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AFIT/GAI/ENY/03-3 
 
 

Abstract 
 
 
The feasibility of using a microsatellite to accomplish an orbital rendezvous with a 

noncooperative target is being evaluated.  This study focused on the control laws 

necessary for achieving such a rendezvous.  The relative motions of the microsatellite and 

the target satellite were described using Hill’s equations and two different controller 

methodologies were investigated.  An impulsive thrust controller based on the Clohessey-

Wiltshire solution was found to use little fuel, but was not very robust.  A continuous 

thrust controller using a Linear Quadratic Regulator was found to be more robust, but 

used much more fuel.  As a final solution, a hybrid controller was evaluated which uses 

the low thrust Clohessey-Wiltshire approach to cover most of the necessary distance, and 

then switches to the Linear Quadratic Regulator method for the final rendezvous solution.  

Results show that this approach achieves rendezvous with a reasonable amount of control 

input. 
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A STUDY OF CONTROL LAWS FOR MICROSATELLITE RENDEZVOUS WITH A 

NONCOOPERATIVE TARGET 

 

I.  Introduction 

 

Background 

 

     The United States derives great benefit from space-based assets, and U.S. dependence 

on space-based capabilities will only continue to increase.  Other countries who 

recognize the advantage conferred on the U.S. by its space prowess may wish to develop 

the means to neutralize it.   

     One potential method would be to use a parasitic satellite.  A parasitic satellite would 

rendezvous with, and potentially attach to a target satellite, where it would await a 

command from the ground to either disrupt satellite operations or destroy the satellite. 

     The Chinese claim to be developing microsatellites to perform this role.  (7)  The 

concept of operations would likely begin with a ground-based orbit determination of the 

target satellite.  Then, a microsatellite would either be launched or released from a mother 

ship that is already on orbit.  Finally, the microsatellite would autonomously achieve 

rendezvous and attach to the target. 

     Microsatellites have a mass of 100 kg or less, and are less expensive to build and 

launch than larger satellites.  However, an inherent limitation in such a small vehicle is 

1 



fuel capacity.  Therefore, the control laws used to achieve rendezvous should minimize 

fuel usage to the maximum extent possible.   

 

Problem Description 

 

     In an effort to assess the threat posed, this study focuses on the control laws necessary 

for a microsatellite to achieve orbital rendezvous with a non-cooperative target.  Other 

aspects of microsatellite capabilities are being studied by other researchers.  Once all of 

the various investigations have been completed, it is expected that the compilation of 

results will indicate the overall feasibility of the proposed system. 

     For this project, it is assumed that the microsatellite will be placed into an orbit similar 

to that of the target satellite, approximately 1000 km behind it in the same orbital plane.  

The microsatellite then performs rendezvous maneuvers to approach the target. 

     For this project, it is assumed that the microsatellite has perfect knowledge of the 

target’s position and velocity at all times.  In reality, the microsatellite would likely begin 

with an orbit solution derived from off-board sensors.  As the microsatellite approached 

the target, onboard sensors would detect the target satellite and an updated orbit solution 

would be calculated.  This would allow the microsatellite to complete the rendezvous 

without any feedback from the target satellite.  Future work on this topic should include 

accounting for the uncertainties that would exist in reality. 

     This study begins with satellite dynamics; then, the considered control methodologies 

are discussed.  Finally, the controllers are employed and the results evaluated. 
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II.  Dynamics 

 

Coordinate Frames 
 

     Three different coordinate frames are used throughout this project.  The first is the 

Earth Centered Inertial (ECI) frame, which is depicted in Figure 1.  The ECI frame is 

inertially fixed in space and has its origin at the center of the Earth.  The first axis in the 

ECI frame points toward the vernal equinox, the second axis is normal to the first in the 

equatorial plane,  in a direction that completes the frame with the third axis pointing out 

of the North Pole. 

 

î

ĵ

k̂

O
Re 

Equator 

 

Figure 1  Earth Centered Inertial (ECI) Coordinate Frame 
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     A second coordinate frame is the Perifocal frame (PQW).  The PQW frame also has 

its origin at the center of the Earth, but the first two axes are in the orbital plane of 

interest.  The first axis points toward perigee and the second axis is perpendicular to the 

first such that the third axis points in the direction of the cross product of the satellite’s 

position and velocity vectors.  This frame is shown in Figure 2.   

 

rr vr

O p̂

q̂

ŵ

 

Figure 2  Perifocal (PQW) Coordinate Frame  

 

     The third coordinate frame used in this project is Hill’s (RTZ) coordinate frame.  

Hill’s coordinate frame is also in the plane of the orbit of interest, but it includes a 

reference orbit which must be circular.  A reference origin moves about the circular orbit 

with mean motion, .  The first axis points in the radial direction, the second axis points 

in the direction of the instantaneous velocity, and the third axis points in the out of plane 

direction corresponding to the cross product between the first two axes.  Hill’s 

Coordinate Frame is illustrated in Figure 3. 

n
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Figure 3  Hill’s (RTZ) Coordinate Frame 

 

     It is important to be able to transform vectors from one coordinate frame to another.  

This can be done by finding a transformation matrix.  This matrix can be multiplied by a 

vector in one coordinate frame to find its components in another frame.  Since the 

Perifocal frame and Hill’s frame are both in the same orbital plane, the transformation 

matrix need only account for rotation about one axis.  For example, to transform a 

velocity vector from the RTZ frame to the PQW frame, the transformation matrix, S, is 

shown in Equation 1, where ν  is the angle between the  axis and the  axis. p̂ rê

[ ] [ ]zr

z

r

w

q

p

pqw vS
v
v
v

v
v
v

v θθ
νν
νν

rr
=































 −
=
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ˆ

ˆ

ˆ

ˆ
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100
0cossin
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This case is illustrated in Figure 4, where w  and e  are collinear, out of the page. ˆ zˆ

 

ν
p̂

ν

q̂

rêθê

 

Figure 4  Transformation From RTZ to PQW Coordinate Frame 

 

     Transforming a vector from the PQW frame to the ECI frame can include up to three 

rotations, involving the right ascension of the ascending node, Ω , the argument of 

perigee, ω , and the inclination, i.  The three rotation matrices are combined to give a 

single transformation matrix, R: 

 

( ) ( ) (
( ) ( ) ( )

( ) ( ) ( ) 














Ω−Ω+Ω−Ω+Ω
ΩΩ−Ω−Ω−Ω

=
iii

iii
iii

R
coscossinsinsin

sincoscoscoscossinsinsincoscoscossin
sinsincoscossinsincossincossincoscos

ωω
ωωωω
ωωωω )

(2) 

 

which is multiplied by a vector in the PQW frame to find its components in the ECI 

frame.  Equation 3 shows an example for transforming a position vector.  (9) 

[ ] [ ]pqwijk rRr rr
=            (3) 
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     To transform a vector from the ECI frame to the PQW frame, the inverse of the 

transformation matrix is used, such as in Equation 4.   

[ ] [ ]ijkpqw rRr rr 1−=             (4) 

Similarly, a vector can be transformed from the PQW frame to the RTZ frame by using 

the inverse of the S transformation matrix: 

[ ] [ ]pqwzr vSv rr 1−=θ             (5) 

 

Orbit Characterization 
 

     If the Earth is considered to be inertially fixed in space, a satellite in orbit around the 

Earth has six degrees of freedom.  Therefore, specifying six orbital parameters 

completely defines the orbit.  Two sets of parameters that can be used are the three 

dimensional position  and velocity ( )rr ( )vr , or the classical orbital elements (COE), which 

are identified in Table 1.  (12) 

 

Classical Orbital Elements 
a Semi-Major Axis 
e Eccentricity 
ν  True Anomaly 
i Inclination 
Ω  Right Ascension of the Ascending Node
ω  Argument of Perigee 

 
Table 1  Classical Orbital Elements 
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     Both sets of parameters are used in this project, and it is convenient to be able to 

transform from one set to the other.  To transform from the position and velocity vectors 

to COEs, the first step is to calculate the angular momentum, H
r

: 

vrH rrr
×=         (6) 

Next, the eccentricity can be found: 

r
rHve r

rrr
r

−
×

=
µ

            (7) 

where µ  is the Earth’s gravitational parameter ( 23398601 skm=µ ).  (12)  The semi-

major axis can be calculated with Equation 8. 

( )2

2

1 e

H
a r

r

−
=
µ

             (8) 

The inclination is a function of the angular momentum and the unit vector, , where 

: 

k̂

]100[ˆ =k










 •
= −

H
Hki r

rˆ
cos 1              (9) 

Next, a unit vector, , is found in the direction of the ascending node: n̂

Hk
Hkn r

r

×

×
= ˆ

ˆ
ˆ        (10) 

The right ascension of the ascending node can now be calculated with Equation 11, and a 

quadrant check performed: 
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( )in ˆˆcos 1 •=Ω −            (11) 

( )
( ) ππ

π

20ˆˆ
00ˆˆ

≤Ω≤<•

≤Ω≤≥•

jn

jn
 

The argument of perigee is found from Equation 12, and also requires a quadrant check: 








 •
= −

e
en
r

rˆ
cos 1ω             (12) 
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00ˆ
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Finally, the true anomaly can be calculated, along with a quadrant check: 








 •
= −

r
rn
r

rˆ
cos 1ν            (13) 
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πν
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00ˆ
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     To transform from COEs to the position and velocity vectors, the magnitude of the 

position and velocity are found using Equation 14 and Equation 15: 

( )
νcos1

1 2

e
ea

r r

r
r

+
−

=          (14) 

( )21 ea
Uv r

r

−
=          (15) 

Next, the position and velocity vectors are found in the PQW frame as follows: 
















=

0
sin
cos

ν
ν

r
r

rpqw
r

r

r           (16) 
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+
−

=
0

cos
sin

ν
ν

ev
v

v pqw
rr

r

r     (17) 

The position and velocity can now be transformed into the ECI frame using Equation 2 

and Equation 3. 

