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AFIT/GE/ENG /03-18

Abstract

The limited resolution of video imagery taken by aircraft, over geographical ar-
eas of interest, hinders the accurate extraction of useful information. The frame res-
olution of the video is determined by the camera that created it. Information exists
about the camera which can be used to increase frame resolution beyond the resolu-
tion capability of the camera. This is achieved by a process called super-resolution,

which uses multiple low-resolution video frames to create one high-resolution image.

Paramount to this super-resolution process is the alignment of the low resolu-
tion frames. Frame alignment is achieved by image registration. Many good image
registration algorithms utilize a wavelet domain analysis of the images. It is theorized
that an accurate super-resolution algorithm can be created that also utilizes wavelet
domain analysis. By achieving both image registration and super-resolution in the

wavelet domain, a more computationally efficient overall system may be developed.

This thesis explores the possibility of wavelet-based super-resolution. An al-
gorithm is developed that restores resolution lost by the CCD array of the camera.
Two low-resolution frames, registered at a specific shift from one another, are used
to create one high-resolution image. The algorithm is compared to other traditional
interpolation techniques, and different wavelets systems are applied to determine

which one works best.



REDUNDANT DISCRETE WAVELET TRANSFORM BASED
SUPER-RESOLUTION USING SUB-PIXEL IMAGE
REGISTRATION

1. Introduction

1.1  Problem Statement

Video imagery taken by aircraft, over geographical areas of interest, provides
the warfighter with the most up-to-date information. The data can be used to
determine potential targets, to locate and determine the number of vehicles and/or
buildings in an area, as well as a variety of other information. The accuracy of this
information depends upon the resolution of the video imagery. Higher resolution

typically means more accurate information.

The camera, which provides the video imagery, has a limited resolution. Each
frame in the sequence is taken at a resolution determined by the camera’s optics.
However, information exists about the camera, which can be used to increase frame
resolution beyond the limitations of the camera. This is achieved through the ac-
curate alignment of adjacent frames in the video sequence. The process of using

multiple aligned frames to create one high resolution image is called super-resolution.

Existing super-resolution techniques incorporate specific knowledge about the
camera’s optics, and CCD array density. They determine how the low resolution im-
age was created, by estimating the distortion operations, such as blurring and warp-
ing, performed by the camera. Most of these algorithms require the accurate align-
ment of multiple frames. Frame alignment is achieved by image registration. Many
good registration algorithms use wavelets. This thesis develops a super-resolution
algorithm that also uses wavelets. By achieving registration and super-resolution

using wavelets, a more computationally efficient overall system may be developed.
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1.2 Scope

In a video sequence, where a camera is moving, each frame has a position over
an area relative to the frames adjacent to it. The process of determining the position
of one frame relative to the other is called image registration. Using image regis-
tration, the super-resolution algorithm developed by this thesis places two adjacent
frames together into a high resolution grid. The algorithm assumes that the frames
are at specific positions relative to one another. Once the frames are placed in the
high resolution grid, the algorithm use the redundant discrete wavelet transform to

interpolate the remaining values in the grid.

Different wavelets are experimented with to determine which ones are best at
interpolation. The wavelet interpolation technique is then compared to traditional

interpolation techniques.

1.8 Thesis Organization

Chapter 2 discusses the unique properties of the wavelet transform. The dis-
crete wavelet transform and redundant discrete wavelet transform are described in
detail. The difference between orthogonal and biorthogonal wavelets is presented

next. Following this is a discussion on classic super-resolution algorithms.

Chapter 3 breaks down the super-resolution algorithm step by step. It begins
with an explanation of sub-pixel image registration and the creation of the test data.
This is followed by a discussion on how and why the test data is pieced together
into the high resolution grid. Next, the wavelet interpolation process is described.
Finally, a unique post-processing technique is developed and explained. The chapter

concludes with a summary of the algorithm’s capability.

Chapter 4 presents the results of the super-resolution algorithm, and analyzes
its performance. It compares restored super-resolution images, generated by the
algorithm, to the original high resolution images and test data. The performance

of a number of different wavelets is analyzed to determine which wavelet performs
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best. This is done qualitatively by showing specific portions of certain images, and
quantitatively by computing the mean square error and L-infinity error for each
wavelet image. The wavelet that performs the best is then compared to other tradi-
tional interpolation techniques, including cubic spline, nearest neighbor, and linear

interpolation.

Chapter 5 discusses research contributions and the potential for future work.
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II. Background

ince the general introduction of wavelets by Ingrid Daubechies in 1988 [6],
Swavelets have become an essential part of image and video processing. Appli-
cations include image registration, compression, and noise reduction. The algorithm
developed in this thesis applies wavelets to the problem of super-resolution. There-
fore this chapter discusses both the basics of the wavelet transform and existing

super-resolution techniques.

2.1 The Discrete Wavelet Transform

The wavelet transform expands a signal, or function, into the wavelet domain.
As with any transform, like the Fourier or Gabor Transforms, the goal of expanding a
signal is to obtain information that is not apparent, or can not be deduced, from the
signal in its original domain (usually space, time or distance). The wavelet transform
is used in this thesis because of the unique information it provides about images. The
algorithm developed in Chapter 3 is much more effective when processing images in
the wavelet domain. However, before this can be discussed, it is first necessary to

understand how the wavelet transform expands a signal into the wavelet domain.

2.1.1 The Multiresolution Ezpansion Set. An expansion set is a set of

functions, p(t), k € Z, that can represent any signal in a vector space, V, as
fO) =) arpr(t), k€Z, f(t)eV. (2.1)
2

©k(t) spans the vector space V', and is said to form a basis set if the a are unique

for any given f(t) [4].

The wavelet expansion set includes a set of two functions, the low-pass scaling
function, ¢(t), the band-pass wavelet function, v (t), and their translations. These

functions form the basis set, and divide the original subspace, V', into two different
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subspaces, V; and Wy, where Vi LW; and, V; @ W) C V (See Figure 2.1). Instead of

Vv

Figure 2.1:  Wavelet Subspaces. The ¢(t) and ¢ (¢) Functions
project a signal into subspaces V; and Wy, respectively.

representing the signal with one set of coefficients, the signal is now represented by
two, ¢, and dg. The subscript k£ represents each translation of the signal. Equations

2.2 and 2.3 show this new dual expansion set:

ft) = Z crow (t) + Z dity (t) (2.2)

or

FO) = ck)o(t—k)+ > d(k) (t —k). (2.3)
k

The wavelet transform can expand the signal into multiple scales. This is done
by dilating the scaling and wavelet functions according to the appropriate scale.
Derivation of the dilation is not pertinent to this thesis, but is shown in Equations
2.4 through 2.7. Dilation of the functions is represented by a subscript m, or number
for the appropriate scale, as seen in Equations 2.4 through 2.7. The coefficients ¢

are then expanded in the same way as the original signal.

Scale One :  f(t) = ; crpdrr () + ; dy Yk (1) (2.4)
ScaleTwo: ¢y = ; CokPar () + ; do k2 (1) (2.5)
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This process can be iterated to the desired number of scales.

Scalem : Cppk =Y Cnr1kOmi1k (U) + D di1 kUms1 x (1) (2.6)
% k

f(t) Expansion : ft) = Zk: ConkOmi (1) + 2 i dj i (1) (2.7)

k j=m

Vo ViV, V

Figure 2.2:  Wavelet Subspace Iterations. The ¢(t) and (¢)
Functions project a signal into the desired number subspaces
(scales).

