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AFIT/GEE/ENV/03-14 
ABSTRACT 

Combining horizontal flow treatment wells (HFTWs) with in situ biodegradation 

is an innovative approach with the potential to remediate perchlorate-contaminated 

groundwater.  A technology model was recently developed that combines the 

groundwater flow induced by HFTWs with in situ biodegradation processes that result 

from using the HFTWs to mix electron donor into perchlorate-contaminated 

groundwater.  A field demonstration of this approach is planned to begin this year.   

In order to apply the technology in the field, project managers need to understand 

how contaminated site conditions and technology design parameters impact technology 

performance.  One way to gain this understanding is to use the technology model to select 

engineering design parameters that optimize performance under given site conditions.  In 

particular, a project manager desires to design a system that 1) maximizes perchlorate 

destruction, 2) minimizes treatment expense, and 3) attains regulatory limits on 

downgradient contaminant concentrations.  Unfortunately, for a relatively complex 

technology like in situ bioremediation, with a number of engineering design parameters 

to determine, as well as multiple objectives, system optimization is not straightforward.      

 In this study, a multi-objective genetic algorithm (MOGA) is used to determine 

design parameter values (flow rate, well spacing, concentration of injected electron 

donor, and injection schedule) that optimize the first two objectives noted; to maximize 

perchlorate destruction while minimizing cost.  Four optimization runs are performed, 

using two different remediation time spans (300 and 600 days) for two different sets of 

site conditions.  Results from all four optimization runs indicate that the relationship 

ix 



between perchlorate mass removal and operating cost is positively correlated and 

nonlinear.  For equivalent operating times and costs, the optimized solutions show that, as 

expected, the technology achieves higher mass removals for the site having both higher 

hydraulic conductivity and higher initial source concentration.  Results from all four runs 

show that increased perchlorate mass removal is not necessarily correlated with 

diminished downgradient perchlorate concentration, suggesting that it may be important 

to incorporate minimization of downgradient perchlorate concentration as an additional 

objective or constraint in the multi-objective optimization scheme. 

 The optimization software developed in this study can serve as a tool for both 

optimizing future applications of this innovative bioremediation technology, and helping 

us to better understand how HFTWs can be used in conjunction with in situ 

biodegradation.  This study contributes to efforts taken to resolve groundwater 

contamination problems caused by perchlorate releases across the United States. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

Perchlorate is an oxyanion that the aerospace industry has used since the 1940’s 

as a constituent in solid rocket fuel (EPA, 1999:1; Herman and Frankenberger, 

1998:750).  Due to the absence of legal restrictions, a lack of knowledge of perchlorate 

health effects, and a deficient understanding of the processes affecting perchlorate fate 

and transport, high levels of ammonium perchlorate were discharged into the 

environment (Urbansky, 1998:82), resulting in perchlorate contamination problems that 

we face today.  Perchlorate contamination from these past practices now affects the 

drinking water of 15 million U.S. citizens (EPA, 1999:1); this contamination is 

particularly significant in western states like California, Utah, and Arizona (Urbansky, 

1998:82). 

 The chief health problem caused by perchlorate is due to its potential to interfere 

with hormone production in humans.  The thyroid gland normally uptakes iodide from 

the bloodstream to make hormones; however, the presence of perchlorate in the 

bloodstream causes the thyroid gland to uptake perchlorate instead of iodide, thereby 

disrupting hormone production.  Animal studies also show perchlorate's potential to 
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interfere with muscle movement (Urbansky, 1998:83).  The presence of perchlorate in the 

environment triggers even more concern because the consequences of prolonged, low-

dose exposure have yet to be ascertained (Logan, 2001:484A). 

Unfortunately, perchlorate is mobile and persistent in the natural environment.  

According to Flowers and Hunt (2000:177), perchlorate is "expected to be highly mobile 

in surface and groundwaters".  Under nearly neutral pH conditions, which are found in 

most groundwaters, perchlorate would probably not sorb to mineral surfaces (Flowers 

and Hunt, 2000:177); additionally, perchlorate ions are "not retarded during groundwater 

transport" (Logan, 2001:483A).  Natural destruction of perchlorate is unlikely.  Dissolved 

perchlorate salts not only resist reaction via coordination, but they also "hardly react at all 

in any manner"(Espenson, 2000:1).  Furthermore, insufficient proof exists that 

perchlorate would naturally degrade via biological transformation (Flowers and Hunt, 

2000:177). 

 The perchlorate problem is exacerbated because remediation of perchlorate-

contaminated water is difficult.  Logan (2001:484A) asserts that there is “no obvious 

treatment technology for removing perchlorate from water”.  Ion exchange, air stripping, 

carbon adsorption, and advanced oxidation do not provide cost-efficient performance 

(Logan, 1998:70).  Physical removal methods do not destroy perchlorate; they merely 

concentrate perchlorate elsewhere, which creates waste disposal problems (Urbansky, 

1998:90).  Pump-and-treat systems are poor remediation choices because they necessitate 

pumping contaminated water to the surface, which increases treatment costs and 

introduces risk of exposure to perchlorate (Ferland and Goltz, 2001:45). 
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 In situ biodegradation, however, offers a potential solution to the perchlorate 

problem.  According to Logan (2001:486A - 487A), injection of substrates directly into 

the subsurface can promote in situ microbial degradation; such a strategy was successful 

in perchlorate remediation projects at MacGregor, TX, and Sacramento, CA. 

A critical issue in injecting chemicals to promote in situ biodegradation is 

ensuring the injected chemical sufficiently mixes with the contaminated groundwater.  A 

new technology that uses so-called horizontal flow treatment wells (HFTWs) to effect 

mixing to promote in situ biodegradation has potential to remediate perchlorate 

contamination (McCarty et al., 1998; Parr, 2002).  A field test at Edwards AFB, CA, 

successfully employed a similar technology to remediate TCE-contaminated 

groundwater; in that test, pulses of toluene, oxygen, and hydrogen peroxide were injected 

into groundwater that was circulating between two HFTWs (McCarty et al., 1998:88).  

The Environmental Security Technology Certification Program (ESTCP) funded a 

project to demonstrate that injection and in situ mixing of electron donor into perchlorate-

contaminated groundwater using HFTWs could be an effective treatment technology 

(ESTCP, 2002).  Parr (2002) developed a model that combines HFTW-induced 

groundwater flow with in situ biodegradation processes that result from use of HFTWs to 

mix electron donor into perchlorate-contaminated groundwater. 

 To apply this new technology in the field, project managers must understand how 

contaminated site conditions and design parameters affect technology performance.  An 

approach to gaining this understanding is to use a technology model in order to select 

engineering design parameters that optimize performance for given site conditions.  In 

particular, a project manager desires a system design that 1) maximizes perchlorate 
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destruction, 2) minimizes treatment expense, and 3) attains downgradient regulatory 

requirements. 

The dilemma of pursuing separate objectives results in a multi-objective 

optimization problem.  In multi-objective optimization, the decision maker must 

manipulate decision variables (i.e. engineering parameters) to ideally obtain a solution 

that optimizes all objectives.  Furthermore, this optimum solution must be feasible (i.e. 

satisfy constraints relevant to the problem). 

Unfortunately, a single feasible solution that optimizes all objectives usually 

doesn’t exist. In fact, most multi-objective problems have inherent trade-off dilemmas, 

where improving performance in one objective usually entails worsening performance in 

another.  For example, the decision maker may discover that reducing the operating cost 

of the remediation technology (desirable) incurs degraded performance in contaminant 

destruction (undesirable).  When tradeoffs exist among competing objectives, the solution 

to a multi-objective problem involves finding multiple solutions that are nondominated, 

or Pareto optimal.  If a solution x is Pareto optimal, then no other solutions exist that 

perform better than x across all objectives.  Pareto optimal solutions comprise the Pareto 

optimal set (P*), and they exhibit a tradeoff relationship in objective space called the 

Pareto front (PF*) (Coello Coello et al., 2002:10-12). 

 Simultaneously optimizing performance and cost for this innovative in situ 

perchlorate bioremediation technology is a complicated undertaking; intense 

computational effort is necessary to handle the nonlinearities of the model’s equations 

and account for constraints while choosing the best combination of several design 

variables, each of which can vary over a wide range.  Hence, in order to optimize 
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application of the technology and gain greater understanding of technology costs and 

performance, it becomes necessary to select an optimization technique that can handle 

multiple objectives.  One viable technique is the genetic algorithm (GA), a stochastic 

search algorithm whose operators mimic biological genetics.  GAs have the ability to 

operate on multiple candidate solutions, as opposed to only one solution, which renders 

them conducive to multi-objective optimization. 

1.2 RESEARCH GOALS AND OBJECTIVES 

The overall goal of this thesis effort is to enhance understanding of how in situ 

bioremediation, used in conjunction with HFTWs, can e applied to manage perchlorate-

contaminated groundwater.  This goal can be divided into the following specific research 

objectives: 

• Develop a multi-objective genetic algorithm (MOGA) that can be used in 

conjunction with the in situ perchlorate bioremediation technology model 

• Determine values of design variables that optimize technology cost and 

performance given different time periods and contaminated-site conditions 

• Assess how the technology performs in reducing downgradient concentration 

given different time periods and contaminated-site conditions 
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1.3 RESEARCH APPROACH 

• Formulate a multi-objective problem (objective functions, decision variables, 

constraints) for application of Parr’s (2002) technology model to manage 

perchlorate-contaminated groundwater. 

• Design and encode an appropriate MOGA based on a review of the literature 

• Couple the technology model with the developed MOGA  

• Determine optimal technology design parameters for given site conditions 

1.4 SCOPE AND LIMITATIONS OF RESEARCH 

• This study assumes the technology model developed by Parr (2002) adequately 

simulates remediation of perchlorate-contaminated groundwater through electron 

donor injection by HFTWs. 

• Optimization scenarios only involve a two-well HFTW system to facilitate 

computation.  It is assumed results obtained from the two-well system can be 

scaled up to manage wider contaminant plumes. 

• During optimization, engineering decision variables are restricted to a range of 

values appropriate for the formulated problem. 

• MOGAs use probabilistic, rather than deterministic, operators to explore the 

search space for Pareto-optimal solutions.  Hence, both the quantity and diversity 

of Pareto optimal points that a MOGA can find are inherently uncertain. 

• This study limits the multi-objective problem to two objectives for the technology 

model: 1) mass removal of contaminant and 2) operating cost. 
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• This study assumes that the operating cost for the technology depends solely upon 

pump operation and injection of electron donor. 
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2.0 LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter begins by presenting information on perchlorate, including health effects, 

regulatory issues, contaminant characteristics, and remediation strategies.  The next 

section discusses horizontal flow treatment wells (HFTWs), which may offer a means of 

remediating perchlorate-contaminated sites.  Section 2.4 introduces the reader to multi-

objective optimization, with emphasis on Pareto optimality.  Section 2.5 provides an 

overview of genetic algorithms (GAs).  Finally, Section 2.6 addresses how GAs may be 

applied to solve multi-objective problems. 

2.2 PERCHLORATE  

Perchlorate (ClO4
-) salts are used by various industries, including the auto, 

chemical, rubber, and fabric industries.  However, the most notable user is the aerospace 

industry.  In the mid-1940’s, the aerospace industry started large-scale production of 

ammonium perchlorate (NH4ClO4) as an oxidizer for solid rocket fuel (EPA, 1999:1).  

The relatively short shelf life of this chemical and absence of disposal regulations 

resulted in recurring discharges of ammonium perchlorate to the environment (EPA, 

1999:1; Urbansky, 1998:82).  More recently, demilitarization has led to missile 

disassembly, which may also account for discharges (Urbansky, 1998:82). 

Solid salts containing perchlorate dissolve readily in water.  In particular, 

ammonium perchlorate “is highly soluble and dissociates completely” to ammonium 
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(NH4
+) and perchlorate (ClO4

-) ions (Urbansky, 1998:82).  Free perchlorate ions result in 

perchlorate contamination, which is now a pervasive problem in the United States.  

Eighteen states have confirmed contamination (Logan, 2001:483A); California, Nevada, 

and Arizona alone have contaminated water supplies impacting 15 million citizens (EPA, 

1999:1). 

Perchlorate is problematic because of its potential to interfere with hormone 

production in humans.  Under normal circumstances, the thyroid gland extracts iodide 

from the bloodstream to produce hormones.  Because the thyroid gland has higher 

selectivity for perchlorate than iodide, however, perchlorate is likely to displace iodide in 

the gland, thereby disrupting hormone production (Urbansky, 1998:83).  The U.S. EPA 

(Environmental Protection Agency) observed health effects of perchlorate that was 

chemotherapeutically administered to patients afflicted with hyperthyroidism; after 2 

months, minimum doses of 6 mg/kg/day caused “fatal bone marrow changes” (Urbansky, 

1998:83).  Also, animal studies show that high perchlorate concentrations can disrupt 

muscle movement (Urbansky, 1998:83).  Uncertainty exists as to toxicity of perchlorate, 

particularly due to prolonged, low-dose exposure (EPA, 1999:1; Logan, 2001:484A). 

Until 1997, perchlorate concentrations below 100 parts per billion (ppb) were 

undetectable.  In April 1997, the California Department of Health Services (CDHS) 

developed a method to detect perchlorate levels as low as 4 ppb.  Subsequent to the 

development of this new capability, perchlorate has been detected in the following states: 

AR, AZ, CA, IA, IN, KS, MD, NM, NV, NY, PA, TX, UT, and WV (EPA, 1999:1).  In 

1997 both California and Nevada set action levels for perchlorate at 18 ppb; in 1999 

Arizona and Texas set action levels of 31 and 22 ppb, respectively (EPA, 1999:2).  
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Although the United States Environmental Protection Agency (USEPA) placed 

perchlorate on the 1998 Contaminant Candidate List, USEPA still has not issued federal 

drinking water regulations for perchlorate.  However, on January 2, 2002, EPA did 

release a revised draft of its toxicity assessment for public review.  The draft assessment, 

entitled "Perchlorate Environmental Contamination: Toxicological Review and Risk 

Characterization," is a culmination of research efforts since 1997 pertaining to 

perchlorate’s health impacts (Federal Register, 2002:75-76).  As of this date, however, 

the draft assessment is still in review.   

The California Environmental Protection Agency (CEPA) proposed a public 

health goal (PHG) of 6 ppb perchlorate in drinking water based on a No Observed 

Adverse Effect Level (NOAEL) of 10 µg/kg-day and uncertainty factor of 30 (CEPA, 

2002:2). 

Perchlorate anions persist in the natural environment.  A perchlorate anion (ClO4
-) 

consists of one chlorine atom centered among four oxygen atoms in a tetrahedral 

structure, with the negative charge evenly distributed among the oxygen atoms 

(Espenson, 2000:1).  This symmetric charge distribution makes the perchlorate ion 

resistant to complexation with metals (Espenson, 2000:1).  Thus, even though perchlorate 

is a strong oxidant, “(p)erchlorate reactions demonstrate high kinetic barriers” that render 

the ion virtually unreactive and, therefore, persistent (Espenson, 2000:2).  There appears 

to be insufficient evidence that perchlorate is biologically transformable “under natural 

conditions” (Flowers and Hunt, 2000:177). 

In addition to persistence, perchlorate also demonstrates excellent mobility in 

groundwater.  Reported solubility of ammonium perchlorate is relatively high at 200 g/L, 
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and “sodium, calcium, and magnesium salts are even more soluble” (Flowers and Hunt, 

2000:177).  Under nearly neutral pH conditions typical of most groundwater, sorption of 

perchlorate to mineral surfaces is unlikely (Flowers and Hunt, 2000:177) and perchlorate 

ions are "not retarded during groundwater transport" (Logan, 2001:483A). 

Methods to treat perchlorate-contaminated groundwater can be implemented in 

two ways: ex situ (above ground) or in situ (in place, below ground).  Ex situ treatment 

necessitates application of a pump-and-treat (PAT) system to pump the contaminated 

water from the subsurface to the surface where treatment occurs.  Disadvantages of PAT 

are discussed in Section 2.3.  However, ex situ treatment is advantageous because it 

allows implementation of various conventional and innovative treatment methods, such 

as anion exchange, reverse osmosis (RO), chemical/electrochemical reduction, and 

engineered biotreatment.  A more detailed discussion of each of these methods follows. 

