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Abstract

The timely detection and classification of chemical and biological agents in

a wartime environment is a critical component of force protection in hostile areas.

Moreover, the possibility of toxic agent use in heavily populated civilian areas has

risen dramatically in recent months. This thesis effort proposes a strategy for identi-

fying such agents via distributed sensors in an Artificial Immune System (AIS) net-

work. The system may be used to complement “electronic” nose (“E-nose”) research

being conducted in part by the Air Force Research Laboratory Sensors Directorate.

In addition, the proposed strategy may facilitate fulfillment of a recent mandate by

the President of the United States to the Office of Homeland Defense for the pro-

vision of a system that protects civilian populations from chemical and biological

agents. The proposed system is composed of networked sensors and nodes, commu-

nicating via wireless or wired connections. Measurements are continually taken via

dispersed, redundant, and heterogeneous sensors strategically placed in high threat

areas. These sensors continually measure and classify air or liquid samples, alerting

personnel when toxic agents are detected. Detection is based upon the Biological

Immune System (BIS) model of antigens and antibodies, and alerts are generated

when an a measured sample is determined to be a valid toxic agent (antigen). Agent

signatures (antibodies) are continually distributed throughout the system to adapt

to changes in the environment or to new antigens. Antibody features are determined

via data mining techniques in order to improve system performance and classifica-

tion capabilities. Genetic algorithms (GAs) are a critical part of the process, namely

in antibody generation and feature subset selection calculations. Demonstrated re-

sults validate the utility of the proposed distributed AIS model for robust chemical

spectra recognition.

xii



AN ARTIFICIAL IMMUNE SYSTEM STRATEGY FOR ROBUST

CHEMICAL SPECTRA CLASSIFICATION VIA DISTRIBUTED

HETEROGENEOUS SENSORS

I. INTRODUCTION

The Artificial Immune System (AIS) model has demonstrated aptitude in the

classification of unknown elements within NP-Complete problem domains. The

model presented draws its inspiration from the success of the AIS as applied to

a wide range of problems such as intrusion detection [27] [16] [2], multimodal func-

tion optimization [20], and ecosystem management [48]. A framework for applying

the AIS model is discussed that can quickly classify biological agents in a war or

peacetime environment. The model is based upon a system of robust, scalable, effi-

cient, and relatively simplistic sensors that can be “scattered” anywhere in a threat

area and provide immediate warning the release of toxic agents.

Classification is determined chiefly via continuous analysis of chemical spec-

tra by heterogenous sensors in an distributed AIS (DAIS) network. Operating as

low-level agents in a hierarchical configuration [54], sensors continuously assess lo-

cal environmental conditions and classify the resulting spectra as benign, naturally

occurring elements (self ), or harmful biological contaminants (non-self ).

1.1 Overview

“Integrated bio-inspired circuits that sense, receive, transmit, and process sig-

nals are the eyes, ears, and nose of the millennium” [1]. Generically speaking, a

sensor is any device that receives and responds to stimuli. Response does not imply

any form of innate sensor “intelligence”. Yet, by connecting multiple sensors and

strategically placing them in threat areas, the utility of multiple sensor responses may

1



be enhanced. “Widely available Biological Agent detection and the integration of

Chemical and Biological Agent detection into an embedded processor would greatly

improve upon current fielded technology, better protect the warfighter, and consid-

erably increase situational awareness by incorporating data obtained into current

Command, Control, and Communication Systems” [25]. This application of biolog-

ical principals to the information systems computational domain has been coined

“Bioinformatics”. As components of a DAIS, stimuli is provided via constant en-

vironmental measurements. As stimuli, measurements are determined to be self or

non-self and evoke a sensor response proportional to a dynamic affinity “match”

score. A match score is the determination of how closely a stimulus resembles self

or non-self, while affinity refers to the threshold that must be reached in order to

generate a biological response (warning) indicating that a non-self stimulus has

been detected. On the surface, the process seems quite simple. However, “to pro-

cess/store/analyze signals acquired from multiple physical sensors, hybrid systems

with flexible and adaptable artificial intelligence are needed” [1]. Genetic Algorithms

(GAs) provide the evolutionary ability to adapt to new environments and play a key

role in the discovery of patterns to categorize signals in noisy environments. Figure

1 illustrates the complexity of interactions between multiple sensors and the need

for “smart” algorithms to classify stimuli.

Real-time sensors have the potential to produce an extremely large amount of

data about elements detected in the environment. These data must be classified as

quickly as possible to provide adequate warning when chemical/biological elements

are present. Figure 2 illustrates the process of “intelligent bio-inspired signal pro-

cessing.” Note the roles that pre-processing feature extraction and data fusion play

in the decision-making loop.

1.1.1 Electronic Nose Research. Mammalian olfactory systems are capa-

ble of distinguishing between millions of different odors resulting in instantaneous

recognition of multiple odor sources [10]. The mapping of biological principles in-

2



Figure 1 A Multidisciplinary Biotechnology System [1]

volved with odor recognition to the computational domain results in a system able to

provide comparable, albeit limited, odor classification. Research in this “olfactory

science” area is being undertaken by many government agencies and universities.

Caltech’s Microsystems Research Laboratory is conducting such research with the

goal attaining an “understanding of biological olfaction and the construction of a

silicon ‘nose on a chip’” [10]. Applications of this technology include [10]:

• Chemical Analysis

• Environmental Monitoring

• Food Inspection

• Land Mine Detection

• Airport Luggage Inspection

3
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Figure 2 Bio-Inspired Signal Processing [1]

• Emission Control/Enforcement

• Narcotic Detection

E-nose realization involves three main research thrusts: (1) sensor technologies,

(2) signal processing, and (3) classification methods. This thesis serves to comple-

ment the third area of study by providing an alternate and/or complementary odor

classification method.

1.1.2 Sponsorship. General research sponsorship is provided by the Air

Force Research Laboratory (AFRL), Sensors Directorate, under the guidance of Dr.

Robert Ewing.

1.1.3 E-nose Biological Inspiration. As previously mentioned, biological

inspiration for the e-nose is derived from mammalian olfactory systems. Biological

olfactory systems consist of thousands of individual sensors located in the epithelium

(10,000 in humans, 100,000 in dogs). At any given time, roughly 25% of these sensors

are firing in response to stimuli. Sensors are tied to olfactory neurons that eventually

transmit their signals to the olfactory cortex in the brain. Presented with these

signals, the brain, then performs odor classification and recognition [10]. Research

at Caltech currently models this function of the olfactory cortex via an artificial

4
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neural network; however, an AIS could be used to complement the classification

process.

1.1.4 Feature Extraction and Feature Subset Selection. As illustrated in

Figure 2, stimuli feature extraction is a key component in signal processing. The

number of features that can be extracted by current sensors is limited only by the

complexity of the given hardware. Each feature extracted directly increases the

dimensionality of the classification process, providing additional information about

the stimuli. The extraction of features that can be used to efficiently represent and

classify stimuli is critical to the success of the DAIS. The goal is to determine the

smallest feature subset necessary for accurate classification. Most chemical sensors

produce a Raman spectra plot, based upon the reactance of the chemical to different

wavelengths of the electromagnetic spectrum resulting in an intensity vs. wavelength

plot. There are theoretically an infinite number of features that may be extracted

from such a plot. In addition, independent variables such as temperature, humidity,

wind direction, and chemical intensity may be included in the resulting chemical

feature set. Given these many variables, the Genetic Rule and Classifier Construc-

tion Environment (GRaCCE) program presented in [56] and parallelized in [39] (as

pGRaCCE) is used to determine the best feature subset for classification and use

within the DAIS.

1.2 Research Goals and Objectives

The increasing threat of biological warfare facing today’s military forces is an

area of concern for all military members. As such, maintaining situational aware-

ness of environmental conditions is the first step in preventing a successful bio-

logical attack. The research goal is to develop a computational framework for a

distributed sensor network capable of providing early warning in the event of a

chemical/biological attack. In order to accomplish this goal, the following three

objectives are addressed:
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1. Analyze the performance of pGRaCCE on a real-world data set

2. Analyze the performance of a parallel implementation of J. J. Grefenstette’s

genetic algorithm program Genesis [36] and its ability to evolve antibodies

capable of classifying multiple variations of real-world toxic chemicals

3. Design,implement, and test a basic DAIS that models a real-world network of

sensors capable of classifying chemical spectra and producing warnings when

non-self chemicals are present

1.3 Approach

The phased approach taken focuses on feature subset selection, the evolution

of antibodies, and the development of a representative DAIS that uses them. Design,

analysis, and testing takes place in three phases:

Phase I: Analyze the performance of pGRaCCE against multiple real-world data

sets

Phase II: Analyze the ability of parallelized Genesis to evolve antibodies capable

of classifying a given subset of the real-world data used in Phase I, given the

feature subsets produced in Phase I.

Phase III: Design, implement, test, and evaluate the performance of a DAIS capa-

ble of producing warnings when the items from the data subsets in Phase II

are present.

1.4 Software Design Process

Design and implementation of software systems necessitates a procedure that

takes a top-down approach that starts with the problem statement and ends with a

fully implemented system. This process requires iterative application of the following

five steps until the system performs as designed [53]:
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1. Define/analyze problem domain requirements, including partial operational

specification over input and output domains. Use symbolic notation whenever

possible to simplify transition between steps.

2. Choose an algorithm domain specification strategy based upon known models

in current research.

3. Evolve a general solution design specification (algorithmic, iterative, or re-

cursive) and an operational design specification using algebraic or symbolic

notation. Extend notation specified in previous step. Specialize the algorithm

template with the problem domain.

• Instantiate problem design specification within selected algorithmic method

through problem domain data structures

• Algorithm design templates and design specifications are developed and

imported to support the top-down design process

4. Refine solution design recursively to low-level design by incorporation addi-

tional data structures and operations as required to create a refined algorithmic

design template.

5. Map low-level design to selected (compiler) language and reusable components.

1.5 Assumptions

In order to reasonably limit the scope of discussion, it is assumed the reader

has a general knowledge of the following subjects:

1. Computer Engineering and Computer Science, to include: parallel and dis-

tributed computing, evolutionary computing, computer architectures, com-

puter operating systems, computer programming, general algorithms and com-

plexity.

2. Probability and statistics
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3. Basic biological concepts, including: immunological functions, vaccination,

DNA replication and operations

1.6 Risks and Concerns

The largest risk to success of this research effort is the broad scope of subjects

addressed. In order to focus research efforts on relevant issues, only the high interest

topics are addressed.

1.7 Thesis Outline

This thesis consists of seven chapters. This chapter provides a basic intro-

duction to the thesis research topic, to include an overview of the problem domain,

research goals, associated objectives, assumptions, risks, and overall layout of the

thesis. Chapter 2 focuses on historical perspective, problem domain models, and

possible algorithm domains for the solution, statistical techniques, and software

engineering approaches. Chapter 3 presents a high-level design of the systems in

question and maps the problem domain to appropriate structures. Chapter 4 dis-

cusses the low-level implementation details of the system. Chapter 5 gives a detailed

justification of the experimental design process and presents the overall design of

experiments. Chapter 6 presents the results and an analysis of experiments. Finally,

chapter 7 presents conclusions and recommendations derived from the research effort.
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II. BACKGROUND

This chapter presents supplemental background knowledge to enhance the devel-

opment of the DAIS. Due to the broad scope of disciplines discussed, the relevant

characteristics of genetic algorithms, artificial immune systems, parallel computing,

sensors, and data mining, are presented. Each section is preceded by a brief history

of previous associated research in each respective area.

2.1 Genetic Algorithms

Genetic algorithms provide the evolutionary ability to improve DAIS perfor-

mance and classification ability. One of the first descriptions of the use of an evo-

lutionary processes for computer problem solving appeared in articles by Friedberg

in 1958 [32] and 1959 [33]. “This work represented some of the early work in ma-

chine learning and described the use of an evolutionary algorithm for automatic

programming, i.e. the task of finding a program that calculates a given input-output

function” [21]. Many studies sprung from this paper and others by Bremermann

in 1962 [9], Box in 1957 [7], and Box et. al in 1969 [8]. As is the case with many

ground-breaking research ideas, these early studies were reviewed with skepticism.

However, by the mid-1960’s the bases for the three main focuses of evolutionary com-

putation were clearly established [21]. These three main focuses were: Evolutionary

Programming (EP), Evolutionary Strategies (ES), and Genetic Algorithms (GAs).

GAs are used exclusively as a process for search space exploration and exploitation

(E & E), and are therefore examined in detail. Further details concerning EP and

ES are in Appendix A-1.

GAs were first conceptualized by Holland in many of his papers written in the

early 1960’s (e.g. see [45]). Holland set out to understand the underlying princi-

ples of adaptive systems–systems capable of responding to interactions with their

environment through self-modification. By the mid-1960’s, Holland’s ideas began
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to take computational form in thesis work of several of his PhD students. The dis-

tinctive feature of these theses was the successful use of competition and innovation

to provide the ability to dynamically respond to unanticipated events and changing

environments.

2.1.1 Properties. All basic instances of GAs share a number of common

properties [4]:

• All instances utilize the collective learning process of a population of individu-

als. Each individual represents a search point in the space of potential solutions

to a given problem.

• Individuals are used to generate descendant individuals via a randomized pro-

cess that models organic mutation (subsection 2.1.3.2) and crossover/recombination

(subsection 2.1.3.3).

• A measure of quality, or fitness is assigned to individuals in order to improve

the likelihood of choosing (selection, subsection 2.1.3.1) quality individuals for

reproduction and transference to the next generation. Highly fit individuals are

more likely to reproduce than individuals that are relatively worse in fitness.

2.1.2 Representation. There are many way to represent individuals within

the search space. Representation typically mirrors the solution space as closely

as possible in order to simplify execution. Real-valued, integer-valued, and binary

vectors are commonly used in this process. Individual vector sizes vary based the

dimensionality, or number of decision variables within the search space. For instance,

a four-featured binary individual would be used to represent a binary search space

in four dimensions with the range of possible values of “0000” to “1111”.

Individual structures are often referred to as chromosomes, they are the geno-

types that are manipulated by the GA. If individuals are represented by binary

strings (as above), the value of each locus on the bitstring is referred to as an al-
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lele. Sometimes the values of each loci are called genes ; while other times genes are

combinations of alleles that have some phenotypical meaning, such as parameters

[24].

2.1.3 Operators. The genetic operators, selection, mutation, and crossover,

are central to GA execution and serve to distinguish them from other evolutionary

computation techniques. Each operator is discussed in greater detail in the following

subsections.

2.1.3.1 Selection. “The primary objective of the selection operator is

to emphasize better solutions in a population” [23]. In short, the selection operator

determines which chromosomes continue on to the next generation. All selection

techniques (except random selection) depend upon some measure of relative fitness

for each chromosome. The central idea is that individuals that are more highly fit

have a higher probability of selection. Symbolically, the basic selection operator can

be represented by the following pseudocode. The fitness function is represented by

F(t) [23].

Input: µ : parent solutions

λ : offspring solutions

q : selection pressure parameter

P (t) ∈ Iµ : population at iteration t

P ′(t) ∈ Iλ : offspring population at t to be carried on to iteration t+ 1

Output: P ′′(t) = {a′′1, a′′2, ..., a′′µ} ∈ Iµ

1. for i← 1 to µ

a′′(t) = {a′′i(t)← sselection(P (t), P
′(t),F(t), q);

2. return({a′′1, a′′2, ..., a′′µ} ∈ Iµ);
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The main types of selection operators include:

Proportional Selection: the expected number of copies a solution receives is as-

signed proportionally to its fitness. Thus, a solution having twice the fitness

of another solution receives twice as many copies. This type of selection is

also known as roulette wheel selection, because if the population resided on a

roulette wheel, each individual would occupy an area proportional to its fit-

ness. Then, the roulette wheel is spun as many times as the population size

and individuals are selection based upon the result of each spin [23]. This can

result in scaling problems if a population contains a solution with exceptionally

better fitness than the rest of the population. This “supersolution” occupies

most of the roulette wheel area, resulting in convergence to a possibly subop-

timal solution in the supersolution region of the search space. More specifics

concerning the many variations of proportional selection can be found in [37]

and [5]

Tournament Selection: the scaling problem discussed above is eliminated by play-

ing “tournaments” among a specified number of individuals according to their

fitness functions. For example, in a three-way tournament, three individuals

are deterministically or randomly chosen from the parent population. The

individual with the highest fitness among the three is selected. See [6] for a

detailed analysis of this selection type.

Rank Selection: similar to proportional selection, except that solutions are ranked

according to descending or ascending fitness. Thereafter, individuals are se-

lected according to their ranked fitness value. There are a number of different

schemes that are based on the ranking concept, see [55].
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Boltzmann Selection: a modified fitness is assigned to each solution based on a

Boltzmann probability distribution (eq. 1):

Fi =
1

1 + exp(Fi
T
)

(1)

where T is a parameter analogous to the temperature term in the Boltzmann

distribution. T is reduced by a predefined measure during each iteration. Since

T is initially large, solutions are all just as likely to be selected; but, as the

number of iterations increases, T decreases and only good solutions have a

high likelihood of being selected.

2.1.3.2 Mutation. The mutation operator models the erroneous repli-

cation of individuals that sometimes takes place during biological reproduction. Typ-

ically, small errors are introduced to reduce the likelihood of moving individuals to

drastically different parts of the search space.

2.1.3.3 Crossover/Recombination. Crossover and recombination are

different terms that represent the same basic concept: the exchange of information

between two or more existing individuals. For example, consider the following binary

string: 10100011101011. Also, assume that the following is also a binary string,

where x = 1 and y = 0: xyxyyxxxyxyxyx. A one-point crossover after the 5th allele

value would look like [73]:

10100∨011101011
xyxyy∨xxxyxyxyx

and after swapping the segments, the resulting offspring would become:

xyxyy011101011 and 10100xxxyxyxyx

2.1.4 Basic GA Algorithm. All basic instances of GAs follow the same

algorithmic template. In [4], Bäck defined a symbolic framework for defining GA
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operators and components. Using this framework, I denotes an arbitrary space of

individuals a ∈ I and F : I → < to denote a real-valued fitness function of in-

dividuals. Using µ and λ to denote parent and offspring population sizes where

P (t) = (a1(t), ..., aµ(t)) ∈ Iu characterizes a populations at generation t. Selection,

mutation, and recombination operators, defined as operators s, m, and r transform

complete populations of individuals over n generations. Formally, these operators

are defined as [4]:

s : Iλ → Iµ

m : IK → Iλ

r : Iµ → IK

These operators typically depend upon additional parameters Θs,Θm, and Θr,

that are characteristic for each operator and the representation individuals.

Additionally, an initialization procedure, ι, generates the first population of

individuals at time t = 0 and evaluates the fitness of each individual. Individuals are

typically initialized in some random fashion in order to start with a population evenly

distributed over the search space; however, individuals may also be initialized a

priori in search space locations known to contain individuals with high fitness levels.

Finally, termination criterion is established to determine when or if the algorithm

should stop. The termination criterion typically stops the algorithm after a specified

number of generations, when relative population fitness scores have not improved by

a specified percentage over a specified number of generations, when a desired fitness

score has been achieved, or any combination of the these.

Having defined the basic components of the GA, they may be combined in a

simple recombination-mutation-selection loop as follows [4] and illustrated in Figure

3:
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Input: µ, λ,Θι,Θr,Θm,Θs

Output: a∗, the best individual found during the run, or

P ∗, the best population found during the run.

