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Abstract

The United States Air Force is interested in the potential side effects—at the

cellular level—from exposure to mission-essential chemicals. Presently, Air Force

toxicology studies are conducted to help shed light in identifying potential hazards

to workers. However, it takes a considerable amount of money, resources, and time

to obtain and analyze experimental results from toxicology studies. The necessity for

innovative methods that enable researchers to more effectively generate and analyze

data is apparent.

Mathematical modeling is a viable option to become a valuable tool for the

researcher. Mathematical models can rapidly generate informative predictions on

how a cell reacts to a certain toxicant exposure. Moreover, information is readily

available when generated by mathematical models.

This research involves the study of one non-biological reaction system and four

biological, intracellular reaction systems. Each system is converted into a mathe-

matical model using the rate-equation approach. Numerical simulation results from

these mathematical models are obtained using two novel software modeling tools

and MATLAB. Results obtained from the novel modeling tools are compared to

MATLAB’s results in order to ascertain the accuracy of each novel modeling tool.

The experience that is gained in deriving mathematical models and using novel

tools to perform numerical simulations for these reaction systems should help the

Air Force develop intracellular models to assist in future toxicology studies.

xi



DETERMINISTIC INTRACELLULAR MODELING

I. Introduction

1.1 Overview

The potential of Air Force personnel being exposed to harmful chemicals within

the work environment must be taken under serious consideration. This risk to per-

sonnel is heightened, because Air Force members are oftentimes required to work—

over a wide spectrum of conditions—on or around specialized equipment that contain

an assortment of toxic substances. Toxicity studies are conducted to help shed light

in identifying potential hazards to workers. However, the cost of toxicity studies is

high.

Performing toxicity studies are formidable for two reasons. Experiments are

very costly in funds and resources. Also, it usually takes a considerable amount

of time to obtain and analyze experimental results. The necessity for innovative

methods that enable researchers to more effectively generate and analyze data is

apparent.

Mathematical modeling has the potential to become a valuable tool for the

researcher. Credible mathematical models can generate informative predictions on

how a cell reacts to being exposed to a certain toxicant. Moreover, information is

readily available when produced by mathematical models.

1.2 Problem

In order for the Air Force to develop mathematical models that can be ulti-

mately coupled with existing experimental data on the cell, it is important to under-

stand how various intracellular processes are regulated. By deriving computational
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models from well-documented cellular systems and implementing those models on

novel software tools, valuable experience is gained. This newfound knowledge can

be used to model cellular systems of a higher order. This knowledge will lead to a

better understanding of how the Air Force should construct intracelluar models to

assist future toxicity studies.

1.3 Scope

This research involves a literature review on biological topics relevant to the

living cell. This review includes microbiology, biochemistry, chemical kinetics, and

intracelluar structure. Mathematical models (deterministic) are developed from syn-

thetic and naturally occurring networks. These models are subsequently simulated

on three software applications: MATLAB, BioCharon ([2] and [5]), and JigCell ([31]

and [30]). Results from these software applications are analyzed.

1.4 Summary of Thesis

This thesis is organized as follows:

Chapter 2 gives an overview on cellular biology and biochemistry. Then, math-

ematical modeling is formally introduced. Three alternative approaches for mathe-

matical modeling are briefly discussed. It concludes with a discussion on exisiting

software tools that can be used for intracelluar modeling.

Chapter 3 gives a detailed description of the rate-equation approach (a math-

ematical modeling method). Three software applications—MATLAB, JigCell, and

BioCharon—that can be used to model intracelluar processes are briefly discussed.

One non-biological network and four naturally occurring networks are presented.

Computational models for the synthetic and three naturally occurring networks are

explicity derived.

Chapter 4 presents general simulation results and comparisons for the reaction

systems discussed in chapter 3. Both general and comparison results are analyzed.

1-2



Chapter 5 summarizes the work completed. It gives conclusions and recom-

mendations for future work.
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II. Background

2.1 Overview

“Cells are the fundamental working units of every living system [29:1].” They

encase a dynamic environment of ongoing activities, such as synthesis of proteins

or the breakdown of glucose. The underlying logic for cellular function is highly

complex. Understanding this functionality is the bedrock for conceptualizing and

comprehending higher order phenomena, such as physiology, anatomy, and ecol-

ogy [14:544].

The dynamic environment within the cell (intracelluar) involves a sophisti-

cated degree of interaction between three important classes of macromolecules: de-

oxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins [14:544]. These

molecules continuously interact by means of biochemical reactions. Some of these re-

actions take place independently and others take place serially. As a result, molecules

within the cell are in constant flux. This flux is oftentimes regulated by genes.

Genes—specified segments of DNA—control intracellular processes by spec-

ifying the synthesis of enzymes (a special form of a protein) and other types of

proteins [9:6]. Specific groups of genes may be activated or ‘expressed’ by particular

signals in order to regulate a common cell process. Moreover, groups of genes may

modulate expression levels of other genes. Such groups are called genetic regulatory

networks [26:248].

These types of networks are commonly divided into separate modules of opera-

tions. In this way, cell functionality can be viewed “as a collection of interrelated sub-

systems [14:544].” Nonetheless, describing these networks—especially quantitatively—

is a monumental undertaking. Smolen et al. elaborate on the inherent complexity

of genetic regulatory networks: “Understanding the combined effects of these phe-

nomena is often beyond the capacity of intuition [26:249].”
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A common approach to begin the elucidation of cellular functionality is through

modeling methods. Models describing cellular networks must embody hypotheses

made about each subsystem as well as on how these subsystems are subsequently

integrated back together. Presently, mathematical modeling—via mapping a cellular

network to a system of ordinary differential equations (ODEs)—is widely used to

describe the dynamics of a cellular network. Hasty et al. describe the process of

implementing mathematical models [10:277]:

The modeling of gene regulatory networks relies on characterization of the
behavior of small subsystems, formation of hypotheses about how these
subsystems interconnect, translation of these hypotheses into a mathe-
matical model and experimention to yield results that indicate necessary
changes to the original hypotheses.

Mathematical modeling has two major advantages. “The precision of the math-

ematical language makes mathematical modeling a useful framework for conceptual-

izing and understanding complex biochemical systems [26:248].” Consequently, the

modeler is able to precisely define hypotheses made about each network subsystem

and overall network organization by a well-defined language. Most importantly,

present circumstances (explained below) are primed for quantitative as well as qual-

itative coupling to experimental data.

Since large amounts of data at the genomic level are readily available and exper-

imental methods are continually being enhanced, the stage is set for building models

that make physical sense. Consequently, the modeler is able to ‘verify’ candidate

models. Plus, the modeler can make ‘informed’ modifications to model parameters

(e.g., change values of kinetic rate constants), based on experimental data. In this

way, mathematical models have the potential to be tightly coupled to experimental

data.

For example, the modeler can compare a temporal data set for a natural bio-

logical system to model predictions. Discrepancies between the data set and model

predictions are a strong indication that the proposed model contains errors. The
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modeler can then refine or even reformulate certain hypotheses made about net-

work architecture and exactly implement those changes in the mathematical model.

Since formulating a computational model involves a series of intricate steps—often

overwhelming the pencil-and-paper method—there is a necessity to develop software

packages that assist modelers in the modeling process.

Fortunately, there are already existing software packages for modeling biochem-

ical networks. In general, these software packages add a beneficial layer of abstraction

between a schematic or wiring diagram that describes the architecture or pathways

of a biochemical network and the the corresponding computational model generated

from that diagram. This layer of abstraction is often incorporated by means of a

graphical user interface (GUI). The user enters details about the biochemical net-

work in symbolic form (e.g., graphical objects or chemical reaction notation). Then,

the software generates the computational model from this input. In this fashion, the

user is spared the intracacies of explicitly transforming (mapping) the schematic or

wiring diagram to its corresponding computational model. Consquently, the likeli-

hood of making errors in deriving compuational models is usually reduced, especially

when attempting to model large networks.

As a precursor for using available software packages, the modeler must have an

understanding of the fundamentals of life sciences related to cellular networks, such

as microbiology, biochemistry, and genetics. Since mathematical modeling generally

requires derivation of a system of nonlinear ordinary differential equations (ODEs)

from a wiring diagram, the modeler should also be well-grounded in mathematical

analysis of nonlinear ODEs. From a mathematical (technical) perspective, the mod-

eler is now able to predict and explain subsequent model behavior. In the following

sections, I briefly elaborate on these essential topics that serve as a prerequisite for

modeling cellular networks.
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2.2 Cellular Biology

Understanding cellular structure is essential in implementing the correct ap-

proach to model cellular behavior. Cellular functionality is generally partioned into

various components of the cell. In order to model mechanisms of cellular behavior,

these cellular components must be understood. This section contains references to

intracellular structure for prokaryotic and eukaryotic cell types.

2.2.1 Cell Types. All living cell types can be classified as either prokaryotic

or eukaryotic [6:71]. The structural complexity of prokaryotes is simpler than eu-

karyotes. Organisms in the prokaryotic class consist of only one cell, such as bacteria.

They “lack a nucleus and other membrane-enclosed structures [6:71].” On the other

hand, eukaryotes encompass all plants, animal, fungi and protists [6:71]. Structures

in this class are more defined. For example, cells in this class possess a nucleus

and other membrane-enclosed structures. Related material about prokaryotic and

eukaryotic cell types can be found in [6:71–95].

2.2.2 Intracellular Structure. Using bacteria cells as the prokaryotic proto-

type, these cells include a cell membrane, cytoplasm, ribosomes, and a nuclear region.

Cytoplasm of prokaryotic cells is the semifluid substance inside the cell membrane.

Ribosomes consist of ribonucleic acid and protein. Finally, the nuclear region has

DNA arranged in one large, circular chromosome [6:103].

The structure for eukaryotic cells is more complex than prokaryotic cells. These

type of cells include a membrane-enclosed cell nucleus, with a nuclear envelope, nu-

cleoplasm, nucleoli, and chromosomes [6:103]. The following list outlines structural

components of prokaryotic cells [6:91–92].

• Cytoplasm contains elements of a cytoskeleton, a fibrous network that give

support and shape these cells.
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• Cell nucleus is a distinct organelle with a nuclear envelope, nucleoplasm, nu-

cleoli, and chromosomes.

• Nuclear envelope consists of a double membrane, each layer of which is struc-

turally like the plasma membrane.

• Nucleoplasm is the semifluid portion of the nucleus.

• Nucleoli contain a significant amount of RNA and serve as sites for the assembly

of ribosomes.

• Chromosomes—typically paired—contain DNA and proteins called histones.

• Histones contribute directly to the structure of chromosomes.

More information about intracelluar structure can be found in [6:103 - 104].

2.2.3 Eukaryotic Cell Division Cycle. “To reproduce itself, a cell must

duplicate all its components and separate them, more or less evenly, to two daughter

cells, so that each daughter has the information and machinery necessary to repeat

the process. In general, eukaryotic cells replicate and partition their genetic material

in two distinct, coordinated processes [8:369].” These two phases are described below.

S phase The DNA molecule in each chromosome is precisely replicated to form

two identical sister chromatids that are held together by cohesins (tethering

proteins).

M phase The cell builds a mitotic spindle, condenses its replicated chromosomes,

aligns them on the midplane of the spindle, and then, at anaphase, removes

the cohesins and separates sister chromatids to opposite poles of the spindle

[8:369].

These two phases are separated temporally by gaps (G1 and G2 phases) [8:369].

Figure 2.1 depicts the eukaryotic cell cycle in general.

Several mechanisms are in place to coordinate the proper execution of events

during the cell division cycle. For example, licensing factors (Mcm2–7 and Cdc6)
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Figure 2.1. This diagram of the typical eukaryotic division cell cycle is based on a
figure presented in [20:2]. Metaphase is when chromosomes are aligned
between two mitotic spindles. Anaphase is when the glue that holds
the sister chromatids together is dissolved, allowing each chromatid
to be pulled by the microtubules to one of the poles of the spindle.
Telephase is when two nuclei are created just before the cell divides
(called cytokinesis).
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make sure that each DNA molecule is replicated only once per cycle. Also, cycle logic

does not allow the cell to commence anaphase until DNA replication is complete and

each pair of sister chromatids is properly aligned [8:369]. Specific information on cell

cycle control mechanisms can be found in [8:369–374].

2.2.4 Bacteriophage. Bacteriophages or phages “infect bacterial cells

(hosts) and reproduce within them [6:200]”. Once the nucleic acid of the phage

enters the bacterial cell, “further events follow one of two pathways, depending on

whether the page is virulent or temperate [6:200].” An infectious virulent phage is

capable of causing the death of a bacteria cell. ”When the cell becomes filled with

a hundred or more phages, phage enzymes rupture the cell, releasing newly formed

phages, which can then infect other cells [6:200].” This rupture of the infected cell is

called a lytic cycle. On the other hand, “a temperate phage ordinarily does not cause

a disruptive infection. Instead the phage DNA is incorporated into a bacterium’s

DNA and is replicated with it [6:200]. ” More information on phages can be found

in [6:200–203].

2.2.5 Vibrio fischeri. “Vibrio fishcheri is a marine bacterium found both

as a free-living organism and as a symbiont of some marine fish and squid [1:8].”

V. fishcheri, a single-celled organism, has a luminescence ability that is directly

effected by the number of other V. fishcheri cells residing at a close proximity (i.e.,

local population). As a free-living organism, population size is generally small, and

luminescence appears to be absent. However, as a symbiont, population size is

generally large (dense) and, luminescence is usually detectable.

Luminescence in V. fischeri is activated by its quorum sensing system. When

the local popluation reaches a quorum—a minimum population size—the quorum

sensing system activates a set of genes that enable the cell to become lumines-

cent [1:8]. For information concerning genes, see section 2.3.2. More information

about V. fishcheri can be found in [1:7–8].
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2.3 Biochemistry

Biochemistry is the study of chemical reactions that occur in living systems.

Biochemistry focuses specifically on the molecules of matter (biomolecules), which

living organisms are composed of. Four main classes of important biomolecules are

proteins, carbohydrates, lipids, and nucleic acids [27:1]. Key objects in the modeling

process are encompassed in this field of study.

Dynamic behavior of the intracellular environment is characterized by flux

of various types of molecules (species) that are changed by biochemical reactions.

Understanding the principles of biochemistry is essential in being able to incorporate

this dynamic behavior into candidate models. Some key principles of biochemistry

are the functionality of proteins and nucleic acids, how biochemical reactions take

place, and how chemical kinetics govern reactions. I discuss these topics in the

following sections.

2.3.1 Proteins. In the book, Evolutionary Computation in Bioinformatics,

the author describes the significance of protein molecules, “Proteins make up most

of an organism’s biomass, and play a key role in its metabolic and other cellular and

bodily processes [9:12].” Specifically, a protein is a linear chain of amino acids. The

amino-acid sequence of the protein, along with its three-dimensional shape, is the

functional portion of information flow in a cell [14:545]. An enzyme is a special type

of protein that is crucial in enabling chemical reactions to take place.

An enzyme is a catalyst for chemical reactions in living organisms [27:9]. Dur-

ing chemical reactions, a specific enzyme associates with a corresponding substrate—

forms a complex—changes it into a product, and then dissociates with the new

product. However, the enzyme remains unchanged and is ‘free’ to take part in an-

other chemical reaction with a specific substrate. Enzyme specificity is related to

its shape. Detailed information on proteins and enzymes can be found in [6:41–42]

and [27:9–18].
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2.3.2 Nucleic Acids. Nucleic acids are the carriers of the genetic code.

“They contain genetic information that determines all the heritable characteristics

of a living organism, be it a microbe or a human. Such information is passed from

generation to generation and directs the protein synthesis in each organism [6:43].”

RNA and DNA are the two nucleic acids found in living organisms [6:44]. The data

structure for genetic information storage within each cell is stored in the following

hierarchical configuration—genome, chromosomes, and genes.

The genome contains the complete set of instructions for an organism. “It

contains the master blueprint for all cellular structures and activities for the lifetime

of the cell or organism [13:5].” The human genome is subdivided into structures

called chromosomes.

Chromosomes consist of tightly coiled threads of DNA and associated protein

molecules. Apart from reproductive cells and mature red blood cells, every cell in

the human body contains 23 pairs of chromosomes. Each chromosome is a packet

of compressed and entwined DNA. The human genome contains three billion base

pairs [13:5]. Subunits of a chromosomes are genes.

Genes are the basic physical and functional units of heredity. They are charac-

terized as a “specific sequence of nucleotide bases, whose sequences carry the infor-

mation required for constructing proteins, which provide the structural components

of cells and tissues as well as enzymes for essential biochemical reactions [13:7].” The

human genome contains about 30,000 to 40,000 genes [1:2]. Specific information on

nucleic acids can be found in [13:5–9] and [6:42–45].

2.3.3 Chemical Reactions. Chemical reactions are continuously taking

place within a cell. As a result, a cell is like a factory, where products are continuously

being produced. Of course, this production is highly coordinated. As indicated

in the following quote, enzyme regulation is a main factor in regulating chemical

reactions [6:109].
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Like nearly all other chemical processes in living organisms...each consist
of a series of chemical reactions in which the product of one reaction
serves as the substrate (reacting material) for the next. Each reaction in
a pathway is controlled by a particular enzyme.

Hasty et al. discusses the regulation of intracellular chemical reactions from a

standpoint of gene regulatory networks. They explicitly define negative and positive

feedback as regulatory modes within a cellular network. Negative feedback is when

a cellular network inhibits in own level of activity. Contrarily, positive feedback is

when such a network increases its own level of activity [10:269–270]. The models

of Vibrio fischeri (a unicellular bacteria) and saccharoyces cerevisiae (yeast cell) are

covered in this thesis. They explicitly use positive and negative feedback to regulate

the production of end products.

2.3.4 Chemical Kinetics. Intracellular chemical reactions occur at various

rates involving a wide diversity of molecular interactions. Consequently, RNA and

proteins are in flux. In order to build meaningful intracellular network models, this

flux must be captured in candidate models. Thus, a fundamental understanding

of chemical kinetics is necessary. In this section, some chemical kinetic terms—

chemical reaction equation notation, reaction rates, and reaction rate laws–are briefly

discussed.

A chemical reaction can be assigned a specific reaction rate (velocity) at which

that chemical reaction takes place. Reaction rate is defined “as the change in con-

centration per unit of time of any reaction product for which the stoichiometric co-

efficient is 1 (assuming the volume of the reacting system remains constant) [25:4].”

Stoichiometry is “the determination of the proportions in which chemical elements

combine or are produced and the weight relations in any chemical reaction [19:1320].”

Various units of measure are used to quantify concentration in chemical re-

actions. Some common units of measure include moles per liter (mole
l

), moles per
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cubic centimeter (mole
cm3 ), and molecules per cubic centimeter (molecules

cm3 ) [25:4]. Plus,

the second is generally the time unit.

For example, I generalize an example taken from [25:5]. The following one-way

reaction in some unit of measure is assumed at a constant volume and obtain a rate

of change of B2 concentration of 1.5mole
105lsec

.