Anion exchange is an existing technology that uses a resin to extract aqueous 

perchlorate and replace it with an innocuous anion (Urbansky and Schock, 1999:86).  

Unfortunately, current resins have poor selectivity for perchlorate, and resins with 

enhanced selectivity are expensive (Urbansky and Schock, 1999:84).  Selectivity for 

perchlorate worsens at lower perchlorate concentrations because resins tend to favor 

more abundant anions for exchange (Urbansky and Schock, 1999:84).  Resins can 

remove aqueous perchlorate only until an equilibrium concentration occurs, after which 

further removal is impossible (Urbansky and Schock, 1999:84).  Time is lost regenerating 

the resin (Urbansky and Schock, 1999:84), and brines used to regenerate resins can have 

perchlorate concentrations high enough to warrant disposal concerns (Logan, 

2001:484A). 
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In RO, high pressure forces untreated water through a semiporous polymer 

membrane (Urbansky and Schock, 1999:86).  The membrane, which is impermeable to 

dissolved salts, acts as a filter (Urbansky and Schock, 1999:86).  Water passes through 

the membrane and dissolved salts stay behind, so that the membrane-filtered water is 

relatively deionized (Urbansky and Schock, 1999:87).  However, RO membranes are 

susceptible to fouling from metallic compounds, natural organic matter, and microbes; 

such fouling necessitates costly membrane replacement (Urbansky, 1998:89; Urbansky 

and Schock, 1999:86-87). 

Because anion exchange and RO are both physical removal methods, they have a 

common drawback: waste disposal (Urbansky and Schock, 1999:85; Urbansky, 1998:90).  

Physical removal merely transfers perchlorate from water to another medium instead of 

destroying it.  The transferred perchlorate must either undergo further treatment or 

disposal.  As Urbansky (1998) says, “Although these techniques take the perchlorate out, 

they concentrate it somewhere else where it must be dealt with later” (90). 

Ex situ perchlorate destruction is possible with innovative technologies, such as 

electrochemical reduction, reduction using titanous ions or metallic iron/UV light, and 

biological treatment. In electrochemical reduction, a cathode applies electric current 

directly to water at a high potential to reduce perchlorate to chloride (Urbansky and 

Schock, 1999:85).  However, movement of perchlorate ions toward the electrode can take 

a long time, and electrodes are susceptible to corrosion and fouling from natural organic 

matter (Urbansky and Schock, 1999:85). 

Earley et al. (2000) hypothesized that perchlorate might be effectively destroyed 

by reaction with trivalent titanous ions [Ti(H2O)6
3+] in an ethanol media, which catalyze 
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the reaction.  Amadei and Earley (2001) also proposed catalysts that offer faster reaction 

rates than ethanol media.  Parr (2002) points out, however, that this technology has “very 

limited laboratory data,” and pilot-scale tests have yet to be accomplished (63). 

According to Gurol and Kim (2000), exposing perchlorate to UV light and 

metallic iron (Fe0) under anoxic conditions can transform perchlorate to chloride and 

water.  It is hypothesized that metallic iron first adsorbs the perchlorate ion and then 

undergoes oxidation, with UV light expediting the electron transfer from the iron to the 

perchlorate.  However, high reaction rates were achievable only with very high UV 

intensity (Gurol and Kim, 2000).  Limited data on the metallic iron/UV technology 

suggest this technology is currently inappropriate for lowering perchlorate levels to 

below regulatory limits (Parr, 2002:63). 

Research on ex situ engineered biological treatment (“biotreatment”) of 

perchlorate-contaminated water has largely focused on flowing water through a column-

type bioreactor to effect treatment.  In general, these bioreactors contain microbial 

support media (GAC, sand, plastic) that are inoculated with perchlorate-reducing 

microbes (PRMs).  Inflow is a mixture of perchlorate and substrate (electron donor).  

Inside the reactor, PRMs reduce perchlorate via the following pathway (Rikken et al., 

1996:425): 

ClO4
- (perchlorate) → ClO3

- (chlorate) → ClO2
- (chlorite) → Cl- (chloride) + O2 

In this sequential reduction, the substrate acts as an electron donor, and perchlorate acts 

as the terminal electron acceptor. 

The two primary designs of ex situ bioreactors are fluidized- and fixed-bed.   

Fluidized-bed reactors use high flow rates to mix the support medium (GAC, sand) 
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within the reactor (Logan, 2001:485A).  In fixed-bed reactors, the support medium 

remains stationary (“fixed”) during water treatment (Logan, 2001:485A).  Pilot versions 

of fluidized- and fixed-bed bioreactors have demonstrated the ability to reduce 

perchlorate concentrations to below the current detection limit (4 ppb).  Full-scale 

fluidized-bed reactors in California have effectively reduced perchlorate levels to < 4 ppb 

as well (Hatzinger et al., 2000:7; Greene and Pitre, 2000:252). 

In situ methods offer the ability to treat perchlorate-contaminated water while it is 

still in the ground.  In situ methods are favorable because, unlike ex situ methods, they do 

not require pumping groundwater to the surface for treatment, thereby reducing both 

operating expenses and human exposure to the contaminant.  However, in situ treatment 

technologies are limited to those technologies that can be applied in-well or below 

ground.  Parr (2002) surveyed perchlorate treatment technologies and determined that 

biotreatment is the only method readily applicable for in situ use. 

Both in situ and ex situ biotreatment rely on the same reaction pathway (Rikken et 

al., 1996:425) to desynthesize perchlorate.  However, in situ biotreatment requires 1) 

presence of PRMs at the contaminated site and 2) a means of creating anoxic conditions 

for perchlorate reduction (Logan, 2001:486A).  The first requirement is perhaps the 

easiest to fulfill.  PRMs appear to be found in soil at perchlorate-contaminated sites and 

are “widely distributed in nature” (Wu et al., 2001:119, 125).  To fulfill the second 

requirement, Logan (2001) proposes either use of biobarriers or direct injection of 

substrates into the ground (486A-487A). 

Biobarriers may be a cost-effective way of implementing in situ biotreatment 

(McMaster et al., 2001:301).  A biobarrier contains “high concentrations of organic 
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matter” and establishes a vertical zone of bioactivity in the ground (Logan, 2001:486A-

487A; Domenico and Schwarz, 1998:450).  As contaminated groundwater passes through 

the barrier, microorganisms chemically transform the target contaminant (Domenico and 

Schwarz, 1998:450).  A biobarrier is a “passive” remediation technology that can remain 

in-ground for years with negligible maintenance (Domenico and Schwarz, 1998:450).  In 

MacGregor, TX, biobarriers were used to remediate soil contaminated with high levels of 

perchlorate (Logan, 2001:487A).  Biobarriers were installed by digging trenches and 

filling them with organic materials and gravel (Logan, 2001:487A).  By directing water 

flow through the biobarrier, perchlorate dropped from 27,000 µg/L to nondetectable 

levels (Logan, 2001:487A).  As a passive technology, however, biobarriers may be 

bypassed as groundwater flow conditions change over time.  In addition, biobarriers can 

only be emplaced to a limited depth. 

Injection of substrates into the ground is another in situ biotreatment strategy 

(Logan, 2001:486A-487A).  In May 2000 a field demonstration at the Aerojet Superfund 

Site in Sacramento, CA, showed the effectiveness of in situ biodegradation of perchlorate 

(McMaster et al., 2001:297).  The test site had a perchlorate plume with concentrations 

ranging from 10,000 – 15,000 µg/L.  A closed-loop recirculation system, located within 

the plume’s center, extracted water from the aquifer, added time-pulsed doses of acetate, 

and injected the mixture back into the aquifer to stimulate bioactivity.  The system 

reduced perchlorate levels to <18 µg/L, the CDHS action level for perchlorate in drinking 

water (McMaster et al., 2001:297, 299).  Note however, that the closed-loop recirculation 

system applied at the Aerojet Site required extraction and reinjection of groundwater, 

using a strategy similar to PAT.  In order to effectively achieve injection and mixing of 

15 



substrate into perchlorate-contaminated groundwater, and delivery of the mixture to 

indigenous PRMs, without the need to pump water to the surface, an innovative 

technology has been proposed (Parr, 2002).  This technology, horizontal flow treatment 

wells (HFTWs), is discussed in the next section. 

2.3 HORIZONTAL FLOW TREATMENT WELL (HFTW) SYSTEM 

The operating concept for an HFTW system is for the treatment wells to be 

installed at the distal end of a contaminant plume.  The plume would be captured by the 

wells and the contaminated groundwater treated (i.e. contaminant mass destroyed) so that 

contaminant concentrations downgradient of the treatment wells would meet regulatory 

requirements (Ferland and Goltz, 2001:46).  Figures 1 and 2 show cross-sectional and 

plan views, respectively, of HFTW operation. 

As shown in Figure 1, an HFTW has two screens, each located in a different 

subsurface horizon.  The HFTW extracts contaminated groundwater through a screen in 

one horizon, treats the water, and then discharges the water through the screen in the 

other horizon.  In-well treatment can involve the application of a physical, chemical, or 

biological process to remove or destroy the contaminant (Gandhi et al., 2002a:4); or, as 

depicted in the figure, it can involve injection of chemicals into the flowing contaminated 

groundwater in order to establish bioactive zones outside the wells’ discharge screens, 

where the contaminant is biodegraded by indigenous microorganisms (McCarty et al., 

1998:90).  HFTWs are installed in pairs, with one well pumping in an “upflow mode” 

while the adjacent well pumps in a “downflow mode,” resulting in water recirculating 
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between the two wells in a horizontal flow pattern (Ferland and Goltz, 2001:46).  This is 

in contrast to the flow pattern induced by the better-known groundwater circulation wells 

(GCWs) where water circulates vertically between the two well screens of a single GCW 

(Parsons, 2002). 

Downflow
Treatment Well

Upflow
Treatment Well

Electron donor mixed into 
circulating groundwater using 
in-well static mixers

Bioactive 
zone

Bioactive 
zone

Figure 1.  Cross-sectional view of HFTW operation. 

Dissolved
Contaminant

Plume

Capture Zone of Upflow 
Treatment Well

Direction of Interflow
Between WellsDirection of

Regional
Groundwater Flow

Treated Water

Downflow 
Treatment Well 
(injection well in 

lower aquifer)

Upflow
Well (extraction 

well in lower 
aquifer)

Figure 2.  Plan view of HFTW operation. 

HFTWs offer several advantages over conventional treatment technologies like 

pump-and-treat (PAT) and permeable reactive barriers (PRBs).  Unlike PAT systems, 

HFTWs do not pump contaminated groundwater to the surface.  Eliminating the need to 
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extract groundwater is economically advantageous because it eliminates the expense of 

(1) pumping groundwater to the surface and (2) disposing of the contaminant (McCarty et 

al., 1998:99).  Also, treating the contaminated water in the subsurface reduces risk of 

exposure to the contaminant (Gandhi et al., 2002a:4-5).  Another advantage of HFTWs 

when compared to PAT systems is that after a PAT system withdraws water from a 

contaminated zone, the hydraulic gradient that was established by the capture well 

continues to draw freshwater into that same zone; “contaminants sorbed to the soil in that 

zone desorb and contaminate this freshwater” (McCarty et al., 1998:99).  Hence, pristine 

groundwater becomes contaminated and unusable.  This is especially problematic in 

water shortage areas, especially if regulations prohibit returning treated water to the 

ground.  HFTWs are superior to PAT systems in this regard because the treatment wells 

inject water immediately after extracting it, so pristine groundwater is not drawn into the 

contamination zone (McCarty et al., 1998:99). 

Recirculation between HFTWs results in water with dissolved contaminants 

passing multiple times through the treatment zones, which as noted earlier may either be 

in-well or bioactive zones external to the well.  This recirculation results in higher 

contaminant destruction efficiencies than are possible with single-pass systems, such as 

PRBs (Ferland and Goltz, 2001:46; Gandhi et al., 2002:4-5).  Although PRBs, like 

HFTWs, is an in situ treatment technology (Domenico and Schwarz, 1998:450), the fact 

that PRBs are passive results in significant disadvantages.  For one thing, PRBs may only 

be applied under certain conditions (for instance, where the contamination plume is 

relatively shallow, so that a barrier that can intercept the entire depth of the plume can be 

economically emplaced).  In addition, changing flow conditions can allow a 
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contamination plume to bypass the PRB or result in insufficient residence time within the 

reactive barrier to adequately treat the contaminant.  An HFTW, on the other hand, is an 

active technology that captures contaminated water by pumping.  Control of flow and 

recirculation also assures treatment efficiency is adequate.   

The effectiveness of HFTWs was demonstrated at a field test at Site 19, Edwards 

AFB, CA.  This field test employed HFTWs to remediate two aquifers, an upper water 

table aquifer and a lower confined aquifer, each contaminated with 500-1200 µg/L TCE.  

The test involved pulsed injections of toluene, oxygen, and hydrogen peroxide into a pair 

of HFTWs.  The two treatment wells were spaced 10 m apart, and each well pumped 

contaminated water at a rate of 38 L/min (McCarty et al., 1998:88). 

Each treatment well had two screens (one in the upper aquifer and the other in the 

lower aquifer) for groundwater to enter/exit the well.  One treatment well extracted 

groundwater from the upper aquifer, used an in-well mixer to add toluene, oxygen, and 

hydrogen peroxide into the contaminated water, and discharged the water into the lower 

aquifer.  Conversely, the second treatment well extracted groundwater from the lower 

aquifer, mixed the additives into the contaminated water, and discharged the water into 

the upper aquifer.  This strategy resulted in development of (1) in situ zones of 

bioactivity near the discharge screens of the two treatment wells, where toluene was 

aerobically oxidized, and TCE cometabolized, and (2) groundwater circulation cells 

between the two treatment wells (McCarty et al., 1998:90).  It was demonstrated that 

HFTW operation resulted in: (1) efficient mixing of amendments into contaminated 

groundwater without the need to pump the groundwater to the surface, and (2) 
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recirculation between the treatment wells, resulting in multiple passes of contaminated 

water through the bioactive zones, where treatment was effected.   

Regional groundwater upgradient of the HFTW system had dissolved TCE 

concentrations of about 1000 µg/L; downgradient of the system, groundwater had much 

lower concentrations of 18 – 24 µg/L, indicating 97 – 98% overall removal efficiency 

(McCarty et al., 1998:99).  Thanks to recirculation between the two treatment wells, it 

was possible to attain these high removals even though only 87% contaminant destruction 

was achieved with each single pass of contaminated groundwater through the bioactive 

zones that were established around the injection screens of the treatment wells (McCarty 

et al., 1998:88). 

Christ et al. (1999) developed an analytical model to investigate application of 

multiple injection and extraction well pairs to remediate groundwater contaminated with 

TCE.  Overall efficiency (η) of an HFTW system, which is a measure that compares 

contaminant concentrations upgradient and downgradient of the system, is a function of 

the single-pass contaminant removal efficiency and interflow of water between the 

treatment wells (Christ et al., 1999:297, 298).  Christ et al. (1999) defines single-pass 

contaminant removal efficiency, ηsp, as “contaminant removal for each pass of water 

through the treatment zone” (297).  For the two-well HFTW system shown in Figure 1, 

there would be two single-pass contaminant removal efficiencies, ηspU and ηspL, for the 

treatment zones in the upper and lower horizons, respectively (Christ, 1997:p3-27). 

To understand the definition of interflow, let us assume we are dealing with a 

two-well injection/extraction system.  In this simple system, interflow is defined as the 

water flowing into the extraction well that originated in the injection well, normalized by 
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the total flow in the extraction well (Christ et al., 1999:298).  For a multi-well system, 

with all wells pumping at the same rate, total interflow is defined as the flow through all 

the extraction wells that originated in injection wells, normalized by the flow through a 

single extraction well.  We may also define a parameter that we will call average 

interflow (Iavg) as the total interflow divided by the number of extraction wells.  Note for 

the two-well system we described above, total interflow equals average interflow.   