Application of the wavelet transform to a signal is typically implemented with
a filterbank. This is referred to as the discrete wavelet transform (DWT), and is

discussed in the next section.

2.1.2 Discrete Wavelet Transform Implementation. The discrete wavelet
transform uses low-pass and high-pass filters, h(n) and g(n), to expand a digital
signal. They are referred to as analysis filters. These filters correspond to ¢(t)
and (t) of the previous section. The dilation performed for each scale is now
achieved by a decimator. The coefficients ¢, and d are produced by convolving the
digital signal, with each filter, and then decimating the output. The ¢ coefficients
are produced by the low-pass filter, h(n), and called coarse coefficients. The dy
coefficients are produced by the high-pass filter and called detail coefficients. Coarse
coefficients provide information about low frequencies, and detail coefficients provide

information about high frequencies. Coarse and detail coefficients are produced at
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multiple scales by iterating the process on the coarse coefficients of each scale. The

entire process is computed using a tree-structured filterbank, as seen in Figure 2.3.

Cs(N)
T HD) 2 e
c4(n) {
H(z) —¢2
f( ) H(Z) L iz _|: G(Z) ] iz — dS(n)
n) =
Co(n){ G@2) |2 - )
Giz) H iz — d(n)

Figure 2.3:  Analysis Filter Bank. The high and low pass filters
divide the signal into a series of coarse and detail coefficients.

2.1.2.1 Redundant Discrete Wavelet Transform.  The decimators re-
move redundant coefficients, which are not necessary to perfectly reconstruct the
signal. This makes wavelet compression algorithms more computationally efficient.
However, in some wavelet techniques the redundant coefficients are useful. For ex-
ample, this thesis interpolates missing pixels of an image, in the wavelet domain,
based on the values of the surrounding pixels. As much information as possible is
needed to accurately interpolate the missing pixels. Decimation removes potentially
valuable information. In cases like this it is beneficial to remove the decimators.
This is known as the redundant discrete wavelet transform (RDWT), as shown in

Figure 2.4.

4 |
o4(1) { H(z4) — c3(n)
H(z2)
f(n) G(z2) = da(n)
co(n)
G(z) — dq(n)

Figure 2.4:  Redundant DWT Analysis Filter Bank. The dec-
imators are removed so that more information about the signal
is available.

2.1.2.2 Inverse Discrete Wavelet Transform. After analyzing, or

processing, the signal in the wavelet domain it is often necessary to return the signal
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back to its original domain. This is achieved using synthesis filters and expanders.
The wavelet coefficients are applied to a synthesis filter bank to restore the original
signal, as seen in Figure 2.5. In the case where the redundant discrete wavelet

transform was used, the expanders in the synthesis filter bank are removed.

e —F2 Ha)
Poo He 1
dyn)— 1 2 = G@) } 42 H o

d(n) — 12 1 G@) }L(ngn;
diim—42 - 6@ 0

Figure 2.5:  Synthesis Filter Bank. The high and low pass
filters combine the coefficients into the original signal.

The discussion, up to now, has dealt exclusively with one-dimensional (1D)
signals. This thesis deals exclusively with two-dimensional signals (2D), more specif-

ically images. Therefore, it is necessary to extend the discussion into 2D signals.

2.1.8 Two-Dimensional Discrete Wavelet Transform.  The two dimensional
discrete wavelet transform is essentially a one dimensional analysis of a two dimen-
sional signal. It only operates on one dimension at a time, by analyzing the rows

and columns of an image in a separable fashion.

The first step applies the analysis filters to the rows of an image. This produces
two new images, where one image is a set or coarse row coefficients, and the other
a set of detail row coefficients. Next analysis filters are applied to the columns of
each new iamge, to produce four different images called subbands. Rows and columns
analyzed with a high pass filter are designated with an H. Likewise, rows and columns
analyzed with a low pass filter are designated with an L. For example, if a subband
image was produced using a high pass filter on the rows and a low pass filter on the

columns, it is called the HL subband. Figure 2.6 shows this process in its entirety.

Each subband provides different information about the image. The LL subband

is a coarse approximation of the image and removes all high frequency information.
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apply to columns

apply to rows — H(z) — ig L | LL
L | 4x4
8x4
| apply to columns X4 DWT
LL | HL
Image
LH | HH
| & apply to columns 8x&
el Je o[- raf f2 o[
I H [ 4x4
apply to rows _am 4 Lz N
8x4
apply to columns Ax4

Figure 2.6: Two Dimensional Discrete Wavelet Transform.
The high and low pass filters operate separably on the rows
and columns to create four different subbands. An 8x8 image is
used for example purposes only.

The LH subband removes high frequency information along the rows and emphasizes
high frequency information along the columns. The result is an image in which
vertical edges are emphasized. The HL subband emphasizes horizontal edges, and
the HH subband emphasizes diagonal edges (See Figure 2.7). To compute the DWT
of the image at the next scale the process is applied again to the LL subband. Figure

2.7 shows three iterations of this process on an image.

Just as in the 1D case, if the RDWT is desired for an image the decimators

are removed. Each subband becomes the same size as the original image.

The wavelet domain representation of an image, or any signal, is useful for
many applications, such as compression, noise reduction, image registration, and
super-resolution. The properties which make it useful for super-resolution are ex-

plained in the next section.

2.1.4  Properties of the Wavelet Transform.  The wavelet domain represen-

tation of a signal is unique in that it simultaneously provides frequency and time (or
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LH 1 HH 1

(c) (d)

Figure 2.7:  Discrete Wavelet Transform Applied to an Image.
(a) The original image. (b) Three iterations of the wavelet trans-
form are applied to the original image. The result shown here
has coefficients at three different scales. (¢) Each subband, ex-
cept the LL subband, emphasizes edges in a certain direction.
Vertical edges are emphasized in the LH subband, horizontal
edges in the HL subband, and diagonal edges in the HH sub-
band. (d) The frequency response of the each subband, shown
here with only one iteration.
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Figure 2.8:  Low High Subband at Different Scales of RDWT.
(a) LH Subband at scale 1. (b) LH Subband at scale 3. Each
subband is the same size as the original image shown in Figure
2.7(a).

space) localization information. The frequency content of a signal is known, as well
as when (or where) those frequencies occur. In an image, high frequency content
exists along edges, and low frequency content exists where little or no edges occur.
Therefore, each DWT subband provides information about where different types of
edges do or do not exist. Coefficients in the subbands are large where edges do exist,

and zero, or close to zero, where edges do not exist.

Since most real world images do not consist entirely of edges, most of the co-
efficients are nearly zero. This is referred to as a parsimonious representation [15].
Though parsimony is useful for such processes as compression, this thesis is more
concerned with a property that derives itself from parsimony. Because small coeffi-
cients exist where edges are not present, and large coefficients only exist where they
are present, coefficients of similar size tend to cluster together [14,16]. The cluster-
ing of coefficients is extremely useful for the super-resolution of images, where pixel
values are interpolated based upon adjacent pixel values. This helps to properly

restore features in an image, such as edges, and is demonstrated in Chapter 4.
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Certain properties of the wavelet transform depend upon which type of filters
are used for analysis and synthesis. Filters used by the wavelet transform fall into
two categories: orthogonal and biorthogonal. These categories are compared and

contrasted in the next section.