1. t← 0;

2. P (t)← initialize(µ)

3. while (ι(P (t),Θι) 6= true) do

4. P ′(t)← recombine (P (t),Θr);

5. P ′′(t)← mutate(P ′(t),Θm);

6. F(t)← evaluate(P ′′(t), λ);

7. P (t+ 1)← select(P ′′(t), F (t), µ,Θs);

8. t← t+ 1;

9. od

A description of each line follows:

Line 1: Set starting time t = 0

Line 2: Initialize the parent population µ

Line 3: Enter while loop, with termination criterion ι according to termination

parameters Θι

Line 4: Recombine current population according to parameters Θr

Line 5: Mutate recombined population according to parameters Θm

Line 6: Evaluate mutated population to determine fitness F(t)

Line 7: Select µ individuals from mutated population according to their fitness

values and selection parameters Θs

Line 8: Increment the current time by one

Line 9: Return to Line 3
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Figure 3 Flowchart for the Conventional GA [51]
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2.2 Artificial Immune Systems

The AIS as a method of classification has been studied by many researchers.

Parallels between immunology and classifier systems were noted by [26] as early as

1986. More recently, Forrest [27, 28], Dasgupta [18, 16] , De Jong [22], Lamont [54],

and many others have expanded upon the topic, resulting in hundreds of publications

and international conferences on the subject. Given the diversity of immune system

concepts available for exploitation, the many possible applications include computer

security [27], virus detection [30], UNIX process monitoring [29], anomaly detection

in time series data [19], fault diagnosis [49], and chemical spectra recognition [18].

The last application (chemical spectra recognition) is the focus of this research.

Discussion of the AIS begins with a summary of the biological immune system and

is followed by its application to AIS computing concepts.

2.2.1 Biological Immune System. The biological immune system (BIS) de-

fends the body against harmful diseases and infections. It is capable of recognizing

virtually any foreign cell and destroying it. In order to do this, the BIS must distin-

guish between molecules and cells that belong to the body and those that do not.

This concept of self from the dangerous non-self is the basis of all immune system

operations. The exact possible number of foreign body invaders is unknown, but

it has been estimated to be in excess of 1016 [47]. These foreign proteins must be

distinguished from an estimated 105 different proteins of self, and recognition must

be highly specific [67].

The architecture of the biological immune system is multi-layered, with de-

fenses at many levels. The first and outermost layer is the skin. A second barrier

is the physiological, where temperature and pH provide inappropriate living con-

ditions for most foreign invaders (pathogens). After pathogens have circumvented

these first two layers of defense, they must battle with the third and final layer, the

innate immune system and adaptive immune response. The innate immune system
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uses macrophages to ingest extracellular debris and clear the system of other foreign

invaders. Adaptive immune response is the most complicated defense mechanism.

Response is “adaptive” in that it is capable of identifying and eradicating pathogens

that have previously never been encountered. This requires interactions between

many different types of cells and molecules [67]. Figure 4 demonstrates the layered

immunological responses in the BIS. The adaptive immune system consists primar-

Figure 4 Layered Immunological Response [43]

ily of white blood cells, called lymphocytes. Lymphocytes circulate throughout the
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body and identify molecules that exhibit non-self patterns while ignoring molecules

that resemble self. For this reason, lymphocytes are considered negative detectors.

Detection and recognition of non-self occurs when lymphocyte receptors bond with

pathogen receptors that cover the surface of each molecule. The more closely the

receptors on each molecule match, the higher the electrostatic bond between them

(or, the higher the affinity). All detection is approximate; that is, individual lympho-

cytes bond to several different kinds of structurally related pathogens with a certain

affinity [67]. Figure 5 illustrates the process of detection between complementary

antigens and detectors. Note that some detectors do not form a chemical bond due

to structural differences, while detectors with similar structures bond readily.

Figure 5 The Detection Process as a Function of Detector Affinity[42]

The ability to detect most pathogens requires a large diversity of lymphocyte

receptors. These receptors are generated through a genetic process that introduces

a huge amount of randomness. Given this random process, the potential exists for

creation of lymphocytes that detect self. Lymphocytes that detect self are eliminated

through a process called clonal deletion which takes place in the thymus. Almost

all self-proteins in the biological body repeatedly pass through the thymus. Any
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developing lymphocytes that bond to self-cells are eliminated before introducing

them into the body [67].

There are never enough lymphocytes in the body to provide complete coverage

of all possible pathogens. The immune systems has several mechanisms in place to

mitigate this issue. These mechanisms make the immune system more dynamic and

specific, improving classification and adaptation capabilities. The process is made

dynamic through the continual circulation of short-lived lymphocytes throughout

the body. The total lymphocyte population then turns-over every few days, replaced

by younger randomly generated lymphocytes. This improves the immune system’s

ability to protect against diverse pathogens over a longer period of time; the longer

a pathogen is in the body, the more likely it is to be detected by a wide array of

lymphocytes [67].

Immune specificity is provided by an established immune learning and mem-

ory. When a pathogen that has never been encountered is detected, the immune

system “learns” the structure of this specific pathogen and triggers a response that

evolves a set of lymphocytes with a high affinity for that pathogen (called affin-

ity maturation). These high-affinity lymphocytes are stimulated to reproduce in

great numbers, and the resulting lymphocytes have a large number of mutations,

effectively protecting the body from variants of the detected pathogen. Speed of

response to previously encountered pathogens is then improved due to an acquired

immune memory consisting of previously adapted lymphocytes [67].

2.2.1.1 BIS Characteristics. The key features of the biological im-

mune system which provide several important aspects to the field of information

processing may be summarized under the following terms of computation [17]:

Recognition: the immune system can recognize and classify different patterns and

generate selective responses. Recognition is achieved by inter-cellular binding–

the extent of this binding is determined by molecular shape and electrostatic
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charge. Self/non-self discrimination is one of the main tasks the immune system

solves during the process of recognition.

Feature Extraction: Antigen Presenting Cells (APCs) interpret the antigenic con-

text and extract the features, by processing and presenting antigenic peptides

on its surface. Each APC serves as a filter and a lens: a filter that destroys

molecular noise, and a lens that focuses the attention of the lymphocyte -

receptors.

Diversity: the BIS uses combinatorics (partly by a genetic process) for generating

a diverse set of lymphocyte receptors to ensure that at least some lymphocytes

can bind to any given (known or unknown) antigen.

Learning: the BIS “learns”, by experience, the structure of a specific antigen. The

system makes changes in lymphocyte concentration via clonal expansion during

the primary response (the first encounter of the antigen).

Memory: when lymphocytes are activated, a few of each kind become special mem-

ory cells which are content-addressable. The longevity of these cells is an in-

herent mechanism of the dynamic process and requires continued stimulation

by residual antigens. The system maintains an ideal balance between economy

and performance by maintaining minimal, but sufficient, memory of the past.

Distributed Detection: the immune system is inherently distributed. Lympho-

cytes circulate throughout the body and organs and encounter various antigens,

stimulating specific immune responses.

Self-regulation: the mechanisms of immune response are not controlled by any one

central organ and can be either local or systemic, depending on the route and

property of the antigenic challenge.

Threshold Mechanism: immune response takes place only above a certain match-

ing threshold, related to the strength of chemical binding.
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Co-stimulation: regulates the activation of B-cells, while a second signal (from

helper T-cells) ensures tolerance and distinguishes between harmful invaders

or false alarm.

Dynamic Protection: clonal expansion and somatic hyper-mutation allow gener-

ation of high-affinity immune cells (called affinity maturation). This process

balances exploration versus exploitation (E & E) in adaptive immunity and

increases the coverage provided by the immune system over time.

Probabilistic Detection: the cross reaction in immune response is a stochastic

process, where detection is approximate. Lymphocytes can bind with several

different kinds of structurally related antigens.

To summarize, the biological immune system has many features that are desir-

able from the standpoint of computer science. The BIS is massively parallel and the

its functions are truly distributed. Each component is individually disposable, yet

the system as a whole is still robust. Previously detected infections are eliminated

quickly, while new or novel infections illicit an autonomous response that improves

classification capability and overall system performance [67].

2.2.2 Mapping the BIS to the AIS. Artificial immune systems are a compu-

tational instantiation of the biological characteristics of the BIS described in section

2.2.1.1. To be thorough, there exists a one-to-one mapping for each BIS characteristic

as illustrated below:

Recognition: AIS’s recognize and classify different patterns and generate selec-

tive responses (or warnings, as presented here) . Recognition is achieved by

detectors–the extent of which is a result of a specified detector matching func-

tion. This results in self/non-self discrimination when detectors are presented

with sensory input.

Feature Extraction: Detectors focus attention on the features of system activity

that represent non-self by continually improving classification ability.
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Diversity: the AIS uses computational combinatorics to generate a diverse set de-

tectors to ensure that known and unknown antigens can be classified.

Learning: the AIS improves classification capabilities through exposure to items

representative of self and non-self. The system makes changes in detector con-

centration via clonal expansion and improves individual detectors via affinity

maturation.

Memory: when detectors are activated, a few become special memory cells that

remain in the system for a specified period of time. The longevity of detectors

is a mechanism of the dynamic AIS process and requires continued stimulation

by non-self. This results in an balance between economy and performance by

maintaining minimal, but sufficient, memory of non-self.

Distributed Detection: the AIS inherently distributed by design. Detectors at

different nodes come into contact with non-self, stimulating specific immune

responses throughout the entire system.

Self-regulation: AIS operations are not controlled by any one central node.

Threshold Mechanism: Detector activation takes place only above a specified

matching threshold, related to the strength of the match between the detector

and non-self.

Co-stimulation: regulates the activation of detectors, based upon the activation

of other detectors to similar antigens.

Dynamic Protection: clonal expansion and somatic hyper-mutation allow gener-

ation of high-affinity detectors. This balances E & E, increasing the coverage

provided by detectors over time.

Probabilistic Detection: Non-self detection is approximate, a product of the gen-

erality or specificity of the chosen matching function.
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2.2.3 AIS Characteristics. The overarching goal of any AIS is self/non-

self discrimination and classification. All discrimination between self and non-self

in the BIS is based upon chemical bonds that form between protein chains. In the

AIS, to preserve generality, protein chains are modelled as binary strings of fixed

length. String length is dependent on the number of features chosen to represent

each individual or chromosome [44]. Symbolically, if the set of all strings of length

l forms a universe of strings, U , then this universe may be split into two disjoint

subsets S and N . S is the set of all strings that represent self, and N is the set of

all strings that represent non-self. In other words, the universe of possible strings

may be represented by [44]:

U = S
⋃

N,S
⋂

N = ∅

Given an arbitrary string from U , the AIS must then determine whether it

belongs to S or N . The AIS then faces two basic discrimination errors: false posi-

tives, and false negatives. “A false positive occurs when a self string is classified as

anomalous, and a false negative occurs when a non-self string is classified as normal”

[44]. The BIS also makes similar errors: a false negative occurs when the IS fails to

detect and fight off pathogens, and a false positive error occurs when the BIS attacks

the body (known as an autoimmune response). In the body, both kinds of errors are

harmful, so the BIS has apparently evolved to minimize those errors; similarly, the

goal of the AIS is to minimize both kinds of errors [44]. Figure 6 illustrates this as

a two-dimensional representation of a universe of strings. If a point lies within the

shaded area, it is self, otherwise it is non-self. The AIS detection system is illus-

trated by the black outline around self space. As shown by the overlap between self

and non-self with the detection line, it is evident that the detection system fails to

properly categorize some strings, resulting in false positives and false negatives. A

properly tuned AIS adjusts the detection line as to minimize this overlap [44].
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Figure 6 Graphical Depiction of the Universe of Strings [44]

2.2.4 AIS Operators. AIS operators model themselves after the BIS model

to simulate an environment capable of self/non-self recognition and classification.

These operators include:

• negative selection

• imperfect matching function

• affinity maturation

• dynamic clonal selection

• costimulation

Together, and with good variable selection, these concepts may be used to

improve the efficiency of the GA, and therefore the efficiency of the AIS. Each is

described in more detail in the following subsections.

2.2.5 Negative Selection. Within the constructs of the DAIS, negative se-

lection is the process of detecting when evolved detectors may actually match benign
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measurements produced by sensors. This prevents bad detectors from being intro-

duced into the system, thereby producing erroneous detection results. The basic idea

is to “use a immunological inspired negative selection algorithm to generate non-self

samples (antigens). Then apply a classification algorithm to generate the character-

istic function of the self (or non-self). This characteristic function correspond [sic]

to the anomaly detection function” [35].

“Each detector is created with a randomly-generated bit string (analogous to

a receptor), and remains immature for a time period T. called the tolerisation pe-

riod. During this time period, the detector is exposed to the environment (self and

possibly non-self strings), and if it matches any bit string it is eliminated. If it does

not match during the tolerisation period, it becomes a mature detector (analogous

to a naive B-cell). Mature detectors need to exceed the match threshold in order to

become activated, and when activated they are not eliminated, but signal that an

anomaly has been detected. Clearly, the assumption here is that if a circulating im-

mature detector matches some self string, it encounters, with high probability, that

self string during its tolerisation period, whereas immature detectors that match

non-self strings encounter, with low probability, those non-self strings during their

tolerisation period” [44]. Figure 7 illustrates detector generation via negative se-

lection. If detectors (represented by dark circles) match any string in the self set

within the tolerisation period, they are eliminated and randomly regenerated; oth-

erwise, they are introduced into the system until a sufficient number of detectors are

cover the space of non-self strings.

The negative selection algorithm is described in Gonzalez et. al. [35] and

consists of three basic steps:

1. Define self as a collection of strings S of length l over a finite alphabet. In

the AIS model, S may be generated by taking measurements of known clean

air/liquid samples.
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Figure 7 Detector Generation via Negative Selection [44]

2. Generate a random set of detectors D, such that D 6= S

3. Monitor S for changes by continually matching the detectors in D to S. If a

change has occurred, there is be a match as the detectors in D are designed to

not match any of the original strings in S.

4. Repeat

Figure 8 illustrates the flow of the negative selection algorithm.

2.2.6 Imperfect Matching Function. “As in the biological immune system,

detection of an antigen...is accomplished by ‘binding’ the antibody to it via some

imperfect matching process” [2]. Of course, whether or not a match is determined in

the AIS depends entirely on the choice of the matching rule chosen. This should be

accomplished via a matching function with an affinity threshold that varies with the
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Figure 8 Flowchart of the Negative Selection Algorithm [30]

relative strength of the detector. Detectors that match more antigens have a higher

fitness level, and therefore a lower affinity threshold for detection.

2.2.7 Affinity Maturation. The process of affinity maturation can be used

as search for better detectors. “The goal of affinity maturation is to maximize the

hypervolume defined by the ranges of the antibody’s features; a genetic algorithm-

based search is used for this process” [2]. The process proceeds by “hypermutating”

(mutation with a high probability) newly created detectors to allow the detectors

to improve their affinities with recognized antigens, while the rate of mutation is

inversely proportional to the affinity of the parent cell with the recognized pattern

[15].

2.2.8 Dynamic Clonal Selection. Kim [50] coined the term dynamic clonal

selection (DCS) as an AIS which has the following two properties: (1) the AIS

learns new behaviors by exposure to a small subset of antigens at one time, and (2)

its detectors should be replaced whenever previously observed normal behaviors no

longer represent current normal behaviors. DCS achieves population adaptability via

“coordinated dynamics of three different detector populations: immature, mature,
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and memory detector populations”. The specifics of the algorithm are noted in Kim

et. al. [50]; however, a more general AIS algorithm is specified as [15]:

Createapopulation of k antibodies (feasible solutions)

For each generation, do

For each antibody, do

decode the antibody

determine the antibody affinity

determine the number of clones of each antibody

determine the number of mutations

do cloning and mutation

For Each clone, do

decode the clone

determine the clone affinity

if afin(clone) > afin(antibody)→ antibody = clone

While stopping criterion = false

2.2.9 Costimulation. Because the DAIS describes defines non-self as any-

thing outside of the self-training data, the space has to be well-defined in order for

it to work effectively. “However, since self is not perfectly defined and may drift

over time, the system is likely to produce false positives” [2]. “Costimulation” is the

process of trying to reduce the number of false-positives with the trade-off of possibly

increasing the false-negative rate. In this process, any detection is compared to the

results of other sensors to see if they would also determine the measurement to be

an antigen. If yes, the measurement is marked as a biological agent, and warning

is produced; if not, no warning is produced. So, warnings are not produced unless

more than one sensor also determines that a biological attack is in progress. In the
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proposed AIS, costimulation would likely be the responsibility of the network node

N , in order to reduce the workload on each individual sensor.

2.2.10 Alternate Approaches. Many different approaches have been pre-

sented in literature detailing methods of antigen/antibody representation and oper-

ation. For completeness, two are presented.

2.2.10.1 The De Jong/Spears and Forrest Approach. De Jong and

Spears’ definition of “the traditional internal representation used by GAs [in pattern

recognition] involves using fixed-length (generally binary) strings to represent points

in the space to be searched” (i.e. the search for acetone and methanol in spectrum

analysis plots) [22]. This definition can be applied when categorizing spectra by

analyzing the spectra encoded as binary files. However, in a broader sense, not all

spectra may be evident through simple examination of raw binary data by a classifier

system. Further, this representation does “not appear well-suited for representing

the space of concept descriptions which are generally symbolic in nature, which have

both syntactic and semantic constraints, and which can be of widely varying length

and complexity.” [22]

The Forrest approach models the BIS by applying GAs to the evolution of a

population of antibodies to detect antigens [i.e. spectra]. The goal is to evolve an

antibody population capable of classifying more than one antigen, thereby becoming

“generalists” and recognizing antigen class boundaries. Antigens and antibodies

are represented by binary strings of length l (64-bits, in the Forrest examples). It

should be noted that this approach is “interested [only] in the recognition properties

of the immune system[and therefore] does not consider how the immune system

neutralizes an antigen once it is recognized.” [31]. An antibody “is said to match

an antigen if their bit strings are complementary. Since each antibody must match

against several different antigens simultaneously,” perfect bit-wise matching is not

required [31]. The match function M0 simply counts the total number of bits that
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differ between antigen and antibody and is represented by the Mo function (eq. 11).

“Antibodies are matched against antigens, scored according to the fitness function

Mo, and evolved using a conventional GA.” [31] Figure 9 illustrates the basic BIS

model: GA execution continues until each antigen is represented by at least one

antibody and no self-strings are recognized.

1001100001110001
1001010010100101
1001010001111001
1010100110101010
1011101101010011
0001101110101010

…

0111110011100101

1101010101110011
1100100100010010
0010110101110001

…

0111111011010011

1101010101110011
1100100100010010
1001010101010001

…

0111111011010011

M0(0111110011100101, 1100100100010010) = 1 +  2 + 1 + 5 + 3

GA

Antigens Antibodies Antibodies

Figure 9 Graphical Depiction of GA Matching Function

Strings found to match self-strings are eliminated via “negative selection”[7].

Antibody strings are assigned higher fitness values when a greater number of matches

occur. The fitness of each antibody ( j)j is calculated by the following procedure [31]:

1. Choose a sample ρ antigens randomly from the initial set of antigens (with

replacement). Note that the total antigen population from which this sample

is chosen remains fixed throughout the run of the GA.

2. For each antigen k in the sample, compute the match score M(k,j).

3. The fitness of antibody j is the average match score computed over the sample

of ρ antigens.