2AB → A2 +B2 (2.1)

Then that is the rate of the reaction. From stoichiometry, the other reaction rates

can be deduced.
d[A2]

dt
=

1.5mole

105lsec
(2.2)

and
d[AB2]

dt
=

−3.0mole

105lsec
(2.3)

In general, “for any reaction product, the rate of change of concentration is equal

to the stoichiometric coefficient times the rate of reaction; while for the reactants,

the rate of change of concentration is equal to the negative of the stoichiometric

coefficient times the rate of reaction [25:5].”

Furthermore, the first equation can be rearranged so that the substances are

all on the left hand side, with negative stoichiometric coefficients for the reactions.

A2 +B2 − 2AB = 0. (2.4)

In the generalized form, this equation can be written as

∑
νiAi = 0, (2.5)

where Ai is the symbol of a product or reactant, and νi is its stoichiometric coeffi-

cient. Plus, νi is positive for products and negative for reactants. Now, with this
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redefinition of the stoichiometric coefficients and R representing the rate of reaction,

then
d[Ai]

dt
= νiR. (2.6)

Equations (1.2) and (1.3) can be derived using equation (1.4). In this case, both

stoichiometric coefficients equal one and R = 1.5mole
105lsec

.

When building intracellular network models, a specific reaction rate law is often

assumed for each reaction. At a given temperature, and perhaps within a limited

range of concentrations, one can write a rate law for a reaction of the form,

k
∏
i

[Ai]
αi [Xj]

βi (2.7)

where the Ai are the reactants, the Xj are substances that are not reactants but do

influence the rate, the α’s and β’s are coefficients, that are not necessarily related

to the stoichiometric coefficients ν, and k is a rate constant [25:9]. However, in this

thesis I will only consider elementary reactions. Therefore, “for many elementary

reactions, the rate law coefficients are equal to the stoichiometric coefficients [25:9].”

Specifically, only mass action and Michaelis-Menten rate laws are implemented in

this thesis.

Mass action rate laws are expressed in the form of equation 2.7. However, for

mass action rate laws, α’s and β’s are stoichiometric coefficients for their respective

substances. Unlike this rate law, the Michaelis-Menten kinetic rate law explicitly

accounts for reactions catalyzed by enzymes.

“Most biological reactions are modeled by the Michaelis-Menten kinetic

scheme [9:258].” Michaelis-Menten rate law is characterized by

V =
k2[S][E]0
[S] +Km

, (2.8)
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where S is the reactant or substrate molecule, [E]0 is the amount of enzymatic

concentration, Km is the Michaelis constant, and k2 is the rate constant for the

combination of an enzyme and an (unreacted) substrate molecule (ES) becoming

dissociated [25:131].

Closely following [25:130–131], the Michaelis-Menten equation is derived with

the assumption that the concentration of [E] is significantly smaller than [S] (i.e.,

[E] � [S]). Since [E] � [S], a steady state concentration of [ES] will quickly build

up. Therefore, rate for this reaction is V = k2[ES]. This equation depicts the

appearance of the product P as E catalyzes S (discussed below).

The object in deriving the Michaelis-Menten equation is to represent V in

terms of experimentally measurable quantities of [S] and [E]0. This is accomplished

in the following derivation.

The author starts with a simple unimolecular reaction,

S → P (2.9)

where S is the substrate molecule, and P is the product of the reaction. This reaction

can then be divided into two different stages, represented by the following pair of

reaction equations.

E + S
k1
⇀↽

k−1 ES (2.10)

where k1 is the forward rate constant and k−1 is the reverse reaction rate constant.

ES
k2→ E + P (2.11)

where k2 is the forward reaction rate constant.

In equation 2.10 (moving left to right), S reversibly associates with E. In

equation 2.11—the enzyme-substrate complex ES—breaks down into the original
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enzyme and a product. E can be used over and over again to catalyze additional S

molecules. This equation represents appearance of P after E catalyzes S.

If equation 2.9 is a two-way reaction instead of a one-way reaction, the following

can be deduced from equations 2.9, 2.10, and 2.11.

S ⇀↽ P (2.12)

Again, this reaction is divided into two different stages, represented by the following

pair of reaction equations.

E + S
k1
⇀↽

k−1 ES (2.13)

where k1 is the forward reaction rate constant and k−1 is the reverse reaction rate

constant.

ES
k2
⇀↽

k−2 E + P (2.14)

where k2 is the forward reaction rate constant and k−2 is the reverse reaction rate

constant.

This new set of equations is the same as the above set with the exception of

2.14. In this case, equation 2.14 is reversible. As a result, enzyme and a product—E

and P—can bind back together to again form the complex ES.

Using equations 2.10 and 2.11 and applying standard techniques of biochemical

kinetics ([25:8–10]), the following reaction velocities can be expressed,

v1 = −k1[E][S] + k−1[ES] (2.15)

v2 = −k2[ES] (2.16)
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where each term in equation 2.15 is obtained using equation 2.7. Therefore, the rate

of change for [ES] can be expressed as follows.

d[ES]

dt
= −v1 + v2

= k1[E][S] − k−1[ES] − k2[ES] (2.17)

There is also a conservation relationship between the total concentration of

enzyme [E]0 and the sum of the concentratation of enzyme associated with the

substrate [ES]and free enzyme [E]. This relationship is expressed as

[E]0 = [ES] + [E] ⇒ [E] = [E]0 − [ES] (2.18)

Since [E] � [S], this implies a steady state concentration of [ES] will quickly occur

[25:130]. This means that the rate of the overall reaction is

V = k2[ES]. (2.19)

Therefore, [ES] remains constant, which implies d[ES]
dt

= 0. Therefore,

0 = k1[E][S] − k−1[ES] − k2[ES]

(2.20)

[ES](k−1 + k2) = k1[E][S]

[ES] =
k1[S]

(k−1 + k2)
[E]
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[ES] =
k1[S]

(k−1 + k2)
([E]0 − [ES])

[ES](k−1 + k2) = k1[S]([E]0 − [ES])

[ES](k−1 + k2 + k1[S]) = k1[S][E]0

[ES] =
k1[S][E]0

(k−1 + k2 + k1[S])

Substituting this into equation 2.19, in which the velocity of the build up of [ES] is

expressed, reduces to the following equation.

V = k2
k1[S][E]0

(k−1 + k2 + k1[S])
=

k2[S][E]0
[S] + (k−1 + k2)/k1

(2.21)

The author then expresses the second term in the denominator as Km =

(k−1 + k2)/k1—the Michaelis constant. Substituting Km into equation 2.21 com-

pletes the derivation of the Michaelis-Menten equation. Additionally, the author

discusses limiting behavior at low and high substrate concentrations exhibited by

the Michaelis-Menten equation [25:131]. At low values of [S],

V =
k2[S][E]0
Km

(2.22)

which gives a first-order dependence on [S]. In this case, there are a lot of ‘free’

enzyme molecules. As [S] is increased, the rate of reaction is increased, up until all

enzyme molecules are associated with substrate molecules [25:131].

2-16



On the other hand, at high levels of [S], this term rather than Km dominates

the denominator to give

V = k2[E]0 (2.23)

In this case, the rate of reaction no longer depends on [S]. When this state occurs,

all enzymes are associated with substrate molecules (no free enzymes). Hence, the

reaction has reached its maximum velocity (Vmax). Additional substrate molecules

will not be catalyzed until enzymatic molecules disassociate with substrate molecules

currently undergoing chemical change [25:131].

This Michaelis-Menten equation is implemented in chapters three and four.

Using the rate equation approach (discussed later), it is expressed in several reaction

equations of the budding yeast cell cycle model.

2.4 Biological Pathways

A metabolic pathway consists of a series of chemical reactions in which the

product of one reaction serves as the substrate (reacting material) for the next

chemical reaction. Each reaction in a metabolic pathway is controlled by a par-

ticular enzyme. For example, A→ B → C → D → E represents a simple metabolic

pathway. In this pathway, A is the initial substrate, E is the final product, and B,

C, and D are intermediates [6:109].

Metabolic pathways are either catabolic or anabolic (biosynthetic). Catabolic

pathways capture energy in a form cells can use. Anabolic pathways make the com-

plex molecules that form the structure of cells, enzymes, and other molecules that

control cells. These pathways use building blocks such as sugars, glycerol, fatty

acids, amino acids, nucleotides, and other molecules to make carbohydrates, lipids,

proteins, nucleic acids, or a combination of these molecules. Adenosine triphosphate

(ATP) molecules are the links that couple catabolic and anabolic pathways. Energy

released in catabolic reactions is captured and stored in the form of ATP molecules,
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which are later broken down to provide the energy needed to build up new molecules

in biosynthetic pathways [6:109]. Glycolysis is an example of a metabolic path-

way [6:114]. The glycolytic pathway model in section A incorporates ATP molecules.

2.5 Phosphorylation

“Phosphorylation is the addition of a phosphate group to a molecule, often

from ATP. This addition generally increases the molecule’s energy. Thus, phosphate

groups commonly serve as energy carriers in biochemical reactions [6:116].” In the

glycolytic pathway model in section A, phosphate groups from two molecules of ATP

are added to glucose at the beginning part of the pathway. This expenditure of two

ATPs raises the energy level of glucose, enabling it to then participate in subsequent

reactions [6:116].

Adenosine diphosphate (ADP) has a direct correlation with ATP in regards to

glycolysis. With ADP and inorganic phosphate (Pi) available in the cytoplasm, the

energy released from substrate molecules is used to form high-energy bonds between

ADP and Pi:

ADP + Pi + energy → ATP (2.24)

In this way energy is captured in ATP at the substrate level [6:116]. Phosphoryla-

tion is a key activity in the glycolytic pathway and in the budding yeast cell cycle

(Saccharomyces cerevisiae).

2.6 Protein Synthesis

With an understanding of the fundamental principles of Biochemistry, it is fea-

sible to analyze one of the most important activities of intracelluar function—protein

synthesis. As previously mentioned, proteins are crucial components in major cell

functions. The degree of importance is quantified by [6:169]: “All cells must con-

stantly synthesize proteins to carry out their life processes: reproduction, growth,

repair, and regulation.” Protein synthesis involves several orchestrated steps: the
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gene (or groups of genes) is tagged for transcription (initialized), the gene is tran-

scribed to a messenger RNA (mRNA), and mRNA interacts with a ribosome in

building a specified protein from a sequence of amino acids previously prescribed by

the gene [9:11]. In this manner, a gene or groups of genes indirectly build specified

proteins.

Protein synthesis is initiated when “a pre-initiation complex is assembled around

the promoter region just upstream of the gene that is to be expressed [9:11].” This

complex attracts RNA polymerase, a protein that causes the strands of DNA to

separate near the start of the gene. Moving along this gene or exon (the active part

of DNA transcribing mRNA) RNA polymerase affects production of an RNA tran-

script [9:11]. Next, this mRNA transcript interacts with a ribosome—the location

where protein is synthesized via translation of mRNA. In prokaryotic cells, tran-

scription and translation takes place both in the cytoplasm, whereas in eukaryotes,

transcription takes place within the cell nucleus, while translation takes place outside

the nucleus [6:171]. Based on [6:176], the following steps summarize translation.

1. An mRNA transcript becomes properly oriented on a ribosome.

2. A ribosome reads each codon of the mRNA, and the appropriate tRNA com-

bines with it and delivers a particular amino acid to the ribosome (a codon is a

sequence of three bases in mRNA that specifies a particular amino acid [6:G13]).

3. Step 2 is repeated until a stop codon is read that terminates protein synthesis.

Using a diagram in [9:13] as a reference, Figure 2.2 illustrates how a protein is

generated from genetic information.

2.7 Mathematical Modeling

“Mathematical models are useful for providing a framework for integrating

data and gaining insights into the static and dynamic behavior of complex biological

systems [26:247]....” This class of models approximates the dynamics of biological
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Figure 2.2. Steps (a)–(f) illustrate how a protein is made from genetic information
(transcription/translation). (a) Section of DNA containing a gene,
preceded by a promoter region. (b) An RNA polymerase complex is
attracted to the DNA around the promoter and begins to interact with
the DNA at the start of the gene–beginning of transcription. (c) The
RNA ploymerase moves along from left to right, gradually building an
RNA transcript for the gene sequence. (d) The transcript is complete,
and it now separates from both the RNA polymerase and the DNA. (e)
The ribosome uses it to automatically manufacture a protein molecule–
translation in progress. (f) Translation is complete. This diagram is
based on an illustration published in [9:13].
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systems using a system of ODEs (typically nonlinear) as the computational model.

In addition, the system of ODEs can be augmented with logic terms that capture

events (e.g., cell division). Hasty et al. defines the following states and regulative

mechanisms of biological networks that have been thoroughly studied [10:269–270].

It is necessary to have an understanding of these terms, because these traits and

regulative mechanisms are normally incorporated into candidate models.

Equilibrium state: For a gene product (such as a protein), the rate of production

is balanced by its rate of degradation [10:269].

Fixed point: A point at which the rates of change of all variables in a system are

exactly zero. A system precisely at its fixed point (or steady state) will remain

there permanently [10:269].

Multistability: The property of having more than one stable fixed point [10:269].

Negative feedback: A component (species) of a system is subject to negative feed-

back when it inhibits its own level of activity [10:269].

Positive feedback: A component (species) of a system is subject to positive feed-

back when it increases its own level of activity [10:270].

Certain configurations of negative and positive feedback can lead to system

multistability. This is an important concept for the modeler to grasp, because “un-

derstanding how multistability arises is thus relevant to understanding the opera-

tion of natural biological switches, as well as the design of synthetic switching net-

works [10:269].” Specific details on multistability and its implications can be found

in [10:269].

2.8 Modeling Approaches

Once the modeler has obtained a well-rounded understanding on the basics of

cellular structure, biochemistry, and mathematical modeling concepts, the modeler is

nearly ready to consider a modeling approach for implementation. Prior to selecting
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a modeling approach, the modeler should be familiar with modeling alternatives. I

discuss three alternative modeling approaches: Boolean, chemical kinetics or rate

equation, and stochastic [10:270]. These approaches range from low to high level of

detail in characterizing a biological network.

Starting from a low level of network detail, the Boolean approach enables con-

trol of network dynamics by assigning a switch to each gene. In this way, each gene

can assume only one of two states—ON or OFF. Also, genes within the network have

the ability to interact with each other through user-defined interaction rules [10:270].

For example, suppose three genes—A, B, and C—collectively regulate a net-

work. A possible rule for network dynamics could be: if genes A and B are OFF

at the preceding time step, then gene C is turned ON during the current time step.

This represents synchronous control of genetic states. Asynchronous methods for

activating and deactivating gene switches can also be incorporated.

The advantage of the Boolean approach is that such models are not difficult

to implement. Also, the computational cost to run simulations is relatively low.

The disadvantage of this approach is that “the abstraction of genes to ON/OFF

switches makes it difficult or impossible to include many of the details in cellular

biology [10:270]”.

The chemical kinetics or rate equation approach approximates a cellular net-

work at a midrange level of detail. As stated in section 2.7, a system of ODEs (typ-

ically nonlinear) approximates network dynamics. In this case, real-valued species

concentration variables are updated by approximating a solution vector in respect to

the current timestep. In a simple network, the rate of change for each species concen-

tration is equated to concentration levels of other interacting species concentrations.

Each interaction has a positive or negative effect on the rate of concentration change

for a given species. Equation 2.25 mathematically defines this interaction among

species.
dXi

dt
= V i

p (X) − V i
c (X) (2.25)
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where Xi is the vector of species concentrations, V i
p and V i

c are the kinetic rate raws

previously mentioned in the section 2.3.4 that produce and consume Xi respectively.

The main advantage of the rate equation approach is that dynamics are totally

characterized by a system of ODEs. Accordingly, the modeler can readily analyze

and predict model behavior by applying numerical analysis methods to the system

of ODEs. For example, stability of steady state points can be determined by cal-

culating the eigenvalues of the Jacobian matrix of the nonlinear system. The main

disadvantage for this method is that it is totally deterministic. Consequently, this

approach ignores the inherent randomness or ‘noise’ that acts upon biological sys-

tems. However, ‘noise’ can be added to this deterministic model by augmenting it

with stochastic terms.

Unlike the deterministic rate equation approach, the stochastic kinetics ap-

proach that incorporates the highest level of detail explicitly takes into account the

randomness or fluctuations in rates of gene expression. Results from Arkin et al.

suggest that such random behavior “can produce a highly erratic time pattern of

protein production in each individual cell and a wide diversity of protein concen-

trations across a cell population at any instant in time [3:1633].” Arkin et al.

state the importance of considering stochastic behavior: “When two independently

produced regulatory proteins acting at low cellular concentrations competitively con-

trol a switch point in a pathway, stochastic variations in their concentrations can

produce probabilistic pathway selection.... [3:1633]” In short, the stochastic kinetics

approach attempts to closely model important cellular events that are inherently

random within a genetic regulatory network. This method enables the modeler to

track events at the micro level. Detailed information on the stochastics approach

can be found in [3:1633–1648].

Likewise, this approach has a significant advantage and major disadvantage.

“[It] is impressively complete and yields a detailed picture of the behavior of the

system modeled.” The major disadvantage is that model results “comes at a high
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computational cost and sacrifices any immediate prospect of analytical treatment

[10:270].”

2.9 Gepasi

“Gepasi (version 3.21) is a software package for biochemical systems. It simu-

lates the kinetics of systems of biochemical reactions and provides a number of tools

to fit models to data, optimize any function of the model, peform metabolic control

analysis, and linear stability analysis [17:1]”. Gepasi uses the chemical-reaction-

centered approach in building the computational model. In this mode, the user

enters a system of reaction equations using standard chemical notation. From this

user input, the program automatically builds and solves the system of ODEs. Unfor-

tunately, the user is unable to view the system of ODEs generated by the program.

After building the model, the user can perform two kinds of simulations—time

course and steady state. Time course simulations depict how kinetics of the reaction

network evolve over time from a starting point. In setting up this type of simulation,

the user defines the end time, number of sampling points, and output configuration

for the resultant data file. Output files are configured in such a way that third party

applications can readily import Gepasi data files [17:1].

Steady state simulations attempt to find a steady state near a starting point.

Gepasi cannot find some types of steady states (e.g., saddle points). Steady state re-

sults are sent to a data file. These files contain calculated steady state concentration

for each metabolite via a row vector [17].

Additional features listed in the Gepasi user manual are ‘scanning parameter

space’ and ‘fitting model parameters to experimental data’. In the scanning pa-

rameter mode, the program automatically performs a sensitivity analysis on model

parameters as specified by the user. In the fitting mode, the program minimizes the

sum of squares of residuals between predicted values from the model and experimen-

tal data [17].
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2.10 Virtual Cell

Virtual Cell is another software package for modeling cellular biological pro-

cesses. “It is based on the mapping of experimental biochemical and electrophys-

iological data onto experimental images. The framework is designed to enable the

construction of complex general models that encompass the general class of prob-

lems coupling reaction and diffusion [23:228].” Unlike Gepasi, a graphical approach

is incorporated into Virtual Cell. In this approach, the user constructs a model

by placing and manipulating abstract modeling objects onto an active workspace.

