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Abstract 

The U.S. is heavily dependent on fossil fuels to produce electricity.  

Geothermal energy, the heat in the earth’s crust, can provide an alternative 

source of energy for electricity production as well as reduce fossil fuel 

consumption. 

The economic analysis presented in this study focuses on binary cycle 

geothermal electricity production.  Variables such as well flow rate, geothermal 

gradient and electricity prices were varied to study their influence on the 

economic payback period for binary cycle geothermal electricity production.  

Payback periods represent the amount of time (in years) necessary to recover 

initial costs of plant construction.   

Well flow rate has the greatest influence on economic results.  A 10-year 

payback period can be achieved with almost any scenario as long as the 

electricity sales rates are above 6 cents/kWh and the well flow rate is high 

(16,649 lit/min).  At a more modest flow rate (3,459 lit/min), most scenarios have 

payback periods below 20 years as long as sales rates are above 6 cents/kWh. 

However, at the lowest flow rate (322 lit/min), no scenario results in a payback 

less than 20 years unless electricity sales prices reach at least 17 cents/kWh.  

Because geothermal gradient is not as influential as flow rate, a large fraction of 

the U.S. with modest thermal gradients can economically produce geothermal 

electricity as long as site conditions allow high flow rates. 
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AN ECONOMIC EVALUATION OF BINARY CYCLE GEOTHERMAL 
ELECTRICITY PRODUCTION 

 

I. Introduction 

Problem Statement 

Although the U.S. population is less than 5% of the world population, it is 

responsible for nearly 25% of the worldwide energy consumption (Bureau of the 

Census, 2000; Department of Energy, 2001).  In 2001, the U.S. consumed 97 

quadrillion British Thermal Units (BTUs) of energy (nearly 340 million BTU per 

person), 86% of which was fossil fuel based (Department of Energy, 2001).  The 

U.S. Department of Energy (DoE) expects energy consumption to grow 1.5% 

annually over the next 17 years, with total energy consumption reaching an 

estimated 130 quadrillion BTU by the year 2020 (Department of Energy, 2003).  

The heavy reliance on depletable fossil energy resources along with a growing 

demand for energy demonstrates the need for renewable energy sources. 

Electricity generation consumes a large portion of fossil energy in the U.S.  

Of the total energy used in 2001, 40% (3500 billion kilowatt hours (kWh)) was 

consumed for electricity generation (Department of Energy, 2001).  DoE 

estimates indicate that electricity demand will increase 1.5% annually, reaching 

over 5200 billion kWh by 2025 (Department of Energy, 2003).   

The electricity generated to meet demand in the U.S. comes from a variety 

of sources.  Figure 1 shows that of the total electricity consumed in 2001, 70% 
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was generated from fossil fuels with another 20% from nuclear energy.  

Forecasts through the year 2025 indicate that the percentage of electricity 

generated from nuclear and hydroelectric sources will not change significantly.  

Natural gas generation plants are expected to take on a larger share of the 

generating capacity (contributing 29% of electricity production in 2025 from 17% 

in 2001).  Despite the increase in natural gas usage, coal will likely remain the 

largest source of electricity over the next 22 years, though the percentage 

contribution is predicted to decrease from 52% in 2001 to 47% by 2025 

(Department of Energy, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  U.S. Electricity Generation by Source 
(Department of Energy, 2003) 

 

Coal 
52% 

Nuclear 
20% 

Hydroelectric 
7% 

Natural Gas, 
Petroleum, and Other 

Gases 
19% 

Renewables 
2%



 3

There is a great opportunity to reduce U.S. dependence on fossil energy 

by developing renewable energy sources to produce electricity (Department of 

Energy, 2001).  The most prominent renewable sources include biomass, wind, 

solar, and geothermal.  Technology advancements in the past 10 years have 

made these renewable sources more attractive options to replace fossil fuels as 

generation sources.  However, because renewable sources tend to have higher 

initial capital investment costs, they have historically not been able to compete 

with fossil fuel generation plants in terms of the cost to produce electricity.    

In an attempt to reduce the dependence on depletable fossil fuels and 

encourage environmentally responsible alternatives, the U.S. government has 

taken steps to promote the use of renewable sources through legislation.  

Current energy policy has set forth goals of modernizing infrastructure and 

increasing energy supplies while focusing on protection and improvement of the 

environment (National Energy Policy Development Group, 2001:10).  Key pieces 

of legislation that support these goals are outlined below. 

Legislation 

Clean Air Act Amendments of 1990 

The Clean Air Act (CAA) has evolved into a set of standards detailing air 

pollution control requirements for many industries.  A primary focus of the CAA 

Amendments (CAAA) implemented in 1990 was to reduce emissions from the 

generation of electricity.  As an example, emission reduction legislation contained 
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in the CAAA required coal fired power plants to substantially reduce annual sulfur 

dioxide emissions and nitrogen oxide emissions (Edinger and Kaul, 2000:306).   

Energy Policy Act  

The Energy Policy Act (EPACT) of 1992 covered a wide range of energy 

issues.  The provisions in this act relating to renewable energy were written to 

promote increases in the production and utilization of energy from renewable 

energy sources (United States Congress, 1992).  The EPACT also instituted an 

energy tax credit for solar and geothermal projects.  Environmental provisions 

within this act that discuss global warming issues also indirectly support the 

advancement of renewable energies that help reduce the occurrence of smog, 

acid rain, or greenhouse gas emissions (Edinger and Kaul, 2000:307).   

Executive Order (EO) 13123 

Recognizing the federal government as the nations’ largest consumer of 

energy, EO 13123, “Greening the Government Through Efficient Energy 

Management,” was implemented in 1999.  EO 13123 builds on the foundation of 

EPACT and establishes energy efficiency goals for federal facilities.  EO 13123 

set forth goals to reduce greenhouse gas emissions, improve energy efficiency, 

reduce energy consumption and expand the use of renewable energy.  Specific 

goals to reduce greenhouse gas emissions 30% by the year 2010 as compared 

to the baseline set in 1990 were established.  Other specific goals include 

reducing energy consumption per square foot in federal facilities by 35% by the 

year 2010 (using a 1985 baseline) and installing 20,000 solar energy systems in 
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federal facilities by 2010.  EO 13123 also promotes the use of life cycle cost 

analysis to measure the impact of reduction programs (Clinton, 1999). 

Geothermal electricity production is a renewable alternative that can be 

implemented to meet the goals of the legislation outlined above, as well as 

decrease national dependence on fossil fuels.  Geothermal electricity production 

uses naturally occurring heat in the earths’ crust as a fuel source to generate 

electricity.  Electricity production through geothermal sources also has less 

negative environmental impacts than conventional fossil fuel generation sources. 

Research Objectives 

In order to analyze the economic impact of geothermal electricity as a 

renewable energy source, this research will provide a basis for decision makers 

to evaluate the feasibility of geothermal electricity generation by: 

1.  Evaluating the payback period of a binary cycle geothermal power 
plant given different physical site characteristics and different electricity 
sales prices. 

 
2.  Conducting a breakeven analysis to determine the electricity sales rate 

that must be achieved to recover the total life cycle costs of a binary 
cycle geothermal power plant given different physical site 
characteristics.   

 
3.  Determining the degree of influence from key input variables on the 

payback and breakeven analysis output.   

Methodology 

In order to achieve the research objectives, different design scenarios will 

be analyzed based on physical site characteristics applicable to a geothermal 

power plant.  Within each design scenario, Monte Carlo simulation techniques 
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will be used to evaluate the impact of variables influencing geothermal power 

plant construction and operation costs.  Payback periods and breakeven 

electricity sales rates will be calculated for each scenario. 

Monte Carlo simulation allows the modeler to input probability distributions 

for input variables to account for uncertainty and variability inherent in real-world 

situations.  The type of distribution selected depends on the type of information 

available and condition surrounding the variable (Decisioneering, 2001:59).  