 

Two-Body Motion 
 

     Satellite motion can be described by the two-body equations of motion, where the 

satellite and the Earth are the two bodies of interest.  The origin in Figure 5 is inertially 

fixed, ER
r

 is the position of the Earth relative to the origin, SR
r

 is the position of the 

satellite relative to the origin, and rr  is the position of the satellite relative to the Earth. 

(9) 

ER
r

SR
r

rr

Origin

Earth Satellite

 
Figure 5  Two-Body Motion 

 

rr can be found from ER
r

 and  through the following relation:     SR
r

ES RRr
rrr

−=            (18) 
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Differentiating Equation 1 twice yields: 

ES RRr &&r&&r&&r −=         (19) 

Next, the forces on the satellite can be summed: 

SSSS RmamF &&rrr
==Σ              (20) 

The only force acting on the satellite is the Earth’s gravity: 

u
RR

mGm
F

ES

ES
S ˆ

2rr
r

−
−=              (21) 

where  and  are the mass of the satellite and the mass of the Earth, respectively, 

and G is the universal gravitational constant.  The unit vector is defined as: 

sm em

ES

ES

RR
RR

u rr

rr

−

−
=ˆ          (22) 

Equating Equation 20 and Equation 21: 

u
RR

mGm
Rm

ES

ES
SS ˆ

2rr
&&r

−
−=                (23) 

Substituting Equation 22 into Equation 23: 

)(3 ES

ES

ES
SS RR

RR

mGm
Rm

rr
rr

&&r −
−

−=           (24) 

and dividing through by  yields the satellite’s acceleration with respect to the orgin: sm

)(3 ES

ES

E
S RR

RR

GmR
rr

rr
&&r −

−
−=                   (25) 

Similar treatment for the Earth yields: 
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)(3 ES

ES

S
E RR

RR

Gm
R

rr
rr

&&r −
−

=                            (26) 

Substituting Equation 25 and Equation 26 into Equation 19: 

)(
)(

3 ES

ES

ES RR
RR

mmG
r

rr
rr

&&r −
−

+
−=                    (27) 

Assuming << , let: sm em

µ=≈+ EES GmmmG )(      (28) 

Where µ  is the Earth’s gravitational parameter ( 23398601 skm=µ ).  Finally: 

3r
rr r

r
&&r µ

−=        (29) 

 

Perturbations 
 

     Equation 29 describes two-body motion without any other effects present, such as 

Earth oblateness, atmospheric drag, third body effects, or solar wind.  Adding a 

perturbation term to Equation 29 yields: 

pa
r

rr r
r

r
&&r +−= 3

µ            (30) 

     For this project, the  and drag perturbations will be the only ones considered: 2J

DJp aaa rrr
+= 2            (31) 
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Earth Oblateness 
 

     The Earth is not a perfect sphere; rotational motion causes it to bulge about the 

equator.  The uneven mass distribution produces a non-uniform gravity field, which 

causes periodic affects to a satellite’s orbital elements.  Additionally, the Right Ascension 

of the Ascending Node, Ω , and the argument of perigee, ω , experience secular affects.  

These effects can be modeled using potential theory.  (1) 

     Expanding rr  into its constituent x, y, z components in the i , ,  directions: ˆ ĵ k̂

( ) ( ) ( )
ka

zyx

zja
zyx

yia
zyx

xr kJjJiJ
ˆˆˆ
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2222
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++

−
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++

−
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++

−
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(32) 

Next, let B be a potential function, such that 

2JaB r
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Therefore,  
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Comparing Equations 34, 35, and 36 with 32, it can be seen that 











+∇= B

r
r r&&r µ          (37) 

where B is an infinite series that models the Earth’s non-homogeneous mass distribution: 

( ) ( )























+










+









−
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∞

= =2 1
sinsincossin

n

n

m
nmnmnm

n

e
nn

n

e PSC
r
R

PJ
r
R

r
B φϕϕφµ

rrr ( )      (38) 

and λϕ m= ,  is the Earth’s radius at the equator (eR kmRe 135.6378= ), φ  is the 

latitude measured from the equator, rr  is the magnitude of the satellite’s position vector, 

, CnJ nm and Snm are the zonal, tesseral and sectorial harmonic coefficients, respectively, 

and Pn and Pnm are Legendre polynomials.  (2) 

 

λ

rr

φ

î

ĵ

k̂
Greenwich 
Meridian Satellite

Re 
Equator 

 

Figure 6  Geocentric Spherical Coordinate Frame 
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     The Earth’s oblateness has a zonal harmonic effect, symmetric about the Earth’s axis 

of rotation and independent of longitude.  The J2 contribution is much larger than that of 

other harmonic coefficients, and will therefore be the only one included here.  Reducing 

Equation 38 and considering only the case when 2=n  yields: 

( )φµ sin22

2

PJ
r
R

r
B e










−
= rr          (39) 

where  = 0.0010826 and the second Legendre polynomial is 2J

( ) ( )( )1sin3
2
1sin 2

2 −= φφP         (40) 

Substituting Equation 40 into Equation 39 and rearranging: 

( )[ ]2
3

2
2 sin31

2
φ

µ
−=

r
RJ

B e
r       (41) 

From the geometry in Figure 6: 

r
z
r=φsin         (42) 

Substituting Equation 42 into Equation 41: 













 −
=














−= 5

222
2

2

23

2
2 3

2
31

2 r

zrRJ
r
z

r
RJ

B ee
r

r

rr
µµ

   (43) 
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taking the gradient: 
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and simplifying: 
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Drag 
 

     Atmospheric drag can alter the orbit of a satellite below about 1000 km in altitude.  

The drag acceleration is added to the two-body equations of motion as a second 

component of the perturbation term, as shown in Equation 31.  The drag acceleration is 

calculated as follows: 
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v
D

D i
m

AC
Va ˆ

2
1 2rr ρ−=     (46) 

where ρ  is atmospheric density, V
r

 is the magnitude of the velocity vector, C  is the 

drag coefficient,  is the satellite cross-sectional area presented to the atmosphere, m  is 

the mass of the satellite, and  is a unit vector in the direction of the velocity vector.   

D

A

vî

(1) 

     The density, ρ , is calculated using the following equation and a standard atmosphere: 

( )





 −
−

= H
hh

o

o

eρρ         (47) 

where oρ  is the density at a reference altitude, h is the current altitude, ho is the reference 

altitude, and H is the scale height for the reference altitude.  (10) 

     The drag coefficient, CD , usually ranges from 2.2 for a sphere to 3.0 for a cylinder.  

(1)  For this project, the drag coefficient for the target satellite was set at 2.2 and for the 

microsatellite it was set at 3.0.  This represents a worst-case scenario for the 

microsatellite’s drag coefficient.   

     For the target satellite, the cross-sectional area was set at 4.2 m2 and the mass was 

entered as 725 kg.  These parameters correspond to Defense Meterological Satellite 

Program (DMSP) satellites.  They were selected as representative of an operational 

satellite, although DMSP satellites orbit at higher altitude than the target satellite used in 

this project.  (5) 

     A mass of 100 kg and a cross-sectional area of 1.5 m2 were used for the microsatellite.  

The mass was selected based on the definition of a microsatellite, and the relatively large 

cross-sectional area was used to represent worst-case performance. 
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Relative Motion 
 

     For rendezvous maneuvers, it is useful to know the positions and velocities of the 

microsatellite and the target relative to a circular reference frame.  In Figure 7,  is the 

origin centered in the Earth and fixed in inertial space.  O  is the origin of a reference 

frame that is centered on the instantaneous location of a point moving about  in a 

circular orbit with mean motion, .  The unit vectors in the circular reference frame are 

 in the radial, in-track, and out of plane directions, respectively, and  is the 

radius of the circular reference orbit.  To find the equations for relative motion, the left 

side of Equation 29 is found by taking the second derivative of position, and the right 

side of Equation 29 is found by expanding terms.  Then, the two sides are equated.  (9) 

O

or

'

O

n

zr eee ˆ,ˆ,ˆ θ
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Figure 7  Hill’s Coordinates 
 

In this frame, the position of the satellite is: 

( )[ ] ( )[ ] [ ] zoro ezerrerrr ˆˆsinˆcos δδθδδθδ θ ++++=
r            (48) 

and the velocity can be found from: 

( ) ( ) ( )rnr
dt
dr

dt
dv

oi
rrrrr

×+==        (49) 

where the superscripts i  and  correspond to the inertial and circular reference frames, 

respectively, and the mean motion of the circular reference frame is: 

o

z
o

e
r

n ˆ
3

µ
=

r        (50) 

Applying Equation 49: 

19 



( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

[ ]
( ) ( )[ ] ( )[ ]{ }zoroz

z

o

ro

ezerrerren
ez

errr

errrv

ˆˆsinˆcosˆ
ˆ

ˆcossincos

ˆsincossin

δδθδδθδ
δ

δθθδδδθδθδδθ

θδδθδδθδδθθδ

θ

θ

++++×+
+

+++

−+−=

&

&&&

&&&

[ ]

r

 (51) 

combining terms: 

( )( )[ ] ( )( )[ ] [ ] zoro ezerrrnerrnrv ˆˆsincosˆsincos &&&&&
r δδθδδθδθδδθδθδδθδ θ +++++++−=  

(52) 

