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ABSTRACT

The use of system data to make predictions about the future system state, commonly
known as prognostics, isarapidly developing field. Prognostics seeks to build on current
diagnostic equipment capabilities for its predictive capability. Many military systems,
including the Joint Strike Fighter (JSF), are planning to include on-board prognostics
systems to enhance system supportability and affordability. Current research efforts
supporting these developments tend to focus on devel oping a prognostic tool for one
specific system component. This dissertation research presents a comprehensive
literature review of these developing research efforts. It also develops presents a
mathematical model for the optimum allocation of prognostics sensors and their
associated classifiers on agiven system and all of its components. The model
assumptions about system criticality are consistent with current industrial philosophies.
This research aso develops methodol ogies for combining sensor classifiersto alow for

the selection of the best sensor ensemble.
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A FRAMEWORK FOR PROGNOSTICS REASONING

|. Introduction

Historically, military aircraft maintenance has been conducted using manual inspections
of various aircraft components. These inspections occur either after a completed flight,
or according to a particular maintenance schedule. Thiswork is usually conducted
without knowledge of existing aircraft faults. Thistraditional pattern of maintenance and
inspection has become increasingly less efficient as aircraft systems have become more
complex [9]. Various sources estimate that up to 50 percent of the components removed
from the aircraft for fault repair actually retest as fully functional at the maintenance

repair facility [17], [19].

As the above problem continues to absorb more manpower and resources, alternative
approaches to aircraft maintenance are being considered. Rather than following the
pattern of traditional inspections conducted in a periodic fashion without knowledge of
existing faults, various organizations are attempting to improve the efficiency of this
process. Typicaly, thisis being done through the addition of sensorsto the aircraft
components, allowing for a direct measure of system functionality. In addition, these
sensor data streams may also be able to provide information about the remaining life of
the aircraft component. This sensor data would conceptually be fed into an intelligent

system which would attempt to detect existing or impending component faults. Not only
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would thisincrease the efficiency of the current process, it would aso allow for on-board
fault detection and subsequent flight plan modification. This dissertation addresses some
of the different aspects associated with this effort to improve current aircraft maintenance

practices.

1.1 Definitions: Diagnostics and Prognostics

The science of diagnostics is best described as the utilization of specialized machinery
monitoring hardware and/or software for detecting and isolating faults in a given system,
which may be either mechanical, electrical, or both. This system may include both
hardware and software components. The Air Force Research Laboratory [21] defines
diagnostics as the determination of afailure cause (fault detection and isolation) given all
available information. Once afailure occurs, diagnostic information can be used to
expedite the troubleshooting/repair process. The analysis may also be used for future
diagnostics. Current machinery monitoring technology provides data used in expert
analysisto extract usable information to isolate causes of any problem. This situation
leads to today's time-based or event-driven maintenance approach (i.e., perform
maintenance every 100 hours or when something breaks). Consequences of this
approach may include performing unnecessary maintenance actions and causing other

problems in the machine that did not exist prior to the maintenance action.

Prognostics is an emerging technology that seeks to build on current diagnostic
equipment capabilities. Some current diagnostic systems can accurately detect and

isolate faultsin a particular system. The goal of a prognostics system isto use diagnostic



information to accurately predict a system’ s future health, as well as report the systems
current and predicted health, using automated procedures which do not require human
intervention to provide the systems' health report. (For clarity, system health is defined
as the instantaneous operational status of the equipment being monitored. It relates to the
equipment’ simmediate readiness for deployment or its need for repair actions[21].) In
effect, the prognostics system provides the expert interface, and reports on the systems’
health. The Air Force Research Laboratory [21] defines prognostics as an assessment of
likely future health (educated prediction) of a piece of equipment, based on current
information (current health status, history, etc). Accurate analysis of prognostic
information can prevent equipment failure and minimize the frequency of scheduled

mai ntenance actions through performance monitoring, tests, and reasoning.

A prognostics system is often referred to as condition-based maintenance, since the
prognostics system indicates required maintenance actions, either now or in the future.
This condition-based method should replace time-based or event-driven maintenance
methods, ideally resulting in less system downtime and only required maintenance

actions.

The terms “ Prognostics and Health Management” (PHM) system, and “ Autonomic
Logistics System” (ALS) arealso found in the literature. The“PHM system” term
usually refers only to the sensors, diagnostic algorithms, and prognostic algorithms
required for predictive failure capability on a particular system. An ALSisdefined asa

system intended to communicate appropriate mai ntenance, supply, and other appropriate



actions to the proper agencies in atimely fashion, based on the information obtained from
a prognostics system. However, the term “PHM system” may also refer to both of the
previous two definitions. both the predictive failure capability and the ALS component.
In this dissertation, it will be clear from context which meaning of “PHM system” is

intended.

1.2 Problem Statement

As previoudly discussed, a PHM system is intended to predict when aircraft component
failure will occur. The datafrom PHM system sensors are collected and fed through to
an intelligent data model which has been trained to recognize and differentiate between
healthy, degraded, and failure modes of different aircraft components. According to
Scheuren [78], this analysisis currently conducted using regression models, allowing all
relevant sensor datato be analyzed before afailure is reported. This section discusses the

motivations for pursuing a prognostics program, primarily from an Air Force perspective.

The Air Force' s aircraft diagnostic approach uses Built-in Test (BIT) units which are
incorporated as part of the aircraft hardware and software to detect aircraft faults.
However, these BIT units do not adequately identify all aircraft failures down to the
single component level. The aircraft mechanic has access to other technical datain
addition to the BIT unit data, such as: logic trees, fault charts, symptom/cause charts, and
schematics/wiring diagrams. However, the maintainer is still often left with an inability
to correctly diagnose the problem, and many times cannot replicate the problem the BIT

unit reported. The reported fault may not even exist, which contributes to the inability of



the mechanic to replicate the problem. As stated on Joint Strike Fighter’s (JSF)
homepage [76], “ Aircraft Maintenance and supportability based on Built in Test (BIT)
Diagnosticsis an antiquated strategy that has proven countless platforms to be

unsuccessful in producing the desired resultsin aircraft reliability and avail ability.”

There is significant motivation in the Air Force to streamline the aircraft maintenance
process, from both a cost and operational readiness perspective. According to Stoll and
Vincent [87], there is considerable room for improvement in the current Air Force
maintenance system. Problemsidentified in their report include trial-and-error switching
of electrical components to determine where the fault is, if one exists. The “Can not
duplicate (CND)” and “Re-Test OK (RTOK)” diagnoses aso occur regularly (50% of the
time[17],[19]). Thisisthought to be due to stresses related to the operating conditions
aboard the aircraft that intermittently interrupt the functioning of the part, causing it to be
removed for maintenance. Usually, these stresses cannot be duplicated on the ground.
The communication busses and permanent wiring on an aircraft are not tested at present.
These components degrade over time, causing intermittent failuresin flight and/or
sluggish responses from aircraft systems which may be attributed to otherwise fully
functional aircraft components. Lastly, since CND results indicate an inability to
duplicate on the ground a fault detected during flight, many maintenance personal believe
obtaining aircraft system diagnostic information at the time of the fault would improve
their ability to identify the problem. Thiswould allow the exclusion of maintenance on
parts that did not function because of an aircraft system problem, rather than the part

itself actually malfunctioning. Borden [18] expresses similar thoughts. Borky, et al [19]



also expressthisidea - the Air Force is committed to reducing aircraft life-cycle costs,
and to achieving high sortie rates with areduced force structure. To achievethis, the Air
Force requires a built-in diagnostics system that can achieve a high rate of accurate fault
detection. This capability is at the heart of a PHM effort. Blemel [16] indicates testing
costs are skyrocketing, to the point where they are beginning to exceed half the cost of
the aircraft they were built to test. Resources are being stretched to the point where it
may no longer be feasible to produce adequate, functional test equipment and software.
It will be far easier in the future to take advantage of the built-in processing power and
software diagnostics aboard the system. MacDonald [52] sumsit up by saying most

aircraft are over-inspected at great cost to the Air Force.

A panel of defense experts reached similar conclusionsin 1996 [71]. The Institute for
Defense Analyses held a conference with 41 participants from the technology
development, acquisition, and functional support areas of the Armed Services. The
participants concluded that current performance of defense systemsis not commensurate
with what the current state-of-the-art suggestsis attainable. Current performance
limitations constitute critical problems resulting in increased life cycle costs (and
consequently increased support and maintenance workloads), and decreased systems
availability. Perhaps even more importantly, the panel stated that potential integrated
diagnostic solutions are not limited by currently available technologies. Hence, the
diagnostic problem is not atechnological problem, but “...apolitical, cultural, and
organizational problem” [71]. However, given the amount of research being done and

the fact there are amost no fielded integrated diagnostics/prognostics systems, it seems



that there are still many technical hurdles remaining before implementation of these

systemsis possible.

The idea of using sensors to predict equipment failure has been around for some time.
Most references indicate published research along this line began to appear in the early

1980's[57].

Perform test

Apply result

Select test

Ready
to Test

Determine repair

Perform
repair

Figure 1-1. A generalized diagnostic process[81]

Figure 1-1 shows a generalized diagnostic process. Theinitial assumption isthat the
system undergoing diagnosis has a known fault. At first, the system is prepared for the
diagnostic procedure (“Ready to Test”). The appropriate test procedure is chosen
(“Test”), conducted (“Result”), and the test outcome is transformed, if required, into a
diagnosis. Once the diagnosisis completed, the appropriate repair action isidentified

(“Determine Repair”) and implemented (“Perform Repair”). If there are multiple system



faults, the system is again prepared for diagnosis and the above procedure is repeated
until the system isfully functional again. All repairs are aso verified: the diagnostic
processis repeated to ensure that there are no faults in the system once al repairs have

been performed.

In the early 1980’ s, there were two main groups each favoring a different approach to
diagnostics. One group contended that a simple yet comprehensive collection of the
observed “abnormal” behaviors of atest unit and the actual failure mechanism provided
sufficient understanding of the situation to diagnose the fault. This refers to the testing of
a component using afault tree approach (see Figure 1-2). Thetest results obtained while
following the fault tree’ s directions help narrow the possible failure mechanisms until the
actual mechanism isidentified. Thereislittle concern with connecting the failure with
the associated symptom since an established diagnostic approach exists. At times, this
approach is known as arule-based diagnostics system, since it was often implemented as

an “if-then” set of rules.



Figure 1-2. Diagnostic fault tree [14]

Figure 1-2 shows afault tree which may be used to determine the state of a given system
or component. Each node in afault tree indicates the particular type of test, t;, that should
be conducted. The goal isto determine the current system state, shown in this diagram as
an s index. The 1sand Osindicate a pass or fail result, respectively, for a particular test.
The technician systematically conducts tests to isolate the correct system state. Thisis
similar to the current Air Force maintenance process. However, as discussed previously,

CND and RTOK results undermine the fault isolation process.

The second group preferred a model-based prognostics system. This approach assumes
an underlying knowledge of the system under consideration. The methodology includes
“black box” approaches like neural nets, genetic algorithms, etc. where the user does not

require exact knowledge of the workings of the model to obtain useful results. The
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knowledge base then contributes to a fundamental understanding of the unit under test,

although at times this knowledge may be quite superficial.

The model-based system is being introduced into the Air Force maintenance process.
Various authors have published papers summarizing their effortsin thisarea. One such
example described in [22] isthe use of neural nets to devel op troubleshooting procedures
for an on-board avionics system. The particular system chosen for this study was the F-
16 Fire Control Radar (FCR) data. Only units known to be faulty were chosen for this
study. The purpose of this experiment was to use a neural net to distinguish between
three types of faulty FCRs. In this experiment, a success was defined as (correctly)
classifying a FCR unit as faulty. FCR units which were classified as faulty were called
“normal”. The other two ratings were “lemon” or “bad actor”. A “lemon” rating meant
the faulty FCR system was consistently (incorrectly) identified as a good systemin
different aircraft. A “bad actor” rating indicated the faulty FCR system was (incorrectly)
identified as good only in certain aircraft, and this identification was not necessarily
consistent within that aircraft. The neural net obtained around 80% accuracy, which was

somewhat |ess than the authors hoped to achieve.

The panelists at the workshop specified in [60] identified three major classes of models:
physical, phenomenological, and empirical models. The panel considered these classes
of models important for manufacturing and machine monitoring. Physical models, or
mathematical descriptions of a system derived from its physics, represented the first class

of models they identified. The panel felt that the most useful physical models do not
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capture every detail of the system, but capture the essential features with minimum
complexity. Secondly, they summarized phenomenological models as those which
identify certain key features of the data, such as spectral lines or modulations, which are
used to characterize the system. These models demonstrate a much looser or even only a
gualitative coupling between the actual physics of the process and the model features.
Finally, they called "empirical,” or data-driven models, those models that were based
predominantly on features extracted from training data by mathematical or statistical
methods without direct reference to the physical system. Some examples from this class

of models include Markov models, varieties of neural networks, and simulation models.

The panelists also discussed the conflict between physically based models and empirical
models. (Phenomenological models represent the middle ground between the two
approaches.) The following direct quote mirrors directly the conflict between the two
different modeling camps, as previously mentioned before from [60]:

Perhaps the greatest differences of opinion among workshop participants centered
on the topic of physical versus empirical modeling. Some participants felt that
only models well grounded in physics could lead to significant progress.
Proponents of empirical modeling argued that, while empirical modeling might
not lead to the best possible solution, it can offer substantial improvements, it can
be applied immediately in situations for which adequate physical models do not
currently exist or are too expensive or complicated to obtain, and substantial
success has been demonstrated in real applications. Perhaps grudgingly, almost
all workshop participants ultimately agreed that both physical and empirical
models have an important role to play, and that significant research is needed in
both of these directions. [60, Section 3.4.5]

The participantsin [60] did manage to agree that the two physical and empirical
modeling approaches require different approaches to model validation. Empirical models

require atraining/validation set containing sufficient examples spanning the full range of
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machines, faults, or situations. Of course, this makes it much more challenging to
develop arobust empirical model, in terms of the volume of work required. Physical
models usually have a much smaller, more restricted set of parameters, and the validity of
the model is determined with a much smaller test set. Furthermore, the intrinsic
confidencein a physical model is usually much higher sinceit is based on known
principles of physics rather than “unknown” features which empirical models identify
based on the data. Empirical models, in general, require much more rigorous, extensive,
and expensive training and validation than physical models; however, there are situations
in which the necessary quantity and quality of training and validation data is available or

can be collected more easily than devel oping an adequate physical model.

The workshop participants then commented that methods used to analyze the data from
mechanical system processes must be robust, i.e., methods which can tolerate significant
deviations from assumed or nominal signal characteristics. In general, the signal and
noise environment in these kinds of applications is highly complex, non-Gaussian, and
exhibits large variability and/or non-stationarity. The operating conditions may vary
dramatically between sensor locations. To ensure the user accepts these monitoring
methods, low false alarm rates are an absolute necessity. This places an additional

burden on the robustness of the methods.

The workshop participants identified reliable estimation of time-to-failure as one of the
greatest challenges in manufacturing and machine monitoring, and one of weakest areas

in existing methods. Most faults of interest are believed to begin with small precursor

1-12



events and to stem from a progressive (not necessarily linear) degradation of the tool or
machine component. Thus, the tracking of this degradation along with ongoing
prediction of the time-to-failureis of great importance. Asthe signa characteristics from
many types of degradations are non-monotonic, continuous monitoring which tracks the

history of the developing fault is often essential.

1.3. Motivation for a Prognostics System

The manufacturing infrastructure of most of the civilized world embodies the operation
and maintenance of machine systems. Both the commercial and government sectors have
avested interest in technical advancements which may enhance the productivity,
efficiency, or quality of these machine systems' operations. Such efforts can potentially
provide enormous cost savings and enhance industrial competitiveness. A primary
exampleisthe repair and maintenance of these systems, which represents an annual cost
of many billions of dollarsto U.S. consumers, industry, and government [60]. Although
monitoring is not cost-effective for inexpensive and non-critical machines such as
lawnmowers or fans, accurate system component condition assessment has the potential
to save large amounts of money while dramatically increasing safety and reliability of

important, complex systems.

Examples where system assessments are appropriate include power generation turbines

and critical equipment in nuclear reactors or on large oil rigs, where unscheduled failure

can result in lost revenue approaching amillion dollars per day. Failure during
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operations of aircraft engines or power train components in helicopters can often result in

loss of life aswell as the equipment [60].

The combination of rapid advances in signal processing techniques with cost-effective
digital technologies for their implementation may alleviate the system monitoring
challenges that currently exist. These advances include both improvements on existing
methods such as spectral analysis and cyclostationary signal analysis, and emerging
techniques. Among these new technologies are advances in wavelet and time-frequency
signa analysis. These technigues can be used to characterize both transient phenomena
and persistent harmonic structure. Consequently, they appear well-matched to the signals
associated with rotating machinery. Other recent developments, such as higher-order
spectral theory, could also possibly contribute in these applications. Also, higher-level
techniques such as neural networks and statistical pattern recognition and classification
provide means for combining lower-level processing into detection and categorization of
faults. Infact, preliminary research by severa groups in applying the techniques
mentioned above to a variety of related problems has demonstrated improvements over
traditional approaches[60]. These methods, with appropriately directed research, may
offer solutions for the critical technology needs in manufacturing and machine

monitoring and assessment.

Methods for machine monitoring and assessment which provide warning in time to cease
operations or schedule maintenance can provide immense value in these applications,

such as aircraft engines, aircraft electrical systems, and automobile assembly lines. Ina
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number of cases, some prognostic monitoring is routinely used or at least eagerly sought.
An excellent example isfound in some military applications. Since the cost (and security
risk) of unscheduled failure in some military applications is enormous, preventative
maintenance is routinely practiced. Future weapons systems, such as the Joint Strike
Fighter (JSF), will have these kinds of prognostic condition assessment methods designed

and built as an integral part of the system.

Prognostic condition assessment allows performance of maintenance during regularly
scheduled service rather than on an emergency basis after failure, thereby greatly
reducing the total cost of the maintenance operation. Other sources of unnecessary cost
include replacing critical components based on mean time to failure data versus actual
component operational status. Additionally, fault indicators can be unreliable, meaning
many good components are removed for maintenance or repair as a result of an incorrect
fault indication, thus wasting resources on non-existent problems. This action violates
the"if it ain't broke, don't fix it" philosophy. However, the practicality of this philosophy
is predicated on reliable system condition assessment. To accomplish the converse of the
above principle (“fix things only if they’ re broken”) requires early detection of precursors
to equipment failure. Finally, routine maintenance itself may cause failures. Some

sources state that routine maintenance is actually the dominant cause of failure [60].

A recent DoD study noted that “There does not appear to be a consistent approach in
either commercial or defense systems for functional and physical partitioning of the

hardware and software used to perform integrated diagnostics functions.” [72] This study
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defines integrated diagnostics as' ... part of the systems engineering (or reengineering)
process in which diagnostic functions are partitioned to components, both on and off the
product, to optimize economic and functional performance throughout a productslife
cycle. Optimal performance is achieved by ensuring effective communication of
information relevant to the test and diagnostic process occurs between diagnostic
functions and components and across each life cycle phase.” Successin these effortsis
essential for a successful prognostics system.

This study encompassed fourteen civilian and military programs in an attempt to
determine what current industrial and military practices were in the field of prognostics.
Besides the preceding conclusions, the study determined that a consistent approach to
diagnosticsisfeasible. In general, the study’ s approach consists of four steps. Thefirst
isto develop a consistent, information-based technical architecture for integrated
diagnostics. The second isto identify key/critical interfaces and elements of this
architecture. Thethird step isto develop arough information model for integrated
diagnostics. And the fourth step is to prepare aroadmap to advance an open system

approach to integrated diagnostics.

The DoD study aso identified key requirements for success in the development of
prognostic programs. Among these itemswere: reducing diagnostic ambiguities and
inaccuracies, correlating diagnostics with operational performance, the development of
measurable and relevant metrics, and the devel opment/maintenance of industry standards

facilitated by a domain specific organization. A significant requirement for the last item
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is the development of standardized data encapsulation and adherence to a consistent

architecture for integrating diagnostic elements.

The Air Force intention is to use prognostic systems to completely eliminate traditional
aircraft inspection and repair patterns. Currently, an aircraft goes on amission and
returns. The aircraft mechanic then uses Built In Test (BIT) results from Line
Replaceable Units (LRUSs) (available only after the aircraft lands) and pilot input (when
available) to check the aircraft for malfunctions. The malfunctioning units are identified,
removed, and sent to the maintenance depot for further diagnosis and repair. As
previously indicated, a BIT result does not always indicate the exact system fault, nor can
the mechanic always identify the problem, if one even exists. Thefirst goal of the
proposed prognostics system isto fix this diagnostics problem; the new system is
intended to be able to find and isolate aircraft faults with complete confidence. Once this
is complete, the prognostics system can report the specific aircraft faults to the
maintenance and planning/operations activities. (While the goal for a prognostics system
isto predict the occurrence of these faults, the first capability required for a prognostics
system isthe ability to identify an aircraft fault with high confidence.) Reported aircraft
faults allow the mechanic to estimate the required workload and preposition/order the
necessary maintenance equipment or replacement parts. This capability is usually
referred to as health management. Any fault and time-required-to-fix information can be
sent to the planning/operations activity to allow them to update the functional capability

of that aircraft and overall mission readiness.
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Quoting from the JSF homepage [ 76], “ Prognostics and Health Management (PHM) isa
technology maturation project focused on using advanced sensors integrated through
algorithms and intelligent models such as neural nets to monitor, predict, and manage
aircraft health. The goa of PHM isto enable what the JSF program calls Autonomic
Logistics: a maintenance and supply system wherein information on aircraft faults
detected while the aircraft is airborne is automatically downlinked to trigger the logistics
system to meet the returning aircraft with appropriate parts, maintenance personnel, and
maintenance equipment. Thiswill allow the Right maintenance action, at the Right time,

for the Right reason.”

A Nationa Science Foundation (NSF) Workshop on Signal Processing for Manufacturing
and Machine Monitoring workshop brought together 37 academic researchers and
industrial leaders and users of prognostics together to identify the pertinent signal
processing technologies and the most important industrial needs. Their findings were

disseminated to the entire community [60].

Most of the applications discussed in the NSF workshop involved either rotating or
reciprocating machinery. It thus appears quite possible that a promising prognostic
method could potentially solve awide variety of machine monitoring problems.
However, the workshop participants cautioned that requirements, signals, and data rates
can be very different for similar kinds of machinery (rotating and reciprocating
machinery), aswell as different types of machinery. Consequently, different prognostic

methods may be required based on the individual case. [60]
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The industry participants in the NSF workshop [60] made it clear that the value of
monitoring lies primarily in fault prediction. As might be expected, after-the-fact
detection of seriousfailuresis generally of little use, and does not require specialized
sensors to determine that something has gone seriously wrong. As an example, consider
thefailure of an F-16 jet engine. Since the F-16 is a single-engine aircraft, engine failure
will almost always lead to pilot gection and consequent loss of the aircraft. Itisclearin
the case of engine failure that there was a catastrophic failure—what may be unclear is
the cause of thisfailure. Specialized sensors may have been able to detect an impending

failure condition, and that detection may have been able to save the aircraft.

The primary value of monitoring comes in predicting failure in time to prevent it, and in
reliably estimating the remaining time before the component fails. (See the taxonomy of
aPHM system in the immediately following section for a complete discussion of PHM
system capabilities.) The NSF conference participants provided the following example
from the automotive industry:
...in the automotive manufacturing industry, it is a common practice to change all
of thetool facesin all of the machines at the end of a shift. The only monitoring
guestion of real interest in this context is whether atool will fail before the end of
the shift and thus cause an extremely expensive unscheduled shut-down; the exact
amount of wear on adrill bit is of little interest unlessit presages a catastrophic
failure. Research efforts should thus be more focused on prognostics and on early
detection of fault precursors. [60, Section 3.4.1]

Researchers at the Boeing Company have also devoted considerabl e thought to the

integration of on-board monitoring methods in mechanical systems, specifically military
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aircraft. They term their concept Integrated V ehicle Health Management (IVHM) [9].
Their concepts include on-board monitoring elements and ground-based logistic support
functions, which function similarly to the DoD’ s concepts of a PHM and ALS,
respectively. Thetitle of their paper includes the term “Tri-Reasoner,” and thisterm
refers to the incorporation in their system of three independent views of the vehicle's
health. These three views are: the anomaly detection and reasoning system, the
prognostic reasoning system, and the diagnostic reasoning system. Outputs from all three
systems are combined in a concept termed the “integrated model” and the “reasoner
integration manager”. This paper provides a valuable overview of the issues which must

be addressed for any prognostics system.

Anomaly Diagnasiic Prognosiic
Subsystem 1 Subsystem 1 Subsystem 1
i Amnionndy Diagmastic Pragnostic
j Subsysbem 2 —* Smhaysiem 2 Subsystem 2
+ * *
Anvormaly Dingmesiic Prognosiic
Suhsystem N Smbzystem N Subsystem N
AVAR AVDE AVPR
Anomolies [+ THagnostics Prognostics
ACT S ACK ISR TS
subsysiems subsysiems subssystems

Figure 1-3. The Tri-Reasoner IVHM system [9]
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Figure 1-3 shows the data collection scheme and reasoners for different aircraft
subsystems. Each subsystem has a dedicated set of detectors and the three independent
reasoners. Detector information is combined in a data fusion engine and passed to the
three reasoning subsystems. The subsystem integration manager takes the results from
the three reasoners and sends the appropriate information to the central integration

manager.

Each reasoner has a specific function as well. The anomaly detection algorithms
typically use the raw detector data. These detection algorithms condition the data as part
of their processing. The associated Anomaly Reasoner (AR) assesses this conditioned
information within the integrated model. The AR’ stask isto evaluate both the raw data
and extracted features for correlation and measures of evidence for fault conditions. The
main tools the AR uses are generic signal processing and statistical techniques. The
correlation and “ripple” effect of anomalies across subsystems is then examined within
the Air Vehicle Anomaly Reasoner (AVAR). The AVAR’sgoal isto correlate anomalies
that occur across subsystems and to separate the “ upstream” causes from “ downstream”

effects.

The individual diagnostic algorithms and the associated Diagnostics Reasoner (DR)
further examines the root cause of an anomaly detected by the AR. The DR isintended
to incorporate a-priori engineering knowledge and models of a component or subsystem

(i.e. model-based diagnostics).
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The Prognostic Reasoners (PR) and their associated individual prognostic algorithms are
focused on predicting the time to system failure, or the failure of a component or
components within a subsystem. Theintent isfor these predictions to be given as
distributions about a Mean Time To Failure (MTTF), thus resulting in different
acceptable risk limits based on the consequences of the particular failure mode. A PR

relies inherently on the individual prognostic algorithm results and an integrated model.

The overarching reasoner, known as the Reasoner Integration Manager’s (RIM) function
tracks and evaluates the progression of anomalies, diagnoses and prognoses across all
subsystems. Through direct agorithm interaction with the Integrated Model and
corroborating/conflicting evidence associated with the individual reasoner reports, the
RIM prioritizes the most probable fault or failure modes at the air vehicle level. The
RIM then isolates the most probable failure modes. The RIM then creates reports for the

operators, maintenance personnel and engineering support staff.

Since not all aberrant behavior patternsin anew aircraft system can be predicted before
system completion, the IVHM will need to be flexible in its capability to diagnose system
problems. Similarly, the techniques and technologies used for observing the aircraft's
behavior, and for reasoning about these observations, will continuously improve during
an aircraft's operationa life. To ensure these capabilities for new diagnoses and new
methodol ogies can be included in the current on-board system, the IVHM architecture
incorporates embedded |earning components. Additionally, the underlying diagnostic

procedures and reasoners will be coded in amodular format to allow for easy exchange
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of software modules as new diagnostic procedures are developed and new programmatic

tools comeinto existence. The overall scheme is shown in Figure 1-4 below:
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Figure 1-4. The Tri-Reasoner Integrated V ehicle Health Management system [9]

Figure 1-4 shows the overall IVHM tri-reasoner architecture. Aspreviously explained,
there are three independent views of the vehicle's health and a reasoner integration

manager (RIM) (the box at the top center of Figure 1-4). Each aircraft subsystem has a
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dedicated reasoner suite composed of the three models and the associated sensors or fault
indicators. Thisinformation flows to the RIM for overall diagnostic/prognostic
assessment and reporting to appropriate entities. The tri-reasoner algorithms are generic
and decoupled from any domain knowledge to enable the use of algorithms that have

withstood a wide variety of applications thus increasing the confidence in their reliability.

1.4 Research Goals

There are three main research goals for this dissertation. Thefirst isto summarize the
major areas of research currently being performed in the field of prognostics. The second
goal isto create a mathematical architecture for the implementation of a prognostics
system. This architecture includes a sensor selection agorithm and methodol ogies for
combining sensor information. The third goal is to demonstrate the utility of this

algorithm by solving some notional examples.

1.5 Dissertation Organization

This dissertation is organized into five chapters. This chapter has provided a general
overview of the prognostics problem. The second chapter provides aliterature review of
prognostic method papers. Chapter three provides an overview of some mathematical
techniques which are commonly used in the analysis of prognostic data. The fourth
chapter presents a notional methodology for defining and solving a prognostics problem.
Chapter fiveillustrates this methodol ogy using a sample problem. Chapter six
summarizes the contributions of this work and provides recommendations for further

research.
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[I. Literature Review

2.1 Background

The purpose of this chapter isto summarize the history of aircraft diagnostics/prognostics
development, provide aPHM system taxonomy, and summarize the major areas of
research being performed today. The first section summarizes the historical development
of diagnostic/prognostic efforts, and describes a notional PHM system. The second
section describes some technol ogies that may be used in a prognostics application. The
third section describes the main diagnostic approaches used for aircraft maintenance.

The fourth section describes the main modeling approaches used for
diagnostic/prognostic applications. The last section summarizes the information provided

in this chapter.

2.1.1 History

The materia for the history section is primarily drawn from Atlas, et al [9].

Early generation aircraft relied on manual detection and isolation of problems on the
ground. These aircraft were composed of systems that were analog and independent of
one another. Only a schematic, voltmeter, and reports from the pilot were required to

diagnose problems.

Asthese aircraft systems became more complicated, Built In Test Equipment (BITE) was

introduced in the aircraft to warn the pilots of critical failuresin important components.



However, the aircraft mechanic did not use BITE. The mechanic still relied on the

schematics, voltmeter, and pilot reports.

In time, aircraft design engineers realized that the output of the fault detection monitors
could be made available to support mechanic troubleshooting (in the form of analog
BITE reports). With these monitors, the concept of “fault balls” was born, and was
incorporated on some aircraft systems as early asthe 1940s. Fault balls are indications,
normally on the front of a Line Replaceable Unit (LRU), that a fault has been detected -
they were originally mechanical, but later were replaced with small Light Emitting
Diodes (LED’s). In many cases, the LRU front panel contained a test switch to command
the LRU to test itself in amanner similar to how ground support equipment could test the
LRU. This capability also became known as Built In Test Equipment (BITE). This
capability began to decrease the need for some of the ground support equipment
previously used to test airplane equipment. Depending on the system, the fault balls
could effectively point the mechanic in the right direction, but schematics and voltmeters
were still needed for most conditions. The BITE results of this erawas often confusing,
unreliable, and difficult to use. Mechanics often distrusted it. Despite problems, many
systems on airplanes such as the Boeing 707, 727, early 737/747, McDonnell Douglas

DC-8, DC-9, and DC-10's employed this type of maintenance design.

In the 1970s, some of the increasingly complex aircraft systems began to use computers
to perform their fault diagnostic calculations. Thiswas called digital BITE. With these

computers came the ability to display fault detection and isolation information in digital



form, normally via numeric codes, on the front panel of the LRU. Thedigital logic could
produce codes that could better isolate the cause of the fault. The digital display offered
the capability to display many different codes to identify each type of fault that was
detected. These codes often pointed to some description in amanual that could be used
to isolate and correct the fault. Many systems on the Boeing 757/767, Airbus A300/310,

McDonnell Douglas DC-10, and Lockheed L-1011 still employ this approach.

As the number of systems grew, use of separate front panel displays to maintain the
systems became less effective, particularly since each LRU often used a different
technique to display its fault data. In addition, some of the systems had become
increasingly integrated with each other, due to the introduction of digital data buses, such
asthe ARINC 429. Autopilot systems were among the first to use digital data buses and
depend on sensor data provided by other systems. Consequently, these autopilot systems
have been aleading cause of requiring more sophisticated maintenance systems. The
more sophisticated monitoring was necessary to meet the integrity and certification
requirements of its automatic landing function. For example, the 767 Maintenance
Control and Display Panel integrated the maintenance functions of many related systems.
In 1986, the ARINC 604 digital data bus defined a Central Fault Display System (CFDYS)
to incorporate the maintenance indications for potentialy all of the systems on the
airplaneinto one display. This approach enabled more consistent access to maintenance
data across systems, a more comprehensive display function than each of the systems
could provide individually, and saved the cost of implementing front panel displays on

many of the associated system LRUSs. In this approach, the CFDS is used to select the



aircraft system for which the aircraft mechanic desires maintenance data, and then the
CFDS routes the maintenance data from that aircraft system to the display. This
approach was employed on some of the systems on later Boeing 737s, and most systems

on the Airbus A320/330/340, and McDonnell Douglas MD11.

As systems became more complex and integrated, asingle airplane fault could cause
fault indications for many systems, even when displayed using the CFDS. The mechanic
had little help in determining which fault indication identified the source fault, and which
were merely effects of the source fault. To solve this problem and related issues, the
ARINC 624 was developed in the early 1990's. This system provides a more integrated
mai ntenance system that can consolidate the fault indications from multiple systems, and
provide additional functionality to support maintenance. Minimal ground support
equipment is needed to test airplane systems, as most of this capability isincluded in the
ARINC 624. For example, most factory functional tests of airplane systems on the
Boeing 747-400 and 777 airplanes consist of little more than execution of selected tests,

monitoring fault displays, and monitoring certain bus data using the ARINC 624.

The main goal in fault isolation on the airplane has always been to identify the LRU
causing afault. Thisallows the aircraft mechanic to confidently remove the failed
component and correct the fault condition. Although in many casesthisis possible, there
are many other cases where diagnosis and repair is not possible without the addition of
sensors and/or wiring. The addition of sensors and/or wiring increases the number of

components that can fail, and thus sometimes can worsen the maintenance effort, since



the aircraft mechanic must now distinguish between failed aircraft systems and failed
aircraft sensors and/or wiring. In addition, these diagnostic sensors and/or wires add cost

and weight to the airplane.

