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Abstract

Leaders at the United States Coast Guard' s Aircraft Repair and Service Center
(ARSC) in Elizabeth City, North Carolina recently formalized their planning and analysis
functions by adding a dedicated branch to their command structure. The Planning and
Anaysis Branch intends to apply computer modeling and simulation to study the impact
of process changes to the various Programmed Depot Maintenance (PDM) lines. This
research considers the applicability of this type of modeling and simulation, using
ARENA to study the current HH-60J PDM process. The contribution of thisresearch isa
methodology specific to ARSC needs, an analysis of methodology based on a discrete
event simulation model of PDM lines, and a specific case study demonstrating the
methodologies. The response variable of interest is average PDM process time as a
function of either in-sourcing or out-sourcing labor for a major process step. The
research includes development and evaluation of a macro-level process model using

ARENA 5.0.



A SIMULATION-BASED ANALY SIS
OF THE IMPACT OF IN-SOURCING A MAJOR PROCESS ELEMENT
ON THE COAST GUARD HH-60J DEPOT MAINTENANCE PROCESS

[. Introduction
Background

In an effort to reduce costs and improve service to its customers, leaders at the
U.S. Coast Guard’s Aircraft and Repair Service Center (ARSC) in Elizabeth City, North
Carolina have recently added a Planning and Analysis Branch. Traditionally, process
analysis and optimization were performed on an as-needed basis either by managers and
supervisors from a variety of in-house work units or by an outside contractor. The
standup of the Planning and Analysis Branch signals a high-level commitment by ARSC
to bring state of the art modeling and analysis techniques and tools into greater use for in
house decision making.

The Planning and Analysis Branch is currently considering a change to the
Programmed Depot Maintenance (PDM) process for the Coast Guard’s HH-60J search
and rescue helicopter. Vibration-induced cracks in one or more of the HH-60J smain
beams, essentialy the airframe’s structural skeleton, frequently require replacement of
the entire main beam. This has historically been done by on site at ARSC by an outside
contractor on an as- needed basis. ARSC is considering purchasing the necessary tools
and jigs and hiring additional workersto perform these repairs organically, without the

contractor.



The equipment costs associated with adding beam replacement capability are
relatively ssimple to define. However, the true benefit of adding workers requires
considering of the value of their contributions to the entire PDM process. This study
seeks to better understand how each of the two beam replacement strategies, organic or
contracted, might affect the overall performance of the PDM process.

Programmed Depot Maintenance

The Coast Guard' s aircraft maintenance program consists of three major types of
maintenance actions. Unit-level maintenance, referred to as organizational- level
maintenance, involves routine repairs and preventative maintenance performed by Coast
Guard technicians at a Coast Guard Air Station. Some unit-level repairs require
extensive back-shop work and may involve specia tools and expertise that are usually
associated with intermediate- |level maintenance.

The second type of maintenance action is mgor modification, commonly referred
to asamod. Mods include system upgrades or large-scale repairs to add capabilities or
correct deficienciesin an aircraft. Mods are sometimes performed by unit personnel, but
are more commonly performed by special maintenance teams either at ARSC or at the
Air Stations.

The third type of maintenance action, programmed depot maintenance (PDM), is
the focus of thisresearch. PDM is athorough overhaul of the aircraft, generally
consisting of the removal of all major components, inspection of the airframe and
removed components, complete reconditioning of aging parts, reassembly and repainting
of the aircraft. For al U. S. Coast Guard HH-60J helicopters, this work is performed at

ARSC. Aircraft completing PDM are restored to a like-new condition.



Programmed Depot Maintenance Cycle

PDM schedules are planned to avert aircraft failures associated with high
accumulated flight times. The probability of failure of aircraft systemsis often described
by a bathtub shaped probability distribution (Figure 1). Ebeling describes the cycleasa
piecewise function characterized initially by burn-in failures, then by random mid- life
failures and, finally, by late-life wearout failures (1997, 31). The high-incidence failures
early inthe cycle can be identified and corrected through a series of initial test flights.
The failure rate then decreases dramatically and tends to stabilize until the aircraft

accumulates enough flight time and/or system cycles to enter the region of increasing

A
Probability of
Failure

Time

failures.

Figure 1. Reliability Bathtub Curve
(Adapted from Ebeling, 1997)

An aircraft PDM avoids the steepest part of the curve which represents the aircraft
age at which failure rates increase significantly. The PDM concept assumes that a
properly overhauled aircraft will have reliability characteristics similar to new aircraft. A

PDM interval is the elapsed time between start of consecutive PDMs for a given aircraft.



By managing PDM intervals, ARSC strives to continually return each aircraft to like-new
condition, avoiding increased failure rates associated with older aircraft. For the HH-60J,
the target PDM interval isfive years. This equates to a flow rate (work in process) of 5
aircraft with a nominal process time of 146 work days, based on an assumed 245 work
days per year for the work force. A significant increase in process time would require an
increase in flow rate in order to meet the fleet-wide target PDM interval. This

relationship isillustrated by Figure 2.

PDM Interval vs. Process Time
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Figure 2. Effect of change in process time on WIP

In practice, work in process (WIP) is limited by available floor space inside
ARSC’'s PDM hangar and by operational commitments. The Coast Guard operational
concept for the HH-60J is based on afleet of 42 aircraft, 5 of which arein PDM at a
given time. Figure 3 illustrates the resulting relationship, where work in processis held

constant at five units and changesin PDM cycle times affect the PDM interval.



WIP vs. Total Process Time
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Figure 3. Effect of Total Process Time on PDM Interval

Asthese modelsillustrate, a reduction in PDM cycle time benefits ARSC
either by reducing requirements for WIP, by shortening the time between PDM cycles, or
by some combination of the two.