Interflow is a function of system design parameters such as pump rate and well 

spacing, as well as environmental conditions such as groundwater regional flow and 

aquifer thickness.  The reader may refer to Christ et al. (1999) for details on how to 

analytically calculate average interflow for given engineered and environmental 

parameters, under various simplifying conditions (homogeneity, horizontal steady flow, 

etc.).   

By definition, overall treatment efficiency is: 

η = 1 – Cout/Cin       (2.1) 

where Cin and Cout are contaminant concentrations upgradient and downgradient of the 

treatment system, respectively (Christ et al., 1999:304).  By mass balance, overall 

treatment efficiency can also be expressed as 

)1(1 spavg

sp

I η
η

η
−−

=        (2.2) 

 If we assume that the contaminant concentration, Cin, upgradient of a two-well 

HFTW system is equal for both upper and lower treatment horizons, we may derive 

expressions for concentrations downgradient of the system for both the upper (CoutU) and 

lower (CoutL) treatment horizons.  If we also assume there is no interflow between the 
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injection and extraction screens of a single treatment well, the following equations for 

(CoutU) and lower (CoutL) apply (Christ, 1997:p3-27). 












−−−

−−−+−−
=

)1)(1(1
)1)(1)(1()1)(1(

spUspLLU

spUspLULspUL
inoutU II

III
CC

ηη
ηηη

       (2.3) 












−−−

−−−+−−
=

)1)(1(1
)1)(1)(1()1)(1(

spUspLLU

spUspLLUspLU
inoutL II

III
CC

ηη
ηηη

       (2.4) 

where 

Cin = upgradient concentration, upper and lower horizons 
CoutU = downgradient concentration, upper horizon 
CoutL = downgradient concentration, lower horizon 
IU = interflow, upper horizon 
IL = interflow, lower horizon 
ηspU = single-pass contaminant removal efficiency, upper horizon 
ηspL = single-pass contaminant removal efficiency, lower horizon 

 

Ferland combined Christ’s (1997) analytical model of groundwater flow induced by 

HFTWs with a submodel simulating dehalogenation of chlorinated ethenes using a metal 

catalyst (Ferland, 2000; Ferland and Goltz, 2001).  The submodel simulated first-order 

destruction of chlorinated ethenes in in-well reactors containing palladium-based 

catalysts.  Stoppel extended Ferland’s (2000) model to account for catalyst deactivation 

and regeneration (Stoppel, 2001; Stoppel and Goltz, 2002). 

 The disadvantage to modeling HFTWs using an analytical solution is the 

requirement that many simplifying assumptions such as homogeneity and strictly 

horizontal flow must be made.  Numerical modeling, on the other hand, allows for a more 

accurate simulation of real conditions, as a numerical model can accommodate 

heterogeneity and anisotropy.  Under these more realistic and complex conditions, a 
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numerical flow model like MODFLOW (Harbaugh and McDonald, 1996) can be used to 

determine interflow. 

 Both Huang and Goltz (1998) and Gandhi et al., (2002) developed numerical 

flow-and-transport models to simulate TCE biodegradation in an HFTW system.  The 3-

dimensional Huang and Goltz (1998) model accounts for multi-dimensional flow, 

advective/dispersive transport of dissolved species, equilibrium or rate-limited sorption, 

and biodegradation (281).  A partial-implicit approach is used to numerically solve a set 

of nonlinear partial differential equations describing fate and transport of TCE, toluene, 

oxygen, and microbes (Huang and Goltz, 1998:281). 

 Gandhi et al. (2002a) developed a 3-dimensional, numerical model to simulate the 

HFTW system used at Site 19, Edwards AFB, which was previously discussed.  Gandhi 

et al. (2002a) used a finite-element approach in order to 1) enhance flexibility in locating 

both monitoring and treatment wells and to 2) provide smaller grid dimensions where 

high spatial resolution is critical (i.e., near pumping wells) (Gandhi et al., 2002a:10).  The 

3-dimensional model accounted for advective-dispersive transport, biodegradation, and 

inhibition of biomass growth due to hydrogen peroxide, which was used as a source of 

oxygen (Gandhi et al., 2002b:2).  Model simulations and field data of TCE and dissolved 

oxygen concentrations were reasonably consistent (Gandhi et al., 2002b:26).  Gandhi et 

al. (2002b) points out that, despite the heterogeneity that’s inherent in any aquifer, the 

model adequately simulated operation of the HFTW system even when a homogeneous 

hydraulic conductivity field was assumed (26).  It appears that the flow field imposed by 

operation of the HFTW system results in reduction of the effects of heterogeneity on 

treatment system performance (Gandhi et al., 2002b:26). 
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 For this thesis, the system of interest involves HFTWs to remediate a perchlorate-

contaminated site.  The author intends to optimize multiple objectives for this system, so 

the next section introduces multiple-objective optimization. 

2.4 MULTIPLE OBJECTIVE OPTIMIZATION 

A multi-objective optimization problem (MOP) consists of decision variables, two 

or more objective functions, and constraints.  These three components of an MOP are 

defined as follows: 

• decision variables: variables whose numerical values are controlled by the 

decision maker. 

• objective function: a function that maps decision variable values to values 

reflecting a performance level; optimizing this performance level entails either 

maximization or minimization. 

• constraints: restrictions imposed by the particular problem that must be satisfied 

to render a solution acceptable.  “They describe dependences among decision 

variables and constants (or parameters) involved in the problem” (Coello Coello 

et al., 2002:5).  If solutions satisfy all constraints, then they are feasible; 

otherwise, they are infeasible. 

For example, suppose a site engineer wishes to install a 2-well pump-and-treat 

(PAT) system at a site contaminated with TCE.  The engineer has control over the 

location and pump rate of each well.  The engineer wishes to simultaneously maximize 

contaminant mass removal and minimize operating costs.  The contaminated site is 
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rectangular, measuring 200 meters east-west and 300 meters north-south.  To prevent 

excessive drawdown, the pump rate of each well must be ≤ 200 m3/day. 

In this example, there are 6 decision variables: the east-west location of each well 

(a1, a2), the north-south location of each well (b1, b2), and the pump rate of each well (Q1, 

Q2).  These decision variables can be represented by a single decision variable vector, x = 

[a1, a2, b1, b2, Q1, Q2].  The objective functions can be represented by the vector f(x) = 

[f1(x), f2(x)], where f1(x) = mass TCE removed, and f2(x) = treatment cost.  The 

constraints of the problem are as follows: 

0 ≤ ai ≤ 200 meters, for i = 1, 2 

0 ≤ bi ≤ 300 meters, for i = 1, 2 

0 ≤ Qi ≤ 200 m3/day, for i = 1, 2 

Now consider a more general formulation of a multiobjective problem.  Consider 

a decision variable vector x = [x1, x2…xn] in which elements x1, x2…xn are decision 

variables.  Also consider an objective function vector f(x) = [f1(x), f2(x)… fk(x)] in which 

elements f1(x), f2(x)… fk(x) are objective functions to be maximized or minimized.  Also 

consider a constraint function vector g(x) = [g1(x), g2(x)… gm(x)] in which each element 

is a constraint of the form gi(x) ≤ 0 for i = 1, 2…m.  Then an MOP is formally defined as 

the search for the optimum solution vector x* = [x*1, x*2…x*n] that optimizes f(x) = 

[f1(x), f2(x)… fk(x)] and satisfies the constraint vector g(x) = [g1(x), g2(x)… gm(x)].  The 

constraint vector g(x) establishes the feasible region Ω, and any solution vector x∈Ω is 

defined as a feasible solution (Coello Coello et al., 2002:7). 
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Unfortunately, practical MOPs do not have a single solution x*∈Ω that optimizes 

all objective functions.  Under normal circumstances, improving performance in one 

objective mandates worsening performance in another; a “trade-off” dilemma occurs 

among objectives that conflict with each other.  Inability to universally optimize all 

elements of f(x) renders the word “optimum” controversial in the MOP arena.  Therefore, 

determining the optimum solution ultimately rests with the preferences of the decision 

maker, making the determination subjective rather than objective (Sawaragi et al., 

1985:25; Ringuest, 1992:2). 

Despite this subjectivity, the concept of dominance enables the decision maker to 

objectively distinguish superior solutions from inferior ones.  Dominance is 

mathematically definable.  Suppose all objective functions of f(x) = [f1(x), f2(x)… fk(x)] 

are to be minimized (this supposition is legitimate because any maximization function 

can be expressed as a minimization function by simply multiplying the function by -1), 

and two vectors (x1 and x2 ∈Ω) exist.  Then, for i = 1, 2…k, x2 dominates x1 if and only 

if the following condition is true (Coello Coello et al., 2002:11): 

∀ i, fi(x2) ≤ fi(x1) and ∃ i  | fi(x2) < fi(x1)  (2.5)   

The first condition means that x2 performs the same or better than x1 with respect to all 

objective functions; the second condition means that x2 performs better than x1 with 

respect to at least one objective function. 

Furthermore, if there is no x∈Ω that dominates x2, then x2 is called 

nondominated, or Pareto-optimal.  Still assuming all fi(x) are to be minimized, the 

vector x* is Pareto-optimal if, for every x∈Ω and i = 1, 2…k, either of the following 

conditions is true (Coello Coello et al., 2002:10): 
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∃ i  |  fi(x*) < fi (x) or ∀ i, fi(x*) = fi (x)  (2.6) 

Nondomination, or Pareto-optimality, is an essential property of any candidate 

solution to an MOP (Ringuest, 1992:3).  The set of all Pareto-optimal solutions to an 

MOP is called the Pareto-optimal set, which is defined as 

P*:= {x∈Ω | ¬∃  x′∈Ω, ∀ i, fi(x) ≤ fi(x′) and ∃ i fi(x) < fi(x′)} (2.7) 

In other words, each element of P* is a decision variable vector x that is both feasible and 

Pareto-optimal.    Coello Coello (2002) emphasizes that a solution’s membership in P* 

depends on its evaluation with all objective functions (12-13).  The mapping of all 

solutions in P* to their objective function values is called the Pareto front (PF*).  The 

Pareto front is defined as follows (Coello Coello et al., 2002:12): 

PF*:= {f(x) = [f1(x), f2(x)… fk(x)]  |  x∈P*}  (2.8) 

The reader should understand that P* pertains to decision variable values whereas PF* 

pertains to the objective function values.  The symbolic relationship between P* and PF* 

can be written as 

*PF*P functions objective  →  (2.9) 

Each member x∈P* is a particular array of decision variable values.  Each member 

f(x)∈PF* is a particular combination of objective function values corresponding to x∈P*.  

P* represents the true Pareto-optimal set.  In other words, P* is an exhaustive set 

of nondominated solutions (possibly infinite).  In the real world, however, generating P* 

is not viable for several reasons.  First, generating an infinite number of solutions is 

impossible, so the solutions that are generated are only a subset of P*.  Second, 

computational precision limits may render solutions that are not identical to the truly 
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Pareto optimal solutions.  For these reasons, a set of real-world MOP solutions is just a 

discontinuous approximation of P*, and this approximation is denoted Pknown. 

The distinction between “true” and “approximate” also applies to the Pareto front.  

For complex MOPs, deriving an analytical expression for the true Pareto front PF* is 

usually impossible (Coello Coello, 2002:12; Veldhuizen and Lamont, 2000:128); an 

alternative method for generating PF* involves mapping each x∈P* to its objective 

function value (Coello Coello, 2002:12).  As stated previously, however, computational 

limitations only permit us to generate Pknown instead of P*; so mapping Pknown to objective 

function space yields PFknown, which approximates PF*.  The relationship between   

Pknown and PFknown is analogous to the relation ship between P* and PF* and can be 

represented symbolically: 

known
functions objective

known PFP  →  (2.10) 

 Given this discussion, the following procedure is typical for solving real-world 

MOPs: 

• Generate Pknown as an estimate of P* 

• Generate PFknown by evaluating the objective function vector for each x∈ Pknown 

• Choose a solution from Pknown that results in an acceptable value of the 

corresponding PFknown on the Pareto front.  “Acceptable” is a subjective term, 

dependent upon the decision maker’s preferences. 

A popular stochastic search algorithm, known as the genetic algorithm (GA), is well-

adapted to solving complex MOPs.  More about GAs follows in the next section. 
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2.5 GENETIC ALGORITHMS 

John H. Holland (1975) from the University of Michigan pioneered the stochastic 

search technique known as the genetic algorithm (GA).  A genetic algorithm searches for 

solutions using principles analogous to evolution and biological genetics.  According to 

Whitley (1994), a GA is “any population-based model that uses selection and 

recombination operators to generate new sample points in a search space.”  Goldberg 

(1989) distinguishes the genetic algorithm from traditional search methods, like calculus-

based, enumerative, and random search methods in four ways: 

1. GA requires that the user encode the problem’s parameters as a data structure 

(“string”).  Mitchell (1996) points out that this step is crucial for a GA to be 

successful (156). 

2. GA operates on a population of candidate solutions – not just one solution. 

3. GA neglects auxiliary and derivative information; the only information that is 

crucial are objective function values associated with the strings. 

4. GA uses probabilistic transition rules to explore the search space instead of 

deterministic rules. 

 The terminology associated with genetic algorithms borrows heavily from 

biology.  Some common terms are defined here: 

Chromosome: an encoded string representing a complete parameter set or solution 

to a problem; often used interchangeably with “string” 

Gene: a subunit of a chromosome dedicated to a particular parameter 

Allele: specific value that a gene may assume 
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Genotype: the specific content of a chromosome that distinguishes one 

chromosome from another 

Phenotype: the decoded version of a chromosome; value(s) obtained by 

evaluating a chromosome with its objective function(s) 

Fitness: a measure of how “good” a chromosome is, which is related to its 

evaluation (phenotype); a fitness function converts a chromosome’s evaluation 

“into an allocation of reproductive opportunities” (Whitley, 1994),  

Using the example of the PAT system from Section 2.4 (multi-objective 

problems), each decision variable (a1, a2, b1, b2, Q1, Q2) would be a gene; the aggregation 

of these variables is the vector x, which a GA would treat as a chromosome.  Using the 

same convention from section 2.4, consider two hypothetical vectors (chromosomes) x1 

and x2 such that 

x1 = [156, 187, 275, 24, 150, 180] and x2 = [32, 114, 101, 299, 100, 200] 

Vectors x1 and x2 consist of the same decision variables (genes), but they assume 

different values (alleles).  Because corresponding alleles of x1 and x2 are dissimilar, they 

have different genotypes.  Suppose TCE mass removal is the only objective function f(x), 

and f(x1) = 5.2 kg, and f(x2) = 8.7 kg.  The values 5.2 kg and 8.7 kg are the phenotypes of 

x1 and x2, respectively.  If mass removal is the only metric for chromosome performance, 

then chromosome x2 has better fitness than x1. 

Goldberg (1989) identifies three fundamental GA operators: reproduction, crossover, 

and mutation (10).  Reproduction (or selection) means that the GA reproduces/selects 

chromosomes from the initial population and places them into a temporary mating pool.  

Usually, the GA is constructed so that the probability a particular chromosome is 
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reproduced is proportional to that chromosome’s fitness.  Hence, chromosomes with 

higher fitness have higher probability of reproduction; lower-fitness chromosomes have 

less probability.  This is analogous to Charles Darwin’s notion of “survival of the fittest.” 

 After reproduction, the mating pool is filled and the chromosomes are ready to 

undergo crossover.  In crossover, the GA probabilistically “mates” chromosomes at 

random, causing them to exchange portions of themselves with each other.  The 

crossover operator hopefully combines desirable characteristics of those higher-fitness 

chromosomes to make even better chromosomes.  Crossover probability usually ranges 

from 0.4 to 0.9 (Coley, 72:1999).  Finally, mutation may occur.  The GA, by some small 

probability, mutates a chromosome by changing one or more alleles.  Because mutation 

probability tends to be orders of magnitude less than crossover probability (14), mutation 

has less influence on chromosomes than crossover.  After mutation, the new population 

of chromosomes is complete.  Each cycle of fitness evaluation, reproduction, crossover, 

and mutation is called a generation. 

