 25 30 35 40

ISD Init. 200 200 200 200 200 200 200 200 200 106 -
Pruning 200 200 200 200 200 200 200 200 200 200 200
Joining 200 200 200 200 200 200 200 169 110 109 -
Clustering 200 200 200 200 200 200 200 200 110 109 -
Lainiotis - - 50 - - - - - - - -
Iter. Opt. 50 50 50 50 50 - - - - - -

Table 4.3. Number of Monte Carlo simulations run for each algorithm
and number of mixture components.

there is no guarantee that the combined estimate will be close to the correct loca-

tion at any point in time. Hence, to evaluate how effectively a particular hypothesis

reduction technique approximates the full Bayesian solution, the modified criterion

is preferable.

The initial set of results consisted of 200 Monte Carlo simulations, each of which

was allowed to run until loss of track was declared.2 The simulations were run for

the ISD initialization algorithm, the standard MHT pruning algorithm (discussed

in Section 2.5.11), and Salmond’s joining and clustering algorithms (discussed in

Section 2.5.11.2), using various numbers of hypotheses for each. Some simulations

were also run using the mixture reduction algorithm described in Lainiotis [31] (as

outlined in Section 2.5.11.1), and using the iterative optimization technique described

in Section 3.3.3. Some of the simulations using large numbers of mixture components

required a large amount of time to process (mainly due to the extremely long track

life achieved using the algorithms), hence they were terminated before the full 200

runs had completed.3 The number of simulations run for each algorithm and each

number of mixture components is summarized in Table 4.3.

The average track life for the various algorithms tested is compared in Fig-

ure 4.8; this was one of the major metrics used to compare algorithm performance

2The number of time steps was actually capped at 10,000 for each simulation, but using the
various algorithms, this limit was never reached.

3In fact the simulations presented were computed using 23 Intelr Pentiumr IV-based systems
over a period of approximately two weeks.

4-14

Comparison of Average Track Life

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40

Number of Mixture Components

A
ve

ra
g

e
T

ra
ck

 L
if

e
(S

ca
n

s)

ISD Initialization

ISD Iterated

Joining

Clustering

Lainiotis

Pruning

Figure 4.8. Average track life for various merging and pruning algo-
rithms.

in [44]. The diagram clearly reveals the remarkable performance of the ISD initial-

ization technique using a large number of mixture components: the average track

life is significantly greater than that of the algorithms which previously have been

considered to provide the best performance in this scenario. The exponential in-

crease of track life exhibited by the ISD initialization algorithm indicates that the

tracking performance is limited only by the availability of computational resources.

This is in sharp contrast to the algorithms which were previously considered to pro-

vide the best performance, which demonstrate an average track life that levels out as

the number of mixture components is increased, indicating that additional computer

resources would provide little performance benefit. The following sections examine

the performance of this algorithm in comparison with the existing systems shown

in Figure 4.8: standard MHT pruning, Salmond’s joining and clustering algorithms,

and a modified Lainiotis algorithm, as well as the ISD-based iterative optimization

technique.

4-15

Track Life Comparison
Integral Square Difference Initialization vs Pruning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35

Number of Mixture Components

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Pruning Better

Same

ISD Init Better

Figure 4.9. Performance of ISD initialization algorithm compared to
the standard MHT pruning algorithm.

4.4.1 Comparison with Pruning Algorithm. Figure 4.9 compares the per-

formance of the ISD initialization algorithm to a pruning algorithm which keeps the

most likely hypotheses, up to the desired number. The bars in the graph of Figure

4.9 indicate the proportion of simulations in which each algorithm outperformed the

other: the black region denotes the proportion of simulations in which the track life

of the ISD initialization algorithm was longer than that of the pruning algorithm;

the white region denotes the proportion of simulations in which the track life of

the pruning algorithm was longer than that of the ISD initialization algorithm; and

the gray region denotes the proportion of simulations in which the track life of the

two algorithms was essentially the same (i.e., within 10 scans of each other). It is

the belief of the author that this method of presentation provides the most reliable

comparison of the performance of two algorithms. If the two algorithms lose track at

4-16

approximately the same time, then the same sequence of measurements caused loss

of track on each. If the sequence of measurements causes loss of track on one algo-

rithm but not the other, then the surviving algorithm is demonstrated to be superior

in that circumstance. The amount of time that the surviving algorithm maintains

track after the point where loss of track occurred for the other algorithm is largely

irrelevant, as the performance of the algorithm losing track has not been tested past

the point where loss of track occurred.4 Accordingly, a performance metric consid-

ering each run equally according to which algorithm maintained track longer, and

not how much longer the surviving algorithm maintained track, provides the fairest

comparison.

The scatter plot in Figure 4.10 compares the track life of the two algorithms

for each of the 200 Monte Carlo simulations, using 25 mixture components for each

algorithm. Each cross on the diagram represents a single Monte Carlo simulation:

the x-coordinate is the number of scans for loss of track to occur using the ISD

initialization algorithm, while the y-coordinate is the number of scans for loss of track

to occur using the pruning algorithm on exactly the same simulation. The dashed

45◦ line is the contour for which the performance of the two algorithms is identical.

A cross above this dashed line represents a Monte Carlo simulation for which the life

of the pruning algorithm was longer than that of the ISD initialization algorithm;

conversely, a cross below the dashed line represents a Monte Carlo simulation for

which the life of the ISD initialization algorithm was longer than that of the pruning

algorithm. The concentration of crosses significantly below the 45◦ line indicates

that the ISD initialization algorithm performs significantly better than the pruning

algorithm.

In many Monte Carlo simulations it was obvious that the hypothesis utiliza-

tion of the simplistic pruning method was poor. The performance of the pruning

4i.e., there is nothing to suggest that the algorithm losing track would not have been able
maintain track as well as or better than the surviving algorithm if the algorithm losing track had
been able to maintain track through the sequence of measurements causing the loss.

4-17

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

25−Comp ISD Initialization Track Life (number of scans)

25
−

C
om

p
P

ru
ni

ng
 T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.10. Performance of 25-component ISD initialization algo-
rithm compared to 25-component pruning algorithm.

4-18

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

25−Comp ISD Initialization Track Life (number of scans)

10
0−

C
om

p
P

ru
ni

ng
 T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.11. Performance of 25-component ISD initialization algo-
rithm compared to 100-component pruning algorithm.

algorithm utilizing 100 mixture components is compared to the 25-component ISD

initialization algorithm in Figure 4.11.5 The diagram demonstrates that, even using

four times the number of mixture components, the performance of the pruning al-

gorithm is consistently inferior to that of the ISD initialization algorithm. Even in

these simulations, utilizing 100 mixture components, it was observed that the hy-

potheses remained clustered in a bunch for most of the simulation, rather than being

utilized effectively to follow significantly different branches. The Gaussian mixture

5The simulation utilized the extended clutter population discussed in Section 4.4.2; 37 Monte
Carlo runs were calculated.

4-19

PDF has the capability to model complex multi-modal distributions, yet if a simple

pruning mechanism is used to keep only the most likely hypotheses, the hypotheses

retained by the algorithms will be anything but multi-modal. Only with an efficient

merging algorithm is the true power of the MHT realized.

4.4.2 Comparison with Salmond’s Joining and Clustering Algorithms. On

the surface, the computational complexity of the initialization method discussed in

Section 3.3.4 appears to be an order of magnitude higher than the complexity of the

joining and clustering algorithms presented in [44–47]. However, in many simula-

tions in this study, instability was encountered in the merged covariance matrices,

increasing the computational complexity of the joining and clustering algorithms to

an order of magnitude above the ISD initialization method.

The joining and clustering filter covariance appeared stable in simulations in

which the probability of detection was set close to unity. However, when the prob-

ability of detection was reduced to 0.95 (which is still higher than experienced in

many practical applications), the covariance of hypotheses farther from the true

target tended to increase to such an extent that the measurements for the entire

surveillance region were associated with the hypothesis. In such a situation, the com-

putational complexity increases dramatically with the hypothesis covariance (more

measurements are within the association gate, resulting in more hypotheses), an in-

crease which is bounded only by the size of the surveillance region. This problem

was addressed by limiting the maximum number of measurements in the association

gate for any single hypothesis to 50,6 which should not be exceeded in any practical

situation with a stable filter covariance. This approximation was not applied in the

initial set of simulations; the performance of the algorithm using this limit is shown

in Figure 4.17.

6i.e., the 50 measurements closest to the predicted value for that hypothesis.

4-20

As discussed in Section 3.3.1.3, the ISD cost function applies lower cost weight-

ing to components with larger covariance than to those with smaller covariance.

Because of this de-prioritization, large covariance components tend to be discarded,

thus avoiding this explosive increase in computational complexity. In this regard, the

ISD initialization algorithm appeared stable throughout the simulations, far more so

than algorithms which concentrate purely on merging.

Another problem with the joining and clustering algorithms is the delicate

relationship which exists between the threshold used to discard components, and

the probability that the target is detected and is within the association gate. This

was observed in simulations in which the probability of detection was set to 0.999,

and the probability that target is within the gate was set to 0.98 and omitted from

the hypothesis probability calculation (effectively setting Pdg = 0.999 in Eq. (2.60)

rather than Pd). In the resulting set of hypotheses, events in which the target is

not detected are de-weighted by 999 times in comparison with events in which the

target is detected. Following the advice of Salmond [44], the threshold for discard-

ing components was set such that the least likely 1% of hypotheses are discarded

and the remainder maintained and merged until the desired level of reduction has

been achieved. However, with the probability of detection set to 0.999, this guaran-

tees that almost all events hypothesizing missed detection will be discarded without

further consideration. In such situations, if the target is not detected (or if the

target-originated measurement falls outside of the association gate), the correct hy-

pothesis (missed detection) will be discarded, and the system will quite possibly lose

track. Even with this incorrect hypothesis probability calculation, the ISD initial-

ization method performed well, demonstrating the robustness which is incorporated

into the algorithm through the trade-off between the cost of merging components

and the cost of deleting components.

The performance of Salmond’s joining algorithm is compared to the ISD ini-

tialization algorithm in Figure 4.12. The diagram demonstrates that each algorithm

4-21

Track Life Comparison
Integral Square Difference Initialization vs Salmond Joining

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35

Number of Mixture Components

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Joining Better

Same

ISD Init Better

Figure 4.12. Performance of ISD initialization algorithm compared
to Salmond joining algorithm.

4-22

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

5−Comp ISD Initialization Track Life (number of scans)

5−
C

om
p

Jo
in

in
g

T
ra

ck
 L

ife
 (

nu
m

be
r

of
 s

ca
ns

)

Comparison of Track Life

Figure 4.13. Performance of 5-component ISD initialization algo-
rithm compared to 5-component Salmond joining algo-
rithm.

exhibits better performance at different ends of the spectrum. For a small number of

mixture components, the performance of the two algorithms is roughly equivalent.

The Salmond joining algorithm exhibits noticeably better performance than the ISD

initialization algorithm when the number of mixture components is between four and

seven. The scatter plot comparing the ISD initialization and joining algorithms using

five components is shown in Figure 4.13. The diagram demonstrates that there is a

major concentration of simulations in which the joining algorithm performs slightly

better than the ISD initialization algorithm, and that apart from this cluster (in the

4-23

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

30−Comp ISD Initialization Track Life (number of scans)

30
−

C
om

p
Jo

in
in

g
T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.14. Performance of 30-component ISD initialization algo-
rithm compared to 30-component Salmond joining al-
gorithm.

bottom left corner, slightly above the 45◦ line), there is little difference between the

two algorithms.

At the upper end of the scale (for 15 mixture components and greater), it is

apparent that the ISD initialization algorithm significantly outperforms the joining

algorithm, which previously provided the best performance in this scenario. The

scatter plots for the 30- and 35-component cases are shown in Figures 4.14 and 4.15

respectively. The diagrams illustrate that the ISD initialization algorithm outper-

forms the joining algorithm significantly for a large proportion of the simulations.

4-24

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

35−Comp ISD Initialization Track Life (number of scans)

35
−

C
om

p
Jo

in
in

g
T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.15. Performance of 35-component ISD initialization algo-
rithm compared to 35-component Salmond joining al-
gorithm.

4-25

The excellent performance of the ISD initialization algorithm is indicative of the

efficiency gained by taking all mixture components into consideration when select-

ing merging and deletion actions, rather than considering only individual pairs, as

done in the Salmond algorithm. Another explanation of the failing performance of

the joining algorithm is the deletion threshold. As the total number of hypotheses

increases in number, the probability of each individual hypothesis decreases, and

there is a large number of incorrect hypotheses with which the correct hypothesis

must compete to gain probability. In such a situation it is possible that the correct

hypothesis could fall within the least likely 1% of hypotheses, and mistakenly be

deleted. This is another example of the lack of robustness which is unavoidable in

algorithms that are unable to evaluate the relative cost between merging components

and deleting components.

The performance of Salmond’s clustering algorithm is compared to the ISD

initialization algorithm in Figure 4.16. The diagram exhibits the same general trends

as Figure 4.12, although the overall performance of the clustering algorithm is inferior

to that of the joining algorithm.7 The ISD initialization algorithm’s performance

increases for large numbers of components far more in comparison with the clustering

algorithm than in the comparison with the joining algorithm, which indicates that

the clustering algorithm is less efficient when a large number of components is being

used.

The joining and clustering implementations previously discussed did not limit

the maximum number of measurements associated with a single hypothesis, hence

difficulties with unstable covariance growth were experienced, as previously de-

scribed. The comparison is repeated in Figure 4.17 for the 30- and 35-component

simulations (utilizing 200 Monte Carlo simulations for the 30-component case and

106 for the 35-component case) with the maximum number of hypotheses spawned

7As described in [44–47], the clustering algorithm was designed as a further approximation to
the joining algorithm in an attempt to reduce the computational complexity.

4-26

Track Life Comparison
Integral Square Difference Initialization vs Salmond Clustering

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35

Number of Mixture Components

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Clustering Better

Same

ISD Init Better

Figure 4.16. Performance of ISD initialization algorithm compared
to Salmond clustering algorithm.

4-27

Track Life Comparison
Integral Square Difference Initialization vs Salmond Join and Clustering Algorithms

Limited Hypothesis Spawning

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Clust-30 Clust-35 Join-30 Join-35

Number of Components and Test Algorithm

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Test Better

Same

ISD Init Better

Figure 4.17. Performance of ISD initialization algorithm compared
to Salmond clustering and joining algorithms with the
maximum number of hypotheses spawned by any parent
hypothesis limited to 50.

by any parent hypothesis limited to 50. Comparing the diagram with Figures 4.12

and 4.16 indicates that the hypothesis limiting makes very little difference to the per-

formance of Salmond’s algorithms. Any practical implementations of the algorithms

would need to limit the number of hypotheses to ensure computational tractability.