Problem Statement

The existing beam replacement process for Coast Guard HH-60J helicopter relies
on an outside contractor to provide labor, specia tools and assembly jigs. ARSC is
considering purchasing the necessary equipment and hiring additional workersto perform
beam replacement in-house using organic resources. An increase in the workforce may
provide additional benefits that extend beyond completion of required beam

replacements. The complexity of the PDM process makes it difficult to correctly predict



the full impact of additional structures workers. ARSC decision makers need to better
understand the effects of beam replacement labor resources on aircraft process time.
Research Questions

This research is designed to answer the following questions:

* Isan ARENA model the appropriate tool to conduct this research study?

* How well does the ARENA model represent the effects of changes in labor
resources for ARSC's HH-60J PDM line?

* Will anincrease in structures shop labor likely reduce PDM process time as
compared to having beam replacement work done by a dedicated crew of contract
workers?

*  What improvements can be made to the model or data sources to develop a better
ARENA model for future research?

Summary of Current Knowledge

The overal PDM process is well defined. Historical process times for HH-60J
PDM are available as well as a complete history of aircraft arrival and completion times.

The flow chart in Figure 4 depicts an aggregate view of the HH-60J overhaul process.
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Figure 4. Basic HH-60J PDM Process

Within ARSC’ s databases, |abor hours are charged to each PDM aircraft by work
center and type of work performed. The current categorization of labor expensesis
designed to meet ARSC’ s internal cost accounting practices. The data that align best
with the requirements for this research are macro process times and labor hours. These
labor hour data are difficult to attribute to detailed work tasks. ARSC’s emphasis on
macro-level hourly charges mean that any actual datais more appropriate for an
aggregate-level model versus a detailed, task-oriented model.

According to ARSC analysts, computer modeling is a new organic analysis tool
for examining the HH-60J PDM line. The modeling, methodology, simulation analysis
techniques, and beam-replacement focused case study in this research will be a basis for

future modeling and analysis efforts within ARSC.



Assumptions

The simulation model that serves as the primary research tool for this thesis
depicts amacro view of the PDM process. Within each macro process step, there are
actually detailed sub-processes that consume resources of time, labor and materials at
varying rates. A macro-level smulation model assumes that each discrete process step
can be aggregated into a high- level process step for modeling simplicity. Interviews with
line managers at ARSC suggest that this approach is appropriate because line supervisors
are empowered to adjust the sequence of specific tasks within an aggregate process step
to keep the overall PDM project on schedule. Without aggregating tasks, accurately
depicting all possible task sequence combinations would be difficult, and impractical, to
build, particularly since we want to model the entire PDM process, not just some piece of
the process.

Resource tracking modules within the computer model assume aggregation of
labor within each work center. This means that any task which requires labor from a
given work center can be performed by any craftsman in that work center. It also means
that modeling of labor hour divisions may not exactly match actual task requirements.
That is, atask scheduled to be performed by one person for two hours may be executed in
the ssmulation by assigning two persons for one hour each. In some cases this may give
an optimistic view of system capabilities. In practice, the manner in which craftsmen are
routinely redirected to assist fellow workers to keep project work flowing suggests that

this approach is appropriate.



Scope

This study focuses on the likely outcome of two different ARSC staffing policies
for conducting beam replacement step during PDM. The primary measure of interest is
total process time for any aircraft completing PDM. However, a mgjor objective of the
research is aso to explore how well simulation methodology in general and our specific
model serves to provide insight into the PDM process.

Thesis Overview

A literature review of simulation theory and modeling experiments provides a
precedence for computer modeling of the PDM process. A recent AFIT project by
Shyong (2002) studied the effects of inventory levels on cost and process times for depot
level repair of aturbine engine component. Shyong used the ARENA modeling tool, as
does the ARSC analysis branch. Thus, the decision to use ARENA for this project was
the practical choice.

The simulation model built is a macro model of the PDM line for H-60J
airframes. This model views the process as a single overhaul line that receives
helicopters from Coast Guard units, performs the required overhaul steps, and outputs
rebuilt aircraft. Some aircraft will require replacement of one or more main beams as a
part of the PDM process. The ssimulation model accommodates this process difference by
routing individual entities according to work required. It also collects time statistics for
each entity that passes through the process for later analysis.

Simulation theory requires two reviews of amodel: verification and validation.
Verification is areview of the computer code and process structure to confirm that the

model is constructed correctly with respect to the actual structure of the process being



modeled. It also confirms that there are no errors in the basic programming flow, syntax,
or dataentry. Validation is acommontsense review of the model to confirm that outputs
produced by the simulation match the real world (Kelton, et a, 2002: 43).

In the verification phase, AFIT experts review the ARENA model code for errors.
The logical structure of the macro model is reviewed by the ARSC sponsor to ensure that
it matches the flow of the real-world system.

Validation involves model runs using process times and induction intervals based
on historical data. Because actual labor resource requirements for each sub-process step
are not clearly defined in the data, it is impossible to completely cross-check the behavior
of all model elements against the real-world system. Validation of this model relies on a
judgment by researchers that its behavior is consistent with what is expected from the
real-world system. Because the computer model structure parallels the verified macro
model logic, validation of the computer model also includes confirming that the ARENA
model logic matches the macro model logic.

A two scenario experiment is run with the verified and validated model to predict
the effects of two different staffing policies for the beam replacement process step.
Scenario one assigns the required labor to a dedicated team of five contract workers who
work on beam replacement exclusively. Scenario two increases the ARSC structures
shop workforce by five workers, allowing them to work on other PDM tasks when not
engaged in beam replacement work. The average process times for PDM aircraft in each
scenario are compared to determine whether scenario two, organic beam replacement,

decreases average process time.

