
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-2002

A Framework for Prognostics Reasoning A Framework for Prognostics Reasoning

Thomas C. Clutz

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aviation Commons

Recommended Citation Recommended Citation
Clutz, Thomas C., "A Framework for Prognostics Reasoning" (2002). Theses and Dissertations. 4135.
https://scholar.afit.edu/etd/4135

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1297?utm_source=scholar.afit.edu%2Fetd%2F4135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4135?utm_source=scholar.afit.edu%2Fetd%2F4135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A FRAMEWORK FOR PROGNOSTICS

REASONING

DISSERTATION

Thomas C. Clutz, Maj, USAF

AFIT/DS/ENS/03-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author, and do not necessarily
reflect the official policy or position of the Department of Defense, or the United States
Government

AFIT/DS/ENS/03-01

A FRAMEWORK FOR PROGNOSTICS REASONING

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Thomas C. Clutz

Major, USAF

December 2002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/DS/ENS/03-01

A FRAMEWORK FOR PROGNOSTICS REASONING

Thomas C. Clutz
Major, USAF

Approved:

 Date:

_______________________________ ___________________
Kenneth W. Bauer, Jr. (Chairman)

_______________________________ ___________________
William P. Baker (Dean’s Representative)

_______________________________ ___________________
Mark E. Oxley (Member)

_______________________________ ___________________
Raymond R. Hill (Member)

_______________________________ ___________________
Jeffrey P. Kharoufeh (Member)

 Accepted:

_____________________________ ______________
Robert A. Calico, Jr. Date
Dean, Graduate School of Engineering and Management

iv

Acknowledgements

The author gratefully acknowledges the support of the many people who contributed to

this work.

To the people at AFRL/HESR: First Paul Faas, then Barb Masqualier, for suggesting this

topic and encouraging its development. To Vicki, for her indefatigable efforts in finding

the most obscure research papers.

To the people at AFIT/ENS: To Dr Jeff Kharoufeh, for his enthusiasm and professional

insights into the technical writing required for a dissertation. To Lt Col Ray Hill, for

always being interested and willing to help. To Dr Mark Oxley, for spending many hours

discussing and perfecting the details of these new concepts. And most of all to Dr Ken

Bauer. He generously shared his many talents to ensure the success of this effort, from

truly amazing demonstrations of innovation, to a remarkable proclivity for clearly

expressing the most difficult concepts.

v

Table of Contents

 Page

Acknowledgements.. iv

List of Figures ... vii

List of Tables ... xi

Abstract ... xii

I. Introduction

1.1 Definitions: Diagnostics and Prognostics .. 1-2
1.2 Problem Statement .. 1-4
1.3 Motivation for a Prognostics System.. 1-13
1.4 Research Goals.. 1-24
1.5 Dissertation Organization ... 1-24

II. Literature Review

2.1 Background ... 2-1
2.1.1 History... 2-1
2.1.2 Fault Taxonomy.. 2-5
2.1.3 PHM System Taxonomy... 2-8
2.1.4 Description of an ALS System ... 2-13
2.1.5 Technical Feasibility... 2-17

2.2 Technologies/Applications ... 2-19
2.3 Diagnostic Applications.. 2-28
2.4 Modeling Applications.. 2-40
2.5 Literature Review Summary and Conclusions ... 2-85

III. Data Fusion Methods

3.1 Background ... 3-1
3.2 Neural Network Methods.. 3-5

3.2.1 Neural Units .. 3-6
3.2.2 Network Connections.. 3-9

3.2.3 Training Neural Networks .. 3-11
3.2.4 Different Neural Network Methods .. 3-12
3.2.5 Combining Neural Networks .. 3-18
3.2.6 Fuzzy Logic .. 3-25
3.2.7 Summary of Other Methods.. 3-30

vi

 Page

IV. Mathematical Programming Model

4.1 Model Development... 4-1
4.2 Formulation.. 4-8
4.3 Towards a Heuristic Solution Procedure: Subset Generation...................... 4-11

4.3.1 Subset Ordering ... 4-12
4.4 A Sample Formulation Example.. 4-16
4.5 A Possible Modification to the Operational Cost Constraint....................... 4-18
4.6 A More General Formulation... 4-20

V. Fusion Rule Assessment

5.1 Fusion Rule Definitions ... 5-1
5.2 Fusion Methods.. 5-2

5.2.1 Within Fusion... 5-3
5.2.2 Across Fusion... 5-15
5.2.3 Dependent Sensors... 5-20

5.3 Application to a Two-Component System... 5-22
5.3.1 A Single Component Problem ... 5-23
5.3.2 The General Solution Algorithm ... 5-27
5.3.3 A Two Component Problem .. 5-28
5.3.4 Two Component Problem Excursion... 5-38

VI. Summary and Recommendations

6.1 Overview.. 6-1
6.2 Theoretical Contributions .. 6-1
6.3 Applied Contributions.. 6-3
6.4 Areas for Future Research ... 6-4

Appendix A... A-1

Appendix B ..B-1

Appendix C ..C-1

Appendix D... D-1

Bibliography .. Bib-1

vii

List of Figures

 Page

Figure 1-1. A generalized diagnostic process [81] ... 1-7

Figure 1-2. Diagnostic fault tree [14] ... 1-9

Figure 1-3. The Tri-Reasoner IVHM system [9].. 1-20

Figure 1-4. The Tri-Reasoner Integrated Vehicle Health Management system [9] . 1-23

Figure 2-1. A notional prognostics system... 2-9

Figure 2-2. Autonomic Logistics System (ALS) model [77] 2-13

Figure 2-3. Future military systems support concept [77].. 2-16

Figure 2-4. Model of PHM system [77] ... 2-17

Figure 2-5. Spectral lines from a faulty item and a correctly functioning
 item [49]..2-18

Figure 2-6. Frequency response of a round horn without reflection [7]................... 2-21

Figure 2-7. Power cepstrum plot of the data from Figure 2-6 [7] 2-22

Figure 2-8. Frequency response of the same horn when reflection is included [7].. 2-22

Figure 2-9. Power cepstrum plot of the data from figure 2-8 [7] 2-23

Figure 2-10. Hypothetical bivariate data set [30] ... 2-28

Figure 2-11. An example of an asymmetrical test pattern to determine system
 state for four components [14]... 2-29

Figure 2-12. Electrical schematic [14].. 2-33

Figure 2-13. The resulting test tree based on the schematic of Figure 2-12 [14] 2-33

Figure 2-14. A case-based reasoning model [1] ... 2-35

Figure 2-15. Knowledge integration scheme for case-based reasoning [12].............. 2-37

Figure 2-16. Model-based reasoning [12] .. 2-38

viii

 Page

Figure 2-17. Case-based reasoning [12] ... 2-39

Figure 2-18. Combined reasoning [12]... 2-39

Figure 2-19. Typical RBF network... 2-41

Figure 2-20. AODS top level data flow [44] .. 2-43

Figure 2-21. Generic subsystem diagnostic module [44] ... 2-44

Figure 2-22. Graphs of the 4 signals vs time for the 3 engine conditions [96] 2-46

Figure 2-23. Transformation of data into neural network inputs [96]........................ 2-48

Figure 2-24. Bottom 2 layers of neural network architecture [96] 2-48

Figure 2-25. Top 2 layers of neural network architecture [96]................................... 2-49

Figure 2-26. Test schematic [4] .. 2-52

Figure 2-27. Data collection schematic [4]... 2-53

Figure 2-28. Feed-forward neural network design [4].. 2-53

Figure 2-29. Purpose of each neural network layer [4] .. 2-54

Figure 2-30. Data from a vehicle with no faults [55] ... 2-56

Figure 2-31. Data from a vehicle where spark plug number four is misfiring [55] ... 2-57

Figure 2-32. MPROS system [37] .. 2-65

Figure 2-33. Normal tank start data [43] .. 2-69

Figure 2-34. Bouncing valve tank start data [43] ... 2-69

Figure 2-35. Stuck valve tank start data [43].. 2-69

Figure 2-36. Fuel flow error tank start data [43] .. 2-70

Figure 2-37. Network topology [50]... 2-76

Figure 2-38. Example of a predicted bearing temperature alarm [50] 2-79

ix

 Page

Figure 2-39. A schematic showing the experimental plan [31].................................. 2-81

Figure 2-40. Comparison of availability rates between PHM (ALS) equipped
 aircraft and non-PHM (ALS) equipped aircraft [68] 2-83

Figure 3-1. Single-layer neural net [15] ... 3-6

Figure 3-2. Multi-layer neural net [15]... 3-7

Figure 3-3. Activity performed in a typical neural network node 3-8

Figure 3-4. Single Output neural net [15]... 3-9

Figure 3-5. Typical RBF network [15] ... 3-14

Figure 3-6. A classifier ensemble of neural networks. [61] 3-19

Figure 3-7. Hypothetical runs of Bagging and Boosting [61] 3-24

Figure 4-1. Different levels of detail for modeling a system...................................... 4-1

Figure 4-2. A pictorial representation of a simple system.. 4-2

Figure 4-3. A pictorial representation of a system with multiple components........... 4-7

Figure 4-4. Figure 4.3 reproduced for clarity ... 4-16

Figure 5-1. Graphic showing the terms for the different fusion operations 5-1

Figure 5-2. Methodology summary .. 5-4

Figure 5-3. Function of the concatenated classifier.. 5-5

Figure 5-4. Transformation of the system event to a final system functionality
 classification .. 5-5

Figure 5-5. Two notional ROC curves ... 5-13

Figure 5-6. Graph of the two notional and fused ROC curves 5-13

Figure 5-7. Graph of two more notional and fused ROC curves.............................. 5-14

x

 Page

Figure 5-8. Notional prognostics diagram with a two component system and
 two sensors... 5-16

Figure 5-9. Figure 4-2 reproduced for clarity... 5-23

Figure 5-10. Figure 5-6 reproduced for clarity... 5-24

Figure 5-11. Two more notional ROC curves .. 5-25

Figure 5-12. Graph of two more notional ROC curves, and the fused curve 5-26

Figure 5-13. The across ROC curves for the two classifier pairs, and the
 across ROC curve obtained by fusing all four classifiers
 using across fusion .. 5-26

Figure 5-14. Algorithm for problem solution ... 5-27

Figure 5-15. Figure 4-3 reproduced for clarity... 5-29

Figure 5-16. Notional ROC curves for all 9 classifiers .. 5-32

Figure 5-17. The solution for component A ... 5-34

Figure 5-18. The solution for component B ... 5-35

Figure 5-19. The optimal ROC curves for this example .. 5-36

Figure 5-20. A closer view of the optimal ROC curves ... 5-37

Figure 5-21. The optimal ROC curves if unused budget allocations
 could be transferred among components ... 5-38

Figure 5-22. A closer view of the optimal ROC curves ... 5-39

xi

List of Tables

 Page

Table 2-1. Test schematic [14] .. 2-30

Table 2-2. Table showing expected and actual experimental results [96] 2-51

Table 2-3. TEDANN’s diagnostic performance (severity) [43].............................. 2-71

Table 4-1. “Natural” sequence for a set of 6 sensors .. 4-13

Table 4-2. “Lexicographic” sequence for a set of 6 sensors 4-15

Table 4-3. Summary of sensor readings and their associated probabilities 4-18

Table 5-1. Definition of the ∨ operator ... 5-5

Table 5-2. Conditional probability table for one system component and
 two classifiers... 5-8

Table 5-3. Joint probability table for one system component and two sensors......... 5-8

Table 5-4. Conditional probability values [63] ... 5-18

Table 5-5. Joint probability values [63] .. 5-19

Table 5-6. Number of sensor subsets to consider given constraint types................ 5-30

Table 5-7. Sensor costs for the employment cost constraint 5-33

xii

ABSTRACT

The use of system data to make predictions about the future system state, commonly

known as prognostics, is a rapidly developing field. Prognostics seeks to build on current

diagnostic equipment capabilities for its predictive capability. Many military systems,

including the Joint Strike Fighter (JSF), are planning to include on-board prognostics

systems to enhance system supportability and affordability. Current research efforts

supporting these developments tend to focus on developing a prognostic tool for one

specific system component. This dissertation research presents a comprehensive

literature review of these developing research efforts. It also develops presents a

mathematical model for the optimum allocation of prognostics sensors and their

associated classifiers on a given system and all of its components. The model

assumptions about system criticality are consistent with current industrial philosophies.

This research also develops methodologies for combining sensor classifiers to allow for

the selection of the best sensor ensemble.

1-1

A FRAMEWORK FOR PROGNOSTICS REASONING

I. Introduction

Historically, military aircraft maintenance has been conducted using manual inspections

of various aircraft components. These inspections occur either after a completed flight,

or according to a particular maintenance schedule. This work is usually conducted

without knowledge of existing aircraft faults. This traditional pattern of maintenance and

inspection has become increasingly less efficient as aircraft systems have become more

complex [9]. Various sources estimate that up to 50 percent of the components removed

from the aircraft for fault repair actually retest as fully functional at the maintenance

repair facility [17], [19].

As the above problem continues to absorb more manpower and resources, alternative

approaches to aircraft maintenance are being considered. Rather than following the

pattern of traditional inspections conducted in a periodic fashion without knowledge of

existing faults, various organizations are attempting to improve the efficiency of this

process. Typically, this is being done through the addition of sensors to the aircraft

components, allowing for a direct measure of system functionality. In addition, these

sensor data streams may also be able to provide information about the remaining life of

the aircraft component. This sensor data would conceptually be fed into an intelligent

system which would attempt to detect existing or impending component faults. Not only

1-2

would this increase the efficiency of the current process, it would also allow for on-board

fault detection and subsequent flight plan modification. This dissertation addresses some

of the different aspects associated with this effort to improve current aircraft maintenance

practices.

1.1 Definitions: Diagnostics and Prognostics

The science of diagnostics is best described as the utilization of specialized machinery

monitoring hardware and/or software for detecting and isolating faults in a given system,

which may be either mechanical, electrical, or both. This system may include both

hardware and software components. The Air Force Research Laboratory [21] defines

diagnostics as the determination of a failure cause (fault detection and isolation) given all

available information. Once a failure occurs, diagnostic information can be used to

expedite the troubleshooting/repair process. The analysis may also be used for future

diagnostics. Current machinery monitoring technology provides data used in expert

analysis to extract usable information to isolate causes of any problem. This situation

leads to today's time-based or event-driven maintenance approach (i.e., perform

maintenance every 100 hours or when something breaks). Consequences of this

approach may include performing unnecessary maintenance actions and causing other

problems in the machine that did not exist prior to the maintenance action.

Prognostics is an emerging technology that seeks to build on current diagnostic

equipment capabilities. Some current diagnostic systems can accurately detect and

isolate faults in a particular system. The goal of a prognostics system is to use diagnostic

1-3

information to accurately predict a system’s future health, as well as report the systems’

current and predicted health, using automated procedures which do not require human

intervention to provide the systems’ health report. (For clarity, system health is defined

as the instantaneous operational status of the equipment being monitored. It relates to the

equipment’s immediate readiness for deployment or its need for repair actions [21].) In

effect, the prognostics system provides the expert interface, and reports on the systems’

health. The Air Force Research Laboratory [21] defines prognostics as an assessment of

likely future health (educated prediction) of a piece of equipment, based on current

information (current health status, history, etc). Accurate analysis of prognostic

information can prevent equipment failure and minimize the frequency of scheduled

maintenance actions through performance monitoring, tests, and reasoning.

A prognostics system is often referred to as condition-based maintenance, since the

prognostics system indicates required maintenance actions, either now or in the future.

This condition-based method should replace time-based or event-driven maintenance

methods, ideally resulting in less system downtime and only required maintenance

actions.

The terms “Prognostics and Health Management” (PHM) system, and “Autonomic

Logistics System” (ALS) are also found in the literature. The “PHM system” term

usually refers only to the sensors, diagnostic algorithms, and prognostic algorithms

required for predictive failure capability on a particular system. An ALS is defined as a

system intended to communicate appropriate maintenance, supply, and other appropriate

1-4

actions to the proper agencies in a timely fashion, based on the information obtained from

a prognostics system. However, the term “PHM system” may also refer to both of the

previous two definitions: both the predictive failure capability and the ALS component.

In this dissertation, it will be clear from context which meaning of “PHM system” is

intended.

1.2 Problem Statement

As previously discussed, a PHM system is intended to predict when aircraft component

failure will occur. The data from PHM system sensors are collected and fed through to

an intelligent data model which has been trained to recognize and differentiate between

healthy, degraded, and failure modes of different aircraft components. According to

Scheuren [78], this analysis is currently conducted using regression models, allowing all

relevant sensor data to be analyzed before a failure is reported. This section discusses the

motivations for pursuing a prognostics program, primarily from an Air Force perspective.

The Air Force’s aircraft diagnostic approach uses Built-in Test (BIT) units which are

incorporated as part of the aircraft hardware and software to detect aircraft faults.

However, these BIT units do not adequately identify all aircraft failures down to the

single component level. The aircraft mechanic has access to other technical data in

addition to the BIT unit data, such as: logic trees, fault charts, symptom/cause charts, and

schematics/wiring diagrams. However, the maintainer is still often left with an inability

to correctly diagnose the problem, and many times cannot replicate the problem the BIT

unit reported. The reported fault may not even exist, which contributes to the inability of

1-5

the mechanic to replicate the problem. As stated on Joint Strike Fighter’s (JSF)

homepage [76], “Aircraft Maintenance and supportability based on Built in Test (BIT)

Diagnostics is an antiquated strategy that has proven countless platforms to be

unsuccessful in producing the desired results in aircraft reliability and availability.”

There is significant motivation in the Air Force to streamline the aircraft maintenance

process, from both a cost and operational readiness perspective. According to Stoll and

Vincent [87], there is considerable room for improvement in the current Air Force

maintenance system. Problems identified in their report include trial-and-error switching

of electrical components to determine where the fault is, if one exists. The “Can not

duplicate (CND)” and “Re-Test OK (RTOK)” diagnoses also occur regularly (50% of the

time [17],[19]). This is thought to be due to stresses related to the operating conditions

aboard the aircraft that intermittently interrupt the functioning of the part, causing it to be

removed for maintenance. Usually, these stresses cannot be duplicated on the ground.

The communication busses and permanent wiring on an aircraft are not tested at present.

These components degrade over time, causing intermittent failures in flight and/or

sluggish responses from aircraft systems which may be attributed to otherwise fully

functional aircraft components. Lastly, since CND results indicate an inability to

duplicate on the ground a fault detected during flight, many maintenance personal believe

obtaining aircraft system diagnostic information at the time of the fault would improve

their ability to identify the problem. This would allow the exclusion of maintenance on

parts that did not function because of an aircraft system problem, rather than the part

itself actually malfunctioning. Borden [18] expresses similar thoughts. Borky, et al [19]

1-6

also express this idea - the Air Force is committed to reducing aircraft life-cycle costs,

and to achieving high sortie rates with a reduced force structure. To achieve this, the Air

Force requires a built-in diagnostics system that can achieve a high rate of accurate fault

detection. This capability is at the heart of a PHM effort. Blemel [16] indicates testing

costs are skyrocketing, to the point where they are beginning to exceed half the cost of

the aircraft they were built to test. Resources are being stretched to the point where it

may no longer be feasible to produce adequate, functional test equipment and software.

It will be far easier in the future to take advantage of the built-in processing power and

software diagnostics aboard the system. MacDonald [52] sums it up by saying most

aircraft are over-inspected at great cost to the Air Force.

A panel of defense experts reached similar conclusions in 1996 [71]. The Institute for

Defense Analyses held a conference with 41 participants from the technology

development, acquisition, and functional support areas of the Armed Services. The

participants concluded that current performance of defense systems is not commensurate

with what the current state-of-the-art suggests is attainable. Current performance

limitations constitute critical problems resulting in increased life cycle costs (and

consequently increased support and maintenance workloads), and decreased systems

availability. Perhaps even more importantly, the panel stated that potential integrated

diagnostic solutions are not limited by currently available technologies. Hence, the

diagnostic problem is not a technological problem, but “…a political, cultural, and

organizational problem” [71]. However, given the amount of research being done and

the fact there are almost no fielded integrated diagnostics/prognostics systems, it seems

1-7

that there are still many technical hurdles remaining before implementation of these

systems is possible.

The idea of using sensors to predict equipment failure has been around for some time.

Most references indicate published research along this line began to appear in the early

1980’s [57].

Start

Repair

Diagnosis

Result

Test

Ready
to Test End

Apply result

Determine repairVerify

Perform testSelect test

Perform
repair

Figure 1-1. A generalized diagnostic process [81]

Figure 1-1 shows a generalized diagnostic process. The initial assumption is that the

system undergoing diagnosis has a known fault. At first, the system is prepared for the

diagnostic procedure (“Ready to Test”). The appropriate test procedure is chosen

(“Test”), conducted (“Result”), and the test outcome is transformed, if required, into a

diagnosis. Once the diagnosis is completed, the appropriate repair action is identified

(“Determine Repair”) and implemented (“Perform Repair”). If there are multiple system

1-8

faults, the system is again prepared for diagnosis and the above procedure is repeated

until the system is fully functional again. All repairs are also verified: the diagnostic

process is repeated to ensure that there are no faults in the system once all repairs have

been performed.

In the early 1980’s, there were two main groups each favoring a different approach to

diagnostics. One group contended that a simple yet comprehensive collection of the

observed “abnormal” behaviors of a test unit and the actual failure mechanism provided

sufficient understanding of the situation to diagnose the fault. This refers to the testing of

a component using a fault tree approach (see Figure 1-2). The test results obtained while

following the fault tree’s directions help narrow the possible failure mechanisms until the

actual mechanism is identified. There is little concern with connecting the failure with

the associated symptom since an established diagnostic approach exists. At times, this

approach is known as a rule-based diagnostics system, since it was often implemented as

an “if-then” set of rules.

1-9

Figure 1-2. Diagnostic fault tree [14]

Figure 1-2 shows a fault tree which may be used to determine the state of a given system

or component. Each node in a fault tree indicates the particular type of test, ti, that should

be conducted. The goal is to determine the current system state, shown in this diagram as

an si index. The 1s and 0s indicate a pass or fail result, respectively, for a particular test.

The technician systematically conducts tests to isolate the correct system state. This is

similar to the current Air Force maintenance process. However, as discussed previously,

CND and RTOK results undermine the fault isolation process.

The second group preferred a model-based prognostics system. This approach assumes

an underlying knowledge of the system under consideration. The methodology includes

“black box” approaches like neural nets, genetic algorithms, etc. where the user does not

require exact knowledge of the workings of the model to obtain useful results. The

1-10

knowledge base then contributes to a fundamental understanding of the unit under test,

although at times this knowledge may be quite superficial.

The model-based system is being introduced into the Air Force maintenance process.

Various authors have published papers summarizing their efforts in this area. One such

example described in [22] is the use of neural nets to develop troubleshooting procedures

for an on-board avionics system. The particular system chosen for this study was the F-

16 Fire Control Radar (FCR) data. Only units known to be faulty were chosen for this

study. The purpose of this experiment was to use a neural net to distinguish between

three types of faulty FCRs. In this experiment, a success was defined as (correctly)

classifying a FCR unit as faulty. FCR units which were classified as faulty were called

“normal”. The other two ratings were “lemon” or “bad actor”. A “lemon” rating meant

the faulty FCR system was consistently (incorrectly) identified as a good system in

different aircraft. A “bad actor” rating indicated the faulty FCR system was (incorrectly)

identified as good only in certain aircraft, and this identification was not necessarily

consistent within that aircraft. The neural net obtained around 80% accuracy, which was

somewhat less than the authors hoped to achieve.

The panelists at the workshop specified in [60] identified three major classes of models:

physical, phenomenological, and empirical models. The panel considered these classes

of models important for manufacturing and machine monitoring. Physical models, or

mathematical descriptions of a system derived from its physics, represented the first class

of models they identified. The panel felt that the most useful physical models do not

1-11

capture every detail of the system, but capture the essential features with minimum

complexity. Secondly, they summarized phenomenological models as those which

identify certain key features of the data, such as spectral lines or modulations, which are

used to characterize the system. These models demonstrate a much looser or even only a

qualitative coupling between the actual physics of the process and the model features.

Finally, they called "empirical," or data-driven models, those models that were based

predominantly on features extracted from training data by mathematical or statistical

methods without direct reference to the physical system. Some examples from this class

of models include Markov models, varieties of neural networks, and simulation models.

The panelists also discussed the conflict between physically based models and empirical

models. (Phenomenological models represent the middle ground between the two

approaches.) The following direct quote mirrors directly the conflict between the two

different modeling camps, as previously mentioned before from [60]:

Perhaps the greatest differences of opinion among workshop participants centered
on the topic of physical versus empirical modeling. Some participants felt that
only models well grounded in physics could lead to significant progress.
Proponents of empirical modeling argued that, while empirical modeling might
not lead to the best possible solution, it can offer substantial improvements, it can
be applied immediately in situations for which adequate physical models do not
currently exist or are too expensive or complicated to obtain, and substantial
success has been demonstrated in real applications. Perhaps grudgingly, almost
all workshop participants ultimately agreed that both physical and empirical
models have an important role to play, and that significant research is needed in
both of these directions. [60, Section 3.4.5]

The participants in [60] did manage to agree that the two physical and empirical

modeling approaches require different approaches to model validation. Empirical models

require a training/validation set containing sufficient examples spanning the full range of

1-12

machines, faults, or situations. Of course, this makes it much more challenging to

develop a robust empirical model, in terms of the volume of work required. Physical

models usually have a much smaller, more restricted set of parameters, and the validity of

the model is determined with a much smaller test set. Furthermore, the intrinsic

confidence in a physical model is usually much higher since it is based on known

principles of physics rather than “unknown” features which empirical models identify

based on the data. Empirical models, in general, require much more rigorous, extensive,

and expensive training and validation than physical models; however, there are situations

in which the necessary quantity and quality of training and validation data is available or

can be collected more easily than developing an adequate physical model.

The workshop participants then commented that methods used to analyze the data from

mechanical system processes must be robust, i.e., methods which can tolerate significant

deviations from assumed or nominal signal characteristics. In general, the signal and

noise environment in these kinds of applications is highly complex, non-Gaussian, and

exhibits large variability and/or non-stationarity. The operating conditions may vary

dramatically between sensor locations. To ensure the user accepts these monitoring

methods, low false alarm rates are an absolute necessity. This places an additional

burden on the robustness of the methods.

The workshop participants identified reliable estimation of time-to-failure as one of the

greatest challenges in manufacturing and machine monitoring, and one of weakest areas

in existing methods. Most faults of interest are believed to begin with small precursor

1-13

events and to stem from a progressive (not necessarily linear) degradation of the tool or

machine component. Thus, the tracking of this degradation along with ongoing

prediction of the time-to-failure is of great importance. As the signal characteristics from

many types of degradations are non-monotonic, continuous monitoring which tracks the

history of the developing fault is often essential.

1.3. Motivation for a Prognostics System

The manufacturing infrastructure of most of the civilized world embodies the operation

and maintenance of machine systems. Both the commercial and government sectors have

a vested interest in technical advancements which may enhance the productivity,

efficiency, or quality of these machine systems’ operations. Such efforts can potentially

provide enormous cost savings and enhance industrial competitiveness. A primary

example is the repair and maintenance of these systems, which represents an annual cost

of many billions of dollars to U.S. consumers, industry, and government [60]. Although

monitoring is not cost-effective for inexpensive and non-critical machines such as

lawnmowers or fans, accurate system component condition assessment has the potential

to save large amounts of money while dramatically increasing safety and reliability of

important, complex systems.

Examples where system assessments are appropriate include power generation turbines

and critical equipment in nuclear reactors or on large oil rigs, where unscheduled failure

can result in lost revenue approaching a million dollars per day. Failure during

1-14

operations of aircraft engines or power train components in helicopters can often result in

loss of life as well as the equipment [60].

