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ABSTRACT 
 
 
 
The use of system data to make predictions about the future system state, commonly 

known as prognostics, is a rapidly developing field.  Prognostics seeks to build on current 

diagnostic equipment capabilities for its predictive capability.  Many military systems, 

including the Joint Strike Fighter (JSF), are planning to include on-board prognostics 

systems to enhance system supportability and affordability.  Current research efforts 

supporting these developments tend to focus on developing a prognostic tool for one 

specific system component.  This dissertation research presents a comprehensive 

literature review of these developing research efforts.  It also develops presents a 

mathematical model for the optimum allocation of prognostics sensors and their 

associated classifiers on a given system and all of its components.  The model 

assumptions about system criticality are consistent with current industrial philosophies.  

This research also develops methodologies for combining sensor classifiers to allow for 

the selection of the best sensor ensemble. 
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A FRAMEWORK FOR PROGNOSTICS REASONING 
 
 
 

I.  Introduction 

 

Historically, military aircraft maintenance has been conducted using manual inspections 

of various aircraft components.  These inspections occur either after a completed flight, 

or according to a particular maintenance schedule.  This work is usually conducted 

without knowledge of existing aircraft faults.  This traditional pattern of maintenance and 

inspection has become increasingly less efficient as aircraft systems have become more 

complex [9].  Various sources estimate that up to 50 percent of the components removed 

from the aircraft for fault repair actually retest as fully functional at the maintenance 

repair facility [17], [19]. 

 

As the above problem continues to absorb more manpower and resources, alternative 

approaches to aircraft maintenance are being considered.  Rather than following the 

pattern of traditional inspections conducted in a periodic fashion without knowledge of 

existing faults, various organizations are attempting to improve the efficiency of this 

process.  Typically, this is being done through the addition of sensors to the aircraft 

components, allowing for a direct measure of system functionality.  In addition, these 

sensor data streams may also be able to provide information about the remaining life of 

the aircraft component.  This sensor data would conceptually be fed into an intelligent 

system which would attempt to detect existing or impending component faults.  Not only 
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would this increase the efficiency of the current process, it would also allow for on-board 

fault detection and subsequent flight plan modification.  This dissertation addresses some 

of the different aspects associated with this effort to improve current aircraft maintenance 

practices. 

 

1.1  Definitions:  Diagnostics and Prognostics 

The science of diagnostics is best described as the utilization of specialized machinery 

monitoring hardware and/or software for detecting and isolating faults in a given system, 

which may be either mechanical, electrical, or both.  This system may include both 

hardware and software components.  The Air Force Research Laboratory [21] defines 

diagnostics as the determination of a failure cause (fault detection and isolation) given all 

available information.  Once a failure occurs, diagnostic information can be used to 

expedite the troubleshooting/repair process.  The analysis may also be used for future 

diagnostics.  Current machinery monitoring technology provides data used in expert 

analysis to extract usable information to isolate causes of any problem.  This situation 

leads to today's time-based or event-driven maintenance approach (i.e., perform 

maintenance every 100 hours or when something breaks).  Consequences of this 

approach may include performing unnecessary maintenance actions and causing other 

problems in the machine that did not exist prior to the maintenance action. 

 

Prognostics is an emerging technology that seeks to build on current diagnostic 

equipment capabilities.  Some current diagnostic systems can accurately detect and 

isolate faults in a particular system.  The goal of a prognostics system is to use diagnostic 



1-3 

information to accurately predict a system’s future health, as well as report the systems’ 

current and predicted health, using automated procedures which do not require human 

intervention to provide the systems’ health report.  (For clarity, system health is defined 

as the instantaneous operational status of the equipment being monitored.  It relates to the 

equipment’s immediate readiness for deployment or its need for repair actions [21].)  In 

effect, the prognostics system provides the expert interface, and reports on the systems’ 

health.  The Air Force Research Laboratory [21] defines prognostics as an assessment of 

likely future health (educated prediction) of a piece of equipment, based on current 

information (current health status, history, etc).  Accurate analysis of prognostic 

information can prevent equipment failure and minimize the frequency of scheduled 

maintenance actions through performance monitoring, tests, and reasoning. 

 

A prognostics system is often referred to as condition-based maintenance, since the 

prognostics system indicates required maintenance actions, either now or in the future.  

This condition-based method should replace time-based or event-driven maintenance 

methods, ideally resulting in less system downtime and only required maintenance 

actions. 

 

The terms “Prognostics and Health Management” (PHM) system, and “Autonomic 

Logistics System” (ALS) are also found in the literature.  The “PHM system” term 

usually refers only to the sensors, diagnostic algorithms, and prognostic algorithms 

required for predictive failure capability on a particular system.  An ALS is defined as a 

system intended to communicate appropriate maintenance, supply, and other appropriate 
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actions to the proper agencies in a timely fashion, based on the information obtained from 

a prognostics system.  However, the term “PHM system” may also refer to both of the 

previous two definitions:  both the predictive failure capability and the ALS component.  

In this dissertation, it will be clear from context which meaning of “PHM system” is 

intended. 

 

1.2  Problem Statement 

As previously discussed, a PHM system is intended to predict when aircraft component 

failure will occur.  The data from PHM system sensors are collected and fed through to 

an intelligent data model which has been trained to recognize and differentiate between 

healthy, degraded, and failure modes of different aircraft components.  According to 

Scheuren [78], this analysis is currently conducted using regression models, allowing all 

relevant sensor data to be analyzed before a failure is reported.  This section discusses the 

motivations for pursuing a prognostics program, primarily from an Air Force perspective. 

 

The Air Force’s aircraft diagnostic approach uses Built-in Test (BIT) units which are 

incorporated as part of the aircraft hardware and software to detect aircraft faults.  

However, these BIT units do not adequately identify all aircraft failures down to the 

single component level.  The aircraft mechanic has access to other technical data in 

addition to the BIT unit data, such as: logic trees, fault charts, symptom/cause charts, and 

schematics/wiring diagrams.  However, the maintainer is still often left with an inability 

to correctly diagnose the problem, and many times cannot replicate the problem the BIT 

unit reported.  The reported fault may not even exist, which contributes to the inability of 
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the mechanic to replicate the problem.  As stated on Joint Strike Fighter’s (JSF) 

homepage [76], “Aircraft Maintenance and supportability based on Built in Test (BIT) 

Diagnostics is an antiquated strategy that has proven countless platforms to be 

unsuccessful in producing the desired results in aircraft reliability and availability.” 

 

There is significant motivation in the Air Force to streamline the aircraft maintenance 

process, from both a cost and operational readiness perspective.  According to Stoll and 

Vincent [87], there is considerable room for improvement in the current Air Force 

maintenance system.  Problems identified in their report include trial-and-error switching 

of electrical components to determine where the fault is, if one exists.  The “Can not 

duplicate (CND)” and “Re-Test OK (RTOK)” diagnoses also occur regularly (50% of the 

time [17],[19]).  This is thought to be due to stresses related to the operating conditions 

aboard the aircraft that intermittently interrupt the functioning of the part, causing it to be 

removed for maintenance.  Usually, these stresses cannot be duplicated on the ground.  

The communication busses and permanent wiring on an aircraft are not tested at present.  

These components degrade over time, causing intermittent failures in flight and/or 

sluggish responses from aircraft systems which may be attributed to otherwise fully 

functional aircraft components.  Lastly, since CND results indicate an inability to 

duplicate on the ground a fault detected during flight, many maintenance personal believe 

obtaining aircraft system diagnostic information at the time of the fault would improve 

their ability to identify the problem.  This would allow the exclusion of maintenance on 

parts that did not function because of an aircraft system problem, rather than the part 

itself actually malfunctioning.  Borden [18] expresses similar thoughts.  Borky, et al [19] 
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also express this idea - the Air Force is committed to reducing aircraft life-cycle costs, 

and to achieving high sortie rates with a reduced force structure.  To achieve this, the Air 

Force requires a built-in diagnostics system that can achieve a high rate of accurate fault 

detection.  This capability is at the heart of a PHM effort.  Blemel [16] indicates testing 

costs are skyrocketing, to the point where they are beginning to exceed half the cost of 

the aircraft they were built to test.  Resources are being stretched to the point where it 

may no longer be feasible to produce adequate, functional test equipment and software.  

It will be far easier in the future to take advantage of the built-in processing power and 

software diagnostics aboard the system.  MacDonald [52] sums it up by saying most 

aircraft are over-inspected at great cost to the Air Force. 

 

A panel of defense experts reached similar conclusions in 1996 [71].  The Institute for 

Defense Analyses held a conference with 41 participants from the technology 

development, acquisition, and functional support areas of the Armed Services.  The 

participants concluded that current performance of defense systems is not commensurate 

with what the current state-of-the-art suggests is attainable.  Current performance 

limitations constitute critical problems resulting in increased life cycle costs (and 

consequently increased support and maintenance workloads), and decreased systems 

availability.  Perhaps even more importantly, the panel stated that potential integrated 

diagnostic solutions are not limited by currently available technologies.  Hence, the 

diagnostic problem is not a technological problem, but “…a political, cultural, and 

organizational problem” [71].  However, given the amount of research being done and 

the fact there are almost no fielded integrated diagnostics/prognostics systems, it seems 
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that there are still many technical hurdles remaining before implementation of these 

systems is possible. 

 

The idea of using sensors to predict equipment failure has been around for some time.  

Most references indicate published research along this line began to appear in the early 

1980’s [57]. 

 

Start

Repair

Diagnosis

Result

Test

Ready
to Test End

Apply result

Determine repairVerify

Perform testSelect test

Perform
repair

 

Figure 1-1.  A generalized diagnostic process [81] 

 

Figure 1-1 shows a generalized diagnostic process.  The initial assumption is that the 

system undergoing diagnosis has a known fault.  At first, the system is prepared for the 

diagnostic procedure (“Ready to Test”).  The appropriate test procedure is chosen 

(“Test”), conducted (“Result”), and the test outcome is transformed, if required, into a 

diagnosis.  Once the diagnosis is completed, the appropriate repair action is identified 

(“Determine Repair”) and implemented (“Perform Repair”).  If there are multiple system 
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faults, the system is again prepared for diagnosis and the above procedure is repeated 

until the system is fully functional again.  All repairs are also verified:  the diagnostic 

process is repeated to ensure that there are no faults in the system once all repairs have 

been performed. 

 

In the early 1980’s, there were two main groups each favoring a different approach to 

diagnostics.  One group contended that a simple yet comprehensive collection of the 

observed “abnormal” behaviors of a test unit and the actual failure mechanism provided 

sufficient understanding of the situation to diagnose the fault.  This refers to the testing of 

a component using a fault tree approach (see Figure 1-2).  The test results obtained while 

following the fault tree’s directions help narrow the possible failure mechanisms until the 

actual mechanism is identified.  There is little concern with connecting the failure with 

the associated symptom since an established diagnostic approach exists.  At times, this 

approach is known as a rule-based diagnostics system, since it was often implemented as 

an “if-then” set of rules. 
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Figure 1-2.  Diagnostic fault tree [14] 

 

Figure 1-2 shows a fault tree which may be used to determine the state of a given system 

or component.  Each node in a fault tree indicates the particular type of test, ti, that should 

be conducted.  The goal is to determine the current system state, shown in this diagram as 

an si index.  The 1s and 0s indicate a pass or fail result, respectively, for a particular test.  

The technician systematically conducts tests to isolate the correct system state.  This is 

similar to the current Air Force maintenance process.  However, as discussed previously, 

CND and RTOK results undermine the fault isolation process. 

 

The second group preferred a model-based prognostics system.  This approach assumes 

an underlying knowledge of the system under consideration.  The methodology includes 

“black box” approaches like neural nets, genetic algorithms, etc. where the user does not 

require exact knowledge of the workings of the model to obtain useful results.  The 
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knowledge base then contributes to a fundamental understanding of the unit under test, 

although at times this knowledge may be quite superficial. 

 

The model-based system is being introduced into the Air Force maintenance process.  

Various authors have published papers summarizing their efforts in this area.  One such 

example described in [22] is the use of neural nets to develop troubleshooting procedures 

for an on-board avionics system.  The particular system chosen for this study was the F-

16 Fire Control Radar (FCR) data.  Only units known to be faulty were chosen for this 

study.  The purpose of this experiment was to use a neural net to distinguish between 

three types of faulty FCRs.  In this experiment, a success was defined as (correctly) 

classifying a FCR unit as faulty.  FCR units which were classified as faulty were called 

“normal”.  The other two ratings were “lemon” or “bad actor”.  A “lemon” rating meant 

the faulty FCR system was consistently (incorrectly) identified as a good system in 

different aircraft.  A “bad actor” rating indicated the faulty FCR system was (incorrectly) 

identified as good only in certain aircraft, and this identification was not necessarily 

consistent within that aircraft.  The neural net obtained around 80% accuracy, which was 

somewhat less than the authors hoped to achieve. 

 

The panelists at the workshop specified in [60] identified three major classes of models: 

physical, phenomenological, and empirical models.  The panel considered these classes 

of models important for manufacturing and machine monitoring.  Physical models, or 

mathematical descriptions of a system derived from its physics, represented the first class 

of models they identified.  The panel felt that the most useful physical models do not 
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capture every detail of the system, but capture the essential features with minimum 

complexity.  Secondly, they summarized phenomenological models as those which 

identify certain key features of the data, such as spectral lines or modulations, which are 

used to characterize the system.  These models demonstrate a much looser or even only a 

qualitative coupling between the actual physics of the process and the model features.  

Finally, they called "empirical," or data-driven models, those models that were based 

predominantly on features extracted from training data by mathematical or statistical 

methods without direct reference to the physical system.  Some examples from this class 

of models include Markov models, varieties of neural networks, and simulation models. 

 
The panelists also discussed the conflict between physically based models and empirical 

models.  (Phenomenological models represent the middle ground between the two 

approaches.)  The following direct quote mirrors directly the conflict between the two 

different modeling camps, as previously mentioned before from [60]: 

Perhaps the greatest differences of opinion among workshop participants centered 
on the topic of physical versus empirical modeling.  Some participants felt that 
only models well grounded in physics could lead to significant progress.  
Proponents of empirical modeling argued that, while empirical modeling might 
not lead to the best possible solution, it can offer substantial improvements, it can 
be applied immediately in situations for which adequate physical models do not 
currently exist or are too expensive or complicated to obtain, and substantial 
success has been demonstrated in real applications.  Perhaps grudgingly, almost 
all workshop participants ultimately agreed that both physical and empirical 
models have an important role to play, and that significant research is needed in 
both of these directions.  [60, Section 3.4.5] 

 

The participants in [60] did manage to agree that the two physical and empirical 

modeling approaches require different approaches to model validation.  Empirical models 

require a training/validation set containing sufficient examples spanning the full range of 
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machines, faults, or situations.  Of course, this makes it much more challenging to 

develop a robust empirical model, in terms of the volume of work required.  Physical 

models usually have a much smaller, more restricted set of parameters, and the validity of 

the model is determined with a much smaller test set.  Furthermore, the intrinsic 

confidence in a physical model is usually much higher since it is based on known 

principles of physics rather than “unknown” features which empirical models identify 

based on the data.  Empirical models, in general, require much more rigorous, extensive, 

and expensive training and validation than physical models; however, there are situations 

in which the necessary quantity and quality of training and validation data is available or 

can be collected more easily than developing an adequate physical model. 

 

The workshop participants then commented that methods used to analyze the data from 

mechanical system processes must be robust, i.e., methods which can tolerate significant 

deviations from assumed or nominal signal characteristics.  In general, the signal and 

noise environment in these kinds of applications is highly complex, non-Gaussian, and 

exhibits large variability and/or non-stationarity.  The operating conditions may vary 

dramatically between sensor locations.  To ensure the user accepts these monitoring 

methods, low false alarm rates are an absolute necessity.  This places an additional 

burden on the robustness of the methods. 

 

The workshop participants identified reliable estimation of time-to-failure as one of the 

greatest challenges in manufacturing and machine monitoring, and one of weakest areas 

in existing methods.  Most faults of interest are believed to begin with small precursor 
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events and to stem from a progressive (not necessarily linear) degradation of the tool or 

machine component.  Thus, the tracking of this degradation along with ongoing 

prediction of the time-to-failure is of great importance.  As the signal characteristics from 

many types of degradations are non-monotonic, continuous monitoring which tracks the 

history of the developing fault is often essential. 

 

1.3.  Motivation for a Prognostics System 

The manufacturing infrastructure of most of the civilized world embodies the operation 

and maintenance of machine systems.  Both the commercial and government sectors have 

a vested interest in technical advancements which may enhance the productivity, 

efficiency, or quality of these machine systems’ operations.  Such efforts can potentially 

provide enormous cost savings and enhance industrial competitiveness.  A primary 

example is the repair and maintenance of these systems, which represents an annual cost 

of many billions of dollars to U.S. consumers, industry, and government [60].  Although 

monitoring is not cost-effective for inexpensive and non-critical machines such as 

lawnmowers or fans, accurate system component condition assessment has the potential 

to save large amounts of money while dramatically increasing safety and reliability of 

important, complex systems. 

 

Examples where system assessments are appropriate include power generation turbines 

and critical equipment in nuclear reactors or on large oil rigs, where unscheduled failure 

can result in lost revenue approaching a million dollars per day.  Failure during 
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operations of aircraft engines or power train components in helicopters can often result in 

loss of life as well as the equipment [60]. 

 

The combination of rapid advances in signal processing techniques with cost-effective 

digital technologies for their implementation may alleviate the system monitoring 

challenges that currently exist.  These advances include both improvements on existing 

methods such as spectral analysis and cyclostationary signal analysis, and emerging 

techniques.  Among these new technologies are advances in wavelet and time-frequency 

signal analysis.  These techniques can be used to characterize both transient phenomena 

and persistent harmonic structure.  Consequently, they appear well-matched to the signals 

associated with rotating machinery.  Other recent developments, such as higher-order 

spectral theory, could also possibly contribute in these applications. Also, higher-level 

techniques such as neural networks and statistical pattern recognition and classification 

provide means for combining lower-level processing into detection and categorization of 

faults.  In fact, preliminary research by several groups in applying the techniques 

mentioned above to a variety of related problems has demonstrated improvements over 

traditional approaches [60].  These methods, with appropriately directed research, may 

offer solutions for the critical technology needs in manufacturing and machine 

monitoring and assessment. 

 

Methods for machine monitoring and assessment which provide warning in time to cease 

operations or schedule maintenance can provide immense value in these applications, 

such as aircraft engines, aircraft electrical systems, and automobile assembly lines.  In a 
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number of cases, some prognostic monitoring is routinely used or at least eagerly sought.  

An excellent example is found in some military applications.  Since the cost (and security 

risk) of unscheduled failure in some military applications is enormous, preventative 

maintenance is routinely practiced.  Future weapons systems, such as the Joint Strike 

Fighter (JSF), will have these kinds of prognostic condition assessment methods designed 

and built as an integral part of the system. 

 

Prognostic condition assessment allows performance of maintenance during regularly 

scheduled service rather than on an emergency basis after failure, thereby greatly 

reducing the total cost of the maintenance operation.  Other sources of unnecessary cost 

include replacing critical components based on mean time to failure data versus actual 

component operational status.  Additionally, fault indicators can be unreliable, meaning 

many good components are removed for maintenance or repair as a result of an incorrect 

fault indication, thus wasting resources on non-existent problems.  This action violates 

the "if it ain't broke, don't fix it" philosophy.  However, the practicality of this philosophy 

is predicated on reliable system condition assessment.  To accomplish the converse of the 

above principle (“fix things only if they’re broken”) requires early detection of precursors 

to equipment failure.  Finally, routine maintenance itself may cause failures.  Some 

sources state that routine maintenance is actually the dominant cause of failure [60]. 

 

A recent DoD study noted that “There does not appear to be a consistent approach in 

either commercial or defense systems for functional and physical partitioning of the 

hardware and software used to perform integrated diagnostics functions.” [72]  This study 
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defines integrated diagnostics as"…part of the systems engineering (or reengineering) 

process in which diagnostic functions are partitioned to components, both on and off the 

product, to optimize economic and functional performance throughout a products life 

cycle.  Optimal performance is achieved by ensuring effective communication of 

information relevant to the test and diagnostic process occurs between diagnostic 

functions and components and across each life cycle phase."  Success in these efforts is 

essential for a successful prognostics system. 

This study encompassed fourteen civilian and military programs in an attempt to 

determine what current industrial and military practices were in the field of prognostics.  

Besides the preceding conclusions, the study determined that a consistent approach to 

diagnostics is feasible.  In general, the study’s approach consists of four steps.  The first 

is to develop a consistent, information-based technical architecture for integrated 

diagnostics.  The second is to identify key/critical interfaces and elements of this 

architecture.  The third step is to develop a rough information model for integrated 

diagnostics.  And the fourth step is to prepare a roadmap to advance an open system 

approach to integrated diagnostics. 

 

The DoD study also identified key requirements for success in the development of 

prognostic programs.  Among these items were:  reducing diagnostic ambiguities and 

inaccuracies, correlating diagnostics with operational performance, the development of 

measurable and relevant metrics, and the development/maintenance of industry standards 

facilitated by a domain specific organization.  A significant requirement for the last item 
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is the development of standardized data encapsulation and adherence to a consistent 

architecture for integrating diagnostic elements. 

 

The Air Force intention is to use prognostic systems to completely eliminate traditional 

aircraft inspection and repair patterns.  Currently, an aircraft goes on a mission and 

returns.  The aircraft mechanic then uses Built In Test (BIT) results from Line 

Replaceable Units (LRUs) (available only after the aircraft lands) and pilot input (when 

available) to check the aircraft for malfunctions.  The malfunctioning units are identified, 

removed, and sent to the maintenance depot for further diagnosis and repair.  As 

previously indicated, a BIT result does not always indicate the exact system fault, nor can 

the mechanic always identify the problem, if one even exists.  The first goal of the 

proposed prognostics system is to fix this diagnostics problem; the new system is 

intended to be able to find and isolate aircraft faults with complete confidence.  Once this 

is complete, the prognostics system can report the specific aircraft faults to the 

maintenance and planning/operations activities.  (While the goal for a prognostics system 

is to predict the occurrence of these faults, the first capability required for a prognostics 

system is the ability to identify an aircraft fault with high confidence.)  Reported aircraft 

faults allow the mechanic to estimate the required workload and preposition/order the 

necessary maintenance equipment or replacement parts.  This capability is usually 

referred to as health management.  Any fault and time-required-to-fix information can be 

sent to the planning/operations activity to allow them to update the functional capability 

of that aircraft and overall mission readiness. 
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Quoting from the JSF homepage [76], “Prognostics and Health Management (PHM) is a 

technology maturation project focused on using advanced sensors integrated through 

algorithms and intelligent models such as neural nets to monitor, predict, and manage 

aircraft health.  The goal of PHM is to enable what the JSF program calls Autonomic 

Logistics: a maintenance and supply system wherein information on aircraft faults 

detected while the aircraft is airborne is automatically downlinked to trigger the logistics 

system to meet the returning aircraft with appropriate parts, maintenance personnel, and 

maintenance equipment.  This will allow the Right maintenance action, at the Right time, 

for the Right reason.” 

 

A National Science Foundation (NSF) Workshop on Signal Processing for Manufacturing 

and Machine Monitoring workshop brought together 37 academic researchers and 

industrial leaders and users of prognostics together to identify the pertinent signal 

processing technologies and the most important industrial needs.  Their findings were 

disseminated to the entire community [60]. 

 

Most of the applications discussed in the NSF workshop involved either rotating or 

reciprocating machinery.  It thus appears quite possible that a promising prognostic 

method could potentially solve a wide variety of machine monitoring problems.  

However, the workshop participants cautioned that requirements, signals, and data rates 

can be very different for similar kinds of machinery (rotating and reciprocating 

machinery), as well as different types of machinery.  Consequently, different prognostic 

methods may be required based on the individual case.  [60] 
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The industry participants in the NSF workshop [60] made it clear that the value of 

monitoring lies primarily in fault prediction.  As might be expected, after-the-fact 

detection of serious failures is generally of little use, and does not require specialized 

sensors to determine that something has gone seriously wrong.  As an example, consider 

the failure of an F-16 jet engine.  Since the F-16 is a single-engine aircraft, engine failure 

will almost always lead to pilot ejection and consequent loss of the aircraft.  It is clear in 

the case of engine failure that there was a catastrophic failure—what may be unclear is 

the cause of this failure.  Specialized sensors may have been able to detect an impending 

failure condition, and that detection may have been able to save the aircraft. 

 

The primary value of monitoring comes in predicting failure in time to prevent it, and in 

reliably estimating the remaining time before the component fails.  (See the taxonomy of 

a PHM system in the immediately following section for a complete discussion of PHM 

system capabilities.)  The NSF conference participants provided the following example 

from the automotive industry: 

…in the automotive manufacturing industry, it is a common practice to change all 
of the tool faces in all of the machines at the end of a shift.  The only monitoring 
question of real interest in this context is whether a tool will fail before the end of 
the shift and thus cause an extremely expensive unscheduled shut-down; the exact 
amount of wear on a drill bit is of little interest unless it presages a catastrophic 
failure.  Research efforts should thus be more focused on prognostics and on early 
detection of fault precursors.  [60, Section 3.4.1] 

 

Researchers at the Boeing Company have also devoted considerable thought to the 

integration of on-board monitoring methods in mechanical systems, specifically military 
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aircraft.  They term their concept Integrated Vehicle Health Management (IVHM) [9].  

Their concepts include on-board monitoring elements and ground-based logistic support 

functions, which function similarly to the DoD’s concepts of a PHM and ALS, 

respectively.  The title of their paper includes the term “Tri-Reasoner,” and this term 

refers to the incorporation in their system of three independent views of the vehicle’s 

health.  These three views are: the anomaly detection and reasoning system, the 

prognostic reasoning system, and the diagnostic reasoning system.  Outputs from all three 

systems are combined in a concept termed the “integrated model” and the “reasoner 

integration manager”.  This paper provides a valuable overview of the issues which must 

be addressed for any prognostics system. 

 

 

Figure 1-3.  The Tri-Reasoner IVHM system [9] 
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Figure 1-3 shows the data collection scheme and reasoners for different aircraft 

subsystems.  Each subsystem has a dedicated set of detectors and the three independent 

reasoners.  Detector information is combined in a data fusion engine and passed to the 

three reasoning subsystems.  The subsystem integration manager takes the results from 

the three reasoners and sends the appropriate information to the central integration 

manager. 

 

Each reasoner has a specific function as well.  The anomaly detection algorithms 

typically use the raw detector data.  These detection algorithms condition the data as part 

of their processing.  The associated Anomaly Reasoner (AR) assesses this conditioned 

information within the integrated model.  The AR’s task is to evaluate both the raw data 

and extracted features for correlation and measures of evidence for fault conditions.  The 

main tools the AR uses are generic signal processing and statistical techniques.  The 

correlation and “ripple” effect of anomalies across subsystems is then examined within 

the Air Vehicle Anomaly Reasoner (AVAR).  The AVAR’s goal is to correlate anomalies 

that occur across subsystems and to separate the “upstream” causes from “downstream” 

effects. 

 

The individual diagnostic algorithms and the associated Diagnostics Reasoner (DR) 

further examines the root cause of an anomaly detected by the AR.  The DR is intended 

to incorporate a-priori engineering knowledge and models of a component or subsystem 

(i.e. model-based diagnostics). 
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The Prognostic Reasoners (PR) and their associated individual prognostic algorithms are 

focused on predicting the time to system failure, or the failure of a component or 

components within a subsystem.  The intent is for these predictions to be given as 

distributions about a Mean Time To Failure (MTTF), thus resulting in different 

acceptable risk limits based on the consequences of the particular failure mode.  A PR 

relies inherently on the individual prognostic algorithm results and an integrated model. 

 

The overarching reasoner, known as the Reasoner Integration Manager’s (RIM) function 

tracks and evaluates the progression of anomalies, diagnoses and prognoses across all 

subsystems.  Through direct algorithm interaction with the Integrated Model and 

corroborating/conflicting evidence associated with the individual reasoner reports, the 

RIM prioritizes the most probable fault or failure modes at the air vehicle level.  The 

RIM then isolates the most probable failure modes.  The RIM then creates reports for the 

operators, maintenance personnel and engineering support staff. 

 

Since not all aberrant behavior patterns in a new aircraft system can be predicted before 

system completion, the IVHM will need to be flexible in its capability to diagnose system 

problems.  Similarly, the techniques and technologies used for observing the aircraft's 

behavior, and for reasoning about these observations, will continuously improve during 

an aircraft's operational life.  To ensure these capabilities for new diagnoses and new 

methodologies can be included in the current on-board system, the IVHM architecture 

incorporates embedded learning components.  Additionally, the underlying diagnostic 

procedures and reasoners will be coded in a modular format to allow for easy exchange 
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of software modules as new diagnostic procedures are developed and new programmatic 

tools come into existence.  The overall scheme is shown in Figure 1-4 below: 

 

 

Figure 1-4 shows the overall IVHM tri-reasoner architecture.  As previously explained, 

there are three independent views of the vehicle’s health and a reasoner integration 

manager (RIM) (the box at the top center of Figure 1-4).  Each aircraft subsystem has a 

“Uses”

Data flow

Air-Vehicle HM

Reports
Pilot, Mechanic, Engineer

Reasoner Integration
Manager

Air-Vehicle
Diagnostics Reasoner

Integrated/Embedded
Models

Air-Vehicle
Prognostic Reasoner

Air-Vehicle
Anomaly Reasoner

Subsystem HM

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Prognostic Reasoner

Subsystem
Anomaly Reasoner

Subsystem HM
Sensor/Effector Level

Sensors Discrete Fault Indications Sensors

 
Figure 1-4.  The Tri-Reasoner Integrated Vehicle Health Management system [9] 



1-24 

dedicated reasoner suite composed of the three models and the associated sensors or fault 

indicators.  This information flows to the RIM for overall diagnostic/prognostic 

assessment and reporting to appropriate entities.  The tri-reasoner algorithms are generic 

and decoupled from any domain knowledge to enable the use of algorithms that have 

withstood a wide variety of applications thus increasing the confidence in their reliability. 

 

1.4  Research Goals 

There are three main research goals for this dissertation.  The first is to summarize the 

major areas of research currently being performed in the field of prognostics.  The second 

goal is to create a mathematical architecture for the implementation of a prognostics 

system.  This architecture includes a sensor selection algorithm and methodologies for 

combining sensor information.  The third goal is to demonstrate the utility of this 

algorithm by solving some notional examples. 

 

1.5  Dissertation Organization 

This dissertation is organized into five chapters.  This chapter has provided a general 

overview of the prognostics problem.  The second chapter provides a literature review of 

prognostic method papers.  Chapter three provides an overview of some mathematical 

techniques which are commonly used in the analysis of prognostic data.  The fourth 

chapter presents a notional methodology for defining and solving a prognostics problem.  

Chapter five illustrates this methodology using a sample problem.  Chapter six 

summarizes the contributions of this work and provides recommendations for further 

research. 
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II.  Literature Review 

 

2.1  Background 

The purpose of this chapter is to summarize the history of aircraft diagnostics/prognostics 

development, provide a PHM system taxonomy, and summarize the major areas of 

research being performed today.  The first section summarizes the historical development 

of diagnostic/prognostic efforts, and describes a notional PHM system.  The second 

section describes some technologies that may be used in a prognostics application.  The 

third section describes the main diagnostic approaches used for aircraft maintenance.  

The fourth section describes the main modeling approaches used for 

diagnostic/prognostic applications.  The last section summarizes the information provided 

in this chapter. 

 

2.1.1  History 

The material for the history section is primarily drawn from Atlas, et al [9]. 

 

Early generation aircraft relied on manual detection and isolation of problems on the 

ground.  These aircraft were composed of systems that were analog and independent of 

one another.  Only a schematic, voltmeter, and reports from the pilot were required to 

diagnose problems. 

 

As these aircraft systems became more complicated, Built In Test Equipment (BITE) was 

introduced in the aircraft to warn the pilots of critical failures in important components.  
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However, the aircraft mechanic did not use BITE.  The mechanic still relied on the 

schematics, voltmeter, and pilot reports. 

 

In time, aircraft design engineers realized that the output of the fault detection monitors 

could be made available to support mechanic troubleshooting (in the form of analog 

BITE reports).  With these monitors, the concept of “fault balls” was born, and was 

incorporated on some aircraft systems as early as the 1940s.  Fault balls are indications, 

normally on the front of a Line Replaceable Unit (LRU), that a fault has been detected - 

they were originally mechanical, but later were replaced with small Light Emitting 

Diodes (LED’s).  In many cases, the LRU front panel contained a test switch to command 

the LRU to test itself in a manner similar to how ground support equipment could test the 

LRU.  This capability also became known as Built In Test Equipment (BITE).  This 

capability began to decrease the need for some of the ground support equipment 

previously used to test airplane equipment.  Depending on the system, the fault balls 

could effectively point the mechanic in the right direction, but schematics and voltmeters 

were still needed for most conditions.  The BITE results of this era was often confusing, 

unreliable, and difficult to use.  Mechanics often distrusted it.  Despite problems, many 

systems on airplanes such as the Boeing 707, 727, early 737/747, McDonnell Douglas 

DC-8, DC-9, and DC-10’s employed this type of maintenance design. 

 

In the 1970s, some of the increasingly complex aircraft systems began to use computers 

to perform their fault diagnostic calculations.  This was called digital BITE.  With these 

computers came the ability to display fault detection and isolation information in digital 



2-3 

form, normally via numeric codes, on the front panel of the LRU.  The digital logic could 

produce codes that could better isolate the cause of the fault.  The digital display offered 

the capability to display many different codes to identify each type of fault that was 

detected.  These codes often pointed to some description in a manual that could be used 

to isolate and correct the fault.  Many systems on the Boeing 757/767, Airbus A300/310, 

McDonnell Douglas DC-10, and Lockheed L-1011 still employ this approach. 

 

As the number of systems grew, use of separate front panel displays to maintain the 

systems became less effective, particularly since each LRU often used a different 

technique to display its fault data.  In addition, some of the systems had become 

increasingly integrated with each other, due to the introduction of digital data buses, such 

as the ARINC 429.  Autopilot systems were among the first to use digital data buses and 

depend on sensor data provided by other systems.  Consequently, these autopilot systems 

have been a leading cause of requiring more sophisticated maintenance systems.  The 

more sophisticated monitoring was necessary to meet the integrity and certification 

requirements of its automatic landing function.  For example, the 767 Maintenance 

Control and Display Panel integrated the maintenance functions of many related systems.  

In 1986, the ARINC 604 digital data bus defined a Central Fault Display System (CFDS) 

to incorporate the maintenance indications for potentially all of the systems on the 

airplane into one display.  This approach enabled more consistent access to maintenance 

data across systems, a more comprehensive display function than each of the systems 

could provide individually, and saved the cost of implementing front panel displays on 

many of the associated system LRUs.  In this approach, the CFDS is used to select the 
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aircraft system for which the aircraft mechanic desires maintenance data, and then the 

CFDS routes the maintenance data from that aircraft system to the display.  This 

approach was employed on some of the systems on later Boeing 737s, and most systems 

on the Airbus A320/330/340, and McDonnell Douglas MD11. 

 

As systems became more complex and integrated,  a single airplane fault could cause 

fault indications for many systems, even when displayed using the CFDS.  The mechanic 

had little help in determining which fault indication identified the source fault, and which 

were merely effects of the source fault.  To solve this problem and related issues, the 

ARINC 624 was developed in the early 1990’s.  This system provides a more integrated 

maintenance system that can consolidate the fault indications from multiple systems, and 

provide additional functionality to support maintenance.  Minimal ground support 

equipment is needed to test airplane systems, as most of this capability is included in the 

ARINC 624.  For example, most factory functional tests of airplane systems on the 

Boeing 747-400 and 777 airplanes consist of little more than execution of selected tests, 

monitoring fault displays, and monitoring certain bus data using the ARINC 624. 

 

The main goal in fault isolation on the airplane has always been to identify the LRU 

causing a fault.  This allows the aircraft mechanic to confidently remove the failed 

component and correct the fault condition.  Although in many cases this is possible, there 

are many other cases where diagnosis and repair is not possible without the addition of 

sensors and/or wiring.  The addition of sensors and/or wiring increases the number of 

components that can fail, and thus sometimes can worsen the maintenance effort, since 
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the aircraft mechanic must now distinguish between failed aircraft systems and failed 

aircraft sensors and/or wiring.  In addition, these diagnostic sensors and/or wires add cost 

and weight to the airplane. 

 

As a result, current fault isolation techniques for aircraft cannot produce the perfect 

answer (the single faulty LRU) in all cases.  This is a practical matter, since the wholesale 

integration of aircraft systems is really the reason why perfect diagnosis in modern 

aircraft is impossible, given current techniques.  However, today, it can point the 

mechanic to a small group of LRUs in almost all cases.  Since the technical limit of 

diagnostic systems has been reached, aircraft engineers are looking into prognostic 

systems for assistance with diagnostic issues.  The accurate prediction of when faults on 

an aircraft can be expected to occur is the next big step. 