10



Analysis of results includes evaluation of the results of the process time study as
well as an assessment of the ARENA model as a suitable research tool for additiordl

studies of the PDM process.
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Il. Literature Review

I ntroduction

This literature review briefly summarizes some of the published works that
support the basic premises, methodology, and conclusions of thisresearch. It beginswith
background information on Coast Guard HH-60J helicopters. 1t then defines each of the
two measures of effectiveness: time and schedule. Next, it reviews the applicability of
various scientific approaches to evaluating depot maintenance processes. Finaly, it
considers the applicability of the selected research approach, simulation, and defines key
terms and concepts used in computer simulation.
Coast Guard HH-60J Programmed Depot Maintenance

The United States Coast Guard operates a fleet of 42 HH-60J" Jayhawk”
helicopters located at twelve Air Stations throughout the United States. These aircraft are
stationed at coastal units and are used for a variety of missions including search and
rescue, law enforcement and marine environmental safety. Coast Guard personnel
perform day-to-day maintenance at each aircraft’s base of operation, forward deployed
site, or shipboard. These maintenance actions range from minor inspections to
replacement of large subassemblies such as engines or transmissions. Generally, maor
maintenance actions and system upgrades that involve extensive disassembly of the
airframe or excessive labor are performed at ARSC in Elizabeth City, North Carolina.
ARSC planners use a master PDM schedul e to sequence the complete overhaul of each
arcraft in the fleet based on each aircraft’s time since last PDM. Generally, each

airframe returns to ARSC every five years for PDM. A maor driver of thisfive year

12



PDM interva is the airframe corrosion that develops due to the harsh Coast Guard
operating environment.

The scheduled process for completing PDM requires 128 days. This schedule
allows for repairs and upgrades to electrical, mechanical, avionics, and structural
components and systems as well as all normally required corrosion control and paint
work. Most of the work is performed in- house by ateam of coast guard active duty and
civilian craftsmen.

M easur es of Effectiveness

The primary measure of effectiveness considered in this research is process time.
Gilbride (2002) examined the PDM outsourcing decision process and found that process
time is valued by the Coast Guard and should weigh heavily in the selection of the best
source for PDM work. Thisis consistent with the expressed priorities of ARSC, the
sponsor of this research.

Process time mears task duration and is related to output rate as given by the
following formula:

1
r

pt = @

where pt is process time, and r is desired output rate. (adapted from Krajewski and

Ritzman, 2001: 470) The PDM processtime is the basis for the overhaul schedule, and
determines the length of time a given aircraft will be unavailable for operational service.
The relationship between operational availability and maintenance cycle time is described
by the formula:

MTBM

Ao = MTBM + MDT

2

13



where MTBM is the mean time between maintenance and MDT is maintenance down

time (Blanchard, 1998:127). In the PDM environment, PDM processtimeisthe MDT
used to calculate operational availability. As process time decreases, MDT decreases,
and operational availability increases.

Theory of Constraints

A popular approach to optimizing performance of a sequential processisto
identify the most constrained resource and focus improvement efforts there. The term
constrained resour ce suggests something in limited supply such as raw materials,
machine cycle rate, manpower, etc., and is commonly referred to as a bottleneck.
Throughput of the bottleneck must be improved in order to improve throughput of the
entire system. (Goldratt, 1990: 5)

Roser et a. (2001: 949) examined various approaches to identifying bottlenecks
in a process and concluded that doing so is no trivial matter. They found two prominent
techniques for analyzing processes for bottlenecks. measuring wait time before process
steps, and calculating overall utilization of the resource. 1n each case, the resource
generating the highest value is the bottleneck. They point out that this approach is
limited in that it concentrates on machine utilization and virtually ignores the effects of
other elements such as supply and demand, and human workers. They offer a more
robust model for identifying bottlenecks by considering these and other factors.
Modeling Approaches

While modeling tools for decision making are varied and many, they can each be

categorized as either prescriptive, predictive, or descriptive. Ragsdale (2002: 8) offers

14



two criteria for evaluating into which category a modd fits: form of the function f(*), and

values of independent variables:

Category
Prescriptive
Models

Predictive
Modds

Descriptive
Models

Table 1. Modeling Techniques

Form of f(*)

known,
well-defined

unknown,
ill-defined

known,
well-defined

(Ragsdale, 2002)

Values of
I ndependent

Variables
known or under
decision-maker's
Control

known or under
decision-maker's
control

unknown or
uncertain

Modeling

Techniques

Linear Programming,
Networks, Integer
Programming, Critical Path
Modeling (CPM),

Goa Programming,
Economic Order Quantity,
Nonlinear Programming

Regression Anaysis,
Time Series Analysis,
Discriminant Analysis

Simulation, Queuing,
Program Evaluation and
Review Techniques (PERT),
Inventory Models

Applying these guidelines, amodel of the PDM processis classified as a

descriptive model. The cause and effect relationships between process variables and

system outcomes are well known, and variability in process times makes the values of

independent variables uncertain. As we note from Table 1, smulation is an appropriate

tool for this type of mode.
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Vashi and Bienstock (1995: 197) focus specifically on logistics applications when
describing three popular modeling approaches: optimization, heuristics, and simulation.
They analyze pros and cons of each and encourage the potentia application of multiple
approaches to the same problem.

The first approach, optimization, prescribes a best, or optimal, combination of
values for variables over a given range to maximize the objective value of some
mathematical programming model. For a given range of values, this should prove to be
the most effective approach. However, when the exact range of values for variablesis
unknown, and the model produces some optimal solution for that solution space, that
solution may not necessarily be the optimal solution for the problem at hand. A second
limitation involves large solution spaces that can require unreasonable computer
processing times to produce a solution. In these cases, the computer program will stop its
search according to a predetermined heuristic. This limiting approach carries no
guarantee of finding the true optimal solution but may be the only viable approach when
applying optimization to complex problems such as the PDM process.

