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Abstract

The theory for Inertial Navigation System (INS) aiding using passive, bearings-

only measurements of an unknown stationary ground object, in the vein of optical

flow measurement, is developed. Stand-alone bearings-only measurements over time

of an unknown, but stationary, ground object are shown to yield estimates of the

aircraft’s aerodynamic angles, viz., the angle of attack and sideslip angle. Two new

equations containing the aircraft’s angular navigation variables ψ, θ, φ, γ, H, and

the aerodynamic angles are derived. This allows an update of the aircraft’s atti-

tude, thus making INS aiding using passive, bearings-only measurements possible.

Moreover, the use of stadiametry, knowledge of the ground object’s elevation, and

an independent baro-altitude measurement yields an improved estimate of the air-

craft’s positional variables, thus completing the INS aiding task. At the same time,

the geo-location of the observed ground object is also obtained. In addition, prior

information on the position of the ground object further enhances the positional

navigation variables’ estimate, thus bringing to full fruition the favorable synergy of

INS and bearings-only measurements of an unknown ground object.

x



INS AIDING USING PASSIVE,

BEARINGS-ONLY MEASUREMENTS OF AN

UNKNOWN STATIONARY GROUND OBJECT

I. Introduction

For centuries man has been on the move, crossing continents and oceans in

search of adventure, riches, conquest, and scientific discovery. The simple act of

moving from one place to another whether by foot, ship, or aircraft is often described

as navigation.

Navigating the globe over the centuries has been accomplished using three

different types of navigation: celestial, dead reckoning, and piloting. Celestial navi-

gation is the process of computing position from the measured elevation angle of stars

with respect to time; dead reckoning is the process of recording both the speed and

direction of travel from the point of departure to produce a map of both the distance

and the direction travelled; and piloting is the process of using known landmarks to

estimate position [9].

The invention of the aircraft brought about new challenges to navigation. Ce-

lestial navigation worked only during clear nights while dead reckoning and piloting

became increasingly difficult at high speeds and high altitudes. To overcome these

problems, engineers turned to the laws of classical mechanics as described by Sir

Isaac Newton. These laws tell us that an object in motion will stay in motion unless

acted upon by an outside force. This force is known as acceleration, and it can be

measured by an accelerometer [10]. In all truthfulness, accelerometers actually mea-

sure specific force, which is the acceleration measured by the sensor coupled with

gravity. Accelerometers cannot distinguish between gravity and acceleration; thus
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their attitude with respect to the earth, and a good model of the local gravity field,

must be known in order to compensate for gravity and calculate the true accelera-

tion. The attitude of the accelerometers can be determined from gyroscopes which

measure angular rates. Accelerometers and gyroscopes form the backbone of the

Inertial Navigation System (INS) which is essential in today’s aircraft navigation

systems.

The accelerations calculated from measurements provided by the accelerome-

ters and gyroscopes provide both the position and the velocity of the aircraft. An

INS does not require external measurements from other sources to operate. It is

a completely self-contained measuring device; however, accurate knowledge of the

initial INS position is required for precise navigation when all other errors in the

system are neglected. Unfortunately, gyroscope measurement accuracy suffers from

an error called drift which causes large position errors over long periods of time. To

reduce or eliminate this problem, external measurements are often used to aid the

INS in producing an accurate position estimation.

1.1 Background

1.1.1 History of Navigation. Successful navigation requires two things: a

map which includes some kind of coordinate system to define position and some sort

of measuring device which can be used to calculate a position. Early man used his

own eyes as a measuring device and his memory as a map to navigate across the

land using landmarks. As man began to travel farther and farther across the land

and especially the seas, he developed maps and measuring devices to guide him. The

Polynesians used celestial bodies to navigate the oceans over two thousand years ago

[10], but not until the Eighteenth Century did man finally devise accurate means of

navigating great distances over the earth’s oceans.

Determining one’s position with respect to latitude had been done for hundreds

of years prior to the Eighteenth Century and could be done on any clear day or

night with the help of a sextant, but determining longitude was a different matter.
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The zero degree meridian of latitude is fixed on the earth at the equator but the

zero degree meridian of longitude can be arbitrarily placed anywhere in the world (it

resides in Greenwich, England today). More elegantly put, “The zero-degree parallel

of latitude is fixed by the laws of nature, while the zero-degree meridian of longitude

shifts like the sands of time [2].” To determine one’s longitude at sea, the time at the

point of departure versus the time aboard the ship needs to be known with a great

deal of precision. The differences in time according to the clocks combined with the

know latitude can be converted into the distance traversed longitudinally.

Pendulous clocks of the early Eighteenth Century were not accurate nor robust

enough to keep precise time aboard a ship at sea. So pressing was the need to develop

accurate seafaring clocks that the British Parliament passed the Longitude Act of

1714 offering a prize of £20,000 (worth several million dollars in 1990 money) to

anyone who could solve the problem [2].

A simple clockmaker by the name of John Harrison succeeded where so many

before him had failed. He designed a pendulous-free, highly accurate mechanical

clock driven by springs and resembling a pocket watch. His invention forever changed

navigation and “accomplished what Newton had feared impossible: He invented a

clock that would carry the true time from home port, like an eternal flame, to any

remote corner of the world [2].”

Newton’s name would also be associated with another milestone in navigation

history. The laws of mechanics and gravitation which Newton had defined nearly

two centuries earlier would form the theoretical basis for the design of the sensors

that would make inertial navigation possible in the middle of the Twentieth Century

[10].

Many of the theories behind inertial navigation were well known before the

middle of the Twentieth Century, but it wouldn’t be until World War II that Ger-

many’s V-2 rockets would successfully use inertial sensors [10] to guide their deadly

cargo to London. The Cold War also hastened the development of highly accurate
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INS’s to guide long-range bombers and ICBMs, but the INS has also found its way

into peaceful applications such as commuter flight and landing men safely on the

moon.

1.1.2 Inertial Navigation System. Inherent to all INS are two main compo-

nents, the Inertial Measurement Unit (IMU) and the navigation computer. The IMU

often consists of three accelerometers and three gyroscopes mounted in orthogonal

triads that measure specific force and angular rates respectively. The raw measure-

ment data from the IMU is sent to the navigation computer which determines the

acceleration from the specific force, angular rate measurements, and a model of the

local gravity field. The computer then uses the acceleration information to calculate

the position and velocity, while gyros provide the attitude of the IMU. The IMU

and navigation computer are collocated in the same box for easy installation and

replacement [8].

Modern flight systems rely on an INS because it is a completely self-contained,

nonjammable system that provides redundancy for other flight systems that can

experience interference (i.e., radar), but the system does suffer form the unbounded

growth of errors in position over time. These errors are caused by misalignment

of the INS before takeoff and sensor imperfections that include accelerometer bias

and gyroscope drift [9]. Therefore, an INS typically uses some form of position and

velocity aiding from external sensors such as radar and more recently GPS.

1.1.3 Aided INS. The unbounded errors found in an INS can be reduced

either by building more accurate accelerometers and gyroscopes or by aiding the

system externally with position and/or velocity measurements. The cost of very

accurate sensors is often too high for the desired application and there is a physical

limit to the accuracy of the sensors, so many engineers have turned to external

measuring devices to aid the INS.
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There are many different systems available to aid the INS, including but not

limited to:

1. Doppler Velocity Sensors (DVS).

2. Tactical Air Navigation (TACAN).

3. Global Positioning Systems (GPS.)

4. Forward Looking Infrared (FLIR) and Line-of-Sight (LOS) to a waypoint.

The measurements from these aiding systems along with the data output form the

INS are combined mathematically in a Kalman filter [8] to produce an estimate

of the aircraft’s position. The Kalman filter “is simply an optimal recursive data

processing algorithm” [4] derived by R. E. Kalman in 1960.

All four of the above-mentioned aiding systems improve INS long term oper-

ation, but they all have major drawbacks. DVS and TACAN require active sensors

(i.e., radio pulses) to operate. The major drawbacks to active sensing are the sensor’s

susceptibility to jamming and disclosure of the aircraft’s position while in operation.

GPS is a passive system, thus an aircraft using GPS will not disclose its position,

but this system also has some major drawbacks. GPS signals can be jammed or

spoofed with inexpensive and low-power devices, degrading the system’s accuracy.

FLIR and LOS require fixed, known ground objects to calculate position, a major

drawback when an aircraft is operating over unknown or hostile territory. A system

consisting of passive measurements, impervious to jamming or spoofing, that could

aid the INS without knowledge of known ground objects would provide INS error

correction without any of the disadvantages as described above.

1.2 Problem Definition

The main thrust of this research is to develop the theory and mathematics

behind aiding an INS with passive, bearings-only measurements of unknown ground

objects. Passive refers to the use of sensors that don’t emit radiation; thus the
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aircraft cannot be tracked. Bearings-only simply refers to LOS measurements that

display the direction of the unknown ground object with respect to the body of

the aircraft; no velocity, acceleration, or distance measurements are made by the

sensor. A ground object is any stationary object that the pilot or the passive sensor

can easily acquire and track. The ground object does not need to be man-made;

however, man-made objects are often easy to spot and track.

Passive, bearings-only measurements of an unknown, but stationary, ground

object used to aid an INS produces a completely autonomous, self-contained navi-

gation system. The system cannot be jammed or spoofed and does not rely on any

external measurement sources to operate. The system can be integrated into any

aircraft that has the capabilities of taking passive, bearings-only measurements from

either pilot or automatic input.

1.3 Summary of Current Knowledge

The idea of using unknown ground objects to aid an INS was first proposed

by engineers at NASA for use in the Apollo Lunar Module (LM) [1]. The idea was

to aid the LM’s navigation computer when the LM was on both the light and dark

side of the moon. The mathematical framework for a two-dimensional scenario was

created for the project but it was never used in the Apollo’s navigation system.

To understand how the system would have worked, assume an astronaut is

able to track an unknown ground object as in Figure 1.1. The navigation system

must rely on the changes in the tracking angle αc, where the subscript c denotes a

calculation based on sensor measurements, and the distance S0 of the LM from the

ground object to compute the vehicle’s velocity vector. The equations that determine

the tracking angle and velocity vector were developed by Alexander Koso at the MIT

Instrumentation Laboratory [1].

The idea was reexamined forty years later by Murat Polat, a Lieutenant in

the Turkish Air Force studying in the United States at the Air Force Institute of
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Figure 1.1 NASA Measurement Scenario

Technology (AFIT) for his thesis [7] on INS aiding. He examined a similar two-

dimensional scenario involving aircraft dynamics. The major difference in the two

research efforts is the type of measurements used to determine position. Koso as-

sumed the distance to the ground object could be determined while Murat focused

on bearings-only measurements and the aircraft’s navigation variables. The mathe-

matical framework developed by Alexander Koso and Murat Polat is examined more

in-depth in Chapter 2.

1.4 Scope

Reference [7] has shown that in a limited two-dimensional case, INS aiding

with passive bearings-only measurements is possible. This research will take the

algorithm developed for the two-dimensional measurement case and expand them

into a more realistic and practical three-dimensional case. This will allow the INS

aiding algorithm to handle “real world” aircraft operations better. The algorithm

will be tested using a wide variety of simulated aircraft flight profiles. The aiding

concept is still in the theoretical stage and no field testing of an actual system will

occur.

1.5 Assumptions

The inertial velocity vector of the aircraft is assumed to be linear during all

measurements, thus precluding the pilot from performing any maneuvers. Although
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restrictive, the total measurement interval required to produce aiding information

is less than one minute for most cases as outlined in Chapter 4. When aiding is

desired, the minimal time it takes to produce reliable measurements for the aiding

algorithm will not have a negative impact on the operation of the aircraft for most

cases. To insure the non-radiating capability of the INS aiding sensor, bearings-only

measurements are taken by an optical or electro-optical tracker.

1.6 Methodology

The same approach used by [7] is incorporated in this research but expanded

into three-dimensional space. There is a total of nine measurement variables avail-

able from the aircraft’s instrumentation. Four of these measurements are positional

variables and include the initial position of the aircraft (X0, Y0, Z0) as well as the

aircraft’s velocity (V ). The other five measurements are angular variables and in-

clude the Euler Angles of the aircraft (yaw ≡ ψ, pitch ≡ θ, roll ≡ φ) as well as the

heading (H) and the flight path angle (γ) of the aircraft. The bearings-only mea-

surements are used to calculate the angle γD, where the subscript D differentiates

this angle measurement from the flight path angle γ, between the inertial velocity

vector and the initial LOS vector. Figure 1.2 shows the three-dimensional measure-

ment scenario. The measurement scenario begins at X0, Y0, and Z0 with an initial

LOS measurement to the unknown but stationary ground object P . The path of the

aircraft is along the inertial velocity vector ~V described by H and γ in the reference

frame (X,Y, Z). The orientation of the aircraft with respect to the inertial velocity

vector is described by Xb, Yb, and Zb where Xb points directly out of the noise of the

aircraft, Yb is perpendicular to the aircraft’s fuselage and oriented along the right

wing, and Zb is orientated perpendicular to the bottom of the aircraft. The angle

measured between two consecutive LOS measurements is σ, and the calculated an-

gle between the inertial velocity vector and the initial LOS measurement is γD. The
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Figure 1.2 3-D Measurement Scenario

vector ~ω describes the orientation of the plane formed by the inertial velocity vector

and the LOS vector with respect to the (X,Y, Z) frame.

The nine measurement variables are used to estimate the angles α and β that

describe the orientation of the inertial velocity vector with respect to the aircraft’s

body axes. These angles are often described as the kinematic angle of attack and

the kinematic sideslip angle respectively [3].