When the simulation is run, an input value is randomly selected within the 

assigned distributions and an output is recorded for each iteration.  The 

summation of many iterations (10,000 iterations in this study) provides a 

probability distribution for each output.  This probabilistic approach more closely 

approximates real-world behavior by incorporating variability in the analysis.  The 

software used in this study to run Monte Carlo simulation is Crystal Ball 2000 

from Decisioneering, Inc., which works in conjunction with Microsoft Excel. 

Preview of Chapters 

Chapter 2 will discuss the various physical site conditions used in 

determining the selected scenarios for analysis, as well as the specific variables 

that drive the costs of geothermal power plant construction and operation.  

Chapter 3 shows how the selected design scenarios and cost data interact in the 

simulations, as well as the method used to calculate payback periods and the 

breakeven electricity sales rate.  Chapter 4 will display results of the analyses, 
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and finally, Chapter 5 will provide recommendations and conclusions relating to 

the research objectives. 
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II. Literature Review 

Geothermal Electricity Generation 

Geothermal electricity generation is based on the same principles used in 

fossil fuel electricity generating plants: the Rankine Cycle.  A simplified Rankine 

Cycle is illustrated in Figure 2 and consists of a boiler, turbine, condenser, and 

pump.  Fuel heats a liquid (generally water) in the boiler, which turns to steam.  

The resulting steam is then used to drive a turbine connected to the generator 

that produces electricity.  The fluid is then condensed to a liquid in the condenser 

and the cycle restarts.  The only difference between a fossil fuel plant and the 

geothermal plant is the type of fuel used to generate heat in the boiler. 

 
 

Figure 2:  Simplified Rankine Cycle 
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Pump
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 A basic geothermal power plant is shown in Figure 3.  Heated water 

drawn from a production well is brought to the surface and is pumped from the 

wellhead to the generating equipment.  After the water or steam has passed 

through the turbine and condenser, the condensed water is pumped back into the 

reservoir via an injection well. 

 

 

 

 

 

 

 

 

 
Figure 3.  Geothermal Power Plant 

(Geothermal Education Office, 2003) 
 

Geothermal electricity generation is advantageous from an environmental 

perspective when compared to fossil fuel electricity production.  The Department 

of Energy reviewed studies performed on plant operation from 1995 to 1998 and 

found that the power produced from currently installed geothermal energy in the 

United States displaces the emissions of 22 million tons of carbon dioxide, 

200,000 tons of sulfur dioxide, 80,000 tons of nitrogen oxides, and 110,000 tons 

of particulate emissions per year compared with the production of the same 

amount of electricity from an average U.S. coal-fired plant (Wright, 1998:734). 
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While geothermal energy is considered a renewable resource, over-

production can decrease the thermal energy of the geothermal reservoir (Mock et 

al., 1997:308).  Statistics from The Geysers Geothermal Area in California show 

a marked decrease in steam pressure that coincided with accelerated power 

production (Wright, 1998:735-736).  However, proper designs and creative re-

injection techniques can mitigate these depletion effects (Mock et al., 1997:308). 

Total life cycle costs of geothermal power plant construction and operation 

are dependent on several factors.  Physical factors such as resource type, 

temperature and productivity determine the energy potential at a given location 

and drive initial capital costs of the energy gathering system (specifically, the 

number of wells that must be drilled and the depth and diameter of each well).  

The combination of these factors determines the type and size of plant that can 

be constructed at a given location.  Other initial capital costs include the costs 

associated with resource identification and exploration, and the necessary fees 

for siting and licensing of the plant.  Annual operations and maintenance (O&M) 

fees add costs over the lifetime of the plant (DiPippo, 1998:8.53).  The following 

sections provide an in depth description of each of the physical factors that drive 

plant type and size, which ultimately influence the cost of geothermal power plant 

construction.   

Resource Type 

Geothermal resources are classified according to natural geologic 

attributes using four major categories: hydrothermal, geopressured, hot dry rock, 
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and magma resources (Mock et al., 1997:311-312).  While it is theoretically 

feasible that each type could be used for electricity generation, only hydrothermal 

systems are being commercially developed for this use, and will be the focus of 

this research.  Technology limitations have prevented geopressured, hot dry 

rock, and magma systems from becoming cost competitive and have limited their 

implementation. 

Hydrothermal resources refer to permeable regions of porous rock that 

contain either steam or water with temperatures ranging from 90°C to 350°C and 

usually occur at depths of 1-4 kilometers (km).  Hydrothermal resources are 

further broken down based on temperature and phase of fluid in the resource.  

High temperature hydrothermal resources typically have temperatures above 

150°C and may consist of both hot water and steam, though steam is the most 

prevalent phase.  Intermediate temperature resources have temperatures 

between 90°C and 150°C and consist mostly of hot water, though steam is 

present as well.  Low temperature resources are those with temperatures less 

than 90°C and are not suitable for electricity generation.   

Geopressured resources consist of hot high-pressure water and also 

contain small amounts of dissolved natural gas (methane).  Chemical energy 

from the dissolved methane can also be used to produce energy.  Geopressured 

resources typically occur in areas abundant in petroleum resources so 

geopressured resources are limited.  In the U.S., geopressured resources occur 

in the Gulf Coast regions of Louisiana and Texas where temperatures between 

150°C and 180°C can be reached at depths between 3-5 km.  Approximately 
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32% of the total energy content of these resources comes from the chemical 

energy in the methane (Mock et al., 1997:312).   

Hot dry rock (HDR) refers to areas that do not contain fluids, but rock 

temperatures are high enough to produce water temperatures in the range 

required to generate electricity if water were injected into the fissures and 

fractures of the rock.  Hypothetically, HDR resources are present in any area just 

by drilling sufficiently deep to reach appropriate rock temperatures necessary to 

heat water and produce electricity.  HDR systems typically occur at depths of 2-8 

km (Mock et al., 1997:311-312).   HDR has not been developed commercially 

because technology has not become available that would ensure sufficient flow 

through the fractured rock to maintain electricity production.  Also, the high costs 

associated with drilling through the rock makes this type of resource 

economically undesirable (Mock et al., 1997:334)   

Magma resources occur where molten rock can be found at accessible 

depths (less than 7 km).  These resources are abundant in volcanically active 

areas such as the mountainous western U.S.  Magma resources are especially 

attractive because their extreme temperatures (usually greater than 650°C) allow 

for very efficient electricity generation (Mock et al., 1997:312).  These 

temperatures, however, have also limited the development of magma resources.  

Materials currently used in the drilling and well development process (drill bits, 

well casing etc.) cannot withstand these extreme temperatures, and the costs 

associated with using more robust materials limit economic competitiveness of 

this resource type (Mock et al., 1997:341). 
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Resource Temperature 

The actual temperature that can be reached at depth in a hydrothermal 

resource is a function of the geothermal gradient at a given location and 

determines the amount of heat available to produce electricity.  Heat generated 

at the earth’s core by decaying radioactive material moves toward the surface 

through conductive heat flow (Fridleifsson, 1996:1; Mock et al., 1997:307).  As 

the thermal energy moves outward from the center of the earth, the fluids and 

solids in the underground matrix are heated.  A thermal gradient occurs because 

the ground is cooler near the surface and becomes warmer with increasing 

depth.  This temperature differential is referred to as the geothermal gradient and 

is used to determine the quality of geothermal resources.  A higher thermal 

gradient is preferred because less depth is required to reach reservoir 

temperatures capable of producing electricity.  All things being equal, to obtain 

the same water temperature at depth, a gradient of 30°C/km would require twice 

the drilling depth as a gradient of 60°C/km.  As seen in Figure 4, the geothermal 

gradient in the U.S. varies roughly from 10°C/km to 75°C/km, with a national 

average of approximately 30°C/km.   