The second approach, heuristics, applies a“rule of thumb” to the decision
process. Often these heuristics are based on user experience and can often lead the
decision maker to areasonably good solution. There is, however, no guarantee that this
solution is the optimal choice. The approach is aso somewhat limited because it is based
on previous experience. It is unlikely that an innovative new solution will be found
unless the heuristic model itself provides some mechanism for generating innovations.

The third approach, simulation, was selected for use in this research. Simulation

addresses the specia requirements of a complex processes, not only by allowing for
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variability, but also by facilitating stochastic analysis. The PDM process is affected by
changes in process times, lead times, arrival times, inventory levels, etc. Computer
simulation alows researchers to model stochastic processes and to analyze the effects of
various policies, not only on the objective function, but also on each intermediate
variable, and derive probability distributions for a range of results versus asingle
predicted output value.

Related L ogistics Research in Modeling and Simulation

There are numerous examples of successful application of simulation to aspects of
the depot maintenance process. Shyong (2002) evaluated the effects of various spare
parts levels and queuing policies on process time and cost for the overhaul of the F101
LPT rotor a Tinker Air Force Base. His detailed model of both front- and back-shop
activities met verification and validation criteria and identified potential savingsin both
time and cost for this step in the overhaul process. More importantly, his research
demonstrated the value of smulation in evaluating cost and time improvement
opportunities in other engine overhaul sub-processes. (Shyong, 2002)

Mooney (1997) studied turn around time by experimenting with a model of a
single critical hydraulic control part. His model predicted process times for repair of this
component at the Naval Aviation Depot. By modeling the effects of various changes in
the process flow, he was able to identify process improvements to generate savings in
cost and process time. (Mooney, 1997)

Schuppe et a (1993) modeled the addition of two major process tasks to the C-
141 airplane PDM process. They applied simulation to predict the effects of the increase

in work tasks on existing PDM schedules and resources (people, hangar space, test
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equipment, tooling, and money). The simulation predicted that the new process steps
would result in a shortfall of production needed to meet customer requirements. The
team identified a few sub-processes as bottlenecks requiring additiona attention as likely
sources of process improvement.

Computer Simulation Concepts and M ethods

Kelton et al (2002: 8) report that simulation leads all other operations research
tools in popularity. The almost ubiquitous presence of powerful desktop computersin
business offices places the necessary computing power for simulation studies within
reach of most managers.

Early non-computerized simulations and modern analytic models were limited in
their complexity by the user’s ability to process data. This limitation was usually
addressed by generalizing the performance of elements of the model and by making
assumptions about interactions of entities and values of variables. When dealing with
complex systems such as a PDM line, these ssimplifications can render the model
ineffective. Computer models can be built as complex or as simple as necessary to
provide the necessary level of detail for the system elements being studied.

Models of large-scale systems quickly become very complex, taxing
programming resources and computer processing power. Increasesin desktop computing
power and the availability of high-level ssimulation languages now allow researchers to
experiment with large, detailed models that were previously impossible to work with.

(Law and Kelton, 2000: 2)

18



Model Verification and Validation

Verification of amodel is the process that confirms the model faithfully
represents the conceptual model (Kelton, et a 2002: 42). Thisinvolves reviewing the
logic with system experts and considering the effects of possible inputs and interaction
within model elements. A properly verified model accurately represents the system
concept that, in turn, represents the elements of the real world system under study.

Kelton, et a (2002: 43) associate validation with a comparison of simulation
results against observations of the actual process. The range of results from avalid
simulation should encompass results from the real-world process. However, many
simulations model rely on abstraction of the model for simplicity or are designed to study
the results of scenarios for which there are no real-world examples. Law and Kelton
(2000: 86) address the case where there is no existing system for comparison. They
recommend having analysts and experts review the model for correctness and

reasonableness of the model outputs.
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[11. Methodology

Introduction

This chapter discusses the research methodology. It explains the basis for
selecting simulation modeling as a research vehicle and describes the process used to
define and develop the final model. It then describes the specific functions of major
model elements, moddl logic structure, and methods used to collect and analyze output
data. It also reviews the verification and validation process that was employed.
Selection of Computer Simulation asthe Research Vehicle

A variety of tools are available to study the behavior of a system. Law and
Kelton (2002) offer adiscussion of these options and an illustration (adapted as figure 5)
that shows how these methods relate to each other and the type of system to be studied.
One decision that a researcher makes is whether to experiment withthe actual system or
to experiment with amodel of the system. For a complex system such as the Coast
Guard helicopter PDM line, experiments with the actual system are impractical due to the
long cycle times. Actual cycle times for the process vary, but considering a nominal 146
day cycle time, with five units in the PDM process, it would take over ayear to collect
dataon 10 aircraft PDM cycles. For this reason, experimentation with amodel of the

system was selected.
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/\

Experiment Experiment
with the with amodel
actual system of the system
Physical Mathematical
mode model
And WCd Simulation
solution

Figure 5. Ways to study a system
Adapted from Law & Kelton (2002: 4)

Among modeling options are physica models and mathematical models.
Physical models generally employ some type of scale model to examine the effects of
changes in the physical system components. In this study, the variables of interest focus
more on event scheduling than on the physical plant layout. For thisreason, a
mathematical model is best suited to representing system behavior.