1.7 Summary

The goal of this research is to expand upon the knowledge of INS aiding using

passive, bearings-only measurements of an unknown, but stationary, ground object

as shown in [7]. This is accomplished through the creation and extensive testing

of the three-dimensional aiding algorithm outlined in Chapter 3. MatLabr is used

to produce realistic flight simulations to show that this approach to INS aiding will

produce an accurate and reliable navigation solution. In addition to aiding the INS,

the algorithm in Chapter 3 is used to determine the position of the unknown ground

object.
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II. Theory

2.1 Introduction

This chapter provides the theory behind INS aiding and using passive, bearings-

only measurements to accomplish the same. The chapter begins with a brief overview

of INS aiding and then goes into the theory and mathematics developed by [7] for

the two-dimensional scenario. The chapter ends with a discussion of the theory and

mathematics behind expanding the two-dimensional scenario into three dimensions.

2.2 INS Aiding

There are a wide variety of systems both onboard the aircraft and external that

are used for aiding. External systems include GPS, radio navigation aids, ground-

based radar, and star trackers. Onboard systems include altimeters, Doppler radar,

airspeed indicators, magnetic sensors, and electro-optical imaging systems [10]. The

aiding concept proposed by [7] and the subject of this research is an onboard optical

or electro-optical system.

Regardless of the system, they all operate on the same basic principle. The

INS outputs the desired navigation measurements. The navigation measurements

used during aiding are usually position and velocity, but the INS can also output

acceleration and attitude information. The measurements from the INS are com-

pared to the output signals of the independent navigation aid - see, e.g., Figure

2.1. This information is then sent to a filter for processing. A Kalman Filter is

often used to weight the incoming information to generate state estimates and send

corrections to the INS. These corrections help the overall system achieve a more

accurate navigation solution [10].
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Figure 2.1 INS Aiding Principle

2.3 Two-Dimensional Aiding Concepts

2.3.1 The Apollo Scenario. The use of unknown ground objects to aid

an INS was first proposed for use on the Lunar Module (LM) in the Apollo moon

missions. Reference [1] outlined the two-dimensional case shown in Figure 2.2. The

αc

Tracking Points

S0

ALT
0

Figure 2.2 Lunar Tracking Scenario

angle αc can easily be found by solving cot αc = S0/ALT0, where ALT0 is the height of

the LM above the unknown landmark. The subscript c refers to the computed angle

α from S0 and ALT0. Unfortunately, this equation neglects several key factors. First,

the LM is assumed to be stationary in the above equation. The movement of the LM

around the curved surface of the moon causes a variation in the measured bearing

angle. This variation is accounted for by taking the LM’s angular velocity ω0 and

multiplying by the LM’s height above the center of the moon r0 to produce a linear

velocity. The linear velocity is then multiplied by the time τ for the measurement

interval to establish the variation in the bearing angle due to the orbit of the LM.
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The computed bearing measurement now becomes

cot αc =
S0 − r0w0τ

ALT0

(2.1)

Second, errors in measurements must be taken into account. There is some uncer-

tainty in the altitude of the LM denoted by r(t0), and uncertainty in the altitude

of the landmark denoted by ∆ALT . The actual bearing measurement denoted with

the subscript α is

cot αα =
S0 − r0w0τ

ALT0 + r(t0) − ∆ALT
+

cot α(0)(r(t0) − ∆ALT )

ALT0 + r(t0) − ∆ALT
(2.2)

where α(0) is the initial LOS measurement. The movement of the LM also produces

velocity errors in both the horizontal and vertical directions as shown in Figure 2.3.

Horizontal Tracking Error Vertical Tracking Error

Actual Bearing

Assumed Bearing

Figure 2.3 Velocity Tracking Errors

The computed bearing measurement with vertical errors becomes:

cot αα =
S0 − r0ω0τ

ALT0 + ṙ(t0)τ
(2.3)

The computed bearing measurement with horizontal errors becomes:

cot αα =
S0 − (ω0 + ω(t0))r0τ

ALT0

(2.4)
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The final error source that is taken into account is the initial range error θ(t0). The

initial range error is due to the determination of the velocity error in Equation (2.3)

and causes an angle between the LM’s assumed and actual path. It is impossible to

distinguish the initial range error from the velocity error, and the effect of this error

is shown in Figure 2.4.

θ(t )

Actual Bearing

Assumed Bearing

1

Figure 2.4 Initial Range Error

The computed bearing measurement with the initial range error becomes

cot αα =
S0 − r0ω0τ

ALT0 − θ(t0)r0ω0τ
(2.5)

where (t0) represents the initial time of the measurement scenario.

The above equations provide the background required to determine the position

error for INS aiding. The errors terms are generally small, so linear approximation

techniques are applied. A more in-depth explanation of the techniques used to

determine the position error can be found in [1] or [7]. The difference between the

actual bearing angle αα and the computed bearing angle αc is written as

cot αα − cot αc ≈ 1
ALT 2

0

(r0ω0[r(t0) − ∆ALT ] + S0[r0ω0θ(t0) − r(t0)])τ

+ r0ω0

ALT 2
0

[ṙ(t0) − r0ω0θ(t0)]τ
2

(2.6)
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The angle β between the assumed and the actual bearing measurement is written as

sin β ≈ φr0τ

ALT0 + r(t0) − ∆ALT + (r(t0) − r0ω0θ(t0))τ
(2.7)

where φ is the position error. Depending on the orbit of the LM, (r(t0) − r0ω0θ(t0))

will be negligible. Using small angle approximation and the assumption that

(r(t0) − r0ω0θ(t0)) can indeed be neglected, Equation (2.7) is rewritten as:

φ ≈ β(t)(ALT0 + r(t0) − ∆ALT )

r0t
(2.8)

The orbital parameters of the LM can now be found using Equation (2.6) and Equa-

tion (2.8) without the knowledge of the ground object’s position; however, four lunar

landmarks must be tracked to determine the initial condition errors [1].

2.3.2 The Aircraft Scenario. The bearings-only concept for INS aiding was

never used in any of the Apollo missions but it did provide insight for [7] who would

revisit the idea some forty years later. There are some key differences between the

work done in [1] and [7]. As stated earlier, [1] assumed the altitude of the LM and

its distance to the landmark were known; however, [7] was interested in the case

in which the only measurements available for INS aiding were bearings-only LOS

measurements taken by some sort of passive sensor which does not provide ranging

information. This forced [7] to look at the aiding concept in a new mathematical

light. Reference [7] also examined a two-dimensional case; however, the dynamics

behind aircraft flight offered unique challenges that the LM did not need to face.

Figure 2.5 shows the measurements scenario used by [7] to construct the math-

ematics required for INS aiding. The body frame of the aircraft (xb, yb) relative to

the velocity vector ~V can be described by the angle α′. Reference [7] theorized that

the angle α′ is related to the aircraft’s angular navigation variables yaw ψ, pitch

θ, roll φ, dive angle γ, and heading H. The angles σ0 through σ3 are measured
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Figure 2.5 Aircraft Tracking Scenario [7]

using the passive sensor while the angle γD is calculated from those measurements.

The aircraft provides a measurement of scaler velocity and the bearings-only mea-

surements are taken at time intervals of tk for k = 0, 1, ..., N over a total time T .

The angle included between the initial LOS to the ground object and the aircraft’s

inertial velocity vector is denoted by γD. This section is concerned with the estimate

of γD. Figure 2.5 shows the two-dimensional measurement geometry used in [6] and

[7] to derive the mathematics required for INS aiding.

The LOS angle increments σ0 through σk are directly measured using the

passive optical sensor while the angle γD is calculated from those measurements using

a batch calculation. The bearings-only measurements are taken at time intervals of

tk for k = 0, 1, ..., N over a total time T . The current time is related to the time

intervals through the following equation

Tk =
k

∑

i=0

ti . (2.9)
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The following geometric argument is used. A circumscribing circle is drawn

through two consecutive measurement points and the unknown landmark P at (x, y)

as shown in Figure 2.6. Such a circumscribing circle can be drawn for every pair of

(x   ,y   )Ck Ck

P(x,y)

R

d

Vtk

1
2

σk

Ck

V, x

σk

C

Figure 2.6 Geometry of Bearing-Only Measurements

consecutive measurement points, producing N + 1 circles intersecting at the point

P. The aircraft’s velocity is V and the radius of the circle Ck is

Rk =
V tk

2 sin σk

, k = 0, 1, ..., N (2.10)

with the (x, y) center of the circle Ck located at

xCk
=

k
∑

i=0

V ti − 1
2
V tk

yCk
= V tk

2 tan σk
, k = 1, ..., N

(2.11)

and the center of the “prime” circle C0 at

xC0
=

1

2
V t0 and yC0

=
V t0

2 tan σ0

(2.12)
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The equations of the of the circles are written in the form x2+y2 = R2. The “prime”

circle equation becomes

(x − 1

2
V t0)

2 + (y − V t0
2 tan σ0

)2 =
V 2t20

4 sin2 σ0

(2.13)

and the equation representing the rest of the circles becomes

(x −
k

∑

i=0

V ti +
1

2
V tk)

2 + (y − V tk
2 tan σk

)2 =
V 2t2k

4 sin2 σk

(2.14)

Subtracting Equation (2.13) from Equation (2.14) while substituting in Tk as defined

in Equation (2.9) yields the linear homogeneous system of N equations in x, y, and

V :

(2Tk − tk − t0)x + (tk cot σk − t0 cot σ0)y − Tk(Tk − tk)V = 0 (2.15)

The linear homogeneous system of N equations is represented in matrix notation by

Hθ = 0, where θ is the parameter vector [x y V ]T , and the N × 3 regressor matrix

H =











2T1 − t1 − t0 t1 cot σ1 − t0 cot σ0 −T1(T1 − t1)
...

...
...

2TN − tN − t0 tN cot σN − t0 cot σ0 −TN(TN − tN)











N×3

(2.16)

The regressor matrix H is constructed from measurements taken by the passive

sensor at deterministic time intervals. A Singular Value Decomposition (SVD) of H

leads to a solution for γD as follows.

The SVD of H is in the form

H = UΣV T

where U is a N × N matrix, Σ is a “diagonal” N × 3 matrix, and V is 3 × 3. As

expected, the first two diagonal elements of Σ are several orders of magnitude greater
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than the third diagonal element; thus, Σ is reduced to a diagonal 2 × 2 matrix, and

to maintain proper dimensions, both U and V T are reduced to N × 2 and 2 × 3

matrices, respectively. This yields the reduced matrices

H = UΣ1/2 and K = Σ1/2V T

It is now apparent that H = HK; thus, a full rank factorization of the regressor

matrix H is performed. Defining θ = Kθ produces Kθ = 0, a reduced linear ho-

mogeneous system of two independent equations in the three unknowns x, y, and

V :

K1,1x + K1,2y + K1,3V = 0

K2,1x + K2,2y + K2,3V = 0
(2.17)

This yields the solution

x = KxV and y = KyV (2.18)

where the “gains”

Kx =
K1,2K2,3 − K1,3K2,2

K1,1K2,2 − K1,2K2,1

and Ky =
K1,3K2,1 − K1,1K2,3

K1,1K2,2 − K1,2K2,1

(2.19)

Evidently, x and y are homogeneous in V . Now, the angle

γD = arctan(y/x)

The SVD yields the “gains” Kx and Ky and, in view of Equation (2.18), the angle

γD included between the initial LOS measurement and the inertial velocity vector is

γD = arctan(Ky/Kx)

The “clean” Kx and Ky parameters are the result of the SVD of the regressor matrix

H in Equation (2.16). Referring back to Figure 2.5, the equation θD − γD = θ − γ
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relates the optical bearing measurements to the angular navigation variables and

makes INS aiding using passive, bearings-only measurements a reality.

2.4 The Three-Dimensional Aiding Concept

Maintaining the autonomy of the INS is paramount. Hence, it is envisioned

that passive, bearings-only measurements of a unknown, but stationary, ground ob-

ject provided by, e.g., an optical or electro-optical tracker will be used. Indeed,

assuming an unknown ground object is tantamount to confining the navigation sys-

tem to the measurement of optical flow. Optical flow is the apparent motion of

luminance patterns in images caused by the motion of physical objects in the scene,

or the self-movement of the sensor. In this respect, the four scenarios to consider

when tracking a stationary object on the ground from the air for the purpose of

updating the INS are:

1. The ground object is a high intensity point source, e.g., a heat source. Infrared

(IR) trackers provide an automated means of tracking the point source.

2. There is an intermediate level of intensity/luminance variation in the scene

being viewed. Specialized video equipment can automatically track a point in

the scene, an implementation of an optical flow sensor.

3. There are low intensity variations in the observed scene. A human operator is

needed to close the tracking loop through the use of optical tracking equipment

such as a telescope or a driftmeter.

4. In very low SNR conditions the ground object may be impossible to track, i.e.

cloud cover or night-time flight over water.

The INS aiding method developed in this paper is applicable to the first three sce-

narios.

In this paper it is assumed that the position of the ground object is unknown

and that the measurements made by the optical sensor are bearings-only, removing
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the requirement of range information; however, multiple observations of the ground

object are made. The bearings-only measurements are taken by a tracker consisting

of a precision telescope mounted on a gimballed system. This allows the operator

controlled sensor to remain pointed to the ground object independent of the aircraft’s

motion. The direction of the line of sight to the ground object relative to the body

axes of the aircraft is measured with pickoffs that are attached to the gimbals. It is

envisioned that the inertial angular rate of the line of sight measurement is directly

determined with a two-degrees-of-freedom rate gyro whose spin axis is aligned with

the optical axis of the telescope so that the gyros’ input axes and the sensor’s optical

axis form a triad of orthogonal axes. The gyro should be of medium quality, so as

not to pick up the earth rate.