The combination of rapid advances in signal processing techniques with cost-effective

digital technologies for their implementation may alleviate the system monitoring

challenges that currently exist. These advances include both improvements on existing

methods such as spectral analysis and cyclostationary signal analysis, and emerging

techniques. Among these new technologies are advances in wavelet and time-frequency

signal analysis. These techniques can be used to characterize both transient phenomena

and persistent harmonic structure. Consequently, they appear well-matched to the signals

associated with rotating machinery. Other recent developments, such as higher-order

spectral theory, could also possibly contribute in these applications. Also, higher-level

techniques such as neural networks and statistical pattern recognition and classification

provide means for combining lower-level processing into detection and categorization of

faults. In fact, preliminary research by several groups in applying the techniques

mentioned above to a variety of related problems has demonstrated improvements over

traditional approaches [60]. These methods, with appropriately directed research, may

offer solutions for the critical technology needs in manufacturing and machine

monitoring and assessment.

Methods for machine monitoring and assessment which provide warning in time to cease

operations or schedule maintenance can provide immense value in these applications,

such as aircraft engines, aircraft electrical systems, and automobile assembly lines. In a

1-15

number of cases, some prognostic monitoring is routinely used or at least eagerly sought.

An excellent example is found in some military applications. Since the cost (and security

risk) of unscheduled failure in some military applications is enormous, preventative

maintenance is routinely practiced. Future weapons systems, such as the Joint Strike

Fighter (JSF), will have these kinds of prognostic condition assessment methods designed

and built as an integral part of the system.

Prognostic condition assessment allows performance of maintenance during regularly

scheduled service rather than on an emergency basis after failure, thereby greatly

reducing the total cost of the maintenance operation. Other sources of unnecessary cost

include replacing critical components based on mean time to failure data versus actual

component operational status. Additionally, fault indicators can be unreliable, meaning

many good components are removed for maintenance or repair as a result of an incorrect

fault indication, thus wasting resources on non-existent problems. This action violates

the "if it ain't broke, don't fix it" philosophy. However, the practicality of this philosophy

is predicated on reliable system condition assessment. To accomplish the converse of the

above principle (“fix things only if they’re broken”) requires early detection of precursors

to equipment failure. Finally, routine maintenance itself may cause failures. Some

sources state that routine maintenance is actually the dominant cause of failure [60].

A recent DoD study noted that “There does not appear to be a consistent approach in

either commercial or defense systems for functional and physical partitioning of the

hardware and software used to perform integrated diagnostics functions.” [72] This study

1-16

defines integrated diagnostics as"…part of the systems engineering (or reengineering)

process in which diagnostic functions are partitioned to components, both on and off the

product, to optimize economic and functional performance throughout a products life

cycle. Optimal performance is achieved by ensuring effective communication of

information relevant to the test and diagnostic process occurs between diagnostic

functions and components and across each life cycle phase." Success in these efforts is

essential for a successful prognostics system.

This study encompassed fourteen civilian and military programs in an attempt to

determine what current industrial and military practices were in the field of prognostics.

Besides the preceding conclusions, the study determined that a consistent approach to

diagnostics is feasible. In general, the study’s approach consists of four steps. The first

is to develop a consistent, information-based technical architecture for integrated

diagnostics. The second is to identify key/critical interfaces and elements of this

architecture. The third step is to develop a rough information model for integrated

diagnostics. And the fourth step is to prepare a roadmap to advance an open system

approach to integrated diagnostics.

The DoD study also identified key requirements for success in the development of

prognostic programs. Among these items were: reducing diagnostic ambiguities and

inaccuracies, correlating diagnostics with operational performance, the development of

measurable and relevant metrics, and the development/maintenance of industry standards

facilitated by a domain specific organization. A significant requirement for the last item

1-17

is the development of standardized data encapsulation and adherence to a consistent

architecture for integrating diagnostic elements.

The Air Force intention is to use prognostic systems to completely eliminate traditional

aircraft inspection and repair patterns. Currently, an aircraft goes on a mission and

returns. The aircraft mechanic then uses Built In Test (BIT) results from Line

Replaceable Units (LRUs) (available only after the aircraft lands) and pilot input (when

available) to check the aircraft for malfunctions. The malfunctioning units are identified,

removed, and sent to the maintenance depot for further diagnosis and repair. As

previously indicated, a BIT result does not always indicate the exact system fault, nor can

the mechanic always identify the problem, if one even exists. The first goal of the

proposed prognostics system is to fix this diagnostics problem; the new system is

intended to be able to find and isolate aircraft faults with complete confidence. Once this

is complete, the prognostics system can report the specific aircraft faults to the

maintenance and planning/operations activities. (While the goal for a prognostics system

is to predict the occurrence of these faults, the first capability required for a prognostics

system is the ability to identify an aircraft fault with high confidence.) Reported aircraft

faults allow the mechanic to estimate the required workload and preposition/order the

necessary maintenance equipment or replacement parts. This capability is usually

referred to as health management. Any fault and time-required-to-fix information can be

sent to the planning/operations activity to allow them to update the functional capability

of that aircraft and overall mission readiness.

1-18

Quoting from the JSF homepage [76], “Prognostics and Health Management (PHM) is a

technology maturation project focused on using advanced sensors integrated through

algorithms and intelligent models such as neural nets to monitor, predict, and manage

aircraft health. The goal of PHM is to enable what the JSF program calls Autonomic

Logistics: a maintenance and supply system wherein information on aircraft faults

detected while the aircraft is airborne is automatically downlinked to trigger the logistics

system to meet the returning aircraft with appropriate parts, maintenance personnel, and

maintenance equipment. This will allow the Right maintenance action, at the Right time,

for the Right reason.”

A National Science Foundation (NSF) Workshop on Signal Processing for Manufacturing

and Machine Monitoring workshop brought together 37 academic researchers and

industrial leaders and users of prognostics together to identify the pertinent signal

processing technologies and the most important industrial needs. Their findings were

disseminated to the entire community [60].

Most of the applications discussed in the NSF workshop involved either rotating or

reciprocating machinery. It thus appears quite possible that a promising prognostic

method could potentially solve a wide variety of machine monitoring problems.

However, the workshop participants cautioned that requirements, signals, and data rates

can be very different for similar kinds of machinery (rotating and reciprocating

machinery), as well as different types of machinery. Consequently, different prognostic

methods may be required based on the individual case. [60]

1-19

The industry participants in the NSF workshop [60] made it clear that the value of

monitoring lies primarily in fault prediction. As might be expected, after-the-fact

detection of serious failures is generally of little use, and does not require specialized

sensors to determine that something has gone seriously wrong. As an example, consider

the failure of an F-16 jet engine. Since the F-16 is a single-engine aircraft, engine failure

will almost always lead to pilot ejection and consequent loss of the aircraft. It is clear in

the case of engine failure that there was a catastrophic failure—what may be unclear is

the cause of this failure. Specialized sensors may have been able to detect an impending

failure condition, and that detection may have been able to save the aircraft.

The primary value of monitoring comes in predicting failure in time to prevent it, and in

reliably estimating the remaining time before the component fails. (See the taxonomy of

a PHM system in the immediately following section for a complete discussion of PHM

system capabilities.) The NSF conference participants provided the following example

from the automotive industry:

…in the automotive manufacturing industry, it is a common practice to change all
of the tool faces in all of the machines at the end of a shift. The only monitoring
question of real interest in this context is whether a tool will fail before the end of
the shift and thus cause an extremely expensive unscheduled shut-down; the exact
amount of wear on a drill bit is of little interest unless it presages a catastrophic
failure. Research efforts should thus be more focused on prognostics and on early
detection of fault precursors. [60, Section 3.4.1]

Researchers at the Boeing Company have also devoted considerable thought to the

integration of on-board monitoring methods in mechanical systems, specifically military

1-20

aircraft. They term their concept Integrated Vehicle Health Management (IVHM) [9].

Their concepts include on-board monitoring elements and ground-based logistic support

functions, which function similarly to the DoD’s concepts of a PHM and ALS,

respectively. The title of their paper includes the term “Tri-Reasoner,” and this term

refers to the incorporation in their system of three independent views of the vehicle’s

health. These three views are: the anomaly detection and reasoning system, the

prognostic reasoning system, and the diagnostic reasoning system. Outputs from all three

systems are combined in a concept termed the “integrated model” and the “reasoner

integration manager”. This paper provides a valuable overview of the issues which must

be addressed for any prognostics system.

Figure 1-3. The Tri-Reasoner IVHM system [9]

mm

h>*turiic

AVPH
FnpKVllH

■■kijilaHC

]

1-21

Figure 1-3 shows the data collection scheme and reasoners for different aircraft

subsystems. Each subsystem has a dedicated set of detectors and the three independent

reasoners. Detector information is combined in a data fusion engine and passed to the

three reasoning subsystems. The subsystem integration manager takes the results from

the three reasoners and sends the appropriate information to the central integration

manager.

Each reasoner has a specific function as well. The anomaly detection algorithms

typically use the raw detector data. These detection algorithms condition the data as part

of their processing. The associated Anomaly Reasoner (AR) assesses this conditioned

information within the integrated model. The AR’s task is to evaluate both the raw data

and extracted features for correlation and measures of evidence for fault conditions. The

main tools the AR uses are generic signal processing and statistical techniques. The

correlation and “ripple” effect of anomalies across subsystems is then examined within

the Air Vehicle Anomaly Reasoner (AVAR). The AVAR’s goal is to correlate anomalies

that occur across subsystems and to separate the “upstream” causes from “downstream”

effects.

The individual diagnostic algorithms and the associated Diagnostics Reasoner (DR)

further examines the root cause of an anomaly detected by the AR. The DR is intended

to incorporate a-priori engineering knowledge and models of a component or subsystem

(i.e. model-based diagnostics).

1-22

The Prognostic Reasoners (PR) and their associated individual prognostic algorithms are

focused on predicting the time to system failure, or the failure of a component or

components within a subsystem. The intent is for these predictions to be given as

distributions about a Mean Time To Failure (MTTF), thus resulting in different

acceptable risk limits based on the consequences of the particular failure mode. A PR

relies inherently on the individual prognostic algorithm results and an integrated model.

The overarching reasoner, known as the Reasoner Integration Manager’s (RIM) function

tracks and evaluates the progression of anomalies, diagnoses and prognoses across all

subsystems. Through direct algorithm interaction with the Integrated Model and

corroborating/conflicting evidence associated with the individual reasoner reports, the

RIM prioritizes the most probable fault or failure modes at the air vehicle level. The

RIM then isolates the most probable failure modes. The RIM then creates reports for the

operators, maintenance personnel and engineering support staff.

Since not all aberrant behavior patterns in a new aircraft system can be predicted before

system completion, the IVHM will need to be flexible in its capability to diagnose system

problems. Similarly, the techniques and technologies used for observing the aircraft's

behavior, and for reasoning about these observations, will continuously improve during

an aircraft's operational life. To ensure these capabilities for new diagnoses and new

methodologies can be included in the current on-board system, the IVHM architecture

incorporates embedded learning components. Additionally, the underlying diagnostic

procedures and reasoners will be coded in a modular format to allow for easy exchange

1-23

of software modules as new diagnostic procedures are developed and new programmatic

tools come into existence. The overall scheme is shown in Figure 1-4 below:

Figure 1-4 shows the overall IVHM tri-reasoner architecture. As previously explained,

there are three independent views of the vehicle’s health and a reasoner integration

manager (RIM) (the box at the top center of Figure 1-4). Each aircraft subsystem has a

“Uses”

Data flow

Air-Vehicle HM

Reports
Pilot, Mechanic, Engineer

Reasoner Integration
Manager

Air-Vehicle
Diagnostics Reasoner

Integrated/Embedded
Models

Air-Vehicle
Prognostic Reasoner

Air-Vehicle
Anomaly Reasoner

Subsystem HM

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Diagnostic Reasoner

Subsystem
Anomaly reasoner

Subsystem
Diagnostics Reasoner

Subsystem
Integrated/Embedded

Models

Subsystem
Prognostic Reasoner

Subsystem
Anomaly Reasoner

Subsystem HM
Sensor/Effector Level

Sensors Discrete Fault Indications Sensors

Figure 1-4. The Tri-Reasoner Integrated Vehicle Health Management system [9]

1-24

dedicated reasoner suite composed of the three models and the associated sensors or fault

indicators. This information flows to the RIM for overall diagnostic/prognostic

assessment and reporting to appropriate entities. The tri-reasoner algorithms are generic

and decoupled from any domain knowledge to enable the use of algorithms that have

withstood a wide variety of applications thus increasing the confidence in their reliability.

1.4 Research Goals

There are three main research goals for this dissertation. The first is to summarize the

major areas of research currently being performed in the field of prognostics. The second

goal is to create a mathematical architecture for the implementation of a prognostics

system. This architecture includes a sensor selection algorithm and methodologies for

combining sensor information. The third goal is to demonstrate the utility of this

algorithm by solving some notional examples.

1.5 Dissertation Organization

This dissertation is organized into five chapters. This chapter has provided a general

overview of the prognostics problem. The second chapter provides a literature review of

prognostic method papers. Chapter three provides an overview of some mathematical

techniques which are commonly used in the analysis of prognostic data. The fourth

chapter presents a notional methodology for defining and solving a prognostics problem.

Chapter five illustrates this methodology using a sample problem. Chapter six

summarizes the contributions of this work and provides recommendations for further

research.

2-1

II. Literature Review

2.1 Background

The purpose of this chapter is to summarize the history of aircraft diagnostics/prognostics

development, provide a PHM system taxonomy, and summarize the major areas of

research being performed today. The first section summarizes the historical development

of diagnostic/prognostic efforts, and describes a notional PHM system. The second

section describes some technologies that may be used in a prognostics application. The

third section describes the main diagnostic approaches used for aircraft maintenance.

The fourth section describes the main modeling approaches used for

diagnostic/prognostic applications. The last section summarizes the information provided

in this chapter.

2.1.1 History

The material for the history section is primarily drawn from Atlas, et al [9].

Early generation aircraft relied on manual detection and isolation of problems on the

ground. These aircraft were composed of systems that were analog and independent of

one another. Only a schematic, voltmeter, and reports from the pilot were required to

diagnose problems.

As these aircraft systems became more complicated, Built In Test Equipment (BITE) was

introduced in the aircraft to warn the pilots of critical failures in important components.

2-2

However, the aircraft mechanic did not use BITE. The mechanic still relied on the

schematics, voltmeter, and pilot reports.

In time, aircraft design engineers realized that the output of the fault detection monitors

could be made available to support mechanic troubleshooting (in the form of analog

BITE reports). With these monitors, the concept of “fault balls” was born, and was

incorporated on some aircraft systems as early as the 1940s. Fault balls are indications,

normally on the front of a Line Replaceable Unit (LRU), that a fault has been detected -

they were originally mechanical, but later were replaced with small Light Emitting

Diodes (LED’s). In many cases, the LRU front panel contained a test switch to command

the LRU to test itself in a manner similar to how ground support equipment could test the

LRU. This capability also became known as Built In Test Equipment (BITE). This

capability began to decrease the need for some of the ground support equipment

previously used to test airplane equipment. Depending on the system, the fault balls

could effectively point the mechanic in the right direction, but schematics and voltmeters

were still needed for most conditions. The BITE results of this era was often confusing,

unreliable, and difficult to use. Mechanics often distrusted it. Despite problems, many

systems on airplanes such as the Boeing 707, 727, early 737/747, McDonnell Douglas

DC-8, DC-9, and DC-10’s employed this type of maintenance design.

In the 1970s, some of the increasingly complex aircraft systems began to use computers

to perform their fault diagnostic calculations. This was called digital BITE. With these

computers came the ability to display fault detection and isolation information in digital

2-3

form, normally via numeric codes, on the front panel of the LRU. The digital logic could

produce codes that could better isolate the cause of the fault. The digital display offered

the capability to display many different codes to identify each type of fault that was

detected. These codes often pointed to some description in a manual that could be used

to isolate and correct the fault. Many systems on the Boeing 757/767, Airbus A300/310,

McDonnell Douglas DC-10, and Lockheed L-1011 still employ this approach.

As the number of systems grew, use of separate front panel displays to maintain the

systems became less effective, particularly since each LRU often used a different

technique to display its fault data. In addition, some of the systems had become

increasingly integrated with each other, due to the introduction of digital data buses, such

as the ARINC 429. Autopilot systems were among the first to use digital data buses and

depend on sensor data provided by other systems. Consequently, these autopilot systems

have been a leading cause of requiring more sophisticated maintenance systems. The

more sophisticated monitoring was necessary to meet the integrity and certification

requirements of its automatic landing function. For example, the 767 Maintenance

Control and Display Panel integrated the maintenance functions of many related systems.

In 1986, the ARINC 604 digital data bus defined a Central Fault Display System (CFDS)

to incorporate the maintenance indications for potentially all of the systems on the

airplane into one display. This approach enabled more consistent access to maintenance

data across systems, a more comprehensive display function than each of the systems

could provide individually, and saved the cost of implementing front panel displays on

many of the associated system LRUs. In this approach, the CFDS is used to select the

2-4

aircraft system for which the aircraft mechanic desires maintenance data, and then the

CFDS routes the maintenance data from that aircraft system to the display. This

approach was employed on some of the systems on later Boeing 737s, and most systems

on the Airbus A320/330/340, and McDonnell Douglas MD11.

As systems became more complex and integrated, a single airplane fault could cause

fault indications for many systems, even when displayed using the CFDS. The mechanic

had little help in determining which fault indication identified the source fault, and which

were merely effects of the source fault. To solve this problem and related issues, the

ARINC 624 was developed in the early 1990’s. This system provides a more integrated

maintenance system that can consolidate the fault indications from multiple systems, and

provide additional functionality to support maintenance. Minimal ground support

equipment is needed to test airplane systems, as most of this capability is included in the

ARINC 624. For example, most factory functional tests of airplane systems on the

Boeing 747-400 and 777 airplanes consist of little more than execution of selected tests,

monitoring fault displays, and monitoring certain bus data using the ARINC 624.

The main goal in fault isolation on the airplane has always been to identify the LRU

causing a fault. This allows the aircraft mechanic to confidently remove the failed

component and correct the fault condition. Although in many cases this is possible, there

are many other cases where diagnosis and repair is not possible without the addition of

sensors and/or wiring. The addition of sensors and/or wiring increases the number of

components that can fail, and thus sometimes can worsen the maintenance effort, since

2-5

the aircraft mechanic must now distinguish between failed aircraft systems and failed

aircraft sensors and/or wiring. In addition, these diagnostic sensors and/or wires add cost

and weight to the airplane.

As a result, current fault isolation techniques for aircraft cannot produce the perfect

answer (the single faulty LRU) in all cases. This is a practical matter, since the wholesale

integration of aircraft systems is really the reason why perfect diagnosis in modern

aircraft is impossible, given current techniques. However, today, it can point the

mechanic to a small group of LRUs in almost all cases. Since the technical limit of

diagnostic systems has been reached, aircraft engineers are looking into prognostic

systems for assistance with diagnostic issues. The accurate prediction of when faults on

an aircraft can be expected to occur is the next big step.

2.1.2 Fault Taxonomy

Any given system has a multitude of unique characteristics due to myriad sources of

variability. These sources include manufacturing (both across and within manufacturers),

reaction to ambient environmental conditions, system part replacement and repair, etc. In

addition, variability appears in the performance of the system’s components (e.g.

mechanical, electrical, and hydraulic). A system’s age also modifies these unique

characteristics. In the presence of this variability, on-board aircraft health management

systems must be able to accurately distinguish between “normal” operation and the

presence of a fault.

2-6

This section presents a taxonomy of system behaviors between which a prognostics

system must be able to distinguish. These behaviors are defined as: nominal, incipient

fault, intermittent fault, active fault, system fault, sensor fault, and novel fault. The term

“anomalous event” is used to collectively include the six kinds of faults. An anomalous

event indicates a system that either does not have all available functionality or is not

operating within its intended design constraints.

The nominal behavior of a system is that behavior that exists when all intended

functionality is available and is operating within the constraints of the intended design at

a given point in time. The system can be functioning as intended at two different points

in time, even though the characteristics of individual system components and sensor

operating characteristics may have changed. As an example, the Concorde fuselage

expands about 12 inches in length during a flight across the Atlantic. However, the

aircraft does not lose functionality as a consequence of this expansion.

An incipient failure exists on a system or component that is still operational, but is

trending towards a failure condition. An example would be a hydraulics systems that is

losing pressure. The hydraulic system may still be fully functional, but is trending

towards a state of non-functionality.

An intermittent fault occurs infrequently, yet repeatedly. The system with an intermittent

fault has full functionality when the fault is not present. An example of this kind of fault

is a loose electrical connection that causes sporadic short circuits in the affected system.

2-7

An active fault is system behavior outside the range of intended functionality. An

example is exceeding the revolutions per minute limit of a passenger car engine—this is

an operation of the engine above its intended functionality. Active faults do not

necessarily indicate a loss in system functionality, though a system may quickly

transition from an active fault to another kind of fault.

A system fault is when a system component or subcomponent is no longer functional.

Examples include an engine that no longer rotates or a hydraulics system that has lost

sufficient fluid/pressure to properly operate system components.

A sensor fault occurs when a sensor within a system component or subcomponent

1) reports a fault condition when none exists, or 2) does not report a fault condition when

one does exist. Of these two conditions, the second may be more detectable on an

attended system since an operator will likely notice a loss of functionality despite the lack

of a fault report. The first condition, also called a false alarm, is likely to be the most

troublesome since measures may be taken to correct the non-existent fault which disable

other correctly functioning systems. For example, a false alarm of an aircraft engine fire

may lead the pilot to eject from the aircraft, resulting in destruction of the entire aircraft,

and possible injury or death to the pilot.

A novel fault is an unknown anomalous condition. This type of failure event does not

result in nominal system behavior, nor can it classified in any of the known fault

conditions. It is something completely new in the system’s behavior. This type of fault

2-8

may adversely affect the performance of the system, or it may not. It is the only kind of

fault which may not be of concern to an operator. An example is the development of a

rattle in an aircraft throttle lever. If it does not affect the pilot’s control of the engine

speed, it would be classified as a novel fault, and is not likely to concern the pilot.

2.1.3 PHM System Taxonomy

The main goal of prognostics, and a PHM system, is to accurately predict future failure of

system components in order to replace these components before they actually fail,

avoiding shutdown and potential damage to the system. The ultimate benefit is enhanced

performance at lower cost, since components are not needlessly replaced before their life

cycle ends, and components do not fail while still integrated in the system. Components

left to fail while still in the system can shut the system down and potentially lead to

damage to other, otherwise healthy, system components.

A PHM system accomplishes accurate detection through real-time on-board diagnostics

and the performance of prognostic functions (forecasting the useful remaining life of

component parts) with reasonable lead times, eliminating traditional inspection and repair

patterns. Rather than fixing a component after it has failed, it can be replaced when

prognostics indicate that probable time to failure (or probability of component failure) is

within some critical threshold.

2-9

Figure 2-1. A notional prognostics system

Figure 2-1 shows the flow of data through a notional prognostics system. Aircraft sensor

data is routed to a diagnostics data collection terminal. This data is sent to an expert

interface which employs a prognostics framework to analyze the diagnostics sensor data.

The expert interface then provides a report on the health of the aircraft. This report

includes a list of components with estimated time to fail, a list of components that have

failed, required maintenance parts and actions, and an assessment of aircraft

readiness/time before becoming fully operational again.

A prognostics system needs a fully functional diagnostics system. The diagnostics

system must accurately report appropriate data from system components up to an

Expert Interface

BIT Data
Sensor Data

Prognostics Framework

Intelligent Models

Physical Models

Historical Data

Predictive Models

Operations Output:

Aircraft Availability

Mission Readiness

Maintenance Output:

System Health

Degraded Components

Failed Components

Required Actions

Onboard Diagnostics

Data Collection

2-10

appropriate level (based on the system). This may be done in either of two ways: passive

or active monitoring.

A passive monitoring system observes the current behavior of the system components.

For example, this can be a sensor (ensemble) that monitors the current coming from a

motor, or a sensor (ensemble) monitoring airflow from an engine. The majority of

sensors used in aircraft today are passive. As an example, an on-board BIT unit is a

passive monitoring system, since it observes and records component performance.

An active monitoring system interacts in some way with a system component of interest

(even while the system is in operation). It may send a known signal of some kind into the

system component of interest. It may also collect a sample from the system component,

such as engine fluid. As an example, an external sensor (ensemble) is attached to the

component, and this sensor (ensemble) sends a signal through the component at a level

that minimally affects the component’s operation. The component’s reaction to this

signal is captured through either the same or a different sensor (ensemble). A BIT

capability to conduct a component self-test is an active monitoring capability. This

captured data is then sent to an expert interface for analysis.

A prognostics system also requires an expert interface with appropriately high levels of

sensitivity and specificity. In this context, sensitivity means the prognostics system

correctly identifies when a fault or degradation is present. Specificity means the

prognostics system correctly identifies when a fault or degradation is not present. The

2-11

incoming diagnostic data must be correctly classified as indicative of either correct

system function, system degradation, or a system fault. This expert interface may be just

for a single system component, meaning there very likely are many of these interfaces

within one system. The expert interface may also be an overarching system which

combines the results of all the diagnostics inputs from all the system components. The

design will depend upon the mechanical system.

A prognostics system should also provide system component health predictions based on

the incoming diagnostic data. There are many different kinds of predictions that a

prognostics system may produce. These predictions include assessments of future

component/system events and probabilities associated with both current and future

component/system events. The following paragraphs discuss the main predictive outputs

of a PHM system.

The expert interface of a prognostics system should provide a level of confidence

associated with its assessment of fault/non-fault for a particular system component.

Another key prediction capability is the time remaining until component/system failure.

The prognostics system may also be able to characterize this measurement using two

confidence level measurements and a system-level measurement. The first confidence

level measurement is associated with the predicted time remaining until component

failure. In turn, this leads to a system-level measurement of the probability that this

component actually fails before the “predicted time remaining” elapses. These predictive

measurements allow for the replacement of components before they actually fail,

2-12

preventing catastrophic consequences in systems where component failure can lead to the

failure of many previously healthy components. Related operational measures are

degraded system status information and a future time frame health status for critical

systems, such as aircraft.

The above prediction capabilities may then be extended to the prediction of a degraded

component/system condition. The definition of “degraded” is unique to the component

or system under consideration. The expert interface should have a third classification

status of degraded, in addition to indicating fault and non-fault status. Again, the

prognostics system may then use confidence level measurements similar to those

previously described. A “degraded” predictive measurement allows for a more precise

(perhaps) replacement of parts that are about to fail – it may allow for increasing the

functional lifetime of the part before it is removed to prevent system failure.

Another measure is the probability of failure of a component/system within the next cycle

of operation of the mechanical component/system. As an example, the goal could be to

determine the probability of failure of an aircraft engine during its next overseas flight, or

during its two-week hiatus in a location with very limited access to maintenance parts.

Again, a level of confidence in the immediately preceding probability definition is a

desirable measurement.

Any predictive information can be obtained from a prognostics system and used for

automatic maintenance planning, parts orders, mission planning, etc. This automated

2-13

logistics concept is called the Autonomic Logistics System (ALS). The goal of PHM and

ALS is to provide a complete overall system health monitoring capability, and

consequent maintenance and planning management capabilities. Eventually, sufficiently

redundant mechanical systems may be designed that can reconfigure themselves based on

predicted failures. However, much basic research remains to be done before a complete

overall system health monitoring capability becomes a reality.

2.1.4 Description of an ALS System

A main component of a PHM system is an ALS. An ALS is intended to be a real-time,

intelligent global logistics network dedicated to the support of the Joint Strike Fighter

(JSF). An ALS is intended to identify and communicate appropriate maintenance,

supply, engineering, safety, and training actions to support and enhance mission

execution. Figure 2-2 shows a notional ALS concept.

Figure 2-2. Autonomic Logistics System (ALS) model [77]

^ OvnWJII* H#lnt*npnc# ACMDH*

2-14

Figure 2-2 shows how aircraft sensor data, once processed by a PHM system onboard an

aircraft, provides a list of degraded and failed components to appropriate maintenance

and planning activities. This information provides an up-to-date picture of the aircraft

health, required maintenance actions and parts, and updated mission planning schedules.

The aircraft mechanic’s Interactive Electronic Technical Manual (IETM) is also updated

with information about the current state of the aircraft’s systems.