2.1.5 Orthogonal vs. Biorthogonal Wavelet Filters. — Classical wavelet sys-
tems use orthogonal filters, which require the filters to be orthogonal across both
translation and scale. Taking the scaling and wavelet functions from Section 2.1.1,

this means that

<¢m,k7 ¢n,l> = 5(k —l,m— n) (28)
(Vmges Yng) = 0(k —1,m —n) (2.9)

These requirements give a clean, robust system in which energy is preserved in
accordance with Parseval’s Theorem. However, the requirements also place large
limitations on the possibilities of the system. The wavelet and scaling functions
must have the same length and the length must be even [4]. These restrictions
prevent linear phase analysis, except with the Haar wavelet. Linear phase analysis
is crucial in image processing because the majority of the information in an image
is contained in its phase [13]|. Therefore, it is desirable, and in some cases necessary,
to relax the restrictions of orthogonality. Biorthogonal filters are the result of this

relaxation.

Biorthogonal filters are not required to be orthogonal across translation and
scale. Instead of having each element in a basis set be orthogonal to each other, they

are required to be orthogonal to the elements of a dual basis, {p,}.
(Bks Dng) = 6(k — 1, m —n) (2.10)

(Ymor Yna) = 6(k — I, m —n) (2.11)
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The filters can be designed with different lengths, to include odd length filters.

Perhaps most importantly, the filters can be designed symmetrically with linear

phase. The only symmetric linear phase orthogonal filter is the Haar, which has a

length of only two. Biorthogonal filters can be much larger than this. Larger filters

generally correspond to smoother wavelet functions, and a more parsimonious signal

representation [24]. Biorthogonal filters have been shown to give better space and

Scaling Function
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Wavelet Function

(a)
Figure 2.9:
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Scaling Function
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(b)

Dual Scaling Function

0

Dual Wavelet Function

Orthogonal and Biorthogonal Wavelet Filters. (a)
The orthogonal linear phase Haar filter. (b) The biorthogonal
linear phase Daubechies 9,7 Filters.

spatial frequency localization [3], which is beneficial in both image registration and

super-resolution. Therefore, the biorthogonal wavelet system is the system of choice

for this thesis.

The wavelet transform has been explained in detail to provide the information

necessary to understand the algorithm in Chapter 3. To better understand how the

wavelet transform is useful for super-resolution, the process of super-resolution must

now be discussed.

2.2 Super-Resolution

Super-Resolution is a process which creates a high-resolution image from sev-

eral low-resolution images. The fundamental idea is to restore high frequency in-
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formation that is lost by the image capturing process of the camera. This thesis
specifically restores frequency loss to due aliasing of the camera’s CCD array. Super-
resolution was first suggested in 1955 [7]. For many years computing power severely
limited the practical application of super-resolution. Since then, as computing power
has increased, multiple algorithms have been proposed [1,8-10,12,21,22,25], which
incorporate techniques like Bayesian estimation, and Kalman filtering. A more ex-

tensive study of the history of super-resolution is available in [11,23].

The majority of super-resolution algorithms depend upon relative motion, at
the sub-pixel level, between the low-resolution images, though algorithms have been
developed that do not [1]. Therefore, most super-resolution algorithms require a reg-
istration algorithm that can accurately determine relative sub-pixel motion between
images. This thesis looks more specifically at a video sequence, where relative motion
between image frames in the sequence is modelled as a simple planar translation.
This section will therefore discuss the general super-resolution process as it applies

to a video sequence.

2.2.1 Low-Resolution Frame Model. Digital cameras rely on an array of
photo sensitive elements, called charged-coupled-devices, to capture an image. Each
charge-coupled-device, or CCD, corresponds directly to a pixel value in an image.
The resolution of the image depends upon the number and spacing of CCDs in
the array. Because the number and spacing of the CCDs is finite, high frequency
information is lost. Resolution is also affected by the lens and aperture of the camera,

however this thesis is only concerned with restoring resolution lost by the CCD array.

Each low-resolution image (LR;), created by the CCD array, is a decimated
sampling of the high-resolution (H R) area it captured. At the pixel level the model
becomes

LR;(z,y) = De[HR(w,v)]. (2.12)
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Figure 2.10: Band-Limited Finite CCD Array. Due to the
finite number and spacing of CCD elements in the array, high
frequency information is lost by the camera.

where De(-) is the decimation operator. The super-resolution algorithm determines

De(-) and uses the LR; to estimate HR.

Due to the motion of the camera, each image provides a different sampling of
the same area. In order to restore the high-resolution information it is necessary to
determine the relative motion between each low-resolution image. Once the motion
is determined, the images are aligned and converted into a high-resolution frame.

The next section explains this process as it applies to a video sequence.

2.2.2  Frame Alignment and Pizel Grid Conversion. The relative motion
between frames in a video sequence depends upon the frame rate of the camera,
and the velocity and direction of the camera’s movements. It is assumed that all
movements made by the camera are pure planar translations over any given area.
Adjacent frames in a video sequence will overlap with much of the same information.
A registration algorithm is required to determine the extent of this overlap. The
overlapping portions of each frame are aligned with one another, which provides the

multiple samples of the same area necessary for super-resolution.
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Figure 2.11:  Overlapping Frames in a Video Sequence. De-
pending on the frame rate of the camera, and the velocity and
direction of its movements, adjacent frames in a video sequence
will overlap with much of the same information. The arrow
indicates the direction of motion.
Depending on the algorithm, alignment may be determined at the high or low
resolution pixel level. If frames are aligned at the low-resolution level, a pixel from
one frame will align with a specific pixel in other overlapping frames. Each pixel is

considered a sample of a set of high-resolution pixels. The number of high-resolution

pixels in a set depends upon the degree of resolution improvement.

If frames are aligned at the high-resolution level, pixels may not perfectly align
from one frame to another. This is referred to as a sub-puxel shift. The sub-pixel shift,

which is utilized in Chapter 3, provides a more accurate alignment of the frames.

Once the registration algorithm has determined the alignment, each low-resolution
frame is up-sampled into a high resolution estimate. The process of creating this
estimate varies, depending upon the algorithm. The following section describes an
effective method applied to video sequences. The method ties well into the algorithm

developed in Chapter 3.
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Figure 2.12: Low Resolution Pixel Alignment.  Aligning
frames at the low resolution pixel level makes each low-resolution
pixel an estimate of a high-resolution set of pixels. This example
assumes a 2x resolution improvement.
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Figure 2.13:  Sub-Pixel Shift. The two low-resolution frames
are offset so that their pixels to not properly align. This is
referred to as a sub-pixel shift.

Low
Res

Figure 2.14:  High-Resolution Pixel Alignment Due To Sub-
Pixel Shift. When frames are aligned at the high-resolution level
it is possible for low-resolution pixels to overlap and correspond
to different high-resolution pixel sets.

High
Res
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2.2.83  Super-Resolution FEstimation. A good super-resolution algorithm,
which applies to video sequences, has been developd by Mendoza, Chen and Nakao [19].
It is based upon the super-resolution/optical flow algorithm proposed by Baker and
Kanade [2]. The algorithm uses five frames in a video sequence to produce one

high-resolution image.

The first step magnifies each frame to the desired high-resolution, using a tri-
hybrid interpolation scheme [5,18,20]. The frames are then aligned with respect
to the center frame. The first two frames are shifted forward, and the last two
frames are shifted backward. A weighted average of the pixel values is then used to
determine the final high-resolution image.