  The following pseudo code represents a very simple GA: 

Initialize population of strings/chromosomes 

Repeat until desired number of generations is attained 

Evaluate fitness (objective function) for each string 

Reproduce strings to mating pool based on fitness 

Perform cross-over 

Mutate alleles 

End 
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Reproduction, crossover, and mutation address the trade-off dilemma between 

exploitation and exploration that plagues any search algorithm.  Exploitation is the 

strategy of using knowledge of previous points in the search space to locate even better 

points; exploration, on the other hand, is the investigation of new and unknown areas of 

the search space (Beasley et al, 1993:63).  Efforts to exploit diminish efforts to explore, 

and vice versa.  Although exploitation is useful because it focuses on a promising area of 

the search space, excessive exploitation causes the algorithm to neglect other areas of 

search space that may contain better solutions.  Conversely, exploration gives the 

algorithm freedom to “travel” the search space, but too much exploration has the danger 

of degenerating into a haphazard random search. 

The reproduction and crossover operators are the exploiting power of the GA; they 

work cooperatively to improve successive generations of chromosomes.  However, a 

problem arises if these two operators work strictly by themselves: continuously 

disregarding lower-fitness chromosomes directs the search to a very concentrated portion 

of the search space and diminishes the potential to find better chromosomes elsewhere.  

This is why the GA uses mutation to provide some exploring power.  As Beasley et al 

(1993) states, “mutation provides a small amount of random search, and helps ensure that 

no point in the search space has a zero probability of being examined” (60). 

The reason GAs work is because of the Fundamental Theorem of Genetic 

Algorithms, better known as the Schema Theorem.  A schema (plural schemata) is a 

template describing a subset of strings with similar allele patterns (Holland, 1992:68; 

Goldberg, 1989:19).  It is a chromosome template that consists of alleles plus a 

“wildcard” symbol (*) that can assume any allele. 
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Consider a chromosome population whose individual genes are represented with the 

binary alphabet (0, 1).  The schema [11**0*] has length = 6 and contains fixed alleles in 

the first, second, and fifth position; the remaining alleles are *’s that can assume values 

of 0 or 1.  The schema [11**0*] can represent the following strings: [110101], [111000], 

and [110001]. 

Two important characteristics of a particular schema is its order and defining length.  

Order is the number of fixed alleles (i.e. all alleles except *), and defining length is the 

distance between the first and last fixed alleles (Michalewicz, 1996:46).  The example 

schema [11**0*] has order = 3 because positions 1, 2, and 5 are fixed.  Schema [11**0*] 

has defining length = 4 because positions 1 and 5 are the first and last fixed alleles (5 – 1 

= 4). 

The Schema Theorem mathematically predicts the minimum copies of a specific 

schema in the current generation (t) that appear in the next generation (t +1).  According 

to the Theorem, schemata with 1) short defining length 2) low order and 3) high fitness 

“receive exponentially increasing trials in subsequent generations” (Goldberg, 1989:33).  

These short, low-order, high-fitness schemata are called building blocks.  An extension 

of the Schema Theorem is the Building Block Hypothesis, which states that a GA “seeks 

near optimal performance through the juxtaposition of short, low-order, high-

performance schemata, or building blocks” (Goldberg, 1989:41).  As the GA repeats the 

generation loop, building blocks accumulate exponenetially (Holland, 1992:180). 

Although the Schema Theorem provides insight, it unfortunately provides an inexact 

schema count in the next generation because it is based on an inequality (≥); hence, the 

Schema Theorem predicts a minimum schema count with no provision for a maximum, 
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and it cannot accurately predict how a certain schema is processed as generations 

progress (Whitley, 1994). 

Before using a GA to solve a problem, one must consider the following: 

• A GA does not guarantee a globally optimum solution.  Recall that a GA 

examines the search space probabilistically, not deterministically, so the optimum 

solution may be overlooked. 

• Constraint handling is a challenge for GAs.  If a chromosome (solution) violates 

any constraint, then it is infeasible and theoretically has zero fitness.  However, 

this situation causes problems.  In practice, problems incur many constraints, and 

“finding a feasible point is almost as difficult as finding the best” (Goldberg, 

85:1989).  As a result, the problem solver wants to make use of infeasible 

chromosomes because they may contain useful information (Goldberg, 85:1989; 

Coley, 72:1999).  Goldberg (1989) identifies the “penalty method” as a means of 

retaining infeasible solutions.  In the penalty method, an infeasible solution is 

allowed to have fitness, but its fitness degrades proportionally to its constraint 

violation (85).  As Coley (1999) points out, “the form of the penalty function must 

be chosen with care” (72). 

• According to Beasley (1993), “convergence is the progression towards increasing 

uniformity” (60), and premature convergence is a classic problem with GAs.  In 

premature convergence, individuals with relatively high, but not the best, fitness 

rapidly dominate the population, causing the population to converge to a local 

maximum.  As virtually identical strings continue reproduction and crossover, the 
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population becomes homogeneous, and continued search efforts become futile 

(Beasley, 64, 1993). 

• Fitness evaluation of all chromosomes is undoubtedly the most time-intensive 

portion of the GA.  Because a GA operates on a population of candidate solutions, 

it incurs the burden of evaluating the entire population; therefore, the evaluation 

function “must also be relatively fast” (Whitley, 1994).  Extreme computational 

effort may necessitate networking processor hardware (Coley, 84-85:1999). 

Assigning sensible values for internal GA parameters like crossover probability, mutation 

probability, and generation size is a dubious task because there are “no conclusive results 

on what is best” (Mitchell, 1996:175).  Appropriate parameter values depend upon the 

nature of the problem (Coley, 22:1999). 

2.6 PARETO-BASED MULTI-OBJECTIVE GENETIC ALGORITHMS 

This section ties together sections 2.4 and 2.5 to introduce the multi-objective 

genetic algorithm (MOGA).  In particular, this section focuses on MOGAs that use 

Pareto-based approaches. 

The reader is reminded that all MOGAs are stochastic search algorithms based 

upon probabilistic methods.  Because they are not deterministic, MOGAs can only 

generate an approximated, incomplete version of P* rather than P* itself.  Therefore, the 

goal of a Pareto-based MOGA is convergence of Pknown towards P*.  MOGAs, like 

single-objective GAs, operate on a population of candidate solutions (chromosomes) as 
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opposed to a single solution; therefore, the strength of an MOGA is its ability to uncover 

multiple nondominated solutions (Pknown) in a single run. 

 MOGAs differ from single-objective GAs in two fundamental ways: 

• Solutions quantity.  A single-objective GA typically searches for a single solution 

that best optimizes a single objective function.  A MOGA, however, searches for 

multiple solutions that are Pareto-optimal. 

• Fitness assignment.  A single-objective GA assigns higher fitness to solutions that 

yield better performance relative to a single objective.  However, MOGAs operate 

on two or more conflicting objectives; therefore, Pareto-dominance is the only 

basis for assigning fitness (Fonseca and Fleming, 1995:46). 

2.6.1 Sorting nondominated solutions 

 Solutions exhibit various degrees of nondomination relative to each other.  For 

example, for any two feasible solutions x1 and x2, the following scenarios are possible: 

• Solution x1 dominates x2 

• Solution x2 dominates x1 

• Neither solution dominates the other 

Because nondomination typically influences selection in MOGAs, there is a need to sort, 

or rank, chromosomes according to their degree of nondomination.  Veldhuizen and 

Lamont (2000) point out that MOGAs typically rely on the ranking schemes of Goldberg 

(1989) and Fonseca and Fleming (1993).  With the Goldberg (1989) method, the MOGA 

initially identifies nondominated chromosomes within the current population, assigns 
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them rank = 1, and removes them from the population.  Next, the MOGA identifies 

nondominated chromosomes in the remaining population, assigns them rank = 2, and 

removes them from the population.  This cycle of identification, ranking, and removal 

continues until all chromosomes in the current population are ranked.  Reproductive 

probabilities are then based on rank (Goldberg, 1989:201). 

 The Fonseca and Fleming (1993) method is somewhat different.  Suppose x is a 

particular chromosome in the current population.  Then x receives rank = 1+ p, where p is 

the number of chromosomes in the entire current population that dominate x.  Like 

Goldberg’s (1989) method, the Fonseca and Fleming (1993) method ensures all 

nondominated chromosomes in the current population have rank = 1.  However, while 

Goldberg’s (1989) method successively removes individuals after ranking them, the 

Fonseca and Fleming (1993) method retains all chromosomes in the current population to 

be ranked among each other simultaneously. 

2.6.2 Maintaining diverse solutions 

 In solving MOPs, Pareto-optimality is an essential property of any solution, but 

this alone is not sufficient.  A secondary requirement is that solutions reflect sufficient 

diversity.  Diversity can apply to either the solutions themselves (P*) or to their 

evaluation (PF*).  This discussion, however, assumes that solution phenotype is more 

important than solution genotype, and, therefore, limits discussion of diversity to PF*, 

which reflects how solutions perform with the objective functions.  A MOGA may 

generate thousands, or even millions, of Pareto-optimal solutions, but if they all converge 
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to the same portion of PF*, the large solution quantity yields no benefit for the decision 

maker. 

Pareto-based MOGAs assign nondominated chromosomes equal fitness, which 

theoretically means they all have equal opportunity for reproduction.  In practice, 

however, this is not the case because a GA operates on a finite population as opposed to 

an infinite population.  Repetitious sampling of small, finite populations causes stochastic 

errors to accumulate.  Consequently, even when multiple solutions offer no advantage 

over each other, the population ultimately converges to a single solution (Goldberg & 

Richardson, 1987:41-42).  Such convergence due to stochastic errors from repeatedly 

sampling small population sizes is called genetic drift (Goldberg, 1989:185-186).  

Genetic drift causes MOGAs to eventually converge to a single nondominated solution 

(Fonseca and Fleming, 1993:6/2), which results in “crowding” (convergence) on the 

Pareto-front and loss of diversity.  Goldberg and Richardson (1987) demonstrated genetic 

drift with single-objective GA optimizing a function with multiple optima or “peaks” 

(i.e., multimodal function).  To counteract genetic drift, Goldberg and Richardson (1987) 

developed the idea of fitness sharing. 

Fitness sharing is fundamentally driven by a parameter called the niche radius, 

σshare.  The parameter σshare is a user-defined, radial distance that defines a circular niche 

around each point in objective space.  Points that lie within σshare of each other “share” 

the same niche and degrade each other’s fitness (i.e. they must “share” each other’s 

fitness).  To determine the degraded/shared fitness of chromosome xi due to nearby 

points in its niche, a sharing function is used.  Goldberg and Richardson (1987) identify 

the following sharing function: 
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Sh(dij) = 1 – (dij /σshare)α if dij < σshare   (2.11) 
= 0   otherwise 

Equation 2.11 depends upon parameters σshare and α.  The argument dij is the distance in 

objective space between xi and some other chromosome xj; xj can be a member of the 

entire population, a member of the same equivalence class as xi, or some other user-

defined subset.  The niche count mi of chromosome xi is the summation of its sharing 

function values with each chromosome xj: 

mi = Σxj Sh(dij)  (2.12) 

The niche count mi quantifies the magnitude of crowding around chromosome xi in 

objective space.  Finally, the fitness of xi is degraded (“shared”) by dividing its original 

fitness fi by its niche count mi; shared fitness = fi / mi.  Probabilities for selection are then 

based upon the shared fitness values (Goldberg and Richardson, 1987). 

In MOGAs, fitness sharing can resolve the dilemma of how to select equal-

ranking chromosomes.  For example, a MOGA may initially assign equal fitness values 

to all chromosomes of some rank = k.  To encourage diversity, the MOGA reduces fitness 

of each k-ranking chromosome in proportion to its niche count.  These adjusted fitness 

values then guide selection.  It is also possible to implement fitness sharing without 

directly adjusting chromosome fitness (Horn et al., 1994). 

2.6.3 Mating restriction. 

  Arbitrary recombination of chromosome pairs having extreme dissimilarities 

(genotypic or phenotypic) may result in low-performance offspring called “lethals” 

(Goldberg, 1989:184).  Therefore, it makes sense to restrict crossover to chromosome 
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pairs that are similar.  As Goldberg (1989) points out, the sensibility of this restriction 

follows from nature, which prohibits mating among different organisms (mammals, birds, 

reptiles, etc.).  Restriction of crossover among chromosome pairs is called mating 

restriction. 

 The purpose of mating restriction in MOGAs is to prevent creation of 

chromosomes that are not Pareto-optimal.  Mating restriction within MOGAs is more 

relevant to phenotype than genotype due to greater interest in generating the Pareto front 

(Veldhuizen and Lamont, 2000).  The distance parameter σmate controls mating 

restriction; chromosome xi cannot crossover with other chromosomes that reside more 

than σmate from xi in objective space.  If a MOGA uses both fitness sharing and mating 

restriction, the common practice is to set σshare = σmate, although such practice is purely 

arbitrary.  No sound theory justifies the inclusion/exclusion of mating restriction in 

MOGAs (Veldhuizen and Lamont, 2000). 

2.6.4 Pareto-based MOGAs in the literature. 

 Horn et al. (1994) developed the niched Pareto genetic algorithm (NPGA), which 

uses Pareto domination tournaments and fitness sharing chromosome selection.  The 

NPGA creates a tournament by randomly picking two solutions x1 and x2 from the 

current population and by randomly filling a secondary population (the comparison set) 

with solutions; the comparison set is so-named because both x1 and x2 are compared to 

each member of the comparison set.  If the comparison set dominates x1 but not x2, then 

x2 “wins the tournament” and is selected for reproduction.  If the comparison set either 
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(a) dominates both x1 and x2 or (b) dominates neither x1 nor x2, then the tournament ends 

in a tie.  In the case of a tie, it is probable that x1 and x2 belong to the same equivalence 

class, or partial order.  The NPGA resolves ties with equivalence class sharing.  In 

equivalence class sharing, the NPGA plots each solution in objective space and uses the 

user-defined parameter σshare to assess crowding of adjacent points.  Horn et al. (1994), 

however, defines niche count differently than equation 2.12.  With the NPGA, the niche 

count mi of chromosome xi simply equals the count of points within σshare of xi in 

objective space.  The NPGA ultimately selects either x1 or x2 based on lowest niche count 

(i.e. least crowded in objective space). 

Srinivas and Deb (1994) introduced the nondominated sorting genetic algorithm 

(NSGA), so-named because it is based on a nondominated sorting procedure.  The key 

features of the NSGA are 1) a ranking selection method to emphasize favorable solutions 

and 2) fitness sharing to form niches.  The NSGA first identifies nondominated 

chromosomes in the current population and assigns them rank = 1.  The NSGA initially 

assigns the same “dummy” fitness value to these rank-1 chromosomes.  The NSGA 

employs fitness sharing by dividing each rank-1 chromosome’s fitness by its niche count, 

calculated with equations 2.11 (α=2) and 2.12.  The NSGA then separates the rank-1 

chromosomes from the population, identifies nondominated chromosomes in the 

remaining population, assigns them the next rank (rank = 2), and gives them all the same 

fitness value, which is less than the minimum shared fitness of the previous rank (or 

“front”).  Hence, the NSGA uses the Goldberg (1989) ranking method.  The process of 

identifying nondominated solutions, assigning next rank, and adjusting fitness repeats for 

all chromosomes.  The adjusted fitness values determine selection probabilities. 
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Deb et al. (2002) developed the Non-dominated Sorting GA-II (NSGA-II) to 

rectify flaws of the original NSGA of Srinivas and Deb (1994).  Deb et al. (2002) 

identifies three key flaws with NSGA, which are 1) high computational complexity of 

nondominated sorting, 2) lack of elitism, and 3) reliance on user-specified σshare 

To improve nondominated sorting, NSGA-II compares each solution in the 

current population P with a partially-filled population (P′) of nondominated solutions 

rather than the entire P.  Comparing members of P with P′ instead of the entire P itself 

has good potential for reducing the number of comparisons that the algorithm must 

check.  NSGA-II, like NSGA, uses the Goldberg (1989) ranking method with 

nondominated fronts sequentially ranked and removed from P. 