The autonomic term in the ALS acronym refers to an intended automatic trigger of

appropriate actions within the system (subject to human controller inputs), based on

current mission status and requirements. The autonomic support concept is similar to the

human autonomic nervous system that directs the human body to perform heartbeat,

breathing, and other functions with minimal human intervention. The logistics parallel is

a system that is stimulated, prior to an aircraft’s return, to ready appropriate tools and

spare parts.

The ALS, using PHM input, automatically determines that certain parts are reaching the

end of their service life and ought to be replaced, and reports this information before the

aircraft lands. This is in contrast to the traditional method of diagnosing aircraft

component failures upon the return of the aircraft, and then readying the appropriate tools

and spare parts. Also, in present systems, maintainers rely on often ambiguous problem

descriptions from the pilots. The autonomic system, in contrast, relies on an integrated

report from aircraft diagnostics that minimizes incorrect maintenance actions and

consequently reduces maintenance support requirements. The ultimate intent of the ALS

2-15

and PHM working in concert is to reduce maintenance manpower, logistics machinery,

and increase sortie rates. Most of the discussion that follows focuses on the PHM aspects

of the system, rather than the autonomic support concepts, as PHM capabilities are

necessary to realize ALS goals.

Su [88] divides how people have thought about prognostics into two different concepts:

component/part and system. The concept used to model prognostics has influenced the

way the prognostics problem is addressed. According to Su, prognostics have

traditionally been regarded as a component/part problem. This led to the adoption of

failure statistics and analysis methods to identify and replace failed components. Some

examples of the sensors employed include time/stress measurement devices, vibration

monitoring, and system sensors (oil, water, etc.). Some examples of the analysis methods

investigated include neural networks, genetic algorithms, and trend analysis. These

techniques are usually system specific—they are applied piecemeal to the particular

problem under consideration and combined in a unique fashion to provide results which

are meaningful only for that particular piece of equipment. However, when viewed as a

system problem, the prognostic approach necessarily becomes much more involved.

Systems such as satellites operate in environments with little or no human interaction.

Ideally, there would exist a common set of sensors and techniques which could be

applied to all of these types of systems. Su calls this concept an overall Prognostics

Framework, a generic, tailorable software tool that uses model-based reasoning to

integrate embedded test and sensor data into diagnostic and prognostic systems. The

ultimate goal is to produce a generic tool capable of being applied to all different kinds of

2-16

warfighting systems. This would lead to the integration of all warfighting systems into a

single architecture for the future battlefield.

Figure 2-3. Future military systems support concept [77]

Figure 2-3 illustrates the single architecture concept. PHM and ALS are extended from

just aircraft systems to all systems used in a warfighting scenario. All the PHM and

resulting logistics information from the involved warfighting platforms is collected via a

distributed information system, and delivered to an enhanced logistics system. This

enhanced logistics system handles all the required logistics actions, allowing for joint

logistics interoperability and the notional improvements in logistics performance shown

in Figure 2-3.

(OHUi »^Avf

AUTONOMIC 2010 BATTLEFIELD
SUPPORT CONCEPT FOR THE FUTURE

ioanomvHi

jOEhr LOOLsncS
INTERDPfRABlUTT

2-17

2.1.5 Technical Feasibility

The main goal of a PHM system is to understand and predict when components (and

possibly consequent systems) will fail. To accomplish this, a PHM system will likely use

artificial intelligence or other methods to predict failure of system components.

Traditional sensor-based diagnostics recognize the functional and failure modes of the

aircraft and its components. A PHM system extends this approach, using models to

predict the onset of failure modes.

Figure 2-4. Model of PHM system [77]

MODEL BASED PHM

£<idy Current Sensor?

Low Power Wfr^l^ss Integral^
Micro3^nscn

Algorithms

F^st Fomior Tr^nsform^
OtKTvte Fouri&r Trmatorms

2-18

Figure 2-4 shows the collection of raw data from the sensors, the transformation of this

data into a meaningful output via algorithms, and the extraction of key features from the

output via some reasoners. The focus is on using the mathematical models of artificial

intelligence, such as neural nets and fuzzy logic, to extract key features of the operation

of the aircraft system. Individual sensor data is used in these computations, but all

features are fused before a PHM system reports a failure. This fusion action is intended

to minimize the number of incorrect diagnoses the system produces, reducing

unnecessary maintenance actions and costs. Research with intelligent diagnostic systems

has shown that accurate measurements of appropriate variables can be used to reliably

predict future failure [11], [12].

Figure 2-5. Spectral lines from a faulty item (left) and a correctly functioning item

(right) (Magnitude in dB vs. frequency; wavelet decomposition can detect the difference)

[49]

Figure 2-5 shows an example of raw data taken from accelerometers attached to the aft

transmission of a helicopter. According to the authors, exhaustive tests indicate there are

2-19

no obvious features in this raw data which can be used to classify it as a fault or no-fault

class. So, the authors used a wavelet decomposition on the data in an attempt to extract

useful features. They discovered the features useful for classification are non-stationary,

confirming the wavelet decomposition as a very suitable choice. (The features were

certain frequency bands.) For fault classification, the wavelet coefficients are computed

as a function of time. A simple average and standard deviation are computed for each

data channel in a given time window, and the results are compared to a set of nominal

values for fault classification.

Other research programs seem to indicate that a PHM system is, in fact, an attainable

goal. The UK Ministry of Defense used a neural net model to accurately predict

structural life used on the basis of recorded flight data [10]. Also, DARPA participated

in a research project which showed an engine control sensor suite could be operated with

4 sensors instead of 7 [32].

2.2 Technologies/Applications

According to the NSF workshop [60] participants, the most prominent method (by far)

for manufacturing and machine monitoring is spectral, or "FFT" (fast Fourier transform)

analysis. Cepstral variants are often employed to increase robustness or to reduce the

variability of the FFT estimates.

A cepstrum is the Fourier transform of the log magnitude spectrum:

FFt(ln(| FFt(window . signal) |)

2-20

and was coined in a 1963 paper by Bogert, et al [17]. (A “window signal” is the signal

that appears on a given graph—it occurs in the “window” that the graph shows.) They

observed that the logarithm of the power spectrum of a signal containing an echo has an

additive periodic component due to the echo, and thus the inverse Fourier transform of

the logarithm of the power spectrum should exhibit a peak at the echo delay. They called

this function the cepstrum, interchanging letters in the word spectrum because "in

general, we find ourselves operating on the frequency side in ways customary on the time

side and vice versa. (sic)" This term has come to be accepted terminology for this inverse

Fourier transform of the logarithm of the power spectrum of a signal [66].

The unusual terminology surrounding the computation of the cepstrum was introduced in

the original article by Bogert et al [17], in which various terms from signal processing

(spectrum, frequency, analysis, phase) were rearranged into anagrams (cepstrum,

quefrency, alanysis, saphe). The authors did this to highlight this unusual treatment of

frequency domain data. The frequency data was treated as if it were time domain data in

the transformation of it to a data set which had units of seconds across its x-axis values

(the quefrencies), but which indicated variations in the frequency spectrum.

The cepstrum is commonly used in voice recognition applications and

rotating/reciprocating machinery analysis. As an example of the former, the consonants

of speech are usually transient and of short-burst character. However, vowel sounds (and

tones sung by a singer) are formed by repetitive emission of pulses into the vocal tract

[62]. This leads to the use of the cepstrum to analyze these pulses. Similarly, rotating

2-21

machinery exhibits a repetitive emission of pulses, and this suggests the same analysis

technique. As a result, the concept of the cepstrum has become a fundamental part of the

theory of systems for processing signals that have been combined by convolution [62].

Figure 2-6. Frequency response of a round horn without reflection [7]

Figure 2-6 shows a graph of horn signal strength (dB) vs. frequency. The center to upper

right hand corner portion of the graph is relatively smooth, lacking a definite periodic

component.

-;:^ ̂ -

T=4. 6 On
1 Freq jency ReE ponse May ILAudlc

^^^
aim"

^

y^ \

/
^ > /^

-za"

^ \y
/

Ik Zh lOk

2-22

Figure 2-7. Power cepstrum plot of the data from Figure 2-6 [7]

Figure 2-7 shows the cepstrum transformation of data from figure 2-6. Since there is no

periodic component associated with this signal, the cepstrum shows very little power.

Figure 2-8. Frequency response of the same horn when reflection is included (notice the
ripples in the curve) [7]

o

I Rcmei- Ceps t i-ui^ : Re 1 . Ga in^J. ■ OO |

■ ■IllUMliii^ nil.

T=4.60n5

--[--

1 Freciuenc<j ResFJonse Mag ILAudU

^ ^

/,|,,„

\^ V 1

-TO"; 1

-^ ̂
-Za"\ V"/"

\ 1/ 1 Ik 2k lOk

2-23

Figure 2-8 shows a graph of frequency response of the same horn, but with a reflected

component. The reflection of the signal can be seen in the upper center to right hand

corner of the graph (the oscillations). It is this feature that the cepstrum excels in

detecting.

Figure 2-9. Power cepstrum plot of the data from Figure 2-8 [7]

Figure 2-9 shows the cepstrum transformation of the data from Figure 2-8. With the

addition of the repetitive signal component, the cepstrum shows a dramatic increase in

power. This type of unambiguous signal processing is particularly useful for

diagnostic/prognostic applications, provided the presence/absence of repetitive emissions

is the sole determinant of proper functioning.

Cn5> 1

1Pouar

a

RaL, Gain-1,001

3 4

ILAudl

U

J 1 lllllllllliillll 1 lllll

2-24

For machinery analysis, usually a number of spectral lines associated with harmonics of

the various rotating frequencies of the machinery are identified and their levels are

compared to pre-selected thresholds. Spectral analysis has the advantages of a natural

and direct association with the characteristics of rotating machinery, relatively simple

interpretation, a certain robustness to noise, propagation path, and other sources of

distortion, backed by a large body of theory and experience. "Trending," in which the

evolution of parameters over time is tracked, is also commonly used; for example, the

rate of increase of the magnitude of a spectral line may be estimated or even used to

predict the time to failure.

The NSF workshop participants noted that many types of sensors which measure a great

variety of physical phenomena are used for both manufacturing and machine monitoring.

Mechanical characteristics such as vibration, torque, displacement, shaft velocity, strain

and pressure are measured by many different types of sensors, ranging from

accelerometers to strain gauges to non-contact displacement pickups using eddy currents.

Electrical characteristics such as motor current, capacitance, and RF emissions are often

used. Acoustic emissions (AE) play an increasingly important role in manufacturing

applications and are under investigation for certain machine monitoring tasks. Visual,

infrared, ultrasonic, and X-ray inspection for non-destructive evaluation (NDE) play

major roles in certain applications. In spite of this vast array of sensor technologies, there

appears to be a constant need for new, more, and better sensors. Many types of sensors

have significant limitations, such as restricted bandwidth, nonlinear behavior, or a

2-25

susceptibility to saturation. The Air Force goal is to minimize the number of sensors

since these are going in smaller JSF aircraft.

Montauk [26] contends that sensors were integrated into electronics systems to

accomplish four tasks. The first two tasks related to engine operation and wear. The first

task determines when an aircraft’s engine performance has deteriorated to the point

where the fuel burn changes to something other than its optimal level. At that point, the

fuel burn is readjusted to a proper level, instead of letting the condition degrade until the

engines needed an overhaul. The second task determines engine damage, hopefully

before it impacts the operational schedule or significant consequential damage occurs.

The third task assesses how realistic the operational procedures are in order to improve

operational safety and enhance profitability. The fourth task is most relevant to this

study, as it concerns locating and rectifying faults in complex avionics systems.

This final task evolved into two different types of systems. The first concerned itself

with determining how long an aircraft can operate in a particular condition, and the

second provided data on which components need replacement. Chu [22] refers to the

first system as an Aircraft Integrated Data System (AIDS). The primary goal of AIDS is

preventative maintenance, and as such is not usually used to troubleshoot an aircraft,

although it may help an experienced user in pinpointing some problems. He refers to the

second system as a Central Maintenance System (CMS), and this system is the one

intended to allow a mechanic to easily identify faulty avionics units. The exact methods

by which either system makes it diagnoses are not mentioned in the article. The CMS

2-26

would also trigger the Autonomic Logistics System to provide appropriate spare parts.

This trigger and subsequent parts delivery would allow the aircraft repairs to begin as

soon as it lands, which improves operational efficiency, and for commercial airlines,

profitability.

Moving on to more specific applications, Su [88] proposes an overarching software

solution to the prognostics problem. The software would be capable of handling data

inputs from any sensor on any system. These inputs would be tied in with a logistics

infrastructure to provide the “Autonomic Logistics System” capability. A primary

requirement would be the collection and analysis of system data in real-time or near real-

time. Faults would be identified using a “Diagnostician” consisting of algorithms that,

among other things, would correlate all possible faults to all possible system components.

The prognostic part of the software uses predictive techniques which include item

specific mechanisms such as neural networks. It also includes linear signal degradation

measures, historical conclusions and statistics, and engineering correlations. These

correlations are presumed to be the correspondence between sensor indications and

resulting system faults. Su does not provide any estimate of when this proposed software

solution would be functional.

A number of authors address the issue of the human/machine interface. Dussalt, et al

[29] focus on the development of management tools to support diagnostic decision

making. The current Air Force Integrated Diagnostics policy requires that all faults,

either known or expected, be detectable and unambiguously isolated within a system.

2-27

This policy does not specify the amount of automation required to be present for system

diagnostics. Consequently, a diagnostic system may consist of automatic and manual

testing procedures. The paper describes an approach the Air Force is taking to consider

what the most appropriate mix of diagnostic measures may be. Similar concerns are

expressed by Dean [27].

Thesen and Beringer [91] take a slightly different approach. They use a hierarchical

model which represents the user and system as two independent control systems.

Communication between these two “independent systems” takes place when each

operates with appropriate expectations about the control strategy used by the other. The

human must be in-the-loop with the diagnostic system to ensure the automatic

recommendations the system makes are correctly understood, and that type I and II errors

are not made with regard to the system recommendations (type I - ignoring correct

automatic decisions; type II - acting on decisions that are incorrect).

Eilbert and Christensen [30] note that search procedures designed to detect system faults

may discern apparent patterns when none, in fact, actually exist. The following figure

provides an example of their viewpoint.

2-28

Figure 2-10. Hypothetical bivariate data set [30]

Figure 2-10 shows a data set with complete discrimination ability between both data

classes using either a parabolic or circular separator (dashed lines). The optimal linear

discriminator misclassifies three events. Because of the small sample size, it is not clear

that a quadratic discriminant is preferable, or indeed correct. The implication is that

using a search procedure to determine the cause of a particular sensor’s report may

continue the string of problems (RTOK and CND) already present in the current

diagnostic system. This effect may be mitigated to some extent if the system can provide

a level of confidence associated with its diagnosis.

2.3 Diagnostic applications

A diagnostic approach using decision trees is presented in [14]. Determining the

sequence of steps required to reach a diagnostic conclusion (using a decision tree) has

been shown to be NP-hard [41]. Biasizzo, et al [14] represent the fault-free operation of

a system and the presence of a system fault as two distinct system states. The diagnostic

procedure is intended to discover the actual system state using tests which provide

2-29

information about system components. The sequence in which the tests are conducted

and how information from previous tests is incorporated into the test sequencing

procedure is the subject of this paper. Determining this sequence using the minimum

number of steps (minimum cost) is known as the test sequencing problem.

Much research has been devoted to this problem. The conventional approach has been to

use symmetrical tests. A symmetrical test has only two possible outcomes. Biasizzo, et

al [14], use asymmetrical tests. An asymmetrical test has more than two possible

outcomes.

Figure 2-11. An example of an asymmetrical test pattern to determine system state for

four components [14]

Figure 2-11 shows a typical asymmetric fault tree used determine which of four system

components are faulty. The tree shows the optimal diagnostic test pattern when four tests

1*2+3*4

2-30

are available to test the functionality of the four components. The four components are

represented by the four digits in the ovals in the diagram. The first digit corresponds to

the first component, etc. The s with subscript indicates which system state the test

indicates.

Table 2-1. Test schematic [14]
 Component

Test 1 2 3 4

1 1 0 0 0

2 0 1 0 0

3 1 0 1 0

4 0 1 0 1

Table 2-1 shows the test schematic for Figure 2.11. The first test, t1, determines the

status of components 1 and 3, t2 determines the status of components 2 and 4, t3

determines the status of component 3, and t4 determines the status of component 4.

Although not explained in the article, it seems tests 1 and 2 cannot determine which of

the components they are testing are okay. If the result is faulty, both components are

faulty, otherwise one of the two components is okay. It is also not explicitly stated

whether 1 represents a fault or normal behavior, but using 1 to represent a fault is

implied. It also seems that component 4 is assumed to be faulty given the starting state of

the system. Based on these assumptions, state s12 can be determined just by running test

1. Since component 4 is known to be faulty, running test 1 would show components 1

and 3 are faulty, and hence state s12 where components 1, 3, and 4 are faulty is reached.

2-31

The ultimate goal is the generation of an optimal diagnostic tree (the order in which the

test are conducted based on previous test results). Biasizzo, et al [14] employ a

Sequential Diagnosis Tool using graph search algorithms on existing decision trees for

particular systems. They use a heuristic evaluation function to guide the graph search.

The heuristic is an estimate of the remaining cost in the diagnosis procedure from a

particular node. They contend the “proof of the admissibility” of this technique is given

in [64].

The conventional test sequencing problem is defined as follows [64]:

1. The set of system states S = {s0, s1,...,sm} where s0 denotes the fault-free state of the

system and si, (1 ≤ i ≤ m) denotes one of m potential faulty states of the system. In

practice, the latter refers to a faulty functional part of the system or to a faulty system

function.

2. The set of probabilities P = {p(s0), p(s1),...,p(sm)}, where p(si) is the a-priori

probability of the system being in the state si before the diagnostic procedure is started

(i.e., the probability of a fault occurrence described by the system state).

3. The set of available tests T = {t0, t1,...,tm} and the associated test costs c = {c0, c1,..,cm}

which can be measured in terms of time, manpower requirements, or other economic

factors.

2-32

4. The binary test matrix D composed of binary column vectors, D = [dj], 1 ≤ j ≤ n,

where dj = [dij], dij ∈ {0, 1}, 1 ≤ i ≤ m, represents diagnostic capabilities of test tj. dij = 1

denotes that test tj fails if the system is in state si, and dij = 0 otherwise.

This diagnostic procedure is a sequence of tests to isolate any system state, presented as a

decision tree. The problem is to find a diagnostic procedure for a given system at

minimal cost. Since a diagnostic procedure is easily described by AND trees, the authors

use AND/OR graph search algorithms to determine the best diagnostic procedure.

The preceding definition can be modified to generalize to asymmetrical and multi-valued

tests by using the following step.

4. The set of all possible outcomes L of the tests t ∈ T: R = {r0, r1,...,rL}

The test matrix D composed of matrices, D = [D(k)], 0 ≤ k ≤ L, where D(k) is the test

matrix associated with the response rk. Each D(k) is composed of column vectors:

 D(k) = [dj
(k)], 1 ≤ j ≤ n (2-1)

The vector of diagnostic inference for the test tj with outcome rk is

 dj
(k) = [dij

(k)], 0 ≤ dij
(k) ≤ 1, 0 ≤ i ≤ m (2-2)

where dij
(k) is the conditional probability that the outcome of test tj is rk if the system is in

state si.

2-33

Biasizzo, et al [14] demonstrate their technique using examples from other published

papers. In general, systems with strongly interconnected functional blocks and few

internal test points are more difficult to diagnose.

Figure 2-12. Electrical schematic [14]

Figure 2-13. The resulting test tree based on the schematic of Figure 2-12 [14]

!

A*

ADDER

b
2 Trunc

0 3

a

D
1

m

MUX

2 7

C — V3

MUX

2.1
1 -

A2

ADDER
2

'2

d

7 T ' ̂
D

t.O
_^ ADDER

MUX
C —•»-(

/

3 2 L_ 1

2-34

The electrical schematic in Figure 2-12 and resulting decision tree in Figure 2-13 show

how their method works. In the electrical schematic in Figure 2-12, the M1, M2 etc. and

the A1, A2 etc. labels indicate a test point. These test points are shown in Figure 2-13 as

tests; for example, the node at the top of the tree tests point M3. These test points are

transcribed into the optimal symmetric decision tree which would then be used to check

the electrical component (shown in the schematic) for faults (non-uniform costs have

previously been assigned to each test). This tree is optimal because it incurs the least

average cost for a fault diagnosis among all possible trees for this problem.

A similar approach to [14] is found in Bearse [11]. Bearse describes a Diagnostic

Inference Model which generates a new fault tree based on original information, allowing

for asymmetric outcomes. Other similar approaches include Sheppard [80] and Dill [28].

Sheppard [80] uses case-based reasoning (a historical database) to generate information

flow models. Case-based reasoning assumes that similar mechanical system faults

produce similar symptoms. A case-based reasoning system starts with a case history,

consisting of a number of historical cases. The symptoms and correct diagnosis/repair

action are known for each historical case. When a fault occurs in the mechanical system,

the symptoms are compared to the recorded historical symptoms. The “nearest neighbor”

to the new case is identified, and the diagnosis/repair action used in the historical case is

applied to the new case. The resulting system combines the case data with model based

systems. Efficient, accurate diagnostic processes are developed from those models.

2-35

Dill [28] applies pass/fail limits to discriminate between operable and faulty systems. At

times, it can be difficult to know whether the results of a particular test should be

classified as a pass or failure. Ideally, pass/fail limits should be set in regions away from

expected values observed in functional components and failed components (which

presumes a significant gap between the two).

Ben-Basset, et al [13] point out issues with just using fault trees. Fault trees tend to cover

only the most typical problems for a given system. However, covering these typical

problems usually requires a very large fault tree. If a new problem occurs, or the repair

recommendation is incorrect, there is no further help available from the tree. If the

system which the fault tree covers is updated, even in a minor way, wholesale changes

are required to every fault tree to keep things current. Better solutions to diagnostic

problems are obtained if different methods (fault trees, physical models, case based

reasoning, etc.) are used in concert to provide a diagnosis.

Figure 2-14. A case-based reasoning model [1]

ft-^lptll

ClH

RETiKEH'

C-HArTTHLi
hjluEiiKi

T<iltd£
h^pDirMJ

KCIJSE

^Imiui

2-36

Figure 2-14 illustrates a typical case-based model. A case-based reasoning system

assumes that similar symptoms consistently result from identified problems. The general

knowledge block contains the case history, consisting of a number of historical cases.

The symptoms and correct solution are known for each historical case. When the next

problem occurs, the symptoms are compared to symptoms recorded in the historical

cases. The “nearest neighbor” to the new case is identified, and the solution used in the

historical case is applied to the new case. If changes to the solution are required for this

new case, the old solution is revised, and then this new learned case is added to the

general knowledge repository.

Authors have also addressed the subject of combining model-based systems with decision

tree structures. Ben-Basset, et al [12] present a way in which both types of systems are

combined to provide a diagnostic expert system. They contend it is more cost-effective,

in most real-life applications, to apply case-based reasoning after the system already has

some basic initial knowledge of the system domain and the units requiring testing. Their

system combines both kinds of reasoning in a module which integrates system knowledge

from 4 different sources.

2-37

Figure 2-15. Knowledge integration scheme for case-based reasoning [12]

(UUT – Unit Under Test)

Figure 2-15 shows how data flows in the expert system [12]. Universal domain

knowledge refers to universal knowledge on diagnostics considerations and processes.

Initial unit under test (UUT) knowledge refers to the specifics about the UUT in terms of

its structure, function, and relationship between symptoms and faults. Historical UUT

experience represents past experiences with this UUT. This information is integrated to

form the basis for determining the status of the UUT. The diagnostic algorithms include

model-based reasoning, which matches symptoms with probable faults. The model-based

reasoning portion is used most often. The case-based reasoning portion compares this

Diagnostic Algorithms

2-38

symptom set with previous symptom sets to determine a likely candidate solution. This

method is used almost exclusively for new cases, or for cases for which the model-based

portion has low confidence in its diagnosis (these two sets of cases should overlap

considerably, if not completely).

The main argument against the exclusive use of model-based reasoning is that there are

times when there is insufficient knowledge or time to build a model to support efficient

and accurate diagnosis. However, a partial model of the system/unit under test is always

available. If there is an insufficient number of cases to allow for efficient diagnosis,

additional cases can be produced either by simulation or actual experience, and the

consequent performance of the model will improve with time. Ultimately, the inference

engine of the model-based reasoning function will make most of the diagnostic decisions,

and the case-based function will only be used in very unusual cases. This will allow for

high levels of accuracy in quick diagnoses. Combining the two disciplines into one

model yields the following benefits according to the graphs in Figures 2-16 through 2-18.

Figure 2-16. Model-based reasoning [12]

Performance . MocfeABasec/ Only
100%"

Acceptable

Ready Time

2-39

Figure 2-17. Case-Based reasoning [12]

Figure 2-18. Combined reasoning [12]

Of particular interest are Figures 2-16 and 2-17. Case-based reasoning never reaches the

level of performance attained by model-based reasoning, while it takes model-based

reasoning a longer period of time to reach an acceptable performance level.

Unfortunately, the article does not describe the situations the authors analyzed which led

to these conclusions. The only statement is these graphs are the product of the authors’

analysis of “many real-life situations”. The graphs appear to be completely notional.

Performance
100%

Acceptable

CasB-Based Only

Ready Time

Combination of Case-Based and Model-Based

Acceptable

Ready Time

2-40

2.4 Modeling Applications

The most common method for detecting aircraft faults seems to be the application of

neural nets. Chu [22] describes the use of this method in conjunction with a statistical

classifier (this example was briefly described in section 2.2). Chu’s study determines the

feasibility of using neural networks to develop troubleshooting procedures for an on-

board avionics system, the F-16 Fire Control Radar (FCR) data. The purpose of Chu’s

experiment was to use a neural net to distinguish between three types of faulty FCRs.

The neural network had three layers (input, hidden, and output) and was constructed

using radial basis functions with a constant standard deviation, which determined the

width of the Gaussian functions used in construction of the neural net.

There are two major classes of neural network models. The first uses nodes (units) which

compute a non-linear function (usually sigmoid) of the product of an input vector and a

weight vector. The other class of neural networks uses the distance between the input

vector and another generalized vector (usually the average of the input vectors) for the

computation at the node (unit). Radial basis functions (RBF) are used as activation

functions in this second class of neural networks.

2-41

Figure 2-19. Typical RBF network

Figure 2-19 shows a typical RBF network. Each input vector has N inputs, indexed 1 to

n, which are combined with M basis functions, indexed 1 to j. There are K output nodes,

indexed from 1 to k. More details about RBFs are provided in Chapter 3.

The RBF structure was chosen because a complex classification problem in a high

dimensional space, such as this one, is more likely to be linearly separable than one in a

lower dimensional space [24]. As previously stated in Chu’s paper, an output from the

neural net classified the faulty avionics system (which all of these were) as either a

“lemon”, “bad actor”, or “normal”. The neural net had 137 neurons in the input layer,

465 neurons in the hidden layer, and 7 neurons in the output layer. The 137 inputs

correspond to which of 137 different possible faults a particular radar set exhibited (by

implication, the 137 different kinds of faults was not an exhaustive listing). Each radar

set consists of 7 Line Replaceable Units (LRUs), and the output vector represented which

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj

2-42

1 of the 7 LRUs was faulty. The neural net was trained using fault data from actual

systems, and using the “leave one out” approach. This approach trains the neural net

using all but one of the input exemplars (466 1x137 input vectors in this study), which is

then used to test the accuracy of the neural network. The process is repeated for all the

inputs, at a constant standard deviation value. The value for the standard deviation was

then varied to determine the optimal standard deviation value (the value which resulted in

the most correct classifications). A cost function was also developed to penalize the

misclassification of each unit. The optimal value resulted in a correct classification of the

faulty LRU 80% of the time. Chu hoped this value could be improved to 90% if more

data was available. A similar study was conducted in 1988 [56] which showed that using

neural nets to classify faults was feasible.