As aresult, current fault isolation techniques for aircraft cannot produce the perfect
answer (the single faulty LRU) in al cases. Thisisa practical matter, since the wholesale
integration of aircraft systemsisreally the reason why perfect diagnosis in modern
aircraft isimpossible, given current techniques. However, today, it can point the
mechanic to asmall group of LRUsin amost all cases. Since the technical limit of
diagnostic systems has been reached, aircraft engineers are looking into prognostic
systems for assistance with diagnostic issues. The accurate prediction of when faults on

an aircraft can be expected to occur isthe next big step.

2.1.2 Fault Taxonomy

Any given system has a multitude of unigue characteristics due to myriad sources of
variability. These sources include manufacturing (both across and within manufacturers),
reaction to ambient environmental conditions, system part replacement and repair, etc. In
addition, variability appears in the performance of the system’s components (e.g.
mechanical, electrical, and hydraulic). A system’s age also modifies these unique
characteristics. In the presence of this variability, on-board aircraft health management
systems must be able to accurately distinguish between “normal” operation and the

presence of afault.



This section presents ataxonomy of system behaviors between which a prognostics
system must be able to distinguish. These behaviors are defined as: nominal, incipient
fault, intermittent fault, active fault, system fault, sensor fault, and novel fault. The term
“anomalous event” is used to collectively include the six kinds of faults. An anomalous
event indicates a system that either does not have all available functionality or is not

operating within its intended design constraints.

The nominal behavior of a system isthat behavior that exists when all intended
functionality is available and is operating within the constraints of the intended design at
agiven point intime. The system can be functioning as intended at two different points
in time, even though the characteristics of individual system components and sensor
operating characteristics may have changed. As an example, the Concorde fuselage
expands about 12 inchesin length during a flight across the Atlantic. However, the

aircraft does not lose functionality as a consequence of this expansion.

Anincipient failure exists on a system or component that is still operational, but is
trending towards a failure condition. An example would be a hydraulics systemsthat is
losing pressure. The hydraulic system may still be fully functional, but is trending

towards a state of non-functionality.

Anintermittent fault occurs infrequently, yet repeatedly. The system with an intermittent
fault has full functionality when the fault is not present. An example of thiskind of fault

isaloose electrical connection that causes sporadic short circuits in the affected system.



An active fault is system behavior outside the range of intended functionality. An
example is exceeding the revolutions per minute limit of a passenger car engine—thisis
an operation of the engine above itsintended functionality. Active faults do not
necessarily indicate aloss in system functionality, though a system may quickly

transition from an active fault to another kind of fault.

A system fault is when a system component or subcomponent is no longer functional.
Examples include an engine that no longer rotates or a hydraulics system that has lost

sufficient fluid/pressure to properly operate system components.

A sensor fault occurs when a sensor within a system component or subcomponent

1) reports a fault condition when none exists, or 2) does not report a fault condition when
one does exist. Of these two conditions, the second may be more detectable on an
attended system since an operator will likely notice aloss of functionality despite the lack
of afault report. Thefirst condition, also called afalse alarm, islikely to be the most
troublesome since measures may be taken to correct the non-existent fault which disable
other correctly functioning systems. For example, afalse alarm of an aircraft engine fire
may lead the pilot to gject from the aircraft, resulting in destruction of the entire aircraft,

and possible injury or death to the pilot.

A novdl fault is an unknown anomalous condition. Thistype of failure event does not
result in nominal system behavior, nor can it classified in any of the known fault

conditions. It is something completely new in the system’s behavior. Thistype of fault
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may adversely affect the performance of the system, or it may not. Itisthe only kind of
fault which may not be of concern to an operator. An example isthe development of a
rattle in an aircraft throttle lever. If it does not affect the pilot’s control of the engine

speed, it would be classified as anovel fault, and is not likely to concern the pilot.

2.1.3 PHM System Taxonomy

The main goal of prognostics, and a PHM system, isto accurately predict future failure of
system components in order to replace these components before they actually fail,
avoiding shutdown and potential damage to the system. The ultimate benefit is enhanced
performance at lower cost, since components are not needlessly replaced before their life
cycle ends, and components do not fail while still integrated in the system. Components
left to fail while still in the system can shut the system down and potentialy lead to

damage to other, otherwise healthy, system components.

A PHM system accomplishes accurate detection through real-time on-board diagnostics
and the performance of prognostic functions (forecasting the useful remaining life of
component parts) with reasonable lead times, eliminating traditional inspection and repair
patterns. Rather than fixing a component after it hasfailed, it can be replaced when
prognostics indicate that probable time to failure (or probability of component failure) is

within some critical threshold.
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Figure2-1. A notional prognostics system

Figure 2-1 shows the flow of data through a notional prognostics system. Aircraft sensor
datais routed to a diagnostics data collection terminal. This datais sent to an expert
interface which employs a prognostics framework to analyze the diagnostics sensor data.
The expert interface then provides areport on the health of the aircraft. This report
includes alist of components with estimated time to fail, alist of components that have
failed, required maintenance parts and actions, and an assessment of aircraft

readi ness/time before becoming fully operational again.

A prognostics system needs afully functional diagnostics system. The diagnostics

system must accurately report appropriate data from system components up to an
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appropriate level (based on the system). This may be done in either of two ways. passive

or active monitoring.

A passive monitoring system observes the current behavior of the system components.
For example, this can be a sensor (ensemble) that monitors the current coming from a
motor, or a sensor (ensemble) monitoring airflow from an engine. The majority of
sensors used in aircraft today are passive. Asan example, an on-board BIT unitisa

passive monitoring system, since it observes and records component performance.

An active monitoring system interacts in some way with a system component of interest
(even while the system isin operation). It may send a known signal of some kind into the
system component of interest. It may also collect a sample from the system component,
such asengine fluid. Asan example, an externa sensor (ensemble) is attached to the
component, and this sensor (ensemble) sends a signal through the component at alevel
that minimally affects the component’ s operation. The component’ s reaction to this
signal is captured through either the same or a different sensor (ensemble). A BIT
capability to conduct a component self-test is an active monitoring capability. This

captured datais then sent to an expert interface for analysis.

A prognostics system also requires an expert interface with appropriately high levels of
sensitivity and specificity. In this context, sensitivity means the prognostics system
correctly identifies when afault or degradation is present. Specificity means the

prognostics system correctly identifies when afault or degradation is not present. The
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incoming diagnostic data must be correctly classified as indicative of either correct
system function, system degradation, or a system fault. This expert interface may be just
for a single system component, meaning there very likely are many of these interfaces
within one system. The expert interface may also be an overarching system which
combines the results of al the diagnostics inputs from all the system components. The

design will depend upon the mechanical system.

A prognostics system should also provide system component health predictions based on
the incoming diagnostic data. There are many different kinds of predictions that a
prognostics system may produce. These predictions include assessments of future
component/system events and probabilities associated with both current and future
component/system events. The following paragraphs discuss the main predictive outputs

of aPHM system.

The expert interface of a prognostics system should provide alevel of confidence
associated with its assessment of fault/non-fault for a particular system component.
Another key prediction capability is the time remaining until component/system failure.
The prognostics system may also be able to characterize this measurement using two
confidence level measurements and a system-level measurement. The first confidence
level measurement is associated with the predicted time remaining until component
failure. Inturn, thisleads to a system-level measurement of the probability that this
component actually fails before the “ predicted time remaining” elapses. These predictive

measurements allow for the replacement of components before they actually fail,
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preventing catastrophic consequences in systems where component failure can lead to the
failure of many previously healthy components. Related operational measures are
degraded system status information and a future time frame health status for critical

systems, such as aircraft.

The above prediction capabilities may then be extended to the prediction of a degraded
component/system condition. The definition of “degraded” is unique to the component
or system under consideration. The expert interface should have athird classification
status of degraded, in addition to indicating fault and non-fault status. Again, the
prognostics system may then use confidence level measurements similar to those
previously described. A “degraded” predictive measurement allows for a more precise
(perhaps) replacement of parts that are about to fail —it may alow for increasing the

functional lifetime of the part before it is removed to prevent system failure.

Another measure is the probability of failure of a component/system within the next cycle
of operation of the mechanical component/system. As an example, the goal could be to
determine the probability of failure of an aircraft engine during its next overseas flight, or
during its two-week hiatus in alocation with very limited access to maintenance parts.
Again, alevel of confidence in theimmediately preceding probability definitionisa

desirable measurement.

Any predictive information can be obtained from a prognostics system and used for

automatic maintenance planning, parts orders, mission planning, etc. This automated
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logistics concept is called the Autonomic Logistics System (ALS). The goa of PHM and
ALSisto provide acomplete overal system health monitoring capability, and
consegquent maintenance and planning management capabilities. Eventually, sufficiently
redundant mechanical systems may be designed that can reconfigure themselves based on
predicted failures. However, much basic research remains to be done before a complete

overall system health monitoring capability becomes areality.

2.1.4 Description of an ALS System

A main component of aPHM systemisan ALS. An ALSisintended to be areal-time,
intelligent global logistics network dedicated to the support of the Joint Strike Fighter
(JSF). An ALSisintended to identify and communicate appropriate maintenance,

supply, engineering, safety, and training actions to support and enhance mission
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execution. Figure 2-2 shows anotional ALS concept.
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Figure 2-2. Autonomic Logistics System (ALS) model [77]
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Figure 2-2 shows how aircraft sensor data, once processed by a PHM system onboard an
aircraft, provides alist of degraded and failed components to appropriate maintenance
and planning activities. Thisinformation provides an up-to-date picture of the aircraft
health, required maintenance actions and parts, and updated mission planning schedules.
The aircraft mechanic’s Interactive Electronic Technical Manual (IETM) is also updated

with information about the current state of the aircraft’ s systems.

The autonomic term in the ALS acronym refers to an intended automatic trigger of
appropriate actions within the system (subject to human controller inputs), based on
current mission status and requirements. The autonomic support concept is similar to the
human autonomic nervous system that directs the human body to perform heartbeat,
breathing, and other functions with minimal human intervention. The logistics parallel is
asystem that is stimulated, prior to an aircraft’ s return, to ready appropriate tools and

spare parts.

The ALS, using PHM input, automatically determines that certain parts are reaching the
end of their service life and ought to be replaced, and reports this information before the
aircraft lands. Thisisin contrast to the traditional method of diagnosing aircraft
component failures upon the return of the aircraft, and then readying the appropriate tools
and spare parts. Also, in present systems, maintainers rely on often ambiguous problem
descriptions from the pilots. The autonomic system, in contrast, relies on an integrated
report from aircraft diagnostics that minimizes incorrect maintenance actions and

consequently reduces maintenance support requirements. The ultimate intent of the ALS
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and PHM working in concert is to reduce maintenance manpower, logistics machinery,
and increase sortie rates. Most of the discussion that follows focuses on the PHM aspects
of the system, rather than the autonomic support concepts, as PHM capabilities are

necessary to realize ALS goals.

Su [88] divides how people have thought about prognostics into two different concepts:
component/part and system. The concept used to model prognostics has influenced the
way the prognostics problem is addressed. According to Su, prognostics have
traditionally been regarded as a component/part problem. Thisled to the adoption of
failure statistics and analysis methods to identify and replace failed components. Some
examples of the sensors employed include time/stress measurement devices, vibration
monitoring, and system sensors (oil, water, etc.). Some examples of the analysis methods
investigated include neural networks, genetic algorithms, and trend analysis. These
techniques are usually system specific—they are applied piecemeal to the particular
problem under consideration and combined in a unique fashion to provide results which
are meaningful only for that particular piece of equipment. However, when viewed as a
system problem, the prognostic approach necessarily becomes much more involved.
Systems such as satellites operate in environments with little or no human interaction.
Ideally, there would exist acommon set of sensors and techniques which could be
applied to all of these types of systems. Su calls this concept an overall Prognostics
Framework, a generic, tailorable software tool that uses model-based reasoning to
integrate embedded test and sensor data into diagnostic and prognostic systems. The

ultimate goal isto produce a generic tool capable of being applied to all different kinds of
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warfighting systems. Thiswould lead to the integration of all warfighting systemsinto a

single architecture for the future battl efiel d.

AUTONOMIC 2010 BATTLEFIELD
SUPPORT CONCEPT FOR THE FUTURE

Figure 2-3. Future military systems support concept [77]

Figure 2-3 illustrates the single architecture concept. PHM and ALS are extended from
just aircraft systemsto all systems used in awarfighting scenario. All the PHM and
resulting logistics information from the involved warfighting platformsis collected viaa
distributed information system, and delivered to an enhanced logistics system. This
enhanced |ogistics system handles all the required logistics actions, allowing for joint

logistics interoperability and the notional improvements in logistics performance shown

in Figure 2-3.
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2.1.5 Technical Feasibility

The main goal of a PHM system is to understand and predict when components (and
possibly consequent systems) will fail. To accomplish this, a PHM system will likely use
artificia intelligence or other methods to predict failure of system components.
Traditional sensor-based diagnostics recognize the functional and failure modes of the
aircraft and its components. A PHM system extends this approach, using modelsto

predict the onset of failure modes.

MODEL BASED PHM

Sensors
Eddy Current Sensors

Microsensors
Wireless MEMS

Algorithms Reasoners

Gabor Transforms Rule Basod
8 Fast Fourier Transforms Maodeal Basod
Discrete Fourier Transforms Case Based

Wavelets Neural Networks

Fuzzy Logic
Genetic Algorithms

Figure 2-4. Model of PHM system [77]
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Figure 2-4 shows the collection of raw data from the sensors, the transformation of this
datainto a meaningful output via algorithms, and the extraction of key features from the
output via some reasoners. The focusison using the mathematical models of artificial
intelligence, such as neural nets and fuzzy logic, to extract key features of the operation
of the aircraft system. Individual sensor datais used in these computations, but al
features are fused before a PHM system reports afailure. Thisfusion action isintended
to minimize the number of incorrect diagnoses the system produces, reducing
unnecessary maintenance actions and costs. Research with intelligent diagnostic systems
has shown that accurate measurements of appropriate variables can be used to reliably

predict future failure [11], [12].
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Figure 2-5. Spectra lines from afaulty item (left) and a correctly functioning item
(right) (Magnitude in dB vs. frequency; wavelet decomposition can detect the difference)

[49]

Figure 2-5 shows an example of raw data taken from accel erometers attached to the aft

transmission of a helicopter. According to the authors, exhaustive tests indicate there are

2-18



no obvious features in this raw data which can be used to classify it as afault or no-fault
class. So, the authors used a wavelet decomposition on the data in an attempt to extract
useful features. They discovered the features useful for classification are non-stationary,
confirming the wavelet decomposition as a very suitable choice. (The features were
certain frequency bands.) For fault classification, the wavelet coefficients are computed
asafunction of time. A simple average and standard deviation are computed for each
data channel in a given time window, and the results are compared to a set of nominal

values for fault classification.

Other research programs seem to indicate that a PHM system is, in fact, an attainable
goal. The UK Ministry of Defense used a neural net model to accurately predict
structural life used on the basis of recorded flight data[10]. Also, DARPA participated
in aresearch project which showed an engine control sensor suite could be operated with

4 sensors instead of 7 [32].

2.2 Technologies/Applications

According to the NSF workshop [60] participants, the most prominent method (by far)
for manufacturing and machine monitoring is spectral, or "FFT" (fast Fourier transform)
analysis. Cepstral variants are often employed to increase robustness or to reduce the

variability of the FFT estimates.

A cepstrum is the Fourier transform of the log magnitude spectrum:

FRt(In( | FRt(window . signal) | )
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and was coined in a 1963 paper by Bogert, et al [17]. (A “window signal” isthe signal
that appears on a given graph—it occursin the “window” that the graph shows.) They
observed that the logarithm of the power spectrum of asignal containing an echo has an
additive periodic component due to the echo, and thus the inverse Fourier transform of
the logarithm of the power spectrum should exhibit a peak at the echo delay. They called
this function the cepstrum, interchanging letters in the word spectrum because "in
genera, we find ourselves operating on the frequency side in ways customary on the time
sideand vice versa. (sic)" Thisterm has come to be accepted terminology for thisinverse

Fourier transform of the logarithm of the power spectrum of asignal [66].

The unusual terminology surrounding the computation of the cepstrum was introduced in
the original article by Bogert et al [17], in which various terms from signal processing
(spectrum, frequency, analysis, phase) were rearranged into anagrams (cepstrum,
guefrency, alanysis, saphe). The authors did this to highlight this unusual treatment of
frequency domain data. The frequency datawastreated asif it were time domain datain
the transformation of it to a data set which had units of seconds across its x-axis values

(the quefrencies), but which indicated variations in the frequency spectrum.

The cepstrum is commonly used in voice recognition applications and
rotating/reciprocating machinery analysis. As an example of the former, the consonants
of speech are usually transient and of short-burst character. However, vowel sounds (and
tones sung by a singer) are formed by repetitive emission of pulsesinto the vocal tract

[62]. Thisleadsto the use of the cepstrum to analyze these pulses. Similarly, rotating
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machinery exhibits a repetitive emission of pulses, and this suggests the same analysis
technique. Asaresult, the concept of the cepstrum has become a fundamental part of the

theory of systems for processing signals that have been combined by convolution [62].

[Freguency Response Mag | Caod]-
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Figure 2-6. Frequency response of around horn without reflection [7]
Figure 2-6 shows a graph of horn signal strength (dB) vs. frequency. The center to upper

right hand corner portion of the graph is relatively smooth, lacking a definite periodic

componen.
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Figure 2-7. Power cepstrum plot of the data from Figure 2-6 [7]

Figure 2-7 shows the cepstrum transformation of data from figure 2-6. Since thereisno

periodic component associated with this signal, the cepstrum shows very little power.

[Freqguencuy Response Hag | LCoud]~

Figure 2-8. Frequency response of the same horn when reflection isincluded (notice the
ripplesin the curve) [7]
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Figure 2-8 shows a graph of frequency response of the same horn, but with areflected
component. The reflection of the signal can be seen in the upper center to right hand
corner of the graph (the oscillations). It isthisfeature that the cepstrum excelsin

detecting.

[Fouer Cepstrum: Rel. Gain=1.00 ] Caud]
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Figure 2-9. Power cepstrum plot of the data from Figure 2-8 [7]

Figure 2-9 shows the cepstrum transformation of the datafrom Figure 2-8. With the
addition of the repetitive signal component, the cepstrum shows a dramatic increase in
power. Thistype of unambiguous signal processing is particularly useful for
diagnostic/prognostic applications, provided the presence/absence of repetitive emissions

isthe sole determinant of proper functioning.
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For machinery analysis, usually a number of spectral lines associated with harmonics of
the various rotating frequencies of the machinery areidentified and their levels are
compared to pre-selected thresholds. Spectral analysis has the advantages of a natural
and direct association with the characteristics of rotating machinery, relatively simple
interpretation, a certain robustness to noise, propagation path, and other sources of
distortion, backed by alarge body of theory and experience. "Trending," in which the
evolution of parameters over timeistracked, is also commonly used; for example, the
rate of increase of the magnitude of a spectral line may be estimated or even used to

predict the timeto failure.

The NSF workshop participants noted that many types of sensors which measure a great
variety of physical phenomena are used for both manufacturing and machine monitoring.
Mechanical characteristics such as vibration, torque, displacement, shaft velocity, strain
and pressure are measured by many different types of sensors, ranging from
accelerometers to strain gauges to non-contact displacement pickups using eddy currents.
Electrical characteristics such as motor current, capacitance, and RF emissions are often
used. Acoustic emissions (AE) play an increasingly important role in manufacturing
applications and are under investigation for certain machine monitoring tasks. Visual,
infrared, ultrasonic, and X-ray inspection for non-destructive evaluation (NDE) play
major rolesin certain applications. In spite of this vast array of sensor technologies, there
appears to be a constant need for new, more, and better sensors. Many types of sensors

have significant limitations, such as restricted bandwidth, nonlinear behavior, or a
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susceptibility to saturation. The Air Force goal isto minimize the number of sensors

since these are going in smaller JSF aircraft.

Montauk [26] contends that sensors were integrated into electronics systems to
accomplish four tasks. The first two tasks related to engine operation and wear. The first
task determines when an aircraft’ s engine performance has deteriorated to the point
where the fuel burn changes to something other than its optimal level. At that point, the
fuel burn isreadjusted to a proper level, instead of |etting the condition degrade until the
engines needed an overhaul. The second task determines engine damage, hopefully
before it impacts the operational schedule or significant consequential damage occurs.
The third task assesses how realistic the operational procedures arein order to improve
operational safety and enhance profitability. The fourth task is most relevant to this

study, asit concerns locating and rectifying faults in complex avionics systems.

Thisfinal task evolved into two different types of systems. The first concerned itself
with determining how long an aircraft can operate in a particular condition, and the
second provided data on which components need replacement. Chu [22] refersto the
first system as an Aircraft Integrated Data System (AIDS). The primary goa of AIDSis
preventative maintenance, and as such is not usually used to troubleshoot an aircraft,
although it may help an experienced user in pinpointing some problems. He refersto the
second system as a Central Maintenance System (CMS), and this system is the one
intended to allow a mechanic to easily identify faulty avionics units. The exact methods

by which either system makesiit diagnoses are not mentioned in the article. The CMS
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would also trigger the Autonomic Logistics System to provide appropriate spare parts.
Thistrigger and subsequent parts delivery would allow the aircraft repairs to begin as
soon as it lands, which improves operational efficiency, and for commercia airlines,

profitability.

Moving on to more specific applications, Su [88] proposes an overarching software
solution to the prognostics problem. The software would be capable of handling data
inputs from any sensor on any system. These inputs would be tied in with alogistics
infrastructure to provide the “ Autonomic Logistics System” capability. A primary
requirement would be the collection and analysis of system datain real-time or near real-
time. Faults would be identified using a“Diagnostician” consisting of algorithms that,
among other things, would correlate al possible faults to al possible system components.
The prognostic part of the software uses predictive techniques which include item
specific mechanisms such as neural networks. It also includeslinear signal degradation
measures, historical conclusions and statistics, and engineering correlations. These
correlations are presumed to be the correspondence between sensor indications and
resulting system faults. Su does not provide any estimate of when this proposed software

solution would be functional .

A number of authors address the issue of the human/machine interface. Dussdlt, et al
[29] focus on the development of management tools to support diagnostic decision
making. The current Air Force Integrated Diagnostics policy requires that all faults,

either known or expected, be detectable and unambiguously isolated within a system.
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This policy does not specify the amount of automation required to be present for system
diagnostics. Consequently, a diagnostic system may consist of automatic and manual
testing procedures. The paper describes an approach the Air Force is taking to consider
what the most appropriate mix of diagnostic measures may be. Similar concerns are

expressed by Dean [27].

Thesen and Beringer [91] take a dlightly different approach. They use a hierarchical
model which represents the user and system as two independent control systems.
Communication between these two “independent systems’ takes place when each
operates with appropriate expectations about the control strategy used by the other. The
human must be in-the-loop with the diagnostic system to ensure the automatic
recommendations the system makes are correctly understood, and that type | and 11 errors
are not made with regard to the system recommendations (type | - ignoring correct

automatic decisions; type Il - acting on decisions that are incorrect).

Eilbert and Christensen [30] note that search procedures designed to detect system faults

may discern apparent patterns when none, in fact, actually exist. The following figure

provides an example of their viewpoint.
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Figure 2-10. Hypothetical bivariate data set [30]

Figure 2-10 shows a data set with compl ete discrimination ability between both data
classes using either a parabolic or circular separator (dashed lines). The optimal linear
discriminator misclassifies three events. Because of the small sample size, it isnot clear
that a quadratic discriminant is preferable, or indeed correct. The implication is that
using a search procedure to determine the cause of a particular sensor’ s report may
continue the string of problems (RTOK and CND) already present in the current
diagnostic system. This effect may be mitigated to some extent if the system can provide

alevel of confidence associated with its diagnosis.

2.3 Diagnostic applications

A diagnostic approach using decision treesis presented in [14]. Determining the
sequence of steps required to reach a diagnostic conclusion (using a decision tree) has
been shown to be NP-hard [41]. Biasizzo, et al [14] represent the fault-free operation of
a system and the presence of a system fault as two distinct system states. The diagnostic

procedure is intended to discover the actual system state using tests which provide
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information about system components. The sequence in which the tests are conducted
and how information from previous testsis incorporated into the test sequencing
procedure is the subject of this paper. Determining this sequence using the minimum

number of steps (minimum cost) is known as the test sequencing problem.

Much research has been devoted to this problem. The conventional approach has been to

use symmetrical tests. A symmetrical test has only two possible outcomes. Biasizzo, et

al [14], use asymmetrical tests. An asymmetrical test has more than two possible

outcomes.
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Figure2-11. Anexample of an asymmetrical test pattern to determine system state for

four components [ 14]

Figure 2-11 shows a typical asymmetric fault tree used determine which of four system

components are faulty. The tree shows the optimal diagnostic test pattern when four tests
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are available to test the functionality of the four components. The four components are
represented by the four digitsin the ovalsin the diagram. Thefirst digit corresponds to

the first component, etc. The s with subscript indicates which system state the test

indicates.
Table2-1. Test schematic [14]
Component
Test 1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 1 0 1 0
4 0 1 0 1

Table 2-1 shows the test schematic for Figure 2.11. Thefirst test, t;, determines the
status of components 1 and 3, t, determines the status of components 2 and 4, t3
determines the status of component 3, and t, determines the status of component 4.
Although not explained in the article, it seems tests 1 and 2 cannot determine which of
the components they are testing are okay. If the result isfaulty, both components are
faulty, otherwise one of the two componentsisokay. Itisalso not explicitly stated
whether 1 represents afault or normal behavior, but using 1 to represent afault is
implied. It also seems that component 4 is assumed to be faulty given the starting state of
the system. Based on these assumptions, state s12 can be determined just by running test
1. Since component 4 is known to be faulty, running test 1 would show components 1

and 3 are faulty, and hence state s12 where components 1, 3, and 4 are faulty is reached.
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The ultimate goa is the generation of an optimal diagnostic tree (the order in which the
test are conducted based on previous test results). Biasizzo, et al [14] employ a
Sequential Diagnosis Tool using graph search agorithms on existing decision trees for
particular systems. They use a heuristic evaluation function to guide the graph search.
The heuristic is an estimate of the remaining cost in the diagnosis procedure from a
particular node. They contend the “proof of the admissibility” of thistechniqueis given

in[64].

The conventional test sequencing problem is defined as follows [64]:

1. Theset of system states S={ s, Sy,...,Sn} Where o denotes the fault-free state of the
system and s, (1 < i < m) denotes one of m potential faulty states of the system. In
practice, the latter refers to afaulty functional part of the system or to a faulty system

function.

2. The set of probabilities P ={p(s), p(S1),-.-.p(Sn)}, where p(s) isthe a-priori
probability of the system being in the state 5 before the diagnostic procedure is started

(i.e., the probability of afault occurrence described by the system state).

3. The set of availabletests T = {to, t1,...,tm} and the associated test costs ¢ = { cq, C1,..,Cm}

which can be measured in terms of time, manpower requirements, or other economic

factors.
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4. The binary test matrix D composed of binary column vectors, D = [d], 1<) <n,
where d; = [d;], dij 0 {0, 1}, 1 <i <m, represents diagnostic capabilities of test ;. dj = 1

denotes that test t; failsif the system isin state s, and dj; = O otherwise.

This diagnostic procedure is a sequence of tests to isolate any system state, presented as a
decisiontree. The problemisto find a diagnostic procedure for a given system at
minimal cost. Since adiagnostic procedureis easily described by AND trees, the authors

use AND/OR graph search agorithms to determine the best diagnostic procedure.

The preceding definition can be modified to generalize to asymmetrical and multi-valued

tests by using the following step.

4. The set of all possible outcomes L of thetestst O T: R ={rg, r1,...,f.}
The test matrix D composed of matrices, D = [D®], 0< k < L, where D® isthe test
matrix associated with the response r,. Each D® is composed of column vectors:
DM =[d®],1<j<n (2-1)
The vector of diagnostic inference for the test t; with outcome ry is
d®=1d;¥,0<d®¥<1,0<i<m (2-2)
where d; is the conditional probability that the outcome of test t; isry if the system isin

state s.
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Biasizzo, et al [14] demonstrate their technique using examples from other published
papers. In general, systems with strongly interconnected functional blocks and few

internal test points are more difficult to diagnose.
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Figure 2-12. Electrical schematic [14]
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Figure 2-13. Theresulting test tree based on the schematic of Figure 2-12 [14]
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The electrical schematic in Figure 2-12 and resulting decision tree in Figure 2-13 show
how their method works. In the electrical schematic in Figure 2-12, the M1, M2 etc. and
the Al, A2 etc. labelsindicate atest point. These test points are shown in Figure 2-13 as
tests, for example, the node at the top of the tree tests point M3. These test points are
transcribed into the optimal symmetric decision tree which would then be used to check
the electrical component (shown in the schematic) for faults (non-uniform costs have
previously been assigned to each test). Thistreeisoptimal becauseit incursthe least

average cost for afault diagnosis among all possible trees for this problem.

A similar approach to [14] isfound in Bearse [11]. Bearse describes a Diagnostic
Inference Model which generates anew fault tree based on original information, allowing
for asymmetric outcomes. Other similar approaches include Sheppard [80] and Dill [28].
Sheppard [80] uses case-based reasoning (a historical database) to generate information
flow models. Case-based reasoning assumes that similar mechanical system faults
produce similar symptoms. A case-based reasoning system starts with a case history,
consisting of anumber of historical cases. The symptoms and correct diagnosis/repair
action are known for each historical case. When afault occursin the mechanical system,
the symptoms are compared to the recorded historical symptoms. The “nearest neighbor”
to the new case isidentified, and the diagnosis/repair action used in the historical caseis
applied to the new case. The resulting system combines the case data with model based

systems. Efficient, accurate diagnostic processes are developed from those models.
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Dill [28] applies pass/fail limits to discriminate between operable and faulty systems. At
times, it can be difficult to know whether the results of a particular test should be
classified asapass or failure. Ideally, pass/fail limits should be set in regions away from
expected values observed in functional components and failed components (which

presumes a significant gap between the two).

Ben-Basset, et al [13] point out issues with just using fault trees. Fault trees tend to cover
only the most typical problems for a given system. However, covering these typical
problems usually requires avery large fault tree. If anew problem occurs, or the repair
recommendation isincorrect, there is no further help available from the tree. If the
system which the fault tree coversis updated, even in aminor way, wholesale changes
arerequired to every fault tree to keep things current. Better solutions to diagnostic
problems are obtained if different methods (fault trees, physical models, case based

reasoning, etc.) are used in concert to provide a diagnosis.
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Figure 2-14. A case-based reasoning model [1]
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Figure 2-14 illustrates atypical case-based model. A case-based reasoning system
assumes that similar symptoms consistently result from identified problems. The generd
knowledge block contains the case history, consisting of a number of historical cases.
The symptoms and correct solution are known for each historical case. When the next
problem occurs, the symptoms are compared to symptoms recorded in the historical
cases. The “nearest neighbor” to the new case isidentified, and the solution used in the
historical caseis applied to the new case. If changes to the solution are required for this
new case, the old solution is revised, and then this new learned case is added to the

general knowledge repository.

Authors have also addressed the subject of combining model-based systems with decision
tree structures. Ben-Basset, et al [12] present away in which both types of systems are
combined to provide a diagnostic expert system. They contend it is more cost-effective,
in most real-life applications, to apply case-based reasoning after the system already has
some basic initial knowledge of the system domain and the units requiring testing. Their
system combines both kinds of reasoning in a module which integrates system knowledge

from 4 different sources.
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Figure 2-15. Knowledge integration scheme for case-based reasoning [12]

(UUT — Unit Under Test)

Figure 2-15 shows how dataflowsin the expert system [12]. Universal domain
knowledge refers to universal knowledge on diagnostics considerations and processes.
Initial unit under test (UUT) knowledge refersto the specifics about the UUT in terms of
its structure, function, and relationship between symptoms and faults. Historical UUT
experience represents past experiences with thisUUT. Thisinformation isintegrated to
form the basis for determining the status of the UUT. The diagnostic agorithms include
model-based reasoning, which matches symptoms with probable faults. The model-based

reasoning portion is used most often. The case-based reasoning portion compares this
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symptom set with previous symptom sets to determine alikely candidate solution. This
method is used almost exclusively for new cases, or for cases for which the model-based
portion has low confidence in its diagnosis (these two sets of cases should overlap

considerably, if not completely).

The main argument against the exclusive use of model-based reasoning is that there are
times when there is insufficient knowledge or time to build a model to support efficient
and accurate diagnosis. However, apartial model of the system/unit under test is aways
available. If thereisan insufficient number of casesto allow for efficient diagnosis,
additional cases can be produced either by simulation or actual experience, and the
consequent performance of the model will improve with time. Ultimately, the inference
engine of the model-based reasoning function will make most of the diagnostic decisions,
and the case-based function will only be used in very unusual cases. Thiswill allow for
high levels of accuracy in quick diagnoses. Combining the two disciplinesinto one

model yields the following benefits according to the graphs in Figures 2-16 through 2-18.

Performance;  Model-Based Only
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Figure 2-16. Model-based reasoning [12]
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Figure 2-17. Case-Based reasoning [12]
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Figure 2-18. Combined reasoning [12]

Of particular interest are Figures 2-16 and 2-17. Case-based reasoning never reaches the
level of performance attained by model-based reasoning, while it takes model-based
reasoning alonger period of time to reach an acceptable performance level.
Unfortunately, the article does not describe the situations the authors analyzed which led
to these conclusions. The only statement is these graphs are the product of the authors

analysis of “many real-life situations’. The graphs appear to be completely notional .
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2.4 Modeling Applications

The most common method for detecting aircraft faults seemsto be the application of
neural nets. Chu [22] describes the use of this method in conjunction with a statistical
classifier (this example was briefly described in section 2.2). Chu’s study determines the
feasibility of using neural networks to develop troubleshooting procedures for an on-
board avionics system, the F-16 Fire Control Radar (FCR) data. The purpose of Chu’s
experiment was to use a neural net to distinguish between three types of faulty FCRs.
The neural network had three layers (input, hidden, and output) and was constructed
using radial basis functions with a constant standard deviation, which determined the

width of the Gaussian functions used in construction of the neural net.