Using this model, Forrest et. al. recognized that as the population of anti-

gens evolves to increased levels of generality, it becomes difficult to maintain enough

diversity to recognize different classes of new antigens. That is, “for each popula-

tion size there is a maximum ‘carrying capacity’” [31]. However, this problem can
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be resolved by increasing the population of antibodies and the number of antigens

sampled per GA cycle. In general, there must be at least 15 antibodies for every

antigen “type” (or class).

As stated earlier, adaptive pattern recognition of class boundaries involves both

concept learning and the recognition of common patterns to obtain either complete

or partial class templates. This serves as a complement to the Forrest et. al. ap-

proach above,. From a heuristic perspective, the De Jong and Spears approach of

concept learning results in rules that can be applied to the search in question in order

to categorize population members. Further, “supervised concept learning involves

inducing concept descriptions for the concepts to be learned from a set of positive

and negative examples of target concepts. Examples are represented as points in

an n-dimensional feature space, which is defined a priori and for which all the legal

values of the features are known. Concepts therefore are represented as subsets of

points in the given n-dimensional space.” [22]

The De Jong et. al. approach expresses the complex concepts involved in

adaptive pattern recognition as a “disjunctive set of classification rules[where] the

left-hand side of each rule (disjunct) consists of a conjunction of one or more tests

involving feature values[and] the right-hand side of a rules indicates the concept

(classification) to be assigned to the examples which match its left-hand side. Col-

lectively, a set of such rules can be thought of as representing the (unknown) concepts

if the rules correctly classify the elements of the feature space.” [22] In the case of

spectra, an extremely large number of variables (feature values) could easily increase

the complexity of the solution space. Therefore, it is necessary to reduce this number

by limiting the features introduced and allowing the GA to further eliminate unnec-

essary features. ”By restricting the complexity of the elements in conjunctions, we

are able to use a string representation and standard GAs, with the only negative

side effect that more rules may be required to express the concept. This is achieved

by restricting each element of a conjunction to be a test of the form:
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“return true if the value of feature i of the example is in the given

value set; return false, otherwise” [22].

This provides for the construction of classifier rules represented as fixed length

strings. As applied to the example classification problem (spectra recognition), these

rules can be used to classify spectra based on a diverse set of rules that are obtained

via application of a GA.

For example, in the case of spectra to be classified, the left-hand side of rules

for a five-feature problem could be represented internally as:

F1 F2 F3 F4 F5

011001101011010 1111111 011 111100 11111

where F1 represents the location of peaks, F2 represents intensity of peaks,

F3 represents mean amplitude, and so on.

“Notice that a feature set involving all 1’s matches any value of a feature and

is equivalent to ‘dropping’ that conjunctive term”; so, in this case, the size of the

file is irrelevant to the formulation of the rule. [22] A feature set of all 0’s indicates

a feature set which does not match (cover) any points in the feature space. “The

right-hand side of the rule is simply the class (concept) [or virus class] to which the

example belongs. This allows for the complete formulation of rules that take the

example form:

If (F1 = 011001101011010) and (F3 = 011 or 101) and (F4 = 111100) then

acetone detected.

In this approach, “each individual in the population is a variable-length string

representing an unordered set of fixed-length rules (disjuncts),” allowing for the

suitable application of GA operators. [22] It critical to pick a good fitness function

which rewards the right kinds of individuals. The fitness F of each individual rule

set i is computed by testing the rule set on the current set of examples where
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F(individual i) = (percent correct)2.

“This provides a non-linear bias toward correctly classifying all the examples

while providing differential reward for imperfect rule sets.” [22]

2.3 Parallel Computing Concepts

Just as the BIS is distributed in nature, the proposed distributed AIS relies

heavily parallel computing concepts. Each node with the AIS plays a role in the

overall “health” and performance of the system through independent processing and

collective communications. Realization of this model requires the incorporation of

an established parallel architecture in order to maintain system control reap the

benefits derived from parallel and distributed execution. In the case of the proposed

system, two key parallel computing paradigms are observed and implemented: (1)

Master-Slave and (2) Island-model communications.

2.3.1 The Master-Slave Paradigm. The master-slave model is necessary to

control the flow of warnings and detectors from the global node to network and sensor

nodes (and vice-versa). The model itself “is easy to visualize from a management

perspective – objective function evaluations (task decomposition) are distributed

among several slave [network and sensor ] processors while a master [the global node]

executes the evolutionary operators (EVOPs) and other overhead functions” [71].

The model depicted in Figure 10 represents a two-level master-slave configuration;

however, the AIS proposed here implements a three-level relationship, where the

nodes as level n are considered to “master” nodes at level (n - 1) where n is equal

to 3.

“Because communication (generally) occurs between the master and slaves at

the end of each generation, communication time is most likely not an overriding fac-

tor” in the AIS’s efficiency as that cost primarily depends on the number of sensor

and network nodes, “the hardware architecture, and the communication backbone on
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cessors. These options are shown in Figure 2; each is dis-
cussed in turn.

1 2  n/p (p-1)(n/p)+1  n

F F

1 2  n 1 2  n

f 1 f k

1 2  n

f i f i

(a) (b)

(c)

Figure 2: Parallel Objective Function Evaluation
Possibilities

When implementing the first option (see Figure 2a), one
must consider that each objective function’s execution time
may be radically different. Thus, blindly assigning the en-
tire population and each of the k functions to a different
processor may then be imprudent if one objective function
evaluation takes several times longer than the others. Stati-
cally or dynamically load balancing these computations may
help but the effort expended may not be worthwhile.

When implementing the second option (see Figure 2b), equal
fractions of the population are assigned to different pro-
cessors where they are evaluated in light of all objective
functions. Identical numbers of individuals are thus eval-
uated via identical fitness functions. As long as communi-
cation time is not a significant fraction of each subpopula-
tion’s calculation time, this appears an efficient paralleliza-
tion method for objective function evaluation.

Finally, the third option (see Figure 2c) may be implemented
in the case of extremely expensive objective function compu-
tations where each individual’s, and possibly each function’s
evaluations, are split among processors. This might be the
case in problem domains such as computational electromag-
netics or fluid dynamics where such parallel codes already
exist.

Note the preceding discussion focuses on objective function
calculations only. Additional processing is sometimes re-
quired to then transform the resultant objective value vec-
tors into fitness vectors or scalars. Several variants of MOEA
fitness assignment and selection techniques exist (e.g., or-
dering, scalarization, independent sampling, and coopera-
tive search as discussed in Chapter ??), not all amenable to
parallelization.

2.3 Parallel MOEA Data Decomposition
An MOEA’s underlying data structures may also affect the
ability to effectively and efficiently parallelize the algorithm.
In other words, how and where necessary data is stored, its
quantity, and to where (and when) it needs to be commu-
nicated may well affect how easily an MOEA is parallelized
and how well the resultant implementation executes. For
example, consider a generic parallel MOEA implementation
evaluating k objective functions. If each slave processor eval-
uates only a part of one objective function’s value perhaps

just given components of the underlying data set are needed
by each processor. However, if each processor computes a
different objective function the entire underlying data set
may need to be sent to each processor. In real-world de-
sign and engineering problems this data set may be quite
large! As data communication significantly affects parallel
programs’ efficiency, reducing the resultant communication
delays may well speed up algorithm execution.

Now it is time to move from theoretically examining MOEA
parallelization to a discussion of the known implementations
identified in the literature.

3. PARALLEL MOEA PARADIGMS
Three major parallel paradigms are implemented in the cur-
rent MOEA literature. These are the “Master-Slave,” the
“Island,” and the “Diffusion” models, however, although
certain of these models can be seen as a special case of an-
other (e.g., an island MOEA could be implemented using
a master and several slave processors). This section briefly
describes these three primary conceptual models; examples
of each drawn from the literature are presented in the next
section. Interested readers are referred elsewhere for further
discussion of these paradigms, although in a serial sense [?].

3.1 Master-Slave Model
The Master-Slave model is easy to visualize – objective func-
tion evaluations are distributed among several slave pro-
cessers while a master processor executes the EVOPs and
other overhead functions. This parallel MOEA paradigm is
quite simple to implement and its search space exploration
is conceptually identical to that of an MOEA executing on
a serial processor. In other words, the number of processors
being used is independent of what solutions are evaluated,
except for the reduced time. This paradigm is illustrated
in Figure 3 where the master processor sends parameters
necessary for objective function evaluations to the slaves;
objective function values are then passed back when com-
pleted.
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Figure 3: Master-Slave Paradigm

The master processor may be used to perform objective
function calculations itself, but most often controls paral-
lelization of the objective function evaluations (and possi-
bly the fitness assignment and/or transformation) tasks per-
formed by the slaves, easily implemented via communication
libraries such as the Message Passing Interface (MPI)2 [?]

2The Message-Passing Interface (MPI) is a standard spec-

Figure 10 Master-Slave Paradigm [71]

which the algorithm executes” [71]. “As it is generally accepted that real-world ob-

jective function evaluations are the most computationally expensive EA components,

communication and EVOP cost should then be fairly inconsequential in comparison.

This is not meant to imply that scalability is never a problem, but master-slave im-

plementations generally become more efficient as objective evaluations become more

computationally expensive. However, note that computational loads must be evenly

split among slave processors else significant lag times may exist between generations

as the master processor waits for slave evaluations to complete. This ‘generation

gap’ is not wanted! This situation can also occur in a heterogeneous environment”

[71].

2.3.2 The Island Model Paradigm. Communications between sensors use

the “island” model paradigm, which is “based on the phenomenon of natural pop-

ulations evolving relatively isolated from each other, such as that occurring within

some ocean island chain. [Systems] based on this paradigm are sometimes called

‘distributed’...as they are often implemented on distributed memory computers; they

are also termed multiple-population or multiple-deme1...[systems]” [71]. No matter

their name, the key defining characteristic is that individuals within some particular

(sub)population (or island) occasionally migrate to another one usually based on

some fitness criteria. This paradigm is illustrated in Figure 11.

“Conceptually, within the island model, the overall [sensor set] is divided into a

number of independent, separate (sub)populations (or demes)” [71]. Each sensor op-

1a deme is used here to represent a subpopulation residing on each island
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computationally expensive component of MOEAs communication and EVOP
cost should then be fairly inconsequential in comparison. This is not meant to
imply that scalability is never a problem, but master-slave implementations gen-
erally become more efficient as objective evaluations become more expensive.
However, note that computational loads must be evenly split among slave pro-
cessors else significant lag times may exist between generations as the master
processor waits for slave evaluations to complete.

3.2 Island Model
“Island” model MOEAs are based on the phenomenon of natural populations

relatively isolated from each other, such as that occurring within some island
chain. Parallel MOEAs based on this paradigm are sometimes called “dis-
tributed” MOEAs as they are often implemented on distributed memory com-
puters; they are also termed multiple-population or multiple-deme MOEAs. No
matter their name, the key defining characteristic is that individuals within some
particular (sub)population (or island) occasionally migrate to another one. This
paradigm is illustrated in Figure 7.4. Note that the communication channels
shown are notional; specific channel assignments are assigned as part of the
MOEA’s migration strategy and are mapped to some physical backbone.

�� ��
Processor

�

�

�
�

� � ��
Processor

�� ��
Processor

�� ��
Processor

Figure 7.4. Island Paradigm

Conceptually, the overall MOEA population is divided into a number of
independent, separate (sub)populations (or demes); an alternate view is one
of several small, separate MOEAs executing simultaneously. Regardless, al-
though evolving in isolation for the majority of the MOEA run, individuals
occasionally migrate between one particular island and its neighbors (note that
each island is often located on it’s own processor). The EVOPs (selection,
mutation, and recombination) operate within each island strongly implying the
separate populations are searching very different regions of the overall search
space. Each island could also have different parameter values as well as a dif-
ferent MOEA structure. This model does require identification of a suitable
migration policy to include how often migration occurs (i.e., how many gen-

Figure 11 Island Paradigm [71]

erates in isolation for the majority the sensor duty cycle (SDC ). Sensors occasionally

migrate signatures, measurements, and warning between one particular sensor and

its neighbors. The agents sets Ai = {D1, ..., Dn} operate differently within each sen-

sor, thus strongly implying the separate sensors can detect very different regions of

the overall solution space [71]. Each sensor could also have “different parameter val-

ues as well as a different...structure. This model requires identification of a suitable

migration policy to include how often migration occurs..., what number of [detectors]

to migrate, how to select emigrating...[detectors] and which detectors are replaced by

the immigrants. Relatively thorough gene mixing then exists within individuals in

each deme but gene flow is restricted between different demes...Note that an island

implementation is sometimes termed course-grained parallelism because each island

(processor) contains a large number of individual solutions” [71].

2.3.3 The Diffusion Model Paradigm. The diffusion model is used in many

parallel computing load balancing applications. The model is based upon the idea

of distributing objects (or tasks) to local nodes in the direction of high system loads

(or energy) to low loads. For example, a system with a high processor utilization

rate may wish to disperse its load to a local node if that node has a lower utilization

rate in order to improve the overall system performance. System locality is defined

by the neighborhood set or sets in which the node is a member. For example, Figure

12 demonstrates two overlapping neighborhoods within a mesh of nodes. Node 1

(N1) may choose to diffuse objects to N2 or N3, if node utilization meets a certain

threshold to initiate migration [14].
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Figure 12 The Diffusion Model Paradigm [14]

While applicable in load-balancing applications, the diffusion model may not

be applicable for the purposes of improving AIS classification; and, is not chosen in

favor of the island-model paradigm for antibody migration.

2.4 Data Mining / Feature Subset Selection Concepts

Marmelstien [56], the original author of the Genetic Rule and Classifier Con-

struction Environment (GRaCCE) defined data mining as “a broad term used to

describe any process that seeks to uncover patterns, associates, changes, anomalies,

or statistically significant partitions in data.” The traditional method of data anal-

ysis is performed manually by developing a hypothesis and then testing if the data

supports it. “In contrast, data mining is an automatic process that discovers useful

patterns in the data and extracts them” [56]. The data mining process is actually a

compilation of six different phases [56]:

Data Selection/Sampling - due to the sheer size of some databases, is often

impractical to process them in their entirety; therefore, it is necessary to reduce

the data analyzed in some manner or to randomly select a subset of instances

for processing.
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Cleaning/Preprocessing - the selected data is prepared for processing. This can

involve translating the data into an acceptable format or replacing missing or

illegitimate entries.

Transformation/Reduction - revise and/or redefine the feature set. All the

features included in a given data set are not always required for prediction,

and it may often be desirable to create new features to facilitate the mining

process.

Data Mining - the application of the selected data mining method to the data.

Evaluation Criteria - the output of the mining algorithm is evaluated against

established metrics. This typically reduces the volume of information produced

to that which is most relevant.

Visualization - facilitates manual analysis of results by producing information is

easily understood.

Figure 13 gives an overview of the data mining process. It should be noted

that although the process is depicted serially, the data mining process is actually

iterative and repetitive. Many of the phases may be performed in parallel to speed

analysis times.

2.4.1 Feature Selection. Selecting of features to be used for accurate clas-

sification of a data set can be a difficult task, stricken with both theoretical and

computational complexities. “While features within a data set provide the means

for discriminating between two classes, too many features can degrade a system’s

ability to classify data” [68]. This is because the number of samples required for

training increases as the number of features and possible values for those features

increase, a phenomenon termed the “curse of dimensionality” [68]. For a data set

with d features with M possible values for each future, M d samples are required for

training to truly be effective. Further, not all features are required to accurately
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Figure 13 Overview of the Data Mining Process [56]

discriminate between classes. An example of a data set with two classes is shown in

Figure 14.

Figure 14 Example of Samples in a Two Classes Data Set

Reduction of the feature set size is one way to fight the curse of dimensionality.

Only the x feature in Figure 14 is necessary to discriminate between the triangle and

the circle classes. Elimination of the y feature from the data set makes discrimination
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relatively trivial after drawing a vertical line through the two data sets, as illustrated

in Figure 15.

Figure 15 Example of Feature Reduction in a Two Class Data Set

But, given a data set with d features and a desired subset of m features, how

is the best subset found? “An exhaustive search would have to try





d

m





d!
(d−m)!m!

possibilities [68]. This results in the need an alternate approach. This research takes

the approach pioneered by Marmelstein’s Genetic Rule and Classifier Construction

Environment (GRaCCE) [56].

2.4.2 Genetic Rule and Classifier Construction Environment. “GRaCCE

is a data mining tool that uses evolutionary search techniques to mine classification

rules from the data it is given. It is similar to a pattern recognition algorithm, but

goes beyond by producing understandable rules used in the recognition” [68]. There

are eight different phases of the GRaCCE algorithm, indicated in Table 1 along

with their algorithmic complexities. For further information about GRaCCE, see

Marmelstein [56], Strong [68], or Yilmaz [74].

2.5 Spectral Analysis

As the purpose of this research is to design a system that recognizes chemicals,

the chemical spectra is the chosen method of chemical representation. Spectral

analysis, then, is the process by which different measured chemicals (represented by
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Phase Complexity
Pre-Processing - Feature Weighting [74] O(n2 + kn)
Pre-Processing - Feature Selection [68] O(n2 + kn)
Pre-Processing - Winnowing O(dn2d)

Partition Generation O(2(dn)2 + nd)
Data Set Approximation O(nlog(n))

Region Identification O(qn2d
3

2 )
Region Refinement O(dnlog(n))
Partition Simplification O(d2n2log(n))

Table 1 Worst Case Complexity Analysis of GRaCCE [74]

their spectra) are classified. Spectral analysis was introduced by Redner [64] in 1985

and uses the spectrum of the light emerging from a light-field circular polariscope

to find the optical retardation of chemical specimens. The retardation, δ, is found

by searching for a theoretical spectrum that closely fits the experimental data. If a

spectrum is defined by T intensity measurements, then the difference between the

theoretical spectrum and the experimental data is defined by Equation 2 [62].

Di =
T

∑

n=1

|Itheoreticaln − Iexperimentaln | (2)

The difference, Di, varies with the substituted value of δ in a complex manner

over a wide range of retardations, resulting in very large numbers of calculations

where a series of searches are performed in order to find the global minimum. Given

this complexity, traditional search methods are ill-equipped to deal with multiple

minima that may occur during the search; thus, there is a clear requirement for a

fast and efficient iterative algorithm [62].

2.5.1 Existing Methods for Spectra Classification. Four primary methods

have been proposed in the past for minimizing the difference found in Equation 2

[62]:
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Redner [64] error summation: a large number of theoretical spectra are com-

pared with the experimental data, and those giving the smallest difference are

returned as the solution.

Voloshin [72] and Redner database search method: compared experimental data

with a database of spectra of a known fringe order.

Sanford and Iyengar [66] method: used the Newton-Raphson method to find a

minimum in the difference function.

Haake and Patterson [38] method: used a golden section search to find all of

the local minima and then returned the smallest of them as the solution.

2.5.2 Chemical Sensors. Worldwide, sensor research is an extremely hot

topic. Sensors are capable of providing humans with data about anything and every-

thing to enhance our ability to control and measure our environment. More related

to biological agent classification is the Electronic Nose research being conducted by

Ewing, Abdel-Aty-Zohdy, Purdy and a consortium of universities. Other similar

research is currently in progress at Caltech, Ohio State, Michigan State, and Wright

State University. The goal this research is to devise a system capable of quickly

measuring and classifying elements simply by analyzing the resulting chemical spec-

tra plots. Recently, significant progress has been made in this area by incorporating

“Systems on a Chip” and nanotechnology, resulting in extremely small but powerful

sensors capable of producing highly accurate environmental measurements. Exam-

ples of similar sensors developed at Caltech can be seen in Figure 16 and Figure

17.

