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Abstract

The timely detection and classification of chemical and biological agents in

a wartime environment is a critical component of force protection in hostile areas.

Moreover, the possibility of toxic agent use in heavily populated civilian areas has

risen dramatically in recent months. This thesis effort proposes a strategy for identi-

fying such agents via distributed sensors in an Artificial Immune System (AIS) net-

work. The system may be used to complement “electronic” nose (“E-nose”) research

being conducted in part by the Air Force Research Laboratory Sensors Directorate.

In addition, the proposed strategy may facilitate fulfillment of a recent mandate by

the President of the United States to the Office of Homeland Defense for the pro-

vision of a system that protects civilian populations from chemical and biological

agents. The proposed system is composed of networked sensors and nodes, commu-

nicating via wireless or wired connections. Measurements are continually taken via

dispersed, redundant, and heterogeneous sensors strategically placed in high threat

areas. These sensors continually measure and classify air or liquid samples, alerting

personnel when toxic agents are detected. Detection is based upon the Biological

Immune System (BIS) model of antigens and antibodies, and alerts are generated

when an a measured sample is determined to be a valid toxic agent (antigen). Agent

signatures (antibodies) are continually distributed throughout the system to adapt

to changes in the environment or to new antigens. Antibody features are determined

via data mining techniques in order to improve system performance and classifica-

tion capabilities. Genetic algorithms (GAs) are a critical part of the process, namely

in antibody generation and feature subset selection calculations. Demonstrated re-

sults validate the utility of the proposed distributed AIS model for robust chemical

spectra recognition.

xii



AN ARTIFICIAL IMMUNE SYSTEM STRATEGY FOR ROBUST

CHEMICAL SPECTRA CLASSIFICATION VIA DISTRIBUTED

HETEROGENEOUS SENSORS

I. INTRODUCTION

The Artificial Immune System (AIS) model has demonstrated aptitude in the

classification of unknown elements within NP-Complete problem domains. The

model presented draws its inspiration from the success of the AIS as applied to

a wide range of problems such as intrusion detection [27] [16] [2], multimodal func-

tion optimization [20], and ecosystem management [48]. A framework for applying

the AIS model is discussed that can quickly classify biological agents in a war or

peacetime environment. The model is based upon a system of robust, scalable, effi-

cient, and relatively simplistic sensors that can be “scattered” anywhere in a threat

area and provide immediate warning the release of toxic agents.

Classification is determined chiefly via continuous analysis of chemical spec-

tra by heterogenous sensors in an distributed AIS (DAIS) network. Operating as

low-level agents in a hierarchical configuration [54], sensors continuously assess lo-

cal environmental conditions and classify the resulting spectra as benign, naturally

occurring elements (self ), or harmful biological contaminants (non-self ).

1.1 Overview

“Integrated bio-inspired circuits that sense, receive, transmit, and process sig-

nals are the eyes, ears, and nose of the millennium” [1]. Generically speaking, a

sensor is any device that receives and responds to stimuli. Response does not imply

any form of innate sensor “intelligence”. Yet, by connecting multiple sensors and

strategically placing them in threat areas, the utility of multiple sensor responses may

1



be enhanced. “Widely available Biological Agent detection and the integration of

Chemical and Biological Agent detection into an embedded processor would greatly

improve upon current fielded technology, better protect the warfighter, and consid-

erably increase situational awareness by incorporating data obtained into current

Command, Control, and Communication Systems” [25]. This application of biolog-

ical principals to the information systems computational domain has been coined

“Bioinformatics”. As components of a DAIS, stimuli is provided via constant en-

vironmental measurements. As stimuli, measurements are determined to be self or

non-self and evoke a sensor response proportional to a dynamic affinity “match”

score. A match score is the determination of how closely a stimulus resembles self

or non-self, while affinity refers to the threshold that must be reached in order to

generate a biological response (warning) indicating that a non-self stimulus has

been detected. On the surface, the process seems quite simple. However, “to pro-

cess/store/analyze signals acquired from multiple physical sensors, hybrid systems

with flexible and adaptable artificial intelligence are needed” [1]. Genetic Algorithms

(GAs) provide the evolutionary ability to adapt to new environments and play a key

role in the discovery of patterns to categorize signals in noisy environments. Figure

1 illustrates the complexity of interactions between multiple sensors and the need

for “smart” algorithms to classify stimuli.

Real-time sensors have the potential to produce an extremely large amount of

data about elements detected in the environment. These data must be classified as

quickly as possible to provide adequate warning when chemical/biological elements

are present. Figure 2 illustrates the process of “intelligent bio-inspired signal pro-

cessing.” Note the roles that pre-processing feature extraction and data fusion play

in the decision-making loop.

1.1.1 Electronic Nose Research. Mammalian olfactory systems are capa-

ble of distinguishing between millions of different odors resulting in instantaneous

recognition of multiple odor sources [10]. The mapping of biological principles in-

2



Figure 1 A Multidisciplinary Biotechnology System [1]

volved with odor recognition to the computational domain results in a system able to

provide comparable, albeit limited, odor classification. Research in this “olfactory

science” area is being undertaken by many government agencies and universities.

Caltech’s Microsystems Research Laboratory is conducting such research with the

goal attaining an “understanding of biological olfaction and the construction of a

silicon ‘nose on a chip’” [10]. Applications of this technology include [10]:

• Chemical Analysis

• Environmental Monitoring

• Food Inspection

• Land Mine Detection

• Airport Luggage Inspection

3
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Figure 2 Bio-Inspired Signal Processing [1]

• Emission Control/Enforcement

• Narcotic Detection

E-nose realization involves three main research thrusts: (1) sensor technologies,

(2) signal processing, and (3) classification methods. This thesis serves to comple-

ment the third area of study by providing an alternate and/or complementary odor

classification method.

1.1.2 Sponsorship. General research sponsorship is provided by the Air

Force Research Laboratory (AFRL), Sensors Directorate, under the guidance of Dr.

Robert Ewing.

1.1.3 E-nose Biological Inspiration. As previously mentioned, biological

inspiration for the e-nose is derived from mammalian olfactory systems. Biological

olfactory systems consist of thousands of individual sensors located in the epithelium

(10,000 in humans, 100,000 in dogs). At any given time, roughly 25% of these sensors

are firing in response to stimuli. Sensors are tied to olfactory neurons that eventually

transmit their signals to the olfactory cortex in the brain. Presented with these

signals, the brain, then performs odor classification and recognition [10]. Research

at Caltech currently models this function of the olfactory cortex via an artificial

4
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neural network; however, an AIS could be used to complement the classification

process.

1.1.4 Feature Extraction and Feature Subset Selection. As illustrated in

Figure 2, stimuli feature extraction is a key component in signal processing. The

number of features that can be extracted by current sensors is limited only by the

complexity of the given hardware. Each feature extracted directly increases the

dimensionality of the classification process, providing additional information about

the stimuli. The extraction of features that can be used to efficiently represent and

classify stimuli is critical to the success of the DAIS. The goal is to determine the

smallest feature subset necessary for accurate classification. Most chemical sensors

produce a Raman spectra plot, based upon the reactance of the chemical to different

wavelengths of the electromagnetic spectrum resulting in an intensity vs. wavelength

plot. There are theoretically an infinite number of features that may be extracted

from such a plot. In addition, independent variables such as temperature, humidity,

wind direction, and chemical intensity may be included in the resulting chemical

feature set. Given these many variables, the Genetic Rule and Classifier Construc-

tion Environment (GRaCCE) program presented in [56] and parallelized in [39] (as

pGRaCCE) is used to determine the best feature subset for classification and use

within the DAIS.

1.2 Research Goals and Objectives

The increasing threat of biological warfare facing today’s military forces is an

area of concern for all military members. As such, maintaining situational aware-

ness of environmental conditions is the first step in preventing a successful bio-

logical attack. The research goal is to develop a computational framework for a

distributed sensor network capable of providing early warning in the event of a

chemical/biological attack. In order to accomplish this goal, the following three

objectives are addressed:

5



1. Analyze the performance of pGRaCCE on a real-world data set

2. Analyze the performance of a parallel implementation of J. J. Grefenstette’s

genetic algorithm program Genesis [36] and its ability to evolve antibodies

capable of classifying multiple variations of real-world toxic chemicals

3. Design,implement, and test a basic DAIS that models a real-world network of

sensors capable of classifying chemical spectra and producing warnings when

non-self chemicals are present

1.3 Approach

The phased approach taken focuses on feature subset selection, the evolution

of antibodies, and the development of a representative DAIS that uses them. Design,

analysis, and testing takes place in three phases:

Phase I: Analyze the performance of pGRaCCE against multiple real-world data

sets

Phase II: Analyze the ability of parallelized Genesis to evolve antibodies capable

of classifying a given subset of the real-world data used in Phase I, given the

feature subsets produced in Phase I.