The position (Equation 48) and velocity (Equation 52) in the relative frame can now be 

linearized by assuming  and θδδδδθδ &&,,,, rzr z&δ  are small.  Canceling higher order 

terms, and using the small angle approximations cos 1≈δθ  and δθδθ ≈sin  yields: 

( ) ( ) ( ) zoro ezererrr ˆˆˆ δδθδ θ +++≈
r            (53) 

( ) ( )[ ] ( ) zooro ezerrnrenrrv ˆˆˆ &&&
r δδθδδθδ θ ++++−≈           (54) 

Now, taking the derivative of velocity yields the linearized acceleration: 

( ) ( ) ( )vnv
dt
dv

dt
da

oi
rrrrr

×+==        (55) 

( ) ( ) ( ) ( )( ) ( ) θθ δθδδθδδδθδθδδ ernrnerrnnrezernrenrra oroozoro ˆˆˆˆˆ 22 −+++−+++−= &&&&&&&&&&
r  

(56) 

combining terms: 

( )[ ] ( ) ( ) zooroo ezernrnrerrnnrrra ˆˆ2ˆ2 22 &&&&&&&&&&rr δδθδθδδθδδ θ +−+++−−==         (57) 

     Equation 57 represents the left side of Equation 29.  To find the expression for the 

right side of the equation in the relative frame, the terms are expanded using the 

linearized position vector (Equation 53).  In the denominator: 
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Therefore: 

( ) ( ) ( )[ ]
2
3

2

2
2

2

2
33

21

ˆˆˆ











++++

+++










−=−

ooo

zoro

o

r
z

r
r

r
r

ezererr
rr

r

δδθδδ

δδθδµµ θ
r

r

          (59) 

A binomial expansion can be used for the denominator:  (3) 
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(60) 

It can be seen that the second order and higher terms will not be linear, and will therefore 

be cancelled.  This yields: 
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Recognizing the magnitude of the mean motion from Equation 32 and substituting 

Equation 61 into Equation 59: 

( ) ( ) ( )[ ] 
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Multiplying and again eliminating higher terms produces the final result for the right side 

of Equation 29: 

( ) ( ) ( )[ ]zoro ezererrn
r

ˆˆˆ22
3 δδθδµ

θ ++−−=− r    (63) 

Equation 57 and Equation 63 can now be equated: 
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Solving Equation 64 yields: 
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and: 
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where nt=ψ .  In compact notation: 

( )[ ] ( )[ ] ( )[ ]00 vrtv vvvr
rrr δδδ Φ+Φ=           (67) 
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and: 

( )[ ] ( )[ ] ( )[ ]00 vrtr rvrr
rrr δδδ Φ+Φ=           (68) 

These equations are only valid when rδ  and zδ  are small, although δθor  can be large.   
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III.  Control 

 

     Both of the control methodologies evaluated in this thesis are based on linear 

equations of motion, yet the orbits are propagated using non-linear equations.  The linear 

equations are only valid near a circular orbit, and normally are used with a leader satellite 

in a perfectly circular orbit.  The follower satellite remains “close” to the leader, and its 

position and velocity are found relative to the leader satellite.  The equations are 

linearized about a circular lead orbit, so the lead satellite’s orbit must be circular for 

proper application of the equations.  For this project, it was decided to allow the target 

satellite to have some eccentricity in its nominal orbit.  The microsatellite will have 

eccentricity introduced into its orbit as the control solutions are applied.  To allow for 

both satellites to have non-zero eccentricity, and to still comply with the requirement for 

the leader satellite to be in a perfectly circular orbit, it was decided to use a “virtual” 

leader.  The virtual leader orbit is constructed to have an initial position vector that is 

collinear with the target satellite, to be in a coplanar orbit with the target satellite, to have 

the same semi-major axis length and therefore the same period as the target, but to have 

zero eccentricity.  The virtual reference orbit will therefore remain close to the target 

satellite throughout its orbit.  The position and velocity of the target and the microsatellite 

are found relative to the virtual circular reference orbit.  Instead of effecting rendezvous 

to the origin of the relative circular reference frame, the microsatellite is able to pursue 

the target satellite which is moving with respect to the reference frame.  (12) 
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     For both of the control methods considered, it is necessary to find the position and 

velocity of a satellite relative to the circular reference frame.  First, the position and 

velocity are transformed into the circular reference orbit’s PQW coordinate frame.  Then 

the true anomaly of the reference orbit can be found from the p and q components of the 

reference’s position vector.  Using MATLAB’s atan2 function ensures quadrant 

accuracy: 

=ν atan2
refp

q

r
r








           (69) 

The true anomaly can then be used to set up a transformation matrix, S, which is used to 

transform the satellite’s position from the circular reference’s PQW coordinate frame to 

its RTZ coordinate frame. 

( ) ( )
satellitepqwsatellitezr rSr rr

=θ     (70) 

The atan2 function can now be used to find δθ  without quadrant ambiguity: 

=δθ atan2
satelliterr

r






θ

             (71) 

The position vector of the satellite relative to the circular reference orbit is calculated as 

follows: 

( ) ( )
( ) ( ) 
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o
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rr
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rrrr
r δθδ
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2222

r    (72) 

To find the relative velocity vector, it is useful to find the angle between the reference 

orbit’s p axis and the satellite’s position vector in the pq plane. 
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           (73) 

This angle can be used to build a transformation matrix, T, which will be used to find the 

radial, tangential, and out-of-plane components of the velocity vector: 

( ) ( )
satellitepqwsatellite vTv rr

=123              (74) 

Next, the magnitude of the satellite’s angular velocity can be found: 
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r

v satellite
r

r
&r 2=θ           (75) 

Finally, the relative velocity can be found: 
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where n is the mean motion of the circular reference orbit. 

 

Clohessey-Wiltshire 
 

     The first control methodology considered for this project utilizes the Clohessey-

Wiltshire (CW) equations.  This technique produces an impulsive control thrust which 

initiates the rendezvous.  A second impulsive thrust is applied once rendezvous is 

complete, to null out the relative velocity between the microsatellite and the target 

satellite. 

     Equation 68 is rearranged to solve for the relative velocity needed at time t  in 

order to achieve rendezvous at a specified time, t

0=

T= : 
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( )[ ] ( )[ ] ( )[ ]( )00 1 rTrv rrrv
rrr δδδ Φ−Φ= −              (77) 

To calculate the  required at time v∆ 0=t , the necessary inputs are the microsatellite’s 

starting position relative to the circular reference, the desired rendezvous time, the 

desired position of the microsatellite relative to the circular reference at the rendezvous 

time, and the mean motion of the circular reference frame.  (12) 

     The desired relative position for the microsatellite at the rendezvous time is the same 

as the position of the target satellite at the rendezvous time.  The target’s initial position 

and velocity relative to the circular reference frame can be found as described above, and 

then Equation 68 can be employed to find the target’s position relative to the circular 

reference at the specified rendezvous time. 

     The microsatellite’s initial position relative to the circular reference frame is also 

found using the procedure described earlier in this chapter.  The mean motion of the 

circular reference frame is calculated using Equation 50.  Once all of the input values are 

entered into Equation 77, the necessary relative velocity at time 0=t  can be calculated.  

Equation 52 is used to transform the velocity from the relative frame to an inertial frame.  

It is then transformed into the ECI frame and applied to the microsatellite, which is 

propagated using the non-linear equations of motion.  To calculate the necessary , the 

microsatellite’s initial velocity is subtracted from the velocity calculated for rendezvous. 

v∆

( ) ( )
initialijkcalculatedijk vvv rrr

−=∆        (78) 

     At the specified rendezvous time, a second impulsive thrust can be applied to null the 

relative velocity between the microsatellite and the target.  This second  is added to 

the first to find the total  for the CW rendezvous. 

vr∆

vr∆
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     The Clohessey Wiltshire equations can be improved by adding the J2 perturbation to 

the calculation, which is discussed in the next section.  Although drag was added to the 

equations of motion in the previous chapter, the drag perturbation is not accounted for in 

the Clohessey Wiltshire equations for this project. 

 

Clohessey Wiltshire with J2 
 

     McLaughlin, et al, discuss addition of the J2 perturbation term to Hill’s equations.  (4)  

The primary change is substitution of θωr  in place of  in the in-plane components n

( )δθδ orr,  and zω  in place of  in the out of plane component n ( )zδ  in the  matrices in 

Equation 66, where: 

Φ

Mnr
&+=θω             (79) 

ωω && ++= Mnz           (80) 

and: 

( )i
p

eJnRM E 2
2

2
2

2

sin32
4

13
−

−
=&             (81) 

( i
p

JnRE 2
2

2
2

sin54
4

3
−=ω& )          (82) 

where M&  is the effect of on the mean anomaly, 2J ω&  is the effect of on the argument 

of perigee,  is the mean motion,  is the mean radius of the Earth at the equator,  is 

the perturbation term, e  is the eccentricity,  is the inclination and 

2J

n ER 2J

i p  is the semilatus 

rectum.  (4) 
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     Further terms are discussed by McLaughlin, et al, to account for the  effects 

resulting from the target and chase satellites having different inclinations.  However, the 

inclinations are assumed to be the same for this project, so the extra terms are not 

discussed here. 

2J

     After θωr  and zω  are substituted into Equation 66, by replacing nt=ψ  with 

tθrrθ ωψ =  in the in-plane components of the Φ  matrices, and replacing nt=ψ  with 

tzz ωψ =  in the out of plane components of the Φ  matrices, then Equation 66 can be 

rearranged into the form of Equation 77 to give a solution for the necessary velocity as 

discussed in the previous section. 