2.6 Summary

In summary, Chapter 2 has provided a brief background and discussion of a

wide range of topics. AIS concepts provide foundation for overall system execu-

tion and performance improvements. Parallel computing ties the system together

42



by providing system control and communications. Data mining concepts reduce

the dimensionality of the problem domain, thereby limiting the search space and

improving system performance. And last, but not least, sensor research provides

system “input”, without which the system would could not function. As the focus of

this research, the distributed AIS proposed in detailed in next three chapters brings

together the complementary characteristics of each of these subjects.

Figure 16 An odor sensor [41]

Figure 17 Alice robot with 400 element olfaction chip [41]
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III. HIGH LEVEL DESIGN

This chapter provides a high level design for the proposed DAIS. The DAIS problem

is decomposed into basic problem sub-domains. Sub-domains are then unified and

the operations of the DAIS, as a whole are specified.

3.1 Problem Solution Domain

Full specification of the problem solution requires the definition of three dis-

tinct sub-domains: (1) Genetic Algorithms, (2) Artificial Immune System, and (3)

Feature Subset Selection. High-level descriptions of each sub-domain are given in

the following subsections.

3.1.1 Problem Statement. The DAIS problem concerns the detection and

classification of biological agents in a distributed artificial immune system. This

problem domain,DDAIS, consists of three separate sub-domains: the AIS sub-domain

(DAIS), the genetic algorithm sub-domain (DGA), and the feature subset selection

sub-domain (DGRaCCE). In other words,

DDAIS = DAIS ∩DGA ∩DGRaCCE (3)

Figure 18 illustrates the interactions between signature acquisition, feature sub-

set selection, antibody generation, and DAIS execution. The goal is to continuously

improve classification accuracy after each cycle.

It should be noted that although this research presents a strategy for unified

system operation and communications between all domains (GRaCCE, Genesis, and

the AIS) as shown in Figure 18, these interactions are simulated during system testing

(Chapter 5). Testing was conducted over an extended period of time, during which

the types of signatures and patterns used were the best available at that moment.

For that reason, the data encoding examples given for each sub-domain describe
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Figure 18 The DAIS Process

different data sets. Though disjoint in regard to using the same data set for all

testing, the purpose of validating the strategy for chemical classification presented

is still achieved through these pedagogical examples.

3.1.2 DAIS Problem Solution Domain. The AIS sub-domain consists of a

defined node architecture that distributes distinct responsibilities to different nodes.

In the following subsections, the domain is specified through discussion of the system

architecture, node operations, topology, and data encoding. In addition, the range

of possible implementation languages and libraries is discussed and choice for each

is justified.

3.1.2.1 AIS Architecture. The sensor architecture is based upon the

three-tiered model proposed by Lamont, et al [54], and distributes core AIS opera-

tions to each layer. The model proposed mirrors an AIS solution for computer virus

detection (see Figure 19) that can be easily mapped to the AIS solution proposed

which focuses on chemical agent detection.

45

Cbtain Ktxjwn 
adogical ^igent 

Sgnatures 

J 
Feature Subset 

Selection 
{GRaCC^ 

Real-Time 
D^SB(ecution 



Figure 19 DAIS model sensor architecture [54]

Operating as a Distributed AIS (DAIS ), the system is comprised of a set of

sensors (S ), network nodes N ), and one or more global nodes (G). Nodes operate in

parallel in a hybrid master/slave and island model configuration (see Section 3.1.2.2).

As such, the DAIS can be represented as:

DAIS = {S,N,G}

The Local Layer. Each sensor is an individual agent at this

level and is singularly responsible for the measurement and classification of elements

within the immediate vicinity. This effectively distributes the processing overhead

to each sensor, increasing the overall classification power of the DAIS proportion-

ally with | S |. Decisions for tactical (local) virus detection are performed at this

level. The chief responsibilities of sensors at this level include: taking measurements,
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comparing measured spectra to known biological agent plots, and reporting matches

(along with the signatures matched) when they occur.

The set of sensors S, is comprised of a set of agentsA such that S = {A1, A2, ..., An}
where n = |Agents| and agents are comprised of the set of measurements M and

detectors D such that Ai = {Mi, Di}. One measurement M is taken every Sensor

Duty Cycle (SDC ) such that Mi = {m1,m2, ...,mj}|j ∈ SDC. Further, the set

of detectors attributed to agent i is comprised of a set of signatures b to classify

measurements during each SDC. This results in the detector set Di = {b1, b2, ..., bz}
where z represents the agent memory size.

The Network Layer. The network layer is comprised of more

complex nodes represented as the set

N = {N1, N2, ...Nb}
∀S∃Nbsuch that Si ⊆ Nb,∧|N | ¿ |S|

Network nodes help to further classify spectra forwarded to them by sensor nodes.

In this capacity, they act as a filter to limit the number of false detections forwarded

to the global level. When a valid alert is received from an agent node or a group

of agent nodes, the network node forwards this information to other network nodes

and to the global node. In addition, network nodes distribute updated detector sets

to sensor nodes whenever released by the global node.

The Global Layer. The global layer is comprised of one or more

nodes capable of high performance calculations. Each global node is connected to a

set of a network nodes such that Gi = {N1, N2, ..., Ni}. This node may be centrally

located within a command center; or, may be located remotely when “reach-back”

capability has been established. The Global node G is responsible for sensor adap-

tation, detector (D) generation (Figure 20), costimulation, affinity maturation, and

detector memory. The node correlates alerts generated by network nodes and reports
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them to command staff.

Figure 20 Graphical Depiction of Detector Generation
[20]

3.1.2.2 AIS Topology. The physical topology of the AIS radial with

connections via wired or wireless means and is depicted in Figure 21. Due to the

remoteness of the typical deployed environment, secure wireless communications are

preferred to speed system deployment and enhance survivability.

In deference to the physical communications topology, the system takes on an

alternate computation paradigm. While all communications flow in a radial/hierarchical

fashion as in Figure 21, the logic and control of these messages is quite different.

“Three major parallel computational paradigms are considered: ‘Master-Slave,’ ‘Is-

land’, and ‘Diffusion’ paradigms. Others include the ‘hierarchical’ and/or ‘hybrid’

paradigms that may be seen as combinations of the three generic forms” [71]. Due

to communication and system control requirements, the AIS takes a hybrid master-

slave (Figure 10) and island-model (Figure 11) topology. The actual instantiation of

this hybrid topology “can be quite simple provided a data structure is utilized that
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Figure 21 AIS Node Architecture

lends itself to parallelism. Task or data decomposition is another decision that must

be made in implementing” a parallel (distributed) AIS [71].

3.1.2.3 AIS Synchronization. Choice of synchronization strategy

is also critical to the efficiency and effectiveness of the system. Again, the DAIS

takes a hybrid approach, combining both synchronous and asynchronous communi-

cations. “Synchronous implementations always deal with same-generation popula-

tions with some sort of communication synchronizing all processes. Asynchronous

implementations can greatly reduce processor idle time (assuming varying processor

speeds/memory/hardware limitations), but this implies that communications occur

at random times and sometimes without guaranteed delivery of the messages to the

destinations” [71]. All system control communications, such as the distribution of

warnings and updated detectors from the global node take place via synchronous
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communications under the master-slave paradigm in order to ensure delivery and

receipt.

Asynchronous communications take place via the island model paradigm where

the only nodes participating in the paradigm are sensor nodes. These asynchronous

communications take place whenever a sensor (Si) detects a biological agent. The

measurement(s) (Mi) and detectors (Di) that exceeded the affinity threshold of Si

are asynchronously passed to adjacent Network Node Nj. This process continues

until all sensors are aware of the detection and results in an immunity response that

raises overall system affinity to detect future similar Mi, Di occurrences. The global

node G receives this information after notification from Network nodes and begins

production of detectors more capable to produce a system response in the future.

3.1.2.4 Matching Functions. As a core function of the AIS, self/non-

self discrimination is made possible through the selection of appropriate rules to

determine the degree of similarity or difference between input data and detectors. As

the system models self and non-self as series of binary strings, the most appropriate

measure of similarity or difference is calculated as the binary distance between two

specified strings. This measure comes in the following flavors:

Hamming Distance. The Hamming distance measure simply

counts the number of bits that differ between two strings. It can be thought of as an

“exclusive-or” (XOR) binary operation followed by a binary one summation. This

function is signified by equation 4 [59].

Hamming Distance =
N

∑

i=1

(Xi ⊕ Yi), X, Y ∈ {0, 1}N (4)

Alternate Similarity Measures. Due to the limited ability of the

Hamming distance to describe both similarities and differences in one coefficient,

other similarity measures have been devised. These measures use the following def-
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initions, each adding a different degree of specificity to the resulting measurement

[59]:

X,Y ∈ {0, 1}N

a =
∑N

i=1 ζi, ζi =







1 : Xi = Yi = 1

0 : otherwise

b =
∑N

i=1 ξi, ξi =







1 : Xi = 1, Yi = 0

0 : otherwise

c =
∑N

i=1 γi, γi =







1 : Xi = 0, Yi = 1

0 : otherwise

d =
∑N

i=1 ψi, ψi =







1 : Xi = Yi = 0

0 : otherwise

The following measures utilize the above definitions of a, b, c, and d to produce

better similarity measurements [59, 40]:

Russel and Rao : f =
a

a+ b+ c+ d
(5)

Jaccard and Needham : f =
a

a+ b+ c
(6)

Kulzinski : f =
a

b+ c+ 1
(7)

Sokal and Michener : f =
a+ d

a+ b+ c+ d
(8)

Rogers and Tanimoto : f =
a+ d

a+ d+ 2(b+ c)
(9)

Y ule : f =
ad− bc
ad+ bc

(10)

3.1.2.5 Matching Function Selection. Paul Harmer designed a similar

AIS to detect computer viruses in 2000. His research included a thorough comparison

study of the above matching measures, as well as others such as difference matching,
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slope matching, and physical matching. For more specifics of this analysis, see the

Harmer Thesis [40]; however, his results are summarized in Figure 22. Figure 22 uses

a signal to noise ratio (SNR) measurement to determine the specificity or generality

of matching functions. “A large SNR indicates a more specific detector, while a low

value is indicative of a general detector” [40]. Hence, a detector with a large SNR

is able to match non-self with a low false alarm rate, while a detector with a small

SNR is more general, and able to cover a larger subset of the self/non-self space [40].

Figure 22 Average signal to noise ratios.

Given the results in Figure 22, the Rogers and Tanimoto matching function is

chosen for its ability to provide a good compromise between specificity and generality.

This improves the system’s ability to cover the space of non-self while limiting the

number of detectors necessary to cover this space.

3.1.2.6 AIS Detector Data Encoding. Chemical measurements to

be classified must represent real-world chemicals with toxic properties. A list of

chemicals considered to be a threat to humans was obtained from the Centers for

Disease Control (CDC) [13]. This list was then cross-referenced with a list chemical
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signatures available from the National Institute for Science and Technology (NIST)

[60], resulting in the following subset of toxic chemicals. Note that methane has been

arbitrarily added to increase the overall search space:

• Methane

• Mustard Gas

• Nitric Oxide

• Arsine

• Phosgene

• Hydrogen Cyanide

• Hydrochloric Acid

• Cyanogen Chloride

• Titanium Tetrachloride

The mass spectrum for each of these chemicals contains information on its

chemical composition, resulting in a signature that can be used for identification.

This plot is the result of the mass spectroscopy process. Mass spectroscopy is de-

fined as “a method for experimentally determining isotopic masses and isotopic abun-

dances. A sample of an element is converted into a stream of ions and passed through

an electromagnetic field. Ions with different charge-to-mass ratios are deflected by

different amounts, and strike different spots on a film plate or other detector. From

the position of the spots, the mass of the ions can be determined; from the intensity

of the spot, the relative number of ions (the isotopic abundance) can be determined”

[46]. Figure 23 is an example of a mass spectrum plot for Mustard Gas. Plots for

all chemicals can be found in Appendix A-2.

A large number of features can be derived from this relatively simple chemical

signature plot. For the purposes of this AIS, it is beneficial for all signatures to con-

tain information about equal numbers of features. One way to ensure this property
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Figure 23 Mustard Gas Mass Spectra Plot [60]

is to derive features from the plot that are common to all other possible mass spectra

plots. Such features include the following:

1. First x value

2. Last x value

3. First y value

4. Maximum x value

5. Maximum y value

6. Minimum x value

7. Minimum y value

8. Total Number of Points

All y values in mass spectra plots are a function of relative abundance; that is,

the number of ions at that mass number detected relative to the ion detected with

the highest abundance. This ion value is always equal to 100% relative abundance.
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Therefore, it is not beneficial to use the maximum y value as a feature of the chem-

ical signature. All other features may have some value in discriminating between

signatures.

After choosing the appropriate feature subset (subjectively, or by using a data-

mining tool such as GRaCCE) , the resulting features are encoded as shown in Figure

24. The resulting signature is simply a binary string representative of the designated

features.

Figure 24 AIS Data Encoding Process

3.1.2.7 DAIS Mathematical Model. A mapping of the general AIS

concepts discussed in previous chapters to the chemical spectra classification domain

is presented symbolically as follows:

Domains,D
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Input Di

DAIS = {S,N,G}
S : is a set of sensors

S = {A1, A2, ..., An} where n = |Agents|
A: set of Agents ⊆ S

Ai = {Mi, Di}
M : set of measurements

Mi = {m1,m2, ...,mj}|j ∈ SDC

D : set of detectors

Di = {b1, b2, ..., bz} where z = |memoryAi| and
N : is a set of network nodes

N = {N1, N2, ...Nb}
∀S∃Nbsuch that Si ⊆ Nb,∧|N | ¿ |S|
G is a set of one or more global nodes

Gi = {G1, G2, ..., Gi}
Output Do - set of detectors D’, and warnings W

Conditions

I(M): Mi measurement, i ∈ SDC
O(W, D’): W warning, D’ improved detectors

Operations

Next-State Generator - System Duty Cycle SDC

Feasibility(M,D) - W = TRUE iff

Mo(D,Mi) ≥ affinity threshold, Mo

Solution (D’,W): new detectors D’, and warnings W

D’ generated by DGA and passed

from G to S via N

W = TRUE if f(D,M) ≥ affinity threshold, f = eq. 9

Objective: W = TRUE when Mi = biological agent
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3.1.3 Implementation Languages and Libraries. Realization of the object-

oriented DAIS design requires the use of an object-oriented programming language.

There are many such languages available. Among the choices are C++, Ada 95, and

Java. All of these include constructs for object-oriented programming. To enable

selection of the appropriate language, a few requirements must be met:

1. Availability: Compiler and libraries should be easily accessible and available

for download.

2. Portability: Code must be able to be executed on multiple system platforms

and architectures to enable “heterogeneous” processing.

3. Programming Environment: A robust and programmer-friendly program-

ming environment should be readily available to reduce the likelihood of logic

errors and speed system development. This environment should be available

for free download or included as part of the software on local systems.

4. Libraries: A large number of libraries should be freely available to reduce

the need for low-level programming constructs in file I/O and communications

operations.

Given these requirements, C++ and Ada 95 are not logical choices. C++ does

include a rather robust programming environment through Microsoft Visual Studio

C++; however, this environment uses a compiler that is specific to the Microsoft

platform and effectively hinders portability. Ada 95 is no longer in development

and available libraries are extremely limited. Further, no up-to-date programming

environment exists for Ada 95.

Java is therefore the logical implementation choice for the following reasons:

1. The Java compiler is freely available regularly updated.
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2. Java code is highly portable. The same code may be executed on any platform

for which a Java compiler is available. Currently this includes all major system

platforms.

3. There are a significant number of user-friendly Java programming environments

freely available or available through local software distributions. The IBM

VisualAge for Java programming environment is chosen for its real-time error

checking and debugging features.

4. A wide variety of Java libraries can be found on the Internet. The majority of

these libraries are already included in the basic Java compiler and the range

of common functions.

3.1.3.1 Communications Libraries. As an object-oriented system,

the AIS is composed of modules designed around traditional Java object-oriented

programming techniques such as inheritance and aggregation to establish the AIS

control hierarchy and specify the operations to take place at each node. Establish-

ing communications between nodes requires use of a standardized communications

protocol. There are many protocols that meet or exceed the communications re-

quirements of a distributed AIS. However, the chosen communications library must

meet a few mandatory requirements [40]:

1. Efficiency: Low communications overhead and start up time

2. 1-to-1 Communications: An ability to send messages directly from one node

to another

3. 1-to-Many Communications: An ability to send a message from one node

to many nodes (multicast).

4. Asynchronous Communications: The ability to send messages without

timing constraints
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5. Abstraction: Messages can be sent without interface to low-level networking

commands

6. Simplicity: Facilitate robust and reliable communications without complexity

7. Portability: Ability to communicate between heterogeneous systems and ar-

chitectures

Among the many choices of communications libraries compatible with Java,

there are a few stand-outs to be considered. These stand-outs include the Java

Shared Data Toolkit (JSDT), Java Message Service (JMS) and Java Message Queue

(JMQ), and Message Passing Interface (MPI).

JSDT. The Java Shared Data Toolkit supports collaborative

applications through an established set of communications constructs [40]. “This

set of classes provides an abstraction above the basic networking functionality to

offer communication sessions between objects, with each session capable of support-

ing multiple separate data channels” [40]. The JSDT allows for low-level network-

ing communications that utilize sockets, hypertext transfer protocol (HTTP), light-

weight reliable multicast (LRMP), or remote method invocation (RMI) [40]. The

protocol also efficiently supports multicast and point-to-point messaging. JSDT ob-

jects communicate by subscribing to channels. Objects that subscribe to the same

channel can communicate via any of the methods described in the previous para-

graph. This ability would enable the DAIS communications in that each node would

simply subscribe to the channels necessary to setup the hierarchical communications

necessary for DAIS operations. Unfortunately, channel subscriptions must be indi-

vidually instantiated at each node, requiring significant time and effort to set up

hierarchical communications. This process could not be automated by any single

node in the hierarchy. This limitation would significantly hinder node setup time,

slowing down the testing process by requiring user interaction at every node to es-

tablish the full communications tree. In order to collect a large number of data
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points for statistical testing, this tree must be instantiated at least ten times per

test resulting in an inordinate amount of time for data collection.

JMS and JMQ. The Java Message Service and Java Message

Queue work together to provide a common framework for interaction among Java ap-

plications in an enterprise network [40]. JMS provides a common API framework for

message construction, interpretation, and sending. JMQ provides the constructs for

message receival. The JMS/JMQ framework consists of message publishers, brokers,

and consumers to facilitate communications. For messages to be sent and received,

the publisher object submits a message to message broker. This message is then

received by a message consumer that has requested a message or shown an interest

in messages from the publisher [40]. While providing high degree of abstractness,

the JMS/JMQ framework suffers from the same limitations of the JSDT and would

require significant operator interaction to establish communications. This limitation

also effectively precludes JMS and JMQ from consideration as a the communications

library of choice for DAIS implementation.

Message Passing Interface (MPI). MPI is a standard and

portable communications library based upon message-passing, and meets the re-

quirements in Section 3.1.3.1 . The library is the result of intense standardization

efforts by the MPI Forum to define a portable message-passing system to support

parallel applications. Designed to facilitate high performance computing, MPI allows

efficient asynchronous and synchronous communications between multiple networked

computers.