Following from the earlier discussion of the instability of component covari-

ances using Salmond’s joining algorithm, the 25-, 30- and 35-component simulations

were repeated, with the region populated by clutter increased in size by 10×, from a

square of side 200
√
r to a square of side 2, 000

√
r. This change in the clutter popu-

lation region increases the expected number of clutter-originated measurements for

each scan interval from 480 to 48,000. To process this number of false measure-

4-28

Comparison of Average Track Life
Using Extended Clutter Population Region

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40

Number of Mixture Components

A
ve

ra
g

e
T

ra
ck

 L
if

e
(S

ca
n

s)

ISD Initialization

Joining

Clustering

Figure 4.18. Average track life for scenario using extended clutter
population region.

ments, a more efficient gating routine was necessary; the algorithm described in

Appendix A.2, which is algebraically equivalent to the original gating methodology,

was employed. Using these updated parameters, 73 Monte Carlo simulations were

calculated. As the clutter density was not modified, one would expect that the per-

formance would be unchanged (on average), unless the algorithms were being aided

by the limited clutter population region. The average track life of each algorithm

for the modified scenario is shown in Figure 4.18 (all algorithms had the number

of hypotheses spawned by any parent hypothesis limited to 50). The diagram con-

firms the trend that the performance of the ISD initialization algorithm increases

exponentially as the number of components is increased, whereas the performance

of the joining and clustering algorithms levels out. This again indicates that the

performance of the ISD initialization algorithm is limited only by the availability of

computing resources, whereas little performance benefit is gained using the joining

and clustering algorithms by increasing the size of the mixture beyond 25 compo-

4-29

nents. Comparing Figure 4.18 to Figure 4.8 reveals that the average track life of

all algorithms has been reduced somewhat, indicating that all of the algorithms

may have been assisted by the limited clutter population region somewhat. The

histogram of the data used for these points is shown in Figure 4.19. From this dia-

gram, it is difficult to judge whether the increased clutter population region caused a

deterioration in the performance of the various algorithms. There is a visible differ-

ence between the original simulation histogram and the extended clutter population

region histogram for the 35-component joining algorithm; in most other cases it is

difficult to declare such a difference. This reduction in performance for the case

in which the clutter population region is extended in size indicates that the algo-

rithm is benefitting from the limited clutter population region. This phenomenon is

probably caused by incorrect hypotheses drifting beyond the area populated by false

measurements and being deleted when they otherwise may have survived longer.

Even if the various algorithms were aided by the limited clutter population re-

gion, this is not entirely unrealistic. Practical radar systems have limited detection

ranges, and individual detections are limited by the maximum unambiguous range

(and Doppler) imposed by the waveform in use [50]. Hence the realistic radar mea-

surement space will not extend infinitely, but rather it will exist within a bounded

region.

The performance of the ISD initialization algorithm is compared to the join-

ing and clustering algorithms for the updated scenario in Figure 4.20. The diagram

again confirms the superior performance of the ISD initialization algorithm for large

numbers of mixture components; the performance difference is significantly greater

than that shown in Figure 4.12, indicating that Salmond’s algorithm was being as-

sisted by the finite clutter population region to a much greater extent than the ISD

initialization algorithm. The ISD initialization and Salmond joining algorithms us-

ing 25, 30 and 35 mixture components are compared in the scatter plots of Figures

4.21, 4.22 and 4.23 respectively. The diagrams demonstrate that the ISD initializa-

4-30

0 4000
0

10

20

30

40
25−Comp ISD Init ECPR

0 4000
0

10

20

30

40

50
25−Comp Joining ECPR

0 4000
0

20

40

60
25−Comp Clustering ECPR

0 4000
0

10

20

30

40
30−Comp ISD Init ECPR

0 4000
0

10

20

30

40

50
30−Comp Joining ECPR

0 4000
0

20

40

60
30−Comp Clustering ECPR

0 4000
0

5

10

15

20

25
35−Comp ISD Init ECPR

0 4000
0

10

20

30

40

50
35−Comp Joining ECPR

0 4000
0

20

40

60
35−Comp Clustering ECPR

0 4000
0

20

40

60

80
25−Comp ISD Init

0 4000
0

20

40

60

80

100
25−Comp Joining

0 4000
0

50

100

150
25−Comp Clustering

0 4000
0

20

40

60

80
30−Comp ISD Init

0 4000
0

20

40

60

80

100
30−Comp Joining

0 4000
0

50

100

150
30−Comp Clustering

0 4000
0

5

10

15

20

25
35−Comp ISD Init

0 4000
0

20

40

60

80

100
35−Comp Joining

0 4000
0

50

100

150
35−Comp Clustering

Figure 4.19. Histogram of track life for ISD initialization and
Salmond’s joining and clustering algorithms, utilizing
25, 30 and 35 mixture components. Plots labelled
“ECPR” describe the Monte Carlo simulations utilizing
the extended clutter population region; the remaining
plots describe the original scenario.

4-31

Track Life Comparison
Integral Square Difference Initialization vs Salmond Join and Clustering Algorithms

Extended Clutter Population Region

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Clust-25 Clust-30 Clust-35 Join-25 Join-30 Join-35

Number of Components and Test Algorithm

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Test Better

Same

ISD Init Better

Figure 4.20. Performance of ISD initialization algorithm compared to
Salmond joining and clustering algorithms, with clutter
population region increased in size by ten times in both
x and y axis directions.

4-32

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

25−Comp ISD Initialization Track Life (number of scans)

25
−

C
om

p
Jo

in
in

g
T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.21. Performance of 25-component ISD initialization algo-
rithm compared to 25-component Salmond joining algo-
rithm, with clutter population region increased in size
by ten times in both x and y axis directions.

4-33

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

30−Comp ISD Initialization Track Life (number of scans)

30
−

C
om

p
Jo

in
in

g
T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.22. Performance of 30-component ISD initialization algo-
rithm compared to 30-component Salmond joining algo-
rithm, with clutter population region increased in size
by ten times in both x and y axis directions.

4-34

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

35−Comp ISD Initialization Track Life (number of scans)

35
−

C
om

p
Jo

in
in

g
T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.23. Performance of 35-component ISD initialization algo-
rithm compared to 35-component Salmond joining algo-
rithm, with clutter population region increased in size
by ten times in both x and y axis directions.

4-35

tion algorithm increasingly outperforms the Salmond joining filter as the number of

mixture components grows. The scatter plots have very few points above the 45◦

line, and a large number of points significantly below the 45◦ line, indicating that

the ISD algorithm is outperforming Salmond’s joining algorithm, which has previ-

ously provided the best performance in this scenario, by a considerable margin. The

difference between the algorithms appears to be greater than that shown in Figures

4.14 and 4.15, which again indicates that the joining algorithm was being aided by

the limited clutter population region. Once again it should be noted that Salmond’s

joining algorithm previously was considered to provide the best performance for this

type of scenario.

4.4.3 Comparison with Lainiotis Algorithm. The algorithm of Lainiotis [31]

was considered as another reference to provide further comparison. The implemen-

tation described in [31:627] uses two separate thresholds for merging and deleting,

using Eqs. (2.76) and (2.77) to evaluate the cost of each action. In order to provide

a better comparison to the initialization algorithm presented in Section 3.3.4, the

algorithm was implemented to compare the cost of all possible actions (both merging

and deleting), and the action producing the smallest cost was taken. When this im-

plementation was executed, the algorithm was found to delete mixture components

at almost every step, rarely choosing to merge at all.8 This trend was observed also

when the algorithm was applied to the simple one-dimensional reduction discussed in

Section 4.2, leading to extremely poor reduced PDF approximations. This indicates

that the costs calculated for deleting and merging components are not suitable for

comparison: they provide a reasonable mechanism for evaluating the relative cost of

deleting different components, and likewise a reasonable mechanism for evaluating

the relative cost of merging pairs of components, but they do not provide a trade-off

8The increased performance of the various merging algorithms presented previously as compared
to the standard MHT pruning algorithm demonstrates that merging components is almost always
a better choice than deleting components.

4-36

between deleting and merging. This also reveals why the author chose to select a

different threshold for deleting and merging.

After observing from the ISD initialization algorithm that the lowest cost action

is usually merging components, and that the system rarely chooses to delete com-

ponents, the Lainiotis algorithm was implemented to merge sequentially the pair of

components which leads to the smallest reduction in the Bhattacharyya coefficient

between the original PDF and the approximation (denoted ρa), as according to the

approximation of Eq. (2.77):

ρa ≥ 1 − (pi + pj)
√

1 − ρi,j2

where pi and pj are the weights of the two components to be merged, and ρi,j is the

Bhattacharyya coefficient between the two individual components being considered

for merging. The merging continues until the number of mixture components has

been reduced to the desired level. The algorithm was run for the same test case

described above, for 50 Monte Carlo runs, using 3, 4, 5, 6, 7 and 8 mixture compo-

nents. The results of the algorithm are compared to the ISD initialization algorithm

in Figure 4.24. The diagram indicates that the performance of the technique is not

as good as that provided by either joining or clustering, and thus the technique is

further inferior to ISD initialization than either of Salmond’s algorithms. Observing

the form of the cost function of Eq. (2.77), the difference is probably caused by the

difference in the way in which the probability weights are incorporated into the equa-

tion. The Salmond expressions (Eqs. (2.78) and (2.79)) incorporate the probability

weights through the factor pipj/(pi + pj). This expression is a smooth interpolation

of the minimum of the two probability weights, similar to the combined resistance

of two resistors in parallel. Accordingly, Salmond’s expressions will tend to allow

very small components to be merged into larger components, effectively providing

a mechanism for deleting small components without changing the overall structure

of the PDF. Lainiotis’ expression incorporates the probability weights through the

4-37

Track Life Comparison
Integral Square Difference Initialization vs

Modified Lainiotis Method

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 4 5 6 7 8

Number of Components

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Lainiotis Better

Same

ISD Initialization Better

Figure 4.24. Performance of ISD initialization algorithm compared
to modified Lainiotis algorithm.

4-38

factor (pi + pj), which will be large if either weight is large, not providing such a

deletion mechanism.

4.4.4 Comparison with Iterative Optimization Algorithm. The results pre-

sented previously were obtained using the ISD initialization algorithm, without uti-

lizing the iterative optimization method described in Section 3.3.3. The initialization

algorithm was utilized without the iterative optimization algorithm mainly due to

the computational complexity of the iterative technique.

The iterative optimization method was applied over 50 Monte Carlo simula-

tions in order to evaluate the performance enhancement produced. Considering the

discussion of Section 4.3, it would not be surprising if the iterative optimization tech-

nique did not produce a substantial increase in performance, as the overall structure

of the PDF approximation remains largely unmodified. However, the results of these

simulations appear to indicate that the performance using the iterative optimization

method is actually slightly worse than the initialization algorithm alone, which is

rather surprising. The performance of the two algorithms is compared in Figure

4.25, using 1 to 10 mixture components. The scatter plot for the 10-component case

is shown in Figure 4.26, demonstrating that the iterative optimization substantially

reduces the track life in a number of simulations.

This result is even more surprising when one considers that the iterative op-

timization technique is guaranteed not to increase the cost of the reduced PDF

representation, and that in almost any practical situation the cost will indeed be

reduced. Thus the outcome of this is that a PDF representation producing a lower

ISD cost does not necessarily result in better tracking performance. An interesting

interpretation of this result is found when one considers the equations used to cal-

culate the parameters of the merged component when two mixture components are

combined in the ISD initialization algorithm, as shown in Eq. (2.24). The parameters

in this equation are such that the mean and covariance of the overall mixture remain

4-39

Track Life Comparison
Integral Square Difference Initialization vs

Integral Square Difference Optimized

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Number of Components

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

ISD Iteration Better

Same

ISD Initialization Better

Figure 4.25. Performance of ISD initialization algorithm compared to
same algorithm utilizing iterative optimization to refine
the approximation.

4-40

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

10−Comp ISD Initialization Track Life (number of scans)

10
−

C
om

p
IS

D
 It

er
at

ed
 T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.26. Comparison of track life for simulations of 10-component
ISD initialization algorithm, and the same algorithm
utilizing iterative optimization to refine the approxima-
tion.

4-41

unchanged through the merging operation. These parameters do not necessarily

represent the optimal fit of a single component to the original two components ac-

cording to the ISD cost function.9 Rather, these parameters can be shown to be the

optimum parameters according to the Maximum Likelihood measure, as presented

in Section 3.3.1.4. Accordingly, the ISD initialization algorithm is not based on the

ISD cost function alone: it uses the ISD cost function to select which components

to merge or delete, and then uses the Maximum Likelihood measure to calculate the

parameters of the merged components. The result of this section therefore indicates

that the performance of this “hybrid” approach, incorporating the Maximum Like-

lihood measure to select the parameters of the merged components, is better than

that of a “pure” ISD implementation. This is not surprising when one considers

that the Maximum Likelihood measure was the preferred cost function in terms of

physical meaningfulness — except that it was unable to be evaluated.10

4.4.5 Comparison with PDA Algorithm. In order to provide a comparison

with the performance of the various algorithms using a single Gaussian mixture,

the simulations were run for the Probabilistic Data Association (PDA) algorithm,

described in Section 2.5.7. In this scenario the clutter density was high enough that

the covariance of the PDA algorithm exhibited unbounded growth until loss of track

occurred. The results of the simulations are compared in Figure 4.27. It is not

surprising that the performance of the Salmond merging and clustering algorithms

is almost identical to that of the PDA algorithm. Other than the deletion logic

9As far as the author is aware, there is no closed-form solution for the optimal parameters,
according to the ISD cost function, of a single component representing a pair of components.

10The parameters for the merged component can be found in closed form using the Maximum
Likelihood measure because the logarithm operation in Eq. (3.16) is of the reduced mixture. Thus,
if the reduced mixture contains only a single component (as is the case when we are solving for
the parameters of the single component which provide the best fit to a pair of components), then
the logarithm will be of a single Gaussian function, which results in an expression which can be
evaluated in closed form, and a parameter optimization that can be solved also in closed form. If the
reduced mixture contains multiple components, then the logarithm operation cannot be simplified,
and the cost function must be evaluated through numerical integration or approximation. Hence,
purely due to computational tractability, the ISD cost function remains preferable.

4-42

Track Life Comparison
PDA vs Other Single Component Algorithms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pruning Clustering Joining ISD Init

Test Algorithm

P
ro

p
o

rt
io

n
 o

f
S

im
u

la
ti

o
n

s

Test Better

Same

PDA Better

Figure 4.27. Performance of PDA compared to other algorithms us-
ing a single Gaussian component.

4-43

(which discards the set of least likely hypotheses which contribute 1% of the overall

probability mass), these algorithms are algebraically identical to PDA. The slight

reduction in performance indicates that the deletion logic is harmful to the overall

performance. It is also not surprising that the performance of the pruning algorithm

is worse than that of PDA. A single-component pruning algorithm is the Nearest

Neighbor algorithm described in Section 2.5.6, and the poor performance of the

Nearest Neighbor algorithm compared to PDA has been well documented [4:139–

141, 7:373].