Phase III: Design, implement, test, and evaluate the performance of a DAIS capa-

ble of producing warnings when the items from the data subsets in Phase II

are present.

1.4 Software Design Process

Design and implementation of software systems necessitates a procedure that

takes a top-down approach that starts with the problem statement and ends with a

fully implemented system. This process requires iterative application of the following

five steps until the system performs as designed [53]:
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1. Define/analyze problem domain requirements, including partial operational

specification over input and output domains. Use symbolic notation whenever

possible to simplify transition between steps.

2. Choose an algorithm domain specification strategy based upon known models

in current research.

3. Evolve a general solution design specification (algorithmic, iterative, or re-

cursive) and an operational design specification using algebraic or symbolic

notation. Extend notation specified in previous step. Specialize the algorithm

template with the problem domain.

• Instantiate problem design specification within selected algorithmic method

through problem domain data structures

• Algorithm design templates and design specifications are developed and

imported to support the top-down design process

4. Refine solution design recursively to low-level design by incorporation addi-

tional data structures and operations as required to create a refined algorithmic

design template.

5. Map low-level design to selected (compiler) language and reusable components.

1.5 Assumptions

In order to reasonably limit the scope of discussion, it is assumed the reader

has a general knowledge of the following subjects:

1. Computer Engineering and Computer Science, to include: parallel and dis-

tributed computing, evolutionary computing, computer architectures, com-

puter operating systems, computer programming, general algorithms and com-

plexity.

2. Probability and statistics
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3. Basic biological concepts, including: immunological functions, vaccination,

DNA replication and operations

1.6 Risks and Concerns

The largest risk to success of this research effort is the broad scope of subjects

addressed. In order to focus research efforts on relevant issues, only the high interest

topics are addressed.

1.7 Thesis Outline

This thesis consists of seven chapters. This chapter provides a basic intro-

duction to the thesis research topic, to include an overview of the problem domain,

research goals, associated objectives, assumptions, risks, and overall layout of the

thesis. Chapter 2 focuses on historical perspective, problem domain models, and

possible algorithm domains for the solution, statistical techniques, and software

engineering approaches. Chapter 3 presents a high-level design of the systems in

question and maps the problem domain to appropriate structures. Chapter 4 dis-

cusses the low-level implementation details of the system. Chapter 5 gives a detailed

justification of the experimental design process and presents the overall design of

experiments. Chapter 6 presents the results and an analysis of experiments. Finally,

chapter 7 presents conclusions and recommendations derived from the research effort.
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II. BACKGROUND

This chapter presents supplemental background knowledge to enhance the devel-

opment of the DAIS. Due to the broad scope of disciplines discussed, the relevant

characteristics of genetic algorithms, artificial immune systems, parallel computing,

sensors, and data mining, are presented. Each section is preceded by a brief history

of previous associated research in each respective area.

2.1 Genetic Algorithms

Genetic algorithms provide the evolutionary ability to improve DAIS perfor-

mance and classification ability. One of the first descriptions of the use of an evo-

lutionary processes for computer problem solving appeared in articles by Friedberg

in 1958 [32] and 1959 [33]. “This work represented some of the early work in ma-

chine learning and described the use of an evolutionary algorithm for automatic

programming, i.e. the task of finding a program that calculates a given input-output

function” [21]. Many studies sprung from this paper and others by Bremermann

in 1962 [9], Box in 1957 [7], and Box et. al in 1969 [8]. As is the case with many

ground-breaking research ideas, these early studies were reviewed with skepticism.

However, by the mid-1960’s the bases for the three main focuses of evolutionary com-

putation were clearly established [21]. These three main focuses were: Evolutionary

Programming (EP), Evolutionary Strategies (ES), and Genetic Algorithms (GAs).

GAs are used exclusively as a process for search space exploration and exploitation

(E & E), and are therefore examined in detail. Further details concerning EP and

ES are in Appendix A-1.

GAs were first conceptualized by Holland in many of his papers written in the

early 1960’s (e.g. see [45]). Holland set out to understand the underlying princi-

ples of adaptive systems–systems capable of responding to interactions with their

environment through self-modification. By the mid-1960’s, Holland’s ideas began
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to take computational form in thesis work of several of his PhD students. The dis-

tinctive feature of these theses was the successful use of competition and innovation

to provide the ability to dynamically respond to unanticipated events and changing

environments.

2.1.1 Properties. All basic instances of GAs share a number of common

properties [4]:

• All instances utilize the collective learning process of a population of individu-

als. Each individual represents a search point in the space of potential solutions

to a given problem.

• Individuals are used to generate descendant individuals via a randomized pro-

cess that models organic mutation (subsection 2.1.3.2) and crossover/recombination

(subsection 2.1.3.3).

• A measure of quality, or fitness is assigned to individuals in order to improve

the likelihood of choosing (selection, subsection 2.1.3.1) quality individuals for

reproduction and transference to the next generation. Highly fit individuals are

more likely to reproduce than individuals that are relatively worse in fitness.

2.1.2 Representation. There are many way to represent individuals within

the search space. Representation typically mirrors the solution space as closely

as possible in order to simplify execution. Real-valued, integer-valued, and binary

vectors are commonly used in this process. Individual vector sizes vary based the

dimensionality, or number of decision variables within the search space. For instance,

a four-featured binary individual would be used to represent a binary search space

in four dimensions with the range of possible values of “0000” to “1111”.

Individual structures are often referred to as chromosomes, they are the geno-

types that are manipulated by the GA. If individuals are represented by binary

strings (as above), the value of each locus on the bitstring is referred to as an al-
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lele. Sometimes the values of each loci are called genes ; while other times genes are

combinations of alleles that have some phenotypical meaning, such as parameters

[24].

2.1.3 Operators. The genetic operators, selection, mutation, and crossover,

are central to GA execution and serve to distinguish them from other evolutionary

computation techniques. Each operator is discussed in greater detail in the following

subsections.

2.1.3.1 Selection. “The primary objective of the selection operator is

to emphasize better solutions in a population” [23]. In short, the selection operator

determines which chromosomes continue on to the next generation. All selection

techniques (except random selection) depend upon some measure of relative fitness

for each chromosome. The central idea is that individuals that are more highly fit

have a higher probability of selection. Symbolically, the basic selection operator can

be represented by the following pseudocode. The fitness function is represented by

F(t) [23].

Input: µ : parent solutions

λ : offspring solutions

q : selection pressure parameter

P (t) ∈ Iµ : population at iteration t

P ′(t) ∈ Iλ : offspring population at t to be carried on to iteration t+ 1

Output: P ′′(t) = {a′′1, a′′2, ..., a′′µ} ∈ Iµ

1. for i← 1 to µ

a′′(t) = {a′′i(t)← sselection(P (t), P
′(t),F(t), q);

2. return({a′′1, a′′2, ..., a′′µ} ∈ Iµ);
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The main types of selection operators include:

Proportional Selection: the expected number of copies a solution receives is as-

signed proportionally to its fitness. Thus, a solution having twice the fitness

of another solution receives twice as many copies. This type of selection is

also known as roulette wheel selection, because if the population resided on a

roulette wheel, each individual would occupy an area proportional to its fit-

ness. Then, the roulette wheel is spun as many times as the population size

and individuals are selection based upon the result of each spin [23]. This can

result in scaling problems if a population contains a solution with exceptionally

better fitness than the rest of the population. This “supersolution” occupies

most of the roulette wheel area, resulting in convergence to a possibly subop-

timal solution in the supersolution region of the search space. More specifics

concerning the many variations of proportional selection can be found in [37]

and [5]

Tournament Selection: the scaling problem discussed above is eliminated by play-

ing “tournaments” among a specified number of individuals according to their

fitness functions. For example, in a three-way tournament, three individuals

are deterministically or randomly chosen from the parent population. The

individual with the highest fitness among the three is selected. See [6] for a

detailed analysis of this selection type.