1 2 3 4 5
Vosdoalosloslosd
/

/
[/ /

Figure 2.15: Mendoza Super-Resolution Algorithm.  This
super-resolution algorithm takes fives frames from a video se-
quence and interpolates them to the desired resolution. The
images are then aligned and a weighted sum is used to deter-
mine the pixel values of the final image.

This algorithm is similar to the one developed in Chapter 3. The images are
aligned at the high-resolution level, and an interpolation scheme is used to determine
the initial pixel values. However, the algorithm in Chapter 3 uses a wavelet based
interpolation scheme and does not use a weighted sum to determine the final pixel

values. The details are left to the next chapter.
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2.2.4 Summary.  This chapter discussed the wavelet transform and super-
resolution fundamentals. The wavelet transform was shown to provide a represen-
tation of an image that is useful for applications such as image registration and
interpolation. Super-resolution was shown to restore high-frequency information

lost by the CCD array of the camera.

Image registration is a key first step to super-resolution. Many good registra-
tion algorithms use wavelet-based techniques. This thesis explores the possibility of
extending the use of the wavelet transform to super-resolution. Using wavelets for
both super-resolution and image-registration may prove to be more computationally

efficient, and produce better quality images. Chapter 3 explores this idea in detail.
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III. Methodology

he super-resolution algorithm developed in this chapter uses a wavelet-based
Tinterpolation scheme to create one high-resolution image from two adjacent
low-resolution frames. It is assumed that a registration algorithm exists which can
take a video sequence and determine the pixel shift between adjacent frames at
the sub-pixel level. The algorithm also assumes a specific sub-pixel shift between
the frames. All test data applied to the super-resolution algorithm has this shift.
Therefore, before the algorithm can be discussed it is first necessary to understand

the specific sub-pixel shift of the test data.

3.1 The Test Data - Half Pixel Shifts

The test data created for the super-resolution algorithm is comprised of two
frames that are at a half-pixel shift in the x and y direction relative to one another.
This shift was chosen because it creates a commonly used sampling pattern called
quincunx sampling. Quincunx sampling is best described as only taking pixels in an
image with purely even, and purely odd, valued indices, as shown in Figure 3.1. It
is an appropriate starting point because if the algorithm is shown to be effective for

this shift, it may be extended to other arbitrary sub-pixel shifts.

The shift simulates the diagonal motion of a camera over an area (See Figure
2.11. To create the data a 256x256 pixel image is split into two 128x128 pixel
images. This creates the quincunx sampling described earlier. It is assumed that
as the camera moves diagonally over an area, the CCD array of the camera has
a spacing and size that samples the area in this half-pixel manner. Unlike other
super-resolution algorithms, where one low-resolution pixel corresponds to a set of
high-resolution pixels, each low-resolution pixel is assumed to correspond to only
one high-resolution pixel. Figure 3.2 illustrates this difference. This is based on the
fact that we are only dealing with resolution lost by the finite number and spacing

of the CCD array. Therefore, no low pass filter was applied to the data. The pixels
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(a) (b)

Figure 3.1:  Half Pixel Shift and Quincunx Sampling. (a) A half-pixel shift in the
x and y direction between 2 pixels from adjacent frames. (b) Quincunx Sampling.

from the low-resolution frames are assumed to be actual pixels in the high-resolution
frame. The idea is to recreate the 256x256 pixel image from the two 128x128 frames.
Figures 3.3 shows how a 6x6 pixel image is split into two 3x3 pixel images at the

desired half-pixel shift.

3.2 The Wawvelet Super-Resolution Algorithm

The wavelet super-resolution algorithm deals specifically with two frames sep-
arated by a half-pixel shift. The two frames are combined into a quincunx sam-
pling grid and rotated to optimize pixel correlation. The redundant discrete wavelet
transform is then applied to the rotated pixel set, and the high-resolution pixels are
interpolated. The inverse redundant discrete wavelet transform is then applied, and
the image is rotated back to its original orientation. A few post processing steps are

then applied to the image to create the final high-resolution image.

3.2.1 Pre-Wavelet Domain Operations. Before the wavelet transform can

be applied to the two low-resolution frames they must be combined and adjusted to
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Figure 3.2:  Traditional vs. My Super-Resolution Pixel Association. (a) A low-
resolution pixel is normally assumed to correspond to a set of high-resolution pixels.
(b) Since this thesis deals only with resolution loss by the CCD array of the camera,

a low-resolution pixel only corresponds to one high resolution pixel.
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Half Pixel Shift Application. A 6x6 pixel image is
split into two 3x3 pixel images which are at a half pixel shift in
the x and y direction from each other. They have a resolution
which is half that of the original 6x6 image.



produce the highest quality result. These operations consist of combining, rotating,

and up-sampling the frames.

3.2.1.1 Combining Frames. The first step in the super-resolution
process is to combine the two test frames. As explained in Section 3.1, each low-
resolution pixel corresponds to one high-resolution pixel. Placing the low-resolution
pixels into the high-resolution grid becomes a matter of knowing how the two frames
are positioned relative to one another. Since the shift is known to be a half pixel
in the x and y direction, the process is straightforward. The high-resolution grid
will be designated as H(zy,yy), and the frames as Fi(xq1,y;) and Fy(xs,y2). The
process that transforms F(z1,y;) and Fy(xe,ys) into H(zy,yy) will be designated
as Tr(-). This process is shown in Figure 3.5(a) where a 1 represents Frame 1 pixels

and a 2 represents Frame 2 pixels.

H(xp,yu) = TrFi(z1, 1), Fo(22, y2)] (3.1)
r1=2zxy—1 y1 =2yyg —1 (3.2)
Ty = 2Ty Y2 = 2yn (3.3)

The result is a quincunx sampling of the desired high-resolution image. Figure 3.4
illustrates this, as it is applied in the algorithm. The complete high-resolution image
is created by interpolating the missing pixels in the wavelet domain, using the 2D
redundant discrete wavelet transform. However, before the quincunx sampled image

is converted to the wavelet domain, a rotation must be applied.

3.2.1.2  Quincunx Image Rotation.  Chapter 2 explained that the 2D
wavelet transform works strictly along the columns and rows of an image. Because of
this, applying the wavelet transform to the current quincunx sampled image would

be the same as applying the wavelet transform to each frame individually. No in-
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Figure 3.4: Combining Test Frames Into High Resolution
Grid. This example combines the test frames shown in Figure

3.3 into the original high resolution grid.
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formation about the relationship between the two frames would be introduced. A
45-degree rotation is needed to exploit this relationship. Visually, a 45-degree ro-
tation is easy to realize (See Figure 3.5(b)), however, this changes the index values
of each pixel. The indices of each pixel have to be transformed from the quincunx
high-resolution grid to the rotated high-resolution grid (See Figure 3.5(c)). Let Rot

denote the 45-degree rotation transform, and H,,; denote the rotated grid, then

Hrot(xroh yrot) = ROt[H<:EH7 yH)] (34)

or

Hyot(Trot, Yrot) = H(Rot|x ], Rotlyn]). (3.5)

Before the wavelet transform can be applied to the rotated image, it must be up-

sampled. The following section explains why.