 

Linear Quadratic Regulator 
 

     The second control methodology considered for this project was a Linear Quadratic 

Regulator (LQR).  Again utilizing the relative reference frame (Figure 7) and the relative 

equations of motion (Equation 64), a vector comprising both the relative position and 

velocity can be defined:  (2) 



























=

z
z

r
r

r
r

x
o

o

δ
δ
δθ
θδ

δ
δ

&

&

&

r         (83) 

and its derivative is: 
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     The relative equations of motion can be placed in state equation form: 

uBxAx rr&r +=          (85) 

where u  is a vector of control inputs.  Equations 64, 83 and 84 can now be used to write 

Equation 85 as: 
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     A Linear Quadratic Regulator obtains the optimal gain matrix, K  for the control 

vector:  (6) 

xKu rr
−=      (87) 

by minimizing the performance index: 

(∫
∞

+=
0

'' dtRuuQxxJ )      (88) 

The algebraic Riccati equation is solved to find S: 

0'' 1 =+−+ − QSBSBRSASA          (89) 
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where Q  is the state weighting matrix and R  is the control weighting matrix.  Higher 

values in the  matrix speed movement toward the desired state, and higher values in the Q

R  matrix reduce control usage.  For this project, Q and R will have the following forms: 
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     Finally, the optimal gain matrix is calculated: 

SBRK '1−=          (92) 

     For this project, the optimal gain matrix is found by entering the A, B, Q and R 

matrices into MATLAB’s LQR function.  Once calculated during a run, the gain matrix 

never needs to be recalculated. 

     For this project, the microsatellite is chasing the target satellite rather than the circular 

reference.  Therefore, the control input is based on the difference between the 

microsatellite’s state vector and the target’s state vector (i.e., the error state): 



























−
−
−
−
−
−

−=
















tgtmicro

tgtmicro

tgtomicroo

tgtomicroo

tgtmicro

tgtmicro

z

r

zz
zz

rr
rr
rr
rr

K
u
u
u

δδ
δδ
δθδθ
θδθδ

δδ
δδ

θ

&&

&&

&&

          (93) 

31 



 

     The following steps are repeated during propagation.  First, the position and velocity 

of the target and microsatellite are found relative to the circular reference.  Then the 

control input is calculated using Equation 93.  The control input, ur , is actually a specific 

thrust, so the calculated value is already in an inertial frame.  It is then transformed into 

the ECI frame and added to the two-body equations of motion: 

ua
r

rr p
rr

r

r
&&r ++−= 3

µ             (94) 

     The target, microsatellite and reference orbits are propagated one time step using 

numerical integration.  The  for each step is calculated using Euler integration; the 

magnitude of the control acceleration is multiplied by the size of the time step and 

accumulated over the run. 

v∆

     The next iteration begins with finding the position and velocity of the target and 

microsatellite relative to the circular reference frame.  The process is repeated until 

rendezvous is achieved.  This algorithm is depicted in Appendix B. 
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IV.  Results 

 

     The results in this chapter were obtained by starting with a target orbit having the 

initial orbital elements found in Table 2, unless otherwise specified.   

 

Orbital Elements Values Units 

a Semi-Major Axis 6772.888912204840 kilometers 
e Eccentricity 0.00098877135498 dimensionless
ν  True Anomaly 0.79736386485827 radians 
i Inclination 0.90757990078380 radians 
Ω  Right Ascension of the Ascending Node 1.51843760980691 radians 
ω  Argument of Perigee 5.59054044657763 radians 

 
Table 2  Initial Orbital Elements for the Target Orbit 

 

     The starting position of the microsatellite is [ ]010000 −=rrδ  unless otherwise 

specified. 

 

Simulator Capability 
 

     Orbits based on the non-linear equations of motion are propagated for this project 

using numerical integration.  The explicit Runge-Kutta 4,5 (Dormand, Prince pair) 

method is employed in MATLAB using the ODE45 command.  For this project, the 

relative tolerance has been set to 2.2205e-14 and the absolute tolerance has been set to 

1e-200.  A tighter relative tolerance was found to be beyond the capability of the system.  
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With these tolerances set, a circular orbit was propagated ten revolutions using the non-

linear equations of motion; the same orbit was propagated ten revolutions using the linear 

equations of motion.  Since the circular orbit has no offsets from the identical circular 

reference orbit, the criteria for linearization are perfectly satisfied.  However, when the 

relative position between the linear and non-linear solutions is compared, a small error is 

observed.  This error is attributable to the precision of the simulator, and is depicted in 

Figure 8: 
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Figure 8  Simulator Error - Distance Between Linear and Non-Linear Propagations 
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Linear Versus Non-Linear Equations of Motion 
 

     As discussed in previous chapters, control inputs for this study are calculated using 

methods based on linear equations of motion.  The orbits are then propagated using non-

linear equations of motion.  Before discussing the results of this project, it is enlightening 

to further explore the influence of linearization. 

     For the linearized equations to remain valid, only small rδ  and zδ  are allowed; 

however, δθor

r

 may be large.  Adding eccentricity to an orbit causes it to have a greater 

variation in δ  compared to the circular reference orbit.  For an orbit with the orbital 

elements listed in Table 2, there is a clear difference in the orbits propagated using the 

linear and non-linear equations of motion.  The results are seen in Figure 9 which shows, 

in the δθδ orr,  plane, the relative distance between the location of the satellite calculated 

using the linear equations of motion and the location of the satellite calculated using the 

non-linear equations of motion. 
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Figure 9  Distance Between Linear and Non-Linear Propagations With Eccentricity 

 

     It can be seen that there is a periodic difference in the radial direction during each 

orbit and a secular difference in the in-track direction.  The peak rδ  offset in each orbit is 

approximately 24 meters and the δθor  accumulation is about 120 meters per orbit. 

       Repeating these calculations with the eccentricity changed to 0.00313260666343051 

produces a graph of similar shape, but the magnitudes of the rδ  and δθor  offsets are 

approximately 240 meters and 1.2 kilometers per orbit, respectively.  This corresponds to 

the orbit of the microsatellite after applying the delta-V calculated using the Clohessey-

Wiltshire equation.  Clohessey-Wiltshire results will be discussed in greater detail later.   

     To further illustrate the differences between the linear and non-linear equations of 

motion, Figure 10 shows the difference between the two as measured in an inertial frame 
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and Figure 11 shows the same difference as measured in the relative frame.  Both figures 

represent the difference for the orbit defined in Table 2 and have been propagated over 

ten orbits. 
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Figure 10  Difference in Linear and Non-Linear Propagation in Inertial Frame 
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     The secular effect in the δθor  direction is clearly seen in the second graph of      

Figure 11. 
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Figure 11  Difference in Linear and Non-Linear Propagation in Relative Frame 

 

Clohessey-Wiltshire Controller 
 

     The Clohessey-Wiltshire equations have peculiar behavior, and careful selection of the 

desired rendezvous time is important for their performance.  The top graph in Figure 12 

was generated by varying the rendezvous time up to 6 six orbits.  The reference orbit’s 

semi-major axis length was used to calculate the necessary mean motion, , the starting 

relative position was set at 

n

[ 010000 ]−=rrδ ,  and the necessary relative velocity, vrδ , 
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for a rendezvous at the origin, [ ]000=rrδ , was calculated.  The magnitude of the 

calculated velocity, vrδ , is shown. 
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Figure 12  Magnitude of the Relative Velocity for Rendezvous to the Origin 

 

     The graph reveals that some selections of rendezvous time are very costly.  Between 

each of the extreme occurrences are a range of more reasonable values.  The lower graph 

in Figure 12 shows a closer view of the curve in the range of rendezvous times from 3.6 

orbits to 4.4 orbits.  Similar troughs are seen between the other extreme values.  As the 

selected rendezvous time increases, the troughs reach lower vrδ  values.  It appears that 

for rendezvous to the origin, the best selection of rendezvous times are integer numbers 

of orbits. 
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     Since the target in this study has non-zero eccentricity, it is unlikely to be at the 

reference orbit’s origin at rendezvous time.  To represent the potential offset from the 

origin, the runs from Figure 12 were repeated, but the target rendezvous position was set 

to [ 01010=rr ]δ .  The results are depicted in Figure 13.  The closer view in the lower 

graph reveals the effect of an offset target is to add additional peak values in the troughs.  

These new peaks appear at integer numbers of orbits.  Therefore, the best rendezvous 

times for this case are within each trough, close to an integer number of orbits but not an 

exact integer number of orbits. 
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Figure 13  Magnitude of the Relative Velocity for Rendezvous to an Offset Location 

 

     Figure 14 shows the ∆  curve from 330 minutes to 400 minutes, for the rendezvous 

scenario considered in this chapter.  Since the target satellite’s orbital period is 92.45 

V
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minutes, exactly four orbits would take 369.8 minutes.  A rendezvous time of 368 

minutes, which is slightly less than four orbits, has been selected.  This rendezvous time 

requires less  than is found in troughs associated with a lower number of orbits, and 

within the trough depicted in Figure 14, it corresponds to the minimum  immediately 

before the spike.  Using a rendezvous time from a trough associated with a higher number 

of orbits would reduce the required 

V∆

V∆

V∆ , but the impact of propagating a linear solution 

using the non-linear equations of motion is secular, resulting in a larger final distance 

when a longer rendezvous time is used. 
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Figure 14  Delta-V Required to Achieve Rendezvous for the Considered Scenario 

 

     Using the specified rendezvous time of 368 minutes and including no perturbations, 

produces the results in Table 3.  The initial V∆  is required to begin the rendezvous 
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maneuver and the second  is performed at the rendezvous time to null out the relative 

velocity between the microsatellite and the target satellite.  Since rendezvous to the target 

satellite has not been completely accomplished, further maneuvers will be necessary.  