There are two major classes of neural network models. The first uses nodes (units) which
compute a non-linear function (usually sigmoid) of the product of an input vector and a
weight vector. The other class of neural networks uses the distance between the input
vector and another generalized vector (usually the average of the input vectors) for the
computation at the node (unit). Radial basis functions (RBF) are used as activation

functions in this second class of neural networks.
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Figure 2-19. Typica RBF network

Figure 2-19 shows a typical RBF network. Each input vector has N inputs, indexed 1 to
n, which are combined with M basis functions, indexed 1 toj. There are K output nodes,

indexed from 1 to k. More details about RBFs are provided in Chapter 3.

The RBF structure was chosen because a complex classification problem in ahigh
dimensional space, such asthisone, ismore likely to be linearly separable than onein a
lower dimensional space [24]. As previoudly stated in Chu’s paper, an output from the
neural net classified the faulty avionics system (which all of these were) as either a
“lemon”, “bad actor”, or “normal”. The neural net had 137 neurons in the input layer,
465 neuronsin the hidden layer, and 7 neuronsin the output layer. The 137 inputs
correspond to which of 137 different possible faults a particular radar set exhibited (by
implication, the 137 different kinds of faults was not an exhaustive listing). Each radar

set consists of 7 Line Replaceable Units (LRUSs), and the output vector represented which
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1 of the 7 LRUs was faulty. The neural net was trained using fault data from actual
systems, and using the “leave one out” approach. This approach trains the neural net
using al but one of the input exemplars (466 1x137 input vectorsin this study), which is
then used to test the accuracy of the neural network. The processis repeated for all the
inputs, at a constant standard deviation value. The value for the standard deviation was
then varied to determine the optimal standard deviation value (the value which resulted in
the most correct classifications). A cost function was also developed to penalize the
misclassification of each unit. The optimal value resulted in a correct classification of the
faulty LRU 80% of the time. Chu hoped this value could be improved to 90% if more
datawas available. A similar study was conducted in 1988 [56] which showed that using

neura netsto classify faults was feasible.

Keller, et al [44] used neural network and fuzzy logic technologies to create models of
F/A-18 subsystem/component health. These tools were developed as part of an internal
research effort at Boeing to develop an Advanced Onboard Diagnostic System (AODYS)
along with supporting technol ogies to reduce CND results which the authors claim were
the most frequently occurring result for many subsystems. AODS was envisaged asa
collection of software modules which implements subsystem/component health
diagnostics, and an integrating system level element which combines the results of the

health diagnostics.
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Figure 2-20. AODStop level dataflow [44]

Figure 2-20 shows the data flow through the AODS system. The subsystem modules (of
which there are many) process real-time subsystem parameters and provide a continuous
assessment of system health. The subsystem module reports health status in the form of
an incident type, time of the incident, the health status indicator for that type, the
frequency/duration of the incident, and alevel of confidence. Additional aircraft data
which may support later ground processing by the system module or ground testing is
also included. The synchronization module captures appropriate information about the
status of different system components along with the strength of correlation to the
health/fault incident. The system diagnostic assessor then processes the resulting health
status record. This assessor is arule-based system that processes the health status reports.

It also maintains a record of previous health status messages. Thisrecord of health status
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messages is the basis for maintenance recommendations, which are generated either in

real-time or offline.
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Figure 2-21. Generic subsystem diagnostic module [44]

Figure 2-21 shows a notional subsystem diagnostic module. A neural net or fuzzy model

is used to generate an estimate of expected subsystem behavior, and this estimateis

compared to actual subsystem outputs. Additional models are used to determine the

degree of health of a particular aspect of a subsystem.

The Boeing researchers used both neural nets and fuzzy logic models in the development

of thisintegrating system level element. The neural nets were trained using test cases

while the fuzzy logic portion was developed manually (fuzzy logic model development

using test casesis still in progress according to the paper).
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Test results indicated neural networks provided greater resolution than the fuzzy
comparison and detection models, but did not adequately incorporate adjustments based
on expert human knowledge, which affected the accuracy of the results. Consequently,
the neural networks were used for functional modeling and to map fault patternsto a
system health indication. Fuzzy logic models were used in determining event correlation
and to develop system health monitoring models which could be adjusted based on expert
judgment and intervention. The authors claim this system is a viable architecture;

however, no actual test results were provided to support this claim.

Widyantoro, et al [96] present an approach using RBF neural networks to detect the
presence of air leaksin an engine. Air leaksin aturbine engine occur when ahole
appearsin arecuperator passage. Thisisaplace where compressed fresh air is pre-
heated by exhaust gases before entering the combustion chamber. Potentially, these leaks
can result in along starting procedure, low power, and other problems [93]. The authors
[96] began by matching the effects of the problem with the appropriate values from the
detection sensors. Three types of engines were selected for diagnosis. engines with no air
leaks (normal), engines with small air leaks, and engines with large air leaks. There were
32 sensor readings available from the diagnostic instrument for each engine. The most
effective discriminator signals were identified across the 3 engine types. Signals with
patterns that were very similar between the engine types, or that were very irregular
between the engine types, were not used. Only four signal patterns made the final cut, as

shown below in Figure 2-22.
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Figure 2-22. Graphs of the 4 signals vs time for the 3 engine conditions [96]

Figure 2-22 shows each of the 4 signals considered the best discriminators between
healthy and faulty engines. The graph plots show signal strength versustime. The

following paragraphs describe each signal type in detail.

The ignition exciter signals indicate that power has been applied to the ignition exciter to
ignite the gas-fuel mixture in a combustion chamber. The power is turned off when the
mixture is successfully ignited. A faulty engine (always) takes alonger time to start up

than a healthy engine.

The second indicator signal is the speed of the high-pressure compressor of the engine.

Among other things, this signal is used for fuel scheduling, and is continuously
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monitored during startup. The graph shows that the presence of an engine crack reduces
the acceleration of the compressor, and consequently it takes alonger time for the

compressor to reach the operationa point.

The power turbine speed signal is used to infer (indirectly) the presence of engine
thermodynamic inefficiency. In anormal engine, the energy from combusted gases
quickly increases the power turbine speed. This acceleration is reduced when an engine

crack exists.

The fourth signal isthe inlet temperature of the power turbine. According to the authors,
it is commonly known that an increased inlet temperature is an indicator of an unhealthy
engine, but the reason for this relationship isunclear. The graph showsadelay in therise
in signal strength for an engine with alarge air leak, and then a somewhat stronger

temperature signal at the end of the time the signal's were recorded.

The neural network was trained using atemplate (generic representative) of each kind of

signal for each kind of engine (12 templatesin al). The following diagrams show the

neura network structure:
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Figures 2-23 through 2-25 show the neural network architecture used in this study.
Figure 2-23 shows the input scheme. The input consists of the normalized form of the
signalsreading. The number of input unitsiss x m, where sis the number of sampled

signals and mis the number of discriminator signals. In this example, s= 80 and m = 4.

The activation function in each hidden unit is a Gaussian:

@ = exp(-Pli - W;P/0%) (2-3)
where |; is avector of time series signals from receptive field i, and ;  is the average
prototype vector of signal typei that is known to have problem category j. (Therearei =
4 receptive fields, shown in Figure 2-23. There arej = 3 problem categories,

corresponding to engines with none, small, and large air leaks.)
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Figure 2-24 shows how the input data feeds forward to produce a prediction of being
from one of the three types of engines. This prediction is based on the linear combination

of the hidden units' activation values, given by:

Ok = Z\Nijk% (2-4)
i

where w; j x is the connection weight between hidden unitsi,j and output unit k. The
purpose of thislayer isto perform approximation of the input signalsto the prototype
vectors. Since thereis only onetraining signal for each signal type, setting wi;x = 1/m
forj =k and w;;k = 0forj # K, thetraining data can be perfectly predicted. However, this
may cause problems for the neural net when the input data are different from the training
signals. To avoid this difficulty, the authors generated six additional data points from the
original twelve data points, and used an iterative training procedure that changes the
weights to minimize the difference between the target outputs and the network outputs.

How this training procedure changed the weights was unspecified.

The network was tested using 8 signals generated by interpolation from the original
training data, ensuring that none of the training values were replicated in this test set.
The authors computed atarget value for each test signal, although how thiswas doneis
not explained in the paper. Using the rule that the largest predicted probability indicates
the problem, the neural network correctly identified al 8 problems, as shown in the

following table:
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Table 2-2. Table showing expected and actual experimental results [96]

Signal Number Output Target Vaue Prediction

Normal 0.1250 0.2666

1 Small 0.8750 0.9085
Large 0.0000 0.1123

Normal 0.0000 0.0330

2 Small 0.1250 0.1099
Large 0.8750 0.8646

Normal 0.8750 0.8455

3 Small 0.1250 0.3515
Large 0.0000 0.0686

Normal 0.6250 0.5605

4 Small 0.3750 0.4828
Large 0.0000 0.0823

Normal 0.3750 0.3907

5 Small 0.6250 0.6519
Large 0.0000 0.0970

Normal 0.0000 0.1854

6 Small 0.8750 0.7431
Large 0.1250 0.1520

Normal 0.0000 0.1091

7 Small 0.6250 0.4048
Large 0.3750 0.2615

Normal 0.0000 0.0584

8 Small 0.3750 0.1977
Large 0.6250 0.5023

Table 2-2 shows the results from the experiment, indicating the neural net performed

correctly in each test case.

NASA scientists are al'so working on using models to interpret sensor data, though with a
dightly different emphasis[4]. Their goal isto reproduce sensor readings that are
missed, either by the recording unit, or because of a sensor malfunction. The objective of
their High Reliability Engine Control (HERC) program isto develop and demonstrate

advanced Fault Detection, Identification, and Accommodation (FDIA) algorithms that
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will ultimately increase aircraft safety and improve engine reliability. Thefocusis
validation of the sensors which report fault conditions. Validation, here means ensuring
appropriate operation of the sensors which are monitoring the machine components, not
the actual machine component itself. The authors contend that a complex dynamic
system usually uses redundant sensors for measuring critical variables within the machine
system. Thisisdone to ensure reliable operation and to improve measurement accuracy.
Since some of these measurements can be very critical to judging the health of the
system, a redundant sensor set isimplemented to ensure the measurement goal is met.
This redundant sensor set makes it possible to validate measured data, to identify a sensor
failure, and to recover the failed measurement. The authors claim this redundancy can

also be met through the implementation of an auto-associative neural network.

The diagram in figure 2-26 shows the test schematic they used to develop and test their

neural net, which is shown in figure 2-28:

Commanded Actu PC

—_— ———
w| Controller ——m—-— System -
Validated
Sensor Sensor
Readings "ﬂm Readings

Validation

Figure 2-26. Test schematic [4]

The diagram in figure 2-27 shows the measurements taken based on the model shown in

Figure 2-26.
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The data from these sensors were input into the neural network, providing the

aforementioned sensor redundancy without the implementation of an additional set of

SENSOrs.

The neural network (Figure 2-28) was a feed-forward network architecture with outputs

that reproduce the network inputs.
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Figure 2-28. Feed-forward neural network design [4]
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The diagram in Figure 2-29 depicts the purpose of each network component in more

detail:

Inputs

1 1
2 2
3 3

Mappig D-mapping
layer layer

Figure 2-29. Purpose of each neural network layer [4]

As shown above, the left half isthe mapping layer and the right half is the de-mapping
layer. The bottle-neck layer captures the reduced order (principal components)
representation of the data. In the mapping layer, the redundant sensor information is
compressed, mixed and reorganized in the first part of the network. In the compression
process, the sensor information is encoded into a significantly smaller representation.
The compressed information is then used to regenerate the original redundant data at the
output. Because of the information mixture, if a sensor fails, other redundant sensor data
can still provide enough information to regenerate a good estimate for the faulty
measurement. Because of its parallel-processing capability, the neural network can
process rea -time data for time-critical applications. Also, because it learns by example,

the neural network does not require a detailed system model for sensor validation asis
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often required. The neural network isthen trained to learn the relationships between the
inputs (sensors) such that if one sensor is bad, an estimate for that sensor can be found
from the remaining valid sensors. The authors present a simple example of three
temperature sensors. |If the bottle-neck layer is a single node, then the mapping layer
performs aweighted average of these measurements. Faulty information in one sensor is
thus reduced by athird in the aggregation of all the sensor measurements, resulting in a

measurement closer to the actual value.

The preceding exampl e trand ates into the following general algorithm for a generic data
collection scheme. During system operation, if a sensor signal is significantly different
from the corresponding estimated value, the sensor signal is considered incorrect and a
failled sensor isidentified. The failed sensor reading isisolated (eliminated from
consideration) by feeding the neural network its previous estimated value. Theisolation
of afailed sensor enables the neural network to detect subsequent sensor failures, since

only properly working sensors are now considered for future measurements.

The automotive industry has attempted to apply sophisticated modeling techniques to
diagnostics issues, because of the growing complexity of electronic control systemsin
today’ s vehicles [55]. Traditional diagnostic methods are less capable of correct
diagnosisin complex systems due to the large volume of information exchanged between
the vehicle' s processor and the system under CPU control. Marko, et al [55], designed a
data acquisition system for this high volume of information and used neural nets to

analyze it since automobile trouble shooting is essentially a classification problem. The
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data consists of inputs and outputs of the vehicle's electronic control system, known as
the electronic engine control computer (EECC). This dataisamixture of high speed
analog and digital signals which regulate the operation of the engine according to a
proprietary strategy. (Exactly what these signals were was not specified.) This strategy
optimizes engine performance while adhering to federal emissions regulations. For [56],
engine performance data was collected for an engineinitially in neutral, and then slowly
accelerated. “Certain computational algorithms’ (again, unspecified) were performed to

give graphs similar to the one shown in Figure 2-30.
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Figure 2-30. Datafrom avehicle with no faults [55]

Figure 2-30 shows the data obtained from a vehicle with no faults. Although not

explained in the paper, the interpretation of the elements of the top graph seemsfairly
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self-explanatory, as each element is plotted against time. The bottom part of the graph is
lessintuitive, but it seems that each square curve corresponds to one of the terms listed
just above the first square curve. Other than SPARK, the third curve down, what the
other curves are measuring is unclear.
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Figure 2-31. Datafrom avehicle where spark plug number four is misfiring [55]

Figure 2-31 shows data from a vehicle where a spark plug is misfiring. In thiscurve, the
difference in the ARC and NACCEL curves from the previous figure are clearly seen.
No other differences are readily observable, even in the SPARK square curve. Thisisan
example of a problem whose distinguishing features are clearly contained in only 2 data
streams, and the features are aradical departure from fault free operation. Because of

these attributes, this problem is easy for the fault detection algorithm to detect.
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Traditiona diagnosis methods require human expertise to formulate rules to guide the
service technician through an analysis of the above problem graph to an appropriate
conclusion. However, developing these rules is very time-consuming and requires expert
understanding of the system operation, failure modes, and how those modes appear in
graphs like the one above. The resulting diagnostic approach is still not satisfactory,
since the number of resulting rulesis quite large, and anything less than arigorous
analysis may result in amisdiagnosis. Furthermore, the number of vehicle-power train
combinationsis quite large, and each combination undergoes relatively constant
modifications to improve performance and reliability. This situation motivates the

research into finding better, faster, more accurate diagnosis techniques.

To test their fault detection algorithm, Marko et al introduced 26 different faults into the
engine and observed the engine' s operating characteristics at afast idle. These faults
included a plugged injector, broken manifold pressure sensor, and a shorted spark plug
(no comprehensive list was provided). Each fault data set had 52 elements corresponding
to the collected information (again, unspecified). 16 sets of datawere collected for each
of the 26 different faults. An equal number of sets was collected for testing the neural

networks after training.

Marko et al [14] have found from previous experience (no work cited) that single
component failures are much easier to find than multiple failures. In[14], asingle fault
mode is an unstated assumption, given the composition of the fault data training sets

(only onefault at atime). Additionally, it is easier to detect faults if the signature of the
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fault is contained in 2 or 3 of the 52 collected signals, rather than consisting of a number

of small anomalies spread out over alarger number of signals.

The results presented in [14] show 100% accuracy on classification of their validation set
after training the network. The network quickly trained to an accuracy rate of ~95%, but
it required a number of modifications to the neural net to achieve 100% accuracy. These
modifications included the use of continuous weight updating (not batch learning), and
reducing the number of hidden nodes to less than the number of input nodes. Thisfinal
accuracy result was matched by their best human performer, but at afar slower speed.
This approach was then adapted to run on avehiclein real-time, with similar results.
Since the system is passively observing the signals passing between the EECC and the
engine, this system may be ultimately capable of providing real-time diagnostics on any

vehicle.

Marko et al updated their work [55] with a paper addressing the issue of which classifier
to use, based on accuracy and expected degree of generalization [54]. In this paper,
generalization is defined as a network which correctly classifies an input pattern that was
not among the input patterns it was trained on. The neural network is assumed to have
been trained on each problem category that may arise in the course of operation of an
automobile engine. Of course, the input patterns themselves do not necessarily
completely span the space of actual data. Hence, the network must have some capability
to generalize by extrapolation—identify vectors near but not within regions occupied by

the training patterns.
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The data set for analysis remains the same as before—the data stream between the EECC
and the engine. The authors chose a specific portion of the data, the portion that the
EECC observes when the engine isin operation. 144 patterns were collected, containing
7 kinds of faults. For this data, unlike their previous data set, expert technicians could
neither specify an agorithm for classification nor separate the data using graphical

visualization.

A variety of different classifiers were tested on this data, including multi-layer feed-
forward networks, nearest neighbor classifiers, and binary trees. A binary treeis
generaly applied to atwo-class separation problem. All the datais gathered at the base
of the tree (the root node). The data are divided into different groups termed branches,
two branches at atime. If al the data along a branch belong to the same class, no further
separation is possible. Otherwise, an additional node may be formed, leading to
additional separation. A branch may also be terminated if it isjudged that further
separation islikely to lead to poor generaization. A node that separates into two
branchesisaterminal node. This processis carried out until all branches terminate. In
thisinstance, the authors used the Fisher linear discriminant to separate the data. They
then chose a particular classto separate from the rest of the data. Once that class was
separated, another class was chosen for separation. The classes were chosen “shrewdly”,

so it only took afew branches before a chosen class was completely separated.

A binary tree classifier is considered similar to afeed-forward network. However, the

binary tree approach uses far fewer weights, and correspondingly, generates decision
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boundaries that are ssimpler than a feed-forward network. Training and execution of
binary tree classifiers tend to be much faster than that of back-propagation and well-

suited for time-critical applications.

Thelr results for this data showed multi-layer feed forward neural networks to be
generaly equal in classification power to the binary tree method (~90%). The nearest
neighbor classifier only had an accuracy rate of 80%. In their conclusions, however, the
authors declined to select a best classification method, stating rather that substantially

more data is required before conclusions regarding the best classifier are possible.

Besides commercial industry, branches of the armed forces have aso been developing
prognostic based tools [37], [43], [50], [82], [83]. The following section reviews some of

these efforts.

Smith, et al [82], [83] discuss the inclusion of a PHM system on-board a Joint Strike
Fighter (JSF) aircraft. The JSF program has four pillars; lethality, survivability,
supportability and affordability. Smith et al contend a PHM system is one of the keysto
meeting two of these pillars; providing a supportable and affordable aircraft. Asthe
performance of the fighter begins to degrade, the on-board PHM system is expected to
sense these changes and inform the aircraft maintainers of an impending system failure.
This system will also inform the maintainers of the actions required to prepare the fighter
for its next sortie. The objective isto keep the sortie generation rate high through the use

of support systems which allow a proactive response to the needs of the aircraft. This
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capability should replace the current brute force approach to maintenance with amore

affordable and reliable approach.

These objectives will be accomplished through a Joint Distributed Information System
[82]. According to Smith et al, this concept is at the heart of the JSF information system.
Aswell as providing internal aircraft datato the maintainers for their proactive action, it
is aso intended to provide multi-organizational information system operability. This
capability will allow for more efficient planning of maintenance actions based on the
availability of spare parts, a historical overview of failures allowing for more fighter-
specific maintenance actions, and better sortie planning based on the knowledge of when
fighters will return from maintenance to operational readiness. This architectureis

expected to supply the right information to the right people at the right time.

In arelated work [83], Smith, et al discuss the development of a Advanced Strike
Integrated Diagnostics (ASID) project to develop a program for a“fully integrated
systems solution to diagnostics’. This program was intended to develop an integrated
diagnostic architecture leading to an affordable JSF platform, and to evaluate and
recommend integrated diagnostic design tools and techniques. In this context, the term
“architecture” means the structure of components, their interrelationships, and the
principles and guidelines governing their design and evolution over time. Theintent is

for this architecture to span the entire life cycle of the diagnostic/PHM system.
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The ASID program led to an Integrated Diagnostics (ID) Concept Plan which identified
the ten best technology maturation programs. These programs were identified as crucial
to the success of an integrated diagnostics/prognostics system. They include developing
astructural health monitoring system and a engine monitoring system for prognostics
health management. Other programs include developing an information delivery system,
creating avirtual test bench (for testing new concepts), and maximizing the use of
commercia software in the PHM system. Once completed, these technologies are

expected to provide superior weapon system supportability.

Schaefer and Haas [ 75] present a summary of efforts to include Health and Usage
Monitoring Systems (HUMYS) on the Army and Navy helicopter fleets. The goal of this
endeavor isto reduce operationa and support costs by transitioning from a time-based
mai ntenance philosophy to a condition-based maintenance philosophy that relies on
prognostic techniques to assess the health of aircraft components. Schaefer and Haas
present a high fidelity simulation model to analyze the effect of HUMS technology on the

existing maintenance process and to provide a means to optimize its use.

Their ssimulation model represents flight-line level maintenance in a discrete-event
simulation. The model includes mission generation modules, amodule to simulate in-
flight failures, a number of maintenance modules, and a cost module for tracking the
amount of resources required for the maintenance activities. The focus of thisflight-line
maintenance model is to examine how different maintenance policy philosophies impact

operational readiness.
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Although the Schaefer and Haas indicate their work is not fully complete, their initial
simulation results show that specifying a certain range of performance for a helicopter
system, and scheduling maintenance when that system is no longer performing in that
range, can minimize maintenance costs. Additionally, their model shows that thereisa
limit to the utility of advanced diagnostics for certain helicopter components which affect
other components. For example, it may be possible to specify helicopter operation
procedures to produce low vibration levels to defer the maintenance action of balancing
the main helicopter rotor, but the requirement for low vibration levels will affect the
operational capability of the helicopter. In this case, specifying a particular performance

range for minimization of maintenance activity is counter-productive.

The Office of Naval Research (ONR) has been devel oping a distributed shipboard system
for diagnostics and prognostics on systems with rotating equipment [37]. Their system,
termed a Machinery Prognostics/Diagnostics System (MPROS), is composed of two
parts. Thefirst isadata collection system, which collects data from vibration,
temperature, pressure, electric current, and other (unspecified) sensors. The collection
system aso includeslocal intelligent signal processing devices called Data Concentrators
(DC). The second part is a centrally located subsystem called the “Prognostics,
Diagnostics, Monitoring Engine” [sic], or PDME. This system combines the results from
the DCsto provide the best possible diagnosis.

The specific shipboard application is centrifugal chillers (air-conditioning systems).

These systems combine severa rotating machinery equipment types to form a complex
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system with many different parameters available for monitoring. The parametersthat are
chosen for monitoring are combined along with diagnostic and prognostic algorithmsinto
the MPROS. Since the MPROS can diagnose each component part of this system, as
well as the whole system, it should be readily extendable to monitor any pump, motor, or
compressor in the naval fleet. Additionally, there are alarge number of facilities, both

military and industrial, that use centrifugal chiller-based air-conditioning systems.
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Figure 2-32. MPROS system [37]
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In Figure 2-32, the sensors connected to the machinery are shown at the lower left. The
sensors for a particular system capture the failure characteristics of a specific failure
mode. There are two basic kinds of sensor data. The first kind includes |ow-bandwidth
measurements, such as those from process variables, temperature, pressure, etc. Failure
modes associated with this category usually develop slowly and consequently, data can
be sampled at low rates without losing the pattern of a particular trend. The authors
believe thiskind of failureis best detected with a fuzzy-based rule set as an expert
system. The second kind includes high-bandwidth measurements, such as vibrations and
electrical current data. Thistype of data requires a much higher sampling rate in order to
capture enough information to appropriately categorize the failure signature. These kinds
of faults are best detected with a feature extractor/neural net classifier. The ONR used

this second approach for this particular problem.

This data feeds into the left hand box , the DC (Data Concentrator), whose components
are shown. Of most interest is the Database and the four data processing algorithms. The
database stores information configuration, machinery configuration, test schedules, test
measurements, diagnostic results, and condition reports. The DLI expert system
(PredictDLI is acompany with a Navy contract to develop these kinds of algorithms) isa
vibration expert system adapted to run in a continuous mode. It detects departures from
steady-state norms. The SBFR (State Based Feature Recognition) algorithm facilitates
recognition of time-correlated events in multiple data streams. The wavelet neural
network also analyzes vibration data, but it focuses on drawing inferences from transitory

phenomena rather than steady-state data. The fuzzy logic agorithm draws diagnostic and
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prognostic conclusions from non-vibrational data. Since these algorithms overlap in
some areas, there is the potential for conflicting diagnoses (as well as reinforcing ones).
The authors use Knowledge Fusion (KF) to combine the conclusions from the algorithms.
The authors consider KF to be the coordination of reports from a number of sources, as

opposed to the correlation of single platform data (similar to the function of the DC).

The PDME (Prognostics, Diagnostics, Monitoring Engine) contains the KF component,
aswell asresident algorithms for performing PDME functions and a couple other
features. The DCOM and user interfaces interact with the DC DCOM element and the
user, as one might expect (DCOM stands for Distributed Component Object Model, a
communications standard developed by Microsoft). The OO Ship Model, or Object
Oriented Ship Model, represents parts of the ship, such as the compressor, chiller, deck,
machinery space, etc. It models the physical, mechanical, and energy characteristics of
the machinery being monitored. It also stores diagnostic conclusions from the four

algorithms and the KF component.

The system has been tested successfully in the laboratory, and the authors are preparing

toinstall it on ahospital ship in San Diego [37].

The Army is also developing prognostic tools[43]. Their main emphasisisthe M1A1
Abrams tank, and the diagnosis of fuel flow problemsin the tank’s gas turbine engine.
The system collects data available in the turbine engine startup sequence to diagnose

three types of faults in the main metering fuel valve: bouncing valve, sticking valve (later
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referred to as fuel flow error), or stuck valve. These faults prevent fuel from being
delivered to the tank’ s engine in accordance with a fuel flow algorithm, which sets fuel
flow based on a number of different criteria, including the current demand on the engine,

available air from the intake, etc.

Fuel flow faults can be detected in the signals from the Electronic Control Unit’'s (ECU)
diagnostic connector. The ECU is an analog computer whose fuel flow algorithm s
dependent upon throttle position, ambient air and turbine inlet temperatures, and
compressor and turbine speeds. These voltage signals reflect the status of the Electro-
Mechanica Fuel System (EMFS), which responds to ECU commands. The EMFSisa
fuel metering device that delivers fuel to the engine under the management of the ECU.
Each of the variables previously mentioned (throttle position, ambient air and turbine
inlet temperatures, and compressor and turbine speeds) has a representative voltage signa

available for collection and consequent analysis.

Theinitial data sets were obtained by starting the tank engine and recording the
appropriate sensor data. Most of these data sets were fault-free, since the fuel flow
problem apparently rarely occurs upon startup. Because accurately training a neural net
on aparticular problem requires a number of cases exhibiting the actual phenomena
associated with the problem, the authors [43] seeded faults into the startup procedure.
Additionally, they “translated” some data sets from fault-free starts to faulty starts

(methodology unspecified).
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Figure 2-34. Bouncing valve tank start data[43]
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Figure 2-36. Fuel flow error tank start data[43]

Figures 2-33 through 2-36 show some of data that was collected. Itisrelatively easy to
discern based on the collected and processed signatures what kind of fault is present. The
curves include 3 different sensor streams, although the sensor streams are not

individually identified. Itislikely that they are graphs of the variables previously
mentioned (throttle position, ambient air and turbine inlet temperatures, and compressor

and turbine speeds).

The neural net tool used for the fuel valve diagnostic was the NeuroWindows Artificial
Neural Network (ANN) simulator software. Visual Basic was employed as a
user/computer interface development tool. Using the data sets as described above, they
trained the neural network to distinguish between the three fault conditions. However,
simply using the sensor values as the one input to asimple feedforward ANN does not
capture al the information available in the time domain. To capture time dependent
information, the input to the ANN included first derivatives of sensor values and first
derivatives of differences between pairs of sensor values. How these first derivatives

were calculated is not mentioned in the paper.
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Based on the analysis by the ANN system, TEDANN (Turbine Engine Diagnostics
Artificial Neural Network) determines which fuel flow voltage readings are out of
tolerance with normal operationa parameters. Upon this determination, TEDANN will
display either afault status message identifying the EMFS faults or a message stating that

the EMFSisfully operational.

Table 2-3. TEDANN'’s diagnostic performance (severity) [43]

Diagnosis (across)/ Bouncing valve Stuck valve Fuel flow error
Actua Conditions
(below)
Bouncing valve 1.00 0.00 0.00
Stuck valve 0.00 0.98 0.00
Fuel flow error 0.00 0.00 1.00
No fault 0.03 0.02 0.08

Table 2-3 results indicate TEDANN does remarkably well in diagnosing the individual
faults. The entriesin Table 2-3 are the neura network’s assessment of how severe the
fault is, using the following scale:

0.00-0.25 - no fault (normal)

0.26-0.75 - warning (fault)

0.76-1.00 - critical (fault)
The entriesin each cell are an average over several data sets (variation is not specified).
The table does show a completely accurate diagnosis based on the severity scales—all
actual fault conditions would be detected and correctly diagnosed, and all actual non-fault

conditions would be diagnosed as such, since the resulting severity figures are less than

2-71




the 0.25 threshold. The authors are continuing to refine their study, and hope to extend it

to other tank components and Army systems.

Logan [50] describes a prognostics system currently in use. This system is assisting the
Navy reduce both manning and maintenance costs. To that end, the Navy is
implementing ship designs which support minimum crew sizes and minimum
mai ntenance requirements, while maintaining mission readiness goals [50]. A magjor
component of this strategy is the development and implementation of predictive
maintenance (prognostic) systems. These systems can be exploited for monitoring,
control, and condition assessment of critical shipboard systems. Artificial intelligence
methods will provide the necessary assessment capabilities. These capabilitiesinclude
the abilities to:

* Beinitialy deployed using existing experiential and empirical knowledge;

* Function properly with missing, noisy, or corrupted measurement data;

» Compute and assess uncertainty measures following valid statistical techniques,

» Infer measurements that are either too costly or too difficult to acquire.

Logan et al [50] believe artificial neural networks are particularly well-suited to
diagnostic applications. They contend that neural nets can classify novel input patterns
not included in training data, and that neural nets are tolerant of noisy or incomplete input
patterns. In addition, system state recognition is usually performed inrea time. Of

course, the critical aspect of deploying neural networksis access to training data that
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adequately represents the input/output state space the network is likely to encounter in the

specific application.

There are problems with accumulating neural network training data. Since good

mai ntenance practices tend to prevent failures from occurring, actual failure datais
extremely scarce and very expensive to collect and/or create. The fault coverage of
actual failure dataistypically very narrow and it may require many years of data
collection to obtain an adequate data set for neural network training. Unlessthe datais
collected under controlled or known conditions, historical failure data may be incomplete
or include unreliable measurement values. Additionally, the datawill be insufficient to
provide coverage for all possible machinery faults which might occur. If this data used
for training the neural network, the network’ s fault classification performance may be
adversely affected. Also, typical monitoring systems do not store data at adequate
sampling rates to ensure that sufficient data are recorded to accurately classify the failure

event, aswell as events leading to the actual failure.

Logan et al [50] recommend an alternative, hybrid approach. The engineering
knowledge of domain experts can be used to construct a diagnostic knowledge base
suitable for neural network training. This can be accomplished by conducting a
comprehensive Failure Mode And Effects Analysis (FMEA) on the appropriate
mechanical system. A FMEA provides a comprehensive listing of probable failure
modes of al “maor” mechanical system components, where “major” is defined as the

level of detall appropriate for that particular system. Thisinformation is obtained from
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interviews with engineering crews and maintenance personnel. It also includes
information on all available sensor measurements, and identifies the fault/symptom

relationships required for an effective monitoring program.

The neura network of choice for this application is a probabilistic neural network (PNN).
It has a number of favorable characteristics[96], [2]. PNN training is effectively
instantaneous, as opposed to the slow error convergence training of other neural network
techniques. Besides the reduced effort for system commissioning, instantaneous training
is extremely attractive for allowing training data set modifications and PNN retraining in
thefield by end-users. The PNN outputs the fault classification probabilities, meaning it
iseasy for the end user to interpret the result. PNNs have strong generalization
capabilities (as do other neural networks) which can handle situations in which one or
more input variables are missing or are corrupted. This makes the method attractive for
real-world applications where sensor failures occur on aregular basis, such asin a
shipboard environment. Also, PNNs can beinitially deployed using existing experiential

and empirical knowledge and can be readily updated as new knowledge is acquired.

A PNN is designed to estimate the class conditional probability density functions

according to the following equation:

— 1 19 _(X_XN)T(X_XN) _
W)= T Mo (207) @5

I = pattern number
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m = total number of training patterns (1/m is a normalizing constant)
Xai = i" training pattern from category A
o = “smoothing parameter”

p = dimensionality of measurement space

Equation 2-5 defines the PDF for each fault as the sum of several multivariate Gaussian
distributions centered at each training sample for agiven class. In atypical problem, the
PNN istrained using the results of the FMEA for the subject mechanical system. This
effort typically results in afault/symptom matrix in which only a single training vector is
developed for each fault. In the case of only a single training pattern per class (i.e. m=1),

the above equation ssimplifies to:

_ 1 _(X_XA)T(X_XA) _
fa(X) = W@(p (202) (2-6)

Conceptually, Equation 2-6 compares the input symptom vector to the training symptom
vector for the fault class. The closer the match between the two, the larger the probability
of that fault classification. Note that the fault probability can still be obtained even if one
or more components of the input symptom vector X are unavailable or mismatched. In
these cases, the resulting fault probabilities may be lower, but the method will still return

aresult.