Most of the areas with high geothermal gradients (areas with darkest 

shading) are located in the mountainous areas of the western U.S.  The specific 

water temperature of the resource at depth is calculated using Equation 1. 

 

Resource Temp = Well Depth*Geothermal Gradient + Ground Temperature     (1) 
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Figure 4.  Mean Geothermal Gradient, Upper 1 to 3 km of the Crust 
(Blackwell et al., 1997) 

 

At the surface, ground temperature fluctuates by location with the ambient 

air temperature.  However, ground temperatures 10-15 feet (3-4.5 meters) below 

the surface vary significantly less and eventually reach a stable temperature at 

about 28 feet (8.5 meters) as shown in Figure 5.  As seen in Figure 6, ground 

temperatures 15 feet below the surface (4.5 meters) range roughly from 40-72°F 

(4-22°C) depending on the location within the U.S.  Because this research does 

not focus on a specific location, but instead applies general parameters to the 

model, ground temperature will be considered a constant 56°F (13°C), which is 

the midpoint of the range shown in Figure 6.  
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Figure 5.  Soil Temperature Variations by Depth  
(Department of Energy, 1994) 

 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 6.  Mean Ground Temperature (°F) at 15 Feet Below the Surface 
(Department of Energy, 1994) 
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Power Plant Type 

The DoE Geothermal Energy Program recognizes three types of 

geothermal power plants: dry steam plants, flash steam plants, and binary cycle 

plants.  The temperature of the hydrothermal resource determines the type of 

plant used.  A more detailed description of each plant is given in this section.  

Dry steam (DS) plants (Figure 7) are the most efficient of the three plant 

types.  DS plants are used in conjunction with high temperature vapor dominated 

resources, thus no additional energy must be added to convert the resource into 

a vapor.  The steam in the reservoir is brought to the surface and is used to turn 

the turbine. 

Flash steam (FS) plants (Figure 8) take advantage of the superheated 

water and vapor in high and intermediate temperature resources.  In a FS plant, 

the water/vapor mix is pumped from the production well into a liquid-vapor 

separator.  The vapor portion is routed directly through the turbine.  The liquid 

portion is routed into low-pressure tanks, where the change in pressure causes 

the water to ‘flash’ into steam.  This steam is then routed to the turbine.  Within a 

FS system, this process of routing liquid through a flash chamber can be 

repeated multiple times, resulting in either a single or double flash cycle (Mock et 

al., 1997:323). 

Binary-cycle plants (Figure 9) differ from dry steam and flash steam plants 

because they do not use the steam or water from the geothermal
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Figure 7.  Dry Steam Power Plant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Flash Steam Power Plant 

Figure 9.  Binary Cycle Power Plant 
(Geothermal Education Office, 2003) 
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reservoir directly.  Instead, the geothermal fluid is contained in a closed-loop 

system and is pumped from the production well through a heat exchanger and 

routed back into the reservoir.  Using the thermal energy from the geothermal 

fluid, a secondary working fluid (thus the term ‘binary’) with a significantly lower 

boiling point than water located within the heat exchanger is vaporized 

(Department of Energy, 2002).  This vapor is then used to drive the turbine.  

Since the geothermal fluid is pumped up the production well at a constant 

pressure, the fluid does not change phase during transportation of the fluid from 

the resource to the heat exchanger.  Also, the well and gathering system is 

designed to minimize heat loss from the resource to the heat exchanger.  

Therefore, it is assumed that the resource temperature is the same as the fluid 

temperature at the above ground heat exchanger (Combs, 2003).   

In 1998, 65 geothermal power plants in the U.S. produced over 2500 

Megawatts of electricity (MWe).  A breakdown of plant types is shown in Table 1.  

All of the plants in operation exist in the western parts of the U.S. where the 

geothermal gradient is highest (refer to Figure 2).  California has the largest 

geothermal generating capacity with 51 of the 65 plants operating in this state, 

including 22 dry steam plants.  Nevada has a total of ten geothermal plants 

(binary and double flash systems), Utah has three geothermal plants (single flash 

and binary), and Hawaii has one single flash/binary hybrid plant in operation 

(Anderson 1998:1.110).   

Of the 65 geothermal plants in operation, the 22 dry steam plants provide 

over 60 percent of the total installed capacity.  Dry steam power plants are  
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Table 1.  Summary of Geothermal Power Plants in the U.S. 
Type of Plant Number of Plants MWe 

Dry Steam 22 1623 
Single Flash Steam 4 49 
Double Flash Steam 21 668 

Binary 16 181 
Hybrid 2 55 
Total 65 2576 

(Elliott et al., 1998:1.118) 
 

dominant in the U.S. because of the presence of the world’s largest dry-steam 

field in California.  Although only 16 binary power plants are operating in the 

U.S., they have the greatest future potential because they offer greater flexibility 

when operating in conjunction with intermediate temperature resources (90°C-

150°C). 

Power Plant Size 

The size of the power plant (kilowatt (kW) rating) refers to the net 

generating capacity of the plant and is dependent on the amount of thermal 

energy available in a given location.  Net generating capacity for binary cycle 

power plants can be calculated using resource temperature and flow rate as 

shown in Figure 10.  For example, if the resource temperature is 200°C, and 

assuming a flow rate of 20 kg/s, the maximum generating capacity would be 

1560 kilowatts of electricity (kWe) (78 kWe/kg/s *20 kg/s). 

Attainable flow rates within a reservoir depend on the resource 

productivity level.  Resource productivity is a function of the underground matrix 

at a given location and controls the amount of fluid (flow rate) that can be used in 

the heat transfer process.  Resource productivity is driven by the ease with which  
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Figure 10.  Net Generating Capacity of a Binary Cycle Power Plant 
(Pritchett, 1998) 

 
 

water can move through the underground matrix and is controlled by hydraulic 

parameters such as permeability, hydraulic conductivity, and hydraulic gradient 

(Pierzynski et al. 1994:19).  For example, an underground matrix consisting 

mostly of solid rock will have a lower productivity (and lower potential flow rate) 

than an underground matrix consisting mostly of sand.  Resource productivity 

also influences the well diameter selected during design.  Well diameters are 

sized to provide the maximum amount of geothermal fluid (flow rate) to the 

generating equipment within the limits of the resource productivity level.   

For binary power plants, where pumps are used to move the geothermal fluid 

from the resource to the surface, pump type also controls the flow rate.  

Research indicates that for well diameters between 75mm and 300mm (inside 

diameter) submersible pumps provide the best attainable flow rates (Pritchett, 
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Well 
Inside Diameter 

(mm)

Maximum
Flow Rate

(kg/s)

Maximum 
Flow Rate

(l/min)

Maximum
Flow Rate
(gal/min)+

75 3.13 188 50
100 5.37 322 85
125 9.54 572 151
150 19.24 1,154 305
175 34.84 2,090 551
200 58.25 3,495 922
225 91.67 5,500 1,451
250 137.53 8,252 2,177
275 198.5 11,910 3,142
300 277.49 16,649 4,392

Maximum Attainable Flow Rates
Submersible Pumps

+ Values converted to gal/min for reference

1997).  Examples of the maximum attainable flow rates for different well 

diameters using submersible pumps are shown in Table 2. 

 

Table 2.  Maximum Attainable Flow Rates for Submersible Pumps  
 

 

 

 

 

 

 

 

 
(Pritchett, 1997) 

 
Well diameters of 100mm, 200mm, and 300mm (highlighted in Table 2) 

have been selected for analysis in this study.  These well diameters were 

selected to cover the range of feasible well diameters most typically used for 

geothermal systems.  The maximum attainable flow rate for each of these three 

well diameters will be assumed for this model.  The payback period and 

breakeven sales rate will be compared with these three flow rates to estimate the 

relative impact of flow rate on these economic parameters.   
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Specific Cost Variables 

Initial capital costs of a geothermal power plant include both resource 

development costs as well as the costs to install the physical plant equipment.  