 
2.1.2  Fault Taxonomy 

Any given system has a multitude of unique characteristics due to myriad sources of 

variability.  These sources include manufacturing (both across and within manufacturers), 

reaction to ambient environmental conditions, system part replacement and repair, etc.  In 

addition, variability appears in the performance of the system’s components (e.g. 

mechanical, electrical, and hydraulic).  A system’s age also modifies these unique 

characteristics.  In the presence of this variability, on-board aircraft health management 

systems must be able to accurately distinguish between “normal” operation and the 

presence of a fault. 
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This section presents a taxonomy of system behaviors between which a prognostics 

system must be able to distinguish.  These behaviors are defined as:  nominal, incipient 

fault, intermittent fault, active fault, system fault, sensor fault, and novel fault.  The term 

“anomalous event” is used to collectively include the six kinds of faults.  An anomalous 

event indicates a system that either does not have all available functionality or is not 

operating within its intended design constraints. 

 

The nominal behavior of a system is that behavior that exists when all intended 

functionality is available and is operating within the constraints of the intended design at 

a given point in time.  The system can be functioning as intended at two different points 

in time, even though the characteristics of individual system components and sensor 

operating characteristics may have changed.  As an example, the Concorde fuselage 

expands about 12 inches in length during a flight across the Atlantic.  However, the 

aircraft does not lose functionality as a consequence of this expansion. 

 

An incipient failure exists on a system or component that is still operational, but is 

trending towards a failure condition.  An example would be a hydraulics systems that is 

losing pressure.  The hydraulic system may still be fully functional, but is trending 

towards a state of non-functionality. 

 

An intermittent fault occurs infrequently, yet repeatedly.  The system with an intermittent 

fault has full functionality when the fault is not present.  An example of this kind of fault 

is a loose electrical connection that causes sporadic short circuits in the affected system. 
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An active fault is system behavior outside the range of intended functionality.  An 

example is exceeding the revolutions per minute limit of a passenger car engine—this is 

an operation of the engine above its intended functionality.  Active faults do not 

necessarily indicate a loss in system functionality, though a system may quickly 

transition from an active fault to another kind of fault. 

 

A system fault is when a system component or subcomponent is no longer functional.  

Examples include an engine that no longer rotates or a hydraulics system that has lost 

sufficient fluid/pressure to properly operate system components. 

 

A sensor fault occurs when a sensor within a system component or subcomponent 

1) reports a fault condition when none exists, or 2) does not report a fault condition when 

one does exist.  Of these two conditions, the second may be more detectable on an 

attended system since an operator will likely notice a loss of functionality despite the lack 

of a fault report.  The first condition, also called a false alarm, is likely to be the most 

troublesome since measures may be taken to correct the non-existent fault which disable 

other correctly functioning systems.  For example, a false alarm of an aircraft engine fire 

may lead the pilot to eject from the aircraft, resulting in destruction of the entire aircraft, 

and possible injury or death to the pilot. 

 

A novel fault is an unknown anomalous condition.  This type of failure event does not 

result in nominal system behavior, nor can it classified in any of the known fault 

conditions.  It is something completely new in the system’s behavior.  This type of fault 
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may adversely affect the performance of the system, or it may not.  It is the only kind of 

fault which may not be of concern to an operator.  An example is the development of a 

rattle in an aircraft throttle lever.  If it does not affect the pilot’s control of the engine 

speed, it would be classified as a novel fault, and is not likely to concern the pilot. 

 

2.1.3  PHM System Taxonomy 

The main goal of prognostics, and a PHM system, is to accurately predict future failure of 

system components in order to replace these components before they actually fail, 

avoiding shutdown and potential damage to the system.  The ultimate benefit is enhanced 

performance at lower cost, since components are not needlessly replaced before their life 

cycle ends, and components do not fail while still integrated in the system.  Components 

left to fail while still in the system can shut the system down and potentially lead to 

damage to other, otherwise healthy, system components. 

 

A PHM system accomplishes accurate detection through real-time on-board diagnostics 

and the performance of prognostic functions (forecasting the useful remaining life of 

component parts) with reasonable lead times, eliminating traditional inspection and repair 

patterns.  Rather than fixing a component after it has failed, it can be replaced when 

prognostics indicate that probable time to failure (or probability of component failure) is 

within some critical threshold. 
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Figure 2-1.  A notional prognostics system 

 

Figure 2-1 shows the flow of data through a notional prognostics system.  Aircraft sensor 

data is routed to a diagnostics data collection terminal.  This data is sent to an expert 

interface which employs a prognostics framework to analyze the diagnostics sensor data.  

The expert interface then provides a report on the health of the aircraft.  This report 

includes a list of components with estimated time to fail, a list of components that have 

failed, required maintenance parts and actions, and an assessment of aircraft 

readiness/time before becoming fully operational again. 

 

A prognostics system needs a fully functional diagnostics system.  The diagnostics 

system must accurately report appropriate data from system components up to an 
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appropriate level (based on the system).  This may be done in either of two ways:  passive 

or active monitoring. 

 

A passive monitoring system observes the current behavior of the system components.  

For example, this can be a sensor (ensemble) that monitors the current coming from a 

motor, or a sensor (ensemble) monitoring airflow from an engine.  The majority of 

sensors used in aircraft today are passive.  As an example, an on-board BIT unit is a 

passive monitoring system, since it observes and records component performance. 

 

An active monitoring system interacts in some way with a system component of interest 

(even while the system is in operation).  It may send a known signal of some kind into the 

system component of interest.  It may also collect a sample from the system component, 

such as engine fluid.  As an example, an external sensor (ensemble) is attached to the 

component, and this sensor (ensemble) sends a signal through the component at a level 

that minimally affects the component’s operation.  The component’s reaction to this 

signal is captured through either the same or a different sensor (ensemble).  A BIT 

capability to conduct a component self-test is an active monitoring capability.  This 

captured data is then sent to an expert interface for analysis. 

 

A prognostics system also requires an expert interface with appropriately high levels of 

sensitivity and specificity.  In this context, sensitivity means the prognostics system 

correctly identifies when a fault or degradation is present.  Specificity means the 

prognostics system correctly identifies when a fault or degradation is not present.  The 
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incoming diagnostic data must be correctly classified as indicative of either correct 

system function, system degradation, or a system fault.  This expert interface may be just 

for a single system component, meaning there very likely are many of these interfaces 

within one system.  The expert interface may also be an overarching system which 

combines the results of all the diagnostics inputs from all the system components.  The 

design will depend upon the mechanical system. 

 

A prognostics system should also provide system component health predictions based on 

the incoming diagnostic data.  There are many different kinds of predictions that a 

prognostics system may produce.  These predictions include assessments of future 

component/system events and probabilities associated with both current and future 

component/system events.  The following paragraphs discuss the main predictive outputs 

of a PHM system. 

 

The expert interface of a prognostics system should provide a level of confidence 

associated with its assessment of fault/non-fault for a particular system component.  

Another key prediction capability is the time remaining until component/system failure.  

The prognostics system may also be able to characterize this measurement using two 

confidence level measurements and a system-level measurement.  The first confidence 

level measurement is associated with the predicted time remaining until component 

failure.  In turn, this leads to a system-level measurement of the probability that this 

component actually fails before the “predicted time remaining” elapses.  These predictive 

measurements allow for the replacement of components before they actually fail, 
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preventing catastrophic consequences in systems where component failure can lead to the 

failure of many previously healthy components.  Related operational measures are 

degraded system status information and a future time frame health status for critical 

systems, such as aircraft. 

 

The above prediction capabilities may then be extended to the prediction of a degraded 

component/system condition.  The definition of “degraded” is unique to the component 

or system under consideration.  The expert interface should have a third classification 

status of degraded, in addition to indicating fault and non-fault status.  Again, the 

prognostics system may then use confidence level measurements similar to those 

previously described.  A “degraded” predictive measurement allows for a more precise 

(perhaps) replacement of parts that are about to fail – it may allow for increasing the 

functional lifetime of the part before it is removed to prevent system failure. 

 

Another measure is the probability of failure of a component/system within the next cycle 

of operation of the mechanical component/system.  As an example, the goal could be to 

determine the probability of failure of an aircraft engine during its next overseas flight, or 

during its two-week hiatus in a location with very limited access to maintenance parts.  

Again, a level of confidence in the immediately preceding probability definition is a 

desirable measurement. 

 

Any predictive information can be obtained from a prognostics system and used for 

automatic maintenance planning, parts orders, mission planning, etc.  This automated 
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logistics concept is called the Autonomic Logistics System (ALS).  The goal of PHM and 

ALS is to provide a complete overall system health monitoring capability, and 

consequent maintenance and planning management capabilities.  Eventually, sufficiently 

redundant mechanical systems may be designed that can reconfigure themselves based on 

predicted failures.  However, much basic research remains to be done before a complete 

overall system health monitoring capability becomes a reality. 

 

2.1.4  Description of an ALS System 

A main component of a PHM system is an ALS.  An ALS is intended to be a real-time, 

intelligent global logistics network dedicated to the support of the Joint Strike Fighter 

(JSF).  An ALS is intended to identify and communicate appropriate maintenance, 

supply, engineering, safety, and training actions to support and enhance mission 

execution.  Figure 2-2 shows a notional ALS concept. 

 

 

Figure 2-2.  Autonomic Logistics System (ALS) model [77] 
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Figure 2-2 shows how aircraft sensor data, once processed by a PHM system onboard an 

aircraft, provides a list of degraded and failed components to appropriate maintenance 

and planning activities.  This information provides an up-to-date picture of the aircraft 

health, required maintenance actions and parts, and updated mission planning schedules.  

The aircraft mechanic’s Interactive Electronic Technical Manual (IETM) is also updated 

with information about the current state of the aircraft’s systems. 

 

The autonomic term in the ALS acronym refers to an intended automatic trigger of 

appropriate actions within the system (subject to human controller inputs), based on 

current mission status and requirements.  The autonomic support concept is similar to the 

human autonomic nervous system that directs the human body to perform heartbeat, 

breathing, and other functions with minimal human intervention.  The logistics parallel is 

a system that is stimulated, prior to an aircraft’s return, to ready appropriate tools and 

spare parts. 

 

The ALS, using PHM input, automatically determines that certain parts are reaching the 

end of their service life and ought to be replaced, and reports this information before the 

aircraft lands.  This is in contrast to the traditional method of diagnosing aircraft 

component failures upon the return of the aircraft, and then readying the appropriate tools 

and spare parts.  Also, in present systems, maintainers rely on often ambiguous problem 

descriptions from the pilots.  The autonomic system, in contrast, relies on an integrated 

report from aircraft diagnostics that minimizes incorrect maintenance actions and 

consequently reduces maintenance support requirements.  The ultimate intent of the ALS 
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and PHM working in concert is to reduce maintenance manpower, logistics machinery, 

and increase sortie rates.  Most of the discussion that follows focuses on the PHM aspects 

of the system, rather than the autonomic support concepts, as PHM capabilities are 

necessary to realize ALS goals. 

 

Su [88] divides how people have thought about prognostics into two different concepts:  

component/part and system.  The concept used to model prognostics has influenced the 

way the prognostics problem is addressed.  According to Su, prognostics have 

traditionally been regarded as a component/part problem.  This led to the adoption of 

failure statistics and analysis methods to identify and replace failed components.  Some 

examples of the sensors employed include time/stress measurement devices, vibration 

monitoring, and system sensors (oil, water, etc.).  Some examples of the analysis methods 

investigated include neural networks, genetic algorithms, and trend analysis.  These 

techniques are usually system specific—they are applied piecemeal to the particular 

problem under consideration and combined in a unique fashion to provide results which 

are meaningful only for that particular piece of equipment.  However, when viewed as a 

system problem, the prognostic approach necessarily becomes much more involved.  

Systems such as satellites operate in environments with little or no human interaction.  

Ideally, there would exist a common set of sensors and techniques which could be 

applied to all of these types of systems.  Su calls this concept an overall Prognostics 

Framework, a generic, tailorable software tool that uses model-based reasoning to 

integrate embedded test and sensor data into diagnostic and prognostic systems.  The 

ultimate goal is to produce a generic tool capable of being applied to all different kinds of 
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warfighting systems.  This would lead to the integration of all warfighting systems into a 

single architecture for the future battlefield. 

 

 

Figure 2-3.  Future military systems support concept [77] 

 

Figure 2-3 illustrates the single architecture concept.  PHM and ALS are extended from 

just aircraft systems to all systems used in a warfighting scenario.  All the PHM and 

resulting logistics information from the involved warfighting platforms is collected via a 

distributed information system, and delivered to an enhanced logistics system.  This 

enhanced logistics system handles all the required logistics actions, allowing for joint 

logistics interoperability and the notional improvements in logistics performance shown 

in Figure 2-3. 

(OHUi »^Avf 

AUTONOMIC 2010 BATTLEFIELD 
SUPPORT CONCEPT FOR THE FUTURE 

ioanomvHi 

jOEhr LOOLsncS 
INTERDPfRABlUTT 



2-17 

2.1.5  Technical Feasibility 

The main goal of a PHM system is to understand and predict when components (and 

possibly consequent systems) will fail.  To accomplish this, a PHM system will likely use 

artificial intelligence or other methods to predict failure of system components.  

Traditional sensor-based diagnostics recognize the functional and failure modes of the 

aircraft and its components.  A PHM system extends this approach, using models to 

predict the onset of failure modes. 

 

 

Figure 2-4.  Model of PHM system [77] 
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Figure 2-4 shows the collection of raw data from the sensors, the transformation of this 

data into a meaningful output via algorithms, and the extraction of key features from the 

output via some reasoners.  The focus is on using the mathematical models of artificial 

intelligence, such as neural nets and fuzzy logic, to extract key features of the operation 

of the aircraft system.  Individual sensor data is used in these computations, but all 

features are fused before a PHM system reports a failure.  This fusion action is intended 

to minimize the number of incorrect diagnoses the system produces, reducing 

unnecessary maintenance actions and costs.  Research with intelligent diagnostic systems 

has shown that accurate measurements of appropriate variables can be used to reliably 

predict future failure [11], [12]. 

 

 

Figure 2-5.  Spectral lines from a faulty item (left) and a correctly functioning item 

(right) (Magnitude in dB vs. frequency; wavelet decomposition can detect the difference) 

[49] 

 

Figure 2-5 shows an example of raw data taken from accelerometers attached to the aft 

transmission of a helicopter.  According to the authors, exhaustive tests indicate there are 
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no obvious features in this raw data which can be used to classify it as a fault or no-fault 

class.  So, the authors used a wavelet decomposition on the data in an attempt to extract 

useful features.  They discovered the features useful for classification are non-stationary, 

confirming the wavelet decomposition as a very suitable choice.  (The features were 

certain frequency bands.)  For fault classification, the wavelet coefficients are computed 

as a function of time.  A simple average and standard deviation are computed for each 

data channel in a given time window, and the results are compared to a set of nominal 

values for fault classification. 

 

Other research programs seem to indicate that a PHM system is, in fact, an attainable 

goal.  The UK Ministry of Defense used a neural net model to accurately predict 

structural life used on the basis of recorded flight data [10].  Also, DARPA participated 

in a research project which showed an engine control sensor suite could be operated with 

4 sensors instead of 7 [32]. 

 

2.2  Technologies/Applications 

According to the NSF workshop [60] participants, the most prominent method (by far) 

for manufacturing and machine monitoring is spectral, or "FFT" (fast Fourier transform) 

analysis.  Cepstral variants are often employed to increase robustness or to reduce the 

variability of the FFT estimates. 

 

A cepstrum is the Fourier transform of the log magnitude spectrum: 

FFt(ln( | FFt(window . signal) | ) 
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and was coined in a 1963 paper by Bogert, et al [17].  (A “window signal” is the signal 

that appears on a given graph—it occurs in the “window” that the graph shows.)  They 

observed that the logarithm of the power spectrum of a signal containing an echo has an 

additive periodic component due to the echo, and thus the inverse Fourier transform of 

the logarithm of the power spectrum should exhibit a peak at the echo delay.  They called 

this function the cepstrum, interchanging letters in the word spectrum because "in 

general, we find ourselves operating on the frequency side in ways customary on the time 

side and vice versa. (sic)"  This term has come to be accepted terminology for this inverse 

Fourier transform of the logarithm of the power spectrum of a signal [66]. 

 

The unusual terminology surrounding the computation of the cepstrum was introduced in 

the original article by Bogert et al [17], in which various terms from signal processing 

(spectrum, frequency, analysis, phase) were rearranged into anagrams (cepstrum, 

quefrency, alanysis, saphe).  The authors did this to highlight this unusual treatment of 

frequency domain data.  The frequency data was treated as if it were time domain data in 

the transformation of it to a data set which had units of seconds across its x-axis values 

(the quefrencies), but which indicated variations in the frequency spectrum. 

 

The cepstrum is commonly used in voice recognition applications and 

rotating/reciprocating machinery analysis.  As an example of the former, the consonants 

of speech are usually transient and of short-burst character.  However, vowel sounds (and 

tones sung by a singer) are formed by repetitive emission of pulses into the vocal tract 

[62].  This leads to the use of the cepstrum to analyze these pulses.  Similarly, rotating 
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machinery exhibits a repetitive emission of pulses, and this suggests the same analysis 

technique.  As a result, the concept of the cepstrum has become a fundamental part of the 

theory of systems for processing signals that have been combined by convolution [62]. 

 

 

Figure 2-6.  Frequency response of a round horn without reflection [7] 

 

Figure 2-6 shows a graph of horn signal strength (dB) vs. frequency.  The center to upper 

right hand corner portion of the graph is relatively smooth, lacking a definite periodic 

component. 
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Figure 2-7.  Power cepstrum plot of the data from Figure 2-6 [7] 

 

Figure 2-7 shows the cepstrum transformation of data from figure 2-6.  Since there is no 

periodic component associated with this signal, the cepstrum shows very little power. 

 

 

Figure 2-8.  Frequency response of the same horn when reflection is included (notice the 
ripples in the curve) [7] 
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Figure 2-8 shows a graph of frequency response of the same horn, but with a reflected 

component.  The reflection of the signal can be seen in the upper center to right hand 

corner of the graph (the oscillations).  It is this feature that the cepstrum excels in 

detecting. 

 

 

Figure 2-9.  Power cepstrum plot of the data from Figure 2-8 [7] 

 

Figure 2-9 shows the cepstrum transformation of the data from Figure 2-8.  With the 

addition of the repetitive signal component, the cepstrum shows a dramatic increase in 

power.  This type of unambiguous signal processing is particularly useful for 

diagnostic/prognostic applications, provided the presence/absence of repetitive emissions 

is the sole determinant of proper functioning. 
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For machinery analysis, usually a number of spectral lines associated with harmonics of 

the various rotating frequencies of the machinery are identified and their levels are 

compared to pre-selected thresholds.  Spectral analysis has the advantages of a natural 

and direct association with the characteristics of rotating machinery, relatively simple 

interpretation, a certain robustness to noise, propagation path, and other sources of 

distortion, backed by a large body of theory and experience.  "Trending," in which the 

evolution of parameters over time is tracked, is also commonly used; for example, the 

rate of increase of the magnitude of a spectral line may be estimated or even used to 

predict the time to failure. 

 

The NSF workshop participants noted that many types of sensors which measure a great 

variety of physical phenomena are used for both manufacturing and machine monitoring.  

Mechanical characteristics such as vibration, torque, displacement, shaft velocity, strain 

and pressure are measured by many different types of sensors, ranging from 

accelerometers to strain gauges to non-contact displacement pickups using eddy currents.  

Electrical characteristics such as motor current, capacitance, and RF emissions are often 

used.  Acoustic emissions (AE) play an increasingly important role in manufacturing 

applications and are under investigation for certain machine monitoring tasks.  Visual, 

infrared, ultrasonic, and X-ray inspection for non-destructive evaluation (NDE) play 

major roles in certain applications.  In spite of this vast array of sensor technologies, there 

appears to be a constant need for new, more, and better sensors.  Many types of sensors 

have significant limitations, such as restricted bandwidth, nonlinear behavior, or a 
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susceptibility to saturation.  The Air Force goal is to minimize the number of sensors 

since these are going in smaller JSF aircraft. 

 

Montauk [26] contends that sensors were integrated into electronics systems to 

accomplish four tasks.  The first two tasks related to engine operation and wear.  The first 

task determines when an aircraft’s engine performance has deteriorated to the point 

where the fuel burn changes to something other than its optimal level.  At that point, the 

fuel burn is readjusted to a proper level, instead of letting the condition degrade until the 

engines needed an overhaul.  The second task determines engine damage, hopefully 

before it impacts the operational schedule or significant consequential damage occurs.  

The third task assesses how realistic the operational procedures are in order to improve 

operational safety and enhance profitability.  The fourth task is most relevant to this 

study, as it concerns locating and rectifying faults in complex avionics systems. 

 

This final task evolved into two different types of systems.  The first concerned itself 

with determining how long an aircraft can operate in a particular condition, and the 

second provided data on which components need replacement.  Chu [22] refers to the 

first system as an Aircraft Integrated Data System (AIDS).  The primary goal of AIDS is 

preventative maintenance, and as such is not usually used to troubleshoot an aircraft, 

although it may help an experienced user in pinpointing some problems.  He refers to the 

second system as a Central Maintenance System (CMS), and this system is the one 

intended to allow a mechanic to easily identify faulty avionics units.  The exact methods 

by which either system makes it diagnoses are not mentioned in the article.  The CMS 
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would also trigger the Autonomic Logistics System to provide appropriate spare parts.  

This trigger and subsequent parts delivery would allow the aircraft repairs to begin as 

soon as it lands, which improves operational efficiency, and for commercial airlines, 

profitability. 

 

Moving on to more specific applications, Su [88] proposes an overarching software 

solution to the prognostics problem.  The software would be capable of handling data 

inputs from any sensor on any system.  These inputs would be tied in with a logistics 

infrastructure to provide the “Autonomic Logistics System” capability.  A primary 

requirement would be the collection and analysis of system data in real-time or near real-

time.  Faults would be identified using a “Diagnostician” consisting of algorithms that, 

among other things, would correlate all possible faults to all possible system components.  

The prognostic part of the software uses predictive techniques which include item 

specific mechanisms such as neural networks.  It also includes linear signal degradation 

measures, historical conclusions and statistics, and engineering correlations.  These 

correlations are presumed to be the correspondence between sensor indications and 

resulting system faults.  Su does not provide any estimate of when this proposed software 

solution would be functional. 

 

A number of authors address the issue of the human/machine interface.  Dussalt, et al 

[29] focus on the development of management tools to support diagnostic decision 

making.  The current Air Force Integrated Diagnostics policy requires that all faults, 

either known or expected, be detectable and unambiguously isolated within a system.  
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This policy does not specify the amount of automation required to be present for system 

diagnostics.  Consequently, a diagnostic system may consist of automatic and manual 

testing procedures.  The paper describes an approach the Air Force is taking to consider 

what the most appropriate mix of diagnostic measures may be.  Similar concerns are 

expressed by Dean [27]. 

 

Thesen and Beringer [91] take a slightly different approach.  They use a hierarchical 

model which represents the user and system as two independent control systems.  

Communication between these two “independent systems” takes place when each 

operates with appropriate expectations about the control strategy used by the other.  The 

human must be in-the-loop with the diagnostic system to ensure the automatic 

recommendations the system makes are correctly understood, and that type I and II errors 

are not made with regard to the system recommendations (type I - ignoring correct 

automatic decisions; type II - acting on decisions that are incorrect). 

 

Eilbert and Christensen [30] note that search procedures designed to detect system faults 

may discern apparent patterns when none, in fact, actually exist.  The following figure 

provides an example of their viewpoint. 
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Figure 2-10.  Hypothetical bivariate data set [30] 

 

Figure 2-10 shows a data set with complete discrimination ability between both data 

classes using either a parabolic or circular separator (dashed lines).  The optimal linear 

discriminator misclassifies three events.  Because of the small sample size, it is not clear 

that a quadratic discriminant is preferable, or indeed correct.  The implication is that 

using a search procedure to determine the cause of a particular sensor’s report may 

continue the string of problems (RTOK and CND) already present in the current 

diagnostic system.  This effect may be mitigated to some extent if the system can provide 

a level of confidence associated with its diagnosis. 

 

2.3  Diagnostic applications 

A diagnostic approach using decision trees is presented in [14].  Determining the 

sequence of steps required to reach a diagnostic conclusion (using a decision tree) has 

been shown to be NP-hard [41].  Biasizzo, et al [14] represent the fault-free operation of 

a system and the presence of a system fault as two distinct system states.  The diagnostic 

procedure is intended to discover the actual system state using tests which provide 
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information about system components.  The sequence in which the tests are conducted 

and how information from previous tests is incorporated into the test sequencing 

procedure is the subject of this paper.  Determining this sequence using the minimum 

number of steps (minimum cost) is known as the test sequencing problem. 

 

Much research has been devoted to this problem.  The conventional approach has been to 

use symmetrical tests.  A symmetrical test has only two possible outcomes.    Biasizzo, et 

al [14], use asymmetrical tests.  An asymmetrical test has more than two possible 

outcomes. 

 

 

Figure 2-11.  An example of an asymmetrical test pattern to determine system state for 

four components [14] 

 

Figure 2-11 shows a typical asymmetric fault tree used determine which of four system 

components are faulty.  The tree shows the optimal diagnostic test pattern when four tests 

1*2+3*4 



2-30 

are available to test the functionality of the four components.  The four components are 

represented by the four digits in the ovals in the diagram.  The first digit corresponds to 

the first component, etc.  The s with subscript indicates which system state the test 

indicates. 

Table 2-1.  Test schematic [14] 
  Component   

Test 1 2 3 4 

1 1 0 0 0 

2 0 1 0 0 

3 1 0 1 0 

4 0 1 0 1 

 
 

Table 2-1 shows the test schematic for Figure 2.11.  The first test, t1, determines the 

status of components 1 and 3, t2 determines the status of components 2 and 4, t3 

determines the status of component 3, and t4 determines the status of component 4.  

Although not explained in the article, it seems tests 1 and 2 cannot determine which of 

the components they are testing are okay.  If the result is faulty, both components are 

faulty, otherwise one of the two components is okay.  It is also not explicitly stated 

whether 1 represents a fault or normal behavior, but using 1 to represent a fault is 

implied.  It also seems that component 4 is assumed to be faulty given the starting state of 

the system.  Based on these assumptions, state s12 can be determined just by running test 

1.  Since component 4 is known to be faulty, running test 1 would show components 1 

and 3 are faulty, and hence state s12 where components 1, 3, and 4 are faulty is reached. 
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The ultimate goal is the generation of an optimal diagnostic tree (the order in which the 

test are conducted based on previous test results).  Biasizzo, et al [14] employ a 

Sequential Diagnosis Tool using graph search algorithms on existing decision trees for 

particular systems.  They use a heuristic evaluation function to guide the graph search.  

The heuristic is an estimate of the remaining cost in the diagnosis procedure from a 

particular node.  They contend the “proof of the admissibility” of this technique is given 

in [64]. 

 

The conventional test sequencing problem is defined as follows [64]: 

 

1.  The set of system states S = {s0, s1,...,sm} where s0 denotes the fault-free state of the 

system and si, (1 ≤ i ≤ m) denotes one of m potential faulty states of the system.  In 

practice, the latter refers to a faulty functional part of the system or to a faulty system 

function. 

 

2.  The set of probabilities P = {p(s0), p(s1),...,p(sm)}, where p(si) is the a-priori 

probability of the system being in the state si before the diagnostic procedure is started 

(i.e., the probability of a fault occurrence described by the system state). 

 

3.  The set of available tests T = {t0, t1,...,tm} and the associated test costs c = {c0, c1,..,cm} 

which can be measured in terms of time, manpower requirements, or other economic 

factors. 
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4.  The binary test matrix D composed of binary column vectors, D = [dj], 1 ≤ j ≤ n, 

where dj = [dij], dij ∈  {0, 1}, 1 ≤ i ≤ m, represents diagnostic capabilities of test tj. dij = 1 

denotes that test tj fails if the system is in state si, and dij = 0 otherwise. 

 

This diagnostic procedure is a sequence of tests to isolate any system state, presented as a 

decision tree.  The problem is to find a diagnostic procedure for a given system at 

minimal cost.  Since a diagnostic procedure is easily described by AND trees, the authors 

use AND/OR graph search algorithms to determine the best diagnostic procedure. 

 

The preceding definition can be modified to generalize to asymmetrical and multi-valued 

tests by using the following step. 

 

4.  The set of all possible outcomes L of the tests t ∈  T:  R = {r0, r1,...,rL} 

The test matrix D composed of matrices, D = [D(k)], 0 ≤ k ≤ L, where D(k) is the test 

matrix associated with the response rk.  Each D(k) is composed of column vectors: 

 D(k) = [dj
(k)], 1 ≤ j ≤ n (2-1) 

The vector of diagnostic inference for the test tj with outcome rk is 

 dj
(k) = [dij

(k)], 0 ≤ dij
(k) ≤ 1, 0 ≤ i ≤ m (2-2) 

where dij
(k) is the conditional probability that the outcome of test tj is rk if the system is in 

state si. 
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Biasizzo, et al [14] demonstrate their technique using examples from other published 

papers.  In general, systems with strongly interconnected functional blocks and few 

internal test points are more difficult to diagnose. 

 

Figure 2-12.  Electrical schematic [14] 

 

 

Figure 2-13.  The resulting test tree based on the schematic of Figure 2-12 [14] 
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The electrical schematic in Figure 2-12 and resulting decision tree in Figure 2-13 show 

how their method works.  In the electrical schematic in Figure 2-12, the M1, M2 etc. and 

the A1, A2 etc. labels indicate a test point.  These test points are shown in Figure 2-13 as 

tests; for example, the node at the top of the tree tests point M3.  These test points are 

transcribed into the optimal symmetric decision tree which would then be used to check 

the electrical component (shown in the schematic) for faults (non-uniform costs have 

previously been assigned to each test).  This tree is optimal because it incurs the least 

average cost for a fault diagnosis among all possible trees for this problem. 

 

A similar approach to [14] is found in Bearse [11].  Bearse describes a Diagnostic 

Inference Model which generates a new fault tree based on original information, allowing 

for asymmetric outcomes.  Other similar approaches include Sheppard [80] and Dill [28].  

Sheppard [80] uses case-based reasoning (a historical database) to generate information 

flow models.  Case-based reasoning assumes that similar mechanical system faults 

produce similar symptoms.  A case-based reasoning system starts with a case history, 

consisting of a number of historical cases.  The symptoms and correct diagnosis/repair 

action are known for each historical case.  When a fault occurs in the mechanical system, 

the symptoms are compared to the recorded historical symptoms.  The “nearest neighbor” 

to the new case is identified, and the diagnosis/repair action used in the historical case is 

applied to the new case.  The resulting system combines the case data with model based 

systems.  Efficient, accurate diagnostic processes are developed from those models. 
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Dill [28] applies pass/fail limits to discriminate between operable and faulty systems.  At 

times, it can be difficult to know whether the results of a particular test should be 

classified as a pass or failure.  Ideally, pass/fail limits should be set in regions away from 

expected values observed in functional components and failed components (which 

presumes a significant gap between the two). 

 

Ben-Basset, et al [13] point out issues with just using fault trees.  Fault trees tend to cover 

only the most typical problems for a given system.  However, covering these typical 

problems usually requires a very large fault tree.  If a new problem occurs, or the repair 

recommendation is incorrect, there is no further help available from the tree.  If the 

system which the fault tree covers is updated, even in a minor way, wholesale changes 

are required to every fault tree to keep things current.  Better solutions to diagnostic 

problems are obtained if different methods (fault trees, physical models, case based 

reasoning, etc.) are used in concert to provide a diagnosis. 

 

Figure 2-14.  A case-based reasoning model [1] 
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Figure 2-14 illustrates a typical case-based model.  A case-based reasoning system 

assumes that similar symptoms consistently result from identified problems.  The general 

knowledge block contains the case history, consisting of a number of historical cases.  

The symptoms and correct solution are known for each historical case.  When the next 

problem occurs, the symptoms are compared to symptoms recorded in the historical 

cases.  The “nearest neighbor” to the new case is identified, and the solution used in the 

historical case is applied to the new case.  If changes to the solution are required for this 

new case, the old solution is revised, and then this new learned case is added to the 

general knowledge repository. 

 

Authors have also addressed the subject of combining model-based systems with decision 

tree structures.  Ben-Basset, et al [12] present a way in which both types of systems are 

combined to provide a diagnostic expert system.  They contend it is more cost-effective, 

in most real-life applications, to apply case-based reasoning after the system already has 

some basic initial knowledge of the system domain and the units requiring testing.  Their 

system combines both kinds of reasoning in a module which integrates system knowledge 

from 4 different sources. 
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Figure 2-15.  Knowledge integration scheme for case-based reasoning [12] 

(UUT – Unit Under Test) 

 

Figure 2-15 shows how data flows in the expert system [12].  Universal domain 

knowledge refers to universal knowledge on diagnostics considerations and processes.  

Initial unit under test (UUT) knowledge refers to the specifics about the UUT in terms of 

its structure, function, and relationship between symptoms and faults.  Historical UUT 

experience represents past experiences with this UUT.  This information is integrated to 

form the basis for determining the status of the UUT.  The diagnostic algorithms include 

model-based reasoning, which matches symptoms with probable faults.  The model-based 

reasoning portion is used most often.  The case-based reasoning portion compares this 
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symptom set with previous symptom sets to determine a likely candidate solution.  This 

method is used almost exclusively for new cases, or for cases for which the model-based 

portion has low confidence in its diagnosis (these two sets of cases should overlap 

considerably, if not completely). 

 

The main argument against the exclusive use of model-based reasoning is that there are 

times when there is insufficient knowledge or time to build a model to support efficient 

and accurate diagnosis.  However, a partial model of the system/unit under test is always 

available.  If there is an insufficient number of cases to allow for efficient diagnosis, 

additional cases can be produced either by simulation or actual experience, and the 

consequent performance of the model will improve with time.  Ultimately, the inference 

engine of the model-based reasoning function will make most of the diagnostic decisions, 

and the case-based function will only be used in very unusual cases.  This will allow for 

high levels of accuracy in quick diagnoses.  Combining the two disciplines into one 

model yields the following benefits according to the graphs in Figures 2-16 through 2-18. 

 

Figure 2-16.  Model-based reasoning [12] 

 

Performance .        MocfeABasec/ Only 
100%" 

Acceptable 

Ready Time 



2-39 

     

Figure 2-17.  Case-Based reasoning [12] 

 

              

Figure 2-18.  Combined reasoning [12] 

 

Of particular interest are Figures 2-16 and 2-17.  Case-based reasoning never reaches the 

level of performance attained by model-based reasoning, while it takes model-based 

reasoning a longer period of time to reach an acceptable performance level.  

Unfortunately, the article does not describe the situations the authors analyzed which led 

to these conclusions.  The only statement is these graphs are the product of the authors’ 

analysis of “many real-life situations”.  The graphs appear to be completely notional. 
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2.4  Modeling Applications 

The most common method for detecting aircraft faults seems to be the application of 

neural nets.  Chu [22] describes the use of this method in conjunction with a statistical 

classifier (this example was briefly described in section 2.2).  Chu’s study determines the 

feasibility of using neural networks to develop troubleshooting procedures for an on-

board avionics system, the F-16 Fire Control Radar (FCR) data.  The purpose of Chu’s 

experiment was to use a neural net to distinguish between three types of faulty FCRs.  

The neural network had three layers (input, hidden, and output) and was constructed 

using radial basis functions with a constant standard deviation, which determined the 

width of the Gaussian functions used in construction of the neural net. 

 

There are two major classes of neural network models.  The first uses nodes (units) which 

compute a non-linear function (usually sigmoid) of the product of an input vector and a 

weight vector.  The other class of neural networks uses the distance between the input 

vector and another generalized vector (usually the average of the input vectors) for the 

computation at the node (unit).  Radial basis functions (RBF) are used as activation 

functions in this second class of neural networks. 
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Figure 2-19.  Typical RBF network 

 

Figure 2-19 shows a typical RBF network.  Each input vector has N inputs, indexed 1 to 

n, which are combined with M basis functions, indexed 1 to j.  There are K output nodes, 

indexed from 1 to k.  More details about RBFs are provided in Chapter 3. 

 

The RBF structure was chosen because a complex classification problem in a high 

dimensional space, such as this one, is more likely to be linearly separable than one in a 

lower dimensional space [24].  As previously stated in Chu’s paper, an output from the 

neural net classified the faulty avionics system (which all of these were) as either a 

“lemon”, “bad actor”, or “normal”.  The neural net had 137 neurons in the input layer, 

465 neurons in the hidden layer, and 7 neurons in the output layer.  The 137 inputs 

correspond to which of 137 different possible faults a particular radar set exhibited (by 

implication, the 137 different kinds of faults was not an exhaustive listing).  Each radar 

set consists of 7 Line Replaceable Units (LRUs), and the output vector represented which 
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1 of the 7 LRUs was faulty.  The neural net was trained using fault data from actual 

systems, and using the “leave one out” approach.  This approach trains the neural net 

using all but one of the input exemplars (466 1x137 input vectors in this study), which is 

then used to test the accuracy of the neural network.  The process is repeated for all the 

inputs, at a constant standard deviation value.  The value for the standard deviation was 

then varied to determine the optimal standard deviation value (the value which resulted in 

the most correct classifications).  A cost function was also developed to penalize the 

misclassification of each unit.  The optimal value resulted in a correct classification of the 

faulty LRU 80% of the time.  Chu hoped this value could be improved to 90% if more 

data was available.  A similar study was conducted in 1988 [56] which showed that using 

neural nets to classify faults was feasible. 