Modeling objects can be edited, viewed, stored in a remote database, and analyzed

using the WWW-based user interface [23:230].

For building models and running simulations, the user interacts with the Vir-

tual Cell application through a GUI enabling access to various editors. After running

the simulation, the user can view results (in graphical and tabular format) in separate

windows. Program output includes ODEs, graphical display of simulation results,

and simulation data in tabular format. The user has several choices of formats in ex-

porting the data. Additional information about Virtual Cell and access to its WWW-

based user interface is at http://www.nrcam.uchc.edu/vcellR3/login/tutorial.jsp.

2.11 E-CELL2

E-CELL is a software package that enables the user to model metabolic path-

ways and higher-order cellular processes, such as protein synthesis and signal trans-

duction [28]. This package employs the ‘Substance-Reactor Model’ in depicting the

structure of a cell and the chemical reactions that take place within a cell. In this

fashion, three classes of objects are used to model cell activity: substances, reactors,

and systems. Reactors calculate the changes in the amount of substances over time.

Systems express the location of reactors and substances. Reactors implement the

specified reaction mechanism (e.g., Michaelis-Menten rate law) [15].
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The user can view simulation results within several windows. The state of a

simulation run can be captured and subsequently saved. The user is able to save

simulation results and whole cell state information of the model at a given time

to a file. Contents in the data file include simulation data on all substances and

reactors, time, quantity, an average quantity, the maximum quantity, the minimum

quantity, the average concentration, the maximum concentration, and the minimum

concentration [15]. Additional information can be accessed from [28] and [15].

2.12 BioSPICE

The Defense Advanced Research Projects Agency’s (DARPA) Bio-Computation

program is aimed at exploring and developing computational methods and models

at the biomolecular and cellular levels. This organization released a software bundle

called BioSPICE (version 1.1.). It contains an assortment of biochemical mod-

eling tools. Software packages included in this bundle are—among others—Grass,

Simpathica, Pathway Builder, Charon, Biosketchpad, and JigCell.

Charon and Biosketchpad are used in conjunction with each other, forming

BioCharon. This application incorporates a graphical approach. In contrast, Jigcell

incorporates a spread sheet approach. I describe BioCharon and JigCell in chapter

III. I list and analyze simulation results produced by these software tools in chapter

IV.
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III. Intracellular Modeling

3.1 Overview

The intracellular environment involves intricate dynamics. Understanding the

underlying logic that controls these dynamics is the foundation for illuminating over-

all cell functionality. Despite the emergence of powerful techniques in sequencing

genes and profiling RNA and protein at the genomic level, “there is a considerable

gap between the availability of new seqence data and a scientific understanding of

that information [9:3].” Mathematical modeling can help bridge that gap between

the large repository of data and the scientific understanding of that information.

As previously mentioned in section 2.1, formulating a computational model

involves a series of detailed steps that quickly overwhelm the pencil-and-paper ap-

proach. Consequently, there is a bona fide need for the development of software tools

that ‘assist’ the modeler in designing and implementing computational models of cel-

luar networks. Two such software packages are discussed in this thesis—BioCharon

and JigCell.

In this chapter, I mainly focus on the modeling of non-biological and nat-

urally occurring networks. I furnish background information on the non-biological

network—the Brusselator—and naturally occurring networks—the lysis-lysogeny path-

way of a mutant bacteriophage, the control system that activates bioluminescence

in Vibrio fischeri (V. fischeri), molecular control of the cell cycle in budding yeast,

and a glycolytic pathway. I also give a brief description on both software packages

to include system configuration, system capabilities, user interaction, and program

output.

Besides describing each software package and cellular network, I lay the foun-

dation of how computational models are derived from cellular wiring diagrams. I

incorporate the rate-reaction approach in each derivation. Each cellular network

model in this thesis is converted into MATLAB code. Simulation results obtained
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from MATLAB are regarded as baseline measurements for comparison to simulation

results produced by BioCharon and JigCell.

3.2 Rate-Equation Approach

As previously mentioned in section 2.8, mathematical modeling involves three

common approaches: Boolean, rate-equation, and stochastic. The rate-equation

approach—the only approach that is implemented in this thesis—involves three main

steps.

1. Convert a wiring diagram into a set of reaction equations.

2. Derive individual reaction rate laws (i.e., reaction velocities) from the set of

reaction equations derived in step 1.

3. Express each species (state variable) with the appropriate subset of reaction

rate velocities derived in step 2.

Rules to derive individual reaction rate laws (step 2) can be found in [25:8–10] and

[12:11–13]. The vi’s in equations 3.3 and 3.4 are derived using equation 2.7 (just as

equation 2.15 results from equation 2.7).

As a concrete example, I implement the rate-equation approach for the fol-

lowing reaction system illustrated in figure 3.1, using steps one through three and

basic laws of kinetics (equations 2.6 and 2.7). This reaction system is published in

[24:397].

Step 1a:

2X + A
k1
⇀↽

k−1 3X (3.1)

where k1 is the forward reaction rate constant and k−1 is the reverse reaction rate

constant for equation 3.1.
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Figure 3.1. This is a possible wiring diagram for the system of reaction equations
proposed by [24:397].

Step 1b:

X
k2
⇀↽

k−2 B (3.2)

where k2 is the forward reaction rate constant and k−2 is the reverse reaction rate

constant for equation 3.2.

Step 2:

v1 = −k1[X]2[A] + k−1[X]3 (3.3)

v2 = −k2[X] + k−2[B] (3.4)

Step 3a:

d[X]

dt
= 2v1 − 3v1 + v2

= −v1 + v2

= k1[X]2[A] − k−1[X]3 − k2[X] + k−2[B]
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Step 3b:

d[A]

dt
= v1

= −k1[X]2[A] + k−1[X]3

Step 3c:

d[B]

dt
= −v2

= k2[X] − k−2[B]

Upon inspection, one notices that d[X]
dt

+ d[A]
dt

+ d[B]
dt

= 0. This implies that

([X] + [A] + [B]) = T1. (3.5)

where T1 is a constant. Equation 3.5 defines a conservation relation among three

species. Even though concentrations of these species may change over time, the sum

of their concentrations remain constant.

Equation 3.5 can also be rewritten as equation 3.6.

[B] = T1 − ([A] + [B]). (3.6)

Consequently, the dynamics of this reaction system can be expressed by a system of

two non-linear ODEs and one algebraic equation. This system is defined by equation

3.7.

d[X]
dt

= k1[X]2[A] − k−1[X]3 − k2[X] + k−2[B]

d[A]
dt

= −k1[X]2[A] + k−1[X]3

[B] = T1 − ([X] + [A])
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3.3 BioCharon

BioCharon is a software package for designing, simulating, and analyzing com-

plex biomolecular networks using hybrid systems (a hybrid system involvs both dis-

crete and continuous dynamics) [5:1]. It implements a graphical approach for user

interaction in building biomolecular models. This package is comprised of two soft-

ware programs—Bio Sketch Pad and Charon. Bio Sketch Pad is a GUI-based drawing

program and Charon is a hybrid-systems simulation program [5:1].

The user designs and simulates a biomolecular model by completing the fol-

lowing steps.

1. Input model into Bio Sketch Pad (model definition).

2. Translate model into Charon programming language.

3. Load translated model file (modelname.prj ) into Charon Visual Simulator.

4. Compile loaded model file (select Generate Simulator command).

5. Select simulation options (number of steps and integration steps [i.e., integra-

tion step size]).

6. Select simulation type (background simulation or display simulation trace).

7. Start simulation (assert start command button).

Figure 3.2 sketches out these steps.

3.3.1 Bio Sketch Pad. Bio Sketch Pad (BSP) is an interactive tool for

modeling and designing biomolecular and cellular networks using a graphical front

end [5:2]. This front end (see figure 3.3) implements the rate-equation approach via

graphical interaction with the user. In this manner, the modeler defines a model in

the GUI by assembing together defined nodes and arcs. Additionally, BSP automat-

ically checks for syntax errors while the user is building the model.
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Figure 3.2. This depicts the process of how a computational model is generated
from user input via BioCharon. The user first designs a model in
BSP’s GUI. Then, this completed model is translated into the Charon
programming language. Finally, this translated model is loaded into
Charon’s visual simulator for subsequent simulations.

Figure 3.3. This is an entry into BSP that implements the graphical approach for
user interaction.
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For example, BSP assures that nodes and arcs—main elements of BSP—are

properly oriented. Consequently, the user can only connect species to reactions and

vice versa. BSP cues the user by coloring intended coupling points. Green signifies

that the user is attempting a legal operation. Contrarily, red means that the user is

attempting an illegal operation.

The orientation and parameter definitions of nodes and arcs completely charac-

erize the model. The nodes are either species, chemical reactions, or regulations. The

arcs describe relations or interactions between the nodes [5:2].

3.3.2 Charon. Charon is a hybrid-system analysis and simulation tool

[5:1]. After loading translated model files from BSP into the Charon visual simula-

tor, the modeler can perform simulations and analyze the results within the visual

simulator’s GUI. The process of how a graphical model created in BSP is translated

to Charon programming code is outlined in figure 3.2.

Charon’s programming language serves as an interface between BSP and Charon.

Since the modeler may not be able to directly implement some desired characteristics

of a cellular network using BSP as a front-end (e.g., stochastic behavior, inhibition,

or Michaelis-Menten rate law), it may be necessary for the modeler to include some

functions directly into the Charon programming code. Additional information about

BSP and Charon is located in [5].

3.4 JigCell

JigCell is another sofware package that can be used for modeling cellular net-

works. It is comprised of three main software programs: JigCell Model Builder

(JCMB), JigCell Run Manager, and Comparator. The user designs and modifies

models with JCMB. The Run Manager is the platform for running simulations of

models created in JCMB. The user is able to visually verify the ‘goodness’ of a model

using the Comparator. This program generates a combined plot of model predictions
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and experimental temporal data points for direct comparison. Additional informa-

tion about JigCell is located in [30].

3.5 Biomolecular networks

“Technological advancements combined with intensive DNA sequencing ef-

forts have generated an enormous database of sequence information over the past

decade [21:153].” Mathematical modeling is used to help bridge the gap between

this huge database of sequence information and the scientific understanding of it.

Two types of biomolecular networks are generally modeled for the enhancement of

this understanding—naturally occurring and abstract networks. Naturally occur-

ring networks are specific biological systems, such as E. Coli and M. tuberculosis

(prokaryotes) and Saccharomyces cervisiae and Homo sapiens (eukaryotes). Ab-

stract networks are synthetic networks. In the remaing sections of this chapter, I

will give background information on naturally occurring and abstract models as well

as derive computational models from each network wiring diagram.

3.6 Non-Biological Network: Modified Brusselator

“The accurate mathematical description of synthetic networks provides the

foundation for describing complex, naturally occuring networks [10:268–269].” In-

sight gained from synthetic neworks can sometimes be applied to a class of biological

subsystems. The Brusselator is a synthetic network that is covered in this section.

“It is well known that the Brusselator model reveals simple oscillations and damped

oscillations by the suitable parameters [18:249].”

First proposed by Prigogine and Lefever, the Brusselator model is represented

by the following system of reaction equations [22:1697].

A→ X (3.7)
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B +X → Y +D (3.8)

2X + Y → 3X (3.9)

X → E (3.10)

The overall reaction is A+B → E+D [22:1697]. The concentrations of A, B, D, and

E are assumed to remain constant and greater than zero. All forward kinetic rate

constants are set to one. This system only involves two intermediate components

(species)—X and Y [22:1697]. X changes Y into X by the autocatalytic reaction in

equation 3.9 [18:249]. The reaction rate for that equation is increased as the product

forms. Furthermore, the stoichiometric coefficients for X in that equation are two

and three on the substrate side and product side, respectively.

Morikawa et al. generalized equation 3.9. They substituted (2 + ε) for the

stoichiometric coefficient for X on the product side of that equation. The original

system of reaction equations is modified by replacing equation 3.9 with equation

3.11.

2X + Y → (2 + ε)X (3.11)

The free parameter ε represents the strength of the autocatalytic process [18:249].

When

ε is set to one, equation 3.11 reduces to equation 3.9. I postulate that as the

value of ε is increased, the steady state concentration of species X is also increased.

Using steps two and three in section 3.2, the computational model is derived from

the following equations.

v1 = −[A] (3.12)

v2 = −[B][X] (3.13)
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v3 = −[X]2[Y ] (3.14)

v4 = −[X] (3.15)

Reaction velocities v1 through v4 are collectively used to express the dynamics

(fluxes) of species X and Y . Model components A, B, D, and E are not regarded as

species or state variables of the computational model, because their concentration

levels remain constant. The fluxes of species X and Y are characterized by the

following system of ODEs.

d[X]

dt
= −v1 + v2 + 2v3 − (2 + ε)v3 + v4

= −v1 + v2 + 2v3 − 2v3 − εv3 + v4

= −v1 + v2 − εv3 + v4

= [A] − [B][X] + ε[X]2[Y ] − [X]

= [A] − ([B] + 1)[X] + ε[X]2[Y ] (3.16)

d[Y ]

dt
= −v2 + v3

= [B][X] − [X]2[Y ] (3.17)

By setting [A] = a, [B] = b, [X] = x, and [Y ] = y, equations 3.16 and 3.17 are

equivalent to the following system of equations.

dx

dt
= a− (b+ 1)x+ εx2y (3.18)

dy

dt
= bx− x2y (3.19)
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Equations 3.18 and 3.19 can be rewritten as dx
dt

= f1 and dy
dt

= f2, respectively.

Functions f1 and f2 are defined by equations 3.20 and 3.21.

f1 = a− (b+ 1)x+ εx2y (3.20)

f2 = bx− x2y (3.21)

The critical point solution for the system of equations 3.16 and 3.17 is derived

by setting f1 = 0 and f2 = 0.

a− (b+ 1)x+ εx2y = 0 (3.22)

bx− x2y = 0 (3.23)

Solving for y in 3.23 results in equation 3.24. Inserting equation 3.24 into equation

3.22 and then solving for x results in equation 3.25.

y =
b

x
(3.24)

x =
a

b(1 − ε) + 1
(3.25)

Equations 3.24 and 3.25 coupled together imply y = b
(

b(1−ε)+1
a

)
. Therefore the

critical point solution is represented by equation 3.26.

(x̂, ŷ) =

(
a

b(1 − ε) + 1
, b

(
b(1 − ε) + 1

a

))
(3.26)

From equation 3.26, it is clear that the initial concentration values for species X and

Y have no impact on the critical point solution. It is solely a function of controllable

parameters a, b, and ε.
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In stability analysis, time developments of the fluctuations (x, y) around the

critical point solution (ycp ≡ (x̂, ŷ)) are approximated by the following linearized

equations [18:250].

dx

dt
= L11x+ L12y

dy

dt
= L21x+ L22y

L11, L12, L21, and L22 are elements of the Jacobian matrix (J). The constant values

for these elements are derived from the following set of equations.

L11 = ∂f1(ycp)
∂x

= (2ε− 1)b− 1

L12 = ∂f1(ycp)
∂y

= εx̂2

L21 = ∂f2(ycp)
∂x

= −b
L22 = ∂f2(ycp)

∂y
= −x̂2

These elements are used to populate the following Jacobian matrix.


 (2ε− 1)b− 1 εx̂2

−b −x̂2


 (3.27)

At this point, Morikawa et al. ([18:250]) set

b =
1

(2ε− 1)
. (3.28)

Equation 3.28 implies ε > 1/2, because b > 0. However, the value of ε must be

an integer equal to or greater than one in order to maintain physical relevance.

Subsequent substitutions for b imply L11 = 0 and L21 = −1
(2ε−1)

. Equation 3.27
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reduces to the new Jacobian matrix listed in equation 3.29.


 0 εx̂2

−1
(2ε−1)

−x̂2


 (3.29)

The trace [tr(J)], determinant [det(J)], and characteristic equation [char(J)]

are derived from equation 3.29 as follows.

tr(J) = L11 + L22

= 0 + −x̂2

= −x̂2 (3.30)

det(J) = L11L22 − L12L21

= 0 + εx̂2

(
1

(2ε− 1)

)

=
εx̂2

(2ε− 1)
(3.31)

char(J) = λ2 − tr(J)λ+ det(J)

= λ2 + x̂2λ+
εx̂2

(2ε− 1)
(3.32)

I use the quadratic formula
(

−b̂±
√

(b̂2−4âĉ)

2â

)
to solve for eigenvalues λ1,2 by setting

equation 3.32 to zero. In this case â = 1, −b̂ = tr(J), and ĉ = det(J).

λ1,2 =
tr(J) ±

√
(−tr(J))2 − 4 (det(J))

2

=
−x̂2 ±

√
(x̂2)2 − 4

(
εx̂2

(2ε−1)

)
2

=
−x̂2 ±

√
x̂4 − 4

(
εx̂2

(2ε−1)

)
2

(3.33)

An observation from equation 3.33 is that −x̂2 < 0 (assuming x̂ �= 0). If

the expression
[
x̂4 − 4

(
εx̂2

(2ε−1)

)]
< 0 in equation 3.33 is true, then the values of
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λ1,2 contain negative real parts and imaginary parts. As a result, the critical point

solution is stable. This expression can be solved for x̂; however, it is desirable to

solve for a controllable parameter, such as a. Below, I derive a condition that ensures

that the values of λ1,2 contain imaginary parts.

x̂4 − 4

(
εx̂2

(2ε− 1)

)
< 0

x̂2 − 4

(
ε

(2ε− 1)

)
< 0

(2ε− 1)2(a)2

ε2
− 4ε

2ε− 1
< 0 (3.34)

(2ε− 1)2(a)2

ε2
<

4ε

2ε− 1

a2 <
(

4ε

2ε− 1

)(
ε2

(2ε− 1)2

)

a2 <
4ε3

(2ε− 1)3

a < 2
(

ε

2ε− 1

) 3
2

(3.35)

Equation 3.34 is derived by making a substitution for x2 (squaring both sides of

equation 3.25). The critical point solution for the system of equations 3.16 and 3.17

is stable when conditions defined by equations 3.28 and 3.35 and ε is an integer equal

to or greater than one are satisified.

3.7 Natural Networks

“Although abstract models can offer insight into basic mechanisms, modeling

must ultimately be connected to specific systems so that verifiable predictions can

be made [10:269].” Since there is a large resevoir of experimental data currently

available on a diverse set of prokaryotes and eukaryotes [26:247], the stage is set

to enable tight coupling of candidate models to these naturally occurring systems.

In this section, three natural systems are considered for modeling in JigCell and
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BioCharon—bacteriophage, Vibrio fischeri, and budding yeast (Sachharomyces cere-

visiae).

3.7.1 Lysis-Lysogeny Pathway. Hasty et al. propose a system of reaction

equations to characterize the lysis-lysogeny pathway of a mutant λ phage. Unlike

a wild type λ phage, the pathway of a mutant λ phage consists of two (instead of

three) operator sites—OR2 and OR3. This “system is a plasmid consisting of the

PR − PRM operator region and components necessary for transcription, translation,

and degradation [11:2076].”