Resource development costs include identifying and classifying the resource 

(through resource exploration) and testing potential production wells, as well as 

costs for siting and licensing requirements.  Physical plant costs include well 

drilling and installation, plant generating equipment, and the pumps and 

gathering system used to transport the geothermal fluid up the well and from the 

wellhead to the generating equipment.   

In order to assign probability distributions to these variables, several 

previous studies were reviewed.  The goals of the previous studies ranged from a 

basic overview of the current state of geothermal technology to examining 

specific costs associated with potential geothermal site development as well as 

costs of plants already constructed.  Table 3 lists the studies reviewed, shows 

the specific variables that influence construction and operation costs, and shows 

specific values assigned to the variables in each study.   

Reports published by DiPippo (1998), Barbier (2002), Kutscher (2000), 

and the DoE’s Office of Energy Efficiency and Renewable Energy (EERE) 

(Undated) gave general overviews of the history, technology, and status of 

geothermal development.  Costs provided in these reports were not related to a 

specific site, but were intended to give a general understanding for cost ranges 

and plant design parameters.  These studies outlined costs associated with 
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different plant types; however, costs shown in Table 3 are specific to binary cycle 

power plants. 

Gawlik and Kutscher (2000) selected 17 of the most promising sites 

(based on temperature and flow rate) from a previous survey that identified 271 

geothermal resources located in the Western U.S.  Each site was analyzed to 

determine the potential performance of a binary cycle power plant, and costs 

were assigned to the variables listed in Table 3 for each site.  Costs developed in 

the Gawlik and Kutscher study were based on the assumption that plants would 

be constructed in areas where some knowledge of the resource exists 

(specifically for resource exploration).   

Stefansson (2002) used statistical methods to estimate investment costs 

of geothermal power plant construction using a ‘stepwise’ development.  Under 

the stepwise development concept, perfect knowledge of the existing resource 

does not have to be in place prior to construction.  Instead, a small power plant is 

constructed as part of initial phase of development.  This plant can then be used 

to monitor and further estimate the production characteristics of the resource.  

Stefansson used existing data from plants already constructed in Iceland to 

estimate construction costs in unknown geothermal fields (costs were converted 

to U.S. dollars).  Stefansson estimated both surface and subsurface costs for 

construction of a generic geothermal plant (no plant type was specified).   

However, only the costs associated with Stefanssons’ surface equipment are 

shown in Table 3 because the assumptions in Stefanssons’ subsurface costs 

were not consistent with the assumptions in this research. 
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Table 3.  Cost Drivers for Binary Power Plants 

Source 

Generating 
Equipment 

($/kW) 

Pumps and 
Gathering System 

($/kW) 

Resource 
Exploration 

($) 

Well Drilling & 
Installation 

($/m) 

Well 
Testing 

($) 

Siting & 
Licensing 

($) 
Annual O&M 

(%) 

Plant 
Availability 

(%) 

Plant 
Lifetime 

(yrs) 
4,000         
3,085         

DiPippo, 1998 

3,030         
   800      Barbier, 2002 
   1,200      

1,600       95%  Kutscher, 2000 
       99%  

DoE Office of 
Energy Efficiency 
and Renewable 
Energy, Undated 

1,468 74 3,200,000   3,200,000   30 

2,466 85 45,000 648 30,000 50,000 4%  20 
3,358 381 45,000 1,029 30,000 50,000    
3,999 634 45,000 1,029 30,000 50,000    
3,558 392 45,000 1,029 30,000 50,000    
2,572 123 45,000 1,029 30,000 65,000    
3,025 269 45,000 1,029 30,000 59,488    
3,519 173 45,000 582 30,000 50,000    
3,006 208 45,000 1,029 30,000 50,000    
2,894 220 45,000 1,029 30,000 65,000    
3,038 286 45,000 1,677 60,000 65,000    
3,394 544 45,000 2,705 90,000 65,000    
3,909 544 45,000 1,029 30,000 50,000    
3,803 634 45,000 1,677 60,000 50,000    
2,148 67 45,000 648 30,000 61,360    
2,794 90 45,000 582 30,000 50,000    
2,635 106 45,000 648 30,000 50,000    

Gawlik & Kutscher, 
2000 

2,673 147 45,000 1,029 30,000 65,000    
Stefansson, 2002 977       91%  

1,400   328      ORMAT+ 
   656      

2,000        20 Lovekin, 2000 
1800        30 

  200,000 656   4%  30 
   820      

Entingh, 1994 

   984      
NOTES: +   Numbers provided in personal communication with Dan Schochet, Vice President of ORMAT Technologies   
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Lovekins’ (2000) study compared different plant size development 

scenarios in a hypothetical geothermal field.  Lovekins’ study showed that in field 

development, there is a tradeoff between plant size and the costs associated with 

keeping the field viable to sustain the desired output over time.  Cost data 

associated with initial capital costs for generating equipment were listed in Table 

3. 

A report by Entingh et al. (1994) provided detailed cost and performance 

estimates for a 300kW geothermal power plant.  Entingh estimated the effect 

various site conditions would have on the cost to produce electricity.  The 

purpose of the report was to determine what conditions would make 

implementation and use of a small scale, off-grid geothermal production plant 

economically feasible.   
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III.  Methodology 

Overview 

Payback periods and breakeven electricity sales rates were calculated for 

a binary power plant using costs associated with plant construction and 

operation.  Figure 11 illustrates the relationships between the design and cost 

variables and how they influence the payback period and breakeven electricity 

sales rate under various conditions.  Ovals shown in Figure 11 indicate input 

variables in the model.  Shaded ovals indicate variables assigned probability 

distributions as opposed to discrete values.  Key assumptions in the model 

development are: 

• The type of plant is a binary cycle geothermal power plant 
• A total of 2 wells (1 production and 1 injection) is assumed 
• Ground temperature is held constant at 56°F (13°C) (average at 15 feet 

(4.5 meters) below ground surface for the U.S.) 
• Heat loss from resource to heat exchanger is minimal 

 
As illustrated in Figure 11, based on the selected resource temperature 

and geothermal gradient, and assuming a constant ground temperature, the 

required well depth to achieve the selected resource temperature was calculated 

using Equation 1.  The resource temperature and the flow rate (at a given well 

diameter) were used to calculate the installed net generating capacity for each 

scenario.  The electricity sales rate and the plant availability influences the 

annual revenue generated from the plant.  The well depth and other fixed 

installation and equipment costs determine the initial capital costs as well as 

annual O&M costs. 
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Figure 11.  Methodology Influence Diagram  
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Nine different design scenarios were developed to represent different site 

conditions.  The nine scenarios create a matrix as shown in Figure 12 based on a 

combination of 3 temperatures (160, 200, and 240°C) and 3 flow rates (322, 

3,495, and 16,649 lit/min).  As previously noted, these flow rates correspond to 

the optimal flow rates that can be achieved with a submersible pump for the three 

well diameters (100, 200, 300mm) selected for analysis (refer to Table 2).  Within 

each of the nine scenarios, simple economic payback periods were calculated for 

five geothermal gradients (30, 40, 50, 60, 70°C/km) and 10 electricity sales rates  

 (3-30 cents/kWh in 3 cent increments).  The geothermal gradients used here 

were selected because they cover the middle to upper range of gradients in the 

U.S (refer to Figure 4).  For example, given 160°C and a flow rate of 322 lit/min 

(optimal flow for 100mm well), the range of payback periods were calculated 

based on each geothermal gradient and each electricity sales rate.   

 

 Flow Rate 
Resource Temp 322 lit/min 3,495 lit/min 16,649 lit/min 

160°C Scenario 1 Scenario 2 Scenario 3 

200°C Scenario 4 Scenario 5 Scenario 6 

240°C Scenario 7 Scenario 8 Scenario 9 

 
Figure 12.  Scenario Matrix 
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Payback Analysis 

The simple economic payback period calculated by the model is a 

measure of the amount of time required to recover the initial capital costs of plant 

construction.  The method used to calculate simple economic payback is shown 

in Equation 2.   