 

Keller, et al [44] used neural network and fuzzy logic technologies to create models of 

F/A-18 subsystem/component health.  These tools were developed as part of an internal 

research effort at Boeing to develop an Advanced Onboard Diagnostic System (AODS) 

along with supporting technologies to reduce CND results which the authors claim were 

the most frequently occurring result for many subsystems.  AODS was envisaged as a 

collection of software modules which implements subsystem/component health 

diagnostics, and an integrating system level element which combines the results of the 

health diagnostics. 
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Figure 2-20.  AODS top level data flow [44] 

 

Figure 2-20 shows the data flow through the AODS system.  The subsystem modules (of 

which there are many) process real-time subsystem parameters and provide a continuous 

assessment of system health.  The subsystem module reports health status in the form of 

an incident type, time of the incident, the health status indicator for that type, the 

frequency/duration of the incident, and a level of confidence.  Additional aircraft data 

which may support later ground processing by the system module or ground testing is 

also included.  The synchronization module captures appropriate information about the 

status of different system components along with the strength of correlation to the 

health/fault incident.  The system diagnostic assessor then processes the resulting health 

status record.  This assessor is a rule-based system that processes the health status reports.  

It also maintains a record of previous health status messages.  This record of health status 
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messages is the basis for maintenance recommendations, which are generated either in 

real-time or offline. 

 

 

Figure 2-21.  Generic subsystem diagnostic module [44] 

Figure 2-21 shows a notional subsystem diagnostic module.  A neural net or fuzzy model 

is used to generate an estimate of expected subsystem behavior, and this estimate is 

compared to actual subsystem outputs.  Additional models are used to determine the 

degree of health of a particular aspect of a subsystem. 

 

The Boeing researchers used both neural nets and fuzzy logic models in the development 

of this integrating system level element.  The neural nets were trained using test cases 

while the fuzzy logic portion was developed manually (fuzzy logic model development 

using test cases is still in progress according to the paper). 
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Test results indicated neural networks provided greater resolution than the fuzzy 

comparison and detection models, but did not adequately incorporate adjustments based 

on expert human knowledge, which affected the accuracy of the results.  Consequently, 

the neural networks were used for functional modeling and to map fault patterns to a 

system health indication.  Fuzzy logic models were used in determining event correlation 

and to develop system health monitoring models which could be adjusted based on expert 

judgment and intervention.  The authors claim this system is a viable architecture; 

however, no actual test results were provided to support this claim. 

 

Widyantoro, et al [96] present an approach using RBF neural networks to detect the 

presence of air leaks in an engine.  Air leaks in a turbine engine occur when a hole 

appears in a recuperator passage.  This is a place where compressed fresh air is pre-

heated by exhaust gases before entering the combustion chamber.  Potentially, these leaks 

can result in a long starting procedure, low power, and other problems [93].  The authors 

[96] began by matching the effects of the problem with the appropriate values from the 

detection sensors.  Three types of engines were selected for diagnosis: engines with no air 

leaks (normal), engines with small air leaks, and engines with large air leaks.  There were 

32 sensor readings available from the diagnostic instrument for each engine.  The most 

effective discriminator signals were identified across the 3 engine types.  Signals with 

patterns that were very similar between the engine types, or that were very irregular 

between the engine types, were not used.  Only four signal patterns made the final cut, as 

shown below in Figure 2-22. 
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Figure 2-22.  Graphs of the 4 signals vs time for the 3 engine conditions [96] 

 

Figure 2-22 shows each of the 4 signals considered the best discriminators between 

healthy and faulty engines.  The graph plots show signal strength versus time.  The 

following paragraphs describe each signal type in detail. 

 

The ignition exciter signals indicate that power has been applied to the ignition exciter to 

ignite the gas-fuel mixture in a combustion chamber.  The power is turned off when the 

mixture is successfully ignited.  A faulty engine (always) takes a longer time to start up 

than a healthy engine. 

 

The second indicator signal is the speed of the high-pressure compressor of the engine.  

Among other things, this signal is used for fuel scheduling, and is continuously 
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monitored during startup.  The graph shows that the presence of an engine crack reduces 

the acceleration of the compressor, and consequently it takes a longer time for the 

compressor to reach the operational point. 

 

The power turbine speed signal is used to infer (indirectly) the presence of engine 

thermodynamic inefficiency.  In a normal engine, the energy from combusted gases 

quickly increases the power turbine speed.  This acceleration is reduced when an engine 

crack exists. 

 

The fourth signal is the inlet temperature of the power turbine.  According to the authors, 

it is commonly known that an increased inlet temperature is an indicator of an unhealthy 

engine, but the reason for this relationship is unclear.  The graph shows a delay in the rise 

in signal strength for an engine with a large air leak, and then a somewhat stronger 

temperature signal at the end of the time the signals were recorded. 

 

The neural network was trained using a template (generic representative) of each kind of 

signal for each kind of engine (12 templates in all).  The following diagrams show the 

neural network structure: 

 



2-48 

 

Figure 2-23.  Transformation of data into neural network inputs [96] 

 

 

 

Figure 2-24.  Bottom 2 layers of neural network architecture [96] 
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Figure 2-25.  Top 2 layers of neural network architecture [96] 

 

Figures 2-23 through 2-25 show the neural network architecture used in this study.  

Figure 2-23 shows the input scheme.  The input consists of the normalized form of the 

signals reading.  The number of input units is s × m, where s is the number of sampled 

signals and m is the number of discriminator signals.  In this example, s = 80 and m = 4. 

 

The activation function in each hidden unit is a Gaussian: 

 φi,j = exp(-ΡIi - µi,jΡ2/σ2) (2-3) 

where Ii is a vector of time series signals from receptive field i, and µi,j is the average 

prototype vector of signal type i that is known to have problem category j.  (There are i = 

4 receptive fields, shown in Figure 2-23.  There are j = 3 problem categories, 

corresponding to engines with none, small, and large air leaks.) 
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Figure 2-24 shows how the input data feeds forward to produce a prediction of being 

from one of the three types of engines.  This prediction is based on the linear combination 

of the hidden units’ activation values, given by: 

 Ok = ∑
ji

ijijkw
,

φ  (2-4) 

where wi,j,k is the connection weight between hidden units i,j and output unit k.  The 

purpose of this layer is to perform approximation of the input signals to the prototype 

vectors.  Since there is only one training signal for each signal type, setting wi,j,k = 1/m 

for j = k and wi,j,k = 0 for j ≠ k, the training data can be perfectly predicted.  However, this 

may cause problems for the neural net when the input data are different from the training 

signals.  To avoid this difficulty, the authors generated six additional data points from the 

original twelve data points, and used an iterative training procedure that changes the 

weights to minimize the difference between the target outputs and the network outputs.  

How this training procedure changed the weights was unspecified. 

 

The network was tested using 8 signals generated by interpolation from the original 

training data, ensuring that none of the training values were replicated in this test set.  

The authors computed a target value for each test signal, although how this was done is 

not explained in the paper.  Using the rule that the largest predicted probability indicates 

the problem, the neural network correctly identified all 8 problems, as shown in the 

following table: 
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Table 2-2.  Table showing expected and actual experimental results [96] 
Signal Number Output Target Value Prediction 

 
1 

Normal 
Small 
Large 

0.1250 
0.8750 
0.0000 

0.2666 
0.9085 
0.1123 

 
2 

Normal 
Small 
Large 

0.0000 
0.1250 
0.8750 

0.0330 
0.1099 
0.8646 

 
3 

Normal 
Small 
Large 

0.8750 
0.1250 
0.0000 

0.8455 
0.3515 
0.0686 

 
4 

Normal 
Small 
Large 

0.6250 
0.3750 
0.0000 

0.5605 
0.4828 
0.0823 

 
5 

Normal 
Small 
Large 

0.3750 
0.6250 
0.0000 

0.3907 
0.6519 
0.0970 

 
6 

Normal 
Small 
Large 

0.0000 
0.8750 
0.1250 

0.1854 
0.7431 
0.1520 

 
7 

Normal 
Small 
Large 

0.0000 
0.6250 
0.3750 

0.1091 
0.4048 
0.2615 

 
8 

Normal 
Small 
Large 

0.0000 
0.3750 
0.6250 

0.0584 
0.1977 
0.5023 

 
 

Table 2-2 shows the results from the experiment, indicating the neural net performed 

correctly in each test case. 

 

NASA scientists are also working on using models to interpret sensor data, though with a 

slightly different emphasis [4].  Their goal is to reproduce sensor readings that are 

missed, either by the recording unit, or because of a sensor malfunction.  The objective of 

their High Reliability Engine Control (HERC) program is to develop and demonstrate 

advanced Fault Detection, Identification, and Accommodation (FDIA) algorithms that 
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will ultimately increase aircraft safety and improve engine reliability.  The focus is 

validation of the sensors which report fault conditions.  Validation, here means ensuring 

appropriate operation of the sensors which are monitoring the machine components, not 

the actual machine component itself.  The authors contend that a complex dynamic 

system usually uses redundant sensors for measuring critical variables within the machine 

system.  This is done to ensure reliable operation and to improve measurement accuracy.  

Since some of these measurements can be very critical to judging the health of the 

system, a redundant sensor set is implemented to ensure the measurement goal is met.  

This redundant sensor set makes it possible to validate measured data, to identify a sensor 

failure, and to recover the failed measurement.  The authors claim this redundancy can 

also be met through the implementation of an auto-associative neural network. 

 

The diagram in figure 2-26 shows the test schematic they used to develop and test their 

neural net, which is shown in figure 2-28: 

 

 

Figure 2-26.  Test schematic [4] 

 

The diagram in figure 2-27 shows the measurements taken based on the model shown in 

Figure 2-26. 
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Figure 2-27.  Data collection schematic [4] 

 

The data from these sensors were input into the neural network, providing the 

aforementioned sensor redundancy without the implementation of an additional set of 

sensors. 

 

The neural network (Figure 2-28) was a feed-forward network architecture with outputs 

that reproduce the network inputs. 

 

 

Figure 2-28.  Feed-forward neural network design [4] 
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The diagram in Figure 2-29 depicts the purpose of each network component in more 

detail: 

 

 

Figure 2-29.  Purpose of each neural network layer [4] 

 

As shown above, the left half is the mapping layer and the right half is the de-mapping 

layer.  The bottle-neck layer captures the reduced order (principal components) 

representation of the data.  In the mapping layer, the redundant sensor information is 

compressed, mixed and reorganized in the first part of the network.  In the compression 

process, the sensor information is encoded into a significantly smaller representation.  

The compressed information is then used to regenerate the original redundant data at the 

output.  Because of the information mixture, if a sensor fails, other redundant sensor data 

can still provide enough information to regenerate a good estimate for the faulty 

measurement.  Because of its parallel-processing capability, the neural network can 

process real-time data for time-critical applications.  Also, because it learns by example, 

the neural network does not require a detailed system model for sensor validation as is 
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often required.  The neural network is then trained to learn the relationships between the 

inputs (sensors) such that if one sensor is bad, an estimate for that sensor can be found 

from the remaining valid sensors.  The authors present a simple example of three 

temperature sensors.  If the bottle-neck layer is a single node, then the mapping layer 

performs a weighted average of these measurements.  Faulty information in one sensor is 

thus reduced by a third in the aggregation of all the sensor measurements, resulting in a 

measurement closer to the actual value. 

 

The preceding example translates into the following general algorithm for a generic data 

collection scheme.  During system operation, if a sensor signal is significantly different 

from the corresponding estimated value, the sensor signal is considered incorrect and a 

failed sensor is identified.  The failed sensor reading is isolated (eliminated from 

consideration) by feeding the neural network its previous estimated value.  The isolation 

of a failed sensor enables the neural network to detect subsequent sensor failures, since 

only properly working sensors are now considered for future measurements. 

 

The automotive industry has attempted to apply sophisticated modeling techniques to 

diagnostics issues, because of the growing complexity of electronic control systems in 

today’s vehicles [55].  Traditional diagnostic methods are less capable of correct 

diagnosis in complex systems due to the large volume of information exchanged between 

the vehicle’s processor and the system under CPU control.  Marko, et al [55], designed a 

data acquisition system for this high volume of information and used neural nets to 

analyze it since automobile trouble shooting is essentially a classification problem.  The 
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data consists of inputs and outputs of the vehicle’s electronic control system, known as 

the electronic engine control computer (EECC).  This data is a mixture of high speed 

analog and digital signals which regulate the operation of the engine according to a 

proprietary strategy.  (Exactly what these signals were was not specified.)  This strategy 

optimizes engine performance while adhering to federal emissions regulations.  For [56], 

engine performance data was collected for an engine initially in neutral, and then slowly 

accelerated.  “Certain computational algorithms” (again, unspecified) were performed to 

give graphs similar to the one shown in Figure 2-30. 

 

 

Figure 2-30.  Data from a vehicle with no faults [55] 

 

Figure 2-30 shows the data obtained from a vehicle with no faults.  Although not 

explained in the paper, the interpretation of the elements of the top graph seems fairly 
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self-explanatory, as each element is plotted against time.  The bottom part of the graph is 

less intuitive, but it seems that each square curve corresponds to one of the terms listed 

just above the first square curve.  Other than SPARK, the third curve down, what the 

other curves are measuring is unclear. 

 

Figure 2-31.  Data from a vehicle where spark plug number four is misfiring [55] 

 

Figure 2-31 shows data from a vehicle where a spark plug is misfiring.  In this curve, the 

difference in the ARC and NACCEL curves from the previous figure are clearly seen.  

No other differences are readily observable, even in the SPARK square curve.  This is an 

example of a problem whose distinguishing features are clearly contained in only 2 data 

streams, and the features are a radical departure from fault free operation.  Because of 

these attributes, this problem is easy for the fault detection algorithm to detect. 
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Traditional diagnosis methods require human expertise to formulate rules to guide the 

service technician through an analysis of the above problem graph to an appropriate 

conclusion.  However, developing these rules is very time-consuming and requires expert 

understanding of the system operation, failure modes, and how those modes appear in 

graphs like the one above.  The resulting diagnostic approach is still not satisfactory, 

since the number of resulting rules is quite large, and anything less than a rigorous 

analysis may result in a misdiagnosis.  Furthermore, the number of vehicle-power train 

combinations is quite large, and each combination undergoes relatively constant 

modifications to improve performance and reliability.  This situation motivates the 

research into finding better, faster, more accurate diagnosis techniques. 

 

To test their fault detection algorithm, Marko et al introduced 26 different faults into the 

engine and observed the engine’s operating characteristics at a fast idle.  These faults 

included a plugged injector, broken manifold pressure sensor, and a shorted spark plug 

(no comprehensive list was provided).  Each fault data set had 52 elements corresponding 

to the collected information (again, unspecified).  16 sets of data were collected for each 

of the 26 different faults.  An equal number of sets was collected for testing the neural 

networks after training. 

 

Marko et al [14] have found from previous experience (no work cited) that single 

component failures are much easier to find than multiple failures.  In [14], a single fault 

mode is an unstated assumption, given the composition of the fault data training sets 

(only one fault at a time).  Additionally, it is easier to detect faults if the signature of the 
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fault is contained in 2 or 3 of the 52 collected signals, rather than consisting of a number 

of small anomalies spread out over a larger number of signals. 

 

The results presented in [14] show 100% accuracy on classification of their validation set 

after training the network.  The network quickly trained to an accuracy rate of ~95%, but 

it required a number of modifications to the neural net to achieve 100% accuracy.  These 

modifications included the use of continuous weight updating (not batch learning), and 

reducing the number of hidden nodes to less than the number of input nodes.  This final 

accuracy result was matched by their best human performer, but at a far slower speed.  

This approach was then adapted to run on a vehicle in real-time, with similar results.  

Since the system is passively observing the signals passing between the EECC and the 

engine, this system may be ultimately capable of providing real-time diagnostics on any 

vehicle. 

 

Marko et al updated their work [55] with a paper addressing the issue of which classifier 

to use, based on accuracy and expected degree of generalization [54].  In this paper, 

generalization is defined as a network which correctly classifies an input pattern that was 

not among the input patterns it was trained on.  The neural network is assumed to have 

been trained on each problem category that may arise in the course of operation of an 

automobile engine.  Of course, the input patterns themselves do not necessarily 

completely span the space of actual data.  Hence, the network must have some capability 

to generalize by extrapolation—identify vectors near but not within regions occupied by 

the training patterns. 
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The data set for analysis remains the same as before—the data stream between the EECC 

and the engine.  The authors chose a specific portion of the data, the portion that the 

EECC observes when the engine is in operation.  144 patterns were collected, containing 

7 kinds of faults.  For this data, unlike their previous data set, expert technicians could 

neither specify an algorithm for classification nor separate the data using graphical 

visualization. 

 

A variety of different classifiers were tested on this data, including multi-layer feed-

forward networks, nearest neighbor classifiers, and binary trees.  A binary tree is 

generally applied to a two-class separation problem.  All the data is gathered at the base 

of the tree (the root node).  The data are divided into different groups termed branches, 

two branches at a time.  If all the data along a branch belong to the same class, no further 

separation is possible.  Otherwise, an additional node may be formed, leading to 

additional separation.  A branch may also be terminated if it is judged that further 

separation is likely to lead to poor generalization.  A node that separates into two 

branches is a terminal node.  This process is carried out until all branches terminate.  In 

this instance, the authors used the Fisher linear discriminant to separate the data.  They 

then chose a particular class to separate from the rest of the data.  Once that class was 

separated, another class was chosen for separation.  The classes were chosen “shrewdly”, 

so it only took a few branches before a chosen class was completely separated. 

 

A binary tree classifier is considered similar to a feed-forward network.  However, the 

binary tree approach uses far fewer weights, and correspondingly, generates decision 
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boundaries that are simpler than a feed-forward network.  Training and execution of 

binary tree classifiers tend to be much faster than that of back-propagation and well-

suited for time-critical applications. 

 

Their results for this data showed multi-layer feed forward neural networks to be 

generally equal in classification power to the binary tree method (~90%).  The nearest 

neighbor classifier only had an accuracy rate of 80%.  In their conclusions, however, the 

authors declined to select a best classification method, stating rather that substantially 

more data is required before conclusions regarding the best classifier are possible. 

 

Besides commercial industry, branches of the armed forces have also been developing 

prognostic based tools [37], [43], [50], [82], [83].  The following section reviews some of 

these efforts. 

 

Smith, et al [82], [83] discuss the inclusion of a PHM system on-board a Joint Strike 

Fighter (JSF) aircraft.  The JSF program has four pillars; lethality, survivability, 

supportability and affordability.  Smith et al contend a PHM system is one of the keys to 

meeting two of these pillars; providing a supportable and affordable aircraft.  As the 

performance of the fighter begins to degrade, the on-board PHM system is expected to 

sense these changes and inform the aircraft maintainers of an impending system failure.  

This system will also inform the maintainers of the actions required to prepare the fighter 

for its next sortie.  The objective is to keep the sortie generation rate high through the use 

of support systems which allow a proactive response to the needs of the aircraft.  This 
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capability should replace the current brute force approach to maintenance with a more 

affordable and reliable approach. 

 

These objectives will be accomplished through a Joint Distributed Information System 

[82].  According to Smith et al, this concept is at the heart of the JSF information system.  

As well as providing internal aircraft data to the maintainers for their proactive action, it 

is also intended to provide multi-organizational information system operability.  This 

capability will allow for more efficient planning of maintenance actions based on the 

availability of spare parts, a historical overview of failures allowing for more fighter-

specific maintenance actions, and better sortie planning based on the knowledge of when 

fighters will return from maintenance to operational readiness.  This architecture is 

expected to supply the right information to the right people at the right time. 

 

In a related work [83], Smith, et al discuss the development of a Advanced Strike 

Integrated Diagnostics (ASID) project to develop a program for a “fully integrated 

systems solution to diagnostics”.  This program was intended to develop an integrated 

diagnostic architecture leading to an affordable JSF platform, and to evaluate and 

recommend integrated diagnostic design tools and techniques.  In this context, the term 

“architecture” means the structure of components, their interrelationships, and the 

principles and guidelines governing their design and evolution over time.  The intent is 

for this architecture to span the entire life cycle of the diagnostic/PHM system. 
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The ASID program led to an Integrated Diagnostics (ID) Concept Plan which identified 

the ten best technology maturation programs.  These programs were identified as crucial 

to the success of an integrated diagnostics/prognostics system.  They include developing 

a structural health monitoring system and a engine monitoring system for prognostics 

health management.  Other programs include developing an information delivery system, 

creating a virtual test bench (for testing new concepts), and maximizing the use of 

commercial software in the PHM system.  Once completed, these technologies are 

expected to provide superior weapon system supportability. 

 

Schaefer and Haas [75] present a summary of efforts to include Health and Usage 

Monitoring Systems (HUMS) on the Army and Navy helicopter fleets.  The goal of this 

endeavor is to reduce operational and support costs by transitioning from a time-based 

maintenance philosophy to a condition-based maintenance philosophy that relies on 

prognostic techniques to assess the health of aircraft components.  Schaefer and Haas 

present a high fidelity simulation model to analyze the effect of HUMS technology on the 

existing maintenance process and to provide a means to optimize its use. 

 

Their simulation model represents flight-line level maintenance in a discrete-event 

simulation.  The model includes mission generation modules, a module to simulate in-

flight failures, a number of maintenance modules, and a cost module for tracking the 

amount of resources required for the maintenance activities.  The focus of this flight-line 

maintenance model is to examine how different maintenance policy philosophies impact 

operational readiness. 
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Although the Schaefer and Haas indicate their work is not fully complete, their initial 

simulation results show that specifying a certain range of performance for a helicopter 

system, and scheduling maintenance when that system is no longer performing in that 

range, can minimize maintenance costs.  Additionally, their model shows that there is a 

limit to the utility of advanced diagnostics for certain helicopter components which affect 

other components.  For example, it may be possible to specify helicopter operation 

procedures to produce low vibration levels to defer the maintenance action of balancing 

the main helicopter rotor, but the requirement for low vibration levels will affect the 

operational capability of the helicopter.  In this case, specifying a particular performance 

range for minimization of maintenance activity is counter-productive. 

 

The Office of Naval Research (ONR) has been developing a distributed shipboard system 

for diagnostics and prognostics on systems with rotating equipment [37].  Their system, 

termed a Machinery Prognostics/Diagnostics System (MPROS), is composed of two 

parts.  The first is a data collection system, which collects data from vibration, 

temperature, pressure, electric current, and other (unspecified) sensors.  The collection 

system also includes local intelligent signal processing devices called Data Concentrators 

(DC).  The second part is a centrally located subsystem called the “Prognostics, 

Diagnostics, Monitoring Engine” [sic], or PDME.  This system combines the results from 

the DCs to provide the best possible diagnosis. 

The specific shipboard application is centrifugal chillers (air-conditioning systems).  

These systems combine several rotating machinery equipment types to form a complex 
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system with many different parameters available for monitoring.  The parameters that are 

chosen for monitoring are combined along with diagnostic and prognostic algorithms into 

the MPROS.  Since the MPROS can diagnose each component part of this system, as 

well as the whole system, it should be readily extendable to monitor any pump, motor, or 

compressor in the naval fleet.  Additionally, there are a large number of facilities, both 

military and industrial, that use centrifugal chiller-based air-conditioning systems. 

 

 

Figure 2-32.  MPROS system [37] 
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In Figure 2-32, the sensors connected to the machinery are shown at the lower left.  The 

sensors for a particular system capture the failure characteristics of a specific failure 

mode.  There are two basic kinds of sensor data.  The first kind includes low-bandwidth 

measurements, such as those from process variables, temperature, pressure, etc.  Failure 

modes associated with this category usually develop slowly and consequently, data can 

be sampled at low rates without losing the pattern of a particular trend.  The authors 

believe this kind of failure is best detected with a fuzzy-based rule set as an expert 

system.  The second kind includes high-bandwidth measurements, such as vibrations and 

electrical current data.  This type of data requires a much higher sampling rate in order to 

capture enough information to appropriately categorize the failure signature.  These kinds 

of faults are best detected with a feature extractor/neural net classifier.  The ONR used 

this second approach for this particular problem. 

 

This data feeds into the left hand box , the DC (Data Concentrator), whose components 

are shown.  Of most interest is the Database and the four data processing algorithms.  The 

database stores information configuration, machinery configuration, test schedules, test 

measurements, diagnostic results, and condition reports.  The DLI expert system 

(PredictDLI is a company with a Navy contract to develop these kinds of algorithms) is a 

vibration expert system adapted to run in a continuous mode.  It detects departures from 

steady-state norms.  The SBFR (State Based Feature Recognition) algorithm facilitates 

recognition of time-correlated events in multiple data streams.  The wavelet neural 

network also analyzes vibration data, but it focuses on drawing inferences from transitory 

phenomena rather than steady-state data.  The fuzzy logic algorithm draws diagnostic and 
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prognostic conclusions from non-vibrational data.  Since these algorithms overlap in 

some areas, there is the potential for conflicting diagnoses (as well as reinforcing ones).  

The authors use Knowledge Fusion (KF) to combine the conclusions from the algorithms.  

The authors consider KF to be the coordination of reports from a number of sources, as 

opposed to the correlation of single platform data (similar to the function of the DC). 

 

The PDME (Prognostics, Diagnostics, Monitoring Engine) contains the KF component, 

as well as resident algorithms for performing PDME functions and a couple other 

features.  The DCOM and user interfaces interact with the DC DCOM element and the 

user, as one might expect (DCOM stands for Distributed Component Object Model, a 

communications standard developed by Microsoft).  The OO Ship Model, or Object 

Oriented Ship Model, represents parts of the ship, such as the compressor, chiller, deck, 

machinery space, etc.  It models the physical, mechanical, and energy characteristics of 

the machinery being monitored.  It also stores diagnostic conclusions from the four 

algorithms and the KF component. 

 

The system has been tested successfully in the laboratory, and the authors are preparing 

to install it on a hospital ship in San Diego [37]. 

 

The Army is also developing prognostic tools [43].  Their main emphasis is the M1A1 

Abrams tank, and the diagnosis of fuel flow problems in the tank’s gas turbine engine.  

The system collects data available in the turbine engine startup sequence to diagnose 

three types of faults in the main metering fuel valve: bouncing valve, sticking valve (later 
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referred to as fuel flow error), or stuck valve.  These faults prevent fuel from being 

delivered to the tank’s engine in accordance with a fuel flow algorithm, which sets fuel 

flow based on a number of different criteria, including the current demand on the engine, 

available air from the intake, etc. 

 

Fuel flow faults can be detected in the signals from the Electronic Control Unit’s (ECU) 

diagnostic connector.  The ECU is an analog computer whose fuel flow algorithm is 

dependent upon throttle position, ambient air and turbine inlet temperatures, and 

compressor and turbine speeds.  These voltage signals reflect the status of the Electro-

Mechanical Fuel System (EMFS), which responds to ECU commands.  The EMFS is a 

fuel metering device that delivers fuel to the engine under the management of the ECU.  

Each of the variables previously mentioned (throttle position, ambient air and turbine 

inlet temperatures, and compressor and turbine speeds) has a representative voltage signal 

available for collection and consequent analysis. 

 

The initial data sets were obtained by starting the tank engine and recording the 

appropriate sensor data.  Most of these data sets were fault-free, since the fuel flow 

problem apparently rarely occurs upon startup.  Because accurately training a neural net 

on a particular problem requires a number of cases exhibiting the actual phenomena 

associated with the problem, the authors [43] seeded faults into the startup procedure.  

Additionally, they “translated” some data sets from fault-free starts to faulty starts 

(methodology unspecified). 
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Figure 2-33.  Normal tank start data [43] 

 

Figure 2-34.  Bouncing valve tank start data [43] 

 

Figure 2-35.  Stuck valve tank start data [43] 
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Figure 2-36.  Fuel flow error tank start data [43] 

 

Figures 2-33 through 2-36 show some of data that was collected.  It is relatively easy to 

discern based on the collected and processed signatures what kind of fault is present.  The 

curves include 3 different sensor streams, although the sensor streams are not 

individually identified.  It is likely that they are graphs of the variables previously 

mentioned (throttle position, ambient air and turbine inlet temperatures, and compressor 

and turbine speeds). 

 

The neural net tool used for the fuel valve diagnostic was the NeuroWindows Artificial 

Neural Network (ANN) simulator software.  Visual Basic was employed as a 

user/computer interface development tool.  Using the data sets as described above, they 

trained the neural network to distinguish between the three fault conditions.  However, 

simply using the sensor values as the one input to a simple feedforward ANN does not 

capture all the information available in the time domain.  To capture time dependent 

information, the input to the ANN included first derivatives of sensor values and first 

derivatives of differences between pairs of sensor values.  How these first derivatives 

were calculated is not mentioned in the paper. 
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Based on the analysis by the ANN system, TEDANN (Turbine Engine Diagnostics 

Artificial Neural Network) determines which fuel flow voltage readings are out of 

tolerance with normal operational parameters.  Upon this determination, TEDANN will 

display either a fault status message identifying the EMFS faults or a message stating that 

the EMFS is fully operational. 

 

Table 2-3.  TEDANN’s diagnostic performance (severity) [43] 

Diagnosis (across)/ 
Actual Conditions 

(below) 

Bouncing valve Stuck valve Fuel flow error 

Bouncing valve 1.00 0.00 0.00 
Stuck valve 0.00 0.98 0.00 

Fuel flow error 0.00 0.00 1.00 
No fault 0.03 0.02 0.08 

 
 

Table 2-3 results indicate TEDANN does remarkably well in diagnosing the individual 

faults.  The entries in Table 2-3 are the neural network’s assessment of how severe the 

fault is, using the following scale: 

 
0.00-0.25 - no fault (normal) 
0.26-0.75 - warning (fault) 
0.76-1.00 - critical (fault) 
 
 

The entries in each cell are an average over several data sets (variation is not specified).  

The table does show a completely accurate diagnosis based on the severity scales—all 

actual fault conditions would be detected and correctly diagnosed, and all actual non-fault 

conditions would be diagnosed as such, since the resulting severity figures are less than 
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the 0.25 threshold.  The authors are continuing to refine their study, and hope to extend it 

to other tank components and Army systems. 

 

Logan [50] describes a prognostics system currently in use.  This system is assisting the 

Navy reduce both manning and maintenance costs.  To that end, the Navy is 

implementing ship designs which support minimum crew sizes and minimum 

maintenance requirements, while maintaining mission readiness goals [50].  A major 

component of this strategy is the development and implementation of predictive 

maintenance (prognostic) systems.  These systems can be exploited for monitoring, 

control, and condition assessment of critical shipboard systems.  Artificial intelligence 

methods will provide the necessary assessment capabilities.  These capabilities include 

the abilities to: 

• Be initially deployed using existing experiential and empirical knowledge; 

• Function properly with missing, noisy, or corrupted measurement data; 

• Compute and assess uncertainty measures following valid statistical techniques; 

• Infer measurements that are either too costly or too difficult to acquire. 

 

Logan et al [50] believe artificial neural networks are particularly well-suited to 

diagnostic applications.  They contend that neural nets can classify novel input patterns 

not included in training data, and that neural nets are tolerant of noisy or incomplete input 

patterns.  In addition, system state recognition is usually performed in real time.  Of 

course, the critical aspect of deploying neural networks is access to training data that 
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adequately represents the input/output state space the network is likely to encounter in the 

specific application. 

 

There are problems with accumulating neural network training data.  Since good 

maintenance practices tend to prevent failures from occurring, actual failure data is 

extremely scarce and very expensive to collect and/or create.  The fault coverage of 

actual failure data is typically very narrow and it may require many years of data 

collection to obtain an adequate data set for neural network training.  Unless the data is 

collected under controlled or known conditions, historical failure data may be incomplete 

or include unreliable measurement values.  Additionally, the data will be insufficient to 

provide coverage for all possible machinery faults which might occur.  If this data used 

for training the neural network, the network’s fault classification performance may be 

adversely affected.  Also, typical monitoring systems do not store data at adequate 

sampling rates to ensure that sufficient data are recorded to accurately classify the failure 

event, as well as events leading to the actual failure. 

 

Logan et al [50] recommend an alternative, hybrid approach.  The engineering 

knowledge of domain experts can be used to construct a diagnostic knowledge base 

suitable for neural network training.  This can be accomplished by conducting a 

comprehensive Failure Mode And Effects Analysis (FMEA) on the appropriate 

mechanical system.  A FMEA provides a comprehensive listing of probable failure 

modes of all “major” mechanical system components, where “major” is defined as the 

level of detail appropriate for that particular system.  This information is obtained from 
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interviews with engineering crews and maintenance personnel.  It also includes 

information on all available sensor measurements, and identifies the fault/symptom 

relationships required for an effective monitoring program. 

 

The neural network of choice for this application is a probabilistic neural network (PNN).  

It has a number of favorable characteristics [96], [2].  PNN training is effectively 

instantaneous, as opposed to the slow error convergence training of other neural network 

techniques.  Besides the reduced effort for system commissioning, instantaneous training 

is extremely attractive for allowing training data set modifications and PNN retraining in 

the field by end-users.  The PNN outputs the fault classification probabilities, meaning it 

is easy for the end user to interpret the result.  PNNs have strong generalization 

capabilities (as do other neural networks) which can handle situations in which one or 

more input variables are missing or are corrupted.  This makes the method attractive for 

real-world applications where sensor failures occur on a regular basis, such as in a 

shipboard environment.  Also, PNNs can be initially deployed using existing experiential 

and empirical knowledge and can be readily updated as new knowledge is acquired. 

 

A PNN is designed to estimate the class conditional probability density functions 

according to the following equation: 
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 m = total number of training patterns (1/m is a normalizing constant) 

 XAi = ith training pattern from category A 

 σ = “smoothing parameter” 

 p = dimensionality of measurement space 

 

Equation 2-5 defines the PDF for each fault as the sum of several multivariate Gaussian 

distributions centered at each training sample for a given class.  In a typical problem, the 

PNN is trained using the results of the FMEA for the subject mechanical system.  This 

effort typically results in a fault/symptom matrix in which only a single training vector is 

developed for each fault.  In the case of only a single training pattern per class (i.e. m=1), 

the above equation simplifies to: 
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Conceptually, Equation 2-6 compares the input symptom vector to the training symptom 

vector for the fault class.  The closer the match between the two, the larger the probability 

of that fault classification.  Note that the fault probability can still be obtained even if one 

or more components of the input symptom vector X are unavailable or mismatched.  In 

these cases, the resulting fault probabilities may be lower, but the method will still return 

a result. 

 

Equation 2-6 is implemented in the pattern units of the PNN, as depicted in Figure 2-37. 
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Figure 2-37.  Network topology [50] 
 

The network topology in Figure 2-37 differs from conventional neural nets in that the 

summation and output units are not used here, since there is only a single training 

example for each fault classification.  The input units simply feed the input values to the 

pattern units.  Each input unit has a connection with every pattern unit, and there is one 

pattern unit for each training pattern.  The pattern units form the dot product of the input 

pattern vector, X, with a weight vector, wi, which is the training vector in this case.  The 

dot product calculated in each pattern unit undergoes a nonlinear transformation in the 

PNN using an activation function similar to the form of the Gaussian PDF given in 

Equation 2-6. 
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The input vector X is comprised of the symptom pattern representing either current alarm 

conditions or predicted alarm conditions, depending on whether the system is performing 

a diagnostic or prognostic application.  Quantitative alarm condition data are collapsed 

into categories.  For this work, they are represented by a three-way classification as 

HIGH, LOW, or NORMAL states numerically encoded into the input vector.  These 

classifications are performed by simple thresholding, as is done in most existing alarm 

monitoring systems. 

 

Network training is accomplished by setting the weight vector of each pattern unit equal 

to the values of one of the training vectors.  In this way, each training vector uniquely 

defines the weights of one pattern unit. 

 

The only parameter adjusted in the PNN is the “smoothing” parameter σ, which is related 

to the variance of the underlying PDF.  This parameter effectively controls the ability of 

the PNN to generalize when the input vectors do not exactly match the training vectors.  

Small values of σ result in poor generalization, causing the PDF to have distinct modes 

corresponding to the training sample positions in input space [86].  Larger values of σ 

produce greater degrees of generalization, with the PNN interpolating between training 

sample points.  In this case, input vectors close to the training samples produce 

probability values close to that of the training points. 
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Logan et al [50] use this network for prognostic applications by performing a statistical 

regression analysis of each mechanical system parameter used in the network.  The data 

points xi from the sensor are used to create a regression equation (usually linear): 

 y = β0 + i
i

i x∑β  (2-7) 

where the βs represent the appropriate coefficients.  Both raw measurements and time-

based deviations from baseline conditions are analyzed over a pre-defined time interval.  

The length of this interval is determined by how much future warning is required for an 

actual alarm condition.  The coefficients of trend equations are calculated from historical 

data within the pre-defined time interval and then tested at a 99% confidence level for 

statistical significance.  If the coefficients are statistically significant, the trend equation 

is considered valid.  Valid trend equations are then used for alarm prediction. 