Keller, et al [44] used neural network and fuzzy logic technologies to create models of

F/A-18 subsystem/component health. These tools were developed as part of an internal

research effort at Boeing to develop an Advanced Onboard Diagnostic System (AODS)

along with supporting technologies to reduce CND results which the authors claim were

the most frequently occurring result for many subsystems. AODS was envisaged as a

collection of software modules which implements subsystem/component health

diagnostics, and an integrating system level element which combines the results of the

health diagnostics.

2-43

Figure 2-20. AODS top level data flow [44]

Figure 2-20 shows the data flow through the AODS system. The subsystem modules (of

which there are many) process real-time subsystem parameters and provide a continuous

assessment of system health. The subsystem module reports health status in the form of

an incident type, time of the incident, the health status indicator for that type, the

frequency/duration of the incident, and a level of confidence. Additional aircraft data

which may support later ground processing by the system module or ground testing is

also included. The synchronization module captures appropriate information about the

status of different system components along with the strength of correlation to the

health/fault incident. The system diagnostic assessor then processes the resulting health

status record. This assessor is a rule-based system that processes the health status reports.

It also maintains a record of previous health status messages. This record of health status

Subsystam Data

....^.-.-^
1^ ^

^-s^. A ̂

Subsystem Health Status

• Fault Type ATime
- Health Status Indicator
- Frequency/Duration
- Contidence

Health Record
• Subsystem

Health Status
- Context Data

ConftectfvHy
Other ^

Subsystem or
Local
Diagnostic
Module
- Detection
- Isolation

f

Data
Synchronization
and Collection

Time: C/ocfc A

Aircraft Data

Data
Request
for Time
Interval

;s.— 7/—— ~

•""X-

i^ Ji

Time: Clock B

System Context
- State Parameters
(e.g. Normal G's)
- Models/Templates
(e.g. Hinge Moment,
Launch)

System
Diagnostics:
Rules,
Processes
and
Reporting

Relevant
Parameters/
Models/
Correlations

Data
Cartridge

2-44

messages is the basis for maintenance recommendations, which are generated either in

real-time or offline.

Figure 2-21. Generic subsystem diagnostic module [44]

Figure 2-21 shows a notional subsystem diagnostic module. A neural net or fuzzy model

is used to generate an estimate of expected subsystem behavior, and this estimate is

compared to actual subsystem outputs. Additional models are used to determine the

degree of health of a particular aspect of a subsystem.

The Boeing researchers used both neural nets and fuzzy logic models in the development

of this integrating system level element. The neural nets were trained using test cases

while the fuzzy logic portion was developed manually (fuzzy logic model development

using test cases is still in progress according to the paper).

Subsystem Data

■■■■—-^ --^
'^■-■■■-'f^

'^■N.H^ —-^.-.

Subsystem or
Local Diagnostic
■Module
- Detection
- Isolation

Time

Subsystem
Data

Subsystem Diagnostic
• Hea/f/i Incident Type (Identifying Code)
- Health Status Indicator (Degree of Fault/Heaitit)
- Frequency/Duration
• Confidence

Subsystem
Data

mMivnnvvnvmVmWiV^
-s;:^:-

Typical Subsystem Module Processing

Preprocessing
1 ;; JTO.-.-.-. ■■.•■•■•■ ■•■

Comparison or
Detection Model
(Fuzzy, Neural,
or Algorithm)

Isolation iVIodel
(Fuzzy, Neural,
or Algorithm)

Preprocessing
Subsystem or
Component
Model (Fuzzy,
Neural, Algorithm)

2-45

Test results indicated neural networks provided greater resolution than the fuzzy

comparison and detection models, but did not adequately incorporate adjustments based

on expert human knowledge, which affected the accuracy of the results. Consequently,

the neural networks were used for functional modeling and to map fault patterns to a

system health indication. Fuzzy logic models were used in determining event correlation

and to develop system health monitoring models which could be adjusted based on expert

judgment and intervention. The authors claim this system is a viable architecture;

however, no actual test results were provided to support this claim.

Widyantoro, et al [96] present an approach using RBF neural networks to detect the

presence of air leaks in an engine. Air leaks in a turbine engine occur when a hole

appears in a recuperator passage. This is a place where compressed fresh air is pre-

heated by exhaust gases before entering the combustion chamber. Potentially, these leaks

can result in a long starting procedure, low power, and other problems [93]. The authors

[96] began by matching the effects of the problem with the appropriate values from the

detection sensors. Three types of engines were selected for diagnosis: engines with no air

leaks (normal), engines with small air leaks, and engines with large air leaks. There were

32 sensor readings available from the diagnostic instrument for each engine. The most

effective discriminator signals were identified across the 3 engine types. Signals with

patterns that were very similar between the engine types, or that were very irregular

between the engine types, were not used. Only four signal patterns made the final cut, as

shown below in Figure 2-22.

2-46

Figure 2-22. Graphs of the 4 signals vs time for the 3 engine conditions [96]

Figure 2-22 shows each of the 4 signals considered the best discriminators between

healthy and faulty engines. The graph plots show signal strength versus time. The

following paragraphs describe each signal type in detail.

The ignition exciter signals indicate that power has been applied to the ignition exciter to

ignite the gas-fuel mixture in a combustion chamber. The power is turned off when the

mixture is successfully ignited. A faulty engine (always) takes a longer time to start up

than a healthy engine.

The second indicator signal is the speed of the high-pressure compressor of the engine.

Among other things, this signal is used for fuel scheduling, and is continuously

1ft71

OH

Ljiniiiun GJLdLcf iloiuli.

TJ«

av
TVn»{ti«*nai;

HEgh-pnaura campfciiuil^t,

1* Narniy .'/
—^srrvw
 Llr|<

Tim* (Mtsndi)

Power IUTHTM ipKd ai^Alt.

1220 >ttmU

-a™ Ti™t(«Mna

Tii[ti:;c inlei ccmputfua ii^nds,

2-47

monitored during startup. The graph shows that the presence of an engine crack reduces

the acceleration of the compressor, and consequently it takes a longer time for the

compressor to reach the operational point.

The power turbine speed signal is used to infer (indirectly) the presence of engine

thermodynamic inefficiency. In a normal engine, the energy from combusted gases

quickly increases the power turbine speed. This acceleration is reduced when an engine

crack exists.

The fourth signal is the inlet temperature of the power turbine. According to the authors,

it is commonly known that an increased inlet temperature is an indicator of an unhealthy

engine, but the reason for this relationship is unclear. The graph shows a delay in the rise

in signal strength for an engine with a large air leak, and then a somewhat stronger

temperature signal at the end of the time the signals were recorded.

The neural network was trained using a template (generic representative) of each kind of

signal for each kind of engine (12 templates in all). The following diagrams show the

neural network structure:

2-48

Figure 2-23. Transformation of data into neural network inputs [96]

Figure 2-24. Bottom 2 layers of neural network architecture [96]

Turbine Inlftt
. TemsorBtltre

Ignition Excitor

Paw«rTMrbln« Speed f

HighPr^
Compr^sor

NORMALIZATION

RF = RecepSve Fiefd

I

Hidden Units

l^X^ ^SJ" ""2^ "°""^' ^'"^" ""^^^ "*"'"**' ^'"^" '-^'9* "'*'"***' S""*" Large

Prototj^pe V«ctor
(basetem plate) RF1 RF2 RF3 RF4

Network Inputs

2-49

Figure 2-25. Top 2 layers of neural network architecture [96]

Figures 2-23 through 2-25 show the neural network architecture used in this study.

Figure 2-23 shows the input scheme. The input consists of the normalized form of the

signals reading. The number of input units is s × m, where s is the number of sampled

signals and m is the number of discriminator signals. In this example, s = 80 and m = 4.

The activation function in each hidden unit is a Gaussian:

 φi,j = exp(-ΡIi - µi,jΡ2/σ2) (2-3)

where Ii is a vector of time series signals from receptive field i, and µi,j is the average

prototype vector of signal type i that is known to have problem category j. (There are i =

4 receptive fields, shown in Figure 2-23. There are j = 3 problem categories,

corresponding to engines with none, small, and large air leaks.)

Normal Small Large Normal Small targe Norm^ Small Large
Hidden Unite

Normal Small Large

2-50

Figure 2-24 shows how the input data feeds forward to produce a prediction of being

from one of the three types of engines. This prediction is based on the linear combination

of the hidden units’ activation values, given by:

 Ok = ∑
ji

ijijkw
,

φ (2-4)

where wi,j,k is the connection weight between hidden units i,j and output unit k. The

purpose of this layer is to perform approximation of the input signals to the prototype

vectors. Since there is only one training signal for each signal type, setting wi,j,k = 1/m

for j = k and wi,j,k = 0 for j ≠ k, the training data can be perfectly predicted. However, this

may cause problems for the neural net when the input data are different from the training

signals. To avoid this difficulty, the authors generated six additional data points from the

original twelve data points, and used an iterative training procedure that changes the

weights to minimize the difference between the target outputs and the network outputs.

How this training procedure changed the weights was unspecified.

The network was tested using 8 signals generated by interpolation from the original

training data, ensuring that none of the training values were replicated in this test set.

The authors computed a target value for each test signal, although how this was done is

not explained in the paper. Using the rule that the largest predicted probability indicates

the problem, the neural network correctly identified all 8 problems, as shown in the

following table:

2-51

Table 2-2. Table showing expected and actual experimental results [96]
Signal Number Output Target Value Prediction

1

Normal
Small
Large

0.1250
0.8750
0.0000

0.2666
0.9085
0.1123

2

Normal
Small
Large

0.0000
0.1250
0.8750

0.0330
0.1099
0.8646

3

Normal
Small
Large

0.8750
0.1250
0.0000

0.8455
0.3515
0.0686

4

Normal
Small
Large

0.6250
0.3750
0.0000

0.5605
0.4828
0.0823

5

Normal
Small
Large

0.3750
0.6250
0.0000

0.3907
0.6519
0.0970

6

Normal
Small
Large

0.0000
0.8750
0.1250

0.1854
0.7431
0.1520

7

Normal
Small
Large

0.0000
0.6250
0.3750

0.1091
0.4048
0.2615

8

Normal
Small
Large

0.0000
0.3750
0.6250

0.0584
0.1977
0.5023

Table 2-2 shows the results from the experiment, indicating the neural net performed

correctly in each test case.

NASA scientists are also working on using models to interpret sensor data, though with a

slightly different emphasis [4]. Their goal is to reproduce sensor readings that are

missed, either by the recording unit, or because of a sensor malfunction. The objective of

their High Reliability Engine Control (HERC) program is to develop and demonstrate

advanced Fault Detection, Identification, and Accommodation (FDIA) algorithms that

2-52

will ultimately increase aircraft safety and improve engine reliability. The focus is

validation of the sensors which report fault conditions. Validation, here means ensuring

appropriate operation of the sensors which are monitoring the machine components, not

the actual machine component itself. The authors contend that a complex dynamic

system usually uses redundant sensors for measuring critical variables within the machine

system. This is done to ensure reliable operation and to improve measurement accuracy.

Since some of these measurements can be very critical to judging the health of the

system, a redundant sensor set is implemented to ensure the measurement goal is met.

This redundant sensor set makes it possible to validate measured data, to identify a sensor

failure, and to recover the failed measurement. The authors claim this redundancy can

also be met through the implementation of an auto-associative neural network.

The diagram in figure 2-26 shows the test schematic they used to develop and test their

neural net, which is shown in figure 2-28:

Figure 2-26. Test schematic [4]

The diagram in figure 2-27 shows the measurements taken based on the model shown in

Figure 2-26.

COrfimHndeil
AtTuaColB

&y«Eam

PC

MR
Valldatdd

Sensor
Roftdlnfik UH Baud

Sftnaar
vaiiaaiKm

2-53

Figure 2-27. Data collection schematic [4]

The data from these sensors were input into the neural network, providing the

aforementioned sensor redundancy without the implementation of an additional set of

sensors.

The neural network (Figure 2-28) was a feed-forward network architecture with outputs

that reproduce the network inputs.

Figure 2-28. Feed-forward neural network design [4]

cmds
Controller

y anc
estimates
as required

System

steady
correction

Thresholding
M & Sensor

Validation

Model ■O

measurements

Information
Compression

Information
Regerterstion

Svnsor
Estim«t*s

2-54

The diagram in Figure 2-29 depicts the purpose of each network component in more

detail:

Figure 2-29. Purpose of each neural network layer [4]

As shown above, the left half is the mapping layer and the right half is the de-mapping

layer. The bottle-neck layer captures the reduced order (principal components)

representation of the data. In the mapping layer, the redundant sensor information is

compressed, mixed and reorganized in the first part of the network. In the compression

process, the sensor information is encoded into a significantly smaller representation.

The compressed information is then used to regenerate the original redundant data at the

output. Because of the information mixture, if a sensor fails, other redundant sensor data

can still provide enough information to regenerate a good estimate for the faulty

measurement. Because of its parallel-processing capability, the neural network can

process real-time data for time-critical applications. Also, because it learns by example,

the neural network does not require a detailed system model for sensor validation as is

Bottle-neck

Mapping De-mapping
layer layer

2-55

often required. The neural network is then trained to learn the relationships between the

inputs (sensors) such that if one sensor is bad, an estimate for that sensor can be found

from the remaining valid sensors. The authors present a simple example of three

temperature sensors. If the bottle-neck layer is a single node, then the mapping layer

performs a weighted average of these measurements. Faulty information in one sensor is

thus reduced by a third in the aggregation of all the sensor measurements, resulting in a

measurement closer to the actual value.

The preceding example translates into the following general algorithm for a generic data

collection scheme. During system operation, if a sensor signal is significantly different

from the corresponding estimated value, the sensor signal is considered incorrect and a

failed sensor is identified. The failed sensor reading is isolated (eliminated from

consideration) by feeding the neural network its previous estimated value. The isolation

of a failed sensor enables the neural network to detect subsequent sensor failures, since

only properly working sensors are now considered for future measurements.

The automotive industry has attempted to apply sophisticated modeling techniques to

diagnostics issues, because of the growing complexity of electronic control systems in

today’s vehicles [55]. Traditional diagnostic methods are less capable of correct

diagnosis in complex systems due to the large volume of information exchanged between

the vehicle’s processor and the system under CPU control. Marko, et al [55], designed a

data acquisition system for this high volume of information and used neural nets to

analyze it since automobile trouble shooting is essentially a classification problem. The

2-56

data consists of inputs and outputs of the vehicle’s electronic control system, known as

the electronic engine control computer (EECC). This data is a mixture of high speed

analog and digital signals which regulate the operation of the engine according to a

proprietary strategy. (Exactly what these signals were was not specified.) This strategy

optimizes engine performance while adhering to federal emissions regulations. For [56],

engine performance data was collected for an engine initially in neutral, and then slowly

accelerated. “Certain computational algorithms” (again, unspecified) were performed to

give graphs similar to the one shown in Figure 2-30.

Figure 2-30. Data from a vehicle with no faults [55]

Figure 2-30 shows the data obtained from a vehicle with no faults. Although not

explained in the paper, the interpretation of the elements of the top graph seems fairly

VOtlG flPrt HEV^SEC'2 "SEC

.a Trnf! csECi j

'"EP SPOUT SP*^B< DWELL flflNKl BR,<A<2 MPO

.JxrLJTJi_rxrLj-xji_jn_rirLJinj^^
j"iJxrijijij"L_n_rTjnrLriJ\nRn.^^

I I I I I I I 1 I I 1 I i J il»JlMI

IT

innrr
T—LTir

[uiMMmmuiLmmiJiim

rrrrTTTiinjijnrinnjnriiii^^
L_r~:—-i_r~—u—:^—. L_r-u

i_i L_r~u~~i_r^

2-57

self-explanatory, as each element is plotted against time. The bottom part of the graph is

less intuitive, but it seems that each square curve corresponds to one of the terms listed

just above the first square curve. Other than SPARK, the third curve down, what the

other curves are measuring is unclear.

Figure 2-31. Data from a vehicle where spark plug number four is misfiring [55]

Figure 2-31 shows data from a vehicle where a spark plug is misfiring. In this curve, the

difference in the ARC and NACCEL curves from the previous figure are clearly seen.

No other differences are readily observable, even in the SPARK square curve. This is an

example of a problem whose distinguishing features are clearly contained in only 2 data

streams, and the features are a radical departure from fault free operation. Because of

these attributes, this problem is easy for the fault detection algorithm to detect.

24FCH17 28
QtDfi
VOLTS

C"ifiP>f
eta£Qee

■

WXXTOOOOOOO*

.5 TIME (SECJ 1 3
S3Gl425 3eL<?S3GL42S3ei I L

PIP SPOUT SPARK DHtLL BHNKl BANKS HHP

nj-Ljnjnjuijnjn_rTXUTJiJnjnjxr^
iTLTirunjijTJijvnjTrrL-nrmjxriar^

I I I I [I I I ill I I I I n iriiMMiii 11 mm

IT T
TTIT

TT
"LJ

■~LJ7 "L-T

injnmmiranrimiinii^
"L_r

2-58

Traditional diagnosis methods require human expertise to formulate rules to guide the

service technician through an analysis of the above problem graph to an appropriate

conclusion. However, developing these rules is very time-consuming and requires expert

understanding of the system operation, failure modes, and how those modes appear in

graphs like the one above. The resulting diagnostic approach is still not satisfactory,

since the number of resulting rules is quite large, and anything less than a rigorous

analysis may result in a misdiagnosis. Furthermore, the number of vehicle-power train

combinations is quite large, and each combination undergoes relatively constant

modifications to improve performance and reliability. This situation motivates the

research into finding better, faster, more accurate diagnosis techniques.

To test their fault detection algorithm, Marko et al introduced 26 different faults into the

engine and observed the engine’s operating characteristics at a fast idle. These faults

included a plugged injector, broken manifold pressure sensor, and a shorted spark plug

(no comprehensive list was provided). Each fault data set had 52 elements corresponding

to the collected information (again, unspecified). 16 sets of data were collected for each

of the 26 different faults. An equal number of sets was collected for testing the neural

networks after training.

Marko et al [14] have found from previous experience (no work cited) that single

component failures are much easier to find than multiple failures. In [14], a single fault

mode is an unstated assumption, given the composition of the fault data training sets

(only one fault at a time). Additionally, it is easier to detect faults if the signature of the

2-59

fault is contained in 2 or 3 of the 52 collected signals, rather than consisting of a number

of small anomalies spread out over a larger number of signals.

The results presented in [14] show 100% accuracy on classification of their validation set

after training the network. The network quickly trained to an accuracy rate of ~95%, but

it required a number of modifications to the neural net to achieve 100% accuracy. These

modifications included the use of continuous weight updating (not batch learning), and

reducing the number of hidden nodes to less than the number of input nodes. This final

accuracy result was matched by their best human performer, but at a far slower speed.

This approach was then adapted to run on a vehicle in real-time, with similar results.

Since the system is passively observing the signals passing between the EECC and the

engine, this system may be ultimately capable of providing real-time diagnostics on any

vehicle.

Marko et al updated their work [55] with a paper addressing the issue of which classifier

to use, based on accuracy and expected degree of generalization [54]. In this paper,

generalization is defined as a network which correctly classifies an input pattern that was

not among the input patterns it was trained on. The neural network is assumed to have

been trained on each problem category that may arise in the course of operation of an

automobile engine. Of course, the input patterns themselves do not necessarily

completely span the space of actual data. Hence, the network must have some capability

to generalize by extrapolation—identify vectors near but not within regions occupied by

the training patterns.

2-60

The data set for analysis remains the same as before—the data stream between the EECC

and the engine. The authors chose a specific portion of the data, the portion that the

EECC observes when the engine is in operation. 144 patterns were collected, containing

7 kinds of faults. For this data, unlike their previous data set, expert technicians could

neither specify an algorithm for classification nor separate the data using graphical

visualization.

A variety of different classifiers were tested on this data, including multi-layer feed-

forward networks, nearest neighbor classifiers, and binary trees. A binary tree is

generally applied to a two-class separation problem. All the data is gathered at the base

of the tree (the root node). The data are divided into different groups termed branches,

two branches at a time. If all the data along a branch belong to the same class, no further

separation is possible. Otherwise, an additional node may be formed, leading to

additional separation. A branch may also be terminated if it is judged that further

separation is likely to lead to poor generalization. A node that separates into two

branches is a terminal node. This process is carried out until all branches terminate. In

this instance, the authors used the Fisher linear discriminant to separate the data. They

then chose a particular class to separate from the rest of the data. Once that class was

separated, another class was chosen for separation. The classes were chosen “shrewdly”,

so it only took a few branches before a chosen class was completely separated.

A binary tree classifier is considered similar to a feed-forward network. However, the

binary tree approach uses far fewer weights, and correspondingly, generates decision

2-61

boundaries that are simpler than a feed-forward network. Training and execution of

binary tree classifiers tend to be much faster than that of back-propagation and well-

suited for time-critical applications.

Their results for this data showed multi-layer feed forward neural networks to be

generally equal in classification power to the binary tree method (~90%). The nearest

neighbor classifier only had an accuracy rate of 80%. In their conclusions, however, the

authors declined to select a best classification method, stating rather that substantially

more data is required before conclusions regarding the best classifier are possible.

Besides commercial industry, branches of the armed forces have also been developing

prognostic based tools [37], [43], [50], [82], [83]. The following section reviews some of

these efforts.

Smith, et al [82], [83] discuss the inclusion of a PHM system on-board a Joint Strike

Fighter (JSF) aircraft. The JSF program has four pillars; lethality, survivability,

supportability and affordability. Smith et al contend a PHM system is one of the keys to

meeting two of these pillars; providing a supportable and affordable aircraft. As the

performance of the fighter begins to degrade, the on-board PHM system is expected to

sense these changes and inform the aircraft maintainers of an impending system failure.

This system will also inform the maintainers of the actions required to prepare the fighter

for its next sortie. The objective is to keep the sortie generation rate high through the use

of support systems which allow a proactive response to the needs of the aircraft. This

2-62

capability should replace the current brute force approach to maintenance with a more

affordable and reliable approach.

These objectives will be accomplished through a Joint Distributed Information System

[82]. According to Smith et al, this concept is at the heart of the JSF information system.

As well as providing internal aircraft data to the maintainers for their proactive action, it

is also intended to provide multi-organizational information system operability. This

capability will allow for more efficient planning of maintenance actions based on the

availability of spare parts, a historical overview of failures allowing for more fighter-

specific maintenance actions, and better sortie planning based on the knowledge of when

fighters will return from maintenance to operational readiness. This architecture is

expected to supply the right information to the right people at the right time.

In a related work [83], Smith, et al discuss the development of a Advanced Strike

Integrated Diagnostics (ASID) project to develop a program for a “fully integrated

systems solution to diagnostics”. This program was intended to develop an integrated

diagnostic architecture leading to an affordable JSF platform, and to evaluate and

recommend integrated diagnostic design tools and techniques. In this context, the term

“architecture” means the structure of components, their interrelationships, and the

principles and guidelines governing their design and evolution over time. The intent is

for this architecture to span the entire life cycle of the diagnostic/PHM system.

2-63

The ASID program led to an Integrated Diagnostics (ID) Concept Plan which identified

the ten best technology maturation programs. These programs were identified as crucial

to the success of an integrated diagnostics/prognostics system. They include developing

a structural health monitoring system and a engine monitoring system for prognostics

health management. Other programs include developing an information delivery system,

creating a virtual test bench (for testing new concepts), and maximizing the use of

commercial software in the PHM system. Once completed, these technologies are

expected to provide superior weapon system supportability.

Schaefer and Haas [75] present a summary of efforts to include Health and Usage

Monitoring Systems (HUMS) on the Army and Navy helicopter fleets. The goal of this

endeavor is to reduce operational and support costs by transitioning from a time-based

maintenance philosophy to a condition-based maintenance philosophy that relies on

prognostic techniques to assess the health of aircraft components. Schaefer and Haas

present a high fidelity simulation model to analyze the effect of HUMS technology on the

existing maintenance process and to provide a means to optimize its use.

Their simulation model represents flight-line level maintenance in a discrete-event

simulation. The model includes mission generation modules, a module to simulate in-

flight failures, a number of maintenance modules, and a cost module for tracking the

amount of resources required for the maintenance activities. The focus of this flight-line

maintenance model is to examine how different maintenance policy philosophies impact

operational readiness.

2-64

Although the Schaefer and Haas indicate their work is not fully complete, their initial

simulation results show that specifying a certain range of performance for a helicopter

system, and scheduling maintenance when that system is no longer performing in that

range, can minimize maintenance costs. Additionally, their model shows that there is a

limit to the utility of advanced diagnostics for certain helicopter components which affect

other components. For example, it may be possible to specify helicopter operation

procedures to produce low vibration levels to defer the maintenance action of balancing

the main helicopter rotor, but the requirement for low vibration levels will affect the

operational capability of the helicopter. In this case, specifying a particular performance

range for minimization of maintenance activity is counter-productive.

The Office of Naval Research (ONR) has been developing a distributed shipboard system

for diagnostics and prognostics on systems with rotating equipment [37]. Their system,

termed a Machinery Prognostics/Diagnostics System (MPROS), is composed of two

parts. The first is a data collection system, which collects data from vibration,

temperature, pressure, electric current, and other (unspecified) sensors. The collection

system also includes local intelligent signal processing devices called Data Concentrators

(DC). The second part is a centrally located subsystem called the “Prognostics,

Diagnostics, Monitoring Engine” [sic], or PDME. This system combines the results from

the DCs to provide the best possible diagnosis.

The specific shipboard application is centrifugal chillers (air-conditioning systems).

These systems combine several rotating machinery equipment types to form a complex

2-65

system with many different parameters available for monitoring. The parameters that are

chosen for monitoring are combined along with diagnostic and prognostic algorithms into

the MPROS. Since the MPROS can diagnose each component part of this system, as

well as the whole system, it should be readily extendable to monitor any pump, motor, or

compressor in the naval fleet. Additionally, there are a large number of facilities, both

military and industrial, that use centrifugal chiller-based air-conditioning systems.

Figure 2-32. MPROS system [37]

XE
nc

P<"n\1 Inl^rfPKi

>y.i±i.

^hrM ^. II il
Nn^h .iL

j
riu^T
I -i.

¥
nirjhiir

Mp'tMec^^

MEitFiincry Sen^orft

ii^
MI (Mi: I I ^^^ulJhfl

E>COM IME-NLC

KnlilrM
Alj-aiOiiiib

2-66

In Figure 2-32, the sensors connected to the machinery are shown at the lower left. The

sensors for a particular system capture the failure characteristics of a specific failure

mode. There are two basic kinds of sensor data. The first kind includes low-bandwidth

measurements, such as those from process variables, temperature, pressure, etc. Failure

modes associated with this category usually develop slowly and consequently, data can

be sampled at low rates without losing the pattern of a particular trend. The authors

believe this kind of failure is best detected with a fuzzy-based rule set as an expert

system. The second kind includes high-bandwidth measurements, such as vibrations and

electrical current data. This type of data requires a much higher sampling rate in order to

capture enough information to appropriately categorize the failure signature. These kinds

of faults are best detected with a feature extractor/neural net classifier. The ONR used

this second approach for this particular problem.

This data feeds into the left hand box , the DC (Data Concentrator), whose components

are shown. Of most interest is the Database and the four data processing algorithms. The

database stores information configuration, machinery configuration, test schedules, test

measurements, diagnostic results, and condition reports. The DLI expert system

(PredictDLI is a company with a Navy contract to develop these kinds of algorithms) is a

vibration expert system adapted to run in a continuous mode. It detects departures from

steady-state norms. The SBFR (State Based Feature Recognition) algorithm facilitates

recognition of time-correlated events in multiple data streams. The wavelet neural

network also analyzes vibration data, but it focuses on drawing inferences from transitory

phenomena rather than steady-state data. The fuzzy logic algorithm draws diagnostic and

2-67

prognostic conclusions from non-vibrational data. Since these algorithms overlap in

some areas, there is the potential for conflicting diagnoses (as well as reinforcing ones).

The authors use Knowledge Fusion (KF) to combine the conclusions from the algorithms.

The authors consider KF to be the coordination of reports from a number of sources, as

opposed to the correlation of single platform data (similar to the function of the DC).