The surprising result of Figure 4.27 is that the single-component ISD initial-

ization algorithm visibly outperforms PDA. In order to verify this result, this com-

parison was repeated for 1,000 Monte Carlo simulations. The scatter plot for these

simulations is shown in Figure 4.28. In this new set of simulations, the ISD ini-

tialization algorithm outperformed the PDA algorithm 12.5% of the time, the PDA

algorithm outperformed the ISD initialization algorithm 8.8% of the time, and the

the two were essentially identical (track life within 10 scans of each other) for 78.7%

of the time. The diagram shows that there is a large concentration of simulations for

which the PDA performs slightly better than the ISD initialization algorithm, but

the difference in performance is less than 10 scans, hence they are counted as being

identical. The performance of the ISD initialization algorithm is spread much further

out towards the larger values in Figure 4.28, indicating that the track life is more

likely to be significantly longer than that of the PDA algorithm. The histograms of

the track life of the two algorithms are shown in Figure 4.29. The diagram shows

that, while the means of the two track life distributions is roughly identical, the

ISD initialization is further skewed such that there are more points in the tail of the

distribution, representing significantly longer track life. Overall, however, one would

suppose that the mean performance is not significantly improved.

4-44

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

1−Comp ISD Initialization Track Life (number of scans)

P
D

A
 T

ra
ck

 L
ife

 (
nu

m
be

r
of

 s
ca

ns
)

Comparison of Track Life

Figure 4.28. Performance of PDA compared to other algorithms us-
ing a single Gaussian component.

4-45

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250
Histogram of PDA Track Life

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250
Histogram of ISD Init Track Life

Track Life (scans)

Figure 4.29. Histograms of track life for PDA algorithm and single-
component ISD initialization algorithm.

4-46

4.5 Multiple Targets in Clutter

In order to test the performance of the system tracking multiple targets in

clutter, the system was extended to the multiple target model as presented in Section

2.5, and tested using a two-target scenario. The system was programmed to generate

joint association hypotheses for every joint association event, each with the estimated

joint state of the targets, joint state covariance and hypothesis weight, as described in

Section 2.5.5. While the implementation performed well (as expected) in low-clutter

tracking conditions, the computational complexity prevented any testing from being

conducted in high clutter conditions (where the more efficient merging algorithm is

beneficial). This prevented any meaningful comparison with previously published

merging and pruning algorithms.

The SB-MHT algorithm described in Section 2.5.10 maintains separate sets of

single target hypotheses for each individual target, alongside listings of compatible

hypotheses which can be used to form joint hypotheses (each including one single

target hypothesis from each target’s list). Such a structure retains much of the benefit

of the direct joint target state representation, but for a fraction of the memory and

computational cost. A multiple target extension of the ISD initialization algorithm

using such an architecture could be performed; however, due time limitations this

was not attempted.

4.6 Single Maneuvering Target

As discussed in Section 2.4.2, the PDF of target state for a single target which

switches between different dynamics models at unknown time instants is also a Gaus-

sian mixture in which the number of components grows exponentially with time. Ac-

cordingly, this is another problem to which the ISD initialization and optimization

algorithms could be applied.

In order to test the performance of such an implementation, a full-order

Bayesian filter was developed using a Markov transition model. The development

4-47

of the algorithm follows Section 2.4.2; the structure of the algorithm is shown in

Figure 2.3. At the end of each processing cycle the hypotheses are combined using

the ISD initialization algorithm such that the maximum number of hypotheses

is not exceeded. When hypotheses are merged, a different form of transition

probability will be required, to represent the probability that the system transitions

from one of a merged set of models to a new model. This calculation is described

in Appendix A.3.

The algorithm was tested using a scenario adapted from [21], which simulates

a target flying on segments of constant velocity, in between segments of constant

acceleration turn. The state space representation of the target truth model is:

x(k) =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x(k − 1) +

T2

2
0

T 0

0 T2

2

0 T

u(k − 1) +

T2

2
0

T 0

0 T2

2

0 T

w(k − 1)

z(k) =

zx(k)

zy(k)

 =

1 0 0 0

0 0 1 0

x(k) + v(k) (4.2)

where T is the time between measurement intervals (k − 1) and k, and w(k) and

v(k) are two independent zero-mean white noise processes such that:

E{w(k)w(k)T} = Q = qI

E{v(k)v(k)T} = R = rI

where the measurement noise covariance r = 2000, the dynamics noise covariance

q = 10−4, and the acceleration input u(k) is as shown in Table 4.4. The initial

velocity of the target is 15 units/sec in the −y direction.

4-48

Sample Model Acceleration

1–35 Constant velocity 0

36–40 Constant velocity plus input [0.5 0.5]T

41–55 Constant velocity 0

56–65 Constant velocity plus input [−0.2 − 0.2]T

66–100 Constant velocity 0

Table 4.4. Parameters for maneuvering target scenario.

The filter bank consists of three filters, two of which utilize constant

acceleration models and the other utilizes a constant velocity model. The constant

velocity filter uses the model described in Eq. (4.1), with q = 10−4, as per the truth

model. The constant acceleration models utilized the standard extension of Eq. (4.1):

x̂(k) =

p̂x(k)

v̂x(k)

âx(k)

p̂y(k)

v̂y(k)

ây(k)

=

1 T T2

2
0 0 0

0 1 T 0 0 0

0 0 1 0 0 0

0 0 0 1 T T2

2

0 0 0 0 1 T

0 0 0 0 0 1

x̂(k − 1) +

T2

2
0

T 0

1 0

0 T2

2

0 T

0 1

w(k − 1)

z(k) =

zx(k)

zy(k)

 =

1 0 0 0 0 0

0 0 0 1 0 0

 x̂(k) + v(k) (4.3)

where, as previously, T is the time between measurement intervals (k − 1) and k,

and w(k) and v(k) are two independent zero-mean white noise processes such that:

E{w(k)w(k)T} = Q = qI

E{v(k)v(k)T} = R = rI

One of the constant acceleration filters uses q = 10−4 to handle the constant acceler-

ation input once the model has stabilized after the initial maneuver onset; the other

4-49

has q = 0.25 to aid convergence at onset. The Markov transition model was set

such that the probability that the system will stay in a given model is 0.98, and the

probability that the system will switch from a given model to either of the remaining

models is 0.01.

The simulations were computed for 50 Monte Carlo runs using the Bayesian

switching model approximation, and the IMM. The Bayesian switching model ap-

proximation used the ISD initialization algorithm to combine the outputs of the

filters down to three estimates at the end of the processing cycle. Each of these

three estimates was then processed using each dynamics model in the following pro-

cessing cycle, similarly to the GPB-2 structure. The Root-Mean-Square (RMS) error

of the system using the Bayesian switching model approximation is shown in Figure

4.30, and the RMS error of system using the IMM is shown in Figure 4.31. The

results demonstrate that the performance of the Bayesian switching model approx-

imation is worse than that of the IMM. The reason for this is that, as discussed in

Section 3.3.1.3 and as illustrated in Section 4.2, the ISD cost function applies more

cost to components with smaller variance than to those with larger variance. In

the problem of data association, as examined in previous sections, most of the mix-

ture components have covariances of similar magnitude, hence this weighting is not

harmful, and at times it can even be beneficial. In the problem of switching mod-

els, however, the covariance matrices proposed by the various models are of vastly

different orders of magnitude — some proposing that the target is travelling on a

regular, predictable path, and others proposing that the target is exhibiting a high-

jerk maneuver. In this situation, the ISD initialization algorithm will tend to merge

or discard the more agile maneuver hypotheses, even if they are more probable than

the lower covariance non-maneuvering hypotheses. This explains why the error of

the ISD initialization system is lower than the error of the IMM in non-maneuvering

portions of the simulations, and higher than the IMM at the harsh maneuver onset,

as seen in Figures 4.30 and 4.31.

4-50

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000
RMS Position Error and Filter Prediction for Bayesian Switching Approxmation

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
RMS Velocity Error and Filter Prediction

Figure 4.30. RMS position and velocity error of system utiliz-
ing Bayesian switching model approximation. Filter-
predicted RMS error shown in dashed line.

4-51

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000
RMS Position Error and Filter Prediction for IMM Filter

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

RMS Velocity Error and Filter Prediction

Figure 4.31. RMS position and velocity error of IMM system. Filter-
predicted RMS error shown in dashed line.

4-52

The result of Figure 4.30 was largely unmodified when nine hypotheses were

retained rather than three, effectively lengthening the memory of the system by a

further sample period. This indicates that the limiting factor in the performance

of the IMM is more the Markov transition model, rather than the approximation

applied to the target state PDF. This suggests that altering the transition model,

perhaps to a time-varying Markov model, could be of great benefit. A suggestion for

such a model is discussed in Section 5.4.

4.7 Summary

The major outcome of this chapter is that the performance of the ISD initial-

ization algorithm for tracking a single target in clutter is significantly better than

that of any of the previously published methods tested in the comparison. Further-

more, it was demonstrated that the performance of the ISD initialization algorithm

increases exponentially as the number of mixture components increases, whereas ex-

isting methods are unable to provide any significant improvement using more than

25 mixture components. Although no results were obtained for the multiple target

tracking problem, a result similar to the single target case is likely if a computation-

ally feasible extension is developed.

4-53

V. Conclusions and Recommendations

5.1 Restatement of Research Goal

As stated in Section 1.2, the goal of this study was to develop a technique

of maintaining a high fidelity representation of the target state Probability Density

Function (PDF) while limiting the number of Gaussian mixture components to re-

tain computational tractability. The procedure defined a physically meaningful cost

function to measure the deviation from the true target state PDF, and proceeded

by sequentially selecting the simplification steps to minimize the cost of the reduc-

tion. The performance of this cost function-based approximation was demonstrated

in a realistic single target tracking problem, as presented by Salmond [44]. These

simulations indicate that the track life (the standard metric for comparison of such

algorithms) achievable utilizing the new approximation raises tracking performance

to a previously unattainable level.

5.2 Summary of Results

The results presented in Chapter IV demonstrate the performance of the Gaus-

sian mixture reduction algorithm based on the Integral Square Difference (ISD) cost

function. Section 4.2 applied the initialization algorithm to a one-dimensional prob-

lem, illustrating the competency of the reduction steps chosen. Section 4.3 then

demonstrated the refinement offered using the iterative optimization technique.

5.2.1 Single Target Tracking Performance. The results presented in Section

4.4 reveal the significant improvement in performance offered by the ISD initializa-

tion algorithm. It was demonstrated that, while the performance of the algorithm

is no better than previous techniques when fewer than 10 components are utilized,

when 25 or more components are used, the track life performance is considerably

better than that achievable using any of the existing methods compared. Further-

5-1

more, the trend of the average track life shown in Figures 4.8 and 4.18 suggests that

the increase in performance will continue as the number of components grows: there

is no indication that the performance will level out as seen with the other algorithms.

Accordingly, the ISD initialization algorithm not only provides a level of performance

which was previously unattainable, but the level of performance achievable using the

algorithm appears to be limited only by the computational resources available. As

computational power increases, the algorithm has the potential to extend the track

life possible in a high clutter environment far beyond that provided by any previous

algorithm.

5.2.2 Multiple Target Tracking Performance. The application of the ISD

initialization algorithm to the multiple target tracking problem revealed the excessive

computational complexity of the methodology used in the multiple target extension.

As discussed below in Section 5.4, an MHT-like extension of the hypothesis creation

algorithm which maintains separate lists of hypotheses for each target, alongside a

list of joint hypotheses linking the single-target hypotheses together, would allow the

ISD initialization technique to be applied to the multiple target tracking problem,

providing a similar performance benefit to the single target case, but with a more

modest computational load.

5.2.3 Maneuvering Target Tracking Performance. The results presented in

Section 4.6 demonstrate that the ISD cost function is not appropriate for use with

the problem of switching dynamics models due to the large variability of the covari-

ance in each model. The results also appeared to indicate that the performance in

the scenario is limited more by the Markov transition model than the PDF repre-

sentation. An extension to a time-varying Markov transition model is suggested in

Section 5.4.

5-2

5.3 Significant Contributions of Research

The Multiple Hypothesis Tracking (MHT) technique represents the state-of-

the-art tracking algorithm in modern civilian and military radar systems. However,

the common implementation relies on simplistic ad hoc pruning and merging tech-

niques to perform the most vital function of the algorithm: hypothesis control. This

thesis directly addresses the problem of hypothesis control, making several important

contributions, including those listed in the following pages.

1. The Integral Square Difference (ISD) cost function defined in Section 3.3.1.3 is

both physically meaningful and computationally tractable; this latter attribute

was seen to be rare among common cost function selections. By developing a

cost function which can be evaluated in closed form, the resultant reduction

algorithm is able to consider the impact of a merging or pruning operation

on the entire mixture, rather than individual components or component pairs,

leading to a remarkable improvement in tracking performance.

2. Apart from being able to be evaluated in closed form, the ISD cost function

is also continuously differentiable, and its first derivatives are also able to be

evaluated in closed form using standard vector-matrix notation. This leads

to an easy application of iterative optimization methods as described in Sec-

tion 3.3.3, which have not previously been applied to the Gaussian mixture

reduction problem. Although the simulation results presented in Section 4.4.4

indicate that the improvement gained over the initialization algorithm is negli-

gible for the target tracking problem, it remains a valuable concept which may

be beneficial in other applications.

3. The tracking performance of the ISD initialization algorithm presented in Sec-

tion 4.4 demonstrates the benefit of the cost function-based technique. For

larger numbers of mixture components, the performance of the ISD initializa-

tion algorithm is significantly greater than that of previously published tech-

5-3

niques. The trend illustrated in Figure 4.8 indicates that, in the problem under

consideration, the performance achieved using the ISD initialization algorithm

with 30 mixture components is greater than attainable with existing algorithms

using any feasible number of components. Furthermore, as the computational

power available increases, the algorithm is capable of providing a level of per-

formance that increases exponentially with the number of mixture components,

whereas the previously proposed algorithms are unable to improve performance

beyond that achieved using 25 components.

4. The significance of the Maximum Likelihood cost function proposed in Section

3.3.1.4 should not be overlooked. Although this function does not lead to a

tractable implementation, its physical interpretation as the “goodness of fit”

of the reduced-complexity PDF to the full PDF (as derived in Section 3.3.1.4)

distinguishes it as possibly the most physically meaningful cost function of

which one could conceive. Approximations to this cost function may be able

to yield a significant alternative to the more mathematically tractable ISD

technique developed herein.

5. The tutorial on existing data association algorithms presented in Section 2.5

differs significantly from previous presentations (such as those in [2, 4]), and

provides a clear understanding of the approximations inherent to the algo-

rithms, and the resultant strengths and weaknesses.

6. The examination of the bias and coalescence problems of the JPDA and CPDA

algorithms presented in Section 3.2 reveals new insight into the cause of the

difficulties commonly experienced with these techniques. In Eqs. (3.2)–(3.7)

it is proven that JPDA is in fact unbiased, which is in direct contradiction

to the analyses presented in [16, 19, 22]. The thorough explanation of the

poor performance of CPDA as compared with JPDA expands and corrects the

previous theory, as published in [12].

5-4

7. Finally, the efficient method of evaluating a multivariate Gaussian PDF out-

lined in Section 3.3.4.1 and the two-stage gating procedure described in Ap-

pendix A.2 both provide major computational savings, and are applicable to

a wide range of scientific computation applications. To the knowledge of the

author, neither of these developments has been previously published.

5.4 Recommendations for Future Investigations

While the ISD initialization algorithm proposed in Section 3.3.4 provides a sub-

stantial increase in performance over existing methods, the computational complex-

ity of the technique will be of significant concern for any practical implementation.