 

Each valid trend detected by the system is used to predict future alarm conditions within 

the mechanical system.  The parameter associated with the trend is extrapolated out into 

the future using the estimated trend equation.  If the predicted parameter value exceeds an 

alarm threshold within the pre-defined time interval, then the system inputs this alarm to 

the PNN-based inference engine.  The PNN then uses its pattern recognition capabilities 

to predict plant fault conditions most closely associated with predicted alarms.  The same 

PNN is used for both diagnostics and prognostics. 
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Figure 2-38.  Example of a predicted bearing temperature alarm [50] 

 

Figure 2-38 shows an example alarm prediction based on input data which were recorded 

for about a month.  A trend is identified and modeled using linear regression.  The 

regression line is projected out until an alarm threshold is encountered.  If the trend 

continues over time, the bearing temperature will reach its HIGH threshold in 

approximately 15 days.  A similar alarm prediction function is performed for all 

parameters having detected trends.  For a prognostic application, the predicted HIGH 

bearing temperature alarm, along with other predicted alarms occurring in the same time 

frame, would be fed into the same diagnostic neural network to determine what system 

may be experiencing degraded performance. 
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Federici, et al [31] use a simulation model to determine problems in an electrical circuit.  

Their fault simulation process consists of simulating a circuit in the presence of faults, 

and comparing the results of fault simulation with the fault-free simulation of the same 

circuit with the same input test pattern.  They propose the definition of a Behavioral Fault 

Simulation (BFS) technique which could be applied to VHDL (Very High Speed 

Integrated Circuit (VHSIC) Hardware Description Language) behavioral descriptions. 

 

For clarity, VHDL is a large high-level VLSI design language with Ada-like syntax, and 

is the DoD standard for hardware description, now standardized as IEEE 1076.  VLSI 

stands for Very Large Scale Integration and refers to semiconductor integrated circuits 

composed of hundreds of thousands of logic elements or memory cells [79]. 

 

The primary goal of the BFS as described in [31] is to determine the set of faults 

(belonging to the fault model) to be detected by a test pattern.  A test pattern is a 

sequence of steps which are followed to test a circuit for faults.  Different test patterns 

detect different faults.  Their procedure submits faults from a global list to their 

simulator, in conjunction with the test pattern (shown as the test sequence).  The aim of 

the test pattern generation process is to define patterns to test physical defects.  The 

defects can be detected only if they induce an irregular behavior called a fault.  The fault 

effect or error is measured by a difference between the state of the fault-free model 

(reference model) and the state of the faulty model (model in which a fault hypothesis is 

injected). 

 



2-81 

FAULT FREE
SIMULATION

SIMULATION
WITH FAULT

LIST
PROPAGATION

TEST
SEQUENCE

INTERNAL
MODEL

LIST OF
DETECTED

FAULT

GLOBAL
FAULT

LIST

VHDL
DESCRIPTION

 

Figure 2-39.  A schematic showing the experimental plan [31] 

 

The experimental plan is shown in Figure 2-39.  The test sequence process is the list of 

steps a test pattern takes to determine if a particular set of faults exist within the system.  

System defects can be detected only if they induce an irregular behavior, compared to 

normal functioning (found in a reference model called fault free simulation), which is 

then called a fault.  The fault effect or error is measured by a difference between the state 

of the fault-free model (reference model) and the state of the faulty model (model in 

which a fault hypothesis is injected).  All possible faults (from the global fault list) are 

systematically injected into the systems, and the specific test pattern is run to see if that 

particular fault is detected.  The output is a list of faults the system actually detects.  

Ultimately, this simulation process could be used to evaluate and compare Behavioral 

Test Pattern Generation software via the different fault lists  These lists would show the 

different faults each kind of test pattern would detect.  Currently, this kind of capability 

does not exist [31]. 
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Rebulanan [68] describes another simulation model.  The focus of the simulation was on 

the PHM system, and the purpose was to assess an initial estimate of JSF supportability 

through the use of this system.  The analysis compared the availability of four JSF 

aircraft with a PHM system with four JSF aircraft without a PHM system.  The essential 

difference was that the PHM JSF aircraft provided a predicted component failure time 

before landing, while the aircraft without a PHM system did not.  This reflects the 

expected difference between the two kinds of aircraft.  A PHM equipped aircraft should 

provide fault reports before landing, providing additional lead time in the repair process.  

A non-PHM equipped aircraft will have to land and be inspected by a mechanic (the 

traditional/current diagnostic method)  before any fault reports are available. 

 

Relevant specifics of the simulation approach follow.  The failure time of a particular 

aircraft component was assumed to be known, based on the Mean Time Between Failure 

(MTBF) measure associated with each component.  The Mean Time To Repair (MTTR) 

was used to generate repair times.  In the simulation, each time was generated from an 

associated probability distribution.  The PHM system’s detection of the impending 

component failure was assumed to be automatic and completely correct.  The time the 

PHM model detects component failure was set to be 95% of the components useful 

lifespan.  As an example, if a component’s lifespan was 1000 minutes, the PHM system 

would automatically send a report at 950 minutes predicting this component’s failure at 

1000 minutes.  A time to repair was also randomly generated from multiple single 

variable probability distributions based on multiple criteria.  This criteria included the 
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component to be repaired (measured as probable in-stock availability of the component), 

transit time of the repair part to the flight line, and performing the actual repair. 

 

As expected, the average availability of PHM-equipped aircraft is significantly higher 

than the availability of non-PHM equipped aircraft.  A somewhat unexpected result was 

the higher variability in the availability rate of the PHM-equipped aircraft. 

 

 

Figure 2-40.  Comparison of Availability Rates between PHM (ALS) equipped aircraft 

and non-PHM (ALS) equipped aircraft [68] 

 

Figure 2-40 shows that the availability rate varied between 89-91% for the PHM aircraft, 

while the rate was a practically constant 84% for the non-PHM equipped aircraft.  

Although Rebulanan [68] noted this variability existed for PHM aircraft, the variability 
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was not explained.  However, this observed variability is likely due to the variability 

associated with the probability distribution used to determine the component failure time.  

The variability associated with the component failure time translated into variability 

associated with the prediction of the actual failure time on the PHM-equipped aircraft.  

This variance in the timing of the fault report, and consequent maintenance lead time, led 

to variance in overall aircraft availability.  In contrast, the non-PHM equipped aircraft 

had no variability associated with maintenance lead time, since the aircraft had to land 

and be inspected before a fault report was generated.  Based on Figure 2-40, it seems the 

time for this ground inspection was constant, although this is not explicitly stated in the 

paper. 

 

Malley [53] followed Rebulanan’s work on simulating an ALS system with a detailed 

computer model that simulated a PHM system.  This PHM system model fit in the 

context of the previously developed ALS system.  His simulation modeled the operations 

of one JSF wing and the activities of the corresponding support organizations for those 

aircraft.  It used a neural network to analyze notional prognostic sensor signals to 

determine when an associated JSF system component (the engine, in his thesis) would 

fail.  The simulation of these prognostic signals incorporated sensitivity to component 

wear-in, sensitivity to changing flight conditions, and a measure of variability as to when 

the component would begin exhibiting signs of failure.  These measures were varied to 

produce different PHM signal sets.  He found that averaging a number of these signals, or 

“batching” them, produced robust measures that a neural net could use to predict the JSF 

engine state with reasonable accuracy - about 82% of the time with his architecture.  
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These predictions of impending failures came when the engine was about 95% of the way 

through its expected life cycle, allowing enough time for the engine to be fixed before it 

failed in flight. 

 

2.5  Literature Review Summary and Conclusions 

Most published research concerning a prognostics effort is either concerned with a single 

component of a system (such as a rotor) or a single aspect of a system (such as startup 

data).  Very few papers actually address the issue of what a complete prognostics system 

should contain.  Most of those that do address these systems at a very high level.  The 

literature apparently contains only one example of a complete prognostics system, 

Logan’s DEXTERTM system [50]. 

 

A fully developed prognostics system needs to be all-encompassing.  It starts with the 

layout of the sensors within the system.  This first step requires knowledge of the 

appropriate location for each sensor, the type (acoustic, electrical, etc.) of each sensor 

that should be used at a given location, and the total number of sensors that should be 

used (to avoid too little or too much information).  Then, the data from these sensors 

needs to be captured and processed.  Afterwards, the processed data is fed to a intelligent 

reasoner of some kind which interprets the data input and provides a system health 

assessment.  This assessment may include a confidence level.  Then, this assessment is 

reported to appropriate entities.  These may include system operators, system mechanics, 

and system operations planners. 
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The prognostics reasoning capability is best described as the capability of a PHM system 

to extrapolate from current data streams to predict when a certain portion of the system is 

expected to fail.  Of course, the biggest reason to monitor a system using PHM 

technology is to detect an impending component failure in time to prevent a system 

failure by replacing the affected component before it actually fails.  Rather than repairing 

or replacing a component after it has failed, it can be repaired or replaced when the 

prognostics system indicates that probable time to failure (or probability of component 

failure) is within some critical threshold.  The question is what is required for this 

impending component failure to be detected. 

 

The nature of the prognostics reasoning problem is a difficult one.  Experts in this field 

identified reliable estimation of time-to-failure as one of the greatest challenges in 

manufacturing and machine monitoring, and one of weakest areas in existing methods 

[82].  Furthermore, these experts state that methods used to analyze the data from 

mechanical system processes must be robust, i.e., methods which can tolerate significant 

deviations from assumed or nominal signal characteristics.  In general, the signal and 

noise environment in these kinds of applications is highly complex, non-Gaussian, and 

exhibits large variability and/or non-stationarity.  The operating conditions may vary 

dramatically between sensor locations.  To ensure the user accepts these monitoring 

methods, low false alarm rates are an absolute necessity.  This places an additional 

burden on the robustness of the methods.  A successful prognostics system 

implementation must address all these issues. 
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The first requirement for a prognostics reasoning system is on-board sensors which 

record the performance of aircraft systems.  This requirement in and of itself is a 

significant issue.  The total number of sensors required for producing a prognostics 

capability is an open question.  If there are too few sensors, not enough data will be 

collected for analysis and prognostic functions.  If there are too many sensors, the 

prognostic system may be overcome by so much variation from the sensor reports that it 

fails to recognize any impending failures at all.  The variation in the readings may also be 

coming from failed sensors, as opposed to systems which are actually failing.  The 

recorded data may also exceed the capability of the system bus to report it, so data is lost 

before it is ever recorded.  However, with modern technology, this “data overflow” issue 

is becoming less of a concern. 

 

The next issue under this first requirement is which systems the sensors are attached to.  

There are a tremendous number of systems present on a modern aircraft (somewhere in 

the hundreds).  Should all these systems be monitored, or just some of them?  If only 

some systems should be monitored, which ones should they be?  And given those 

systems, what kinds of measurements should be taken (acoustic, electrical, vibration, 

etc.)? These questions need to be answered to determine the proper scope of the data for a 

prognostics reasoning system. 

 

Once the sensors are in place for aircraft data collection, the actual collected data will 

require pre-processing before submission to the prognostic system.  Raw sensor data is 

typically very noisy, and key features describing the performance of the monitored 
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system are not readily apparent.  The concern here is which kinds of processing 

techniques should be employed.  By its very nature, data pre-processing modifies some of 

the collected data (hopefully removing the noise) while enhancing the rest of the data (the 

signal of interest).  However, since many pre-processing techniques are well known and 

their effects are understood, this is not as significant of an issue as are other issues. 

 

The biggest issue for a prognostics reasoning system is the interpretation of the collected 

and pre-processed data.  In order to assess the health of an aircraft based on this 

information, it must be compared to previously existing information which has been 

classified as either representative of a healthy system, a degraded system, or a failing 

system.  In order for this comparison to be done, this “previously existing” data must be 

collected from similar (if not exactly the same) systems that are operating in a known 

state. 

 

At this point, a few words are in order about the presumed nature of general mechanical 

system faults.  Most faults are believed to begin with small (but detectable) precursor 

events and to stem from a progressive (not necessarily linear) degradation of the system 

component.  The degradation curve is usually assumed to follow some kind of 

exponential relationship [82], although some naval applications show a linear trend [51].  

Thus, the tracking of this degradation along with an ongoing prediction of the time-to-

failure is of great importance to a prognostics system.  Additionally, as previously stated 

[60], the signal and noise environment in these kinds of applications is highly variable 

and complex.  Also, the signal characteristics from many types of degradations are non-
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monotonic.  Consequently, an understanding of the overall trend, as well as continuous 

monitoring to track the history of the developing fault, is essential [82].  Faults that are 

neglected are those which develop rapidly without any forewarning (such as the effects of 

combat).  Clearly, no prognostics system can predict rapidly developing events which 

occur completely within a time window that is considerably less than a single operational 

cycle. 

 

In order to make sense of this data, there must be a reasoning function in the PHM 

system.  This reasoning function is required to identify normal behavior and system faults 

with high confidence.  To accomplish this, there must be patterns present within the 

reasoning function which represent functional and failed behavior.  The reasoning 

function for a PHM system is also expected to predict when component failure will 

occur.  This requires clear patterns of how system faults develop.  How these patterns can 

be captured is addressed below. 

 

The patterns for a functional state are thought to be the easiest to collect.  Once an expert 

(probably human) has assessed the system as working correctly, the data from the system 

are fed to the reasoning system, which encodes the data as representative of a functional 

state.  Should there be more than one functional state, conditions in which these 

functional states exist can also be replicated and encoded within the reasoner.  As the 

system operates, comparisons between this part of the prognostic reasoner and the system 

data should clearly indicate whether the system is in a functional state or not.  This is one 



2-90 

way a PHM system can provide an instantaneous (simple yes/no) assessment of system 

health. 

 

The collection of failure patterns is a somewhat more difficult problem.  When systems 

are in a failure state, by definition they are not operating.  This may prevent the collection 

of certain kinds of system data.  To overcome this, outside expertise is required to 

supplement the data patterns recorded when a system is in a failure state.  Additionally, it 

is difficult to record every conceivable failure state a priori.  The prognostic reasoner 

must be able to accept new failure states as they appear during the operation of the 

system.  Using this data, the reasoner can provide instantaneous estimates of system 

failure by comparing it to known functional and failed states, if the failure status is not 

readily observable. 

 

Collecting patterns of how system faults develop is difficult, but essential in order for a 

PHM system to accurately predict when a failure will occur.  For this predictive 

capability to be developed, there must be a well-defined path (henceforth called a “failure 

path”) from current operational conditions to the many fault conditions, and all variations 

along these failure paths must be understandable and detectable.  Collecting the data to 

meet this requirement is the most difficult technical challenge of these three.  Mechanical 

systems undergo preventive maintenance to avoid failures, which interrupt the collection 

of data along fault paths.  Actually operating a functional system to observe the failure 

path of a single component can result in ruining the entire system.  Re-running the same 

experiment to note any variations in the failure path of the same component will double 
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the costs.  And, as previously discussed, the data along these paths is highly complex, 

non-Gaussian, and exhibits large variability and/or non-stationarity. 

 

To overcome these problems and collect the required data, most failure paths are mapped 

based on performance of an individual component on a test bench.  There are two 

potential problems with this approach.  The first potential problem here is that the 

individual component is being assessed independently of the overall system; interactions 

are not captured.  And secondly, most components are very durable, and take a very long 

time to fail when subject to normal operational stresses.  To save experimental time and 

cost, components are overloaded with operational stresses that are multiples of the 

normal values.  The resulting failure path may not represent what really happens to the 

component for this specific type of failure.  It also may mask other failures that would 

normally occur before the specific type of failure under consideration. 

 

Another way to obtain failure information from system data is to use the known failure 

points of the system components, and not use any computed failure path patterns at all.  

These failure points may consist either of the time which a particular component is 

expected to last, or component readings at failure. 

 

If only the time that a particular system component is expected to last is being used to 

compute a possible failure point, then the system simply keeps track of the amount of 

operational time a component has been in use.  This is compared to the distribution of 

failure times for this component.  When an appropriate threshold is reached, the system 
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indicates it is time to replace the component.  This threshold may be expressed as the 

point at which a certain percentage of the components have failed, or how long it will be 

until failure is virtually certain.  The potential problem here is that all the aircraft 

components are usually manufactured at the same time.  The initial failure time 

distribution becomes less and less representative of the actual population as these 

components age.  In the process of maintenance, some components are refurbished with 

new units, so averaging their performance together with the unrefurbished units leads to a 

distribution that is not really representative of either population.  However, the Air Force 

is tracking some of its electronic components by barcode.  There could be two failure 

distributions; one for refurbished units, and one for the others.  Although this does require 

a lot of bookkeeping, tracking the different maintenance actions by electronic unit has 

been shown to be feasible. 

 

If the component readings at failure are being used, trend analysis is applied to the data 

being collected from these system components.  If the PHM system detects a “definite” 

trend towards a failure point, this would be reported as negative system health.  A 

projection along this “definite” trend will give an assessment of how long it will be 

before the component fails.  The advantage of this approach is that failure path generation 

is not required.  Disadvantages include the need to know precisely what a component’s 

failure point is.  Projecting the “definite” trend is also a disadvantage since it requires 

extrapolation beyond the original data set.  As an example, what may have been 

originally thought to be a linear trend may turn into an exponential trend, leading to 

failure much sooner than anticipated.  The reverse situation also leads to problems, as 
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maintenance action is scheduled sooner than required, leading to the replacement of a 

component with remaining usable life. 

 

Assuming that patterns for the functional state, the failure paths, and the failure states all 

exist within the prognostic reasoning system, assessments can be made of instantaneous 

system health and time to component failure.  As previously mentioned, comparisons 

between the system data and the functional patterns present within the prognostic 

reasoner can give a simple yes/no indication of system health.  Another way is to 

compare current system readings, or operational time deployed, with known failure 

points for these systems.  This information can provide a simple yes/no assessment of 

system health as well, if the proximity of the sensor reading is “close” to the known 

failure reading.  (The same holds true for comparing time deployed to the time-to-failure 

distribution.)  This information can also provide a probability assessment of impending 

failure.  The third way is to compare trends (or current values) in the system data with the 

previously defined failure paths.  The data of any component that doesn’t indicate normal 

operation can be mapped to the failure path.  This provides an instantaneous (negative) 

health assessment.  It also provides an estimate of time remaining to failure, based on the 

distance remaining on the failure path.  Of course, this assumes the failure path and/or 

fault condition is known for the specific event.  If not, the PHM system will only be able 

to provide a (negative) assessment of system health (what the PHM system is seeing 

doesn’t match the data for normal operation). 
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III.  Data Fusion Methods 

 
3.1  Background 

Multi-sensor data fusion is a field that has experienced rapid growth comparatively 

recently.  The problem of merging similar (or disparate) information from multiple 

sources has grown in importance as the number of information sources available to the 

decision maker has significantly increased in the past 20 years.  In past years, decision 

makers would assess written or verbal reports, with or sometimes without certain levels 

of confidence, and decide on a course of action based on their internal “fusion” of the 

information.  As computer power has increased through the years, the automated 

computation of the “best” estimate of what all these sensors say has become more and 

more possible.  The number of methods used to assimilate the data into a unified 

assessment of a given situation has also increased greatly in recent years.  Arguably, it is 

no longer humanly possible to correlate all the data streams available to provide the best 

interpretation of the data, without computational assistance. 

 

Data fusion is required because of data fission.  The total signature of an entity is usually 

manifested in many separated types.  Since most sensors only collect one type of 

information, the complete entity signature can only be reconstructed through fusing these 

collected types to reconstruct the original entity.  The information decomposition can be 

attributed to different types of phenomena.  These include different characteristics under 

consideration, such as shape or motion; detection of different information types, such as 

electromagnetic or acoustic radiation; detection of different parts of the frequency 
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spectrum, such as electrical current or infrared data; restricted spatial or temporal 

coverage; and an historical legacy of separate processing systems.  Rarely does one 

sensor embody more than one collection technique.  Consequently, a single sensing 

mechanism is unlikely to be capable of capturing all the desired information on an entity 

at a given instant of time.  Data fusion brings this information back together to provide 

the picture of the original entity. 

 

The methods of data fusion depend on the situation.  There may be several similar 

sensors providing information on the same entities.  In this case, the sensors detect the 

same features on the entities, yielding what is termed competitive data.  The overlapping 

features of the data must be correctly merged to identify the data sources.  The other case 

occurs when different types of sensors collect different features on the same entities, 

yielding complementary data.  In this case, the data between the different sensors does 

not overlap.  In both cases, however, a single sensor usually collects data on more than 

one entity, so the data is almost always dependent. 

 

Data fusion techniques are also dependent on the type of data present.  The preceding 

paragraph discusses a situation in which signal processing techniques would be quite 

helpful (signal filtering, spectral analysis, time-domain fusion).  To estimate the state of a 

given system, Kalman filters or some other kind of Bayesian reasoning may be most 

appropriate.  If there is more background knowledge available, then what may be called a 

“cognitive technique” can be used.  These techniques can include neural nets, 

clustering/genetic algorithms, or fuzzy logic.  If expert knowledge can help determine the 
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exact state of affairs, expert systems or case-based reasoning may be applicable.  

However, there is no one “golden method” which applies in all situations.  Most 

problems will require a combination of the above techniques to provide an accurate 

solution.  In the example of the preceding paragraph, a combination of an expert system 

(previously existing signatures) could be combined with time-domain fusion to provide a 

fused picture of the environment. 

 

Of course, the methods chosen to fuse the data also depend on the kind of data available.  

For most military applications, the data comes from multiple sensors collecting 

information throughout the electromagnetic spectrum, as well as audio, motion, and 

vibration detectors.  This includes sensor location and at times, a level of confidence in 

the collection.  However, sensor reliability, previously analyzed data, large databases, 

expert systems, and other types of pre-existing information are also candidates for data 

fusion.  The degree to which each data stream is weighted compared to the other streams 

is of central importance.  Of course, data fusion can never totally recover the loss 

introduced by the original data fission. 

 

There are varying definitions of what constitutes multi-sensor data fusion, but these 

definitions differ primarily only in technical details.  For example, the International 

Society of Information Fusion defines it as follows [25]:  “Information Fusion, in the 

context of its use by the Society, encompasses the theory, techniques and tools conceived 

and employed for exploiting the synergy in the information acquired from multiple 

sources (sensor, databases, information gathered by human, etc.) such that the resulting 
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decision or action is in some sense better than (qualitatively or quantitatively, in terms of 

accuracy, robustness and etc.(sic)) than would be possible if any of these sources were 

used individually without such synergy exploitation.”  The USAF Research Lab [21] 

defines it as:  “Information Fusion: Events, activities and movements will be correlated 

and analyzed as they occur in time and space, to determine the location, identity and 

status of individual objects (equipment and units), to assess the situation, to qualitatively 

and quantitatively determine threats and to detect patterns in activity that reveal intent or 

capability. Specific technologies are required to refine, direct and manage the information 

fusion capabilities.”  In essence, data fusion is the management (and consequent 

minimization) of uncertainty associated with the input data.  The goal is to obtain the best 

assessment of the system under consideration with a minimal amount of uncertainty. 

 

The use of the data in data fusion has widely varying adherents throughout the 

community.  There are those who advocate a “sensor to shooter” data fusion architecture.  

The raw data from the sensor is sent directly to the warfighters who put ordnance on the 

target.  Unfortunately, with the tremendous amount of data being collected on the modern 

battlefield, the warfighter cannot hope to keep up with the flow of information.  And that 

is ignoring the issue of contradictory and/or simply incorrect sensor reports.  As some 

leaders in this community have said, the warfighter is awash in information but starved 

for knowledge.  What a sensor report means in the context of other sensor reports is far 

more valuable than an individual report standing alone. 
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The data in data fusion are useless unless they are placed in context, then the data may be 

considered information.  Knowing what the data indicates and the associated level of 

confidence are essential.  In turn, when this information is placed in its proper context, it 

may be considered knowledge.  An indicator from a ships’ radar of tank activity would be 

expected if the ship was close to shore, but perhaps not if the ship was in the middle of 

the ocean  The knowledge of what the sensor indicates and whether that is reasonable 

given current surroundings is also important.  This idea can extended to knowledge of 

multiple activities, which could be called understanding.  Perceiving what purpose 

underlies the knowledge of the enemies’ activities is yet another level of fusion.  

However, interpretation of purpose exceeds current computational capabilities. 

 

3.2  Neural Network Methods 

The term “artificial neural network” (ANN) refers to a wide range of analog 

computational schemes that are loosely based on biological nervous systems.  These 

schemes are generally built to classify an unknown object into a particular class of 

objects based on observations (input data) obtained from that object.  Neural nets can also 

be used to classify a system’s operation into one of a number of operational modes (e.g., 

running efficiently, nearing failure, non-operational, etc.) based on data obtained from 

system components. 

 

A typical ANN consists of a web of interconnected simple mathematical processors 

called “neurons” or “units” or “nodes”.  Three components are required to describe a 

network: 
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1.  The neural units, the number of layers in the network, and their “activation” functions. 

2.  The connections between units, known as the neural architecture. 

3.  A training algorithm to develop the most appropriate weights for connections between 

units. 

 

The following section describes each of these three components in turn. 

 

3.2.1  Neural Units 

A single-layer neural net (also known as a “perceptron”) looks like the following figure. 

 

Figure 3-1.  Single-layer neural net [15] 

 

Figure 3-1 shows a single layer neural net.  This architecture is also known as a 

“perceptron.”  The bias node is a constant value specified by the user.  The inputs are 

weighted to give an output.  The net is trained on known data so the weights on each 

branch are the best for classifying that particular data set (training will be addressed in 

more detail later).  The initial set of weights is usually chosen randomly. 
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A multi-layer neural net schematically looks like the following figure. 

 

Figure 3-2.  Multi-layer neural net [15] 

 

Figure 3-2 shows the input layer, hidden layer, and output layer of a typical multi-layer 

neural net.  This type of architecture is also known as a multi-layer perceptron neural net.  

There are many more weights in this type of architecture.  Again, a set of data where the 

actual outcome is known for each set of input data is used to train the network. 

 

In the type of ANN considered here (multi-layer perceptron), the neural net node takes 

the weighted sum of its inputs and feeds that value into an activation function (which is 

typically nonlinear.  The activation function transforms the weighted input from other 

nodes into a new value. 
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Figure 3-3.  Activity performed in a typical neural network node 

 

Figure 3-3 shows the usual function of a neural network node.  Usually, there are many 

inputs into a single node.  Each input is multiplied by a weight.  Then, the resulting 

products are added to form a single sum.  This sum is then input into the activation 

function.  The result is computed and sent forward as the output of that particular node.  

The output may also be sent to many nodes. 

 

An activation function commonly used in these kinds of neural nets is the sigmoid 

(logistic) function: 
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Other commonly used activation functions include the hyperbolic tangent (tanh(x)) 

function.  In some cases, researchers also use units with linear activation functions.  

Linear activation functions are most commonly used in the output layer of the network. 

 

3.2.2  Network Connections 

Nodes (represented below by circles) are connected to propagate a signal from the inputs 

to the outputs of the net. 

 

Figure 3-4.  Single output neural net [15] 

 

The network shown in Figure 3-4 could be used to approximate a function of two 

variables, Y=f(X1,X2).  The input values (X1, X2) are appropriately weighted and fed 

into the nodes above them.  Subsequent units compute their values according to the 
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weighted connections and activation functions.  The answer, Y, is read from the unit in 

the output area. 

 

ANNs are often partitioned into distinct sets of related neural units, called “layers” or 

“areas”. For example, all of the units used as inputs to the unit constitute the “input 

layer”; likewise units used as outputs make up the “output layer”.  All other units are 

organized into one or more “hidden layers”.  The resulting arrangement of nodes and 

connections in a network is known as the network topology. 

 

Layers are connected by groups of lines (loosely, the “nerves”) called projections.  A 

non-zero weight is usually assigned to each projection.  For ANNs, units in a particular 

layer are usually connected to every other unit in each adjacent layer.  A notable 

exception is what is termed the “bias node” or “bias unit”.  The weight attached to this 

value is usually set at 1, and the negative of this value is usually known as the 

“threshold”. 

 

Many neural networks have the structure given in Figure 3-2 with an additional hidden 

layer.  This is because of a theoretical result which states that a neural network with three 

layers of weights can produce an arbitrarily complex decision boundary [90].  In other 

words, it can correctly classify objects no matter how tightly they may be grouped 

together in real life.  Unfortunately, the theorem only states that the network exists-

finding it is another matter altogether.  In a similar result, a network with two layers of 

weights (just like Figure 3-2) and sigmoid activation functions can approximate any 
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decision boundary to arbitrary accuracy.  So using sigmoid activation functions allows 

the use of a smaller network, but with the same guarantee that the perfect neural net for a 

particular problem exists [15], [40], [90].  Again, finding that neural net is another issue 

altogether.  That issue is partly addressed by how the network is trained, which leads into 

the next section. 

 

3.2.3  Training Neural Networks 

Making a network perform useful work, e.g. correctly classifying a large number of 

unknown entities, involves finding good values for the weights of the connections 

between units.  While commonly referred to as “training”, this is basically an 

optimization problem, and has been addressed in several different ways: 

 

Local methods, such as backpropagation and its many variants.  These methods 

focus on a small area of the solution space at a time. 

 

Global gradient-based methods, e.g. conjugate gradient, Levenberg-Marquardt.  

These methods focus on a larger area of the solution space. 

 

Stochastic methods, e.g. genetic algorithms, simulated annealing.  These methods 

use some form of a random process to generate better and better weights. 

 

These training methods in general involve an iterative procedure for minimization of an 

error function, with the weights being adjusted in a sequence of steps [15]. 
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3.2.4  Different Neural Network Methods 

There are many different implementations of the neural network architecture in the 

literature.  There are two major classes of neural network models.  The first uses nodes 

(units) which compute a non-linear function (usually sigmoid) of the product of an input 

vector and a weight vector.  The main example of this technique is the multi-layer 

perceptron.  The other class of neural networks uses the distance between the input vector 

and another generalized vector (usually the average of the input vectors) for the 

computation at the node (unit).  Radial basis function neural networks and probabilistic 

neural networks are examples of this latter type.  The following list briefly summarizes 

some of these network methodologies with are considered to be suitable for automated 

machine learning [73]. 

 

The multiplayer perceptron with backpropagation learning is probably the most 

commonly applied ANN model [74].  When a neural net is being trained, input data and 

the associated desired network output values (called targets) are presented to the network.  

The backpropagation algorithm, in general, feeds the error (distance from the target) 

associated with a particular input vector back through the network.  The out put layer 

computes its error, and feeds this back to the previous layer, which computes its error, 

and feeds back its error, until the first layer in network has computed its error.  Once each 

individual neuron has computed its error, it estimates a change for the weight vector that 

would reduce its error.  This change is typically multiplied by a learning rate which is 

significantly less than one (usually 0.1).  The learning rate reduces the amount of change 
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to produce a neural network that can classify many similar inputs well, instead of one 

input perfectly. 

 

The functional link neural network (FLNN) performs least squared error learning like that 

of a backpropagation neural net, but no learning takes place in the hidden layer.  Instead, 

the hidden layer combines the inputs using various nonlinear functions [45]. 

 

The probabilistic neural net (PNN) is an ANN implementation of the Parzen windows 

method.  The output is a weighted sum of all training points, where the weighting is 

exponential according to the distance of an unclassified input from a given training point 

[85], [86].  The general regression neural network (GRNN) is the PNN augmented by a 

normalizing factor [84]. 

 

Radial basis function neural networks (RBFNN) contain a set of uniformly distributed 

processing units each with a radially symmetric response.  During training, the algorithm 

adjusts the amplitude of the response to estimate the function [69]. 

 

Radial basis functions (RBF) are used as activation functions in this second class of 

neural networks. 
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Figure 3-5.  Typical RBF network [15] 

 

Figure 3-5 shows a typical RBF network.  There are N inputs, indexed 1 to n, which are 

combined with M basis functions (M =N in almost all cases), indexed 1 to j.  There are K 

output nodes, indexed from 1 to k. 

 

The general problem radial basis function neural networks are used to solve is the 

mapping from a d-dimensional input space x to a one-dimensional target space t.  The 

input data consists of N input vectors xn, and corresponding targets tn.  The object is to 

find a function h(x) such that h(xn) = tn, for n = 1 to N [65].  The radial basis function 

approach [65] assigns a basis function to each of the N data points.  The basis function 

has the form φ(|x - xn|), where φ is usually Gaussian, the distance function |x - xn| is 

usually Euclidean, and x is usually either the average of the input vectors or the center of 

the assigned basis function.  The output of the mapping is a linear combination of all M 

basis functions (at present, M =N): 

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj



3-15 

 

 h(x) = ∑ wnexp([-1/2σn
2]*|x - xn|

2) (3-2) 

 

The weights wn are found via a two-stage process [15].  In the first stage, the input data 

set is used to determine the parameters of the basis functions (µ and σ if the function is 

Gaussian).  The basis functions are then kept fixed while the second layer weights are 

found in the second training phase.  Mathematically, if the radial basis function is written 

as: 

 yk(x) = ∑
=

M

j 0

wkjφj(x) (3-3) 

then the matrix representation is: 

 y(x) = Wφφφφ (3-4) 

where W = wkj and φφφφ = φj.  The error function is a sum of squares expression: 

 E = .5 ∑∑
kn

{yk(xn) – tnk}
2 (3-5) 

where tnk is the target value for output unit k, corresponding to the input vector xn.  The 

weights are found from a set of linear equations 

 ΦΦΦΦTΦΦΦΦWT = ΦΦΦΦTT (3-6) 

where (T)nk = tnk and (ΦΦΦΦ)nj = φj(xn).  The formal solution is given by: 

 WT = ΦΦΦΦ*T (3-7) 

where the ΦΦΦΦ* notation denotes the pseudo-inverse of ΦΦΦΦ.  In practice, the equations given 

above are solved using singular value decomposition to avoid problems associated with 

the possible ill-conditioning of the matrix ΦΦΦΦ. 
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Typically, for radial basis function neural network, the number of basis functions is much 

less than the number of data points [15].  In general, the radial basis function neural 

networks learns quicker than multi-layer perceptron neural networks.  The trade-off is 

that the multi-layer perceptron neural networks exhibit improved generalization 

properties, especially for regions not sufficiently represented in the data set [47].  To 

obtain this improved generalization, an RBF network has to have more functions to better 

characterize the input space [39].  The number of functions exhibits a direct exponential 

dependence on the dimension of the input space.  The benefit of using radial basis 

function networks is the property of best approximation:  the function with minimum 

approximating error is in the set of approximating functions this network may adopt [39].  

Girosi and Poggio [39] also showed that the multi-layer perceptron does not share this 

property. 

 

Similar to the an RBFNN, the k-nearest radial basis function network (KNRBF) learns 

like the RBFNN.  Its output is computed the same way, except only the k nearest basis 

functions are used in the exponentially weighted sum [73]. 

 

The dynamic radial basis function neural network with locally tuned units (LTRBFNN) 

uses a clustering technique on the input data to determine optimal placement of its non-

symmetric basis functions.  Then, it uses heuristics to determine the widths of the basis 

functions.  On a second pass through the data, it uses least mean squares to determine the 

amplitude of the basis functions [59]. 

 



3-17 

The dynamically stable learning neural network (DYSTALNN) was derived from the 

actual wiring of a simple invertebrate nervous system and the details of mammalian 

learning at a cellular level.  A DYSTALNN maps an input vector to the processing unit 

that stores a cluster center vector that matches the input best.  The output is the product of 

the measure of similarity and the output vector stored at the processing unit.  This 

architecture adds new processing units whenever it encounters an input significantly 

different from any previous inputs [3]. 

 

The restricted coulomb energy neural network (RCENN) allocates regions to some 

training inputs.  RCE allocates the first input to a large region, but ignores subsequent 

inputs that fall inside that region unless they are associated with a different output value.  

In this occurs, the RCENN divides the previous region and allocates a portion to the new 

input.  The training technique requires several passes through the training data to ensure 

that all training data falls inside some allocated region.  When the network is trained, 

input vectors (with unknown targets) will fall into some region with a training input at its 

center.  The output is what was pre-defined for that region during training [70]. 

 

The cerebellar model articulation controller (CMAC) was inspired by the architecture of 

the mammalian cerebellum [2].  This architecture maps input values to a particular bin, 

represented by a fixed integer value.  The minimum value in the input range maps to 0, 

and the maximum value maps to the bin associated with the largest value.  The number of 

bins used for the mapping depends heavily on the application.  For training, all entries in 

the bins are initialized to 0.  When a bin encounters a training input, the bin value of 0 is 
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replaced by the desired output.  If a bin does not encounter a training value, the value 

remains 0.  If the bin encounters multiple different outputs, on the last output recorded is 

retained.  Various generalization algorithms are used to compensate for this.  The chief 

advantage of this technique is that the error surface has a unique minimum that is “down 

the slope” from every other point on the curve, and that learning process converges to this 

unique value fairly rapidly.  The technique is not susceptible to local minima in the error 

surface, unlike other neural network architectures. 

 

3.2.5  Combining Neural Networks 

Opitz and Maclin [61] discusses the comparison of 2 different data fusion techniques, 

known as Bagging and Boosting.  These techniques combine the predictions of multiple 

classifiers to produce a single classifier.  The resulting classifier, which is referred to as 

an ensemble, is generally more accurate than any of the individual classifiers making up 

the ensemble.  Theoretical and empirical research has demonstrated that a good ensemble 

is one where the individual classifiers in the ensemble are both accurate and make their 

errors on different parts of the input space.  The Bragging and Boosting methods rely on 

resampling techniques to obtain different training sets for each of the classifiers. 
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Figure 3-6.  A classifier ensemble of neural networks. [61] 

 

Figure 3-6 illustrates the basic framework for a classifier ensemble.  In this example, 

neural networks are the basic classification method, though conceptually any 

classification method (such as decision trees) can be substituted in place of the networks.  