Within the category of mathematical models are analytical solutions and
simulation. The former approach requires a complete understanding of the exact
relationships between processes and functions that comprise the system. It also requires
that the system be simple enough to allow researchers to devel op accurate mathematical
formulae to describe the interaction of system elements and calculate the value of all

output variables of interest. Stochastic process techniques offer a viable option.
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However, complexity of the PDM process and the complex interactions between system
elements over time seemed to indicate that simulation is the best approach to system
modeling.
Conducting a Simulation Study

Researchers have applied dlightly different procedures for developing and
conducting simulation studies. Shyong (2002:29) based his design and analysis process
on the models presented by both Montgomery (1991:9) and Altiok and Melamed (2001
6), resulting in a proces that is uniquely adapted to simulation of the details of a specific
element of the PDM process, specifically the repair of the low pressure turbine
component of the F101 turbine engine. Law and Kelton (2002:84) offer a model which
follows the same general flow but which includes a feedback path that suggests
reviewing previous process steps after verification and validation. This research follows

Law and Kelton’s model (figure 6).

22



Formulate problem
and plan the study

|1

Collect data and
define a model

Conceptual model
valid?

Yes

Construct a computer
Program to verify

v

Make pilot runs

Programmed model
valid?

Yes

Design experiments

v

Make production runs

v

Analyze output data

v

Document, present,
and use results

Figure 6. Steps in a Simulation Study
(Law and Kelton: 2000:84)

Formulating the Problem and Planning the Study

The objective of this simulation study is to consider the possible effects of beam
replacement staffing and scheduling policies on the overall process flow time for HH-60J
PDM. The basic process model will be modified to create two models, each representing

a staffing strategy.
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The first model, scenario one, simulates the current policy of bringing in ateam of
contracted technicians who work exclusively on beam replacement for those aircraft
requiring thiswork. In ARENA, the resource for this work is Beam Contractor.

The second model, scenario two, adds to the in- house team of structures
technicians who can work on any process tasks requiring structures workers. Beam

replacement work takes priority over other structures tasks in this scenario.

Collecting Data and Defining a Model

Line supervisors for the HH-60J PDM line provided detailed maintenance
schedules for their respective processes. These schedules were based on point estimates
of process times for each major task. From these master schedules, an equivaent logic
flow diagram was generated to define the predecessor relationships between concurrent
tasks. Some sequential tasks that involved a single work shop were combined to simplify
the model logic. Similarly, some tasks were broken into sub-tasks, designated as initial
and final, to allow partial completion of one task to function as a predecessor for another
task. The resulting macro model isincluded as Figure 7. Supporting sub- models of this

macro are included in Appendix A.
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Test Flight &
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Model

Figure 7. HH-60J PDM Main Model Logic Flow Diagram

For modeling purposes, the PDM process is viewed as a series of sequential task
groups. The model assumes that workers compl ete the induction phase first, then move
on to disassembly, strip and clean, repair, and so on. Within amajor task group, tasks
can be completed sequentially, smultaneoudly, or both. These task groups are modeled
in ARENA as sub-models. Figure 8 shows the tasks and logic that comprise the

Disassembly Sub-Modd.
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Figure 8. HH-60J PDM Disassembly Sub-Model Logic Flow Diagram

For the example in figure 8, task DA2 (Remove Avi Rack and Components)
commences after completion of task DA1 (Remove Antennas, RTS, Instruments). Tasks
DA1, DE1, DM1, DM4 and DM6 may be performed simultaneoudly if adequate labor
resources are available. The five-input AND symbol indicates that all five predecessor
tasks must be completed before completing this sub-task and starting the next step in the
macro PDM process (the task groups in Figure 7).

When converted to ARENA logic, the same sub-model is represented by the logic
flow illustrated in Figure 9. Theinitial branch to five parallel process stepsis
accomplished by using the duplicate block from ARENA’s Blocks menu. The duplicate
block creates four duplicate entities plus the original. Each of the five entities then
proceeds through the logic independently until being combined back into a single entity
at the Batch block. Once divided, each entity represents a portion of the work to be

performed in the Disassembly Sub-Model. The Batch block performs the AND function
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by blocking entities from flow back to the main model until all required sub- model work

iscomplete.

{;uplicate DAL DA

L I I | |
- 1

1 ]
1
: | DE1 DE2 DE3 DE4
P N— o | c |
| C
b— e
S
DM1 DM2 — DM3 Batch 1
cC_ 4 C | C c
DM4 — 4| owms
fal
© ]
DM6 — | DM7

Figure 9. HH-60J PDM Disassembly ARENA Sub-Model

The arrival of aircraft to PDM is scheduled based on availability of production
resources. In actual ARSC schedulers coordinate with Air Stations so that asingle
aircrew candeliver a completed aircraft to an air station and pick up the next unit for
induction. This capacity-driven arrival sequence is modeled in ARENA as two Cregate

Entity blocks and a Seize block (Figure 10).
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Figure 10. HH-60J Entity Creation and Release Logic

The first five entities are generated according to a constant inter-arrival time
schedule to evenly load the PDM production line. Subsequent entities are generated after
the fifth entity and stored in the Seize Floor Space queue until the resource Floor Spaces
becomes available. By limiting Floor Space to five, this block limits work in process to
five.

Validating the Conceptual M odel

ARSC saff reviewed the logical model for logic flow and predecessor
relationships between task elements. Changes to the model were incorporated prior to
construction of the ARENA model.

Constructing and Verifying the Computer Model and Making Pilot Runs

An ARENA mode of each process line was developed using the validated logic
flow diagrams and process times. Sub-models were developed independently and tested
as stand-alone modules to verify correct operation before being integrated into the main
model. A master data dictionary was used to verify the correct assignment and use of

element names and assignment of resources. An element-by-element review was
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conducted to verify that each ARENA data field matches the corresponding data
dictionary entry. Proper interaction of sub-models was checked by observing ARENA-
generated animation.