The PDME (Prognostics, Diagnostics, Monitoring Engine) contains the KF component,

as well as resident algorithms for performing PDME functions and a couple other

features. The DCOM and user interfaces interact with the DC DCOM element and the

user, as one might expect (DCOM stands for Distributed Component Object Model, a

communications standard developed by Microsoft). The OO Ship Model, or Object

Oriented Ship Model, represents parts of the ship, such as the compressor, chiller, deck,

machinery space, etc. It models the physical, mechanical, and energy characteristics of

the machinery being monitored. It also stores diagnostic conclusions from the four

algorithms and the KF component.

The system has been tested successfully in the laboratory, and the authors are preparing

to install it on a hospital ship in San Diego [37].

The Army is also developing prognostic tools [43]. Their main emphasis is the M1A1

Abrams tank, and the diagnosis of fuel flow problems in the tank’s gas turbine engine.

The system collects data available in the turbine engine startup sequence to diagnose

three types of faults in the main metering fuel valve: bouncing valve, sticking valve (later

2-68

referred to as fuel flow error), or stuck valve. These faults prevent fuel from being

delivered to the tank’s engine in accordance with a fuel flow algorithm, which sets fuel

flow based on a number of different criteria, including the current demand on the engine,

available air from the intake, etc.

Fuel flow faults can be detected in the signals from the Electronic Control Unit’s (ECU)

diagnostic connector. The ECU is an analog computer whose fuel flow algorithm is

dependent upon throttle position, ambient air and turbine inlet temperatures, and

compressor and turbine speeds. These voltage signals reflect the status of the Electro-

Mechanical Fuel System (EMFS), which responds to ECU commands. The EMFS is a

fuel metering device that delivers fuel to the engine under the management of the ECU.

Each of the variables previously mentioned (throttle position, ambient air and turbine

inlet temperatures, and compressor and turbine speeds) has a representative voltage signal

available for collection and consequent analysis.

The initial data sets were obtained by starting the tank engine and recording the

appropriate sensor data. Most of these data sets were fault-free, since the fuel flow

problem apparently rarely occurs upon startup. Because accurately training a neural net

on a particular problem requires a number of cases exhibiting the actual phenomena

associated with the problem, the authors [43] seeded faults into the startup procedure.

Additionally, they “translated” some data sets from fault-free starts to faulty starts

(methodology unspecified).

2-69

Figure 2-33. Normal tank start data [43]

Figure 2-34. Bouncing valve tank start data [43]

Figure 2-35. Stuck valve tank start data [43]

0.9 _
S f^a r%^^_^
Q 07. ~—-i^_

S Ofi.
S OS.

^^

g 0 .1 ■ .'■'■^

o 0 J . ■ --"

^ 0.2 7
0 1 .

rimo

..^
1— iM N) ^ 10 I'- ll J 1 II

cr. — JO UJ r—
C^ CJ hO ^- LTi

n 1—

-r
1— n 1 ^-J 'N ^-J tM •» t-j 'N

rime

c tr* «» '^
— — t^ hn

Time

2-70

Figure 2-36. Fuel flow error tank start data [43]

Figures 2-33 through 2-36 show some of data that was collected. It is relatively easy to

discern based on the collected and processed signatures what kind of fault is present. The

curves include 3 different sensor streams, although the sensor streams are not

individually identified. It is likely that they are graphs of the variables previously

mentioned (throttle position, ambient air and turbine inlet temperatures, and compressor

and turbine speeds).

The neural net tool used for the fuel valve diagnostic was the NeuroWindows Artificial

Neural Network (ANN) simulator software. Visual Basic was employed as a

user/computer interface development tool. Using the data sets as described above, they

trained the neural network to distinguish between the three fault conditions. However,

simply using the sensor values as the one input to a simple feedforward ANN does not

capture all the information available in the time domain. To capture time dependent

information, the input to the ANN included first derivatives of sensor values and first

derivatives of differences between pairs of sensor values. How these first derivatives

were calculated is not mentioned in the paper.

CO r— ■Q l/J
C3 1— CJ 1^
f-J f-j f-J f-J

Time

2-71

Based on the analysis by the ANN system, TEDANN (Turbine Engine Diagnostics

Artificial Neural Network) determines which fuel flow voltage readings are out of

tolerance with normal operational parameters. Upon this determination, TEDANN will

display either a fault status message identifying the EMFS faults or a message stating that

the EMFS is fully operational.

Table 2-3. TEDANN’s diagnostic performance (severity) [43]

Diagnosis (across)/
Actual Conditions

(below)

Bouncing valve Stuck valve Fuel flow error

Bouncing valve 1.00 0.00 0.00
Stuck valve 0.00 0.98 0.00

Fuel flow error 0.00 0.00 1.00
No fault 0.03 0.02 0.08

Table 2-3 results indicate TEDANN does remarkably well in diagnosing the individual

faults. The entries in Table 2-3 are the neural network’s assessment of how severe the

fault is, using the following scale:

0.00-0.25 - no fault (normal)
0.26-0.75 - warning (fault)
0.76-1.00 - critical (fault)

The entries in each cell are an average over several data sets (variation is not specified).

The table does show a completely accurate diagnosis based on the severity scales—all

actual fault conditions would be detected and correctly diagnosed, and all actual non-fault

conditions would be diagnosed as such, since the resulting severity figures are less than

2-72

the 0.25 threshold. The authors are continuing to refine their study, and hope to extend it

to other tank components and Army systems.

Logan [50] describes a prognostics system currently in use. This system is assisting the

Navy reduce both manning and maintenance costs. To that end, the Navy is

implementing ship designs which support minimum crew sizes and minimum

maintenance requirements, while maintaining mission readiness goals [50]. A major

component of this strategy is the development and implementation of predictive

maintenance (prognostic) systems. These systems can be exploited for monitoring,

control, and condition assessment of critical shipboard systems. Artificial intelligence

methods will provide the necessary assessment capabilities. These capabilities include

the abilities to:

• Be initially deployed using existing experiential and empirical knowledge;

• Function properly with missing, noisy, or corrupted measurement data;

• Compute and assess uncertainty measures following valid statistical techniques;

• Infer measurements that are either too costly or too difficult to acquire.

Logan et al [50] believe artificial neural networks are particularly well-suited to

diagnostic applications. They contend that neural nets can classify novel input patterns

not included in training data, and that neural nets are tolerant of noisy or incomplete input

patterns. In addition, system state recognition is usually performed in real time. Of

course, the critical aspect of deploying neural networks is access to training data that

2-73

adequately represents the input/output state space the network is likely to encounter in the

specific application.

There are problems with accumulating neural network training data. Since good

maintenance practices tend to prevent failures from occurring, actual failure data is

extremely scarce and very expensive to collect and/or create. The fault coverage of

actual failure data is typically very narrow and it may require many years of data

collection to obtain an adequate data set for neural network training. Unless the data is

collected under controlled or known conditions, historical failure data may be incomplete

or include unreliable measurement values. Additionally, the data will be insufficient to

provide coverage for all possible machinery faults which might occur. If this data used

for training the neural network, the network’s fault classification performance may be

adversely affected. Also, typical monitoring systems do not store data at adequate

sampling rates to ensure that sufficient data are recorded to accurately classify the failure

event, as well as events leading to the actual failure.

Logan et al [50] recommend an alternative, hybrid approach. The engineering

knowledge of domain experts can be used to construct a diagnostic knowledge base

suitable for neural network training. This can be accomplished by conducting a

comprehensive Failure Mode And Effects Analysis (FMEA) on the appropriate

mechanical system. A FMEA provides a comprehensive listing of probable failure

modes of all “major” mechanical system components, where “major” is defined as the

level of detail appropriate for that particular system. This information is obtained from

2-74

interviews with engineering crews and maintenance personnel. It also includes

information on all available sensor measurements, and identifies the fault/symptom

relationships required for an effective monitoring program.

The neural network of choice for this application is a probabilistic neural network (PNN).

It has a number of favorable characteristics [96], [2]. PNN training is effectively

instantaneous, as opposed to the slow error convergence training of other neural network

techniques. Besides the reduced effort for system commissioning, instantaneous training

is extremely attractive for allowing training data set modifications and PNN retraining in

the field by end-users. The PNN outputs the fault classification probabilities, meaning it

is easy for the end user to interpret the result. PNNs have strong generalization

capabilities (as do other neural networks) which can handle situations in which one or

more input variables are missing or are corrupted. This makes the method attractive for

real-world applications where sensor failures occur on a regular basis, such as in a

shipboard environment. Also, PNNs can be initially deployed using existing experiential

and empirical knowledge and can be readily updated as new knowledge is acquired.

A PNN is designed to estimate the class conditional probability density functions

according to the following equation:

 fA(X) =
() ()

()∑
= 










 −−
−

m

i

Ai
T

Ai
pp

XXXX

m 1
22/ 2

exp
1

)2(

1

σσπ
 (2-5)

 i = pattern number

2-75

 m = total number of training patterns (1/m is a normalizing constant)

 XAi = ith training pattern from category A

 σ = “smoothing parameter”

 p = dimensionality of measurement space

Equation 2-5 defines the PDF for each fault as the sum of several multivariate Gaussian

distributions centered at each training sample for a given class. In a typical problem, the

PNN is trained using the results of the FMEA for the subject mechanical system. This

effort typically results in a fault/symptom matrix in which only a single training vector is

developed for each fault. In the case of only a single training pattern per class (i.e. m=1),

the above equation simplifies to:

 fA(X) =
() ()

() 






 −−
−

22/ 2
exp

)2(

1

σσπ
A

T
A

pp

XXXX
 (2-6)

Conceptually, Equation 2-6 compares the input symptom vector to the training symptom

vector for the fault class. The closer the match between the two, the larger the probability

of that fault classification. Note that the fault probability can still be obtained even if one

or more components of the input symptom vector X are unavailable or mismatched. In

these cases, the resulting fault probabilities may be lower, but the method will still return

a result.

Equation 2-6 is implemented in the pattern units of the PNN, as depicted in Figure 2-37.

2-76

Figure 2-37. Network topology [50]

The network topology in Figure 2-37 differs from conventional neural nets in that the

summation and output units are not used here, since there is only a single training

example for each fault classification. The input units simply feed the input values to the

pattern units. Each input unit has a connection with every pattern unit, and there is one

pattern unit for each training pattern. The pattern units form the dot product of the input

pattern vector, X, with a weight vector, wi, which is the training vector in this case. The

dot product calculated in each pattern unit undergoes a nonlinear transformation in the

PNN using an activation function similar to the form of the Gaussian PDF given in

Equation 2-6.

XI X» Xj

w.ll

Input Units

WNP

Patiem Units

2-77

The input vector X is comprised of the symptom pattern representing either current alarm

conditions or predicted alarm conditions, depending on whether the system is performing

a diagnostic or prognostic application. Quantitative alarm condition data are collapsed

into categories. For this work, they are represented by a three-way classification as

HIGH, LOW, or NORMAL states numerically encoded into the input vector. These

classifications are performed by simple thresholding, as is done in most existing alarm

monitoring systems.

Network training is accomplished by setting the weight vector of each pattern unit equal

to the values of one of the training vectors. In this way, each training vector uniquely

defines the weights of one pattern unit.

The only parameter adjusted in the PNN is the “smoothing” parameter σ, which is related

to the variance of the underlying PDF. This parameter effectively controls the ability of

the PNN to generalize when the input vectors do not exactly match the training vectors.

Small values of σ result in poor generalization, causing the PDF to have distinct modes

corresponding to the training sample positions in input space [86]. Larger values of σ

produce greater degrees of generalization, with the PNN interpolating between training

sample points. In this case, input vectors close to the training samples produce

probability values close to that of the training points.

2-78

Logan et al [50] use this network for prognostic applications by performing a statistical

regression analysis of each mechanical system parameter used in the network. The data

points xi from the sensor are used to create a regression equation (usually linear):

 y = β0 + i
i

i x∑β (2-7)

where the βs represent the appropriate coefficients. Both raw measurements and time-

based deviations from baseline conditions are analyzed over a pre-defined time interval.

The length of this interval is determined by how much future warning is required for an

actual alarm condition. The coefficients of trend equations are calculated from historical

data within the pre-defined time interval and then tested at a 99% confidence level for

statistical significance. If the coefficients are statistically significant, the trend equation

is considered valid. Valid trend equations are then used for alarm prediction.

Each valid trend detected by the system is used to predict future alarm conditions within

the mechanical system. The parameter associated with the trend is extrapolated out into

the future using the estimated trend equation. If the predicted parameter value exceeds an

alarm threshold within the pre-defined time interval, then the system inputs this alarm to

the PNN-based inference engine. The PNN then uses its pattern recognition capabilities

to predict plant fault conditions most closely associated with predicted alarms. The same

PNN is used for both diagnostics and prognostics.

2-79

Figure 2-38. Example of a predicted bearing temperature alarm [50]

Figure 2-38 shows an example alarm prediction based on input data which were recorded

for about a month. A trend is identified and modeled using linear regression. The

regression line is projected out until an alarm threshold is encountered. If the trend

continues over time, the bearing temperature will reach its HIGH threshold in

approximately 15 days. A similar alarm prediction function is performed for all

parameters having detected trends. For a prognostic application, the predicted HIGH

bearing temperature alarm, along with other predicted alarms occurring in the same time

frame, would be fed into the same diagnostic neural network to determine what system

may be experiencing degraded performance.

BEIU4INGTEMP

3DD

g -
HI

^^^B ^ ^^ ^1 ^^^^^1^^^^^^^^^^ ^P ^^^^B^^^P ^B ^H ^ ^ ^ ^ ^m ^m ^ ^H ^H ^^^m ^ ^^^H ^J ^^^H ^m ^m ^ rx-x r- li^n r mwm mwm T« - -

]
1

^^^ ^^B ^m ^^^^^^^^^^^^^^ ^^^^ ■■■■^■■■■■HBBBBBB

1 j^

r ■ ^ ■
r r 4 ■
L L f ■

F F I :
L L d ■

F F 1 :

J

J

LX>

Jl

DAYS

! 161 dayt
■ju

[U«5-9

2-80

Federici, et al [31] use a simulation model to determine problems in an electrical circuit.

Their fault simulation process consists of simulating a circuit in the presence of faults,

and comparing the results of fault simulation with the fault-free simulation of the same

circuit with the same input test pattern. They propose the definition of a Behavioral Fault

Simulation (BFS) technique which could be applied to VHDL (Very High Speed

Integrated Circuit (VHSIC) Hardware Description Language) behavioral descriptions.

For clarity, VHDL is a large high-level VLSI design language with Ada-like syntax, and

is the DoD standard for hardware description, now standardized as IEEE 1076. VLSI

stands for Very Large Scale Integration and refers to semiconductor integrated circuits

composed of hundreds of thousands of logic elements or memory cells [79].

The primary goal of the BFS as described in [31] is to determine the set of faults

(belonging to the fault model) to be detected by a test pattern. A test pattern is a

sequence of steps which are followed to test a circuit for faults. Different test patterns

detect different faults. Their procedure submits faults from a global list to their

simulator, in conjunction with the test pattern (shown as the test sequence). The aim of

the test pattern generation process is to define patterns to test physical defects. The

defects can be detected only if they induce an irregular behavior called a fault. The fault

effect or error is measured by a difference between the state of the fault-free model

(reference model) and the state of the faulty model (model in which a fault hypothesis is

injected).

2-81

FAULT FREE
SIMULATION

SIMULATION
WITH FAULT

LIST
PROPAGATION

TEST
SEQUENCE

INTERNAL
MODEL

LIST OF
DETECTED

FAULT

GLOBAL
FAULT

LIST

VHDL
DESCRIPTION

Figure 2-39. A schematic showing the experimental plan [31]

The experimental plan is shown in Figure 2-39. The test sequence process is the list of

steps a test pattern takes to determine if a particular set of faults exist within the system.

System defects can be detected only if they induce an irregular behavior, compared to

normal functioning (found in a reference model called fault free simulation), which is

then called a fault. The fault effect or error is measured by a difference between the state

of the fault-free model (reference model) and the state of the faulty model (model in

which a fault hypothesis is injected). All possible faults (from the global fault list) are

systematically injected into the systems, and the specific test pattern is run to see if that

particular fault is detected. The output is a list of faults the system actually detects.

Ultimately, this simulation process could be used to evaluate and compare Behavioral

Test Pattern Generation software via the different fault lists These lists would show the

different faults each kind of test pattern would detect. Currently, this kind of capability

does not exist [31].

2-82

Rebulanan [68] describes another simulation model. The focus of the simulation was on

the PHM system, and the purpose was to assess an initial estimate of JSF supportability

through the use of this system. The analysis compared the availability of four JSF

aircraft with a PHM system with four JSF aircraft without a PHM system. The essential

difference was that the PHM JSF aircraft provided a predicted component failure time

before landing, while the aircraft without a PHM system did not. This reflects the

expected difference between the two kinds of aircraft. A PHM equipped aircraft should

provide fault reports before landing, providing additional lead time in the repair process.

A non-PHM equipped aircraft will have to land and be inspected by a mechanic (the

traditional/current diagnostic method) before any fault reports are available.

Relevant specifics of the simulation approach follow. The failure time of a particular

aircraft component was assumed to be known, based on the Mean Time Between Failure

(MTBF) measure associated with each component. The Mean Time To Repair (MTTR)

was used to generate repair times. In the simulation, each time was generated from an

associated probability distribution. The PHM system’s detection of the impending

component failure was assumed to be automatic and completely correct. The time the

PHM model detects component failure was set to be 95% of the components useful

lifespan. As an example, if a component’s lifespan was 1000 minutes, the PHM system

would automatically send a report at 950 minutes predicting this component’s failure at

1000 minutes. A time to repair was also randomly generated from multiple single

variable probability distributions based on multiple criteria. This criteria included the

2-83

component to be repaired (measured as probable in-stock availability of the component),

transit time of the repair part to the flight line, and performing the actual repair.

As expected, the average availability of PHM-equipped aircraft is significantly higher

than the availability of non-PHM equipped aircraft. A somewhat unexpected result was

the higher variability in the availability rate of the PHM-equipped aircraft.

Figure 2-40. Comparison of Availability Rates between PHM (ALS) equipped aircraft

and non-PHM (ALS) equipped aircraft [68]

Figure 2-40 shows that the availability rate varied between 89-91% for the PHM aircraft,

while the rate was a practically constant 84% for the non-PHM equipped aircraft.

Although Rebulanan [68] noted this variability existed for PHM aircraft, the variability

AvBllabllllv Rale ComparlBon

9Z

B1

PD

1"
1 «
s«

v^^ vvwv^t-^-^A/YV_^A/M\ f\j^A

-^^ -- ^■-—. -——. ^^--^,,. - ^^^^_i ,^ ^..^ ■- .'^w'_-..—

B5

- ^ ■- % S * £

R«pllC«IWn hufkBtr

 iH liri H^ L ^ nn Al ■*

2-84

was not explained. However, this observed variability is likely due to the variability

associated with the probability distribution used to determine the component failure time.

The variability associated with the component failure time translated into variability

associated with the prediction of the actual failure time on the PHM-equipped aircraft.

This variance in the timing of the fault report, and consequent maintenance lead time, led

to variance in overall aircraft availability. In contrast, the non-PHM equipped aircraft

had no variability associated with maintenance lead time, since the aircraft had to land

and be inspected before a fault report was generated. Based on Figure 2-40, it seems the

time for this ground inspection was constant, although this is not explicitly stated in the

paper.

Malley [53] followed Rebulanan’s work on simulating an ALS system with a detailed

computer model that simulated a PHM system. This PHM system model fit in the

context of the previously developed ALS system. His simulation modeled the operations

of one JSF wing and the activities of the corresponding support organizations for those

aircraft. It used a neural network to analyze notional prognostic sensor signals to

determine when an associated JSF system component (the engine, in his thesis) would

fail. The simulation of these prognostic signals incorporated sensitivity to component

wear-in, sensitivity to changing flight conditions, and a measure of variability as to when

the component would begin exhibiting signs of failure. These measures were varied to

produce different PHM signal sets. He found that averaging a number of these signals, or

“batching” them, produced robust measures that a neural net could use to predict the JSF

engine state with reasonable accuracy - about 82% of the time with his architecture.

2-85

These predictions of impending failures came when the engine was about 95% of the way

through its expected life cycle, allowing enough time for the engine to be fixed before it

failed in flight.

2.5 Literature Review Summary and Conclusions

Most published research concerning a prognostics effort is either concerned with a single

component of a system (such as a rotor) or a single aspect of a system (such as startup

data). Very few papers actually address the issue of what a complete prognostics system

should contain. Most of those that do address these systems at a very high level. The

literature apparently contains only one example of a complete prognostics system,

Logan’s DEXTERTM system [50].

A fully developed prognostics system needs to be all-encompassing. It starts with the

layout of the sensors within the system. This first step requires knowledge of the

appropriate location for each sensor, the type (acoustic, electrical, etc.) of each sensor

that should be used at a given location, and the total number of sensors that should be

used (to avoid too little or too much information). Then, the data from these sensors

needs to be captured and processed. Afterwards, the processed data is fed to a intelligent

reasoner of some kind which interprets the data input and provides a system health

assessment. This assessment may include a confidence level. Then, this assessment is

reported to appropriate entities. These may include system operators, system mechanics,

and system operations planners.

2-86

The prognostics reasoning capability is best described as the capability of a PHM system

to extrapolate from current data streams to predict when a certain portion of the system is

expected to fail. Of course, the biggest reason to monitor a system using PHM

technology is to detect an impending component failure in time to prevent a system

failure by replacing the affected component before it actually fails. Rather than repairing

or replacing a component after it has failed, it can be repaired or replaced when the

prognostics system indicates that probable time to failure (or probability of component

failure) is within some critical threshold. The question is what is required for this

impending component failure to be detected.

The nature of the prognostics reasoning problem is a difficult one. Experts in this field

identified reliable estimation of time-to-failure as one of the greatest challenges in

manufacturing and machine monitoring, and one of weakest areas in existing methods

[82]. Furthermore, these experts state that methods used to analyze the data from

mechanical system processes must be robust, i.e., methods which can tolerate significant

deviations from assumed or nominal signal characteristics. In general, the signal and

noise environment in these kinds of applications is highly complex, non-Gaussian, and

exhibits large variability and/or non-stationarity. The operating conditions may vary

dramatically between sensor locations. To ensure the user accepts these monitoring

methods, low false alarm rates are an absolute necessity. This places an additional

burden on the robustness of the methods. A successful prognostics system

implementation must address all these issues.

2-87

The first requirement for a prognostics reasoning system is on-board sensors which

record the performance of aircraft systems. This requirement in and of itself is a

significant issue. The total number of sensors required for producing a prognostics

capability is an open question. If there are too few sensors, not enough data will be

collected for analysis and prognostic functions. If there are too many sensors, the

prognostic system may be overcome by so much variation from the sensor reports that it

fails to recognize any impending failures at all. The variation in the readings may also be

coming from failed sensors, as opposed to systems which are actually failing. The

recorded data may also exceed the capability of the system bus to report it, so data is lost

before it is ever recorded. However, with modern technology, this “data overflow” issue

is becoming less of a concern.

The next issue under this first requirement is which systems the sensors are attached to.

There are a tremendous number of systems present on a modern aircraft (somewhere in

the hundreds). Should all these systems be monitored, or just some of them? If only

some systems should be monitored, which ones should they be? And given those

systems, what kinds of measurements should be taken (acoustic, electrical, vibration,

etc.)? These questions need to be answered to determine the proper scope of the data for a

prognostics reasoning system.

Once the sensors are in place for aircraft data collection, the actual collected data will

require pre-processing before submission to the prognostic system. Raw sensor data is

typically very noisy, and key features describing the performance of the monitored

2-88

system are not readily apparent. The concern here is which kinds of processing

techniques should be employed. By its very nature, data pre-processing modifies some of

the collected data (hopefully removing the noise) while enhancing the rest of the data (the

signal of interest). However, since many pre-processing techniques are well known and

their effects are understood, this is not as significant of an issue as are other issues.

The biggest issue for a prognostics reasoning system is the interpretation of the collected

and pre-processed data. In order to assess the health of an aircraft based on this

information, it must be compared to previously existing information which has been

classified as either representative of a healthy system, a degraded system, or a failing

system. In order for this comparison to be done, this “previously existing” data must be

collected from similar (if not exactly the same) systems that are operating in a known

state.

At this point, a few words are in order about the presumed nature of general mechanical

system faults. Most faults are believed to begin with small (but detectable) precursor

events and to stem from a progressive (not necessarily linear) degradation of the system

component. The degradation curve is usually assumed to follow some kind of

exponential relationship [82], although some naval applications show a linear trend [51].

Thus, the tracking of this degradation along with an ongoing prediction of the time-to-

failure is of great importance to a prognostics system. Additionally, as previously stated

[60], the signal and noise environment in these kinds of applications is highly variable

and complex. Also, the signal characteristics from many types of degradations are non-

2-89

monotonic. Consequently, an understanding of the overall trend, as well as continuous

monitoring to track the history of the developing fault, is essential [82]. Faults that are

neglected are those which develop rapidly without any forewarning (such as the effects of

combat). Clearly, no prognostics system can predict rapidly developing events which

occur completely within a time window that is considerably less than a single operational

cycle.

In order to make sense of this data, there must be a reasoning function in the PHM

system. This reasoning function is required to identify normal behavior and system faults

with high confidence. To accomplish this, there must be patterns present within the

reasoning function which represent functional and failed behavior. The reasoning

function for a PHM system is also expected to predict when component failure will

occur. This requires clear patterns of how system faults develop. How these patterns can

be captured is addressed below.

The patterns for a functional state are thought to be the easiest to collect. Once an expert

(probably human) has assessed the system as working correctly, the data from the system

are fed to the reasoning system, which encodes the data as representative of a functional

state. Should there be more than one functional state, conditions in which these

functional states exist can also be replicated and encoded within the reasoner. As the

system operates, comparisons between this part of the prognostic reasoner and the system

data should clearly indicate whether the system is in a functional state or not. This is one

2-90

way a PHM system can provide an instantaneous (simple yes/no) assessment of system

health.

The collection of failure patterns is a somewhat more difficult problem. When systems

are in a failure state, by definition they are not operating. This may prevent the collection

of certain kinds of system data. To overcome this, outside expertise is required to

supplement the data patterns recorded when a system is in a failure state. Additionally, it

is difficult to record every conceivable failure state a priori. The prognostic reasoner

must be able to accept new failure states as they appear during the operation of the

system. Using this data, the reasoner can provide instantaneous estimates of system

failure by comparing it to known functional and failed states, if the failure status is not

readily observable.

Collecting patterns of how system faults develop is difficult, but essential in order for a

PHM system to accurately predict when a failure will occur. For this predictive

capability to be developed, there must be a well-defined path (henceforth called a “failure

path”) from current operational conditions to the many fault conditions, and all variations

along these failure paths must be understandable and detectable. Collecting the data to

meet this requirement is the most difficult technical challenge of these three. Mechanical

systems undergo preventive maintenance to avoid failures, which interrupt the collection

of data along fault paths. Actually operating a functional system to observe the failure

path of a single component can result in ruining the entire system. Re-running the same

experiment to note any variations in the failure path of the same component will double

2-91

the costs. And, as previously discussed, the data along these paths is highly complex,

non-Gaussian, and exhibits large variability and/or non-stationarity.

To overcome these problems and collect the required data, most failure paths are mapped

based on performance of an individual component on a test bench. There are two

potential problems with this approach. The first potential problem here is that the

individual component is being assessed independently of the overall system; interactions

are not captured. And secondly, most components are very durable, and take a very long

time to fail when subject to normal operational stresses. To save experimental time and

cost, components are overloaded with operational stresses that are multiples of the

normal values. The resulting failure path may not represent what really happens to the

component for this specific type of failure. It also may mask other failures that would

normally occur before the specific type of failure under consideration.

Another way to obtain failure information from system data is to use the known failure

points of the system components, and not use any computed failure path patterns at all.

These failure points may consist either of the time which a particular component is

expected to last, or component readings at failure.