Indeed, and with hindsight, the origins of the INS aiding concept developed

in this paper can be traced back to the driftmeter [11]. A driftmeter is a naviga-

tional instrument out of the past, from the days when the navigator’s station was

in the glassed nose of the aircraft. A navigator’s driftmeter, or cinemoderivometer

in Europe, is a camera like instrument pointed straight towards the ground with a

built in scale in the focal plane. The length of the scale is equal to the focal length

of the objective. The scale is rotated and the angle of rotation measured. Selecting

a stationary object on the ground and rotating the eyepiece so the object moved

parallel to the scale gives the drift angle. Measuring the time for the object to move

between the two lines at the front and end of the scale is used to calculate the ground

speed of the aircraft if its altitude is known; the ground speed being the altitude

divided by the time it takes the ground object to travel between the two lines at the

front and back of the scale . Indeed, the INS passive aiding methodology developed

in this paper can be viewed as a modern development of the venerable driftmeter

navigational aid. In this paper, the general optical flow-based INS aiding theory is

developed and validated.
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2.5 Summary

This chapter provides an overview of the theory and background in the special

two-dimensional INS aiding case using passive, bearings-only measurements of an

unknown, but stationary, ground object. The general concept for aiding the INS in

three dimensions is also provided above. The next chapter will expand the research

presented in [7] into the three-dimensional world where the mathematics become

increasingly more complex. The concepts which build the three-dimensional case

are also dealt with in greater detail.
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III. Modeling Methodology

3.1 Overview

This chapter provides the theory used to generate flight profiles to test and

evaluate the passive, bearing-only measurement concept for INS aiding. The chap-

ter begins by explaining the relationships between the measurements taken by the

passive sensor and the aircraft’s navigation variables. These relationships show the

feasibility of aiding an INS using passive, bearings-only measurements. Next, the

theory and mathematics involved in updating the INS position are discussed and de-

rived. Finally, the algorithm that makes aiding and geo-location possible is derived.

3.2 Analysis

The kinematic measurement scenario where bearings-only measurements of

an unknown landmark are taken over time is considered. First, it is shown that

a stand-alone optical sensor measures the angles α′ and β′ included between the

aircraft’s inertial velocity vector ~V and the body of the aircraft - see, e.g., Figure

3.1. Specifically, the estimates of a) γD, the angle included between the aircraft’s

b
X

b
Zb

Y
b

V

α
β'

'

Figure 3.1 “Aerodynamic” Angles

inertial velocity vector and the initial LOS to the ground object - see, e.g., Fig 2.5,

b) ~ω1, the unit vector which is the rate of the LOS to the ground object - see, e.g.,

Figure 3.3, and, c) the angles ψLOS and θLOS included between the initial LOS to

the ground object and the aircraft’s body axes - see, e.g., Figure 3.2, are provided
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by the optical sensor. The angles γD, ω1, ψLOS, and θLOS and are related to the

“aerodynamic” angles α′ and β′. Hence, the “aerodynamic” angles of the aircraft

can be calculated from the optical flow measurement.

The air speed of the aircraft is equal to its ground speed in the absence of

wind. Thus, by definition, in the absence of wind the aerodynamic angles α and β

then satisfy

α = α′

β = β′

Hence, it is fair to say that the bearings-only measurements of an unknown ground

object afford the estimation of the aircraft’s aerodynamic angles.

3.2.1 The Main Equation. The Line of Sight (LOS) vector
−−→
LOS is specified

with respect to the body frame by the angles ψLOS and θLOS as seen in Figure 3.2.

b
X

b
Z

b
Y

LOS

θ

ψ
LOS

LOS

Figure 3.2 LOS in the Body Frame

The unit LOS vector resolved in the body frame is

−−→
LOS1b =











cos θLOS · cos ψLOS

cos θLOS · sin ψLOS

sin θLOS











(3.1)

Consider the plane P formed by the aircraft’s velocity vector ~V and the initial

LOS vector
−−→
LOS1 to the unknown ground object P - see, e.g., Figure 3.3. The

angular rate ~ω of the LOS from the aircraft to the unknown landmark is in the plane
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Figure 3.3 Measurement Scenario

perpendicular to the LOS; thus, ~ω will always contain a component of zero along

the LOS. If, during the measurement interval t, the aircraft is flying with a constant

velocity, then ~ω is also perpendicular to the plane P. The LOS angle in the plane P is

represented by σ with the magnitude of the angular rate represented by σ̇. The LOS

angular rate σ̇, and the spatial orientation of the plane P relative to the navigation

frame are obtained from the two measured nonzero components of ~ω. Measurements

of ~ω resolved in the telescope’s frame are provided by an optical tracker consisting

of a precision telescope mounted on a gimbal system. ~ω is transformed into the

aircraft’s body frame using the gimbals’ angles readings.

The vectors ~ω, ~V , and
−−→
LOS from Figure 3.3 are related through the cross

product

~V ×−−→
LOS = |V ||LOS| sin γD

~ω

‖ω‖ (3.2)

where the unit vector

~ω1 =
~ω

‖ω‖
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Note: ‖ω‖ = |σ̇| and γD is the angle included between the velocity vector and the

initial LOS. Dividing both sides of Equation (3.2) by |V ||LOS| produces the equation

~V1 ×
−−→
LOS1 = ~ω1 sin γD (3.3)

where ~V1,
−−−→
LOS1, and ~ω1 are all unit vectors. Equation (3.3) is referred to as the

“Main Equation” because it relates the five angular navigation variables with the

measurements of the optical tracker: ~ω1,
−−→
LOS1, and the calculated angle γD, the

latter being derived from the LOS angle measurements σ.

Representing the “Main Equation” in the body frame yields

~V1b ×
−−→
LOS1b = sin γD~ω1b (3.4)

Substituting Equations (3.12) and (3.1) into Equation (3.4) yields Equation (3.5).

sin γD · ~ω1b =











cosα′cosβ′

cosα′sinβ′

sinα′











×











cosθLOScosψLOS

cosθLOSsinψLOS

sinθLOS











(3.5)

The cross product is expanded to produce

MCb
n











cos γ cos H

cos γ sin H

− sin γ











= sin γD











ωx

ωy

ωz











(3.6)

where the matrix M is defined in Equation (3.7).

M =











0 sinθLOS −cosθLOSsinψLOS

−sinθLOS 0 cosθLOScosψLOS

cosθLOSsinψLOS −cosθLOScosψLOS 0











(3.7)
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Note that M is singular and MT = −M . ωx, ωy, and ωz are components of the unit

vector ~ω1 resolved in the body frame.

A direct relationship, albeit not explicit, is now established between the five

angular navigation variables ψ, θ, φ, H, and γ, and the optical measurements ωx,

ωy, ωz, γD, ψLOS, and θLOS. The singularity of the 3 × 3 matrix M should come as

no surprise - as expected, two new measurement equations are established.

3.2.2 Two-Dimensional Verification. It is illuminating to consider the

special two-dimensional case. The special two-dimensional geometry using the three-

dimensional derivation is recovered by setting H, ψ, and φ to zero and only using

θ and γ. In the two-dimensional case, ψLOS and the z component of ω are zero.

Figure 3.4 represents the two-dimensional case. In the two-dimensional case the

V

P

X

Zb

b

Xn

Zn

θ
γ

θ

γ

LOS

D

LOS

Figure 3.4 2-D Measurement Scenario

angular navigation variables are θ and γ and the optical measurements are θLOS and

γD,which is derived from the LOS and σ measurements. It is apparent from the

figure that

θLOS − γD = θ − γ (3.8)

Careful examination of Equation (3.3) reveals that ~ω1 points in the negative

y direction and is zero in both the x and z direction. Thus, the unit angular rate

vector is specified by ωy = −1. For the two-dimensional case, the “Main Equation”
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is thus

MCb
n











cos γ

0

− sin γ











= sin γD











0

−1

0











where M is reduced to











0 sin θLOS 0

− sin θLOS 0 cos θLOS

0 − cos θLOS 0











and Cb
n is reduced to











cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ











Hence, the “Main Equation” yields











0

sin(θ − γ − θLOS)

0











=











0

− sin γD

0











confirming that the three-dimensional equations produce the measurement equation

(3.8), as expected. The new measurement Equation (3.8) relates the optical mea-

surements and the relevant angular navigation variables. It is a linear regression in γ

and θ, thus making possible enhanced estimates of the aircraft’s angular navigation

variables; however, these enhancements do not directly translate into improvements

in the estimate of the aircraft’s positional navigation variables.

3.2.3 Aerodynamic Angles Relationships. The aerodynamic angles α′ and

β′ are related to the five angular navigation variables of the aircraft, viz., its Euler

angles ψ, θ, φ and its course H and flight path angle γ. The navigation variables ψ, θ,
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and φ are the aircraft’s Euler angles that represent yaw, pitch, and roll respectively -

see, e.g., Figure 3.5. The navigation variables γ and H are the angles used to specify

X
n

Z
n

Y
n

θ

φ

ψ

X
b

Figure 3.5 Euler Angles

the velocity vector in the navigation frame shown in Figure 3.6.

X N

V

Z N

Y N

γ

Η

Figure 3.6 Velocity Vector

The orientation of the body frame with respect to the navigation frame is

specified by the Euler angles ψ, θ, and φ. The Direction Cosine Matrix (DCM) Cn
b

transforms vectors resolved in the body frame of the aircraft into vectors resolved in

the navigation frame according to Equation (3.9). Conversely, the transpose of Cn
b ,

Cb
n, takes information from the navigation frame and transforms it into the body

frame.

Cn
b =











cosψcosθ cosψsinθsinφ − sinψcosφ cosψsinθcosφ + sinψsinφ

sinψcosθ sinψsinθsinφ + cosψcosφ sinψsinθcosφ − cosψsinφ

−sinθ cosθsinφ cosθcosφ











(3.9)
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The unit velocity vector ~V1 is in the direction of the aircraft’s inertial velocity

vector and is specified with respect to the navigation frame by the angles γ and H

as shown in Figure 3.6, and therefore is

~V1n =











cos γ cos H

cos γ sin H

− sin γ











(3.10)

Hence, in the body frame

~V1b = Cb
n











cos γ cos H

cos γ sin H

− sin γ











(3.11)

The aircraft’s unit inertial velocity vector is also represented in the body frame by

the “aerodynamic” angles α′ and β′ - see, e.g., Figure 3.1 - yielding the equation

~V1b =











cos α′ cos β′

cos α′ sin β′

sin α′











(3.12)

Equations (3.11) and (3.12) are combined into Equation (3.13) to show the relation-

ship between the angles α′ and β′ and the five navigation variables ψ, θ, φ, γ, and

H:










cos α′ cos β′

cos α′ sin β′

sin α′











= Cb
n











cos γ cos H

cos γ sin H

− sin γ











(3.13)

This yields two independent equations relating the aerodynamic angles α′ and β′ to

the five angular navigation variables ψ, θ, φ, γ, and H.
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One can explicitly express the “aerodynamic” angles α′ and β′ as a function

of the five angular navigation variables ψ, θ, φ, H, and γ. From Equation (3.13)

sin α′ = sin θ cos γ cos φ cos(ψ −H) + cos γ sin φ sin(ψ −H)− cos θ sin γ cos φ (3.14)

Equation (3.13) also yields the following two relationships

cos α′ cos β′ = [cos ψ cos θ, sin ψ cos θ, − sin θ] · [cos γ cos H, cos γ sin H, − sin γ]T

= cos θ cos γ cos(ψ − H) + sin θ sin γ

and

cos α′ sin β′ = [cos ψ sin θ sin ψ − sin ψ cos φ , sin ψ sin θ sin φ + cos ψ cos φ, cos θ sin φ]

· [cos γ cos H, cos γ sin H, − sin γ]T

= sin θ cos γ sin φ cos(γ − H) − cos γ cos φ sin(γ − H) − sin γ cos θ sin φ

Dividing cos α′ cos β′ by cos α′ sin β′ yields Equation (3.15).

tan β′ =
sin θ cos γ sin φ cos(ψ − H) − cos γ cos φ sin(ψ − H) − sin γ cos θ sin φ

cos θ cos γ cos(ψ − H) + sin θ sin γ
(3.15)

3.2.4 The Special Two-Dimensional Case. The relationships between the

aerodynamic angles and the angular navigation variables is easily seen in the special

two dimensional case. Consider an aircraft flying wings level at a constant speed.

There are two cases to consider.

1.) Flight in the vertical plane: only the pitch angle, θ, is considered. For

this case, the Euler angles ψ and φ are set to zero. The aircraft’s pitch angle θ is

determined solely from the flight path angle γ; thus H and β′ are set to zero. The

first case is illustrated in Figure 3.7. It is clear from Figure 3.7 that α′ = θ − γ.
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Xb

Xn

ZbZ n

V

θ

α
−γ

'

Figure 3.7 α′ Relationship

Substituting in ψ = φ = 0, H = 0, and β′ = 0 into Equation (3.13) yields











cos α′

0

sin α′











=











cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ





















cos γ

0

− sin γ











Multiplying everything out produces three equations

cos α′ = cos θ cos γ + sin θ sin γ

0 = 0

sin α′ = sin θ cos γ − cos θ sin γ

that are reducible to

cos α′ = cos(θ − γ)

sin α′ = sin(θ − γ)

Thus, the measurement equation is obtained

α′ = θ − γ (3.16)

2.) Flight in the horizontal plane: only the heading angle, ψ, is considered.

For this case, the Euler angles φ and θ are set to zero. The aircraft’s course H is
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determined solely from the heading ψ; thus γ and α′ are set to zero. The second case

is illustrated in Figure 3.8. It is clear from Figure 3.8 that β′ = H −ψ. Substituting

Xb

Xn

YbYn

V

−ψ

β
Η

'

Figure 3.8 β′ Relationship

in φ = θ = 0, γ = 0, and α′ = 0 into Equation (3.13) yields











cos β′

sin β′

0











=











cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1





















cos H

sin H

0











Multiplying everything out produces three equations

cos β′ = cos ψ cos H + sin ψ cos H

sin β′ = − sin ψ cos H + cos ψ sin H

0 = 0

that are reducible to

cos β′ = cos(H − ψ)

sin β′ = sin(H − ψ)

Thus, the measurement equation is obtained

β′ = H − ψ (3.17)
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The INS aiding algorithm in this paper assumes that the aircraft flies wings level

so that the “aerodynamic” angles α′ and β′ are small. The simplified measurement

Equations (3.16) and (3.17) can only be used under these small angle assumptions.