At start-up, the AIS determines the node object (Global, Network, or Sensor)

to be executed on each system based upon the system’s rank within the distributed

architecture. Determining rank requires a native interface to MPI libraries. In Java,

this takes place through the Java native interface (JNI) to C and C++ MPI libraries

known as mpiJava [12] as shown in Figure 25.
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Figure 25 mpiJava implementation layers [40]

3.1.3.2 Size Of DAIS Problem Domain/Search Space. The size of the

AIS problem domain and search space is dependent upon the length of self/non-self

bit-strings. As such, the search space O(2l) where l is the length of the longest

self/non-self string.

3.1.4 DGA Problem Solution Domain. The GA problem domain includes

the operations of a traditional GA (crossover, selection, and mutation) as described

in Section 2.1.

3.1.4.1 DGA Mathematical Model. The GA problem domain is de-

fined formally as:

Domains,D

Input Di

DGA = (I,Φ,Ω,Ψ, s, ι, µ, λ)

I: antigen signatures, (bi) ⊆ Di (detectors)

Chromosome l composed of attributes
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representing antigens

l = Bi, i length of binary representation

Φ: fitness functions eqs. 12, 13

Ω: GA probabilistic operators

Ψ: generation transition function

s: selection operator

ι: termination criteria

µ: number of parents

λ: number of offspring

Output Do - set of antibodies, I
µ = {b1, ..., bµ}

Conditions

I(P(t): population at time t, t ∈ SDC
O(I): improved antibodies

Operations

Next-State Generator - selection s(P (t), ps),

recombination r(P (t), pc), mutation m(P (t), pm)

affinity maturation(P (t)), negative selection(P (t))

costimulation(P (t))

Feasibility(I) - Φ(I) ≥ affinity
Solution (I): improved antibody

Objective: improved Φ(P (t))

3.1.4.2 The General GA Algorithm. A general algorithm for the pro-

posed GA solution is expressed by the pseudocode in Figure 26 [24]. The algorithm

is shown graphically in Figure 27.
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Figure 26 General GA solution pseudocode

3.1.5 DGRaCCE Problem Solution Domain. The GRaCCE problem domain

concerns the selection of n features from an individual with d possible features where

n¿ d to reduce the dimensionality of classification algorithm by a factor of (d−n).

Domains,D

Input Di

DGRaCCE = (I, F,Φ, ι)

I: antigen signatures, (bi) ⊆ Di (detectors)

F : set of features

Chromosome I composed of d features

representing antigens

l = Bi, i length of binary representation

Φ: fitness function (k nearest neighbor)

ι: termination criteria

Output Do - set of features F
′

such that all I can be classified
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begin 
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Figure 27 Graphical Depiction of GA Algorithm as Applied to the AIS

Operations

Next-State Generator - feature selection select(F ′, time t),

Feasibility(F ′) - F ′ ¿ F and classifies I

Solution (F ′): improved F

Objective: improved Φ(I)
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3.1.5.1 Simple Vs. Real-World Problem Instantiation. Analysis of

the problem from a simple vs real-world perspective reveals a few major differences.

First, as tested in a laboratory environment, the system is simple in execution via

fully connected high performance computing grid. This grid provides reliable com-

munications on primarily homogeneous systems. Measurements and system “vac-

cinations” are introduced clinically, as noiseless approximations of the real-world

biological signatures. The real-world instantiation is drastically different. In the

real-world, communication is both wired and wireless and therefore prone to noise

and disruption. Sensors and processing capability are heterogeneous in nature due to

the employment of different sensors in different environments and to detect different

threats. And finally, the largest difference is in the measurements themselves. These

measurements are prone to containing a high degree of noise due to variations in

weather, temperature, and air composition.

As a first step towards the realization of this system, the simple laboratory

model is a necessary part of the testing process. Experiments attempt to model

the real-world instantiation as closely as possible; however, a simulation with real-

world accuracy is not possible without the benefit of a real-world system for testing

purposes.

3.1.5.2 pGRaCCE Parallelization Concepts. Parallelization of GRaCCE

is an interesting topic for the following reasons: (1) the method of execution is highly

parallelizable, (2) quick determination of good feature variables enhances an AIS’s

ability to classify elements and evolve antibodies, and (3) the code has already been

previously parallelized by Hammack [39] and therefore easier to characterize.

pGRaCCE Data Decomposition. The serial version of GRaCCE

was parallelized by assigning each processor to a class or set of classes (if the num-

ber of processors is smaller than the number of classes) to evaluate for classification

regions. “The primary reasons for this decision are: (1) low communication re-
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quired... [and] (2) a less complex static scheduling scheme could be used” [39]. Data

decomposition, then, is accomplished by region assignments to each processor.

pGRaCCE Task Decomposition. Task decomposition is accom-

plished by assigning the various serial algorithm tasks to each processor so that

regions distributed after data decomposition can be assessed in parallel. Figure 28

is a graphical depiction of the serial task implementation.

Figure 28 GRaCCE Serial Task Execution [39]

The details of each task depicted in Figure 28 are [39]:

1. GA-based feature selection - selects the best m features

2. Winnowing process - remove all points misclassified by kNN classifier

3. Estimate class boundaries - use estimates to create partitions

4. Compute weight for each boundary point

5. Select target class wt which has not yet been evaluated

6. Choose unassigned boundary point with greatest weight as focus of search

7. Filter out partitions not related to the class of the chosen boundary point

8. Measure partition distance to the boundary point

9. Sort partitions on distance from boundary point

10. Orient partitions such that boundary point, b, has a positive value

11. Find initial solution using a greedy search technique
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12. Initialize GA population with results from greedy search

13. Perform GA-based search

14. Assign boundary points within best region found

15. Filter out disproportionately small regions

16. Test and remove extraneous boundaries

17. Recompute the covariance matrix of each region

While all processors perform the same tasks, the tasks are performed on differ-

ent data sets in parallel. Tasks 6-14 are repeated for the remaining boundary points

in target class(es) assigned to each processor. “Once all boundary points...have been

evaluated, tasks T5 to T14 are repeated for all remaining classes” [39]. Figure 29

illustrates this decomposition.

Figure 29 GRaCCE Parallel Task Decomposition [39]

pGRaCCE Load Balancing Approaches. In parallel computing,

there are many possible approaches to load balancing. Fortunately, the very low
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execution times (1-7 seconds) and small amount of communications associated with

pGRaCCE does not necessitate complex load balancing methods. Adding load bal-

ancing logic to pGRaCCE would likely only serve to increase the overall runtime,

negatively impacting performance.

3.2 DDAIS Problem Solution Domain

The DAIS problem domain is realized through the union of the GA, GRaCCE,

and AIS problem domains as stated in Equation 3. Each sub-domain contributes

to system performance by reducing the size of the overall search space (O(2l), l =

length of measured bit-strings) and by focusing search in regions that are as close to

non-self space as possible. The intersection of these three problem domains is not,

however, fluid in nature. GRaCCE must first run independently on a set of antigen

signatures in order to determine the minimal feature subsets required for accurate

classification. Next, the features not identified by GRaCCE as key to classification

must be removed from the original signatures. The resulting signatures are presented

to the GA for antibody generation. Finally, evolved antibodies are injected into the

AIS for real-time execution. This process is illustrated in Figure 30.

3.2.1 AIS Node Relationships. Relationships between AIS nodes are illus-

trated in Figure 31. Each node operates independently until receipt of input from

adjacent nodes.

3.3 Summary

A high-level design has been presented to describe the basics of DAIS oper-

ations. A GA is used to evolve antibodies to classify a given set of antigens while

GRaCCE reduces the search space dimensionality. The AIS model is then called

upon to provide real-time self/non-self classification with the goal of producing a

Warning whenever non-self measurements are encountered. Chapter 4 presents the

details of this operation and discusses further implementation issues.
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Figure 30 High-Level DAIS Execution

Figure 31 High-Level DAIS Node Interactions
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IV. LOW LEVEL DESIGN AND IMPLEMENTATION

Chapter 3 presented the high-level design of the DAIS. This chapter specifies the low-

level details for DAIS implementation by addressing the high-level constructs and

operations previously presented. Each problem domain is again dissected and key

operations are specified symbolically and algorithmically. The data encoding scheme

is presented to facilitate a mapping of the problem domain to the algorithmic de-

sign. Possible communications libraries are presented and choice of communications

library is given. The distributed AIS architecture is made possible through portable

source code and standardized communications. Algorithmic details are given for

each object within the AIS system design.

4.1 Algorithm Design

The DAIS algorithm design is a low-level mapping of the problem domain to

algorithms and data structures. Algorithms for each DAIS sub-domain are presented

symbolically followed by their pseudo-code representations. An object-oriented de-

sign is presented to allow for abstraction and simplify algorithm specification.

4.1.1 DAIS Algorithm Design. The AIS algorithm requires the generation

of signatures (antibodies) to classify biological agents (antigens). These antibodies

are chiefly a result of the negative selection algorithm described in section 2.2.5. The

AIS design is the subset of the DAIS design that focuses on the interactions among

sensors, network nodes, and the global node. Detection of antigens is associated with

an affinity threshold statically assigned by the global node at start-up . Antibody

affinities are improved within the AIS in a process called dynamic clonal selection

[50]. Dynamic clonal selection concerns the process of learning normal behaviors

by undergoing only a small subset of antigens at one time and replacing antibodies

whenever previously observed normal behaviors no longer represent current normal

behaviors [50]. Dynamic clonal selection takes place as described by Kim et. al.
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[50]. Further, this enhances the effect of costimulation and self/nonself determination

within the overall system.

At initialization, the AIS is “vaccinated” with antibodies capable of detecting

known antigens; a process known as central tolerisation [50]. These antibodies are

representative of chemical agents known to be used by enemy forces in the area. In

a DAIS, the centrally vaccinated nodes distribute improved antibodies to the rest of

the system, improving the system’s ability to match new antigens. The vaccination

of distributed nodes results in a similar affect.

4.1.1.1 DAIS Algorithm Specification. The high-level symbolic for-

mulation of the DAIS specified in subsection 3.1.2.7 is redefined and expanded in the

following symbolic specification. Additional details of operations are also specified.

Domains, D

Input Di

DAIS = {S,N,G} where
S : is a set of sensors

M : set of measurements

D : set of detectors

S = {A1, A2, ..., An} where n = |Agents| and
A: set of Agents ⊆ S

Ai = {Mi, Di} where
Mi is a measurement associated with agent Ai and

Di is a detector associated with agent Ai

Mi = {m1,m2, ...,mj}|j ∈ SDC where

mj is a measurement taken at time j ∈ SDC

Di = {b1, b2, ..., bz} where z = |memoryAi| and
bz is a binary string

N : is a set of network nodes
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N = {N1, N2, ...Nb}
∀S∃Nbsuch that Si ⊆ Nb,∧|N | ¿ |S|

G is a set of one or more global nodes

Gi = {N1, N2, ..., Ni}
Output Do - set of detectors D’, and warnings W

Conditions

I(M): Mi measurement, i ∈ SDC
O(W, D’): W warning, D’ improved detectors

Objects

GLOBAL-NODE: Highest node in DAIS hierarchy.

Receives warnings from NETWORK-NODES.

NETWORK-NODE: Mid-level node in DAIS hierarchy.

Validates warnings received from SENSOR-NODES

SENSOR-NODE: Low-level node in DAIS hierarchy

Takes measurements and forwards warnings to NETWORK-NODE

Operations

Next-State Generators - System Duty Cycle SDC

Generate-Detectors(D): return D’

Correlate-Warnings(N,W): return ALERT

if
∑

W ′ ≥ affinitythreshold(G)

Monitor-Network-Nodes(N): checks for new W

Monitor-Sensor-Nodes(S): checks for new W

Distribute-New-Detectors(D’): send D’ to S

Correlate-Warnings(S,W): return W’ to G

if
∑

W ′ ≥ affinitythreshold(N)

Incorporate-New-Detectors(D): return D’

Take-Measurement: return Mi, i ∈ SDC
Compare-To-Detectors(M,D): return W to N
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if W ≥ affinitythreshold(D)

Feasibility(M,D) - W = TRUE iff

f(D,Mi) ≥ affinity threshold, f = eq. 9

Solution (D’,W): new detectors D’, and warnings W

D’ generated by DGA and passed from

G to S via N

W = TRUE if Mo(D,M) ≥ affinity threshold,
Mo = eq. 11

Objective: W = TRUE when Mi = biological agent

4.1.1.2 Object-Oriented Design. Object-oriented design facilitates

abstraction and data-hiding to simplify the transition from high-level design, to

low-level data constructs, to implementation and coding. From an object-oriented

perspective, each node in the AIS executes concurrently while sharing similar de-

tectors generated via negative selection. The system may then be decomposed into

three separate modules represented by each type of node: sensor, network, and

global. Each node calls upon subsets of the operations defined above. Modules are

represented by the following object-oriented pseudocode:

OBJECT DAIS(W type Warning,D type Detector)is

SDC = 0;

While SDC < MAX-SDC loop

SDC = SDC + 1;

GLOBAL-NODE(N);

NETWORK-NODE(S);

SENSOR-NODE();

end object DAIS;
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OBJECT GLOBAL-NODE(N Network-Node List) is

Start-Nodes(Number of Nodes);

Read-Antigen-File(File);

Generate-Detectors(D), return D’;

Monitor-NETWORK-NODES(N);

Correlate-Warnings(N,W); return Alerts

Distribute-New-Detectors(D’);

end object GLOBAL-NODE;

OBJECT NETWORK-NODE(S Sensor-Node List) is

Read-Antigen-File(File);

Generate-Detectors(D), return D’;

Monitor-SENSOR-NODES(S);

Send-Warning(W);

Distribute-New-Detectors(D);

Correlate-Warnings(S,W);

end object NETWORK-NODE;

OBJECT SENSOR-NODE() is

Read-Antigen-File(File);

Generate-Detectors(D), return D’;

Incorporate-New-Detectors(D); return D’

Take-Measurement(M);

Costimulation(W,D);

Compare-To-Detectors(M,D), return W;

Send-Warning(W);

end object SENSOR-NODE;
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Object methods and attributes are inherited from their parent objects. The

object relational diagram in Figure 32 illustrates the relationship between each of

the objects. Global, Network, and Sensor objects are considered to be Nodes and

share all common node operations. Additional object details for these objects can

be found in the AIS documentation in Appendix A-3.

Figure 32 DAIS Object Relational Diagram

4.1.1.3 Object Design Pseudocode. Details of the operations specified

for each object in the previous subsection follow.

Start-Nodes(Number of Nodes): Invokes MPI function MPI Init(args) based

upon the number of nodes given in command-line arguments. Node objects

(Global, Network, or Sensor) are then invoked based upon the rank of each

node. A basic algorithm for determination of node object based upon node

rank follows:
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Start-Nodes(NUM_NODES)

NUM_SENSOR_NODES_PER_NW_NODE = 5;

NUM_NETWORK_NODES = (NUM_NODES - 1) / NUM_SENSOR_NODES_PER_NW_NODE;

if (MY_RANK == 0)

GLOBAL-NODE;

else if (0 < MY_RANK <= NUM_NETWORK_NODES)

NETWORK-NODE;

else

SENSOR-NODE;

end;

Read-Antigen-File(File): Reads antigen file saved as ‘‘antigens.txt" and re-

turns POPULATION object containing the given antigens, encoded per Section

3.1.2.6. The antigen file format lists each antigen on a separate line in the fol-

lowing format:

Antigen Name Feature1 Feature2 Feature3 ... FeatureN

Feature values are integers separated by a space up to the total number of

features.

Generate-Detectors(D): Returns a specified number of detectors, based upon the

NUMDETECTORS specified in the ‘‘config.txt" file. Detectors are generated

via the negative selection algorithm (Section 2.2.5) are bit-strings ABSIZE in

length.

Monitor-NETWORK-NODES(N): Uses MPI function Iprobe to determine whether

there is a message waiting. If yes, retrieve the message and process message

based upon the type of message received. Messages may be any of the following

types: WARNING, VACCINATE, COSTIMULATE, OR AFFINITY CHANGE.
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Correlate-Warnings(N,W): Uses costimulation to determine whether a warning

is legitimate. If the warning received is not detected by a local antibody, the

warning is dropped.

Distribute-New-Detectors(D’): Distribute detectors determined to be “good”

based upon their affinity to detect antigens.

Send-Warning(W): Sends a warning containing the measurement determined to

match a current antibody. Sends message using MPI asynchronous and non-

blocking Isend command, this allows the node to continue to function without

waiting for the message to be received by the destination node. Warnings are

always sent one level higher in the node hierarchy; i.e., Sensor nodes only send

Warnings to Network nodes and Network nodes only send Warnings to Global

nodes.

Incorporate-New-Detectors(D’): Adds D’ to current D POPULATION

Take-Measurement(M): Returns a measurement M. M is an antigen ANTIGENPERCENTAGE%

of the time (specified in ‘‘config.txt")

Compare-To-Detectors(M,D): Measurement M is compared to detector popula-

tion D. If M matches any detector in D with an affinity greater than MATCHVAL,

a warning is generated. This operation is used in costimulation and negative

selection.

4.1.1.4 DAIS Program Variables. AIS execution variables are speci-

fied in the config.txt file. These variables are:

EXECTIME: The maximum amount of time (in seconds) that the AIS takes mea-

surements, forwarding warnings, and classifying warnings. This time does not

include system startup time which is the time it takes to establish all nodes,

generate the initial population of antibodies and read the antigen input file.
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NUMSELF: The number of “cells” that are randomly generated to represent self.

These cells are completely random and are binary strings of length equal to

the length of antigen strings.

NUMAB: The number of antibodies that are initially generated via the negative

selection process. This number may increase due to affinity maturation and

clonal selection.

NUMANTINJECTS: The number of antigens that may be injected into the sys-

tem. Limits the number of antigen variants.

NUMIMMUNELOOPS: The number of clonal selection loops to perform during

each system duty cycle (SDC).

ANTIGENPERCENT: The percentage of measurements taken by Sensors that

represent toxic agents.

MATCHTHRESHOLD: The value of the Rogers and Tanimoto (Equation 9)

function at which two cells are said to “match”.

CLASSIFYTHRESHOLD: The value of the Rogers and Tanimoto (Equation 9)

function at which two cells are said to “match”, thereby signifying that the

cells are in the same class of toxin and classifying the unknown cell.

COSTIMULATIONTHRESHOLD: The value of the Rogers and Tanimoto (Equa-

tion 9) function at which two cells are said to “match”, thereby costimulating

the cells and generating a Warning.

MAXCOSTIMCELLS: The maximum number of antibody cells that may be gen-

erated due to clonal selection and affinity maturation.

MAXCOSTIMLIFETIME: The maximum period of time (in seconds) that a

non-memory antibody may exist in the system without being costimulated.

ABCELLSTIMULATIONPERCENT: The percentage of antibodies exposed

to an antigen during each cycle of the clonal selection loop.
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NUMCOSTIMTOWARN: The number of times that a cell must be costimulated

in order to generate a Warning.

ABLENGTH: The length of all antibodies. Also dictates the size of the sliding

window used to determine a match.

ANTIGENVARIATION: The maximum percent change that may take place in

a antigen feature when adding noise to an antigen to produce an antigen clone.

NUMANTIGENMUTATIONS: The number of “noisy” antigen clones to pro-

duce per antigen in original antigen file (‘‘antigens.txt").

NUMABTOAFFMATURE: The number of antibody clones to produce as a

result of affinity maturation.

PROBMUTATION: The likelihood that a given bit is flipped during affinity mat-

uration.

TOTALNUMMEASUREMENTS: The total number of measurement loops that

each Sensor executes.