M($/yr)&O Annualyr)Revenue($/ Annual
($) Costs Capital Initial(yrs)Payback 

−
=                       (2) 

As can be seen from the equation, large annual revenues (either from high 

annual output or high electricity sales rates) result in smaller payback periods.  

The same is true if Annual O&M fees are small.   

Breakeven Electricity Sales Rate Analysis  

The breakeven analysis differs from the payback period analysis in that 

instead of calculating the amount of time necessary to recover initial costs, the 

actual electricity sales rate that must be achieved to recover the total life cycle 

costs of the plant was calculated.  In other words, the breakeven sales rate 

computes the sales rate where the geothermal plant pays for itself.  Total life 

cycle costs of the plant include initial capital costs as well as annual O&M fees.  

Annual O&M costs were converted from a series of payments over the lifetime of 

the plant to a single dollar amount using a present worth discount factor.  The 

discount rate applied in this model is 3%, which is the approximate annual 

inflation rate in the U.S.  The actual method used to calculate the breakeven 

electricity sales rate is shown in Equation 3. 
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(kWh)Output  Lifetime Total
($)Cost  Cycle Life Total($/kWh) Rate SalesBreakeven =                   (3) 

The breakeven sales rate (the amount electricity must be sold for in order to 

recover the total life cycle cost of the plant) was calculated for different 

geothermal gradients within each design scenario.  The breakeven sales rate can 

be compared to applicable rates in the local area to determine competitiveness. 

Variable Distribution Development 

The variables shown in the shaded circles in Figure 11 impact the ultimate 

objectives of determining the payback period and breakeven sales rate for a 

binary cycle power plant.   To account for the variability discussed in the literature 

review, probability distributions were developed for each of the variables as 

shown in Table 4.   

Table 4.  Distributions Assigned to Specific Cost Drivers 
Variable Range 

 Min 
Range 
 Max 

Distribution 
Assigned 

Generating Equipment 
($/kWh) 977 4000 Uniform 

Pumps & Gathering 
System ($/kWh) 67 634 Triangular with 

peak at 276 
Resource Exploration 

($) 45,000 500,000 Uniform 

Well Drilling & 
Installation ($/m) 328 2705 Triangular with 

peak at 994 
Well Testing ($) 30,000 90,000 Uniform 

Siting and Licensing ($) 50,000 100,000 Uniform 
Annual O&M (%) 3% 5% Uniform 

Plant Availability (%) 91% 99% Uniform 
Plant Lifetime (yrs) 20 30 Uniform 
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Generating equipment includes costs of the physical plant, including the 

turbine, generator, condenser, and heat exchanger.  Generating equipment costs 

were scaled according to the installed net generating capacity of the plant (in 

units of $/kW installed).  As seen in Table 3, values for the generating equipment 

range from $977/kW to $4000/kW.  A plot of the data, shown in Figure 13, shows 

that the reported data appears to be approximately evenly distributed with no 

apparent pattern or clustering; therefore, a uniform distribution ranging from 

$997/kW to $4000/kW was applied to this variable. 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Cost Distribution for Generating Equipment 
 

The pumps and gathering system consist of all equipment necessary to 

transport the fluid up the well and from the wellhead to the generating equipment.  

Values for this variable ranged from $67/kW to $634/kW, as shown in Figure 14.  

Generating Equipment Cost Distribution ($/KW)
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Pumps & Gathering System Cost Distribution 
($/KW)
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previous studies 

Note that a majority of the data values fall below $300/kW.  To account for this 

clustering of data, a triangular distribution was selected using the endpoints of 

$67/kW and $634/kW as the minimum and maximum values with a peak value of 

$276/kW, which is the average value of all the data. 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Cost Distribution for Pumps & Gathering System  
 

Resource exploration costs include costs associated with identifying and 

classifying the resource.  Table 3 shows a large disparity between reported 

resource exploration values.  Gawlik and Kutscher (2000) recommend using 

$45,000 for resource exploration, while data from the EERE (Undated) report 

estimates resource exploration costs at $3,200,000.  The reason for this disparity 

is based on the assumptions made in each study.  Costs shown by Gawlik and 

Kutscher (2000) were calculated assuming that some knowledge of the resource 
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already exists (their study was based on a previous survey of existing geothermal 

sites), whereas the EERE (Undated) study included costs associated with 

identification of the resource with no previous information.  It was assumed in this 

study that there was some knowledge of the geothermal resources.  In other 

words, it is assumed that resources have been identified as likely candidates for 

future construction sites (but not yet developed).  Eliminating the EERE study 

cost of $3,200,000 results in a range maximum of $200,000, though some sites 

may require more extensive research even with some prior knowledge. 

Therefore, a uniform distribution ranging from $45,000 to $500,000 was assigned 

to the resource exploration variable, which accounts for a wide range of possible 

costs. 

Well drilling and installation costs include the costs of well drilling 

equipment and material (drill bits, well casing, etc.).  Costs for this variable were 

calculated as a function of the well depth required to reach the selected resource 

temperature (in units of $/m).  In order to calculate the desired well depth, 

Equation 1 was rearranged to compute well depth given the site conditions 

(Equation 4).   

1000m/km* C/km) egGradient(D Geothermal
C) e(DegTemperatur Ground -C) e(DegTemperatur Resource  Depth(m) Well =       (4) 

Well drilling costs from the reviewed studies ranged from $328/m to 

$2705/m.  A plot of the data, shown in Figure 15, shows that a number of points 

appear to cluster near $1000/m.  Therefore, a triangular distribution was applied 
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Well Drilling & Installation Cost Distribution 
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$0 $1,000 $2,000 $3,000

Well Drilling & Installation Cost Data Points ($/KW)

Pr
ob

ab
ili

ty
 o

f 
O

cc
ur

en
ce

$328

$994

$2705

+ indicate values from 
previous studies 

using a minimum value of $328/m, a maximum value of $2705/m, and a most 

likely value of $994/m, which is the average of all values presented.   

 

 

 

 

 

 

 

 

 

 

Figure 15.  Cost Distribution for Well Drilling & Installation 
 

Well testing costs include validating the condition of the well and the 

resource after the production well has been installed.  Costs for this variable 

ranged from $30,000 to $90,000 in the Gawlik and Kutscher (2000) study.  These 

numbers served as the minimum and maximum points for the uniform distribution 

applied here.  

Table 3 indicates another large disparity between the values reported for 

costs associated with siting and licensing the plant.  Gawlik and Kutscher (2000) 

values for this variable ranged from $50,000 to $65,000, while the EERE 

(Undated) study showed a value of $3,200,000.  Gawlik and Kutscher (2000) did 



 35

not account for costs associated with environmental impact statements, nor 

federal government licensing fees, which may account for the large difference in 

costs assigned to this variable.  This study followed the Gawlik and Kutscher 

study, and assigned a uniform distribution based on their values (minimum of 

$50,000 and maximum of $65,000). 

Annual O&M costs include maintenance of the field as well as the physical 

plant.  To model this, annual O&M costs were calculated as a percentage of the 

total costs of the plant generating equipment, pumps and gathering system, as 

well as well drilling and installation costs.  Only two values for this variable were 

seen in the reviewed data; however, both reports used 4% as the percentage 

assigned.  However, to account for some variability and uncertainty associated 

with this cost, a uniform distribution was applied with a minimum value of 3% and 

a maximum value of 5%.  