In other words, for the simplified Equations (3.16) and (3.17) to hold during a INS

aiding run, the aircraft must be flown wings level and at a constant altitude.

3.2.5 The Aerodynamic Angles Measurement. One can express α′ and β′

directly as a function of the optical measurements ψLOS, θLOS, ωx, ωy, ωz, and γD.

From Equation (3.6)

ωx sin γD = sin θLOS cos α′ sin β′ − cos θLos sin ψLOS sin α′

ωy sin γD = sin θLOS cos α′ cos β′ + cos θLos cos ψLOS sin α′

Rearranging and subtracting those two equations yields

sin2 θLOS cos2 α′ = sin2 γD(ω2
x + ω2

y) + cos2 θLOS sin2 α+

2 sin α sin γD cos θLOS · (ωx sin ψLOS − ωy cos ψLOS)

Solving for sin α′ yields.

sin α′ = − sin γD cos θLOS(ωx sin ψLOS − ωy cos ψLOS)±
√

√

√

√

√

sin2 γD cos2 θLOS(ωx sin ψLOS − ωy cos ψLOS)

+ sin2 θLOS − (ω2
x + ω2

y) sin2 γD

The two-dimensional special case dictates the use of the + sign and not the − sign.

Hence,

sin α′ =

√

√

√

√

√

sin2 γD cos2 θLOS(ωx sin ψLOS − ωy cos ψLOS)

+ sin2 θLOS − (ω2
x + ω2

y) sin2 γD

− sin γD cos θLOS(ωx sin ψLOS − ωy cos ψLOS)

(3.18)
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Rearranging and dividing the two equations derived from Equation (3.6) yields a

solution for β′ in the form

tan β′ =
cos θLOS sin ψLOS sin α′ + ωx sin γD

cos θLOS cos ψLOS sin α′ + ωy sin γD

(3.19)

The angles α′ and β′ are now expressed as functions of the five angular navigation

variables ψ, θ, φ, γ, and H in Equations (3.14) and (3.15), and the measurements

ψLOS, θLOS, γD, ωx, and ωy in Equations (3.18) and (3.19). Combining Equations

(3.18) and (3.14), and Equations (3.15) and (3.19) yields the two new measurement

equations provided by the optical flow measurement.

z1
∆
=

√

sin2 γD cos2 θLOS(η)2 + sin2 θLOS − (ω2
x + ω2

y) sin2 γD − η sin γD cos θLOS

= sin θ cos γ cos φ cos(ψ − H) + cos γ sin φ sin(ψ − H) − cos θ sin γ cos φ

(3.20)

where η = ωx sin ψLOS − ωy cos ψLOS

z2
∆
= cos θLOS sin ψLOS sin α′+ωx sin γD

cos θLOS cos ψLOS sin α′+ωy sin γD
= sin θ sin φ cos(ψ−H)−cos φ sin(ψ−H)−tan γ cos θ sin φ

cos θ cos(ψ−H)+sin θ tan γ
(3.21)

The two Equations (3.20) and (3.21) are equivalent to Equation (3.6). More impor-

tantly, in the process of developing Equations (3.20) and (3.21), the aerodynamic

angles are directly expressed in terms of optical flow measurements, refereing to

Equations (3.18) and (3.19).

The angles α′ and β′ are related to the five angular navigation variables ac-

cording to Equation (3.13). Hence, using Equations (3.18) and (3.19) to affirm that

a stand-alone optical flow sensor provides a means to update the aircraft’s angular

navigation variables, viz., the aircraft’s attitude.

3.2.5.1 Special Cases. Assume that the flight path profile flown

during the INS update run is such that θ, γ, φ, and |H − ψ| are small, in which case

the RHS of Equations (3.20) and (3.21) are simplified and the two measurement
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equations are

z1 ≈ cos φ [sin θ cos γ cos(ψ − H) − cos θ sin γ]

z2 ≈ cos φ
cos θ

tan(H − ψ)

Alternatively, assume that the flight profile flown during the INS update run calls

for an overflight of the ground object, in which case φ = ψ = H = 0, ωx = ωz = 0,

and ωy = −1. Equation (3.20) yields the single measurement equation

θLOS − γD = θ − γ

Also note: during level flight, when γ = 0,

z1 = sin θ cos φ cos(H − ψ) + sin φ sin(ψ − H)

z2 = tan θ tan φ + cos φ
cos θ

tan(ψ − H)

and θ, φ, |H − ψ| small, imply that

z1 ≈ sin θ and z2 ≈ tan(ψ − H)

i.e.,

α′ ≈ θ and β′ ≈ H − ψ

as expected.

The results obtained so far lay the foundation for updating the INS angular

navigation variables. These results are summarized in

Theorem 1: Consider the kinematic measurement scenario in Figure (3.9), where

bearing measurements on a stationary ground object whose position is not known,

are taken over time. It is then possible to estimate the angles which specify the

direction of the aircraft’s inertial velocity vector V relative to the body axes, viz.,

the “aerodynamic” angles α′ and β′.

2
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Proof: see the development in Section 3.2.5.

Proposition 2: The aerodynamic angles α′ and β′ are related to the aircraft’s five

angular navigation variables ψ, θ, φ, γ, and H.

2

Proof: see the development in Section 3.2.3 and 3.2.4.

Theorem 1 and Proposition 2 are exploited to lay the foundation for INS-aiding using

bearings-only measurements as stated in

Theorem 3: The kinematic measurement scenario which entails bearings-only mea-

surements over time on a stationary ground object whose position is not known,

yields two new independent measurement equations featuring the aircraft’s five an-

gular navigation variables ψ, θ, φ, γ, and H. Hence, the optical measurements can

be used to update the INS provided attitude estimate.

2

3.3 INS Aiding - Angular Navigation Variables

Updating the INS-provided angular navigation variables in the case where the

aircraft flies wings level and at a constant speed is based on the measurement Equa-

tions (3.20) and (3.21). In the special two dimensional case, one reverts to Equation

(3.8) where the aircraft overflies the ground object. The measurement is

z = θLOSmeas
− γDmeas

(3.22)

where

γDmeas
= γD + υ3 and θLOSmeas

= θLOS + υ2 (3.23)

3-15



with the υ2 and υ3 noise statistics modeled as zero-mean normal distributions. Sub-

stituting Equation (3.23) into Equation (3.22) yields the new measurement equation:

z = θLOS + υ2 − γD − υ3 (3.24)

Equation (3.24) is equivalent to

z = θ − γ + υ6 (3.25)

where υ6 = υ2 − υ3.

The INS provides estimates of θ and γ in the form

γ̂− = γ + υ4 and θ̂− = θ + υ5 (3.26)

with the υ4 and υ5 noise statistics modeled as zero-mean normal distributions. The

superscript - indicates a value determined at a time before the measurement incor-

poration, while the superscript + indicates the same value after the measurement

incorporation [4]. Equations (3.25) and (3.26) are combined to obtain the linear

regression for angular navigation variables aiding:











θ̂−

γ̂−

z











=











1 0

0 1

1 −1















θ

γ



 +











υ4

υ5

υ6











(3.27)

The linear regression (3.27) is in the standard form

Z = HX + V
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where

X =





θ

γ



 , H =











1 0

0 1

1 −1











, and V =











υ4

υ5

υ6











and is solved using the Minimum Variance formulae [4]

X̂+ =
[

HT R−1
noiseH

]

−1
HT R−1

noiseZ

P+ =
[

HT R−1
noiseH

]

−1
(3.28)

where X̂+ is the minimum variance parameter estimate and P+ is the predicted

parameter estimation error covariance matrix. The equation error covariance matrix

is

Rnoise =











σ2
υ4

0 0

0 σ2
υ5

0

0 0 σ2
υ6











X̂+ provides the updated estimate of the aircraft’s angular navigational variables θ

and γ. In summary, stand alone optical flow measurements are conducive to updating

the INS’s angular navigation variables.

3.4 Ins Aiding - Positional Navigation Variables

3.4.1 Transformation. INS aiding using passive, bearings-only measure-

ments of an unknown ground object requires transforming position vectors resolved

in the plane P as shown in Figure 3.9, into position vectors resolved in the navigation

frame. The initial position of the aircraft is (X0, Y0, Z0). The velocity of the aircraft

is described by the heading angle H and the flight path angle γ. The range of the

LOS vector to the unknown point P is R. The unknown point P in the navigation

frame is (XP , YP , ZP ). The plane P is constructed from the velocity vector and the

LOS vector. The plane exists in two-dimensional space using the (x, y) coordinate

system. The orientation of P with respect to the navigation frame is described by
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Zn
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y

P = (X  , Y  , Z  )P P P

(X  , Y  , Z  )00 0

V

R

P

H

γ

γ

ω1

D

Figure 3.9 Measurement Scenario

the unit vector ω1. The unit velocity vector and the orientation of P are used to

construct the transformation matrix that rotates the coordinate frame (x, y) into the

(xn, yn) plane of the navigation frame.

The DCM Cn
P , formed as shown below

Cn
P =

[

~V1n
... ~ω1n × ~V1n

... ~ω1n

]

transforms vectors resolved in the plane P into vectors resolved in the navigation

frame. The range vector ~R resolved in the navigation frame is

~Rn =











XP − X0

YP − Y0

ZP − Z0











(3.29)
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Since,

(Cn
P )T ~Rn =











x

y

0











then

~Rn = Cn
P











x

y

0











(3.30)

3.4.2 Basic Linear Regression. It is apparent from Figure 3.9 that

x = R cos γD and y = R sin γD (3.31)

Realizing that only an estimate of γD is available, γD = γ̂D + υγD
is substituted into

Equation (3.31) to yield

x ≈ R cos γ̂D − R sin γ̂D · υγD

y ≈ R sin γ̂D + R cos γ̂D · υγD

The estimation error of γD, υγD
is modeled as white Gaussian noise with zero mean

and represented as υγD
= N (0, σ2

γD
). Using the equalities

x = KxV and y = KyV (3.32)

derived in Section 2.3.2, Equation (2.18) yields the linear regression in the primary

parameters R and V .











Vm

0

0











=











0 1

cos γ̂D −Kx

sin γ̂D −Ky















R

V



 +











0 1

−R sin γ̂D 0

R cos γ̂D 0















υγD

υV



 (3.33)
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Equations (3.29), (3.30), (3.31), and (3.32) are used to produce Equation (3.34).











XP − X0

YP − Y0

ZP − Z0











= RCn
P











cos γD

sin γD

0











(3.34)

Substituting H = Ĥ + υH , γ = γ̂ + υγ, and γD = γ̂D + υγD
produces the linear

regression in the parameter (R,X0, Y0, Z0, XP , YP , ZP ) given in Equation (3.35).





cos γ̂D cos γ̂ cos Ĥ−ωy sin γ̂ sin γ̂D−ωz cos γ̂ sin Ĥ sin γ̂D 1 0 0 −1 0 0

cos γ̂ sin Ĥ cos γ̂D+ωz cos γ̂ cos Ĥ sin γ̂D+ωx sin γ̂ sin γ̂D 0 1 0 0 −1 0

− sin γ̂ cos γ̂D+ωx cos γ̂ sin Ĥ sin γ̂D−ωy cos γ̂ cos Ĥ sin γ̂D 0 0 1 0 0 −1



















R
X0

Y0

Z0

XP

YP

ZP















+R̂−







− sin γ̂D cos γ̂ cos Ĥ−ωy sin γ̂ cos γ̂D−ωz cos γ̂ sin Ĥ cos γ̂D,

− cos γ̂ sin Ĥ sin γ̂D+ωz cos γ̂ cos Ĥ cos γ̂D+ωx sin γ̂ cos γ̂D,

sin γ̂ sin γ̂D+ωx cos γ̂ sin Ĥ cos γ̂D−ωy cos γ̂ cos Ĥ cos γ̂D,

− cos γ̂D sin γ̂ cos Ĥ−ωy cos γ̂ sin γ̂D+ωz sin γ̂ sin Ĥ sin γ̂D,

− sin γ̂ sin Ĥ cos γ̂D−ωz sin γ̂ cos Ĥ sin γ̂D+ωx cos γ̂ sin γ̂D,

− cos γ̂ cos γ̂D−ωx sin γ̂ sin Ĥ sin γ̂D+ωy sin γ̂ cos Ĥ sin γ̂D,

− cos γ̂D cos γ̂ sin Ĥ−ωz cos γ̂ cos Ĥ sin γ̂D

cos γ̂ cos Ĥ cos γ̂D−ωz cos γ̂ sin Ĥ sin γ̂D

ωx cos γ̂ cos Ĥ sin γ̂D+ωy cos γ̂ sin Ĥ sin γ̂D





[ υγD
υγ
υH

]

=

[

0
0
0

]

(3.35)

3.4.3 Nonlinear Equality Constraint. The range R satisfies

R −
√

(XP − X0)2 + (YP − Y0)2 + (ZP − Z0)2 = 0 (3.36)

Linearization of Equation (3.36) is performed by defining the parameter vector

X
∆
=

[

X0 Y0 Z0 XP YP ZP

]T

and using the notation

f(X)
∆
=

√

(XP − X0)2 + (YP − Y0)2 + (ZP − Z0)2
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so that Equation (3.36)is written as R − f(X) = 0. The approximation for f(X) is

f(X) = f(X̂− + X − X̂−) ≈ f(X̂−) + ∇f |X̂− (X − X̂−) (3.37)

where X̂− is the prior estimate of the parameter X, and R̂− is the prior estimate of

the range R. Inserting Equation (3.37) into Equation (3.36) produces

R − ∇f |X̂− X = − ∇f |X̂− X̂− + f(X̂−)