Rank Selection: similar to proportional selection, except that solutions are ranked

according to descending or ascending fitness. Thereafter, individuals are se-

lected according to their ranked fitness value. There are a number of different

schemes that are based on the ranking concept, see [55].
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Boltzmann Selection: a modified fitness is assigned to each solution based on a

Boltzmann probability distribution (eq. 1):

Fi =
1

1 + exp(Fi
T
)

(1)

where T is a parameter analogous to the temperature term in the Boltzmann

distribution. T is reduced by a predefined measure during each iteration. Since

T is initially large, solutions are all just as likely to be selected; but, as the

number of iterations increases, T decreases and only good solutions have a

high likelihood of being selected.

2.1.3.2 Mutation. The mutation operator models the erroneous repli-

cation of individuals that sometimes takes place during biological reproduction. Typ-

ically, small errors are introduced to reduce the likelihood of moving individuals to

drastically different parts of the search space.

2.1.3.3 Crossover/Recombination. Crossover and recombination are

different terms that represent the same basic concept: the exchange of information

between two or more existing individuals. For example, consider the following binary

string: 10100011101011. Also, assume that the following is also a binary string,

where x = 1 and y = 0: xyxyyxxxyxyxyx. A one-point crossover after the 5th allele

value would look like [73]:

10100∨011101011
xyxyy∨xxxyxyxyx

and after swapping the segments, the resulting offspring would become:

xyxyy011101011 and 10100xxxyxyxyx

2.1.4 Basic GA Algorithm. All basic instances of GAs follow the same

algorithmic template. In [4], Bäck defined a symbolic framework for defining GA
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operators and components. Using this framework, I denotes an arbitrary space of

individuals a ∈ I and F : I → < to denote a real-valued fitness function of in-

dividuals. Using µ and λ to denote parent and offspring population sizes where

P (t) = (a1(t), ..., aµ(t)) ∈ Iu characterizes a populations at generation t. Selection,

mutation, and recombination operators, defined as operators s, m, and r transform

complete populations of individuals over n generations. Formally, these operators

are defined as [4]:

s : Iλ → Iµ

m : IK → Iλ

r : Iµ → IK

These operators typically depend upon additional parameters Θs,Θm, and Θr,

that are characteristic for each operator and the representation individuals.

Additionally, an initialization procedure, ι, generates the first population of

individuals at time t = 0 and evaluates the fitness of each individual. Individuals are

typically initialized in some random fashion in order to start with a population evenly

distributed over the search space; however, individuals may also be initialized a

priori in search space locations known to contain individuals with high fitness levels.

Finally, termination criterion is established to determine when or if the algorithm

should stop. The termination criterion typically stops the algorithm after a specified

number of generations, when relative population fitness scores have not improved by

a specified percentage over a specified number of generations, when a desired fitness

score has been achieved, or any combination of the these.

Having defined the basic components of the GA, they may be combined in a

simple recombination-mutation-selection loop as follows [4] and illustrated in Figure

3:
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Input: µ, λ,Θι,Θr,Θm,Θs

Output: a∗, the best individual found during the run, or

P ∗, the best population found during the run.

1. t← 0;

2. P (t)← initialize(µ)

3. while (ι(P (t),Θι) 6= true) do

4. P ′(t)← recombine (P (t),Θr);

5. P ′′(t)← mutate(P ′(t),Θm);

6. F(t)← evaluate(P ′′(t), λ);

7. P (t+ 1)← select(P ′′(t), F (t), µ,Θs);

8. t← t+ 1;

9. od

A description of each line follows:

Line 1: Set starting time t = 0

Line 2: Initialize the parent population µ

Line 3: Enter while loop, with termination criterion ι according to termination

parameters Θι

Line 4: Recombine current population according to parameters Θr

Line 5: Mutate recombined population according to parameters Θm

Line 6: Evaluate mutated population to determine fitness F(t)

Line 7: Select µ individuals from mutated population according to their fitness

values and selection parameters Θs

Line 8: Increment the current time by one

Line 9: Return to Line 3
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Figure 3 Flowchart for the Conventional GA [51]
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2.2 Artificial Immune Systems

The AIS as a method of classification has been studied by many researchers.

Parallels between immunology and classifier systems were noted by [26] as early as

1986. More recently, Forrest [27, 28], Dasgupta [18, 16] , De Jong [22], Lamont [54],

and many others have expanded upon the topic, resulting in hundreds of publications

and international conferences on the subject. Given the diversity of immune system

concepts available for exploitation, the many possible applications include computer

security [27], virus detection [30], UNIX process monitoring [29], anomaly detection

in time series data [19], fault diagnosis [49], and chemical spectra recognition [18].

The last application (chemical spectra recognition) is the focus of this research.

Discussion of the AIS begins with a summary of the biological immune system and

is followed by its application to AIS computing concepts.

2.2.1 Biological Immune System. The biological immune system (BIS) de-

fends the body against harmful diseases and infections. It is capable of recognizing

virtually any foreign cell and destroying it. In order to do this, the BIS must distin-

guish between molecules and cells that belong to the body and those that do not.

This concept of self from the dangerous non-self is the basis of all immune system

operations. The exact possible number of foreign body invaders is unknown, but

it has been estimated to be in excess of 1016 [47]. These foreign proteins must be

distinguished from an estimated 105 different proteins of self, and recognition must

be highly specific [67].

The architecture of the biological immune system is multi-layered, with de-

fenses at many levels. The first and outermost layer is the skin. A second barrier

is the physiological, where temperature and pH provide inappropriate living con-

ditions for most foreign invaders (pathogens). After pathogens have circumvented

these first two layers of defense, they must battle with the third and final layer, the

innate immune system and adaptive immune response. The innate immune system
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uses macrophages to ingest extracellular debris and clear the system of other foreign

invaders. Adaptive immune response is the most complicated defense mechanism.

Response is “adaptive” in that it is capable of identifying and eradicating pathogens

that have previously never been encountered. This requires interactions between

many different types of cells and molecules [67]. Figure 4 demonstrates the layered

immunological responses in the BIS. The adaptive immune system consists primar-

Figure 4 Layered Immunological Response [43]

ily of white blood cells, called lymphocytes. Lymphocytes circulate throughout the
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body and identify molecules that exhibit non-self patterns while ignoring molecules

that resemble self. For this reason, lymphocytes are considered negative detectors.

Detection and recognition of non-self occurs when lymphocyte receptors bond with

pathogen receptors that cover the surface of each molecule. The more closely the

receptors on each molecule match, the higher the electrostatic bond between them

(or, the higher the affinity). All detection is approximate; that is, individual lympho-

cytes bond to several different kinds of structurally related pathogens with a certain

affinity [67]. Figure 5 illustrates the process of detection between complementary

antigens and detectors. Note that some detectors do not form a chemical bond due

to structural differences, while detectors with similar structures bond readily.

Figure 5 The Detection Process as a Function of Detector Affinity[42]

The ability to detect most pathogens requires a large diversity of lymphocyte

receptors. These receptors are generated through a genetic process that introduces

a huge amount of randomness. Given this random process, the potential exists for

creation of lymphocytes that detect self. Lymphocytes that detect self are eliminated

through a process called clonal deletion which takes place in the thymus. Almost

all self-proteins in the biological body repeatedly pass through the thymus. Any
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developing lymphocytes that bond to self-cells are eliminated before introducing

them into the body [67].

There are never enough lymphocytes in the body to provide complete coverage

of all possible pathogens. The immune systems has several mechanisms in place to

mitigate this issue. These mechanisms make the immune system more dynamic and

specific, improving classification and adaptation capabilities. The process is made

dynamic through the continual circulation of short-lived lymphocytes throughout

the body. The total lymphocyte population then turns-over every few days, replaced

by younger randomly generated lymphocytes. This improves the immune system’s

ability to protect against diverse pathogens over a longer period of time; the longer

a pathogen is in the body, the more likely it is to be detected by a wide array of

lymphocytes [67].