If only the time that a particular system component is expected to last is being used to

compute a possible failure point, then the system simply keeps track of the amount of

operational time a component has been in use. This is compared to the distribution of

failure times for this component. When an appropriate threshold is reached, the system

2-92

indicates it is time to replace the component. This threshold may be expressed as the

point at which a certain percentage of the components have failed, or how long it will be

until failure is virtually certain. The potential problem here is that all the aircraft

components are usually manufactured at the same time. The initial failure time

distribution becomes less and less representative of the actual population as these

components age. In the process of maintenance, some components are refurbished with

new units, so averaging their performance together with the unrefurbished units leads to a

distribution that is not really representative of either population. However, the Air Force

is tracking some of its electronic components by barcode. There could be two failure

distributions; one for refurbished units, and one for the others. Although this does require

a lot of bookkeeping, tracking the different maintenance actions by electronic unit has

been shown to be feasible.

If the component readings at failure are being used, trend analysis is applied to the data

being collected from these system components. If the PHM system detects a “definite”

trend towards a failure point, this would be reported as negative system health. A

projection along this “definite” trend will give an assessment of how long it will be

before the component fails. The advantage of this approach is that failure path generation

is not required. Disadvantages include the need to know precisely what a component’s

failure point is. Projecting the “definite” trend is also a disadvantage since it requires

extrapolation beyond the original data set. As an example, what may have been

originally thought to be a linear trend may turn into an exponential trend, leading to

failure much sooner than anticipated. The reverse situation also leads to problems, as

2-93

maintenance action is scheduled sooner than required, leading to the replacement of a

component with remaining usable life.

Assuming that patterns for the functional state, the failure paths, and the failure states all

exist within the prognostic reasoning system, assessments can be made of instantaneous

system health and time to component failure. As previously mentioned, comparisons

between the system data and the functional patterns present within the prognostic

reasoner can give a simple yes/no indication of system health. Another way is to

compare current system readings, or operational time deployed, with known failure

points for these systems. This information can provide a simple yes/no assessment of

system health as well, if the proximity of the sensor reading is “close” to the known

failure reading. (The same holds true for comparing time deployed to the time-to-failure

distribution.) This information can also provide a probability assessment of impending

failure. The third way is to compare trends (or current values) in the system data with the

previously defined failure paths. The data of any component that doesn’t indicate normal

operation can be mapped to the failure path. This provides an instantaneous (negative)

health assessment. It also provides an estimate of time remaining to failure, based on the

distance remaining on the failure path. Of course, this assumes the failure path and/or

fault condition is known for the specific event. If not, the PHM system will only be able

to provide a (negative) assessment of system health (what the PHM system is seeing

doesn’t match the data for normal operation).

3-1

III. Data Fusion Methods

3.1 Background

Multi-sensor data fusion is a field that has experienced rapid growth comparatively

recently. The problem of merging similar (or disparate) information from multiple

sources has grown in importance as the number of information sources available to the

decision maker has significantly increased in the past 20 years. In past years, decision

makers would assess written or verbal reports, with or sometimes without certain levels

of confidence, and decide on a course of action based on their internal “fusion” of the

information. As computer power has increased through the years, the automated

computation of the “best” estimate of what all these sensors say has become more and

more possible. The number of methods used to assimilate the data into a unified

assessment of a given situation has also increased greatly in recent years. Arguably, it is

no longer humanly possible to correlate all the data streams available to provide the best

interpretation of the data, without computational assistance.

Data fusion is required because of data fission. The total signature of an entity is usually

manifested in many separated types. Since most sensors only collect one type of

information, the complete entity signature can only be reconstructed through fusing these

collected types to reconstruct the original entity. The information decomposition can be

attributed to different types of phenomena. These include different characteristics under

consideration, such as shape or motion; detection of different information types, such as

electromagnetic or acoustic radiation; detection of different parts of the frequency

3-2

spectrum, such as electrical current or infrared data; restricted spatial or temporal

coverage; and an historical legacy of separate processing systems. Rarely does one

sensor embody more than one collection technique. Consequently, a single sensing

mechanism is unlikely to be capable of capturing all the desired information on an entity

at a given instant of time. Data fusion brings this information back together to provide

the picture of the original entity.

The methods of data fusion depend on the situation. There may be several similar

sensors providing information on the same entities. In this case, the sensors detect the

same features on the entities, yielding what is termed competitive data. The overlapping

features of the data must be correctly merged to identify the data sources. The other case

occurs when different types of sensors collect different features on the same entities,

yielding complementary data. In this case, the data between the different sensors does

not overlap. In both cases, however, a single sensor usually collects data on more than

one entity, so the data is almost always dependent.

Data fusion techniques are also dependent on the type of data present. The preceding

paragraph discusses a situation in which signal processing techniques would be quite

helpful (signal filtering, spectral analysis, time-domain fusion). To estimate the state of a

given system, Kalman filters or some other kind of Bayesian reasoning may be most

appropriate. If there is more background knowledge available, then what may be called a

“cognitive technique” can be used. These techniques can include neural nets,

clustering/genetic algorithms, or fuzzy logic. If expert knowledge can help determine the

3-3

exact state of affairs, expert systems or case-based reasoning may be applicable.

However, there is no one “golden method” which applies in all situations. Most

problems will require a combination of the above techniques to provide an accurate

solution. In the example of the preceding paragraph, a combination of an expert system

(previously existing signatures) could be combined with time-domain fusion to provide a

fused picture of the environment.

Of course, the methods chosen to fuse the data also depend on the kind of data available.

For most military applications, the data comes from multiple sensors collecting

information throughout the electromagnetic spectrum, as well as audio, motion, and

vibration detectors. This includes sensor location and at times, a level of confidence in

the collection. However, sensor reliability, previously analyzed data, large databases,

expert systems, and other types of pre-existing information are also candidates for data

fusion. The degree to which each data stream is weighted compared to the other streams

is of central importance. Of course, data fusion can never totally recover the loss

introduced by the original data fission.

There are varying definitions of what constitutes multi-sensor data fusion, but these

definitions differ primarily only in technical details. For example, the International

Society of Information Fusion defines it as follows [25]: “Information Fusion, in the

context of its use by the Society, encompasses the theory, techniques and tools conceived

and employed for exploiting the synergy in the information acquired from multiple

sources (sensor, databases, information gathered by human, etc.) such that the resulting

3-4

decision or action is in some sense better than (qualitatively or quantitatively, in terms of

accuracy, robustness and etc.(sic)) than would be possible if any of these sources were

used individually without such synergy exploitation.” The USAF Research Lab [21]

defines it as: “Information Fusion: Events, activities and movements will be correlated

and analyzed as they occur in time and space, to determine the location, identity and

status of individual objects (equipment and units), to assess the situation, to qualitatively

and quantitatively determine threats and to detect patterns in activity that reveal intent or

capability. Specific technologies are required to refine, direct and manage the information

fusion capabilities.” In essence, data fusion is the management (and consequent

minimization) of uncertainty associated with the input data. The goal is to obtain the best

assessment of the system under consideration with a minimal amount of uncertainty.

The use of the data in data fusion has widely varying adherents throughout the

community. There are those who advocate a “sensor to shooter” data fusion architecture.

The raw data from the sensor is sent directly to the warfighters who put ordnance on the

target. Unfortunately, with the tremendous amount of data being collected on the modern

battlefield, the warfighter cannot hope to keep up with the flow of information. And that

is ignoring the issue of contradictory and/or simply incorrect sensor reports. As some

leaders in this community have said, the warfighter is awash in information but starved

for knowledge. What a sensor report means in the context of other sensor reports is far

more valuable than an individual report standing alone.

3-5

The data in data fusion are useless unless they are placed in context, then the data may be

considered information. Knowing what the data indicates and the associated level of

confidence are essential. In turn, when this information is placed in its proper context, it

may be considered knowledge. An indicator from a ships’ radar of tank activity would be

expected if the ship was close to shore, but perhaps not if the ship was in the middle of

the ocean The knowledge of what the sensor indicates and whether that is reasonable

given current surroundings is also important. This idea can extended to knowledge of

multiple activities, which could be called understanding. Perceiving what purpose

underlies the knowledge of the enemies’ activities is yet another level of fusion.

However, interpretation of purpose exceeds current computational capabilities.

3.2 Neural Network Methods

The term “artificial neural network” (ANN) refers to a wide range of analog

computational schemes that are loosely based on biological nervous systems. These

schemes are generally built to classify an unknown object into a particular class of

objects based on observations (input data) obtained from that object. Neural nets can also

be used to classify a system’s operation into one of a number of operational modes (e.g.,

running efficiently, nearing failure, non-operational, etc.) based on data obtained from

system components.

A typical ANN consists of a web of interconnected simple mathematical processors

called “neurons” or “units” or “nodes”. Three components are required to describe a

network:

3-6

1. The neural units, the number of layers in the network, and their “activation” functions.

2. The connections between units, known as the neural architecture.

3. A training algorithm to develop the most appropriate weights for connections between

units.

The following section describes each of these three components in turn.

3.2.1 Neural Units

A single-layer neural net (also known as a “perceptron”) looks like the following figure.

Figure 3-1. Single-layer neural net [15]

Figure 3-1 shows a single layer neural net. This architecture is also known as a

“perceptron.” The bias node is a constant value specified by the user. The inputs are

weighted to give an output. The net is trained on known data so the weights on each

branch are the best for classifying that particular data set (training will be addressed in

more detail later). The initial set of weights is usually chosen randomly.

Output

y

Bias

Inputsx0 x1 xd

w0

w1

wd

Output

y

Bias

Inputsx0 x1 xd

w0

w1

wd

3-7

A multi-layer neural net schematically looks like the following figure.

Figure 3-2. Multi-layer neural net [15]

Figure 3-2 shows the input layer, hidden layer, and output layer of a typical multi-layer

neural net. This type of architecture is also known as a multi-layer perceptron neural net.

There are many more weights in this type of architecture. Again, a set of data where the

actual outcome is known for each set of input data is used to train the network.

In the type of ANN considered here (multi-layer perceptron), the neural net node takes

the weighted sum of its inputs and feeds that value into an activation function (which is

typically nonlinear. The activation function transforms the weighted input from other

nodes into a new value.

Outputs
y

Bias

z0

z1 zd

Bias

Inputsx0 x1 xd

Hidden
Nodes

Outputs
y

Bias

z0

z1 zd

Bias

Inputsx0 x1 xd

Hidden
Nodes

3-8

Figure 3-3. Activity performed in a typical neural network node

Figure 3-3 shows the usual function of a neural network node. Usually, there are many

inputs into a single node. Each input is multiplied by a weight. Then, the resulting

products are added to form a single sum. This sum is then input into the activation

function. The result is computed and sent forward as the output of that particular node.

The output may also be sent to many nodes.

An activation function commonly used in these kinds of neural nets is the sigmoid

(logistic) function:

 ()
xe

xf −+
=

1

1
 (3-1)

Neural Net Node Function

Inputs}

Inputs multiplied
by weights:

xi × wi

Sum of
weighted
inputs

1 Activation
function

Sigmoid
Tanh(x)
Linear

OutputInputs}

Inputs multiplied
by weights:

xi × wi

Sum of
weighted
inputs

1 Activation
function

Sigmoid
Tanh(x)
Linear

Output

3-9

Other commonly used activation functions include the hyperbolic tangent (tanh(x))

function. In some cases, researchers also use units with linear activation functions.

Linear activation functions are most commonly used in the output layer of the network.

3.2.2 Network Connections

Nodes (represented below by circles) are connected to propagate a signal from the inputs

to the outputs of the net.

Figure 3-4. Single output neural net [15]

The network shown in Figure 3-4 could be used to approximate a function of two

variables, Y=f(X1,X2). The input values (X1, X2) are appropriately weighted and fed

into the nodes above them. Subsequent units compute their values according to the

Output
y

Bias

z0

z1 z2

Bias

Inputsx0 x1 x2

Hidden
Nodes

Output
y

Bias

z0

z1 z2

Bias

Inputsx0 x1 x2

Hidden
Nodes

3-10

weighted connections and activation functions. The answer, Y, is read from the unit in

the output area.

ANNs are often partitioned into distinct sets of related neural units, called “layers” or

“areas”. For example, all of the units used as inputs to the unit constitute the “input

layer”; likewise units used as outputs make up the “output layer”. All other units are

organized into one or more “hidden layers”. The resulting arrangement of nodes and

connections in a network is known as the network topology.

Layers are connected by groups of lines (loosely, the “nerves”) called projections. A

non-zero weight is usually assigned to each projection. For ANNs, units in a particular

layer are usually connected to every other unit in each adjacent layer. A notable

exception is what is termed the “bias node” or “bias unit”. The weight attached to this

value is usually set at 1, and the negative of this value is usually known as the

“threshold”.

Many neural networks have the structure given in Figure 3-2 with an additional hidden

layer. This is because of a theoretical result which states that a neural network with three

layers of weights can produce an arbitrarily complex decision boundary [90]. In other

words, it can correctly classify objects no matter how tightly they may be grouped

together in real life. Unfortunately, the theorem only states that the network exists-

finding it is another matter altogether. In a similar result, a network with two layers of

weights (just like Figure 3-2) and sigmoid activation functions can approximate any

3-11

decision boundary to arbitrary accuracy. So using sigmoid activation functions allows

the use of a smaller network, but with the same guarantee that the perfect neural net for a

particular problem exists [15], [40], [90]. Again, finding that neural net is another issue

altogether. That issue is partly addressed by how the network is trained, which leads into

the next section.

3.2.3 Training Neural Networks

Making a network perform useful work, e.g. correctly classifying a large number of

unknown entities, involves finding good values for the weights of the connections

between units. While commonly referred to as “training”, this is basically an

optimization problem, and has been addressed in several different ways:

Local methods, such as backpropagation and its many variants. These methods

focus on a small area of the solution space at a time.

Global gradient-based methods, e.g. conjugate gradient, Levenberg-Marquardt.

These methods focus on a larger area of the solution space.

Stochastic methods, e.g. genetic algorithms, simulated annealing. These methods

use some form of a random process to generate better and better weights.

These training methods in general involve an iterative procedure for minimization of an

error function, with the weights being adjusted in a sequence of steps [15].

3-12

3.2.4 Different Neural Network Methods

There are many different implementations of the neural network architecture in the

literature. There are two major classes of neural network models. The first uses nodes

(units) which compute a non-linear function (usually sigmoid) of the product of an input

vector and a weight vector. The main example of this technique is the multi-layer

perceptron. The other class of neural networks uses the distance between the input vector

and another generalized vector (usually the average of the input vectors) for the

computation at the node (unit). Radial basis function neural networks and probabilistic

neural networks are examples of this latter type. The following list briefly summarizes

some of these network methodologies with are considered to be suitable for automated

machine learning [73].

The multiplayer perceptron with backpropagation learning is probably the most

commonly applied ANN model [74]. When a neural net is being trained, input data and

the associated desired network output values (called targets) are presented to the network.

The backpropagation algorithm, in general, feeds the error (distance from the target)

associated with a particular input vector back through the network. The out put layer

computes its error, and feeds this back to the previous layer, which computes its error,

and feeds back its error, until the first layer in network has computed its error. Once each

individual neuron has computed its error, it estimates a change for the weight vector that

would reduce its error. This change is typically multiplied by a learning rate which is

significantly less than one (usually 0.1). The learning rate reduces the amount of change

3-13

to produce a neural network that can classify many similar inputs well, instead of one

input perfectly.

The functional link neural network (FLNN) performs least squared error learning like that

of a backpropagation neural net, but no learning takes place in the hidden layer. Instead,

the hidden layer combines the inputs using various nonlinear functions [45].

The probabilistic neural net (PNN) is an ANN implementation of the Parzen windows

method. The output is a weighted sum of all training points, where the weighting is

exponential according to the distance of an unclassified input from a given training point

[85], [86]. The general regression neural network (GRNN) is the PNN augmented by a

normalizing factor [84].

Radial basis function neural networks (RBFNN) contain a set of uniformly distributed

processing units each with a radially symmetric response. During training, the algorithm

adjusts the amplitude of the response to estimate the function [69].

Radial basis functions (RBF) are used as activation functions in this second class of

neural networks.

3-14

Figure 3-5. Typical RBF network [15]

Figure 3-5 shows a typical RBF network. There are N inputs, indexed 1 to n, which are

combined with M basis functions (M =N in almost all cases), indexed 1 to j. There are K

output nodes, indexed from 1 to k.

The general problem radial basis function neural networks are used to solve is the

mapping from a d-dimensional input space x to a one-dimensional target space t. The

input data consists of N input vectors xn, and corresponding targets tn. The object is to

find a function h(x) such that h(xn) = tn, for n = 1 to N [65]. The radial basis function

approach [65] assigns a basis function to each of the N data points. The basis function

has the form φ(|x - xn|), where φ is usually Gaussian, the distance function |x - xn| is

usually Euclidean, and x is usually either the average of the input vectors or the center of

the assigned basis function. The output of the mapping is a linear combination of all M

basis functions (at present, M =N):

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj

Basis
Functions

Outputs
yk

Bias

M0

M1 Mj

Bias

Inputsx0 x1 xn

Weights
wkj

3-15

 h(x) = ∑ wnexp([-1/2σn
2]*|x - xn|

2) (3-2)

The weights wn are found via a two-stage process [15]. In the first stage, the input data

set is used to determine the parameters of the basis functions (µ and σ if the function is

Gaussian). The basis functions are then kept fixed while the second layer weights are

found in the second training phase. Mathematically, if the radial basis function is written

as:

 yk(x) = ∑
=

M

j 0

wkjφj(x) (3-3)

then the matrix representation is:

 y(x) = Wφφφφ (3-4)

where W = wkj and φφφφ = φj. The error function is a sum of squares expression:

 E = .5 ∑∑
kn

{yk(xn) – tnk}
2 (3-5)

where tnk is the target value for output unit k, corresponding to the input vector xn. The

weights are found from a set of linear equations

 ΦΦΦΦTΦΦΦΦWT = ΦΦΦΦTT (3-6)

where (T)nk = tnk and (ΦΦΦΦ)nj = φj(xn). The formal solution is given by:

 WT = ΦΦΦΦ*T (3-7)

where the ΦΦΦΦ* notation denotes the pseudo-inverse of ΦΦΦΦ. In practice, the equations given

above are solved using singular value decomposition to avoid problems associated with

the possible ill-conditioning of the matrix ΦΦΦΦ.

3-16

Typically, for radial basis function neural network, the number of basis functions is much

less than the number of data points [15]. In general, the radial basis function neural

networks learns quicker than multi-layer perceptron neural networks. The trade-off is

that the multi-layer perceptron neural networks exhibit improved generalization

properties, especially for regions not sufficiently represented in the data set [47]. To

obtain this improved generalization, an RBF network has to have more functions to better

characterize the input space [39]. The number of functions exhibits a direct exponential

dependence on the dimension of the input space. The benefit of using radial basis

function networks is the property of best approximation: the function with minimum

approximating error is in the set of approximating functions this network may adopt [39].

Girosi and Poggio [39] also showed that the multi-layer perceptron does not share this

property.

Similar to the an RBFNN, the k-nearest radial basis function network (KNRBF) learns

like the RBFNN. Its output is computed the same way, except only the k nearest basis

functions are used in the exponentially weighted sum [73].

The dynamic radial basis function neural network with locally tuned units (LTRBFNN)

uses a clustering technique on the input data to determine optimal placement of its non-

symmetric basis functions. Then, it uses heuristics to determine the widths of the basis

functions. On a second pass through the data, it uses least mean squares to determine the

amplitude of the basis functions [59].

3-17

The dynamically stable learning neural network (DYSTALNN) was derived from the

actual wiring of a simple invertebrate nervous system and the details of mammalian

learning at a cellular level. A DYSTALNN maps an input vector to the processing unit

that stores a cluster center vector that matches the input best. The output is the product of

the measure of similarity and the output vector stored at the processing unit. This

architecture adds new processing units whenever it encounters an input significantly

different from any previous inputs [3].

The restricted coulomb energy neural network (RCENN) allocates regions to some

training inputs. RCE allocates the first input to a large region, but ignores subsequent

inputs that fall inside that region unless they are associated with a different output value.

In this occurs, the RCENN divides the previous region and allocates a portion to the new

input. The training technique requires several passes through the training data to ensure

that all training data falls inside some allocated region. When the network is trained,

input vectors (with unknown targets) will fall into some region with a training input at its

center. The output is what was pre-defined for that region during training [70].

The cerebellar model articulation controller (CMAC) was inspired by the architecture of

the mammalian cerebellum [2]. This architecture maps input values to a particular bin,

represented by a fixed integer value. The minimum value in the input range maps to 0,

and the maximum value maps to the bin associated with the largest value. The number of

bins used for the mapping depends heavily on the application. For training, all entries in

the bins are initialized to 0. When a bin encounters a training input, the bin value of 0 is

3-18

replaced by the desired output. If a bin does not encounter a training value, the value

remains 0. If the bin encounters multiple different outputs, on the last output recorded is

retained. Various generalization algorithms are used to compensate for this. The chief

advantage of this technique is that the error surface has a unique minimum that is “down

the slope” from every other point on the curve, and that learning process converges to this

unique value fairly rapidly. The technique is not susceptible to local minima in the error

surface, unlike other neural network architectures.

3.2.5 Combining Neural Networks

Opitz and Maclin [61] discusses the comparison of 2 different data fusion techniques,

known as Bagging and Boosting. These techniques combine the predictions of multiple

classifiers to produce a single classifier. The resulting classifier, which is referred to as

an ensemble, is generally more accurate than any of the individual classifiers making up

the ensemble. Theoretical and empirical research has demonstrated that a good ensemble

is one where the individual classifiers in the ensemble are both accurate and make their

errors on different parts of the input space. The Bragging and Boosting methods rely on

resampling techniques to obtain different training sets for each of the classifiers.

3-19

Figure 3-6. A classifier ensemble of neural networks. [61]

Figure 3-6 illustrates the basic framework for a classifier ensemble. In this example,

neural networks are the basic classification method, though conceptually any

classification method (such as decision trees) can be substituted in place of the networks.

Each network in the figure's ensemble is trained using the training instances for that

network. Then, for each example, the predicted output of each of these networks is

combined to produce the output of the ensemble. The consensus among many

researchers [61] is that an effective combining scheme is to simply average the

predictions of the ensemble.

Of course, combining the output of several classifiers is useful only if there is a

reasonable amount of disagreement among them. Obviously, combining several identical

classifiers produces no gain. Hansen and Salamon [38] proved that if the average error

rate for an ensemble is less than 50% and the component classifiers in the ensemble are

independent in the production of their errors, the expected error for that example can be

Ensemble Output

Combine network outputs

Network 1 Network 2 Network N

Input

…

3-20

reduced to zero as the number of classifiers combined goes to infinity. However, such

assumptions rarely hold in practice. Krogh and Vedelsby [46] later proved that the

ensemble error can be divided into a term measuring the average generalization error of

each individual classifier and a term measuring the disagreement among the classifiers.

They formally showed that an ideal ensemble consists of highly correct classifiers that

disagree as much as possible. Other researchers [61] have empirically verified that such

ensembles generalize well.

As a result, methods for creating ensembles center around producing classifiers that

disagree on their predictions. Generally, these methods focus on altering the training

process in the hope that the resulting classifiers will produce different predictions. For

example, neural network techniques that have been employed include methods for

training with different topologies, different initial weights, different parameters, and

training only on a portion of the training set. The remainder of [61] focuses on two

methods (Bagging and Boosting) that try to generate disagreement among the classifiers

by altering the training set each classifier sees.

Bagging is a bootstrap ensemble method that creates individuals for its ensemble by

training each classifier on a random redistribution of the training set. Each classifier's

training set is generated by randomly drawing, with replacement, N examples, where N is

the size of the original training set. Many of the original examples may be repeated in the

resulting training set while others may be left out. Each individual classifier in the

ensemble is generated with a different random sampling of the training set.

3-21

Boosting encompasses a family of methods. The focus of these methods is to produce a

series of classifiers. The training set used for each member of the series is chosen based

on the performance of the earlier classifier(s) in the series. In Boosting, examples that

are incorrectly predicted by previous classifiers in the series are chosen more often than

examples that were correctly predicted. Thus Boosting attempts to produce new

classifiers that are better able to predict examples for which the current ensemble's

performance is poor. (Note that in Bagging, the resampling of the training set is not

dependent on the performance of the earlier classifiers.)

In [61], the authors also examine two new forms of Boosting: Arcing and Ada-Boosting.

Like Bagging, Arcing chooses a training set of size N for classifier number K+1 by

probabilistically selecting (with replacement) examples from the original N training

examples. Unlike Bagging, the probability of selecting an example is not equal across

the training set. This probability depends on how often that example was misclassified

by the previous K classifiers. Ada-Boosting uses either the approach of (a) selecting a set

of examples based on the probabilities of the examples, or (b) simply using all of the

examples and weight the error of each example by the probability for that example (i.e.,

examples with higher probabilities have more effect on the error). This latter approach

has the clear advantage that each example is incorporated (at least in part) in the training

set. This form of Ada-Boosting can be viewed as a form of additive modeling for

optimizing a logistic loss function. In this paper, the authors have chosen to use the

approach of subsampling the data to ensure a fair empirical comparison (in part due to the

restarting reason discussed below).

3-22

Both Arcing and Ada-Boosting initially set the probability of picking each example to be

1/N. These methods then recalculate these probabilities after each trained classifier is

added to the ensemble. For Ada-Boosting, Ek is the sum of the probabilities of the

misclassified instances for the currently trained classifier Ck. The probabilities for the

next trial are generated by multiplying the probabilities of Ck 's incorrectly classified

instances by the factor Bk = (1 - Ek)/Ek and then renormalizing all probabilities so that

their sum equals 1. Ada-Boosting combines the classifiers C1, ... ,Ck using weighted

voting where Ck has weight log(Bk). These weights allow Ada-Boosting to discount the

predictions of classifiers that are not very accurate on the overall problem.

In this paper, the authors use a revision where all the weights are reset to 0 to be equal

and restart if either Ek is not less than 0.5 or Ek becomes 0.1. By resetting the weights

they do not disadvantage the Ada-Boosting learner in those cases where it reaches these

values of Ek. The Ada-Boosting learner always incorporates the same number of

classifiers as other methods we tested. To make this feasible, they use the approach of

selecting a data set probabilistically rather than weighting the examples, otherwise a

deterministic method such as C4.5 would cycle and generate duplicate members of the

ensemble. That is, resetting the weights to 1/N would cause the learner to repeat the

decision tree learned as the first member of the ensemble, and this would lead to

reweighting the data set the same as for the second member of the ensemble, and so on.

Randomly selecting examples for the data set based on the example probabilities

alleviates this problem.

3-23

Arcing started out as a simple way for evaluating the effect of Boosting methods where

the resulting classifiers were combined without weighting the votes. Arcing uses a

simple mechanism for determining the probabilities of including examples in the training

set. For the ith example in the training set, the value mi refers to the number of times that

example was misclassified by the previous K classifiers. The probability pi for selecting

example i to be part of classifier K+1's training set is defined as the value of the power

empirically after trying several different values.

The paper gives the following sample of how Bagging and Boosting might work on a

imaginary set of data. Since Bagging resamples the training set with replacement, some

instance are represented multiple times while others are left out. So Bagging's training

set 1 might contain examples 3 and 7 twice, but does not contain either example 4 or 5.

As a result, the classifier trained on training set 1 might obtain a higher test-set error than

the classifier using all of the data. In fact, all four of Bagging's component classifiers

could result in higher test set error; however, when combined, these four classifiers can

(and often do) produce test set error lower than that of the single classifier (the diversity

among these classifiers generally compensates for the increase in error rate of any

individual classifier).

3-24

Figure 3-7. Hypothetical runs of Bagging and Boosting [61]

Figure 3-7 shows hypothetical runs of Bagging and Boosting algorithms. Assume there

are eight training examples. Assume example 1 is an outlier and is hard for the

component learning algorithm to classify correctly. With Bagging, each training set is an

independent sample of the data; thus, some examples are missing and others occur

multiple times. The Boosting training sets are also samples of the original data set, but

the ``hard'' example (example 1) occurs more in later training sets since Boosting

concentrates on correctly predicting it.

The authors draw several conclusions from their analysis. The first is that a Bagging

ensemble generally produces a classifier that is more accurate than a standard classifier.