Each network in the figure's ensemble is trained using the training instances for that 

network.  Then, for each example, the predicted output of each of these networks is 

combined to produce the output of the ensemble.  The consensus among many 

researchers [61] is that an effective combining scheme is to simply average the 

predictions of the ensemble. 

 

Of course, combining the output of several classifiers is useful only if there is a 

reasonable amount of disagreement among them.  Obviously, combining several identical 

classifiers produces no gain.  Hansen and Salamon [38] proved that if the average error 

rate for an ensemble is less than 50% and the component classifiers in the ensemble are 

independent in the production of their errors, the expected error for that example can be 
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reduced to zero as the number of classifiers combined goes to infinity.  However, such 

assumptions rarely hold in practice.  Krogh and Vedelsby [46] later proved that the 

ensemble error can be divided into a term measuring the average generalization error of 

each individual classifier and a term measuring the disagreement among the classifiers.  

They formally showed that an ideal ensemble consists of highly correct classifiers that 

disagree as much as possible.  Other researchers [61] have empirically verified that such 

ensembles generalize well. 

 

As a result, methods for creating ensembles center around producing classifiers that 

disagree on their predictions.  Generally, these methods focus on altering the training 

process in the hope that the resulting classifiers will produce different predictions.  For 

example, neural network techniques that have been employed include methods for 

training with different topologies, different initial weights, different parameters, and 

training only on a portion of the training set.  The remainder of [61] focuses on two 

methods (Bagging and Boosting) that try to generate disagreement among the classifiers 

by altering the training set each classifier sees. 

 

Bagging is a bootstrap ensemble method that creates individuals for its ensemble by 

training each classifier on a random redistribution of the training set.  Each classifier's 

training set is generated by randomly drawing, with replacement, N examples, where N is 

the size of the original training set.  Many of the original examples may be repeated in the 

resulting training set while others may be left out.  Each individual classifier in the 

ensemble is generated with a different random sampling of the training set. 
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Boosting encompasses a family of methods.  The focus of these methods is to produce a 

series of classifiers.  The training set used for each member of the series is chosen based 

on the performance of the earlier classifier(s) in the series.  In Boosting, examples that 

are incorrectly predicted by previous classifiers in the series are chosen more often than 

examples that were correctly predicted.  Thus Boosting attempts to produce new 

classifiers that are better able to predict examples for which the current ensemble's 

performance is poor.  (Note that in Bagging, the resampling of the training set is not 

dependent on the performance of the earlier classifiers.) 

 

In [61], the authors also examine two new forms of Boosting: Arcing and Ada-Boosting.  

Like Bagging, Arcing chooses a training set of size N for classifier number K+1 by 

probabilistically selecting (with replacement) examples from the original N training 

examples.  Unlike Bagging, the probability of selecting an example is not equal across 

the training set.  This probability depends on how often that example was misclassified 

by the previous K classifiers.  Ada-Boosting uses either the approach of (a) selecting a set 

of examples based on the probabilities of the examples, or (b) simply using all of the 

examples and weight the error of each example by the probability for that example (i.e., 

examples with higher probabilities have more effect on the error).  This latter approach 

has the clear advantage that each example is incorporated (at least in part) in the training 

set.  This form of Ada-Boosting can be viewed as a form of additive modeling for 

optimizing a logistic loss function.  In this paper, the authors have chosen to use the 

approach of subsampling the data to ensure a fair empirical comparison (in part due to the 

restarting reason discussed below). 
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Both Arcing and Ada-Boosting initially set the probability of picking each example to be 

1/N.  These methods then recalculate these probabilities after each trained classifier is 

added to the ensemble.  For Ada-Boosting, Ek is the sum of the probabilities of the 

misclassified instances for the currently trained classifier Ck.  The probabilities for the 

next trial are generated by multiplying the probabilities of Ck 's incorrectly classified 

instances by the factor Bk = (1 - Ek)/Ek and then renormalizing all probabilities so that 

their sum equals 1.  Ada-Boosting combines the classifiers C1, ... ,Ck using weighted 

voting where Ck has weight log(Bk).  These weights allow Ada-Boosting to discount the 

predictions of classifiers that are not very accurate on the overall problem. 

 

In this paper, the authors use a revision where all the weights are reset to 0 to be equal 

and restart if either Ek is not less than 0.5 or Ek becomes 0.1.  By resetting the weights 

they do not disadvantage the Ada-Boosting learner in those cases where it reaches these 

values of Ek.  The Ada-Boosting learner always incorporates the same number of 

classifiers as other methods we tested.  To make this feasible, they use the approach of 

selecting a data set probabilistically rather than weighting the examples, otherwise a 

deterministic method such as C4.5 would cycle and generate duplicate members of the 

ensemble.  That is, resetting the weights to 1/N would cause the learner to repeat the 

decision tree learned as the first member of the ensemble, and this would lead to 

reweighting the data set the same as for the second member of the ensemble, and so on.  

Randomly selecting examples for the data set based on the example probabilities 

alleviates this problem. 
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Arcing started out as a simple way for evaluating the effect of Boosting methods where 

the resulting classifiers were combined without weighting the votes.  Arcing uses a 

simple mechanism for determining the probabilities of including examples in the training 

set.  For the ith example in the training set, the value mi refers to the number of times that 

example was misclassified by the previous K classifiers.  The probability pi for selecting 

example i to be part of classifier K+1's training set is defined as the value of the power 

empirically after trying several different values. 

 

The paper gives the following sample of how Bagging and Boosting might work on a 

imaginary set of data.  Since Bagging resamples the training set with replacement, some 

instance are represented multiple times while others are left out.  So Bagging's training 

set 1 might contain examples 3 and 7 twice, but does not contain either example 4 or 5.  

As a result, the classifier trained on training set 1 might obtain a higher test-set error than 

the classifier using all of the data.  In fact, all four of Bagging's component classifiers 

could result in higher test set error; however, when combined, these four classifiers can 

(and often do) produce test set error lower than that of the single classifier (the diversity 

among these classifiers generally compensates for the increase in error rate of any 

individual classifier). 
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Figure 3-7.  Hypothetical runs of Bagging and Boosting [61] 

 

Figure 3-7 shows hypothetical runs of Bagging and Boosting algorithms.  Assume there 

are eight training examples.  Assume example 1 is an outlier and is hard for the 

component learning algorithm to classify correctly.  With Bagging, each training set is an 

independent sample of the data; thus, some examples are missing and others occur 

multiple times.  The Boosting training sets are also samples of the original data set, but 

the ``hard'' example (example 1) occurs more in later training sets since Boosting 

concentrates on correctly predicting it. 

 

The authors draw several conclusions from their analysis.  The first is that a Bagging 

ensemble generally produces a classifier that is more accurate than a standard classifier.  

For Boosting, however, they note more widely varying results.  For a few data sets 

Boosting produced dramatic reductions in error (even compared to Bagging), but for 

other data sets it actually increases in error over a single classifier (particularly with 
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neural networks).  In further tests they examined the effects of noise and determined that 

Boosting's sensitivity to noise may be partly responsible for its occasional increase in 

error. 

 

Their results also show that the ensemble methods are generally consistent (in terms of 

their effect on accuracy) when applied either to neural networks or to decision trees.  

However, there is little inter-correlation between neural networks and decision trees 

except for the Boosting methods.  This suggests that some of the increases produced by 

Boosting are dependent on the particular characteristics of the data set rather than on the 

component classifier.  In further tests they demonstrated that Bagging is more resilient to 

noise than Boosting.  

 

The authors also investigated how many component classifiers should be used in an 

ensemble.  Consistent with previous research, their results show that most of the 

reduction in error for ensemble methods occurs with the first few additional classifiers.  

With Boosting decision trees, however, relatively large gains may be seen up until about 

25 classifiers. 

 

3.2.6  Fuzzy Logic 

Fuzzy logic [42] was developed to handle problems which have incomplete, imprecise, 

vague or uncertain information inherent in the problem statement.  These problems 

involve data which are at times best described by linguistic terms rather than numbers.  

As an example, a hospital describes patients’ conditions as good, fair, serious, poor, etc.  
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The problem is: describing in an absolute sense these terms which are not precisely 

defined, and contain a significant element of subjectivity. 

 

The originator of fuzzy logic, Zadeh [98], proposed the following approach to deal with 

the above problem; in particular, dealing with linguistic variables.  He defined a fuzzy set 

as a set which allows for an object to be a member of a set to some degree.  This is unlike 

classical set theory, which only allows for an object to be either a member of the set or 

excluded from the set.  This “black and white” characterization, in many applications, is 

unsatisfactory.  As an example, consider the set that describes all males who are tall as 

those whose height is greater than or equal to 5'8".  Then a 6'0" male is a member of the 

set.  However, a male whose height is 5'7" is not a member of the set.  This implies that a 

man who is 1" shorter than a tall man is not tall.  By the same token this approach does 

not differentiate between members.  An individual who is 7'6" and an individual who is 

6'1" are both “equal” members of the set “tall”.  Information about relative sizes has been 

lost once members have been conglomerated into a set. 

 

Fuzzy sets differ from classical sets in that they allow for an object to be a partial 

member of a set.  This approach can preserve relative sizing information.  The 

relationship is defined by a membership function.  For any fuzzy set A the function 

represents the membership function for which µA(x) indicates the degree of membership 

that x, of the universal set X, belongs to set A and is, usually, expressed as a number 

between 0 and 1: 

 µA(x): X → [0, 1] (3-8) 
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These sets can be either discrete or continuous.  The “degree of membership” represented 

by the value between zero and one can be arbitrarily selected by the user or assigned 

according to some scale.  For example if Jack is 6'3", one can arbitrarily decide that Jack 

is a member of the set “tall” to degree 0.8.  Alternatively, a scale could be used which 

relates all members’ heights to that of the tallest person in the set. 

 

To formalize the idea conveyed by classifying set members in different ways, Zadeh [97] 

later proposed fuzzy sets of type 2.  Here, the membership grades themselves are fuzzy 

sets.  A fuzzy set A of type 2 in a set X is the fuzzy set characterized by the fuzzy 

membership function as: 

 µA: X → [0, 1][0, 1] (3-9) 

where µA is known as a fuzzy grade, a fuzzy set in [0,1].  Mizumoto and Tanaka [58] 

discuss the properties of these sets and give the example of the set X = [Susie, Helen, 

Ruth, Pat] and A is the fuzzy set of beautiful women in X: 

 

 A=beauty={middle/Susie + low/Helen + very high/Ruth + high/Pat} (3-10) 

 

where middle, low and high are fuzzy sets.  As an example, instead of saying Helen is 

“beautiful to degree 0.3”, she is “beautiful to degree ‘low’”, thus associating a fuzzy set 

as opposed to a specific value.  These fuzzy sets of type 2 allow for classifications of 

members of a fuzzy set with another fuzzy set. 
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The goal behind defining fuzzy sets (besides usefully describing imprecise, incomplete or 

vague information) is to use them to make inferences about a particular real-life problem 

which cannot be easily addressed using conventional mathematical models.  The 

construction of a Fuzzy Information System (FIS) begins with determining the fuzzy sets 

that describe the problem.  Continuing with a medical example, these may involve 

various qualitative measurements about a patient (low temperature, serious fracture, fair 

condition) which ultimately will lead to a diagnosis and then a treatment plan.  Then the 

rules describing how these fuzzy sets interact are determined.  These rules usually have 

an IF....THEN.... nature.  The rules are then combined in some way.  This process is 

referred to as rule composition.  Finally, conclusions have to be drawn in a process 

known as defuzzification.  The answer to the problem is typically found as a fuzzy set, 

and the answer needs to be “defuzzified” to provide a clear, unambiguous course of 

action. 

 

Fuzzy logic is often used in conjunction with artificial neural networks (ANNs).  The 

neural nets are used to aid in the development of FISs.  As Takagi and Hayashi [89] point 

out, fuzzy reasoning presents particular problems:  

 

   1.  the lack of a definite method for determining the membership function;  

   2.  the lack of a learning function. 

 

They then go on to describe an approach for using ANNs to overcome these problems.  

The method is to investigate if-then rules by using neural networks to determine the 
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membership functions of the antecedent and then determine the consequent component as 

the output for each rule.  The approach they use is to take raw data (say, in a control 

problem), apply a conventional clustering algorithm to group the data into clusters and to 

apply an ANN to this clustered data to determine the membership of a pattern within 

particular fuzzy sets.  

 

The authors apply this approach to two real-world problems - estimation of chemical 

oxygen demand density in Osaka Bay and the estimation of the roughness of a ceramic 

surface.  Their method in both cases out-performed more conventional methods.  This 

combination of neural networks and fuzzy reasoning does allow for automatic generation 

of µ in certain applications. 

 

As has previously been stated, finding a solution to a fuzzy logic problem requires 

defuzzification.  There are various techniques available.  Lee [48] describes the three 

main approaches as the max criterion, mean of maximum and the center of area (most 

common).  The max criterion method finds the point at which the membership function is 

a maximum.  The mean of maximum takes the mean of those points where the 

membership function is at a maximum.  The most common method is the center of area 

method which finds the center of gravity of the solution fuzzy sets.  Lee states, 

"Unfortunately, there is no systematic procedure for choosing a defuzzification strategy.''  

Although the process of reducing the final fuzzy set to a crisp value does seem 

appropriate for control problems much information is lost by doing this and further work 

needs to be done on how to use the information available in the solution fuzzy set. 
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In the main, the approaches adopted in fuzzy logic problems have been very domain 

specific, not applied to large complex problems and the evaluation of the efficacy of their 

approach is often not systematic enough for conclusions to be drawn.  Determining the 

membership functions, the rules, the operators and the defuzzification strategy is a 

difficult task that requires a good deal of effort before it can be said that any particular 

system is the optimal fuzzy system for that particular application. 

 

3.2.7  Summary of Other Methods 

The most common methods in the literature at present for analyzing system data are 

variations of neural network and/or fuzzy logic techniques.  However, there are a number 

of other techniques which can be used to analyze system data.  Some of these methods 

are summarized in a table in the appendix for chapter 3. 
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IV.  Mathematical Programming Model 

 
4.1  Model Development 

A prognostics system, at an abstract level, is composed of two parts.  The first part 

consists of sensors which are attached to various parts of a mechanical, electrical, or other 

kind of system, and report the system data.  The second part is a reasoning function 

which interprets this data to provide an assessment of current and future system health.  

This section develops a mathematical model of the former part to determine a “best”, 

latter reasoning function configuration.  The objective function calculation approach is 

present in the next chapter. 

 

Different types of models can be used to represent a particular system.  For the purposes 

of this discussion, a model which emphasizes a system’s components and subcomponents 

is used. 

 
Figure 4-1.  Different levels of detail for modeling a system 

 

Figure 4-1 shows three different possible levels of detail for modeling a system.  A 

system can be modeled at a component level, as shown in the left side of Figure 4-1.  In 
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the middle of Figure 4-1 is a system in which components are divided into 

subcomponents.  This model will be the focus of this discussion, and will be used to 

model a notional prognostics system.  The right-hand side of Figure 4-1 shows a system 

model where the subcomponents are further decomposed into sub-subcomponents.  This 

level of abstraction can continue for any number of levels to the required level of detail. 

 

 
Figure 4-2.  A pictorial representation of a simple system 

 

Figure 4-2 shows a simple, generalized system.  This simple system consists of one 

component and two subcomponents.  Each subcomponent may have up to two sensors 

attached, each providing information to a classifier.  The classifier then determines the 

subcomponent state based on the sensor information.  The reasoner combines all the 

information from the classifiers and makes a final determination about the system state.  
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The reasoner also serves as the interface between the system and the human operators.  

The challenge is determining whether all sensors are needed or whether there is a 

sufficient subset of sensors.  A mathematical model can help answer the challenge. 

 

For the purposes of this representation, a component is considered an abstract grouping of 

less complicated, smaller substructures.  These substructures are represented as 

subcomponents in Figure 4-2.  As an example, an aircraft engine may be considered as a 

component.  One subcomponent might be the fuel delivery and ignition system; another 

subcomponent might be the turbine blades and the associated control mechanism.  Of 

course, these definitions of component and subcomponent can be applied to any desired 

system at any level, depending on the level of detail/complexity/aggregation required for 

a particular application. 

 

The following assumptions underlying the subsequent mathematical formulation are in 

keeping with a general philosophy of the prognostics community at the present time.  In 

this particular model, all the subcomponents are considered critical parts of the system 

component.  If any subcomponent fails, the parent component and the system will also 

fail.  System parts which are not critical to component/system functionality are not 

addressed with this model.  A specific term used to describe this principle is “Failure 

Mode and Effects Criticality Analysis” (FMECA) [12].  FMECA analysis is concerned 

solely with different system failure modes, as opposed to system operations which may 

be aberrant, but do not affect system operation or induce system failure modes.  In the 

FMECA, the system’s different failure modes are ranked according to severity, likelihood 
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of occurrence, and observability.  For each failure mode, a group of system experts 

determines preliminary symptoms (if any), and which system sensors would be useful in 

detecting these symptoms.  System modes/conditions which do not significantly affect 

the operation of the system are not considered in the FMECA [9]. 

 

Logan, et al [50], [51] recommend a similar modeling approach.  They use the 

engineering knowledge of domain experts to construct a diagnostic knowledge base 

suitable for neural network training.  They call their approach a comprehensive “Failure 

Mode and Effects Analysis” (FMEA) on the appropriate mechanical system.  Like the 

FMECA, a FMEA provides a comprehensive listing of probable failure modes of all 

“major” mechanical system components, where “major” is defined as the level of detail 

appropriate for that particular system.  This information is obtained from interviews with 

engineering crews and maintenance personnel.  Technical orders are also reviewed to 

ensure the information is correct and complete.  The review also includes information on 

all available sensor measurements, and identifies the fault/symptom relationships 

required for an effective monitoring program.  Similar to the FMECA approach, non-

failure modes are not considered. 

 

In Figure 4-2, each of the two subcomponents have potentially two sensors.  These 

sensors represent the collection and reporting of appropriate information about the 

specific part of the subcomponent they are monitoring.  Typically, the sensors are 

assigned to collect a specific type of phenomenology from the subcomponent.  These 

phenomenologies may include pressure, temperature, vibration, and electrical current.  
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Returning to the preceding example of an aircraft engine, if one subcomponent represents 

the fuel delivery and ignition system, one sensor may monitor the pressure within the fuel 

delivery system, and the other sensor may record the timing and strength of the spark (the 

electrical current) the ignition system produces. 

 

The sensors’ collected data are sent to the classifier functions.  The classifier checks the 

reported data to ensure the sensor is functioning correctly, processes the raw signal data, 

and then uses this processed data to assess the current subcomponent state and predict the 

future subcomponent state.  The reasoner accumulates these assessments and predictions 

from the classifiers, and uses them to assess the current system state and predict the 

future system state.  (Correctly functioning sensors send two data streams to the 

classifier.  The main data stream is the subcomponent data.  The second data stream 

verifies the sensor’s functionality.  A correctly functioning sensor sends a specific bit 

every xth bit interspersed with the main data stream to verify the sensor is functioning 

correctly.  If the classifier does not receive this specific bit, it will disregard the incoming 

data stream until it again receives this bit from the sensor.)  The methods the classifier 

may use to interpret the processed data can be quite varied.  These methods can range 

from mathematical techniques such as neural nets and Bayesian networks to case-base 

reasoning and/or expert systems, or any combination of techniques. 

 

The analytical tool used in the model represented in Figure 4-2 represents is the Receiver 

Operating Characteristic (ROC) curve.  A ROC curve is the graph of a relation which 

summarizes the range of performance of a particular signal detection algorithm.  The 
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signal algorithm is designed to detect a particular signal of interest among other signals 

which may serve to mask the signature of the desired signal.  A ROC curve typically 

compares the classifier’s signal of interest detection rate to the classifier’s false alarm rate 

(reporting a signal of interest when that signal has not actually occurred).  ROC curves 

are commonly used to describe the performance of imperfect diagnostic systems, 

especially in the fields of automatic target recognition and biomedical research [5]. 

 

In the models considered here, each system will typically have more than one component, 

each component will typically have more than one subcomponent, and each 

subcomponent will typically have more than one sensor/classifier pair.  For a given 

subcomponent, all possible sensors of the appropriate type (pressure, temperature, etc.) 

are possible candidates.  As before, every subcomponent is assumed critical for system 

operation.  Further, each subcomponent of a particular system is assumed to have at least 

one sensor attached to it (the mathematical formulation will explicitly enforce this 

structural requirement). 
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Figure 4-3.  A pictorial representation of a system with multiple components 

 

Figure 4-3 expands the model structure found in Figure 4-2.  There are now two 

components, each with two critical subcomponents, and each subcomponent has multiple 

candidate sensors. 

 

In an ideal environment all sensors are included in a system.  However, weight, space, 

and data processing limitations prohibit such a configuration in actual systems.  Thus, 

expert judgment may be used to pick a subset of sensors.  Mathematical modeling 

provides a means to improve upon expert judgment to prescribe some best subset of 

sensor/classifier pairs to include in a system.  The next section develops a mathematical 
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formulation to accomplish this task.  This formulation uses the model structure presented 

in Figure 4-2 as a basis. 

 

4.2 Formulation 

A mathematical programming formulation is used for selecting an optimally sized sensor 

set.  Let M denote the number of sensors available for use, and define SSSS = {A1, A2, …, 

AM) to be the set of sensors available.  Define AAAA = {S: S is a non-empty subset of 

sensors of SSSS}, and note that AAAA is the power set of SSSS, excluding the empty set, denoted as 

A A A A = P(SSSS) - ∅ .  Note that card(AAAA) = 2M – 1, that is, there are 2M – 1 different sets in AAAA.  

Let Si ∈  AAAA, i = 1, 2, … 2M – 1 be an enumeration of AAAA. 

 

Each sensor has its own classifier.  The terminology Ai is understood to refer to any 

specific sensor-classifier pair.  For a set Si ∈  AAAA containing more than one sensor, a fusion 

rule R will be used to fuse the classifiers for each sensor into a single classifier.  This 

activity will be denoted as R:AAAA → GGGG
RRRR
(S),  

where GGGG
RRRR
(S) = {A1, A2, …, AM, R(A1, A2,), …, R(A1, A2, …, AM)} 

           = {R(S) | Si ∈  AAAA}. 

The set GGGG
RRRR
(S) contains all the fused classifiers for each Si ∈  A.A.A.A.  Note that ensembles 

consisting of a single sensor-classifier pair do not undergo fusion since the ensemble 

already has a single classifier. 
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This paragraph defines the variables and constants found in the formulation below.  The 

objective is to find a sufficient sensor/classifier subset for the given system.  Thus, the 

objective function value PTP is the probability of obtaining a true positive (the prognostics 

system indicates a system failure when the system has actually failed).  The variable PFP 

is the probability of obtaining a false positive (the prognostics system indicates a system 

failure when the system has not failed).  The value PFP
* is defined as the maximum 

acceptable PFP for any ensemble.  The value of PTP depends on Fi, a probability function 

that depends a particular ensemble Si ∈  AAAA, and PFP.  The evaluation of PTP is developed 

in Chapter 5.  The variable c
smd  is an indicator variable that is 1 if the mth sensor is 

retained for the sth subcomponent on the cth component, and 0 otherwise.  The variable 

c
smc  is the cost of employing the mth sensor on the sth subcomponent on the cth 

component.  This fixed cost is assumed to be independent of the other sensors in the 

ensemble.  The variable c
sSC  denotes the maximum number of sensors considered for the 

sth subcomponent of the cth component.  The parameter SCc is the number of 

subcomponents present on the cth component.  The parameters ci
FP and ci

FN denote the 

cost of an erroneous prognostics system reading associated with the ith ensemble Si ∈  AAAA, 

i = 1, 2, … 2M – 1.  The errors are defined as follows:  either the system indicates a fault 

when no fault is present (cost denoted by ci
FP), or fails to indicate a fault when a fault is 

present (cost denoted by ci
FN).  The constant c

EB  is the budget (maximum allowable cost) 

for the costs of retaining a given sensor ensemble on the cth component.  The constant BO 

is the budget (maximum allowable cost) for the sensor errors.  The mixed-integer 

nonlinear programming (MINLP) formulation is then given by 
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F(PFP
*) ≡ max PTP(A)  (4-1) 

                            A ∈  GGGGR(S) 

subject to PFP(A) ≤ PFP
* 

(structural constraints—there are SC = ∑
=

C

c 1

cSC  of these constraints, one for each 

component.) 

 ∑
=

≥
c
sSC

m

c
smd

1

1  c = 1, …, C; s = 1, …, SCc 

     c
smd  = 









otherwise 0

componentcth  ofcomponent -sub

sthon  retainedsensor mth  if 1

 

 

(employment cost constraints—there are C of these constraints, where C is the number of 

components) 

 c
E

SC

m

c
sm

c
sm

SC

s

c
s

c

cd Β≤∑∑
== 11

 c = 1, …, C 

 

(operational cost constraint) 

  ci
FP + ci

FN ≤ BO Si ∈  AAAA   

 
0 ≤ PFP ≤ PFP

* ≤ 1 

c
smd  ∈  {0, 1}    c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC  

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈  AAAA; c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC  

 

This formulation accommodates two key requirements associated with this general 

problem.  The first requirement is to consider all appropriate sensor ensembles for a 

given system (not necessarily all possible ensembles).  This requirement is met with the 

employment cost and structural constraints.  The employment cost constraint ensures that 
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budget associated with a particular sensor ensemble is not exceeded, and the structural 

constraint ensures that each critical subcomponent is assigned at least one sensor.  The 

second requirement is to ensure a given sensor ensemble does not exceed the maximum 

allowable error rate.  The operational cost constraint ensures this requirement is met.  

There is more discussion of the operational cost constraint in section 4.5. 

 

This formulation apportions employment costs to specific system components (recall that 

employment cost does not refer just to the actual monetary expense).  Size, power, 

weight, and similar constraints are likely to be different for any given system component.  

Accordingly, this formulation enforces a specific budget for each component. 

 

4.3  Towards a Heuristic Solution Procedure: Subset Generation 

This section details a methodology for partitioning the solution space, and indexing the 

possible solutions in the resulting subspaces.  A subset ordering method is presented to 

ensure each subset Si∈  AAAA is considered during the solution process. 

 

If there are M defined sensors, there are 2M – 1 possible sensor combinations containing 

at least one sensor within the system (the trivial case of an empty ensemble is omitted).  

There are also M different sensor ensemble sizes, ranging from one sensor throughout the 

system, to all M sensors employed.  Formulation (4-1) can then be partitioned into M 

subproblems, one partition for each sensor ensemble size, in order to conveniently 

enumerate the solution space, and to partition the solution space into more manageable 

subspaces.  Define an index j as the number of sensors contained in a particular partition 
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(j= 1 to M).  Each of the j partitions contains MCj possible solutions, where nCk = 







k

n
.  

More formally, this can be expressed as 

    AAAA
jjjj
 = {S: S ≠ ∅ , card(S) = j}  j = 1,…, M. (4-3) 

AAAA
jjjj
 ⊂  AAAA is the set of sets corresponding to the partition consisting of j sensors selected 

among the M sensors available.  Note that card(AAAA
jjjj
) = MCj and AAAA = U

M

j 1=

AAAAj. 

 

4.3.1  Subset Ordering 

A logical ordering of all the sensor ensembles allows for a quick and thorough evaluation 

of the solution space.  To this end, this section develops a notation for tracking each 

ensemble, and presents two different ordering methods. 

 

Each particular ensemble in AAAA can be given a unique index.  One indexing scheme is a 

natural indexing scheme defined as follows.  Recall j= 1 to M (sensors).  When the index 

j is equal to 1, the M ensemble sensor sets are each of size 1, and so are indexed from 1 to 

M.  When the index j is equal to 2, the MC2 ensemble sensor sets are of size 2, and i is 

indexed as 

 i = M + 1, M + 2, …, M + MC2. (4-4) 

When the index j is equal to 3, the MC3 ensemble sensor sets are of size 3, and i is indexed 

as 

 i = M +1 + MC2, M + 2 + MC2, …, M + MC2 + MC3. (4-5) 
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In general, when the index j is equal to n, where M > n ≥ 3, the ensemble sensor sets are 

of size n, with i is indexed as MCk-1 

 i = M + 1 + ∑
=

n

k 3
kM C , M + 2 + ∑

=

n

k 3
kM C , M + ∑

+

=

1

3
kM C

n

k

. (4-6) 

 

The natural ordering sequence is completed by maintaining a lexicographic order within 

any Si.  A natural ordering sequence is a particular lexicographical method that orders all 

subsets of a given set according to the number of items in the subset, from the smallest 

number of items to the largest.  This ordering allows for the potential elimination of all 

sensor subsets of the same size. 

 

Table 4-1.  “Natural” sequence for a set of 6 sensors 

Index
Sensor 

Ensemble
1 s1
2 s2
3 s3
4 s4
5 s5
6 s6
7 s1s2
8 s1s3
9 s1s4

10 s1s5
11 s1s6
12 s2s3
13 s2s4
14 s2s5
15 s2s6
16 s3s4
17 s3s5
18 s3s6
19 s4s5
20 s4s6
21 s5s6

Index
Sensor 

Ensemble
22 s1s2s3
23 s1s2s4
24 s1s2s5
25 s1s2s6
26 s1s3s4
27 s1s3s5
28 s1s3s6
29 s1s4s5
30 s1s4s6
31 s1s5s6
32 s2s3s4
33 s2s3s5
34 s2s3s6
35 s2s4s5
36 s2s4s6
37 s2s5s6
38 s3s4s5
39 s3s4s6
40 s3s5s6
41 s4s5s6
42 s1s2s3s4

Index
Sensor 

Ensemble
43 s1s2s3s5
44 s1s2s3s6
45 s1s2s4s5
46 s1s2s4s6
47 s1s2s5s6
48 s1s3s4s5
49 s1s3s4s6
50 s1s3s5s6
51 s1s4s5s6
52 s2s3s4s5
53 s2s3s4s6
54 s2s3s5s6
55 s2s4s5s6
56 s3s4s5s6
57 s1s2s3s4s5
58 s1s2s3s4s6
59 s1s2s3s5s6
60 s1s2s4s5s6
61 s1s3s4s5s6
62 s2s3s4s5s6
63 s1s2s3s4s5s6
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Table 4-1 shows a natural ordering for a system with six sensors.  As the table shows, 

sensor subsets of the same size are grouped together. 

 

There are other subset ordering methods.  According to the paper by Furnival and Wilson 

[34], a lexicographic ordering method would look like the ordering depicted in Table 4-2.  

This ordering method groups the subsets by sensors-the first grouping of subsets all 

contain sensor 1, the next grouping contains sensor 2, and so forth.  In their paper, 

Furnival and Wilson include FORTRAN code to generate these different subset 

orderings.  Their code has been modified to generate the natural ordering sequence for up 

to nine sensors.  Other sources also present these ordering techniques as ways to codify a 

number of different subsets [92], [23]. 
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Table 4-2.  “Lexicographic” sequence for a set of 6 sensors 

 

The natural ordering scheme is used for this presentation.  In the natural ordering scheme, 

within each sensor size, the ensembles are ordered from the smallest number to the 

largest number. 

 

This methodology is used in the appendix to develop a methodology to quickly reduce 

the size of the solution space that must be searched, if certain conditions about the system 

and its operation hold. 

Index
Sensor 

Ensemble Index
Sensor 

Ensemble Index
Sensor 

Ensemble
1 s1 22 s1s3s4s6 43 s2s4s5
2 s1s2 23 s1s3s5 44 s2s4s5s6
3 s1s2s3 24 s1s3s5s6 45 s2s4s6
4 s1s2s3s4 25 s1s3s6 46 s2s5
5 s1s2s3s4s5 26 s1s4 47 s2s5s6
6 s1s2s3s4s5s6 27 s1s4s5 48 s2s6
7 s1s2s3s4s6 28 s1s4s5s6 49 s3
8 s1s2s3s5s6 29 s1s4s6 50 s3s4
9 s1s2s3s5 30 s1s5 51 s3s4s5

10 s1s2s3s6 31 s1s5s6 52 s3s4s5s6
11 s1s2s4 32 s1s6 53 s3s4s6
12 s1s2s4s5 33 s2 54 s3s5
13 s1s2s4s5s6 34 s2s3 55 s3s5s6
14 s1s2s4s6 35 s2s3s4 56 s3s6
15 s1s2s5 36 s2s3s4s5 57 s4
16 s1s2s5s6 37 s2s3s4s5s6 58 s4s5
17 s1s2s6 38 s2s3s4s6 59 s4s5s6
18 s1s3 39 s2s3s5 60 s4s6
19 s1s3s4 40 s2s3s5s6 61 s5
20 s1s3s4s5 41 s2s3s6 62 s5s6
21 s1s3s4s5s6 42 s2s4 63 s6
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4.4  A Sample Formulation Example 

This section illustrates the mathematical formulation with an example.  The development 

of the solution computation techniques is presented in Chapter V. 

 

 
Figure 4.4.  Figure 4.3 reproduced for clarity 

 

In this example, there are nine sensors and corresponding classifiers (M), four critical 

subcomponents (SC), and two system components (C).  The specific formulation is: 
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F(PFP
*) ≡ max PTP(A)  (4-7) 

                            A ∈  GGGGR(S) 

subject to PFP(A) ≤ PFP
* 

(structural constraints) 

 PFP(R(S)) ≤ p 

 ∑
=

≥
ASC

m

A
smd

1

1

1  A
1SC  = 2 

 ∑
=

≥
ASC

m

A
smd

2

1

1  A
2SC  = 2 

 ∑
=

≥
BSC

m

B
smd

1

1

1  B
1SC  = 2 

 ∑
=

≥
BSC

m

B
smd

2

1

1  B
2SC  = 3 

     c
smd  = 









otherwise 0

componentcth  ofcomponent -sub

sthon  retainedsensor mth  if 1

 

 

(employment cost constraints) 

 A
E

SC

m

A
sm

A
sm

SC

s

A
s

A

cd Β≤∑∑
== 11

  

 B
E

SC

m

B
sm

B
sm

SC

s

B
s

B

cd Β≤∑∑
== 11

  

 

(operational cost constraint) 

  ci
FP + ci

FN ≤ BO Si ∈  AAAA   

 
0 ≤ PFP ≤ PFP

* ≤ 1 

c
smd  ∈  {0, 1}    c = 1, 2; s = 1, …, SCc; m = 1, …, c

sSC  

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈  AAAA; c = 1, 2; s = 1, …, SCc; m = 1, …, c

sSC  
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Note that there are two employment cost constraints corresponding to the two system 

components, and there are four structural constraints, corresponding to the four critical 

system subcomponents.  The operational cost constraint remains the same.  Assume that 

each Si ∈  AAAA is indexed in natural order. 

 

4.5  A Possible Modification to The Operational Cost Constraint 

The formulation presented in section 4.2 is time independent.  It may be useful for a 

particular system to model time in the operational cost constraint.  This section builds a 

methodology to accommodate that capability. 

 

There are four possible outcomes for the prognostic system’s assessment of the data 

stream.  These outcomes are summarized in the table below. 

Table 4-3.  Summary of sensor readings and their associated probabilities 
Sensor Report 

Reality (Truth) 
No Fault (N readings) Fault (n readings) 

No Fault True Negative (PTN) 
False Positive (PFP) 

Cost ci
FP 

Fault 
False Negative (PFN) 

Cost ci
FN 

True Positive (PTP) 

 

• PTN is the probability that the prognostics system does not report a fault when no 

fault is present. 

• PFP is the probability that the prognostics system reports a fault when a fault is not 

present.  The cost of this event is ci
FP

. 
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• PFN is the probability that the prognostics system does not a report a fault when 

one is actually present.  The cost of this event is ci
FN. 

• PTP is the probability that the prognostics system reports a fault when one is 

actually present. 

 

The ci
FP and ci

FN costs may be more appropriately expressed as a function of PFP and PFN, 

respectively.  The larger PFP and PFN, the more often the cost will be incurred.  However, 

the idea of “often” introduces a time element into the formulation.  Let N be the total 

number of no-fault readings for a given time period, and let n be the number of fault 

readings for the same time period.  Let the total number of readings be represented by T = 

N + n.  Then the quantities N and n can be considered the expected number of “no fault” 

and “fault” readings, respectively, per T trials. 

 

Estimates for the number of failure readings which might occur during a given sortie can 

be obtained from Mean Time Between Failures (MTBF) information.  MTBF is the 

number of time units (usually hours) that pass before a component, assembly, or system 

fails.  It is a measure of hardware product or component reliability, and is a commonly-

used variable in reliability and maintainability analyses.  The MTBF for a particular 

component can be used to determine estimates for N and n, given the rate at which 

system readings are collected.  Let tT denote the system reading rate and S be the length 

in time of the sortie.  Then 

 T =  St T  (4-8) 
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 n = 




MTBF

S
 (4-9) 

and 

 N = 





MTBF

S
 - T  (4-10) 

As a specific example, assume a 20 hour sortie (S), a system reading (tT) every second, 

and an MTBF of 10 hours.  Then T = 72,000, N = 71,998, and n = 2. 