Immune specificity is provided by an established immune learning and mem-

ory. When a pathogen that has never been encountered is detected, the immune

system “learns” the structure of this specific pathogen and triggers a response that

evolves a set of lymphocytes with a high affinity for that pathogen (called affin-

ity maturation). These high-affinity lymphocytes are stimulated to reproduce in

great numbers, and the resulting lymphocytes have a large number of mutations,

effectively protecting the body from variants of the detected pathogen. Speed of

response to previously encountered pathogens is then improved due to an acquired

immune memory consisting of previously adapted lymphocytes [67].

2.2.1.1 BIS Characteristics. The key features of the biological im-

mune system which provide several important aspects to the field of information

processing may be summarized under the following terms of computation [17]:

Recognition: the immune system can recognize and classify different patterns and

generate selective responses. Recognition is achieved by inter-cellular binding–

the extent of this binding is determined by molecular shape and electrostatic
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charge. Self/non-self discrimination is one of the main tasks the immune system

solves during the process of recognition.

Feature Extraction: Antigen Presenting Cells (APCs) interpret the antigenic con-

text and extract the features, by processing and presenting antigenic peptides

on its surface. Each APC serves as a filter and a lens: a filter that destroys

molecular noise, and a lens that focuses the attention of the lymphocyte -

receptors.

Diversity: the BIS uses combinatorics (partly by a genetic process) for generating

a diverse set of lymphocyte receptors to ensure that at least some lymphocytes

can bind to any given (known or unknown) antigen.

Learning: the BIS “learns”, by experience, the structure of a specific antigen. The

system makes changes in lymphocyte concentration via clonal expansion during

the primary response (the first encounter of the antigen).

Memory: when lymphocytes are activated, a few of each kind become special mem-

ory cells which are content-addressable. The longevity of these cells is an in-

herent mechanism of the dynamic process and requires continued stimulation

by residual antigens. The system maintains an ideal balance between economy

and performance by maintaining minimal, but sufficient, memory of the past.

Distributed Detection: the immune system is inherently distributed. Lympho-

cytes circulate throughout the body and organs and encounter various antigens,

stimulating specific immune responses.

Self-regulation: the mechanisms of immune response are not controlled by any one

central organ and can be either local or systemic, depending on the route and

property of the antigenic challenge.

Threshold Mechanism: immune response takes place only above a certain match-

ing threshold, related to the strength of chemical binding.
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Co-stimulation: regulates the activation of B-cells, while a second signal (from

helper T-cells) ensures tolerance and distinguishes between harmful invaders

or false alarm.

Dynamic Protection: clonal expansion and somatic hyper-mutation allow gener-

ation of high-affinity immune cells (called affinity maturation). This process

balances exploration versus exploitation (E & E) in adaptive immunity and

increases the coverage provided by the immune system over time.

Probabilistic Detection: the cross reaction in immune response is a stochastic

process, where detection is approximate. Lymphocytes can bind with several

different kinds of structurally related antigens.

To summarize, the biological immune system has many features that are desir-

able from the standpoint of computer science. The BIS is massively parallel and the

its functions are truly distributed. Each component is individually disposable, yet

the system as a whole is still robust. Previously detected infections are eliminated

quickly, while new or novel infections illicit an autonomous response that improves

classification capability and overall system performance [67].

2.2.2 Mapping the BIS to the AIS. Artificial immune systems are a compu-

tational instantiation of the biological characteristics of the BIS described in section

2.2.1.1. To be thorough, there exists a one-to-one mapping for each BIS characteristic

as illustrated below:

Recognition: AIS’s recognize and classify different patterns and generate selec-

tive responses (or warnings, as presented here) . Recognition is achieved by

detectors–the extent of which is a result of a specified detector matching func-

tion. This results in self/non-self discrimination when detectors are presented

with sensory input.

Feature Extraction: Detectors focus attention on the features of system activity

that represent non-self by continually improving classification ability.
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Diversity: the AIS uses computational combinatorics to generate a diverse set de-

tectors to ensure that known and unknown antigens can be classified.

Learning: the AIS improves classification capabilities through exposure to items

representative of self and non-self. The system makes changes in detector con-

centration via clonal expansion and improves individual detectors via affinity

maturation.

Memory: when detectors are activated, a few become special memory cells that

remain in the system for a specified period of time. The longevity of detectors

is a mechanism of the dynamic AIS process and requires continued stimulation

by non-self. This results in an balance between economy and performance by

maintaining minimal, but sufficient, memory of non-self.

Distributed Detection: the AIS inherently distributed by design. Detectors at

different nodes come into contact with non-self, stimulating specific immune

responses throughout the entire system.

Self-regulation: AIS operations are not controlled by any one central node.

Threshold Mechanism: Detector activation takes place only above a specified

matching threshold, related to the strength of the match between the detector

and non-self.

Co-stimulation: regulates the activation of detectors, based upon the activation

of other detectors to similar antigens.

Dynamic Protection: clonal expansion and somatic hyper-mutation allow gener-

ation of high-affinity detectors. This balances E & E, increasing the coverage

provided by detectors over time.

Probabilistic Detection: Non-self detection is approximate, a product of the gen-

erality or specificity of the chosen matching function.

23







crossover, selection and mutation on each processor. Also note that the standard

deviation (the bottom dotted line) is very small throughout program execution.

Figure 42 Parallel GA Fitness for 2-16 Processors

Figure 44 demonstrates the speedup of the parallel GA. Note that fitness is

steadily decreasing until it reaches 16 processors. This is most likely due to the

increasing startup time required as the number of processors increases. However,

note that all values are relatively small, given the that a linear speedup would have

produced a value of 16 for 16 processors, and this implementation produces a value

close to 1.0.

Efficiency (Figure 45) gradually declines as the number of processors is in-

creased; again, most likely due to increased startup and termination overhead.

High system effectiveness is goal of any system. In this case, effectiveness is

equal the ratio of max fitness obtained by n processors to the max fitness possible

(in this case, 255). Figure 46 demonstrates that increasing the number of proces-
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Figure 43 Maximum Parallel GA Fitness for 2-16 Processors

Figure 44 Parallel GA Speedup for 2-16 Processors
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Figure 45 Parallel GA Efficiency for 2-16 Processors

sors, does not improve the overall effectiveness of the algorithm. The sharp dip in

performance at 14 processors is likely due to errant variables during startup.

6.2 AIS Results & Analysis

The AIS design of experiments sought to discover good variable values to

achieve a high Detection Rate (DR). This was an iterative process in which values

were discovered at each step to be used in the following test. All figures presented

include the average detection rate and False Alarm Rate (FAR) for different values

of the given variable. If appropriate, error bars are included in the charts; however,

most variance values were so low that it is not possible to visibly see the degree of

variance.

6.2.1 Antibody Size. AIS Test 1 sought to determine the best antibody size

for detection of the antigens described in Subsection 3.1.2.6. This was chosen as the

first test due to high impact that the size of antibodies has upon system performance
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Figure 46 Parallel GA Effectiveness for 2-16 Processors

and the detection rate. An antibody that is very small relative to the signature to

be classified is too general to distinguish between many of the different possible

measurement signatures; while an antigen that is close to the size of the signature

may be too specific to produce induce a match. An antibody with a balance between

generality and specificity is ideal. Figure 47 indicates the detection rate and false

alarm rate for antibodies of size 16 to 64. The measurements being classified were

64 bits in length. The figure indicates that an antibody length of 16 achieves good

results and is used in Test 2. Measurement variance was very small ( 0.005) and is

not visible in the figure.

6.2.2 Match Threshold. AIS Test 2 tested the impact of the match thresh-

old on detection rate. The match threshold determines the point at which a sensor

determines that a measurement is non-self and sends a warning to the network node.

This value is the first layer of detection as the warning is then checked for costimula-

tion at the network node. The value should be as low as possible in order to prevent
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Figure 47 AIS Test 1: Antibody Size Vs. Effectiveness

a measurement that is anomalous from being classified as benign (a False Negative).

Figure 48 tests values from 0.9 to 0.4. As illustrated, values higher than 0.6 result

in misclassification by producing False Negatives for nearly all measurements. Val-

ues less than 0.6 do not significantly improve the detection rate. Based upon these

results, a value of 0.6 is the best choice for match threshold. Values lower than 0.6

may also produce unnecessary False Positives, thereby lowering the detection rate.