The basic dynamical properties of this pathway are as follows. “The gene

cI expresses repressor (CI), which in turn dimerizes and binds to the DNA as a

transcription factor..... Binding at OR2 enhances transcription, which takes place

downstream of OR3, whereas binding at OR3 represses transcription, effectively

turning off production [11:2076].” The system of reaction equations that describe flux

of the lysis-lysogeny pathway of a mutant λ virus is described by equations 3.36–3.42.

X,X2, andD denote the concentrations of repressor (a protein), repressor dimer, and

DNA promoter sites, respectively. DX2, DX
∗
2 , and DX2X2 denote binding to sites

OR2, OR3, or both, respectively. P denotes the concentration of RNA polymerase,

and n is the number of proteins per mRNA transcript [11:2076].

Input
r→ X (3.36)

where r is the basal rate.

2X
k1
⇀↽

k−1 X2 (3.37)

where k1 is the forward reaction rate and k−1 is the reverse reaction rate.

D +X2

k2
⇀↽

k−2 DX2 (3.38)
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where k2 is the forward reaction rate and k−2 is the reverse reaction rate.

D +X2

k3
⇀↽

k−3 DX
∗
2 (3.39)

where k3 is the forward reaction rate and k−3 is the reverse reaction rate.

DX2 +X2

k4
⇀↽

k−4 DX2X2 (3.40)

where k4 is the forward reaction rate and k−4 is the reverse reaction rate.

DX2 + P
kt→ DX2 + P + nX (3.41)

where kt is the reaction rate.

X
kd→ A (3.42)

where kd is the reaction rate.

The following reaction velocities are calculated from the previously defined

system of reaction equations.

v1 = r

v2 = −k1[X]2 + k−1[X2]

v3 = −k2[D][X2] + k−2[DX2]

v4 = −k3[D][X2] + k−3[DX
∗
2 ]

v5 = −k4[DX2][X2] + k−4[DX2X2]

v6 = −kt[DX2][P ]

v7 = −kd[X]
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A system of ODEs—expressing the flux of each species—can now be formulated

from this set of reaction velocities.

d[X]
dt

= v1 + 2v2 − nv6 + v7 (3.43)

d[X2]
dt

= −v2 + v3 + v4 + v5 (3.44)

d[D]
dt

= v3 + v4 (3.45)

d[DX2]
dt

= −v3 + v5 + v6 − v6 (3.46)

d[DX∗
2 ]

dt
= −v4 (3.47)

d[DX2X2]
dt

= −v5 (3.48)

Since d[D]
dt

+ d[DX2]
dt

+
d[DX∗

2 ]

dt
+ d[DX2X2]

dt
= 0 (from equations 3.45 - 3.48), there

exists a constant relation among the concentrations of D, DX2, DX
∗
2 , and DX2X2

promoter sites. At any time, the total concentration—denoted by dT —remains

constant among these four promoter sites. The value of dT is determined by the

sum of initial concentrations from all four promoter sites. Equation 3.49 defines that

constant relation.

dT = [D] + [DX2] + [DX∗
2 ] + [DX2X2] (3.49)

The above system of ODEs reduce to the following computational model.

d[X]
dt

= r + 2(k−1[X2] − k1[X]2) + nkt[DX2][P ] − kd[X] (3.50)

d[X2]
dt

= k1[X]2 − k−1[X2] − k2[D][X2] + k−2[DX2] − k3[D][X2]+

k−3[DX
∗
2 ] − k4[DX2][X2] + k−4[DX2X2] (3.51)

d[D]
dt

= k−2[DX2] − k2[D][X2] − k3[D][X2] + k−3[DX
∗
2 ] (3.52)

d[DX2]
dt

= k−4[DX2X2] − (k−2[DX2] − k2[D][X2]) − k4[DX2][X2] (3.53)

d[DX∗
2 ]

dt
= k3[D][X2] − k−3[DX

∗
2 ] (3.54)

3-17



d[DX2X2]
dt

= k4[DX2][X2] − k−4[DX2X2] (3.55)

Solving for [DX2X2] in equation 3.49, a substitution is made for [DX2X2] in

equations 3.51 and 3.53. Equation 3.51 reduces to equation 3.56, and equation 3.53

reduces to equation 3.57.

d[X2]
dt

= k1[X]2 − k−1[X2] − k2[D][X2] + k−2[DX2] − k3[D][X2]+

k−3[DX
∗
2 ] − k4[DX2][X2] + k−4(dT − ([D] + [DX2] + [DX∗

2 ]) (3.56)

d[DX2]
dt

= k−4(dT − ([D] + [DX2] + [DX∗
2 ]) − (k−2[DX2] − k2[D][X2])−

k4[DX2][X2] (3.57)

As a result, the computational model can now be expressed by a system of five ODEs

(equations 3.50, 3.56, 3.52, 3.57, and 3.54). This reduced system has a unique critical

point solution.

Hasty et al. set x = [X], y = [X2], d = [D], u = [DX2], v = [DX∗
2 ], and

z = [DX2X2] [11:2076]. Then, Hasty et al. reduce this system of six

equations (3.60 - 3.55) into two equations by deriving the following system of equa-

tions:

y = K1x
2

u = K1k2dx
2

v = σ1K1K2dx
2

z = σ2(K1K2)
2dx4 (3.58)

where K1 = k1

k−1
, K2 = k2

k−2
, σ1 = k3/k2, and σ2 = k4/k2.

Also, the total concentration of DNA promoter sites dT is constant, so that

dT = d + u + v + z. I rewrite this equation with respect to d, so that the entire
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system has only one degree of freedom.

d =
dT

k1k2x2 + σ1k1k2(x)2 + σ2(k1k2)2(x)4
(3.59)

Finally, Hasty et al. presents the nondimensional equation that represents the

dynamics of the entire system.

x′ =
αx2

1 + (1 + σ1)x2 + σ2x4
− γx+ 1 (3.60)

where α ≡ nktp0dT/r and γ = kd/(r
√

(k1k2).

The critical points for 3.60 satisfy the roots for the fifth degree polynomial

listed in equation 3.61. This equation is obtained by setting the right hand side

of equation 3.60 to zero and performing algebraic manipulations on the resulting

equation.

γσ2x
5 − σ2x

4 + γx3(1 + σ1) − x2(α+ 1 + σ1) + γx− 1 = 0 (3.61)

Five roots can be determined from equation 3.61. This is discussed further in section

4.4.1.

3.7.2 Vibrio fischeri. As previously discussed in section 3.4, V. fischeri has

the ability of bioluminescence. “The transcriptional activation of the lux genes in

the bacterium controls this luminescence [1:8]”. The set of lux genes that controls

luminescence is regarded as an operon.

An operon is a sequence of closely associated genes that regulate enzyme
production. An operon includes one or more structural genes, which
carry information for the synthesis of specific proteins such as enzyme
molecules, and regulatory sites, which control the expresson of the struc-
tural genes. A regulator gene works in conjunction with the operon but
may be located some distance from it [6:180].
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The lux regulon (i.e., lux genes associated with regulation) is organized into two

transcriptional units: OL and OR. OL contains the luxR gene and OR contains seven

genes (lux ICDABEG) [1:8]. These structural genes encode the following proteins.

luxR encodes the protein LuxR [1:8].

luxI “produces the protein LuxI, which is required for endogenous production of

the autoinducer Ai, a small membrane-permeable signal molecule [1:8].”

luxA and luxB are templates for luciferase subunits [1:8].

luxC and luxD, and luxE “code for proteins of the fatty acid reductase, which

generates aldehyde substrate for luciferase [1:8].”

luxG “is thought to encode a flavin reductase [1:8].”

The architecture of the lux regulon is illustrated in Figure 3.4. Additionally,

that figure contains a description of species interactions—affecting luminescence—

that takes place within the cell. The pathway description is extracted from [1:8].

Due to the advanced nature of deriving the computational model for charac-

terizing luminescence of V. fischeri, I omit steps 1-3 as described in section 3.2. The

complete set of reaction equations is listed in appendix A as input for a JigCell

calculation. In addition, a resultant rate law (i.e., vi) is automatically generated for

each reaction equation entry during model formulation. The following computational

model for luminescence is submitted by Alur et al. [1:8]. Descriptions of variables

and constants for this model are listed in tables 3.1 and 3.2, respectively.

ẋ0 = kGx0

ẋ1 = Tc(ψ(x8, KCo−icdabegΦ(cCRP , KCRPr, VCRPr) + b) − x1

HRNA
− kGx1

ẋ2 = Tc(Φ(x8, KCo−icdabegψ(cCRP , KCRPr, VCRPr) + b) − x2

HRNA
− kGx2

ẋ3 = Tlx1 − x3/Hsp − rAIRx7x3 + rCox8 −KGx3

ẋ4 = Tlx2 − x4/Hsp − kGx4
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ẋ5 = Tlx2 − x5/Hsp − kGx5

ẋ6 = Tlx2 − x4/Hsp − kGx6

ẋ7 = x0(rAIIx4 − rAIRx7x3 + rCox8) − x7/HAI

ẋ8 = rAIRx7x3 − x8/Hsp − rCox8 − kGx8 (3.62)

where

kG = kg(1 − x0/x0max) (3.63)

Φ(X,KXm, VXm) =
XVXm

K
VXm
Xm

+XVXm

(3.64)

ψ(X,KXm, VXm) = 1 − Φ(X,KXm, VXm) (3.65)

Φ is a sigmoid function that serves as a switch for regulating (from low to high

activation levels) the transcription of mRNA. As the concentration of the regulatory

species X increases, the value of Φ increases. The maximum value of Φ is bounded by

the limit of Φ, because Φ is monotone. In contrast, the ψ function has the opposite

effect of the sigmoid function. As the concentration of the regulatory species X

increases, the value of ψ decreases. The minimum value is bounded by the limit of

ψ (usually zero).

Table 3.1. Species Cross Reference List (V. fischeri) [1:8]

Species Description
x0 scaled population (population x vb/V)
x1 luxR (mRNA transcribed from OL)
x2 luxICDABEG (mRNA transcribed from OR)
x3 protein LuxR
x4 protein LuxI
x5 protein LuxA/B ([LuxA/B] reflects cell luminescence)
x6 protein LuxC/D/E
x7 autoinducer Ai
x8 complex Co
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Table 3.2. Description of Model Parameters (V. fischeri) [1:8]

Parameter Description
Tc Maximum transcription rate
Tl Maximum translation rate

HRNA RNA half-life
Hsp Stable protein half-life
Hup Unstable protein half-life
HAI Ai half-life
rAII Rate constant at which LuxI makes Ai
rAIR Rate constant Ai binding to LUXR
rCo Rate constant of Co dissociation
vCRPr Cooperatively coefficient for CRP
KCRPr Half maximum conc. for CRP

VCo−icdabeg Cooperatively coefficient for Co
KCo−icdabeg Half maximum conc. for Co

b Basal trascription rate
Vb Volume of bacterium
V Volume of solution
kg Growth rate

x0max Maximum population
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Figure 3.4. This diagram—based on a figure presented in [1:8]—depicts the reg-
ulatory control of luminescence in V. fishcheri. Reactions take place
as follows. (1) The autoinducer Ai reversibly binds to protein LuxR,
forming a complex Co. This complex subsequently binds to the lux
box. CRP (cAMP receptor protein) is assumed to reside within the
cell at a constant concentration and also binds to the lux box. (2)
The transcription (production of mRNA x1) from the luxR promoter
(a regulatory site) is positively modulated by the binding of CRP to
its binding site. The transcription of the luxICDABEG (production
of mRNA x2) is positively modulated by the binding of Co to the lux
box. (3) Growth in levels in CRP and Co provide negative feedback
(inhibit) luxICDABEG and luxR transcription, respectively.
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3.7.3 Budding Yeast Cell Cycle. As stated in section 2.1, a typical division

cycle of a eukaryotic cell involves two main phases—S and M—temporally separated

by G1 and G2 phases. Sometimes, these phases are distinct (observable), and cell

division is usually symmetrical. These phases encapsulate the following events. DNA

replication is initiated, eventually forming sister chromatids (S phase). These sister

chromatids are then aligned onto the metaphase plate and subsequently segregated

into two nuclei (M phase). Finally, cell division occurs, resulting in one mother cell

and one new daughter cell. The mother cell now resides in G1 phase, pending the

initiation of another division cycle.

Some characteristics of the cell cycle of budding yeast differ from the behav-

ioral events described previously. Budding yeast cells divide asymmetrically (versus

symmetrically). Consequently, the mass of the daughter cell is proportionally smaller

than the mother cell. Another dissimilarity is that budding yeast cells “progress si-

multaneously through S and M phases (DNA synthesis, spindle formation, and chro-

mosome alignment), without any noticeable condensation of chromosomes [1:370].”

Nonetheless, the division cycle for eukaryotes is closely regulated to ensure that

the correct order and strict alternation of S and M phases are enforced (e.g., DNA

replication is complete before separation of sister chromatids is initiated.).

“Major cell cycle events [DNA synthesis, bud emergence, spindle formation,

nuclear division, and cell separation] in budding yeast are controlled by a single

CDK [cyclin-dependent kinase] (Cdc28) in conjunction with two families of cyclins:

Cln1-3 and Clb1-6 [1:370]”. CDK binds with one of the cyclin members to form a

heterodimer (e.g., Clb5/Cdc28). This binding ‘activates’ the complex and enables

it to carry out its regulatory activities. Chen et al. list the functions of each het-

erodimer [8:370].

• Cln1/Cdc28 and Cln2/Cdc28 influence budding and spindle pole body dupli-

cation.
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• Cln3/Cdc23 influences the size at which newborn cells execute Start.

• Clb5/Cdc28 and Clb6/Cdc28 influence timely DNA replication.

• Clb3/Cdc28 and Clb4/Cdc28 influence DNA replication and spindle formation.

• Clb1/Cdc28 and Clb2/Cdc28 influence proper completion of mitosis.

Novak partitions the above heterodimers into two different sets. CycB/Cdc28 is the

set that contains a Clb part [20:2]. Cln/Cdc28 is the set of that contains a Cln

part [20:4].

Cell division events are regulated by the interaction of CycB/Cdc28 with

what Novak terms as enemies and helper molecules. There are two types of helper

molecules—helpers of the enemies and helpers of CycB/Cdc28. The enemies and

their helper molecules collectively inhibit the activity of CycB/Cdc28. On the other

hand, helper molecules can reinitiate Cdk/CycB activity (when a certain condition is

satisfied), and both eventually inactivate enemies and their friends. Table 3.3 sum-

marizes various molecular interactions that modulate CycB/Cdc28 activity [20:2–4].

Table 3.3. Cdk/CycB Molecular Interactions

Name Relation Type Interaction Effect
Cdh1 Enemy Promotes Cdk/CycB degradation
Sic1 Enemy Binds to Cdk/CycB, causing inactivation
Cdc20 Enemy helper Promotes Cdk/CycB degradation
Cdk/Cln kinases Cdk/CycB helper Assists in initiating Start transition

Due to the antagonisic interaction between CycB/Cdc28 and enemies, the con-

trol system for cell division operates from two alternative states—State1 and State2.

CDK activity (combined activities of Clb’s and Cln’s) is low in State1, while their

enemies—Sic1 and Cdh1 are high. Therefore, concentration levels of the Clb’s and

Cln’s remain mostly low during State1. On the other hand, CDK activity is high in

State2. As a result, the concentrations of the Clb’s and Cln’s are high, where their

enemies’ concentrations remain mostly low during State2. Along these lines, Chen

et al. cite the following quote [8:370].
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Nasmyth (1996) has proposed that the heart of the budding yeast cell
cycle is an alternation between two self-maintaining states: the G1 state,
in which APC is active, CDK activity is low, and orgins are licensed;
and the S/M state, in which APC is shut off, CDK activity is high, and
origins are fired and incapable of firing again.

Control is transferred between self-maintaining states by means of enabled

transitions. The budding yeast cell cycle has two major transitions—Start and

Finish. Start is enabled when the cell reaches critical mass. Once Start is en-

abled, Cln/Cdk helper molecules initiate the buildup of CycB/Cdc28 molecules by

activating transcription factors that synthesize CycB molecules (the concentration

of Cdc28 is assumed to exist in excess). The combined concentration of CycB/Cdc28

and Cln/Cdc28 molecules eventually increase to a level that allows them to inibit the

activity of the enemies and their helper molecules. At this stage, the environment is

primed for a new round of DNA replication.

Finish is enabled when DNA is fully replicated and chromosomes are aligned

on the metaphase plate. Once Finish is enabled, Cdc20—helper molecule for the

enemies—is activated. Indirectly Cdc20 promotes dissociation of sister chromatids,

activation of Hct1 (partly responsible for the degradation of Clb2/Cdc28), and ac-

tivation of Swi5 (a transcription factor that initiates the synthesis of Sic1) [8:373].

Ultimately, increasing activity levels of the enemies and their helper molecules nul-

lify CycB/Cdc28 activity. Figure yeastcycle is the molecular model for control of

CDK activities. It is extracted from the consensus model published by Chen et al.

[8:373]. Chen et al. list the following events that occur when either transition is

initiated. Detailed information on the cell division cycle for budding yeast can be

found in [8:369–391].