The plant availability factor is used in determining the payback period and 

breakeven sales rate.  The plant availability factor is essentially the number of 

hours a plant is in operation over the total number of hours in a one year period, 

expressed as a percentage.  This percentage was multiplied by the net 

generating capacity to calculate annual output (in kWh) of the plant; annual 

output was then used in conjunction with the selected utility sales rate to 

calculate the annual revenue the plant can generate.  From the literature 

reviewed, binary cycle power plant availability factors ranged from 91% to 99%.  

Therefore, a uniform distribution between 91% and 99% was assumed.  
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Plant lifetime is a measure of how long the equipment and materials 

associated with the plant will remain serviceable.  Plant lifetime, when multiplied 

by the annual output from the plant, gives a total lifetime output (in kWh).  As 

seen in Equation 3, total lifetime output is an important variable in the 

determining the breakeven sales rate of the plant.  Plant lifetime is also important 

in the payback period analysis.  If the payback period extends beyond the plant 

lifetime, the construction and operation costs will never be recovered.  The plant 

lifetime reported in other studies ranged from 20 to 30 years; therefore, a uniform 

distribution from 20-30 years was assumed in this analysis.  
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IV.  Results 

Overview 

Results of the analysis were based on the output of the Monte Carlo 

simulation.  Payback curves are shown for each scenario using the median value 

from the Monte Carlo output distributions.  The output distributions for the 

breakeven analysis are presented as box-and-whiskers plots to facilitate 

comparison between the different design scenarios.   

Figure 16 is an example of the output probability distribution for the simple 

economic payback period (in years) calculated for the scenario representing a 

resource temperature of 200°C and a flow rate of 3,495 lit/min, along with a 

geothermal gradient of 30°C/km and an electricity sales rate of 6 cents/kWh.  The 

corresponding box-and-whiskers plot is shown along the bottom of the chart.  

The “whiskers” of the plot show the 2.5th and 97.5th percentile.  The walls of the 

box represent the 25th and 75th percentile, and the line within the box represents 

the 50th percentile (median value).   

Payback Analysis Results 

Due to the volume of information calculated within each scenario, figures 

illustrating the results of the payback analysis show only the median (50th 

percentile) values.  Tabular results showing the actual values for payback period 

distributions are shown in Appendix A.  An example of the payback curves 

developed using the median values is shown in Figure 17.  Notice that each of 
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Figure 16.  Sample Probability Distribution 

 

the individual curves on the graph represents a unique geothermal gradient.  In 

Figure 17, the median payback at 12 cents/kWh for all geothermal gradients 

modeled ranges from 6-9 years.  However, when the price of electricity is only 9 

cents/kWh, the median payback values range from 8-13 years.  This is because 

the annual revenue at 9 cents/kWh is less than the revenue at 12 cents/kWh, 

which means 9 cents/kWh would take longer to payback the initial costs of 

constructing a geothermal system.  Note also that the differences between the 

individual geothermal gradient curves are relatively small.  This indicates that the  
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Note:  The shaded areas represent desirable conditions.  The darker box represents 
payback periods of less than 10 years when electricity prices are less than 6 cents/kWh 
(approximate national average).  The light shaded box represents less than 20-year 
payback periods with electricity sales rates less than 9 cents/kWh.   
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Figure 17.  Payback Curves for 200°C Resource Temperature and 3,495 
lit/min Flow Rate 

 

geothermal gradient for this scenario does not heavily influence the payback 

period, especially for electricity prices above 9 cents/kWh. 

To receive funding, the Department of Defense requires energy projects to 

have a 10-year payback period or less (Air Force Civil Engineer Support Agency, 

1999).  Combining the 10-year or less payback period with the national average 

retail price of electricity in 2001 for all sectors of 6.64 cents/kWh creates a good 

target area for feasible payback periods (Department of Energy, 2001).  Using 

these numbers as a basis for evaluation, ideal payback periods should be 10 

years or less at 6 cents/kWh or less as shown graphically on Figure 17 by the 
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Note:  The shaded areas represent desirable conditions.  The darker box represents 
payback periods of less than 10 years when electricity prices are less than 6 cents/kWh 
(approximate national average).  The light shaded box represents less than 20-year 
payback periods with electricity sales rates less than 9 cents/kWh.   

dark shaded box in the lower left hand corner.  The box with lighter shading 

represents 20-year or less payback periods at 9 cents/kWh or less.  Curves that 

pass within these shaded boxes are more preferable as they indicate shorter 

payback periods at expected electricity rates. 

Constant Temperature Median Payback Periods 

Figure 18 represents three separate flow rates at a constant temperature 

of 200°C.  Note that the lowest flow rate of 322 lit/min does not have any 

desirable combination within the shaded boxes.  In fact, payback periods for this 

flow rate do not drop below 20 years until the electricity sales rate reaches 21 

cents/kWh for a geothermal gradient of 70°C/km.  The solid lines for the middle 

flow rate of 3,495 lit/min are the same as those shown in Figure 17. 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Payback Curve Comparison Chart for 200°C Resource 
Temperature 
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The highest flow rate at 16,649 lit/min shows potential to have reasonably 

short payback periods (10 years or less) at expected electricity sales rates near 6 

cents/KWh.  This figure illustrates that the flow rate is a significant factor in the 

payback period of a geothermal plant.  Also, at higher flow rates, the influence of  

different geothermal gradients becomes minor, particularly above electricity sales 

rates of 9 cents/kWh. 

Graphs similar to Figure 18, which assumed 200°C, were plotted for each 

of the temperatures selected for analysis (160°C, 200°C, 240°C).  These graphs 

are shown in Figure 19 for comparisons.  As seen on the top chart in Figure 19, 

the combination of 160°C and 322 lit/min does not produce any payback period 

below 20 years for any of the geothermal gradients analyzed.  In fact, the 322 

lit/min flow rate appears to be impractical at any of the three temperatures 

modeled.  However, the higher flow rates of 3,495 lit/min and 16,649 lit/min 

appear to have reasonable payback periods at expected electricity sales rates 

with the highest flow rate being slightly better.  The influence of the five different 

geothermal gradients do not appear to be very significant at these higher flow 

rates as illustrated by the close proximity of each curve.  The resource 

temperatures of 160°C, 200°C, and 140°C also do not appear to influence 

payback substantially because the curves for the middle and highest flow rates 

(3,495 and 16,649 lit/min) pass through the shaded areas at nearly the same 

locations for all three temperatures.  It appears that the flow rate is the most 
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Figure 19.  Constant Temperature Payback Curve Comparison Charts 
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influential variable even over resource temperature and thermal gradient.  This 

suggests that a large flow rate with a modest temperature may likely outperform 

a low flow rate at a high temperature. 

Constant Diameter Median Payback Analysis 

A different view of the data is to separate each curve based on flow rates 

for comparison as shown in Figure 20.  This view shows more clearly that the 

lower flow rate of 322 lit/min is undesirable under almost any scenario.  The 

center graph with the middle flow rate (3,495 lit/min) demonstrates that at 6 

cents/kWh most site conditions will result in payback periods less than 20 years.   

For the highest flow rate (16,649 lit/min) at 6 cents/kWh all site conditions 

would result in a payback period very close to 10 years.  At 9 cents/kWh, all 

payback periods for each temperature fall below 10 years and only range from 5-

7 years.  This further demonstrates that at this flow rate, neither the resource 

temperature nor the geothermal gradient significantly changes the median 

payback period.  The high flow rate (16,649 lit/min) graph shows that, regardless 

of geothermal gradient or resource temperature (within the range analyzed), 

lower payback periods can be achieved.   

 

 

 

 

 



 44

Note:  The shaded areas represent desirable conditions.  The darker box represents 
payback periods of less than 10 years when electricity prices are less than 6 cents/kWh 
(approximate national average).  The light shaded box represents less than 20-year 
payback periods with electricity sales rates less than 9 cents/kWh.   
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Figure 20.  Constant Flow Rate Payback Curve Comparison Charts 
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This implies that deeper drilling to obtain higher temperatures or developing in 

areas of high thermal gradients may not be important.  With a high flow rate, the 

payback periods are low under many scenarios. 