3.2.1.83  Up-sampling. The rotated image must be up-sampled by a
factor of 2 to create the space required for each missing pixel. The wavelet trans-
form filters must also be up-sampled by 2. Up-sampling the image and the filters
ensures that each row and column of the final high-resolution image was operated
on separately by the wavelet transform filters. This is especially important when
applying the IRDWT, to ensure that the pixel values from the original two frames
are not changed. Figure 3.5(d) illustrates this up-sampling, where an M represents

the location of missing high-resolution pixel:

HR(xRa yR) = Up [Hrot (l'rot; yrot>]7 d (36)

TR = 2xrot Yr = 2yrot (37)
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Figure 3.5 shows the combining, rotating, and up-sampling operations per-
formed on the two low-resolution frames prior to being transformed into the wavelet

domain.

The frames are now ready to be transformed into the wavelet domain. In the
wavelet domain missing pixel values are located and interpolated. The next section

discusses these operations.

3.2.2  Wawvelet Domain Operations.  The uniqueness of this super-resolution
algorithm lies in its application of the wavelet transform. It utilizes the parsimonious
clustering property of the wavelet transform to interpolate missing high resolution
pixels. Chapter II described how each subband in the wavelet domain emphasizes
different edges. By interpolating missing pixels in the wavelet domain, it is theorized

that edges will be more accurately reconstructed and preserved.

In order to interpolate the missing pixels their locations must be determined.
In the wavelet domain, missing pixels correspond to missing coefficients. By de-
termining the location of, and interpolating the missing coefficients, the complete
high-resolution image can be constructed. The process of determining the missing

coefficient locations is not pertinent to this discussion and is explained in Appendix

A.

3.2.2.1 Interpolation.  The missing pixel coefficient is calculated using
the four coefficients closest to the missing pixel location. Based on the clustering
property, the coefficients nearest the missing coefficient will best approximate its
value. Missing coefficients are designated with an M and known coefficients are
denoted C. C; fort = 1,2,3,4 denote the four closest coefficients, as shown in
Figure 3.6. These four coefficients may correspond to a number of different image
phenomena, as shown in Figure 3.7. They may represent a line, an edge, or an area
with neither a line nor an edge. Furthermore, the line or edge may be horizontal,

diagonal, or vertical. If the missing coefficient exists in an area with no line or edge,
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Figure 3.5:  Pre-Wavelet Domain Operations. (a) non-optimal
“quincunx” orientation (b) 45-degree rotation which optimizes
use of the wavelet transform. Arrows indicate the movement of
the wavelet transform filters across the image. (c) The indices of
the pixels must be transformed into a new rotated grid. (d) The
rotated pixels are up-sampled by a factor of two to make room
for the missing pixels and to ensure that each row and column
of the final high-resolution image is operated on separately by
the wavelet transform filters.
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Figure 3.6:  Missing Coefficient and the Four Nearest Neigh-
bors. A C represents the value of the known coefficients and M
represents an unknown coefficient. C; fori = 1,2,3,4 are the

four nearest known coefficients, used to determine the value of
M.

it may be interpolated as an average of the four surrounding coefficients:

_Cl+02+03+04

M
4

(3.8)

However, in the presence of an edge or a line the coefficient must be calculated
using the coefficients associated with the edge or line to which it belongs. When the
missing coefficient corresponds to its own line, the value is impossible to accurately
determine. This begs the question of how best to determine the group of coefficients

the missing coefficient belongs to.

If the missing coefficient is associated with a group of two other coefficients the
resulting value will be arbitrarily skewed towards one edge or line. If it is associated
with the entire group of four, the value will not accurately represent any edge or
line. Therefore, the best 3 of 4 pixels is chosen to determine the value. It is assumed
that the more closely related the surrounding pixels are, the more likely the missing

pixel is to associate with them. The standard deviation of every possible group of
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Figure 3.7:  Pixel Groupings. (a)A line or an edge occurring
above or below the missing pixel. (b)An edge occurring towards
one side of the missing pixel. (¢)A line occurring on a diagonal
with the missing pixel. (d)The pixel is in a flat area. Note
that it is impossible to determine a line that is created solely by
missing pixels.
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three is calculated to determine this best group. The average of the group with the
lowest standard deviation is used as the value of the missing pixel. This is shown in

Equations 3.9 through 3.14.

Gy = {C1,Cy, Cs} (3.9)
Gy = {Cy, C5,Cy} (3.10)
Gy = {C5,Cy, C1} (3.11)
G, = {Cy,C1,Cs), (3.12)
k = argmin [std (G,)], (3.13)
M = mean Gy - (3.14)

Once this process is completed for each missing pixel location, the inverse redundant
wavelet transform (IRDWT) is applied to the rotated image, with the necessary
up-sampling of the synthesis filters.

Now the new rotated high-resolution image is rotated back into its original
orientation. Recall that Equation 3.5 represented the operation that transformed
the quincunx high-resolution grid into the rotated high-resolution grid. The inverse

of this operation is now performed on the new image:

H(meyH) = ROt_I[Hrot(xrotyyrot)]- (315)

Since the missing pixels have been interpolated, the holes of the quincunx sampling
grid are filled and the complete high-resolution image is produced. This process is

illustrated in Figure 3.8.
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Figure 3.8: Re-Rotation of High-Resolution Image. After
the missing pixels have been interpolated (Labeled N) and the
IRDWT is applied to the complete set of image coefficients, the
image is re-rotated into its original orientation.

Though the high-resolution image has all its pixel values, two more steps must
be completed to ensure that the new pixels are as accurate as possible. The wavelet

transform is used once more to clean-up the pixel values.

3.2.83 Post Wavelet Domain Processing. The first post processing step
adjusts the range of the pixel values. Due to interpolation error, when the IRDWT
is applied to the interpolated pixels, some values may be below 0 or above 255.
Since this is outside the possible range of values, all pixels outside of this range are

truncated to 0 or 255 accordingly.

The non-rotated RDW'T of this new super-resolution image exposes interpola-
tion errors. As a result of the interpolation scheme used to create the new coefficients,
lines and edges associated solely with these new coefficients are not emphasized.
Since new pixel values are oriented diagonally with each other, this means that di-
agonal lines and edges are poorly reconstructed and horizontal and vertical lines

are over-emphasized. Figure 3.9 illustrates this problem as it appears in the HH

subband.

To compensate for this problem the image is brought back into the wavelet
domain, without rotation or up-sampling. Chapter 2 explained that the HH subband
emphasizes diagonal edges in an image. However, the HH subband of the new
high-resolution image shows an emphasis of some vertical and horizontal edges too,

as shown in Figure 3.10. A two-step filtering process is applied to eliminate the
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Figure 3.9:  Pixel Correlations. Due to the interpolation pro-
cess, new pixel values (N) poorly reconstruct the edges or lines
only associated with them. Vertical and horizontal edges and
lines, which are a combination of new and old (O) pixels, are
still accurately reconstructed.

erroneous edges. The first step applies the analysis low-pass filter to the rows and
columns of the HH subband. This subdues all edges in the HH subband. Since only
diagonal edges are to be emphasized in this subband, the second step applies the high-
pass synthesis filter to the rows and columns of the new subdued HH subband. This
enhances the diagonal edges, and keeps the horizontal and vertical edges subdued.
Figure 3.11 shows this process, and the results are illustrated in Chapter 4. The
IRDWT is then applied to the adjusted wavelet transform to create a new corrected

high-resolution image.