Due to the advanced nature of deriving the computational model for charac-

terizing system control for the cell division cycle of budding yeast, I omit steps 1-3 as

described in section 3.2. The complete set of reaction equations is listed in appendix

A. Chen et al. present the following system of ODEs that characterizes cell division
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Figure 3.5. CDK heterodimers are represented by their cyclin partners (e.g.,
Clb3/Cdc28 = “Clb3”), and redundant cyclins are listed as {Cln1 + Cln2
= “Cln2”} and {Clb5 + Clb6 = “Clb5”}. At G1, the cell has few cyclin
molecules. When the cell reaches critical mass, Cln3/Cdc28 and Bck2 acti-
vate transcription factors (TF) SBF and MBF by phosphorylation [8:373].
Cln2 and Clb5 begin to accumulate. Clb5 accumulates as inactive trimers
of Clb5/Cdc28/Sic1 [8:373]. Rising levels of Cln2/Cdc28 activity initiate
budding, inactivate Hct1, and assist in phosphorylating Sic1 for degrada-
tion. “When Sic1 is destroyed, Clb5/Cdc28 activity rises abruptly and
drives the cell into S phase [8:373].” Since Sic1 is destroyed, Clb2/Cdc28
is able to activate its own TF (Mcm1). Rising levels of Clb2/Cdc28 pro-
vide negative feedback to SBF. As a result, Clb5/Cdc28 level starts to fall.
Clb2/Cdc28 induces the cell to progress through mitosis (M Phase). Cdc20
is activated when chromosomes are aligned and DNA synthesis is complete.
Sister chromatids are then separated, Hct1—that promotes Clb2/Cdc28
degradation—and Swi5 are activated. Clb’s and Cln’s are eventually de-
stroyed or inactived. Sic1 levels continue to rise via an active Swi5, and the
cell returns to G1 [8:373].
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control for budding yeast [8:374].

d
dt [Cln2] = (k

′
s,n2 + k

′′
s,n2[SBF ])mass − kd,n2[Cln2]

d
dt [Clb2]T = (k

′
s,b2 + k

′′
s,b2[Mcm1])mass − Vd,b2[Clb2]T

d
dt [Clb5]T = (k

′
s,b5 + k

′′
s,b5[MBF ])mass − Vd,b5[Clb5]T

d
dt [sic1]T = k

′
s,c1 + k

′′
s,c1[Swi5] − (kd1,c1 + Vd2,c1

Jd2,c1+[Sic1]T
[Sic1]T

d
dt [Clb2/Sic1] = kas,b2[Clb2][Sic1] −

(
kdi,b2 + Vd,b2 + Kd1,c1 + Vd2,c1

Jd2,c1+[Sic1]T

)
[Clb2/Sic1]

d
dt [Clb5/Sic1] = kas,b2[Clb5][Sic1] −

(
kdi,b5 + Vd,b5 + Kd1,c1 + Vd2,c1

Jd2,c1+[Sic1]T

)
[Clb5/Sic1]

d
dt [Cdc20]T = (k

′
s,20 + k

′′
s,20[Clb2]) − kd,20[Cdc20]T

d
dt [Cdc20] = ka,20([Cdc20]T − [Cdc20]) − (Vi,20 + kd,20)[Cdc20]

d
dt [Hct1] =

(k
′
a,t1+k

′′
a,t1[Cdc20])(Hct1]T −[Hct1])

Ja,t1+[Hct1]T−[Hct1] − Vi,t1[Hct1]
Ji,t1+[Hct1]

d
dt [mass] = µ(mass)

d
dt [ORI] = ks,ori([Clb5] + εori,b2[Clb2]) − kd,ori[ORI]

d
dt [BUD] = ks,bud([Cln2] + [Cln3]∗ + εbud,b5[Clb5]) − kd,bud[BUD]

(3.66)

where

[Clb2]T = [Clb2] + [Clb2/Sic1]

[Clb5]T = [Clb5] + [Clb5/Sic1]

[Sic1]T = [Sic1] + [Clb2/Sic1] + [Clb5/Sic1] (3.67)

3.7.4 Glycolysis. “Glycolysis is the metabolic pathway used by most au-

totrophic and heterotrophic organisms, both aerobes and anaerobes, to begin to

break down glucose [6:114].” In the Embden-Meyerhof pathway, the breakdown of

glucose occurs in 10 steps or catalyzed reactions [6:A27]. These 10 steps encompass

three stages:
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1. Confine substrate (glucose) inside the cell and form phosphorylated six-carbon

units (fructose 1, 6-diphosphate).

2. A six-carbon unit is split into two three-carbon units, and two ATP molecules

are produced. Two NAD molecules are reduced.

3. Pyruvic acid is formed, and two more ATP molecules are produced. [6:A27]

Figure A illustrates this metabolic pathway.

Each reaction (step) in a metabolic pathway is controlled by a particular en-

zyme. Ten enzymes in the Embden-Meyerhof pathway are the terms in figure A

that contain the suffix ‘ase’. As previously stated in section 2.3.4, a single catalyzed

reaction can be divided into two separate reactions. In that section, equations 2.10

and 2.11 are derived from equation 2.9. Equations 2.13 and 2.14 are derived from

equation 2.12. Along these lines, the set of 10 catalyzed reactions is represented

by a set of 20 equivalent reaction equations. Table 3.5 lists the set of 10 reaction

equations derived from figure A. Table 3.4 indicates the correspondence between

the entries depicted in figure A and the yi’s (for i = 1 to 37) which appear in ta-

bles 3.5, 3.6, 3.7, and equation 3.68. Table 3.6 lists the resultant set of 20 reaction

equations that is derived from table 3.5. Each pair of reaction equations in table 3.6

corresponds to a single reaction in table 3.5. For example, reactions 1A and 1B in

table 3.6 correspond to reaction 1 in table 3.5, and reactions 2A and 2B correspond

to reaction 2, and so on.

Each CatTranj entry (for j = 1 to 10) in table 3.4 is an enzyme-substrate

complex that corresponds to a reaction in table 3.5. For each one-way reaction in

table 3.5, each CatTranj is analogous to ES in equations 2.10 and 2.11. For each

two-way reaction in table 3.5, each CatTranj is analogous to ES in equations 2.13

and 2.14. The vk’s (for k = 1 to 20), which appear in equation 3.68, are defined in

table 3.7.
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Figure 3.6. The glycolytic pathway involves 10 catalyzed reactions. As a result
glucose is broken down to pyruvate [6:A27].
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I derive the following system of ODEs from tables 3.4, 3.6, and 3.7.

d[y1]
dt

= v1

d[y2]
dt

= v1 + v5 − v14 − v20

d[y3]
dt

= −v2 − v6 + v13 + v19

d[y4]
dt

= v1 − v2 + v5 − v6 + v13 − v14 + v17 − v18 + v19 − v20

d[y5]
dt

= v1 − v2

d[y6]
dt

= −v1 + v2

d[y7]
dt

= −v2 + v3

d[y8]
dt

= v3 − v4

d[y9]
dt

= −v3 + v4

d[y10]
dt

= −v4 + v5

d[y11]
dt

= v5 − v6

d[y12]
dt

= −v5 + v6

d[y13]
dt

= −v6 + v7

d[y14]
dt

= v7 − v8

d[y15]
dt

= −v7 + v8

d[y16]
dt

= −v8 − v10 + v11

d[y17]
dt

= −v8 + v9

d[y18]
dt

= v9 − v10

d[y19]
dt

= −v9 + v10

d[y20]
dt

= v11

d[y21]
dt

= v11

d[y22]
dt

= −v12
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d[y23]
dt

= v11 − v12

d[y24]
dt

= −v11 + v12

d[y25]
dt

= −v12 + v13

d[y26]
dt

= v13 − v14

d[y27]
dt

= −v13 + v14

d[y28]
dt

= −v14 + v15

d[y29]
dt

= v15 − v16

d[y30]
dt

= −v15 + v16

d[y31]
dt

= −v16 + v17

d[y32]
dt

= v17 − v18

d[y33]
dt

= −v17 + v18

d[y34]
dt

= −v18 + v19

d[y35]
dt

= v19 − v20

d[y36]
dt

= −v19 + v20

d[y37]
dt

= −v20 (3.68)
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Table 3.4. Species Cross Reference List (Glycolytic Pathway)

Variable Species

y1 Alpha-D-Glucose
y2 ATP
y3 ADP
y4 Mg++
y5 Hexokinase
y6 CatTran1

y7 Alpha-D-Glucose-6-phosphate
y8 Phosphoglucoisomerase
y9 CatTran2

y10 Beta-D-Fructose-6-phosphate
y11 Phosphofructokinase
y12 CatTran3

y13 Beta-D-Fructose-1, 6-bisphosphate
y14 Aldolase
y15 CatTran4

y16 Glyceraldehyde-3-phosphate
y17 Dihydroxyacetone phosphate
y18 Triose phosphate isomerase
y19 CatTran5

y20 NAD+
y21 Pi

y22 NADH
y23 Glyceraldehyde-3-phosphate dehydrogenase
y24 CatTran6

y25 1, 3-Bisphosphoglycerate
y26 Phosphoglycerate kinase
y27 CatTran7

y28 3-Phosphoglycerate
y29 Phosphoglycerate mutase
y30 CatTran8

y31 2-Phosphoglycerate
y32 Enolase
y33 CatTran9

y34 Phosphoenolpyruvate
y35 Pyruvate kinase
y36 CatTran10

y37 Pyruvate
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Table 3.5. Reaction Equations (Glycolytic Pathway)

Reaction Reaction Equation
1 y1 + y2 + y4 + y5 → y3 + y4 + y5 + y7

2 y7 + y8 ⇀↽ y8 + y10

3 y2 + y4 + y10 + y11 → y3 + y4 + y11 + y13

4 y13 + y14 ⇀↽ y14 + y16 + y17

5 y17 + y18 ⇀↽ y16 + y18

6 y16 + y20 + y21 + y23 ⇀↽ y22 + y23 + y25

7 y3 + y4 + y25 + y26 ⇀↽ y2 + y4 + y26 + y28

8 y28 + y29 ⇀↽ y29 + y31 + y17

9 y4 + y31 + y32 + y23 ⇀↽ y4 + y32 + y34

10 y3 + y4 + y34 + y35 → y2 + y4 + y35 + y37
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Table 3.6. Reaction Equations with Catalytic Transitions (Glycolytic Pathway)

Reaction Reaction Equation

1A y1 + y2 + y4 + y5

k1
⇀↽
k2 y6

1B y6
k3→ y3 + y4 + y5 + y7

2A y7 + y8

k4
⇀↽
k5 y9

2B y9

k6
⇀↽
k7 y8 + y10

3A y2 + y4 + y10 + y11

k8
⇀↽
k9 y12

3B y12
k10→ y3 + y4 + y11 + y13

4A y13 + y14

k12
⇀↽
k13 y15

4B y15

k14
⇀↽
k15 y14 + y16 + y17

5A y17 + y18

k16
⇀↽
k17 y19

5B y19

k18
⇀↽
k19 y16 + y18

6A y16 + y20 + y21 + y23

k20
⇀↽
k21 y24

6B y24

k22
⇀↽
k23 y22 + y23 + y25

7A y3 + y4 + y25 + y26

k24
⇀↽
k25 y27

7B y27

k26
⇀↽
k27 y2 + y4 + y26 + y28

8A y28 + y29

k28
⇀↽
k29 y30

8B y30

k30
⇀↽
k31 y29 + y31

9A y4 + y31 + y32

k32
⇀↽
k33 y33

9B y33

k34
⇀↽
k35 y4 + y32 + y34

10A y3 + y4 + y34 + y35

k36
⇀↽
k37 y36

10B y36
k38→ y2 + y4 + y35 + y37
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Table 3.7. Derived Reaction Velocities for Embden-Meyerhof Glycolytic Pathway

Reaction Velocity
1A v1 = −k1y1y2y4y5 + k2y6

1B v2 = −k3y6

2A v3 = −k4y7y8 + k5y9

2B v4 = −k6y9 + k7y8y10

3A v5 = −k8y2y4y10y11 + k9y12

3B v6 = −k10y12

4A v7 = −k11y13y14 + k12y15

4B v8 = −k13y15 + k14y14y16y17

5A v9 = −k15y17y18 + k16y19

5B v10 = −k17y19 + k18y16y18

6A v11 = −k19y16y20y21y23 + k20y24

6B v12 = −k21y24 + k22y22y23y25

7A v13 = −k23y3y4y25y26 + k24y27

7B v14 = −k25y27 + k26y2y4y26y28

8A v15 = −k27y28y29 + k28y30

8B v16 = −k29y30 + k30y29y31

9A v17 = −k31y4y31y32 + k32y33

9B v18 = −k33y33 + k34y4y32y34

10A v19 = −k35y3y4y34y35 + k36y36

10B v20 = −k37y36
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IV. Computational Model Results

4.1 Overview

In chapter III, I discuss the following reaction models: modified Brusselator,

lysis-lysogeny pathway of a mutant bacteriophage, quorum sensing system that con-

trols luminescence in V. fischeri, control system for cyclin dependent kinases (CDKs)

in the budding yeast cell cycle, and a glycolytic pathway. One way of shedding light

on the overall functionality of these reaction systems is to derive a computational

model (system of ODEs) for each reaction system. Computational models are gen-

erally used to track how state variables (concentrations of each species) evolve over

a specified time interval. The rate-equation approach for deriving computational

models is the method exclusively used in this thesis. This approach involves the

following steps.

1. Convert a wiring diagram into a set of reaction equations (e.g., table 3.6).

2. Derive individual reaction rate velocities from the set of reaction equations

derived in step 1 (e.g., table 3.7).

3. Express each state variable (species) with the appropriate subset of reaction

rate velocities derived in step 2 (e.g., equation 3.68).

BioCharon and JigCell are software tools that serve as aids in building biomolec-

ular models, deriving (via rate-equation approach) computational models, and simu-

lating these models. Steps 1-3 are automated in BioCharon. Steps 2-3 are automated

in JigCell.

In this chapter, I present general simulation results that highlight certain

qualitative features (e.g., conservation relation among species) of the previously

mentioned reaction models. I then compare simulation results from MATLAB,

BioCharon, and/or JigCell. Metrics for these comparisons are explained in

section 4.2.
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Simulation results are obtained by MATLAB, BioCharon, and JigCell for the

modified Brusselator model and lysis-lysogeny pathway. Simulation results for the

quorum sensing system are obtained by MATLAB and JigCell. This system is not

simulated using BioCharon, because the cost is extremely high in simulation time

and memory (an extremely small integration step size is required to obtain accurate

results). Simulation results for the control system of CDKs in the budding yeast cell

division cycle are obtained from MATLAB and JigCell. An instance of this model is

not created using BioCharon, because the user is not able to explicitly define—via

Bio Sketch Pad—key aspects of this model. For example, the user is not able to

explicitly define Michaelis-Menten rate laws and functions for transcription factors

(e.g., Vd,b2 and Vd,b5 in equation 3.66). Simulation results for the glycolytic pathway

are soley obtained by MATLAB, because the computational time for MATLAB is

substantially less than that for both BioCharon and JigCell.

4.2 Experimental Design

All or some of the following metrics are used in comparing simulation results:

absolute error, sum of absolute errors, and relative error. Absolute error is the

absolute value of the difference between simulation results obtained from MATLAB

and either BioCharon or JigCell. This metric is used in all comparisons.

Sum of absolute errors is the sum of individual absolute errors among all state

variables (species) for a specified trial. This metric is used during the comparison

of simulation results for the lysis-lysogeny pathway in order to ascertain overall

accuracy for this reaction system. This metric is used soley in table 4.9.

Relative error is used in comparing simulation results for the quorum sensing

system. This additional metric is used because simulation results among species

vary several orders of magnitude. Absolute error among species having significantly

larger values is more likely to have larger absolute error than among species with

significantly smaller values. For example, luxICDABEG has a value of 9.80402, but
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LuxR has a value of 5208.60414 in table 4.12. Relative error is used to better gauge

the degree of error among all species. Relative error is |MATLABResult−OtherResult|
|MATLABResult| . This

metric is used in tables 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16.

“With a user community more than 500,000 strong spread throughout indus-

try, government, and academia, MATLAB is the recognized standard worldwide for

technical computing [16:2]”. In this regard, simulation results obtained from MAT-

LAB are regarded as baseline results (i.e., error = 0). Therefore, the accuracy of

simulation results generated from BioCharon and JigCell are gauged from simulation

results generated by MATLAB.

System parameters for BioCharon, JigCell, and MATLAB are configured in

the following manner. The integration step size for the ordinary differential equation

(ODE) solver of BioCharon is set to 0.01 during all simulations. I performed several

pilot studies in order to decide which step size to use. A smaller step size may

slightly increase accuracy (depending on the system); however, total simulation time

is greatly increased as the integration step size is shortened. The ODE solver for

JigCell is set to ‘stiff’ during all simulations (a solver that is specifically designed to

approximate solutions for a stiff system of differential equations). The ODE solver

for MATLAB is set ‘ode23s’ at the default accuracy (relative tolerance of 1E-3 and

vector of absolute error tolerances of 1E-6 by default). The system parameter that

adjusts total simulation time is synchronized for all software tools.

In obtaining simulation results, each of the five computational models is sub-

mitted as a workload to the appropriate software tool. Each workload submission

on either MATLAB, BioCharon, and JigCell has an accompanying set of initial con-

ditions (species concentrations and model parameters). Initial concentrations for

species are varied in sections 4.3, 4.4, 4.5, and 4.6. While maintaining the same

initial concentrations for species, a single model parameter is varied in section 4.7.
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4.3 Modified Brusselator Model

The Brusselator model “reveals simple oscillations and damped oscillations by

the suitable parameters [18:249].” I describe a modified version of the Brusselator

model in section 3.6. The modification involves the addition of a free parameter

ε. This parameter reveals the strength of the autocatalytic process for species X

(equation 3.11) [18:249]. If ε is assigned an integer value greater than or equal

to one and model parameters a and b are defined using equations 3.35 and 3.28,

respectively, the critical point (x̂, ŷ)—defined by equation 3.26—is stable.

Figure 4.1 illustrates 10 critical points for the modified Brusselator system.

Each critical point is obtained by using equation 3.26 and imposing the above con-

straints for parameters a, b and ε. The integer value of ε is varied from 1 to 10. It is

clear from figure 4.1 that the critical point concentration for species x increases as ε

is increased. This behavior is consistent, because ε serves as the autocatalytic power

control for x. It follows that as the level of ε is increased, the operating level of x is

increased. Figure 4.1 also illustrates that the relative effect of ε on x diminishes as

ε is increased.

4.3.1 General Results. Figures 4.2 and 4.3 illustrate numerical simulations

for the Brusselator system performed on MATLAB. The value for parameters a and

b are selected in accordance with the previously mentioned constraints that ensure

a stable critical point. In both cases, a = 0.7, b = 0.5, and ε = 1. In figure 4.2, the

initial concentrations of x and y are zero. In figure 4.3 the initial concentrations for

both species are five. Despite the significant difference between initial conditions,

the resulting trajectory is back to the same critical point: x̂ = 0.7 and ŷ ≈ 1.4.

This behavior of both trajectories returning to the same critical point is illustrated

in figure 4.4 (phase plane plots). The behavior of returning back to a critical point

after applying large perturbations away from that critical point alludes to the possible

existence of a global critical point for the modified Brusselator reaction system.
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Figure 4.1. As ε is increased (with a = 0.7), the critical point solution for species
x increases and y decreases. It appears that as ε approaches 10, the
critical point solution approaches x = 1.33 and y = 0.04.

4.3.2 Comparison Results. A set of three simulations are performed using

MATLAB, BioCharon, and JigCell. The parameters are a, b, x, and y, and the

single factor—a parameter that is varied in each trial—is ε. The values of a and b

are selected to ensure a stable critical point. For all three trials, the concentration

of a is held constant at 0.7, and the initial concentrations of x and y are zero. The

constant concentration of b is dependent on the single factor ε (via equation 3.28).

This factor is assigned integer values 1 through 3. These parameter and factor values

are listed in table 4.1.

Table 4.2 lists simulation results from MATLAB, BioCharon, and JigCell for

species x and y. These results are critical point approximations (i.e., the rate of

change for all state variables is zero) for the modified Brusselator system. The
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Figure 4.2. Parameter settings for the modified Brusselator model are a = 0.7,
b = 0.5, and ε = 1. Initial concentrations are x = 0 and y = 0.
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Figure 4.3. Parameter settings for the modified Brusselator model are a = 0.7,
b = 0.5, and ε = 1. Initial concentrations are x = 5 and y = 5.