For Boosting, however, they note more widely varying results. For a few data sets

Boosting produced dramatic reductions in error (even compared to Bagging), but for

other data sets it actually increases in error over a single classifier (particularly with

A lainpl cifa DIIDLE cl&BI'liEI cr an imanraiflet ofdab.
(Oriniiifll)Tifliniiin Set

TrainiTin wt-1 1 ^, 3, 4, !l, fc 7,K

A lainplE c£ Bapoiup CD the lame dab.

(RpBinplfd) TiflliiiiiB 3ft
Trail in g-iet-1: 2, 7, 8, 3^ 7, 6, 3, 1
TraiiiiiB-iet-2: 7, 8, !l, 6, 4, 2, 7, 1
Traiiiiig-iet-3: 3, 6, 2, 7^ S, 6, ^ ^
Traiiiiin-iet-4: 4, !l, 1, 4, 6, 4, 3, 8

A lample PI B^pitiiiE nn the lame daa.
(BemnFled) Tiairiiig Set

TraninE-irt-l: 2, 7, 8, 3, T, 6, 3, ^
TraiiiiiB-iet-2: 1, 4, !l, 4, 1, !1, 6, <

TraiiiiiB-iet-3: 7, 1, !l, 8, 1, 8, 1, <
Traiiiiin-iet-4: 1, 1, 6, 1^ 1, 3, 1, B

3-25

neural networks). In further tests they examined the effects of noise and determined that

Boosting's sensitivity to noise may be partly responsible for its occasional increase in

error.

Their results also show that the ensemble methods are generally consistent (in terms of

their effect on accuracy) when applied either to neural networks or to decision trees.

However, there is little inter-correlation between neural networks and decision trees

except for the Boosting methods. This suggests that some of the increases produced by

Boosting are dependent on the particular characteristics of the data set rather than on the

component classifier. In further tests they demonstrated that Bagging is more resilient to

noise than Boosting.

The authors also investigated how many component classifiers should be used in an

ensemble. Consistent with previous research, their results show that most of the

reduction in error for ensemble methods occurs with the first few additional classifiers.

With Boosting decision trees, however, relatively large gains may be seen up until about

25 classifiers.

3.2.6 Fuzzy Logic

Fuzzy logic [42] was developed to handle problems which have incomplete, imprecise,

vague or uncertain information inherent in the problem statement. These problems

involve data which are at times best described by linguistic terms rather than numbers.

As an example, a hospital describes patients’ conditions as good, fair, serious, poor, etc.

3-26

The problem is: describing in an absolute sense these terms which are not precisely

defined, and contain a significant element of subjectivity.

The originator of fuzzy logic, Zadeh [98], proposed the following approach to deal with

the above problem; in particular, dealing with linguistic variables. He defined a fuzzy set

as a set which allows for an object to be a member of a set to some degree. This is unlike

classical set theory, which only allows for an object to be either a member of the set or

excluded from the set. This “black and white” characterization, in many applications, is

unsatisfactory. As an example, consider the set that describes all males who are tall as

those whose height is greater than or equal to 5'8". Then a 6'0" male is a member of the

set. However, a male whose height is 5'7" is not a member of the set. This implies that a

man who is 1" shorter than a tall man is not tall. By the same token this approach does

not differentiate between members. An individual who is 7'6" and an individual who is

6'1" are both “equal” members of the set “tall”. Information about relative sizes has been

lost once members have been conglomerated into a set.

Fuzzy sets differ from classical sets in that they allow for an object to be a partial

member of a set. This approach can preserve relative sizing information. The

relationship is defined by a membership function. For any fuzzy set A the function

represents the membership function for which µA(x) indicates the degree of membership

that x, of the universal set X, belongs to set A and is, usually, expressed as a number

between 0 and 1:

 µA(x): X → [0, 1] (3-8)

3-27

These sets can be either discrete or continuous. The “degree of membership” represented

by the value between zero and one can be arbitrarily selected by the user or assigned

according to some scale. For example if Jack is 6'3", one can arbitrarily decide that Jack

is a member of the set “tall” to degree 0.8. Alternatively, a scale could be used which

relates all members’ heights to that of the tallest person in the set.

To formalize the idea conveyed by classifying set members in different ways, Zadeh [97]

later proposed fuzzy sets of type 2. Here, the membership grades themselves are fuzzy

sets. A fuzzy set A of type 2 in a set X is the fuzzy set characterized by the fuzzy

membership function as:

 µA: X → [0, 1][0, 1] (3-9)

where µA is known as a fuzzy grade, a fuzzy set in [0,1]. Mizumoto and Tanaka [58]

discuss the properties of these sets and give the example of the set X = [Susie, Helen,

Ruth, Pat] and A is the fuzzy set of beautiful women in X:

 A=beauty={middle/Susie + low/Helen + very high/Ruth + high/Pat} (3-10)

where middle, low and high are fuzzy sets. As an example, instead of saying Helen is

“beautiful to degree 0.3”, she is “beautiful to degree ‘low’”, thus associating a fuzzy set

as opposed to a specific value. These fuzzy sets of type 2 allow for classifications of

members of a fuzzy set with another fuzzy set.

3-28

The goal behind defining fuzzy sets (besides usefully describing imprecise, incomplete or

vague information) is to use them to make inferences about a particular real-life problem

which cannot be easily addressed using conventional mathematical models. The

construction of a Fuzzy Information System (FIS) begins with determining the fuzzy sets

that describe the problem. Continuing with a medical example, these may involve

various qualitative measurements about a patient (low temperature, serious fracture, fair

condition) which ultimately will lead to a diagnosis and then a treatment plan. Then the

rules describing how these fuzzy sets interact are determined. These rules usually have

an IF....THEN.... nature. The rules are then combined in some way. This process is

referred to as rule composition. Finally, conclusions have to be drawn in a process

known as defuzzification. The answer to the problem is typically found as a fuzzy set,

and the answer needs to be “defuzzified” to provide a clear, unambiguous course of

action.

Fuzzy logic is often used in conjunction with artificial neural networks (ANNs). The

neural nets are used to aid in the development of FISs. As Takagi and Hayashi [89] point

out, fuzzy reasoning presents particular problems:

 1. the lack of a definite method for determining the membership function;

 2. the lack of a learning function.

They then go on to describe an approach for using ANNs to overcome these problems.

The method is to investigate if-then rules by using neural networks to determine the

3-29

membership functions of the antecedent and then determine the consequent component as

the output for each rule. The approach they use is to take raw data (say, in a control

problem), apply a conventional clustering algorithm to group the data into clusters and to

apply an ANN to this clustered data to determine the membership of a pattern within

particular fuzzy sets.

The authors apply this approach to two real-world problems - estimation of chemical

oxygen demand density in Osaka Bay and the estimation of the roughness of a ceramic

surface. Their method in both cases out-performed more conventional methods. This

combination of neural networks and fuzzy reasoning does allow for automatic generation

of µ in certain applications.

As has previously been stated, finding a solution to a fuzzy logic problem requires

defuzzification. There are various techniques available. Lee [48] describes the three

main approaches as the max criterion, mean of maximum and the center of area (most

common). The max criterion method finds the point at which the membership function is

a maximum. The mean of maximum takes the mean of those points where the

membership function is at a maximum. The most common method is the center of area

method which finds the center of gravity of the solution fuzzy sets. Lee states,

"Unfortunately, there is no systematic procedure for choosing a defuzzification strategy.''

Although the process of reducing the final fuzzy set to a crisp value does seem

appropriate for control problems much information is lost by doing this and further work

needs to be done on how to use the information available in the solution fuzzy set.

3-30

In the main, the approaches adopted in fuzzy logic problems have been very domain

specific, not applied to large complex problems and the evaluation of the efficacy of their

approach is often not systematic enough for conclusions to be drawn. Determining the

membership functions, the rules, the operators and the defuzzification strategy is a

difficult task that requires a good deal of effort before it can be said that any particular

system is the optimal fuzzy system for that particular application.

3.2.7 Summary of Other Methods

The most common methods in the literature at present for analyzing system data are

variations of neural network and/or fuzzy logic techniques. However, there are a number

of other techniques which can be used to analyze system data. Some of these methods

are summarized in a table in the appendix for chapter 3.

4-1

IV. Mathematical Programming Model

4.1 Model Development

A prognostics system, at an abstract level, is composed of two parts. The first part

consists of sensors which are attached to various parts of a mechanical, electrical, or other

kind of system, and report the system data. The second part is a reasoning function

which interprets this data to provide an assessment of current and future system health.

This section develops a mathematical model of the former part to determine a “best”,

latter reasoning function configuration. The objective function calculation approach is

present in the next chapter.

Different types of models can be used to represent a particular system. For the purposes

of this discussion, a model which emphasizes a system’s components and subcomponents

is used.

Figure 4-1. Different levels of detail for modeling a system

Figure 4-1 shows three different possible levels of detail for modeling a system. A

system can be modeled at a component level, as shown in the left side of Figure 4-1. In

Component A

Subcomp. 1 Subcomp. 2

Subcomponents
Model

Component A

Sub-subcomp. 1 Sub-subcomp. 2

Subcomp. 1 Subcomp. 2

Sub-subcomponents
Model

Component A

No Subcomponents
Model

Component A

Subcomp. 1 Subcomp. 2

Component A

Subcomp. 1 Subcomp. 2

Subcomponents
Model

Component A

Sub-subcomp. 1 Sub-subcomp. 2

Subcomp. 1 Subcomp. 2

Component A

Sub-subcomp. 1Sub-subcomp. 1 Sub-subcomp. 2Sub-subcomp. 2

Subcomp. 1 Subcomp. 2

Sub-subcomponents
Model

Component AComponent A

No Subcomponents
Model

4-2

the middle of Figure 4-1 is a system in which components are divided into

subcomponents. This model will be the focus of this discussion, and will be used to

model a notional prognostics system. The right-hand side of Figure 4-1 shows a system

model where the subcomponents are further decomposed into sub-subcomponents. This

level of abstraction can continue for any number of levels to the required level of detail.

Figure 4-2. A pictorial representation of a simple system

Figure 4-2 shows a simple, generalized system. This simple system consists of one

component and two subcomponents. Each subcomponent may have up to two sensors

attached, each providing information to a classifier. The classifier then determines the

subcomponent state based on the sensor information. The reasoner combines all the

information from the classifiers and makes a final determination about the system state.

CSensors

Component ASystem

D

Reasoner

A B

Subcomp. 1 Subcomp. 2

C DA BClassifiers

CSensors

Component ASystem

D

Reasoner

A B

Subcomp. 1 Subcomp. 2

C DA BClassifiers

4-3

The reasoner also serves as the interface between the system and the human operators.

The challenge is determining whether all sensors are needed or whether there is a

sufficient subset of sensors. A mathematical model can help answer the challenge.

For the purposes of this representation, a component is considered an abstract grouping of

less complicated, smaller substructures. These substructures are represented as

subcomponents in Figure 4-2. As an example, an aircraft engine may be considered as a

component. One subcomponent might be the fuel delivery and ignition system; another

subcomponent might be the turbine blades and the associated control mechanism. Of

course, these definitions of component and subcomponent can be applied to any desired

system at any level, depending on the level of detail/complexity/aggregation required for

a particular application.

The following assumptions underlying the subsequent mathematical formulation are in

keeping with a general philosophy of the prognostics community at the present time. In

this particular model, all the subcomponents are considered critical parts of the system

component. If any subcomponent fails, the parent component and the system will also

fail. System parts which are not critical to component/system functionality are not

addressed with this model. A specific term used to describe this principle is “Failure

Mode and Effects Criticality Analysis” (FMECA) [12]. FMECA analysis is concerned

solely with different system failure modes, as opposed to system operations which may

be aberrant, but do not affect system operation or induce system failure modes. In the

FMECA, the system’s different failure modes are ranked according to severity, likelihood

4-4

of occurrence, and observability. For each failure mode, a group of system experts

determines preliminary symptoms (if any), and which system sensors would be useful in

detecting these symptoms. System modes/conditions which do not significantly affect

the operation of the system are not considered in the FMECA [9].

Logan, et al [50], [51] recommend a similar modeling approach. They use the

engineering knowledge of domain experts to construct a diagnostic knowledge base

suitable for neural network training. They call their approach a comprehensive “Failure

Mode and Effects Analysis” (FMEA) on the appropriate mechanical system. Like the

FMECA, a FMEA provides a comprehensive listing of probable failure modes of all

“major” mechanical system components, where “major” is defined as the level of detail

appropriate for that particular system. This information is obtained from interviews with

engineering crews and maintenance personnel. Technical orders are also reviewed to

ensure the information is correct and complete. The review also includes information on

all available sensor measurements, and identifies the fault/symptom relationships

required for an effective monitoring program. Similar to the FMECA approach, non-

failure modes are not considered.

In Figure 4-2, each of the two subcomponents have potentially two sensors. These

sensors represent the collection and reporting of appropriate information about the

specific part of the subcomponent they are monitoring. Typically, the sensors are

assigned to collect a specific type of phenomenology from the subcomponent. These

phenomenologies may include pressure, temperature, vibration, and electrical current.

4-5

Returning to the preceding example of an aircraft engine, if one subcomponent represents

the fuel delivery and ignition system, one sensor may monitor the pressure within the fuel

delivery system, and the other sensor may record the timing and strength of the spark (the

electrical current) the ignition system produces.

The sensors’ collected data are sent to the classifier functions. The classifier checks the

reported data to ensure the sensor is functioning correctly, processes the raw signal data,

and then uses this processed data to assess the current subcomponent state and predict the

future subcomponent state. The reasoner accumulates these assessments and predictions

from the classifiers, and uses them to assess the current system state and predict the

future system state. (Correctly functioning sensors send two data streams to the

classifier. The main data stream is the subcomponent data. The second data stream

verifies the sensor’s functionality. A correctly functioning sensor sends a specific bit

every xth bit interspersed with the main data stream to verify the sensor is functioning

correctly. If the classifier does not receive this specific bit, it will disregard the incoming

data stream until it again receives this bit from the sensor.) The methods the classifier

may use to interpret the processed data can be quite varied. These methods can range

from mathematical techniques such as neural nets and Bayesian networks to case-base

reasoning and/or expert systems, or any combination of techniques.

The analytical tool used in the model represented in Figure 4-2 represents is the Receiver

Operating Characteristic (ROC) curve. A ROC curve is the graph of a relation which

summarizes the range of performance of a particular signal detection algorithm. The

4-6

signal algorithm is designed to detect a particular signal of interest among other signals

which may serve to mask the signature of the desired signal. A ROC curve typically

compares the classifier’s signal of interest detection rate to the classifier’s false alarm rate

(reporting a signal of interest when that signal has not actually occurred). ROC curves

are commonly used to describe the performance of imperfect diagnostic systems,

especially in the fields of automatic target recognition and biomedical research [5].

In the models considered here, each system will typically have more than one component,

each component will typically have more than one subcomponent, and each

subcomponent will typically have more than one sensor/classifier pair. For a given

subcomponent, all possible sensors of the appropriate type (pressure, temperature, etc.)

are possible candidates. As before, every subcomponent is assumed critical for system

operation. Further, each subcomponent of a particular system is assumed to have at least

one sensor attached to it (the mathematical formulation will explicitly enforce this

structural requirement).

4-7

Figure 4-3. A pictorial representation of a system with multiple components

Figure 4-3 expands the model structure found in Figure 4-2. There are now two

components, each with two critical subcomponents, and each subcomponent has multiple

candidate sensors.

In an ideal environment all sensors are included in a system. However, weight, space,

and data processing limitations prohibit such a configuration in actual systems. Thus,

expert judgment may be used to pick a subset of sensors. Mathematical modeling

provides a means to improve upon expert judgment to prescribe some best subset of

sensor/classifier pairs to include in a system. The next section develops a mathematical

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

4-8

formulation to accomplish this task. This formulation uses the model structure presented

in Figure 4-2 as a basis.

4.2 Formulation

A mathematical programming formulation is used for selecting an optimally sized sensor

set. Let M denote the number of sensors available for use, and define SSSS = {A1, A2, …,

AM) to be the set of sensors available. Define AAAA = {S: S is a non-empty subset of

sensors of SSSS}, and note that AAAA is the power set of SSSS, excluding the empty set, denoted as

A A A A = P(SSSS) - ∅ . Note that card(AAAA) = 2M – 1, that is, there are 2M – 1 different sets in AAAA.

Let Si ∈ AAAA, i = 1, 2, … 2M – 1 be an enumeration of AAAA.

Each sensor has its own classifier. The terminology Ai is understood to refer to any

specific sensor-classifier pair. For a set Si ∈ AAAA containing more than one sensor, a fusion

rule R will be used to fuse the classifiers for each sensor into a single classifier. This

activity will be denoted as R:AAAA → GGGG
RRRR
(S),

where GGGG
RRRR
(S) = {A1, A2, …, AM, R(A1, A2,), …, R(A1, A2, …, AM)}

 = {R(S) | Si ∈ AAAA}.

The set GGGG
RRRR
(S) contains all the fused classifiers for each Si ∈ A.A.A.A. Note that ensembles

consisting of a single sensor-classifier pair do not undergo fusion since the ensemble

already has a single classifier.

4-9

This paragraph defines the variables and constants found in the formulation below. The

objective is to find a sufficient sensor/classifier subset for the given system. Thus, the

objective function value PTP is the probability of obtaining a true positive (the prognostics

system indicates a system failure when the system has actually failed). The variable PFP

is the probability of obtaining a false positive (the prognostics system indicates a system

failure when the system has not failed). The value PFP
* is defined as the maximum

acceptable PFP for any ensemble. The value of PTP depends on Fi, a probability function

that depends a particular ensemble Si ∈ AAAA, and PFP. The evaluation of PTP is developed

in Chapter 5. The variable c
smd is an indicator variable that is 1 if the mth sensor is

retained for the sth subcomponent on the cth component, and 0 otherwise. The variable

c
smc is the cost of employing the mth sensor on the sth subcomponent on the cth

component. This fixed cost is assumed to be independent of the other sensors in the

ensemble. The variable c
sSC denotes the maximum number of sensors considered for the

sth subcomponent of the cth component. The parameter SCc is the number of

subcomponents present on the cth component. The parameters ci
FP and ci

FN denote the

cost of an erroneous prognostics system reading associated with the ith ensemble Si ∈ AAAA,

i = 1, 2, … 2M – 1. The errors are defined as follows: either the system indicates a fault

when no fault is present (cost denoted by ci
FP), or fails to indicate a fault when a fault is

present (cost denoted by ci
FN). The constant c

EB is the budget (maximum allowable cost)

for the costs of retaining a given sensor ensemble on the cth component. The constant BO

is the budget (maximum allowable cost) for the sensor errors. The mixed-integer

nonlinear programming (MINLP) formulation is then given by

4-10

F(PFP
*) ≡ max PTP(A) (4-1)

 A ∈ GGGGR(S)

subject to PFP(A) ≤ PFP
*

(structural constraints—there are SC = ∑
=

C

c 1

cSC of these constraints, one for each

component.)

 ∑
=

≥
c
sSC

m

c
smd

1

1 c = 1, …, C; s = 1, …, SCc

 c
smd =









otherwise 0

componentcth ofcomponent -sub

sthon retainedsensor mth if 1

(employment cost constraints—there are C of these constraints, where C is the number of

components)

 c
E

SC

m

c
sm

c
sm

SC

s

c
s

c

cd Β≤∑∑
== 11

 c = 1, …, C

(operational cost constraint)

 ci
FP + ci

FN ≤ BO Si ∈ AAAA

0 ≤ PFP ≤ PFP

* ≤ 1

c
smd ∈ {0, 1} c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈ AAAA; c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC

This formulation accommodates two key requirements associated with this general

problem. The first requirement is to consider all appropriate sensor ensembles for a

given system (not necessarily all possible ensembles). This requirement is met with the

employment cost and structural constraints. The employment cost constraint ensures that

4-11

budget associated with a particular sensor ensemble is not exceeded, and the structural

constraint ensures that each critical subcomponent is assigned at least one sensor. The

second requirement is to ensure a given sensor ensemble does not exceed the maximum

allowable error rate. The operational cost constraint ensures this requirement is met.

There is more discussion of the operational cost constraint in section 4.5.

This formulation apportions employment costs to specific system components (recall that

employment cost does not refer just to the actual monetary expense). Size, power,

weight, and similar constraints are likely to be different for any given system component.

Accordingly, this formulation enforces a specific budget for each component.

4.3 Towards a Heuristic Solution Procedure: Subset Generation

This section details a methodology for partitioning the solution space, and indexing the

possible solutions in the resulting subspaces. A subset ordering method is presented to

ensure each subset Si∈ AAAA is considered during the solution process.

If there are M defined sensors, there are 2M – 1 possible sensor combinations containing

at least one sensor within the system (the trivial case of an empty ensemble is omitted).

There are also M different sensor ensemble sizes, ranging from one sensor throughout the

system, to all M sensors employed. Formulation (4-1) can then be partitioned into M

subproblems, one partition for each sensor ensemble size, in order to conveniently

enumerate the solution space, and to partition the solution space into more manageable

subspaces. Define an index j as the number of sensors contained in a particular partition

4-12

(j= 1 to M). Each of the j partitions contains MCj possible solutions, where nCk = 







k

n
.

More formally, this can be expressed as

 AAAA
jjjj
 = {S: S ≠ ∅ , card(S) = j} j = 1,…, M. (4-3)

AAAA
jjjj
 ⊂ AAAA is the set of sets corresponding to the partition consisting of j sensors selected

among the M sensors available. Note that card(AAAA
jjjj
) = MCj and AAAA = U

M

j 1=

AAAAj.

4.3.1 Subset Ordering

A logical ordering of all the sensor ensembles allows for a quick and thorough evaluation

of the solution space. To this end, this section develops a notation for tracking each

ensemble, and presents two different ordering methods.

Each particular ensemble in AAAA can be given a unique index. One indexing scheme is a

natural indexing scheme defined as follows. Recall j= 1 to M (sensors). When the index

j is equal to 1, the M ensemble sensor sets are each of size 1, and so are indexed from 1 to

M. When the index j is equal to 2, the MC2 ensemble sensor sets are of size 2, and i is

indexed as

 i = M + 1, M + 2, …, M + MC2. (4-4)

When the index j is equal to 3, the MC3 ensemble sensor sets are of size 3, and i is indexed

as

 i = M +1 + MC2, M + 2 + MC2, …, M + MC2 + MC3. (4-5)

4-13

In general, when the index j is equal to n, where M > n ≥ 3, the ensemble sensor sets are

of size n, with i is indexed as MCk-1

 i = M + 1 + ∑
=

n

k 3
kM C , M + 2 + ∑

=

n

k 3
kM C , M + ∑

+

=

1

3
kM C

n

k

. (4-6)

The natural ordering sequence is completed by maintaining a lexicographic order within

any Si. A natural ordering sequence is a particular lexicographical method that orders all

subsets of a given set according to the number of items in the subset, from the smallest

number of items to the largest. This ordering allows for the potential elimination of all

sensor subsets of the same size.

Table 4-1. “Natural” sequence for a set of 6 sensors

Index
Sensor

Ensemble
1 s1
2 s2
3 s3
4 s4
5 s5
6 s6
7 s1s2
8 s1s3
9 s1s4

10 s1s5
11 s1s6
12 s2s3
13 s2s4
14 s2s5
15 s2s6
16 s3s4
17 s3s5
18 s3s6
19 s4s5
20 s4s6
21 s5s6

Index
Sensor

Ensemble
22 s1s2s3
23 s1s2s4
24 s1s2s5
25 s1s2s6
26 s1s3s4
27 s1s3s5
28 s1s3s6
29 s1s4s5
30 s1s4s6
31 s1s5s6
32 s2s3s4
33 s2s3s5
34 s2s3s6
35 s2s4s5
36 s2s4s6
37 s2s5s6
38 s3s4s5
39 s3s4s6
40 s3s5s6
41 s4s5s6
42 s1s2s3s4

Index
Sensor

Ensemble
43 s1s2s3s5
44 s1s2s3s6
45 s1s2s4s5
46 s1s2s4s6
47 s1s2s5s6
48 s1s3s4s5
49 s1s3s4s6
50 s1s3s5s6
51 s1s4s5s6
52 s2s3s4s5
53 s2s3s4s6
54 s2s3s5s6
55 s2s4s5s6
56 s3s4s5s6
57 s1s2s3s4s5
58 s1s2s3s4s6
59 s1s2s3s5s6
60 s1s2s4s5s6
61 s1s3s4s5s6
62 s2s3s4s5s6
63 s1s2s3s4s5s6

4-14

Table 4-1 shows a natural ordering for a system with six sensors. As the table shows,

sensor subsets of the same size are grouped together.

There are other subset ordering methods. According to the paper by Furnival and Wilson

[34], a lexicographic ordering method would look like the ordering depicted in Table 4-2.

This ordering method groups the subsets by sensors-the first grouping of subsets all

contain sensor 1, the next grouping contains sensor 2, and so forth. In their paper,

Furnival and Wilson include FORTRAN code to generate these different subset

orderings. Their code has been modified to generate the natural ordering sequence for up

to nine sensors. Other sources also present these ordering techniques as ways to codify a

number of different subsets [92], [23].

4-15

Table 4-2. “Lexicographic” sequence for a set of 6 sensors

The natural ordering scheme is used for this presentation. In the natural ordering scheme,

within each sensor size, the ensembles are ordered from the smallest number to the

largest number.

This methodology is used in the appendix to develop a methodology to quickly reduce

the size of the solution space that must be searched, if certain conditions about the system

and its operation hold.

Index
Sensor

Ensemble Index
Sensor

Ensemble Index
Sensor

Ensemble
1 s1 22 s1s3s4s6 43 s2s4s5
2 s1s2 23 s1s3s5 44 s2s4s5s6
3 s1s2s3 24 s1s3s5s6 45 s2s4s6
4 s1s2s3s4 25 s1s3s6 46 s2s5
5 s1s2s3s4s5 26 s1s4 47 s2s5s6
6 s1s2s3s4s5s6 27 s1s4s5 48 s2s6
7 s1s2s3s4s6 28 s1s4s5s6 49 s3
8 s1s2s3s5s6 29 s1s4s6 50 s3s4
9 s1s2s3s5 30 s1s5 51 s3s4s5

10 s1s2s3s6 31 s1s5s6 52 s3s4s5s6
11 s1s2s4 32 s1s6 53 s3s4s6
12 s1s2s4s5 33 s2 54 s3s5
13 s1s2s4s5s6 34 s2s3 55 s3s5s6
14 s1s2s4s6 35 s2s3s4 56 s3s6
15 s1s2s5 36 s2s3s4s5 57 s4
16 s1s2s5s6 37 s2s3s4s5s6 58 s4s5
17 s1s2s6 38 s2s3s4s6 59 s4s5s6
18 s1s3 39 s2s3s5 60 s4s6
19 s1s3s4 40 s2s3s5s6 61 s5
20 s1s3s4s5 41 s2s3s6 62 s5s6
21 s1s3s4s5s6 42 s2s4 63 s6

4-16

4.4 A Sample Formulation Example

This section illustrates the mathematical formulation with an example. The development

of the solution computation techniques is presented in Chapter V.

Figure 4.4. Figure 4.3 reproduced for clarity

In this example, there are nine sensors and corresponding classifiers (M), four critical

subcomponents (SC), and two system components (C). The specific formulation is:

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

4-17

F(PFP
*) ≡ max PTP(A) (4-7)

 A ∈ GGGGR(S)

subject to PFP(A) ≤ PFP
*

(structural constraints)

 PFP(R(S)) ≤ p

 ∑
=

≥
ASC

m

A
smd

1

1

1 A
1SC = 2

 ∑
=

≥
ASC

m

A
smd

2

1

1 A
2SC = 2

 ∑
=

≥
BSC

m

B
smd

1

1

1 B
1SC = 2

 ∑
=

≥
BSC

m

B
smd

2

1

1 B
2SC = 3

 c
smd =









otherwise 0

componentcth ofcomponent -sub

sthon retainedsensor mth if 1

(employment cost constraints)

 A
E

SC

m

A
sm

A
sm

SC

s

A
s

A

cd Β≤∑∑
== 11

 B
E

SC

m

B
sm

B
sm

SC

s

B
s

B

cd Β≤∑∑
== 11

(operational cost constraint)

 ci
FP + ci

FN ≤ BO Si ∈ AAAA

0 ≤ PFP ≤ PFP

* ≤ 1

c
smd ∈ {0, 1} c = 1, 2; s = 1, …, SCc; m = 1, …, c

sSC

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈ AAAA; c = 1, 2; s = 1, …, SCc; m = 1, …, c

sSC

4-18

Note that there are two employment cost constraints corresponding to the two system

components, and there are four structural constraints, corresponding to the four critical

system subcomponents. The operational cost constraint remains the same. Assume that

each Si ∈ AAAA is indexed in natural order.