An important area for future investigation is to examine computational enhance-

ments of the algorithm. For example, the current implementation considers the cost

for every possible action at each step, selecting only a single action. From the begin-

ning of the reduction process, it will commonly be clear that many possible actions

are not worth considering, and thus the computational load of the algorithm could

be reduced considerably by neglecting such options.

As discussed in the previous section, the Maximum Likelihood measure de-

rived in Section 3.3.1.4 is probably the most physically meaningful cost function

for this application. Although the ISD cost function was chosen for its tractabil-

ity, its predisposition toward neglecting higher variance components was clear, and

this characteristic was demonstrated to make the function inappropriate for some

applications. There is potential for significant improvement in performance through

development of techniques based on the Maximum Likelihood measure or approxi-

mations thereof.

The results presented in Section 4.4 clearly demonstrate the performance of the

ISD initialization algorithm in a single target tracking problem. The method adopted

for a multiple target implementation, directly forming and merging joint hypotheses,

led to a structure which was computationally untenable, preventing generation of any

5-5

meaningful results (discussed in Section 4.5). The extension of the Gaussian mixture

reduction algorithm to a multiple target scenario while maintaining links between

compatible single target hypotheses (as opposed to the target PDF marginalization

inherent to the extension proposed by Pao [38], discussed in Section 2.5.11.2) remains

a significant area of research.

The application of the ISD initialization algorithm to the problem of switching

target dynamics models demonstrated that the ISD cost function was inappropriate

for this application, and that the time invariant Markov transition model was quite

potentially the more important limitation on the performance of the system. As

mentioned briefly in Section 2.4.2, the use of the Markov model assumes that transi-

tion probabilities depend only on the previous model index, and not on prior model

histories or prior measurements. These assumptions are applied in the development

of Eq. (2.39), in which the model switching probabilities, which naturally depend on

the entire model history and measurement history, are assumed to depend only on

the previous model index. A simple variant of these assumptions would be to allow

dependence of the Markov transition probabilities on recent measurements, hence

creating a time varying Markov model which adapts itself as observations are re-

ceived. One idea for such a structure would be to adjust the transition probabilities

according to the properties of the residuals for each of the filters in recent processing

cycles. If one filter is clearly dominant, then the transition probabilities can be ad-

justed accordingly to use this filter almost exclusively in the estimator output, and

to reinitialize other filters continually using this estimate. If the residual properties

of all filters are similar, or if the model with the smallest residual changes, then the

transition probabilities corresponding to a change of model could be increased to

respond to this uncertainty. Using a structure based on the Sequential Probability

Ratio Test (SPRT) or the extensions discussed in [54], the transition probabilities

could be increased whenever the most recent residuals indicate that, to within a

certain confidence level, the model in force is changing. Such a development could

5-6

enhance both the steady state performance of the system, and the speed with which

the system responds to the onset of a maneuver.

5-7

Appendix A. Derivations

A.1 Product of Two Gaussians of Same Dimension

This section develops a simplification of the result of the product of two multi-

variate Gaussian PDFs of the same dimension. The result presented herein is utilized

throughout Chapter III.

The variable of both PDFs is denoted x; the first Gaussian has mean µ1 and

covariance P1, while the second has mean µ2 and covariance P2. Writing the product

in full:

N{x; µ1,P1}N{x; µ2,P2}

= |2πP1|−
1

2 exp
{

− 1

2
(x − µ1)

TP1
−1(x − µ1)

}

·

|2πP2|−
1

2 exp
{

− 1

2
(x − µ2)

TP2
−1(x − µ2)

}

= |2πP1|−
1

2 |2πP2|−
1

2 ·

exp
{

− 1

2

[

(x − µ1)
T
P1

−1(x − µ1) + (x − µ2)
T
P2

−1(x − µ2)
]}

(A.1)

Manipulating the exponents:

(x − µ1)
T
P1

−1(x − µ1) + (x − µ2)
T
P2

−1(x − µ2)

= xTP1
−1x − 2xTP1

−1µ1 + µ1
TP1

−1µ1

+ xTP2
−1x − 2xTP2

−1µ2 + µ2
TP2

−1µ2

= xT (P1
−1 + P2

−1)x − 2xT (P1
−1µ1 + P2

−1µ2) + µ1
TP1

−1µ1 + µ2
TP2

−1µ2

(A.2)

Examining the form of Eq. (A.2), we see that the resulting function will be a

Gaussian PDF with a scaled volume. Denoting µ3 and P3 as the mean and covariance

A-1

of the resultant Gaussian, and α as the volume scaling factor, we seek to fit Eq. (A.1)

into the form:

αN{x; µ3,P3} = α|2πP3|−
1

2 exp
{

− 1

2
(x − µ3)

TP3
−1(x − µ3)

}

(A.3)

where the exponent expands to:

(x − µ3)
T
P3

−1(x − µ3) = xTP3
−1x − 2xTP3

−1µ3 + µ3
TP3

−1µ3 (A.4)

Matching the coefficients of the terms in Eq. (A.2) to those in Eq. (A.4), we find:

xTP3
−1x = xT (P1

−1 + P2
−1)x ∀ x

∴ P3
−1 = P1

−1 + P2
−1

∴ P3 = (P1
−1 + P2

−1)−1

= P1 − P1(P1 + P2)
−1P1 = P2 − P2(P1 + P2)

−1P2 (A.5)

where the final equality is due to the matrix inversion lemma [34:213]. Similarly,

matching the x coefficients and using the result of Eq. (A.5):

2xTP3
−1µ3 = 2xT (P1

−1µ1 + P2
−1µ2) ∀ x

∴ µ3 = P3(P1
−1µ1 + P2

−1µ2)

= P3P1
−1µ1 + P3P2

−1µ2

= [P1 − P1(P1 + P2)
−1P1]P1

−1µ1 + [P2 − P2(P1 + P2)
−1P2]P2

−1µ2

= µ1 + µ2 − P1(P1 + P2)
−1µ1 − P2(P1 + P2)

−1µ2 (A.6)

A-2

From Eqs. (A.5) and (A.6) we can expand the final term in Eq. (A.4):

µ3
TP3

−1µ3 = (µ1
TP1

−1 + µ2
TP2

−1)P3P3
−1P3(P1

−1µ1 + P2
−1µ2)

= µ1
TP1

−1P3P1
−1µ1 + 2µ1

TP1
−1P3P2

−1µ2 + µ2
TP2

−1P3P2
−1µ2

= µ1
TP1

−1[P1 − P1(P1 + P2)
−1P1]P1

−1µ1 + 2µ1
TP1

−1P3P2
−1µ2

+ µ2
TP2

−1[P2 − P2(P1 + P2)
−1P2]P2

−1µ2

= µ1
TP1

−1µ1 − µ1
T (P1 + P2)

−1µ1 + µ2
TP2

−1µ2 − µ2
T (P1 + P2)

−1µ2

+ 2µ1
TP1

−1P3P2
−1µ2

= µ1
TP1

−1µ1 + µ2
TP2

−1µ2 − (µ1 − µ2)
T (P1 + P2)

−1(µ1 − µ2)

+ 2µ1
TP1

−1P3P2
−1µ2 − 2µ1

T (P1 + P2)
−1µ2

= µ1
TP1

−1µ1 + µ2
TP2

−1µ2 − (µ1 − µ2)
T (P1 + P2)

−1(µ1 − µ2)

+ 2µ1
T [P1

−1P3P2
−1 − (P1 + P2)

−1]µ2 (A.7)

Manipulating the weighting matrix on the cross-term:

P1
−1P3P2

−1 − (P1 + P2)
−1

= P1
−1[P1 − P1(P1 + P2)

−1P1]P2
−1 − (P1 + P2)

−1

= P2
−1 − (P1 + P2)

−1P1P2
−1 − (P1 + P2)

−1

= (P1 + P2)
−1(P1 + P2)P2

−1 − (P1 + P2)
−1P1P2

−1 − (P1 + P2)
−1

= (P1 + P2)
−1[(P1 + P2)P2

−1 − P1P2
−1 − I]

= (P1 + P2)
−1[P1P2

−1 + I − P1P2
−1 − I]

= (P1 + P2)
−1[0]

= 0 (A.8)

Hence substituting Eq. (A.8) into Eq. (A.7):

µ3
TP3

−1µ3 = µ1
TP1

−1µ1 + µ2
TP2

−1µ2 − (µ1 − µ2)
T (P1 + P2)

−1(µ1 − µ2) (A.9)

A-3

Finally equating the expressions in Eqs. (A.1) and (A.3):

N{x; µ1,P1}N{x; µ2,P2} = αN{x; µ3,P3} (A.10)

Expanding each side of the expression:

LHS = |2πP1|−
1

2 |2πP2|−
1

2 ·

exp
{

− 1

2

[

xTP3
−1x − 2xTP3

−1µ3 + µ1
TP1

−1µ1 + µ2
TP2

−1µ2

]}

RHS = α|2πP3|−
1

2 ·

exp
{

− 1

2

[

xTP3
−1x − 2xTP3

−1µ3 + µ1
TP1

−1µ1 + µ2
TP2

−1µ2

− (µ1 − µ2)
T (P1 + P2)

−1(µ1 − µ2)
]}

(A.11)

Using the last remaining variable α to satisfy the equality of Eqs. (A.10) and (A.11):

α =

√

|2πP3|
|2πP1||2πP2|

exp
{

− 1

2

[

(µ1 − µ2)
T (P1 + P2)

−1(µ1 − µ2)
]}

(A.12)

where:

√

|2πP3|
|2πP1||2πP2|

=
√

|2πP1||2πP3|−1|2πP2|
−1

=
√

|2πP1P
−1
3 P2|

−1

=
√

|2πP1(P
−1
1 + P−1

2)P2|
−1

=
√

|2π(P1P
−1
1 P2 + P1P

−1
2 P2)|

−1

=
√

|2π(P1 + P2)|
−1

Hence:

N{x; µ1,P1}N{x; µ2,P2} = αN{x; µ3,P3} (A.13)

A-4

where:

P3 = (P1
−1 + P2

−1)−1

= P1 − P1(P1 + P2)
−1P1

= P2 − P2(P1 + P2)
−1P2

µ3 = P3(P1
−1µ1 + P2

−1µ2)

= µ1 + µ2 − P1(P1 + P2)
−1µ1 − P2(P1 + P2)

−1µ2

α = |2π(P1 + P2)|−
1

2 exp
{

− 1

2
(µ1 − µ2)

T (P1 + P2)
−1(µ1 − µ2)

}

= N{µ1; µ2,P1 + P2}

Considering the special case where µ1 = µ2 = µ and P1 = P2 = P:

P3 = (P−1 + P−1)−1 = (2P−1)−1 = 1

2
P

µ3 = P3(P
−1µ + P−1µ) = 1

2
P(2P−1µ) = µ

α = |2π(P + P)|− 1

2 exp
{

− 1

2

[

(µ − µ)T (2P)−1(µ − µ)
]}

= |4πP|− 1

2 (A.14)

Hence:

[N{x; µ,P}]2 = |4πP|− 1

2N{x; µ, 1

2
P} (A.15)

A.2 Modified Gating Algorithm

The measurement gating algorithm described in Section 2.5.1 centers on the

following calculation:

[zj(k) − ẑi(k|k − 1)]TSi(k)
−1[zj(k) − ẑi(k|k − 1)] ≤ γ (A.16)

where zj(k) is the j-th measurement in the k-th scan, ẑi(k|k − 1) is the predicted

measurement for the i-th hypothesis, and Si(k) is the covariance of the residual

A-5

for hypothesis i formed with the target-originated measurement. This expression

requires the calculation of the difference of two vectors, followed by the multiplication

of a matrix by a vector, and finally the inner product of two vectors. For an N -

dimensional measurement space, the first operation will require N additions, the

second operation will require N2 multiplications and N(N − 1) additions, and the

final operation will require N multiplications and (N − 1) additions. This totals

(N2 +N) multiplications and (N2 +N −1) additions.1 While this may seem a small

number, these calculations must be repeated for every pairing of hypothesis and

measurement. The matrix inversion is not included in the calculation as this needs

to be performed only once for each hypothesis; it does not need to be repeated for

each measurement considered. As described in Section 4.4.2, the region populated

by clutter measurements can contain on the order of 48,000 measurements for the

latter simulations, and the algorithms being tested maintain up to 35 hypotheses

between processing intervals, hence these calculations must be performed 1,680,000

times (on average) in each processing cycle.

As illustrated in Figure A.1(a), the gating procedure described by Eq. (A.16)

determines whether or not a given measurement is within an ellipse that is centered

on the measurement prediction ẑi(k|k − 1), and with major and minor axis and

orientation that are determined by the residual covariance Si(k). The idea of the

following development is to form a square which is aligned with the coordinate axes

and completely encloses the ellipse such that if a measurement is outside of the

square it can be discarded without performing the calculation in Eq. (A.16). To

determine whether or not a measurement lies within a square requires only 2N logical

comparisons, hence avoiding the complex calculations described previously. The

calculation of Eq. (A.16) can then be performed for the relatively small number of

1This may be reduced somewhat by exploiting the symmetry of the covariance matrix, as utilized
in Section 3.3.4.

A-6

measurements which are found to be within the enclosing square. This is illustrated

in Figure A.1(c).

Dividing both sides of Eq. (A.16) by γ, we obtain the following equation:

[zj(k) − ẑi(k|k − 1)]T [γSi(k)]
−1[zj(k) − ẑi(k|k − 1)] ≤ 1 (A.17)

Following from [52:335–336], the major and minor axes of this ellipse will be the

square roots of the eigenvalues of γSi(k), and the orientation of the axes will be in

the directions of the corresponding eigenvectors. If a circle is drawn centered on the

measurement prediction (ẑi(k|k − 1)) with a radius of the square root maximum

eigenvalue2 of γSi(k) (denoted
√
λ1), then this will be the smallest circle which

encloses the gating ellipse. This is illustrated in Figure A.1(b). It is then an easy

matter to form the square which encloses the circle, and is aligned to the coordinate

axes, as illustrated in Figure A.1(c). The square will be centered on the measurement

prediction (as was the circle), and will have a side of 2
√
λ1. The gating operation

can thus be performed first using this square, avoiding the calculation of Eq. (A.16)

for the vast majority of the measurements, providing a major computational saving.

A.3 Switching Bayesian Transition Probability

The switching model estimator approximation discussed in Section 4.6 imple-

ments the structure of the full switching Bayesian algorithm shown in Figure 2.3,

employing the ISD initialization algorithm to combine hypotheses at the end of each

processing cycle. It is quite possible that estimates arising from different models in

the latest processing interval will be merged in the hypothesis reduction process. In

order to propagate these estimates to the following processing interval, a different

form of transition probability will be necessary. For example, if the estimates from

2While calculation of the eigenvalues of a matrix is itself a computationally demanding operation,
this will only need to be performed once for each hypothesis, not for each measurement, hence the
computational burden associated with it is not of concern.