4-7

Species X 

10     20 40     50     60     70 
[time units] 

Species Y 

10 

10     20     30     40     50     60     70 

[time unils| 

10 



Figure 4.4. Parameter settings for the modified Brusselator model are a = 0.7,
b = 0.5, and ε = 1. The initial concentrations for the top plot are
x = 0 and y = 0, and the initial concentrations for the bottom plot
are x = 5 and y = 5.
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results in that table are separated by trial numbers 1 through 3. Critical point

approximations for each software tool are identical: x̂ = 1.42857 and ŷ = 1.42857

for trials 1 through 3. Therefore, absolute error for all critical point approximations

is zero.

Table 4.1. Initial Conditions (Modified Brusselator Model)

Trial A B X Y ε
1 0.7 1.0 0 0 1
2 0.7 1

3
0 0 2

3 0.7 0.2 0 0 3

Table 4.2. Critical Point Results (Modified Brusselator Model)

Trial Application X Y
1 MATLAB 0.70000 1.42857

BioCharon 0.70000 1.42857
JigCell 0.70000 1.42857

2 MATLAB 1.05000 0.31746
BioCharon 1.05000 0.31746

JigCell 1.05000 0.31746
3 MATLAB 1.16667 0.17143

BioCharon 1.16667 0.17143
JigCell 1.16667 0.17143

4.4 Lysis-Lysogeny Pathway

Depending on which operator site the repressor (X) binds to, the mutant phage

(discussed in section 3.7.1) is either virulent or temperate. When X binds to OR2,

represented by DX2, the synthesis of repressor is enhanced. If X binds to OR3,

represented by DX∗
2 , the synthesis of X is inhibited. High concentration levels of X

induce a temperate phage. On the other hand, low concentration levels of repressor

induce a virulent phage [10:271].

4.4.1 General Results. From equation 3.61, it is obvious that the lysis-

lysogeny pathway can have multiple critical points. Three real and two imaginary
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critical points are calculated by substituting the appropriate values listed in table

4.3 into equation 3.61. Table 4.3 defines the following parameter values for the

lysis-lysogeny pathway system: kinetic rate constants (k1, kt, r, etc.), conservation

constant (dT ), constant for polymerization of species X (n), and constant concen-

tration for RNA polymerase (P ). Three real critical points, using equations 3.58,

3.59, and 3.61, are listed in table 4.4.

Table 4.3. Model Parameters (Lysis-Lysogeny Pathway)

Parameter Value
k1 1
k−1 1
k2 1
k−2 1
k3 1
k4 1
k−4 1
kt 0.8
kd 6
r 0.4
dT 5
n 4

P = p0 1.25

Table 4.4. Critical Points (Lysis-Lysogeny Pathway)

Species Critical Point 1 Critical Point 2 Critical Point 3
X 0.09820 0.24592 0.88845
X2 0.00964 0.06048 0.78934
D 4.90495 4.44597 1.56165
DX2 0.04730 0.26889 1.23268
DX∗

2 0.04730 0.26889 1.23268
DX2X2 0.00046 0.01626 0.97300

Using the same approach as previously discussed in section 3.6, I perform sta-

bility analysis on the full and reduced systems of the lysis-lysogeny pathway (about

each critical point listed in table 4.4). The full system is represented by equations
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Table 4.5. Eigenvalues for Full Lysis-Lysogeny Pathway

Critical Point 1 Critical Point 2 Critical Point 3
Eigenvalue1 0 0 0
Eigenvalue2 -0.02752 0.01455 -0.11060
Eigenvalue3 -0.89098 -0.83369 -0.91172
Eigenvalue4 -1.20181 -1.70225 -5.02094
Eigenvalue5 -6.43729 -6.99262 -7.88717
Eigenvalue6 -11.94908 -12.12940 -14.43544

Table 4.6. Eigenvalues for Reduced Lysis-Lysogeny Pathway

Critical Point 1 Critical Point 2 Critical Point 3
Eigenvalue1 -0.02752 0.01455 -0.11060
Eigenvalue2 -0.89098 -0.83369 -0.91172
Eigenvalue3 -1.20181 -1.70225 -5.02094
Eigenvalue4 -6.43729 -6.99262 -7.88717
Eigenvalue5 -11.94908 -12.12940 -14.43544

3.50 through 3.55. The reduced system is represented by equations 3.50, 3.56, 3.52,

3.57, and 3.54. The calculated eigenvalues from each stability analysis are listed in

tables 4.5 and 4.6.

With the exception of the zero entries (Eigenvalue1) for each critical point

listed in table 4.5, the eigenvalues for tables 4.5 and 4.6 are identical. The zero

eigenvalue listed for each critical point in table 4.5 is expected because there exists a

conservation relation between equations 3.52 through 3.55 (i.e., the full system can

be reduced). From table 4.6, the stability about (near) each critical point can be

ascertained (recall: in the reduced system, [DX2X2] = dT − ([D]+ [DX2]+ [DX∗
2 ])).

As a result, critical points one and three are asymptotically stable. This is

true because all calculated eigenvalues about critical points one and three are neg-

ative [7:151]. In contrast, critical point two is not asymptotically stable, because

Eigenvalue1 is positive. As a reminder, small perturbations away from either stable

critical point result in a trajectory back to the respective critical point.
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Figure 4.5. This illustrates the conservation relation: dT = ([D]+[DX2]+[DX∗
2 ]+

[DX2X2]). It is apparent that the sum of concentration levels among
these species remains constant as the system evolves. In this case,
dT = 5. Parameter settings and initial conditions are used from tables
4.3 and 4.7 (trial 4).

However, small perturbations away from the unstable critical point result in a tra-

jectory to one of the stable critical points.

The existence of a conservation relation among equations 3.52 through 3.55

implies that even though individual concentrations of D, DX2, DX
∗
2 , and DX2X2

may change over time, the sum of their concentrations remain constant. Figure 4.5

illustrates this conservation rule. The plot (parameter values and initial conditions

are from tables 4.3 and 4.7 (trial 4), illustrated in figure 4.5, exemplifies how the

total sum of concentrations among species D, DX2, DX
∗
2 , and DX2X2 remain at a

constant value (dT ) as the modified Brusselator system evolves.
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4.4.2 Simulation Results. I perform a set of four simulations (trials) using

MATLAB, BioCharon, and JigCell. The parameter values listed in table 4.3 are

used in each trial. Initial conditions for each trial are listed in table 4.7. Initial

species concentrations in trial 1 represent a small perturbation away from critical

point 1. Initial species concentrations in trials 2 and 3 represent small perturbations

away from critical point 2. Initial species concentrations in trial 4 represent a small

perturbation away from critical point 3.

Simulation results from MATLAB, BioCharon, and JigCell are listed in table

4.8. These results are critical point approximations. Critical point approximations

for trials 1 and 4 are similar to critical points 1 and 3 (listed in table 4.4). This

is expected because trials 1 and 4 are small perturbations away from stable critical

points.

Critical point approximations for trials 2 and 4 are similar to critical points 1

and 3, respectively (listed in table 4.4). It is not surprising that both trajectories

move away from critical point 2, because both trials represent small perturbations

away from an unstable critical point. In trial 2, the trajectory path is to critical

point 1. In trial 3, the trajectory path is to critical point 3. Apparently, initial

conditions in trial 2 and 3 result in displacements in the attraction fields of critical

point 1 and 3, respectively.

Absolute error in table 4.9 is calculated from entries listed in table 4.8. Sim-

ulation results in table 4.8 are critical point approximations from all three software

tools. For both tables, M = MATLAB, B = BioCharon, J = JigCell. Absolute error

(Ei—defined in section 4.2) for each simulation result is listed in table 4.9 (columns

3–8). Sum of absolute error (TotalE = E1 + E2 + E3 + E4 + E5 + E6) is listed in

column 9.

With the exception of trial 1, TotalE for BioCharon is greater than TotalE for

JigCell in all trials. Maximum TotalE for BioCharon and JigCell occur during trial
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2. The difference of TotalE between BioCharon and JigCell is 0.03750; however,

TotalE for BioCharon is not significant from a biological standpoint.

Table 4.7. Initial Conditions (Lysis-Lysogeny Pathway)

Trial X X2 D DX2 DX∗
2 DX2X2

1 0.2000 0.1000 4.800 0.0300 0.0400 0.1300
2 0.3000 0.0700 4.2400 0.3700 0.3500 0.0400
3 0.1400 0.0100 4.4459 0.2688 0.2688 0.0165
4 0.9800 0.6800 1.4000 1.0000 1.1000 1.5000

Table 4.8. Comparison Results (Lysis-Lysogeny Pathway)

Trial App X X2 D DX2 DX∗
2 DX2X2

1 M 0.09820 0.00964 4.90495 0.04730 0.04730 0.00046
B 0.09820 0.00964 4.90495 0.04730 0.04730 0.00046
J 0.09820 0.00964 4.90495 0.04730 0.04730 0.00046

2 M 0.88845 0.78934 1.56165 1.23268 1.23268 0.97300
B 0.88496 0.78316 1.56730 1.22744 1.22744 0.96128
J 0.88845 0.78934 1.56165 1.23267 1.23267 0.97300

3 M 0.09820 0.00964 4.90494 0.04730 0.04730 0.00046
B 0.09820 0.00964 4.90515 0.04731 0.04731 0.00046
J 0.09820 0.00964 4.90494 0.04730 0.04730 0.00046

4 M 0.88845 0.78934 1.56164 1.23268 1.23268 0.97300
B 0.88940 0.79104 1.56011 1.23410 1.23410 0.97622
J 0.88845 0.78934 1.56165 1.23268 1.23268 0.97300

4.5 V. fischeri

4.5.1 General Results. Luminescence in V. fischeri (represented by the

concentration of LuxA/B) is controlled by its quorum sensing system. This sys-

tem has the capability to ascertain local population density of like bacteria. When

the population reaches a certain density level (i.e., a quorum of bacteria), the lux

genes—responsible for luminescence—are subsequently activated. In this manner,

luminescence in V. fischeri exhibits switch-like behavior. Figure 4.6 illustrates how

luminescence in V. fischeri is activated when a quorum is reached.
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Table 4.9. Absolute Error (Lysis-Lysogeny Pathway)

Trial App E1 E2 E3 E4 E5 E6 TotalE
2 B 0.00349 0.00618 0.00565 0.00524 0.00524 0.01172 0.03752

J 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 0.00002
3 B 0.00000 0.00000 0.00021 0.00000 0.00001 0.00000 0.00022

J 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 B 0.00095 0.00170 0.00153 0.00142 0.00142 0.00322 0.01024

J 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00001

As depicted in figure 4.6, luminescence in the cell is negligible between zero and

twelve hours, because population density is low. A quorum is apparently reached

slightly after twelve hours, because the concentration of LuxA/B begins to rapidly

increase. In this way, the ‘switch’ that controls luminescence is activated when a

quorum is achieved.

“Along with LuxR and LuxI, cAMP receptor protein (CRP) plays an important

role in controlling luminescence [1:8].” LuxR binds to Ai that forms the complex Co.

This complex subsequently binds to the lux box and provides positive feedback for

the synthesis of LuxI and negative feedback for the inibition of LuxR. Increasing

levels of LuxI enhance the production of Ai. CRP also binds to the lux box and

provides positive feedback for the synthesis of LuxR and negative feedback for the

inhibition of LuxI (see figure 3.4).

Figures 4.7, 4.8, and 4.9 illustrate numerical simulations on the time interval—

[0 40] hours—of the quorum sensing system that controls luminescence. Initial con-

ditions for these simulations are listed in table 4.10—for trials 1, 2, and 3. These

initial conditions are configured in such a way that all species concentrations are

identical, with the exception that the concentration for CRP (the factor), which

remains constant, but varies from trial to trial. For trials 1–3, CRP is assigned the

initial concentrations of 0.7, 20, and 300 nM (nanomolar), respectively.
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Figure 4.6. The top figure represents time evolution of scaled population for
V. fischeri: Vb = 1.5e − 15 liter and V = 1.0e-3 liter. The bottom
figure represents time evolution of LuxA/B. The concentration of this
protein directly correlates to the intensity of cell luminescence.
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The following qualitative characteristics are common for all three simulations,

with varying CRP concentrations. At low population densities, there is a short

adjustment period (i.e., rapid increase) for proteins, complex Co, and Ai. The con-

centrations for these species remain nearly constant from 3 to 12 hours. Since the

population density is low, luminescence is low (indicated by LuxA/B). Shortly after

12 hours (for trials 2 and 3), another adjustment is initiated, where there is another

rapid increase in proteins, Co, and autoinducer Ai. After 20 hours, the concentration

for these species approach nearly constant levels. Luminescence in the cell is at its

maximum level.

Figures 4.7, 4.8, and 4.9 also illustrate how varying concentrations of CRP (i.e.,

CRP at low, moderate, and high concentrations) possibly affect luminescence in V.

fischeri. CRP binds to the lux box and provides positive feedback to OL (luxR) and

negative feedback to OR (luxICDABEG). The concentration of CRP determines the

degree of positive and negative feedback asserted to OL and OR.

When the concentration of CRP equals 20, increasing Co provides positive

feedback to OR. This causes the production rate of LuxI and Ai to increase. As the

concentration levels of these species increase, the total luminescence increases (i.e.,

LuxA/B increases). In this case, cell luminescence is high. Figure 4.8 illustrates this

behavior.

When the concentration of CRP equals 300, a high degree of negative feed-

back is applied to OR. This negative feedback delays the synthesis of LuxI and Ai.

Therefore, overall luminescence is moderate. Figure 4.9 illustrates this behavior.

When the concentration of CRP equals 0.7, positive feedback to OL is low. As

a result, a significantly lower concentration of LuxR is initially produced. Conse-

quently, the concentration level of Co is not sufficient to activate OR. In this case,

cell luminescence is extremely low. Figure 4.7 illustrates this behavior.
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Figure 4.7. This illustrates a numerical simulation (log-linear plot) for LuxR,
LuxA/B, LuxI, Ai, and Co in the bioluminescence control model for
V. fischeri. In this case, CRP = 0.7 (trial 1).
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Figure 4.8. This illustrates a numerical simulation (log-linear plot) for LuxR,
LuxA/B, LuxI, Ai, and Co in the bioluminescence control model for
V. fischeri. In this case, CRP = 20 (trial 2).
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Figure 4.9. This illustrates a numerical simulation (log-linear plot) for LuxR,
LuxA/B, LuxI, Ai, and Co in the for V. fischeri. In this case, CRP =
300 (trial 3).
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4.5.2 Comparison Results. I compare simulation results—for the biolu-

minescence control model—generated by MATLAB and JigCell. The metrics are

absolute error and relative error. All species concentrations are in nano molar con-

centrations (nM), except for population. The unit of measure for population is the

scaled volume of bacteria (population×vb/V , where vb = 1.5E-15 liter and V = 1.0E-3

liter [4:4–5]). A set of six simulations are performed on JigCell and MATLAB.

Initial concentrations for all species—separated by trial—are listed in table

4.10. The initial concentrations for each trial are identical, with the exception of

CRP. For trials one and four, the concentration of CRP is 0.7. For trials two and

five, the concentration of CRP is 20. For trials three and six, the concentration of

CRP is 300.

Simulations results performed on the time interval—[0 5] hours—are listed in

tables 4.11, 4.12, and 4.13. Simulation results performed on the time interval—[20

25] hours—are listed in tables 4.14, 4.15, and 4.16. With the exception of trial 5

(listed in table 4.15), the largest absolute error between MATLAB and JigCell occurs

for species LuxR. During trial 5, the largest absolute error occurs for species Ai. This

is not surprising because Ai is significantly larger than all other species.

On the other hand, the relative error is minimal for all trials. The maximum

relative error occurs during trials 1 and 3 for scaled population density. Nonetheless,

the maximum error is only 0.559%.

4.6 Glycolytic Pathway

4.6.1 General Results. As discussed in section 3.7.4, each of the 10 reac-

tions or steps in the glycolytic pathway (illustrated in figure A) is catalyzed by a

specific enzyme. In order for a reaction to take place at each step, a specified enzyme

must be present to interact with the substrate. If the required enzyme is absent at a

certain step, that reaction is not able to take place. I incorporate this idea into the

design of experimental trials conducted in this section.
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Table 4.10. Initial Conditions (V. fischeri)

Species Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6
population 1.5E-07 1.5E-07 1.5E-07 0.00149 0.00149 0.00149

luxR 0 0 0 0.98132 0.37028 2.58986
luxICDABEG 0 0 0 0.00063 4.81455 0.39765

LuxR 0 0 0 869.16824 265.33072 4241.58358
LuxI 0 0 0 0.54098 4242.81014 285.69095

LuxA/B 0 0 0 0.54098 4242.81014 285.69095
LuxC/D/E 0 0 0 0.09353 720.96687 58.80923

Ai 6 6 6 1.38029 3957.78272 104.74681
C0 0 0 0 0.11666 102.06949 43.03559

CRP 0.7 20 300 0.7 20 300

Table 4.11. Trial 1 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 4.80855E-06 4.78166E-06 0.00000 0.00559

luxR 0.97021 0.97021 0.00000 0.00000
luxICDABEG 0.00127 0.00127 0.00000 0.00000

LuxR 515.95140 515.93890 0.01250 0.00002
LuxI 0.75306 0.75297 0.00009 0.00012

LuxA/B 0.75306 0.75297 0.00009 0.00012
LuxC/D/E 0.17575 0.17577 0.00002 0.00011

Ai 3.64003 3.64009 0.00006 0.00002
C0 0.17985 0.17985 0.00000 0.00000

Table 4.12. Trial 2 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 4.80875E-06 4.78166E-06 0.00000 0.00563

luxR 9.80402 9.80402 0.00000 0.00000
luxICDABEG 0.04130 0.04130 0.00000 0.00000

LuxR 5208.60414 5208.48680 0.11734 0.00002
LuxI 24.55205 24.54652 0.00553 0.00023

LuxA/B 24.55205 24.54652 0.00553 0.00023
LuxC/D/E 5.71036 5.7101 0.00022 0.00004

Ai 3.66911 3.66896 0.00015 0.00004
C0 1.82981 1.82969 0.00012 0.00007
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Table 4.13. Trial 3 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 4.81013E-06 4.78166E-06 0.00000 0.00592

luxR 14.10938 14.10937 0.00001 0.00000
luxICDABEG 0.00820 0.00820 0.00000 0.00000

LuxR 7488.10943 7487.93700 0.17243 0.00002
LuxI 4.87340 4.87261 0.00079 0.00016

LuxA/B 4.87340 4.87261 0.00079 0.00016
LuxC/D/E 1.13434 1.13441 0.00007 0.00006

Ai 3.64504 3.64506 0.00002 0.00001
C0 2.61356 2.61350 0.00006 0.00002

Table 4.14. Trial 4 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 0.00150 0.00150 0.00000 0.00000

luxR 0.98142 0.98142 0.00000 0.00000
luxICDABEG 0.00070 0.00070 0.00000 0.00000

LuxR 882.73431 882.72736 0.00695 0.00001
LuxI 0.61346 0.61345 0.00001 0.00002

LuxA/B 0.61346 0.61345 0.00001 0.00002
LuxC/D/E 0.10408 0.10408 0.00000 0.00000

Ai 1.45469 1.45469 0.00000 0.00000
C0 0.12489 0.12489 0.00000 0.00000

Table 4.15. Trial 5 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 0.00150 0.00150 0.00000 0.00000

luxR 0.30227 0.30224 0.00003 0.00010
luxICDABEG 4.84908 4.84909 0.00001 0.00000

LuxR 166.69868 166.70787 0.00919 0.00006
LuxI 4358.01106 4357.98780 0.02326 0.00001

LuxA/B 4358.01106 4357.98780 0.02326 0.00001
LuxC/D/E 727.25376 727.25336 0.00040 0.00000

Ai 6989.94902 6989.86470 0.08432 0.00001
C0 113.33358 113.34041 0.00683 0.00006
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Table 4.16. Trial 6 Simulation Results (V. fischeri)

Species MATLAB JigCell absolute error relative error
population 0.00150 0.00150 0.00000 0.00000

luxR 1.45400 1.45381 0.00019 0.00013
luxICDABEG 0.43556 0.43556 0.00000 0.00000

LuxR 1378.32756 1378.45730 0.12974 0.00009
LuxI 387.46805 387.46323 0.00482 0.00001

LuxA/B 387.46805 387.46323 0.00482 0.00001
LuxC/D/E 65.24738 65.24728 0.00010 0.00000

Ai 447.74904 447.74402 0.00502 0.00001
C0 59.98567 59.99049 0.00482 0.00008

In order to present nontrivial results, pyruvate kinase (y35) is ‘removed’ in

order to nullify reaction ten. If reaction ten—a one-way reaction—is permitted to

take place, the concentrations of all species located upstream from reaction ten would

be eventually depleted. Since intermediate reactions five, six, seven, and nine are

two-way reactions, it is expected that those species will approach non-zero values as

the system evolves towards a critical point. Therefore, I implement a computational

model that contains the first 34 equations listed in equation 3.68.