The gradient of f

∇ f |X̂− =
[

X̂−

0
−X̂−

P

R̂−
,

Ŷ −

0
−Ŷ −

P

R̂−
,

Ẑ−

0
−Ẑ−

P

R̂−
,

X̂−

P
−X̂−

0

R̂−
,

Ŷ −

P
−Ŷ −

0

R̂−
,

Ẑ−

P
−Ẑ−

0

R̂−

]

(3.38)

Inserting Equation (3.38) into Equation (3.37) yields

R +
X̂−

P
−X̂−

0

R̂−
X0 +

Ŷ −

P
−Ŷ −

0

R̂−
Y0 +

Ẑ−

P
−Ẑ−

0

R̂−
Z0 − X̂−

P
−X̂−

0

R̂−
XP − Ŷ −

P
−Ŷ −

0

R̂−
YP − Ẑ−

P
−Ẑ−

0

R̂−
ZP =

X̂−

P
−X̂−

0

R̂−
X̂−

0 +
Ŷ −

P
−Ŷ −

0

R̂−
Ŷ −

0 +
Ẑ−

P
−Ẑ−

0

R̂−
Ẑ−

0 − X̂−

P
−X̂−

0

R̂−
X̂−

P − Ŷ −

P
−Ŷ −

0

R̂−
Ŷ −

P − Ẑ−

P
−Ẑ−

0

R̂−
Ẑ−

P + R̂−

The right hand side of the equation is simplified to

− 1

R̂−

[

(X̂−

P − X̂−

0 )2 + (Ŷ −

P − Ŷ −

0 )2+ (Ẑ−

P − Ẑ−

0 )2
]

+ R̂− = 0

Thus, the additional linear regression equation in the parameter [R
... X]T is obtained

[

1,
X̂−

P
−X̂−

0

R̂−
,

Ŷ −

P
−Ŷ −

0

R̂−
,

Ẑ−

P
−Ẑ−

0

R̂−
,− X̂−

P
−X̂−

0

R̂−
, − Ŷ −

P
−Ŷ −

0

R̂−
,− Ẑ−

P
−Ẑ−

0

R̂−

]











R

· · ·
X











= 0 (3.39)

The relationships developed so far are used to compose the linear regression equation

used in the INS position estimate updating algorithm.
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3.4.4 Stadiametry. The INS provides measurements of the aircraft’s posi-

tional navigation variables, viz., the velocity Vm, and the aircraft’s current position

X0m
, Y0m

, and Z0m
. The aircraft’s baro-altitude measurement can be used to reduce

the error in Z0m
. The INS measurements can also be augmented with prior infor-

mation on the ground object’s position XPm
, YPm

, and ZPm
. Concerning the range

R to the ground object: the measurement can be derived from direct radar ranging,

if available. Most importantly, the error in Rm is assumed small, the rational being

that Rm is obtained from an application of the Law of Sines to the triangle shown

in Figure 3.3. In other words, the critical stadiametric relationship afforded by the

optical measurement is used:

Rm =
sin(γD + σ)

sin σ
Vmt (3.40)

where σ is the LOS excursion and t is the duration of the measurement interval.

3.4.5 Linear Regression. Equations (3.33), (3.35), and (3.39) are combined

into a linear regression in the parameter

(R, V,X0, Y0, Z0, XP , YP , ZP )T
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where also the INS provided measurements and the prior information on the ground

object position are included, as shown in Equation (3.41).







































0 1 0 0 0 0 0 0
cos γ̂D −KX 0 0 0 0 0 0
sin γ̂D −KY 0 0 0 0 0 0

A1 0 1 0 0 −1 0 0
A2 0 0 1 0 0 −1 0
A3 0 0 0 1 0 0 −1

1 0
X̂

−

P
−X̂

−

0

R̂−

Ŷ
−

P
−Ŷ

−

0

R̂−

Ẑ
−

P
−Ẑ
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0
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P
−X̂
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0
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−

Ŷ
−

P
−Ŷ

−

0
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−

Ẑ
−

P
−Ẑ

−

0

R̂−

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
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

























R
V
X0

Y0

Z0

XP

YP

ZP



















+





































0 1 0 0 0 0 0 0 0 0 0
−R̂− sin γ̂D 0 0 0 0 0 0 0 0 0 0

R̂− cos γ̂D 0 0 0 0 0 0 0 0 0 0
B1 0 C1 D1 0 0 0 0 0 0 0
B2 0 C2 D2 0 0 0 0 0 0 0
B3 0 C3 D3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1































































υγD
υV
υγ
υH
υX0
υY0
υZ0
υXP
υYP
υZP
υR



























=







































Vm
0
0
0
0
0
0

X0m

Y0m

Z0m

XPm

YPm

ZPm

Rm







































(3.41)

where, in vector notation,

A =

[

cos γ̂D cos γ̂ cos Ĥ−ωy sin γ̂ sin γ̂D−ωz cos γ̂ sin Ĥ sin γ̂D

cos γ̂ sin Ĥ cos γ̂D+ωz cos γ̂ cos Ĥ sin γ̂D+ωx sin γ̂ sin γ̂D

− sin γ̂ cos γ̂D+ωx cos γ̂ sin Ĥ sin γ̂D−ωy cos γ̂ cos Ĥ sin γ̂D

]

B = R̂−

[

− sin γ̂D cos γ̂ cos Ĥ−ωy sin γ̂ cos γ̂D−ωz cos γ̂ sin Ĥ cos γ̂D

− cos γ̂ sin Ĥ sin γ̂D+ωz cos γ̂ cos Ĥ cos γ̂D+ωx sin γ̂ cos γ̂D

sin γ̂ sin γ̂D+ωx cos γ̂ sin Ĥ cos γ̂D−ωy cos γ̂ cos Ĥ cos γ̂D

]

C = R̂−

[

− cos γ̂D sin γ̂ cos Ĥ−ωy cos γ̂ sin γ̂D+ωz sin γ̂ sin Ĥ sin γ̂D

− sin γ̂ sin Ĥ cos γ̂D−ωz sin γ̂ cos Ĥ sin γ̂D+ωx cos γ̂ sin γ̂D

− cos γ̂ cos γ̂D−ωx sin γ̂ sin Ĥ sin γ̂D+ωy sin γ̂ cos Ĥ sin γ̂D

]

D = R̂−

[

− cos γ̂D cos γ̂ sin Ĥ−ωz cos γ̂ cos Ĥ sin γ̂D

cos γ̂ cos Ĥ cos γ̂D−ωz cos γ̂ sin Ĥ sin γ̂D

ωx cos γ̂ cos Ĥ sin γ̂D+ωy cos γ̂ sin Ĥ sin γ̂D

]

The linear regression Equation (3.41) is in the form

Z = HX + ΓV

3-23



where Z represents the 14×1 measurement vector, H represents the 14×8 regressor

matrix, Γ represents the 14× 11 measurement noise input matrix, and V represents

the 11× 1 measurement noise vector. Assuming the measurement noise components

are not correlated, the 14 × 14 equation error covariance matrix is

Rnoise = Γ





























σ2
γD

0 0 0 0 0 0 0 0 0 0

0 σ2
V 0 0 0 0 0 0 0 0 0

0 0 σ2
γ 0 0 0 0 0 0 0 0

0 0 0 σ2
H 0 0 0 0 0 0 0

0 0 0 0 σ2
X0

0 0 0 0 0 0

0 0 0 0 0 σ2
Y0

0 0 0 0 0

0 0 0 0 0 0 σ2
Z0

0 0 0 0

0 0 0 0 0 0 0 σ2
XP

0 0 0

0 0 0 0 0 0 0 0 σ2
YP

0 0

0 0 0 0 0 0 0 0 0 σ2
ZP

0

0 0 0 0 0 0 0 0 0 0 σ2
R





























ΓT

The measurement noise components are modeled as white Gaussian noise with zero

mean.

The linear regression (3.41) would normally be solved using the Minimum

Variance formulae (3.28) where X̂+ is the minimum variance parameter estimate

and P+ is the predicted parameter estimation error covariance matrix. X̂+ provides

the updated estimate of the aircraft’s position and velocity, and also the position

of the unknown ground object. The updating of the initial aircraft position, the

aircraft velocity, and the geo-location of the stationary ground object jointly occur

at the completion of the bearings measurement sequence, at time T , of which time

the INS aiding task is accomplished.

3.4.6 Linear Regression Solution. Calculating X̂+ and P+ using Equation

(3.28) would be straight forward; however, Equation (3.41) contains the matrix Rnoise

which is rank deficient and thus cannot be inverted. Indeed, the rank of Rnoise is

equal to the rank of Γ which is 11, and thus the rank deficiency of the matrix Rnoise

is three. Careful mathematical analysis is required to produce a solution to the

non-conventional, singular, linear regression in Equation (3.41).
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Consider the singular linear regression in the standard form

Z = HX + ΓV (3.42)

where the parameter vector X ∈ <n, the measurement vector Z ∈ <N , the regressor

matrix H is N × n with rank n, Γ is a full rank N × m noise input matrix, and

the random noise vector V ∈ <m with zero mean, Gaussian statistics. The rank

deficiency of the equation error covariance matrix Rnoise is n − m.

A Singular Value Decomposition of the positive, semi-definite real symmetric

matrix Rnoise is performed and produces Rnoise = TST T . T is an N×N orthonormal

matrix and S is a diagonal matrix of the form

S =











D
... 0

· · · · · ·
0

... 0











where D is an invertible diagonal m × m sub-matrix of S. Rnoise is equivalent to

Rnoise = T











√
D

... 0

· · · · · ·
0

... 0





















√
D

... 0

· · · · · ·
0

... 0











T T

Multiply Equation (3.42) from the left by the matrix











D−
1
2

... 0

· · · · · ·
0

... IN−m











T T
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to obtain Equation (3.43)











D−
1
2

... 0

· · · · · ·
0

... IN−m











T T Z =











D−
1
2

... 0

· · · · · ·
0

... IN−m











T T HX + W (3.43)

where the Gaussian random noise vector W is defined as

W =











D−
1
2

... 0

· · · · · ·
0

... IN−m











T T ΓV

The following relationship is established:

E
{

WW T
}

=





D
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1
2

... 0
··· ···

0
... IN−m
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T T E
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ΓV V T ΓT
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D
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1
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... 0
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1
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... 0
··· ···
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
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−

1
2

... 0
··· ···

0
... IN−m





=





D
−

1
2

... 0
··· ···

0
... IN−m



T T T

[

D
1
2

... 0
··· ···

0
... 0
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D
1
2

... 0
··· ···

0
... 0

]

T T T





D
−

1
2

... 0
··· ···

0
... IN−m





=





D
−

1
2

... 0
··· ···

0
... IN−m





[

D
... 0

··· ···

0
... 0

]





D
−

1
2

... 0
··· ···

0
... IN−m





=

[

Im

... 0
··· ···

0
... 0

]

(3.44)

Equation (3.44) proves that

E{WW T} =











Im
... 0

· · · · · ·
0

... 0











(3.45)
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Thus W is partitioned as W =
[

w1
... 0

]T

where w1 ∈ <m and w1 = N (0, Im).

Define the partitioned vector

T T Z =











z1

· · ·
z2











and the partitioned matrix

T T H =











H1

· · ·
H2











with z1 ∈ <m and H1 a m × n matrix, and z2 ∈ <N−m and H2 a (N − m) × n

matrix. This yields a reduced order non-singular standard linear regression in the

form D−1/2z1 = D−1/2H1X + w1 and a set of N − m linear equality constraints in

the form z2 = H2X.

The matrix H2 is further partitioned into H21 and H22 as follows:

H2 =
[

H21
... H22

]

where H22 is a non-singular (N − m) × (N − m) matrix. H1 is also partitioned into

two separate matrices H11 and H12 as follows:

H1 =
[

H11
... H12

]

where H12 is a m× (N −m) matrix. The parameter vector X is partitioned into X1

and X2 as follows:

X =











X1

· · ·
X2










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where X2 ∈ <N−m. Using the partitions of z, X, H1, and H2, the linear regression

equation is rewritten as

z2 = H21X1 + H22X2 (3.46)

and

z1 = H11X1 + H12X2 + D
1
2w1 (3.47)

Solving Equation (3.46) for X2 yields

X2 = H−1
22 z2 − H−1

22 H21X1 (3.48)

Substituting Equation (3.48) into Equation (3.47) yields the reduced linear regression

z1 − H12H
−1
22 z2 = (H11 − H12H

−1
22 H21)X1 + D

1
2w1 (3.49)

where

R = E

{

D
1
2w1w

T
1 D

1
2

}

= D

The linear regression Equation (3.49) is solved using the Minimum Variance formulae

(3.28), where Z = z1−H12H
−1
22 z2, H = H11−H12H

−1
22 H21, X = X1, and V = D1/2w1.

This yields Equations (3.50) and (3.51).

PX1
=

[

(H11 − H12H
−1
22 H21)

T D−1(H11 − H12H
−1
22 H21)

]

−1
(3.50)

X̂1 = PX1
(H11 − H12H

−1
22 H21)

T D−1(z1 − H12H
−1
22 z2) (3.51)

Substituting the estimated parameter X̂1 into Equation (3.48) produces an estimate

of the parameter X̂2 in the form

X̂2 = H−1
22 z2 − H−1

22 H21X̂1 (3.52)
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where

PX2
= H−1

22 H21PX1
HT

21(H
−1
22 )T (3.53)

The solution of the linear regression produces X̂1, X̂2, PX1
, and PX2

. The parameters

X̂ and PX are defined as

X̂ =











X̂1

· · ·
X̂2











and

PX =











PX1

... 0

. . . · · ·
0

... PX2











respectively.

3.5 Summary

This chapter provides the aiding algorithm which makes INS aiding using pas-

sive, bearings-only measurements of an unknown ground object possible. The heart

of the algorithm lies in the linearization of Equation (3.36) which shows the geo-

metric relationship between the LOS range, the initial position of the aircraft, and

the position of the unknown ground object. Equation (3.41) must be carefully par-

titioned to produce an invertible error covariance matrix for use in the Minimum

Variance formulae to produce the best estimate of the desired parameters.
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IV. Simulation Results and Analysis

The novel INS aiding method using passive, bearings-only measurements of an un-

known, but stationary, ground object over time is validated in simulation experi-

ments. MatLabr simulations are used to test and validate the aiding algorithm,

and also determine which flight profiles are best for INS aiding using bearings-only

measurements.