The filtering process eliminates erroneous edges, and enhances diagonal ones,
but it also alters the values of the original pixels from the two low-resolution frames.
The only pixels that needed to be altered were the new interpolated pixels. Therefore,
only the altered new pixels are used in the final high-resolution image. The original

pixels are left unaltered.

3-13



() | )

Figure 3.10: Erroneous Edges in HH Subband. (a) This is
the HH subband of high-resolution image created by the super-
resolution algorithm. Notice the erroneous vertical lines high-
lighted by the boxes (b) This is the HH subband of the original
image for comparison to show the absence of the vertical lines.
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Figure 3.11:  Correcting the HH Subband. Erroneous vertical
and horizontal lines are removed from the HH Subband
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3.8 Summary

The wavelet super-resolution algorithm developed here creates one high-resolution
image from two low-resolution frames, oriented at a specific half pixel shift. The
frames are placed into a high-resolution frame according to this shift, then rotated
and up-sampled to most effectively utilize the wavelet transform. The RDWT is
applied and the missing pixel coefficients are interpolated. The interpolation process
adaptively chooses 3 or 4 of the coefficients to estimate the value of the missing
coefficients. The IRDWT is then applied to the final set of coefficients to create the
new high-resolution image. The HH subband of this high-resolution image is ad-
justed to eliminate erroneous edges, and enhance diagonal edges. As will be shown
in Chapter 4, this unique wavelet-based process effectively reconstructs the original

high-resolution image from the low-resolution frames.
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1V. Results

An analysis of algorithm performance is presented here. The resolution recon-
struction performance of the algorithm is tested in a variety of different image
environments, using six different image. Various wavelets are tested in the algorithm
to determine which wavelets perform best. Comparisons are also made between the
applied wavelet technique, and traditional techniques. The mean square error and
L-infinity error for each technique is then discussed to provide a quantitative perfor-
mance analysis. A portion of the chapter is devoted to analyzing the improvement

made by the post processing techniques described in Chapter 3.

4.1 The Test Images

Six distinctly different images are chosen to test the performance of the super-
resolution algorithm. An image with different sized circles is used to test the recon-
struction performance of rounded edges (Figure 4.1(a)), while an image with different
sized rectangles is used to test the reconstruction of vertical and horizontal edges
(Figure 4.1(c)). Finally, an image called pinwheel will test reconstruction of diagonal
edges (Figure 4.2(a)). These three are purely test images, used to separately analyze
the reconstruction of shapes and edges of different sizes. Three other real world

images are chosen to test the real world application of the algorithm.

Each real world image was chosen for its differing degree of detail. The classic
Lenna portrait is an image near the object of interest with many fine details (Figure
4.2(c)), while the Cameraman image is a little farther away with both fine detail and
coarse background information (Figure 4.3(a)). Finally, an aerial view image will be

used to test the reconstruction of purely coarse information (Figure 4.3(c)).

4.2 The Wavelets

Three wavelet systems are chosen for analysis. The first is the classic Haar

wavelet system, which contains length 2 orthogonal filters. This is the simplest
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Haar
Ar: 0.7071  0.7071

Ag: -0.7071  0.7071

Sp: 0.7071  0.7071

Sy 0.7071 -0.7071
Daubechies 9,7

Ap: 0.0378 -0.0238 -0.1106
Ag: -0.0645  0.0407
Sr: -0.0645 -0.0407
Sy -0.0378 -0.0238 0.1106
Daubechies 7,9
Arp: -0.0645 -0.0407
Ag: -0.0378 -0.0238 0.1106
Sr: 0.0378 -0.0238 -0.1106
Su: -0.0645  0.0407
Table 4.1:

0.3774
0.4181
0.4181
0.3774

0.4181
0.3774
0.3774
0.4181

0.8527
-0.7885
0.7885
-0.8527

0.7885
-0.8527
0.8527
-0.7885

0.3774
0.4181
0.4181
0.3774

0.4181
0.3774
0.3774
0.4181

Wavelets Used for Testing.

-0.1106
0.0407
-0.0407
0.1106

-0.0407
0.1106
-0.1106
0.0407

-0.0238
-0.0645
-0.0645
-0.0238

-0.0645
-0.0238
-0.0238
-0.0645

0.0378

-0.0378

-0.0378
0.0378

wavelet system and provides a good benchmark from which to compare the perfor-

mance of other systems. The Daubechies 9,7 and 7,9 wavelet systems are the final

two used for analysis. They are chosen due to their excellent localization proper-

ties. They are biorthogonal odd length filters, which provide a more parsimonious

representation of the signal. From the discussion in Chapter 2, this should improve

interpolation performance. Moreover, Brown [3] and Manfra [17] have already shown

the Daubechies 9, 7 wavelet system to have excellent image registration performance.

This performance is extended by this thesis into super-resolution. The difference be-

tween the 9,7 and 7,9 wavelets has to do with the length of the high- and low- pass

analysis filters, as shown in Table 4.1. This affects the smoothness of the analysis and

synthesis filters. Typically, smoother synthesis filters provide better reconstruction,

however it will be shown that this is not the case for the super-resolution algorithm.

4.8  The Comparisons

Three different comparison experiments are used in this chapter.

The test

data is the same for all experiments. Each original 256 x 256 pixel image is split into



two 128 x 128 pixel frames, at the specific half-pixel shift described in Section 3.1.
These frames are applied to the super-resolution algorithm as well as to three other
interpolation techniques. The first experiment compares the performance of the
different wavelets, to determine which wavelet performs best. The next experiment
tests the best performing wavelet against three other interpolation techniques. The
final experiment compares the error of the final high-resolution image before and after
the post-processing techniques described in Chapter 3. Each experiment uses mean
square error (MSE), and L-infinity error, to quantitatively analyze performance.
MSE is used because it is the typical error power measure used as industry standard.
The L-infinity error is used because it is based on maximum deviation, and is more

closely related to how the human visual system works.

4.4 Analysis

The analysis of the three experiments is broken into three parts. The first part
provides a qualitative analysis of the images. Each image is compared as a whole,
and then a portion of each image is selected to more clearly illustrate reconstruction
performance. Following this is a quantitative analysis of the MSE and L-infinity

eIrors.

4.4.0.1 Qualitative analysis.  All of the super-resolution images shown
in this section were produced using the Daubechies 7,9 wavelet, as it was the best
performing wavelet. It should be noted that the other wavelets did produce compa-
rable results. Figures 4.1 through 4.3 compare each image as a whole, while Figures

4.4 through 4.13 analyze a specific portion of each image.

In the circles and rectangles images of Figure 4.1(a) and (b) an offset value
is obvious. This is because the original images are binary, and the super-resolution
algorithm did not reconstruct each missing pixel at the 0 and 255 binary values.
Aliasing is noticeable in the smaller rectangles of Figure 4.1(a). All rectangles are

distinguishable from one another, with the exception of the four smallest rectangles
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in the upper left-hand corner of the image. The algorithm did an excellent job of
reconstructing the pinwheel image, as illustrated in the comparison of Figures 4.2(a)
and (b). The only noticeable difference is some aliasing at the center of the image,

where the highest spatial frequencies occur.

Each real world image was accurately reconstructed, as shown in Figure 4.2(a)
through 4.3. Differences in the Lenna image are noticeable along the rim of the hat,
and in the details of the feather. In the Cameraman image the only noticeable loss
in detail is in the fine lines of the camera. Notice how accurately the tripod legs are
reconstructed. The aerial image has no noticeable loss in detail, but does illustrate
a slight offset from the original image. The reason for this offset is similar to the
offset reason for the binary images. The algorithm did not exactly determine the

pixel values for the coarse areas.