6.2.3 Costimulation Threshold. The costimulation threshold sets the point

at which a measurement is validated as self/non-self, producing a warning at the

Network node. The costimulation process compares a current warning to warnings

previously received to reduce the likelihood that a single False Positive may prop-

agate to the Global node as a valid warning. AIS Test 3 tested values of 0.9 to

0.7 to determine the best costimulation threshold. Results are shown in Figure 49.

As shown by the figure, the detection rate improves marginally as the threshold is

increased. A high costimulation threshold is warranted in order to reduce the likeli-

hood of false positives. For this reason, a costimulation threshold of 0.9 was chosen

for the next 4 tests.
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Figure 48 AIS Test 2: Match Threshold Vs. Effectiveness

Figure 49 AIS Test 3: Costimulation Threshold Vs. Effectiveness
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6.2.4 Number of Antibodies. AIS Test 4 varied the number of antibodies

initially introduced via negative selection. Values of 10, 25, 50, and 100 were tested

producing different values for the Detection Rate. Figure 50 shows the results of

this test. As shown, all four values produced similar results. There was, however,

a marginal decrease in effective rate from 25 to 100 antibodies. This is likely due

to false positives produced when benign measurements manage to produce a match

value high enough to exceed the threshold. The more antibodies in the system,

the higher the likelihood of a match between any measurement and an antibody.

Another factor to consider when choosing the number of antibodies is the impact of

more antibodies on AIS performance. Due to the high algorithmic complexity of the

negative selection, match, and costimulation operations, a high number of antibodies

dramatically decreases system performance. Therefore, it is beneficial to choose the

lowest number of antibodies necessary to achieve a high detection rate. A value of

10 is best value in this case.

Figure 50 AIS Test 4: Number of Antibodies Vs. Effectiveness

6.2.5 Number of Self. The number of self cells impacts the AIS’s ability

to create antibodies quickly via negative selection. The higher the number of self,
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the more difficult it is for the system create an antibody that does not match self.

This directly impacts total system runtime, primarily when antibodies are generated

during node initialization and during clonal selection when additional antibodies are

created to match a given set of antigens. Figure 51 demonstrates the results of AIS

Test 5. In this test, the number of self was varied from 500 to 4000. As expected,

when there are a higher number of self cells, the system has a harder time finding good

antibodies, negatively impacting the detection rate. The choice for number of self

cells is arbitrary and depends upon the associated classification application. In the

case of spectra recognition, a limited number of self cells would be introduced in order

to represent normal and benign environmental measurements. Self measurements

would likely tend to cluster in a small area and could be reasonably represented by

a small sample of that area. For this reason, a value of 1000 self cells is chosen.

Figure 51 AIS Test 5: Number of Self Vs. Effectiveness
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6.2.6 Number of Antigen Injects. The number of possible toxic chemical

signatures directly effects the detection rate more than any other variable. Figure 52

demonstrates the impact of increasing the number of possible antigen measurements

on detection rate. As expected, introducing additional varying antigens to a set of

measurements dramatically decreases the detection rate. This is likely due to the

AIS’s tendency to slowly respond to new antigens, requiring time to build antibodies

that detect these antigens. When only one type of antigen is introduced periodically,

the system is able to quickly detect and adapt antibodies to improve detection;

however, when up to 20 different antigens are randomly presented to the system,

those antigens that have not yet been encountered are likely to go undetected until

they are present in the system long enough for clonal selection and affinity maturation

processes to produce appropriate antibodies.

Figure 52 AIS Test 6: Number of Antigen Injects Vs. Effectiveness

6.2.7 Total Number of Measurements. The number of measurements vari-

able determines how many measurements each sensor compares to its local antibodies

in search of a match. At each time-step, the measurement operation returns ei-

ther a random measurement (self) signature or a signature that represents a known
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antigen. The percentage of measurements that are antigens is determined by the

“ANTIGENPERCENTAGE” variable. For these tests, ANTIGENPERCENTAGE

was set to 0.1; roughly 10% of the measurements returned antigen signatures. In-

creasing the total number of measurements introduces a higher number of anomalous

measurements to the system; however, as Figure 53 indicates, the system was still

able to maintain a high detection rate over a range of 500 to 5000 measurements per

sensor.

Figure 53 AIS Test 7: Number of Measurements per Sensor Vs. Effectiveness

6.2.8 Summary of AIS Results. After completion of AIS Tests 1 through

7, the following can be ascertained:

1. The best antibody size for detection of 64-bit signatures is 16-bits. This results

in an average Detection Rate of 96%.

2. The best match threshold is 0.6. This results in an average Detection Rate of

95%.
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3. The costimulation threshold may be chosen to be anywhere in a range of 0.5

to 0.9; however, in order to reduce the likelihood of false positives, a value at

the higher end of this range returns good results.

4. The number of antibodies chosen for initialization at startup directly impacts

system performance and time of execution. It is beneficial to choose a num-

ber low enough to produce a high detection rate, without introducing false

negatives.

5. The number of self cells chosen for comparison during the negative selection

operation should be as low as possible, without impacting the detection rate.

A high value impacts system performance due to the direct impact on system

performance. The value chosen should be representative of the actual number

of self cells in the real system.

6. The number of antigen injects directly impacts the detection rate more than

any other variable. A high number of injects significantly reduces the detection

rate. This value should also be chosen to reflect the number of possible anoma-

lous signatures that could be introduced in a real-time AIS environment. For

example, if the operator wishes to only detect three different antigens, only

three injects should be introduced.

7. Taking more measurements per sensor slightly lowers the overall system detec-

tion rate; however, the system still returns relatively good detection numbers.

6.3 pGRaCCE Results & Analysis

Results shown in Figure 54 and Figure 55 demonstrate the high cost of in-

terprocessor communications during execution. Note the gradually improving trend

in execution times with an increased number of processors in the 1000 generation

instances versus a gradually worse time in the 10 generation instances. This is due

to a low setup time (ts) relative to the total time of execution (Ts). The improving

trend in the 1000 generation instances also reflects the benefit of pGRaCCE task
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decomposition by allowing more processors to focus on classifying a subset of the

total data set.

Note that standard deviation is quite high in some of the Aspen runs. After

checking with other system users, it was determined that other students were using

Aspen at the same time, increasing processor utilization and adversely affecting

execution times.

Figure 54 pGRaCCE Execution Times for 10 gen

pGRaCCE speedup results for 1000 generation tests are shown in Figure 56.

The 1000 generation experiments produced gradually improving speedup, though it

seemed to level out as the number of processors approached 5. In all cases, speedup

was sub-linear, never really approaching the linear speedup line. The speedup results

for the 10 generation tests (Figure 57) did not even approach a value of 1.0, and

actually gradually declined as the number of processors increased. This was expected

due to increasing execution times for that number of generations.
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Figure 55 pGRaCCE Execution Times for 1000 gen

Finally, Figure 58 demonstrates the low efficiency of all 1000 generation exper-

iments on Poly and Aspen. Again, the low computation times relative to communi-

cations times produced efficiencies commensurate with Figure 56 results.

6.4 Summary

As expected, the GA was able to aptly evolve antibodies capable of detecting

Acetone and Methanol. Results of experiments demonstrated the ability of a GA

to transform an initial random population of random antibodies to one capable of

detecting the desired elements.

After determination of the best variable settings for the AIS algorithm, the

system performed admirably. With no false alarms and a high detection rate, the

system may be used to perform reliable self/non-self discrimination with similar data

sets encoded using the schema in subsection 3.1.2.6.
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Figure 56 pGRaCCE Speedup for 1000 gen

The pGRaCCE algorithm determined the best set of features to properly clas-

sify the TH513 data set. Increasing the number of processors does improve efficiency

when the serial execution time is extremely small. In this case, communications times

nullified any possible benefit of parallelization. However, parallelization may be ben-

eficial in cases of extremely large data sets with many different classes when executed

to greater 1000 generations. Parallel GRaCCE has proven to benefit the proposed

DAIS design. With extremely fast execution times, the algorithm may improve the

ability of a real-world DAIS to detect and classify chemical spectra measurements

as closely to real-time as possible. Though only the TH513 data set was used in this

instance, other data sets may be easily introduced for feature extraction to enhance

the classification ability of other algorithms.