Deb et al. (2002) criticized NSGA’s fitness sharing because of its reliance on the 

user chosen parameter σshare.  Computational burden is apparent in equations 2.11 and 

2.12; NSGA must calculate phenotypic distances between chromosome xi and every xj in 

the same front and then evaluate the sharing function for all these distances.  Also, the 

utility of equation 2.11 is sensitive to σshare chosen by the user. 

To overcome these problems, Deb et al. (2002) developed a fitness-sharing 

procedure that minimized the need for distance calculations and did not require 

specification of a niche radius parameter.  NSGA-II sorts the population in ascending 

order using each series of objective function values.  Boundary points (minimum and 

maximum) are assigned infinite crowding distance since they lack an adjacent neighbor.  

For each intermediate point i, NSGA-II computes only two crowding distances: the 

distances between i and its two adjacent neighbors.  The overall crowding distance value 

of point i equals the sum of individual distance values associated with each objective.  
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The disadvantage of this procedure is the computational burden of sorting points for each 

series of objective function values (Deb et al., 2002). 

The main loop of NSGA-II works as follows:  NSGA-II combines the parent and 

children populations and sorts/ranks the combined population using the improved 

nondominated sorting procedure explained earlier.  Next, the algorithm computes 

crowding distances for each front.  NSGA-II fills an N-size mating pool with priority 

given to lower-ranking chromosomes; in this regard, NSGA-II uses an elitist method.  

When the algorithm encounters a particular front/rank whose members exceed space left 

in the pool, the algorithm resorts to fitness sharing.  NSGA-II picks chromosomes from 

the front that have the lowest crowding distances.  The filled mating pool undergoes 

crossover and mutation to create a new population of children of size N (Deb et al., 

2002). 

Zitzler and Thiele (1998) developed the strength Pareto evolutionary algorithm 

(SPEA) which combines traditional and new MOGA techniques to find nondominated 

solutions.  SPEA starts by initializing a population (P) and an external dominated set 

(P′), which is initially empty.  The algorithm copies nondominated chromosomes from P 

to P′ and removes chromosomes from P′ that are dominated by any other member of P′.  

A specified size parameter (N′) limits the number of nondominated chromosomes that P′ 

can store, and a clustering technique known as the average linkage method is used to 

“prune” (remove) excess chromosomes from P′.  SPEA then computes “strength” 

(fitness) for each xi ∈ P′  by computing a strength value (si) that is directly proportional 

to the number of chromosomes in P′ that xi dominates.  SPEA also computes a strength 
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value (sj) for each xj ∈ P by summing the strength values of all chromosomes in P′ that 

dominate xj.  Zitzler and Thiele (1998) reverse the meaning of “fitness” within SPEA 

because higher reproductive probabilities correspond to lower fitness/strength as opposed 

to higher fitness.  Furthermore, the SPEA niching technique defines niches in terms of 

Pareto dominance instead of phenotypic distance, which eliminates the need for a user-

specified distance parameter (i.e. σshare).  SPEA uses binary tournament selection with 

replacement to copy chromosomes from both populations (P ∪ E) to the mating pool.  

Once full, chromosomes in the mating pool undergo problem-specific crossover and 

mutation, which completes a generation. 

Van Veldhuizen (1999) developed the “messy” multiobjective genetic algorithm 

(MOMGA), which differs from the previous MOGAs in that MOMGA principally 

operates on building blocks (BBs) (see Section 2.5) instead of whole chromosomes.  

MOMGA consists of three distinct phases: (1) initialization, (2) primordial phase, and (3) 

juxtapositional phase.  In the initialization phase, MOMGA uses Partially Enumerative 

Initialization (PEI) to initialize a population representing all possible BB variations of 

specific size.  Following PEI, building blocks are evaluated with respect to a competitive 

template, and then MOMGA performs subroutines for the primordial and juxtapositional 

phases.  In the primordial phase subroutine, Pareto-based tournament selection repeatedly 

adjusts the size of the current BB population.  In the juxtapositional phase, MOMGA 

clones desired BBs and recombines them into complete chromosomes using a “cut-and-

splice” operator.  New chromosomes are subsequently evaluated against the competitive 

template and, if they are currently Pareto optimal, they are added to the currently Pareto 

optimal set.  Once the juxtapositional loop ends, MOMGA updates the competitive 
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template using the best fitness values.  MOMGA then executes another cycle of 

initialization, primordial, and juxtapositional phases (Van Veldhuizen, 1999). 

The disadvantage of MOMGA lies in the PEI, which deterministically enumerates 

all possible BB clones and, consequently, incurs significant computational expense 

(Zydallis et al., 2001).  MOMGA-II, developed by Zydallis et al. (2001), is similar to 

MOMGA with some notable exceptions.  MOMGA-II uses Probabilistically Complete 

Initialization (PCI) instead of PEI to initialize a limited-size BB population, which 

effectively reduces computational “bottlenecks.”  Also, instead of a primordial phase, 

MOMGA-II implements a Building Block Filtering (BBF) phase to probabilistically 

ensure that all desirable BBs are in the initial population.  BBF essentially reduces the 

number of BBs and stores the best BBs found (Zydallis et al., 2001). 
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3.0 METHODOLOGY 

3.1 INTRODUCTION 

In this chapter, we describe the procedures used to achieve our research objective 

of determining values of design variables that optimize technology cost and performance 

under various contaminated-site conditions.  In Section 3.2 of this chapter, we present the 

details of Parr’s (2002) technology model for remediating perchlorate contamination 

using HFTWs in conjunction with in situ biodegradation.  In Section 3.3, we establish 

parameter values to describe an actual perchlorate-contaminated site.  In Section 3.4, we 

formulate a multi-objective optimization problem, establishing objective functions for 

application of the remediation technology at the site.  In Section 3.5 we present a multi-

objective GA (MOGA) that is used to solve the optimization problem.  Finally, in Section 

3.6, we describe the details of implementing the MOGA. 

3.2 TECHNOLOGY MODEL 

Parr (2002) developed a technology model that combines groundwater flow and 

transport of dissolved species induced by operation of an HFTW system with a 

bioremediation submodel that simulates perchlorate reduction due to introduction of an 

electron donor in the HFTW treatment wells.  In this section, we describe both the flow-

and-transport model and the bioremediation submodel implemented in this study. 
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3.2.1 Flow and Transport Model 

Parr (2002) adapted the Huang and Goltz (1998) numerical model, which was originally 

used for TCE, to simulate flow and transport of ClO4
- in groundwater flow fields induced 

by a 2-well HFTW system.   The 3-D flow-and-transport model is a numerical model that 

simulates advection, dispersion, and consumption of four individual, dissolved species 

(electron donor, oxygen, nitrate, and perchlorate).  Consumption rates of dissolved 

species are due to microbially mediated redox reactions, and rate equations for these 

reactions are in the biological submodel (section 3.2.2).  The flow-and-transport model 

assumes only the electron donor (acetate CH3COO-) can sorb, and this sorption is 

assumed to be an equilibrium process that is both linear and reversible.  The remaining 

species (O2, NO3
-, ClO4

-) are non-sorbing.  Parr (2002) further assumes microorganisms 

remain stationary (i.e. fixed to the aquifer material).  The flow-and-transport model 

equations are presented in Appendix A. 

The flow-and-transport model is coded in FORTRAN.  MODFLOW (Harbaugh 

and McDonald, 1996), which is a three-dimensional finite difference code, is used as a 

subroutine to calculate groundwater flow, as the model transport equations (A.1-A.4) 

require groundwater flow velocities (v) throughout the problem domain as input.  Given 

boundary conditions for hydraulic head (h), along with values for aquifer hydraulic 

conductivity (K), porosity (n), HFTW treatment well locations, and treatment well 

pumping rates, MODFLOW solves the steady-state flow equation (3.1) to determine the 

hydraulic head field and then applies Darcy’s law (3.2) to compute the steady-state 

velocity field in three dimensions.    
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The flow-and-transport model separately accepts other input information, like 

injected donor concentration and injection frequency.  After accepting the three 

dimensional steady-state groundwater flow velocity input from MODFLOW, along with 

initial/boundary concentrations of the dissolved species and microbes, the flow-and-

transport model uses a self-adaptive, partial implicit finite difference technique to 

numerically solve the partial differential equations describing advection, dispersion, 

sorption, and consumption in Appendix A.  The model can provide concentrations for all 

species (electron donor, electron acceptors, and microorganisms) at any location over 

time. 

3.2.2 Biological Treatment Submodel 

Parr (2002) based his biological treatment submodel on a perchlorate 

biodegradation model developed by the environmental firm Envirogen.  The biological 

treatment submodel model consists of differential equations, based on dual-Monod 

kinetics, that describe 1) consumption rates of dissolved species (electron donor, oxygen, 

nitrate, perchlorate) due to microbial redox reactions, and 2) biomass changes.  A notable 

feature of the submodel is that it addresses the competition among multiple electron 

acceptors for oxidation of the electron donor; the submodel assumes that oxygen is 

preferentially reduced over nitrate, which is preferentially reduced over perchlorate.  The 
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reader may refer to Appendix A for a more detailed discussion of the submodel 

equations. 

3.3 SITE MODEL 

Applying a technology model to simulate remediation at an actual contaminated 

site necessitates translating the site characteristics into model parameters.  Using a pre-

processor such as the one available in Visual MODFLOW, a grid composed of discrete, 

rectangular cells can be easily constructed to approximate a perchlorate-contaminated 

site.   A key advantage of the Visual MODFLOW pre-processor and the MODFLOW 

code is that they allow the user to represent the site with non-uniform cell sizes.  The user 

can specify smaller, numerous cells for better resolution in the vicinity of pumping wells 

and treatment wells; and the user can conversely specify larger, fewer cells in less critical 

areas to reduce computational time.  Using the pre-processor, the user can locate 

pumping and injection wells anywhere in the finite difference grid, establish head and 

concentration boundary conditions, contaminant concentration initial conditions, and 

specify hydrogeological characteristics.  Site information is saved to data files that are 

later read by MODFLOW. 

A plan view of the site is shown in Figure 3.1.  This finite difference, composite 

grid is actually 3-dimensional, 185 m long by 185 m wide by 32 m deep.  This grid is a 

composite of discrete, rectangular cells of non-uniform size.  Individual cells have sides 

of 3 m, 5 m, or 10 m.  More numerous, smaller cells (3 m × 3 m) are located within the 

vicinity of the pumping wells for better resolution.  Larger cells (10 m × 10 m) are 
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specified at the extremities of the grid, where resolution is less important, to reduce 

computational time.  This grid has four layers with a uniform horizontal hydraulic 

conductivity that is twenty times greater than the vertical conductivity.  This anisotropy is 

assumed constant over the entire modeled volume.   The top layer represents an 8 meter 

deep zone, where the water table is located an average of 1.5 meters below the surface.  

The second and fourth layers (10 meters deep each) are where the upper and lower 

screens of the treatment wells are located, and the third layer (4 meters deep) separates 

the screened intervals.   

Two treatment wells are oriented perpendicular to the direction of groundwater 

flow, which is left to right in Figure 3.1.  The configuration in Figure 3.1 is used to 

evaluate how well a pair of HFTWs can be used to contain a perchlorate plume from 

Figure 3.  Contaminated site model – aeri

being transported downgradient from a continuous source.  

al view. 
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3.4 FORMULATION OF MULTI-OBJECTIVE PROBLEM 

Having developed a technology model and a site model, we are now in a position 

nology operation, we 

wish to 1) destroy as much perchlorate as possible and simultaneously 2) keep operating 

engineer could manipulate to pursue these objectives.  Such characteristics are 

3

d = spacing between the two treatment wells in the well pair (meters) 

p nds

We now want to mathematically express the objectives f  and f2 as functions of the 

decision variab ) cannot be 

explicitly written as a function of the decision variables.  Looking at the technology 

r a 

given set of decision variable values requires numerical evaluation of the set of partial 

differential equations that comprise the technology model.   Therefore, we generically 

Mass ClO - destroyed = f (Q, d, C , p) 

lationship between f2 (total operating cost) and [Q, d, Cin, p] can 

be explicitly formulated.  To simplify our comparison of operating costs for different 

implementations of the remediation technology, we assume that operating cost 

to formulate a multi-objective problem.  Over a given time of tech

costs of the remediation technology low.  These objectives can be represented as f1 and 

f2, respectively.  Next, we must identify characteristics (decision variables) that a site 

Q = pump rate (m /day) for each well in the HFTW well pair 

Cin = injected concentration of acetate (mg/L) 

 = acetate injection pulse duration (in 32  of a day) 

1

les.  However, objective f1 (mass perchlorate destroyed

model, we can see that f1 is a function of the decision variables, but determining f1 fo

represent objective f1 as 

4 1 in

On the other hand, the re
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differences are only due to differences in the a) cost of electron donor and b) cost of 

operating the pumps.  That is, we implicitly assume that capital costs, as well as other 

recurring costs (e.g.  maintenance) for different technology implementations are

Cost of electron donor depends upon how much electron donor is injected ove

the duration of the remediation period t, and we can write this cost as 

Material cost = 2* Q * t * Cin * p/32 * 1000 L/m3 * Pricedonor, where 

 equal.   

r 

2 = num

32 = maxi

 donor injected ($/mg donor) 

 of operating the pumps in the two 

 pump operation, the pump cost equation becomes 

eelec 

where 

E = energy required to ove er; see appendix B) 

c = price of electricity ($/kW-hr) 

rite objective f2 as a function of decision variables: 

00 L/m3 * Pricedonor   +   2* Q * t * E * Priceelec 

f2(Q, elec) 

ber of treatment wells 

t = treatment period (days) 

mum pulse duration (32 pulse units = 1 day) 

1000 L/m3 = conversion factor 

Pricedonor = price of electron

The remediation technology also incurs the cost

HFTWs.  Assuming continuous

Pump cost = 2* Q * t * E * Pric

2 = number of treatment wells 

rcome headloss (kW-hr per m3 of wat

Priceele

We can now explicitly w

Operating cost  = Material cost + Pump cost 

f2(Q, Cin, p)  =  2* Q * t * Cin * p/32 * 10

Cin, p) = 2* Q * t * (Cin * p/32 * 1000 L/m3 * Pricedonor   +   E * Price
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Finally, we must recognize the constraints that our problem domain imposes.  The site 

a

t optimize 

the obj

C d 

For this problem, HFTW pla mn 13 of the finite 

difference grid shown in Figure FTWs are required to remain 

ng (d) 

p), 

 

Cin, 

mal trade-off relationship between technology performance (with 

respect  

 

nd technology models impose lower and upper bounds on each of the decision variables 

which we can designate as Qmin, Qmax, dmin, dmax, Cin,min, Cin, max, pmin, and pmax. 

With our objectives, decision variables, and constraints identified, we can now 

formulate a multi-objective problem: search for all vectors x = [Q, d, Cin, p] tha

ective function vector f(x) = [f1(x), f2(x)] subject to the following constraints: 

Qmin ≤ Q ≤ Qmax; real-valued 

dmin ≤ d ≤ dmax; integer-valued 

in,min ≤ Cin ≤ Cin, max; real-value

pmin ≤ p ≤ pmax; real-valued. 

cement is restricted to cells in colu

 3.1; furthermore, the two H

equidistant from the grid centerline.  Hence, when looking at Figure 3.1, well-spaci

is the vertical grid distance between HFTWs.  Note that d must be integer because it 

measures the summation of vertical cells between the HFTWs, and individual cell 

dimensions are integer (3, 5, or 10 meters).  The remaining decision variables (Q, Cin, 

however, can accommodate better resolution than integer values, and therefore, are

designated as real. 