Equation 2-6 isimplemented in the pattern units of the PNN, as depicted in Figure 2-37.
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Input Units

Pattern Units

Figure 2-37. Network topology [50]

The network topology in Figure 2-37 differs from conventional neural netsin that the
summation and output units are not used here, since there is only a single training
example for each fault classification. The input units simply feed the input valuesto the
pattern units. Each input unit has a connection with every pattern unit, and thereis one
pattern unit for each training pattern. The pattern units form the dot product of the input
pattern vector, X, with aweight vector, w;, which is the training vector in this case. The
dot product calculated in each pattern unit undergoes a nonlinear transformation in the
PNN using an activation function similar to the form of the Gaussian PDF givenin

Equation 2-6.
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The input vector X is comprised of the symptom pattern representing either current alarm
conditions or predicted alarm conditions, depending on whether the system is performing
adiagnostic or prognostic application. Quantitative alarm condition data are collapsed
into categories. For thiswork, they are represented by athree-way classification as
HIGH, LOW, or NORMAL states numerically encoded into the input vector. These
classifications are performed by simple thresholding, asis done in most existing alarm

monitoring systems.

Network training is accomplished by setting the weight vector of each pattern unit equal
to the values of one of the training vectors. In thisway, each training vector uniquely

defines the weights of one pattern unit.

The only parameter adjusted in the PNN is the “smoothing” parameter o, which isrelated
to the variance of the underlying PDF. This parameter effectively controls the ability of
the PNN to generalize when the input vectors do not exactly match the training vectors.
Small values of o result in poor generalization, causing the PDF to have distinct modes
corresponding to the training sample positionsin input space [86]. Larger values of o
produce greater degrees of generalization, with the PNN interpolating between training
sample points. In this case, input vectors close to the training samples produce

probability values close to that of the training points.
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Logan et al [50] use this network for prognostic applications by performing a statistical
regression analysis of each mechanical system parameter used in the network. The data

points x; from the sensor are used to create a regression equation (usually linear):

y=h+ Y Bx 27)

where the 3s represent the appropriate coefficients. Both raw measurements and time-
based deviations from baseline conditions are analyzed over a pre-defined time interval.
The length of thisinterval is determined by how much future warning is required for an
actual alarm condition. The coefficients of trend equations are calculated from historical
datawithin the pre-defined time interval and then tested at a 99% confidence level for
statistical significance. If the coefficients are statistically significant, the trend equation

isconsidered valid. Valid trend equations are then used for alarm prediction.

Each valid trend detected by the system is used to predict future alarm conditions within
the mechanical system. The parameter associated with the trend is extrapolated out into
the future using the estimated trend equation. If the predicted parameter value exceeds an
alarm threshold within the pre-defined time interval, then the system inputs thisalarm to
the PNN-based inference engine. The PNN then uses its pattern recognition capabilities
to predict plant fault conditions most closely associated with predicted alarms. The same

PNN is used for both diagnostics and prognostics.
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Figure 2-38. Example of a predicted bearing temperature alarm [50]

Figure 2-38 shows an example alarm prediction based on input data which were recorded
for about amonth. A trend isidentified and modeled using linear regression. The
regression lineis projected out until an alarm threshold is encountered. If the trend
continues over time, the bearing temperature will reach its HIGH threshold in
approximately 15 days. A similar alarm prediction function is performed for al
parameters having detected trends. For a prognostic application, the predicted HIGH
bearing temperature alarm, along with other predicted alarms occurring in the same time
frame, would be fed into the same diagnostic neura network to determine what system

may be experiencing degraded performance.
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Federici, et al [31] use asimulation model to determine problemsin an electrical circuit.
Thelr fault simulation process consists of simulating a circuit in the presence of faults,
and comparing the results of fault simulation with the fault-free simulation of the same
circuit with the same input test pattern. They propose the definition of a Behavioral Fault
Simulation (BFS) technique which could be applied to VHDL (Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language) behavioral descriptions.

For clarity, VHDL isalarge high-level VLS| design language with Ada-like syntax, and
isthe DoD standard for hardware description, now standardized as IEEE 1076. VLS
stands for Very Large Scale Integration and refers to semiconductor integrated circuits

composed of hundreds of thousands of logic elements or memory cells[79].

The primary goal of the BFS as described in [31] is to determine the set of faults
(belonging to the fault model) to be detected by atest pattern. A test patternisa
sequence of steps which are followed to test a circuit for faults. Different test patterns
detect different faults. Thelr procedure submits faults from aglobal list to their
simulator, in conjunction with the test pattern (shown as the test sequence). The aim of
the test pattern generation process is to define patterns to test physical defects. The
defects can be detected only if they induce an irregular behavior called afault. The fault
effect or error is measured by a difference between the state of the fault-free model
(reference model) and the state of the faulty model (model in which afault hypothesisis

injected).
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Figure 2-39. A schematic showing the experimental plan [31]

The experimental plan is shown in Figure 2-39. The test sequence processisthe list of
steps atest pattern takes to determineif a particular set of faults exist within the system.
System defects can be detected only if they induce an irregular behavior, compared to
normal functioning (found in areference model called fault free ssimulation), whichis
then called afault. The fault effect or error is measured by a difference between the state
of the fault-free model (reference model) and the state of the faulty model (model in
which afault hypothesisisinjected). All possible faults (from the global fault list) are
systematically injected into the systems, and the specific test pattern isrun to seeif that
particular fault is detected. The output isalist of faults the system actually detects.
Ultimately, this simulation process could be used to evaluate and compare Behavioral
Test Pattern Generation software via the different fault lists These lists would show the
different faults each kind of test pattern would detect. Currently, thiskind of capability

does not exist [31].
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Rebulanan [68] describes another ssmulation model. The focus of the simulation was on
the PHM system, and the purpose was to assess an initial estimate of JSF supportability
through the use of this system. The analysis compared the availability of four JSF
aircraft with a PHM system with four JSF aircraft without a PHM system. The essential
difference was that the PHM JSF aircraft provided a predicted component failure time
before landing, while the aircraft without a PHM system did not. Thisreflects the
expected difference between the two kinds of aircraft. A PHM equipped aircraft should
provide fault reports before landing, providing additional lead time in the repair process.
A non-PHM equipped aircraft will have to land and be inspected by a mechanic (the

traditional/current diagnostic method) before any fault reports are available.

Relevant specifics of the simulation approach follow. The failure time of a particular
aircraft component was assumed to be known, based on the Mean Time Between Failure
(MTBF) measure associated with each component. The Mean Time To Repair (MTTR)
was used to generate repair times. In the simulation, each time was generated from an
associated probability distribution. The PHM system’ s detection of the impending
component failure was assumed to be automatic and completely correct. The time the
PHM model detects component failure was set to be 95% of the components useful
lifespan. Asan example, if acomponent’slifespan was 1000 minutes, the PHM system
would automatically send areport at 950 minutes predicting this component’ s failure at
1000 minutes. A timeto repair was aso randomly generated from multiple single

variable probability distributions based on multiple criteria. This criteriaincluded the

2-82



component to be repaired (measured as probable in-stock availability of the component),

transit time of the repair part to the flight line, and performing the actual repair.

As expected, the average availability of PHM-equipped aircraft is significantly higher
than the availability of non-PHM equipped aircraft. A somewhat unexpected result was

the higher variability in the availability rate of the PHM-equipped aircraft.

Availability Rate Comparison
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Figure 2-40. Comparison of Availability Rates between PHM (ALS) equipped aircraft

and non-PHM (ALS) equipped aircraft [68]
Figure 2-40 shows that the availability rate varied between 89-91% for the PHM aircraft,
while the rate was a practically constant 84% for the non-PHM equipped aircraft.

Although Rebulanan [68] noted this variability existed for PHM aircraft, the variability
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was not explained. However, this observed variability islikely dueto the variability
associated with the probability distribution used to determine the component failure time.
The variability associated with the component failure time translated into variability
associated with the prediction of the actual failure time on the PHM-equipped aircraft.
Thisvariance in the timing of the fault report, and consequent maintenance lead time, led
to variance in overal aircraft availability. In contrast, the non-PHM equipped aircraft
had no variability associated with maintenance lead time, since the aircraft had to land
and be inspected before a fault report was generated. Based on Figure 2-40, it seems the

time for this ground inspection was constant, although this is not explicitly stated in the

paper.

Malley [53] followed Rebulanan’s work on simulating an ALS system with a detailed
computer model that smulated aPHM system. This PHM system modd fit in the
context of the previously developed ALS system. His simulation modeled the operations
of one JSF wing and the activities of the corresponding support organizations for those
aircraft. It used a neural network to analyze notional prognostic sensor signals to
determine when an associated JSF system component (the engine, in his thesis) would
fail. The simulation of these prognostic signals incorporated sensitivity to component
wear-in, sensitivity to changing flight conditions, and a measure of variability asto when
the component would begin exhibiting signs of failure. These measures were varied to
produce different PHM signal sets. He found that averaging a number of these signals, or
“batching” them, produced robust measures that a neural net could use to predict the JSF

engine state with reasonable accuracy - about 82% of the time with his architecture.
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These predictions of impending failures came when the engine was about 95% of the way
through its expected life cycle, alowing enough time for the engine to be fixed before it

failed in flight.

2.5 Literature Review Summary and Conclusions

Most published research concerning a prognostics effort is either concerned with asingle
component of a system (such as arotor) or asingle aspect of a system (such as startup
datd). Very few papers actually address the issue of what a complete prognostics system
should contain. Most of those that do address these systems at avery high level. The
literature apparently contains only one example of a complete prognostics system,

Logan’s DEXTER™ system [50].

A fully developed prognostics system needs to be all-encompassing. It starts with the
layout of the sensors within the system. Thisfirst step requires knowledge of the
appropriate location for each sensor, the type (acoustic, electrical, etc.) of each sensor
that should be used at a given location, and the total number of sensors that should be
used (to avoid too little or too much information). Then, the data from these sensors
needs to be captured and processed. Afterwards, the processed datais fed to aintelligent
reasoner of some kind which interprets the data input and provides a system health
assessment. This assessment may include a confidence level. Then, this assessment is
reported to appropriate entities. These may include system operators, system mechanics,

and system operations planners.
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The prognostics reasoning capability is best described as the capability of a PHM system
to extrapolate from current data streams to predict when a certain portion of the system s
expected to fail. Of course, the biggest reason to monitor a system using PHM
technology is to detect an impending component failure in time to prevent a system
failure by replacing the affected component before it actually fails. Rather than repairing
or replacing a component after it has failed, it can be repaired or replaced when the
prognostics system indicates that probable time to failure (or probability of component
failure) is within some critical threshold. The question iswhat isrequired for this

impending component failure to be detected.

The nature of the prognostics reasoning problem is a difficult one. Expertsin thisfield
identified reliable estimation of time-to-failure as one of the greatest challengesin
manufacturing and machine monitoring, and one of weakest areas in existing methods
[82]. Furthermore, these experts state that methods used to analyze the data from
mechanical system processes must be robust, i.e., methods which can tolerate significant
deviations from assumed or nominal signal characteristics. In general, the signal and
noise environment in these kinds of applications is highly complex, non-Gaussian, and
exhibitslarge variability and/or non-stationarity. The operating conditions may vary
dramatically between sensor locations. To ensure the user accepts these monitoring
methods, low false alarm rates are an absolute necessity. This places an additional
burden on the robustness of the methods. A successful prognostics system

implementation must address all these issues.
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The first requirement for a prognostics reasoning system is on-board sensors which
record the performance of aircraft systems. Thisrequirement in and of itself isa
significant issue. The total number of sensors required for producing a prognostics
capability isan open question. If there are too few sensors, not enough data will be
collected for analysis and prognostic functions. If there are too many sensors, the
prognostic system may be overcome by so much variation from the sensor reports that it
failsto recognize any impending failures at all. The variation in the readings may aso be
coming from failed sensors, as opposed to systems which are actually failing. The
recorded data may also exceed the capability of the system busto report it, so datais lost
beforeit isever recorded. However, with modern technology, this “data overflow” issue

is becoming less of a concern.

The next issue under thisfirst requirement is which systems the sensors are attached to.
There are atremendous number of systems present on amodern aircraft (somewhere in
the hundreds). Should al these systems be monitored, or just some of them? If only
some systems should be monitored, which ones should they be? And given those
systems, what kinds of measurements should be taken (acoustic, el ectrical, vibration,
etc.)? These questions need to be answered to determine the proper scope of the datafor a

prognostics reasoning System.

Once the sensors are in place for aircraft data collection, the actual collected datawill
require pre-processing before submission to the prognostic system. Raw sensor datais

typically very noisy, and key features describing the performance of the monitored
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system are not readily apparent. The concern here is which kinds of processing
techniques should be employed. By its very nature, data pre-processing modifies some of
the collected data (hopefully removing the noise) while enhancing the rest of the data (the
signal of interest). However, since many pre-processing techniques are well known and

their effects are understood, thisis not as significant of an issue as are other issues.

The biggest issue for a prognostics reasoning system is the interpretation of the collected
and pre-processed data. In order to assess the health of an aircraft based on this
information, it must be compared to previoudly existing information which has been
classified as either representative of a healthy system, a degraded system, or afailing
system. In order for this comparison to be done, this “previously existing” data must be
collected from similar (if not exactly the same) systems that are operating in a known

State.

At this point, afew words are in order about the presumed nature of general mechanical
system faults. Most faults are believed to begin with small (but detectable) precursor
events and to stem from a progressive (not necessarily linear) degradation of the system
component. The degradation curve is usually assumed to follow some kind of
exponential relationship [82], although some naval applications show alinear trend [51].
Thus, the tracking of this degradation aong with an ongoing prediction of the time-to-
failureis of great importance to a prognostics system. Additionally, as previously stated
[60], the signal and noise environment in these kinds of applicationsis highly variable

and complex. Also, the signal characteristics from many types of degradations are non-
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monotonic. Consequently, an understanding of the overall trend, as well as continuous
monitoring to track the history of the developing fault, is essential [82]. Faultsthat are
neglected are those which develop rapidly without any forewarning (such as the effects of
combat). Clearly, no prognostics system can predict rapidly developing events which
occur completely within atime window that is considerably less than a single operational

cycle.

In order to make sense of this data, there must be a reasoning function in the PHM

system. Thisreasoning function is required to identify normal behavior and system faults
with high confidence. To accomplish this, there must be patterns present within the
reasoning function which represent functional and failed behavior. The reasoning
function for aPHM system is aso expected to predict when component failure will

occur. Thisrequires clear patterns of how system faults develop. How these patterns can

be captured is addressed below.

The patterns for afunctional state are thought to be the easiest to collect. Once an expert
(probably human) has assessed the system as working correctly, the data from the system
are fed to the reasoning system, which encodes the data as representative of afunctional
state. Should there be more than one functional state, conditions in which these
functional states exist can aso be replicated and encoded within the reasoner. Asthe
system operates, comparisons between this part of the prognostic reasoner and the system

data should clearly indicate whether the system isin afunctiona state or not. Thisisone
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way a PHM system can provide an instantaneous (simple yes/no) assessment of system

health.

The collection of failure patternsis a somewhat more difficult problem. When systems
arein afailure state, by definition they are not operating. This may prevent the collection
of certain kinds of system data. To overcome this, outside expertiseis required to
supplement the data patterns recorded when a systemisin afailure state. Additionally, it
isdifficult to record every conceivable failure state a priori. The prognostic reasoner
must be able to accept new failure states as they appear during the operation of the
system. Using this data, the reasoner can provide instantaneous estimates of system
failure by comparing it to known functional and failed states, if the failure status is not

readily observable.

Collecting patterns of how system faults develop is difficult, but essential in order for a
PHM system to accurately predict when afailure will occur. For this predictive
capability to be devel oped, there must be a well-defined path (henceforth called a*“failure
path”) from current operational conditions to the many fault conditions, and all variations
along these failure paths must be understandable and detectable. Collecting the datato
meet this requirement is the most difficult technical challenge of these three. Mechanical
systems undergo preventive maintenance to avoid failures, which interrupt the collection
of dataalong fault paths. Actually operating afunctional system to observe the failure
path of a single component can result in ruining the entire system. Re-running the same

experiment to note any variations in the failure path of the same component will double
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the costs. And, as previoudy discussed, the data along these paths is highly complex,

non-Gaussian, and exhibits large variability and/or non-stationarity.

To overcome these problems and collect the required data, most failure paths are mapped
based on performance of an individual component on atest bench. There are two
potential problems with this approach. Thefirst potential problem here is that the
individual component is being assessed independently of the overall system; interactions
are not captured. And secondly, most components are very durable, and take a very long
time to fail when subject to normal operational stresses. To save experimental time and
cost, components are overloaded with operational stresses that are multiples of the
normal values. The resulting failure path may not represent what really happens to the
component for this specific type of failure. It also may mask other failures that would

normally occur before the specific type of failure under consideration.

Another way to obtain failure information from system datais to use the known failure
points of the system components, and not use any computed failure path patterns at all.
These failure points may consist either of the time which a particular component is

expected to last, or component readings at failure.

If only the time that a particular system component is expected to last is being used to
compute a possible failure point, then the system simply keeps track of the amount of
operational time acomponent has been in use. Thisiscompared to the distribution of

failure times for this component. When an appropriate threshold is reached, the system
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indicates it istime to replace the component. This threshold may be expressed as the
point at which a certain percentage of the components have failed, or how long it will be
until failureisvirtually certain. The potential problem here isthat all the aircraft
components are usually manufactured at the sametime. Theinitia failuretime
distribution becomes less and less representative of the actual population as these
components age. In the process of maintenance, some components are refurbished with
new units, so averaging their performance together with the unrefurbished unitsleadsto a
distribution that is not really representative of either population. However, the Air Force
istracking some of its electronic components by barcode. There could be two failure
distributions; one for refurbished units, and one for the others. Although this does require
alot of bookkeeping, tracking the different maintenance actions by electronic unit has

been shown to be feasible.

If the component readings at failure are being used, trend analysisis applied to the data
being collected from these system components. If the PHM system detects a “ definite”
trend towards afailure point, this would be reported as negative system health. A
projection aong this “definite” trend will give an assessment of how long it will be
before the component fails. The advantage of this approach is that failure path generation
isnot required. Disadvantages include the need to know precisely what a component’s
failure point is. Projecting the “definite” trend is also a disadvantage since it requires
extrapolation beyond the original data set. Asan example, what may have been
originally thought to be alinear trend may turn into an exponential trend, leading to

failure much sooner than anticipated. The reverse situation also leads to problems, as
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maintenance action is scheduled sooner than required, leading to the replacement of a

component with remaining usable life.

Assuming that patterns for the functiona state, the failure paths, and the failure states all
exist within the prognostic reasoning system, assessments can be made of instantaneous
system health and time to component failure. As previously mentioned, comparisons
between the system data and the functional patterns present within the prognostic
reasoner can give asimple yes/no indication of system health. Another way isto
compare current system readings, or operational time deployed, with known failure
points for these systems. Thisinformation can provide a simple yes/no assessment of
system health as well, if the proximity of the sensor reading is*“close” to the known
failurereading. (The same holds true for comparing time deployed to the time-to-failure
distribution.) Thisinformation can also provide a probability assessment of impending
failure. Thethird way isto compare trends (or current values) in the system data with the
previously defined failure paths. The data of any component that doesn’t indicate normal
operation can be mapped to the failure path. This provides an instantaneous (negative)
health assessment. It also provides an estimate of time remaining to failure, based on the
distance remaining on the failure path. Of course, this assumes the failure path and/or
fault condition is known for the specific event. If not, the PHM system will only be able
to provide a (negative) assessment of system health (what the PHM system is seeing

doesn’t match the datafor normal operation).
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[Il. Data Fusion Methods

3.1 Background

Multi-sensor datafusion isafield that has experienced rapid growth comparatively
recently. The problem of merging similar (or disparate) information from multiple
sources has grown in importance as the number of information sources available to the
decision maker has significantly increased in the past 20 years. In past years, decision
makers would assess written or verbal reports, with or sometimes without certain levels
of confidence, and decide on a course of action based on their internal “fusion” of the
information. As computer power has increased through the years, the automated
computation of the “best” estimate of what all these sensors say has become more and
more possible. The number of methods used to assimilate the datainto a unified
assessment of a given situation has also increased greatly in recent years. Arguably, itis
no longer humanly possible to correlate all the data streams available to provide the best

interpretation of the data, without computational assistance.

Datafusion isrequired because of datafission. Thetotal signature of an entity is usually
manifested in many separated types. Since most sensors only collect one type of
information, the complete entity signature can only be reconstructed through fusing these
collected types to reconstruct the original entity. The information decomposition can be
attributed to different types of phenomena. These include different characteristics under
consideration, such as shape or motion; detection of different information types, such as

electromagnetic or acoustic radiation; detection of different parts of the frequency



spectrum, such as electrical current or infrared data; restricted spatia or temporal
coverage; and an historical legacy of separate processing systems. Rarely does one
sensor embody more than one collection technique. Consequently, a single sensing
mechanism is unlikely to be capable of capturing all the desired information on an entity
at agiven instant of time. Data fusion brings this information back together to provide

the picture of the original entity.

The methods of data fusion depend on the situation. There may be several similar
sensors providing information on the same entities. In this case, the sensors detect the
same features on the entities, yielding what is termed competitive data. The overlapping
features of the data must be correctly merged to identify the data sources. The other case
occurs when different types of sensors collect different features on the same entities,
yielding complementary data. In this case, the data between the different sensors does
not overlap. In both cases, however, asingle sensor usually collects data on more than

one entity, so the datais almost always dependent.

Datafusion techniques are aso dependent on the type of data present. The preceding
paragraph discusses a situation in which signal processing technigues would be quite
helpful (signa filtering, spectral analysis, time-domain fusion). To estimate the state of a
given system, Kalman filters or some other kind of Bayesian reasoning may be most
appropriate. If there is more background knowledge available, then what may be called a
“cognitive technique” can be used. These techniques can include neural nets,

clustering/genetic agorithms, or fuzzy logic. If expert knowledge can help determine the



exact state of affairs, expert systems or case-based reasoning may be applicable.
However, there is no one “golden method” which appliesin al situations. Most
problems will require a combination of the above techniques to provide an accurate
solution. In the example of the preceding paragraph, a combination of an expert system
(previoudy existing signatures) could be combined with time-domain fusion to provide a

fused picture of the environment.

Of course, the methods chosen to fuse the data also depend on the kind of data available.
For most military applications, the data comes from multiple sensors collecting
information throughout the el ectromagnetic spectrum, as well as audio, motion, and
vibration detectors. This includes sensor location and at times, alevel of confidencein
the collection. However, sensor reliability, previously analyzed data, large databases,
expert systems, and other types of pre-existing information are also candidates for data
fusion. The degree to which each data stream is weighted compared to the other streams
isof central importance. Of course, data fusion can never totally recover the loss

introduced by the original datafission.

There are varying definitions of what constitutes multi-sensor data fusion, but these
definitions differ primarily only in technical details. For example, the International
Society of Information Fusion definesit asfollows[25]: “Information Fusion, in the
context of its use by the Society, encompasses the theory, techniques and tools conceived
and employed for exploiting the synergy in the information acquired from multiple

sources (sensor, databases, information gathered by human, etc.) such that the resulting



decision or action isin some sense better than (qualitatively or quantitatively, in terms of
accuracy, robustness and etc.(sic)) than would be possible if any of these sources were
used individually without such synergy exploitation.” The USAF Research Lab [21]
definesit as: “Information Fusion: Events, activities and movements will be correlated
and analyzed as they occur in time and space, to determine the location, identity and
status of individual objects (equipment and units), to assess the situation, to qualitatively
and quantitatively determine threats and to detect patternsin activity that revea intent or
capability. Specific technologies are required to refine, direct and manage the information
fusion capabilities.” In essence, datafusion is the management (and consequent
minimization) of uncertainty associated with the input data. The goal is to obtain the best

assessment of the system under consideration with aminimal amount of uncertainty.

The use of the datain data fusion has widely varying adherents throughout the
community. There are those who advocate a “ sensor to shooter” data fusion architecture.
The raw data from the sensor is sent directly to the warfighters who put ordnance on the
target. Unfortunately, with the tremendous amount of data being collected on the modern
battlefield, the warfighter cannot hope to keep up with the flow of information. And that
isignoring the issue of contradictory and/or simply incorrect sensor reports. As some
leaders in this community have said, the warfighter is awash in information but starved
for knowledge. What a sensor report means in the context of other sensor reportsis far

more valuable than an individual report standing alone.



The datain datafusion are useless unless they are placed in context, then the data may be
considered information. Knowing what the data indicates and the associated level of
confidence are essential. In turn, when thisinformation is placed in its proper context, it
may be considered knowledge. An indicator from a ships radar of tank activity would be
expected if the ship was close to shore, but perhaps not if the ship was in the middle of
the ocean The knowledge of what the sensor indicates and whether that is reasonable
given current surroundings is also important. Thisidea can extended to knowledge of
multiple activities, which could be called understanding. Perceiving what purpose
underlies the knowledge of the enemies’ activities is yet another level of fusion.

However, interpretation of purpose exceeds current computational capabilities.

3.2 Neural Network Methods

The term “artificial neural network” (ANN) refers to awide range of analog
computational schemes that are loosely based on biological nervous systems. These
schemes are generaly built to classify an unknown object into a particular class of
objects based on observations (input data) obtained from that object. Neural nets can also
be used to classify a system’ s operation into one of a number of operational modes (e.g.,
running efficiently, nearing failure, non-operational, etc.) based on data obtained from

system components.

A typical ANN consists of aweb of interconnected simple mathematical processors
called “neurons’ or “units’ or “nodes’. Three components are required to describe a

network:



1. The neural units, the number of layersin the network, and their “activation” functions.
2. The connections between units, known as the neural architecture.
3. A training algorithm to develop the most appropriate weights for connections between

units.

The following section describes each of these three componentsin turn.

3.2.1 Neural Units

A single-layer neura net (also known as a “perceptron”) looks like the following figure.

Output

Figure 3-1. Single-layer neural net [15]

Figure 3-1 shows asingle layer neura net. This architectureisalso known asa
“perceptron.” The bias node is a constant value specified by the user. The inputs are
weighted to give an output. The net istrained on known data so the weights on each
branch are the best for classifying that particular data set (training will be addressed in

more detail later). Theinitial set of weightsis usually chosen randomly.



A multi-layer neural net schematically looks like the following figure.

Outputs

Figure 3-2. Multi-layer neura net [15]

Figure 3-2 shows the input layer, hidden layer, and output layer of a typical multi-layer
neura net. Thistype of architectureis also known as a multi-layer perceptron neural net.
There are many more weights in this type of architecture. Again, a set of datawhere the

actual outcome is known for each set of input datais used to train the network.

In the type of ANN considered here (multi-layer perceptron), the neural net node takes
the weighted sum of itsinputs and feeds that value into an activation function (which is
typically nonlinear. The activation function transforms the weighted input from other

nodes into a new value.
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Figure 3-3. Activity performed in atypical neural network node

Figure 3-3 shows the usual function of a neural network node. Usually, there are many
inputsinto asingle node. Each input is multiplied by aweight. Then, the resulting
products are added to form asingle sum. This sum is then input into the activation
function. Theresult is computed and sent forward as the output of that particular node.

The output may also be sent to many nodes.

An activation function commonly used in these kinds of neural netsisthe sigmoid

(logistic) function:

F(x) = — (3-D)



Other commonly used activation functions include the hyperbolic tangent (tanh(x))
function. In some cases, researchers aso use units with linear activation functions.

Linear activation functions are most commonly used in the output layer of the network.

3.2.2 Network Connections
Nodes (represented below by circles) are connected to propagate a signal from the inputs

to the outputs of the net.

Figure 3-4. Single output neural net [15]

The network shown in Figure 3-4 could be used to approximate a function of two
variables, Y=f(X1,X2). Theinput values (X1, X2) are appropriately weighted and fed

into the nodes above them. Subsequent units compute their values according to the



weighted connections and activation functions. The answer, Y, isread from the unit in

the output area.

ANNSs are often partitioned into distinct sets of related neural units, called “layers’ or
“areas’. For example, all of the units used as inputs to the unit constitute the “input

layer”; likewise units used as outputs make up the “output layer”. All other units are
organized into one or more “hidden layers’. The resulting arrangement of nodes and

connections in a network is known as the network topol ogy.

Layers are connected by groups of lines (loosely, the “nerves’) caled projections. A
non-zero weight is usually assigned to each projection. For ANNS, unitsin a particular
layer are usually connected to every other unit in each adjacent layer. A notable
exception iswhat is termed the “bias node” or “bias unit”. The weight attached to this
valueisusually set at 1, and the negative of thisvalueis usually known as the

“threshold”.

Many neural networks have the structure given in Figure 3-2 with an additional hidden
layer. Thisisbecause of atheoretical result which states that a neural network with three
layers of weights can produce an arbitrarily complex decision boundary [90]. In other
words, it can correctly classify objects no matter how tightly they may be grouped
together inreal life. Unfortunately, the theorem only states that the network exists-
finding it is another matter altogether. Inasimilar result, a network with two layers of

weights (just like Figure 3-2) and sigmoid activation functions can approximate any
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decision boundary to arbitrary accuracy. So using sigmoid activation functions alows
the use of asmaller network, but with the same guarantee that the perfect neural net for a
particular problem exists[15], [40], [90]. Again, finding that neural net is another issue
altogether. That issueis partly addressed by how the network is trained, which leads into

the next section.

3.2.3 Training Neural Networks

Making a network perform useful work, e.g. correctly classifying alarge number of
unknown entities, involves finding good values for the weights of the connections
between units. While commonly referred to as “training”, thisisbasically an

optimization problem, and has been addressed in severa different ways:

Local methods, such as backpropagation and its many variants. These methods

focus on asmall area of the solution space at atime.

Global gradient-based methods, e.g. conjugate gradient, Levenberg-Marquardi.

These methods focus on alarger area of the solution space.

Stochastic methods, e.g. genetic algorithms, simulated annealing. These methods

use some form of arandom process to generate better and better weights.

These training methods in general involve an iterative procedure for minimization of an

error function, with the weights being adjusted in a sequence of steps[15].
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3.2.4 Different Neural Network Methods

There are many different implementations of the neural network architecture in the
literature. There are two major classes of neural network models. The first uses nodes
(units) which compute a non-linear function (usually sigmoid) of the product of an input
vector and aweight vector. The main example of this technique is the multi-layer
perceptron. The other class of neural networks uses the distance between the input vector
and another generalized vector (usually the average of the input vectors) for the
computation at the node (unit). Radial basis function neural networks and probabilistic
neural networks are examples of thislatter type. The following list briefly summarizes
some of these network methodol ogies with are considered to be suitable for automated

machine learning [73].

The multiplayer perceptron with backpropagation learning is probably the most
commonly applied ANN model [74]. When aneural net is being trained, input data and
the associated desired network output values (called targets) are presented to the network.
The backpropagation algorithm, in general, feeds the error (distance from the target)
associated with a particular input vector back through the network. The out put layer
computes its error, and feeds this back to the previous layer, which computes its error,
and feeds back its error, until the first layer in network has computed its error. Once each
individual neuron has computed its error, it estimates a change for the weight vector that
would reduce its error. Thischangeistypically multiplied by alearning rate which is

significantly less than one (usually 0.1). The learning rate reduces the amount of change
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to produce a neural network that can classify many similar inputs well, instead of one

input perfectly.

The functional link neural network (FLNN) performs least squared error learning like that
of a backpropagation neural net, but no learning takes place in the hidden layer. Instead,

the hidden layer combines the inputs using various nonlinear functions [45].

The probabilistic neural net (PNN) isan ANN implementation of the Parzen windows
method. The output isaweighted sum of all training points, where the weighting is
exponential according to the distance of an unclassified input from a given training point
[85], [86]. The general regression neural network (GRNN) isthe PNN augmented by a

normalizing factor [84].

Radial basis function neural networks (RBFNN) contain a set of uniformly distributed

processing units each with aradially symmetric response. During training, the algorithm

adjusts the amplitude of the response to estimate the function [69].

Radial basis functions (RBF) are used as activation functions in this second class of

neura networks.
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Figure 3-5. Typical RBF network [15]

Figure 3-5 shows atypical RBF network. There are N inputs, indexed 1 to n, which are
combined with M basis functions (M =N in amost all cases), indexed 1toj. ThereareK

output nodes, indexed from 1 to k.

The general problem radial basis function neural networks are used to solve isthe
mapping from a d-dimensional input space x to a one-dimensional target spacet. The
input data consists of N input vectors X, and corresponding targetst,. The object isto
find afunction h(x) such that h(x,) =t,, forn=1to N [65]. Theradia basis function
approach [65] assigns a basis function to each of the N data points. The basis function
has the form @(|x - Xy[), where @is usually Gaussian, the distance function [X - Xp| IS
usually Euclidean, and x is usually either the average of the input vectors or the center of
the assigned basis function. The output of the mapping is alinear combination of all M

basis functions (at present, M =N):
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h(x) = > waexp([-1/2077T* [X - Xq[) (3-2)

The weights w,, are found via atwo-stage process [15]. In thefirst stage, the input data
set is used to determine the parameters of the basis functions (1 and o if the function is
Gaussian). The basis functions are then kept fixed while the second layer weights are
found in the second training phase. Mathematically, if the radial basis function iswritten

as:

Y(X) = z Wi @ (X) (3-3)

i=0
then the matrix representation is:

yx)=We (3-4)
where W =wy; and @= ¢. Theerror function isasum of squares expression:

E= .52 z {yk(xn) —tnk}z (3'5)

where t isthe target value for output unit k, corresponding to the input vector x,. The
weights are found from a set of linear equations
oW =T (3-6)
where (T)nk = t and (P)r = Q(Xn). Theformal solution is given by:
W' =0T (3-7)
where the ®” notation denotes the pseudo-inverse of ®. In practice, the equations given
above are solved using singular value decomposition to avoid problems associated with

the possible ill-conditioning of the matrix ®.
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Typicaly, for radial basis function neural network, the number of basis functions is much
less than the number of data points[15]. In general, the radial basis function neural
networks learns quicker than multi-layer perceptron neural networks. The trade-off is
that the multi-layer perceptron neural networks exhibit improved generalization
properties, especially for regions not sufficiently represented in the data set [47]. To
obtain thisimproved generalization, an RBF network has to have more functions to better
characterize the input space [39]. The number of functions exhibits a direct exponential
dependence on the dimension of the input space. The benefit of using radial basis
function networks is the property of best approximation: the function with minimum
approximating error isin the set of approximating functions this network may adopt [39].

Girosi and Poggio [39] also showed that the multi-layer perceptron does not share this

property.

Similar to the an RBFNN, the k-nearest radia basis function network (KNRBF) learns
like the RBFNN. Itsoutput is computed the same way, except only the k nearest basis

functions are used in the exponentialy weighted sum [73].