4.1.1.5 DAIS Characteristics and Operators.

• Detector Representation: binary-valued, where D ∈ {0, 1}l, |D| = l

• Warning Representation: binary vector, consisting of D,

• Fitness: Rogers and Tanimoto fitness function as in Equation 9

• Operations: Costimulation, Negative Selection, Affinity Maturation

• Constraints: D representative of real-world toxic chemical data set (section

3.1.2.6

4.1.2 DGA Algorithm Design. The GA algorithm designs concerns the

evolution of detectors (antibodies) to match a given set of antigens. This is accom-

plished by continually applying GA operations (selection, mutation and crossover)
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to a population of detectors for a specified number of generations. The specifics of

these operations can be found in Section 2.1.3.

In addition, this process takes place in parallel on multiple nodes. Each node

explores a different region of the search space by initializing parallel search with

different random seeds. To facilitate this research in parallel GA search, the Genesis

[36] GA program has been parallelized by the addition of appropriate MPI function

calls to the original source code written by Grefenstette. This results in parallel

execution as shown in Figure 33. The instances of the individual algorithm in Figure

33 are copies of the algorithm shown in Figure 27. This results in a broader coverage

of the search space which is O(aln) where l is the length of detectors and n is the

number of antigens.

Figure 33 Genesis Parallelization and Execution
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4.1.2.1 GA Characteristics And Operators. Even simple GAs are

defined by a large number of parameters, operators, constraints, and characteristics.

For completeness, characteristics and operators of the Genesis GA algorithm are

defined symbolically to standardize their definitions and simplify understanding.

GA characteristics and operators are defined as:

• Representation: Binary-valued where I = B l is an individual chromosome I

and B is a binary string of length l.

• Fitness: Scaled objective function value ∀~b ∈ I : Φ(~b) = δ(f(~bk(0)),Θδ), where

δ : < × Θδ → <+ denotes a scaling function as in δ(f(~bk(0)), {c0, c1}) =

c0 • f(~bk(0)) + c1, where c0 ∈: <− {0}, c1 ∈: < are exogenous constants

• Chromosome: Complete bitstring ~b

• Genotype: Partial bitstring g ⊂ ~b representing a single feature value

• Self-adaptation: Increasing Φ(P (t)) self/nonself discrimination (negative selec-

tion)

• Mutation: Bit-inversion, background operator

• Recombination: z-point crossover, uniform crossover, only sexual, main oper-

ator

• Selection: Probabilistic, based on elitist strategy: preserves highly-fit individ-

uals

• Constraints: Simple bounds by encoding mechanism for Real to Binary con-

version

• Theory: Schema processing theory, global convergence for elitist version

A detailed formulation of the GA in Bäck’s [3] notation follows:

DGA = (I,Φ,Ω,Ψ, s, l, µ, λ)

⇔
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1. l = Bi, i length of binary representation,

2. ∀~b ∈ I : Φ(~b) = δ(f(~bk(0)),Θδ), where δ : < × Θδ → <+ denotes a scaling

function as in δ(f(~bk(0)), {c0, c1}) = c0•f(~bk(0))+c1, where c0 ∈: <−{0}, c1 ∈:
< are exogenous constants,

3. Φ = {m{Pm}, : I
u → Iu, r{Pc,z} : Iµ → Iµ, r{Pc} : Iµ} where the genetic opera-

tors are defined as:

b′i =







bi, if X > Pm

1− b, if X ≤ Pmi

, where Xi ∈ [0, 1] denotes a uniform random vari-

able sample anew for each string position. The mutation operator m′
{Pm} : I →

I, uses value swapping for two randomly picked positions within each child

that undergoes mutation, producing a string according to b′ = (a′1, ..., a
′
l) =

m′
{Pm}(a1, ..., al) = m′

{Pm}(
~b)and(∀i ∈ {1, ..., l}). The crossover operator r{Pc,}

denotes a 2-point crossover where b′i =







bS,i, ∀i(X ′
k < i < X ′

k+1), k ≤ 2

otherwise
and

X ′
k < X ′

k+1 and X
′
2+1 = l, k ∈ {1, ...l}.

4. Ψ(P ) = s(m{Pm}(r{Pc,2}(P ))).

5. s : Iµ → Iµ, the proportional selection operator, samples according to the

probability density function given by: ps(~a
′′
k(t)) =

Φ(~b′′
k
(t))

µ
∑

j=1

Φ(~b′′
k
(t))

6. The fitness function Φ maximizes the fitness of each Iµ, given N antigens

detected by M(i) nodes by the ith antibody, we compute the fitness based

upon the number of antigens it detects, how closely it matches them, and how

many other nodes detected this (antigen) with this antibody [54]:

Mo =
∑

i

li (11)

Φ1 =
1− SDC
Mo + 1

(12)
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Φ2 =
1

N

∑M(i)

j=1





0, ifM(i) = 0

1
M(i)

∑M(i)
j=1 Φ1 ifM(i) > 0



 (13)

7. The termination criterion ι is given by:

ι(P (t)) =







true, if t > tmax

false, otherwise

4.1.2.2 GA Algorithm. t = 0

initialize : P (0) = {~b1, ...,~bµ} ∈ Iµ

I = {0, 1}
evaluate{Φ(~b1), ...,Φ(~bµ})}
Φ(~bk(0) = δ(Φ(~bk)), P (0))

while termination ι 6= TRUE loop

for(t = 1 : tmax)

recombine : ~a′k(t) = r′{Pc,2}(P (t)∀k ∈ {1, ..., µ} = P ′(t)

mutate : ~a′k(t) = m′
{Pm}(P (t)∀k ∈ {1, ..., µ} = P ′(t)

affinity maturation : ~a′k(t) =

m′
{Pm+affinity}

(P (t)∀k ∈ {1, ..., µ} = P ′(t)

end

4.1.2.3 GA Data Encoding. As a pedagogical example, acetone and

methanol spectra in a noisy environment are chosen as example spectra. These

example spectra are shown in Figure 34.

Individual spectra are encoded as 255-bit binary strings. Each five-bit segment

represents the binary value of the amplitude (in negative dB) per every 0.1 GHz.

For example, the first 0.5 GHz of acetone would be represented as shown in Table 2.

Figure 35 shows the full encoded plot of acetone and methanol.
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Figure 34 Acetone and Methanol Spectra (Courtesy of the Air Force Research
Laboratory)

GHz 5.0 5.1 5.2 5.3 5.4
−dB2 01100 01011 01100 01101 01110

Table 2 Acetone Example Encoding

4.1.3 DGRaCCE Algorithm Design. The GRaCCE algorithm design has

been fully specified in the Marmelstein dissertation [56], the Strong masters thesis

[68], and Yilmaz masters thesis [74]. Please see these references for further details.

4.2 Summary

This chapter presented the low-level design details for the implementation of

the DAIS. Every effort was made to provide the relevant level of detail necessary for

full system understanding. Having established the full system design, the next chap-
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Figure 35 Encoded Plots of Acetone and Methanol

ter provides a design of experiments to fully test system operations and determine

the limits of execution feasibility.
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V. DESIGN OF EXPERIMENTS

The previous four chapters dissected the DAIS problem domain, mapping it to a

high-level design and then the low-level design and implementation details. This

chapter discusses the testing of this design by determining the limits of program

execution and providing data to enable statistical analysis of performance.

5.1 Performance Metrics

Evaluating the performance of a parallel algorithm such as the DAIS depends

not only on the population size, but on the architecture of the parallel computer

and the number of processors. Therefore, the DAIS algorithm cannot be evaluated

without consideration of the parallel system on which it is executed. This design

of experiments explores the performance of each component of the DAIS algorithm

on different parallel architectures by first defining appropriate metrics and detailing

how these metrics are collected.

5.1.1 Parallel Computing Metrics. To evaluate a parallel system it is neces-

sary to first quantify the performance of a serial implementation of the same system.

This provides a baseline for evaluating the gains achieved through parallelization.

5.1.1.1 Speedup. Speedup, defined as the ratio of serial run time, Ts,

of the best sequential algorithm to solve a problem to the time to solve the problem

on p processors, Tp. Where Ts and Tp are dependent upon the serial and parallel

implementation algorithms. For this metric, Ts is the wall execution time for the

algorithm on one processor. Therefore, speedup can be calculated as [52]:

S =
Ts

Tp
(14)
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5.1.1.2 Efficiency. An additional metric for evaluation of parallel

algorithm performance is efficiency. Efficiency is defined as a measure of the fraction

of time which a processor is fully utilized; or, the ratio of speedup, S, to the number

of processors, p [52]:

E =
S

P
(15)

Efficiency is another indicator of the scalability of a parallel system. “A scalable

parallel system is one in which the efficiency can be kept fixed as the number of

processors is increased” [52]. This is calculated via the isoefficiency function, which

dictates the growth rate of work required to keep the efficiency fixed as p increases.

5.1.1.3 Startup and Per-Word-Transfer Time. Two additional fac-

tors to consider that directly impact the communication time (and therefore the

overall parallel processing time Tp) are the startup time ts and the per-word trans-

fer time, tw. Startup time is defined as “the time required to handle a message at

the sending processor. This includes the time to prepare the message, the time to

execute the routing algorithm, and the time to establish an interface between the

local processor and the router. This delay is incurred only once for a single message

transfer” [52]. Per-word transfer time is defined as the time it takes each word to

traverse a link and is computed as tw = 1
r
, where r is the channel bandwidth in

words per second. Because the Tp model used is a 2-D mesh with wraparound, the

communications time can be calculated as [52]:

2 · ts(
√
p− 1) + twm(p− 1) (16)

Execution time for master-slave communications is easily computed based on

the single-objective case [11]. “First, evolutionary operator computation (e.g., selec-

tion, crossover, and mutation) time is ignored as it is generally accepted their cost
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is much less than fitness computation. Then, given that Tc is communication time

between processors, P processors are in use, n is the total population’s size,
∑k

i=1 Tfi

is the time required to evaluate one individual for all k fitness functions, and G is

the number of generations, the master-slave...running time, Tms
p , may be estimated

as presented in Equation 17. Such equations can be used to predict the performance

over a variety of parallel paradigms” [71]. These parameters are explicitly used in

evaluation of parallel GAs.

Tms
p = G(PTc +

n
∑k

i=1 Tfi
P

) . (17)

5.1.2 AIS-Specific Metrics. The effectiveness of the AIS is directly re-

lated to its ability to detect anomalous measurements; i.e., measurements that are

representative of toxic agents. Quantitatively, system effectiveness is defined as the

detection rate and false alarm rate. These measurements are calculated as shown

in Equation 18 and Equation 19, where TP (True Positives) are anomalous ele-

ments identified as anomalous; TN (True Negatives) are normal elements identified

as normal; FP (False Positives) are normal elements identified as anomalous; and

FN (False Negatives) are anomalous elements identified as normal [34].

Detection Rate =
TP

TP + FN
(18)

False Alarm Rate =
FP

TN + FP
(19)

5.2 Testing Platforms

The GA, AIS, and GRaCCE implementations are tested on systems available

in AFIT’s High Performance Computing Lab. These systems include clusters of

Linux systems connected with Ethernet backplanes. Networked Sun Sparc stations

are also used for serial GA testing.
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5.2.1 Serial GA Test Platform. The serial version of Genesis is tested on

a Sun Sparc10 station with SunOS version 5.8, a 440 MHz UltraSparc 2i processor

and 1 GB of random access memory.

5.2.2 AIS, Parallel GA, and GRaCCE Test Platform. The AIS, Genesis

parallel version, and GRaCCE are tested on AFIT’s High Performance Computing

Lab resources “Aspen”, and “Poly”. These systems are connected via a 100baseT

switched Ethernet backbone (Aspen). Table 3 provides additional system details.

Number of Processors 128
Processor Pentium IV
Clock [MHz] 2000
Cache [KB] 1000
Memory [MB] 2000
I/O Bus PCI
Local Disk 30 GB IDE
Network Myrinet

Table 3 Parallel Testing Platform Specification

5.3 DGA Design of Experiments

The GA domain design of experiments tests the performance of the serial and

parallel Genesis implementations.

5.3.1 Serial Design. In order to thoroughly test the parallel implemen-

tation of Genesis, it is necessary to first determine the best values for algorithm

variables such as the probabilities of mutation, selection, and crossover. Serial per-

formance using variables derived from initial testing is then tested on different sets

of antigens to quantify performance.

Serial Genesis design of experiments includes a limited benchmark evaluation,

in order to determine the best values for the probability of mutation and for the

probability of selection. All tests were executed on Sun Sparc stations with SunOS

version 5.8 using the Genesis genetic algorithm software[13]. Genesis was chosen due
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to its ease of use and the ability to customize the evaluation function. The program

produces detailed reports that include mean and average performance and variation

for each generation. Details of benchmark tests are shown in the Tables 4 through

7. These parameter values are chosen based upon previous experiences with similar

GA algorithms and the results of similar GA experiments in literature [70] [69] [61].

Variable Tests 1 to 3 (Benchmarks)
T(max) 10000
|Antigens| 1
|P | 15

Length Antibody 255
Length Antigens 255

Test 1: 0.0005
Prob. Mutation Test 2: 0.001

Test 3: 0.0005
Test 1: 0.6

Crossover Rate Test 2: 0.6
Test 3: 0.8

Replacement Steady State
Number of Experiments 10

Antigen Type Benchmark: -11111...00000

Table 4 GA Serial Benchmark Tests

Next, having obtained parameter values that returned the highest fitness values

in experiments 1-3, benchmarks for acetone and methanol are obtained by running

the GA in search antibodies using these values. Details of these test are shown in

Table 5 and Table 6.

Finally, a test was conducted in the presence of both acetone and methanol

antigens. This evolved a population of “generalist” antibodies to detect both ele-

ments. Details are shown in Table 7.
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Variable Test 4 (Acetone)
T(max) 10000
|Antigens| 1
|P | 15

Length Antibody 255
Length Antigens 255
Prob. Mutation 0.001
Crossover Rate 0.6
Replacement Steady State

Number of Experiments 10
Antigen Type Benchmark: -Acetone

Table 5 Acetone Benchmark Test

Variable Test 5 (Methanol)
T(max) 10000
|Antigens| 1
|P | 15

Length Antibody 255
Length Antigens 255
Prob. Mutation 0.001
Crossover Rate 0.6
Replacement Steady State

Number of Experiments 10
Antigen Type Benchmark: -Methanol

Table 6 Methanol Benchmark Test

Variable Test 6 (Acetone and Methanol)
T(max) 10000
|Antigens| 1
|P | 15

Length Antibody 255
Length Antigens 255
Prob. Mutation 0.001
Crossover Rate 0.6
Replacement Steady State

Number of Experiments 10
Antigen Type Benchmark: -Acetone and Methanol

Table 7 Acetone and Methanol Benchmark Tests
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5.3.2 Parallel GA Design of Experiments. The parallel implementation

of Genesis was then tested. Based upon the determination of good variable values

in Tests 1 through 3 of the serial implementation, a simple test was conducted to

test the algorithm’s ability to evolve antibodies capable of detecting antigens that

have 1’s in their first half and 0’s in their second half (or 1111...000). This produced

antibodies that resulted in a string of 1’s when XOR’d with the antigen. Experiment

details are listed in Table 8.

Variable AIS Test
T(max) 10000
|Antigens| 1
|P | 15

Length Antibody 255
Length Antigens 255
Prob. Mutation 0.005
Crossover Rate 0.6
Replacement Steady State

Number of Experiments 10
System Aspen (Redhat Linux)

Num Processors 2, 4, 8, 10, 12, 14, 16
Antigen Type Benchmark: 1111...0000

Table 8 Parallel GA Design of Experiments

5.4 DAIS Design of Experiments

The AIS DOE seeks to maximize the Detection Rate (eq. 18) while minimiz-

ing the False Alarm Rate (eq. 19). In order to accomplish this goal, it is neces-

sary to determine the best values for system variables described in Section 4.1.1.4.

These values are determined by assessing their impact on the DR and FAR. Due

to their direct impact on classification, the variables most likely to influence effi-

ciency are: (1) ABLENGTH, (2) MATCHTHRESHOLD, (3) COSTIMULATION-

THRESHOLD, (4) NUMAB, (5) NUMSELF, (6) NUMANTINJECTS, and (7) TO-

TALNUMMEASUREMENTS.
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ABLENGTH: Determination of a good antibody length

Variable: 1 2 3 4 5 6 7
Test 1 16, 32, 48, 64 0.5 0.9 10 500 5 1000

MATCHTHRESHOLD: Determination of a good match threshold

Variable: 1 2 3 4 5 6 7
Test 2 T(1) 0.9, 0.8, 0.7, 0.65, 0.63 0.7 10 500 5 1000

COSTIMULATIONTHRESHOLD: Determination of a good costimulation
threshold

Variable: 1 2 3 4 5 6 7
Test 3 T(1) T(2) 0.9, 0.85, 0.8, 0.7 10 500 5 1000

NUMAB: Determine how the number of antibodies affects Detection Rate

Variable: 1 2 3 4 5 6 7
Test 4 T(1) T(2) T(3) 10,25,50,100 500 5 1000

NUMSELF: Determine the impact the size of self has on Detection Rate

Variable: 1 2 3 4 5 6 7
Test 5 T(1) T(2) T(3) T(4) 500,1000,2000,4000 5 1000

NUMANTINJECTS: Demonstrate effect of a more diverse set of antigen
measurements on Detection Rate

Variable: 1 2 3 4 5 6 7
Test 6 T(1) T(2) T(3) T(4) T(5) 1,5,10,20 1000

TOTALNUMMEASUREMENTS: Determine impact of the total
number of measurements taken on performance

Variable: 1 2 3 4 5 6 7
Test 7 T(1) T(2) T(3) T(4) T(5) T(6) 500,1000,2000,5000

Variables: (1) ABLENGTH, (2) MATCHTHRESHOLD, (3)
COSTIMULATIONTHRESHOLD, (4) NUMAB, (5) NUMSELF, (6)
NUMANTINJECTS, (7) TOTALNUMMEASUREMENTS

Table 9 AIS Design of Experiments
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Table 9 indicates the values of each of these variables for a series of tests

conducted to quantify the impact of each variable on system effectiveness variables

in this table are numbered as in the previous sentence. Each test was run 10 times,

resulting in average values for the Detection Rate and False Alarm Rate as well as

variance.

5.5 DGRaCCE Design of Experiments

Hammack’s [39] parallelized implementation of GRaCCE (pGRaCCE) was

evaluated using AFIT’s high performance computing lab resources (Section 5.2.2.

The “th513” data set available at the University of California Irvine is used. This

data set has 5 different possible classes. Due to GRaCCE’s task decomposition

strategy of distributing class evaluations to separate nodes, the maximum number

of nodes that can be tested is 5. This test is also conducted on the “Poly” system,

in addition to Aspen. The Poly system is nearly identical to Aspen; but has AMD

Athlon processors instead of Pentium IV processors and has a 100BaseT Ethernet

backplane. Due to low execution times it is possible to obtain statistically significant

results by conducting 30 iterations of each experiment in an inclusive range of 1 to

5 nodes. Table 10 lists details of the experiment.

System Num Nodes Num Experiments Num Epochs (GA) data set
Aspen 1, 2, 3, 4, 5 30 10, 100, 1000 th513
Poly 1, 2, 3, 4, 5 30 10, 100, 1000 th513

Table 10 GRaCCE Design of Experiments Details

5.6 Summary

This chapter described the metrics and testing process for quantifying the

effectiveness of the DAIS. A design of experiments was presented for evaluation

of GA, AIS, and GRaCCE implementations. Each implementation was tested to

obtain data necessary to compute metrics that can be used for thorough analysis of
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performance. The next two chapters present the results and analysis of these tests

followed by conclusions and recommendations.
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VI. RESULTS AND ANALYSIS

This chapter presents the results of the experiments specified in the previous chapter.