The labor hour data that are currently available for the HH-60J PDM process are
not categorized by individual work center and work task. Labor hour data are further
obscured by the combination of front shop and back shop tasks involved in the PDM
process. Individual workers may be assigned to front shop activities, back shop
activities, or both. Our model only focuses on front-shop activities. This model deals
with the floating labor pool by assuming that line supervisors schedule workers with a
priority on front shop tasks to meet production schedules. Fluctuations in front shop
process times will result in fluctuations in available back shop labor. For the existing
PDM process, it is assumed that manpower is staffed to allow for routine fluctuations
without negatively impacting the completion of back shop work.

ARSC’s current policy for beam replacement is to bring in contracted workers,
just for the duration of the replacement, then to release the workers. An aternative,
adding in-house resources, assumes that the current structures shop manning level has
historically met production requirements, cannot accommodate the additional |abor
demands of beam replacement.

To determine the appropriate structures shop manpower level, aresponse study
was conducted using ARENA’s Process Analyzer. Initial manning levels were suggested
by ARSC analysts and served as the started point for the response study. Based on
multiple runs of 30 repetitions each, manning levels were determined for each shop,

producing a mean process time of 131.45 days. Structures worker manning was set at 11,
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alevel that provided a minimum process time that is sensitive to a decrease in number of
structures workers. This simulates a staffing level where the addition of a major task
such as beam replacement would impact manpower available for other tasks, either in the
front shop or in the back shop.

The beam replacement step was added to the model by inserting one Decide block
and one Process block (Figure 11). The modeled probability of replacing a beam (76%)
is based on historical data provided by ARSC. The beam replacement block is placed in
series with the repair process flow to model a 25 day increase in process time due to

beam replacement.

Replace Beam?

Figure 11. HH-60J PDM Beam Replacement Logic

Validating the Programmed M odel

The graphical interface in ARENA allowed construction of a model that very
closely resembles the logic diagram reviewed by ARSC. ARSC analysts validated the
logic for beam replacement by reviewing probability and process time assumptions. The
remaining ARENA logic was verified by comparing ARENA with the corresponding
logic element in the logic model. The process times and resources were then compared to
those recorded in the data dictionary and the original project schedule from which the

data dictionary was devel oped.
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Designing Experiments

The study utilizes two experiments. Each experiment focuses on one of two
staffing policies. In the design phase, values were determined for each of four parameters
for these experiments: initial entity arrival interval, warm-up time for simulation,
duration of simulation, and number of simulation repetitions.

Entity arrival interval only applies to the first five entities. When ore of these
entities completes the PDM process it triggers the start of arelease of a new entity from
the queue. Process output intervals were inspected visually for balanced inter-arrival
times and total process times using an ARENA plot of process time versus completion
time for asingle 10,000 day simulation (Figure 12). A 20 minute arrival interval
produced an output pattern that evenly distributes initial inter-completion times and

minimizes bunching of entities completing the process.

31



=100 =]

4 Aireas - [HHSEain-ledel dne]

Er—usctmrmu Arrarga CHiet Aun Window Hil =8l
DEd|Ee &SR e« e g eRE Bl R HB e K
Sm e AL e Bedy By |Seme |¢-.w= T b 5 || a5 .|
=ul =l
<> BaicFmisss e I
CAtearcad Protess s "“'Hq__h_h . ) —
< Blncks: T '.____:—'“‘ i | fee] | i | __1_ P _n'-lu—_l_ —
it ad Trareier | "==',=;,,, T T V V i ’
k! Rapars
5 et
= B Toprlewed Modd oy | eurers. [ e -._.--__ k)
I ezl Subm :'-—“'-_—lel".. —_—n—-—‘l—'— _ |__.-..=.._|
of Disassanbly ubf T s L )

-.'\'_'p Fu B3 i o o e
R Inkerin Pain 5.ty
T Peirt Subwadel
e Fepsir Subinocd
o TestFbEndR U

L

0.000 d.OOO0.000f

1 | L i

Pt ceacned. 111 [IDN0O0D0 End of fon 2915, 265

] 0 8 B (| oA ] B ) e ) ] O] | B8] BTSSR

3

Figure 12. HH-60J PDM Entity Process Output Intervals

Warm-up time was similarly determined using a visual inspection of the plot of
entity total process time versus entity number (Figure 13) The process time pattern
becomes stable as soon as the process is fully loaded with five entities. Based on this
observation, the warm up time was set to 150 hours to delay data collection until the
process is fully loaded. This inspection method for determining warm:up time is offered
by Kelton, et a (2002: 288) as an appropriate technique for determining when steady

state appears in a simulation.
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Figure 13. HH-60J Entity Process Times

The duration of the simulation was selected based on available computing power.
The 10,000 hour simulation used for the previously described testing requires
approximately 15 seconds of computing time. This allows the experiment to be run
within the time domain that initial testing was done.

To estimate the number of repetitiors required, results of theinitial 30 repetition
runs were used. Scenario 1 produced an average process time of 147.14 days with a
sample standard deviation of 0.83 days. Scenario 2 produced an average process time of
145.92 days with a sample standard deviation of 1.45 days. A target 95% confidence
interval of 0.5 days (with a corresponding 0.25 day half-width) was selected for the final
production runs. Initial estimates of scenario standard deviations were used to estimate

replications required to achieve the specified precision.
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Law & Kelton (2000) offer aformula for calculating a point estimate and
confidence interval for the population mean, given the results from n independent
replications of asimulation.