Therefore, matching the target’s velocity exactly is not actually desirable, but it is 

accomplished here to complete the results from a single rendezvous maneuver.  

Subsequent maneuvers to close the final distance using the Clohessey-Wiltshire 

controller were ineffective at completing the rendezvous to an acceptable distance, 

particularly if there was a significant 

V∆

rδ  offset.  This can be readily seen in the examples 

illustrated in Tables 15 – 17 in Appendix A. 

 

CW Rendezvous – No Perturbations 
1V∆  (km/sec) 0.016539

2V∆  (km/sec) 0.015269

TotalV∆  (km/sec) 0.031809
Final Distance (km) at 368 Minutes 5.029880

 
Table 3  CW Rendezvous – No Perturbations 

 

     Figure 15 shows how the relative distance between the microsatellite and target 

satellite decreases over time.  The distances in the figure were calculated in the relative 

reference frame and propagated with the linear equations of motion. 
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Figure 15  Relative Distance Between the Target and Microsatellite in Relative Frame 

 

     The same Delta-V solution was applied and propagated in the inertial reference frame 

using the non-linear equations, and the results of both propagations are depicted in  

Figure 16 along with the difference between the two.  Both graphs have similar shape, 

but the difference between them is seen to be both periodic and secular with offsets as 

large as 23 kilometers during the maneuver.   
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Figure 16  Linear and Non-Linear Propagation of Cloehessey-Wiltshire Solution 

 

     In Figure 17, the final rendezvous behavior is more closely examined.  It can be seen 

that the linear propagator goes to a relative distance of zero precisely at 368 minutes, as 

expected.  However, propagation using the non-linear equations has the effect of 

offsetting the time of closest approach, to a distance of 0.793406 kilometers at 362 

minutes.  At the specified rendezvous time of 368 minutes, the microsatellite is 5.029880 

kilometers from the target satellite and is already moving away.  This figure further 

illustrates the effect of using linear control equations to calculate maneuvers which are 

then applied using non-linear equations. 
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Figure 17  Closer View of Final Rendezvous Behavior 

 

     Adding the J2 perturbation to both the propagator and the Clohessey-Wiltshire 

equations produces the results in Table 4.  This rendezvous is depicted in Figure 18, 

which is rendered in the relative coordinate frame.  Since the target has a non-zero 

inclination, the J2 perturbation causes out of plane effects during the rendezvous which 

can be seen as divergence in the zδ  plot. 

 

CW Rendezvous – J2 Perturbation 
1V∆  (km/sec) 0.016578

2V∆  (km/sec) 0.015917

TotalV∆  (km/sec) 0.032496
Final Distance (km) at 368 Minutes 3.518942

 
Table 4  Clohessey-Wiltshire Rendezvous With J2 Perturbation 

45 



0 50 100 150 200 250 300 350 400
-100

-50

0

50

δr
 (k

m
)

0 50 100 150 200 250 300 350 400
-2000

-1000

0

1000

r oδ
θ 

(k
m

)

0 50 100 150 200 250 300 350 400
-1

0

1

δz
 (k

m
)

0 50 100 150 200 250 300 350 400
0

500

1000

1500

To
ta

l (
km

)

Time (minutes)  

Figure 18  Clohessey-Wiltshire Rendezvous with J2 Perturbation 
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Figure 19  Closer View of Clohessey-Wiltshire Rendezvous with J2 perturbation 
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     Finally, the drag perturbation is added to the propagator.  This produces the results 

listed in Table 5.  

CW Rendezvous – J2 and Drag Perturbations
1V∆  (km/sec) 0.016578 

2V∆  (km/sec) 0.019170 

TotalV∆  (km/sec) 0.035748 
Final Distance (km) at 368 Minutes 3.321252 

 
Table 5  Clohessey-Wiltshire Rendezvous With J2 and Drag Perturbations 

 

     The position of the microsatellite relative to the target satellite is depicted in       

Figure 20, for the Clohessey-Wiltshire solution with J2 and drag perturbations included. 
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Figure 20  Clohessey-Wiltshire Rendezvous with Perturbations in Relative Frame 
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Figure 21  Closer View of Clohessey-Wiltshire Rendezvous with J2 and Drag 

 

     A review of the distances for the Clohessey-Wiltshire cases discussed above reveals 

that the microsatellite is closer to the target satellite at the specified rendezvous time 

when the J2 perturbation is added and even closer when drag is added.  A closer study of 

the results reveals that rendezvous time is shifted from the specified time in each of these 

cases, and the closest approach does occur in the case when no perturbations are present.  

Adding perturbations causes the closest approach distance to increase. 

     Figure 22 shows that using the linear equations in the case when no perturbations are 

present results in rendezvous to zero distance at the specified time.  Propagating the same 

solution using the non-linear equations causes the rendezvous to occur 6 minutes early, at 

362 minutes.  Adding the J2 perturbation then delays the rendezvous by 3 minutes from 
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the non-perturbed case, to 365 minutes.  Addition of drag further delays the rendezvous 

to 370 minutes.   

 

CW Rendezvous Distances 

Case Distance at 368 
Minutes (km) 

Time of Closest 
Approach (min) 

Distance of Closest 
Approach (km) 

No Perturbations 5.029880 362 0.793406 
J2 Perturbation 3.518942 365 1.499542 

J2 and Drag 
Perturbations 3.321252 370 2.398979 

 
Table 6  Clohessey-Wiltshire Rendezvous Distances 
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Figure 22  Clohessey-Wiltshire Rendezvous Results 
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Linear Quadratic Regulator Controller 
 

     With the Clohessey-Wiltshire controller, V∆  was influenced by adjusting the 

rendezvous time.  With the Linear Quadratic Regulator (LQR) controller, ∆  is 

influenced by adjusting the values in the state weighting and control weighting matrices.  

Decreasing control usage generally saves fuel, but rendezvous may be delayed or not 

achieved.   

V

     Since rendezvous time is not fixed for this method, the controller is allowed to operate 

until the criteria that define a successful rendezvous are satisfied.  For this project, two 

criteria were selected that must be concurrently satisfied for a successful rendezvous: 

 

1.  Achieve a relative distance of 1 meter or less  

2.  Achieve a relative velocity of 1 cm/sec or less. 

 

     For the case with no perturbations, the results are captured in Table 7.  The state 

weighting matrix values are set to 1 and the control weighting matrix values are set to 

1e13 for this case.  

 

LQR Rendezvous – No Perturbations
TotalV∆  (km/sec) 0.306821 

Rendezvous Time (min) 510 
 

Table 7  Linear Quadratic Regulator Rendezvous With No Perturbations 
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     The relative distance between the microsatellite and the target satellite during the 

rendezvous is shown in Figure 23.  The figure shows that the majority of the distance is 

reduced early in the pursuit, and most of the time is spent eliminating a relatively small 

final distance. 
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Figure 23  Relative Distance During LQR Rendezvous With No Perturbations 
 

     To compare similar rendezvous maneuvers using both of the controller methodologies 

and no perturbations, the rendezvous distance and velocity criteria for a Linear Quadratic 

Regulator rendezvous were temporarily set to 5.02988 km and 0.015269 km/sec, 

respectively, to correspond with the final values for a Clohessey-Wiltshire rendezvous at 

368 minutes.  The values in the control weighting matrix were then adjusted to achieve 

the Linear Quadratic Regulator rendezvous as close to 368 minutes as possible.  This 
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proved difficult because of the sensitivity of the controller.  Slightly lower control 

weighting resulted in the microsatellite circling the target satellite more times as it 

converged, while slightly higher control weighting produced a more direct flight route.  

However, the difference in  between the more and less direct flight paths was 

minimal, less than 5 percent.  The result achieved closest to 368 minutes was 321 minutes 

for rendezvous, which required 0.098694 km/sec of 

V∆

V∆  compared to 0.016539 km/sec 

for the initial  in a similar Clohessey-Wiltshire rendezvous. V∆

     The Linear Quadratic Regulator rendezvous criteria were returned to a relative 

distance of 1 meter or less and a relative velocity of 1 cm/sec or less, and the J2 

perturbation was added producing the results in Table 8.  The values for the state 

weighting matrix and the control weighting matrix were 1 and 1e13, respectively, and the 

rendezvous is depicted in Figure 24.   

 

LQR Rendezvous – J2 Perturbation
TotalV∆  (km/sec) 0.308920 

Rendezvous Time (min) 658 
 

Table 8  LQR Rendezvous With J2 Perturbation 
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Figure 24  Relative Distance During LQR Rendezvous With J2 Perturbation 
 

     The out of plane effect of the J2 perturbation is seen to be the most time consuming for 

the controller to overcome.  Countering the J2 perturbation effect only increases the V∆  

by 2.1 m/sec over the non-perturbed result.  Therefore, the values corresponding to zδ  in 

the state weighting matrix are henceforth multiplied by 100 to speed transition to the final 

state.  The new performance values are shown in Table 9 and the effect on rendezvous 

dynamics is pictured in Figure 25. 

 

LQR Rendezvous – J2 Perturbation
TotalV∆  (km/sec) 0.308844 

Rendezvous Time (min) 509 
 

Table 9  LQR Rendezvous With J2 Perturbation and Increased zδ  State Weighting 
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Figure 25  Relative Distance During LQR Rendezvous With J2 Perturbation                   
and Increased zδ State Weighting 

 

     The increased weighting on the zδ  values in the state weighting matrix actually 

decreases the overall ∆  required for the maneuver slightly by decreasing the time for 

rendezvous 149 minutes.  

V

     Finally, the drag perturbation is added.  The additional burden proves to be too great 

for the controller to overcome with the previous control weighting matrix values.  