114

a. 

V 
V a. 

A -■ 

3 -■ 

2 -■ 

1 -■ 

Poly Vs Aspen Speedup Comparison 1000 
Generations-TI-1513 Data Set 

2 3 4 
Number of Processors 

Poly 1000 
Gens 

Aspen 
1000 
Gens 
Linear 
Speedup 



Figure 57 pGRaCCE Speedup for 10 gen

Figure 58 pGRaCCE Efficiency for 1000 gen
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VII. CONCLUSIONS AND RECOMMENDATIONS

The overarching research goal was to design a distributed AIS capable of classi-

fying anomalous measurements. This goal was successfully accomplished through

the design and implementation of a system that meets the objectives established in

subsection 1.2:

1. Objective 1: Analyze the performance of pGRaCCE on a real-world

data set: The parallel performance of pGRaCCE on the th513 data set was

assessed (Section 6.3) by collecting multiple parallel metrics and statistics in-

cluding efficiency and speedup. pGRaCCE performed admirably, returning

classification rules that could be used to discriminate between the 5 different

data set classes. When run to less than 1000 generations, the speedup obtained

from parallelization of GRaCCE was extremely small. However, parallelization

became more beneficial when iterating over the data for greater than 1000 gen-

erations.

2. Objective 2: Analyze the performance of a parallel implementation

of Genesis: The serial version of Genesis was successfully parallelized using

MPI constructs. The parallel version was then assessed (Section 6.1.2) to de-

termine its ability to evolve antibodies capable of classifying multiple antigens.

The system proved successful in reaching this goal by evolving generalist anti-

bodies to classify both methanol and acetone signatures with a relatively high

degree of fitness. This version of Genesis could be integrated with the over-

all DAIS design front-end to produce high affinity antibodies and improve the

overall detection rate. Further, when combined with standard AIS operations

such as clonal selection and affinity maturation, even better performance may

be realized.

3. Objective 3: Design,implement, and test a basic DAIS that models a

real-world network of sensors capable of classifying chemical spectra
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and producing warnings when non-self chemicals are present: A

DAIS was designed (Section 3.1.2) and implemented (Section 4.1.1) in Java

using mpiJava constructs for collective communications. The implemented

system simulated a possible real-world DAIS consisting of multiple sensors

that detect nearby contaminants when present. Good variables were obtained

(Section 6.2) through an iterative testing process (Section 5.4) designed to

focus on individual variables at each stage. The system returned an average

greater than 90% detection rate with a 0% false alarm rate.

7.1 Conclusions

Genetic Algorithms. Genetic algorithms may be used to com-

plement the development of pattern recognition systems. The biological immune

system was used as a model for implementation of a system that includes opera-

tors and constructs capable of recognizing anomalous chemicals by their raw binary

data signature. The proposed GA solution used ideas pioneered by Forrest, et. al.

[30, 67, 31] to integrate AIS concepts with the GA domain, solving a difficult prob-

lem within the NP-complete problem domain. The simple GA was able to discover

good antibodies in an extremely large search space (O(2n)).

Artificial Immune Systems. The AIS model provides constructs

for implementation of system capable of chemical classification. Biological operators

such as clonal selection, affinity maturation, and costimulation play an integral role

in the performance of the AIS. These operators in are utilized in varying capacities

in an effort to simulate natural immune processes. The proposed DAIS does not

always find the best solution for all similar NP-complete problems (no free lunch

theorem); however, by iteratively evaluating the impact of individual AIS param-

eters, it is possible to identify the approach that provides good results for other

problem domains.

117



Data Mining and Feature Subset Selection. Data mining and

feature subset selection can be leveraged by using GRaCCE to reduce the dimen-

sionality of the GA and AIS search spaces, resulting in improved performance.

Parallel Processing. Parallelization of GA and AIS operations

improves performance via task decomposition results in a broader coverage of the

problem domain and reduction in execution times.

7.2 Recommendations

Future work in this area may include the following areas of research:

• Real-time incorporation of pGRaCCE and Genesis into the DAIS algorithm to

iteratively improve the detection rate

• Incorporation of real-world “Electronic Nose” measurement data may provide

a more realistic understanding of performance in a fully implemented DAIS

that uses systems on a chip (SOC) technology and wireless communications

• The addition of load balancing principles in the parallel Genesis and GRaCCE

implementations to improve classification speed of large and high dimensional

data sets

7.3 Summary

A strategy for the design and implementation of an AIS for robust chemical

spectra classification has been presented and analyzed. This strategy incorporates

concepts from many different disciplines. Evolutionary, biological, and immunolog-

ical principles are mapped to the computational domain, providing the basis for

genetic algorithm and artificial immune system operations. Parallel and distributed

computing concepts are implemented throughout to capitalize upon the benefits of

task and data decomposition. Data mining and feature subset selection principles
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are also incorporated to improve system performance. The synthesis of these con-

cepts has enabled the implementation of a distributed AIS that meets the stated

research goal of robust chemical classification. Recommendations presented for fu-

ture research may further improve results and enable the realization of a real-life

system in accordance with the strategy presented herein. This system would require

the design and fabrication of unique hardware sensors, possibly using current or fu-

ture systems on a chip technology. Given the motivation of protecting civilians and

military forces from becoming victims of chemical and biological warfare, the future

of this technology is bright and the applications are limitless.
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APPENDICES

A-1 Evolutionary Algorithms

As a component of the DAIS, genetic algorithms provide the evolutionary abil-

ity to improve system performance and classification ability. One of the first descrip-

tions of the use of an evolutionary processes for computer problem solving appeared

in articles by Friedberg in 1958 [32] and 1959 [33]. “This work represented some of

the early work in machine learning and described the use of an evolutionary algo-

rithm for automatic programming, i.e. the task of finding a program that calculates

a given input-output function” [21]. Many studies sprung from this paper and others

by Bremermann in 1962 [9], Box in 1957 [7], and Box et. al in 1969 [8]. As is the

case with many ground-breaking research ideas, these early studies were reviewed

with skepticism. However, by the mid-1960’s the bases for the three main focuses

of evolutionary computation were clearly established [21]. These three main focuses

were:

Evolutionary Programming (EP): Devised by Lawrence J. Fogel in 1960 while

serving at the National Science Foundation (NSF). “Fogel made the observa-

tion that intelligent behavior requires the ability of an organism to make correct

predictions within its environment, while being able to translate these predic-

tions into a suitable response for a given goal” [63]. This early work focused

on evolving finite-state machines (see Mealy(1955) [57], and Moore(1957) [58])

which provided a generic test-bed for this approach.

Evolutionary Strategies (ES): Pioneered by Bienert, Rechenberg, and Schwefel

at the Hermann Föttinger Institute of the Technical University of Berlin in

1964. The three students were attempting the minimize the total drag of

three-dimensional slender bodies in a turbulent flow, and hit upon the idea

to solve the intractable problem with the help of some kind of robot. This
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“robot” would perform the necessary optimization by successively manipulat-

ing a flexible model positioned at the outlet of the wind tunnel [65]. A robot

was constructed, however, it was only able to manipulate one decision vari-

able at a time, resulting in solution stuck in local minima. A breakthrough

was reached when they decided to switch to small random changes that were

only accepted in the case of improvements. “The interpretation of binomially

distributed changes as mutations and of the decision to step back or not as

selection (on 12 June 1964) was the seed for all further developments leading

to evolution strategies (ESs) as they are known today” [65].