Cl = Xbar(n)  tn.1.1-a SQRT [$*(n)/n] ©)

The results from scenario 1 produced the largest sample variance. This worst-

case scenario was used as the basis for calculating the baseline confidence interval:
Cl = 145.92 + 1.96 - SQRT[2.10/30] ()
Cl = 145.92 + 0.52 (5)

This confidence interval exceeds the target interval of + 0.25 days. The origina
formula provided a basis for solving for N, number of repetitions required, based on the
results of 30 repetitions:

N=[(1.96 - 1.45)/ 0.25]° (6)
N=129.2 (7)

Based on this result, the theoretical minimum number of repetitions to achieve the
desired confidence interval of + 0.25 daysis 130. Law & Kelton (2000: 513) emphasize
that thisis only an approximation of the number of required replications and that this
formulais offered as a tool to manage computing resources when unnecessary
replications will waste limited computing resources. The actual computing time for 30
replications of this simulation is under ten minutes. Thus, we increased the number of
repetitions to 140, increasing the likelihood that the ssimulation will achieve the target
confidence interval for average process time.

The use of common random numbers was considered as a means to reduce

variance in comparing two systems. This study considers two modeled alternatives that



include the same number of process steps, suggesting that it might be a good candidate
for synchronized randomnumber allocation. Kelton, et al (2002: 484) describe
synchronization as a method of inducing correlation between two or more models so that
amore accurate comparison can be made between them. As entities pass through the
ARENA model of the PDM process, they experience delay times based on the defined
probability distributions for these times. The actual value drawn from each distribution is
determined by the random number data stream. With 66 process blocks in the PDM
ARENA model, the sequence of entity flow through the model is substantially affected
by the interaction between these random draws. If al entities passed through the model
in the same sequence, then assignment of random number streams to each process block
could synchronize the random numbers used in two models. However, the decide block
that redirects some entities to beam replacement also provides a means for entities to pass
each other in the process and for any specific aircraft to follow different processes within
each scenario. Thisdisruption of entity sequencing means that a direct comparison of
average process times by entity is not practical.
Production Runs

Two scenarios were selected. Scenario 1 models a process with five dedicated
contract workers assigned to work on beam replacement exclusively. Scenario 2 models
a process with five structures workers assigned to work primarily on beam replacement,
but assigned to work on other available structures tasks when not actively working on
beam replacement. Beam replacement work takes priority over other tasks for these

workers.

35



Each scenario was run for 140 replications of 10,000 hours each with statistics

collected on average process time for each replication.
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V. Results
I ntroduction
This chapter presents the results of the experiment. It describes the steps followed
in testing output data and offers conclusions based on these results.
Hypothesis and Hypothesis Testing
The experiment involves a hypothesis test designed to examine whether staffing
the beam replacement process step with general structures shop labor will provide an
improvement in process time, as compared to having a dedicated team of beam
replacement contractors perform the work. Given outputs from simulations of the two
aternatives, the test is:
Ho: P1-P>=0
Ha: P1-P2?0

Where: P1 = Average process time for scenario one and
P> = Average process time for scenario two.

The null indicates no difference in process times between scenario one and
scenario two. If the test rgjects the null hypothesis, then the alternate hypothesis, there is
adifference in process times between scenario one and scenario two, is presumed to be
accepted. If the hypothesis test fails to reject the null hypothesis, then no conclusion
regarding the aternate hypothesis can be made, other than our analysis failed to depict

any difference in process time.
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Test for Normality of Outputs Means

The Central Limit Theorem states that the distribution of means of independent,
random samples from a population follow a normal distribution. The output from of
scenarios one and two were tested for normality using the Fit Distribution function in

@Risk . Both samples sufficiently follow the normal distribution (see Table 3).

Table 2. Entity Process Time Goodness of Fit Test Results

Normal(147.17400, 0.80717) Normal(145.7666, 1.5347)
06V V

<
<

0.357

0.30

0.25—

0.20—

0.15

0.10-

0.05—

—
g g

< 5.0% I 50% > < 50% 5.0% >
148502 14324 148.29

Scenario 1 Goodness of Fit (Normal) Scenario 2 Goodness of Fit (Normal)

Chi-Squared Test Vaue 6.157 11.54

PVaue 0.9080 4831

Rank 1 1
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Testing for Equal Variances

Outputs from scenarios one and two produced variances of 0.65 and 2.36,
respectively. Excel’s two-sample test for equal variances was employed to evauate
whether there is any statistical difference in output variance between the two scenarios.

The resulting output is shown in Figure 4:

Table 3. F-Test Two-Sample for Equal Variances.

Scenario 1 Scenario 2
Mean 147.18 145.77

Variance 0.65 2.35
Observations 140 140
df 139 139
F 3.61

P(F=f) one-tail 1.21E-13
F Critical one-talil 1.32

The F statistic for this test exceeds the F critical value, supporting a conclusion of
unequal variances of the scenario outputs.
Hypothesis Testing

The paired t-test was employed due to the unequal variances of the scenario
output. This test produces a confidence interval for the difference of means. If the
confidence interval contains zero, then the test fails to reject the null. The added value of
thistest isthat it provides a description of the difference of the means, which can be used

to describe the difference in outputs between the two scenarios.
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The paired-T test does not require equal variances but it does require equal
sample sizes. It also accommodates positive correlation between the two samples.
Although the experiment was not specifically designed with synchronized common
random numbers, ARENA’s random number assignment process will likely result in a
high degree of correlation. Law and Kelton (2000:560) note that many simulation
packages allocate random numbers in a manner that requires specific action by
programmers to defeat the high degree of commonality and synchronization between
scenarios.