The dynamic radial basis function neural network with locally tuned units (LTRBFNN)
uses a clustering technique on the input data to determine optimal placement of its non-
symmetric basis functions. Then, it uses heuristics to determine the widths of the basis
functions. On a second pass through the data, it uses least mean squares to determine the

amplitude of the basis functions [59].
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The dynamically stable learning neural network (DY STALNN) was derived from the
actual wiring of asimple invertebrate nervous system and the details of mammalian
learning at acellular level. A DY STALNN maps an input vector to the processing unit
that stores a cluster center vector that matches the input best. The output is the product of
the measure of similarity and the output vector stored at the processing unit. This
architecture adds new processing units whenever it encounters an input significantly

different from any previous inputs[3].

The restricted coulomb energy neural network (RCENN) allocates regions to some
training inputs. RCE allocates the first input to a large region, but ignores subsequent
inputs that fall inside that region unless they are associated with a different output value.
In this occurs, the RCENN divides the previous region and allocates a portion to the new
input. The training technique requires several passes through the training data to ensure
that all training data falls inside some allocated region. When the network is trained,
input vectors (with unknown targets) will fall into some region with atraining input at its

center. The output is what was pre-defined for that region during training [70].

The cerebellar model articulation controller (CMAC) was inspired by the architecture of
the mammalian cerebellum [2]. This architecture maps input values to a particular bin,
represented by afixed integer value. The minimum value in the input range maps to O,
and the maximum value maps to the bin associated with the largest value. The number of
bins used for the mapping depends heavily on the application. For training, all entriesin

the binsareinitialized to 0. When a bin encounters atraining input, the bin valueof O is
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replaced by the desired output. If abin does not encounter atraining value, the value
remains 0. If the bin encounters multiple different outputs, on the last output recorded is
retained. Various generalization agorithms are used to compensate for this. The chief
advantage of thistechnique isthat the error surface has a unique minimum that is “down
the slope” from every other point on the curve, and that learning process convergesto this
unigue value fairly rapidly. The technique is not susceptible to local minimain the error

surface, unlike other neural network architectures.

3.2.5 Combining Neural Networks

Opitz and Maclin [61] discusses the comparison of 2 different data fusion techniques,
known as Bagging and Boosting. These technigues combine the predictions of multiple
classifiersto produce asingle classifier. Theresulting classifier, which isreferred to as
an ensemble, is generally more accurate than any of the individual classifiers making up
the ensemble. Theoretical and empirical research has demonstrated that a good ensemble
is one where the individual classifiersin the ensemble are both accurate and make their
errors on different parts of the input space. The Bragging and Boosting methods rely on

resampling techniques to obtain different training sets for each of the classifiers.
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Figure 3-6. A classifier ensemble of neural networks. [61]

Figure 3-6 illustrates the basic framework for a classifier ensemble. In this example,
neura networks are the basic classification method, though conceptually any
classification method (such as decision trees) can be substituted in place of the networks.
Each network in the figure's ensemble is trained using the training instances for that
network. Then, for each example, the predicted output of each of these networksis
combined to produce the output of the ensemble. The consensus among many
researchers[61] isthat an effective combining schemeisto simply average the

predictions of the ensemble.

Of course, combining the output of several classifiersisuseful only if thereisa
reasonable amount of disagreement among them. Obviously, combining several identical
classifiers produces no gain. Hansen and Salamon [38] proved that if the average error
rate for an ensemble is less than 50% and the component classifiersin the ensemble are

independent in the production of their errors, the expected error for that example can be
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reduced to zero as the number of classifiers combined goes to infinity. However, such
assumptionsrarely hold in practice. Krogh and Vedelsby [46] later proved that the
ensemble error can be divided into aterm measuring the average generalization error of
each individual classifier and aterm measuring the disagreement among the classifiers.
They formally showed that an ideal ensemble consists of highly correct classifiers that
disagree as much as possible. Other researchers [61] have empirically verified that such

ensembles generalize well.

As aresult, methods for creating ensembles center around producing classifiers that
disagree on their predictions. Generally, these methods focus on altering the training
process in the hope that the resulting classifiers will produce different predictions. For
example, neural network techniques that have been employed include methods for
training with different topologies, different initial weights, different parameters, and
training only on a portion of the training set. The remainder of [61] focuses on two
methods (Bagging and Boosting) that try to generate disagreement among the classifiers

by atering the training set each classifier sees.

Bagging is a bootstrap ensemble method that creates individuals for its ensemble by
training each classifier on arandom redistribution of the training set. Each classifier's
training set is generated by randomly drawing, with replacement, N examples, where N is
the size of the original training set. Many of the original examples may be repeated in the
resulting training set while others may be left out. Each individual classifier in the

ensemble is generated with a different random sampling of the training set.
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Boosting encompasses a family of methods. The focus of these methodsis to produce a
series of classifiers. The training set used for each member of the seriesis chosen based
on the performance of the earlier classifier(s) in the series. In Boosting, examples that
areincorrectly predicted by previous classifiersin the series are chosen more often than
examples that were correctly predicted. Thus Boosting attempts to produce new
classifiers that are better able to predict examples for which the current ensemble's
performanceis poor. (Note that in Bagging, the resampling of the training set is not

dependent on the performance of the earlier classifiers.)

In [61], the authors also examine two new forms of Boosting: Arcing and Ada-Boosting.
Like Bagging, Arcing chooses atraining set of size N for classifier number K+1 by
probabilistically selecting (with replacement) examples from the original N training
examples. Unlike Bagging, the probability of selecting an example is not equal across
the training set. This probability depends on how often that example was misclassified
by the previous K classifiers. Ada-Boosting uses either the approach of (a) selecting a set
of examples based on the probabilities of the examples, or (b) simply using all of the
examples and weight the error of each example by the probability for that example (i.e.,
examples with higher probabilities have more effect on the error). This latter approach
has the clear advantage that each exampleisincorporated (at least in part) in the training
set. Thisform of Ada-Boosting can be viewed as aform of additive modeling for
optimizing alogistic loss function. In this paper, the authors have chosen to use the
approach of subsampling the data to ensure afair empirical comparison (in part due to the

restarting reason discussed below).
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Both Arcing and Ada-Boosting initialy set the probability of picking each exampleto be
1/N. These methods then recal culate these probabilities after each trained classifier is
added to the ensemble. For Ada-Boosting, Ex isthe sum of the probabilities of the
misclassified instances for the currently trained classifier Cy. The probabilities for the
next trial are generated by multiplying the probabilities of Cy 'sincorrectly classified
instances by the factor By = (1 - Ex)/Ex and then renormalizing all probabilities so that
their sum equals 1. Ada-Boosting combinesthe classifiers C;, ... ,Cx using weighted
voting where Cy has weight log(Bx). These weights alow Ada-Boosting to discount the

predictions of classifiers that are not very accurate on the overall problem.

In this paper, the authors use arevision where al the weights are reset to O to be equal
and restart if either Ex is not less than 0.5 or Ex becomes 0.1. By resetting the weights
they do not disadvantage the Ada-Boosting learner in those cases where it reaches these
values of Ex. The Ada-Boosting learner always incorporates the same number of
classifiers as other methods we tested. To make thisfeasible, they use the approach of
selecting a data set probabilistically rather than weighting the examples, otherwise a
deterministic method such as C4.5 would cycle and generate duplicate members of the
ensemble. That is, resetting the weights to 1/N would cause the learner to repeat the
decision tree learned as the first member of the ensemble, and this would lead to

rewei ghting the data set the same as for the second member of the ensemble, and so on.
Randomly selecting examples for the data set based on the example probabilities

aleviatesthis problem.
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Arcing started out as a simple way for evaluating the effect of Boosting methods where
the resulting classifiers were combined without weighting the votes. Arcing uses a
simple mechanism for determining the probabilities of including examplesin the training
set. For the ith example in the training set, the value m; refers to the number of times that
example was misclassified by the previous K classifiers. The probability p; for selecting
examplei to be part of classifier K+1'straining set is defined as the value of the power

empirically after trying several different values.

The paper gives the following sample of how Bagging and Boosting might work on a
imaginary set of data. Since Bagging resamples the training set with replacement, some
instance are represented multiple times while others are left out. So Bagging's training
set 1 might contain examples 3 and 7 twice, but does not contain either example 4 or 5.
Asaresult, the classifier trained on training set 1 might obtain a higher test-set error than
the classifier using all of the data. Infact, al four of Bagging's component classifiers
could result in higher test set error; however, when combined, these four classifiers can
(and often do) produce test set error lower than that of the single classifier (the diversity
among these classifiers generally compensates for the increase in error rate of any

individual classifier).
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Figure 3-7. Hypothetical runs of Bagging and Boosting [61]

Figure 3-7 shows hypothetical runs of Bagging and Boosting algorithms. Assume there
are eight training examples. Assume example 1 isan outlier and is hard for the
component learning algorithm to classify correctly. With Bagging, each training set is an
independent sample of the data; thus, some examples are missing and others occur
multiple times. The Boosting training sets are also samples of the original data set, but
the “"hard" example (example 1) occurs morein later training sets since Boosting

concentrates on correctly predicting it.

The authors draw several conclusions from their analysis. The first isthat a Bagging
ensemble generally produces a classifier that is more accurate than a standard classifier.
For Boosting, however, they note more widely varying results. For afew data sets
Boosting produced dramatic reductions in error (even compared to Bagging), but for

other data setsit actually increasesin error over asingle classifier (particularly with
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neural networks). Infurther tests they examined the effects of noise and determined that
Boosting's sensitivity to noise may be partly responsible for its occasional increase in

error.

Their results also show that the ensemble methods are generally consistent (in terms of
their effect on accuracy) when applied either to neural networks or to decision trees.
However, thereislittle inter-correlation between neural networks and decision trees
except for the Boosting methods. This suggests that some of the increases produced by
Boosting are dependent on the particular characteristics of the data set rather than on the
component classifier. In further tests they demonstrated that Bagging is more resilient to

noise than Boosting.

The authors also investigated how many component classifiers should be used in an
ensemble. Consistent with previous research, their results show that most of the
reduction in error for ensemble methods occurs with the first few additional classifiers.
With Boosting decision trees, however, relatively large gains may be seen up until about

25 classifiers.

3.2.6 Fuzzy Logic

Fuzzy logic [42] was developed to handle problems which have incompl ete, imprecise,
vague or uncertain information inherent in the problem statement. These problems
involve datawhich are at times best described by linguistic terms rather than numbers.

As an example, a hospital describes patients' conditions as good, fair, serious, poor, €etc.
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The problem is: describing in an absolute sense these terms which are not precisely

defined, and contain a significant element of subjectivity.

The originator of fuzzy logic, Zadeh [98], proposed the following approach to deal with
the above problem; in particular, dealing with linguistic variables. He defined afuzzy set
as aset which alows for an object to be amember of a set to some degree. Thisisunlike
classical set theory, which only allows for an object to be either a member of the set or
excluded from the set. This*“black and white” characterization, in many applications, is
unsatisfactory. Asan example, consider the set that describes all maleswho are tall as
those whose height is greater than or equal to 5'8". Then a6'0" male is a member of the
set. However, amale whose height is5'7" is not a member of the set. Thisimpliesthat a
man who is 1" shorter than atall manisnot tall. By the same token this approach does
not differentiate between members. Anindividual who is 7'6" and an individual who is
6'1" are both “equal” members of the set “tall”. Information about relative sizes has been

lost once members have been conglomerated into a set.

Fuzzy sets differ from classical setsin that they allow for an object to be a partia
member of aset. This approach can preserve relative sizing information. The
relationship is defined by a membership function. For any fuzzy set A the function
represents the membership function for which pa(x) indicates the degree of membership
that x, of the universal set X, belongsto set A and is, usualy, expressed as a number
between 0 and 1:

Ha(x): X - [0, 1] (3-9)
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These sets can be either discrete or continuous. The “ degree of membership” represented
by the value between zero and one can be arbitrarily selected by the user or assigned
according to some scale. For exampleif Jack is6'3", one can arbitrarily decide that Jack
isamember of the set “tall” to degree 0.8. Alternatively, a scale could be used which

relates all members' heights to that of the tallest person in the set.

To formalize the idea conveyed by classifying set members in different ways, Zadeh [97]
later proposed fuzzy sets of type 2. Here, the membership grades themselves are fuzzy
sets. A fuzzy set A of type 2 in aset X isthe fuzzy set characterized by the fuzzy
membership function as:

ba: X - [0, 1] ¥ (3-9)
where pa isknown as afuzzy grade, afuzzy set in [0,1]. Mizumoto and Tanaka [58]
discuss the properties of these sets and give the example of the set X =[Susie, Helen,

Ruth, Pat] and A isthe fuzzy set of beautiful womenin X:

A=beauty={ middle/Susie + low/Helen + very high/Ruth + high/Pat} (3-10)
where middle, low and high are fuzzy sets. Asan example, instead of saying Helen is
“beautiful to degree 0.3”, sheis “beautiful to degree ‘low’”, thus associating a fuzzy set

as opposed to a specific value. These fuzzy sets of type 2 allow for classifications of

members of afuzzy set with another fuzzy set.
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The goal behind defining fuzzy sets (besides usefully describing imprecise, incomplete or
vague information) isto use them to make inferences about a particular real-life problem
which cannot be easily addressed using conventional mathematical models. The
construction of a Fuzzy Information System (FIS) begins with determining the fuzzy sets
that describe the problem. Continuing with a medical example, these may involve
various qualitative measurements about a patient (low temperature, serious fracture, fair
condition) which ultimately will lead to a diagnosis and then atreatment plan. Then the
rules describing how these fuzzy setsinteract are determined. These rules usually have
an IF... THEN.... nature. Therules arethen combined in someway. Thisprocessis
referred to as rule composition. Finally, conclusions have to be drawn in a process
known as defuzzification. The answer to the problem istypically found as afuzzy set,
and the answer needs to be “defuzzified” to provide a clear, unambiguous course of

action.

Fuzzy logic is often used in conjunction with artificial neural networks (ANNSs). The
neural nets are used to aid in the development of FISs. As Takagi and Hayashi [89] point

out, fuzzy reasoning presents particular problems:

1. thelack of adefinite method for determining the membership function;

2. thelack of alearning function.

They then go on to describe an approach for using ANNS to overcome these problems.

The method is to investigate if-then rules by using neural networks to determine the
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membership functions of the antecedent and then determine the consequent component as
the output for each rule. The approach they useisto take raw data (say, in a control
problem), apply a conventional clustering algorithm to group the data into clusters and to
apply an ANN to this clustered data to determine the membership of a pattern within

particular fuzzy sets.

The authors apply this approach to two rea-world problems - estimation of chemical
oxygen demand density in Osaka Bay and the estimation of the roughness of a ceramic
surface. Their method in both cases out-performed more conventional methods. This
combination of neural networks and fuzzy reasoning does allow for automatic generation

of W in certain applications.

As has previously been stated, finding a solution to afuzzy logic problem requires
defuzzification. There are various techniques available. Lee[48] describes the three
main approaches as the max criterion, mean of maximum and the center of area (most
common). The max criterion method finds the point at which the membership functionis
amaximum. The mean of maximum takes the mean of those points where the
membership function is at amaximum. The most common method is the center of area
method which finds the center of gravity of the solution fuzzy sets. Lee states,
"Unfortunately, there is no systematic procedure for choosing a defuzzification strategy."
Although the process of reducing the final fuzzy set to a crisp value does seem
appropriate for control problems much information islost by doing this and further work

needs to be done on how to use the information available in the solution fuzzy set.
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In the main, the approaches adopted in fuzzy logic problems have been very domain
specific, not applied to large complex problems and the evaluation of the efficacy of their
approach is often not systematic enough for conclusions to be drawn. Determining the
membership functions, the rules, the operators and the defuzzification strategy isa
difficult task that requires a good deal of effort before it can be said that any particular

system is the optimal fuzzy system for that particular application.

3.2.7 Summary of Other Methods

The most common methods in the literature at present for analyzing system data are
variations of neural network and/or fuzzy logic techniques. However, there are a number
of other techniques which can be used to analyze system data. Some of these methods

are summarized in atable in the appendix for chapter 3.
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V. Mathematical Programming Model

4.1 Model Development

A prognostics system, at an abstract level, is composed of two parts. Thefirst part
consists of sensors which are attached to various parts of a mechanical, electrical, or other
kind of system, and report the system data. The second part is areasoning function
which interprets this data to provide an assessment of current and future system health.
This section devel ops a mathematical model of the former part to determine a* best”,
latter reasoning function configuration. The objective function calculation approach is

present in the next chapter.

Different types of models can be used to represent a particular system. For the purposes

of this discussion, a model which emphasizes a system’ s components and subcomponents

is used.
Component A
Component A
Component A | Subcomp. 1 | | Subcomp. 2 |
| Subcomp. 1 | | Subcomp. 2 | ¢

"No Suboomponerts | - [ ssteom 1| | sbateomp 2|

|_____Modd i i Subcomponents | ' Sub-subcomponents |
_____Model | Model |

Figure4-1. Different levels of detail for modeling a system

Figure 4-1 shows three different possible levels of detail for modeling a system. A

system can be modeled at a component level, as shown in the left side of Figure 4-1. In



the middle of Figure 4-1 is a system in which components are divided into
subcomponents. This model will be the focus of this discussion, and will be used to
model anotional prognostics system. The right-hand side of Figure 4-1 shows a system
model where the subcomponents are further decomposed into sub-subcomponents. This

level of abstraction can continue for any number of levelsto the required level of detail.
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Figure4-2. A pictorial representation of asimple system

Figure 4-2 shows asimple, generalized system. This simple system consists of one
component and two subcomponents. Each subcomponent may have up to two sensors
attached, each providing information to a classifier. The classifier then determines the
subcomponent state based on the sensor information. The reasoner combines all the

information from the classifiers and makes a final determination about the system state.



The reasoner also serves as the interface between the system and the human operators.
The challenge is determining whether all sensors are needed or whether thereisa

sufficient subset of sensors. A mathematical model can help answer the challenge.

For the purposes of this representation, a component is considered an abstract grouping of
less complicated, smaller substructures. These substructures are represented as
subcomponentsin Figure 4-2. As an example, an aircraft engine may be considered as a
component. One subcomponent might be the fuel delivery and ignition system; another
subcomponent might be the turbine blades and the associated control mechanism. Of
course, these definitions of component and subcomponent can be applied to any desired
system at any level, depending on the level of detail/complexity/aggregation required for

aparticular application.

The following assumptions underlying the subsequent mathematical formulation arein
keeping with a genera philosophy of the prognostics community at the present time. In
this particular model, all the subcomponents are considered critical parts of the system
component. If any subcomponent fails, the parent component and the system will also
fail. System parts which are not critical to component/system functionality are not
addressed with thismodel. A specific term used to describe this principleis“Failure
Mode and Effects Criticality Analysis’ (FMECA) [12]. FMECA analysisis concerned
solely with different system failure modes, as opposed to system operations which may
be aberrant, but do not affect system operation or induce system failure modes. Inthe

FMECA, the system’ s different failure modes are ranked according to severity, likelihood
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of occurrence, and observability. For each failure mode, a group of system experts
determines preliminary symptoms (if any), and which system sensors would be useful in
detecting these symptoms. System modes/conditions which do not significantly affect

the operation of the system are not considered in the FMECA [9].

Logan, et a [50], [51] recommend asimilar modeling approach. They use the
engineering knowledge of domain experts to construct a diagnostic knowledge base
suitable for neural network training. They call their approach a comprehensive “Failure
Mode and Effects Analysis’ (FMEA) on the appropriate mechanical system. Likethe
FMECA, a FMEA provides a comprehensive listing of probable failure modes of all
“major” mechanica system components, where “major” is defined as the level of detail
appropriate for that particular system. Thisinformation is obtained from interviews with
engineering crews and maintenance personnel. Technical orders are also reviewed to
ensure the information is correct and complete. The review also includes information on
al available sensor measurements, and identifies the fault/symptom rel ationships
required for an effective monitoring program. Similar to the FMECA approach, non-

failure modes are not considered.

In Figure 4-2, each of the two subcomponents have potentially two sensors. These
sensors represent the collection and reporting of appropriate information about the
specific part of the subcomponent they are monitoring. Typically, the sensors are
assigned to collect a specific type of phenomenology from the subcomponent. These

phenomenol ogies may include pressure, temperature, vibration, and electrical current.
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Returning to the preceding example of an aircraft engine, if one subcomponent represents
the fuel delivery and ignition system, one sensor may monitor the pressure within the fuel
delivery system, and the other sensor may record the timing and strength of the spark (the

electrical current) the ignition system produces.

The sensors' collected data are sent to the classifier functions. The classifier checks the
reported data to ensure the sensor is functioning correctly, processes the raw signal data,
and then uses this processed data to assess the current subcomponent state and predict the
future subcomponent state. The reasoner accumulates these assessments and predictions
from the classifiers, and uses them to assess the current system state and predict the
future system state. (Correctly functioning sensors send two data streams to the
classifier. The main data stream is the subcomponent data. The second data stream
verifies the sensor’s functionality. A correctly functioning sensor sends a specific bit
every x" bit interspersed with the main data stream to verify the sensor is functioning
correctly. If the classifier does not receive this specific bit, it will disregard the incoming
data stream until it again receives this bit from the sensor.) The methods the classifier
may use to interpret the processed data can be quite varied. These methods can range
from mathematical techniques such as neural nets and Bayesian networks to case-base

reasoning and/or expert systems, or any combination of techniques.

The analytical tool used in the model represented in Figure 4-2 represents is the Recelver

Operating Characteristic (ROC) curve. A ROC curveisthe graph of arelation which

summarizes the range of performance of a particular signal detection algorithm. The
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signal algorithm is designed to detect a particular signal of interest among other signals
which may serve to mask the signature of the desired signal. A ROC curve typically
compares the classifier’ s signal of interest detection rate to the classifier’ sfalse alarm rate
(reporting asignal of interest when that signal has not actually occurred). ROC curves
are commonly used to describe the performance of imperfect diagnostic systems,

especialy in the fields of automatic target recognition and biomedical research [5].

In the models considered here, each system will typically have more than one component,
each component will typically have more than one subcomponent, and each
subcomponent will typically have more than one sensor/classifier pair. For agiven
subcomponent, all possible sensors of the appropriate type (pressure, temperature, etc.)
are possible candidates. As before, every subcomponent is assumed critical for system
operation. Further, each subcomponent of a particular system is assumed to have at least
one sensor attached to it (the mathematical formulation will explicitly enforce this

structural requirement).
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Figure4-3. A pictorial representation of a system with multiple components

Figure 4-3 expands the model structure found in Figure 4-2. There are now two
components, each with two critical subcomponents, and each subcomponent has multiple

candidate sensors.

In an ideal environment all sensors areincluded in a system. However, weight, space,
and data processing limitations prohibit such a configuration in actual systems. Thus,
expert judgment may be used to pick a subset of sensors. Mathematical modeling
provides a means to improve upon expert judgment to prescribe some best subset of

sensor/classifier pairsto include in asystem. The next section develops a mathematical



formulation to accomplish thistask. Thisformulation uses the model structure presented

in Figure 4-2 asabasis.

4.2 Formulation

A mathematical programming formulation is used for selecting an optimally sized sensor

set. Let M denote the number of sensors available for use, and define S = { A1, Ay, ...,
Aw) to be the set of sensors available. Define A ={S: Sisanon-empty subset of
sensors of S}, and note that A isthe power set of S, excluding the empty set, denoted as
A =P(S) - 0. Notethat card(A) = 2 — 1, that i, there are 2" — 1 different setsin A.

LetSTOA,i=1,2, ... 2" —1 bean enumeration of A.

Each sensor hasits own classifier. The terminology A; is understood to refer to any

specific sensor-classifier pair. For aset S [J A containing more than one sensor, afusion

rule R will be used to fuse the classifiers for each sensor into asingle classifier. This

activity will be denoted asR:A - G_(S),

where G_(S) ={A1, Az, ..., Au, R(AL, Az), ..., R(AL, A, ..., Aw)}
={R(SISOA}.

The set G_(S) contains all the fused classifiersfor each S [ A. Note that ensembles

consisting of asingle sensor-classifier pair do not undergo fusion since the ensemble

already has asingle classifier.
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This paragraph defines the variables and constants found in the formulation below. The
objectiveisto find a sufficient sensor/classifier subset for the given system. Thus, the
objective function value Prp is the probability of obtaining atrue positive (the prognostics
system indicates a system failure when the system has actually failed). The variable Pep
is the probability of obtaining afalse positive (the prognostics system indicates a system
failure when the system has not failed). Thevalue P is defined as the maximum
acceptable Prp for any ensemble. The value of Prp depends on F;, a probability function

that depends a particular ensemble S 0 A, and Prp. The evaluation of Prp is developed

in Chapter 5. The variable dZ, isan indicator variable that is 1 if the m™ sensor is
retained for the s subcomponent on the ¢ component, and 0 otherwise. The variable
¢ isthe cost of employing the m™ sensor on the s" subcomponent on the c™
component. Thisfixed cost is assumed to be independent of the other sensorsin the
ensemble. The variable SC; denotes the maximum number of sensors considered for the

s" subcomponent of the ¢ component. The parameter SC is the number of
subcomponents present on the ¢ component. The parameters ¢i™ and ¢™ denote the
cost of an erroneous prognostics system reading associated with the i ensemble S 0 A,
i=1,2 ...2Y —1. Theerrorsaredefined asfollows: either the system indicates afault
when no fault is present (cost denoted by ™), or failsto indicate afault when afault is
present (cost denoted by ¢™). The constant B: isthe budget (maximum allowable cost)

for the costs of retaining a given sensor ensemble on the ¢ component. The constant Bo
is the budget (maximum allowable cost) for the sensor errors. The mixed-integer

nonlinear programming (MINLP) formulation is then given by

4-9



F(Pep) = max Pre(A) (4-1)
A OGg(S)
subject to Per(A) < P|:p*

C
(structural constraints—there are SC = Z SC° of these constraints, one for each

c=1

component.)
SN
> dg, =21 c=1..Cs=1,..,8C°
m=1
1if mth sensor retained on sth
d;. = <sub-component of cth component
Ootherwise

(employment cost constraints—there are C of these constraints, where C is the number of

components)

SO O

> >dgcs,<Bf c¢=1,..,C

s=1 mAl

(operational cost constraint)
G +6™N<Bo SOA

0<Pp<Pp <1
dg, 040, 1} c=1..,Cs=1..,SC5m=1, ..., SC

¢ ,¢"c™BgBo>0 SOA;c=1,..,C;s=1,...,C%m=1, ..., SC°

This formulation accommodates two key requirements associated with this general
problem. Thefirst requirement isto consider all appropriate sensor ensembles for a
given system (not necessarily al possible ensembles). This requirement is met with the

employment cost and structural constraints. The employment cost constraint ensures that
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budget associated with a particular sensor ensemble is not exceeded, and the structural
constraint ensures that each critical subcomponent is assigned at least one sensor. The
second requirement is to ensure a given sensor ensemble does not exceed the maximum
allowable error rate. The operational cost constraint ensures this requirement is met.

There is more discussion of the operational cost constraint in section 4.5.

This formulation apportions employment costs to specific system components (recall that
employment cost does not refer just to the actual monetary expense). Size, power,
weight, and similar constraints are likely to be different for any given system component.

Accordingly, this formulation enforces a specific budget for each component.

4.3 Towards a Heuristic Solution Procedure: Subset Generation
This section details a methodology for partitioning the solution space, and indexing the
possible solutionsin the resulting subspaces. A subset ordering method is presented to

ensure each subset S0 A is considered during the solution process.

If there are M defined sensors, there are 2! — 1 possible sensor combinations containing
at least one sensor within the system (the trivial case of an empty ensemble is omitted).
There are d'so M different sensor ensemble sizes, ranging from one sensor throughout the
system, to all M sensors employed. Formulation (4-1) can then be partitioned into M
subproblems, one partition for each sensor ensemble size, in order to conveniently
enumerate the solution space, and to partition the solution space into more manageable

subspaces. Define an index j as the number of sensors contained in a particular partition
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n
(j= 1toM). Each of the] partitions contains yC; possible solutions, where ,Cy = (k] :

More formally, this can be expressed as

A ={Ss#0,cad§=j} j=1..., M. (4-3)

AJ_ [ Al isthe set of sets corresponding to the partition consisting of j sensors selected

M
among the M sensors available. Note that card(Aj) =uCjand A = U A

=

4.3.1 Subset Ordering
A logical ordering of all the sensor ensembles allows for a quick and thorough evauation
of the solution space. To this end, this section devel ops a notation for tracking each

ensemble, and presents two different ordering methods.

Each particular ensemblein A can be given aunique index. Oneindexing schemeisa

natural indexing scheme defined asfollows. Recall j=1to M (sensors). When the index
J isequal to 1, the M ensemble sensor sets are each of size 1, and so are indexed from 1 to
M. When theindex j isequal to 2, the wC, ensemble sensor setsare of size 2, and i is
indexed as

i=M+1LM+2 ...,M+yCo. (4-4)
When the index j is equal to 3, the yC3 ensemble sensor sets are of size 3, and i isindexed
as

i=M+1+pMCo, M +2+Co, ..., M + yCs + Ca. (4-5)
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In general, when the index j isequal to n, where M > n = 3, the ensemble sensor sets are

of sizen, withi isindexed as yCx-1

n n n+l
i=M+1+> ,C,,M+2+> ,C ,M+>  C,. (4-6)
k=3 k=3

k=3

The natural ordering sequence is completed by maintaining a lexicographic order within
any S. A natural ordering sequenceis a particular lexicographical method that orders all
subsets of a given set according to the number of itemsin the subset, from the smallest
number of itemsto the largest. This ordering allows for the potential elimination of all

sensor subsets of the same size.

Table4-1. “Natural” sequence for a set of 6 sensors

Sensor Sensor Sensor
Index Ensemble Index Ensemble Index Ensemble
1 sl 22 s1s2s3 43 s1s2s3s5
2 s2 23 sls2s4 44 s1s2s3s6
3 s3 24 s1s2s5 45 s1s2s4s5
4 s4 25 s1s2s6 46 s1s2s4s6
5 s5 26 s1s3s4 47 s1s2s5s6
6 s6 27 s1s3s5 48 s1s3s4s5
7 sls2 28 s1s3s6 49 s1s3s4s6
8 sl1s3 29 s1s4s5 50 s1s3s5s6
9 sls4 30 s1s4s6 51 s1s4s5s6
10 slsb5 31 s1s5s6 52 s2s3s4s5
11 s1s6 32 s2s3s4 53 52535456
12 s2s3 33 s2s3s5 54 s253s5s6
13 s2s4 34 $2s3s6 55 52545556
14 s2s5 35 s2s4s5 56 s3s4s5s6
15 sS2s6 36 $2s4s6 57 s1s2s3s4s5
16 s3s4 37 s2s5s6 58 s152s3s54s6
17 s3s5 38 s3s4s5 59 s$152s3s5s6
18 s3s6 39 s3s4s6 60 5152545556
19 s4s5 40 s3s5s6 61 s1s3s4s5s6
20 s4s6 41 s4s5s6 62 5253545556
21 s5s6 42 s1s2s3s4 63 515253545556
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Table 4-1 shows a natural ordering for a system with six sensors. As the table shows,

sensor subsets of the same size are grouped together.

There are other subset ordering methods. According to the paper by Furnival and Wilson
[34], alexicographic ordering method would look like the ordering depicted in Table 4-2.
This ordering method groups the subsets by sensors-the first grouping of subsets all
contain sensor 1, the next grouping contains sensor 2, and so forth. In their paper,
Furnival and Wilson include FORTRAN code to generate these different subset
orderings. Their code has been modified to generate the natural ordering sequence for up
to nine sensors. Other sources aso present these ordering techniques as ways to codify a

number of different subsets[92], [23].
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Table4-2. “Lexicographic’ sequence for a set of 6 sensors

Sensor
Index Ensemble
1 sl
2 sls2
3 s1s2s3
4 s1s2s3s4
5 s1s2s3s4s5
6 515253545556
7 5152535456
8 5152535556
9 s1s2s3sb
10 s1s2s3s6
11 sls2s4
12 s1s2s4s5
13 s1s2s4s5s6
14 s1s2s4s6
15 s1s2s5
16 s1s2s5s6
17 s1s2s6
18 s1s3
19 s1s3s4
20 s1s3s4s5
21 s1s3s4s5s6

Sensor
Index Ensemble
22 s1s3s4s6
23 s1s3sb
24 s1s3s5s6
25 s1s3s6
26 sls4
27 sls4s5
28 s1ls4s5s6
29 s1s4s6
30 slsb
31 s1sb5s6
32 s1s6
33 s2
34 s2s3
35 s2s3s4
36 $253s4s5
37 5253545556
38 s$253s4s6
39 s253s5
40 52535556
41 525356
42 s2s4

Sensor
Index Ensemble
43 s254s5
44 s254s5s6
45 525456
46 s2s5
47 s25556
48 s2s6
49 s3
50 s3s4
51 s3s4s5
52 s3s4s5s6
53 s3s4s6
54 s3s5
55 s3s5s6
56 s3s6
57 s4
58 s4s5
59 s4s5s6
60 s4s6
61 s5
62 s5s6
63 s6

The natural ordering schemeis used for this presentation. In the natural ordering scheme,

within each sensor size, the ensembles are ordered from the smallest number to the

largest number.

This methodology is used in the appendix to develop a methodol ogy to quickly reduce

the size of the solution space that must be searched, if certain conditions about the system

and its operation hold.
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4.4 A Sample Formulation Example
This section illustrates the mathematical formulation with an example. The development

of the solution computation techniquesis presented in Chapter V.

Component A Component B
! €----- System r---- 4 |
| Subcomp. 1 H | Subcomp. 2 | | Subcomp. 1 |§ | Subcomp. 2 |
v v v I
A B C D «--1 Sensors (---» E F G H |
v v v oy v v vy
A B C D l¢-1 Classifiers -»| E F G H I
ooy v Y v ooy o vy
s al/al/ay'aN's
N / \ ~ /

/

Reasoner

Figure4.4. Figure 4.3 reproduced for clarity

In this example, there are nine sensors and corresponding classifiers (M), four critical

subcomponents (SC), and two system components (C). The specific formulation is:
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F(Pep) = max Pre(A) (4-7)
A OGg(S)
subject to Per(A) < P|:p*

(structural constraints)
Per(R(S) < p

s
> dg =1 SC; =2
m=1
Seiy
> dg =1 SC; =2
m=1
P
>ds 21 SCP =2
m=1
<P
> dé =1 SC; =3
m=1
1if mth sensor retained on sth
d;. = <sub-component of cth component
O otherwise
(employment cost constraints)
ColalR: ol
> > dach <Bg
s=1 m=1
SoLENS o
> > dics <BE
s=s1 m=Al
(operational cost constraint)
G+ MN<Bo SOA
0<Pp<Pp <1
dg, 040, 1} c=12s=1..SC5m=1, ..., SC

¢ .6 c™ BgBo>0 SOA;c=1,2s=1,..,SC5m=1,..., SC
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Note that there are two employment cost constraints corresponding to the two system

components, and there are four structural constraints, corresponding to the four critical

system subcomponents. The operational cost constraint remains the same. Assume that

each S O Al isindexed in natura order.