As discussed in section 4.1, the computational cost to obtain accurate simula-

tion results from MATLAB is substantially less than from BioCharon and JigCell.

Therefore, simulations for glycolytic pathway are performed only using MATLAB.

BioCharon generates the same system of ODEs (computational model) listed

as equation 3.68. However, JigCell generates a reduced computational model, con-

sisting of 16 dependent species and 18 independent species (state variables). This

occurs because JigCell automatically identifies conservation relations among species.

Conservation relations automatically generated by JigCell are listed in equation 4.1

(Ti is a constant determined by the initial conditions of corresponding species).

Figure 4.10 illustrates the conservation relation listed in equation 4.1 (expres-

sion in which y13 is the dependent variable). The concentrations of the relevant

species at each time step are obtained by performing a simulation of the glycolytic
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Figure 4.10. This illustrates the conservation relation identified by JigCell, listed
in equation 4.1. This is the expression in which y13 is the dependent
variable. In this case the algebraic expression of evolving species
remains constant at -2000 (identified as T13 in table 4.18).

pathway, using initial concentrations listed in table 4.17. This plot validates that

JigCell correctly identified a relatively complicated conservation relation, consist-

ing of 16 species. In this case, the conservation constant among those species is

T13 = −2000. All relation constants are listed in table 4.18. The values for these

constants are derived from the initial species concentrations substituted into the

appropriate expression in equation 4.1.

y1 = (T9 + 0.5 ∗ y2 + 0.5 ∗ y5 + 0.5 ∗ y8 − 0.5 ∗ y10 − 0.5 ∗ y28−
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0.5 ∗ y30 + 0.5 ∗ y32 − 0.5 ∗ y34 − 0.5 ∗ y7 − 0.5 ∗ y31)

y6 = (T16 − y5)

y9 = (T10 − y8)

y12 = (T4 − y11)

y13 = (T13 − 0.5 ∗ y2 + 0.5 ∗ y5 + 0.5 ∗ y8 − 0.5 ∗ y10 − y12 + y14−
0.5 ∗ y16 + 0.5 ∗ y18 + 0.5 ∗ y20 + 0.5 ∗ y28 + 0.5 ∗ y16+

0.5 ∗ y16 + 0.5 ∗ y34 − 0.5 ∗ y7 + 0.5 ∗ y31 − 0.5 ∗ y17)

y15 = (T5 − y14)

y19 = (T6 − y18)

y21 = (T15 + y20)

y22 = (T1 − y20 + y23)

y24 = (T7 − y23)

y25 = (T11 + y2 − y5 + y3 + y12 − y20 + y23−
y28 − y30 + y32 − y34 − y31)

y26 = (T2 + y2 − y5 + y3 + y12)

y27 = (T8 − y2 + y5 − y3 − y12)

y30 = (T14 − y29)

y32 = −(T3 + y2 + y3 − y4)

y33 = (T12 − y32) (4.1)

4.6.2 Comparison Results. I compare simulation results between the com-

putational model generated by JigCell (consisting of 18 state variables) and the

computational model listed as equation 3.68 (consisting of 34 state variables). Ta-

ble 4.17 lists initial species concentrations for simulation results listed in table 4.19.

Simulation results from the full and reduced models are listed in columns one and

two of table 4.19. Absolute error is listed in column three. The unit of measure for
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species concentrations can be in any consistent unit. The simulation time is 1000

seconds.

The maximum absolute error occurs for species y2 (listed in table 4.19). This

error is negligible, because the error is just 0.0003%. Therefore, the reduced model

is validated by MATLAB results.

Table 4.17. Initial Conditions (Glycolytic Pathway)

Species [Value] Species [Value] Species [Value] Species [Value]
y1 500 y2 1000 y3 1000 y4 1000
y5 1000 y6 0.00001 y7 0.00001 y8 1000
y9 0.00001 y10 0.00001 y11 1000 y12 0.00001
y13 0.00001 y14 1000 y15 0.00001 y16 0.00001
y17 0.00001 y18 1000 y19 0.00001 y20 1000
y21 1000 y22 0.00001 y23 1000 y24 0.00001
y25 0.00001 y26 1000 y27 0.00001 y28 0.00001
y29 1000 y30 0.00001 y31 0.00001 y32 1000
y33 0.00001 y34 0.00001

4.7 Yeast Cell Cycle

4.7.1 General Results. As discussed in section 3.7.3, the cell division

cycle of budding yeast is characterized by the system alternating between two self-

maintaining states—State1 and State2. CDK activity (combined activities of Clb’s

and Cln’s) is low in State1, while their enemies—Sic1 and Hct1 are high. Therefore,

concentration levels of the Clb’s and Cln’s remain mostly low during State1. On

the other hand, CDK activity is high in State2. As a result, the concentrations of

the Clb’s and Cln’s are high, where their enemies’ concentrations remain mostly low

during State2.

Control is transferred from State1 to State2 (and vice versa) by means of two

transitions—Start and Finish. In the molecular control model of CDK activities

(figure 3.5), Start is initiated when the concentration of species ORI reaches a con-

centration of 1 unit (approached from below) [1:374]. Finish is initiated when species
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Table 4.18. Conservation Relation Constants (Glycolytic Pathway)

Constant Value
T1 0.00001
T2 -0.00001
T3 -2000
T4 1000.000010
T5 1000.000010
T6 1000.000010
T7 1000.00001
T8 1000.000020
T9 -1499.999970
T10 1000.000010
T11 -1999.999960
T12 1000.000010
T13 -1999.999980
T14 1000.000010
T15 0
T16 1000.000010

SPN reaches a concentration of 1 unit (approached from below) [1:374]. Simulation

results, generated by MATLAB from equations 3.66 and 3.67, depict important char-

acteristics of molecular interaction in the budding yeast cell division cycle. These

results are illustrated in figures 4.11, 4.12, and 4.13.

Activities of Clb2T, Clb5T, and Cln2 are illustrated in figure 4.11. Collectively,

the activities of these species are low during State1 and high during State2. Activities

of Sic1T and Hic1T (enemies of CDKs) are illustrated in figure 4.12. Their activities

are opposite from the CDKs. Figure 4.13 illustrates cell division. Cell division occurs

around 380 minutes. Rules for cell division are listed in the caption of figure 4.13.

4.7.2 Comparison Results. In the previous sections, initial species concen-

trations are perturbed during each trial. In this section, the reaction rate constant,

kd,20, is perturbed from a value of 0.080 to 0.092 at 0.006 increments. This rate

constant is listed in equation 3.66 (in the differential equation defining the rate of

change for species Cdc20). Initial species concentrations and other model parame-
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Table 4.19. Comparison Results (Glycolytic Pathway)

Species Full Model Reduced Model Absolute Error
1.0E+003 * 1.0E+003 * 1.0E-005 *

y1 0.00000000000000 0.00000000000001 0.00000112688929
y2 0.32719541332651 0.32719541606607 0.27395537358643
y3 1.01346976779097 1.01346976794359 0.01526191226731
y4 0.01673690254825 0.01673690290803 0.03597766031760
y5 1.00000001000000 1.00000000999480 0.00052004907047
y6 0.00000000000000 0.00000000000520 0.00052003770179
y7 0.00000000000000 0.00000000000001 0.00000067220655
y8 1.00000001000000 1.00000000999543 0.00045685055738
y9 0.00000000000000 0.00000000000457 0.00045682782002
y10 0.00000000000000 0.00000000000000 0.00000000010772
y11 1.00000001000000 1.00000000999601 0.00039946144170
y12 0.00000000000000 0.00000000000399 0.00039934775486
y13 0.00000000013785 0.00000000013526 0.00025951412943
y14 0.99999959644638 0.99999959644794 0.00015545538190
y15 0.00000041355362 0.00000041355206 0.00015550629033
y16 0.00000334154936 0.00000334154891 0.00004481718911
y17 0.00000037128326 0.00000037128321 0.00000510898911
y18 0.99888739948217 0.99888739963078 0.01486117753302
y19 0.00111261051783 0.00111261036922 0.01486108365256
y20 0.00111698053804 0.00111698060354 0.00654993137505
y21 0.00111698053804 0.00111698060354 0.00654993135285
y22 0.98653033025512 0.98653033007102 0.01840957111199
y23 0.98764730047205 0.98764730067456 0.02025145704465
y24 0.01235270952795 0.01235270932544 0.02025145473539
y25 0.00000003803393 0.00000003803361 0.00003179414129
y26 0.34066516520734 0.34066516401886 0.11884819173247
y27 0.65933484479266 0.65933484598114 0.11884818604813
y28 0.00000106027192 0.00000106027190 0.00000260618866
y29 0.99682927970533 0.99682927978787 0.00825422148409
y30 0.00317073029467 0.00317073021213 0.00825437611596
y31 0.00000954244732 0.00000954244706 0.00002542509883
y32 0.67607171776758 0.67607171889837 0.11307893146295
y33 0.32392829223242 0.32392829110163 0.11307886893519
y34 0.00008588202584 0.00008588202355 0.00022895867979
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Figure 4.11. This depicts the activitiy levels of Clb’s and Cln’s. During State1,
the activity of both cyclins are low. However, their activity is high
during State2.
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Figure 4.12. This depicts the activity levels of Sic1 and HCT1—enemies of Clb’s.
Their activity levels are opposite of the Clb’s and Cln’s, displayed in
figure 4.11.
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Figure 4.13. Cell division occurs around 380 minutes. Cell division is initiated
when the concentration of Clb2 drops below a threshold of 0.3 con-
centration units. At cell division, the mass is divided between the
mother and daughter cell as follows:
(mass of daughter cell at birth) = 0.433 × (mass at cell separation)
and (mass of mother cell at birth) = (1 - 0.433) × (mass at cell
separation) [8:374].
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ters remain constant for all three trials (values are listed in appendix A—xpp output

file).

The metrics for comparison results are absolute error and sum of absolute error

(between MATLAB and JigCell simulation results). “All concentration variables are

scaled so that their maximal values are pure numbers of order 1 [1:386].” The

sampled time interval is [280 480] minutes.

Tables 4.20 and 4.21 list the percentage of change caused by perturbing kd,20.

In both tables listing simulation results generated by JigCell and MATLAB, respec-

tively, Sic1T is the most sensitive parameter. Sic1T is decreased -18.1% on JigCell

and decreased -17.1% in MATLAB.

Comparison results (between JigCell and MATLAB) are listed in table 4.22.

The length parameter is the interval immediately after cell division and right before

cell division occurs. For all trials, maximum absolute error occurs in Length. The

maximum sum of absolute error occurs during trial 3.

Table 4.20. MATLAB kd,20 Perturbation Results (Budding Yeast)

Name Trial 1 Trial 2 Trial 3 Overall Change
Clb2T 1.48672 1.52294 1.54121 3.7%
Clb5T 0.26888 0.26682 0.26644 -0.9%
Cln2 0.52380 0.51813 0.51442 -1.8%
Sic1T 1.40809 1.29039 1.15385 -18.1%
Hct1 0.99995 0.99995 0.99989 0.0%

Length 145.50000 144.10000 143.79830 -1.2%
kd,20 0.080 0.086 0.092 15.0%

4.8 Summary

In this chapter I perform numerical simulations for the following models: mod-

ified Brusselator, lysis-lysogeny pathway of a mutant bacteriophage, quorum sensing

system that controls luminescence in V. fischeri, a glycolytic pathway, and control

system for CDKs in budding yeast cell division cycle. I present general results
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Table 4.21. JigCell kd,20 Perturbation Results (Budding Yeast)

Name Trial 1 Trial 2 Trial 3 Overall Change
Clb2T 1.48167 1.50582 1.52887 3.2%
Clb5T 0.26897 0.26767 0.26654 -0.9%
Cln2 0.52345 0.51816 0.51367 -1.9%
SicT 1.39631 1.26793 1.15715 -17.1%
Hct1 0.99986 0.99985 0.99985 0.0%

Length 144.90000 144.90000 144.90000 0.0%
kd,20 0.080 0.086 0.092 15.0%

Table 4.22. Comparison Results (Budding Yeast)

Name Trial 1 Trial 2 Trial 3
Clb2T 0.00505 0.01712 0.01234
Clb5T 0.00009 0.00085 0.00010
Cln2 0.00035 0.00003 0.00075
SicT 0.01178 0.02246 0.00330
Hct1 0.00009 0.00010 0.00004

Length 0.60000 0.80000 1.10170
Total Error 0.61735 0.84055 1.11824

that depict important characteristics of each model. In order to perform a quasi-

performance test for BioCharon and Jigcell, I compare simulation results generated

by these software tools.

The models for V. fischeri and budding yeast are based on journal publications

(references [1], [4], [8]). I successfully duplicate the published results.
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V. Summary and Conclusion

5.1 Summary

The overall goal of this thesis was to implement mathematical models (via rate-

equation approach) for three well-documented cellular systems using BioCharon,

JigCell, and MATLAB. Each model characterizes a specific control mechanism that

synchronizes a set of intracellular processes within a genetic regulatory network. The

experience gained from implementing these models is intended to contribute to Air

Force toxicology studies for the following reason. “Mathematical models are useful

for providing a framework for integrating data and gaining insights into the static

and dynamic behavior of complex biological systems such as networks of interacting

genes [26:247].” In short, the augmentation of intracellular models into Air Force

toxicology studies has the potential to significantly improve the quality and efficiency

of the studies.

In order to achieve my overall goal, I completed the following tasks.

1. Acquired a sound understanding of the fundamentals of biochemistry and mi-

crobiology that are related to biological reaction systems.

2. Implemented computational (mathematical) models via rate-equation approach

for the following molecular systems:

• modified Brusselator

• glycolyic pathway

• lysis-lysogeny pathway of bacteriophage

• bioluminescence control in V. fischeri

• cell cycle control in budding yeast

3. Became proficient in using three software tools: BioCharon, JigCell, and MAT-

LAB.

5-1



In addition, simulation results generated by BioCharon and JigCell were compared

to simulation results generated by MATLAB to gauge the accuracy of these two trial

releases by DARPA.

5.2 Conclusion

Reaching the overall goal of this thesis has led to a number of conclusions. The

rate-equation approach is appropriate for deterministically modeling both small and

large molecular systems (e.g., the modified Brusselator and the glycolytic pathway).

There is a clear need for the use of software modeling tools that automate all or

some of the steps in the rate-equation approach. Without such tools, the modeler

easily becomes overburdened in attempting to derive a computational model from

other than a simplistic biological system.

From this thesis, the merits of BioCharon and JigCell are apparent. The

graphical approach—implemented by BioCharon—is highly intuitive and represents

the higher level of abstraction in building models. By means of a GUI, the user is

able to quickly create a reaction system by simply manipulating two main objects

(nodes and arcs). The spreadsheet approach—implemented by JigCell—is relatively

user-friendly; however, the user must enter the entire set of reaction equations to

characterize a reaction system. Both software tools allow the user to view the com-

putational model generated from user input. This is crucial in the debugging process.

The three primary cellular models—lysis-lysogeny pathway, bioluminescence

control, and cell cycle control— are outstanding learning aids in comprehending

gene expression (when a gene is active during transcription). Gene expression is

represented at various levels of detail in each model. For the lysis-lysogeny pathway

model, transcription and translation are combined into equation 3.41. The left hand

side of equation 3.41 depicts transcription of mRNA transcripts, and the right hand

side depicts translation of mRNA transcripts into n protein molecules. For the

bioluminescence control model, the rates for synthesis of mRNA transcripts from
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the left and right operons (OL and OR) are depicted by ẋ1 and ẋ2 in equation

3.62. Rates for translation of messenger RNA’s into proteins are depicted by ẋ3,

ẋ4, ẋ5, and ẋ6 in the same equation. For the cell cycle control model, transcription

and translation rates are collectively modulated by transcription factors (e.g., the

activation level of transcription factor SBF ehances the synthesis of Cln2 in figure

3.5).

Gene expression is direcly relevant to toxicology studies. “Almost without

exception, gene expression is altered during toxicity, as either a direct or indirect

result of toxicant exposure. The challenge facing toxicologists is to define, under a

given set of experimental conditions, the characteristic and specific pattern of gene

expression elicited by a given toxicant [21:153].” Since gene expression can be char-

acterized by mathematical models, specific models can be used to give predictions

on how toxicant exposures affect cells.

5.3 Recommendations

Further research into the construction and evaluation of intracellular models

would benefit Air Force toxicology studies. In gaining the necessary experience, five

reaction systems were thoroughly studied and implemented. The next step could be

to construct a model that is coupled with experimental data (previously discussed

section 2.1). Such data could be freely obtained from the public domain and/or from

the Air Force.