Figures 4.4 through 4.9 analyze a specific portion of each image. Each low-
resolution frame is illustrated in these figures, along with the original and the super-
resolution image. The offset is again apparent in the Circles and Rectangles image,
but the edges of each image are accurately reconstructed. The individual frames
of the Rectangles image show irregular spacing and size of the smaller rectangles
in the image, but the super-resolution algorithm is able to fairly accurately restore
the spacing and size. Each rectangle is individually distinguishable, and the spacing
is correct. In the Lenna image, shown in Figure 4.7, a considerable amount of
detail is lost in the feather and hat of the individual frames. The super-resolution
algorithm does an excellent job of restoring this detail. The Cameraman image does
perhaps the best job of illustrating the algorithm’s excellent image reconstruction
performance (Figure 4.8). The details of the face, camera, tripod and background are
greatly distorted in each frame, and still properly restored by the super-resolution
algorithm. In the aerial view of Figure 4.9 individual cars in the parking lot of each
frame are difficult to distinguish. In the super-resolution image, however, the cars

are immediately distinguishable.
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Figures 4.10 through 4.13 compare the super-resolution reconstructed image
to reconstructed images using cubic spline interpolation. Cubic spline is used for
comparison because it provides the best error results, as shown in Tables 4.3 and
4.5. In each image it is obvious that the wavelet based super-resolution image has
better reconstruction performance. This is most apparent in the reconstruction of
the rectangles, shown in Figure 4.11. The smaller rectangles are poorly reconstructed
in the cubic interpolated image. In the Lenna and Cameraman images, Figures 4.12
and 4.13, the reconstruction of the edges in each image is much more accurate in the

wavelet super-resolution image.

Figure 4.14 shows the before and after images of the post-processing portion of
the algorithm. Though substantial differences are not noticeable, the dark diagonal
lines of the after image do have a smoother appearance. The benefit of this post-

processing is best seen in the error results in Tables 4.6 and 4.7.

4.4.0.2  Quantitative Analysis.  Tables 4.2 through 4.7 show the mean
square error and L-infinity error of each experiment. Tables 4.2 and 4.3 show that
the Daubechies 7,9 wavelet system performs the best, in terms of mean square error.
The difference between the Daubechies 7,9 and the traditional interpolation schemes
is substantial. In terms of L-infinity error, all of the tested techniques performed
roughly the same on the binary images. In Table 4.4, the Daubechies 7,9 performed
better on the pinwheel and Lenna image, while the Daubechies 9,7 performed better
on the aerial and cameraman images. This suggests that the Daubechies 7,9 will
perform better on images with fine detail, and the Daubechies 9,7 wavelet will
perform better on images with coarse information. Overall, the wavelet-based super-
resolution algorithm performed significantly better than the other test interpolation

schemes.

The before and after errors of Tables 4.6 and 4.7 were generated using the

Daubechies 7,9 wavelet system. The error improvement of the post-processing is
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Figure 4.1:  Original and Super-Resolution Test Images. (a)
Original Circles(binary) (b) Super-Resolution Circles (¢) Origi-
nal Rectangles(Binary) (d) Super-Resolution Rectangles
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(b)

(d)

Figure 4.2:  Original and Super-Resolution Test Images. (a)
Original Pinwheel (b) Super-Resolution Pinwheel (c¢) Original
Lenna (d) Super-Resolution Lenna

4-7



Figure 4.3:  Original and Super-Resolution Test Images. (a)
Original Cameraman (b) Super-Resolution Cameraman (c)
Original Aerial (d) Super-Resolution Aerial
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Figure 4.4: Circles Comparison. (a) 1st Frame. (b) 2nd
Frame. (c) Original Figure. (d) Super-Resolution Image. The
edge of each circle is slightly blurred, but still properly recon-
structed. The gray offset is due to interpolation error, but no
detail is lost.
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(¢) (d)

Figure 4.5:  Rectangles Comparison. (a) lst Frame. (b) 2nd
Frame. (c) Original Figure. (d) Super-Resolution Image. The
size and spacing of the rectangles are drastically distorted in
each frame. The super-resolution image recreates each individ-
ual rectangle, and at the proper spacing. Though the smaller
rectangles are not crisp they are still distinguishable from one
another
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(c) (d)

Figure 4.6: Pinwheel Comparison. (a) 1st Frame. (b) 2nd
Frame.(c) Original Figure. (d) Super-Resolution Image. The
original lines are nearly perfectly reconstructed. The only dis-
crepancies are at the center of the image. Each line is still dis-
tinguishable.
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Figure 4.7:  Lenna Comparison. (a) 1st Frame. (b) 2nd Frame.
(¢) Original Figure. (d) Super-Resolution Image. There is a
great loss of detail each frame, most noticeable in the feather of
the hat, the eyes, and the lips. The detail that is reconstructed,
especially in the hat feather is remarkable.
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Figure 4.8:  Cameraman Comparison. (a) st Frame. (b) 2nd
Frame. (c) Original Figure. (d) Super-Resolution Image. The
pillars of the building in the background, and the details in
the camera are almost perfectly reconstructed. The legs of the
tripod have regained their smoothness.
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(b)

(d)

Figure 4.9:  Aerial Comparison. (a) 1st Frame. (b) 2nd Frame.
(c)Original Figure. (d) Super-Resolution Image. The building
and the road are the only distinguishable features in the frames.
In the super-resolution image the parking lot becomes obvious
all the way down to the distinction of individual vehicles and
parking spaces.
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(a) (b)

Figure 4.10: Interpolation Comparison with Circles Image.
(a) Cubic Interpolation. (b) Wavelet Interpolation. The bor-
ders of the circles are much crisper in the wavelet interpolated
image.

(a) (b)

Figure 4.11:  Interpolation Comparison with Rectangle Image.
(a) Cubic Interpolation. (b) Wavelet Interpolation. As in the
circles, the edges of the rectangles are reconstructed much better
in the wavelet interpolation image. The wavelet interpolated im-
age had difficulty exactly recreating the smaller rectangles, but
the cubic interpolated image recreates them with severe distor-
tion.
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(b)

Figure 4.12:  Interpolation Comparison with Lenna Image. (a)
Cubic Interpolation. (b) Wavelet Interpolation. The cubic and
wavelet interpolated images appear similar, but the finer details
such as the feather and the lines of hair are clearer in the wavelet
image.
most significant in the pinwheel image. The results show that the post-processing

step of the algorithm effectively reduces interpolation error.