 

The modified form of the operational cost constraint would be: 

 PFPnci
FP + PFNNci

FN ≤ BO (4-11) 

 

4.6  A More General Formulation 

The formulation presented in section 4.2 apportions employment costs among the 

different system components.  The underlying rationale is that size, power, weight, and 

similar constraints are likely to be different for any given system component.  However, 

there are parts of the cost of employing a sensor ensemble that might be freely transferred 

among system components, such as monetary costs.  Additionally, there may be system 

components where size, power, weight, and similar constraints are not limiting factors.  

Here, the employment cost constraint is relaxed to allow for an overall system budget. 

The new formulation is given by 
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F(PFP
*) ≡ max PTP(A)  (4-11) 

                            A ∈  GGGGR(S) 

subject to PFP(A) ≤ PFP
* 

(structural constraint--there are SC of these constraints, where SC is the number of 

subcomponents) 

 ∑
=

≥
c
sSC

m

c
smd

1

1  c = 1, …, C; s = 1, …, SCc; m = 1, …, c
sSC  

     c
smd  = 









otherwise 0

componentcth  ofcomponent -sub

sthon  retainedsensor mth  if 1

 

 

(employment cost constraint—there is now only one constraint) 

 E

SC

m

c
sm

c
sm

SC

s

s

cd Β≤∑∑
== 11

 s = 1, …, SCc; m = 1, …, c
sSC  

 

(operational cost constraint) 

  ci
FP + ci

FN ≤ BO Si ∈  AAAA   

 
0 ≤ PFP ≤ PFP

* ≤ 1 

c
smd  ∈  {0, 1}    c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC  

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈  AAAA; c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC  

Note that only the employment cost constraint was modified from the general 

formulation.  The solution details are presented in Chapter V. 
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V.  Fusion Rule Assessment 

 

5.1  Fusion Rule Definitions 

Given a system like that shown below in Figure 5-1, the objective is to find the optimum 

allocation of sensors that provides the “best” ROC curve for determining the system 

status.  This notion of a “best” ROC curve is developed in a later section.  The ROC 

curve for each classifier under consideration is assumed to be known for the discussion 

that follows. 

 

 
Figure 5-1.  Graphic showing the terms for the different fusion operations 
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Figure 5-1 shows the terminology developed for each fusion method.  The ROC curves 

associated with each classifier need to be combined to provide a single ROC curve 

associated with the subcomponent.  This first fusion method will be called within fusion.  

The within fusion method creates a ROC curve for each subcomponent that has multiple 

(or redundant) sensors, although a subcomponent does not necessarily require multiple 

(or redundant) sensors.  The ROC curves for the subcomponents (whether they have 

multiple sensors or not) will be called within ROC curves. 

 

The ROC curves associated with each subcomponent need to be combined to provide a 

single ROC curve associated with their common component.  This second fusion method 

will be called across fusion.  The across fusion method is used to combine within ROC 

curves.  The across fusion method creates a ROC curve for each system component.  (A 

component does not necessarily have to have multiple subcomponents).  The ROC curves 

resulting from this operation will be called across ROC curves.  Each of these two fusion 

methods (within and across) is described in detail in the next section. 

 

5.2  Fusion Methods 

At the lowest level of system decomposition (the subcomponent level in this model), 

there are a significant number of options for sensor allocation, even on a single 

subcomponent.  To accurately categorize the current and future states of a particular 

system, sensors must be appropriately placed on all subcomponents.  As a reminder, 

referring back to Figure 5-1, all subcomponents in this model are assumed to be critical to 

component and system operation.  In any given system, there is a balance between using 
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enough sensors to ensure a high level of confidence in the prognostic system’s reports on 

system status, while not exceeding power, weight, bandwidth, and other limitations 

which restrict the number of sensors which may be used.  Although it may be desirable to 

measure the performance of every part of every subcomponent, and include redundant 

sensors on the most important subcomponents, such configurations are not likely to be 

feasible.  The underlying assumption of this desire for these types of redundant 

configurations is that multiple sensors will provide a higher level of confidence and 

accuracy in the prognostic system’s reported results.  To reflect that, the within fusion 

method creates a ROC curve which is always equal to or greater than each of the ROC 

curves of the individual classifiers which contributed to it.  This topic is explored further 

at the end of section 5.2.1. 

 

5.2.1  Within Fusion 

The within fusion methodology is developed using the following definitions.  Let Ξ be 

the event set.  Let XXXX be the feature space, and let x be a specific instantiation of this set 

XXXX.  Let XXXXf be the set of system feature vectors indicating a system failure.  Let pf = Pr(x 

∈  XXXXf) be the prior probability that a critical subcomponent part will fail.  The 

corresponding definition and prior probability of the critical subcomponent part not 

failing (operating nominally) is XXXXn and pn = (1 - pf) = Pr(x ∈  XXXXn).  The critical 

subcomponent part is assumed to only take on these two states (nominal or failed).  These 

two states will be termed a label set, and will be denoted by LLLL = {F, N}. 
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These two values of the label set are mutually exclusive and collectively exhaustive; i.e., 

LLLL = LLLLn ∪  LLLLf, and LLLLn ∩ LLLLf = ∅ . 

 

The critical subcomponent part is assumed to have two sensors A and B attached to it.  

Let Aθ and Bφ refer to the classifiers for sensor A and sensor B on the system, 

respectively, where θ∈Θ  and φ∈Φ , where Θ and Φ are admissible sets of parameters 

associated with tuning each classifier [5].  These classifiers are assumed to assess failure 

or non-failure independently (this assumption will be addressed in more detail in section 

5.2.3). 

 
Figure 5-2.  Methodology summary 

 

Figure 5-2 summarizes the methodology presented to this point.  System events are 

detected by sensors A and B.  These sensors report their collected data to the classifiers, 

which assign a label (either nominal-N or failed-F), to the data stream. 

 

The expression Cθ,φ will be used to denote the concatenated classifier of the classifiers Aθ 

and Bφ. 

Ξ XXXX

Event Set Label Set

A, B Aθ, Bφ LLLL

Feature Set

Ξ XXXX

Event Set Label Set

A, B Aθ, Bφ LLLL

Feature Set

A, B
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Figure 5-3.  Function of the concatenated classifier 

 

Figure 5-3 shows the transformation of system event data into a label set via the 

concatenated classifier.  Since the concatenated classifier consists of both classifiers Aθ 

and Bφ, the label set consists of two distinct labels. 

 
Figure 5-4.  Transformation of the system event to a final system functionality 

classification 
 

Figure 5-4 shows the complete notional flow of information through this model.  Once 

the concatenated classifier has determined two distinct labels, a rule R transforms these 

two labels into a single label.  Specifically, R(L, L) = L ∨  L, where the ∨  operator is 

defined as in Table 5-1 below. 

Table 5-1.  Definition of the ∨  operator 

∨∨∨∨  F N 

F F F 

N F N 

 

Cθ,φ L×LΞ XXXX

Event Set Label SetFeature Set

A, B Cθ,φ L×LΞ XXXX

Event Set Label SetFeature SetEvent Set Label SetFeature Set

A, B

Cθ,φ L×L

Event Set

Ξ

Label SetFeature Set

XXXX

Label Set

LRA, B Cθ,φ L×L

Event Set

Ξ

Label SetFeature Set

XXXX

Label Set

LRA, B
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Table 5-1 shows the label obtained from each classifier on the exterior of the table.  The 

combination of the two labels is shown in the interior of the table.  In this table, the ∨  

operator is defined as a “logical or” rule.  A “logical or” rule is used to declare a system 

failure; if either or both of the classifiers indicate a failed condition, the system is 

assumed to have failed.  This formulation is consistent with the FMECA assumption that 

every component is critical.  Only if both classifiers consider the system to be operating 

nominally is the output from the rule R a nominal reading. 

 

The expression Dθ,φ will be used to denote this fused classifier.  Note that Dθ,φ = R ° Cθ,φ, 

and 

 Dθ,φ(x) = R ° Cθ,φ(x) = R(Aθ(x), Bφ(x)) = Aθ(x) ∨  Bφ(x) (5-1) 

The operator ° denotes the transformation of the concatenated classifier Cθ,φ to the fused 

classifier Dθ,φ using the rule R. 

 

There are certain probabilities associated with each possible classification event, given 

the single subcomponent’s operational state.  The probability of a true positive is defined 

to be a classifier declaring a failure, given the system has failed.  The probability of a 

false positive is defined to be a classifier declaring the system has failed, given the 

system is operating nominally.  The probability of a true negative is defined to be a 

classifier declaring the system is operating nominally, given the system is operating 
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nominally.  The probability of a false negative is defined to be a classifier declaring the 

system is operating nominally, given the system has failed.  These probabilities are 

defined mathematically below.  To simplify the notation, the probability of classifier Aθ 

providing a correct positive reading will be denoted as A
TPP  = PTP(Aθ).  The parameter θ is 

suppressed in this new expression.  The probability of classifier Bφ providing a correct 

positive reading will be denoted as, B
TPP  = PTP(Bφ), and so forth.  Similarly, the parameter 

φ is suppressed in this new expression.  More rigorously, the definitions for the classifier 

Aθ are 

 A
TPP  = Pr((Aθ(x) ∈  Lf|x ∈  XXXXf) (5-2) 

 A
FPP  = Pr((Aθ(x) ∈  Lf|x ∈  XXXXn) (5-3) 

 A
TNP  = Pr((Aθ(x) ∈  Ln|x ∈  XXXXn) (5-4) 

 A
FNP  = Pr((Aθ(x) ∈  Ln|x ∈  XXXXf) (5-5) 

 

The definitions for classifier Bφ are obtained by replacing A with B and θ with φ in 

equations 5-2 through 5-5. 

 

The following table summarizes these eight conditional probabilities as measures of 

distinct system events.  Again, the classifiers are assumed independent. 
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Table 5-2.  Conditional probability table for one system component and two classifiers 
Classifier Report 

Cθ,φ = (Aθ,Bφ) 
 

True State 

F, F F, N N, F N, N 

Nominal A
FPP B

FPP  A
FPP B

TNP  A
TNP B

FPP  A
TNP B

TNP  

Failed A
TPP B

TPP  A
TPP B

FNP  A
FNP B

TPP  A
FNP B

FNP  

 
 

Table 5-2 shows the conditional probability for each possible event, where the classifier’s 

responses are conditioned on the subcomponent’s true state. 

 

The joint probability table in Table 5-3 lists the possible outcomes as disjoint events.  The 

general formulation is  

 Pr(Cθ,φ(x) ∈ (Li × Lj) ∩ (x ∈  XXXXk)) (5-6) 

 = Pr((Aθ(x), Bφ(x)) ∈ (Li × Lj) | (x ∈  XXXXk))Pr(x ∈  XXXXk) (5-7) 

 = Pr(Aθ(x) ∈  Li | (x ∈  XXXXk) Pr(Bφ(x)) ∈  Lj | (x ∈  XXXXk) Pr(x ∈  XXXXk) (5-8) 

where i, j, k ∈  {f, n}. 

 

Table 5-3.  Joint probability table for one system component and two sensors 
Classifier Report 

Cθ,φ = (Aθ,Bφ) 
 

True State 

F, F F, N N, F N, N 

Nominal A
FPP B

FPP pn A
FPP B

TNP pn 
A

TNP B
FPP pn 

A
TNP B

TNP pn 

Failed A
TPP B

TPP pf 
A

TPP B
FNP pf 

A
FNP B

TPP pf 
A

FNP B
FNP pf 
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Table 5-3 shows the probability of occurrence for each possible event as a product of 

individual probabilities.  The events in this table are mutually exclusive and collectively 

exhaustive.  The first column lists the two possible states of the system, nominal or failed.  

The top row lists the four different aggregate classifier reports.  An “F” means the 

classifier has reported a failed condition.  An “N” means the classifier has reported a 

nominal condition.  The reports are listed at the top of each column as ‘classifier Aθ 

report’, ‘classifier Bφ report’.  For example, the third column lists the possible outcomes 

if Aθ reports a failed condition, and Bφ reports a nominal condition. 

 

As an example, the entry in the third row and the third column denotes the specific event 

where Aθ indicates failed operation and Bφ indicates nominal operation, and the system 

has failed.  Mathematically, the expression is: 

 A
TNP B

FNP pf = Pr(Aθ(x) ∈  Lf | (x ∈  XXXXf) Pr(Bφ(x)) ∈  Ln | (x ∈  XXXXf) Pr(x ∈  XXXXf) (5-9) 

The ROC curves for each classifier consist of a set of points where a probability of true 

positive value (ordinate) is specified for each probability of false positive value 

(abscissa).  The within fusion methodology uses these coordinate pairs, at common set 

points along the abscissa, to create the new ROC curve.  The mathematical method used 

to combine the abscissas and ordinates into a new point is described below. 

 

The pair of  points used to develop the methodology will be denoted as ( A
FPP , A

TPP ) and 

( B
FPP , B

TPP ), following the notation from Table 5-3.  The point resulting from this fusion 

process will be labeled ( C
FPP , C

TPP ).  The probability of false positive for the combined 
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classifier Cθ,φ is the probability that Cθ,φ declares a failure, given that the system is 

operating nominally.  This classifier will declare a failure in three cases: if either Aθ, Bφ, 

or both, declare a failure.  Again, this is the “logical or” failure rule.  Note that 

 C
FPP  = 1 - C

TNP  (5-10) 

This suggests the following formulation using the probability structure suggested in 

Table 5-3.  The definition of true negative is the declaration of nominal system operation, 

given the system is operating nominally.  Note that 

 D
TNP  = Pr(Dθ,φ(x) ∈  Ln | (x ∈  XXXXn)) (5-11) 

 = Pr((Aθ(x) ∨  Bφ(x))∈  Ln | (x ∈  XXXXn)) (5-12) 

 C
TNP = Pr((Aθ(x) ∈  Ln) ∩ (Bφ(x) ∈  Ln) | (x ∈  XXXXn)) (5-13) 

 Pr(Aθ(x) ∈  Ln | (x ∈  XXXXn)) ∩ Pr(Bφ(x)) ∈  Ln ∩ (x ∈  XXXXn)) (5-14) 
Pr(x ∈  XXXXn) 

 = [ A
TNP ][ B

TNP ] (5-15) 

as is evident from Table 5-3 

 = [1 - A
FPP ] [1 - B

FPP ]. (5-16) 

Finishing, note that  

 C
FPP  = 1 - [1 - A

FPP ] [1 - B
FPP ] (5-17) 

 C
FPP  = [ A

FPP  + B
FPP  – A

FPP B
FPP ]. (5-18) 
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The corresponding true positive values, for the identical probability of false positive 

values on each ROC curve, are combined in the same fashion.  The preceding derivation 

is repeated below with appropriate changes in notation. 

 C
TPP  = 1 - C

FNP  (5-19) 

 D
FNP  = Pr(Dθ,φ(x) ∈  Ln | (x ∈  XXXXf)) (5-20) 

 = Pr((Aθ(x) ∨  Bφ(x))∈  Ln | (x ∈  XXXXf)) (5-21) 

 C
FNP = Pr((Aθ(x) ∈  Ln) ∩ (Bφ(x) ∈  Ln) ∩ (x ∈  XXXXf)) (5-22) 

Pr(x ∈  XXXXn) 

 Pr(Aθ(x) ∈  Ln | (x ∈  XXXXf)) ∩ Pr(Bφ(x)) ∈  Ln | (x ∈  XXXXf)) (5-23) 

 = [ A
FNP ][ B

FNP ] (5-24) 

as is evident from Table 5-3’ 

 = [1 - A
TPP ] [1 - B

TPP ] (5-25) 

 C
TPP  = 1 - [1 - A

TPP ] [1 - B
TPP ]. (5-26) 

As expected, the formula is 

 C
TPP  = [ A

TPP  + B
TPP  – A

TPP B
TPP ]. (5-27) 

 

The point on this fused ROC curve is given by 

 ( C
FPP , C

TPP )=( A
FPP  + B

FPP  – A
FPP B

FPP , A
TPP  + B

TPP  – A
TPP B

TPP ). (5-28) 

 

Again, these results assume the classifiers A and B are independent in their 

measurements, and that their respective operating points are set a priori.  This is not 
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likely to be the case in a real system.  This within fusion rule is therefore a weak upper 

bound for the fused ROC curve, C.  This is explored further in section 5.3.3. 

 

This within fusion method allows for the combination of any number of classifiers.  Once 

the ROC curves associated with the classifiers for two sensors have been combined into a 

single ROC curve, this single curve can be combined with another ROC curve associated 

with the classifier for another sensor.  This iterative process continues until all the 

classifiers associated with the sensors on a particular subcomponent are represented by a 

single ROC curve.  Using a similar iterative process, any number of these within ROC 

curves may be combined to form an across ROC curve, and so forth. 

 

As an example of the within fusion rule, consider a critical subcomponent with two 

sensors and two classifiers.  Let the ROC curve for classifier A be given by y1 = x0.1, and 

let the ROC curve for classifier B be given by y2 = 
6

1

)arcsin(
2

















x
π

.  These are 

reasonable choices for ROC curve models because like ROC curves, they begin at the 

origin and end at the point (1, 1).  Also, these curves are a reasonable estimate for actual 

classifier performance. 
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Figure 5-5.  Two notional ROC curves 

 
 

Figure 5-5 shows the two notional ROC curves.  Notice that the PTP values for classifier 

A exceed those for classifier B at every PFP value.  Classifier A is said to dominate 

classifier B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-6.  Graph of the two notional and fused ROC curves 
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Figure 5-6 shows the two notional ROC curves and the within ROC curve.  Note that the 

within curve dominates both of the other curves over all of the operating range.  The 

values for the within ROC curve have been linearly interpolated from the values obtained 

from the within fusion process. 

 

Consider another example where one of the notional ROC curves is significantly 

dominated by the other curve.  Let the ROC curve for classifier C be given by  

y1 = tanh(4x), and let the ROC curve for classifier D be given by y2 = x0.13. 

 

 

 

 

 

 

 

 

 

 

Figure 5-7.  Graph of two more notional and fused ROC curves 

 

Figure 5-7 shows the comparison of the within ROC curve to the original ROC curves.  

Again, despite the disparity in the two original curves, the within curve still dominates 

both other curves over all of the operating range.  It seems from these examples the 
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within ROC curve will always equal or dominate each of the ROC curves of the 

individual classifiers which contributed to it.  To demonstrate this in general, consider 

two notional classifiers that are independent.  Let these classifiers have associated 

probabilities of true positive of p1 and p2 at any given probability of false positive value.  

Without loss of generality, let p1 ≥ p2, and recall that p1, p2 ∈  [0,1].  Consider the quantity 

p2(1-p1); this value is clearly greater than or equal to 0.  Since p2(1-p1) ≥ 0, adding p1 to 

both sides gives  

 p1 + p2(1-p1) ≥ p1 (5-29) 

or 

 p1 + p2 - p1p2 ≥ p1 (5-30) 

Equation 5-30 shows that the probability of true positive value for the within ROC curve 

generated from these two independent classifiers will equal or exceed the probability of 

true positive value of the individual classifier. 

 

5.2.2  Across Fusion 

The across fusion methodology, as previously stated, addresses the combination of the 

within ROC curves, when the classifiers are independent.  It also addresses the 

combination of across ROC curves.  The essential system difference between the across 

fusion technique and the within fusion technique is that the within fusion technique only 

deals with classifiers on one critical subcomponent.  The across fusion technique focuses 

on combining ROC curves from at least two different system parts (subcomponents and 

components). 

 



5-16 

This methodology is based on a monograph by Oxley and Bauer [63].  In this 

monograph, Oxley and Bauer use a ‘logical or’ rule to combine two ROC curves and 

produce a third ROC curve.  Their underlying assumptions about this situation are 

summarized below. 

 

 
Figure 5-8.  Notional prognostics diagram with a two component system and two sensors 

 

Figure 5-8 shows a diagram that illustrates the notional system used for the fusion 

technique presented in [63].  The system, represented by the large box at the top of the 

figure, contains two components.  Each component sends data to a sensor, which records 

this information and sends it to a classifier.  The classifier uses the sensor data to report 

the current condition of the component and the overall system.  The sensors are assumed 

to operate independently of each other, as are the system components. 
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Based on this figure, conditional probabilities are defined below.  The labeling 

convention conditions the classifier output on the actual system data. 

 

P(classifier declares failure|component j is actually failed) = j
TPP , j ∈  {A, B} 

P(classifier declares failure|component j is actually nominal) = j
TPP , j ∈  {A, B} 

P(classifier declares nominal|component j is actually nominal) = j
TPP , j ∈  {A, B} 

P(classifier declares nominal|component j is actually failed) = j
TPP , j ∈  {A, B} 

 

In Table 5-4, the first entry in the “True State” column refers to the true state coming 

from “component A”.  The second entry column refers to the true state of “component 

B”.  The first entry in the “Classifier Reports” row refers to the report from the classifier 

based on data from sensor A.  The second entry refers to the report from the classifier 

based on data from sensor B.  These reports are component specific.  The mapping 

between these system reports and an actual determination of system failure has not yet 

been specified.  However, regardless of the system report, the system has actually failed 

if there is an “F” in the “True State” column (the middle three rows of the table). 

 

 

 

 

 

 



5-18 

Table 5-4.  Conditional probability values [63] 
Classifier 
Reports 
(A, B) 

 
True State 

F, F F, N N, F N, N 

F, F A
TPP B

TPP  A
FPP B

TNP  A
FNP B

TPP  A
FNP B

FNP  

F, N A
TPP B

FPP  A
TPP B

TNP  A
FNP B

FPP  A
FNP B

TNP  

N, F A
FPP B

TPP  A
FPP B

FNP  A
FNP B

TPP  A
FNP B

FNP  

N, N A
FPP B

FPP  A
FPP B

TNP  A
TNP B

FPP  A
TNP B

TNP  

 
 

Table 5-4 shows the conditional probability values for the two classifiers A and B in the 

presence of both failure and nominal system data.  For instance, the first entry in the cell 

in the third row and fourth column, A
FNP , represents the probability that the classifier 

reports nominal functionality of component A given component A has failed.  The second 

entry in the cell, B
FPP , represents the probability that the classifier reports a failure of 

component B given component B is operating nominally. 

 

The following joint probability table combines these values with the a priori 

probabilities.  Again, both of the two failure types are assumed to be independent of each 

other. 
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Table 5-5.  Joint probability values [63] 

Classifier 
Reports 
(A, B) 

 
True State 

F, F F, N N, F N, N 

F, F A
TPP B

TPP pfqf 
A

TPP B
FNP pfqf 

A
FNP B

TPP pfqf 
A

FNP B
FNP pfqf 

F, N A
TPP B

FPP pfqn 
A

TPP B
TNP pfqn 

A
FNP B

FPP pfqn 
A

FNP B
TNP pfqn 

N, F A
FPP B

TPP pnqf 
A

FPP B
FNP pnqf 

A
TNP B

TPP pnqf 
A

TNP B
FNP pnqf 

N, N A
FPP B

FPP pnqn 
A

FPP B
TNP pnqn 

A
TNP B

FPP pnqn 
A

TNP B
TNP pnqn 

 
 

Table 5-5 summarizes these joint probabilities as a series of disjoint events.  The third 

row indicates the actual data shows a failure on component A and no failure on 

component B.  The failure on component A is reflected with the a priori probability pf, 

and the nominal condition on component B is reflected with the a priori probability qn.  

These are expected to be small and large probability values, respectively. 

 

In their monograph, Oxley and Bauer [63] use the preceding table to develop an 

expression for the fused ROC curve for two mechanical system components.  Let fA and 

fB represent the two original ROC curves.  Also, as before, let pf be the prior probability 

of failure of component A, and let qf, be the prior probability of failure of component B.  

Let the following relationships hold: 

 γ = pf + qf - pfqf, r ∈  [0, 1], s ∈  [0, r] (5-31) 
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Then the fused ROC curve is given by 
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Equation 5-37 is the relation used to combine two within or across ROC curves to 

produce another across ROC curve. 

 

5.2.3  Dependent Sensors 

This section develops bounds for the effects of dependent sensors within a given system.  

Consider a system where the sensors A and B are completely dependent.  This would 

occur if two sensors were both measuring the same phenomenology on the same 

component, as they would if the sensors are redundant.  In such a system, accurate 

readings from sensor B would match accurate readings from sensor A in every possible 

operating condition.  In effect, sensor B provides no new information on the condition of 

the system.  Note that this condition does not assume the accuracy of the sensors would 

be the same, just that their accurate readings would be the same.  In this case with 

completely dependent sensors, the logical decision is to chose the sensor with the better 

accuracy, and discard the other one.  Hence, a lower bound on the fused ROC curve C is 

the best ROC curve associated with the classifier for one of the two original sensors A 
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and B.  In passing, it is worth noting that the only time the accuracy of the sensors would 

be the same is when the sensors are identical, AND have identical operating conditions.   

 

As previously stated, the within fusion methodology provides a weak upper bound on the 

fused ROC curve C.  This is because the methodology uses set operating points from both 

ROC curves to generate the fused ROC curve.  This methodology is in contrast to the 

across fusion methodology, which takes a specific operating point from one ROC curve 

and searches along the entire length of the other ROC curve to choose the best point to 

obtain the best probability of true positive value.  If the within fusion methodology had 

been developed using a similar technique, the fused ROC curve C would be optimal, 

relative to the classifier thresholds.  (This result is found in Oxley and Bauer [63].)  This 

means this optimal within ROC curve would have probability of true positive values that 

are at least equal to the values of the fused within ROC curve generated using set 

operating points, and potentially have a number of values that exceed the values of this 

fused within ROC curve.  However, the within (and across) fusion methodology assumes 

the sensors that provide data to the classifiers operate independently.  This assumption 

may not always hold, particularly if the sensors on a subcomponent are intended to be 

redundant.  If there is some degree of dependency between the sensors, then the optimal 

within ROC curve will overestimate the actual within ROC curve.  The fused within ROC 

curve generated using set operating points may also overestimate the actual within ROC 

curve, but to a smaller degree than the actual optimal within ROC curve.  Hence, the 

fused within ROC curve is used to provide the estimate of the actual within ROC curve. 
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With an established lower bound (the best single ROC curve) and a weak upper bound 

(the fused within ROC curve) for the fused within ROC curve C, it is obvious that the 

actual within ROC curve for a system with dependent sensors would lie between these 

two extremes.  Precisely where it would be located depends on the amount of dependency 

between the two sensors.  This amount of dependency may change from one operating 

condition to another.  There also may be a minimum level of dependency which is 

present in every operating condition.  The actual within ROC curve is probably best 

determined through empirical observation of the actual system in question. 

 

5.3  Application to a Two-Component System 

In this section, two problems are constructed and solved using the within and across 

fusion methods described in this chapter.  Additionally, a solution algorithm is presented 

for solving these problems.  Section 5.3.1 presents the across fusion methodology, using 

a simple system as an example.  This simple system has a single component with two 

subcomponents and two sensors on each subcomponent, as shown in Figure 5-9.  Section 

5.3.2 presents the general solution algorithm for solving these types of problems.  Section 

5.3.3 uses the solution algorithm presented in section 5.3.2 to solve a second, more 

complicated problem.  This second problem expands the first problem by adding a second 

component to the system.  This new component also has two subcomponents, but with 

two sensors on the first subcomponent and three sensors on the second subcomponent.  

Section 5.3.4 presents an excursion where the per component budget constraint is relaxed 

to apply only to the overall system. 
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5.3.1  A Single Component Problem 

This section presents a simple problem to demonstrate the application of the two fusion 

methods.  The notional system used for this problem has a single component and two 

subcomponents. 

 

 

Figure 5-9.  Figure 4-2 reproduced for clarity 

 

Figure 5-9 shows the design of the simple system which will be used to demonstrate 

solving the across fusion problem.  Solving this problem will require four notional ROC 

curves (one for each sensor), two fused ROC curves (within curves) using the within 

fusion methodology, and ultimately one ROC curve (across curve) using the across 

fusion methodology.  The objective is for this across ROC curve to be the best one 
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possible.  To accomplish this objective will only require three fused ROC curves since 

there is no budget constraint on the number of sensors that may be considered per 

subcomponent. 

 

The curves that were used to produce the illustrative examples in section 5.2.1 will be 

used to solve this problem.  As a reminder, the ROC curve for classifier A was given by 

y1 = x0.1, and the ROC curve for classifier B was given by y2 = 
6

1

)arcsin(
2





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x
π
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Figure 5-10.  Figure 5-6 reproduced for clarity 

 

Figure 5-10 shows these two notional ROC curves and their associated within ROC 

curve.   
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As before (section 5.2.1), let the ROC curve for classifier C be given by y3 = tanh(4x), 

and let the ROC curve for classifier D be given by y4 = x0.13. 

 

 

 

 

 

 

 

 

 

 

Figure 5-11.  Two more notional ROC curves 

 

Figure 5-11 shows these two notional ROC curves.  Neither curve is completely 

dominated by the other. 
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Figure 5-12.  Graph of two more notional ROC curves, and the fused curve 

 

Figure 5-12 shows the graph of ROC curves C and D, and their within ROC curve. 

 

 

 

 

 

 

 

 

 
Figure 5-13.  The across ROC curves for the two classifier pairs, and the across ROC 

curve obtained by fusing all four classifiers using across fusion 
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Figure 5-13 shows the fusion of the two across curves into a single across ROC curve, 

using the across fusion method.  This is now the ROC curve for the component/system.  

Note that the across ROC curve approximately splits the difference between these two 

curves. 

 

5.3.2  The General Solution Algorithm 

This section presents the general solution algorithm for solving these types of problems. 

 
 

Figure 5-14.  Algorithm for problem solution 
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Figure 5-14 shows the algorithm employed to solve this problem.  Each subset for a given 

component is enumerated.  The employment, operational, and structural costs are 

determined for each subset.  If any of these costs exceeds the values specified in the 

problem constraints, the subset is considered to be infeasible.  Infeasible subsets are 

eliminated from the solution space.  The subset fusion (using within and across 

techniques) is performed only if a subset is feasible.  When the fusion process has been 

completed, the PTP value is computed and compared to the current maximum PTP value.  

If the PTP of the current subset exceeds the current maximum, the current subset becomes 

the new optimal solution.  Otherwise, it is discarded and the next subset is checked for 

feasibility.  This process continues until all possible subsets have been considered. 

 

5.3.3  A Two Component Problem 

As was demonstrated in section 5.3.1, the across fusion method is used to fuse other 

across curves.  As previously stated, most systems will typically have more than one 

component.  Figure 4-3 (reproduced below) shows a more complex system. 
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Figure 5-15.  Figure 4-3 reproduced for clarity 

 

A mathematical programming framework was presented in chapter 4 to determine the 

optimal allocation of sensors to subcomponents problem.  This is a complex problem 

because there are an exponential number of subsets that must be considered in light of 

various structural and operational constraints.  Each subset of sensors typically requires 

multiple ROC curve fusions.  These fusions are the most computationally intense 

calculations encountered in the optimization.  Some of the constraints are rapidly 

evaluated and as such certain sensor subsets are eliminated from consideration.  

Interestingly, this mathematical programming problem is actually easier to solve given 

the addition of these easily evaluated structural and operational constraints.  Consider the 

problem posed by Figure 5-15.  In this example, it is notionally assumed that one sensor 

subset for component A and three sensor subsets for component B are not feasible.  It is 
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also assumed that at least one sensor is monitoring each subcomponent, which means the 

subset of no sensors (the empty set) is excluded from consideration. 

 

Table 5-6.  Number of sensor subsets to consider given constraint types 

Criteria Number of sensor combinations 

1.  Any non-empty sensor combinations 511 

2.  At least one sensor per component 465 

3.  At least one sensor per subcomponent 189 

4.  One sensor per subcomponent and cost feasible 144 

 
 

Table 5-6 shows the number of sensor ensembles which must be considered given the 

various constraint types.  The number 511 in the first row was obtained by determining 

the total number of subsets of the nine sensors available for use (512), and subtracting the 

empty set.  The number 465 was computed by determining the total number of subsets of 

the four sensors available for use on the first component (16), and subtracting the empty 

set to yield a total of 15.  The total number of non-empty subsets on the second 

component was similarly determined to be 31, and multiplying these two numbers gives 

465.  The number 189 in the third row was determined using a similar process.  The 

number of non-empty subsets for each subcomponent was determined, and these numbers 

(3, 3, 3, and 7) were multiplied together to give the number of subsets that have at least 

one sensor per subcomponent.  The number in the fourth row incorporates cost 

feasibility, so of the nine non-empty subsets for component one that have at least one 
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sensor per subcomponent, eight are assumed to be cost feasible.  Similarly, 18 of the 

second component subsets are cost feasible, and multiplying these two values gives 144. 

 

Notice that the last row listed in the table, which embodies the mathematical 

programming approach espoused in chapter 4, corresponds to a 72% reduction in the 

number of ensembles to be considered.  It should be noted that entries 2, 3, and 4 in the 

table are not consistent with the mathematical programming assumption that each 

subcomponent requires at least one sensor. 

 

Solving this example will require five additional notional single classifier ROC curves.  

For simplicity, let the classifiers E through H have the same ROC curves as classifiers A 

through D.  The ROC curves will then be defined as: 

 

Classifier A and Classifier E -- y1 = x0.1, 

Classifier B and Classifier F -- y2 = 
6

1
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Classifier C and Classifier G -- y3 = tanh(4x), 

and Classifier D and Classifier H -- y4 = x0.13. 

 

Let the ROC curve for classifier I be given by y5 = (1-(x-1)2)0.5 (the upper left quadrant of 

a circle centered at (1, 0)). 
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Figure 5-16.  Notional ROC curves for all 9 classifiers 

 

Figure 5-16 shows the graphs for all of these notional ROC curves. 

 

The overall sensor budget is divided into a portion for each component.  This is because 

the cost for employing a sensor includes power, weight, space, and other constraints that 

are not readily transferable to other components.  However, some of this cost is the actual 

monetary cost required to purchase the sensor hardware.  Consequently, some portions of 

the unused budget amounts for a given component could be transferred to other 

components.  This point is addressed in section 5.3.4. 
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Table 5-7.  Sensor costs for the employment cost constraint 

Sensors/Component Per Unit Cost 

A, E 45 

B, F 30 

C, G 25 

D, H 35 

I 35 

 
 

Table 5-7 shows the cost for each sensor.  The budget for component A is 125 and the 

budget for component B is 135..  These values incorporate the notional assumption that 

one sensor combination is infeasible for component A, and three sensor combinations are 

infeasible for component B.  The solution method rapidly determines all the feasible 

sensor combinations, and then computes the respective ROC curves. 

 

It is of interest to compute the “best” ROC curves (those that possess the largest PTP value 

among all the ROC curves at a given PFP value) for subsets within the components.  It 

should be noted that in the range 0.0 ≤ PFP ≤ 0.04, there are many ensembles which have 

the same probability of true positive, to four decimal places.  However, a unique 

ensemble is always the “best” ensemble when the probability of false positive value 

reaches 0.05. 
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Figure 5-17.  The solution for component A 

 

Figure 5-17 shows the solution for component A.  Sensor ensemble ABD is the “best” 

ensemble until the probability of false positive value reaches 0.37, then sensor ensemble 

ABC is the “best” ensemble.  Sensor ensemble ABCD would have been included on this 

graph if it had been cost feasible. 
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Figure 5-18.  The solution for component B 

 

Figure 5-18 shows the optimal ROC curves for component B.  Sensor ensemble EFH is 

the “best” ensemble until the probability of false positive value reaches 0.16, then sensor 

ensemble EFGH is the “best” ensemble. 

 

The actual solution process is implemented according to the algorithm presented in figure 

5.9.  Once all the feasible ROC curves have been generated for each component, they are 

combined using the across fusion method.  In this example, this means that each of the 8 

feasible ROC curves from component A are individually combined with each of the 18 

feasible ROC curves from component B.  This creates the entire set of feasible ROC 

curves.  Then, for each probability of false positive value, the solution method determines 

which ROC curve has the best TP value.  This usually leads to a collection of a number 

of ROC curves, as one ROC curve supersedes another as the maximization process 
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continues.  The optimal solution for this problem is given by the four curves shown 

below. 

 

 

 

 

 

 

 

 

 

 

Figure 5-19.  The optimal ROC curves for this example 

 

Figure 5-20 shows an enlarged view of the area of the graph where the probability of true 

positive value is greater than0.8. 
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Figure 5-20.  A closer view of the optimal ROC curves 

 

Figure 5-19 shows that the sensor ensembles ACDEH, ACDEFH, ACDEFGH, and 

ABCEFGH are the “best” curves for this notional example.  These ensembles will be 

referred to as sensor ensembles 1-4, respectively, for simplicity.  As an example, sensor 

ensemble 1 (ACDEH) is represented by the diamonds, and dominates the other curves 

over a small part of the range, from domain values 0.05 through 0.06.  At the domain 

values 0.07 through 0.23, sensor ensemble 2 (ACDEFH) dominates.  For the domain 

values 0.24 through 0.61, sensor ensemble 3 (ACDEFGH) dominates.  And sensor 

ensemble 4 (ABCEFGH) dominates for the remainder of the domain values, 0.62 through 

1.00. 

 

Once these best sensor ensembles have been identified, the best overall ensemble is 

selected.  This is done by selecting a maximum allowable value for the probability of 
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false positive.  The ensemble with the largest probability of true positive value at that 

particular point is chosen as the ensemble to employ on the system.  In this example, if 

the maximum allowable value for the probability of false positive is 0.2, the best sensor 

ensemble is ACDEFH. 