A-7

Target

Measurements

Association gate

+

+
+

+ +

+

+

+ +
++

+

+

+

+

+

+

+

+

++
+

+

+

+

+
+

+
+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

+

+

+

+

(b)

(c)

+
+

+ +

+

+

+ +
++

+

+

+

+

+

+

+

+

++
+

+

+

+

+
+

+
+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

+

+

+

+

+
+

+ +

+

+

+ +
++

+

+

+

+

+

+

+

+

++
+

+

+

+

+
+

+
+

+

+

+

+
+

+

++

+

++
+

+

+

+

+

+

+

+

+

(a)

Figure A.1. Measurement gating: the gating equation describes an
ellipse as shown in (a); the smallest circle enclosing the
ellipse is shown in (b); the square aligned with coordinate
axes enclosing the circle is shown in (c).

A-8

models 1 and 2 in the (k − 1)-th processing cycle are combined in the hypothesis

reduction process, then the transition probability required to weight the model esti-

mates in the k-th processing cycle will be P{Mk,j|Mk−1,1 ∪Mk−1,2}, rather than the

standard Markov transition probability P{Mk,j|Mk−1,i}. To see the source of this

modified form, consider the expression in which the transition probably first arose,

Eq. (2.38):

P{Mk,l|Zk} = P{Mk,l|z(k),Zk−1}

=
f{Mk,l,z(k)|Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,l|Zk−1}

f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,j,M

k−1,l′ |Zk−1}
f{z(k)|Zk−1}

=
f{z(k)|Mk,l,Zk−1}P{Mk,j|Mk−1,l′ ,Zk−1}P{Mk−1,l′ |Zk−1}

f{z(k)|Zk−1}
(A.18)

The modification due to merging of models commences from the second-last line of

Eq. (A.18). If hypotheses are merged, then the latter term in the numerator will

become P{Mk,j,M
k−1,l′

1 ∪Mk−1,l′
2 |Zk−1}, which can be expanded as:3

P{Mk,j,M
k−1,l′

1 ∪Mk−1,l′
2 |Zk−1}

= P{Mk,j|Mk−1,l′
1 ∪Mk−1,l′

2 ,Zk−1}P{Mk−1,l′
1 ∪Mk−1,l′

2 |Zk−1}

= P{Mk,j|Mk−1,1,M
k−2,l′′

1 ∪Mk−1,2,M
k−2,l′′

2 ,Zk−1}P{Mk−1,l′
1 ∪Mk−1,l′

2 |Zk−1}

= P{Mk,j|Mk−1,1 ∪Mk−1,2}P{Mk−1,l′
1 ∪Mk−1,l′

2 |Zk−1} (A.19)

3For this example, the two model history events which are to be merged, Mk−1,l′
1 and Mk−1,l′

2 ,
are assumed to contain consist of models 1 and 2 respectively in the most recent entry (events
Mk−1,1 and Mk−1,2), alongside the previous model history events Mk−2,l′′

1 and Mk−1,l′′
2 .

A-9

where the final step is due to the Markov assumption, as previously applied in

Eq. (2.39), and P{Mk−1,l′
1 ∪Mk−1,l′

2|Zk−1} is the combined probability weight of the

merged models:

P{Mk−1,l′
1 ∪Mk−1,l′

2|Zk−1} = P{Mk−1,l′
1 |Zk−1} + P{Mk−1,l′

2 |Zk−1} (A.20)

This latter step is possible because all model history events are disjoint.

To evaluate the modified transition probability, consider the alternative expan-

sion of Eq. (A.19):

P{Mk,j,M
k−1,l′

1 ∪Mk−1,l′
2|Zk−1}

= P{Mk,j,M
k−1,l′

1 |Zk−1} + P{Mk,j,M
k−1,l′

2 |Zk−1}

= P{Mk,j|Mk−1,l′
1 ,Zk−1}P{Mk−1,l′

1 |Zk−1} +

+ P{Mk,j|Mk−1,l′
2 ,Zk−1}P{Mk−1,l′

2 |Zk−1}

= P{Mk,j|Mk−1,1,M
k−2,l′′

1 ,Zk−1}P{Mk−1,l′
1 |Zk−1} +

+ P{Mk,j|Mk−1,2,M
k−2,l′′

2 ,Zk−1}P{Mk−1,l′
2 |Zk−1}

= P{Mk,j|Mk−1,1}P{Mk−1,l′
1 |Zk−1} + P{Mk,j|Mk−1,2}P{Mk−1,l′

2 |Zk−1}

(A.21)

where P{Mk−1,l′
1 |Zk−1} and P{Mk−1,l′

2 |Zk−1} are the probabilities of the two hy-

potheses to be merged before merging. Equating the expressions of Eqs. (A.19) and

(A.21), we obtain:

P{Mk,j,M
k−1,l′

1 ∪Mk−1,l′
2|Zk−1}

= P{Mk,j|Mk−1,1 ∪Mk−1,2}P{Mk−1,l′
1 ∪Mk−1,l′

2|Zk−1}

= P{Mk,j|Mk−1,1}P{Mk−1,l′
1 |Zk−1} + P{Mk,j|Mk−1,2}P{Mk−1,l′

2 |Zk−1}

(A.22)

A-10

thus:

P{Mk,j|Mk−1,1 ∪Mk−1,2} =
P{Mk,j|Mk−1,1}P{Mk−1,l′

1 |Zk−1}
P{Mk−1,l′

1 ∪Mk−1,l′
2 |Zk−1}

+

+
P{Mk,j|Mk−1,2}P{Mk−1,l′

2 |Zk−1}
P{Mk−1,l′

1 ∪Mk−1,l′
2|Zk−1}

(A.23)

Considering the definition of the denominator of Eq. (A.23) in Eq. (A.20), the

result in Eq. (A.23) can be seen to be a weighted sum of the transition probabilities

from the models corresponding to the merged hypotheses to the new model under

consideration. The weights for this sum are simply the probabilities of the original

hypotheses that were merged together.

A-11

Appendix B. Matrix Reference Manual

The following pages contain a reproduction of the world-wide web page entitled “Ma-

trix Reference Manual: Matrix Calculus”, maintained by Mr Mike Brooks of Imperial

College, University of London. The Uniform Resource Locator (URL) for the page

is http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html. Many thanks go to

Mr Mike Brookes for giving permission for the document to be reproduced in this

thesis.

B-1

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html

��������	
	�	��	�������
��������������

���������������������������������	���

�������������	
��
�����������

� ����������
� �	�������	���
����	�������������������������������
� �	�������	���
����	��	�������	������	�	���������
� �������������!	������������	���

���	������

� �����"�#�������	�����$%��	�����	�	�	����������������
� �����"&#�������	�����$%��	�����	�	�	����������������

� �����"�	#�������������$%��	���
���	�	�	�������������������

� �����"�#�������������$%��	���
���	�	�	����������
�������
� �����"&#�������������$%��	���
���	�	�	�������������
����
� �����������	��%	��	����������'����&�(������
����

� �������%	����(�	�����)'��	��
����

� ������%	��*��	�������
�+,��

-��	�(�	�����������������&���

	�	�����	��$��%��	�(�����������(�	�����
���������
�	���%	����%&+��	�����
	*�������������������������.�/�(�	���������������'��%	����(�	�����)'��	����!	�������������(��	����

�����������&������
&��%����	*��	�	��������	(����	�	�(�	�������
������������������������	�'��	������%	�	�

���	�.��

����%	�	�(�	��������	��$�������	�������	����������������������	(�������.��

�����	�������������	������������

� �����"���#����0������"�#�0���
� �����"��#����0������"�#��

� �����"�	�#����

� �����"�	#�����

� �����"�		#��������"		�#�1�	��

� �����"		��#�1�	�	�

� �����"		�	#�1������"		�		#�1�			��

��'	�,��
�2���������������������������

32��	��34%��(�55$$$.		.��.��.65%(5���

5���5������5������.%���

� �����"		�	�#�1��		��

� �����"��#����0������"�#�7������"�#������

� �������"�
�#�1�"��������"�#�#���

� �����

�"��#�1�"������

�"�#�#���

� �������"�
��#�1���

� �������"�
�#�1����

� ������"�
��#�1� ���

� ������"�
�#�1� ����

�����	���������!�	��	��������������

� �5���"��7�#	�"��7�#�1��	�"��#�$�7��	�	"��#�$�

� �5���"�	��#�1�"�7�	#��

� 8�1�	9���5���"�	��#�1�4����

� �5���"�	�#�1�4��

� �5���"��7�#	�"��7�#�1��	�"��#�$�7��	�"��#�$�

� �5���"��7�#	�"��7�#�1�4�	�"��#�$�

� 8�1�	9���5���"��7�#	�"��7�#�1�4�	�"��#�$�

� �����"		�	��#�1��"	�	�#��		$�

� �����"		�	�	#�1�4�			��

� �����"		�	���#�1��	�	�	�#����		�

� �����"		�	��	#�1�"��#��	$�			��

� 8�1�	9������"		�	��	#�1�%��			��

� �����""�	#�$	�"�	#�$#�1�"�#�	$"�	#�$		��

� �5����"��7�#��"��7�#�1����"��#�$�7��	�	"��#�$0�

� �5����"�
���#�1���7�	�0�1���7"���#	�

� 8�1�	9���5����"�
���#�1�4����

�

� 8�1��9���5����"�
���#�1�4"��#��

�

� �5����"�
��#�1�4���

�

� �5���"��7�#��"��7�#�1��"��	�	"��#�$0:���"��#�$�#�

� �5���"�
���#�1��"�	�0�:���#�1��"�"���#	�:����#�

� 8�1�	9���5���"�
���#�1�4���

�

� 8�1��9���5���"�
���#�1�4"��#�

�

� �5����"�
��#�1�4�

�

�����	�������������������������

� �����"�	���	#�1�"�#�	$��	#�	����

�

��'	�4��
�2���������������������������

32��	��34%��(�55$$$.		.��.��.65%(5���

5���5������5������.%���

�����	�������������������

� �����"�+,#�1� �+,�����"�#�+,��84.,9�

�

� �����"		�+,�#�1� ��		�	��	��84.;9��

�����	��������&�	����

���	������������	������������	����������������'�	���
�����"#.��

� �����"��"�$#�1������"��"�	##�'������84.29�

�

� �����"��"��$#�1�"��+,$	��

� �����"��"���$#�1�()�����+,"�
������+,$	��

� �����"��"��+,�$#�1� "�+,���+,$	�1�+"��	����	#����84.<9�

� �����"��"��+,$#�1�����"��"�+,�$#�1� �+	�	�+	��

� �����"��"�	��	##�1������"��"��	�##�1�������84.29�

� �����"��"��	$#�1������"��"�	�$#�1�����"��"�	�$#�1������"��"��	$#�'����

� �����"��"����	�$#�1��	�	��	�7������

� �����"��"���	$#�1������"��"��	�$#�1������"��"�	��$#�1��"�#�	$��

� �����"��"�	��$#�1������"��"���	$#�1������"��"��	�$#�1�"�#�	$���

� �����"��"����$#�1��	�	�	�7��	�	�	��

� ���

� 8�����������9������"��""�	��$+,�#�1������"��"��"�	��$+,#�1� "��"�	��$+,$"�#�	$"�	��$+,�

� 8=������������9������"��""�	��$+,"�	��$#�1������"��"�"�	��$"�	��$+,#�1� %"��"�	��$+,$

�	��"�	��$+,�#�%��"�	��$+,��

� ���

�����	�������������*��	����

���	������������	������������	����������������'�	���
����	�"#.�>��	��
��%	�	�(�	��������	��$�
������	����	��	����%	�	�
������((�&����&��
��%	�*�����&��	��'����	��	������*��	��������+���'���.�

� �����"�	�"�$#�1������"�	�"�	$#�1���+"�#	1�	�"�$��+	��

� �����"�	�"���$#�1��	��+"���#�	�1��	�"���#��	"���#+	�	�1��	�"���#��+	��

� �����"��"�	�"���$$#�1��	"���#+	�	�1��+	��

� �����"�	�"��$#�1��0�	�"��$��+	�

� �����"��"�	�"��$##�1���+	��

� 8����9������"�	�"�	��$#�1��	�"�	��$�"�#�	$�"�	��$+,�

� 8�������
���������9������"�	�"�	��$#�1�4�	�"�	��$����"�	��$+,��

� 8�������
����������9������"��"�	�"�	��$$#�1�4��"�	��$+,��

+	����	���

�
��������
��������
�����%	����	5�������%	� ����������������
���$��%��	�(�������.�

�

��'	�?��
�2���������������������������

32��	��34%��(�55$$$.		.��.��.65%(5���

5���5������5������.%���

�����	�	���������@��	5��@������%	���� !�����
���$��%��	�(�������������	(�	�	�����%	��������
��%	�%&(�+
����	�����������.��%	� ��������������$%	���%��'��'��������	�����������	'�����������	'���"
"�#��#

1���	'���"
"�"�##�@��	5��@���#.��

,����	��*	������

�
�
������
��������
����%	���%	��&��	�������������4
5��4�1��5��	"�
5��#�����%	�����������������
�
"�#.�-�
���	��
���
���$%��%��
5���1�-�����	�(���������������������������������	�(�������������'����
$%	�%	���%	�!	���������(������	��	
����	���	'����	��	
����	�������	
����	.�

� �45��4�"		�#�1�3�

�

� �45��4�"��7�#	�"��7�#�1��	���7��	�	��

� �45��4�"�	��#�1��7�	�

� �45��4�"�	�#�1�4��

� �45��4�"��7�#	�"��7�#�1��	��7��	��

� �45��4�"��7�#	�"��7�#�1�4�	��

� 8����&��	����9���45��4�"��7�#	�"��7�#�1�4�	���

�%	���������	
	�	��	����������$����	���&���6	�=���6	�����(���������	'	����������AB.���	��	��	���
��&�����	��������''	������������6	.����6	�C��.��.6��

��'	�2��
�2���������������������������

32��	��34%��(�55$$$.		.��.��.65%(5���

5���5������5������.%���

Appendix C. Source Code

The following listing contains the source code for the MEX implementation of the ISD

initialization algorithm, developed in Section 3.3.4. The source code was compiled

using lcc-win32, which is included with the student version of MATLABr Release

12.

The function requires four input arguments. The first is a vector of length Nh,

which contains the probability weights of theNh hypotheses. The second is anN×Nh

matrix, the columns of which contain the mean vectors for each of the hypotheses.

The third argument is a three-dimensional matrix of dimension N ×N ×Nh, which

contains the covariance matrices for each of the Nh hypotheses. The final input is a

scalar, which specifies the number of hypotheses to which the Nh should be reduced.

There are three output arguments returned by the function, containing the

probability weights, mean vectors and covariance matrices of the reduced set of

hypotheses in the same format as the input. The probability weights are returned in

de-normalized form, such that they will not necessarily sum to unity; normalization

should be applied as a later step.

C-1

C.1 ISDInit.c

/* ISDInit.c
Integral Square Difference Intialization Algorithm

This MEX function performs the cost function-based mixture reduction
described in Section 3.3.4 of the thesis. The implementation is
highly optimized to avoid re-calculation of portions of the cost
function which do not change when the reduction steps are taken, and
it utilizes the efficient multivariate Gaussian evaluation described
in the thesis.