Therefore, control emphasis was increased by lowering the values in the control 

weighting matrix by half, from 1e13 to 5e12.  The increase in control emphasis is 

sufficient to achieve rendezvous, and results in a V∆  increase of more than 75 m/sec 

over the previous value, while the time to achieve rendezvous is reduced by nearly 2 

hours.  The performance values are found in Table 10 and the position of the 

microsatellite relative to the target satellite is captured in the δθδ orr,  plane in Figure 26. 
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LQR Rendezvous – J2 and Drag Perturbations
TotalV∆  (km/sec) 0.383119 

Rendezvous Time (min) 384 
 

Table 10  LQR Rendezvous with J2 and Drag Perturbations 
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Figure 26  LQR Rendezvous with J2 and Drag Perturbations in δθδ orr,  plane 

 

Hybrid Controller 
 

     The final controller considered is a hybrid controller.  The Clohessey-Wiltshire 

controller has been shown to be useful for reducing large distances with low fuel usage, 

but it lacks sufficient robustness to complete the maneuver.  The Linear Quadratic 

Regulator controller has been shown to be quite robust, but it uses a great deal of fuel in 
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reducing large distances.  The logical solution is to combine the two controllers to exploit 

their strengths and minimizes their weaknesses.   

     The hybrid controller uses the Clohessey-Wiltshire controller to calculate the initial 

impulsive   Then the target is pursued until the specified rendezvous time.  Instead of 

applying a second  to null out the relative velocity, the position and velocity of the 

microsatellite relative to the target satellite at rendezvous time are fed directly into the 

Linear Quadratic Regulator controller as starting values.  The LQR controller then 

completes the rendezvous to the specified relative position and velocity criteria.  Since 

the LQR controller is only used to reduce a small distance at the end, the control 

emphasis can be increased without a significant penalty in 

.V∆

V∆

V∆ .  For the test cases in this 

section, the control weighting matrix values are set to 1e12. 

     As with the previous controllers, the first test case of the hybrid controller involves a 

rendezvous with no perturbations.  The performance values are captured in Table 11 and 

the rendezvous is depicted in Figure 27. 

 

 

 

 

Hybrid Rendezvous – No Perturbations
CWV∆  (km/sec) 0.016539 

LQRV∆  (km/sec) 0.026642 

TotalV∆  (km/sec) 0.043181 
Rendezvous Time (minutes) 574 

 
Table 11  Hybrid Rendezvous With No Perturbations 
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Figure 27  Hybrid Rendezvous With No Perturbations 

 

     Next, the J2 perturbation is added to the scenario.  The resultant performance values 

are listed in Table 12 and the maneuver is illustrated in Figure 28.  Of particular interest 

is the zδ  graph which shows divergence during the Clohessey-Wiltshire portion of the 

rendezvous, then quickly gets damped out once the Linear Quadratic Regulator controller 

takes over. 

 

Hybrid Rendezvous – J2 Perturbation
CWV∆  (km/sec) 0.016578

LQRV∆  (km/sec) 0.029722

TotalV∆  (km/sec) 0.046301
Rendezvous Time (minutes) 573 

 
Table 12  Hybrid Rendezvous With J2 Perturbation 
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Figure 28  Hybrid Rendezvous With J2 Perturbation 

 

     Drag is added for the final test case.  The performance values are listed in Table 13 

and the motion of the microsatellite relative to the target is plotted in Figure 29.   

 

Hybrid Rendezvous – J2 and Drag Perturbations 
CWV∆  (km/sec) 0.016578 

LQRV∆  (km/sec) 0.032306 

TotalV∆  (km/sec) 0.048885 
Rendezvous Time (minutes) 590 

 
Table 13  Hybrid Rendezvous With J2 and Drag Perturbations 
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Figure 29  Hybrid Rendezvous with J2 and Drag Perturbations in δθδ orr,  plane 
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V.  Conclusions and Recommendations 

 

     The important values from the test cases for all three controllers studied are compiled 

in Table 14.   

 

Controller\Perturbations No Perturbations J2 Perturbation J2 and Drag 

TotalV∆  (km/sec) 0.031809 0.032496 0.035748 
Distance (km) 5.029880 3.518942 3.321252 CW 

Time (min) 368 368 368 

TotalV∆  (km/sec) 0.306821 0.308844 0.383119 
Distance (km) <0.001 <0.001 <0.001 LQR 

Time (min) 510 509 384 

TotalV∆  (km/sec) 0.043181 0.046301 0.048885 
Distance (km) <0.001 <0.001 <0.001 Hybrid 

Time (min) 574 573 590 
 

Table 14  Compilation of Test Case Results For All Three Controllers 

 

Conclusions 
 

     It can be readily seen that adding perturbation effects increases the needed  for all 

three controllers.  It is also clear that the Clohessey-Wiltshire controller uses the least 

, but does not achieve the desired rendezvous distance.  Accomplishing multiple CW 

maneuvers is not effective either, especially if the 

V∆

V∆

rδ  offset is non-zero.  This can be seen 

in Appendix A, where other examples of CW results over a range of rδ  and δθor  values 

can be found. 
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     The Linear Quadratic Regulator controller achieves rendezvous to the desired relative 

distance and velocity, but spends a great deal of fuel in the process.  Attempts to decrease 

fuel usage by adjusting the state weighting or control weighting matrices lengthen the 

amount of time required to achieve rendezvous, and if taken too far, could result in 

insufficient control usage to even complete the rendezvous. 

     The Hybrid controller is clearly the best solution.  It achieves rendezvous to the 

specified relative distance and velocity while only increasing V∆  by approximately 50% 

over the corresponding values for the Clohessey-Wiltshire controller. 

     The results of this study suggest that the control portion of the microsatellite 

rendezvous is feasible with reasonable fuel usage. 

 

Recommendations 
 

     In the test cases used for this study, the microsatellite began rendezvous from 1000 

kilometers in-track ( δθor ) behind the target satellite.  Further study should include 

varying the starting location in all three directions, in-track, radial ( rδ ) and out of plane 

( zδ ).  Some examples of varying starting position in the in-track and radial directions are 

found in Appendix A. 

     This study focused on satellites in Low Earth Orbit.  Future study should expand to 

include higher orbits.  Additionally, this study included a small eccentricity in the target 

orbit.  Future investigation should include increasing the target orbit’s eccentricity to 

explore the performance envelope of the controllers. 
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     The Clohessey-Wiltshire equations need to be further developed to account for 

inclination differences between the microsatellite and the target satellite.  Development of 

the differential inclination terms is discussed by Swank, et al. (8) 

     The greatest potential for improvement in controller performance is incorporation of 

gain scheduling in the Linear Quadratic Regulator.  The control usage should begin low 

to avoid drastic maneuvers which can be costly in fuel, and then increase as the 

microsatellite approaches the target, to complete the rendezvous.  To implement gain 

scheduling, the optimal gain matrix could be recalculated in each iteration of the 

propagation algorithm.  The control weighting could be set proportional to the remaining 

distance between the microsatellite and the target satellite. 

     This study was conducted as though perfect knowledge of the microsatellite’s and the 

target satellite’s position and velocity were known at all times.  Future study should 

incorporate realistic uncertainties in these values, and performance of the controllers 

should be characterized statistically.  Incorporation of a sequential filter seems to be the 

logical next step. 

     Finally, a systems engineering study should be conducted to determine the feasibility 

of implementing the control solutions investigated in this thesis.  The propulsion system, 

processor, and onboard sensor capability should be key areas of focus. 
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Appendix A  Example Controller Results 

 

     This appendix contains tables showing controller solution results over a range of 

starting offsets.  The in-track offset ( δθor

r

) is varied from -1000 kilometers to +1000 

kilometers while the radial offset (δ ) is varied from -1 kilometer to +1 kilometer.  No 

offsets in the out of plane direction ( zδ ) are included. 

     Tables 15 – 17 are the results of using the Clohessey-Wiltshire controller.  Table 15 

was generated without perturbations; Table 16 includes the J2 perturbation and Table 17 

adds the drag perturbation.  All Clohessey-Wiltshire solutions calculated in these tables 

use a rendezvous time of 368 minutes, though it should be clear from previous discussion 

that the optimal rendezvous time will vary with the relative geometry of the microsatellite 

and target satellite to the circular reference frame.  The top value in each cell is the total 

 (km/sec) needed for the maneuver, and the lower is the relative distance (km) at the 

specified rendezvous time. 

V∆

     Tables 18 – 20 are the results of using the Linear Quadratic Regulator controller.  

Table 18 was generated without perturbations; Table 19 includes the J2 perturbation and 

Table 20 adds the drag perturbation.  All LQR solutions were calculated with state 

weighting matrix values of 1.  Table 18 and Table 19 were calculated using control 

weighting matrix values of 1e13 while the control weighting matrix value used for   

Table 20 is 1e12.  The top value in each cell represents the total V∆  (km/sec) for the 

maneuver.  The lower number is the time that it takes in integer minutes for the 
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microsatellite to rendezvous to within the specified criteria for relative distance ( 1m) 

and relative velocity (≤ 1cm/sec) of the target satellite. 