Genetic Algorithms (GAs): First conceptualized by Holland in many of his pa-

pers written in the early 1960’s (e.g. see [45]). Holland set out to understand

the underlying principles of adaptive systems–systems capable of responding

to interactions with their environment through self-modification. By the mid-

1960’s, Holland’s ideas began to take computational form in thesis work of

several of Holland’s PhD students. The distinctive feature of these theses was

the successful use of competition and innovation to provide the ability to dy-

namically respond to unanticipated events and changing environments.
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A-2 Toxic Chemical Mass Spectrum Plots

Figure 59 Mustard Gas Mass Spectra Plot [60]
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Figure 60 Titanium Tetrachloride Spectra Plot [60]

Figure 61 Phosgene Mass Spectra Plot [60]
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Figure 62 Nitric Oxide Mass Spectra Plot [60]

Figure 63 Methane Mass Spectra Plot [60]
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Figure 64 Hydrogen Cyanide Mass Spectra Plot [60]

Figure 65 Hydrochloric Acid Mass Spectra Plot [60]
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Figure 66 Cyanogen Chloride Mass Spectra Plot [60]
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A-3 AIS Source Code Documentation

A

AB_CELL_STIMULATION_PERCENT - percent change in ab stimulation value

AB_EXEC_TIME - time that antibody should stay alive

AB_LENGTH - length of antibody

ACTIVATED - Static variable in class dais.cell

addCell(cell) - Method in class dais.population

addFeature(feature) - Method in class dais.cell

addFeature: add feature to current cell

addFeatureMinMax(int[]) - Method in class dais.feature_map

affinity - Variable in class dais.cell

AFFINITY_CHANGE - Static variable in class dais.ais

affinityMaturation(antibody, float, self, Random) - Method in class

dais.antibodies

affinityMaturation: peforms aff mat.

affinityMaturation(float, self, Random) - Method in class dais.antibodies

affinityMaturation: peforms aff mat.

ais - class dais.ais.

ais() - Constructor for class dais.ais

antibodies - class dais.antibodies.

population of antibodies used for detection

antibodies() - Constructor for class dais.antibodies

antibodies constructor

antibodies(feature_map, int, self, Random) - Constructor for class

dais.antibodies

antibodies constructor .

antibody - class dais.antibody.

antibody() - Constructor for class dais.antibody
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antibody(message) - Constructor for class dais.antibody

antibody constructor

antibody(String, Random) - Constructor for class dais.antibody

antibody constructor ...

antibody(String, self, Random) - Constructor for class dais.antibody

antibody constructor .

antibody(String, Vector, int, double) - Constructor for class dais.antibody

antibody constructor .

ANTIGEN_PERCENT - Static variable in class dais.ais

ANTIGEN_VARIATION - Static variable in class dais.ais

antigens - Variable in class dais.node

B

barrier() - Static method in class dais.mpi_functions

makes all nodes wait until all other nodes reach this point

C

cell - class dais.cell.

cell_State - Variable in class dais.cell

cell() - Constructor for class dais.cell

cell(message) - Constructor for class dais.cell

cell(String, feature_map, Random) - Constructor for class dais.cell

cell(String, feature_map, Vector, Random) - Constructor for class dais.cell

cell(String, Vector, int, double) - Constructor for class dais.cell

cellToMessage(int, int) - Method in class dais.cell

cellToMessage: change cell into message for sending to another node
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cellToMessage(int, int, cell) - Static method in class dais.message

cellVector - Variable in class dais.population

check_For_Message(Comm) - Static method in class dais.mpi_functions

checkTimeToDie() - Method in class dais.cell

not used

CLASSIFY_THRESHOLD - threshold before cells are classified

clear() - Method in class dais.population

clonalSelection(int, population, self, feature_map, Random) - Method in class

dais.antibodies

clonalSelection: peforms clonal selection on antibodies

cloneAB() - Method in class dais.antibody

cloneAB(): return a clone of this AB

cloneFm() - Method in class dais.feature_map

closeReadSource() - Method in class dais.file_io

Close the input source.

closeReadSource(BufferedInputStream) - Method in class dais.file_io

Close the input source.

closeReadSource(ObjectInputStream) - Method in class dais.file_io

Close the input source.

closeWriteSource() - Method in class dais.file_io

Close the output source.

closeWriteSource(BufferedOutputStream) - Method in class dais.file_io

Close the output source.

closeWriteSource(ObjectOutputStream) - Method in class dais.file_io

Close the output source.

common - class dais.common.

common() - Constructor for class dais.common

compare_cells(cell, cell) - Static method in class dais.common

compare_feature_2(String, String) - Static method in class dais.common

compare_feature(String, String) - Static method in class dais.common
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This method does [Put comment here]

CopyFile(String, String) - Static method in class dais.file_io

costim_match(cell, float, self, costimulation_pop, Random) - Method in class

dais.antibodies

costim_match: checks for a match during costimulation

costim_match(population, float) - Method in class dais.cell

costim_match: check whether this cell costimulates any other cell in

population pop

COSTIMULATE - Static variable in class dais.ais

costimulate(cell) - Method in class dais.costimulation_pop

costimulate(cell, costimulation_pop) - Method in class dais.costimulation_pop

costimulate(cell, float, self, costimulation_pop, Random) - Method in class

dais.antibodies

costimulate: costimulates antibodies using current cell

costimulation_pop - class dais.costimulation_pop.

costimulation_pop() - Constructor for class dais.costimulation_pop

costimulation_pop constructor

costimulation_pop(feature_map) - Constructor for class dais.costimulation_pop

costimulation_pop constructor

costimulation_pop(Vector, feature_map) - Constructor for class

dais.costimulation_pop

costimulation_pop constructor

COSTIMULATION_THRESHOLD - Static variable in class dais.ais

D

dais - package dais
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E

endTime - Variable in class dais.ais

endTime(): sets endTime variable

EXEC_TIME - Static variable in class dais.ais

F

FALSE_NEGATIVES - Static variable in class dais.ais

FALSE_POSITIVES - Static variable in class dais.ais

feature - class dais.feature.

feature_map - class dais.feature_map.

feature_map() - Constructor for class dais.feature_map

feature_map(Vector) - Constructor for class dais.feature_map

feature() - Constructor for class dais.feature

feature(String) - Constructor for class dais.feature

feature(String, int) - Constructor for class dais.feature

featureMinMax - Variable in class dais.feature_map

features - Variable in class dais.cell

featuresToString() - Method in class dais.cell

featuresToString(): convert current features vector to string

file_io - class dais.file_io.

File system handler class.

file_io() - Constructor for class dais.file_io

Constructor

file_io(File, File) - Constructor for class dais.file_io

Constructor

fm - Variable in class dais.population

fm - Variable in class dais.node
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GEN_NEW_AB - if ‘‘0", do not generate new antibodies,

read ‘‘antibodies.txt"

if ‘‘1", generate new antibodies

Generate_New_features(feature_map, Random) - Static method in class dais.cell

generator - Static variable in class dais.node

getAB(int) - Method in class dais.antibodies

getAB: return antibody with num

getAffinity() - Method in class dais.cell

getCell(int) - Method in class dais.population

getCellState() - Method in class dais.cell

return cell state

getCellVector() - Method in class dais.population

getCnt() - Method in class dais.message

getData() - Method in class dais.message

getFeature(int) - Method in class dais.cell

getFeatureMap() - Method in class dais.population

getFeatureRoman(int) - Method in class dais.cell

getFeatureVector() - Method in class dais.cell

getMax(int) - Method in class dais.feature_map

getMeasurement(population) - Method in class dais.node

getMin(int) - Method in class dais.feature_map

getMsg_Type() - Method in class dais.message

getName() - Method in class dais.cell

getNextRandDouble(Random) - Static method in class dais.common

getNextRandInt(Random, int, int) - Static method in class dais.common

getNodeTotalTime() - Method in class dais.ais

returns total amount of time that node has been executing

getNumfeatures() - Method in class dais.cell
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getRank() - Static method in class dais.mpi_functions

getRoman() - Method in class dais.feature

getSrc() - Method in class dais.message

getStimulation() - Method in class dais.cell

get stimulation value of cell

getTime() - Static method in class dais.ais

getTime(): returns current time

getTimeOfBirth() - Method in class dais.cell

get the time that this cell was created in the system

getTimes_Costimulated() - Method in class dais.cell

get the total number of times cell costimulated

getTimeSoFar() - Method in class dais.ais

getTimeSoFar: returns amount of time node executing so far

getTotalTime() - Method in class dais.ais

getTotalTime(): returns total amount of time node has been executing

getVal() - Method in class dais.antibody

getVal: return value held by this AB

global - class dais.global.

global(String, int, int[], int) - Constructor for class dais.global

I

IMMATURE - cell does not match self, but hasn’t matched antigen yet

initialize(String[]) - Static method in class dais.mpi_functions

inObjectStream - Variable in class dais.file_io

inStream - Variable in class dais.file_io

isMemoryCell() - Method in class dais.cell
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logAction(String) - Method in class dais.file_io

Records agent actions to a system log.