The use of deterministic models to depict reaction systems is not always ap-

propriate. “Conventional deterministic kinetics cannot be used to predict statistics

of regulatory systems that produce probabilistic outcomes. Rather, a stochastic

kinetic analysis must be used to predict statistics of regulatory outcomes for such

stochastically regulated systems [3:1633].” Therefore, it is worthwhile to thoroughly

study and implement mathematical models using the stochastic kinetics approach

(previously discussed in section 2.8).
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Even though BioCharon and JigCell have user-friendly front ends for modeling

reaction systems, their respective ODE solvers need improvement. The computa-

tional cost for both tools was larger than that for MATLAB when attempts were

made to implement models for the bioluminescence control and glycolytic pathway

models. Once an ODE solver that is comparable to MATLAB’s accuracy and effi-

ciency is incorporated into both software packages, both will become very desirable

tools for modeling and analyzing deterministic systems.
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Appendix A. JigCell Model Builder Entries

In this section, I present my entries for each model spreadsheet (using JigCell

Model Builder) and the corresponding output files (full xpp) that characterize the

following models: lysis-lysogeny pathway, quorum sensing system, and a control

system for the budding yeast cell cycle. The spreadsheets are illustrated in the

following figures.

Figure A.1: lysis-lysogeny pathway

Figure A.2: quorum sensing system

Figure A.3: control system for budding yeast cell cycle

Each output file is listed immediately after its corresponding model spreadsheet.

I only list entries for the Reaction and Modifiers and Contants columns from

each spreadsheet. The user enters the set of reaction equations in the Reaction

column. In the Modifiers and Contants column, the user defines each rate law.

An important aspect of user interaction with the model spreadsheet is that

the user cannot explicitly define a reversible reaction. Consequently, the user must

divide a reversible reaction into two separate, one-way reactions. For example, the

following two reaction equations are the entries for D+X2

k2
⇀↽

k−2 DX2 (equation 3.38).

1. D + X2 -> DX2

2. DX2 -> D + X2

Entries (user input is underlined) in the Modifiers and Contants column for reactions

1 and 2, respectively, are Kf = k2 and Kf = k−2. The user must assign numerical

values to k2 and k−2 in a separate spreadsheet (the Constants spreadsheet). Detailed

information about JigCell Model Builder can be found in [30].
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Figure A.1. These are my spreadsheet entries that characterize the lysis-lysogeny
pathway (previously discussed in section 3.7.1).

A-2

 1 

Reaction HlDdifienandConitant! 
-»( K^O,^ 

2 iY.-m K=1 
3 miY. K=l 
4 D+X?->DX? K=l 
5 DX?->D+X? K^ 
6 D+X?->DXS2 K=l 
-r 

DXS?->D+X? Kt=l 
8 m \ mmti Ki= 
9 mmm^ti Ki= 
0 m\v-)m\Mt Kf^O.B 
. X->A Kf=6 



*******************OUTPUT FILE (lysis-lysogeny pathway)******************

# C:\appendix\lysis_lysogeny.odef Generated by JigCell

#Functions

#Dependent species

DX2X2=(T1 - DX2 - DXS2 - D)/(-(-1.0))

P=(T2)

#Species

#Independent Species

dX2/dt= - 1*X2 - 1*D*X2 - 1*D*X2 - 1*DX2*X2 + 1*X*X + 1*DX2 + 1*DXS2 + 1*DX2X2

dDX2/dt= - 1*DX2 - 1*DX2*X2 - .8*DX2*P + 1*D*X2 + 1*DX2X2 + .8*DX2*P

dD/dt= - 1*D*X2 - 1*D*X2 + 1*DX2 + 1*DXS2

dDXS2/dt= - 1*DXS2 + 1*D*X2

dX/dt= - 2*1*X*X - 6*X + .4 + 2*1*X2 + 4*.8*DX2*P

dA/dt=6*X

#Globals

#Initial Conditions

init X2=.78934, DX2=1.23268, D=1.56164, DXS2=1.23268

init X=.88845, A=0

#Constants

param T2=1.25, T1=5

#Plot dependent species

aux DX2X2=DX2X2

aux P=P

done

*******************OUTPUT FILE (lysis-lysogeny pathway)*********************
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Figure A.2. These are my spreadsheet entries that characterize the quorum sensing
system that controls luminescence in V. fischeri (previously discussed
in section 3.7.2). Functions are defined in lines 1, 2, and 3 by corre-
sponding algebraic expressions listed in the Modifiers and Constants
column.

A-4

Reaclion Modiliers and Constants 
1 s« ArA3/(A2-A3-fA ]"A3) 
2 OpSu^ l-(ArA3y(A2"A3+ArA3)) 
3 kG kgl*tl-(A]/xOmaK)) 
4 ->population K^kG(p opul ati on) "p opulalion 
5 ->luxR K^Tc'(OpS]g(C0, KcO, VcO-^SisCCEP. KCRP, VCRP)+b') 
6 hntR-> K^l/HKNA 
7 ImiR-> K^kG(p opul ahon) 
S ->luxICDAEEG K^Tc*(S]gCCO, KcO, VcO^*OpSiflCCRP. KCRP, VCRP)+b') 
9 luxICDABEG-> K^l/HKNA 

10 luzICDABEG-> K^kG(p opul ati on) 
11 ->LUXB. K^T]*luxR 
12 LTnCR-> K^l/Hsp 
13 LUXR-> K^kG(p opulation) 
14 LUXR+Ai->CO K^-rAIR 
15 CO->LUXR+A: K^^CO 
16 ->LUXI Kf=n=ToxICDABEG 
17 UJXl-> K^l/Hsp 
IS LUXl-> K^kG(p opiJation) 
19 ->LUXAB K^T]*IUKICDABEG 

20 LUXAB-> K^l/Hsp 
21 LUXAB-> K^kGfp opulation) 
22 ->LUXCDE K^T]*luxlCDABEG 
23 LUXCDE-> K^l/Hup 
24 LUXCDE-> K^kG(p opiJaCion) 
25 oAi K^-popii]3l]on"(rAII*LUXI - 

*»:»: rAIP^'^A:-l,UXR-H-C0*C0)4-(rAIR1,lDCR'^Ai - rCO*CO) 
26 Ai-> K^l/HAl 
27 C0-> K^l/Hsp 
2S C0-> K^kG(p opulation) 



**********************OUTPUT FILE (V. fischeri)***************************

# C:\appendix\vfish.odef Generated by JigCell

#Functions

Sig(A1,A2,A3)=A1^A3/(A2^A3+A1^A3)

OpSig(A1,A2,A3)=1-(A1^A3/(A2^A3+A1^A3))

kG(A1)=kg1*(1-(A1/x0max))

#Dependent species

#Species

#Independent Species

dluxR_18/dt= - 1/HRNA*luxR_18 - kG(popula_26)*luxR_18 +

(Tc*(OpSig(C0, Kc0, Vc0)*Sig(CRP, KCRP, VCRP)+b))

dLUXR_19/dt= - 1/Hsp*LUXR_19 - kG(popula_26)*LUXR_19 - rAIR*LUXR_19*Ai +

Tl*luxR_18 + rC0*C0

dC0/dt= - rC0*C0 - 1/Hsp*C0 - kG(popula_26)*C0 + rAIR*LUXR_19*Ai

dLUXAB/dt= - 1/Hsp*LUXAB - kG(popula_26)*LUXAB + Tl*luxICD_25

dAi/dt= - rAIR*LUXR_19*Ai - 1/HAI*Ai + rC0*C0 +

(popula_26*(rAII*LUXI-rAIR*Ai*LUXR_19+rC0*C0)+

(rAIR*LUXR_19*Ai - rC0*C0))

dLUXCDE/dt= - 1/Hup*LUXCDE - kG(popula_26)*LUXCDE + Tl*luxICD_25

dLUXI/dt= - 1/Hsp*LUXI - kG(popula_26)*LUXI + Tl*luxICD_25

dluxICD_25/dt= - 1/HRNA*luxICD_25 - kG(popula_26)*luxICD_25 +

(Tc*(Sig(C0, Kc0, Vc0)*OpSig(CRP, KCRP, VCRP)+b))

dpopula_26/dt=kG(popula_26)*popula_26

#Globals

#Initial Conditions

init luxR_18=0, LUXR_19=0, C0=0, LUXAB=0

init Ai=6, LUXCDE=0, LUXI=0, luxICD_25=0

init popula_26=.00000015
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#Constants

param Kc0=20, CRP=10, VCRP=1, HRNA=60

param Hsp=3600, rC0=.01, Tc=0.25, KCRP=10

param Tl=0.25, b=.00001, rAIR=.000001, Vc0=2

param kg1=.0001925, x0max=.0015, Hup=600, rAII=.05

param HAI=36000

#Plot dependent species

done

**********************OUTPUT FILE (V. fischeri)*******************************
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Figure A.3. These are my spreadsheet entries that characterize the budding yeast
cell cycle (previously discussed in section 3.7.3). The single function
is defined in line 41. The remaining entries define state variables.

A-7

Reaction Modifiers ^nd Constants 
1 ->Timerl Kl=l 
2 '>Timer2 Kl=(l/12) 
3 '=Alpha KfcO 
4 -^Bela K^O 
5 -^CLN2 Kfc(k^n2'-'ksn2"'3BFrMA33 
6 CLN2-> Kfckdn2 
7 ->CLB2T kfc(k3b2'*k3b2"'MCMl )-MA33 
S CLB2T-= KfcVdb2 
9 Vdb2 kdb2"(HCT1T-HCT1)*kdb2"'HCT1*kdb2"''CDC2Q 

10 ->CLB5T Kl^(k^b5'-'k^b5'-MBFrMASS 
n CLB5T-> Kl^Vdb5 
\1 vab5 kdb5'-Hkdb5''CDC20 
13 CLN3S CLN3PiWX'(Dn3^ASS)/(Jn3 ^ Dn3"MASS) 
14->SIC1T Ktks:l'^ks:l'-SWI5 
15 SIClT-= Ki=(kdlcl*cyd2cl/(Jd2cl ^SICIT))) 
16 UC2 Kl^kasb2*(CLB2T-C2nSlClT'(C2*C5)) 
17 C2-> |K^(kdib2*Vdb2*kdUl*(Vd2cl/(Jd2cl*3lClT))) 
13 -=C5 Kfcka^b5*(CLB5T-C5n3lClT-(C2*C5)) 
13 C5-= K^(kdib5*Vdb5^kdlcl^0/d2cl/(Jd2cl^3IClT))) 
20 -^CDC20T k;fc(k320'^k320"'(CLB2T-C2)) 
21 CDC20T-= Ktkd20 
22 -=CDC2Q Ktka20-(CDC20T-CDC2Q) 
23 CDC20-> Kt(Alph3^'i20*Be[3'((-9 9/12)"rimerl ^1 Q)^kd2Q) 
24 ->Vi20 KtO 
25 '>HCT1 Kl^((katl'-katl'XDC20r(HCTlT'HCTl))/(Jatl^HCTlT'HCTT) 
25 HCT1'> kl=l,Ml=Vitl,Jl=Jitl 
27 Vltl kill ''kill "^(CLN33'eitl n2'CLN2'eitl b5'CLB5'eitl b2'CLB2) 
29 Vasbf kasbnCLN2*esbfn3'(CLN33*BCK2)*esbfb5'CLB5) 
23 SBF G(yasbf,kisbr*kisbrcLB2,Jasbf,Jisbf) 
30 MBF G (Va s bf, ki s bf* ki s bfC LB 2 ,J 3 s br,J 1 s bf) 
31 MCMl G(kamcm'CLB2,kimcm,Jamcm,Jimcm) 
32 Vd2cl kd2cr(ecl n3-CLN33^ecl k2-BCK2^CLN2^ecl b5-CLB5^ecl b2-CLB2) 
a -=ORI kfck30ri'((CLB5T-C5)^eorib2'(CLB2T-C2)) 
34 ORI-> Kfckdon 
35 -=BUD Ktk5bud-(CLN2*CLN3S*ebudb5-(CLB5T-C5» 
36 BUD-' Ktkdbud 
37 ->SPN Kl^k550rr((CLB2T-C2)/(J^pn+(CLB2T-C2))) 
33 SPN'> Kl^kdspn 
39 '>MASS Kfcmu'MASS 
40 BCK2 BCK20'MASS 
41 G (2*ArA4)/(A2'Al*ArA4M2*A3^san((A2'AlMrA4M2*A3)''2'4'(A2'AirArA4)) 
42 SWI5 G(kaswrCDC20, kiswr*kiswi"'CLB2, Jaswi, Jiswi) 
43 CLB2 CLB2T-C2 
44 CLB5 CLB5T-C5 
45 3IC1 3IC1T-(C2^C5) 



**********************OUTPUT FILE (budding yeast)***************************

# C:\appendix\yeast.odef Generated by JigCell

#Functions

G(A1,A2,A3,A4)=(2*A1*A4)/(A2-A1+A1*A4+A2*A3+

((A2-A1+A1*A4+A2*A3)^2-4*(A2-A1)*A1*A4)^.5)

#Dependent species

#Species

Vdb2=(kdb2’)*((HCT1T)-HCT1)+(kdb2’’)*HCT1+(kdb2’’’)*CDC20

aux Vdb2=Vdb2

Vdb5=(kdb5’)+(kdb5’’)*CDC20

aux Vdb5=Vdb5

CLN3S=(CLN3MAX)*((Dn3)*MASS)/((Jn3) + (Dn3)*MASS)

aux CLN3S=CLN3S

Vit1=(kit1’)+(kit1’’)*(CLN3S+(eit1n2)*CLN2+(eit1b5)*CLB5+(eit1b2)*CLB2)

aux Vit1=Vit1

Vasbf=(kasbf)*(CLN2+(esbfn3)*(CLN3S+BCK2)+(esbfb5)*CLB5)

aux Vasbf=Vasbf

SBF=G(Vasbf,(kisbf’)+(kisbf’’)*CLB2,(Jasbf),(Jisbf))

aux SBF=SBF

MBF=G(Vasbf,(kisbf’)+(kisbf’’)*CLB2,(Jasbf),(Jisbf))

aux MBF=MBF

MCM1=G((kamcm)*CLB2,(kimcm),(Jamcm),(Jimcm))

aux MCM1=MCM1

Vd2c1=(kd2c1)*((ec1n3)*CLN3S+(ec1k2)*BCK2+CLN2+(ec1b5)*CLB5+(ec1b2)*CLB2)

aux Vd2c1=Vd2c1

BCK2=(BCK20)*MASS

aux BCK2=BCK2

SWI5=G((kaswi)*CDC20, (kiswi’)+(kiswi’’)*CLB2, (Jaswi), (Jiswi))
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aux SWI5=SWI5

CLB2=CLB2T-C2

aux CLB2=CLB2

CLB5=CLB5T-C5

aux CLB5=CLB5

SIC1=SIC1T-(C2+C5)

aux SIC1=SIC1

#Independent Species

dCLB2T/dt= - Vdb2*CLB2T + ((ksb2’+ksb2’’*MCM1)*MASS)

dSIC1T/dt= - ((kd1c1+(Vd2c1/(Jd2c1 + SIC1T))))*SIC1T + (ksc1’ + ksc1’’*SWI5)

dC5/dt= - ((kdib5+Vdb5+kd1c1+(Vd2c1/(Jd2c1+SIC1T))))*C5 +

(kasb5*(CLB5T - C5)*(SIC1T -(C2+C5)))

dCDC20/dt= - ((Alpha*Vi20+Beta*((-9.9/12)*Timer1+10)+kd20))*CDC20 +

(ka20*(CDC20T-CDC20))

dHCT1/dt= (((kat1’+kat1’’*CDC20)*(HCT1T-HCT1))/(Jat1+HCT1T-HCT1)) -

(1*HCT1*Vit1)/(Jit1+HCT1)

dBUD/dt= - kdbud*BUD + (ksbud*(CLN2+CLN3S+ebudb5*(CLB5T - C5)))

dCLB5T/dt= - Vdb5*CLB5T + ((ksb5’ +ksb5’’*MBF)*MASS)

dCDC20T/dt= - kd20*CDC20T + ((ks20’+ks20’’*(CLB2T - C2)))

dORI/dt= - kdori*ORI + (ksori*((CLB5T-C5)+eorib2*(CLB2T - C2)))

dC2/dt= - ((kdib2+Vdb2+kd1c1+(Vd2c1/(Jd2c1+SIC1T))))*C2 +

(kasb2*(CLB2T - C2)*(SIC1T -(C2+C5)))

dSPN/dt= - kdspn*SPN + (ksspn*((CLB2T - C2)/(Jspn+(CLB2T - C2))))

dCLN2/dt= - kdn2*CLN2 + ((ksn2’+ksn2’’*SBF)*MASS)

dMASS/dt=mu*MASS

dVi20/dt=0

dBeta/dt=0

dTimer1/dt=1
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dTimer2/dt=(1/12)

dAlpha/dt=0

#Globals

global -1 {(CLB2T-C2) -0.3 } {MASS = f*MASS; SPN=0.0000; BUD=0.0000 }

global -1 {(CLB2T-C2+CLB5T-C5)-0.2 } {ORI=0.0000 }

global 1 {ORI-1 } {Vi20 =10; Alpha=1 }

global 1 {SPN-1 } {Alpha=0.0000000000; Beta=1; Timer1=0; Timer2=0 }

global 1 {Timer2-1 } {Beta=0.0000000000; Vi20=0.100; Alpha=1 }

#Initial Conditions

init CLB2T=.007, SIC1T=.97, C5=.03, CDC20=.0625

init HCT1=1, BUD=.065, CLB5T=.06, CDC20T=.2420

init ORI=.015625, C2=.003, SPN=.001, CLN2=.02

init MASS=.97, Vi20=0.100, Beta=0, Timer1=0

init Timer2=2, Alpha=1

#Constants

param Jd2c1=0.05, HCT1T=1, kisbf’’=6, Jisbf=0.01

param f=.433, kd20=0.08, Jasbf=0.01, kd1c1=0.01

param kisbf’=0.5, BCK20=.0027, kaswi=1, kiswi’=0.3

param kiswi’’=0.2, Jaswi=.1, Jiswi=.1, ksspn=0.08

param Jspn=0.2, kdspn=0.06, mu=0.005776, kdori=0.06

param ksbud=0.3, ebudb5=1, kdbud=0.06, kamcm=1

param kimcm=0.15, Jamcm=1, Jimcm=1, kd2c1=.3

param ec1n3=20, ec1k2=2, ec1b5=1, ec1b2=0.067

param ksori=2, eorib2=0.4, kasbf=1, esbfn3=75

param esbfb5=.5, kat1’=.04, kat1’’=2, Jat1=.05

param Jit1=.05, kit1’=0, kit1’’=.64, eit1n2=1

param eit1b5=.5, eit1b2=1, ka20=1, kdib5=0.05

param ks20’=0.005, ks20’’=0.06, kasb2=50, kdib2=0.05
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param kasb5=50, ksn2’=0, ksn2’’=.05, kdn2=0.1

param ksb2’=0.002, ksb2’’=0.05, kdb2’=0.01, kdb2’’=2

param kdb2’’’=.05, ksb5’=0.006, ksb5’’=0.02, kdb5’=0.1

param kdb5’’=0.25, CLN3MAX=0.02, Dn3=1, Jn3=6

param ksc1’=0.02, ksc1’’=0.1

#Plot dependent species

done

**********************OUTPUT FILE (budding yeast)***************************
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