 

5.3.4  Two Component Problem Excursion 

As previously stated, some unused portions of the budget for a particular component are 

not transferable to other components, in the context of this model.  However, excess cost 

may be transferred between components.  This ability to transfer excess cost may require 

the calculation of new solutions.  Assuming the excess budget amounts may be 

transferred between the two components, the optimal solution changes. 

 

 

 

 

 

 

 

 

 

 

Figure 5-21.  The optimal ROC curves if unused budget allocations could be transferred 

among components 
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Figure 5-22.  A closer view of the optimal ROC curves 

 

Figure 5-21 shows the optimal solution to the problem if the entire budget could be 

shifted among the two components.  The change from sensor ensemble ABDEFHI to 

sensor ensemble ABCDEFHI occurs at 0.29.  The change from sensor ensemble 

ABCDEFHI to sensor ensemble ABCDEFGH occurs at 0.63.  These ROC curves are 

generally only a few thousandths better than the ROC curves presented in Figure 5-19. 
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VI.  Summary and Recommendations 

 
6.1  Overview 

This dissertation research makes contributions in the emerging field of prognostics.  This 

section summarizes these contributions and presents recommendations for future 

research. 

 

6.2  Theoretical Contributions 

A mathematical programming model was developed to optimally allocate sensors and 

their respective classifiers among system components.  The model includes structural, 

employment cost, and operational cost constraints, allowing this formulation to be 

tailored for any given system and budget. 

 

System data fusion methods were developed to allow for the combination of information 

from the classifiers associated with different sensors.  Two different types of fusion 

methods were employed.  The first method, called within fusion, uses the characteristics 

of sensors on a single system component to provide an assessment of that component’s 

functionality, and is developed here.  The second method, called across fusion, combines 

within fusion measures (and other across fusion measures) to ultimately provide an 

assessment of the system’s functionality. 

 

A proof was given demonstrating to show that in the absence of noise for independent 

sensors, adding sensors of any capability to a given sensor ensemble will improve the 
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ability of the ensemble to accurately determine the system state.  This allows for rapid 

evaluation of points in the solution space, since if all ensembles of a certain size are 

feasible, all smaller ensembles will have smaller objective function values and can be 

eliminated from consideration. 

 

A methodology was developed to assess the relative merit of various fusion rules.  There 

are many different methodologies for combining the information from multiple sensors.  

The method presented for scoring the different methodologies allows for the selection of 

the best methodology for fusing sensor information, based on the capabilities of the 

sensors, the relative importance of avoiding false negatives compared to false positives, 

and the reliability of the system components under consideration. 

 

A proof was given demonstrating that demonstrate that under the conditions of sensor 

independence and no system “noise”, a “logical or” fusion rule is the best methodology 

for combining sensor information.  It also demonstrates that there is no “best” fusion rule 

for situations which do not meet the conditions required for this proof. 

 

A similar proof was given to show that under the conditions of sensor independence and 

no system “noise”, a “logical and” fusion rule is the best methodology for combining 

sensor information.  It also demonstrates that there is no best fusion rule for situations 

which do not meet the conditions required for this proof. 
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6.3  Applied Contributions 

A comprehensive literature review was written summarizing research activities 

associated with applying the science of prognostics to various military and industrial 

applications.  This review includes descriptions of efforts to develop both system-wide 

and component-part prognostic systems.  It also discusses some of the technical 

challenges that must be overcome in order to successfully implement a prognostics 

system. 

 

A Prognostics and Health Management system taxonomy was developed to provide a 

common frame of reference for discussions about prognostics systems.  This taxonomy 

included the definitions of various types of faults, and the expected outputs from a 

prognostics system. 

 

Sample problems using the mathematical program and the system data fusion 

methodology were presented and solved to show the application of this methodology.  A 

notional two-component system was constructed with places for notional sensors to be 

employed.  ROC curves were used to approximate the sensors’ classification 

performance.  Notional costs were assigned to each sensor, and a problem solution 

algorithm was developed to ensure the optimal solution was found, while avoiding 

unnecessary sensor fusion computations. 
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6.4  Areas for Future Research 

This methodology could be employed to perform prognostics functions on real world 

systems.  Data can be collected from a given system of interest.  Once sufficient data has 

been collected analysis of that data should reveal unique data patterns which correspond 

to different failure states.  An appropriate set of classifiers can then be trained to 

recognize these unique patterns and provide high confidence diagnoses of system 

problems.  The algorithm for optimum sensor allocation from this research can be 

employed to appropriately deploy sensors on this system and use these classifiers to 

provide system prognostics. 

 

The prognostic information from the preceding effort could be used to manage 

operational systems.  Once information about the future health of multiple systems is 

known, that information can be used to proactively schedule maintenance actions, assess 

population health, determine future mission/production capability rates, and adjust future 

mission/production schedules.  These capabilities have been collectively described as an 

Autonomic Logistics System (ALS).  A possible research effort would involve actually 

designing an ALS which performed these functions. 

 

System damage generation and prediction mechanisms could be developed.  Real system 

damage data streams are hard to find.  The goal of system maintenance is to prevent 

damage from occurring.  Additionally, allowing a system to be destroyed to capture the 

actual failure data can be prohibitively expensive.  In virtually all cases, modeling 

catastrophic failure paths must be accomplished via analytical models or simulation as 



6-5 

opposed to actual data.  The development of a damage generation model would allow for 

the simulation of catastrophic damage processes for a wide variety of systems.  This 

would provide data for a prognostics system to recognize the early symptoms of 

catastrophic damage, and allow for preventative action to terminate system operations 

before the catastrophic failure occurred. 

 

The sensor fusion methodology presented in this dissertation can be applied to other 

sensor fusion problems.  These problems include Automatic Target Recognition, Combat 

Identification, Battle Damage Assessment, and related battlefield issues.  All these issues 

require a high degree of confidence in the answer, and consequently employ a number of 

different data streams to ensure the answer provided is as accurate as possible.  The 

fusion methodology presented in this work could be used to combine the different data 

streams to provide the accurate answer required. 
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Appendix A.  Methodology Comparison 

 
The following table [95] briefly describes and compares 18 different methods, including 

variations on neural network and fuzzy logic implementations. 

 

The column headings on each page list the different techniques, and the row headings on 

each page describe a characteristic of interest associated with each technique.  The row 

headings begin with “Nature of the required data” and “Nature of the system”.  The first 

heading describes the kind and amount of data required for the particular technique to be 

useful.  The next heading describes the kind of system for which the technique would be 

most effective.  The next row headings are “Time required to generate a solution” and 

“’Cost’ of the solution (in a relative sense)”.  The “Time” heading provides an 

assessment of the time required to develop an appropriate solution.  The “Cost” heading 

provides a relative idea of how much time and how many resources would be expended 

to develop a good solution, compared to other the other techniques.  Next are the 

“Reliability (robustness) of the solution” and “Stability of the solution” headings.  The 

“Reliability” heading describes how accurately model results reflect the true nature of the 

system.  The “Stability” heading describes the technique’s consistency over time.  The 

last heading “Changes required if something new is introduced to the underlying system” 

describes what changes must be made to the model if the underlying system changes.  

This row provides an idea of how easy or hard it is to maintain an appropriate model 

using a particular technique.  Nearly all systems will be changed (through maintenance, 

upgrades, etc.) from their original configuration during their operational lifetime, and the 
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model in use must adapt to these changes to continue to provide accurate system 

diagnoses.  Some modeling techniques are inherently more flexible than others, and this 

row indicates which techniques are more flexible. 
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Table 3-1.  Summary of Diagnostic/Prognostic Methods [95] 
Technique/ 

 
Problem 

Parameters 

Fuzzy Logic 
 

(“reasoning”) 

Neural nets 
 

(“associative”) 

Genetic 
Algorithms 

(optimization) 

Dempster-
Schafer 

(evidential 
theory) 

 
Nature of the 
required data 

Maybe 
Incomplete, 
low-fidelity, 

small amounts 

Lots of data, 
high fidelity, 
need to cover 

dynamic range 
of system, need 
large separation 

between data 
classes 

“Large” 
solution 

population, data 
can be missing, 
incomplete or 
discontinuous 

Incomplete, 
low-fidelity, 

small amounts 
conflicting 

Nature of the 
system 

Non-linear, 
highly complex 

(use other 
techniques if 

system is 
“linear”, has 
lots of data) 

Non-linear, 
highly complex 

(use other 
techniques if 

system is 
“linear”) 

Non-linear, 
highly complex 

(use other 
techniques if 

system is 
“linear”) 

Missing or 
conflicting 

information- 
need to 

combine 
information 

Time required 
to generate a 

solution 

Moderate/Very 
long if experts’ 
opinions must 

be gathered 

Short, 
moderate, or 
long training 

time depending 
on size of net 

Very long Short to 
moderate 

“Cost” of the 
solution (in a 
relative sense) 

Moderate Moderate to 
large 

Large Moderate 

Reliability 
(robustness) of 

the solution 

Optimal—
depending on 
initial expert 

opinions 

Optimal, 
guaranteed to 

exist (finding it 
another matter) 

Optimal 
solution not 

guaranteed to 
exist/be found 

Optimal—
depending on 
initial expert 

opinions 
Stability of the 

solution  
Depends on 

inherent 
“disagreement” 

among the 
“experts” 

Very stable for 
data on which 

the network has 
been trained, 
unpredictable 

otherwise 

Stable for the 
initial problem 

Depends on the 
accuracy of the 

prior 
probabilities 

Changes 
required if 

something new 
is introduced to 
the underlying 

system 

Requires 
updating but 

easy to update 

Net requires 
more training 

Requires re-
computation of 

the solution 

Requires re-
computation of 

the solution 
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Technique/ 

 
Problem 

Parameters 

Feature 
Selection/ 
Extraction 

Sensor/ 
Knowledge/ 
Information/ 

Fusion 

Rule-Based 
Expert systems 

 
 

Fuzzy 
Clustering/ 
Classifying 

 
Nature of the 
required data 

Lots of data, 
high fidelity, 

needs to cover 
dynamic range 

of system 

More is better, 
can handle 
incomplete, 
low-fidelity, 

small amounts 

Incomplete, 
low-fidelity, 

small amounts 

Moderate 
amount, hi-

fidelity, large 
separation 

between data 
classes 

Nature of the 
system 

Doesn’t matter Doesn’t matter Doesn’t matter Doesn’t matter 

Time required 
to generate a 

solution 

Depends on 
selection/ 

development 
method chosen 

Depends on 
selection/ 

development 
method chosen 

Long for 
development, 
short to run 

Moderate 

“Cost” of the 
solution (in a 
relative sense) 

Depends on 
selection/ 

development 
method chosen 

Depends on 
selection/ 

development 
method chosen 

Large if 
development 
must be done, 

small otherwise 

Moderate 

Reliability 
(robustness) of 

the solution 

Depends on 
initial data 

Depends on 
initial data 

Optimal—
depending on 
initial expert 

opinions 

Depends on 
location and 
number of 

clusters 
Stability of the 

solution  
Depends on 
selection/ 

development 
method chosen 

Depends on 
selection/ 

development 
method chosen 

Depends on the 
accuracy of the 

heuristics 

Depends on 
location and 
number of 

clusters 
Changes 

required if 
something new 
is introduced to 
the underlying 

system 

Process must be 
repeated 

 

Process must be 
repeated 

 

Requires re-
computation of 

the solution 

Requires re-
computation of 

the solution 
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Technique/ 

 
Problem 

Parameters 

Least Squares 
Fit 

Kalman 
Filtering 

Simulation 
 
 

Fuzzy wavelet 
analysis 

 
 

Nature of the 
required data 

Need clear 
definition of 
independent, 

dependent 
variables, lots 

of data 
 

Need accurate 
system model. 

“Noise” 
associated with 

data must be 
Gaussian white, 

must have 
“confidence” 

(variance) 
associated with 
each data point 

Good insight on 
system 

functions—
math models 

used to 
represent 

system must be 
accurate 

Hi-fidelity, 
quantity not as 

important 

Nature of the 
system 

Independent 
variables must 

be independent, 
system must be 
linear with few 
non-linearities 

Linear (non-
linear models 
exist but not 
covered in 

class) 

Can be of any 
kind 

Non-linear, 
highly complex 

(use other 
techniques if 

system is 
“linear”) 

Time required 
to generate a 

solution 

Short Moderate Depends 
directly on 
number of 

system 
functions 

Long if 
knowledge base 

must be 
created, else 

moderate 
“Cost” of the 
solution (in a 
relative sense) 

Small Moderate Depends 
directly on time 

Moderate 

Reliability 
(robustness) of 

the solution 

Only over the 
range where 

data was 
collected 

Optimal for a 
linear system 

Depends on 
accuracy of 
math model 

Very reliable 

Stability of the 
solution  

Very stable 
 

Filter “adapts” 
to new data-
compare to 

some baseline 

Very stable Very stable 

Changes 
required if 

something new 
is introduced to 
the underlying 

system 

Recomputation 
required 

Only if baseline 
changes, then 

change 
comparison 

baseline 

Math model 
functions must 

be altered 

Knowledge 
base must be 
updated—

feature set must 
be re-validated 
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Technique/ 

 
Problem 

Parameters 

Statistical 
Change 

Detection 
(SCD) 

State-Based 
Feature 

Recognition 

Case-Based 
Reasoning 

 

Dynamic 
Neural Nets 

Nature of the 
required data 

Accurate data 
collection, need 
to know “defect 

frequencies” 

Accurate 
pattern 

representation, 
state machines 
for each failure 

mode 

Hi-fidelity, 
sufficient to 
describe the 

event 

Moderate 
amount of high-

fidelity data 

Nature of the 
system 

Can be of any 
kind producing 

frequency 
information 

Signal data Can be of any 
kind 

Can be of any 
kind 

Time required 
to generate a 

solution 

Moderate Long if failure 
modes need to 
be identified 

Short if case 
library 

exists/Very 
long if case 

library needs to 
be built 

Long if fuzzy 
sets need to be 

built 

“Cost” of the 
solution (in a 
relative sense) 

Moderate Small to 
Moderate 

Large if library 
needs to be 
built, small 
otherwise 

Large 

Reliability 
(robustness) of 

the solution 

Optimal change 
detection point 

Very reliable Reliable, not 
optimal—has 
difficulty with 
novel events 

Optimal 

Stability of the 
solution  

May be 
affected by 
noise, other 

frequencies not 
of interest 

Very stable Very stable Very stable 

Changes 
required if 

something new 
is introduced to 
the underlying 

system 

Ensure 
frequency set of 
interest is still 

correct 

Modify 
appropriate 

state machines 

None—new 
events will be 
added to the 

library as they 
occur 

New rule sets 
must be 

generated and 
WNN must be 
trained further 
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Technique/ 

 
Problem 

Parameters 

ARMA/ARIMA Weibull 
Modeling 

Nature of the 
required data 

“Noise” 
associated with 

data must be 
Gaussian white, 
data collected is 
evenly spaced 

and consecutive 
in time 

Actual failure 
data, hi-fidelity, 

as much as 
possible 

Nature of the 
system 

Linear 
 

Failure events 
should follow a 

Weibull 
distribution, 

otherwise this 
technique is 

useless 
Time required 
to generate a 

solution 

Moderate Moderate/Very 
long if failure 
data must be 

collected 
“Cost” of the 
solution (in a 
relative sense) 

Moderate Moderate 

Reliability 
(robustness) of 

the solution 

Reliable 
 

Somewhat 
reliable—
generated 

solution will 
never be 

correct, but 
may be “close 

enough” 
Stability of the 

solution  
Stable 

 
Somewhat 

stable 
Changes 

required if 
something new 
is introduced to 
the underlying 

system 

Baseline 
operation series 
must be updated 

 

New failure 
data must be 
collected and 
the curve re-

generated 
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Appendix B.  Sensor Ensemble Accuracy 

 
If the assumption is made that each sensor in an ensemble has a positive probability of 

detecting a problem (a positive value for PTP), then adding such a sensor to an ensemble 

only increases the value of PTP for the ensemble (ignoring any system noise contribution).  

The sensors are also assumed to be independent.  This assertion is formalized in the 

following theorem. 

 

First, given a set X of sensors, define the maximum probability of obtaining a true 

positive by max PTP(x). 

Theorem 1:  Let T ∈  AAAA
nnnn
, S ∈  AAAA

mmmm
, where n < m, and T ⊂  S.  Then maxTP(T) < maxTP(S). 

 
Proof: 
 
Since there are n sensors in T, the probability of not detecting a true fault with this sensor 
suite is 
 

 Pnodetect(T) = ∏
=

n

i 1

(1 – PTP(Si)) (4a-1) 

 
Hence, the probability of detecting any problem is given by 
 

 maxPTP (T) = 1 – ∏
=

n

i 1

(1 – PTP(Si)) (4a-2) 

This expression is the “logical or” fusion rule—if any one of the sensors detects a true 

fault, the fault is defined to be detected. 

 

Consider a set S containing m= n + k sensors, where k ∈  Z+.  T = {s1, s2, …, sn}, and S = 

{s1, s2, …, sn, sn+1, …, sm}.  Clearly, T ⊂  S.  The probability of not detecting a true fault 

with this sensor suite is 
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 Pnodetect(S) = ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-3) 

 
Hence, the probability of detecting a true fault is 
 

 maxPTP (S) = 1 – ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-4) 

 

Note that equations (4a-1) and (4a-3) have the same first n terms.  Notice also that each 

term in each equation is strictly less than 1.  If the terms in common between the 

expansions in each equation are removed, then 

 

 ω = ∏
+

+=

kn

ni 1

(1 – PTP(Si)) (4a-5) 

 
Since each term in the expansion in equation (4a-5) is less than 1, it is clear that ω < 1.  If 

both sides of equation (4a-5) are multiplied by ∏
=

n

i 1

(1 – PTP(Si)), the equation becomes 

 

 ∏
=

n

i 1

(1 – PTP(Si)) > ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-6) 

 
Multiplying both sides of equation (4a-6) by –1 and then adding 1 to each side yields 
 

 1 - ∏
=

n

i 1

(1 – PTP(Si)) < 1 - ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-7) 

 
But the left-hand side of (4a-7) is (4a-2) by definition, and the right-hand side of (4a-7) is 

(4a-4) by definition, so replacement yields 

 
 maxPTP (T) < maxPTP (S) (4a-8) 
 
the desired result. 
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It should be noted that even if a sensor is completely dependent with respect to another 

sensor in the ensemble, although it will not add to the accuracy of the sensor ensemble, it 

will add to the ensemble’s reliability. 

 

This theorem implies that it is possible to reduce the size of the solution space.  The first 

step is to determine the set of cost-feasible sensors.  Each ensemble size is searched for 

cost feasibility, beginning with ensembles containing only one sensor (cardinality 1).  If 

the entire group of sensor ensembles of a particular size (cardinality n) is cost feasible, 

the process is repeated on the next ensemble set (cardinality n + 1).  If all elements of this 

next ensemble set (cardinality n + 1) are cost feasible, the previous set (cardinality n) is 

discarded from the solution space since this larger ensemble set will have a higher value 

of PTP for any sensor combination, by the previous theorem.  However, once a cost 

infeasible solution is found in a set of cardinality k , all sensor ensembles of cardinality  

k - 1 and greater are retained for further examination (except for cost infeasible 

ensembles).  All sets of cardinality k – 2 and lower are eliminated from consideration.  

This reduces the solution space by ∑
−

=







2

1

k

j j

M
 possible solutions, where M is the total 

number of sensors available. 

 

Alternatively, the search for cost feasibility could begin at the ensemble containing all the 

sensors (cardinality M).  The search would terminate when all ensembles of a particular 

size are found to be cost feasible.  If this particular size is k – 1 (as above), then all 

ensembles of cardinality k – 2 and below are eliminated from consideration. 
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Appendix C.  Application of Fusion Rules to the Model 
 

5.A1  Application of Fusion Rules to the Model (Optimality considerations) 

This model uses a logical or rule to declare a system failure:  if either or both of two 

classifiers on a subcomponent indicates a failure, the reasoner concludes a failure has 

occurred and reports a failed condition on the system.  Both fusion techniques introduced 

in the previous section use a logical or rule to combine the ROC curves associated with 

each classifier to produce a new ROC curve.  This section addresses whether or not a 

“logical or” fusion rule may be considered optimal. 

 

The model used for this assessment is the one Oxley and Bauer [63] used to develop the 

across fusion methodology (see Figure 5-11).  If the two systems’ a priori failure rates 

are equal (pf = qf), and the two classifiers’ failure and nominal detection capabilities are 

equal (PTP(Aθ) = PTN(Aθ) = PTP(Bφ) = PTN(Bφ)), then the “logical or” rule is the best 

fusion rule.  If there is even a slight inequality in one of these probabilities, then it is 

possible to set the values for the other pair of variables so that a fusion rule other than 

“logical or” is the best fusion rule.  However, in the general case, “logical or” is the best 

fusion rule.  The appendix provides a general description of the values of these 

parameters showing where the transition from “logical or” to a different fusion rule 

occurs. 

 

This appendix also presents a scoring rule for determining which fusion rule is best.  This 

scoring rule adds the PTP result and the PTN, or (1 – PFP), result obtained from a particular 
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fusion rule, given a set of values for the six parameters specified above.  More formally, 

the equation is 

 Fusion rule score = w1PTP + w2(1 – PFP) (5a-1) 

where w1 and w2 are weights which can be manipulated to reflect the importance of each 

quantity.  Note that w1, w2 ∈  [0, 1] and w1 + w2 = 1.  The relative importance of each of 

these terms depends on the system for which the prognostic system is being designed. 

 

Once the scoring rule is developed, all eight parameters (pf, qf, PTP(Aθ), PTN(Aθ), PTP(Bφ), 

PTN(Bφ), w1, and w2) are analyzed to determine the optimal fusion rule based on the 

scoring rule, and where the optimal fusion rule changes, based on varying values of these 

parameters.  As previously stated, the “logical or” fusion rule is the best in most cases.  

Other fusion rules only become the best fusion rule if the a priori probability of failures 

are relatively high, or the classifier’s accuracy is not very good, or one term of the 

scoring rule is weighted much more heavily than the other term.  All of these conditions 

interact to some extent.  The rest of this appendix provides the development and analysis 

of these ideas. 

 

The system model is developed as before.  Certain aspects will be repeated here for 

clarity and further development.  Figure 5-8 (reproduced below) is again the basis for this 

discussion. 
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Figure 5a-1.  Figure 5-8 reproduced for clarity 

 

The conditional probabilities associated with this model are assigned a notional value as 

indicated below.  The terms “high” and “low” refer to a notional relative probability 

value for the given condition.  The variables “x” and “y”, respectively, correspond to 

those probability values. 

 

P(classifier declares failure|actual failure) = A
TPP , B

TPP  = high = x 

P(classifier declares failure|actual nominal) = A
FPP , B

FPP  = low = y 

P(classifier declares nominal|actual nominal) = A
TNP , B

TNP  = high = x 

P(classifier declares nominal|actual failure) = A
FNP , B

FNP  = low = y 

 

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers
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These probability values are assumed to be equal to each other (within the high and low 

categories) for the sake of the discussion that follows.  The joint probability table is 

reproduced below for clarity.  The cells are numbered for ease of reference. 

 

Table 5a-1.  Joint probability values [63] 
Classifier 
Reports 
(A, B) 

 
True State 

F, F F, N N, F N, N 

F, F 1.  A
TPP B

TPP pfqf 2.  A
TPP B

FNP pfqf 3.  A
FNP B

TPP pfqf 4.  A
FNP B

FNP pfqf 

F, N 5.  A
TPP B

FPP pfqn 6.  A
TPP B

TNP pfqn 7.  A
FNP B

FPP pfqn 8.  A
FNP B

TNP pfqn 

N, F 9.  A
FPP B

TPP pnqf 10.  A
FPP B

FNP pnqf 11.  A
TNP B

TPP pnqf 12.  A
TNP B

FNP pnqf 

N, N 13.  A
FPP B

FPP pnqn 14.  A
FPP B

TNP pnqn 15.  A
TNP B

FPP pnqn 16.  A
TNP B

TNP pnqn 

 
 

Again, Table 5a-1 summarizes these joint probabilities as a series of disjoint events.  The 

failure on component A is reflected with the a priori probability pf, and the nominal 

condition on component B is reflected with the a priori probability qn. 

 

Replacing the this table’s contents with the qualitative values of “high” (x) and “low” (y) 

as previously defined in the table yields an assessment of which combinations of 

classifier readings and actual data streams would have relatively large likelihoods.  Note 

that pn = qn = x and pf = qf = y. 
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Table 5a-2.  Table of relative likelihoods 

Classifier 
Reports 
(A, B) 

 
True State 

F, F F, N N, F N, N 

F, F 1.  x2y2 2.  xy3 3.  xy3 4.  y4 

F, N 5.  x2y2 6.  x3y 7.  xy3 8.  x2y2 

N, F 9.  x2y2 10.  xy3 11.  x3y 12.  x2y2 

N, N 13.  x2y2 14.  x3y 15.  x3y 16.  x4 

 

Table 5a-2 summarizes the relative likelihoods of these 16 disjoint events.  The cell 

entries in bold (cells 6, 11, 14, 15, and 16) indicate a cell with a relatively high 

likelihood.  The cells 1, 6, 11, and 16 (on the main diagonal) indicate an accurate 

assessment of performance.  The cells 4, 7, 10, and 13 (on the anti-diagonal) indicate an 

inaccurate assessment of performance from both systems.  All the other cells have one 

performance report right and one performance report wrong.   This table provides a 

notional idea of which events are more likely than others. 

 

As can be seen from the table, there are four combinations of readings from the two 

classifiers: 

1.  F, F  2.  F, N 3.  N, F 4.  N, N 

These combinations of readings can be thought of as four rules for declaring a system 

failure.  If a “logical and” fusion method is chosen, then a system failure would be 

declared only if the situation described by rule one occurred.  This will be referred to 

specifically as “applying rule one”, and more generally as “applying a fusion rule”.  If a 
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“logical or” fusion method is chosen, then a system failure would be declared if rules 

one, two, and three were applied.  Since there are four rules, there are fifteen different 

combinations of rule sets (including the two previously presented) to consider.  The 

results are presented in the following table. 

 
Table 5a-3.  Summary of probability values for different fusion rules 

Probability 
Measure 

 
Fusion Rule 

Cells used to declare 
a failure 

(Cells with an actual 
failure are 1-12) 

PTP True Positive 
(intersection with cells 

1-12) 

PFP False Positive 
(intersection with cells 

13-16) 

1 (logical and) 1, 5, 9, 13 3x2y 
(2x3 + 5x2y + 4xy2 + y3) 

y2 
(x + y)2 

2 2, 6, 10, 14 x3 + 2xy2 
(2x3 + 5x2y + 4xy2 + y3) 

xy 
(x + y)2 

3 3, 7, 11, 15 x3 + 2xy2 
(2x3 + 5x2y + 4xy2 + y3) 

xy 
(x + y)2 

4 4, 8, 12, 16 2x2y + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 
(x + y)2 

1, 2 1, 2, 5, 6, 9, 10, 13, 
14 

x3 + 3x2y + 2xy2 
(2x3 + 5x2y + 4xy2 + y3) 

xy + y2 
(x + y)2 

1, 3 1, 3, 5, 7, 9, 11, 13, 
15 

x3 + 3x2y + 2xy2 
(2x3 + 5x2y + 4xy2 + y3) 

xy + y2 
(x + y)2 

1, 4 1, 4, 5, 8, 9, 12, 13, 
16 

5x2y + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 + y2 

(x + y)2 
2, 3 2, 3, 6, 7, 10, 11, 14, 

15 
2x3 + 4xy2 

(2x3 + 5x2y + 4xy2 + y3) 
2xy 

(x + y)2 
2, 4 2, 4, 6, 8, 10, 12, 14, 

16 
x3 + 2x2y + 2xy2 + y3 

(2x3 + 5x2y + 4xy2 + y3) 
x2 + xy 
(x + y)2 

3, 4 3, 4, 7, 8, 11, 12, 15, 
16 

x3 + 2x2y + 2xy2 + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 + xy 
(x + y)2 

1, 2, 3 (logical 
or) 

1-3, 5-7, 9-11, 13-15 2x3 + 3x2y + 4xy2 
(2x3 + 5x2y + 4xy2 + y3) 

2xy + y2 

(x + y)2 

1, 2, 4 1-2, 4-6, 8-10, 12-
14, 16 

x3 + 5x2y + 2xy2 + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 + xy + y2 
(x + y)2 

1, 3, 4 1, 3-5, 7-9, 11-13, 
15-16 

x3 + 5x2y + 2xy2 + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 + xy + y2 
(x + y)2 

2, 3, 4 2-4, 6-8, 10-12, 14-
16 

2x3 + 2x2y + 4xy2 + y3 
(2x3 + 5x2y + 4xy2 + y3) 

x2 + 2xy 

(x + y)2 
1, 2, 3, 4 1-16 1 1 
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Since it is hard to see from Table 5a-3 which rules have high and low probability values, 

the following section provides an example with specific values.   

 

5.5  Scoring Rule 

Table 5a-4.  Fusion rule probability values for a specific case 

 
 

Table 5a-4 shows the values that would be obtained if the following substitutions were 

made:  pf = qf = PFP = PFN = .01, PTP = PTN = .99. 

 

In this table, there is also a column titled “Score”.  Determining the “best” fusion rule is 

done initially by selecting the fusion rule which provides the highest PTP and the lowest 

PFP (highest PTN).  The formula to determine the fusion rule “score” is: 

 Fusion rule score = {PTP + (1 – PFP)} or {PTP + PTN} (5a-2) 

Probability 
Measure

PTP (overlap 
with cells 1-

12)

PFP (cells 13-
16 over all in 

formul.) Score:

Fusion Rule
1 0.960888119 0.0001 1.960788119
2 0.019408911 0.0099 1.009508911
3 0.019408911 0.0099 1.009508911
4 0.000294059 0.9801 0.020194059

1,2 0.98029703 0.01 1.97029703
1,3 0.98029703 0.01 1.97029703
1,4 0.961182178 0.9802 0.980982178
2,3 0.038817822 0.0198 1.019017822
2,4 0.01970297 0.99 0.02970297
3,4 0.01970297 0.99 0.02970297

1,2,3 0.999705941 0.0199 1.979805941
1,2,4 0.980591089 0.9901 0.990491089
1,3,4 0.980591089 0.9901 0.990491089
2,3,4 0.039111881 0.9999 0.039211881

1,2,3,4 1 1 1
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The scoring rule was selected to maximize the benefit obtained from a particular fusion 

rule combination.  In this context, the best results from the reasoner are true negatives 

and true positives.  The best fusion rule combination is defined to be the one that 

provides the highest probability of true positive and the highest probability of true 

negatives (alternatively, the smallest probability of false positive).  The fusion rule that 

has the highest score for the selected values of pf, qf, PFP, PFN, PTP, and PTN is the “logical 

or” fusion rule.  These six parameters are used to develop the notion of an “optimal 

fusion rule” in the following section. 

 

5.A3  Optimal Fusion Rule Analysis 

This result leads to the question of which rule, if any, is optimal, given the set of six 

inputs pf, qf, PFP, PFN, PTP, and PTN.  (It should be noted that PTP and PTN determine the 

values of PFP and PFN.)  To answer this question, the following assumptions are made.  

The classifiers are assumed to be independent of each other.  The a priori component 

probability of failure values pf and qf are assumed to be equal.  The PFP and PFN values 

are assumed to be equal for each classifier, as are the PTP and PTN values.  Additionally, 

the PFP and PFN values are assumed to be equal to 1 - PTP.  The following graph shows 

which is the best fusion rule, given the preceding assumptions. 
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Figure 5a-2.  Where the decision rule changes based values of pf and qf (x-axis) and 
values of PTP and PTN (y-axis) 

 

Figure 5a-2 shows a graph of system accuracy vs. the a priori probability of system 

failure.  Points on the graph that fall above the line indicate the “logical or” rule for 

declaring failures should be used for a given system having those characteristics.  Points 

that fall below the line indicate all rules except number 1 should be used to declare a 

failure.  That is, a system should be declared operational only if both classifiers indicate a 

system failure.  This makes sense because the a priori probabilities of the classifiers 

being correct is less than 0.5, and hence the opposite of what the classifiers are reading 

will be correct more often than the actual readings.  As an example, if the two 

components are expected to fail 10% of the time, and the system correctly reports errors 

with 80% or better accuracy, the “logical or” fusion rule should be used to make 

decisions. 
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Although perpetually declaring a failure may result in the best fusion rule score, it would 

not result in productive operation of the equipment.  This fusion rule ignores all data from 

sensors and their associated system, making it pointless to install them.  The perpetual 

failure rule contains rule 4.  Rule 4 states that if both classifiers declare a normal reading, 

then a system failure is declared.  This doesn’t make much sense.  Declaring a perpetual 

failure states that regardless of the classifier readings, a failure is declared.  This makes 

even less sense.  In effect, all fusion rules containing rule 4 make no sense, and would not 

be followed in practice. 

 

If these eight rules for declaring a failure are dropped, then the remaining seven rules are 

all the combinations of rules 1 (F, F), 2 (F, N), and 3 (N, F).  Of these seven 

combinations, the remaining one that would not be followed in practice would be the 

combination of rules 2 and 3.  This rule states that a failure is declared if one system or 

the other declares a failure, but no failure is declared if both systems declare a failure.  

Again, this is not realistic, and this rule would not be followed in practice. 

 

The remaining rule combinations which will be used to further develop the notion of an 

optimal rule are: 
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Table 5a-5.  Practical fusion rule combinations 

Rule Combination Rules used 
“Logical and” 1 

Single sensor 2 

Single sensor 3 

Single sensor plus 

“Logical and” 

1,2 

Single sensor plus 

“Logical and” 

1,3 

“Logical or” 1,2,3 

 

Table 5a-5 shows the six rule combinations that will be used for all further analysis in 

this section. 

 

The next issue is weighting different parts of the scoring rule.  The new equation is: 

 Fusion rule score = w1PTP + w2(1 – PFP) (5a-3) 

Recall that w1, w2 ∈  [0, 1] and w1 + w2 = 1.  The weights w1 and w2 are set to appropriate 

values depending on which capability is more important.  As an example, inspectors on 

an assembly line may need to ensure that absolutely no defective parts get through.  In 

probability terms, this means that false positives (claiming a defect exists when it actually 

doesn’t) are less important than false negatives (passing a defective part through as a 

functional part).  Consequently, the value for w2 would be set much higher than for w1 in 

this application.  Conversely, it may be more important to ensure that a defect really does 

exist if there is time pressure to produce the product, and/or defective products don’t cost 
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much if they are mistakenly sent through.  In that case, the value for w1 would be set 

much higher than for w2. 

 

It is of interest to examine which fusion rule is best if w1 ≠ w2.  For the following 

discussion, only the ratio w2/w1 is considered.  PTP is defined to be a function of pf, qf, 

w2/w1 , and R, where R ∈  {(1); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (the six different fusion 

rules).  Let pf = qf = ρ ∈  [0, 0.6], and recall that w1, w2 ∈  [0,1].  Let (w2/w1) = r (w1 ≠ 0).  

Then let 

 

PTP* (ρ, r) ≡ PTP(ρ, r, R) 
             Max R ∈  R 

where 

{(ρ, r) ∈  [0,1] × [1, ∞)|PTP(ρ, r, R) ≥ PTP* (ρ, r)} 

 

If the weight w1 is larger than the value of w2, then the “logical or” fusion rule is always 

the best, regardless of the difference in the weights, provided PTP
A and PTP

B is at least 0.5.  

(If the values for these probabilities fall below 0.5, then rules 2 and 3 tie for the best rule.  

These results are independent of the prior probabilities of failure.)  However, if w2 was 

set higher, then the fusion rule would change, based on other system parameters.  If the 

prior probability of system failure was varied, the weight at which the decision rule 

changed also varied, as shown in the graph below. 
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Figure 5a-3.  Where the decision rule changes based values of pf and qf (x-axis) and 
weights applied to the scoring rule (y-axis).  The values of PTP and PTN are held constant 

at differing values, as shown in the legend. 
 

Figure 5a-3 shows the ratio of w2 to w1 that causes a change in the best decision rule, for 

the given values of  PTP and PTN (recall that PTP = PTN).  The best decision rule under each 

curve is the “logical or” decision rule.  Above each curve, the best decision rule is the 

“logical and”.  As an example, consider the top curve, where PTP = 0.99.  If the prior 

probability of system failure is 0.1, then the ratio w2/w1 must be at least 45 before the 

best decision rule changes from “logical or” to “logical and”.  If the value of PTP becomes 

0.6 (the bottom curve) and the prior probability of system failure remains constant, then 

the ratio drops to 1 before the best decision rule changes.  For all practical purposes, the 

“logical or” fusion rule is the best decision rule for all “realistic” values of PTP and the 

ratio w2/w1. 
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In each case, the best decision rule was either “logical or” or “logical and”.  No other 

decision rule obtained the best score.  The best decision rule also changed when the ratio 

of the prior probabilities of failure that changed (the weights on the scoring rule were set 

equal).   