The Matlab function takes four inputs. The first is the vector which
contains the probability weights for the numMix hypotheses. The
second is a numVar x numMix matrix whose columns contain the mean
vectors for the hypotheses. The third is a three-dimensional matrix
of dimensions numVar x numVar x numMix, which contains the
covariance matrices for the hypotheses. The final input is a scalar
number (numNewMix) which indicates the number of mixture components
to which the input mixture is to be simplified.

The function provides three outputs, which contain the probability
weights, mean vectors and covariance matrices for the reduced set of
hypotheses.

(c) 07Jan03 Flight Lieutenant Jason L. Williams, RAAF
AFIT GE-03M */

#include "mex.h"
#include "matrix.h"
#include <math.h>
#include <float.h>

/* If debug is set to ’1’, debugging information will be written to
Matlab stdout device during execution. */

#define DEBUG 0

/* mergePossNum converts two component numbers to the one-dimensional
index corresponding to that merge possibility */

#define mergePossNum(m1,m2) ((m2)−1 + ((m1)*(2*numMix − ((m1)+3))>>1))

/* Assert function definition which works when not compiled in debug
mode -- if the specified condition is not true then the function
is terminated and the specified error message is written to the
screen */

#define jlwAssert(cond,message) {if (!(cond)) {mexErrMsgTxt(message);}}

/* Function prototypes */
void calcCurCost(void);
void calcCostOptions(void);
void copyMixtureParameters(void);
void deleteMixture(int mix);
void mergeMixtures(int mix1, int mix2);
void calcOrigCosts(void);
void calcOrigMergePoss(void);
void calcMergeParam(int m1, int m2);
double calcDist(double p1, double *mean1, double *cov1,

double p2, double *mean2, double *cov2);

C-2

/* Global Variables
Implementation makes extensive use of global variables to speed
execution overhead associated with passing large data structures.

Definitions of variables are as follows:

Inv2PI: the constant (1/(2*pi))
numMix: the number of mixture components in the original mixture
numNewMix: the number of mixture components to which the mixture
is to be simplified

numVar: the number of variables -- i.e. the dimensionality of
the space in which the multivariate Gaussian mixture
components reside

numMergePoss: the number of possible merge actions which can be
taken to simplify the original mixture -- i.e. the number of
unique pairs of two components selected from the original mixture

numCurMix: the counter which tracks the number of mixture components
as it is reduced from numMix to numNewMix

mixMask: an array of flags indicating which components are still in
the reduced mixture. When components are deleted, this flag is set
to zero to indicate that the repective component should no longer
be counted in the mixture.

probs: the hypothesis probabilities of the original mixture
means: the mean vectors of the original mixture
covs: the covariance matrices of the original mixture
newProbs: the hypothesis probabilities of the reduced mixture
newMeans: the mean vectors of the reduced mixture
newCovs: the covariance matrices of the reduced mixture
muD: a temporary variable used to store the difference between two
mean vectors

P: a temporary variable used to store the sum of two covariance
matrices

Di: the inverse of the diagonal portion of the U-D factored
covariance matrix

mergep: temporary variable used to store the probability of the
component resulting from the merging of two hypotheses

mergeMu: temporary variable used to store the mean vector of the
component resulting from the merging of two hypotheses

mergeP: temporary variable used to store the covariance matrix of
the component resulting from merging two hypotheses

self: the matrix whose (i,j) component represents the similarity
between components i and j of the reduced mixture

cross: the matrix whose (i,j) component represents the similarity
between component i of the original mixture and component j of the
reduced mixture

sumSelf: each entry of the sumSelf array contains the sum of the
entries of the reduced mixture self-likeness matrix (self) which
are due to the respective mixture -- i.e., the sum of the row and
column highlighted in the right-hand diagram of Figure 3.7 in the
thesis

sumCross: the sum of each of the columns of the cross-likeness
matrix

newSelf: matrix containing the new column/row for the self matrix
for each merge possiblitiy

newCross: matrix containing the new column for the cross matrix for
each merge possibility

newSumSelf: array containing the sum of each of the newSelf columns.
Entries of this array are actually the sum of the new row/column
which would replace the previous row/column, as per the
description of sumSelf above.

newSumCross: array containing the sum of each of the newCross cols
actMix1, actMix2: variables used to store the best action found so
far. If the best action is a deletion, then actMix1 contains the
component number to be deleted and actMix2 is 0; otherwise actMix1
and actMix2 are the numbers of the components to be merged.

actMergePoss: contains the merge possibility index corresponding
to merging actMix1 and actMix2

C-3

curCost: contains the current cost -- i.e., the cost of the
reduction steps performed already

sumDist: contains the sum of the original mixture self likeness
matrix. The contents of this matrix do not change, hence this term
can be used throughout the reduction to calculate the actual cost. */

const double Inv2PI = 1.591549430918954e−001;
int numMix, numNewMix, numVar, numMergePoss, numCurMix;
char *mixMask;
double *probs, *means, *covs, *newProbs, *newMeans, *newCovs;
double *muD, *P, *Di, mergep, *mergeMu, *mergeP;
double *self, *cross, *sumSelf, *sumCross;
double *newSelf, *newCross, *newSumSelf, *newSumCross;
int actMix1, actMix2, actMergePoss;
double curCost, sumDist;

/* mexFunction
This is the root function which is called by Matlab
nlhs contains the number of output arguments and plhs is the pointer
to the output argument array; nrhs contains the number of input
arguments and prhs is the pointer to the input argument array */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[])

{
const mxArray *mxProbs, *mxMeans, *mxCovs, *mxNumNewMix; /* inputs */
mxArray *mxNewProbs, *mxNewMeans, *mxNewCovs; /* outputs */
double doubNumNewMix, *outProbs, *outMeans, *outCovs;
int newDims[3], numDims;
const int *dims;

/* Get inputs and verify input types */
jlwAssert(nrhs == 4,"Four inputs required");
mxProbs = prhs[0]; mxMeans = prhs[1]; mxCovs = prhs[2];
mxNumNewMix = prhs[3];
jlwAssert(mxGetClassID(mxProbs) == mxDOUBLE CLASS &&
!mxIsComplex(mxProbs),"Inputs must be real doubles");

jlwAssert(mxGetClassID(mxMeans) == mxDOUBLE CLASS &&
!mxIsComplex(mxMeans),"Inputs must be real doubles");

jlwAssert(mxGetClassID(mxCovs) == mxDOUBLE CLASS &&
!mxIsComplex(mxCovs),"Inputs must be real doubles");

jlwAssert(mxGetClassID(mxNumNewMix) == mxDOUBLE CLASS &&
!mxIsComplex(mxNumNewMix),"Inputs must be real doubles");

/* Check that dimensionality of inputs is consistent */
numDims = mxGetNumberOfDimensions(mxProbs);
if (numDims == 1) {
dims = mxGetDimensions(mxProbs);
numMix = dims[0];

} else if (numDims == 2) {
dims = mxGetDimensions(mxProbs);
if (dims[0] == 1)
numMix = dims[1];

else
numMix = dims[0];

} else {
mexErrMsgTxt("Invalid probability array.");

}

C-4

/* Check dimensionality of means */
jlwAssert(mxGetNumberOfDimensions(mxMeans) == 2,

"means should be 2-dimensional");
dims = mxGetDimensions(mxMeans);
numVar = dims[0];
jlwAssert(dims[1] == numMix,

"Size of means inconsistent with size of probs");

/* Check dimensionality of covariances */
jlwAssert(mxGetNumberOfDimensions(mxCovs) == 3,

"covs should be 3-dimensional");
dims = mxGetDimensions(mxCovs);
jlwAssert(dims[0] == numVar,

"Size of covs inconsistent with size of probs and means");
jlwAssert(dims[1] == numVar,

"Size of covs inconsistent with size of probs and means");
jlwAssert(dims[2] == numMix,

"Size of covs inconsistent with size of probs and means");

/* Check for valid number of mixture components */
jlwAssert(mxGetNumberOfElements(mxNumNewMix) == 1,

"Number of components should be scalar");
doubNumNewMix = mxGetScalar(mxNumNewMix);
numNewMix = (int) doubNumNewMix;
jlwAssert(((double) numNewMix) == doubNumNewMix,

"Number of components should be integer");
jlwAssert(numNewMix > 0,

"Number of components should be positive");
jlwAssert(numNewMix < numMix,

"Number of output components should be less than input number");

/* Get pointers to the real data arrays of the inputs */
probs = mxGetPr(mxProbs);
means = mxGetPr(mxMeans);
covs = mxGetPr(mxCovs);

/* Create output data structures */
jlwAssert(nlhs == 3,"Three outputs required.");
plhs[0] = mxNewProbs = mxCreateDoubleMatrix(1,numNewMix,mxREAL);
plhs[1] = mxNewMeans = mxCreateDoubleMatrix(numVar,numNewMix,mxREAL);
newDims[0] = numVar; newDims[1] = numVar; newDims[2] = numNewMix;
plhs[2] = mxNewCovs = mxCreateNumericArray(3,newDims,mxDOUBLE CLASS,
mxREAL);

jlwAssert(mxNewProbs != NULL && mxNewMeans != NULL &&
mxNewCovs != NULL,"Memory allocation failure");

outProbs = mxGetPr(mxNewProbs);
outMeans = mxGetPr(mxNewMeans);
outCovs = mxGetPr(mxNewCovs);

/* Allocate memory for temporary variables */
muD = (double *) mxMalloc(sizeof(double)*numVar);
P = (double *) mxMalloc(sizeof(double)*numVar*numVar);
Di = (double *) mxMalloc(sizeof(double)*numVar);
jlwAssert(muD != NULL && P != NULL && Di != NULL,

"Memory allocation failure");

/* Allocate memory for temporary variables for merging components */
mergeMu = (double *) mxMalloc(sizeof(double)*numVar);
mergeP = (double *) mxMalloc(sizeof(double)*numVar*numVar);
jlwAssert(mergeMu != NULL && mergeP != NULL,

"Memory allocation failure");

C-5

/* Allocate memory for new mixture parameters */
newProbs = (double *) mxMalloc(sizeof(double)*numMix);
newMeans = (double *) mxMalloc(sizeof(double)*numMix*numVar);
newCovs = (double *) mxMalloc(sizeof(double)*numMix*numVar*numVar);
mixMask = (char *) mxMalloc(sizeof(char)*numMix);
jlwAssert(newProbs != NULL && newMeans != NULL &&
newCovs != NULL && mixMask != NULL,"Memory allocation failure");

/* Allocate memory for distance matrices */
self = (double *) mxMalloc(sizeof(double)*numMix*numMix);
cross = (double *) mxMalloc(sizeof(double)*numMix*numMix);
sumSelf = (double *) mxMalloc(sizeof(double)*numMix);
sumCross = (double *) mxMalloc(sizeof(double)*numMix);
jlwAssert(self != NULL && cross != NULL &&
sumSelf != NULL && sumCross != NULL,"Memory allocation failure");

/* Allocate memory for merge possibilities */
numMergePoss = (numMix*(numMix−1)) >> 1;
newSelf = (double *) mxMalloc(sizeof(double)*numMergePoss*numMix);
newCross = (double *) mxMalloc(sizeof(double)*numMergePoss*numMix);
newSumSelf = (double *) mxMalloc(sizeof(double)*numMergePoss);
newSumCross = (double *) mxMalloc(sizeof(double)*numMergePoss);
jlwAssert(newSelf != NULL && newCross != NULL &&
newSumSelf != NULL && newSumCross != NULL,
"Memory allocation failure");

/* Set up structures */
copyMixtureParameters();
calcOrigCosts();
calcOrigMergePoss();

/* Reduce mixtures -- this is the main loop for the reduction */
for (numCurMix = numMix; numCurMix > numNewMix; numCurMix−−) {
/* calculate the current cost -- the cost of the reduction steps

already taken */
calcCurCost();

/* calculate the cost of each of the merge and deletion options */
calcCostOptions();

/* take the lowest cost option */
if (actMix2 == 0) {
/* Lowest cost option was to delete a component actMix1 */
deleteMixture(actMix1);

} else {
/* Lowest cost option was to merge components actMix1 and actMix2

Hence we remove actMix2 from the mixture and replace actMix1
with the parameters for the merged components */

deleteMixture(actMix2);
mergeMixtures(actMix1,actMix2);

}
}

C-6

/* Store results in Matlab output structure */
{
int mi, mo, i, j, k;
mo = 0;

for (mi = 0; mi < numMix; mi++) {
if (mixMask[mi]) {

for (i = 0; i < numVar; i++) {
outMeans[mo*numVar + i] = newMeans[mi*numVar + i];

for (j = i; j < numVar; j++) {
outCovs[mo*numVar*numVar + i + j*numVar] =
outCovs[mo*numVar*numVar + j + i*numVar] =
newCovs[mi*numVar*numVar + i + j*numVar];

}
}

outProbs[mo] = newProbs[mi];
mo++;

}
}

}

/* Deallocate memory */
mxFree(newSumCross);mxFree(newSumSelf);mxFree(newCross);
mxFree(newSelf);mxFree(sumCross);mxFree(sumSelf);mxFree(cross);
mxFree(self);mxFree(mixMask);mxFree(newCovs);mxFree(newMeans);
mxFree(newProbs);mxFree(mergeP);mxFree(mergeMu);mxFree(Di);mxFree(P);
mxFree(muD);

}

/* calcCurCost -- Calculates the current cost -- i.e. the cost of the
reduction steps already chosen.

Precondition: sumDist, mixMask, sumSelf and sumCross structures
populated and up to date

Postcondition: curCost will contain the cost of the current reduced
PDF representation. */

void calcCurCost(void)
{
register int i;

/* Commence with the cost due to the original mixture
self-likeness */

curCost = sumDist;

/* Add the cost components due to each mixture component in the
cross-likeness and reduced self-likeness matrices */

for (i = 0; i < numMix; i++) {
if (mixMask[i]) {
curCost += 0.5*(sumSelf[i] + self[i*(numMix+1)]) − 2*sumCross[i];

}
}

}

C-7

/* calcCostOptions -- Calculates the cost of all options for deleting
or merging mixture components

Precondition: mixMask, curCost, sumCross, sumSelf, self,
newSumCross, numSumSelf populated and up to date

Postcondition: actMix1, actMix2 and actMergePoss contain values
indicating the lowest cost action. If actMix2 is zero
then the lowest cost action was to delete component
actMix1. Otherwise, the lowest cost action was to
merge actMix1 and actMix2, which corresponds to merge
possibility number actMergePoss. */

void calcCostOptions(void)
{
register int i, j, mergePoss;
register double minCost = DBL MAX, costOpt;

for (i = 0; i < numMix; i++) {
if (mixMask[i]) {

/* Calculate cost for deleting mixture */
costOpt = curCost + 2*sumCross[i] − sumSelf[i];

if (costOpt < minCost) {
minCost = costOpt;
actMix1 = i; actMix2 = 0;

}

for (j = i+1; j < numMix; j++) {
if (mixMask[j]) {
mergePoss = mergePossNum(i,j);

/* Calculate cost for merging mixtures */
costOpt = curCost + 2*sumCross[i] + 2*sumCross[j] +

−sumSelf[i] − sumSelf[j] + 2*self[i+j*numMix] +
−2*newSumCross[mergePoss] + newSumSelf[mergePoss];

if (costOpt < minCost) {
minCost = costOpt;
actMix1 = i; actMix2 = j;
actMergePoss = mergePoss;

}
}

}
}

}

/* Print debugging information to screen if flag is true */
if (DEBUG) {
if (actMix2 == 0) {
mexPrintf("Current cost %g; Deleting mixture %d for cost %g\n",
curCost,actMix1,minCost);

} else {
mexPrintf("Current cost %g; Merging mix %d and %d for cost %g\n",
curCost,actMix1,actMix2,minCost);

}
}

}

C-8

/* copyMixtureParameters -- Copies probabilities, means and covariances
from original structures into new working structures
to provide the starting point for the reduction
process.