4.1 Methodology

The simulation begins with the selection of a scenario. A set of initial condi-

tions is chosen to generate the true flight profile of the aircraft as well as the true

bearings measurements. The latter are then corrupted with measurement noise. The

INS measurements are simulated using the true initial position and velocity values,

to which random errors generated from a zero-mean normal distribution are added

to simulate the INS errors at the initial point of the measurement interval. The

drift of the INS during the measurement interval is of no concern because the only

information used by the aiding algorithm comes from the INS at the initial measure-

ment point. The variance of the normal distribution of the INS provided position

and velocity is dependent on the quality of the INS modeled in the simulation. The

INS measurements are then used in the linear regression algorithm to produce a new

estimate of the position and velocity of the aircraft as well as an estimate of the

unknown ground object’s location. Since linearization is employed, iterations are

required. The algorithm converges quickly, within two or three iterations; therefore,

the total number of iterations does not need to be set very high. This process is

run through a set number of Monte Carlo evaluations with the same INS errors but

different bearings measurement errors. This constitutes a single Monte Carlo run in

itself and is repeated for different INS measurement errors. The simulation setup is

summarized in Figure 4.1.
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Set the initial conditions/scenario,

number of iterations and

number of Monte Carlo runs

Generate the INS

measured position

and velocity

Create errors in the

bearings/optical flow

measurements

Construct the

matrices used in the 

aiding algorithm

Perform the SVD 

and find the linear

regression solution

Have the total

# of iterations

   been met?

Use the newly

estimated X vector

No

         Have 

  the total # of 

Bearings Monte

Carlo runs been

          met?

Yes

No

Calculate statistics

regarding the

aiding algorithm

   Have the total

# of INS Monte Carlo

   runs been met?

Yes

No

Yes

Figure 4.1 Simulation Flow Chart
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4.2 Flight Profile Generation

The flight profile renders the path and velocity the aircraft traverses through

three-dimensional space as the stationary ground object is tracked. The flight profile

also contains σ measurements from the tracking system as well as the unit LOS vector

and the LOS range. The flight profile is generated using the aircraft’s initial position,

the location of the ground object that the aircraft is tracking, the number of, and

time interval between, the bearings-only measurements, heading, velocity, and flight

path angle of the aircraft.

The initial aircraft position and unknown ground object position are expressed

in Cartesian coordinate axes as defined in MatLabr according to Figure 4.2. This

reference frame is known as the inertial frame. The heading and flight path angle

X

Y

Z

θ

φ

I

I

I

Figure 4.2 Inertial Coordinate Frame

are also expressed in an inertial frame via the angles θ and φ. Expressing the initial

condition with respect to the inertial frame simplifies plotting and analysis. The

aiding algorithm requires the velocity, heading, and flight path angle of the aircraft

to be defined with respect to the navigation frame; therefore, the initial conditions are

transformed into vectors resolved in the navigation frame. Figure 4.3 is an example

plot of a flight profile in MatLabr. The data points along the flight path correspond

to when a single bearings-only measurement is recorded. The dashed lines represent
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P

Figure 4.3 Flight Profile Plot

the LOS to the unknown, stationary ground object, which is represented by a single

point P in space.

The bearings measurements generated from the flight profile are used to calcu-

late the true angle γD between the inertial velocity vector of the aircraft and the ini-

tial LOS. This is accomplished through the same process used in the two-dimensional

scenario shown in [7] and discussed in Section 2.3.2. Producing noise-corrupted es-

timates of γD is accomplished by adding zero mean Gaussian noise to the true σ

measurements.

The MatLabr flight profile function is used to generate and plot the aircraft’s

true flight path, the INS-measured flight path, and the INS-aided flight path. The

INS-measured flight path is generated from noise-corrupted measurements of the

initial position, velocity, heading, and flight path angle, as well as the estimated

ground object coordinate. The estimated ground object coordinate is calculated

using the Law of Sines as described in Section 3.5. The angles γ̂D and σ̂1 are used in
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conjunction with the estimated distance between the first and second measurement

intervals to produce an estimate of the initial LOS range. The estimated initial LOS

range (R̂), initial unit LOS vector measurement (
−−→
LOS1b), and the INS-measured

initial position (X0m
, Y0m

, Z0m
) are used to produce the estimated ground object

position (XPm
, YPm

, ZPm
).

4.3 The INS Aiding Algorithm

The simulation software takes the initial conditions and generates the true and

INS-estimated flight profiles as well as the bearings measurements and an estimate

of γD. The measurements and parameter estimates from the first part of the simula-

tion are used in Equation (3.41) to aid the INS measurements through the Minimum

Variance formulae given by Equation (3.28). The simulation calculates the estimated

parameter X̂ and its estimation error covariance PX exactly as outlined in Section

3.4. The linear regression solution is iterated a set number of times to demonstrate

the convergent properties of the solution. The same initial conditions and INS mea-

surements are used in every Monte Carlo run. The only values that change are the

errors in the bearings-only measurements.

The aiding concept is envisioned as a batch process. Once the entire bearings

measurement record is obtained, the aiding algorithm is applied and a more accu-

rate estimate of the initial aircraft position, velocity, and ground object location

is determined. The estimates are used to calculate a future INS position update

time. The aircraft’s estimated heading, flight path angle, and velocity are used in

conjunction with the aircraft’s estimated initial position to produce a more accurate

flight profile. For as long as the aircraft maintains its velocity, heading, and flight

path angle, future INS aiding positions are created ahead of the aircraft. The INS

is then updated at that predetermined position with a new, more accurate estimate

of position and velocity - see, e.g., Figure 4.4.
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Figure 4.4 INS Aiding Principle

In this work it is assumed that the aircraft maintains its original heading and

flight path without any deviations in course or velocity. These restrictions do limit

when the aiding algorithm can be applied, but not to a degree in which the aiding

concept becomes useless. The measurement interval for INS aiding is often less than

one minute, and, operationally at low altitudes, under ten seconds, and requires only

four measurements to produce a solution. It is by no means too restrictive to have a

pilot/autopilot fly an aircraft along a strait path while maintaining constant velocity

for a short period of time. This is especially true if the aircraft’s passive sensors are

gathering information as part of the mission requirements. Indeed, similar flight

restrictions apply during INS transfer alignment and/or when tracking tasks are

performed, for example, during a bombing run. A steady wind is not an impediment

to the INS update run. A steady wind is seen as an error in the heading and flight

path angle of the aircraft; however, heavy turbulence could greatly degrade the

accuracy of the optical flow measurement.

4.4 Scenarios

The very nature of this research yields a very large number of interesting INS

aiding scenarios. However, only a few important scenarios that provide good insight

into INS aiding using passive, bearings-only measurements over time, are covered in

this section. The key areas of interest are:

1. The impact of bearings only measurements on a tactical-grade INS.
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2. The impact of bearings-only measurements on a tactical-grade INS given prior

information.

3. The impact of bearings-only measurements on INS aiding during low/high

altitude flight.

Each scenario is repeated a number of times with varying initial positions, unknown

ground object locations, velocities, flight path angles, headings, time t between mea-

surements, and total N number of measurements taken. The only common parame-

ters in the various scenarios and in each of the runs that comprise those scenarios are

the total number or iterations, the total number of Monte Carlo runs, and the mea-

surement noise corrupting the bearings-only measurements. The maximum number

of iterations is set to 10. When the aiding algorithm produces good parameter es-

timates, it does so within two or three iterations. If the aiding algorithm cannot

produce good estimates of the parameters within two or three iterations, it will of-

ten oscillate between two poor parameter estimates or diverge. The total number of

Monte Carlo runs is set to 100 for the INS measurements and 100 for the bearings

measurement. This is equivalent to 10,000 runs for a single engagement. The noise

corrupting the bearings measurements (σ) is modeled as a normal distribution de-

noted as N (0, σ2
σN

) where σσN
= 5e-4 rad. These are the same values used for the

two-dimensional case in [6], [7].

4.5 Statistics

Once each scenario is simulated in the computer, the following statistics are

considered:

1. The experimentally obtained mean error (bias) in the parameter estimate.

2. The experimentally obtained standard deviation of the parameter estimate.

3. The predicted standard deviation of the parameter estimate.
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4. The probability that the experimentally obtained parameter estimate is within

one standard deviation of the predicted parameter estimate.

The bias in the parameter estimate X̂+ is

ēX̂+ =
1

NMC

NMC
∑

i=1

(X̂+
i − X) (4.1)

where X̂+
i is the parameter estimate in the ith Monte Carlo run, X is the true pa-

rameter, and NMC is the total number of Monte Carlo runs in the simulation. A

superscript - indicates a value determined at a time before the measurement incor-

poration, while the superscript + indicates the same value after the measurement

incorporation [4]. The experimentally obtained standard deviation of the parameter

estimate is equivalent to

σ̂+
EX

=
√

rms2
EX

− bias2
EX

(4.2)

where the root mean squared (rms) of the parameter is equal to

rmsEX
=

√

∑NMC

i=1 (X̂+
i − X)2

NMC − 1

The predicted standard deviation of the parameter estimate is

σ̂+
X =











√
P11 0 0

0
. . . 0

0 0
√

PNN











(4.3)

The probability that the experimentally obtained parameter estimate is within one

standard deviation of the predicted parameter estimate is

PE1−σ
=

Number of times
(∣

∣

∣
X̂+

i − X
∣

∣

∣
≤ σ̂+

θ

)

NMC

(4.4)
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PE1−σ
is a good indication as to how much confidence one should have in the aiding

algorithm. Low PE1−σ
values indicate that the algorithm is not performing as ex-

pected and less faith should be placed in the estimated parameter X̂. These statistics

provide the necessary information to make an informed decision on the feasibility of

INS aiding using passive, bearings-only measurements of an unknown ground object.

4.6 Simulation Results

4.6.1 Angular Navigation Variables Update. The update of the angular

navigation variables is only examined for the two-dimensional scenarios [7] which

entail overflight of the ground object. Table 4.1 shows the results for several flight

paths flown during INS aiding runs at a medium altitude of 10,000 feet. The results

Table 4.1 Statistics of γ and θ

Mach/γ [deg] ēθ̂+ [µrad] σ̂+
Eθ

[mrad] σ̂+
θ [mrad] PE1−σ

0.5/-20 24.4319 2.14255 2.12791 39.6
0.8/-20 186.681 2.08650 2.04848 41.4
0.8/-10 24.4338 2.11096 2.12371 40.4

Mach/γ [deg] ēγ̂+ [µrad] σ̂+
Eγ

[mrad] σ̂+
γ [mrad] PE1−σ

0.5/-20 102.944 2.10306 2.12791 39.6
0.8/-20 35.1121 1.95191 2.04848 41.4
0.8/-10 16.7998 2.07291 2.12371 40.4

from Table 4.1 show that the angular navigation variables can be effectively updated

using optical flow to enhance the attitude and flight path angle of the aircraft. More

Results are documented in [7].

4.6.2 Tactical-Grade INS. A tactical-grade INS is a navigation system

often used on platforms which have a very short operation time, for example, muni-

tions. A tactical-grade INS is considerably less expensive than the accurate navigation-

grade INS used in aircraft, but at the cost of accuracy. The maximum drift rate of a

navigation-grade INS is typically one nautical mile (1852 meters) per hour, whereas

the typical maximum drift rate of a tactical-grade INS is one geodetic degree (60
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nautical miles) per hour. The tactical-grade INS is chosen over the navigation-grade

INS because, without aiding, the tactical-grade INS begins to drift quickly, produc-

ing large errors in the navigation solution in only a short period of time. This allows

for a greater range of error in the INS to test the aiding algorithm. Successful aiding

of a tactical-grade INS guarantees successful aiding of a navigation-grade INS.

Table 4.2 shows the parameters of the three simulations that were run for the

first scenario. The initial position of the aircraft and the position of the unknown

Table 4.2 Scenario Parameters

Sim 1 Sim 2 Sim 3
V [m/s] 275 275 275
γ[deg] -5 -5 0
H[deg] 15 15 0
X0[m] 0 0 0
Y0[m] 0 0 0
Z0[m] 5000 5000 5000
XP [m] 8000 8000 8000
YP [m] 500 500 0
ZP [m] 200 200 200
t[s] 4 4 4
N 12 12 12

ground object are represented in the inertial reference frame and measured in meters.

The flight path angle and the heading are also represented in the inertial frame and

measured in degrees. The aircraft’s velocity is measured in meters per second. The

parameter t denotes the time in seconds between measurements and N denotes the

total number of measurements taken. Table 4.3 shows the INS measurement errors

for each of the simulations. The errors are modeled as normal distributions with

zero mean. The standard deviation of each simulation is based on a tactical-grade

INS that has been unaided for a short period of time. Simulations 1 and 2 have the

same flight parameters but differing degrees of INS error. Simulation 3 examines an

over-fly of the ground object, with the same INS errors as in Simulation 1.

4-10



Table 4.3 INS Errors - N (0, σ2
N)

1 − σ 1 − σ 1 − σ
V [m/s] 2.5 2.5 2.5
γ[deg] 1e-4 1e-4 1e-4
H[deg] 1e-4 1e-4 1e-4
X0[m] 1850 150 1850
Y0[m] 1850 150 1850
Z0[m] 1850 150 1850

Table 4.4 shows the statistics for all the Monte Carlo runs in the first simula-

tion. This yields the bias in the estimated parameter. Table 4.5 shows the statistics

for a single INS Monte Carlo run from the first simulation. The single INS Monte

Carlo run gives a better indication of the true performance of the aiding algorithm.