≤

     Tables 21 – 23 are the results of using the Hybrid controller.  Table 21 was generated 

without perturbations; Table 22 includes the J2 perturbation and Table 23 adds the drag 

perturbation.  For all Hybrid controller solutions in these tables, the CW portion was 

calculated using a rendezvous time of 368 minutes, and the LQR solutions used state 

weighting matrix values of 1 and control weighting matrix values of 1e12.  The top value 

in each cell represents the total  (km/sec) for the maneuver.  The lower number is the 

time that it takes in integer minutes for the microsatellite to rendezvous to within the 

specified criteria for relative distance (

V∆

≤ 1m) and relative velocity (≤ 1cm/sec) of the 

target satellite. 
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 -1000 -100 -10 -1 0 1 10 100 1000 
0.03445 0.01857 0.01946 0.01958 0.01960 0.01961 0.01974 0.02127 0.050841 
5.58052 0.84143 1.15968 1.19841 1.20280 1.20719 1.24745 1.71914 13.8511
0.03159 0.00318 0.00182 0.00191 0.00192 0.00193 0.00207 0.00451 0.037380.1 
5.05209 0.16314 0.06485 0.09129 0.09439 0.09752 0.12681 0.50169 11.7393
0.03180 0.00332 3.35E-4 3.35E-5  3.35E-5 3.35E-4 0.00337 0.036190 
5.02988 0.24071 0.03131 0.00320  0.00322 0.03293 0.40283 11.5476
0.03212 0.00439 0.00206 0.00193 0.00191 0.00190 0.00181 0.00313 0.03507-0.1 5.01508 0.31387 0.11700 0.09181 0.08902 0.08623 0.06210 0.31697 11.3650
0.03873 0.02019 0.01896 0.01885 0.01884 0.01882 0.01872 0.01783 0.02956-1 
5.21682 0.74610 0.68924 0.68031 0.67930 0.67829 0.66904 0.59703 10.1483

 
Table 15  CW Solutions Without Perturbations 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
0.03292 0.01764 0.01979 0.02005 0.02008 0.02011 0.02037 0.02339 0.075071 4.27274 0.23973 1.03635 1.17372 1.18919 1.20469 1.34594 2.92660 35.1488
0.03202 0.00340 0.00171 0.00194 0.00197 0.00200 0.00227 0.00594 0.059540.1 
3.55563 1.21481 0.06536 0.07447 0.08863 0.10301 0.23663 1.74987 33.1284
0.03249 0.00420 4.33E-4 4.34E-5  4.35E-5 4.36E-4 0.00448 0.058020 3.51894 1.29209 0.14557 0.01472  0.01475 0.14921 1.65601 32.9425
0.03307 0.00560 0.00226 0.00199 0.00196 0.00193 0.00170 0.00357 0.05655-0.1 
3.49129 1.36253 0.22425 0.09607 0.08204 0.06822 0.07474 1.56994 32.7643
0.04170 0.02206 0.01956 0.01931 0.01928 0.01925 0.01901 0.01663 0.04608-1 
3.65082 1.68858 0.65572 0.54851 0.53689 0.52536 0.42699 1.17010 31.5111

 
Table 16  CW Solutions With J2 Perturbations 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
0.03180 0.01396 0.01628 0.01655 0.01659 0.01662 0.01691 0.02017 0.073351 
2.69499 3.47650 2.11697 1.97274 1.95656 1.94036 1.79366 0.67160 33.5371
0.03490 0.00646 0.00357 0.00340 0.00339 0.00337 0.00324 0.00399 0.057870.1 
3.27023 4.50285 3.15144 3.00127 2.98441 2.96753 2.81408 1.14845 31.5088
0.03574 0.00757 0.00389 3.53E-3  3.49E-3 0.00343 0.00366 0.056350 
3.32125 4.58521 3.23852 3.08872  3.05507 2.90196 1.23276 31.3205
0.03666 0.00911 0.00577 0.00549 0.00546 0.00543 0.00517 0.00418 0.05489-0.1 
3.36905 4.66120 3.31944 3.17007 3.15330 3.13650 2.98379 1.31361 31.1397
0.04745 0.02585 0.02314 0.02288 0.02285 0.02282 0.02255 0.01993 0.04448-1 3.65081 5.05811 3.76722 3.62303 3.60684 3.59062 3.44309 1.81961 29.8511

 
Table 17  CW Solutions With J2 and Drag Perturbations 
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 -1000 -100 -10 -1 0 1 10 100 1000 
0.30791 0.03211 0.00428 0.00156 0.00128 0.00102 0.00210 0.03029 0.339441 

510 425 347 286 282 280 310 424 506 
0.30693 0.03110 0.00322 4.28E-4 1.28E-4 2.10E-4 0.00300 0.03129 0.340500.1 

510 425 318 241 199 228 317 424 506 
0.30682 0.03099 0.00311 3.11E-4  3.11E-4 0.00312 0.03140 0.340620 

510 424 317 235  235 317 424 506 
0.30671 0.03088 0.00300 2.10E-4 1.28E-4 4.28E-4 0.00323 0.03152 0.34074-0.1 

510 424 317 228 199 241 318 424 506 
0.30572 0.02988 0.00210 0.00102 0.00128 0.00156 0.00428 0.03253 0.34180-1 

510 424 310 280 282 286 347 425 506 
 

Table 18  LQR Solutions Without Perturbations 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
0.30994 0.03199 0.00426 0.00156 0.00128 0.00102 0.00210 0.03015 0.337061 

509 424 346 285 282 280 309 422 505 
0.30895 0.03099 0.00321 4.26E-4 1.28E-4 2.09E-4 0.00299 0.03115 0.338110.1 

509 423 317 240 199 227 316 423 505 
0.30884 0.03088 0.00310 3.10E-4  3.10E-4 0.00310 0.03126 0.338230 

509 423 316 235  235 316 423 505 
0.30873 0.03077 0.00299 2.09E-4 1.28E-4 4.26E-4 0.00321 0.03137 0.33835-0.1 

509 423 316 227 199 240 317 423 505 
0.30775 0.02978 0.00209 0.00102 0.00128 0.00156 0.00426 0.03238 0.33940-1 

509 423 309 280 282 285 346 424 505 
 

Table 19  LQR Solutions With J2 Perturbation 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
1 0.70570 0.07758 0.00945 0.00269 0.00202 0.00130 0.00595 0.07535 0.83859
 301 239 183 187 310 132 206 217 275 

0.1 0.70416 0.07598 0.00782 9.43E-4 2.01E-4 6.06E-4 0.00749 0.07695 0.84026
 301 239 182 124 121 141 207 217 275 
0 0.70399 0.07580 0.00764 7.64E-4  7.79E-4 0.00767 0.07713 0.84045
 301 239 181 122  144 207 217 275 

-0.1 0.70382 0.07562 0.00746 5.95E-4 2.12E-4 9.60E-4 0.00784 0.07731 0.84064
 301 239 181 120 99 146 207 218 275 

-1 0.70228 0.07403 0.00592 0.00133 0.00198 0.00269 0.00948 0.07892 0.84231
 301 239 179 155 154 155 208 218 275 

 
Table 20  LQR Solutions With J2 and Drag Perturbations 
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 -1000 -100 -10 -1 0 1 10 100 1000 
0.03834 0.02072 0.02210 0.02227 0.02228 0.02230 0.02247 0.02442 0.054631 

577 563 564 564 564 564 564 564 567 
0.04214 0.00364 0.00204 0.00219 0.00221 0.00223 0.00243 0.00555 0.042070.1 

574 520 506 507 507 507 507 529 549 
0.04318 0.00415 4.12E-4 2.55E-5  2.55E-5 4.11E-4 0.00413 0.040970 

574 513 452 374  374 451 512 549 
0.04431 0.00558 0.00243 0.00223 0.00221 0.00219 0.00204 0.00361 0.03995-0.1 

574 531 507 507 507 507 506 519 549 
0.05785 0.02438 0.02220 0.02200 0.02198 0.02196 0.02177 0.02017 0.03552-1 

575 565 564 564 564 564 564 563 560 
 

Table 21  Hybrid Solutions Without Perturbations 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
0.03925 0.02071 0.02285 0.02310 0.02312 0.02315 0.02340 0.02621 0.070391 

575 563 564 564 564 564 564 565 579 
0.04505 0.00388 0.00204 0.00226 0.00229 0.00232 0.00261 0.00657 0.056440.1 

573 457 506 507 507 508 509 531 561 
0.04630 0.00485 4.85E-4 4.80E-5  4.80E-5 4.86E-4 0.00494 0.055130 

573 506 440 425  425 440 503 560 
0.04763 0.00649 0.00261 0.00232 0.00229 0.00226 0.00203 0.00396 0.05388-0.1 

573 532 509 508 507 507 506 497 559 
0.06262 0.02605 0.02310 0.02283 0.02280 0.02277 0.02250 0.02007 0.04596-1 

586 565 564 564 564 564 564 563 553 
 

Table 22  Hybrid Solutions With J2 Perturbation 

 

 -1000 -100 -10 -1 0 1 10 100 1000 
0.03920 0.01904 0.02125 0.02150 0.02153 0.02156 0.02182 0.02465 0.069251 

549 562 562 562 562 562 562 563 561 
0.04747 0.00611 0.00289 0.00276 0.00275 0.00274 0.00270 0.00549 0.055310.1 591 520 517 516 516 516 516 514 556 
0.04888 0.00725 0.00309 2.71E-3  2.66E-3 0.00260 0.00432 0.054000 

590 524 521 520  520 520 517 556 
0.05036 0.00892 0.00504 0.00472 0.00469 0.00466 0.00438 0.00416 0.05276-0.1 590 527 525 524 524 524 524 521 555 
0.06608 0.02817 0.02499 0.02469 0.02466 0.02462 0.02433 0.02170 0.04489-1 

590 585 584 584 584 584 584 584 546 
 

Table 23  Hybrid Solutions With J2 and Drag Perturbations
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Appendix B  Linear Quadratic Regulator Propagation Algorithm 
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Calculate Optimal Gain Matrix, K 

Calculate the microsatellite’s state vector,  
Calculate the target satellite’s state vector,  