These results are then analyzed to derive quantifiable characteristics that describe

the performance of each system implementation. Results indicate that all implemen-

tations perform as designed and return data that is promising for inclusion in DAIS

operations.

6.1 GA Results & Analysis

Results of GA testing are shown in Figures 36 through 46. Due to a high

degree of variance in Figures 36 through 43, the variance value at each generation is

indicated by the lowest line on the graph in order to aid in visualization. Variance

in Figures 44 through 46 was small and is indicated by error bars.

Tests 1 through 3 focused on determining good values for algorithm variables

such as the probability of mutation and crossover. Based upon these tests, it was

determined that good values were 0.001 for probability of mutation and 0.6 for prob-

ability of crossover. Graphs representing the results of Tests 1 through 3 are shown.

Test 2 produced the highest average match score of 234.10 after 10 executions of

10,000 generations. Test 2 also maintained the lowest overall variance while tests

1 and 3 showed a high degree of variance. While high variance indicates a broader

search of the domain space, it also produced worse results by destroying good pop-

ulation members through high crossover (Test 3).

Tests 4 and 5 established benchmarks for the evolution of antibodies to detect

Acetone (Test 4) and Methanol (Test 5) in isolation. Test 4 resulted in a match

value of 230.60 after 10 executions of the GA, while test 5 resulted in an average

match value of 231.50 after 10 executions.

Test 6 demonstrated the ability of the GA to evolve antibodies to detect the

presence of both Acetone and Methanol. The results of this test can be seen in Fig-
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Test 1: Pm = 0.0005  Pc = 0.6
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Figure 36 Test 1 Benchmark

ure 41. The test produced antibodies that detected both elements with an average

match score of 188.80 over 10 executions. This result was lower than the benchmarks

obtained from Tests 4 and 5, because the evolved antibodies must match both ele-

ments. Variance decreased as the population zeroed in on a good solution and the

slope of the curve appears to still be increasing at 10,000 generations. It is highly

probable that a better match score may have been reached by increasing the number

of generations in each execution. This was validated by a run to 30,000 generations

that actually produced a string with a fitness of 194.5.
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Test 2: Pm = 0.001  Pc = 0.6
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Figure 37 Test 2 Benchmark

Test 3: Pm = 0.005  Pc = 0.8
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Figure 38 Test 3 Benchmark
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Test 4: Acetone

0.00

50.00

100.00

150.00

200.00

250.00

1 26 51 76 101 126 151 176

Gen / 50

M
at

ch
 S

co
re

Best
Average
Variance

Figure 39 Test 4: Acetone

Test 5: Methanol
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Figure 40 Test 5: Methanol
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Test 6: Acetone and Methanol
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Figure 41 Test 6 Acetone and Methanol

6.1.1 DGA Performance Metrics. Metrics calculated for each of the GA

experiments include mean fitness, best fitness, variance, speedup, efficiency, and

effectiveness. Details concerning how these metrics were calculated can be found in

section 5.1.1

6.1.2 Parallel GA Results & Analysis. As expected, the GA was able to

discover antibodies capable of detecting the test antigen. Results of experiments

demonstrated the ability of a GA to return a population of antibodies capable of

aptly detecting the desired antigens.

Figures 42 and 43 demonstrate the fitness improvement of antibodies after each

generation. Note that there is no marked difference between the 2 processor fitness

plot and the 16 processor fitness plot. Even though every processor started their

initial populations with a different random number seed, resulting in exploration

of different regions of the search space, this is likely due using the same values for
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crossover, selection and mutation on each processor. Also note that the standard

deviation (the bottom dotted line) is very small throughout program execution.

Figure 42 Parallel GA Fitness for 2-16 Processors

Figure 44 demonstrates the speedup of the parallel GA. Note that fitness is

steadily decreasing until it reaches 16 processors. This is most likely due to the

increasing startup time required as the number of processors increases. However,

note that all values are relatively small, given the that a linear speedup would have

produced a value of 16 for 16 processors, and this implementation produces a value

close to 1.0.

Efficiency (Figure 45) gradually declines as the number of processors is in-

creased; again, most likely due to increased startup and termination overhead.

High system effectiveness is goal of any system. In this case, effectiveness is

equal the ratio of max fitness obtained by n processors to the max fitness possible

(in this case, 255). Figure 46 demonstrates that increasing the number of proces-
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Figure 43 Maximum Parallel GA Fitness for 2-16 Processors

Figure 44 Parallel GA Speedup for 2-16 Processors
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Figure 45 Parallel GA Efficiency for 2-16 Processors

sors, does not improve the overall effectiveness of the algorithm. The sharp dip in

performance at 14 processors is likely due to errant variables during startup.

6.2 AIS Results & Analysis

The AIS design of experiments sought to discover good variable values to

achieve a high Detection Rate (DR). This was an iterative process in which values

were discovered at each step to be used in the following test. All figures presented

include the average detection rate and False Alarm Rate (FAR) for different values

of the given variable. If appropriate, error bars are included in the charts; however,

most variance values were so low that it is not possible to visibly see the degree of

variance.

6.2.1 Antibody Size. AIS Test 1 sought to determine the best antibody size

for detection of the antigens described in Subsection 3.1.2.6. This was chosen as the

first test due to high impact that the size of antibodies has upon system performance

103

Efficiency Vs. Num Proc 

0.6 - 

n f^ 

n A 

■ 

0.3 - '\ 

0.2 - ^-^ 

0.1 - 

0 - 

^---^.^ 
--^       ^— 

1 1           1           1           1 

2 4 6          8          10         12 14 16 



Figure 46 Parallel GA Effectiveness for 2-16 Processors

and the detection rate. An antibody that is very small relative to the signature to

be classified is too general to distinguish between many of the different possible

measurement signatures; while an antigen that is close to the size of the signature

may be too specific to produce induce a match. An antibody with a balance between

generality and specificity is ideal. Figure 47 indicates the detection rate and false

alarm rate for antibodies of size 16 to 64. The measurements being classified were

64 bits in length. The figure indicates that an antibody length of 16 achieves good

results and is used in Test 2. Measurement variance was very small ( 0.005) and is

not visible in the figure.

6.2.2 Match Threshold. AIS Test 2 tested the impact of the match thresh-

old on detection rate. The match threshold determines the point at which a sensor

determines that a measurement is non-self and sends a warning to the network node.

This value is the first layer of detection as the warning is then checked for costimula-

tion at the network node. The value should be as low as possible in order to prevent
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Figure 47 AIS Test 1: Antibody Size Vs. Effectiveness

a measurement that is anomalous from being classified as benign (a False Negative).

Figure 48 tests values from 0.9 to 0.4. As illustrated, values higher than 0.6 result

in misclassification by producing False Negatives for nearly all measurements. Val-

ues less than 0.6 do not significantly improve the detection rate. Based upon these

results, a value of 0.6 is the best choice for match threshold. Values lower than 0.6

may also produce unnecessary False Positives, thereby lowering the detection rate.

6.2.3 Costimulation Threshold. The costimulation threshold sets the point

at which a measurement is validated as self/non-self, producing a warning at the

Network node. The costimulation process compares a current warning to warnings

previously received to reduce the likelihood that a single False Positive may prop-

agate to the Global node as a valid warning. AIS Test 3 tested values of 0.9 to

0.7 to determine the best costimulation threshold. Results are shown in Figure 49.

As shown by the figure, the detection rate improves marginally as the threshold is

increased. A high costimulation threshold is warranted in order to reduce the likeli-

hood of false positives. For this reason, a costimulation threshold of 0.9 was chosen

for the next 4 tests.
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Figure 48 AIS Test 2: Match Threshold Vs. Effectiveness

Figure 49 AIS Test 3: Costimulation Threshold Vs. Effectiveness
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6.2.4 Number of Antibodies. AIS Test 4 varied the number of antibodies

initially introduced via negative selection. Values of 10, 25, 50, and 100 were tested

producing different values for the Detection Rate. Figure 50 shows the results of

this test. As shown, all four values produced similar results. There was, however,

a marginal decrease in effective rate from 25 to 100 antibodies. This is likely due

to false positives produced when benign measurements manage to produce a match

value high enough to exceed the threshold. The more antibodies in the system,

the higher the likelihood of a match between any measurement and an antibody.

Another factor to consider when choosing the number of antibodies is the impact of

more antibodies on AIS performance. Due to the high algorithmic complexity of the

negative selection, match, and costimulation operations, a high number of antibodies

dramatically decreases system performance. Therefore, it is beneficial to choose the

lowest number of antibodies necessary to achieve a high detection rate. A value of

10 is best value in this case.

Figure 50 AIS Test 4: Number of Antibodies Vs. Effectiveness

6.2.5 Number of Self. The number of self cells impacts the AIS’s ability

to create antibodies quickly via negative selection. The higher the number of self,
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the more difficult it is for the system create an antibody that does not match self.

This directly impacts total system runtime, primarily when antibodies are generated

during node initialization and during clonal selection when additional antibodies are

created to match a given set of antigens. Figure 51 demonstrates the results of AIS

Test 5. In this test, the number of self was varied from 500 to 4000. As expected,

when there are a higher number of self cells, the system has a harder time finding good

antibodies, negatively impacting the detection rate. The choice for number of self

cells is arbitrary and depends upon the associated classification application. In the

case of spectra recognition, a limited number of self cells would be introduced in order

to represent normal and benign environmental measurements. Self measurements

would likely tend to cluster in a small area and could be reasonably represented by

a small sample of that area. For this reason, a value of 1000 self cells is chosen.

Figure 51 AIS Test 5: Number of Self Vs. Effectiveness
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6.2.6 Number of Antigen Injects. The number of possible toxic chemical

signatures directly effects the detection rate more than any other variable. Figure 52

demonstrates the impact of increasing the number of possible antigen measurements

on detection rate. As expected, introducing additional varying antigens to a set of

measurements dramatically decreases the detection rate. This is likely due to the

AIS’s tendency to slowly respond to new antigens, requiring time to build antibodies

that detect these antigens. When only one type of antigen is introduced periodically,

the system is able to quickly detect and adapt antibodies to improve detection;

however, when up to 20 different antigens are randomly presented to the system,

those antigens that have not yet been encountered are likely to go undetected until

they are present in the system long enough for clonal selection and affinity maturation

processes to produce appropriate antibodies.

Figure 52 AIS Test 6: Number of Antigen Injects Vs. Effectiveness

6.2.7 Total Number of Measurements. The number of measurements vari-

able determines how many measurements each sensor compares to its local antibodies

in search of a match. At each time-step, the measurement operation returns ei-

ther a random measurement (self) signature or a signature that represents a known

109

Test 6: Effectiveness Vs. NUM ANTIGEN INJECTS 

■ DR 

■ FAR 

5 10 

NUM ANTIGEN INJECTS 



antigen. The percentage of measurements that are antigens is determined by the

“ANTIGENPERCENTAGE” variable. For these tests, ANTIGENPERCENTAGE

was set to 0.1; roughly 10% of the measurements returned antigen signatures. In-

creasing the total number of measurements introduces a higher number of anomalous

measurements to the system; however, as Figure 53 indicates, the system was still

able to maintain a high detection rate over a range of 500 to 5000 measurements per

sensor.

Figure 53 AIS Test 7: Number of Measurements per Sensor Vs. Effectiveness

6.2.8 Summary of AIS Results. After completion of AIS Tests 1 through

7, the following can be ascertained:

1. The best antibody size for detection of 64-bit signatures is 16-bits. This results

in an average Detection Rate of 96%.

2. The best match threshold is 0.6. This results in an average Detection Rate of

95%.
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3. The costimulation threshold may be chosen to be anywhere in a range of 0.5

to 0.9; however, in order to reduce the likelihood of false positives, a value at

the higher end of this range returns good results.

4. The number of antibodies chosen for initialization at startup directly impacts

system performance and time of execution. It is beneficial to choose a num-

ber low enough to produce a high detection rate, without introducing false

negatives.

5. The number of self cells chosen for comparison during the negative selection

operation should be as low as possible, without impacting the detection rate.

A high value impacts system performance due to the direct impact on system

performance. The value chosen should be representative of the actual number

of self cells in the real system.

6. The number of antigen injects directly impacts the detection rate more than

any other variable. A high number of injects significantly reduces the detection

rate. This value should also be chosen to reflect the number of possible anoma-

lous signatures that could be introduced in a real-time AIS environment. For

example, if the operator wishes to only detect three different antigens, only

three injects should be introduced.

7. Taking more measurements per sensor slightly lowers the overall system detec-

tion rate; however, the system still returns relatively good detection numbers.

6.3 pGRaCCE Results & Analysis

Results shown in Figure 54 and Figure 55 demonstrate the high cost of in-

terprocessor communications during execution. Note the gradually improving trend

in execution times with an increased number of processors in the 1000 generation

instances versus a gradually worse time in the 10 generation instances. This is due

to a low setup time (ts) relative to the total time of execution (Ts). The improving

trend in the 1000 generation instances also reflects the benefit of pGRaCCE task
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decomposition by allowing more processors to focus on classifying a subset of the

total data set.

Note that standard deviation is quite high in some of the Aspen runs. After

checking with other system users, it was determined that other students were using

Aspen at the same time, increasing processor utilization and adversely affecting

execution times.

Figure 54 pGRaCCE Execution Times for 10 gen

pGRaCCE speedup results for 1000 generation tests are shown in Figure 56.

The 1000 generation experiments produced gradually improving speedup, though it

seemed to level out as the number of processors approached 5. In all cases, speedup

was sub-linear, never really approaching the linear speedup line. The speedup results

for the 10 generation tests (Figure 57) did not even approach a value of 1.0, and

actually gradually declined as the number of processors increased. This was expected

due to increasing execution times for that number of generations.
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Figure 55 pGRaCCE Execution Times for 1000 gen

Finally, Figure 58 demonstrates the low efficiency of all 1000 generation exper-

iments on Poly and Aspen. Again, the low computation times relative to communi-

cations times produced efficiencies commensurate with Figure 56 results.

6.4 Summary

As expected, the GA was able to aptly evolve antibodies capable of detecting

Acetone and Methanol. Results of experiments demonstrated the ability of a GA

to transform an initial random population of random antibodies to one capable of

detecting the desired elements.

After determination of the best variable settings for the AIS algorithm, the

system performed admirably. With no false alarms and a high detection rate, the

system may be used to perform reliable self/non-self discrimination with similar data

sets encoded using the schema in subsection 3.1.2.6.
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Figure 56 pGRaCCE Speedup for 1000 gen

The pGRaCCE algorithm determined the best set of features to properly clas-

sify the TH513 data set. Increasing the number of processors does improve efficiency

when the serial execution time is extremely small. In this case, communications times

nullified any possible benefit of parallelization. However, parallelization may be ben-

eficial in cases of extremely large data sets with many different classes when executed

to greater 1000 generations. Parallel GRaCCE has proven to benefit the proposed

DAIS design. With extremely fast execution times, the algorithm may improve the

ability of a real-world DAIS to detect and classify chemical spectra measurements

as closely to real-time as possible. Though only the TH513 data set was used in this

instance, other data sets may be easily introduced for feature extraction to enhance

the classification ability of other algorithms.
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Figure 57 pGRaCCE Speedup for 10 gen

Figure 58 pGRaCCE Efficiency for 1000 gen
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VII. CONCLUSIONS AND RECOMMENDATIONS

The overarching research goal was to design a distributed AIS capable of classi-

fying anomalous measurements. This goal was successfully accomplished through

the design and implementation of a system that meets the objectives established in

subsection 1.2:

1. Objective 1: Analyze the performance of pGRaCCE on a real-world

data set: The parallel performance of pGRaCCE on the th513 data set was

assessed (Section 6.3) by collecting multiple parallel metrics and statistics in-

cluding efficiency and speedup. pGRaCCE performed admirably, returning

classification rules that could be used to discriminate between the 5 different

data set classes. When run to less than 1000 generations, the speedup obtained

from parallelization of GRaCCE was extremely small. However, parallelization

became more beneficial when iterating over the data for greater than 1000 gen-

erations.

2. Objective 2: Analyze the performance of a parallel implementation

of Genesis: The serial version of Genesis was successfully parallelized using

MPI constructs. The parallel version was then assessed (Section 6.1.2) to de-

termine its ability to evolve antibodies capable of classifying multiple antigens.

The system proved successful in reaching this goal by evolving generalist anti-

bodies to classify both methanol and acetone signatures with a relatively high

degree of fitness. This version of Genesis could be integrated with the over-

all DAIS design front-end to produce high affinity antibodies and improve the

overall detection rate. Further, when combined with standard AIS operations

such as clonal selection and affinity maturation, even better performance may

be realized.

3. Objective 3: Design,implement, and test a basic DAIS that models a

real-world network of sensors capable of classifying chemical spectra
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and producing warnings when non-self chemicals are present: A

DAIS was designed (Section 3.1.2) and implemented (Section 4.1.1) in Java

using mpiJava constructs for collective communications. The implemented

system simulated a possible real-world DAIS consisting of multiple sensors

that detect nearby contaminants when present. Good variables were obtained

(Section 6.2) through an iterative testing process (Section 5.4) designed to

focus on individual variables at each stage. The system returned an average

greater than 90% detection rate with a 0% false alarm rate.

7.1 Conclusions

Genetic Algorithms. Genetic algorithms may be used to com-

plement the development of pattern recognition systems. The biological immune

system was used as a model for implementation of a system that includes opera-

tors and constructs capable of recognizing anomalous chemicals by their raw binary

data signature. The proposed GA solution used ideas pioneered by Forrest, et. al.

[30, 67, 31] to integrate AIS concepts with the GA domain, solving a difficult prob-

lem within the NP-complete problem domain. The simple GA was able to discover

good antibodies in an extremely large search space (O(2n)).

Artificial Immune Systems. The AIS model provides constructs

for implementation of system capable of chemical classification. Biological operators

such as clonal selection, affinity maturation, and costimulation play an integral role

in the performance of the AIS. These operators in are utilized in varying capacities

in an effort to simulate natural immune processes. The proposed DAIS does not

always find the best solution for all similar NP-complete problems (no free lunch

theorem); however, by iteratively evaluating the impact of individual AIS param-

eters, it is possible to identify the approach that provides good results for other

problem domains.
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Data Mining and Feature Subset Selection. Data mining and

feature subset selection can be leveraged by using GRaCCE to reduce the dimen-

sionality of the GA and AIS search spaces, resulting in improved performance.

Parallel Processing. Parallelization of GA and AIS operations

improves performance via task decomposition results in a broader coverage of the

problem domain and reduction in execution times.