M

machine - Variable in class dais.node

makePopFeaturesSameSize(population) - Static method in class dais.common

makeSameSize(String, String) - Static method in class dais.common

MATCH_THRESHOLD - Static variable in class dais.ais

match(cell, float) - Method in class dais.antibodies

match: determine whether two cells match with affinity greater than threshold

match(cell, float) - Method in class dais.antibody

match: determine whether cell1 and this cell match greater than threshold

match(population, float) - Method in class dais.cell

determine if cell matches any other cell in the populatin pop

match(population, float) - Method in class dais.antibody

match: determine whether the this antibody has a match with any cells in

population pop

MAX_COSTIM_CELLS - Static variable in class dais.ais

MAX_COSTIM_LIFETIME - Static variable in class dais.ais

me - Variable in class dais.node

MEMORY - Static variable in class dais.cell

message - class dais.message.

message_Waiting(Comm) - Static method in class dais.mpi_functions

message() - Constructor for class dais.message

message(int, int, char[]) - Constructor for class dais.message

mpi_finalize() - Static method in class dais.mpi_functions

mpi_functions - class dais.mpi_functions.
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mpi_functions() - Constructor for class dais.mpi_functions

Msg_Type - Variable in class dais.message

mutate(float, Random) - Method in class dais.antibody

mutate: mutate this antibody with given prob_mutation

my_Comm_Array - Variable in class dais.node

my_self - Variable in class dais.node

N

NAIVE - Static variable in class dais.cell

cell not yet exposed to self

name - Variable in class dais.cell

name - Variable in class dais.file_io

network - class dais.network.

network(String, int, int[], int[], int) - Constructor for class dais.network

node - class dais.node.

node() - Constructor for class dais.node

node constructor

node(String, int, int[], int) - Constructor for class dais.node

nodeEndTime - Variable in class dais.ais

nodeEndTime() - Method in class dais.ais

nodeEndTime(): sets the time that the node ended execution

nodeStartTime - Variable in class dais.ais

nodeStartTime() - Method in class dais.ais

nodeStartTime(): sets nodeStartTime

NUM_AB - total num antibodies

NUM_AB_TO_AFF_MATURE - num to run affinity maturation on each cycle

NUM_ANT_INJECTS - max num of diff antigens to inject

NUM_ANTIGEN_MUTATIONS - num of antigens variations per input antigen
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NUM_COSTIM_TO_WARN - num costim before verfied

NUM_IMMUNE_LOOPS - num times to run clonal selection

num_nodes - total num nodes in DAIS

NUM_SELF - total num of self cells to generate

numfeatures - Variable in class dais.feature_map

NW_S_Array - Variable in class dais.network

NW_S_Comm - Variable in class dais.network

O

openObjectReadSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openReadSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openWriteObjectSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openWriteSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

outObjectStream - Variable in class dais.file_io

outStream - Variable in class dais.file_io

P

payload - Variable in class dais.message

population - class dais.population.

Population: Holds all cells for a given poplation

population() - Constructor for class dais.population

population constructor
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population(feature_map) - Constructor for class dais.population

population constructor

population(Vector, feature_map) - Constructor for class dais.population

printBuckets() - Static method in class dais.common

This prints out the histogram bucket values

printCell(cell) - Static method in class dais.common

printCellVector(Vector) - Static method in class dais.common

printConfig() - Method in class dais.ais

printFeatureVector(Vector) - Static method in class dais.common

printStats() - Method in class dais.ais

PROB_MUTATION - Static variable in class dais.ais

R

randomizer(population) - Static method in class dais.common

read() - Method in class dais.file_io

Read a byte from the input source.

readABFile(String) - Static method in class dais.file_io

readAntigenFile(String) - Static method in class dais.file_io

readConfigFile(String) - Method in class dais.ais

readFilename - Variable in class dais.file_io

readObject() - Method in class dais.file_io

Read an Object from the input source.

recv_message(Status, Comm) - Static method in class dais.mpi_functions

removeCell(cell) - Method in class dais.population

removeCell(int) - Method in class dais.population

removeOldCells() - Method in class dais.population

roman - Variable in class dais.feature
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saveABToFile(antibodies, String) - Static method in class dais.file_io

self - class dais.self.

self() - Constructor for class dais.self

antibodies constructor

self(feature_map, int, Random) - Constructor for class dais.self

antibodies constructor

self(Vector, feature_map, int, Random) - Constructor for class dais.self

antibodies constructor

self(Vector, feature_map, Random) - Constructor for class dais.self

antibodies constructor

send_message(message, Comm, int[]) - Static method in class dais.mpi_functions

sensor - class dais.sensor.

sensor(String, int, int[], int) - Constructor for class dais.sensor

setAffinity(double) - Method in class dais.cell

setCell(cell, int) - Method in class dais.population

setCellState(int) - Method in class dais.cell

set the cell state to int state

setFeature(int, feature) - Method in class dais.cell

setFeatureMap(feature_map) - Method in class dais.population

setFeatureRoman(int, feature) - Method in class dais.cell

setMax(int, int) - Method in class dais.feature_map

setMin(int, int) - Method in class dais.feature_map

setName(String) - Method in class dais.cell

setObjectOutput(File, File) - Method in class dais.file_io

Constructor support for filename setting.
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setRoman(int) - Method in class dais.feature

setStimulation(double) - Method in class dais.cell

set stimulation value of cell to new_val

setTimeOfBirth() - Method in class dais.cell

set time_of_birth to current time in seconds

setTimes_Costimulated(int) - Method in class dais.cell

setVal(String) - Method in class dais.antibody

setVal: set antibody value to Val

size() - Method in class dais.population

sortDecending() - Method in class dais.population

Src - Variable in class dais.message

start_nodes() - Static method in class dais.mpi_functions

startTime - Variable in class dais.ais

startTime(): sets startTime to current time

stimulation - Variable in class dais.cell

STIMULATION_DECREASE_VAL - Static variable in class dais.ais

T

time_of_birth - Variable in class dais.cell

times_costimulated - Variable in class dais.cell

timeToDie() - check if cell is too old

toString() - Method in class dais.population

Returns a String that represents the value of this object.

toString() - Method in class dais.cell

Returns a String that represents the value of this object.

toString() - Method in class dais.costimulation_pop

Returns a String that represents the value of this object.

toString() - Method in class dais.antibody

Returns a String that represents the value of this object.
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toString() - Method in class dais.feature_map

Returns a String that represents the value of this object.

toString() - Method in class dais.feature

toString() - Method in class dais.message

TOTAL_NUM_ANTIGEN_MEASUREMENTS - Number of antigen measurements

that each sensor node should take

TOTAL_NUM_COSTIM - total num of warnings that are costimulated

TOTAL_NUM_MEASUREMENTS - total num of measurements taken so far

TOTAL_NUM_WARNINGS - total num of warnings received so far

TRUE_NEGATIVES - number of warnings that were not anomalous and

classified as such

TRUE_POSITIVES - number of warnings that were anomalous and

classified as such

V

VACCINATE - message type to VACCINATE with antibody

W

WARNING - Static variable in class dais.ais

write(byte) - Method in class dais.file_io

Write a byte to the output source.

write(Object) - Method in class dais.file_io

Write an Object to the output source.

writeFilename - Variable in class dais.file_io
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A-4 Source Code Availability

The source code for the AIS is not included as part of this document. Those inter-

ested in obtaining a copy should direct their requests to:

Dr. Gary Lamont
AFIT/ENG
BLDG 642

2950 HOBSON WAY
WRIGHT PATTERSON AFB OH 45433-7765

gary.lamont@afit.af.mil
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detected. Detection is based upon the Biological Immune System (BIS) model of antigens and antibodies, and alerts are generated 
when an a measured sample is determined to be a valid toxic agent (antigen). Agent signatures (antibodies) are continually distributed 
throughout the system to adapt to changes in the environment or to new antigens. Antibody features are determined via data mining 
techniques in order to improve system performance and classification capabilities. Genetic algorithms (GA's) are a critical part of the 
process, namely in antibody generation and feature subset selection calculations. Demonstrated results validate the utility of the 
proposed distributed AIS model for robust chemical spectra recognition. 
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