Excel was used to conduct the paired-T test with the following results (Table 5):

Table 4: Paired-T Test for Difference of Means

Mean 141
Standard Deviation 1.77
Standard Error 0.15
95% Confidence Level 0.29

With a confidence interval that does not contain O, the null hypothesis is rejected,
supporting the conclusion that the difference in mean outputs between scenarios one and
two is statistically significant. The confidence interval also describes the expected range

for difference in mean process times between the two scenarios as 1.12 to 1.70 days.
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V. Conclusions
Introduction

This research employs modeling and simulation to predict the impact of in
sourcing the replacement of main beams by ARSC's PDM line. The primary measure of
effectiveness for this study is average process time.

Conclusions

Results of the literature review summarized in Chapter 11 and the experiment
described in Chapters 111 and IV support answers to the four research questions presented
in Chapter I:

1. Isan ARENA model the appropriate tool to conduct this research study?

A review of current literature supports the use of computer ssmulation for this
type of study. Much of the previously published research applied smulation to
experiment with a small, well-defined element of the larger system. Based on the results
of these experiments, researchers considered how their result could be applied to better
understand the behavior of system as awhole. This research approaches the study from a
macro view, directly observing the simulated interaction of major system elements.

The ARENA interface smplified review of the model by process experts. It
allowed direct comparison of the model logic to a conceptua logic flow diagram
developed base on ARSC-provided schedules and plans. Similarly, the spreadsheet view
of process variables within ARENA allows researchers to easily compare programmed

values withthose recorded in the data dictionary. Given that ssimulation is well
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established as atool for this type of research, ARENA proved to be a good choice for this
study because its interface minimized the time required to verify and validate the model.
2. How well does the ARENA model represent the effects of changesin labor resources
for ARSC’s HH-60J PDM line?

The model allows researchers to consider the complex interactions between
process elements with variable process durations. Because ARSC'’ s process labor data is
not currently formatted for direct use by this type of model, the exact values of resulting
process responses represent only a predicted trend. However, the model will
accommodate more detailed process time and resource requirement data. As better data
become available, the model’ s prediction capability will improve.

The difference in variance between scenarios suggests that additional study is
warranted to better understand how ARENA’s resource allocation logic affects process
time in the smulation. When structures shop resources are not required for beam
replacement work, they can be assigned to other structures work tasks. It is possible for a
required structures resource to be assigned to a long-duration task before an entity arrives
for beam replacement. In this case, the resource is not released from the current task to
work on beam replacement until the task is completed, causing the beam replacement
step to be delayed. This ARENA-imposed limitation may be the source of increased
process time variation in scenario two.

3. WIll an increase in structures shop labor likely reduce PDM processtime as
compared to having beam replacement work done by a dedicated crew of contract

workers?
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Results of the simulation experiment support the conclusion that shorter process
times would likely be achieved by increasing structures shop manning. In the simulation,
this manning increase cut average process time by 1.4 days as compared to having the
work performed by a contractor. Asdiscussed in the response to research question two,
this value does not directly represent a 1.4 day improvement in the real world process.
Rather, it simply predicts a statistically significant reduction in average process time.
Further research with detailed data may help to better understand the magnitude of the
expected improvement.

Practically speaking, analysts would likely seek process improvements that
deliver greater reductions in processtime. A process time reduction of 35 days could
decrease the fleet’s PDM interval from five years to four years with a constant WIP of
five aircraft. Although the model used in this research lacks the necessary detail to
accurately support a decision to reduce PDM intervals based on an untested process
change, it does suggest that this modeling approach has the potential for greater insight
into the effects of such process changes.

4. What improvements can be made to the model or data sources to develop a better
ARENA model for future research?

The process model developed for this research is a starting point for further
research. The current model is designed to study the impact of a single decision variable.
The basic process structure could serve as the basis for development of models to
consider other process decisions. These might include modeling the effects of adding

additional process steps, constraining facility resources, or increasing work in process.
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Any changes to the model or its intended use will require verification and validation for
the intended use.
To improve the predictive capability of this model and future variants, the
following data should be updated with the most current information available:
a. Process times for each process element with updated probability distributions.
b. Manpower requirements for each process element, categorized by work shop
when multiple shops are required for atask.

c. Availability of workers for front shop work, categorized by work shop.



Appendix A. HH-60J PDM L ogic Flow Diagrams
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Appendix A-1. Main Model — L ogic Flow
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Appendix A-2. Disassembly Sub-M odel — L ogic Flow
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Appendix A-3.
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Appendix A-4. Interim Paint Sub-Model — Logic Flow
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Appendix A-5. Assembly Sub-Model — L ogic Flow
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Appendix A-6. Assembly Sub-Model — L ogic Flow (Continued)
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Appendix A-7. Final Paint Sub-Model — L ogic Flow
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Appendix A-8. Fuel & Ground Runs Sub-M odel — L ogic Flow
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Appendix A-9. Test Flight & Ground Runs Sub-Model — L ogic Flow
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Appendix B. HH-60J PDM ARENA Logic Diagrams
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Appendix B-1. Main Model — ARENA Logic
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Appendix B-2.

Disassembly Sub-Model — ARENA Logic

—1 Duplicate DAl DA2
0 0
1 —
1 g
1
1
— DE1 DE2 DE3 DE4
0 0 0 0
DML DM2 DM3
0 0 0
Dmv4 DM5
0 0
DMV6 DM7

Batch1 |>

0



Appendix B-3. Repair Sub-Model — ARENA Logic
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Appendix B-4. Interim Paint Sub-Model — ARENA Logic
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Appendix B-5. Assembly Sub-Model — ARENA Logic
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Appendix B-6. Paint Sub-Model — ARENA Logic
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Appendix B-7. Fuel & Ground Runs Sub-M odel — ARENA Logic
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Appendix B-8. Test Flight & Ground Runs Sub-Model — ARENA Logic
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