4.5  Summary

The qualitative analysis of images illustrated that the wavelet based super-
resolution algorithm, using the Daubechies 7,9 wavelet system, accurately recon-
structed the original image. This reconstruction was significantly better than cu-
bic spline interpolation. The quantitative analysis showed the superiority of the

Daubechies 7,9 wavelet system to other wavelet systems and interpolation tech-

Circles | Rectangles | Pinwheel Aerial Lenna | Cameraman

Haar 14.8584 22.2944 890.4712 | 1.1831e3 | 1.3695e3 1.8864e3

Daub 9,7 | 14.6337 23.1060 924.0684 | 1.1639e3 | 1.3607e3 1.9166e3

Daub 7,9 | 14.3272 | 21.9297 | 874.0697 | 1.1264e3 | 1.3230e3 | 1.8591e3

Table 4.2:  Mean Square Error Comparison of Wavelet Filters.
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(b)

Figure 4.13:  Interpolation Comparison with Cameraman Im-
age. (a) Cubic Interpolation. (b) Wavelet Interpolation. As
with Lenna, the cubic interpolated image reproduces general fea-
tures, but fails to accurately reproduce the finer details. This
is most noticeable in the camera detail, along the legs of the
tripod, and the shoulders of the cameraman.
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Figure 4.14: Pinwheel Image Before and After Post-
Processing. (a) Before. (b) After. The dark diagonal lines
are smoother in the after image
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Circles | Rectangles | Pinwheel Aerial Lenna | Cameraman
Daub 7,9 | 14.3272 | 21.9297 | 874.0697 | 1.1264e3 | 1.3230e3 | 1.8591e3
Cubic 18.6622 34.9225 1.3499e3 | 1.3077e3 | 1.6213e3 2.3884e3
Linear 19.0132 37.1147 1.8144e3 | 1.4861e3 | 1.7778e3 2.5801e3
Nearest 26.4575 50.6360 4.6764e3 | 2.3484e3 | 2.3540e3 3.1974e3
Table 4.3:  Mean Square Error Comparison of the Daubechies 7,9 Wavelet with

Traditional Interpolation Methods.

Circles | Rectangles | Pinwheel | Aerial Lenna | Cameraman
Haar 1.0186 1 112.3714 | 100.2184 | 89.2220 137.6439
Daub 9,7 | 1.0586 1 102.3207 | 94.5569 | 88.2995 | 123.4636
Daub 7,9 | 1.0214 1 95.3491 | 97.2869 | 85.7935 126.9404

Table 4.4:  L-Infinity Comparison of Wavelet Filters

Circles | Rectangles | Pinwheel | Aerial Lenna | Cameraman
Daub 7,9 | 1.0214 1 95.3491 | 97.2869 | 85.7935 | 126.9404
Cubic 1.0625 1 94.0500 | 106.4375 | 116.9357 | 173.0607
Linear 1 1 91.5000 | 106.0000 | 122.5000 | 192.5000
Nearest 1 1 121.0000 | 114.6667 | 148.0000 | 174.0000

Table 4.5:  L-Infinity Comparison of the Daubechies 7,9 Wavelet with Traditional

Interpolation Methods.

Circles | Rectangles | Pinwheel | Aerial Lenna | Cameraman
Before | 14.1116 | 23.6796 1.1409e3 | 1.2644e3 | 1.4101e3 1.9521e3
After | 14.3272 | 21.9297 | 874.0697 | 1.1264e3 | 1.3230e3 1.8591e3
Table 4.6:  Mean Square Error Comparison of Post-Processing.
Circles | Rectangles | Pinwheel | Aerial Lenna | Cameraman
Before | 1.0230 1.0848 160.0123 | 97.9321 | 100.7054 132.0056
After | 1.0214 1 95.3491 | 97.2869 | 85.7935 126.9404
Table 4.7:  L-Infinity Comparison of Post-Processing
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niques, in terms of mean square error. In terms of L-infinity error the Daubechies
7,9 wavelet was shown to perform better in images with fine detail and Daubechies
9,7 wavelet was shown to perform better in images with coarse information. For the
binary images, in terms of L-infinity error, all systems performed about the same.
It was also shown that the post-processing of the super-resolution image produced
smaller MSE and L-infinity error. The significance of these results is discussed in

the following chapter.
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V. Discussion and Future Work

5.1 Contributions Of This Thesis

A wavelet-based super-resolution algorithm has been developed that can accu-
rately produce one high-resolution image from two sub-pixel shifted low-resolution
frames. The algorithm assumes this shift to be a half-pixel in the x and y direction.
The frames are combined into a high-resolution grid according to this shift, and

rotated to optimize use of the wavelet transform.

Once in the wavelet domain, missing high-resolution coefficients are calcu-
lated using an adaptive interpolation method. The method utilizes the parsimo-
nious clustering property of the wavelet transform to find an optimal set of three
or four coefficients. The average of this coefficient set determines the value of the
missing coefficient. Once all missing coefficients have been calculated, the new high-
resolution image is brought out of the wavelet domain and re-rotated into its original

orientation.

Due to interpolation error, certain edges in the image are not properly re-
constructed. A post-processing step uses the wavelet transform to slightly subdue
horizontal and vertical edges, and enhance diagonal ones. The final high-resolution

image shows accurate reconstruction of most high-resolution details.

Different wavelet systems were applied to this algorithm to determine which
wavelet system most accurately reconstructed the the high-resolution image. The
MSE and L-infinity errors of each of these wavelets were used to quantitatively
determine the accuracy of reconstruction. The Daubechies 7,9 wavelet system was
shown to perform the best in terms of mean square error. In terms of L-infinity
error the Daubechies 7,9 wavelet system performed better on images with fine detail,
while the Daubechies 9,7 wavelet system performed better on images with coarse
information. Using this wavelet system, the algorithm was then compared to other

traditional interpolation techniques. Chapter 4 illustrated the superior performance
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of the wavelet-based super-resolution algorithm to these techniques, both visually

and in terms of MSE and L-infinity error.

5.2 Potential For Future Research

This thesis developed an accurate wavelet-based super-resolution algorithm
that operates on two frames at one specific sub-pixel shift. A more robust algorithm

could be developed to handle multiple frames at any arbitrary sub-pixel shift.

Since many good image registration and compression algorithms use wavelets,
the super-resolution algorithm developed here could be combined with either, or
both, of these, to provide a more computationally efficient overall system. This

algorithm can, and should be, extended into other more robust applications.

Application of the RDWT was only done at the first scale. More accurate
results may be produced by working at higher scales. The application of the non-

redundant DW'T may also effectively achieve super-resolution.

The algorithm was only designed to restore resolution lost by the finite CCD
array. It may be extended to restore resolution lost by the rest of the camera’s
optics. By accounting for all lost resolution, and incorporating an accurate image
registration algorithm, a system could be developed to apply directly to a real video

sequence.
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Appendiz A. Determination of Missing Pizel Locations

issing pixel locations are determined by convolving a mask with known co-
Mefﬁcient locations, shown in Figure 1.1(a). A temporary copy is made of the
wavelet domain image. All coefficients in this image are set to a value of 1. Con-
volving this image of 1’s with the mask will produce numbers ranging from 0-4 in
the locations of the missing coefficients. If the result is a 0 or a 1, it is assumed that
no pixel coefficient exists in this location. Coeflicients with a value of 1 are then
set to 0. This accounts for erroneous coefficients produced along the edges of the
rotated image. A coefficient is assumed to exist in locations that have a value of 2
or greater. These are all set to a value of one. The indices of all locations with a
value of one are recorded. The adaptive interpolation scheme of Section 3.2.2 picks
the 4 coefficients surrounding each recorded pixel location to determine the missing
coefficient value. Figures 1.1(b) and 1.1(c) show the before and after result of the
interpolation. New coefficients are represented by *’s and original coefficients are

represented by diamonds.
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Figure 1.1:  Convolution of Mask with Sub-Band. (a) Mask.
(b) Wavelet Transform Sub-Band of Test Frames. (c) Wavelet
Transform Sub-Band with Missing Values Added.
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