Precondition: probs, means and covs contain the parameters for the
original mixtures, memory is allocated for newProbs,
newMeans and newCovs

Postcondition: Data from probs, means and covs are copied into
newProbs, newMeans and newCovs. */

void copyMixtureParameters(void)
{
register int i;
int numElem;

/* Copy probabilities */
numElem = numMix;
for (i = 0; i < numElem; i++)
newProbs[i] = probs[i];

/* Copy means */
numElem *= numVar;
for (i = 0; i < numElem; i++)
newMeans[i] = means[i];

/* Copy covariances */
numElem *= numVar;
for (i = 0; i < numElem; i++)
newCovs[i] = covs[i];

/* Initialize the current number of mixture components */
numCurMix = numMix;

}

/* deleteMixture -- Deletes the specified component, updates all costs
Precondition: mix contains the index of the mixture to be deleted
Postcondition: newSumSelf (self-likeness entries for each merge

possibility) and sumSelf (partial sums of self-
likeness entries for current reduced mixture) are
updated to reflect the new cost after the specified
component has been deleted */

void deleteMixture(int mix)
{
register int m1, m2, mergePoss;

/* Clear the flag for the mixture to indicate that it has been
deleted */

mixMask[mix] = 0;

/* Update stored new columns for the cross-likeness and self-likeness
matrices for all merge possibilities */

for (m1 = 0; m1 < numMix; m1++) {
if (mixMask[m1]) {
for (m2 = m1+1; m2 < numMix; m2++) {
if (mixMask[m2]) {
mergePoss = mergePossNum(m1,m2);
newSumSelf[mergePoss] −= 2*newSelf[mergePoss*numMix+mix];

}
}

}
}

C-9

/* Update partial sums of the self likeness matrix to reflect removal
of component */

for (m1 = 0; m1 < numMix; m1++) {
if (mixMask[m1]) {
/* Subtract self distances due to deleted component */
sumSelf[m1] −= 2*self[mix*numMix+m1];

}
}

}

/* mergeMixtures -- Updates all merge possibilities with the newly
merged component, placing the parameters for merged
componentes in mix1

Precondition: mix1 and mix2 contain the indices of the two
components to be merged. mix2 should have been
deleted already (using deleteMixture())

Postcondition: parameters of merged components are calculated and
stored in place of mix1; cross and self matrix
entries (and sum vector entries) are updated with new
costs; merge possibility cost structures are updated
to reflect the changes due to the merged components.*/

void mergeMixtures(int mix1, int mix2)
{
int m1, m2, m3, i, j, k, mergePoss;
double d;

/* Calculate the parametes (weight, mean, covariance) for the
merged components */

calcMergeParam(mix1,mix2);

/* Store parameters for newly merged component in place of mix1 */
for (i = 0; i < numVar; i++) {
for (j = i; j < numVar; j++) {
k = i + j*numVar;
newCovs[mix1*numVar*numVar+k] = mergeP[k];

}

newMeans[mix1*numVar+i] = mergeMu[i];
}
newProbs[mix1] = mergep;

/* Update distance matrices to reflect merge
(using the pre-computed parameters from the merge possibility
structure) */

mergePoss = mergePossNum(mix1,mix2);
for (m1 = 0; m1 < numMix; m1++) {
/* Store cross distances for new component */
cross[m1+mix1*numMix] = newCross[mergePoss*numMix+m1];

if (mixMask[m1]) {
/* Store self distances for new component & update sums */
sumSelf[m1] −= 2*self[mix1+m1*numMix];
d = self[mix1+m1*numMix] = self[m1+mix1*numMix] =
newSelf[mergePoss*numMix+m1];

sumSelf[m1] += 2*d;
}

}
sumCross[mix1] = newSumCross[mergePoss];
sumSelf[mix1] = newSumSelf[mergePoss];

C-10

/* Update distances for all merge possibilities */
for (m1 = 0; m1 < numMix; m1++) {
if (mixMask[m1]) {
for (m2 = m1+1; m2 < numMix; m2++) {
if (mixMask[m2]) {
mergePoss = mergePossNum(m1,m2);
calcMergeParam(m1,m2);

/* If the merge possibility involves the modified component
then everything is changed and has to be recalculated */

if (m1 == mix1 | | m2 == mix1) {
newSumCross[mergePoss] = 0;
newSumSelf[mergePoss] = 0;

for (m3 = 0; m3 < numMix; m3++) {
/* Calculate distance of new merge possibility to

original components */
d = calcDist(mergep,mergeMu,mergeP,
probs[m3],&means[m3*numVar],&covs[m3*numVar*numVar]);

newCross[mergePoss*numMix+m3] = d;
newSumCross[mergePoss] += d;

if (mixMask[m3]) {
if (m3 == m1) {
/* The merged component will be replaced by m1 -- so

this is the new self-likeness entry for the
component */

d = calcDist(mergep,mergeMu,mergeP,mergep,mergeMu,
mergeP);

newSelf[mergePoss*numMix+m3] = d;
newSumSelf[mergePoss] += d;

} else if (m3 == m2) {
/* Under the possibility being considered m2 would be

deleted */
newSelf[mergePoss*numMix+m3] = 0;

} else {
/* Calculate self entry & store */
d = calcDist(mergep,mergeMu,mergeP,
newProbs[m3],&newMeans[m3*numVar],
&newCovs[m3*numVar*numVar]);

newSelf[mergePoss*numMix+m3] = d;
newSumSelf[mergePoss] += 2*d;

}
}

}

} else { /* if (m1 == mix1 | | m2 == mix2) */
/* If the merge possibility does not involve the modified

component then we just need to update the appropriate
new self-likeness term */

d = calcDist(mergep,mergeMu,mergeP,
newProbs[mix1],&newMeans[mix1*numVar],
&newCovs[mix1*numVar*numVar]);

newSumSelf[mergePoss] += 2*d −
2*newSelf[mergePoss*numMix+mix1];

newSelf[mergePoss*numMix+mix1] = d;

}
}

}
}

}
}

C-11

/* calcOrigCosts -- Populate the original cost matrix
Precondition: memory should be allocated for all structures; probs,

means and covs should contain parameters for original
mixture components

Postcondition: cross and self matrices are populated, partial sums
are calculated, sumDist is calculated, mixture mask
flags are initialized */

void calcOrigCosts(void)
{
int m1, m2, i, j;

/* Zero out the partial sums */
for (m1 = 0; m1 < numMix; m1++)
sumCross[m1] = 0.0;

/* Calculate similarity measure for every pair of components */
for (m1 = 0; m1 < numMix; m1++) {
for (m2 = m1; m2 < numMix; m2++) {
i = m1*numMix+m2; j = m2*numMix+m1;
cross[i] = cross[j] = self[i] = self[j] =
calcDist(probs[m1],&means[m1*numVar],&covs[m1*numVar*numVar],

probs[m2],&means[m2*numVar],&covs[m2*numVar*numVar]);

/* Update the partial sums for the two components */
sumCross[m1] += cross[i];
if (m1 != m2)
sumCross[m2] += cross[i];

}
}

sumDist = 0;
for (m1 = 0; m1 < numMix; m1++) {
/* Calculate partial self sum from cross sum (this contains the

sum of the matrix row and column due to the respective
component) */

sumSelf[m1] = 2*sumCross[m1] − cross[m1*(numMix+1)];

/* Calculate total sum for original mixture */
sumDist += sumCross[m1];

/* Initialize mask flags */
mixMask[m1] = 1;

}
}

C-12

/* calcOrigMergePoss -- Calculate all merge possibilities for original
mixture

Precondition: memory is allocated for structures, distance matrices
(self and cross) and partial sums are populated;
probs, means and covs contain parameters of original
mixture

Postcondition: newSelf, newCross, newSumSelf and numSumCross are
populated to reflect the new entries for the self and
cross matrices if each pair of components are selected
for merging */

void calcOrigMergePoss(void)
{
int m1, m2, m3, mergePoss;
double d;

for (m1 = 0; m1 < numMix; m1++) {
for (m2 = m1+1; m2 < numMix; m2++) {
mergePoss = mergePossNum(m1,m2);
newSumCross[mergePoss] = 0;

/* Calculate parameters for merging components m1 & m2 */
calcMergeParam(m1,m2);

/* Calculate distance of this merged component to all other
components */

for (m3 = 0; m3 < numMix; m3++) {
d = calcDist(mergep,mergeMu,mergeP,
probs[m3],&means[m3*numVar],&covs[m3*numVar*numVar]);

newSelf[mergePoss*numMix+m3] =
newCross[mergePoss*numMix+m3] = d;

newSumCross[mergePoss] += d;
}

/* Calculate self distance for component */
d = calcDist(mergep,mergeMu,mergeP,mergep,mergeMu,mergeP);
newSelf[mergePoss*numMix+m1] = d;
newSelf[mergePoss*numMix+m2] = 0;
newSumSelf[mergePoss] = 2*(newSumCross[mergePoss] −
newCross[mergePoss*numMix+m1] −
newCross[mergePoss*numMix+m2]) + d;

}
}

}

C-13

/* calcMergeParam -- Calculates the parameters (mean, cov, prob) for
merging a pair of components, puts them in the global
holding area mergep, mergeMu, mergeP

Precondition: newProbs, newMeans and newCovs contain the current
parameters of the reduced mixture; m1 and m2 contain
the indices of the components to be merged

Postcondition: mergep, mergeMu and mergeP contain the weight, mean
and covariance for the component fitted to the pair of
components, with the parameters such that the overall
mean and covariance remains unchanged. muD is used for
temporary calculation.

Note: only lower triangle of matrix is calculated; upper
triangle is neither calculated nor populated */

void calcMergeParam(int m1, int m2)
{
register int i, j, k;
register double p1, p2;
double di, *mean1 = &newMeans[numVar*m1],
*mean2 = &newMeans[numVar*m2],
*cov1 = &newCovs[numVar*numVar*m1],
*cov2 = &newCovs[numVar*numVar*m2];

p1 = newProbs[m1]; p2 = newProbs[m2];
mergep = p1 + p2;
di = 1.0/mergep;
p1 *= di; p2 *= di;

/* Calculate difference of means and combined mean */
for (i = 0; i < numVar; i++) {
muD[i] = mean1[i] − mean2[i];
mergeMu[i] = p1*mean1[i] + p2*mean2[i];

}

/* Calculate combined covariance */
for (i = 0; i < numVar; i++) {
for (j = i; j < numVar; j++) {
k = i + j*numVar;
mergeP[k] = p1*cov1[k] + p2*cov2[k] + p1*p2*muD[i]*muD[j];

}
}

}

/* calcDist -- Calculate a single distance entry between the given
parameters. This is the ‘‘engine’’, containing the
highly optimized implementation of Eq. (3.46)
described in Section 3.3.4.1.

Precondition: p1, mean1 and cov1, and p2, mean2 and cov2 contain the
parameters of the pair of components to be merged

Postcondition: the similarity measure between the two components is
calculated and returned. The temporary structures muD
and P are used for the calculation. */

double calcDist(double p1, double *mean1, double *cov1,
double p2, double *mean2, double *cov2)

{
register int i, j, k;
register double d, di;
double diProd, cost;

C-14

/* Calculate the sum of the two covariances and the difference
of the two means (only calculate lower triangle of the covariance
sum) */

for (i = 0; i < numVar; i++) {
for (j = i; j < numVar; j++) {
k = i + j*numVar;
P[k] = cov1[k] + cov2[k];

}

muD[i] = mean1[i] − mean2[i];
}

/* Divide right-most column by lower-right element */
di = 1.0/P[numVar*numVar − 1];
Di[numVar−1] = di;
diProd = di*Inv2PI;
for (j = 0; j < numVar−1; j++)
P[j + numVar*(numVar−1)] *= di;

/* Complete U-D factorization in-place */
for (j = numVar−2; j >= 0; j−−) {
/* Calculate diagonal element for column */
d = P[j*(numVar+1)];
for (k = j+1; k < numVar; k++) {
di = P[j+k*numVar];
d −= P[k*(numVar+1)]*di*di;

}

P[j*(numVar+1)] = d;
di = 1.0/d;
Di[j] = di;
diProd *= di*Inv2PI;

/* Calculate rest of column */
for (i = j−1; i >= 0; i−−) {
d = P[i+j*numVar];
for (k = j+1; k < numVar; k++)
d −= P[k*(numVar+1)]*P[i+k*numVar]*P[j+k*numVar];

P[i+j*numVar] = d*di;
}

}

if (mean1 == mean2) {
/* Calculate self cost if the two components were the same */
return p1*p2*sqrt(diProd);

} else {
/* Solve back-substitution with mean */
di = 0;
for (j = numVar−1; j >= 0; j−−) {
d = muD[j];
for (i = j+1; i < numVar; i++)
d −= muD[i]*P[j+i*numVar];

muD[j] = d;
di += d*d*Di[j];

}

/* Calculate cost & return */
return p1*p2*exp(−0.5*di)*sqrt(diProd);

}

}

C-15

Bibliography

1. Alspach, D.L. “A Gaussian Sum Approach to the Multitarget Identification–
Tracking Problem,” Automatica, 11 (3):285–296 (May 1975).

2. Bar-Shalom, Yaakov and Thomas E. Fortmann. Tracking and Data Association.
Orlando, FL: Academic Press, Inc., 1988.

3. Bar-Shalom, Yaakov and Xiao-Rong Li. Estimation and Tracking: Principles,
Techniques and Software. Norwood, MA: Artech House, 1993.

4. Bar-Shalom, Yaakov and Xiao-Rong Li. Multitarget-Multisensor Tracking: Prin-
ciples and Techniques . Storrs, CT: YBS Publishing, 1995.

5. Billetter, Dale R. Multifunction Array Radar . Norwood, MA: Artech House,
1989.

6. Blackman, Samuel S. Multiple-Target Tracking with Radar Applications. Nor-
wood, MA: Artech House, 1986.

7. Blackman, Samuel S. and Robert Popoli. Design and Analysis of Modern Track-
ing Systems . Norwood, MA: Artech House, 1999.

8. Blackman, S.S., et al. “Application of Multiple Hypothesis Tracking to Mul-
tiradar Air Defense Systems,” Multisensor Multitarget Data Fusion, Tracking
and Identification Techniques for Guidance and Control Applications , NATO
AGARD AG-337 :96–120 (October 1996).