Breakeven Analysis Results 

The electricity sales rates calculated in the breakeven analysis represent 

the price that electricity must be sold for in order to recover the total life cycle 

costs of the plant.  In other words, the breakeven sales rate would be the 

minimum value customers would have to pay plant owners in order for them to 

“breakeven” over the lifetime of the plant.  Results of the breakeven sales rates 

are presented as box-and-whisker plots for each geothermal gradient analyzed 

within each resource temperature/flow rate combination; tabular results for the 

breakeven sales rate distributions are shown in Appendix B.  Figure 21 shows an 

example of the box-and-whisker plots for each geothermal gradient within the 

resource temperature/flow rate combination of 160°C/322 lit/min.   

The box-and-whisker plots represent different percentiles calculated in the 

Monte Carlo simulation output probability distribution.  The boxes along the right 

side of the graph show that the “whiskers” represent the 2.5th and 97.5th 

percentile, while the walls of the box represent the 25th and 75th percentile.  The 

50th percentile is the line within the walls of the box.  Note also that the numbers 

presented in the graph show the median (50th percentile) breakeven sales rate 

for the particular conditions.  For example, for the given conditions represented in 
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Figure 21. Breakeven Sales Rate Results for 160°C Resource Temperature 
and 322 lit/min Flow Rate 

 

Figure 21 (160°C/322 lit/min), the median (50th percentile) breakeven sales rate 

for a 70°C/km geothermal gradient is 24 cents/kWh.  Note that as the geothermal 

gradient decreases, the breakeven sales rate increases, which makes sense 

because as the geothermal gradient decreases, the depth to reach the resource 

temperature increases.  This additional drilling depth adds cost in plant 

construction, increasing total life cycle costs, which in turn increases the sales 

rate that must be realized to recover those costs. 

As mentioned earlier, the national average retail price of electricity in 2001 

for all sectors was 6.64 cents/kWh (Department of Energy, 2001).  Using this 

number as a basis for evaluation, ideal breakeven sales rates should be 

approximately 6 cents/kWh or less.  This target value of 6 cents/kWh is shown 

Note:  The dotted line within the graph represents a target breakeven sales rate of 6 
cents/kWh.  The numbers shown within the graph represent the median (50th 
percentile) breakeven sales rates for each geothermal gradient.  The percentiles 
associated with each line of the box and whisker plot are shown on the right hand side 
of the graph. 
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graphically in Figure 21 by the dotted line across the graph.  Note in Figure 21 

that no breakeven sales rates reach the target value, even at the highest 

geothermal gradient (70°C/km) and the lowest (2.5th) percentile.  Notice also that 

the box-and-whiskers plots vary between each geothermal gradient, indicating 

that the geothermal gradient impacts the breakeven sales rates at this 

temperature and flow rate (160°C and 322 lit/min). 

Figure 21 not only gives specific values for the expected breakeven sales 

rate, it also provides decision makers with a screening tool for use in determining 

whether site conditions support plant construction.  For example, if local 

electricity sales rates in a location that has the physical conditions listed in the 

graph (resource temperature of 160°C, flow rate of 322 lit/min, and 70°C/km 

geothermal gradient) are less than 24 cents/kWh, construction of the plant is not 

feasible.  However, if the local sales rate exceeds 24 cents/kWh, plant 

construction may be profitable.   

The results of each resource temperature/flow rate combination are shown 

in Figure 22.  Note that Figure 21 is the same graph shown in the upper, left 

block of Figure 22.  Comparisons can be made between the various scenarios 

represented by each matrix block.  The 160°C/322 lit/min block represents the 

worst-case scenario: low temperature and low flow rate.  Comparing the 

calculated breakeven electricity sales rates to the target value of 6 cents/kWh in 

this scenario showed that these conditions were not favorable for construction.  

However, looking at the opposite extreme of the best-case scenario having the 

highest temperature and highest flow rate (240°C and 16,649 lit/min block), the 
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Note:  Numbers shown represent the median (50th percentile) value for each geothermal gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Breakeven Sales Rates by Scenario 
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results are markedly different.  The 240°C/16,649 lit/min block (located at the 

extreme right on the bottom in Figure 22) shows that for all geothermal gradients 

evaluated, the median breakeven sales rate falls below the target rate of 6 

cents/kWh.  In fact, even the 97.5th percentile breakeven sales rates fall below 

the target value for all geothermal gradients within this scenario (the actual 97.5 

percentile value is 4 cents/kWh for all geothermal gradients).  In other words, 

given a temperature of 240°C and a flow rate of 16,649 lit/min, the model predicts 

a 97.5% chance that the breakeven sales rate will fall below 4 cents/kWh, 

regardless of the geothermal gradient. 

As a further comparison, examine the middle block in Figure 22 

(200°C/3,495 lit/min).  This block represents a scenario halfway between the 

worst-case and best-case scenarios.  As seen in the 200°C/3,495 lit/min block, 

all median breakeven sales rates are less than the target value of 6 cents/kWh.  

Only the 97.5th percentile value at the geothermal gradient of 30°C/km exceeds 

the target value.  This graphically illustrates that given these site conditions, the 

geothermal gradient has little impact on the breakeven sales rate. 

Figure 22 also illustrates the impact temperature and flow rate have on the 

breakeven sales rate.  For example, at the 322 lit/min flow rate, the median 

breakeven sales rates exceed the target value for each temperature evaluated.  

In fact, for this flow rate, the breakeven sales rate does not fall below the target 

value of 6 cents/kWh even at the 2.5th percentile.  This indicates that small flow 

rate does not produce the conditions necessary in order for the plant to be 

economically feasible.  Notice also that the differences between the geothermal 
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gradient box-and-whisker plots in the 322 lit/min flow rate column vary greatly, 

indicating that at this flow rate, geothermal gradient has a significant impact on 

the breakeven sales rate.  However, at the 3,459 lit/min and 16,649 lit/min flow 

rates, the breakeven sales rates are all very close to the U.S. average electricity 

rate of 6 cents/kWh. 
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V.  Discussion 

Different physical site characteristics that represent a broad range of 

possible sites were selected to create nine potential design scenarios.  Each 

scenario represented a combination of a discrete resource temperature and well 

flow rate.  Within each scenario, cost variables were used to calculate the 

median payback periods and breakeven sales rates.  The cost variables were 

assigned probability distributions based on data from previous studies.  By 

assigning probability distributions, the model produces a range of possible 

results.  The range shown in the results more closely approximates a real-world 

situation where uncertainty and variability exists for each cost variable.  

Geothermal gradients representing the middle to upper end of the U.S. range 

were also evaluated within each scenario.  

The selection of different site conditions, as well as specific cost variables, 

facilitated the calculation of payback periods for different electricity sales rates.  

By plotting the payback period vs. the electricity sales rate, it was possible to see 

how the different variables analyzed (resource temperature, well flow rate, 

geothermal gradient, and electricity sales rate) influenced the payback period.  

While the results presented in this study are applicable to the specific site 

conditions selected for analysis, the model can be easily adapted to incorporate 

the conditions at any location.  The specific site conditions can be updated to 

reflect the specific conditions, and the cost variable probability distributions can 

be updated to better reflect conditions at that location.  However, the probability 
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distributions used here provide a good representation of many possible 

scenarios, and could be used as a general screening tool based on site 

conditions. 

Limitations and Future Research 

Several items were not considered in this study that may potentially 

impact the payback period and breakeven sales rate results.  These limitations 

are listed below, and may be incorporated in future research studies. 

1.  This study assumes the plant owner is responsible for all costs 

associated with plant construction.  The DoE offers several cost 

sharing programs that may help offset some of the initial 

construction costs associated with plant construction, which 

may impact the payback periods and breakeven sales rates 

calculated here.  