4.5 A Possible Modification to The Operational Cost Constraint

The formulation presented in section 4.2 is time independent. It may be useful for a

particular system to model time in the operational cost constraint. This section builds a

methodol ogy to accommodate that capability.

There are four possible outcomes for the prognostic system’s assessment of the data

stream. These outcomes are summarized in the table below.

Table4-3. Summary of sensor readings and their associated probabilities

. Sensor Report
Reality (Truth) No Fault (N readings) Fault (n readings)
: False Positive (P
No Fault True Negative (Prn) SeCo < Cin( )
False Negative (Pry) N
Fault Cost g™ True Positive (Prp)

* Py isthe probability that the prognostics system does not report afault when no

fault is present.

* Pgpisthe probability that the prognostics system reports a fault when afault is not

present. The cost of thiseventisc™.

4-18




* Pgy isthe probability that the prognostics system does not areport a fault when
oneisactually present. The cost of thiseventisc™.
* Prpisthe probability that the prognostics system reports a fault when oneis

actually present.

The ¢ and ¢i™ costs may be more appropriately expressed as a function of Pep and Pey,
respectively. The larger Prp and Pry, the more often the cost will be incurred. However,
theidea of “often” introduces a time element into the formulation. Let N be the total
number of no-fault readings for a given time period, and let n be the number of fault
readings for the same time period. Let the total number of readings be represented by T =
N + n. Then the quantities N and n can be considered the expected number of “no fault”

and “fault” readings, respectively, per T trials.

Estimates for the number of failure readings which might occur during a given sortie can
be obtained from Mean Time Between Failures (MTBF) information. MTBF isthe
number of time units (usually hours) that pass before a component, assembly, or system
fails. It isameasure of hardware product or component reliability, and is a commonly-
used variable in reliability and maintainability analyses. The MTBF for a particular
component can be used to determine estimates for N and n, given the rate at which
system readings are collected. Let tr denote the system reading rate and S be the length
in time of the sortie. Then

T=]tS] (4-8)
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_ S )
n_[MTBE} (49)

and

N:[T- S w (4-10)
MTBF

As a specific example, assume a 20 hour sortie (S), a system reading (t1) every second,

and an MTBF of 10 hours. Then T = 72,000, N = 71,998, and n = 2.

The modified form of the operational cost constraint would be:

PepnGiT + PeuNGT™ < Bo (4-11)

4.6 A More General Formulation

The formulation presented in section 4.2 apportions employment costs among the
different system components. The underlying rationae is that size, power, weight, and
similar constraints are likely to be different for any given system component. However,
there are parts of the cost of employing a sensor ensemble that might be freely transferred
among system components, such as monetary costs. Additionally, there may be system
components where size, power, weight, and similar constraints are not limiting factors.
Here, the employment cost constraint is relaxed to alow for an overall system budget.

The new formulation is given by
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F(Pep) = max Pre(A) (4-11)
A OGg(S)
subject to Per(A) < P|:p*

(structural constraint--there are SC of these constraints, where SC is the number of

subcomponents)
¢
> dg 21 c=1..Cs=1..SC5m=1, ..., SC;
m=1

1if mth sensor retained on sth
d;, = <sub-component of cth component
Ootherwise

(employment cost constraint—there is now only one constraint)

[SORES o
> > dece,sBe s=1,..,8C5m=1, ..., SC{
ss1 m=1

(operational cost constraint)
¢ +c™N<Bo SOA

0<Pep<Pp <1
ds. 040, 1} c=1..Cs=1..SCm=1, ..., SC
c.,c" 6™ BgBo>0 SOA;c=1,..,Cs=1,..,SC%m=1,..., SC

Note that only the employment cost constraint was modified from the general

formulation. The solution details are presented in Chapter V.

4-21



5.1 Fusion Rule Definitions

V. Fusion Rule Assessment

Given asystem like that shown below in Figure 5-1, the objective isto find the optimum

allocation of sensors that provides the “best” ROC curve for determining the system

status. This notion of a“best” ROC curve is developed in alater section. The ROC

curve for each classifier under consideration is assumed to be known for the discussion

that follows.
Component A D System ==~-- > Component B
[wwomi] | [Smomw] L [seeme
vy v v v ' ,
A B C D ¢----- Sensors r------ » E F G| |H
v v v v R e
A B C D |4 Classifiers [=--- » E F G H
Y Y Y Y
Within Within Within ROC Within Within
Fusion Fusion [¢ curves P Fusion Fusion
G J -
Y '
) Across ROC )
K AcrossFuson € CUNVES - Across Fusion

Figure 5-1. Graphic showing the terms for the different fusion operations

-/

N

Across Fusion

51



Figure 5-1 shows the terminology developed for each fusion method. The ROC curves
associated with each classifier need to be combined to provide a single ROC curve
associated with the subcomponent. Thisfirst fusion method will be called within fusion.
The within fusion method creates a ROC curve for each subcomponent that has multiple
(or redundant) sensors, although a subcomponent does not necessarily require multiple
(or redundant) sensors. The ROC curves for the subcomponents (whether they have

multiple sensors or not) will be called within ROC curves.

The ROC curves associated with each subcomponent need to be combined to provide a
single ROC curve associated with their common component. This second fusion method
will be called across fusion. The across fusion method is used to combine within ROC
curves. The across fusion method creates a ROC curve for each system component. (A
component does not necessarily have to have multiple subcomponents). The ROC curves
resulting from this operation will be called across ROC curves. Each of these two fusion

methods (within and across) is described in detail in the next section.

5.2 Fusion Methods

At the lowest level of system decomposition (the subcomponent level in this model),
there are a significant number of options for sensor allocation, even on asingle
subcomponent. To accurately categorize the current and future states of a particular
system, sensors must be appropriately placed on all subcomponents. As areminder,
referring back to Figure 5-1, all subcomponentsin this model are assumed to be critical to

component and system operation. In any given system, there is a balance between using
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enough sensors to ensure a high level of confidence in the prognostic system’s reports on
system status, while not exceeding power, weight, bandwidth, and other limitations
which restrict the number of sensors which may be used. Although it may be desirable to
measure the performance of every part of every subcomponent, and include redundant
sensors on the most important subcomponents, such configurations are not likely to be
feasible. The underlying assumption of this desire for these types of redundant
configurations is that multiple sensors will provide ahigher level of confidence and
accuracy in the prognostic system’ s reported results. To reflect that, the within fusion
method creates a ROC curve which is always equal to or greater than each of the ROC
curves of the individual classifiers which contributed to it. Thistopic is explored further

at the end of section 5.2.1.

5.2.1 Within Fusion

The within fusion methodology is developed using the following definitions. Let = be
the event set. Let X be the feature space, and let x be a specific instantiation of this set
X. Let X; bethe set of system feature vectorsindicating a system failure. Let pr = Pr(x

[ X¢) be the prior probability that a critical subcomponent part will fail. The
corresponding definition and prior probability of the critical subcomponent part not
failing (operating nominally) is X, and p, = (1 - pr) = Pr(x O X,). Thecritical
subcomponent part is assumed to only take on these two states (nominal or failed). These

two states will be termed alabel set, and will be denoted by L = {F, N}.
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These two values of the label set are mutually exclusive and collectively exhaustive; i.e.,

L=L,0OLsandL,n Ls=00.

The critical subcomponent part is assumed to have two sensors A and B attached to it.
Let Ag and By, refer to the classifiers for sensor A and sensor B on the system,
respectively, where 6[®@ and @@ , where © and @ are admissible sets of parameters
associated with tuning each classifier [5]. These classifiers are assumed to assess failure
or non-failure independently (this assumption will be addressed in more detail in section

5.2.3).

= AB X A B, L

Event Set |—| Feature Set » Label Set

Figure 5-2. Methodology summary
Figure 5-2 summarizes the methodology presented to this point. System events are
detected by sensors A and B. These sensors report their collected data to the classifiers,

which assign alabel (either nominal-N or failed-F), to the data stream.

The expression Cg o Will be used to denote the concatenated classifier of the classifiers Ag

and B,
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A, B X C,, LxL

Event Set |—| Feature Set » Label Set

Figure 5-3. Function of the concatenated classifier

Figure 5-3 shows the transformation of system event datainto alabel set viathe

concatenated classifier. Since the concatenated classifier consists of both classifiers Ag

and By, the label set consists of two distinct [abels.

= AB X Co LxL R L

\ 4

v

P
Event Set |—| Feature Set Labdl Set Labdl Set

Figure5-4. Transformation of the system event to afinal system functionality
classification

Figure 5-4 shows the compl ete notional flow of information through this model. Once
the concatenated classifier has determined two distinct labels, arule R transforms these
two labelsinto asinglelabel. Specifically, R(L, L) =L 0L, where the J operator is

defined asin Table 5-1 below.

Table5-1. Definition of the [ operator

O|F N
F|F F
N [F N
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Table 5-1 shows the label obtained from each classifier on the exterior of the table. The
combination of the two labelsis shown in the interior of thetable. In thistable, the [
operator isdefined asa“logical or” rule. A “logical or” ruleis used to declare a system
failure; if either or both of the classifiersindicate afailed condition, the systemis
assumed to have failed. Thisformulation is consistent with the FMECA assumption that
every component iscritical. Only if both classifiers consider the system to be operating

nominally is the output from the rule R anominal reading.

The expression Dg, Will be used to denote this fused classifier. Notethat Dgy=R ° Cg,

and

Do) = R ® CoglX) = R(AG(X), Bo(X)) = Ae(x) 0B¢X) (5-1)

The operator © denotes the transformation of the concatenated classifier Cg , to the fused

classifier Dgyusing therule R.

There are certain probabilities associated with each possible classification event, given
the single subcomponent’ s operational state. The probability of atrue positive is defined
to be aclassifier declaring afailure, given the system hasfailed. The probability of a
false positive is defined to be a classifier declaring the system has failed, given the
system is operating nominally. The probability of atrue negative is defined to be a

classifier declaring the system is operating nominally, given the system is operating
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nominaly. The probability of afalse negative is defined to be a classifier declaring the
system is operating nominally, given the system hasfailed. These probabilities are

defined mathematically below. To simplify the notation, the probability of classifier Ag
providing a correct positive reading will be denoted as P» = Prp(Ag). The parameter 0 is
suppressed in this new expression. The probability of classifier B, providing a correct
positive reading will be denoted as, P} = Prp(By), and so forth. Similarly, the parameter

@issuppressed in this new expression. More rigorously, the definitions for the classifier

Ag are
Prs = Pr((Ae(x) O Lex O Xs) (5-2)
Pes = Pr((Ae(x) O Lilx 0 Xp) (5-3)
Py = Pr((Ae(x) O Lalx 0 X0) (5-4)
Pav = Pr((Ae(x) O Lajx O X) (5-5)

The definitions for classifier B, are obtained by replacing A with B and 6 with @in

equations 5-2 through 5-5.

The following table summarizes these eight conditional probabilities as measures of

distinct system events. Again, the classifiers are assumed independent.
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Table5-2. Conditional probability table for one system component and two classifiers

Classifier Report F, F F, N N, F N, N
Co.0 = (As,Bg)
True State
Normira P P2 P5 P P PR Pl P
Failed PTé PTIE?” PTé PF?\I PF?\I PTE’ PF?\I PF?\I

Table 5-2 shows the conditional probability for each possible event, where the classifier's

responses are conditioned on the subcomponent’ s true state.

The joint probability table in Table 5-3 lists the possible outcomes as digjoint events. The

general formulationis

PF(C9,¢(X) D(Li X Lj) N (X U Xk)) (5-6)
= Pr((Ae(X), Bo(x)) O(Li x Lj) | (x O Xi))Pr(x 0 X) (5-7)
= Pr(Ae(x) U Li | (x O X) Pr(Bg(x)) O L | (x O Xy) Pr(x O Xk) (5-8)

wherei, j, k O{f, n}.

Table 5-3. Joint probability table for one system component and two sensors

Classifier Report F, F F, N N, F N, N
Ce,(p = (AG!B(P)
True State
Nomina PLPER. | PAPAM | PaPEm | PaPAm
Faled Pro P P Pre P P P P Py Pex Pt
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Table 5-3 shows the probability of occurrence for each possible event as a product of
individual probabilities. The eventsin thistable are mutually exclusive and collectively
exhaustive. Thefirst column lists the two possible states of the system, nominal or failed.
The top row lists the four different aggregate classifier reports. An“F’ meansthe
classifier has reported afailed condition. An“N” means the classifier has reported a
nominal condition. The reports are listed at the top of each column as‘classifier Ag
report’, ‘classifier By report’. For example, the third column lists the possible outcomes

if Ag reportsafailed condition, and B, reports anominal condition.

As an example, the entry in the third row and the third column denotes the specific event
where Ag indicates failed operation and B indicates nominal operation, and the system
hasfaled. Mathematically, the expression is:

Py P pr = Pr(Ae(X) O Lt | (x O Xy) Pr(By(x)) O Ln | (x O X¢) Pr(x O Xs)  (5-9)
The ROC curvesfor each classifier consist of a set of points where a probability of true
positive value (ordinate) is specified for each probability of false positive value
(abscissa). The within fusion methodology uses these coordinate pairs, at common set
points along the abscissa, to create the new ROC curve. The mathematical method used

to combine the abscissas and ordinates into a new point is described below.

The pair of points used to devel op the methodology will be denoted as (P4, P5) and
(P2, P2), following the notation from Table 5-3. The point resulting from this fusion

process will belabeled (PS, PS). The probability of false positive for the combined
FPy TP
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classifier Cq q isthe probability that Cg o declares afailure, given that the system is
operating nominally. This classifier will declare afailure in three cases: if either Ag, By,
or both, declare afailure. Again, thisisthe“logical or” failurerule. Note that

PS =1- RS (5-10)
This suggests the following formulation using the probability structure suggested in
Table 5-3. The definition of true negative is the declaration of nominal system operation,

given the system is operating nominally. Note that

P = Pr(Deg(x) O Ln | (x O Xn)) (5-11)

= Pr((Ae(x) OB¢(x))0 Ln | (x O X)) (5-12)

P = Pr((Ae(x) 0 Lo) n (Be(x) 0 L) | (x 0 X)) (5-13)

Pr(Ae(x) O Ln | (x OXn) 0 Pr(By(x)) O Ly n (x 0 X)) (5-14)
Pr(x O X,)

=[PnIPR] (5-15)

asisevident from Table 5-3

=[1- R&1I1- Pel. (5-16)

Finishing, note that
Pe =1-[1- Pg][1- P3] (5-17)
Pe =[PR& + P — Py PRl (5-18)
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The corresponding true positive values, for the identical probability of false positive
values on each ROC curve, are combined in the same fashion. The preceding derivation

is repeated below with appropriate changes in notation.

Pr =1- P3 (5-19)
P2 = Pr(Dey(x) O Ln | (x O X)) (5-20)
= Pr((Ae(x) OBy(x))0 L | (x T X)) (5-21)
PS = Pr((Ag(x) O Lp) n (Bg(X) OLp) n (x O X)) (5-22)
Pr(x O Xp)

Pr(Ao(x) O Ln | (x O X)) n Pr(Bg(x)) O Ly | (x O X)) (5-23)
=[PPy (5-24)

asisevident from Table 5-3'
=[1- RAI[L- PE] (5-25)
PS =1-[1- PA][1- PE]. (5-26)

As expected, the formulais
PG =[P} + PR~ REPEL. (527

The point on this fused ROC curveis given by

(P, Pe)=(P + Pp — Pip Pep, P + P — P ). (5-28)

Again, these results assume the classifiers A and B are independent in their

measurements, and that their respective operating points are set a priori. Thisis not
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likely to bethe casein areal system. Thiswithin fusion ruleistherefore a weak upper

bound for the fused ROC curve, C. Thisisexplored further in section 5.3.3.

Thiswithin fusion method allows for the combination of any number of classifiers. Once
the ROC curves associated with the classifiers for two sensors have been combined into a
single ROC curve, this single curve can be combined with another ROC curve associated
with the classifier for another sensor. Thisiterative process continues until al the
classifiers associated with the sensors on a particular subcomponent are represented by a
single ROC curve. Using asimilar iterative process, any number of these within ROC

curves may be combined to form an across ROC curve, and so forth.
As an example of the within fusion rule, consider a critical subcomponent with two
sensors and two classifiers. Let the ROC curve for classifier A be given by y; = x**, and

%
let the ROC curve for classifier B be given by y, = ((gj arcs n(x)) . Theseare
Vi3

reasonabl e choices for ROC curve models because like ROC curves, they begin at the
origin and end at the point (1, 1). Also, these curves are areasonable estimate for actual

classifier performance.
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Two Notional ROC curves
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Figure 5-5. Two notional ROC curves

Figure 5-5 shows the two notional ROC curves. Notice that the Prp values for classifier
A exceed those for classifier B at every Pep value. Classifier A issaid to dominate

classifier B.

Notional and Fused ROC curves
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—=— ROC curwe for sensor B

o
[ee]

Probability of True Positive
. o o ¢
IS o

A&B

// Fused ROC curne for sensors

o
N
T

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

Figure 5-6. Graph of the two notional and fused ROC curves
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Figure 5-6 shows the two notional ROC curves and the within ROC curve. Note that the
within curve dominates both of the other curves over all of the operating range. The
values for the within ROC curve have been linearly interpolated from the values obtained

from the within fusion process.

Consider another example where one of the notional ROC curvesis significantly

dominated by the other curve. Let the ROC curve for classifier C be given by

y1 = tanh(4x), and let the ROC curve for classifier D be given by y, = xX**.

Notional and Fused ROC curves

o
0

—e— ROC cune for sensor C

/ —a— ROC curve for sensor D

Fused ROC curve for sensors
C&D

o
o

Probability of True Positive

o o
N »

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

Figure 5-7. Graph of two more notional and fused ROC curves

Figure 5-7 shows the comparison of the within ROC curve to the original ROC curves.

Again, despite the disparity in the two original curves, the within curve still dominates

both other curves over al of the operating range. It seems from these examples the
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within ROC curve will always equal or dominate each of the ROC curves of the
individual classifiers which contributed to it. To demonstrate thisin general, consider
two notional classifiersthat are independent. Let these classifiers have associated
probabilities of true positive of p; and p, at any given probability of false positive vaue.
Without loss of generality, let p; = p,, and recall that ps, p, 0 [0,1]. Consider the quantity
p2(1-py); thisvalueis clearly greater than or equal to 0. Since px(1-p;) = 0, adding p; to
both sides gives

P1+ P(l-p1) 2 pa (5-29)
or

P1+ P2 - P1P2 = P1 (5-30)
Equation 5-30 shows that the probability of true positive vaue for the within ROC curve
generated from these two independent classifiers will equal or exceed the probability of

true positive value of the individual classifier.

5.2.2 Across Fusion

The across fusion methodol ogy, as previoudy stated, addresses the combination of the
within ROC curves, when the classifiers are independent. It also addresses the
combination of across ROC curves. The essential system difference between the across
fusion technique and the within fusion technique is that the within fusion technique only
deals with classifiers on one critical subcomponent. The across fusion technique focuses
on combining ROC curves from at least two different system parts (subcomponents and

components).
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This methodology is based on a monograph by Oxley and Bauer [63]. Inthis
monograph, Oxley and Bauer use a‘logical or’ ruleto combine two ROC curves and
produce athird ROC curve. Their underlying assumptions about this situation are

summarized below.

Sensors ----- >

Classifiers |----- >

Figure 5-8. Notional prognostics diagram with atwo component system and two sensors

Figure 5-8 shows a diagram that illustrates the notional system used for the fusion
technique presented in [63]. The system, represented by the large box at the top of the
figure, contains two components. Each component sends data to a sensor, which records
thisinformation and sends it to aclassifier. The classifier uses the sensor data to report
the current condition of the component and the overall system. The sensors are assumed

to operate independently of each other, as are the system components.
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Based on thisfigure, conditional probabilities are defined below. The labeling

convention conditions the classifier output on the actual system data.

P(classifier declares failurelcomponent j is actually failed) = R, j O {A, B}
P(classifier declares failurelcomponent j is actually nominal) = P, j O{A, B}
P(classifier declares nominal|component j is actually nominal) = PL,j O{A, B}

P(classifier declares nominal|component j is actually failed) = RJ,, j O {A, B}

In Table 5-4, the first entry in the “True State” column refers to the true state coming
from “component A”. The second entry column refers to the true state of “ component
B”. Thefirst entry in the “Classifier Reports’ row refers to the report from the classifier
based on data from sensor A. The second entry refersto the report from the classifier
based on data from sensor B. These reports are component specific. The mapping
between these system reports and an actual determination of system failure has not yet
been specified. However, regardless of the system report, the system has actually failed

if thereisan“F” inthe “True State” column (the middle three rows of the table).
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Table 5-4. Conditional probability values [63]

Classifier F,F F,N N, F N, N

Reports

(A, B)
True State
F.F P P P P P P P P
FN P P2 P P P PR P P
N, F PF/; PTE’ PFI;‘; PF?\I Ppﬁj PTlE; Ppﬁj PF?\J
N’ N PF/; PF?D PFI;:" PTBN PTQ PF??’ PTQ PTBN

Table 5-4 shows the conditional probability values for the two classifiers A and B in the
presence of both failure and nominal system data. For instance, thefirst entry in the cell
in the third row and fourth column, P, , represents the probability that the classifier
reports nominal functionality of component A given component A has failed. The second
entry inthe cell, P, represents the probability that the classifier reports afailure of

component B given component B is operating nominally.
The following joint probability table combines these values with the a priori

probabilities. Again, both of the two failure types are assumed to be independent of each

other.
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Table 5-5. Joint probability values[63]

Classifier
Reports
(A, B)

True State

FF

F, N

N, F

N, N

FF

P P prof

PT/; PF?\I PO

PFI;“\I PTIE PO

PFI;“\I PF?\J PG

F N

P P Proh

PT/; PTE Pt0n

PFI;“\I PF?D PrOn

PFI;“\I PTE PrQn

N, F

Pre P PGt

PF?’ PF?\I PnGk

PTQ PTE’ PG

PTQ PF?\I PGt

N, N

Pes Pi Pln

Pre P P

P P Pt

PTQ PTi Pn0n

Table 5-5 summarizes these joint probabilities as a series of digoint events. The third

row indicates the actual data shows afailure on component A and no failure on

component B. The failure on component A is reflected with the a priori probability pr,

and the nominal condition on component B is reflected with the a priori probability gp.

These are expected to be small and large probability values, respectively.

In their monograph, Oxley and Bauer [63] use the preceding table to develop an

expression for the fused ROC curve for two mechanical system components. Let fa and

fB represent the two original ROC curves. Also, as before, let pr be the prior probability

of failure of component A, and let ¢, be the prior probability of failure of component B.

L et the following relationships hold:

y:pf+qf-pqu,rD[0,1],SD[O,r]
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Then the fused ROC curveis given by

() s o

y y O< psr

where

o=beo. oo R[22 b-a ]| o0

Equation 5-37 is the relation used to combine two within or across ROC curvesto

produce another across ROC curve.

5.2.3 Dependent Sensors

This section devel ops bounds for the effects of dependent sensors within a given system.
Consider a system where the sensors A and B are completely dependent. Thiswould
occur if two sensors were both measuring the same phenomenol ogy on the same
component, as they would if the sensors are redundant. In such a system, accurate
readings from sensor B would match accurate readings from sensor A in every possible
operating condition. In effect, sensor B provides no new information on the condition of
the system. Note that this condition does not assume the accuracy of the sensors would
be the same, just that their accurate readings would be the same. In this case with
completely dependent sensors, the logical decision is to chose the sensor with the better
accuracy, and discard the other one. Hence, alower bound on the fused ROC curve C is

the best ROC curve associated with the classifier for one of the two original sensors A
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and B. In passing, it isworth noting that the only time the accuracy of the sensors would

be the same is when the sensors are identical, AND have identical operating conditions.

As previoudly stated, the within fusion methodology provides aweak upper bound on the
fused ROC curve C. Thisis because the methodology uses set operating points from both
ROC curvesto generate the fused ROC curve. This methodology isin contrast to the
across fusion methodology, which takes a specific operating point from one ROC curve
and searches along the entire length of the other ROC curve to choose the best point to
obtain the best probability of true positive value. If the within fusion methodology had
been developed using a similar technique, the fused ROC curve C would be optimal,
relative to the classifier thresholds. (Thisresult isfound in Oxley and Bauer [63].) This
means this optimal within ROC curve would have probability of true positive values that
are at least equal to the values of the fused within ROC curve generated using set
operating points, and potentially have a number of values that exceed the values of this
fused within ROC curve. However, the within (and across) fusion methodology assumes
the sensors that provide data to the classifiers operate independently. This assumption
may not always hold, particularly if the sensors on a subcomponent are intended to be
redundant. If thereis some degree of dependency between the sensors, then the optimal
within ROC curve will overestimate the actual within ROC curve. The fused within ROC
curve generated using set operating points may also overestimate the actual within ROC
curve, but to asmaller degree than the actual optimal within ROC curve. Hence, the

fused within ROC curveis used to provide the estimate of the actual within ROC curve.
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With an established lower bound (the best single ROC curve) and a weak upper bound
(the fused within ROC curve) for the fused within ROC curve C, it is obvious that the
actual within ROC curve for a system with dependent sensors would lie between these
two extremes. Precisely where it would be located depends on the amount of dependency
between the two sensors. This amount of dependency may change from one operating
condition to another. There aso may be aminimum level of dependency whichis
present in every operating condition. The actual within ROC curve is probably best

determined through empirical observation of the actual system in question.

5.3 Application to a Two-Component System

In this section, two problems are constructed and solved using the within and across
fusion methods described in this chapter. Additionally, a solution algorithm is presented
for solving these problems. Section 5.3.1 presents the across fusion methodol ogy, using
asimple system as an example. This simple system has a single component with two
subcomponents and two sensors on each subcomponent, as shown in Figure 5-9. Section
5.3.2 presents the general solution algorithm for solving these types of problems. Section
5.3.3 uses the solution algorithm presented in section 5.3.2 to solve a second, more
complicated problem. This second problem expands the first problem by adding a second
component to the system. This new component also has two subcomponents, but with
two sensors on the first subcomponent and three sensors on the second subcomponent.
Section 5.3.4 presents an excursion where the per component budget constraint is relaxed

to apply only to the overall system.
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5.3.1 A Single Component Problem
This section presents a simple problem to demonstrate the application of the two fusion

methods. The notional system used for this problem has a single component and two

subcomponents.
System |------ b Component A
Subcomp. 1 E Subcomp. 2

v v
Sensors F----- »A| [B| |c| |D
v v v v
Classifiers |------ ﬁ A B C D
v v v v
/el 'aN.

Reasoner

Figure 5-9. Figure 4-2 reproduced for clarity

Figure 5-9 shows the design of the simple system which will be used to demonstrate
solving the across fusion problem. Solving this problem will require four notional ROC
curves (one for each sensor), two fused ROC curves (within curves) using the within
fusion methodology, and ultimately one ROC curve (across curve) using the across

fusion methodology. The objective isfor this across ROC curve to be the best one
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possible. To accomplish this objective will only require three fused ROC curves since
there is no budget constraint on the number of sensors that may be considered per

subcomponent.

The curves that were used to produce the illustrative examples in section 5.2.1 will be

used to solve this problem. Asareminder, the ROC curvefor classifier A was given by

%
y1 =X, and the ROC curvefor classifier B was given by y, = ((gj arcsi n(x)) .
T

Notional and Fused ROC curves

W =
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\ﬁ
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Figure5-10. Figure 5-6 reproduced for clarity

Figure 5-10 shows these two notional ROC curves and their associated within ROC

curve.
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As before (section 5.2.1), let the ROC curve for classifier C be given by ys3 = tanh(4x),

and let the ROC curve for classifier D be given by y, = x**,

Two more Notional ROC curves

0.8 //
0.6

/ / —a— ROC curwe for sensor C

0.4 —m— ROC cunwe for sensor D

ol \

0 0.2 0.4 0.6 0.8 1

Probability of True Positive

Probability of False Positive

Figure5-11. Two more notional ROC curves

Figure 5-11 shows these two notional ROC curves. Neither curve is completely

dominated by the other.
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Notional and Fused ROC curves
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Figure5-12. Graph of two more notional ROC curves, and the fused curve

Figure 5-12 shows the graph of ROC curves C and D, and their within ROC curve.

Fused ROC curves

: WWHWH‘—""'-”‘ L
=2 »
.g 0.8 / —e— ROC curve for fused
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Figure 5-13. The across ROC curves for the two classifier pairs, and the across ROC

curve obtained by fusing all four classifiers using across fusion
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Figure 5-13 shows the fusion of the two across curves into a single across ROC curve,

using the across fusion method. Thisis now the ROC curve for the component/system.

Note that the across ROC curve approximately splits the difference between these two

curves.

5.3.2 The General Solution Algorithm

This section presents the general solution algorithm for solving these types of problems.

Get first subset

v

A

No

A

Get next subset via
natural ordering*

vy No

Yes

A 4

Finish

L ast subset?

No
| s subset

employment )
operational feasible?
structural

Yes

A 4

Fuse Components
v

Compute P;p, Cost **

A

Add to Portfolio
_Or_

Keep Maximum

* Exploits
F(A, B, C) = F(F(A, B), C)
** Refersto costs that are
transferable among components

Figure 5-14. Algorithm for problem solution
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Figure 5-14 shows the algorithm employed to solve this problem. Each subset for agiven
component is enumerated. The employment, operational, and structural costs are
determined for each subset. If any of these costs exceeds the values specified in the
problem constraints, the subset is considered to be infeasible. Infeasible subsets are
eliminated from the solution space. The subset fusion (using within and across
techniques) is performed only if a subset isfeasible. When the fusion process has been
completed, the Prp value is computed and compared to the current maximum Pyp value.

If the Prp of the current subset exceeds the current maximum, the current subset becomes
the new optimal solution. Otherwise, it is discarded and the next subset is checked for

feasibility. This process continues until all possible subsets have been considered.

5.3.3 A Two Component Problem
Aswas demonstrated in section 5.3.1, the across fusion method is used to fuse other
across curves. As previously stated, most systems will typically have more than one

component. Figure 4-3 (reproduced below) shows a more complex system.
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Figure5-15. Figure 4-3 reproduced for clarity

ﬁ«w«w

Reasoner

A mathematical programming framework was presented in chapter 4 to determine the
optimal allocation of sensorsto subcomponents problem. Thisisacomplex problem
because there are an exponential number of subsets that must be considered in light of
various structural and operational constraints. Each subset of sensors typically requires
multiple ROC curve fusions. These fusions are the most computationally intense
calculations encountered in the optimization. Some of the constraints are rapidly
evaluated and as such certain sensor subsets are eliminated from consideration.
Interestingly, this mathematical programming problem is actually easier to solve given
the addition of these easily evaluated structural and operational constraints. Consider the
problem posed by Figure 5-15. In this example, it is notionally assumed that one sensor

subset for component A and three sensor subsets for component B are not feasible. Itis
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also assumed that at least one sensor is monitoring each subcomponent, which means the

subset of no sensors (the empty set) is excluded from consideration.

Table 5-6. Number of sensor subsets to consider given constraint types

Criteria Number of sensor combinations
1. Any non-empty sensor combinations 511
2. At least one sensor per component 465
3. At least one sensor per subcomponent 189
4. One sensor per subcomponent and cost feasible 144

Table 5-6 shows the number of sensor ensembles which must be considered given the
various constraint types. The number 511 in the first row was obtained by determining
the total number of subsets of the nine sensors available for use (512), and subtracting the
empty set. The number 465 was computed by determining the total number of subsets of
the four sensors available for use on the first component (16), and subtracting the empty
set to yield atotal of 15. The total number of non-empty subsets on the second
component was similarly determined to be 31, and multiplying these two numbers gives
465. The number 189 in the third row was determined using asimilar process. The
number of non-empty subsets for each subcomponent was determined, and these numbers
(3, 3, 3, and 7) were multiplied together to give the number of subsets that have at least
one sensor per subcomponent. The number in the fourth row incorporates cost

feasibility, so of the nine non-empty subsets for component one that have at |east one
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sensor per subcomponent, eight are assumed to be cost feasible. Similarly, 18 of the

second component subsets are cost feasible, and multiplying these two values gives 144.

Notice that the last row listed in the table, which embodies the mathematical
programming approach espoused in chapter 4, corresponds to a 72% reduction in the
number of ensembles to be considered. It should be noted that entries 2, 3, and 4 in the
table are not consistent with the mathematical programming assumption that each

subcomponent requires at least one sensor.

Solving this example will require five additiona notional single classifier ROC curves.
For ssimplicity, let the classifiers E through H have the same ROC curves as classifiers A

through D. The ROC curves will then be defined as:

Classifier A and Classifier E -- y; = x*%,

%
Classifier B and Classifier F-- y, = ((gjarcsin(x)j :
Vg

Classifier C and Classifier G -- ys = tanh(4x),

and Classifier D and Classifier H -- y, = x**,

Let the ROC curve for classifier | be given by ys = (1-(x-1)%)%° (the upper left quadrant of

acircle centered at (1, 0)).
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Notional ROC Curves
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Figure5-16. Notiona ROC curvesfor all 9 classifiers

Figure 5-16 shows the graphs for all of these notional ROC curves.

The overall sensor budget is divided into a portion for each component. Thisis because
the cost for employing a sensor includes power, weight, space, and other constraints that
are not readily transferable to other components. However, some of this cost is the actual
monetary cost required to purchase the sensor hardware. Consequently, some portions of
the unused budget amounts for a given component could be transferred to other

components. This point is addressed in section 5.3.4.
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Table5-7. Sensor costs for the employment cost constraint

Sensors/Component | Per Unit Cost
A E 45
B, F 30
C,G 25
D,H 35
I 35

Table 5-7 shows the cost for each sensor. The budget for component A is 125 and the
budget for component B is 135.. These values incorporate the notional assumption that
one sensor combination isinfeasible for component A, and three sensor combinations are
infeasible for component B. The solution method rapidly determines all the feasible

sensor combinations, and then computes the respective ROC curves.