9. Bloem, Edwin A. and Henk A.P. Blom. “Joint Probabilistic Data Association
Methods Avoiding Track Coalescence,” Proceedings of the 34th IEEE Conference
on Decision and Control , 3 :2752–2757 (December 1995).

10. Blom, Henk A.P. and Yaakov Bar-Shalom. “The Interacting Multiple Model Al-
gorithm for Systems with Markovian Switching Coefficients,” IEEE Transactions
on Automatic Control , 33 (8):780–783 (August 1988).

11. Blom, Henk A.P. and Edwin A. Bloem. “Joint Probabilistic Data Association
Avoiding Track Coalescence,” IEE Colloquium on Algorithms for Target Track-
ing , 1/1–1/3 (May 1995).

12. Blom, Henk A.P. and Edwin A. Bloem. “Probabilistic Data Association Avoiding
Track Coalescence,” IEEE Transactions on Automatic Control , 45 (2):247–259
(February 2000).

13. Brooks, Mike. “Matrix Reference Manual: Matrix Calculus.” Online reference
material. n. pag. http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html.
04 December 2002. Reproduced in Appendix B.

BIB-1

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html

14. Burns, Brendan T., James B. Moody and Jason L. Williams. WhoAmI? Per-
son Verification System. BE(Electronics) Undergraduate Project, Queensland
University of Technology, Brisbane, Australia, 1998.

15. Busch, M. and S. Blackman. “Evaluation of IMM Filtering for an Air De-
fense System Application,” SPIE Signal and Data Processing of Small Targets ,
2561 :435–447 (July 1995).

16. Cong, Shan. Statistical Studies in Multiple Target Tracking . M.S. Eng Thesis,
Wright State University, Dayton, OH, 1996.

17. Dempster, R.J., et al. “Combining IMM Filtering and MHT Data Association
for Multitarget Tracking.” Proceedings of the 29th Southeastern Symposium on
System Theory . 123–127. Cookeville, TN: IEEE Press, March 1997.

18. Dennis, John E. and Robert B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations . Englewood Cliffs, NJ: Prentice-Hall,
1983.

19. Ding, Z. and L. Hong. “Bias Phenomenon and Compensation for PDA/JPDA
Algorithms,” Mathematical Computer Modelling , 27 (12):1–16 (June 1998).

20. Dwyer, Paul S. “Some Application of Matrix Derivatives in Multivariate Anal-
ysis,” American Statistical Association Journal , 607–625 (June 1967).

21. Hong, Lang. “EE718 Multitarget Tracking and Data Association.” Class As-
signment. Wright State University, Dayton, OH, 2002.

22. Hong, Lang and Shan Cong. “Bias Phenomenon and Compensation in Multiple
Target Tracking Algorithms,” Mathematical Computer Modelling , 31 (8–9):147–
165 (May 2000).

23. Kailath, Thomas. “The Divergence and Bhattacharyya Distance Measures
in Signal Selection,” IEEE Transactions on Communication Theory , COM-
15 (1):52–60 (February 1967).

24. Kalman, Rudolph E. “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME Journal of Basic Engineering , 82 (Series
D):35–45 (1960).

25. Kastella, Keith. “A Maximum Likelihood Estimator for Report-to-Track As-
sociation,” SPIE Signal and Data Processing of Small Targets , 1954 :386–393
(October 1993).

26. Kastella, Keith. “Comparison of Mean-Field Tracker and Joint Probabilistic
Data Association Tracker in High-Clutter Environments,” SPIE Signal and Data
Processing of Small Targets , 2561 :489–495 (September 1995).

27. Koch, Wolfgang. “Experimental Results on Bayesian MHT for Maneuvering
Closely-Spaced Objects in a Densely Cluttered Environment,” Radar 97 (Conf.
Publ. No. 449), 729–733 (October 1997).

BIB-2

28. Koch, Wolfgang and Günter van Keuk. “Multiple Hypothesis Track Maintenance
with Possibly Unresolved Measurementes,” IEEE Transactions on Aerospace and
Electronic Systems , 883–892 (July 1997).

29. Kullback, Solomon. Information Theory and Statistics (Second Edition). Mine-
ola, NY: Dover Publications, 1997.

30. Kurien, Thomas. “Issues in the Design of Practical Multitarget Tracking Algo-
rithms.” Multitarget-Multisensor Tracking: Advanced Applications . 43–83. Nor-
wood, MA: Artech-House, 1990.

31. Lainiotis, D.G. and S.K. Park. “On Joint Detection, Estimation and Sys-
tem Identification: Discrete Data Case,” International Journal of Control ,
17 (3):609–633 (March 1973).

32. Leon-Garcia, Alberto. Probability and Random Processes for Electrical Engi-
neering (Second Edition). Reading, MA: Addison-Wesley, 1994.

33. MATLABr 6.0 Online Function Reference. Natick, MA: Mathworks, Inc, 2001.

34. Maybeck, Peter S. Stochastic Models, Estimation, and Control , Volume 1 . Ar-
lington, VA: Navtech, 1994.

35. Maybeck, Peter S. Stochastic Models, Estimation, and Control , Volume 2 . Ar-
lington, VA: Navtech, 1994.

36. Maybeck, Peter S. “EE844 Computational Aspects of Modern Control.” Lecture
Notes. Air Force Institute of Technology, Wright-Patterson Air Force Base, OH,
2002.

37. Maybeck, Peter S. “EENG768 Multiple Model Adaptive Estimation.” Lecture
Notes. Air Force Institute of Technology, Wright-Patterson Air Force Base, OH,
2002.

38. Pao, Lucy Y. “Multisensor Multitarget Mixture Reduction Algorithms for
Tracking,” Journal of Guidance, Control, and Dynamics , 17 (6):1205–1211
(November–December 1994).

39. Poore, A.B. and A.J. Robertson. “A New Lagrangian Relaxation-Based Algo-
rithm for a Class of Multidimensional Assignment Problems,” Computational
Optimization and Applications , 8 (2):129–150 (September 1997).

40. Reid, Donald B. “An Algorithm for Tracking Multiple Targets,” IEEE Trans-
actions on Automatic Control , AC-24 (6):843–854 (December 1979).

41. Reynolds, D.A. and R.C. Rose. “Robust Text-Independent Speaker Identification
using Gaussian Mixture Speaker Models,” IEEE Transactions Speech and Audio
Processing , 3 (1):72–83 (January 1995).

BIB-3

42. Ristic, Branko and Sanjeev Arulampalam. “Multitarget Mixture Reduction Al-
gorithm with Incorporated Target Existence Recursions,” SPIE Signal and Data
Processing of Small Targets , 4048 :366–377 (July 2000).

43. Roecker, J.A. “Multiple Scan Joint Probabilistic Data Association,” IEEE
Transactions Aerospace and Electronic Systems, 31 :1204–1210 (July 1995).

44. Salmond, David J. Mixture Reduction Algorithms for Uncertain Tracking . Tech-
nical Report 88004, Farnborough, UK: Royal Aerospace Establishment, January
1988. DTIC Number ADA197641.

45. Salmond, David J. “Mixture Reduction Algorithms for Target Tracking.” IEE
Colloquium on State Estimation in Aerospace and Tracking Applications . 7/1–
7/4. London, UK: IEE Publishing, December 1989.

46. Salmond, David J. Tracking in Uncertain Environments. Technical Memoran-
dum AW 121, Farnborough, UK: Royal Aerospace Establishment, September
1989. DTIC Number ADA215866. Taken from a D Phil thesis of the University
of Sussex.

47. Salmond, David J. “Mixture Reduction Algorithms for Target Tracking in Clut-
ter,” SPIE Signal and Data Processing of Small Targets , 1305 :434–445 (April
1990).

48. Scharf, Louis L. Statistical Signal Processing: Detection, Estimation and Time
Series Analysis . Reading, MA: Addison-Wesley, 1991.

49. Singer, R.A., et al. “Derivation and Evaluation of Improved Tracking Filters for
use in Dense Multi-target Environments,” IEEE Transactions on Information
Theory , IT-20 (4):423–832 (July 1974).

50. Skolnik, Merrill I. Introduction to Radar Systems (Third Edition). New York,
NY: McGraw-Hill, 2001.

51. Stimson, George W. Introduction to Airborne Radar (Second Edition). Raleigh,
NC: Scitech Publishing, 1998.

52. Strang, G. Linear Algebra and its Applications (Third Edition). Orlando, FL:
Harcourt College Publishers, 1988.

53. Streit, Roy L. and Tod E. Luginbuhl. Probabilistic Multi-Hypothesis Tracking .
Technical Report, Newport, RI: Naval Undersea Warfare Center Division, 1995.

54. Tantaratana, Sawasd. “Some Recent Results of Sequential Detection.” Advances
in Statistical Signal ProcessingVolume 2 . 265–296. Greenwich, CT: JAI Press,
1993.

55. Wark, Timothy. Multi-Modal Speech Processing for Automatic Speaker Recog-
nition. PhD Thesis, Queensland University of Technology, Brisbane, Australia,
2001.

BIB-4

56. Weiss, J.L., et al. “Finite Computable Filters for Linear Systems Subject to
Time Varying Model Uncertainty.” Proceedings of NAECON . 349–355. Dayton,
OH: IEEE Press, May 1983.

57. Williams, Jason L. and Craig Larson. “EENG768 Multiple Model Adaptive
Estimation Project.” Student Project. Air Force Institute of Technology, Wright-
Patterson Air Force Base, OH, 2002.

58. Wilson, R. “Image Analysis and Segmentation using Mixture Models.” IEE
Seminar on Time-scale and Time-Frequency Analysis and Applications . 11/1–
11/6. London, UK: IEE Publishing, February 2000.

BIB-5

Vita

Flight Lieutenant Jason L. Williams graduated from Queensland University

of Technology in April 1999, receiving a Bachelor of Engineering (Electronics) with

First Class Honours, and a Bachelor of Information Technology with Distinction.

He joined the Royal Australian Air Force in 1996 through the undergraduate spon-

sorship program. His first assignment was at the Electronic Warfare Squadron in

Adelaide, South Australia, where he received the E-Systems Commander’s Trophy

for Excellence in Electronic Warfare. In 2001 he was selected to study the Master of

Science in Electrical Engineering program at the United States Air Force Institute

of Technology, concentrating on Stochastic Estimation and Control and Signal Pro-

cessing. Upon graduation he will be assigned to the Aircraft Self Protection Systems

Program Office in Canberra, Australia.

Flight Lieutenant Williams is a member of Eta Kappa Nu and Tau Beta Pi,

as well as the Golden Key National Honor Society. He is a student member of the

Institute of Electrical and Electronic Engineers.

VITA-1

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .
1. REPORT DATE (DD-MM-YYYY)

25-03-2003
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Jul 2002 – Mar 2003

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 GAUSSIAN MIXTURE REDUCTION FOR TRACKING MULTIPLE
 MANEUVERING TARGETS IN CLUTTER

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

 Williams, Jason L., Flight Lieutenant, RAAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/03-19

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRES S(ES)
 AFRL/SNAT
 Attn: Mr. Stanton H. Musick
 2241 Avionics Circle DSN: 785-1115, ext 4292
 WPAFB OH 45433-7765 e-mail: Stanton.Musick@wpafb.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 The problem of tracking multiple maneuvering targets in clutter naturally leads to a Gaussian mixture representation of the Probability Density
Function (PDF) of the target state vector. State-of-the-art Multiple Hypothesis Tracking (MHT) techniques maintain the mean, covariance and
probability weight corresponding to each hypothesis, yet they rely on ad hoc merging and pruning rules to control the growth of hypotheses. This
thesis investigates the performance benefit achievable by applying a structured cost function-based approach to the hypothesis control problem.
 A new cost function, the Integral Square Difference (ISD) cost, is proposed for measuring the difference between the full target state PDF and
a reduced-order approximation. The ISD cost function is physically meaningful, and, unlike any previously proposed cost function, it is also
mathematically tractable, requiring neither numerical integration nor approximation for evaluation. A reduction algorithm is proposed which
selects components for merging or pruning to minimize the increase in the ISD cost. This solution is used directly, and also as the starting point for
an iterative gradient-based optimization.
 The performance of the ISD-based algorithm for tracking a single target in heavy clutter is compared to that of Salmond’s joining filter, which
previously had provided the highest performance in the scenario examined. For a large number of mixture components, it is shown that the ISD
algorithm outperforms the joining filter remarkably, yielding an average track life more than double that achievable using the joining filter. The
results indicate that the tracking performance of the ISD-based filter in heavy clutter is significantly higher than achievable using any previously
published algorithm.
15. SUBJECT TERMS
 Radar tracking, Search radar, Automatic tracking, Track while scan, Radar clutter, Kalman filtering, Bayes’ theorem, Probability density
functions, Maximum likelihood estimation, Optimization, Statistical distributions, Stochastic processes

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr Peter S. Maybeck

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

247

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4581; e-mail: Peter.Maybeck@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Gaussian Mixture Reduction of Tracking Multiple Maneuvering Targets in Clutter
	Recommended Citation

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	Abstract
	Introduction
	Motivation
	Research Goal
	Assumptions
	Thesis Organization

	Background
	Introduction
	Tracking Filters
	Introduction
	Ad Hoc Techniques
	Kalman Filter
	Nonlinear Filters

	Gaussian Mixtures
	Multiple Model Adaptive Estimation
	Non-Switching Models
	Switching Models
	First-Order Generalized Pseudo-Bayesian Estimator
	Second-Order Generalized Pseudo-Bayesian Estimator
	Interacting Multiple Model Estimator
	Summary

	Data Association
	Measurement Gating
	Association Event Probability
	Forming Joint Hypotheses
	Joint Target State
	State Update
	Global Nearest Neighbor
	Probabilistic Data Association
	Correlation Between Targets
	Maximum Likelihood Methods
	Multiple Hypothesis Tracking
	Controlling the Number of Hypotheses
	Multidimensional Techniques
	Interacting Multiple Model--Multiple Hypothesis Tracker
	Summary

	Optimization Methods

	Analysis
	Introduction
	PDA Bias and Coalescence
	Gaussian Mixture Reduction
	Cost Measures
	Analysis of Integral Square Difference Measure
	Iterative Optimization
	Initialization Algorithm

	Summary

	Simulation Results
	Introduction
	Initialization Algorithm
	Iterative Optimization
	Single Target in Clutter
	Comparison with Pruning Algorithm
	Comparison with Salmond's Joining and Clustering Algorithms
	Comparison with Lainiotis Algorithm
	Comparison with Iterative Optimization Algorithm
	Comparison with PDA Algorithm

	Multiple Targets in Clutter
	Single Maneuvering Target
	Summary

	Conclusions and Recommendations
	Restatement of Research Goal
	Summary of Results
	Single Target Tracking Performance
	Multiple Target Tracking Performance
	Maneuvering Target Tracking Performance

	Significant Contributions of Research
	Recommendations for Future Investigations

	Derivations
	Product of Two Gaussians of Same Dimension
	Modified Gating Algorithm
	Switching Bayesian Transition Probability

	Matrix Reference Manual
	Source Code
	ISDInit.c

	Bibliography
	Vita