Calculate the control input, u  

Add the control input to the two-body equations 
of motion, and propagate one time step: 

 

Find the ∆  for the step by calculating the 
product of the magnitude of the control input and 
the time step size.  Accumulate ∆  over the run.
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Appendix C  MATLAB Code 

MAIN 

%============================================================== 
% 
%  THESIS - MAIN CODE 
% 
%  AS OF:  04 MAR 03 
% 
%  Troy Tschirhart 
% 
%  Orbital Rendezvous With a Non-Cooperative Target 
% 
%--------------------------------------------------------------------------------------------------------- 
% 
%  This program uses the following function files which must be on the current path: 
% 
%  atmosphere.m    calculate atmospheric density at the given altitude 
%  CalcInit.m          calculate the initial conditions for the run 
%  CW_Rend          accomplish clohessey-wiltshire rendezvous maneuver 
%  cw_v_ijk            calculate the clohessey-wiltshire velocity in inertial frame 
%  Do_Plots            plot the results 
%  LQR_Rend        accomplish lqr rendezvous manuever 
%  propagate.m       propagator 
%  posvel.m            set up the differential equation for the propagator 
%  ijk2pqw.m         transform r,v from ijk frame to pqw frame 
%  pqw2ijk.m         transform r,v from pqw frame to ijk frame 
%  rtz2pqw.m         transform r,v from rtz frame to pqw frame 
%  rv2coe.m          calculate coe for the given r,v 
%  coe2rv.m          calculate r,v for the given coe 
%   
%============================================================== 
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%============================================================== 
% 
%  Clear Variables and Set Format Options 
% 
%============================================================== 
 
clear 
format long g 
format compact 
 
 
%============================================================== 
% 
%  Print a banner to separate results 
%  Start the timer (used at the end to determine how long the run took) 
% 
%============================================================== 
 
('=============================================================') 
 
tic 
 
%============================================================== 
% 
%  Set Selectable Variable Values 
% 
%============================================================== 
 
 
%--------------------------------------------------------------------------------------------------------- 
%  The target's actual initial COEs 
%--------------------------------------------------------------------------------------------------------- 
 
coe_tgt_act(1) = 6.772888912204840e+003;    %  km                    a 
coe_tgt_act(2) = 9.887713549825913e-004;     %  dimensionless   e 
coe_tgt_act(3) = 0.79736386485827;                %  radians              nu 
coe_tgt_act(4) = 0.90757990078380;                %  radians              i 
coe_tgt_act(5) = 1.51843760980691;                %  radians              cap_omega 
coe_tgt_act(6) = 5.59054044657763;                %  radians              small_omega 
coe_tgt_act(7) = 0.0;                                          %  seconds             time since perigee 
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%--------------------------------------------------------------------------------------------------------- 
%  Set initial micro offset from the target 
%--------------------------------------------------------------------------------------------------------- 
 
dist = -1000;                             % kilometers arclength (ro*delta_theta) 
 
delr = 0;                                    % kilometers (delta_r) 
 
delz = 0;                                    % kilometers (delta_z) 
 
 
%--------------------------------------------------------------------------------------------------------- 
%  Set the acceptable relative distance and velocity for a successful rendezvous  
%--------------------------------------------------------------------------------------------------------- 
 
catchdis = 0.001;      % kilometers 
 
catchvel = 0.00001;  % kilometers/second 
 
 
%--------------------------------------------------------------------------------------------------------- 
%  Set controller options (Notes: "1" = option selected; "0" = option not selected; 
%                          Only one controller option below should be selected for each run) 
%--------------------------------------------------------------------------------------------------------- 
 
CW = 1;          % Use the Clohessey-Wiltshire controller only 
 
CWLR = 0;     % Use the Clohessey-Wiltshire - LQR hybrid controller 
 
LR = 0;           % Use the LQR controller only 
 
 
 
%--------------------------------------------------------------------------------------------------------- 
%  Set step size and CW rendezvous time 
%--------------------------------------------------------------------------------------------------------- 
 
timestep = 60;                  % seconds 
 
rend_time = 368;             % Integer number of timesteps  
                                         % Examples: For a rendezvous time of 184 minutes 
                                         % 184 if timestep = 60; 11040 [=184*60] if timestep = 1 
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%--------------------------------------------------------------------------------------------------------- 
%  Specify values for the state weighting matrix, Q  
%  and the control weighting matrix, R 
%  Note:  Q_mag increases => faster movement from initial to desired states 
%         R_mag increases => lower control usage 
%--------------------------------------------------------------------------------------------------------- 
 
Q_mag = 1; 
R_mag = 1e13; 
 
 
%--------------------------------------------------------------------------------------------------------- 
%  Set perturbation (J2) option (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------------- 
 
pert = 0;                                                              % Include perturbation terms  
 
 
%--------------------------------------------------------------------------------------------------------- 
%  Set drag options and values (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------------- 
 
dragtgt = 0;                                                         % Include drag in target's propagations 
 
cd_tgt = 2.2;                                                       % Drag coefficient of the target 
 
a_tgt = 3.5*1.2/(1000^2);                                  % Area of the target (km^2) 
 
m_tgt = 725;                                                       % Mass of the target 
 
cdamtgt = dragtgt * (cd_tgt * a_tgt) / m_tgt;     % Calculate the target's cdam value 
 
%--------------------------------------------------------------------------------------------------------- 
 
dragmic = 0;                                                            % Include drag in micro's propagations 
 
cd_mic = 3;                                                             % Drag coefficient of the micro 
 
a_mic = 1.5/(1000^2);                                            % Area of the micro (km^2) 
 
m_mic = 100;                                                         % Mass of the micro 
 
cdammic = dragmic * (cd_mic * a_mic) / m_mic;       % Calculate the micro's cdam value 
 
 

72 



%--------------------------------------------------------------------------------------------------------- 
%  Set plot options (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------------- 
 
prdijk = 1;     % Plot relative distance in the inertial (ijk) frame 
 
prdrtz = 1;     % Plot relative distance in the relative (rtz) frame 
 
prdroto = 1;    % Plot relative distance in the relative plane (delta_r, ro*delta_theta) 
 
 
%============================================================== 
% 
%  Initialize variable values  
% 
%============================================================== 
 
points = rend_time + 1;    % set the number of points for propagation  
                                          % (note: point 1 is really 0) 
 
delta_v_accum = 0;          % initialize delta-V to zero 
 
 
 
%============================================================== 
% 
%  Calculate Initial Values  
% 
%  1.  Target's initial position and velocity 
%  2.  Micro's initial position and velocity 
% 
%============================================================== 
 
CalcInit 
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%============================================================== 
% 
%  Accomplish Clohessy-Wiltshire Rendezvous 
% 
%  1.  Determine the micro's position relative to the circular reference at the start time 
%  2.  Determine the target's position relative to the circular reference at CW rend time 
%  3.  Solve the CW equations 
%  4.  Transform the delta-V from the relative frame to the inertial frame 
%  5.  Apply the delta-V to the micro  
%  6.  Fly out the micro and the target to rendezvous time 
%  7.  Check final relative distance and velocity between the micro and the target 
% 
%============================================================== 
 
if (CW == 1) | (CWLR == 1) 
     
    CW_Rend 
     
end 
 
 
%============================================================== 
% 
%  Accomplish Linear Quadratic Regulator Rendezvous 
% 
%  1.  Starting values: position and velocity of the target, ref, and micro at CW rend time 
%  2.  Calculate the A matrix, set up the B, Q, and R matrices 
%  3.  Solve for the gain matrix, K 
%  4.  Iterate  
%      A.  Calculate the necessary control input 
%      B.  Propagate one step 
%      C.  Repeat until successful rendezvous is achieved 
% 
%============================================================== 
 
if LR == 1 
     
    LQR_Rend 
     
elseif CWLR == 1 
     
    r_micro_ijk_tmp = r_micro_ijk(rend_time,:); 
     
    v_micro_ijk_tmp = v_micro_ijk(rend_time,:); 
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    r_tgt_act_tmp = r_tgt_act_ijk(rend_time,:); 
     
    v_tgt_act_tmp = v_tgt_act_ijk(rend_time,:); 
     
    r_ref_ijk_tmp = r_ref_ijk(rend_time,:); 
     
    v_ref_ijk_tmp = v_ref_ijk(rend_time,:); 
     
    LQR_Rend 
     
end 
     
 
%============================================================== 
% 
%  Print Output Values        
% 
%============================================================== 
 
 
delta_r = delr 
ro_delta_theta = dist 
delta_z = delz 
 
if CW == 1 
     
    pert 
    dragtgt 
    dragmic 
    rend_time 
    timestep 
    delta_v_cw1 
    delta_v_cw2 
    delta_v_accum 
    dist_at_rend_time = r_mag_rel_cw 
 
elseif CWLR == 1 
     
    pert 
    dragtgt 
    dragmic 
    rend_time 
    pt 
    rend_time+pt 
    timestep 
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    Q_mag 
    R_mag 
    delta_v_cw1 
    delta_v_lqr 
    delta_v_accum 
    dist_at_rend_time = r_mag_rel_cw 
    final_vel = vel_now 
    final_dist = dist_now 
     
elseif LR == 1 
     
    pert 
    dragtgt 
    dragmic 
    pt 
    timestep 
    Q_mag 
    R_mag 
    delta_v_lqr 
    delta_v_accum 
    final_vel = vel_now 
    final_dist = dist_now 
     
end 
 
 
%============================================================== 
% 
%  Draw Desired Plots    
% 
%============================================================== 
 
Do_Plots 
 
 
%============================================================== 
% 
%  End of Program 
% 
%============================================================== 
 
run_time = toc 
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