It is of interest to compute the “best” ROC curves (those that possess the largest Prp value
among all the ROC curves at a given Prp value) for subsets within the components. It
should be noted that in the range 0.0 < Pep < 0.04, there are many ensembles which have
the same probability of true positive, to four decimal places. However, aunique
ensemble is always the “best” ensemble when the probability of false positive value

reaches 0.05.
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ROC curves of optimal ensembles
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Figure 5-17. The solution for component A

Figure 5-17 shows the solution for component A. Sensor ensemble ABD is the “ best”
ensemble until the probability of false positive value reaches 0.37, then sensor ensemble
ABC isthe“best” ensemble. Sensor ensemble ABCD would have been included on this

graph if it had been cost feasible.



ROC curves of optimal ensembles
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Figure 5-18. The solution for component B

Figure 5-18 shows the optimal ROC curves for component B. Sensor ensemble EFH is
the “best” ensemble until the probability of false positive value reaches 0.16, then sensor

ensemble EFGH isthe “best” ensemble.

The actual solution process isimplemented according to the agorithm presented in figure
5.9. Once all the feasible ROC curves have been generated for each component, they are
combined using the across fusion method. In this example, this means that each of the 8
feasible ROC curves from component A are individually combined with each of the 18
feasible ROC curves from component B. This creates the entire set of feasible ROC
curves. Then, for each probability of false positive value, the solution method determines
which ROC curve has the best TP value. Thisusually leads to a collection of a number

of ROC curves, as one ROC curve supersedes another as the maximization process
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continues. The optimal solution for this problem is given by the four curves shown

below.

ROC curves of optimal sensor ensembles
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Figure 5-19. The optimal ROC curves for this example

Figure 5-20 shows an enlarged view of the area of the graph where the probability of true

positive value is greater than0.8.
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ROC curves of optimal sensor ensembles
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Figure 5-20. A closer view of the optimal ROC curves

Figure 5-19 shows that the sensor ensembles ACDEH, ACDEFH, ACDEFGH, and
ABCEFGH are the “best” curves for this notional example. These ensembleswill be
referred to as sensor ensembles 1-4, respectively, for smplicity. As an example, sensor
ensemble 1 (ACDEH) is represented by the diamonds, and dominates the other curves
over asmall part of the range, from domain values 0.05 through 0.06. At the domain
values 0.07 through 0.23, sensor ensemble 2 (ACDEFH) dominates. For the domain
values 0.24 through 0.61, sensor ensemble 3 (ACDEFGH) dominates. And sensor
ensemble 4 (ABCEFGH) dominates for the remainder of the domain values, 0.62 through

1.00.

Once these best sensor ensembles have been identified, the best overal ensembleis

selected. Thisisdone by selecting a maximum allowable value for the probability of
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false positive. The ensemble with the largest probability of true positive value at that
particular point is chosen as the ensemble to employ on the system. In this example, if
the maximum allowable value for the probability of false positive is 0.2, the best sensor

ensembleis ACDEFH.

5.3.4 Two Component Problem Excursion

As previoudly stated, some unused portions of the budget for a particular component are

not transferable to other components, in the context of thismodel. However, excess cost
may be transferred between components. This ability to transfer excess cost may require
the calculation of new solutions. Assuming the excess budget amounts may be

transferred between the two components, the optimal solution changes.

ROC curves of optimal sensor ensembles
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Figure5-21. The optimal ROC curves if unused budget allocations could be transferred

among components
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ROC curves of optimal sensor ensembles
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Figure5-22. A closer view of the optimal ROC curves

Figure 5-21 shows the optimal solution to the problem if the entire budget could be
shifted among the two components. The change from sensor ensemble ABDEFHI to
sensor ensemble ABCDEFHI occurs at 0.29. The change from sensor ensemble
ABCDEFHI to sensor ensemble ABCDEFGH occurs at 0.63. These ROC curves are

generally only afew thousandths better than the ROC curves presented in Figure 5-19.
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VI. Summary and Recommendations

6.1 Overview
This dissertation research makes contributions in the emerging field of prognostics. This
section summarizes these contributions and presents recommendations for future

research.

6.2 Theoretical Contributions

A mathematical programming model was developed to optimally allocate sensors and
their respective classifiers among system components. The model includes structural,
employment cost, and operational cost constraints, allowing this formulation to be

tailored for any given system and budget.

System data fusion methods were developed to allow for the combination of information
from the classifiers associated with different sensors. Two different types of fusion
methods were employed. The first method, called within fusion, uses the characteristics
of sensors on a single system component to provide an assessment of that component’s
functionality, and is developed here. The second method, called across fusion, combines
within fusion measures (and other across fusion measures) to ultimately provide an

assessment of the system’ s functionality.

A proof was given demonstrating to show that in the absence of noise for independent

sensors, adding sensors of any capability to a given sensor ensemble will improve the
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ability of the ensemble to accurately determine the system state. Thisallows for rapid
evaluation of pointsin the solution space, since if al ensembles of a certain size are
feasible, all smaller ensembles will have smaller objective function values and can be

eliminated from consideration.

A methodology was developed to assess the relative merit of various fusion rules. There
are many different methodol ogies for combining the information from multiple sensors.
The method presented for scoring the different methodol ogies allows for the selection of
the best methodology for fusing sensor information, based on the capabilities of the
sensors, the relative importance of avoiding false negatives compared to false positives,

and the reliability of the system components under consideration.

A proof was given demonstrating that demonstrate that under the conditions of sensor
independence and no system “noise’, a“logical or” fusion rule is the best methodol ogy
for combining sensor information. It aso demonstrates that thereisno “best” fusion rule

for situations which do not meet the conditions required for this proof.

A similar proof was given to show that under the conditions of sensor independence and
no system “noise”, a“logical and” fusion ruleis the best methodology for combining
sensor information. It also demonstrates that there is no best fusion rule for situations

which do not meet the conditions required for this proof.
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6.3 Applied Contributions

A comprehensive literature review was written summarizing research activities
associated with applying the science of prognostics to various military and industrial
applications. Thisreview includes descriptions of efforts to develop both system-wide
and component-part prognostic systems. It also discusses some of the technical
challenges that must be overcome in order to successfully implement a prognostics

system.

A Prognostics and Health Management system taxonomy was developed to provide a
common frame of reference for discussions about prognostics systems. This taxonomy
included the definitions of various types of faults, and the expected outputs from a

prognostics system.

Sampl e problems using the mathematical program and the system data fusion
methodology were presented and solved to show the application of this methodology. A
notiona two-component system was constructed with places for notional sensorsto be
employed. ROC curves were used to approximate the sensors' classification
performance. Notional costs were assigned to each sensor, and a problem solution
algorithm was devel oped to ensure the optimal solution was found, while avoiding

unnecessary sensor fusion computations.
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6.4 Areasfor Future Research

This methodology could be employed to perform prognostics functions on real world
systems. Data can be collected from a given system of interest. Once sufficient data has
been collected analysis of that data should reveal unique data patterns which correspond
to different failure states. An appropriate set of classifiers can then be trained to
recogni ze these unique patterns and provide high confidence diagnoses of system
problems. The agorithm for optimum sensor allocation from this research can be
employed to appropriately deploy sensors on this system and use these classifiers to

provide system prognostics.

The prognostic information from the preceding effort could be used to manage
operational systems. Once information about the future health of multiple systemsis
known, that information can be used to proactively schedule maintenance actions, assess
population health, determine future mission/production capability rates, and adjust future
mission/production schedules. These capabilities have been collectively described as an
Autonomic Logistics System (ALS). A possible research effort would involve actualy

designing an ALS which performed these functions.

System damage generation and prediction mechanisms could be developed. Real system
damage data streams are hard to find. The goal of system maintenanceisto prevent
damage from occurring. Additionally, allowing a system to be destroyed to capture the
actual failure data can be prohibitively expensive. Invirtually all cases, modeling

catastrophic failure paths must be accomplished via analytical models or simulation as
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opposed to actual data. The development of a damage generation model would allow for
the ssmulation of catastrophic damage processes for awide variety of systems. This
would provide data for a prognostics system to recognize the early symptoms of
catastrophic damage, and allow for preventative action to terminate system operations

before the catastrophic failure occurred.

The sensor fusion methodology presented in this dissertation can be applied to other
sensor fusion problems. These problems include Automatic Target Recognition, Combat
Identification, Battle Damage Assessment, and related battlefield issues. All these issues
require a high degree of confidence in the answer, and consequently employ a number of
different data streams to ensure the answer provided is as accurate as possible. The
fusion methodology presented in this work could be used to combine the different data

streams to provide the accurate answer required.
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Appendix A. Methodology Comparison

The following table [95] briefly describes and compares 18 different methods, including

variations on neural network and fuzzy logic implementations.

The column headings on each page list the different techniques, and the row headings on
each page describe a characteristic of interest associated with each technique. The row
headings begin with “Nature of the required data” and “Nature of the system”. Thefirst
heading describes the kind and amount of data required for the particular technigue to be
useful. The next heading describes the kind of system for which the technique would be
most effective. The next row headings are “ Time required to generate a solution” and
“’Cogst’ of the solution (in arelative sense)”. The “Time" heading provides an
assessment of the time required to develop an appropriate solution. The “Cost” heading
provides arelative idea of how much time and how many resources would be expended
to develop a good solution, compared to other the other techniques. Next are the
“Reiability (robustness) of the solution” and “ Stability of the solution” headings. The
“Reliability” heading describes how accurately model results reflect the true nature of the
system. The “Stability” heading describes the technique’ s consistency over time. The
last heading “ Changes required if something new is introduced to the underlying system”
describes what changes must be made to the model if the underlying system changes.
Thisrow provides an idea of how easy or hard it isto maintain an appropriate model
using a particular technique. Nearly all systemswill be changed (through maintenance,

upgrades, etc.) from their original configuration during their operational lifetime, and the
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model in use must adapt to these changes to continue to provide accurate system
diagnoses. Some modeling techniques are inherently more flexible than others, and this

row indicates which techniques are more flexible.
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Table 3-1. Summary of Diagnostic/Prognostic Methods [95]

Technique/ Fuzzy Logic Neural nets Genetic Dempster-
Algorithms Schafer
Problem (“reasoning”) | (“associative’) | (optimization) (evidentia
Parameters theory)
Nature of the Maybe Lots of data, “Large” Incompl ete,
required data Incompl ete, high fidelity, solution low-fidelity,
low-fidelity, need to cover | population, data | small amounts
small amounts | dynamicrange | can be missing, conflicting
of system, need | incomplete or
large separation |  discontinuous
between data
classes
Nature of the Non-linear, Non-linear, Non-linear, Missing or
system highly complex | highly complex | highly complex conflicting
(use other (use other (use other information-
techniquesiif techniquesiif techniques if need to
systemis systemis systemis combine
“linear”, has “linear”) “linear”) information
lots of data)
Timerequired | Moderate/Very Short, Very long Short to
togeneratea | long if experts moderate, or moderate
solution opinions must long training
be gathered time depending
on size of net
“Cost” of the Moderate Moderate to Large Moderate
solution (ina large
relative sense)
Reliability Optimal— Optimal, Optimal Optimal—
(robustness) of | depending on guaranteed to solution not depending on
the solution initial expert | exist (findingit | guaranteed to initial expert
opinions another matter) | exist/be found opinions
Stability of the Depends on Very stablefor | Stablefor the | Dependson the
solution inherent dataonwhich | initial problem | accuracy of the
“disagreement” | the network has prior
among the been trained, probabilities
“experts’ unpredictable
otherwise
Changes Requires Net requires Requiresre- Requiresre-
required if updating but moretraining | computation of | computation of
something new | easy to update the solution the solution

isintroduced to
the underlying
system
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Technique/ Feature Sensor/ Rule-Based Fuzzy
Selection/ Knowledge/ Expert systems | Clustering/
Problem Extraction Information/ Classifying
Parameters Fusion
Nature of the Lots of data, Moreis better, Incompl ete, Moderate
required data high fidelity, can handle low-fidelity, amount, hi-
needs to cover incompl ete, small amounts | fiddlity, large
dynamic range low-fidelity, separation
of system small amounts between data
classes
Natureof the | Doesn't matter | Doesn’'t matter | Doesn’'t matter | Doesn’t matter
system
Time required Depends on Depends on Long for Moderate
to generate a selection/ selection/ devel opment,
solution development development short to run
method chosen | method chosen
“Cost” of the Dependson Dependson Largeif Moderate
solution (ina selection/ selection/ development
relative sense) development development must be done,
method chosen | method chosen | small otherwise
Reliability Depends on Depends on Optimal— Depends on
(robustness) of initial data initial data depending on location and
the solution initial expert number of
opinions clusters
Stability of the Depends on Depends on Depends on the Depends on
solution selection/ selection/ accuracy of the | location and
development development heuristics number of
method chosen | method chosen clusters
Changes Process must be | Processmust be | Requiresre- Requiresre-
required if repeated repeated computation of | computation of
something new the solution the solution

isintroduced to
the underlying
system
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Technique/ Least Squares Kaman Simulation Fuzzy wavelet
Fit Filtering analysis
Problem
Parameters
Nature of the Need clear Need accurate | Good insight on Hi-fidelity,
required data definition of system model. system quantity not as
independent, “Noise’ functions— important
dependent associated with |  math models
variables, lots data must be used to
of data Gaussian white, represent
must have system must be
“confidence’ accurate
(variance)
associated with
each data point
Nature of the Independent Linear (non- Can be of any Non-linear,
system variablesmust | linear models kind highly complex
be independent, | exist but not (use other
system must be coveredin techniques if
linear with few class) systemis
non-linearities “linear”)
Timerequired Short Moderate Depends Longif
to generate a directly on knowledge base
solution number of must be
system created, else
functions moderate
“Cogt” of the Small Moderate Depends Moderate
solution (ina directly on time
relative sense)
Reliability Only over the Optimal for a Depends on Very reliable
(robustness) of range where linear system accuracy of
the solution data was math model
collected
Stability of the Very stable Filter “adapts’ Very stable Very stable
solution to new data-
compare to
some baseline
Changes Recomputation | Only if baseline | Math model Knowledge
required if required changes, then | functions must base must be
something new change be atered updated—
isintroduced to comparison feature set must
the underlying baseline be re-validated
system
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Technique/ Statistical State-Based Case-Based Dynamic
Change Feature Reasoning Neural Nets
Problem Detection Recognition
Parameters (SCD)
Nature of the Accurate data Accurate Hi-fidelity, Moderate
required data | collection, need pattern sufficient to | amount of high-
to know “defect | representation, describe the fidelity data
frequencies’ state machines event
for each failure
mode
Nature of the Can be of any Signal data Canbeof any | Canbeof any
system kind producing kind kind
frequency
information
Time required Moderate Long if failure Short if case Long if fuzzy
to generate a modes need to library sets need to be
solution be identified existsVery built
long if case
library needsto
be built
“Cost” of the Moderate Small to Largeif library Large
solution (ina Moderate needs to be
relative sense) built, small
otherwise
Reliability Optimal change | Very reliable Reliable, not Optimal
(robustness) of | detection point optima—has
the solution difficulty with
novel events
Stability of the May be Very stable Very stable Very stable
solution affected by
noise, other
frequencies not
of interest
Changes Ensure Modify None—new New rule sets
required if frequency set of appropriate eventswill be must be
something new | interestisstill | state machines added to the generated and
isintroduced to correct library asthey | WNN must be
the underlying occur trained further
system
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Technique/ ARMA/ARIMA Weibull
Modeling
Problem
Parameters
Nature of the “Noiseg” Actual failure
required data | associated with | data, hi-fidelity,
datamust be as much as
Gaussian white, possible
datacollected is
evenly spaced
and consecutive
intime
Nature of the Linear Failure events
system should follow a
Weibull
distribution,
otherwise this
techniqueis
useless
Time required Moderate Moderate/Very
to generate a long if failure
solution data must be
collected
“Cogt” of the Moderate Moderate
solution (ina
relative sense)
Reliability Reliable Somewhat
(robustness) of reliable—
the solution generated
solution will
never be
correct, but
may be “close
enough”
Stability of the Stable Somewhat
solution stable
Changes Baseline New failure
required if operation series | data must be
something new | must be updated | collected and
isintroduced to the curve re-
the underlying generated

system
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Appendix B. Sensor Ensemble Accuracy

If the assumption is made that each sensor in an ensemble has a positive probability of
detecting a problem (a positive value for Prp), then adding such a sensor to an ensemble
only increases the value of Prp for the ensemble (ignoring any system noise contribution).
The sensors are aso assumed to be independent. This assertion isformalized in the

following theorem.

First, given aset X of sensors, define the maximum probability of obtaining atrue
positive by max Prp(X).
Theorem 1. Let T DAn, SUAm, wheren<m,and T /S Then maxyp(T) < maxrp(S).

Proof:

Sincethere are n sensorsin T, the probability of not detecting atrue fault with this sensor
suiteis

Pnodetect(T) = |_| (1 - PTP(Si)) (4& 1)
1=l
Hence, the probability of detecting any problem is given by

maxPre (T) = 1 [ (1-Pre(S) (4a-2)

This expression isthe“logical or” fusion rule—if any one of the sensors detects atrue

fault, thefault is defined to be detected.

Consider aset Scontaining m=n + k sensors, wherek 0 Z*. T={s;, s, ..., S}, and S=
{s1, %, ..., Su Sw+1, ---» Sm}. Clearly, T 00 S. The probability of not detecting atrue fault

with this sensor suiteis

B-1



n+k

Prodee(S) = [] (1 - Pre(S)) (4a:3)

1=1

Hence, the probability of detecting atruefaultis

maxPrp (S) =1 - n|+_'<| (1-Pre(S)) (4a-4)

Note that equations (4a-1) and (4a-3) have the same first n terms. Notice aso that each
term in each equation is strictly lessthan 1. If the termsin common between the

expansions in each equation are removed, then

0= [ A-PHS) (4a:5)

i=nt:
Since each term in the expansion in equation (4a-5) islessthan 1, itisclear that w< 1. If

both sides of equation (4a-5) are multiplied by |_| (1 —Prp(S)), the equation becomes
1=

k

(1-Prp(S)) > I_l (1-Prp(S)) (4a-6)
1=1 1=1
Multiplying both sides of equation (4a-6) by —1 and then adding 1 to each side yields
n nk
1-T1@-Pre(S)) <1- [1A-Pr(S)) (4a7)
[JG-PreS)<2-[] 0P
But the left-hand side of (4a-7) is (4a-2) by definition, and the right-hand side of (4a-7) is

(4a-4) by definition, so replacement yields

maxPre (T) < maxPre (S) (4a-8)

the desired result.
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It should be noted that even if a sensor is completely dependent with respect to another
sensor in the ensemble, athough it will not add to the accuracy of the sensor ensemble, it

will add to the ensemble’ sreliability.

Thistheorem impliesthat it is possible to reduce the size of the solution space. Thefirst
step isto determine the set of cost-feasible sensors. Each ensemble size is searched for
cost feasibility, beginning with ensembles containing only one sensor (cardinality 1). If
the entire group of sensor ensembles of a particular size (cardinality n) is cost feasible,
the process is repeated on the next ensemble set (cardinality n+ 1). If al elements of this
next ensemble set (cardinality n + 1) are cost feasible, the previous set (cardinality n) is
discarded from the solution space since this larger ensemble set will have a higher value
of Prp for any sensor combination, by the previous theorem. However, once a cost
infeasible solution isfound in a set of cardinality k , all sensor ensembles of cardinality

k - 1 and greater are retained for further examination (except for cost infeasible

ensembles). All setsof cardinality k — 2 and lower are eliminated from consideration.

k-2 M
This reduces the solution space by Z( _ ) possible solutions, where M is the total

j=

number of sensors available.

Alternatively, the search for cost feasibility could begin at the ensemble containing all the
sensors (cardinality M). The search would terminate when all ensembles of a particular
size are found to be cost feasible. If this particular sizeisk — 1 (as above), then all

ensembles of cardinality k — 2 and below are eliminated from consideration.
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Appendix C. Application of Fusion Rules to the Model

5.A1 Application of Fusion Rules to the Model (Optimality considerations)

Thismodel usesalogical or rule to declare a system failure: if either or both of two
classifiers on a subcomponent indicates afailure, the reasoner concludes a failure has
occurred and reports a failed condition on the system. Both fusion techniques introduced
in the previous section use alogical or rule to combine the ROC curves associated with
each classifier to produce a new ROC curve. This section addresses whether or not a

“logical or” fusion rule may be considered optimal.

The model used for this assessment is the one Oxley and Bauer [63] used to develop the
across fusion methodology (see Figure 5-11). If thetwo systems' a priori failure rates
areequal (pr = qr), and the two classifiers’ failure and nominal detection capabilities are
equal (Prp(Ap) = Prn(As) = Pre(Bg) = Prn(Bg)), thenthe“logical or” ruleis the best
fusion rule. If thereiseven adight inequality in one of these probabilities, then it is
possible to set the values for the other pair of variables so that afusion rule other than
“logical or” isthe best fusion rule. However, in the general case, “logical or” isthe best
fusion rule. The appendix provides a genera description of the values of these
parameters showing where the transition from “logical or” to adifferent fusion rule

occurs.

This appendix also presents a scoring rule for determining which fusion ruleis best. This

scoring rule adds the Pyp result and the Pry, or (1 — Prp), result obtained from a particular
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fusion rule, given a set of values for the six parameters specified above. More formaly,
the equation is

Fusion rule score = w1 Prp + Wo(1 — Prp) (5a1)
where w; and w, are weights which can be manipulated to reflect the importance of each
guantity. Note that wy, wo [0, 1] and w; + w, = 1. Therelative importance of each of

these terms depends on the system for which the prognostic system is being designed.

Once the scoring rule is developed, all eight parameters (pr, o, Prr(As), Prn(As), Pre(By),
Prn(Bg), Wi, and wy) are analyzed to determine the optimal fusion rule based on the
scoring rule, and where the optimal fusion rule changes, based on varying values of these
parameters. As previoudly stated, the “logical or” fusion ruleisthe best in most cases.
Other fusion rules only become the best fusion rule if the a priori probability of failures
arerelatively high, or the classifier’s accuracy is not very good, or one term of the
scoring rule is weighted much more heavily than the other term. All of these conditions
interact to some extent. Therest of this appendix provides the development and analysis

of these ideas.

The system model is developed as before. Certain aspects will be repeated here for

clarity and further development. Figure 5-8 (reproduced below) is again the basis for this

discussion.

C-2



Sensors [----- >

Classifiers |----- >

Figureb5a-1. Figure 5-8 reproduced for clarity

The conditional probabilities associated with this model are assigned a notional value as
indicated below. Theterms“high” and “low” refer to anotional relative probability
value for the given condition. The variables“x” and “y”, respectively, correspond to

those probability values.

P(classifier declares failurelactual failure) = P, P2 = high=x
P(classifier declares failurelactual nominal) = P4, P2 =low =y
P(classifier declares nominal|actual nominal) = P4, Py =high=x

P(classifier declares nominal[actual failure) = P4, PS5 =low =y
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These probability values are assumed to be equal to each other (within the high and low

categories) for the sake of the discussion that follows. The joint probability tableis

reproduced below for clarity. The cells are numbered for ease of reference.

Table 5a-1. Joint probability values [63]

Classfier |F,F F N N, F N,N

Reports

(A, B)
True State
F,F 1 PAPSPGr |2 PAPEpar |3 PAPEpar |4 PA P po
F N 5 PAPEpn |6 PAPPpan | 7. PAPEpgn |8 PA PEpan
N, F 9. PF/; PTIE PnGr 10. PFI;‘; PF?\J PnGr 11. PTQ PTIB; PGk 12. PTQ PFE’;\‘ PG
N, N 13. P4 P2 pnon

14. Pgp P Pothn

15. Py P pathn

16. PTQ PT% Pn0n

Again, Table 5a-1 summarizes these joint probabilities as a series of digoint events. The

failure on component A isreflected with the a priori probability pr, and the nominal

condition on component B is reflected with the a priori probability gp.

Replacing the this table' s contents with the qualitative values of “high” (x) and “low” (y)

as previoudly defined in the table yields an assessment of which combinations of

classifier readings and actual data streams would have relatively large likelihoods. Note

thatph=0gn=Xxandpr =g =Y.
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Table5a-2. Tableof relativelikelihoods

Classifier F,F F, N N, F N, N

Reports

(A, B)
True State
FF 1. xy° 2. xy° 3. xy° 4. y*
F, N 5. X%y 6. Xy 7. xy° 8. Xy
N, F 9. xy* 10. xy° 11. X%y 12. x%y°
N, N 13. x°y° 14. X%y 15. x%y 16. x*

Table 5a-2 summarizes the relative likelihoods of these 16 digoint events. The cell
entriesin bold (cells 6, 11, 14, 15, and 16) indicate a cell with arelatively high
likelihood. Thecells1, 6, 11, and 16 (on the main diagonal) indicate an accurate
assessment of performance. The cells 4, 7, 10, and 13 (on the anti-diagonal) indicate an
inaccurate assessment of performance from both systems. All the other cells have one
performance report right and one performance report wrong. Thistable provides a

notional idea of which events are more likely than others.

As can be seen from the table, there are four combinations of readings from the two
classifiers:

1. FF 2. F,N 3. NF 4. N,N

These combinations of readings can be thought of as four rules for declaring a system
failure. 1f a“logica and” fusion method is chosen, then a system failure would be
declared only if the situation described by rule one occurred. Thiswill be referred to

specifically as “applying rule one”, and more generally as “applying afusionrule’. If a
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“logical or” fusion method is chosen, then a system failure would be declared if rules

one, two, and three were applied. Since there are four rules, there are fifteen different

combinations of rule sets (including the two previously presented) to consider. The

results are presented in the following table.

Table5a-3. Summary of probability values for different fusion rules

Probability Cells used to declare Prp True Positive Prp False Positive
Measure afailure (intersection with cells (intersection with cells
(Cellswith an actua 1-12) 13-16)
Fusion Rule failure are 1-12)
1 (logica and) 1,5,9, 13 3x°y Ve
(2 +5X%y + 4xy” + y°) (x +y)?
2 2,6,10, 14 X2 + 2xy° Xy
(2 +5X%y + 4xy” + y°) (x +y)?
3 3,7,11,15 X2 + 2xy° Xy
(2 +5X%y + 4xy” + y°) (x +y)?
4 4,8, 12,16 2X°y + X°
(2 +5X%y + 4xy” + y°) (X +y)?
1,2 1,2,5,6,9,10, 13, 3x3 + 3X°Y + 2xy° Xy + y°
14 (26 + 5x°y + 4xy’ + y°) (X +y)°
1,3 1,3,5,7,9 11, 13, 3x3 + 3X°Y + 2xy° Xy + y°
15 (26 + 5x°y + Axy’ + y°) (X +y)°
1,4 1,4,5,8,9, 12, 13, BXy +y° X+ Y
16 (26 + 5x°y + 4xy’ + y°) (X +y)°
2,3 2,3,6,7,10, 11, 14, 2X° + 4xy” 2xy
15 (26 +5¢°y + 4xy’ + y°) (X +Y)°
2, 4 2,4,6,810,12,14, | X +2XV+2xy° +Vy° X° + Xy
16 (26 +5x°y + 4xy’ + y°) (X +y)°
3,4 3,4,7,811,12,15, | X+ 2y + 2Xy* +V° X° + Xy
16 (2¢° + 5x°y + 4xy’ + y°) (X +y)°
1,2, 3 (logica | 1-3,5-7, 9-11, 13-15 §x3 + §x2v + ;1/>2<\/2y3 2xy + yzz
or 2X° + bxy + 4xy“ + X+
) ( ¢ <y Sty ) 2( y)
1,2 4 1-2, 4-6, 8-10, 12- X +5XYV+2Xy +y XT+xy+ )f
14, 16 (23 + Bx%y + 4xy? + V) (X +Y)?
1,34 1, 3-5, 7-9, 11-13, X° + BXY + 2Xy° + V° X2+ Xy +
15-16 (23 + Bx%y + 4xy? + V) (X +Y)?
2,3,4 2-4,6-8,10-12, 14- | 2  + 22Xy + Axy* + V° xX* + 2xy
16 (23 + Bx%y + 4Axy? + ) (X +Y)°
1,2,3,4 1-16 1 1
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Sinceit is hard to see from Table 5a-3 which rules have high and low probability values,

the following section provides an example with specific values.

5.5 Scoring Rule

Table 5a-4. Fusion rule probability values for a specific case

PTP (overlap | PFP (cells 13
Probability | with cells 1- | 16 over all in
Measure 12) formul.) Score:
Fusion Rule
1 0.960888119 0.0001 1.960788119
2 0.019408911 0.0099 1.009508911
3 0.019408911 0.0099 1.009508911
4 0.000294059 0.9801 0.020194059
1,2 0.98029703 0.01 1.97029703
1,3 0.98029703 0.01 1.97029703
1,4 0.961182178 0.9802 0.980982178
2,3 0.038817822 0.0198 1.019017822
2,4 0.01970297 0.99 0.02970297
3,4 0.01970297 0.99 0.02970297
1,2,3 0.999705941 0.0199 1.979805941 _
1,24 0.980591089 0.9901 0.990491089
1,3,4 0.980591089 0.9901 0.990491089
2,3,4 0.039111881 0.9999 0.039211881
1,2,3,4 1 1 1

Table 5a-4 shows the values that would be obtained if the following substitutions were

made: Pe=0C = Pep = Peny = .01, Prp = Py = .99.

In thistable, thereis also acolumn titled “ Score”. Determining the “best” fusion ruleis
doneinitialy by selecting the fusion rule which provides the highest Prp and the lowest
Prp (highest Pry). The formulato determine the fusion rule “score” is:

Fusion rule score = { Prp + (1 — Pep)} OF { Prp + Prn} (5a-2)
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The scoring rule was selected to maximize the benefit obtained from a particular fusion
rule combination. In this context, the best results from the reasoner are true negatives
and true positives. The best fusion rule combination is defined to be the one that
provides the highest probability of true positive and the highest probability of true
negatives (alternatively, the smallest probability of false positive). The fusion rule that
has the highest score for the selected values of px, ¢, Pep, Pen, Prp, @nd Pry isthe “logical
or” fusion rule. These six parameters are used to develop the notion of an *optimal

fusion rule” in the following section.

5.A3 Optimal Fusion Rule Analysis

Thisresult leads to the question of which rule, if any, isoptimal, given the set of six
INpuUts pr, o, Pep, Peny Pre, and Pry. (It should be noted that Prp and Py determine the
values of Prp and Pry.) To answer this question, the following assumptions are made.
The classifiers are assumed to be independent of each other. Thea priori component
probability of failure values pr and g are assumed to be equal. The Prp and Py values
are assumed to be equal for each classifier, as are the Prp and Pry values. Additionally,
the Pep and Pry values are assumed to be equal to 1 - Prp. The following graph shows

which is the best fusion rule, given the preceding assumptions.
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Figure 5a-2. Where the decision rule changes based values of pr and g; (x-axis) and
values of Prp and Pry (y-axis)

Figure 5a-2 shows a graph of system accuracy vs. the a priori probability of system
failure. Pointson the graph that fall above the line indicate the “logical or” rule for
declaring failures should be used for a given system having those characteristics. Points
that fall below the line indicate all rules except number 1 should be used to declare a
failure. That is, asystem should be declared operational only if both classifiersindicate a
system failure. This makes sense because the a priori probabilities of the classifiers
being correct isless than 0.5, and hence the opposite of what the classifiers are reading
will be correct more often than the actual readings. Asan example, if the two
components are expected to fail 10% of the time, and the system correctly reports errors
with 80% or better accuracy, the “logical or” fusion rule should be used to make

decisions.



Although perpetually declaring a failure may result in the best fusion rule score, it would
not result in productive operation of the equipment. Thisfusion ruleignores all datafrom
sensors and their associated system, making it pointlessto install them. The perpetual
failurerule containsrule 4. Rule 4 statesthat if both classifiers declare a normal reading,
then a system failure is declared. This doesn’t make much sense. Declaring a perpetud
failure states that regardless of the classifier readings, afailureis declared. This makes
even less sense. In effect, al fusion rules containing rule 4 make no sense, and would not

be followed in practice.

If these eight rules for declaring afailure are dropped, then the remaining seven rules are
al the combinations of rules1 (F, F), 2 (F, N), and 3 (N, F). Of these seven
combinations, the remaining one that would not be followed in practice would be the
combination of rules2 and 3. Thisrule statesthat afailureisdeclared if one system or
the other declares afailure, but no failure is declared if both systems declare afailure.

Again, thisis not redlistic, and this rule would not be followed in practice.

The remaining rule combinations which will be used to further develop the notion of an

optimal rule are:
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Table5a-5. Practical fusion rule combinations

Rule Combination | Rules used
“Logica and” 1
Single sensor 2
Single sensor 3

Single sensor plus 1,2
“Logica and”

Single sensor plus 1,3
“Logical and”

“Logical or” 1,23

Table 5a-5 shows the six rule combinations that will be used for al further analysisin

this section.

The next issue is weighting different parts of the scoring rule. The new equation is:
Fusion rule score = w1Prp + Wo(1 — Prp) (5a-3)
Recall that wy, w, [0 [0, 1] and wy + wp = 1. The weights w; and w;, are set to appropriate
values depending on which capability is more important. As an example, inspectors on
an assembly line may need to ensure that absolutely no defective parts get through. In
probability terms, this means that fal se positives (claiming a defect exists when it actually
doesn’'t) are less important than fal se negatives (passing a defective part through as a
functional part). Consequently, the value for w, would be set much higher than for wy in
this application. Conversely, it may be more important to ensure that a defect really does

exist if there istime pressure to produce the product, and/or defective products don’t cost
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much if they are mistakenly sent through. In that case, the value for w; would be set

much higher than for wo.

It is of interest to examine which fusion ruleisbest if w; # w,. For the following
discussion, only the ratio wo/w; is considered. Prpis defined to be afunction of pf, df,
wo/wy , and R, where R O {(1); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (the six different fusion
rules). Letps=qgr=p 0[O0, 0.6], and recall that wy, w, [1[0,1]. Let (wao/wy) =1 (wq # 0).

Then let

PTP* (pl r) = PTP(p! r, R)

Max ROR
where

{(p. 1) O [0,1] x [1, w)|Pre(p, 1, R) 2 Prs* (p, 1)}

If the weight w; islarger than the value of w,, then the “logical or” fusion ruleis always
the best, regardless of the difference in the weights, provided Pr" and Pre° is at least 0.5.
(If the values for these probabilities fall below 0.5, then rules 2 and 3 tie for the best rule.
These results are independent of the prior probabilities of failure.) However, if w, was
set higher, then the fusion rule would change, based on other system parameters. If the
prior probability of system failure was varied, the weight at which the decision rule

changed also varied, as shown in the graph below.
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Figure5a-3. Where the decision rule changes based values of pr and g (x-axis) and
weights applied to the scoring rule (y-axis). The values of Prp and Pry are held constant
at differing values, as shown in the legend.