 

It is also of interest to examine which fusion rule is best if pf ≠ qf.  Again, only the ratio 

w2/w1 is considered.  PTP is still defined to be a function of pf, qf, w2/w1 , and R, where R 

∈  {(1); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (the six different fusion rules).  Let max (pf, qf) = 

r ∈  [0, 0.6], and recall that w1, w2 ∈  [0,1].  Let w2/w1 = r (w1 ≠ 0).  Then let 

 

PTP* (ρ, r) ≡ PTP(ρ, r, R) 
             Max R ∈  R 

where 

{(ρ, r) ∈  [0,1] × [1, ∞)|PTP(ρ, r, R) ≥ PTP* (ρ, r)} 
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Figure 5a-4.  Where the decision rule changes based on max {pf, qf} (x-axis) and the 
ratio of pf to qf (y-axis).  The values of PTP and PTN are held constant at differing values, 

as shown in the legend. 
 
 

Figure 5a-4 shows where the decision rule changes based on the prior probabilities of 

system failure and the probabilities of detection.  The decision rule changes between only 

“logical or” and a two-rule combination.  The two rules are “logical and”, and using the 

classifier on the system with the larger probability of failure.  The other classifier is 

ignored except for the “logical and” rule.  If the prior probabilities of system failure are 

low, and the probability of a true positive is high, then the ratio of the larger probability 

of system failure to the smaller probability of system failure is also high.  Specifically, if 

PTP = 0.99 and the value of the larger probability of failure is 0.1, then the ratio of this 

larger probability of failure to the smaller probability of failure is about 90 before the 

decision rule changes from “logical or” to the two-rule combination.  Provided the 
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expected failure rates of the two components are not vastly different, “logical or” is still 

the best decision rule. 

 

5.A4  Proof that a Logical OR Fusion rule is the Best For a Logical OR Failure Model 

THEOREM:  Assume there are two components, each with an equal probability of failure 

less than 0.5.  Assume there are two sensors, one for each component, each with an equal 

probability of (accurately) detecting a failure greater then 0.5 PTP(Aθ) = PTN(Aθ) = 

PTP(Bφ) = PTN(Bφ).  Then the “logical or” fusion rule provides the best score (Score = PTN 

+ PTP) among all six useful fusion rules (1, 2, 3, 1 and 2, 1 and 3, 1 and 2 and 3—see 

Table 5-12.).  (Note that this result does not hold if either or both of the sets of 

probabilities is not strictly equal.) 

 

PROOF: 

Let 0 < ε < 0.5. 

Assume each component’s probability of failure is (0.5 - ε). 

Assume each sensor’s probability of accurate detection is (0.5 + ε). 

 

The approach used is to compute the score for each distinct case.  Note that the score for 

rule 2 will be the same as that for rule 3 (the formulas in the table are exactly the same).  

Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1 

and 3.  This leaves four distinct cases. 
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We have x = (0.5 + ε) and y = (0.5 - ε).  Using the preceding table, the denominator of 

the PTP expression (2x3 + 5x2y + 4xy2 + y3) reduces to (1.5 + ε) with these substitutions, 

and is the same for all cases.  The denominator of the PTN (or 1 - PFP) expression, (x + y)2, 

simplifies to 1.  The PTN results were therefore multiplied by (1.5 + ε) so both the PTP 

results and the PTN results were additive.  The results that are shown for PTN below are 

after this multiplication, without showing the (1.5 + ε) in the denominator. 

Case 1:  Rule 1.  (“logical and”)  (from the formulas in the table) 
 num(PTP) = 0.375 + 0.75ε - 1.5ε2 - 3ε3. 
 num(PTN) = 0.75 + 2ε + ε2. 
 num(Score) = 1.125 + 2.75ε - 0.5ε2 - 3ε3. 
 
Case 2:  Rule 2/Rule 3. 
 num(PTP) = 0.375 + 0.25ε + 0.5ε2 + 3ε3. 
 num(PTN) = 0.75 + ε2. 
 num(Score) = 1.5 + ε + 2ε2 + 4ε3. 
 
Case 3:  Rules 1 and 2/Rules 1 and 3. 
 num(PTP) = 0.75 + ε - ε2.  
 num(PTN) = 0.75 + 2ε + ε2. 
 num(Score) = 1.5 + 3ε. 
 
Case 4:  Rules 1 and 2 and 3 (“logical or”) 
 num(PTP) = 1.125 + 1.25ε - 0.5ε2 + 3ε3. 
 num(PTN) = 0.375 + 1.75ε + 2.5ε2 + ε3. 
 num(Score) = 1.5 + 3ε + 2ε2 + 4ε3. 
 
Clearly, case 4 has the highest score of all the cases.  Furthermore, the cases are ordered 

from lowest score to highest score.  The only place this is not obvious is for cases 2 and 

3.  The difference between the two cases (case 3 minus case 2) is 2ε - 2ε2 - 4ε3. 

The claim is 

 2ε > 2ε2 + 4ε3, for all 0 < ε < 0.5 (5a-4) 

or equivalently 
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 ε + 2ε2 < 1 (5a-5) 

or 

 ε(1 + 2ε) <1. (5a-6) 

Notice that 

 1 < 1 + 2ε <2. (5a-7) 

Multiplication by ε yields 

 ε < ε(1 + 2ε) < 2ε < 1, (5a-8) 

which shows the desired result 

 ε(1 + 2ε) <1. (5a-9) 

This is obviously true for 0 < ε < 0.5.  Hence case 3 has a larger score than case 2, and the 

cases are arranged in increasing score order. 

 

5.A5  Proof that a Logical AND Fusion rule is the Best For a Logical AND Failure 

Model 

The result from the preceding section suggests that a “logical and” failure rule would be 

optimal for a “logical and” failure model. 

 

The implicit assumption in a “logical and” failure model is that a system component 

(subcomponent, etc.) is functional until every part in the component has failed.  This 

means that not every part is critical to system operation.  This assumption contradicts the 

general formulation of the system model presented in this paper, where every part of the 

component is considered to be critical to system operation.  However, there are system 
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components that are designed to be redundant.  These components have many 

subcomponents which all perform the same operation.  If some subcomponents fail, the 

remaining subcomponents will continue to perform the operation that is critical to system 

functionality.  In the extreme case, if all the subcomponents fail except one, that single 

remaining subcomponent can still perform the component’s function.  Since some 

components of a system may be designed to be redundant, it seems worthwhile to 

determine which fusion rule is best (if there is a “best” rule) for those components which 

have a redundant functional design. 

 

 
Figure 5a-5.  A notional component designed to have redundant functionality 

 

Figure 5a-5 shows a system component designed to have redundant functionality.  Each 

subcomponent has the same number to indicate identical functionality.  This component 

would not be considered to have failed until all three subcomponents fail. 
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Table 5a-6.  Table 5a-2 reproduced for ease of reference 

Classifier 
Reports 
(A, B) 

 
True State 

F, F F, N N, F N, N 

F, F 1.  x2y2 2.  xy3 3.  xy3 4.  y4 

F, N 5.  x2y2 6.  x3y 7.  xy3 8.  x2y2 

N, F 9.  x2y2 10.  xy3 11.  x3y 12.  x2y2 

N, N 13.  x2y2 14.  x3y 15.  x3y 16.  x4 

 
 

Table 5a-6 shows the likelihood of the occurrence of a particular event, and is reproduced 

here as an aid for Table 5a-7. 

 

Table 5a-7.  Summary of probability values for different fusion rules 
Probability 
Measure 

 
Fusion Rule 

Cells used to declare 
a failure 

(Cells with an actual 
failure are 1-4) 

PTP True Positive 
(intersection with cells 

1-4) 

PFP False Positive 
(intersection with cells  

5-16) 

1 (logical and) 1, 5, 9, 13 x2 
(x + y)2 

3xy2 

(x3 + 4x2y + 5xy2 + 2y3) 
2 2, 6, 10, 14 xy 

(x + y)2 
2x2y + y3 

(x3 + 4x2y + 5xy2 + 2y3) 
3 3, 7, 11, 15 xy 

(x + y)2 
2x2y + y3 

(x3 + 4x2y + 5xy2 + 2y3) 
4 4, 8, 12, 16 y2 

(x + y)2 
x3 + 2xy2 

(x3 + 4x2y + 5xy2 + 2y3) 
1, 2 1, 2, 5, 6, 9, 10, 13, 

14 
x2 + xy 
(x + y)2 

2x2y + 3xy2 + y3 
(x3 + 4x2y + 5xy2 + 2y3) 

1, 3 1, 3, 5, 7, 9, 11, 13, 
15 

x2 + xy 
(x + y)2 

2x2y + 3xy2 + y3 
(x3 + 4x2y + 5xy2 + 2y3) 

1, 4 1, 4, 5, 8, 9, 12, 13, 
16 

x2 + y2 

(x + y)2 
x3 + 5x2y 

(x3 + 4x2y + 5xy2 + 2y3) 
2, 3 2, 3, 6, 7, 10, 11, 14, 

15 
2xy 

(x + y)2 
4xy2 + 2y3 

(x3 + 4x2y + 5xy2 + 2y3) 
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2, 4 2, 4, 6, 8, 10, 12, 14, 
16 

xy + y2 
(x + y)2 

x3 + 2x2y + 2xy2 + y3 
(x3 + 4x2y + 5xy2 + 2y3) 

3, 4 3, 4, 7, 8, 11, 12, 15, 
16 

xy + y2 
(x + y)2 

x3 + 2x2y + 2xy2 + y3 
(x3 + 4x2y + 5xy2 + 2y3) 

1, 2, 3 (logical 
or) 

1-3, 5-7, 9-11, 13-15 x2 + 2xy 

(x + y)2 
4x2y + 3xy2 + 2y3 

(x3 + 4x2y + 5xy2 + 2y3) 
1, 2, 4 1-2, 4-6, 8-10, 12-

14, 16 
x2 + xy + y2 

(x + y)2 
x3 + 2x2y + 5xy2 + y3 

(x3 + 4x2y + 5xy2 + 2y3) 
1, 3, 4 1, 3-5, 7-9, 11-13, 

15-16 
x2 + xy + y2 

(x + y)2 
x3 + 2x2y + 5xy2 + y3 

(x3 + 4x2y + 5xy2 + 2y3) 
2, 3, 4 2-4, 6-8, 10-12, 14-

16 
2xy + y2 
(x + y)2 

x3 + 4x2y + 2xy2 + 2y3 
(x3 + 4x2y + 5xy2 + 2y3) 

1, 2, 3, 4 1-16 1 
 

1 

 

Table 5a-7 shows the PTP and PFP values for each of the 15 different fusion rules.  Since it 

is hard to see from Table 5a-7 which rules have high and low probability values, the 

following table provides an example with specific values.   

 

Table 5a-8.  Fusion rule probability values for a specific case 

 
 

Probability 
Measure

PTP (overlap 
with cells 1-4)

PFP (overlap 
with cells 5-16) Score:

Fusion Rule
1 0.9801 0.009850754 1.970249246
2 0.0099 0.487686935 0.522213065
3 0.0099 0.487686935 0.522213065
4 0.0001 0.014775377 0.985324623

1,2 0.99 0.497537688 1.492462312
1,3 0.99 0.497537688 1.492462312
1,4 0.9802 0.024626131 1.955573869
2,3 0.0198 0.975373869 0.044426131
2,4 0.01 0.502462312 0.507537688
3,4 0.01 0.502462312 0.507537688

1,2,3 0.9999 0.985224623 1.014675377
1,2,4 0.9901 0.512313065 1.477786935
1,3,4 0.9901 0.512313065 1.477786935
2,3,4 0.0199 0.990149246 0.029750754

1,2,3,4 1 1 1
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Table 5a-8 shows the values that would be obtained if the following substitutions were 

made:  pf = qf = PFP = PFN = .01, PTP = PTN = .99.  Note that the “logical and” rule 

provides the highest fusion rule score. 

 

The theorem and proof are analogous to the preceding section. 

 

THEOREM:  Assume there are two components, each with an equal probability of failure 

less than 0.5.  Assume there are two sensors, one for each component, each with an equal 

probability of (accurately) detecting a failure greater then 0.5 PTP(Aθ) = PTN(Aθ) = 

PTP(Bφ) = PTN(Bφ).  Then the “logical and” fusion rule provides the best score (Score = 

PTN + PTP) among all six useful fusion rules (1, 2, 3, 1 and 2, 1 and 3, 1 and 2 and 3).  

(Note that this result does not hold if either or both of the sets of probabilities is not 

strictly equal.) 

 

PROOF: 

Let 0 < ε < 0.5. 

Assume each component’s probability of failure is (0.5 - ε). 

Assume each sensor’s probability of accurate detection is (0.5 + ε). 

 
The approach used is to compute the score for each distinct case.  Note that the score for 

rule 2 will be the same as that for rule 3 (the formulas in the table are exactly the same).  

Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1 

and 3.  This leaves four distinct cases. 
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We have x = (0.5 + ε) and y = (0.5 - ε).  Using the preceding table, the denominator of 

the PTN (or 1 - PFP) expression (x3 + 4x2y + 5xy2 + y3) reduces to (1.5 - ε) with these 

substitutions, and is the same for all entries in the table.  The denominator of the PTP 

expression, (x + y)2, simplifies to 1.  The PTP results were therefore multiplied by (1.5 - ε) 

so both the PTP results and the PTN results were additive.  The results that are shown for 

PTP below are after this multiplication, without showing the (1.5 - ε) in the denominator. 

Case 1:  Rule 1.  (“logical and”)  (from the formulas in the table) 
 num(PTP) = 0.375 + 1.25ε + 0.5ε2 - ε3. 
 num(PTN) = 0.625 + 0.75ε + 1.5ε2 - 3ε3. 
 num(Score) = 1 + 2ε + 2ε2 - 4ε3. 
 
Case 2:  Rule 2/Rule 3. 
 num(PTP) = 0.375 - 0.25ε - 1.5ε2 + ε3. 
 num(PTN) = 0.375 + 0.25ε - 0.5ε2 +3ε3. 
 num(Score) = .75 - 2ε2 + 4ε3. 
 
Case 3:  Rules 1 and 2/Rules 1 and 3. 
 num(PTP) = 0.75 + ε - ε2. 
 num(PTN) = 0.25 + ε + ε2. 
 num(Score) = 1 + 2ε. 
 
Case 4:  Rules 1 and 2 and 3 (“logical or”) 
 num(PTP) = 1.125 - 0.75ε - 2.5ε2 + ε3. 
 num(PTN) = -0.675 + 1.25ε + 0.5ε2 + 3ε3. 
 num(Score) = 0.5 + 0.5ε - 2ε2 + 4ε3. 

Clearly, the “logical and” fusion rule has the highest score among these four cases (note 

that 2ε2 > 4ε3 because 2 is always greater than 4ε when ε < 0.5).  Not surprisingly, the 

“logical or” rule has the lowest score.  This result indicates that the “logical and” fusion 

rule should be used to assess the health of components which have redundant 

functionality. 
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Appendix D.  Computer Code 
 

 
function [subset] = subsetgen() 
 
global subset tot N 
 
% This program lists the natural lexicographic order of all subsets  for a given number of sensors, up to 9 
total 
 
% Input number of sensors, total count, and storage matrix 
 
N=3; 
tot=2^N-1; 
subset=zeros(tot,2); % First column is index, second is subset 
 
% Initialize counts 
a=0; 
b=0; 
c=0; 
d=0; 
e=0; 
f=0; 
g=0; 
h=0; 
k=0; 
 
t=0; % Used as sensor subset index 
 
% Subsets of size 1 
 
for a=1:N 
    t=t+1; 
    subset(t,1)=t; 
    subset(t,2)=a; 
end 
 
% Subsets of size 2 
 
for a=1:N-1 
    for b=2:N 
        if b>a 
           t=t+1; 
           input=10*a+b; 
           subset(t,1)=t; 
           subset(t,2)=input; 
        end 
    end 
end 
     
% Subsets of size 3 
 
for a=1:N-2 
    for b=2:N-1 
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        for c=3:N 
            if b>a 
                if c>b 
                    t=t+1; 
                    input=100*a+10*b+c; 
                    subset(t,1)=t; 
                    subset(t,2)=input; 
                end 
            end 
        end 
    end 
end 
 
% Subsets of size 4 
 
for a=1:N-3 
    for b=2:N-2 
        for c=3:N-1 
            for d=4:N 
                if b>a 
                    if c>b 
                        if d>c 
                           t=t+1; 
                           input=1000*a+100*b+10*c+d; 
                           subset(t,1)=t; 
                           subset(t,2)=input; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
% Subsets of size 5 
 
for a=1:N-4 
    for b=2:N-3 
        for c=3:N-2 
            for d=4:N-1 
                for e=5:N 
                    if b>a 
                        if c>b 
                            if d>c 
                                if e>d 
                                    t=t+1; 
                                    input=10000*a+1000*b+100*c+10*d+e; 
                                    subset(t,1)=t; 
                                    subset(t,2)=input; 
                                end 
                            end 
                        end 
                    end 
                end 
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            end 
        end 
    end 
end 
 
% Subsets of size 6 
 
for a=1:N-5 
    for b=2:N-4 
        for c=3:N-3 
            for d=4:N-2 
                for e=5:N-1 
                    for f=6:N 
                        if b>a 
                            if c>b 
                                if d>c 
                                    if e>d 
                                        if f>e 
                                            t=t+1; 
                                            input=100000*a+10000*b+1000*c+100*d+10*e+f; 
                                            subset(t,1)=t; 
                                            subset(t,2)=input; 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
% Subsets of size 7 
 
for a=1:N-6 
    for b=2:N-5 
        for c=3:N-4 
            for d=4:N-3 
                for e=5:N-2 
                    for f=6:N-1 
                        for g=7:N 
                            if b>a 
                                if c>b 
                                    if d>c 
                                        if e>d 
                                            if f>e 
                                                if g>f 
                                                   t=t+1; 
                                                   input=1000000*a+100000*b+10000*c+1000*d+100*e+10*f+g; 
                                                   subset(t,1)=t; 
                                                   subset(t,2)=input; 
                                               end 
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                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
% Subsets of size 8 
 
for a=1:N-7 
    for b=2:N-6 
        for c=3:N-5 
            for d=4:N-4 
                for e=5:N-3 
                    for f=6:N-2 
                        for g=7:N-1 
                            for h=8:N 
                                if b>a 
                                    if c>b 
                                        if d>c 
                                            if e>d 
                                                if f>e 
                                                    if g>f 
                                                        if h>g 
                                                           t=t+1; 
                                                           
input=10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h; 
                                                           subset(t,1)=t; 
                                                           subset(t,2)=input; 
                                                       end 
                                                    end 
                                               end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
% Subsets of size 9 
 
for a=1:N-8 
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    for b=2:N-7 
        for c=3:N-6 
            for d=4:N-5 
                for e=5:N-4 
                    for f=6:N-3 
                        for g=7:N-2 
                            for h=8:N-1 
                                for k=9:N 
                                    if b>a 
                                        if c>b 
                                            if d>c 
                                                if e>d 
                                                    if f>e 
                                                        if g>f 
                                                            if h>g 
                                                                if k>h 
                                                                   t=t+1; 
                                                                   
input=100000000*a+10000000*b+1000000*c+100000*d+10000*e+1000*f+100*g+10*h+k; 
                                                                   subset(t,1)=t; 
                                                                   subset(t,2)=input; 
                                                                end 
                                                            end 
                                                       end 
                                                    end 
                                               end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
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function [fD] = combinet(rocA,rocB) 
 
% This program combines 2 ROC curves using within fusion 
 
global M N x roc rocA rocB I J K Q alpha beta gam temp 
global fA fB fC fD fBQ 
 
% ROC curve computation 
 
xFP=2*x-x.^2; 
rocTP=zeros(1,N); 
for I=1:N 
    rocTP(I)=rocA(I)+rocB(I)-rocA(I)*rocB(I); 
end 
fD=rocTP; 
fA=rocA; 
fB=rocB; 
 
fD=interp1(xFP,rocTP,x); 
 
figure 
plot(x,fA,'red.'); 
hold on 
plot(x,fB,'blue.'); 
hold on 
plot(x,fD,'green.'); 
hold off 
 
 
function [fC] = combine(rocA,rocB,fBQ) 
 
% This program combines 2 ROC curves using across fusion 
 
global M N x roc rocA rocB I J K Q alpha beta gam temp 
global fA fB fC fD fBQ 
 
% ROC curve computation 
fA = rocA; 
FA = alpha*fA + (1-alpha)*x; 
GA = 1 - FA; 
 
fB = rocB; 
fBQa = fBQ(K,1:N,1:N); 
fBQaa = zeros(N,N); 
for I=1:N 
    for J=1:N 
        fBQaa(I,J)=fBQa(1,I,J); 
    end 
end 
FBQ = beta*fBQaa + (1-beta)*Q; 
GBQ = 1 - FBQ; 
 
fC = zeros(1,N); 
for I=1:N,   
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   minvalue = min(GA(1:I).*GBQ(I,1:I)); 
   fC(I) = temp - (temp-1)*((I-1)/M) - temp*minvalue; 
end 
%fC=interp1(?,fCa,x) 
figure 
plot(x,fA,'red.'); 
hold on 
plot(x,fB,'blue.'); 
hold on 
plot(x,fC,'green.'); 
hold off 
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% This program computes every cost feasible ROC curve combination of sensors on a two component 
system.  Each component consists of two subcomponents.  Three of the subcomponents have two sensors, 
and one has three. 
 
global M N x roc rocA rocB C I J K Q alpha beta gam temp 
global fA fB fC fD fBQ fCout 
 
salloc22 % (get combined curves from other component- 
         % 2x2 subcomponent configuration) 
 
M=100;% the number of subintervals  
     % used to partition the interval [0,1] 
 
%%% Initialize x coordinates  
N = M+1;   % number of points used to plot 
x = zeros(1,N); 
for I=1:N, 
    x(I) = (I-1)/M; 
end 
 
% Enter the prior probability alpha 
alpha = 0.5; 
 
% Enter the prior probability beta 
beta = 0.5; 
 
% Initialize Q 
gam = alpha + beta - alpha*beta; 
temp = 1/gam; 
Q = zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
      if J <= I; 
         Q(I,J) = (I-J)/(N-J); 
     end 
     R = Q(I,1:J); 
     %fBQ(I,1:J) = interp1(p,fB,R); 
   end 
end 
 
roc=zeros(5,N);  % 5 ROC curves 
fBQ=zeros(10,N,N);  % 10 different entries 
 
% ROC 1 
roc(1,1:N)=(x).^.1; 
fBQ(1,1:N,1:N) = (Q).^(.1); 
 
% ROC 2 
roc(2,1:N)=((2/pi)*asin(x)).^(1/6); 
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).^(1/6); 
 
% ROC 3 
roc(3,1:N)=tanh(4*x); 
fBQ(3,1:N,1:N) = tanh(4*Q); 
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% ROC 4 
roc4=(x).^.13; 
roc(4,1:N)=roc4; 
fBQ(4,1:N,1:N) = (Q).^(.13); 
 
% ROC 5 
roc5=zeros(1,N); 
for p=1:N 
    pp=(p/100)-.01; 
    roc5(p)=((1-(pp-1)^2)^(.5)); 
end 
roc(5,1:N)=roc5; 
fBQ(5,1:N,1:N)=((1-(Q-1).^2).^(.5)); 
 
% Plot all five ROC curves 
 
figure 
plot(x,roc(1,1:N),'r',x,roc(2,1:N),'y',x,roc(3,1:N),'g',x,roc(4,1:N),'b',x,roc(5,1:N),'k') 
legend('ROC curve E', 'ROC curve F', 'ROC curve G', 'ROC curve H','ROC Curve I',4); 
xlabel('Probability of False Positive'); 
ylabel('Probability of True Positive'); 
title('Individual Sensor ROC Curves'); 
 
% Set cost for each curve, and total budget 
 
cost1=45; 
cost2=30; 
cost3=25; 
cost4=35; 
cost5=35; 
budget=135; 
 
% 3 combinations are not cost feasible 
 
% Determine cost for each combination 
 
cost13=cost1+cost3; 
cost14=cost1+cost4; 
cost15=cost1+cost5; 
cost23=cost2+cost3; 
cost24=cost2+cost4; 
cost25=cost2+cost5; 
cost123=cost1+cost2+cost3; 
cost124=cost1+cost2+cost4; 
cost125=cost1+cost2+cost5; 
cost134=cost1+cost3+cost4; 
cost135=cost1+cost3+cost5; 
cost145=cost1+cost4+cost5; 
cost234=cost2+cost3+cost4; 
cost235=cost2+cost3+cost5; 
cost245=cost2+cost4+cost5; 
cost1234=cost1+cost2+cost3+cost4; 
cost1235=cost1+cost2+cost3+cost5; 
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cost1245=cost1+cost2+cost4+cost5; 
cost1345=cost1+cost3+cost4+cost5; 
cost2345=cost2+cost3+cost4+cost5; 
cost12345=cost1+cost2+cost3+cost4+cost5; 
 
%Initialize ROC curves 
 
fC13=zeros(1,N); 
fC14=zeros(1,N); 
fC15=zeros(1,N); 
fC23=zeros(1,N); 
fC24=zeros(1,N); 
fC25=zeros(1,N); 
fC123=zeros(1,N); 
fC124=zeros(1,N); 
fC125=zeros(1,N); 
fC134=zeros(1,N); 
fC135=zeros(1,N); 
fC145=zeros(1,N); 
fC234=zeros(1,N); 
fC235=zeros(1,N); 
fC245=zeros(1,N); 
fC1234=zeros(1,N); 
fC1235=zeros(1,N); 
fC1245=zeros(1,N); 
fC1345=zeros(1,N); 
fC2345=zeros(1,N); 
fC12345=zeros(1,N); 
 
% Run combinations if cost eligible 
 
% Same side 
 
% Combination 12 
K=1; 
rocA=roc(K,1:N); 
K=2; 
rocB=roc(K,1:N); 
combinet; 
fD12=fD; 
%xFP=2*x-x.^2; 
 
% Combination 34 
K=3; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combinet; 
fD34=fD; 
%xFP=2*x-x.^2; 
 
% Combination 35 
K=3; 
rocA=roc(K,1:N); 
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K=5; 
rocB=roc(K,1:N); 
combinet; 
fD35=fD; 
%xFP=2*x-x.^2; 
 
% Combination 45 
K=4; 
rocA=roc(K,1:N); 
K=5; 
rocB=roc(K,1:N); 
combinet; 
fD45=fD; 
%xFP=2*x-x.^2; 
 
%Combination 345 
rocA=fD34; 
K=5; 
rocB=roc(K,1:N); 
combinet; 
fD345=fD; 
 
% Different sides (2 sensors) 
 
% Combination 13 
if cost13 <= budget 
K=1; 
rocA=roc(K,1:N); 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC13=fC; 
end 
 
% Combination 14 
if cost14 <= budget 
K=1; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC14=fC; 
end 
 
% Combination 15 
if cost15 <= budget 
K=1; 
rocA=roc(K,1:N); 
K=5; 
rocB=roc(K,1:N); 
combine; 
fC15=fC; 
end 
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% Combination 23 
if cost23 <= budget 
K=2; 
rocA=roc(K,1:N); 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC23=fC; 
end 
 
% Combination 24 
if cost24 <= budget 
K=2; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC24=fC; 
end 
 
% Combination 25 
if cost25 <= budget 
K=2; 
rocA=roc(K,1:N); 
K=5; 
rocB=roc(K,1:N); 
combine; 
fC25=fC; 
end 
 
% Different sides (3 sensors) 
 
% Combination 123 
if cost123 <= budget 
rocA=fD12; 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC123=fC; 
end 
 
% Combination 124 
if cost124 <= budget 
rocA=fD12; 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC124=fC; 
end 
 
% Combination 125 
if cost125 <= budget 
rocA=fD12; 
K=5; 
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rocB=roc(K,1:N); 
combine; 
fC125=fC; 
end 
 
% Combination 134 
if cost134 <= budget 
rocA=fD34; 
K=1; 
rocB=roc(K,1:N); 
combine; 
fC134=fC; 
end 
 
% Combination 135 
if cost135 <= budget 
rocA=fD35; 
K=1; 
rocB=roc(K,1:N); 
combine; 
fC135=fC; 
end 
 
% Combination 145 
if cost145 <= budget 
rocA=fD45; 
K=1; 
rocB=roc(K,1:N); 
combine; 
fC145=fC; 
end 
 
% Combination 234 
if cost234 <= budget 
rocA=fD34; 
K=2; 
rocB=roc(K,1:N); 
combine; 
fC234=fC; 
end 
 
% Combination 235 
if cost235 <= budget 
rocA=fD35; 
K=2; 
rocB=roc(K,1:N); 
combine; 
fC235=fC; 
end 
 
% Combination 245 
if cost245 <= budget 
rocA=fD45; 
K=2; 
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rocB=roc(K,1:N); 
combine; 
fC245=fC; 
end 
 
% Different sides (4 sensors) 
 
%Combination 1234 
if cost1234 <= budget 
rocA=fD12; 
rocB=fD34; 
fBQs=zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
       R = Q(I,1:J); 
       fBQs(I,1:J) = interp1(x,fD34,R); 
   end 
end 
fBQ(6,1:N,1:N)=fBQs; 
K=6; 
combine; 
fC1234=fC; 
end 
 
%Combination 1235 
if cost1235 <= budget 
rocA=fD12; 
rocB=fD35; 
fBQs=zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
       R = Q(I,1:J); 
       fBQs(I,1:J) = interp1(x,fD35,R); 
   end 
end 
fBQ(7,1:N,1:N)=fBQs; 
K=7; 
combine; 
fC1235=fC; 
end 
 
%Combination 1245 
if cost1245 <= budget 
rocA=fD12; 
rocB=fD45; 
fBQs=zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
       R = Q(I,1:J); 
       fBQs(I,1:J) = interp1(x,fD45,R); 
   end 
end 
fBQ(8,1:N,1:N)=fBQs; 
K=8; 
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combine; 
fC1245=fC; 
end 
 
% Combination 1345 
if cost1345 <= budget 
rocA=fD345; 
K=1; 
rocB=roc(K,1:N); 
combine; 
fC1345=fC; 
end 
 
% Combination 2345 
if cost2345 <= budget 
rocA=fD345; 
K=2; 
rocB=roc(K,1:N); 
combine; 
fC2345=fC; 
end 
 
% Different sides (5 sensors) 
 
if cost12345 <= budget 
rocA=fD12; 
rocB=fD345; 
fBQs=zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
       R = Q(I,1:J); 
       fBQs(I,1:J) = interp1(x,fD345,R); 
   end 
end 
fBQ(9,1:N,1:N)=fBQs; 
K=9; 
combine; 
fC12345=fC; 
end 
 
% Store results in a single array 
fCouta=zeros(21,N); 
fCouta(1,1:N)=fC13; 
fCouta(2,1:N)=fC14; 
fCouta(3,1:N)=fC15; 
fCouta(4,1:N)=fC23; 
fCouta(5,1:N)=fC24; 
fCouta(6,1:N)=fC25; 
fCouta(7,1:N)=fC123; 
fCouta(8,1:N)=fC124; 
fCouta(9,1:N)=fC125; 
fCouta(10,1:N)=fC134; 
fCouta(11,1:N)=fC135; 
fCouta(12,1:N)=fC145; 



D-16 

fCouta(13,1:N)=fC234; 
fCouta(14,1:N)=fC235; 
fCouta(15,1:N)=fC245; 
fCouta(16,1:N)=fC1234; 
fCouta(17,1:N)=fC1235; 
fCouta(18,1:N)=fC1245; 
fCouta(19,1:N)=fC1345; 
fCouta(20,1:N)=fC2345; 
fCouta(21,1:N)=fC12345; 
 
% Combine results from both components 
C=0; 
fCboth=zeros(189,N);   % Change based on configuration 
for II=1:21            % Change based on configuration 
    for JJ=1:9         % Change based on configuration 
        C=C+1; 
        if fCout(JJ,50)>0 
           rocA=fCout(JJ,1:N); 
           rocB=fCouta(II,1:N); 
           fBQs=zeros(N); 
           for I = 1:N;      %r=(I-1)/M 
              for J = 1:M;    %p=(J-1)/M 
                  R = Q(I,1:J); 
                  fBQs(I,1:J) = interp1(x,rocB,R); 
              end 
           end 
           fBQ(10,1:N,1:N)=fBQs; 
           K=10; 
           combine; 
           fCboth(C,1:N)=fC; 
        end 
    end 
end 
 
% Determine best curve 
fCbotht=fCboth'; 
for I=1:N 
    [maxroc(I),maxind(I)]=max(fCbotht(I,:)); 
end 
figure 
plot(maxind); 
figure 
plot(maxroc); 
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function [fCout] = salloc22() 
 
% This program determines the optimal sensor allocation for a particular system component.  The 
component is assumed to consist of 2 subcomponents, each with 2 sensors.  Each subcomponent is assumed 
to require at least one sensor. 
 
global M N x roc rocA rocB I J K Q alpha beta gam temp 
global fA fB fC fD fBQ fCout 
 
M=100;% the number of subintervals used to partition the interval [0,1] 
 
%%% Initialize x coordinates  
N = M+1;   % number of points used to plot 
x = zeros(1,N); 
for I=1:N, 
    x(I) = (I-1)/M; 
end 
 
% Enter the prior probability alpha 
alpha = 0.5; 
% Enter the prior probability beta 
beta = 0.5; 
 
% Initialize Q 
gam = alpha + beta - alpha*beta; 
temp = 1/gam; 
Q = zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
      if J <= I; 
         Q(I,J) = (I-J)/(N-J); 
     end 
     R = Q(I,1:J); 
     %fBQ(I,1:J) = interp1(p,fB,R); 
   end 
end 
 
roc=zeros(4,N); 
fBQ=zeros(5,N,N); 
 
% ROC 1 
roc(1,1:N)=(x).^.1; 
fBQ(1,1:N,1:N) = (Q).^(.1); 
 
% ROC 2 
roc(2,1:N)=((2/pi)*asin(x)).^(1/6); 
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).^(1/6); 
 
% ROC 3 
roc(3,1:N)=tanh(4*x); 
fBQ(3,1:N,1:N) = tanh(4*Q); 
 
% ROC 4 
roc4=(x).^.13; 
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roc(4,1:N)=roc4; 
fBQ(4,1:N,1:N) = (Q).^(.13); 
 
% Set cost for each curve, and total budget 
 
cost1=45; 
cost2=30; 
cost3=25; 
cost4=35; 
budget=125; 
 
% Determine budget eligibility for each combination 
 
cost13=cost1+cost3; 
cost14=cost1+cost4; 
cost23=cost2+cost3; 
cost24=cost2+cost4; 
cost123=cost1+cost2+cost3; 
cost124=cost1+cost2+cost4; 
cost134=cost1+cost3+cost4; 
cost234=cost2+cost3+cost4; 
cost1234=cost1+cost2+cost3+cost4; 
 
%Initialize ROC curves 
 
fC13=zeros(1,N); 
fC14=zeros(1,N); 
fC23=zeros(1,N); 
fC24=zeros(1,N); 
fC123=zeros(1,N); 
fC124=zeros(1,N); 
fC134=zeros(1,N); 
fC234=zeros(1,N); 
fC1234=zeros(1,N); 
 
% Run combinations if cost eligible 
 
% Same side 
 
% Combination 12 
K=1; 
rocA=roc(K,1:N); 
K=2; 
rocB=roc(K,1:N); 
combinet; 
fD12=fD; 
%xFP=2*x-x.^2; 
 
% Combination 34 
K=3; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combinet; 
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fD34=fD; 
%xFP=2*x-x.^2; 
 
% Different sides (2 sensors) 
% Combination 13 
if cost13 <= budget 
K=1; 
rocA=roc(K,1:N); 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC13=fC; 
end 
 
% Combination 14 
if cost14 <= budget 
K=1; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC14=fC; 
end 
 
% Combination 23 
if cost23 <= budget 
K=2; 
rocA=roc(K,1:N); 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC23=fC; 
end 
 
% Combination 24 
if cost24 <= budget 
K=2; 
rocA=roc(K,1:N); 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC24=fC; 
end 
 
% Different sides (3 sensors) 
% Combination 123 
if cost123 <= budget 
rocA=fD12; 
K=3; 
rocB=roc(K,1:N); 
combine; 
fC123=fC; 
end 
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% Combination 124 
if cost124 <= budget 
rocA=fD12; 
K=4; 
rocB=roc(K,1:N); 
combine; 
fC124=fC; 
end 
 
% Combination 134 
if cost124 <= budget 
rocA=fD34; 
K=1; 
rocB=roc(K,1:N); 
combine; 
fC134=fC; 
end 
 
% Combination 234 
if cost234 <= budget 
rocA=fD34; 
K=2; 
rocB=roc(K,1:N); 
combine; 
fC234=fC; 
end 
 
% Different sides (4 sensors) 
%Combination 1234 
if cost1234 <= budget 
rocA=fD12; 
rocB=fD34; 
fBQs=zeros(N); 
for I = 1:N;      %r=(I-1)/M 
   for J =1:M;    %p=(J-1)/M 
       R = Q(I,1:J); 
       fBQs(I,1:J) = interp1(x,fD34,R); 
   end 
end 
fBQ(5,1:N,1:N)=fBQs; 
K=5; 
combine; 
fC1234=fC; 
end 
fCout=zeros(9,N); 
fCout(1,1:N)=fC13; 
fCout(2,1:N)=fC14; 
fCout(3,1:N)=fC23; 
fCout(4,1:N)=fC24; 
fCout(5,1:N)=fC123; 
fCout(6,1:N)=fC124; 
fCout(7,1:N)=fC134; 
fCout(8,1:N)=fC234; 
fCout(9,1:N)=fC1234;
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