2.  Similarly, geothermal electricity production qualifies for an 

investment tax credit (ITC) that allows up to 10% of the initial 

investment costs to be claimed on an annual tax return.  The 

savings associated with this ITC were not included here.  

3.  Costs associated with developing environmental impact 

statements were not included.   

4.  Costs of constructing transmission lines from the plant to the 

existing transmission system were not included. 
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5.  This research focused only on a binary cycle geothermal power 

plant—similar analyses could be conducted for Dry Steam and 

Flash Steam plants. 

6.  Heat loss in the geothermal fluid as it moves from the resource 

to the heat exchanger was not considered.   

Conclusions 

The results of the simulation presented in this study provided insight into 

the impact different physical conditions have on both the payback period and 

breakeven sales rate.  All resource temperatures evaluated in this study (160°C, 

200°C, and 240°C) yielded payback periods that fall within the desired range (10 

years or less at 6 cents/kWh) and breakeven sales rates that fall below the target 

value of 6 cents/kWh.  As expected, the higher the resource temperature, the 

better the payback period and breakeven sales rate.   

Of the flow rates evaluated (322, 3,459, and 16,649 lit/min), only the 3,459 

lit/min and 16,649 lit/min cases yielded payback periods and breakeven sales 

rates within the desired range.  The flow rate has a more significant impact on 

both the payback period and breakeven sales rate than did temperature for the 

ranges evaluated.  This indicates that high flow rates may be more desirable than 

high temperatures when selecting a site for binary cycle geothermal power plant 

construction. 

Geothermal gradients do influence the payback period and breakeven 

sales rate, particularly at low temperatures and low flow rates.  However, as the 
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flow rate increased, the geothermal gradient had less impact at the highest flow 

rate evaluated (16,649 lit/min).  In fact, payback periods and breakeven sales 

rates were nearly identical for all geothermal gradients evaluated at the high flow 

rate.  Based on these results, areas with modest geothermal gradients (30°C/km) 

can yield desirable payback periods and breakeven sales rates with high flow 

rates.  The results presented here indicate that a significant portion of the U.S. is 

suitable for geothermal development based on geothermal gradient. The 

geothermal gradient map of the U.S. in Figure 4 indicates that approximately half 

the U.S. has geothermal gradients above 30°C/km. However, flow rates must be 

considered at each location to better predict the economic feasibility of 

geothermal production at that location.   

The resource temperature, flow rates, cost of electricity and geothermal 

gradients evaluated provide a good representation of typical conditions. 

However, these parameters may take on a broader range than those evaluated 

in this study.  In fact, the cost of electricity is a variable that is highly uncertain.  

Though 6 cents/KWh was discussed frequently in this study, but higher values 

would shorten the payback period for geothermal electricity generation.   
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Appendix A.  Payback Analysis Tabular Data 

Payback Period (yrs) 
 

Resource Temperature: 160°C 
Flow Rate:  322 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  160°C 
Flow Rate:  3,495 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  160°C 
Flow Rate:  16,649 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  200°C 
Flow Rate:  322 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  200°C 
Flow Rate:  3,495 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  200°C 
Flow Rate:  16,649 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  240°C 
Flow Rate:  322 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  240°C 
Flow Rate:  3,495 lit/min 
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Payback Period (yrs) 
 

Resource Temperature:  240°C 
Flow Rate:  16,649 lit/min 
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Deg/m %iles 322 l/min 3,495 l/min 16,649 l/min
30 2.5 $0.22 $0.04 $0.02
30 25 $0.39 $0.06 $0.03
30 50 $0.51 $0.07 $0.03
30 75 $0.67 $0.08 $0.04
30 97.5 $0.96 $0.12 $0.05
40 2.5 $0.17 $0.03 $0.02
40 25 $0.30 $0.05 $0.02
40 50 $0.39 $0.06 $0.03
40 75 $0.51 $0.07 $0.04
40 97.5 $0.74 $0.09 $0.05
50 2.5 $0.15 $0.03 $0.02
50 25 $0.24 $0.04 $0.02
50 50 $0.32 $0.05 $0.03
50 75 $0.41 $0.06 $0.04
50 97.5 $0.59 $0.08 $0.05
60 2.5 $0.13 $0.03 $0.01
60 25 $0.21 $0.04 $0.02
60 50 $0.27 $0.05 $0.03
60 75 $0.35 $0.06 $0.03
60 97.5 $0.50 $0.07 $0.04
70 2.5 $0.11 $0.02 $0.01
70 25 $0.18 $0.04 $0.02
70 50 $0.24 $0.04 $0.03
70 75 $0.31 $0.05 $0.03
70 97.5 $0.44 $0.07 $0.04

Flow RateThermal Gradient

16
0 

D
eg

 C
Appendix B.  Breakeven Sales Rate Analysis Tabular Results 

Breakeven Sales Rates ($/kWh) 
 

Resource Temperature: 160°C 
All Flow Rates 
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Deg/m %iles 322 l/min 3,495 l/min 16,649 l/min
30 2.5 $0.15 $0.03 $0.02
30 25 $0.26 $0.04 $0.02
30 50 $0.34 $0.05 $0.03
30 75 $0.44 $0.06 $0.04
30 97.5 $0.64 $0.08 $0.05
40 2.5 $0.12 $0.02 $0.01
40 25 $0.20 $0.04 $0.02
40 50 $0.26 $0.05 $0.03
40 75 $0.34 $0.05 $0.03
40 97.5 $0.49 $0.07 $0.04
50 2.5 $0.10 $0.02 $0.01
50 25 $0.17 $0.03 $0.02
50 50 $0.22 $0.04 $0.03
50 75 $0.28 $0.05 $0.03
50 97.5 $0.40 $0.06 $0.04
60 2.5 $0.09 $0.02 $0.01
60 25 $0.14 $0.03 $0.02
60 50 $0.18 $0.04 $0.03
60 75 $0.24 $0.05 $0.03
60 97.5 $0.33 $0.06 $0.04
70 2.5 $0.08 $0.02 $0.01
70 25 $0.13 $0.03 $0.02
70 50 $0.16 $0.04 $0.03
70 75 $0.21 $0.04 $0.03
70 97.5 $0.29 $0.06 $0.04

Flow Rate
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Thermal Gradient

Breakeven Sales Rates ($/kWh) 
 

Resource Temperature:  200°C 
All Flow Rates 

 
 



 66

Deg/m %iles 322 l/min 3,495 l/min 16,649 l/min
30 2.5 $0.13 $0.03 $0.01
30 25 $0.21 $0.04 $0.02
30 50 $0.27 $0.05 $0.03
30 75 $0.35 $0.06 $0.03
30 97.5 $0.51 $0.07 $0.04
40 2.5 $0.10 $0.02 $0.01
40 25 $0.16 $0.03 $0.02
40 50 $0.21 $0.04 $0.03
40 75 $0.27 $0.05 $0.03
40 97.5 $0.39 $0.06 $0.04
50 2.5 $0.08 $0.02 $0.01
50 25 $0.14 $0.03 $0.02
50 50 $0.17 $0.04 $0.03
50 75 $0.22 $0.04 $0.03
50 97.5 $0.32 $0.06 $0.04
60 2.5 $0.07 $0.02 $0.01
60 25 $0.11 $0.03 $0.02
60 50 $0.15 $0.03 $0.03
60 75 $0.19 $0.04 $0.03
60 97.5 $0.27 $0.05 $0.04
70 2.5 $0.07 $0.02 $0.01
70 25 $0.10 $0.03 $0.02
70 50 $0.13 $0.03 $0.03
70 75 $0.17 $0.04 $0.03
70 97.5 $0.23 $0.05 $0.04

Flow Rate
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Thermal Gradient

Breakeven Sales Rates ($/kWh) 
 

Resource Temperature: 240°C 
All Flow Rates 
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