The objective of this problem is to find sets of engineering parameters [Q, d, 

p] that yield an opti

 to perchlorate removal) and cost.  Ideally, we would further constrain the solution

set to values [Q, d, Cin, p] that yield downgradient ClO4
- concentrations that fall below

some maximum level; the rationale for this constraint is that regulations typically 
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prescribe a maximum contaminant level downgradient from the source.  However, the 

ability of the technology model to yield sufficiently low ClO4
- levels is largely unc

this additional constraint would risk over-constraining the problem and yielding no 

solutions.  Therefore, instead of formulating downgradient ClO4
- concentration as an 

objective or constraint, we simply monitor downgradient ClO4
- concentration to gain

understanding of how different technology implementations affect the relative magnit

of this important parameter. 

There are some important considerations in selecting a suitable search algorithm to 

solve this problem: 

ertain; 

 an 

ude 

l relationship between f1 and f2 is unknown.  In other words there is 

• 

• tion achievable, 

 

.  

As stat i-objective problems because they 

ope

• Objectives f1 and f2 have common decision variables [Q, Cin, p], but the 

mathematica

no analytical expression for the theoretical Pareto Front (PF*). 

An explicit relationship between f1 and [Q, d, Cin, p] is unavailable. 

Because a discrete plot of the Pareto front is the only representa

the plot must adequately span the extremities of the Pareto front. 

• Due to the relatively long computation time in evaluating a decision variable set,

an efficient search algorithm is essential. 

Given these considerations, a genetic algorithm seems appropriate for estimating PF*

ed in Section 2.5, GAs adapt easily to mult

rate on a population of candidate solutions, enabling the discovery of multiple 

nondominated points in a single generation. 
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3.5 MULTI-OBJECTIVE GENETIC ALGORITHM 

3.5.1 MOGA specifications 

In developing an MOGA to solve the proposed problem, the following MOEA 

:  characteristics are desireable

• Pareto-based to generate discrete, approximated Pareto-optimal solution

• Real-valued crossover a

s. 

nd mutation operators to accommodate possible ranges of 

values for the decision variables. 

• Fitness sharing to generate points that adequately span the Pareto front. 

Parallelized•  to expedite computation by allowing multiple processors to 

n is a 

practical necessity due to computation intensity of computing the FORTRAN 

Section 2.6 described several multi-objective GAs.  For this thesis effort, the author 

implem rgely due to its success in previously solving a multi-

being considered here (Erickson et al., 2001).  Also, the author considered NPGA easily 

, 

forward, the algorithm will be referred to as HK-MOGA, in which the letters H and K 

individually calculate fitness for a particular chromosome.  Parallelizatio

flow-and-transport model. 

ented a version of NPGA la

objective groundwater remediation problem that is somewhat similar to the problem 

understandable and easiest to develop into low-level computer code.  From this point

refer to the software developers (Hendricks and Knarr; see Acknowledgments). 
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3.5.2 Chromosome encoding 

A chromosome consists of genes representing the decision variables listed in 

Section 3.4.  In essence, a chromosome contains engineering parameters for a 2-well 

HFTW system.  Chromosomes also have auxiliary genes devoted to objective function 

values, Pareto-ranking, and downgradient ClO4
- concentration, but these auxiliary genes 

are not involved in crossover or mutation.   Decision variables are real-valued except for 

well-spacing, which is integer-valued. 

3.5.3 MOGA parameters 

HK-MOGA relies on the following user-specified parameters: 

• Initial population size (|Pop0|): self-explanatory 

• Mating pool size (|MP|): sets the quantity of chromosomes that are selected for 

crossover and mutation. 

• Number of generations (N): determines how many cycles of selection, crossover, 

and mutation occur. 

• Niche radius (σshare): dimensionless number used in fitness sharing; establishes a 

circular niche around each point in non-dimensionalized objective space 

• Mutation probability (pm): self-explanatory 

3.5.3 Initialization 

HK-MOGA starts by randomly generating an initial chromosome population Pop0 

of size | Pop0| in which all chromosomes comply with decision variable constraints listed 
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in section 3.4.  HK-MOGA stores the created chromosomes in a set called Popcum , so-

called because it is a cumulative collection of chromosomes; HK-MOGA continually 

appends newly generated chromosomes to Popcum. 

After Popcum is created, HK-MOGA evaluates objective function values for each 

chromosome.  HK-MOGA next uses the objective function values to Pareto-rank each 

chromosome in Popcum.   A particular chromosome x receives a rank that equals the 

number of chromosomes that dominate chromosome x.  Hence, all nondominated 

solutions have rank = 0, and low rank corresponds to high fitness.  This Pareto-ranking 

method mimics the method of Fonseca and Fleming (1993). 

3.5.4 Selection 

Once chromosomes are Pareto-ranked, HK-MOGA starts the generation 

subroutine, which begins by selecting chromosomes to be copied to a reservoir called a 

mating pool (MP) where they await crossover and mutation.  The user-specified 

parameter |MP| limits the number of chromosomes in MP. 

Two properties that drive selection in HK-MOGA are 1) Pareto rank and 2) 

“crowding” in objective space.  As long as space in MP is sufficient, HK-MOGA copies 

all rank-zero chromosomes to MP, then all rank-1’s, then all rank-2’s, etc.  Simply put, 

when space is sufficient, Pareto rank drives selection. This method ensures that better, 

low-ranking chromosomes receive priority for selection. 

However, as low-ranking chromosomes are progressively copied, space in MP 

depletes.  Eventually HK-MOGA encounters chromosomes of some rank k whose 

quantity exceeds remaining space.  Because all k-rank chromosomes have equal rank, and 
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therefore fitness, HK-MOGA resolves the dilemma of which chromosomes to select by 

picking chromosomes that are least crowded in objective space.  The purpose of this 

selection strategy is to develop chromosomes that map to relatively uninhabited sections 

of the Pareto front, which for the decision maker means more diverse tradeoff options.  

The metric for assessing crowding in objective space is the niche count.  This technique 

is called equivalence class sharing, which was originally described by Horn et al. 

(1994). 

Let xi be some k-rank chromosome such that i = 1, 2, 3…[number of rank k 

chromosomes], and assume that the number of k-rank chromosomes exceeds remaining 

space in the mating pool.  Also, let chromosome xj be any chromosome in Popcum where j 

= 1, 2, 3…[size of Popcum].  HK-MOGA searches Popcum for the most current maximum 

and minimum values of both objective functions f1 and f2.  These maximum and 

minimum values are subsequently used to normalize objective function values for every 

xi ∈ {rank k chromosomes} and xj ∈ Popcum as follows: 

f1′i = (f1i – f1min) / (f1max – f1min) 

f2′i = (f2i – f2min) / (f2max – f2min) 

f1′j = (f1j – f1min) / (f1max – f1min) 

f2′j = (f2j – f2min) / (f2max – f2min) 

 

where 

f1′i = dimensionless value of f1 based on xi∈{rank k chromosomes} 

f2′i = dimensionless value of f2 based on xi∈{rank k chromosomes} 
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f1′j = dimensionless value of f1 based on xj∈Popcum 

f1′j = dimensionless value of f2 based on xj∈Popcum 

f1i = value of f1 based on xi∈{rank k chromosomes} 

f2i =  value of f2 based on xi∈{rank k chromosomes} 

f1j =  value of f1 based on xj∈Popcum 

f2j =  value of f2 based on xj∈Popcum 

f1min = minimum value of f1 within Popcum 

f1max = maximum value of f1 within Popcum 

f2min = minimum value of f2 within Popcum 

f2max = maximum value of f2 within Popcum 

 

This normalization makes both objective function values dimensionless, which is helpful 

due to the incommensurable units of both objective functions (mass and dollars).  The 

distance dij between points (f1′i, f2′i) and (f1′j, f2′j) in dimensionless objective space is 

calculated as 

dij = [ (f1′i – f1′j)2 + (f2′i – f2′j)2 ]½  

Distance dij and the niche radius σshare are then used to compute the sharing 

function (equation 2.11): 

Sh(dij)  = 1 – dij /σshare  for dij ≤ σshare 

= 0   for dij > σshare 

The parameter σshare basically defines the radius of a circle around point (f1′i, f2′i); points 

inside the circle contribute to crowding, and points outside the circle do not.  Sh(dij) is a 

59 



metric for assessing the proximity or crowding between point (f1′i, f2′i) and some other 

point (f1′j, f2′j).  If (f1′j, f2′j) lies within the circle surrounding (f1′i, f2′i) (i.e. dij ≤ σshare), 

then the sharing function assumes a value such that 0 ≤ Sh(dij) ≤ 1.  The closer the two 

points are to each other, the higher the value of the sharing function; the maximum value 

Sh(dij) = 1 indicates the two points overlap.  If point (f1′j, f2′j) lies outside the circle 

surrounding (f1′i, f2′i) (i.e. dij > σshare), then crowding is negligible (Sh(dij) = 0).   

The niche count mi for chromosome xi∈{rank k chromosomes} is computed 

according to equation 2.12: 

mi = Σxj∈Popcum Sh(dij) 

Because mi is a summation of sharing function values, it provides an overall measure of 

how “crowded” chromosome xi is in objective space.  A high niche count implies a high 

degree of crowding, and vice versa (see Figure 4).  After calculating the niche count mi 

for each xi∈{rank k chromosomes}, HK-MOGA fills remaining slots in MP with 

chromosomes having the lowest mi values.  HK-MOGA preferentially selects 

chromosomes with low niche counts to improve chances of generating points in less-

occupied regions of the Pareto front. 
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σshareA

f1′

f2′

σshareB

Figure 4.  Example of niching strategy.   Point B is less crowded than point A. 

3.5.5 Crossover and Mutation 

 Chromosomes in MP proceed to crossover and mutation.  HK-MOGA relies on 

several crossover/mutation operators, which Garrett (1999) coded for his thesis 

investigation.  Garrett’s (1999) computer code was incorporated into HK-MOGA code.  

Although Section 2.6.4 addresses mating restriction during crossover, mating restriction 

does not appear to be a critical component of MOGAs investigated in the literature 

review, and, as stated before, no sound theory justifies its inclusion in MOGAs 

(Veldhuizen and Lamont, 2000).  Therefore, the author did not incorporate mating 

restriction with the crossover. 

All chromosomes in MP participate in crossover.  That is, for i = 1 to |MP|, 

chromosome xi crosses over with xr, where xr is randomly chosen from MP (pool 

crossover operates differently).  HK-MOGA employs the following crossover operators: 
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Whole arithmetical crossover: linearly combines all corresponding genes of xi and 

xr, to create new chromsomes x′1 and x′2; crossover applies to the 

“whole” chromosome (i.e. all genes of xi and xr) (Michaelwicz, 

1996:112, 128).  HK-MOGA randomly retains x′1and discards x′2. 

Simple crossover: randomly selects a gene and swaps it between xi and xr to make 

x′1 and x′2 (Michaelwicz, 1996:112).  HK-MOGA randomly retains 

x′1and discards x′2. 

Heuristic crossover: uses chromosomes xi and xr to make a single offspring x′1 

such that x′1 = R·( xr – xi) + xr.  The value R is a uniform random number 

between 0 and 1, and the rank of xr is the same or less than the rank of xi 

(Michaelwicz, 1996:112). 

Pool crossover: randomly copies alleles from chromosomes in MP and assembles 

the alleles to make x′1. 

HK-MOGA selects a particular crossover operators based upon an adaptive probability 

distribution (Garrett, 1999).  At the first generation, all crossover operators have equal 

probability of selection.  For all following generations, the selection probability for a 

particular operator “adapts” or adjusts based upon the attributes of the new chromosome 

x′1.  If x′1 dominates xi, then the crossover operator was successful in increasing fitness, 

and its selection probability consequently increases in the next generation.  Conversely, if 

xi dominates x′1, then crossover was unsuccessful, and its probability of selection 

decreases.  If neither chromosome dominates the other, the operator’s selection 

probability stays the same. 
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Crossover creates new chromosomes that are then susceptible to mutation.  

Mutation is controlled by the user-specified mutation probability (pm).  For each new 

chromosome, HK-MOGA selects a random number (r: 0 < r < 1) from a uniform 

distribution.  If r < pm, then one of 3 mutation operators affects the new chromosome; 

otherwise, mutation does not occur.  HK-MOGA randomly selects which mutation 

operator based on the same adaptive probability distribution described previously: 

Uniform mutation: resets a particular gene to a random value between specified 

maximum and minimum values (Michaelwicz, 1996:111, 127). 

Boundary mutation: resets a particular gene to either its specified maximum or 

minimum value (Michaelwicz, 1996:127-128). 

Non-uniform mutation: modifies a particular gene by some random value whose 

magnitude decreases probabilistically towards 0 as the current 

generation number approaches the maximum generation number 

(Michaelwicz, 1996:111, 128). 

Crossover and mutation ultimately create a new chromosome population Popnew, whose 

size equals the mating pool size |MP|. 

3.5.6 Evaluation and Pareto Ranking 

 HK-MOGA evaluates all members of Popnew and appends them to Popcum.  Thus, 

Popcum keeps all chromosomes from past generations and inherits new ones.  We see then 

that Popcum is a set of accumulated chromosomes, and its cardinality is prescribed by the 

following formula: 

|Popcum| = N·|MP| + |Pop0| 
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HK-MOGA ranks each chromosome in Popcum as described previously, and the 

generation cycle restarts with selection. 

3.6 OPTIMIZATION PROCEDURE 

The author designed optimization runs to achieve the second and third objectives 

mentioned in Section 1.2.  Four separate optimization runs were performed using HK-

MOGA described in section 3.5 to produce an estimated Pareto set (Pknown) and Pareto 

front (PFknown) for different time spans and site conditions.  Runs 1 and 3 simulate 

treatment periods of 300 days and 600 days, respectively, using site data for Site 4, 

Nevada (Parr, 2002): 

Aquifer Characteristics 
Hydraulic Conductivity = 7.6 m/day  Hydraulic Gradient = 0.01 
Source Characteristics 
Oxygen Concentration = 2.8 mg/L  Nitrate Concentration = 60 mg/L 
Perchlorate Concentration = 330 mg/L  

 
 
Runs 2 and 4 simulate treatment periods of 300 days and 600 days, respectively, using 

site data for Site 2, California (Parr, 2002): 

Aquifer Characteristics 
Hydraulic Conductivity = 2.59 m/day  Hydraulic Gradient = 0.001 
Source Characteristics 
Oxygen Concentration = 0.55 mg/L  Nitrate Concentration = 0.5 mg/L 
Perchlorate Concentration = 160 mg/L  
 

As mentioned in Section 1.2, one of the research objectives was to perform the 

optimization under “various contaminated-site conditions.”  Key parameters that establish 

different conditions between the two sites are hydraulic conductivity, regional hydraulic 
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gradient and initial source concentration.  Site 4 has approximately triple the hydraulic 

conductivity, ten times the hydraulic gradient, and double the source concentration of Site 

2; Site 4 also has larger initial concentrations of competing electron acceptors (O2 and 

NO3
-) than Site 2. 