It reflects the random nature of the INS error during flight as would be seen in an

actual navigation system. For most applications, a single Monte Carlo run is not

sufficient to generate reliable statistics; however, in this research, a single INS Monte

Carlo run is comprised of 100 measurement Monte Carlo runs, thus producing re-

liable statistics. The single INS Monte Carlo run is selected at random from the

100 INS Monte Carlo runs. INSerr is the error in the INS measured parameters,

and X̂err is the error in the estimated parameters provided by the update algorithm.

Tables 4.6 and 4.8 show the average statistics for all the Monte Carlo runs in the

second and third simulations respectively. Tables 4.7 and 4.9 show the statistics for

a single Monte Carlo run from the second and third simulations respectively.
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Table 4.4 Simulation 1 Statistics Averaged For All 100 INS Runs

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 9.5186 82.0755 73.8843 0.5632 5.7286 9.5186
V [m/s] 0.2591 1.9606 2.1745 0.6484 0.2655 0.2591
X0[m] -196.7971 1681.5984 1308.5299 0.4687 -196.8864 -196.7971
Y0[m] -183.1617 1371.8616 1308.1491 0.5505 -183.3251 -183.1617
Z0[m] 70.2385 1377.2635 1308.2855 0.5935 69.6635 70.2385
XP [m] -189.3307 1683.4349 1308.5299 0.4684 -191.9813 -189.3307
YP [m] -183.0107 1371.3926 1308.1491 0.5496 -183.0185 -183.0107
ZP [m] 64.5014 1383.0812 1308.2855 0.5807 66.7204 64.5014

Table 4.5 Simulation 1 Statistics For One Run

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 27.5210 52.7584 73.8807 0.8300 53.3385 27.5210
V [m/s] 0.8073 0.8292 2.1746 1.0000 0.8054 0.8073
X0[m] -883.9896 888.4642 1308.5299 1.0000 -884.2139 -883.9896
Y0[m] 140.3387 141.6894 1308.1491 1.0000 140.8068 140.3387
Z0[m] 2357.2826 2369.3341 1308.2852 0.0000 2357.4535 2357.2826
XP [m] -860.6125 865.1302 1308.5299 1.0000 -838.5421 -860.6125
YP [m] 142.7640 143.9917 1308.1491 1.0000 143.6613 142.7640
ZP [m] 2343.3290 2355.5190 1308.2852 0.0000 2330.0504 2343.3290

Table 4.6 Simulation 2 Statistics Averaged For All 100 INS Runs

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -3.0360 77.7768 69.7914 0.5731 -1.7734 -3.0360
V [m/s] -0.0704 1.9599 2.0544 0.6250 -0.0701 -0.0704
X0[m] -2.4305 117.2956 110.1955 0.5253 -2.3933 -2.4305
Y0[m] 1.4918 129.3327 106.0832 0.4621 1.2860 1.4918
Z0[m] -8.2071 133.8229 107.5727 0.5019 -7.8166 -8.2071
XP [m] -4.8080 129.7924 110.1955 0.4761 -3.9119 -4.8080
YP [m] 0.9270 129.4990 106.0832 0.4691 1.1911 0.9270
ZP [m] -5.9550 133.5656 107.5727 0.5419 -6.9055 -5.9550
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Table 4.7 Simulation 2 Statistics For One Run

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 79.1916 89.1073 69.7742 0.4300 51.1091 79.1916
V [m/s] 2.4513 2.4941 2.0546 0.1300 2.4286 2.4513
X0[m] 170.7278 171.6297 110.1949 0.0000 171.1893 170.7278
Y0[m] -21.0121 25.7675 106.0831 1.0000 -21.4275 -21.0121
Z0[m] -45.4545 54.3677 107.5673 0.9800 -42.7755 -45.4545
XP [m] 241.0125 242.5320 110.1949 0.0000 214.9522 241.0125
YP [m] -17.5077 23.3563 106.0831 1.0000 -18.6923 -17.5077
ZP [m] -81.7135 89.4990 107.5673 0.7900 -69.0332 -81.7135

Table 4.8 Simulation 3 Statistics Averaged For All 100 INS Runs

Sim 3 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -4.6488 82.1057 73.8012 0.5895 -6.4591 -4.6488
V [m/s] -0.1432 1.9762 2.1753 0.6305 -0.1381 -0.1432
X0[m] -153.0414 1360.6116 1308.5302 0.5299 -153.0519 -153.0414
Y0[m] -168.6607 1517.3375 1308.1476 0.4700 -168.6636 -168.6607
Z0[m] -366.9343 1593.8858 1308.2856 0.4593 -367.1790 -366.9343
XP [m] -157.3944 1370.1465 1308.5302 0.5300 -158.5905 -157.3944
YP [m] -168.6664 1517.4836 1308.1476 0.4700 -168.6636 -168.6664
ZP [m] -364.8245 1591.1006 1308.2856 0.4595 -363.8558 -364.8245

Table 4.9 Simulation 3 Statistics For One Run

Sim 3 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 19.4617 47.7644 73.8134 0.8900 29.6816 19.4617
V [m/s] 0.5077 0.5478 2.1752 1.0000 0.5176 0.5077
X0[m] 4255.7397 4277.1853 1308.5302 0.0000 4255.3422 4255.7397
Y0[m] -230.4375 231.5985 1308.1476 1.0000 -230.2658 -230.4375
Z0[m] -1441.2979 1448.9120 1308.2855 0.0000 -1442.6714 -1441.2979
XP [m] 4270.8303 4292.3689 1308.5302 0.0000 4280.7939 4270.8303
YP [m] -230.0941 231.2533 1308.1476 1.0000 -230.2658 -230.0941
ZP [m] -1453.5762 1461.5416 1308.2855 0.0000 -1457.9424 -1453.5762
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Tables 4.4 through 4.9 provide two key observations into INS aiding using

passive, bearings-only measurements of an unknown ground object. First, all three

simulations show that the accuracy of X̂ is driven by the accuracy of the INS mea-

surements. Second, the unknown ground object’s location is directly related to the

accuracy of the INS-measured initial aircraft position. These two key observations

show that INS aiding using an unknown ground object does not provide adequate

information to enhance the aiding of the INS to produce better estimates of the

initial position of the aircraft and the position of the ground object. The reasons

behind this are evident in Figure 4.5. Figure 4.5 shows an example of the flight

Figure 4.5 Flight Comparison Profile Plot

profiles generated from the initial INS measurements and the true location of the

aircraft. Note that the drift of the INS is ignored. The flight path is generated using

the initial INS measured position, velocity, heading, and flight path of the aircraft.

The errors in the heading and the flight path angle are small; therefore, the flight

paths appear to be parallel to each other. The initial INS-measured aircraft position

augmented with the bearings-only measurements produce a measurement geometry
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oriented parallel to the plane P in the true case, but offset due to the error in the

initial INS measurement. Without prior knowledge of the unknown ground object’s

location in at least one inertial axis, there is no useful information to aid the INS.

The offset of the unknown ground object is directly related to error in the initial INS

measurement. The one advantage to using bearings-only measurements of an un-

known ground object to aid the INS is that they maintain the initial accuracy of the

INS throughout the entire measurement interval. This is because the aiding scheme

uses the newly estimate initial position in conjunction with the flight path angle,

the heading, and the velocity of the aircraft to generate an aiding point as described

in Section 4.3. Thus, no matter how much the INS drifts over time, the navigation

solution will reflect the initial INS measurement errors. This is particularly useful

for a tactical-grade INS that has lost aiding information from an external source

like GPS. The bearings-only measurement aiding algorithm maintains the accuracy

of the navigation system at the point of losing that external source, or until the

external source is able to aid the INS again.

The inability of bearings-only measurements of an unknown ground object to

aid the INS is a major drawback; however, the ability to maintain the navigation

system’s accuracy over very long periods of time is very advantageous. This aiding

concept coupled with GPS aiding produces a navigation system that does not divulge

the presence of the aircraft while maintaining a high degree of accuracy even when

the GPS signal is lost or jammed. The next section examines the effectiveness of the

aiding algorithm, given prior information on the ground object.

4.6.3 Tactical-Grade INS, Given Prior Information. Prior information

on the location of the ground object should greatly enhance the accuracy of the

aiding algorithm. The first two simulations in Scenario 1 were repeated, but with

prior knowledge of the position of the ground object in the inertial frame. Although

this modifies the aiding concept to bearings-only measurements of a known ground

object, the passive nature of the aiding system is preserved because no measured
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range information is being used to enhance the aiding algorithm. Tables 4.10 and

4.11 show the statistics for the modified first run in Scenario 1. Tables 4.12 and

4.13 show the statistics for the modified second run in Scenario 1. The error in the

prior information is modeled as a normal distribution with zero-mean and standard

deviation of 10 meters in the horizontal and vertical channels. These error values

reflect the accuracy of a standard GPS receiver.

Table 4.10 Simulation 1 Statistics Averaged For All 100 INS Runs

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 8.9195 83.2175 73.8522 0.5714 6.9096 8.9195
V [m/s] 0.2560 2.0492 2.1737 0.6186 0.2615 0.2560
X0[m] -7.3544 62.1996 64.0239 0.6157 3.1331 -7.3544
Y0[m] -0.7367 31.0333 10.7828 0.2720 39.9037 -0.7367
Z0[m] 4.6980 75.9530 39.2640 0.3906 4.1329 4.6980
XP [m] 0.0207 9.9670 9.9999 0.6846 0.7032 0.0207
YP [m] -0.0455 9.9344 9.9999 0.6863 -0.4214 -0.0455
ZP [m] 0.0556 10.0272 9.9999 0.6816 0.3877 0.0556

Table 4.11 Simulation 1 Statistics For One Run

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 46.7922 61.9107 73.8177 0.7600 36.9927 46.7922
V [m/s] 1.5414 1.5755 2.1740 0.9800 1.4459 1.5414
X0[m] -42.6711 45.4843 64.0709 0.9200 -1779.9409 -42.6711
Y0[m] 0.8276 32.1606 10.7966 0.3000 2965.1303 0.8276
Z0[m] 17.3159 67.1942 39.4343 0.4300 205.8037 17.3159
XP [m] 0.2901 8.8727 9.9999 0.7900 -5.8352 0.2901
YP [m] 0.3795 9.3127 9.9999 0.6900 4.3586 0.3795
ZP [m] -1.8267 10.3240 9.9999 0.7000 -8.5855 -1.8267
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Table 4.12 Simulation 2 Statistics Averaged For All 100 INS Runs

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -5.3719 72.7449 66.3281 0.5770 -3.0583 -5.3719
V [m/s] -0.1654 1.9246 1.9523 0.5928 -0.1524 -0.1654
X0[m] 4.9721 55.0434 57.4265 0.5988 18.1146 4.9721
Y0[m] 0.1072 30.5194 10.6171 0.2808 -22.5790 0.1072
Z0[m] -2.6467 70.3398 35.4206 0.3808 15.6912 -2.6467
XP [m] 0.0182 9.9776 9.9810 0.6849 -0.1499 0.0182
YP [m] -0.0328 10.0367 9.9779 0.6828 0.3477 -0.0328
ZP [m] -0.1090 9.9544 9.9790 0.6792 -0.0982 -0.1090

Table 4.13 Simulation 2 Statistics For One Run

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -39.9856 47.8810 66.3422 0.8100 -30.9979 -39.9856
V [m/s] -1.2798 1.3517 1.9520 0.9600 -0.4479 -1.2798
X0[m] 35.0452 37.7863 57.4238 0.9600 168.2128 35.0452
Y0[m] 0.1761 25.7942 10.6147 0.3100 -279.2516 0.1761
Z0[m] -20.0517 54.2174 35.3763 0.4600 -48.1773 -20.0517
XP [m] 0.1419 9.7571 9.9810 0.7000 -2.0361 0.1419
YP [m] -0.7471 9.8139 9.9779 0.7000 1.5579 -0.7471
ZP [m] -0.2374 9.5265 9.9790 0.6900 -12.6106 -0.2374

The inclusion of prior information on the position of the ground object greatly

enhances the parameter estimate provided by the aiding algorithm. The accuracy of

the algorithm is comparable to that of an integrated GPS/INS system in which the

errors in the navigation solution are driven by the accuracy of the GPS receiver. The

current generation of GPS receivers provide position estimates to within 10 meters

in the horizontal channel and 15 meters in the vertical channel [5]. The comparable

statistics are due, in no small part, to the accuracy in the known location of the

ground object which is similar to that of a standard GPS receiver. The major

roadblock to producing very accurate estimates of the parameter X comes from the

estimation of the initial range R. The estimate of the initial range R is based solely

on geometry and the accuracy in the measured angle σ, the calculated angle γD, and
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the distance the aircraft covers in the first measurement interval. This produces an

estimate of R that is in error anywhere between 50 and 150 or more meters. This is

based on what was observed over may different simulation scenarios. A very accurate

estimation of the initial range from a laser range finder would produce very accurate

estimates of the parameter X, but at the cost of sacrificing the passive nature of the

aiding scheme.

4.6.4 Low/High Altitude Scenarios. Scenarios 1 and 2 provide good in-

sight into the feasibility of using passive, bearings-only measurements of unknown

or known stationary ground objects to aid the aircraft’s INS. The two previous

scenarios took into consideration the importance prior ground information has on

the output of the aiding algorithm. They also show how the accuracy of the ini-

tial INS measurement and the accuracy of prior ground object information affect

the estimated parameter X̂. The one key consideration Scenarios 1 and 2 ignore,

is the role measurement geometry plays in the aiding scheme. From here on, the

Geometric Dilution of Precision (GDOP) of the bearings-only INS aiding scheme is

used to describe favorable or unfavorable measurement geometry. A high GDOP

will not produce accurate parameter estimates, while a low GDOP will. Altitude,

velocity, and measurement time greatly effect the magnitude of the angle recorded

between measurement intervals. Small measurements of σ produce a poor calcula-

tion of γD. This is because the magnitude of the σ measurements are equal to or

less than the magnitude of the noise corrupting those measurements, thus producing

measurements with seemingly large errors. The bearings-only σ measurements are a

key factor in calculating γD, and measurements with seemingly large errors produce

a poor calculation of γD. This, in turn, corrupts the geometric property used to

estimate the range R and could have a devastating impact on the accuracy of the

aiding algorithm. The previous two scenarios contained measurement times inter-

vals of four seconds, more than adequate to produce good “clean” σ measurements.
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“Clean” refers to measurements of σ that have a high Signal-To-Noise Ratio (SNR),

thus producing a very accurate calculation of γD.