Figure 5a-3 shows the ratio of w, to w; that causes a change in the best decision rule, for
the given values of Prp and Py (recall that Prp = Pry). The best decision rule under each
curveisthe“logical or” decision rule. Above each curve, the best decision ruleisthe
“logical and”. Asan example, consider the top curve, where Prp = 0.99. If the prior
probability of system failureis 0.1, then the ratio w,/w; must be at least 45 before the
best decision rule changes from “logical or” to “logical and”. If the value of Prp becomes
0.6 (the bottom curve) and the prior probability of system failure remains constant, then
the ratio dropsto 1 before the best decision rule changes. For al practical purposes, the

“logical or” fusion ruleisthe best decision rulefor all “realistic” values of Prp and the

ratio wo/wj.
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In each case, the best decision rule was either “logical or” or “logical and”. No other
decision rule obtained the best score. The best decision rule also changed when the ratio

of the prior probabilities of failure that changed (the weights on the scoring rule were set

equal).

It isalso of interest to examine which fusion ruleisbest if pr # . Again, only theratio
wo/w is considered. Prpisstill defined to be afunction of pf, gf, wo/w; , and R, where R
O{(D); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (thesix different fusion rules). Let max (p, ¢) =

r O[O, 0.6], and recall that wi, w, 0 [0,1]. Let wolws =r (wy # 0). Then let

PTP* (pl r) = PTP(p! r, R)

Max ROR
where

{(p. 1) O [0,1] x [1, w)|Pre(p, 1, R) 2 Prs* (p, 1)}
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Point at where Optimal Decision Rule Changes
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Figure 5a-4. Where the decision rule changes based on max { pr, gs} (x-axis) and the
ratio of pr to gr (y-axis). The values of Prp and Pry are held constant at differing values,
as shown in the legend.

Figure 5a-4 shows where the decision rule changes based on the prior probabilities of
system failure and the probabilities of detection. The decision rule changes between only
“logica or” and atwo-rule combination. Thetwo rulesare “logica and”, and using the
classifier on the system with the larger probability of failure. The other classifier is
ignored except for the “logical and” rule. If the prior probabilities of system failure are
low, and the probability of atrue positiveis high, then the ratio of the larger probability
of system failure to the smaller probability of system failureisaso high. Specificaly, if
PTP = 0.99 and the value of the larger probability of failureis 0.1, then the ratio of this
larger probability of failure to the smaller probability of failure is about 90 before the

decision rule changes from “logical or” to the two-rule combination. Provided the
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expected failure rates of the two components are not vastly different, “logical or” is still

the best decision rule.

5.A4 Proof that a Logical OR Fusion rule isthe Best For a Logical OR Failure Model
THEOREM: Assume there are two components, each with an equal probability of failure
lessthan 0.5. Assume there are two sensors, one for each component, each with an equal
probability of (accurately) detecting afailure greater then 0.5 Prp(Ag) = Prn(Asg) =

Pre(Bg) = Prn(Bg). Then the“logical or” fusion rule provides the best score (Score = Pry
+ Pyp) among all six useful fusionrules(1, 2,3, 1and 2, 1 and 3, 1 and 2 and 3—see
Table5-12.). (Note that this result does not hold if either or both of the sets of

probabilitiesis not strictly equal.)

PROOF-.
LetO0<e<0.5.
Assume each component’ s probability of failureis (0.5 - €).

Assume each sensor’ s probability of accurate detection is (0.5 + €).

The approach used is to compute the score for each distinct case. Note that the score for
rule 2 will be the same as that for rule 3 (the formulas in the table are exactly the same).
Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1

and 3. Thisleavesfour distinct cases.
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Wehavex =(0.5+¢) andy = (0.5 - €). Using the preceding table, the denominator of
the Prp expression (2x° + 5x?y + 4xy? + y°) reduces to (1.5 + €) with these substitutions,
and is the same for all cases. The denominator of the Pry (or 1 - Pep) expression, (x + Y)?,
simplifiesto 1. The Pry results were therefore multiplied by (1.5 + €) so both the Prp
results and the Pry results were additive. The results that are shown for Pry below are
after this multiplication, without showing the (1.5 + €) in the denominator.

Case l: Rulel. (“logical and”) (from the formulasin the table)
num(Prp) = 0.375 + 0.75¢ - 1.5¢2 - 3¢3,
num(Pry) = 0.75 + 2¢ + €.
num(Score) = 1.125 + 2.75¢ - 0.5¢% - 3¢>,

Case 2: Rule 2/Rule 3.
num(Prp) = 0.375 + 0.25¢ + 0.5¢? + 3¢°.
num(Pry) = 0.75 + €2,
num(Score) = 1.5 + € + 22 + 4¢°.

Case 3: Rules1 and 2/Rules 1 and 3.

num(Prp) =0.75 + € - €%

num(Pry) = 0.75 + 2¢ + €2,

num(Score) = 1.5 + 3e.
Case4: Rulesland2and 3 (“logical or”)

num(Prp) = 1.125 + 1.25¢ - 0.5¢% + 3¢2,

num(Pry) = 0.375 + 1.75¢ + 2.5¢% + €.

num(Score) = 1.5 + 3¢ + 26 + 4¢°,
Clearly, case 4 has the highest score of all the cases. Furthermore, the cases are ordered
from lowest score to highest score. The only place thisis not obviousis for cases 2 and
3. The difference between the two cases (case 3 minus case 2) is 2¢ - 2¢2 - 4¢°,
Theclamis

2e >2¢” + 4¢3 foral 0<e<05 (5a-4)

or equivalently
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g+2e°<1 (5a-5)

or

g(1 + 2¢) <. (52-6)
Notice that

1<1+2e<2 (5a7)
Multiplication by € yields

e<eg(l+2g)<2e<1, (5a-8)

which shows the desired result

g(1 + 2¢) <. (52-9)

Thisisobvioudy truefor 0 < € < 0.5. Hence case 3 has alarger score than case 2, and the

cases are arranged in increasing score order.

5.A5 Proof that a Logical AND Fusion ruleisthe Best For a Logical AND Failure
Model
The result from the preceding section suggests that a*“logical and” failure rule would be

optimal for a“logical and” failure model.

The implicit assumption in a“logica and” failure model is that a system component
(subcomponent, etc.) isfunctiona until every part in the component hasfailed. This
means that not every part is critical to system operation. This assumption contradicts the
general formulation of the system model presented in this paper, where every part of the

component is considered to be critical to system operation. However, there are system

C-18



components that are designed to be redundant. These components have many
subcomponents which all perform the same operation. If some subcomponentsfail, the
remaining subcomponents will continue to perform the operation that is critical to system
functionality. Inthe extreme case, if al the subcomponents fail except one, that single
remaining subcomponent can still perform the component’ s function. Since some
components of a system may be designed to be redundant, it seems worthwhile to
determine which fusion ruleis best (if thereisa“best” rule) for those components which

have a redundant functional design.

~
Subcomp. 1 » A » A
Component A | | [ subcomp. 1 » Bl—» B | > Reasoner
Subcomp. 1 » C » C
—/

Figure 5a-5. A notional component designed to have redundant functionality

Figure 5a-5 shows a system component designed to have redundant functionality. Each

subcomponent has the same number to indicate identical functionality. This component

would not be considered to have failed until all three subcomponents fail.
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Table 5a-6. Table 5a-2 reproduced for ease of reference

Classifier F,F F, N N, F N, N

Reports

(A, B)
True State
FF 1. xy° 2. xy° 3. xy° 4. y*
F, N 5. X%y* 6. Xy 7. xy® 8. xy°
N, F 9. xy° 10. xy° 11. X%y 12. x%y*
N, N 13. xy* 14. X%y 15. x%y 16. x*

Table 5a-6 shows the likelihood of the occurrence of a particular event, and is reproduced

here as an aid for Table 5a-7.

Table5a-7. Summary of probability values for different fusion rules

Probability Cells used to declare Prp True Positive Prp False Positive
Measure afailure (intersection with cells (intersection with cells
(Céllswith an actua 1-4) 5-16)
Fusion Rule failure are 1-4)
1 (logical and) 1,5,9, 13 Na 3xy*
(x +y)* (< + 4X%y + 5xy* + 2y°)
2 2,6, 10, 14 Xy 2y +y°
(x +y)* (< + 4X%y + 5xy* + 2y°)
3 3,7,11,15 Xy 2y +y°
(x +y)* (< + 4X%y + 5xy” + 2y°)
4 4,8,12, 16 > x>+ 2xy*
(x +y)* (< + 4X%y + 5xy* + 2y°)
1,2 1,2,5,6,9,10, 13, X°+ Xy 2x°y + 3xy* + y°
14 (x +y)? (X2 + 4x%y + 5xy? + 2y°)
1,3 1,3,5,7,9, 11, 13, XZ + Xy 2X°y + 3y +y°
15 (X +y)? (X2 + 4x%y + 5xy? + 2y°)
1,4 1,4,5,8,9, 12,13, X2+ Yy X + 5x%y
16 (X +y)? (X2 + 4x%y + 5xy? + 2y°)
2,3 2,3,6,7, 10, 11, 14, 2xy 4Axy© + 2y°
15 (X +Yy)? (X2 + 4x%y + Bxy” + 2y°)
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2,4 2,4, 6,8, 10, 12, 14, Xy +V X+ 22Xy + 22Xy + V°
16 (X +Y)? (X2 + 4x%y + Bxy” + 2y°)

3,4 3,4,7,8,11, 12, 15, Xy + y° X+ 22Xy + 22Xy + V°
16 (X +Y)? (X2 + 4x%y + 5xy” + 2y°)

1,2, 3 (logica | 1-3,5-7, 9-11, 13-15 X2 + 2xy 4%y + 3xy* + 2y°

or) (x +y)° O + 4x%y + 5xy” + 2y°)

1,24 1-2, 4-6, 8-10, 12- X+ xy + y° X° + 2X°Y + Bxy’ + y°
14, 16 (X +Y)? (X2 + 4x%y + 5xy? + 2y°)

1,3, 4 1, 3-5, 7-9, 11-13, X°+ Xy +y° x>+ 2X°y + 5xy“ + y°
15-16 (X +y)? (X2 + 4x%y + 5xy? + 2y°)

2,34 2-4, 6-8, 10-12, 14- 2xy +y° X2 + Ay + 2xy° + 2y°
16 (X +Y)? (X2 + 4x%y + 5xy? + 2y°)

1,234 1-16 1 1

Table 5a-7 shows the Pyp and Pep values for each of the 15 different fusion rules. Sinceit

is hard to see from Table 5a7 which rules have high and low probability values, the

following table provides an example with specific values.

Table5a-8. Fusion rule probability values for a specific case

Probability | PTP (overlap| PFP (overlap
Measure |with cells 1-4)|with cells 5-16) Score:
Fusion Rule
1 0.9801 0.009850754 | 1.970249246 _
2 0.0099 0.487686935 | 0.522213065
3 0.0099 0.487686935 | 0.522213065
4 0.0001 0.014775377 | 0.985324623
1,2 0.99 0.497537688 | 1.492462312
1,3 0.99 0.497537688 | 1.492462312
14 0.9802 0.024626131 | 1.955573869
2,3 0.0198 0.975373869 | 0.044426131
2,4 0.01 0.502462312 | 0.507537688
3,4 0.01 0.502462312 | 0.507537688
1,2,3 0.9999 0.985224623 | 1.014675377
1,24 0.9901 0.512313065 | 1.477786935
1,3,4 0.9901 0.512313065 | 1.477786935
2,34 0.0199 0.990149246 | 0.029750754
1,2,3,4 1 1 1
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Table 5a-8 shows the values that would be obtained if the following substitutions were
made: pr = o = Prp = Pen = .01, Prp = Pry =.99. Note that the “logical and” rule

provides the highest fusion rule score.

The theorem and proof are analogous to the preceding section.

THEOREM: Assume there are two components, each with an equal probability of failure
lessthan 0.5. Assume there are two sensors, one for each component, each with an equal
probability of (accurately) detecting afailure greater then 0.5 Prp(Ag) = Prn(Ag) =

Pre(Bg) = Prn(Bg). Then the “logical and” fusion rule provides the best score (Score =
Prn + Prp) among all six useful fusionrules (1, 2,3, 1and 2, 1 and 3, 1 and 2 and 3).
(Note that this result does not hold if either or both of the sets of probabilitiesis not

strictly equal.)

PROOF-.
LetO<e<0.5.
Assume each component’ s probability of failureis (0.5 - €).

Assume each sensor’ s probability of accurate detection is (0.5 + €).

The approach used is to compute the score for each distinct case. Note that the score for
rule 2 will be the same asthat for rule 3 (the formulas in the table are exactly the same).
Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1

and 3. Thisleavesfour distinct cases.
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Wehavex = (0.5+¢) andy = (0.5 - €). Using the preceding table, the denominator of
the Pry (or 1 - Pep) expression (x° + 4x?y + 5xy? + y°) reduces to (1.5 - €) with these
substitutions, and is the same for al entriesin the table. The denominator of the Prp
expression, (x + y)?, simplifiesto 1. The Prp results were therefore multiplied by (1.5 - €)
so both the Prp results and the Pry results were additive. The results that are shown for
Prp below are after this multiplication, without showing the (1.5 - €) in the denominator.
Casel: Rulel. (“logical and”) (from the formulasin the table)

num(Prp) = 0.375 + 1.25¢ + 0.5¢2 - €°.

num(Pry) = 0.625 + 0.75¢ + 1.5¢2 - 3¢°,

num(Score) = 1 + 2¢ + 2¢% - 4¢>,
Case 2: Rule 2/Rule 3.

num(Prp) = 0.375 - 0.25¢ - 1.5¢% + €°,

num(Pry) = 0.375 + 0.25¢ - 0.5 +3¢°.

num(Score) = .75 - 2% + 4¢3,
Case 3: Rules1and 2/Rules 1 and 3.

num(Prp) =0.75 + € - €%

num(Pry) = 0.25 + € + €2,

num(Score) = 1 + 2¢.
Case4: Rulesland2and 3 (“logical or”)

num(Prp) = 1.125 - 0.75¢ - 2.5¢% + €°,

num(Pry) = -0.675 + 1.25¢ + 0.5¢2 + 3¢°.

num(Score) = 0.5 + 0.5¢ - 262 + 4¢>,
Clearly, the “logical and” fusion rule has the highest score among these four cases (note
that 262 > 4¢* because 2 is always greater than 4 when € < 0.5). Not surprisingly, the
“logical or” rule hasthe lowest score. Thisresult indicates that the “logical and” fusion

rule should be used to assess the health of components which have redundant

functionality.
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Appendix D. Computer Code

function [subset] = subsetgen()
global subset tot N

% This program lists the natural lexicographic order of all subsets for a given number of sensors, up to 9
total

% Input number of sensors, total count, and storage matrix
N=3;
tot=2"N-1,

subset=zeros(tot,2); % First column isindex, second is subset

% Initialize counts

_.,
I
L

iy
SYRS

t=0; % Used as sensor subset index
% Subsets of size 1

for a=1:N
t=t+1,;
subset(t,1)=t;
subset(t,2)=a;
end

% Subsets of size 2

for a=1:N-1
for b=2:N
if b>a
t=t+1;
input=10* a+b;
subset(t,1)=t;
subset(t,2)=input;
end
end
end

% Subsets of size 3

for a=1:N-2
for b=2:N-1
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for c=3:N
if b>a
if c>b
t=t+1;
input=100* a+10* b+c;
subset(t,1)=t;
subset(t,2)=input;
end
end
end
end
end

% Subsets of size 4

for a=1:N-3
for b=2:N-2
for c=3:N-1
for d=4:N
if b>a
if c>b
if d>c
t=t+1,
input=1000* a+100* b+10* c+d;
subset(t,1)=t;
subset(t,2)=input;
end
end
end
end
end
end
end

% Subsets of size 5

for a=1:N-4
for b=2:N-3
for c=3:N-2
for d=4:N-1
for e=5:N
if b>a
if c>b
if d>c
if esd

t=t+1,;
input=10000* a+1000* b+100* c+10*d+¢;
subset(t,1)=t;
subset(t,2)=input;
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end
end
end
end

% Subsets of size 6

for a=1:N-5
for b=2:N-4
for c=3:N-3
for d=4:N-2
for e=5:N-1
for f=6:N
if b>a
if c>b
if d>c
if e=d
if f>e
t=t+1;
input=100000* a+10000* b+1000* c+100* d+10* e+f;
subset(t,1)=t;
subset(t,2)=input;

% Subsets of size 7

for a=1:N-6
for b=2:N-5
for c=3:N-4
for d=4:N-3
for e=5:N-2
for f=6:N-1
for g=7:N
if b>a
if c>b
if d>c
if e>d
if f>e
if g>f
t=t+1;
input=1000000* a+100000* b+10000* c+1000* d+100* e+10*f+g;
subset(t,1)=t;
subset(t,2)=input;
end
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end
end
end
end
end
end
end
end
end
end
end
end

% Subsets of size 8

for a=1:N-7
for b=2:N-6
for c=3:N-5
for d=4:N-4
for e=5:N-3
for f=6:N-2
for g=7:N-1
for h=8:N
if b>a
if c>b
if d>c
if ed
if f>e
if g>f
if h>g
t=t+1;

i nput=10000000* a+1000000* b+100000* c+10000* d+1000* e+100*f+10* g+h;
subset(t,1)=t;
subset(t,2)=input;

end
end
end
end
end
end
end
end
end
end
end
end
end
end
end

% Subsets of size 9

for a=1:N-8
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for b=2:N-7
for c=3:N-6
for d=4:N-5
for e=5:N-4
for f=6:N-3
for g=7:N-2
for h=8:N-1
for k=9:N
if b>a
if c>b
if d>c
if esd
if f>e
if g>f
if h>g
if k>h
t=t+1;

i nput=100000000* a+10000000* b+1000000* c+100000* d+10000* e+1000* f+100* g+10* h+k;

subset(t,1)=t;
subset(t,2)=input;
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function [fD] = combinet(rocA,rocB)
% This program combines 2 ROC curves using within fusion

global M N x roc rocA rocB | JK Q alpha beta gam temp
global fA fB fC fD fBQ

% ROC curve computation

XFP=2*x-x."2;

rocTP=zeros(1,N);

for I=1:N
rocTP(l)=rocA(l)+rocB(l)-rocA(I)*rocB(l);

end

fD=rocTP;

fA=rocA;

fB=rocB;

fD=interp1(xFP,rocTP,x);

figure
plot(x,fA,'red.”);
hold on
plot(x,fB,'blue.’);
hold on
plot(x,fD,'green.”;
hold off

function [fC] = combine(rocA ,rocB,fBQ)
% This program combines 2 ROC curves using across fusion

global M N x roc rocA rocB | JK Q alpha beta gam temp
global fA fB fC fD fBQ

% ROC curve computation
fA =rocA,;

FA = apha*fA + (1-apha)*x;
GA =1-FA;

fB = rocB;
fBQa=fBQ(K,1:N,1:N);
fBQaa = zeros(N,N);
for I=1:N

for =1:N

fBQaa(l,J)=fBQa(1,1,J);

end
end
FBQ = beta*fBQaa + (1-beta)* Q;
GBQ=1-FBQ;

fC = zeros(1,N);
for I=1:N,
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minvalue = min(GA(1:1).*GBQ(l,1:1));
fC(I) = temp - (temp-1)*((1-1)/M) - temp*minvalue;

end

%fC=interpl(?,fCax)

figure

plot(x,fA,'red.");

hold on

plot(x,fB,'blue.’);

hold on

plot(x,fC,'green.”);

hold off
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% This program computes every cost feasible ROC curve combination of sensors on atwo component
system. Each component consists of two subcomponents. Three of the subcomponents have two sensors,
and one has three.

global M N x roc rocA rocB C 1 JK Q alpha beta gam temp
global fA fB fC fD fBQ fCout

salloc22 % (get combined curves from other component-
% 2x2 subcomponent configuration)

M=100;% the number of subintervals
% used to partition the interval [0,1]

%%% Initialize x coordinates
N =M+1; % number of points used to plot
x = zeros(1,N);
for I=1:N,
x(1) = (I-1)/M;
end

% Enter the prior probability alpha
alpha=0.5;

% Enter the prior probability beta
beta= 0.5;

% Initialize Q
gam = alpha + beta - alpha*beta;
temp = 1/gam;
Q = zeros(N);
forl =1:N;  %r=(I-1)/M
for J=1:M; %p=(J-1)/M

if J<=1;
Q1,9 = (I-)/(N-J);
end
R=0Q(,1.);
%fBQ(l,1:J) = interpl(p,fB,R);
end
end

roc=zeros(5,N); % 5 ROC curves
fBQ=zeros(10,N,N); % 10 different entries

% ROC 1
roc(1,1:N)=(x).N.1;
fBQ(1,1:N,1:N) = (Q).~(.1);

% ROC 2
roc(2,1:N)=((2/pi)*asin(x)).(1/6);
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).N(1/6);

% ROC 3

roc(3,1:N)=tanh(4*x);
fBQ(3,1 N,l: N) = tanh(4* Q),
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% ROC 4

roc4=(x).n.13;
roc(4,1:N)=roc4;
fBQ(4,1:N,1:N) = (Q).~(.13);

% ROC5

roc5=zeros(1,N);

for p=1:N
pp=(p/100)-.01;
rocs(p)=((1-(pp-1)"2)*(.5));

end

roc(5,1:N)=roc5;

fBQ(5,1:N,1:N)=((1-(Q-1).72).~(.5));

% Plot all five ROC curves

figure

plot(x,roc(1,1:N),r' x,roc(2,1:N),'y" x,roc(3,1:N),'g',x,roc(4,1:N),'b',x,roc(5,1:N),'k")
legend('"ROC curve E', 'ROC curve F', 'ROC curve G', 'ROC curve H','ROC Curve I',4);
xlabel (‘Probability of False Positive);

ylabel ('Probability of True Positive);

title('Individual Sensor ROC Curves);

% Set cost for each curve, and total budget

cost1=45;
cost2=30;
cost3=25;
cost4=35;
cost5=35;
budget=135;

% 3 combinations are not cost feasible
% Determine cost for each combination

cost13=cost1+cost3;
cost14=cost1+cost4;
cost15=cost1+cost5;
cost23=cost2+cost3;
cost24=cost2+cost4;
cost25=cost2+cost5;
cost123=cost1+cost2+cost3;
cost124=cost1+cost2+cost4;
cost125=cost1+cost2+cost5;
cost134=cost1+cost3+cost4;
cost135=cost1+cost3+cost5;
cost145=cost1+cost4+costs;
cost234=cost2+cost3+cost4;
cost235=cost2+cost3+costs;
cost245=cost2+cost4+costs;
cost1234=cost1+cost2+cost3+cost4;
cost1235=cost1+cost2+cost3+costs;
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cost1245=cost1+cost2+cost4+costs;
cost1345=cost1+cost3+cost4+costs;
cost2345=cost2+cost3+cost4+costs;
cost12345=cost1+cost2+cost3+cost4+costs;

%l nitialize ROC curves

fC13=zeros(1,N);
fCl4=zeros(1,N);
fC15=zeros(1,N);
fC23=zeros(1,N);
fC24=zeros(1,N);
fC25=zeros(1,N);
fC123=zeros(1,N);
fC124=zeros(1,N);
fC125=zeros(1,N);
fC134=zeros(1,N);
fC135=zeros(1,N);
fC145=zeros(1,N);
fC234=zeros(1,N);
fC235=zeros(1,N);
fC245=zeros(1,N);
fC1234=zeros(1,N);
fC1235=zeros(1,N);
fC1245=zeros(1,N);
fC1345=zeros(1,N);
fC2345=zeros(1,N);
fC12345=zeros(1,N);

% Run combinationsif cost eligible
% Same side

% Combination 12
K=1,
rocA=roc(K,1:N);
K=2;
rocB=roc(K,1:N);
combinet;
fD12=fD;
Y%oxFP=2*x-x."2;

% Combination 34
K=3;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combinet;
fD34=fD;
Y%oxFP=2*x-x."2;

% Combination 35
K=3;
rocA=roc(K,1:N);
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K=5;
rocB=roc(K,1:N);
combinet;
fD35=fD;
YoXFP=2* X-x."2;

% Combination 45
K=4;
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combinet;
fD45=fD;
YoxXFP=2* x-x."2;

%Combination 345
rocA=fD34;

K=5;
rocB=roc(K,1:N);
combinet;
fD345=fD;

% Different sides (2 sensors)

% Combination 13
if cost13 <= budget
K=1,
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;

fC13=fC;

end

% Combination 14
if cost14 <= budget
K=1,
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;

fC14=fC;

end

% Combination 15
if cost15 <= budget
K=1,
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combine;

fC15=fC;

end
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% Combination 23
if cost23 <= budget
K=2;
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;

fC23=fC;

end

% Combination 24
if cost24 <= budget
K=2;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;

fC24=fC;

end

% Combination 25
if cost25 <= budget
K=2;
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combine;

fC25=fC;

end

% Different sides (3 sensors)

% Combination 123
if cost123 <= budget
rocA=fD12;

K=3;
rocB=roc(K,1:N);
combine;

fC123=fC;

end

% Combination 124
if cost124 <= budget
rocA=fD12;

K=4;
rocB=roc(K,1:N);
combine;

fC124=fC;

end

% Combination 125
if cost125 <= budget
rocA=fD12;

K=5;
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rocB=roc(K,1:N);
combine;
fC125=fC;

end

% Combination 134
if cost134 <= budget
rocA=fD34;

K=1;
rocB=roc(K,1:N);
combine;

fC134=fC;

end

% Combination 135
if cost135 <= budget
rocA=fD35;

K=1;
rocB=roc(K,1:N);
combineg;

fC135=fC;

end

% Combination 145
if cost145 <= budget
rocA=fD45;

K=1;
rocB=roc(K,1:N);
combineg;

fC145=fC;

end

% Combination 234
if cost234 <= budget
rocA=fD34;

K=2;
rocB=roc(K,1:N);
combine;

fC234=fC;

end

% Combination 235
if cost235 <= budget
rocA=fD35;

K=2;
rocB=roc(K,1:N);
combine;

fC235=fC;

end

% Combination 245
if cost245 <= budget
rocA=fD45;

K=2;
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rocB=roc(K,1:N);
combine;
fC245=fC;

end

% Different sides (4 sensors)

%Combination 1234
if cost1234 <= budget
rocA=fD12;
rocB=fD34;
fBQs=zeros(N);
forl =LN;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M
R=Q(l,1:J);
fBQs(1,1:J) = interpl(x,fD34,R);
end
end
fBQ(6,1:N,1:N)=fBQs,
K=6;
combineg;
fC1234=fC;
end

%Combination 1235
if cost1235 <= budget
rocA=fD12;
rocB=fD35;
fBQs=zeros(N);
forl = L:N;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M
R=0Q(l,1.J);
fBQs(1,1:J) = interpl(x,fD35,R);
end
end
fBQ(7,1:N,1:N)=fBQs,
K=7,
combine;
fC1235=fC;
end

%Combination 1245
if cost1245 <= budget
rocA=fD12;
rocB=fD45;
fBQs=zeros(N);
forl =LN;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M
R=0Q(I,1.J);
fBQs(1,1:J) = interpl(x,fD45,R);
end
end
fBQ(8,1:N,1:N)=fBQs;
K=8§;
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combine;
fC1245=fC;
end

% Combination 1345
if cost1345 <= budget
rocA=fD345;

K=1;
rocB=roc(K,1:N);
combine;

fC1345=fC;

end

% Combination 2345
if cost2345 <= budget
rocA=fD345;

K=2;
rocB=roc(K,1:N);
combineg;

fC2345=fC;

end

% Different sides (5 sensors)

if cost12345 <= budget
rocA=fD12;
rocB=fD345;
fBQs=zeros(N);
forl = L:N;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M
R=Q(.1.));
fBQs(1,1:J) = interp1(x,fD345,R);
end
end
fBQ(9,1:N,1:N)=fBQs;
K=9;
combine;
fC12345=fC;
end

% Store resultsin asingle array
fCouta=zeros(21,N);
fCouta(1,1:N)=fC13;
fCouta(2,1:N)=fC14;
fCouta(3,1:N)=fC15;
fCouta(4,1:N)=fC23;
fCouta(5,1:N)=fC24;
fCouta(6,1:N)=fC25;
fCouta(7,1:N)=fC123;
fCouta(8,1:N)=fC124;
fCouta(9,1:N)=fC125;
fCouta(10,1:N)=fC134;
fCouta(11,1:N)=fC135;
fCouta(12,1:N)=fC145;
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fCouta(13,1:N)=fC234;
fCouta(14,1:N)=fC235;
fCouta(15,1:N)=fC245;
fCouta(16,1:N)=fC1234;
fCouta(17,1:N)=fC1235;
fCouta(18,1:N)=fC1245;
fCouta(19,1:N)=fC1345;
fCouta(20,1:N)=fC2345;
fCouta(21,1:N)=fC12345;

% Combine results from both components

C=0;
fChoth=zeros(189,N); % Change based on configuration
for 11=1:21 % Change based on configuration

for J=1:9 % Change based on configuration
C=C+1;
if fCout(JJ,50)>0
rocA=fCout(JJ,1:N);
rocB=fCouta(ll,1:N);
fBQs=zeros(N);
forl = L:N;  %r=(1-1)/M
forJ=1M; %p=(J-1)/M
R=Q(I,1.J);
fBQs(I,1:J) = interpl(x,rocB,R);
end
end
fBQ(10,1:N,1:N)=fBQs,
K=10;
combine;
fCboth(C,1:N)=fC;
end
end
end

% Determine best curve

fCbotht=fChoth';

for I=1:N
[maxroc(l),maxind(l)]=max(fCbotht(l,:));

end

figure

plot(maxind);

figure

plot(maxroc);
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function [fCout] = salloc22()

% This program determines the optimal sensor allocation for a particular system component. The
component is assumed to consist of 2 subcomponents, each with 2 sensors. Each subcomponent is assumed
to require at least one sensor.

global M N x roc rocA rocB | JK Q alpha beta gam temp
global fA fB fC fD fBQ fCout

M=100;% the number of subintervals used to partition the interval [0,1]

%%% Initialize x coordinates
N =M+1; % number of points used to plot
x = zeros(1,N);
for I=1:N,
x(1) = (I-1)/M;
end

% Enter the prior probability alpha
alpha=0.5;

% Enter the prior probability beta
beta=0.5;

% Initialize Q
gam = apha + beta - apha*beta;
temp = L/gam;
Q = zeros(N);
for =1:N;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M

ifJ<=1;
Q(1,J) = (1-9)/(N-J);
end
R=Q(I,1.J);
%fBQ(l,1:J) = interpl(p,fB,R);
end
end

roc=zeros(4,N);
fBQ=zeros(5,N,N);

% ROC 1
roc(1,1:N)=(x).N.1;
fBQ(L,1:N,1:N) = (Q).~(.1);

% ROC 2
roc(2,1:N)=((2/pi)*asin(x)).(1/6);
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).N1/6);

% ROC 3
roc(3,1:N)=tanh(4*x);
fBQ(3,1:N,1:N) = tanh(4*Q);

% ROC 4
roc4=(x).".13;
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roc(4,1:N)=roc4;
fBQ(4,1:N,1:N) = (Q).~(.13);

% Set cost for each curve, and total budget

cost1=45;
cost2=30;
cost3=25;
cost4=35;
budget=125;

% Determine budget eligibility for each combination

cost13=cost1+cost3;
costl4=cost1+cost4,
cost23=cost2+cost3;
cost24=cost2+cost4;
cost123=cost1+cost2+cost3;
cost124=cost1+cost2+cost4;
cost134=cost1+cost3+cost4;
cost234=cost2+cost3+cost4;
cost1234=cost1+cost2+cost3+cost4;

%l nitialize ROC curves

fC13=zeros(1,N);
fCl4=zeros(1,N);
fC23=zeros(1,N);
fC24=zeros(1,N);
fC123=zeros(1,N);
fC124=zeros(1,N);
fC134=zeros(1,N);
fC234=zeros(1,N);
fC1234=zeros(1,N);

% Run combinationsif cost eligible
% Same side

% Combination 12
K=1;
rocA=roc(K,1:N);
K=2;
rocB=roc(K,1:N);
combinet;
fD12=fD;
YoXFP=2* X-x."2;

% Combination 34
K=3;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combinet;
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fD34=fD;
YoxXFP=2* Xx-x."2;

% Different sides (2 sensors)
% Combination 13

if cost13 <= budget

K=1,

rocA=roc(K,1:N);

K=3;

rocB=roc(K,1:N);

combine;

fC13=fC;

end

% Combination 14
if cost14 <= budget
K=1,
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;

fC14=fC;

end

% Combination 23
if cost23 <= budget
K=2
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;

fC23=fC;

end

% Combination 24
if cost24 <= budget
K=2;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;

fC24=fC;

end

% Different sides (3 sensors)
% Combination 123

if cost123 <= budget
rocA=fD12;

K=3;

rocB=roc(K,1:N);

combine;

fC123=fC;

end
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% Combination 124
if cost124 <= budget
rocA=fD12;

K=4;
rocB=roc(K,1:N);
combine;

fC124=fC;

end

% Combination 134
if cost124 <= budget
rocA=fD34;

K=1,;
rocB=roc(K,1:N);
combine;

fC134=fC;

end

% Combination 234
if cost234 <= budget
rocA=fD34;

K=2;
rocB=roc(K,1:N);
combine;

fC234=fC;

end

% Different sides (4 sensors)

%Combination 1234

if cost1234 <= budget

rocA=fD12;

rocB=fD34;

fBQs=zeros(N);

forl =LN;  %r=(1-1)/M
for J=1:M; %p=(J-1)/M

R=0Q(I,1.J);
fBQs(1,1:J) = interpl(x,fD34,R);

end

end

fBQ(5,1:N,1:N)=fBQs,

K=5;

combine;

fC1234=fC;

end

fCout=zeros(9,N);

fCout(1,1:N)=fC13;

fCout(2,1:N)=fC14;

fCout(3,1:N)=fC23;

fCout(4,1:N)=fC24;

fCout(5,1:N)=fC123;

fCout(6,1:N)=fC124;

fCout(7,1:N)=fC134;

fCout(8,1:N)=fC234;

fCout(9,1:N)=fC1234;
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