The following parameters are used in all four runs: 

Decision variable constraints 
Qmin = 10 m3/day  Qmax = 150 m3/day dmin = 3 m dmax = 165 m 
Cin,min = 0 mg/L  Cin, max = 1,000 mg/L 
pmin = 0 pmax = 32 
Cost coefficients 
Pricedonor = $2.666×10-6 per mg donor Priceelec = $0.067 per kW-hr 
HK-MOGA parameters 
|Pop0| = 50 |MP| = 10 N = 100 σshare = 0.4 pm = 0.01 
Aquifer parameters 
Porosity = 0.30 Retardation factor for acetate (CH3COO-) = 1.48 
Kinetic parameters (see Appendix A) 
kmax = 0.21 mg donor/mg biomass/day KS

don = 10.0 mg/L 
KS

oxy = 10.0 mg/L KS
nit = 15.0 mg/L KS

per= 20.0 mg/L 
Ki

oxy = 10.0 mg/L Ki
nit = 15.0 mg/L 

Ybiomass = 0.25 mg biomass/mg donor 
Foxy = 0.83 mg oxygen/mg donor  Fnit = 1.3 mg nitrate/mg donor 
Fper = 1.45 mg oxygen/mg donor b = 0.002 day-1 Xmin = 0.01 mg/L 
 

The Qmax was selected as an appropriate real-world value that would not result in 

excessive drawdown at the sites.  Values for dmin and dmax are based upon the dimensions 

of the site model.  The value for Pricedonor is based upon an estimated bulk cost of 

$286.20 per 55-gallons of a 50/50 mixture of acetic acid (CH3COOH) and water.  The 

value for Priceelec came from a U.S Department of Energy (USDOE) website that lists 

average electricity prices for commercial consumers in Nevada in the year 2000 

(USDOE, 2003).  All values for the kinetic parameters are the same as the baseline values 

that Parr used (2002) except for the biomass decay rate, which was changed to a value of 

b = 0.002 day-1 (originally b = 0.01 day-1) to simulate less biomass decay.    HK-MOGA 
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parameters values are based on both knowledge of similar parameter values seen in the 

literature and off-line experiments with the HK-MOGA software. 

The HK-MOGA software performs the evaluation function (Section 3.5.6) by 

executing the FORTRAN-coded technology model and computing the cost formula for 

each new chromosome.  Execution of the technology model is the most computationally 

expensive and time-intensive activity in the program.  HK-MOGA, which is coded in 

C++, uses Message-Passing Interface (MPI) to enable parallel computation among 

several Aspen dual-processor machines.  Each Aspen machine has 1-GB memory and 

two 1-GHz Pentium III processors that can separately evaluate the technology model for 

each chromosome.  Evaluations for 300-day and 600-day scenarios typically lasted about 

8 and 17 minutes, respectively, on each processor.  The program was executed with 

Redhat LINUX version 7.3 and MPI version 1.2.7.1. 

In addition to decision variable and objective function values, the HK-MOGA 

software also outputs the maximum ClO4
- concentration among all cell layers of column 

20 of the finite difference grid (the monitoring wells shown in Figure 3).  As mentioned 

before, the purpose of including this output is to assess the ability of the treatment 

technology to meet regulatory requirements. 
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4.0 RESULTS AND ANALYSIS 

4.1 INTRODUCTION 

In this chapter we present and discuss the results obtained from using HK-MOGA 

described in Section 3.5 to optimize both perchlorate-mass destruction and operating cost 

incurred based upon simulations of Parr’s (2002) in situ bioremediation technology 

model.  First we compare Runs 1 and 2 (300-day scenarios) for Sites 4 (in NV) and 2 (in 

CA) with respect to their estimated Pareto fronts (PFknown) and their downgradient 

perchlorate concentration ([ClO4
-]) data.  Next, a similar analysis is presented for Runs 3 

(Site 4) and 4 (Site 2) for 600 days of technology operation. 

4.2 RESULTS FOR 300-DAY TECHNOLOGY OPERATION 

Figures 5 and 6 show PFknown for Runs 1 and 2, respectively, at generation N = 

100.  Each graph displays evaluations of ClO4
- mass removal (f1) and operating cost (f2) 

assuming a 300-day time span.  At N = 100, Runs 1 and 2 generated 429 and 461 

nondominated points, respectively, out of a total of 1,050 points.  For both runs, HK-

MOGA discovered the same upper and lower extremities with respect to operating cost, 

and for both runs PFknown acquired sufficient definition (i.e. converged) by N ≈ 50.  The 

niching strategy described in Section 3.5.4, with σshare = 0.4, was effective in generating a 

representative span of points between the nondominated boundary points. 
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Figure 5.  Run 1 est. Pareto front (t =300 days; Site 4 parameters).  
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Figure 6.  Run 2 est. Pareto front (t =300 days; Site 2 parameters). 
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Both nondominated fronts for Runs 1 and 2 exhibit a nonlinear relationship between f1 

and f2, with df2/df1 increasing with increasing values of f1.  This indicates, as might be 

anticipated, that increments of perchlorate mass removal become increasingly expensive.  

Section 3.4 indicated that operating cost consisted of two parts: the cost of electron donor 

and the cost of operating the pumps.  If Q assumes the value Qmax, then the cost of 

operating the pumps is maximized at about $780 for the 300-day period, which is a 

negligible component of total costs, which can be seen from Figures 5 and 6 to be in the 

tens of thousands of dollars for any mass removal much greater than zero.  Therefore, 

high operating costs are essentially attributed to usage of electron donor alone. 

One explanation for the increasing incremental costs of mass removal is that at 

high mass removal rates (which are needed to achieve high total mass removal) the 

perchlorate reduction reaction becomes limited, either by kinetics or by biomass.    Thus, 

increasing donor is needed to achieve equivalent rates of perchlorate reduction, as 

perchlorate concentration increases.  In the limit, the rate of perchlorate reduction is 

maximized and additional donor addition (resulting in increased cost) has no effect on the 

rate or extent of perchlorate reduction. 

Runs 1 and 2 were for two different sites, with different hydraulic conductivities 

and initial ClO4
- concentrations.  Figure 7 plots PFknown for both Runs 1 and 2 on the 

same set of axes.  Although PFknown for Runs 1 and 2 share the same range of operating 

cost values, nondominated points for Run 2 indicate considerably less mass-removal than 

those for Run 1.  In fact, Figure 7 shows that, for the same operating cost of $240,771, 

Run 1 achieved a maximum mass-removal value of 5,170 kg of ClO4
- destroyed 

compared to only 175 kg for Run 2.  The large disparity in ClO4
- removal performance is 
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almost certainly attributable to differences in hydrogeological properties.  Hydraulic 

conductivity, which quantifies how easily water flows through the soil for a given 

hydraulic gradient, is about 3 times smaller in Site 2 than Site 4 (2.59 vs. 7.60 m/day); 

hydraulic gradient is also 10 times lower for Site 2 (0.001 vs. 0.010).  The combination of 

these parameters results in a regional groundwater Darcy velocity for Site 2 that is ≈ 1/30 

that of Site 4.  This low Darcy velocity, in turn, causes higher interflow/recirculation 

between the two HFTWs for Site 2.  Increased recirculation means that for a given 

pumping rate, there is less capture of upgradient contaminant by the treatment system, 

and less mass removal.  Another potential reason for the mass-removal disparity between 

the two sites is the difference in initial ClO4
- concentration: 330.0 mg/L for Run 1 (Site 4) 

versus 160.0 mg/L for Run 2 (Site 2).  Clearly, contaminant mass removal is likely to be 

higher if higher concentrations of contaminant are present at the site. 
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Figure 7.  Runs 1 and 2 est. Pareto fronts (t =300 days). 
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The technology model also provided information about downgradient 

concentration ([ClO4
-]) by comparing concentration values in all cells of column 20 of 

the discretized site model (Figure 3) and then outputting the maximum value.  The 

purpose of observing this attribute was to assess the bioremediation technology’s 

potential to attain hypothetical regulatory limits on downgradient contaminant levels. 

Figure 8 shows the plot of maximum downgradient concentration versus ClO4
- 

mass-removal for Run 1.  The following observations can be made regarding this figure: 

• In general, solutions (both nondominated and dominated) with higher mass 

removal tend to have lower concentration measurements, as would be expected.  

Note, however, that there are large individual variations within this general trend. 

• Nondominated points with the lowest downgradient [ClO4
-] had very similar 

genotypes (i.e. decision variable values); Q, Cin, and p assumed values at or near 

Qmax, Cin,max, and pmax, respectively, indicating large mass per time of electron 

donor injected.  Consequently, the objective function values associated with these 

points -tended to be relatively high: mass removal ≈ 5,170 kg and operating cost ≈ 

$241,000.  Well spacing (d) was typically 25 meters.  Downgradient [ClO4
-] for 

these particular nondominated solutions varied from 26 to 30 mg/L; greatly 

exceeding the state-specified action levels in the µg/L-range that were discussed 

in Section 2.1. 

• Many dominated solutions, despite being inferior in terms of mass removal and 

cost, yielded lower ClO4
- downgradient levels than their nondominated 

counterparts.  Interestingly, the lowest concentration for Run 1 (24.1 mg/L) 

originates from a solution that is inferior to 326 other solutions. 
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Figure 9 shows the plot of maximum downgradient concentration versus ClO4
- mass-

removal for Run 2.  The following observations apply to Figure 9: 

• The plot of all points (both nondominated and dominated) reveals no discernible 

relationship between [ClO4
-] and mass removal. 

• A chain of nondominated points with mass removal > 40.0 kg had relatively 

narrow range of downgradient [ClO4
-] values (8.4 – 8.7 mg/L); genotypes 

associated with [ClO4
-] ≈ 8.4 mg/L were nearly homogeneous; Q, Cin, and p had 

values at or near Qmax, Cin,max, and pmax, respectively, again indicating that mass of 

electron donor injected per time was large.  Well separation (d) was typically 25 

meters. 

• Ironically, certain nondominated points associated with nearly-zero mass removal 

had lower [ClO4
-] values than other nondominated points with higher removals of 

ClO4
- mass.  These points had minimum values for Q as well as Cin and/or p 

minimized, indicating relatively low rates of donor mass injected per time.  Well 

spacing (d) varied from 35 – 45 meters, and downgradient [ClO4
-] was ≈ 3×10-4 

mg/L, which complies with state-specified action levels mentioned Section 2.1.  

These low concentration measurements may be attributed to interflow (Section 

2.2), which is a function of the design parameters (Q and d) and the regional 

groundwater Darcy velocity.  Site 2 hydraulic conductivity is ≈ 1/3 that of Site 4, 

and Site 2 hydraulic gradient is 1/10 that of Site 4; this combination results in a 

regional groundwater Darcy velocity for Site 2 that is 30 times smaller than that 

of Site 4.  Although the low Q for these solutions would tend to reduce interflow, 

the combination of low Darcy velocity and small well spacing ultimately 
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increases interflow.  High interflow means that although very little contaminant 

mass is treated, the contaminated water that is treated ends up passing through the 

treatment wells multiple times, and downgradient contaminant concentrations 

would be low.   

• Figure 9 shows a large number of dominated points that yielded lower ClO4
- 

downgradient concentrations than other nondominated points.  In fact, 

nondominated points with mass removal > 40.0 kg seem to establish an upper 

bound on measured concentration, with many dominated points lying below. 

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

f1: Perchlorate mass removed (kg)

M
ax

. C
lO

4-  c
on

ce
nt

ra
tio

n 
(m

g/
L)

Nondominated
Dominated

Figure 8.  Run 1: maximum downgradient perchlorate conc. ([ClO4
-]) vs. ClO4

- mass removed. 
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Figure 9.  Run 2: maximum downgradient perchlorate conc. ([ClO4
-]) vs. ClO4

- mass removed. 

4.3 RESULTS FOR 600-DAY TECHNOLOGY OPERATION 

Figures 10 and 11 show the plots of PFknown for Runs 3 and 4, respectively, after 

100 generations.  These plots are very similar in shape to the respective 300-day runs 

(Figures 5 and 6), which is logical due to identical optimization parameters (except time).  

Upper boundary values for mass removal and operating cost are larger, of course, due to 

the longer time span.  The same analysis used in section 4.1 can describe the nonlinear 

increase in incremental costs with mass removal that is seen here. 

Figure 12 plots PFknown for Runs 3 and 4 on the same set of axes.  Figure 12 

reveals the same relationship that Figure 7 does: Site 4 parameters yield higher ClO4
- 

mass removal than Site 2 parameters for the same range of operating cost for reasons 

mentioned previously with the 300-day simulations (different hydrogeolocial parameters 

and initial concentration). 
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Figure 10.  Run 3 est. Pareto front (t =600 days; Site 4 parameters). 
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Figure 11.  Run 4 est. Pareto front (t =600 days; Site 2 parameters). 
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Figure 12.  Runs 3 and 4 est. Pareto fronts (t =600 days). 

Figure 13 plots maximum downgradient concentration versus ClO4
- mass removal for 

Run 3 after 100 generations.  The following observations can be made regarding Figure 

13: 

• Just like Run 1, solutions (both nondominated and dominated) with higher mass 

removal generally provide lower concentration measurements.  Nondominated 

solutions appear to follow this trend better than the dominated solutions. 

• 660 solutions had measured downgradient [ClO4
-] that was less than the lowest 

value reported for Run 1 (24.1 mg/L); 283 of these solutions were nondominated.  

This seems to indicate that, for Site 4 parameters, downgradient ClO4
- levels 

improve for longer treatment periods. 

• Nondominated points with lowest downgradient [ClO4
-] had very similar 

genotypes; Q, Cin, and p values at or near Qmax, Cin,max, and pmax, respectively, 

indicating large mass per time of electron donor injected and high operating cost 
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(≈$481,500).  For these particular points, well spacing (d) was uniformly 25 

meters, and downgradient [ClO4
-] was ≈0.154 mg/L.  Despite being an 

improvement over Run 1, this level still exceeds the state-specified action levels 

discussed in Section 2.1, which are in the µg/L range. 

• Numerous dominated points, despite being inferior in terms of mass removal and 

cost, outperformed other nondominated points in achieving lower downgradient 

[ClO4
-].  The lowest concentration for Run 3 (0.022 mg/L) originates from a 

solution inferior to 330 other solutions in terms of mass removal and cost. 

 

Figure 13.  Run 3: maximum downgradient perchlorate conc. ([ClO4
-]) vs. ClO4

- mass removed. 
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Figure 14.  Run 4: maximum downgradient perchlorate conc. ([ClO4
-]) vs. ClO4

- mass removed. 
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Figure 14 plots maximum downgradient concentration versus ClO4
- mass-removal for 

Run 2.  The following observations apply to Figure 14: 

• The plot of all points (both nondominated and dominated) reveals no discernible 

relationship between [ClO4
-] and mass removal. 

• Nondominated solutions in the mass-removal range of >1,000 kg provided lower 

[ClO4
-] measurements as mass removal increased. 

• Just like Run 2, Run 4 shows that certain nondominated points with negligible 

mass removal showed lower [ClO4
-] than other nondominated points with higher 

mass removal.  These points had low Q values and one or both of Cin and p 

minimized, indicating small mass per time of electron donor injected.  Well 

spacing (d) was minimized (3 meters), and downgradient [ClO4
-] was ≈ 9×10-3 
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mg/L, which falls in the µg/L range of state-specified action levels discussed in 

Section 2.1.  These low concentrations can also be attributed to high interflow 

(due to the low hydraulic conductivity and hydraulic gradient at the site) as 

previously explained for Run 2. 

• A multitude of dominated points yielded better ClO4
- downgradient 

concentrations than other nondominated points.  In fact, nondominated points in 

the mass-removal range of >1,000 kg seem to establish an upper bound on 

measured concentration, with many dominated points lying below. 

4.4 RESULTS SUMMARY 

Runs 1, 2, 3, and 4 were performed to fulfill the objectives listed in Section 1.2.  For each 

of the four runs, HK-MOGA estimated a Pareto front (Figures 5, 6, 10, and 11) that 

shows a nonlinear, increasing relationship between mass removal and operating cost.  

Figures 7 and 12 demonstrate that the bioremediation technology was less effective at 

removing ClO4
- mass under Site 2 conditions than under Site 4 conditions.  For Site 4 

conditions, increasing the remediation time span from 300 to 600 days enabled the 

treatment technology to attain lower downgradient ClO4
- concentrations; under Site 2 

conditions, however, increasing the time span rendered no discernible improvement with 

respect to downgradient concentration.  High mass removal of ClO4
- is not necessarily 

coincident with lower ClO4
- concentration, especially under Site 2 conditions. 
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5.0 CONCLUSIONS 

5.1 SUMMARY 

In this thesis effort, we developed and presented a method for optimizing applications of 

an innovative in situ bioremediation technology that uses HFTWs to remediate 

perchlorate- contaminated groundwater.  The method involves coupling a multi-objective 

genetic algorithm with the technology model developed by Parr (2002).  To meet the 

research goal and achieve the research objectives, it was necessary to use the technology 

model with appropriate parameters to simulate applications of the technology at 

representative sites, formulate a multi-objective problem, develop a multi-objective 

optimization algorithm that would be suitable to solve the problem by coupling with the 

technology model, and select appropriate HK-MOGA parameters.  The method was 

applied to two sites having different hydrogeological conditions.  HK-MOGA yielded 

system designs (flow rate, well spacing, injected nutrient concentration, and injection 

pulse duration) that provide valuable insights into the tradeoffs between 1) the 

technology’s performance, defined by contaminant mass removal and 2) the operating 

costs incurred from implementing the technology. 