7.2 Recommendations

Future work in this area may include the following areas of research:

• Real-time incorporation of pGRaCCE and Genesis into the DAIS algorithm to

iteratively improve the detection rate

• Incorporation of real-world “Electronic Nose” measurement data may provide

a more realistic understanding of performance in a fully implemented DAIS

that uses systems on a chip (SOC) technology and wireless communications

• The addition of load balancing principles in the parallel Genesis and GRaCCE

implementations to improve classification speed of large and high dimensional

data sets

7.3 Summary

A strategy for the design and implementation of an AIS for robust chemical

spectra classification has been presented and analyzed. This strategy incorporates

concepts from many different disciplines. Evolutionary, biological, and immunolog-

ical principles are mapped to the computational domain, providing the basis for

genetic algorithm and artificial immune system operations. Parallel and distributed

computing concepts are implemented throughout to capitalize upon the benefits of

task and data decomposition. Data mining and feature subset selection principles
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are also incorporated to improve system performance. The synthesis of these con-

cepts has enabled the implementation of a distributed AIS that meets the stated

research goal of robust chemical classification. Recommendations presented for fu-

ture research may further improve results and enable the realization of a real-life

system in accordance with the strategy presented herein. This system would require

the design and fabrication of unique hardware sensors, possibly using current or fu-

ture systems on a chip technology. Given the motivation of protecting civilians and

military forces from becoming victims of chemical and biological warfare, the future

of this technology is bright and the applications are limitless.
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APPENDICES

A-1 Evolutionary Algorithms

As a component of the DAIS, genetic algorithms provide the evolutionary abil-

ity to improve system performance and classification ability. One of the first descrip-

tions of the use of an evolutionary processes for computer problem solving appeared

in articles by Friedberg in 1958 [32] and 1959 [33]. “This work represented some of

the early work in machine learning and described the use of an evolutionary algo-

rithm for automatic programming, i.e. the task of finding a program that calculates

a given input-output function” [21]. Many studies sprung from this paper and others

by Bremermann in 1962 [9], Box in 1957 [7], and Box et. al in 1969 [8]. As is the

case with many ground-breaking research ideas, these early studies were reviewed

with skepticism. However, by the mid-1960’s the bases for the three main focuses

of evolutionary computation were clearly established [21]. These three main focuses

were:

Evolutionary Programming (EP): Devised by Lawrence J. Fogel in 1960 while

serving at the National Science Foundation (NSF). “Fogel made the observa-

tion that intelligent behavior requires the ability of an organism to make correct

predictions within its environment, while being able to translate these predic-

tions into a suitable response for a given goal” [63]. This early work focused

on evolving finite-state machines (see Mealy(1955) [57], and Moore(1957) [58])

which provided a generic test-bed for this approach.

Evolutionary Strategies (ES): Pioneered by Bienert, Rechenberg, and Schwefel

at the Hermann Föttinger Institute of the Technical University of Berlin in

1964. The three students were attempting the minimize the total drag of

three-dimensional slender bodies in a turbulent flow, and hit upon the idea

to solve the intractable problem with the help of some kind of robot. This
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“robot” would perform the necessary optimization by successively manipulat-

ing a flexible model positioned at the outlet of the wind tunnel [65]. A robot

was constructed, however, it was only able to manipulate one decision vari-

able at a time, resulting in solution stuck in local minima. A breakthrough

was reached when they decided to switch to small random changes that were

only accepted in the case of improvements. “The interpretation of binomially

distributed changes as mutations and of the decision to step back or not as

selection (on 12 June 1964) was the seed for all further developments leading

to evolution strategies (ESs) as they are known today” [65].

Genetic Algorithms (GAs): First conceptualized by Holland in many of his pa-

pers written in the early 1960’s (e.g. see [45]). Holland set out to understand

the underlying principles of adaptive systems–systems capable of responding

to interactions with their environment through self-modification. By the mid-

1960’s, Holland’s ideas began to take computational form in thesis work of

several of Holland’s PhD students. The distinctive feature of these theses was

the successful use of competition and innovation to provide the ability to dy-

namically respond to unanticipated events and changing environments.
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A-2 Toxic Chemical Mass Spectrum Plots

Figure 59 Mustard Gas Mass Spectra Plot [60]
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Figure 60 Titanium Tetrachloride Spectra Plot [60]

Figure 61 Phosgene Mass Spectra Plot [60]
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Figure 62 Nitric Oxide Mass Spectra Plot [60]

Figure 63 Methane Mass Spectra Plot [60]
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Figure 64 Hydrogen Cyanide Mass Spectra Plot [60]

Figure 65 Hydrochloric Acid Mass Spectra Plot [60]

125

100. 

(D o c 
m 

T3 c 

< 

i 

Hydrogen cyanide 

MASS SPECTRUM 

Hydrochloric Acid 

MASS SPECTRUM 
100, 

38.5 



Figure 66 Cyanogen Chloride Mass Spectra Plot [60]
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A-3 AIS Source Code Documentation

A

AB_CELL_STIMULATION_PERCENT - percent change in ab stimulation value

AB_EXEC_TIME - time that antibody should stay alive

AB_LENGTH - length of antibody

ACTIVATED - Static variable in class dais.cell

addCell(cell) - Method in class dais.population

addFeature(feature) - Method in class dais.cell

addFeature: add feature to current cell

addFeatureMinMax(int[]) - Method in class dais.feature_map

affinity - Variable in class dais.cell

AFFINITY_CHANGE - Static variable in class dais.ais

affinityMaturation(antibody, float, self, Random) - Method in class

dais.antibodies

affinityMaturation: peforms aff mat.

affinityMaturation(float, self, Random) - Method in class dais.antibodies

affinityMaturation: peforms aff mat.

ais - class dais.ais.

ais() - Constructor for class dais.ais

antibodies - class dais.antibodies.

population of antibodies used for detection

antibodies() - Constructor for class dais.antibodies

antibodies constructor

antibodies(feature_map, int, self, Random) - Constructor for class

dais.antibodies

antibodies constructor .

antibody - class dais.antibody.

antibody() - Constructor for class dais.antibody

127



antibody(message) - Constructor for class dais.antibody

antibody constructor

antibody(String, Random) - Constructor for class dais.antibody

antibody constructor ...

antibody(String, self, Random) - Constructor for class dais.antibody

antibody constructor .

antibody(String, Vector, int, double) - Constructor for class dais.antibody

antibody constructor .

ANTIGEN_PERCENT - Static variable in class dais.ais

ANTIGEN_VARIATION - Static variable in class dais.ais

antigens - Variable in class dais.node

B

barrier() - Static method in class dais.mpi_functions

makes all nodes wait until all other nodes reach this point

C

cell - class dais.cell.

cell_State - Variable in class dais.cell

cell() - Constructor for class dais.cell

cell(message) - Constructor for class dais.cell

cell(String, feature_map, Random) - Constructor for class dais.cell

cell(String, feature_map, Vector, Random) - Constructor for class dais.cell

cell(String, Vector, int, double) - Constructor for class dais.cell

cellToMessage(int, int) - Method in class dais.cell

cellToMessage: change cell into message for sending to another node
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cellToMessage(int, int, cell) - Static method in class dais.message

cellVector - Variable in class dais.population

check_For_Message(Comm) - Static method in class dais.mpi_functions

checkTimeToDie() - Method in class dais.cell

not used

CLASSIFY_THRESHOLD - threshold before cells are classified

clear() - Method in class dais.population

clonalSelection(int, population, self, feature_map, Random) - Method in class

dais.antibodies

clonalSelection: peforms clonal selection on antibodies

cloneAB() - Method in class dais.antibody

cloneAB(): return a clone of this AB

cloneFm() - Method in class dais.feature_map

closeReadSource() - Method in class dais.file_io

Close the input source.

closeReadSource(BufferedInputStream) - Method in class dais.file_io

Close the input source.

closeReadSource(ObjectInputStream) - Method in class dais.file_io

Close the input source.

closeWriteSource() - Method in class dais.file_io

Close the output source.

closeWriteSource(BufferedOutputStream) - Method in class dais.file_io

Close the output source.

closeWriteSource(ObjectOutputStream) - Method in class dais.file_io

Close the output source.

common - class dais.common.

common() - Constructor for class dais.common

compare_cells(cell, cell) - Static method in class dais.common

compare_feature_2(String, String) - Static method in class dais.common

compare_feature(String, String) - Static method in class dais.common
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This method does [Put comment here]

CopyFile(String, String) - Static method in class dais.file_io

costim_match(cell, float, self, costimulation_pop, Random) - Method in class

dais.antibodies

costim_match: checks for a match during costimulation

costim_match(population, float) - Method in class dais.cell

costim_match: check whether this cell costimulates any other cell in

population pop

COSTIMULATE - Static variable in class dais.ais

costimulate(cell) - Method in class dais.costimulation_pop

costimulate(cell, costimulation_pop) - Method in class dais.costimulation_pop

costimulate(cell, float, self, costimulation_pop, Random) - Method in class

dais.antibodies

costimulate: costimulates antibodies using current cell

costimulation_pop - class dais.costimulation_pop.

costimulation_pop() - Constructor for class dais.costimulation_pop

costimulation_pop constructor

costimulation_pop(feature_map) - Constructor for class dais.costimulation_pop

costimulation_pop constructor

costimulation_pop(Vector, feature_map) - Constructor for class

dais.costimulation_pop

costimulation_pop constructor

COSTIMULATION_THRESHOLD - Static variable in class dais.ais

D

dais - package dais
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E

endTime - Variable in class dais.ais

endTime(): sets endTime variable

EXEC_TIME - Static variable in class dais.ais

F

FALSE_NEGATIVES - Static variable in class dais.ais

FALSE_POSITIVES - Static variable in class dais.ais

feature - class dais.feature.

feature_map - class dais.feature_map.

feature_map() - Constructor for class dais.feature_map

feature_map(Vector) - Constructor for class dais.feature_map

feature() - Constructor for class dais.feature

feature(String) - Constructor for class dais.feature

feature(String, int) - Constructor for class dais.feature

featureMinMax - Variable in class dais.feature_map

features - Variable in class dais.cell

featuresToString() - Method in class dais.cell

featuresToString(): convert current features vector to string

file_io - class dais.file_io.

File system handler class.

file_io() - Constructor for class dais.file_io

Constructor

file_io(File, File) - Constructor for class dais.file_io

Constructor

fm - Variable in class dais.population

fm - Variable in class dais.node
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G

GEN_NEW_AB - if ‘‘0", do not generate new antibodies,

read ‘‘antibodies.txt"

if ‘‘1", generate new antibodies

Generate_New_features(feature_map, Random) - Static method in class dais.cell

generator - Static variable in class dais.node

getAB(int) - Method in class dais.antibodies

getAB: return antibody with num

getAffinity() - Method in class dais.cell

getCell(int) - Method in class dais.population

getCellState() - Method in class dais.cell

return cell state

getCellVector() - Method in class dais.population

getCnt() - Method in class dais.message

getData() - Method in class dais.message

getFeature(int) - Method in class dais.cell

getFeatureMap() - Method in class dais.population

getFeatureRoman(int) - Method in class dais.cell

getFeatureVector() - Method in class dais.cell

getMax(int) - Method in class dais.feature_map

getMeasurement(population) - Method in class dais.node

getMin(int) - Method in class dais.feature_map

getMsg_Type() - Method in class dais.message

getName() - Method in class dais.cell

getNextRandDouble(Random) - Static method in class dais.common

getNextRandInt(Random, int, int) - Static method in class dais.common

getNodeTotalTime() - Method in class dais.ais

returns total amount of time that node has been executing

getNumfeatures() - Method in class dais.cell
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getRank() - Static method in class dais.mpi_functions

getRoman() - Method in class dais.feature

getSrc() - Method in class dais.message

getStimulation() - Method in class dais.cell

get stimulation value of cell

getTime() - Static method in class dais.ais

getTime(): returns current time

getTimeOfBirth() - Method in class dais.cell

get the time that this cell was created in the system

getTimes_Costimulated() - Method in class dais.cell

get the total number of times cell costimulated

getTimeSoFar() - Method in class dais.ais

getTimeSoFar: returns amount of time node executing so far

getTotalTime() - Method in class dais.ais

getTotalTime(): returns total amount of time node has been executing

getVal() - Method in class dais.antibody

getVal: return value held by this AB

global - class dais.global.

global(String, int, int[], int) - Constructor for class dais.global

I

IMMATURE - cell does not match self, but hasn’t matched antigen yet

initialize(String[]) - Static method in class dais.mpi_functions

inObjectStream - Variable in class dais.file_io

inStream - Variable in class dais.file_io

isMemoryCell() - Method in class dais.cell
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L

logAction(String) - Method in class dais.file_io

Records agent actions to a system log.

M

machine - Variable in class dais.node

makePopFeaturesSameSize(population) - Static method in class dais.common

makeSameSize(String, String) - Static method in class dais.common

MATCH_THRESHOLD - Static variable in class dais.ais

match(cell, float) - Method in class dais.antibodies

match: determine whether two cells match with affinity greater than threshold

match(cell, float) - Method in class dais.antibody

match: determine whether cell1 and this cell match greater than threshold

match(population, float) - Method in class dais.cell

determine if cell matches any other cell in the populatin pop

match(population, float) - Method in class dais.antibody

match: determine whether the this antibody has a match with any cells in

population pop

MAX_COSTIM_CELLS - Static variable in class dais.ais

MAX_COSTIM_LIFETIME - Static variable in class dais.ais

me - Variable in class dais.node

MEMORY - Static variable in class dais.cell

message - class dais.message.

message_Waiting(Comm) - Static method in class dais.mpi_functions

message() - Constructor for class dais.message

message(int, int, char[]) - Constructor for class dais.message

mpi_finalize() - Static method in class dais.mpi_functions

mpi_functions - class dais.mpi_functions.
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mpi_functions() - Constructor for class dais.mpi_functions

Msg_Type - Variable in class dais.message

mutate(float, Random) - Method in class dais.antibody

mutate: mutate this antibody with given prob_mutation

my_Comm_Array - Variable in class dais.node

my_self - Variable in class dais.node

N

NAIVE - Static variable in class dais.cell

cell not yet exposed to self

name - Variable in class dais.cell

name - Variable in class dais.file_io

network - class dais.network.

network(String, int, int[], int[], int) - Constructor for class dais.network

node - class dais.node.

node() - Constructor for class dais.node

node constructor

node(String, int, int[], int) - Constructor for class dais.node

nodeEndTime - Variable in class dais.ais

nodeEndTime() - Method in class dais.ais

nodeEndTime(): sets the time that the node ended execution

nodeStartTime - Variable in class dais.ais

nodeStartTime() - Method in class dais.ais

nodeStartTime(): sets nodeStartTime

NUM_AB - total num antibodies

NUM_AB_TO_AFF_MATURE - num to run affinity maturation on each cycle

NUM_ANT_INJECTS - max num of diff antigens to inject

NUM_ANTIGEN_MUTATIONS - num of antigens variations per input antigen
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NUM_COSTIM_TO_WARN - num costim before verfied

NUM_IMMUNE_LOOPS - num times to run clonal selection

num_nodes - total num nodes in DAIS

NUM_SELF - total num of self cells to generate

numfeatures - Variable in class dais.feature_map

NW_S_Array - Variable in class dais.network

NW_S_Comm - Variable in class dais.network

O

openObjectReadSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openReadSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openWriteObjectSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

openWriteSource(Object) - Method in class dais.file_io

Open the input stream for read and write operations.

outObjectStream - Variable in class dais.file_io

outStream - Variable in class dais.file_io

P

payload - Variable in class dais.message

population - class dais.population.

Population: Holds all cells for a given poplation

population() - Constructor for class dais.population

population constructor
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population(feature_map) - Constructor for class dais.population

population constructor

population(Vector, feature_map) - Constructor for class dais.population

printBuckets() - Static method in class dais.common

This prints out the histogram bucket values

printCell(cell) - Static method in class dais.common

printCellVector(Vector) - Static method in class dais.common

printConfig() - Method in class dais.ais

printFeatureVector(Vector) - Static method in class dais.common

printStats() - Method in class dais.ais

PROB_MUTATION - Static variable in class dais.ais

R

randomizer(population) - Static method in class dais.common

read() - Method in class dais.file_io

Read a byte from the input source.

readABFile(String) - Static method in class dais.file_io

readAntigenFile(String) - Static method in class dais.file_io

readConfigFile(String) - Method in class dais.ais

readFilename - Variable in class dais.file_io

readObject() - Method in class dais.file_io

Read an Object from the input source.

recv_message(Status, Comm) - Static method in class dais.mpi_functions

removeCell(cell) - Method in class dais.population

removeCell(int) - Method in class dais.population

removeOldCells() - Method in class dais.population

roman - Variable in class dais.feature
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S

saveABToFile(antibodies, String) - Static method in class dais.file_io

self - class dais.self.

self() - Constructor for class dais.self

antibodies constructor

self(feature_map, int, Random) - Constructor for class dais.self

antibodies constructor

self(Vector, feature_map, int, Random) - Constructor for class dais.self

antibodies constructor

self(Vector, feature_map, Random) - Constructor for class dais.self

antibodies constructor

send_message(message, Comm, int[]) - Static method in class dais.mpi_functions

sensor - class dais.sensor.

sensor(String, int, int[], int) - Constructor for class dais.sensor

setAffinity(double) - Method in class dais.cell

setCell(cell, int) - Method in class dais.population

setCellState(int) - Method in class dais.cell

set the cell state to int state

setFeature(int, feature) - Method in class dais.cell

setFeatureMap(feature_map) - Method in class dais.population

setFeatureRoman(int, feature) - Method in class dais.cell

setMax(int, int) - Method in class dais.feature_map

setMin(int, int) - Method in class dais.feature_map

setName(String) - Method in class dais.cell

setObjectOutput(File, File) - Method in class dais.file_io

Constructor support for filename setting.
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setRoman(int) - Method in class dais.feature

setStimulation(double) - Method in class dais.cell

set stimulation value of cell to new_val

setTimeOfBirth() - Method in class dais.cell

set time_of_birth to current time in seconds

setTimes_Costimulated(int) - Method in class dais.cell

setVal(String) - Method in class dais.antibody

setVal: set antibody value to Val

size() - Method in class dais.population

sortDecending() - Method in class dais.population

Src - Variable in class dais.message

start_nodes() - Static method in class dais.mpi_functions

startTime - Variable in class dais.ais

startTime(): sets startTime to current time

stimulation - Variable in class dais.cell

STIMULATION_DECREASE_VAL - Static variable in class dais.ais

T

time_of_birth - Variable in class dais.cell

times_costimulated - Variable in class dais.cell

timeToDie() - check if cell is too old

toString() - Method in class dais.population

Returns a String that represents the value of this object.

toString() - Method in class dais.cell

Returns a String that represents the value of this object.

toString() - Method in class dais.costimulation_pop

Returns a String that represents the value of this object.

toString() - Method in class dais.antibody

Returns a String that represents the value of this object.
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toString() - Method in class dais.feature_map

Returns a String that represents the value of this object.

toString() - Method in class dais.feature

toString() - Method in class dais.message

TOTAL_NUM_ANTIGEN_MEASUREMENTS - Number of antigen measurements

that each sensor node should take

TOTAL_NUM_COSTIM - total num of warnings that are costimulated

TOTAL_NUM_MEASUREMENTS - total num of measurements taken so far

TOTAL_NUM_WARNINGS - total num of warnings received so far

TRUE_NEGATIVES - number of warnings that were not anomalous and

classified as such

TRUE_POSITIVES - number of warnings that were anomalous and

classified as such

V

VACCINATE - message type to VACCINATE with antibody

W

WARNING - Static variable in class dais.ais

write(byte) - Method in class dais.file_io

Write a byte to the output source.

write(Object) - Method in class dais.file_io

Write an Object to the output source.

writeFilename - Variable in class dais.file_io
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A-4 Source Code Availability

The source code for the AIS is not included as part of this document. Those inter-

ested in obtaining a copy should direct their requests to:

Dr. Gary Lamont
AFIT/ENG
BLDG 642

2950 HOBSON WAY
WRIGHT PATTERSON AFB OH 45433-7765

gary.lamont@afit.af.mil
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