Table 4.14 shows the parameters of the three simulations that were run for the

third scenario. As in the second scenario, Scenario 3 assumes prior information on

Table 4.14 Scenario Parameters

Sim 1 Sim 2 Sim 3
V [m/s] 200 200 150
γ[deg] 0 0 0
H[deg] -10 -10 5
X0[m] 0 0 0
Y0[m] 0 0 0
Z0[m] 20000 20000 500
XP [m] 4000 20000 500
YP [m] 300 300 0
ZP [m] 200 200 200
t[s] 1 12 0.5
N 12 12 12

the ground object’s location is available. Table 4.15 shows the INS measurement

errors for each of the simulations. The first simulation is based on a high altitude

Table 4.15 INS Errors - N (0, σ2
N)

1 − σ 1 − σ 1 − σ
V [m/s] 2.5 2.5 2.5
γ[deg] 1e-4 1e-4 1e-4
H[deg] 1e-4 1e-4 1e-4
X0[m] 1850 1850 1850
Y0[m] 1850 1850 1850
Z0[m] 1850 1850 1850

reconnaissance mission flown by aircraft such as the U-2. The second simulation is

the same as the first simulation but with a longer measurement interval, and the

ground object is farther down range. The longer measurement interval produces an

increased distance between the bearing measurement points. This should increase the
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SNR of the σ measurement, thus enhancing the aiding capabilities of the navigation

system. Tracking a ground object farther down range produces a lower GDOP. The

third simulation is based on a low altitude reconnaissance UAV. All three simulations

are using prior information on the ground object’s location with the same errors

outlined in the second scenario.

Tables 4.16 and 4.17 show the statistics for the first simulation. As noted

earlier, the aided INS solution is very poor due to the low SNR of the bearings

measurements and a high GDOP for the scenario. Figure 4.6 shows the measurement

geometry for the first simulation.

Table 4.16 Simulation 1 Statistics Averaged For All 100 INS Runs

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -19113.5466 19218.4868 14.3089 0.0000 -18729.6431 -19113.5466
V [m/s] 0.1864 12.7912 2.4884 0.1363 -0.1207 0.1864
X0[m] 2992.3163 3015.1786 16.4114 0.0000 -17.6376 2992.3163
Y0[m] 472.8255 476.7980 10.8937 0.0001 -276.3645 472.8255
Z0[m] -19706.6545 19816.4586 12.9606 0.0000 -118.8944 -19706.6545
XP [m] 0.0268 10.0659 9.9999 0.6842 0.8614 0.0268
YP [m] -0.1374 9.9438 9.9999 0.6819 0.3566 -0.1374
ZP [m] 0.5633 10.0084 9.9999 0.6825 -0.0823 0.5633

Table 4.17 Simulation 1 Statistics For One Run

Sim 1 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -19126.0231 19223.1137 13.3910 0.0000 -18431.2635 -19126.0231
V [m/s] 1.1912 9.6468 2.4900 0.1400 0.9507 1.1912
X0[m] 2994.1408 3012.8153 16.1114 0.0000 1566.9345 2994.1408
Y0[m] 475.9351 478.7531 10.2380 0.0000 -994.3409 475.9351
Z0[m] -19738.0377 19840.3674 12.0229 0.0000 -10.8293 -19738.0377
XP [m] 2.5344 10.3581 9.9999 0.6800 14.6713 2.5344
YP [m] 1.2831 9.3906 9.9999 0.6700 11.8909 1.2831
ZP [m] 1.5911 9.2636 9.9999 0.7100 -2.2517 1.5911
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Figure 4.6 High GDOP Example

The triangles which construct the measurement geometry have small σ angles

and are very similar in shape and size. This poor geometric relationship greatly

degrades the effectiveness of Equation (3.39). Figure 4.7, on the other hand, shows

the measurement geometry for a low GDOP. The flight profile in Figure 4.7 will

Figure 4.7 Low GDOP Example

produce very reliable position estimates because the bearings-only measurements

have a very high SNR and the measurement geometry produces a low GDOP.

The problems regarding the low SNR and high GDOP in the first simulation

stem from the short measurement interval used at such a high altitude, and the

relatively low speed of the aircraft. There are two approaches available to produce

σ measurements with a high SNR and a good GDOP at high altitudes. The first
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approach is to increase the speed of the aircraft greatly to lengthen the measurement

baseline; however, this approach is impractical for most aircraft operating at high

altitudes, save the SR-71 Blackbird which is no longer in military service. The second

approach is to increase the measurement time interval greatly.

Tables 4.18 and 4.19 show the statistics for the second simulation with a mea-

surement interval twelve times greater than in the first simulation. The longer

Table 4.18 Simulation 2 Statistics Averaged For All 100 INS Runs

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -13.6394 351.5625 137.5949 0.2722 -10.9324 -13.6394
V [m/s] -0.0938 3.4669 0.9780 0.2127 -0.0602 -0.0938
X0[m] 12.0762 248.3450 137.9679 0.3740 74.2933 12.0762
Y0[m] 0.3043 96.3025 35.6957 0.2000 142.2469 0.3043
Z0[m] -10.4683 439.5154 137.9731 0.2468 -35.5015 -10.4683
XP [m] -0.0132 10.0533 9.9999 0.6786 -0.7654 -0.0132
YP [m] -0.0434 10.0405 9.9999 0.6804 0.5064 -0.0434
ZP [m] 0.0304 9.9359 9.9999 0.6881 -0.4890 0.0304

Table 4.19 Simulation 2 Statistics For One Run

Sim 2 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] 26.0367 187.9943 137.6651 0.5300 16.4512 26.0367
V [m/s] -0.4823 2.8122 0.9752 0.2400 -0.1342 -0.4823
X0[m] 13.3759 142.9921 138.1183 0.6900 -3331.8097 13.3759
Y0[m] -14.0654 103.1738 10.6691 0.0800 706.3771 -14.0654
Z0[m] 48.4386 397.0985 138.1501 0.2600 891.8619 48.4386
XP [m] -1.3528 10.3306 9.9999 0.6500 1.7228 -1.3528
YP [m] -0.1419 9.5177 9.9999 0.7400 6.0435 -0.1419
ZP [m] 0.5731 8.9910 9.9999 0.7000 0.2257 0.5731

measurement interval time does have a very positive impact on the estimate of the

X parameter. The aiding algorithm is able to reduce the position errors a significant

amount and produce a very accurate estimate of the initial aircraft position. The

key factor in producing reliable position estimates at high altitudes is to use a long

measurement interval to produce “clean” σ measurements.
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Tables 4.20 and 4.21 show the statistics for the third simulation at a low altitude

with a very short measurement interval. Even with a measurement time interval of

Table 4.20 Simulation 3 Statistics Averaged For All 100 INS Runs

Sim 3 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -0.5379 8.1914 9.6978 0.6967 -0.6585 -0.5379
V [m/s] -0.1382 2.0101 2.4947 0.7100 -0.1387 -0.1382
X0[m] 0.5097 12.7426 13.0909 0.6865 -93.7232 0.5097
Y0[m] 0.0836 10.1460 10.9601 0.6886 -71.6735 0.0836
Z0[m] -0.2890 11.5214 11.4492 0.6813 -8.1869 -0.2890
XP [m] 0.0393 10.1735 9.9999 0.6777 0.0325 0.0393
YP [m] 0.0738 10.0352 9.9999 0.6801 0.6352 0.0738
ZP [m] -0.0139 9.9875 9.9999 0.6886 -0.3097 -0.0139

Table 4.21 Simulation 3 Statistics For One Run

Sim 3 ēX̂+ σ̂+
EX

σ̂+
X PE1−σ

INSerr X̂err

R[m] -7.0550 7.3378 9.7005 0.9600 -8.3736 -7.0550
V [m/s] -1.8554 1.8648 2.4947 1.0000 -1.8631 -1.8554
X0[m] 6.5723 12.8479 13.0888 0.7300 -363.0662 6.5723
Y0[m] 1.8937 12.0105 9.9999 0.5400 3543.2999 1.8937
Z0[m] -1.5253 10.7921 11.4456 0.7100 1540.2150 -1.5253
XP [m] 0.3468 11.1030 9.9999 0.6800 1.3087 0.3468
YP [m] 1.9415 12.0042 9.9999 0.5400 -18.2006 1.9415
ZP [m] 1.8273 9.9613 9.9999 0.6800 4.0174 1.8273

only half a second, low altitude aiding produces a very good estimate of the aircraft’s

initial position. This is due to the high SNR of the σ measurements and the low

GDOP of the bearings-only measurements.

The SNR for the three simulations is calculated ad hoc by dividing the power

of the received signal (initial σ measurement) by the power of the corrupting noise

(assumed to be 5e-4 rad). The ad hoc method provides a simple means of comparing

the SNR for each of the three simulations in Scenario 3. The SNR for the first

simulation is 19.47, while the SNR for the second simulation is 129.68. The increased

measurement time for the second simulation greatly increases the SNR of the σ
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measurement. The SNR for the third simulation is 149.97. It is clearly evident

that the SNR of the initial σ measurement plays a key role in the accuracy of the

estimated parameters, and that low altitude aiding appears to produce the best

parameter estimates. Calculation of a GDOP value for the three simulations is

extremely complicated for this particular application, and thus is handled ad hoc

by examination of Figures 4.6 and 4.7 as discussed earlier. Figure 4.7 undoubtedly

has a better measurement geometry than that of Figure 4.6, thus producing a lower

GDOP and more accurate parameter estimates.

4.7 Discussion

INS aiding using passive, bearings-only measurements over time of an un-

known, but stationary ground object, provides a means to enhance the aircraft’s

attitude estimate. The INS aiding method does not significantly enhance the posi-

tional navigation variables’ accuracy unless prior knowledge of the position of the

observed ground object is available; however, it does maintain the accuracy of the

INS over the measurement interval, thus performing a “damping” function. The

two key factors in producing reliable aiding information for the INS are high signal-

to-noise ratios for the LOS measurements and a low GDOP measurement scenario.

Inclusion of prior information on the location of the ground object greatly enhances

the accuracy of the aiding algorithm, but somewhat changes the nature of the aiding

scheme. Without prior information, the accuracy of the aiding algorithm directly

correlated to the error in the initial INS measurement, while prior information on

the ground object’s location provided enhanced aiding to the INS. Prior informa-

tion or not, the aiding algorithm is dependent solely on bearings-only measurements,

thus maintaining the autonomy of the INS and the passive nature of the navigation

system.
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V. Conclusions and Recommendations

5.1 Conclusions

INS aiding using passive, bearings-only measurements over time of an un-

known, but stationary ground object is investigated. The aiding concept is based on

the relationships of the measured α′ and β′ angles between the aircraft’s inertial ve-

locity vector ~V and the body of the aircraft, to the five angular navigation variables

ψ, θ, φ, γ, and H, and stadiametry. The theory developed herein also allows for

the inclusion of additional measurements and prior information, i.e., the aircraft’s

baro-altitude, the range to the ground object, and any information on the position

of the ground object, if available.

The major disadvantage of a stand alone bearings-only measurement based

INS aiding scheme is that it does not produce a significantly better estimate of the

aircraft’s position. It does however, produce enhanced estimates of the aircraft’s

angular navigation variables viz., the aircraft’s attitude, and the ground object is

geo-located. For the aiding scheme to also enhance the accuracy of the aircraft’s

positional variables’ estimates, prior information on the location of the ground object

is required, in which case the improvement in positional accuracy is significant. Baro-

altitude information and optical measurements can enhance the aircraft’s position

estimate. Also, the INS aiding scheme does maintain the accuracy of the INS, thus

successfully performing an INS damping function.

The aircraft must be flown at a constant velocity and maintain its course

and heading while taking bearings-only measurements to perform the INS aiding

function. While a limitation, this is not a serious enough limitation to render the

system operationally unacceptable. This type of system could act as a redundant

navigation tool for an integrated GPS/INS navigation system. If the GPS signal is

lost or jammed, bearings-only measurements would maintain the overall accuracy of

the integrated solution until the GPS signal is reacquired. The major advantage of
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the aiding scheme is that it creates a fully integrated and autonomous navigation

system impervious to jamming, spoofing, or interference, and without giving away

the aircraft’s presence.

While stand alone bearings-only measurements/optical flow measurement over

time turn out to be a “weak” measurement in itself, when used in conjunction with

the INS measurements, it proves to be most beneficial. In the case regarding an

unknown stationary landmark, it maintains the accuracy of the initial INS measure-

ment, in effect negating the drift of the INS over time. In the case regarding a known

stationary ground object, it greatly enhances the estimate of the aircraft’s position

variables producing very reliable navigation information.

5.2 Recommendations

This study thoroughly describes the process of using passive, bearings-only

measurements of an unknown, but stationary, ground object to aid an aircraft’s INS.

Further research in this area could extend into a real-time aiding system adapted

from current optical, or electro-optical sensors. This would require a more robust

algorithm designed to operate outside a controlled laboratory environment.

The next evolution in this field of study is to develop the theory for the oper-

ation of the algorithm under dynamic environments. Dynamic environments would

require a more flexible aiding scheme using techniques such as Kalman filtering,

extended Kalman filtering, or Multiple Model Adaptive Estimation (MMAE) tech-

niques. This would allow the aiding scheme to operate during mild maneuvers and

not be restricted to linear flight.
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