 

The software used in this study was an adaptation of Garrett’s (1999) GA code.  In 

combination with Parr’s (2002) technology model, HK-MOGA software can serve as a 

tool for both optimizing future applications of this innovative bioremediation technology, 

and helping us to better understand how HFTWs can be used in conjunction with in situ 
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biodegradation.  This study contributes to efforts taken to resolve groundwater 

contamination problems caused by ClO4
- releases across the United States. 

5.2 CONCLUSIONS 

•  The multi-objective genetic algorithm (MOGA) developed in this study appeared 

useful for determining technology design parameters for in situ bioremediation of 

perchlorate using HFTWs to minimize cost (defined as operating cost) and 

maximize technology performance (defined as perchlorate mass removal).  HK-

MOGA determined various sets of design parameters (Q, d, Cin, p) that provided 

a decision maker with combinations of cost and mass removal that were “Pareto 

optimal”, that is to say, nondominated by other potential solutions.  This set of 

solutions allows a decision maker to select a system design based on the 

weighting of the relative importance of performance versus cost.  One 

disadvantage of HK-MOGA is the need for relatively extensive computer 

resources (time and CPU power) to evaluate the technology model.  Also, the 

selection of HK-MOGA parameters (|Pop0|, |MP|, N, σshare, pm) was arbitrary, and 

based only on the experience and judgment of the investigator.  It is unclear 

whether selection of a different set of parameters would result in a different 

outcome. 

• Pareto fronts generated for all four simulations indicated that the incremental 

operating cost of the technology increases as the technology removes more 

perchlorate mass. 
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• For a contaminated site with relatively high conductivity and regional gradient, 

the choice of technology operating time affected the simulated concentrations of 

perchlorate downgradient of the treatment system.  Extending the operating time 

from 300 to 600 days resulted in more nondominated solutions achieving 

maximum downgradient concentrations in the microgram-per-liter range. 

• The technology’s ability to remove perchlorate mass is poorly correlated with its 

ability to achieve diminished downgradient perchlorate concentrations, especially 

for a contaminated site with relatively low hydraulic conductivity and regional 

gradient.  In other words, mass removal and diminished downgradient 

concentration are not redundant objectives.  Therefore, decision makers must 

separately consider and weight each of these remediation goals when deciding on 

design parameters.  It appears important to include downgradient perchlorate 

concentration as either an additional objective or a constraint when implementing 

a multi-objective optimization scheme. 

• The ability of this technology to remediate perchlorate-contaminated groundwater 

is very difficult to ascertain for a variety of reasons.  Results from the four 

simulations are based upon numerous simplifying assumptions about kinetic 

parameters and site properties, which may not be representative of field 

conditions.  As Parr (2002) pointed out, literature values of kinetic parameters are 

“highly variable and sparse.”  The model requires validation with real-world data 

to properly judge the capability of in situ bioremediation technology. 
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5.3 RECOMMENDATIONS 

Take advantage of the MOGA’s power by formulating more general multi-objective 

problems.  Due to time constraints, this study placed somewhat artificial (albeit realistic) 

limits on several of the design parameters that were being optimized.  For instance, the 

study restricted the number of treatment wells to two, and also imposed restrictions on 

well location (e.g. the wells were spaced symmetrically about the site centerline and were 

at a specified distance downgradient of the source) and pumping rates (the two wells each 

pumped at the same rate).  More generally, HK-MOGA could be applied where these 

decision variables could all be optimized.   

To avoid over-constraining the problem, ClO4
- concentration downgradient of the 

treatment system was not specified as a constraint.  In reality, downgradient 

concentration would be an important parameter to use in defining technology 

effectiveness.  Additionally, results of this study confirm that 1) reduction of contaminant 

mass and 2) reduction of downgradient contaminant concentration would not be 

redundant objectives for the in situ bioremediation technology.  Future studies could 

implement downgradient concentration as a constraint or even as an additional objective 

function to be minimized. 

Accuracy of model output could improve by modifying the perchlorate-

contaminated site model (Figure 3).  More numerous, smaller cells could improve 

accuracy of the technology model’s spatially-dependent attributes like perchlorate mass 

removal and downgradient concentration, although this modification would be more 

computationally expensive. 
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Improve search performance by experimenting with the HK-MOGA’s parameters 

or adopting a different MOGA.  There was no theoretical basis for selecting values for 

|Pop0|, |MP|, N, σshare, and σshare; factors such as off-line experimentation with HK-

MOGA, literature values, and resource constraints guided the author in assigning values 

to these parameters.  Additional simulations could provide an empirical means to 

determine the optimal blend of parameter values that improve the search for Pareto 

optimal solutions. 

Chapter 2 described several MOGAs, such as NPGA, NSGA, NSGA-II, and 

SPEA.  For this study, NPGA was selected as the most appropriate due to its ease of 

implementation and its success in solving a multi-objective groundwater remediation 

problem with objectives similar to the ones in this study (Erickson et al., 2001).  Newer 

MOGAs, like NSGA-II, and SPEA, have an advantage over NPGA and NSGA because 

their fitness sharing methods do not require user-specified parameters.   However, as can 

be seen from the literature, research in this area is advancing rapidly, and in a future 

study a more efficient algorithm may be available for application to this problem. 

 

Validate the model with field data.  A field evaluation of in situ bioremediation of TCE 

using HFTWs has already been performed at the Edwards AFB, Site 19 (McCarty et al., 

1998).  A similar field evaluation is scheduled to begin this year to study a pilot-scale 

system to treat perchlorate-contaminated groundwater.  Results and analysis of this 

evaluation will offer the opportunity to ascertain kinetic parameters for use in technology 
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design.  The results obtained from operation of the pilot-scale, in situ bioremediation 

system could also provide data necessary to validate Parr’s (2002) technology model. 
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APPENDIX A: TECHNOLOGY MODEL EQUATIONS 

The Parr (2002) technology model is a set of partial differential equations 

representing flow and transport (equations A.1 – A.4), biological reactions (equations A.5 

– A.8), and biomass growth (equation A.12) in a subsurface system with microorganisms 

utilizing an electron donor (acetate) to reduce three electron acceptors (ClO4
-, oxygen, 

and nitrate).  This section provides further detail on the equations that are the technology 

model. 

FLOW AND TRANSPORT MODEL (PARR, 2002) 

The Parr (2002) technology model solves four separate, 3-dimensional 

advection/dispersion equations (A.1 – A.4) that represent transport of the electron donor 

(acetate CH3COO-) and three electron acceptors (oxygen, nitrate, and ClO4
-), 

respectively.  The left side of equation A.1 includes a retardation factor (R) that accounts 

for sorption of the electron donor; sorption is assumed to be an equilibrium process that is 

both linear and reversible.  On the other hand, equations A.2 – A.4 use R=1, as the 

electron acceptors (O2, NO3
-, ClO4

-) are assumed to be non-sorbing.  The right-hand sides 

of equations A.1-A.4 include dispersion terms (D∇2C) and advection terms (v∇C) for the 

electron donor and acceptors.  The rightmost terms in equations A.1 – A.4 are source/sink 

terms that represent production/consumption rates (r) due to microbial redox reactions. 
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where  

Cdon  = concentration of the electron donor (acetate) (mg/L) 

Coxy  = concentration of oxygen (an electron acceptor) (mg/L) 

Cnit   = concentration of nitrate (an electron acceptor) (mg/L) 

Cper  = concentration of ClO4
- (an electron acceptor) (mg/L) 

t  = time (days). 

D  = dispersion (m2/day); 

v  = average linear velocity of groundwater (m/day) 

R  = retardation factor; accounts for sorption of the electron donor 

rdonor   = rate of electron donor consumption (mg donor/L/day) 

roxy  = rate of oxygen consumption (mg oxygen/L/day) 

rnit  = rate of nitrate consumption (mg nitrate/L/day) 

rper  = rate of ClO4
- consumption (mg ClO4

-/L/day) 
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BIOLOGICAL TREATMENT SUBMODEL (PARR, 2002) 

Equations A.5 – A.8 and A.12 comprise the biological treatment submodel.  As 

mentioned previously, the rightmost terms in equations A.1 – A.4 are 

production/consumption rates due to microbial redox reactions; these terms are 

formulated based on a dual-Monod, multi-electron acceptor biodegradation model 

proposed by Envirogen (Parr, 2002).  These reaction terms are defined as follows (note 

that the negative sign indicates consumption): 
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where  

rdonor   = rate of electron donor consumption (mg donor/L/day) 

rdon,oxy = specific rate of electron donor consumption using oxygen as an 

electron acceptor (mg donor/mg biomass/day); see equation A.9 

rdon,nit = specific rate of electron donor consumption using nitrate as an 

electron acceptor (mg donor/mg biomass/day); see equation A.10 

88 



rdon,per = specific rate of electron donor consumption using ClO4
- as an 

electron acceptor (mg donor/mg biomass/day); see equation A.11 

roxy  = rate of oxygen consumption (mg oxygen/L/day) 

rnit  = rate of nitrate consumption (mg nitrate/L/day) 

rper  = rate of ClO4
- consumption (mg ClO4

-/L/day) 

X  = concentration of active microorganisms (mg/L) 

Foxy  = stoichiometric coefficient for the donor (acetate)-oxygen reaction 

(mg oxygen/mg donor) where the stoichiometric coefficient 

accounts for the electron acceptor requirement for biomass 

production based on the following stoichiometry (C5H9NO3 

represents the chemical formula for biomass) (Envirogen, 2002a): 

O2 + 0.64 CH3COOH + 0.056 NH4OH T 0.056 C5H9NO3 + 0.168 H20 + 1.0 H2CO3 

Fnit  = stoichiometric coefficient for the donor (acetate)-nitrate reaction 

(mg nitrate/mg donor) where the coefficient accounts for the 

electron acceptor requirement for biomass production (Envirogen, 

2002a): 

NO3
- + 0.786 CH3COOH ↔ 0.056 C5H9NO3 + 0.472N2 + 0.528 H20 + 0.292 H2CO3 + HCO3

- 

Fper  = stoichiometric coefficient for the donor (acetate)-ClO4
- reaction 

(mg ClO4
-/mg donor) where the coefficient accounts for the 

electron acceptor requirement for biomass production (Envirogen, 

2002a): 

ClO4
- + 1.141 CH3COOH + 0.056NH4OH ↔ 0.056 C5H9NO3 + Cl- + 2.002 H2CO3 + 0.164 H20 
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kmax  = maximum specific rate of substrate utilization (mg donor/mg 

biomass/day) 

KS
oxy  = half saturation concentration when oxygen (an electron acceptor) 

concentration is varied and limiting (mg/L) 

KS
nit   = half saturation concentration when nitrate (an electron acceptor) 

concentration is varied and limiting (mg/L) 

KS
per   = half saturation concentration when ClO4

- (an electron acceptor) 

concentration is varied and limiting (mg/L) 

Ki
oxy  = oxygen inhibition coefficient (mg/L) 

Ki
nit  = nitrate inhibition coefficient (mg/L) 

KS
don  = donor half saturation concentration (mg donor/L) 

 Equations A.7 and A.8 have inhibition coefficients (Ki) to account for competitive 

effects among electron acceptors.  Equation A.7 includes an oxygen inhibition coefficient 

(Ki
oxy) because the presence of oxygen inhibits microbial reduction of nitrate.  If oxygen 

is absent (Coxy = 0), then Ki
oxy has no influence on rnit because the rightmost fraction of 

equation A.7 becomes 1.  Similarly, equation A.8 includes both oxygen and nitrate 

inhibition coefficients (Ki
oxy and Ki

nit) because the presence of either oxygen or nitrate 

inhibits microbial reduction of ClO4
-.  Parr (2002) cites laboratory results that 

demonstrate how oxygen and nitrate inhibit microbial reduction of less preferable 

electron acceptors, like ClO4
-. 

 Parr (2002) assumed that inhibition coefficients are equal to their respective half 

saturation concentrations (i.e.  KS
oxy = Ki

oxy and KS
nit = Ki

nit).  Also, equation A.5 

contains the terms rdon,oxy, rdon,nit, and rdon,per, which are defined as follows: 
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  (A.11) 

where 

kmax
don/oxy = maximum specific rate of substrate utilization in the presence 

of oxygen when donor concentration is varied and limiting (mg 

donor/mg biomass/day) 

kmax
don/nit = maximum growth rate of substrate utilization in the presence of 

nitrate when donor concentration is varied and limiting (mg 

donor/mg biomass/day) 

kmax
don/per = maximum specific rate of substrate utilization in the presence 

of ClO4
- when donor concentration is varied and limiting (mg 

donor/mg biomass/day) 

KS
don/oxy = half saturation concentration of the electron donor in the 

presence of oxygen when donor (acetate) concentration is varied 

and limiting (mg donor/L) 

KS
don/nit = half saturation concentration of the electron donor in the 

presence of nitrate when donor (acetate) concentration is varied 

and limiting (mg donor/L) 
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KS
don/per = half saturation concentration of the electron donor in the 

presence of ClO4
- when donor (acetate) concentration is varied and 

limiting (mg donor/L) 

 

The microbial growth/decay equation of the technology model is 

[ ] min,,, ;)( XXbrrrYX=  
dt
dX

perdonnitdonoxydonbiomass >−++⋅⋅        (A.12) 

min;0 XX
dt
dX

≤=  

where 

Xmin  = minimum biomass concentration (mg/L) 

Ybiomass  = the biomass yield per mass of donor consumed (mg biomass/mg 

electron donor) 

b  = biomass decay rate (day-1) 

Equation A.12 assumes that biomass concentration will never decrease below some 

minimum (Xmin). 
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APPENDIX B: DERIVATION OF ENERGY CONSTANT 

In this study, we assume that each HFTW uses a static mixer to blend the substrate 

(acetate) with water.  It is further assumed that pumping costs depend primarily on the 

energy necessary to overcome head losses from the static mixer. 

 

We assume that the static mixers will be installed in very smooth pipes of diameter D = 

1.25 inches (0.0318 m) and length L = 4.0 m, which is the distance between the upper and 

lower screens of each HFTW.  Also, we assume that water has a kinematic viscosity ν = 

1.141 m2/sec @ 15° C.  Dividing flow rate Q by the pipe’s cross-sectional area A = πD2/4 

yields velocity V.  The Reynolds number can be calculated as follows: 

Re = VD/ν (B.1) 

Recall from Section 3.6 that the minimum and maximum values for Q are 10 and 150 

m3/day, which correspond to Reynolds numbers of 4,060. and 60,900, respectively.  

Hence, flow is clearly turbulent (Re > 2,000) for all possible values of Q. 

 

The Blasius equation can be used to obtain the friction factor f for 3,000 < Re < 100,000 

(Daugherty & Franzini, 1965:212): 

f = 0.316/(Re0.25) (B.2) 

Knowing f enables computation of the empty-pipe head loss hL via the Darcy-Weisbach 

equation (Mays, 2001:419): 

hL = 8fLQ2/(π2 g D5) (B.3) 
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Cleveland Eastern Mixers supplied the following equation for computing the flow 

coefficient (Cf) for Re > 1000: 

Cf = -15.9 + 8.41 ln(Re) (B.4) 

The flow coefficient is used to account for the headloss through the static mixer elements 

(hL,static), using equation B.5 below: 

hL,static = Cf ⋅hL  (B.5) 

Finally, given that the unit weight of water is γ [units of force-per-m3], the energy-per-m3 

of water required to overcome hL,static can be written as 

E = γ hL,static (B.6) 
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