4.5 A Possible Modification to The Operational Cost Constraint

The formulation presented in section 4.2 is time independent. It may be useful for a

particular system to model time in the operational cost constraint. This section builds a

methodology to accommodate that capability.

There are four possible outcomes for the prognostic system’s assessment of the data

stream. These outcomes are summarized in the table below.

Table 4-3. Summary of sensor readings and their associated probabilities
Sensor Report

Reality (Truth)
No Fault (N readings) Fault (n readings)

No Fault True Negative (PTN)
False Positive (PFP)

Cost ci
FP

Fault
False Negative (PFN)

Cost ci
FN

True Positive (PTP)

• PTN is the probability that the prognostics system does not report a fault when no

fault is present.

• PFP is the probability that the prognostics system reports a fault when a fault is not

present. The cost of this event is ci
FP

.

4-19

• PFN is the probability that the prognostics system does not a report a fault when

one is actually present. The cost of this event is ci
FN.

• PTP is the probability that the prognostics system reports a fault when one is

actually present.

The ci
FP and ci

FN costs may be more appropriately expressed as a function of PFP and PFN,

respectively. The larger PFP and PFN, the more often the cost will be incurred. However,

the idea of “often” introduces a time element into the formulation. Let N be the total

number of no-fault readings for a given time period, and let n be the number of fault

readings for the same time period. Let the total number of readings be represented by T =

N + n. Then the quantities N and n can be considered the expected number of “no fault”

and “fault” readings, respectively, per T trials.

Estimates for the number of failure readings which might occur during a given sortie can

be obtained from Mean Time Between Failures (MTBF) information. MTBF is the

number of time units (usually hours) that pass before a component, assembly, or system

fails. It is a measure of hardware product or component reliability, and is a commonly-

used variable in reliability and maintainability analyses. The MTBF for a particular

component can be used to determine estimates for N and n, given the rate at which

system readings are collected. Let tT denote the system reading rate and S be the length

in time of the sortie. Then

 T =  St T (4-8)

4-20

 n = 




MTBF

S
 (4-9)

and

 N = 





MTBF

S
 - T (4-10)

As a specific example, assume a 20 hour sortie (S), a system reading (tT) every second,

and an MTBF of 10 hours. Then T = 72,000, N = 71,998, and n = 2.

The modified form of the operational cost constraint would be:

 PFPnci
FP + PFNNci

FN ≤ BO (4-11)

4.6 A More General Formulation

The formulation presented in section 4.2 apportions employment costs among the

different system components. The underlying rationale is that size, power, weight, and

similar constraints are likely to be different for any given system component. However,

there are parts of the cost of employing a sensor ensemble that might be freely transferred

among system components, such as monetary costs. Additionally, there may be system

components where size, power, weight, and similar constraints are not limiting factors.

Here, the employment cost constraint is relaxed to allow for an overall system budget.

The new formulation is given by

4-21

F(PFP
*) ≡ max PTP(A) (4-11)

 A ∈ GGGGR(S)

subject to PFP(A) ≤ PFP
*

(structural constraint--there are SC of these constraints, where SC is the number of

subcomponents)

 ∑
=

≥
c
sSC

m

c
smd

1

1 c = 1, …, C; s = 1, …, SCc; m = 1, …, c
sSC

 c
smd =









otherwise 0

componentcth ofcomponent -sub

sthon retainedsensor mth if 1

(employment cost constraint—there is now only one constraint)

 E

SC

m

c
sm

c
sm

SC

s

s

cd Β≤∑∑
== 11

 s = 1, …, SCc; m = 1, …, c
sSC

(operational cost constraint)

 ci
FP + ci

FN ≤ BO Si ∈ AAAA

0 ≤ PFP ≤ PFP

* ≤ 1

c
smd ∈ {0, 1} c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC

c
smc , ci

FP, ci
FN, BE, BO ≥ 0 Si ∈ AAAA; c = 1, …, C; s = 1, …, SCc; m = 1, …, c

sSC

Note that only the employment cost constraint was modified from the general

formulation. The solution details are presented in Chapter V.

5-1

V. Fusion Rule Assessment

5.1 Fusion Rule Definitions

Given a system like that shown below in Figure 5-1, the objective is to find the optimum

allocation of sensors that provides the “best” ROC curve for determining the system

status. This notion of a “best” ROC curve is developed in a later section. The ROC

curve for each classifier under consideration is assumed to be known for the discussion

that follows.

Figure 5-1. Graphic showing the terms for the different fusion operations

C

Component A

D

Across Fusion

A B

Subcomp. 1 Subcomp. 2

Classifiers

Component BSystem

Across Fusion

E

Subcomp. 2Subcomp. 1

Across Fusion

Within ROC
curves

Across ROC
curves

Within
Fusion

Within
Fusion

Within
Fusion

Within
Fusion

A Sensors EB C D

F

F

G

G

H

H

I

I

C

Component A

D

Across Fusion

A B

Subcomp. 1 Subcomp. 2

Classifiers

Component BSystem

Across Fusion

E

Subcomp. 2Subcomp. 1

Across Fusion

Within ROC
curves

Across ROC
curves

Within
Fusion

Within
Fusion

Within
Fusion

Within
Fusion

A Sensors EB C D

F

F

G

G

H

H

I

I

5-2

Figure 5-1 shows the terminology developed for each fusion method. The ROC curves

associated with each classifier need to be combined to provide a single ROC curve

associated with the subcomponent. This first fusion method will be called within fusion.

The within fusion method creates a ROC curve for each subcomponent that has multiple

(or redundant) sensors, although a subcomponent does not necessarily require multiple

(or redundant) sensors. The ROC curves for the subcomponents (whether they have

multiple sensors or not) will be called within ROC curves.

The ROC curves associated with each subcomponent need to be combined to provide a

single ROC curve associated with their common component. This second fusion method

will be called across fusion. The across fusion method is used to combine within ROC

curves. The across fusion method creates a ROC curve for each system component. (A

component does not necessarily have to have multiple subcomponents). The ROC curves

resulting from this operation will be called across ROC curves. Each of these two fusion

methods (within and across) is described in detail in the next section.

5.2 Fusion Methods

At the lowest level of system decomposition (the subcomponent level in this model),

there are a significant number of options for sensor allocation, even on a single

subcomponent. To accurately categorize the current and future states of a particular

system, sensors must be appropriately placed on all subcomponents. As a reminder,

referring back to Figure 5-1, all subcomponents in this model are assumed to be critical to

component and system operation. In any given system, there is a balance between using

5-3

enough sensors to ensure a high level of confidence in the prognostic system’s reports on

system status, while not exceeding power, weight, bandwidth, and other limitations

which restrict the number of sensors which may be used. Although it may be desirable to

measure the performance of every part of every subcomponent, and include redundant

sensors on the most important subcomponents, such configurations are not likely to be

feasible. The underlying assumption of this desire for these types of redundant

configurations is that multiple sensors will provide a higher level of confidence and

accuracy in the prognostic system’s reported results. To reflect that, the within fusion

method creates a ROC curve which is always equal to or greater than each of the ROC

curves of the individual classifiers which contributed to it. This topic is explored further

at the end of section 5.2.1.

5.2.1 Within Fusion

The within fusion methodology is developed using the following definitions. Let Ξ be

the event set. Let XXXX be the feature space, and let x be a specific instantiation of this set

XXXX. Let XXXXf be the set of system feature vectors indicating a system failure. Let pf = Pr(x

∈ XXXXf) be the prior probability that a critical subcomponent part will fail. The

corresponding definition and prior probability of the critical subcomponent part not

failing (operating nominally) is XXXXn and pn = (1 - pf) = Pr(x ∈ XXXXn). The critical

subcomponent part is assumed to only take on these two states (nominal or failed). These

two states will be termed a label set, and will be denoted by LLLL = {F, N}.

5-4

These two values of the label set are mutually exclusive and collectively exhaustive; i.e.,

LLLL = LLLLn ∪ LLLLf, and LLLLn ∩ LLLLf = ∅ .

The critical subcomponent part is assumed to have two sensors A and B attached to it.

Let Aθ and Bφ refer to the classifiers for sensor A and sensor B on the system,

respectively, where θ∈Θ and φ∈Φ , where Θ and Φ are admissible sets of parameters

associated with tuning each classifier [5]. These classifiers are assumed to assess failure

or non-failure independently (this assumption will be addressed in more detail in section

5.2.3).

Figure 5-2. Methodology summary

Figure 5-2 summarizes the methodology presented to this point. System events are

detected by sensors A and B. These sensors report their collected data to the classifiers,

which assign a label (either nominal-N or failed-F), to the data stream.

The expression Cθ,φ will be used to denote the concatenated classifier of the classifiers Aθ

and Bφ.

Ξ XXXX

Event Set Label Set

A, B Aθ, Bφ LLLL

Feature Set

Ξ XXXX

Event Set Label Set

A, B Aθ, Bφ LLLL

Feature Set

A, B

5-5

Figure 5-3. Function of the concatenated classifier

Figure 5-3 shows the transformation of system event data into a label set via the

concatenated classifier. Since the concatenated classifier consists of both classifiers Aθ

and Bφ, the label set consists of two distinct labels.

Figure 5-4. Transformation of the system event to a final system functionality

classification

Figure 5-4 shows the complete notional flow of information through this model. Once

the concatenated classifier has determined two distinct labels, a rule R transforms these

two labels into a single label. Specifically, R(L, L) = L ∨ L, where the ∨ operator is

defined as in Table 5-1 below.

Table 5-1. Definition of the ∨ operator

∨∨∨∨ F N

F F F

N F N

Cθ,φ L×LΞ XXXX

Event Set Label SetFeature Set

A, B Cθ,φ L×LΞ XXXX

Event Set Label SetFeature SetEvent Set Label SetFeature Set

A, B

Cθ,φ L×L

Event Set

Ξ

Label SetFeature Set

XXXX

Label Set

LRA, B Cθ,φ L×L

Event Set

Ξ

Label SetFeature Set

XXXX

Label Set

LRA, B

5-6

Table 5-1 shows the label obtained from each classifier on the exterior of the table. The

combination of the two labels is shown in the interior of the table. In this table, the ∨

operator is defined as a “logical or” rule. A “logical or” rule is used to declare a system

failure; if either or both of the classifiers indicate a failed condition, the system is

assumed to have failed. This formulation is consistent with the FMECA assumption that

every component is critical. Only if both classifiers consider the system to be operating

nominally is the output from the rule R a nominal reading.

The expression Dθ,φ will be used to denote this fused classifier. Note that Dθ,φ = R ° Cθ,φ,

and

 Dθ,φ(x) = R ° Cθ,φ(x) = R(Aθ(x), Bφ(x)) = Aθ(x) ∨ Bφ(x) (5-1)

The operator ° denotes the transformation of the concatenated classifier Cθ,φ to the fused

classifier Dθ,φ using the rule R.

There are certain probabilities associated with each possible classification event, given

the single subcomponent’s operational state. The probability of a true positive is defined

to be a classifier declaring a failure, given the system has failed. The probability of a

false positive is defined to be a classifier declaring the system has failed, given the

system is operating nominally. The probability of a true negative is defined to be a

classifier declaring the system is operating nominally, given the system is operating

5-7

nominally. The probability of a false negative is defined to be a classifier declaring the

system is operating nominally, given the system has failed. These probabilities are

defined mathematically below. To simplify the notation, the probability of classifier Aθ

providing a correct positive reading will be denoted as A
TPP = PTP(Aθ). The parameter θ is

suppressed in this new expression. The probability of classifier Bφ providing a correct

positive reading will be denoted as, B
TPP = PTP(Bφ), and so forth. Similarly, the parameter

φ is suppressed in this new expression. More rigorously, the definitions for the classifier

Aθ are

 A
TPP = Pr((Aθ(x) ∈ Lf|x ∈ XXXXf) (5-2)

 A
FPP = Pr((Aθ(x) ∈ Lf|x ∈ XXXXn) (5-3)

 A
TNP = Pr((Aθ(x) ∈ Ln|x ∈ XXXXn) (5-4)

 A
FNP = Pr((Aθ(x) ∈ Ln|x ∈ XXXXf) (5-5)

The definitions for classifier Bφ are obtained by replacing A with B and θ with φ in

equations 5-2 through 5-5.

The following table summarizes these eight conditional probabilities as measures of

distinct system events. Again, the classifiers are assumed independent.

5-8

Table 5-2. Conditional probability table for one system component and two classifiers
Classifier Report

Cθ,φ = (Aθ,Bφ)

True State

F, F F, N N, F N, N

Nominal A
FPP B

FPP A
FPP B

TNP A
TNP B

FPP A
TNP B

TNP

Failed A
TPP B

TPP A
TPP B

FNP A
FNP B

TPP A
FNP B

FNP

Table 5-2 shows the conditional probability for each possible event, where the classifier’s

responses are conditioned on the subcomponent’s true state.

The joint probability table in Table 5-3 lists the possible outcomes as disjoint events. The

general formulation is

 Pr(Cθ,φ(x) ∈ (Li × Lj) ∩ (x ∈ XXXXk)) (5-6)

 = Pr((Aθ(x), Bφ(x)) ∈ (Li × Lj) | (x ∈ XXXXk))Pr(x ∈ XXXXk) (5-7)

 = Pr(Aθ(x) ∈ Li | (x ∈ XXXXk) Pr(Bφ(x)) ∈ Lj | (x ∈ XXXXk) Pr(x ∈ XXXXk) (5-8)

where i, j, k ∈ {f, n}.

Table 5-3. Joint probability table for one system component and two sensors
Classifier Report

Cθ,φ = (Aθ,Bφ)

True State

F, F F, N N, F N, N

Nominal A
FPP B

FPP pn A
FPP B

TNP pn
A

TNP B
FPP pn

A
TNP B

TNP pn

Failed A
TPP B

TPP pf
A

TPP B
FNP pf

A
FNP B

TPP pf
A

FNP B
FNP pf

5-9

Table 5-3 shows the probability of occurrence for each possible event as a product of

individual probabilities. The events in this table are mutually exclusive and collectively

exhaustive. The first column lists the two possible states of the system, nominal or failed.

The top row lists the four different aggregate classifier reports. An “F” means the

classifier has reported a failed condition. An “N” means the classifier has reported a

nominal condition. The reports are listed at the top of each column as ‘classifier Aθ

report’, ‘classifier Bφ report’. For example, the third column lists the possible outcomes

if Aθ reports a failed condition, and Bφ reports a nominal condition.

As an example, the entry in the third row and the third column denotes the specific event

where Aθ indicates failed operation and Bφ indicates nominal operation, and the system

has failed. Mathematically, the expression is:

 A
TNP B

FNP pf = Pr(Aθ(x) ∈ Lf | (x ∈ XXXXf) Pr(Bφ(x)) ∈ Ln | (x ∈ XXXXf) Pr(x ∈ XXXXf) (5-9)

The ROC curves for each classifier consist of a set of points where a probability of true

positive value (ordinate) is specified for each probability of false positive value

(abscissa). The within fusion methodology uses these coordinate pairs, at common set

points along the abscissa, to create the new ROC curve. The mathematical method used

to combine the abscissas and ordinates into a new point is described below.

The pair of points used to develop the methodology will be denoted as (A
FPP , A

TPP) and

(B
FPP , B

TPP), following the notation from Table 5-3. The point resulting from this fusion

process will be labeled (C
FPP , C

TPP). The probability of false positive for the combined

5-10

classifier Cθ,φ is the probability that Cθ,φ declares a failure, given that the system is

operating nominally. This classifier will declare a failure in three cases: if either Aθ, Bφ,

or both, declare a failure. Again, this is the “logical or” failure rule. Note that

 C
FPP = 1 - C

TNP (5-10)

This suggests the following formulation using the probability structure suggested in

Table 5-3. The definition of true negative is the declaration of nominal system operation,

given the system is operating nominally. Note that

 D
TNP = Pr(Dθ,φ(x) ∈ Ln | (x ∈ XXXXn)) (5-11)

 = Pr((Aθ(x) ∨ Bφ(x))∈ Ln | (x ∈ XXXXn)) (5-12)

 C
TNP = Pr((Aθ(x) ∈ Ln) ∩ (Bφ(x) ∈ Ln) | (x ∈ XXXXn)) (5-13)

 Pr(Aθ(x) ∈ Ln | (x ∈ XXXXn)) ∩ Pr(Bφ(x)) ∈ Ln ∩ (x ∈ XXXXn)) (5-14)
Pr(x ∈ XXXXn)

 = [A
TNP][B

TNP] (5-15)

as is evident from Table 5-3

 = [1 - A
FPP] [1 - B

FPP]. (5-16)

Finishing, note that

 C
FPP = 1 - [1 - A

FPP] [1 - B
FPP] (5-17)

 C
FPP = [A

FPP + B
FPP – A

FPP B
FPP]. (5-18)

5-11

The corresponding true positive values, for the identical probability of false positive

values on each ROC curve, are combined in the same fashion. The preceding derivation

is repeated below with appropriate changes in notation.

 C
TPP = 1 - C

FNP (5-19)

 D
FNP = Pr(Dθ,φ(x) ∈ Ln | (x ∈ XXXXf)) (5-20)

 = Pr((Aθ(x) ∨ Bφ(x))∈ Ln | (x ∈ XXXXf)) (5-21)

 C
FNP = Pr((Aθ(x) ∈ Ln) ∩ (Bφ(x) ∈ Ln) ∩ (x ∈ XXXXf)) (5-22)

Pr(x ∈ XXXXn)

 Pr(Aθ(x) ∈ Ln | (x ∈ XXXXf)) ∩ Pr(Bφ(x)) ∈ Ln | (x ∈ XXXXf)) (5-23)

 = [A
FNP][B

FNP] (5-24)

as is evident from Table 5-3’

 = [1 - A
TPP] [1 - B

TPP] (5-25)

 C
TPP = 1 - [1 - A

TPP] [1 - B
TPP]. (5-26)

As expected, the formula is

 C
TPP = [A

TPP + B
TPP – A

TPP B
TPP]. (5-27)

The point on this fused ROC curve is given by

 (C
FPP , C

TPP)=(A
FPP + B

FPP – A
FPP B

FPP , A
TPP + B

TPP – A
TPP B

TPP). (5-28)

Again, these results assume the classifiers A and B are independent in their

measurements, and that their respective operating points are set a priori. This is not

5-12

likely to be the case in a real system. This within fusion rule is therefore a weak upper

bound for the fused ROC curve, C. This is explored further in section 5.3.3.

This within fusion method allows for the combination of any number of classifiers. Once

the ROC curves associated with the classifiers for two sensors have been combined into a

single ROC curve, this single curve can be combined with another ROC curve associated

with the classifier for another sensor. This iterative process continues until all the

classifiers associated with the sensors on a particular subcomponent are represented by a

single ROC curve. Using a similar iterative process, any number of these within ROC

curves may be combined to form an across ROC curve, and so forth.

As an example of the within fusion rule, consider a critical subcomponent with two

sensors and two classifiers. Let the ROC curve for classifier A be given by y1 = x0.1, and

let the ROC curve for classifier B be given by y2 =
6

1

)arcsin(
2

















x
π

. These are

reasonable choices for ROC curve models because like ROC curves, they begin at the

origin and end at the point (1, 1). Also, these curves are a reasonable estimate for actual

classifier performance.

5-13

Figure 5-5. Two notional ROC curves

Figure 5-5 shows the two notional ROC curves. Notice that the PTP values for classifier

A exceed those for classifier B at every PFP value. Classifier A is said to dominate

classifier B.

Figure 5-6. Graph of the two notional and fused ROC curves

Two Notional ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.5 1

Probability of False Positive

P
ro

ba
bi

lit
y

of
 T

ru
e

P
os

iti
ve

ROC curve for
sensor A

ROC curve for
sensor B

Notional and Fused ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve

ROC curve for sensor A

ROC curve for sensor B

Fused ROC curve for sensors
A & B

5-14

Figure 5-6 shows the two notional ROC curves and the within ROC curve. Note that the

within curve dominates both of the other curves over all of the operating range. The

values for the within ROC curve have been linearly interpolated from the values obtained

from the within fusion process.

Consider another example where one of the notional ROC curves is significantly

dominated by the other curve. Let the ROC curve for classifier C be given by

y1 = tanh(4x), and let the ROC curve for classifier D be given by y2 = x0.13.

Figure 5-7. Graph of two more notional and fused ROC curves

Figure 5-7 shows the comparison of the within ROC curve to the original ROC curves.

Again, despite the disparity in the two original curves, the within curve still dominates

both other curves over all of the operating range. It seems from these examples the

Notional and Fused ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve

ROC curve for sensor C

ROC curve for sensor D

Fused ROC curve for sensors
C & D

5-15

within ROC curve will always equal or dominate each of the ROC curves of the

individual classifiers which contributed to it. To demonstrate this in general, consider

two notional classifiers that are independent. Let these classifiers have associated

probabilities of true positive of p1 and p2 at any given probability of false positive value.

Without loss of generality, let p1 ≥ p2, and recall that p1, p2 ∈ [0,1]. Consider the quantity

p2(1-p1); this value is clearly greater than or equal to 0. Since p2(1-p1) ≥ 0, adding p1 to

both sides gives

 p1 + p2(1-p1) ≥ p1 (5-29)

or

 p1 + p2 - p1p2 ≥ p1 (5-30)

Equation 5-30 shows that the probability of true positive value for the within ROC curve

generated from these two independent classifiers will equal or exceed the probability of

true positive value of the individual classifier.

5.2.2 Across Fusion

The across fusion methodology, as previously stated, addresses the combination of the

within ROC curves, when the classifiers are independent. It also addresses the

combination of across ROC curves. The essential system difference between the across

fusion technique and the within fusion technique is that the within fusion technique only

deals with classifiers on one critical subcomponent. The across fusion technique focuses

on combining ROC curves from at least two different system parts (subcomponents and

components).

5-16

This methodology is based on a monograph by Oxley and Bauer [63]. In this

monograph, Oxley and Bauer use a ‘logical or’ rule to combine two ROC curves and

produce a third ROC curve. Their underlying assumptions about this situation are

summarized below.

Figure 5-8. Notional prognostics diagram with a two component system and two sensors

Figure 5-8 shows a diagram that illustrates the notional system used for the fusion

technique presented in [63]. The system, represented by the large box at the top of the

figure, contains two components. Each component sends data to a sensor, which records

this information and sends it to a classifier. The classifier uses the sensor data to report

the current condition of the component and the overall system. The sensors are assumed

to operate independently of each other, as are the system components.

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers

5-17

Based on this figure, conditional probabilities are defined below. The labeling

convention conditions the classifier output on the actual system data.

P(classifier declares failure|component j is actually failed) = j
TPP , j ∈ {A, B}

P(classifier declares failure|component j is actually nominal) = j
TPP , j ∈ {A, B}

P(classifier declares nominal|component j is actually nominal) = j
TPP , j ∈ {A, B}

P(classifier declares nominal|component j is actually failed) = j
TPP , j ∈ {A, B}

In Table 5-4, the first entry in the “True State” column refers to the true state coming

from “component A”. The second entry column refers to the true state of “component

B”. The first entry in the “Classifier Reports” row refers to the report from the classifier

based on data from sensor A. The second entry refers to the report from the classifier

based on data from sensor B. These reports are component specific. The mapping

between these system reports and an actual determination of system failure has not yet

been specified. However, regardless of the system report, the system has actually failed

if there is an “F” in the “True State” column (the middle three rows of the table).

5-18

Table 5-4. Conditional probability values [63]
Classifier
Reports
(A, B)

True State

F, F F, N N, F N, N

F, F A
TPP B

TPP A
FPP B

TNP A
FNP B

TPP A
FNP B

FNP

F, N A
TPP B

FPP A
TPP B

TNP A
FNP B

FPP A
FNP B

TNP

N, F A
FPP B

TPP A
FPP B

FNP A
FNP B

TPP A
FNP B

FNP

N, N A
FPP B

FPP A
FPP B

TNP A
TNP B

FPP A
TNP B

TNP

Table 5-4 shows the conditional probability values for the two classifiers A and B in the

presence of both failure and nominal system data. For instance, the first entry in the cell

in the third row and fourth column, A
FNP , represents the probability that the classifier

reports nominal functionality of component A given component A has failed. The second

entry in the cell, B
FPP , represents the probability that the classifier reports a failure of

component B given component B is operating nominally.

The following joint probability table combines these values with the a priori

probabilities. Again, both of the two failure types are assumed to be independent of each

other.

5-19

Table 5-5. Joint probability values [63]

Classifier
Reports
(A, B)

True State

F, F F, N N, F N, N

F, F A
TPP B

TPP pfqf
A

TPP B
FNP pfqf

A
FNP B

TPP pfqf
A

FNP B
FNP pfqf

F, N A
TPP B

FPP pfqn
A

TPP B
TNP pfqn

A
FNP B

FPP pfqn
A

FNP B
TNP pfqn

N, F A
FPP B

TPP pnqf
A

FPP B
FNP pnqf

A
TNP B

TPP pnqf
A

TNP B
FNP pnqf

N, N A
FPP B

FPP pnqn
A

FPP B
TNP pnqn

A
TNP B

FPP pnqn
A

TNP B
TNP pnqn

Table 5-5 summarizes these joint probabilities as a series of disjoint events. The third

row indicates the actual data shows a failure on component A and no failure on

component B. The failure on component A is reflected with the a priori probability pf,

and the nominal condition on component B is reflected with the a priori probability qn.

These are expected to be small and large probability values, respectively.

In their monograph, Oxley and Bauer [63] use the preceding table to develop an

expression for the fused ROC curve for two mechanical system components. Let fA and

fB represent the two original ROC curves. Also, as before, let pf be the prior probability

of failure of component A, and let qf, be the prior probability of failure of component B.

Let the following relationships hold:

 γ = pf + qf - pfqf, r ∈ [0, 1], s ∈ [0, r] (5-31)

5-20

Then the fused ROC curve is given by

 fC(r) = () ()z
r

rp≤≤







−







 −−







0
min

111

γγ
γ

γ
 (5-32)

where

 () ()()[] ()



























−
−−+
















−
−−−+−=

s

sr
q

s

sr
fqspsfpz fBffAf 1

1
1

111 (5-33)

Equation 5-37 is the relation used to combine two within or across ROC curves to

produce another across ROC curve.

5.2.3 Dependent Sensors

This section develops bounds for the effects of dependent sensors within a given system.

Consider a system where the sensors A and B are completely dependent. This would

occur if two sensors were both measuring the same phenomenology on the same

component, as they would if the sensors are redundant. In such a system, accurate

readings from sensor B would match accurate readings from sensor A in every possible

operating condition. In effect, sensor B provides no new information on the condition of

the system. Note that this condition does not assume the accuracy of the sensors would

be the same, just that their accurate readings would be the same. In this case with

completely dependent sensors, the logical decision is to chose the sensor with the better

accuracy, and discard the other one. Hence, a lower bound on the fused ROC curve C is

the best ROC curve associated with the classifier for one of the two original sensors A

5-21

and B. In passing, it is worth noting that the only time the accuracy of the sensors would

be the same is when the sensors are identical, AND have identical operating conditions.

As previously stated, the within fusion methodology provides a weak upper bound on the

fused ROC curve C. This is because the methodology uses set operating points from both

ROC curves to generate the fused ROC curve. This methodology is in contrast to the

across fusion methodology, which takes a specific operating point from one ROC curve

and searches along the entire length of the other ROC curve to choose the best point to

obtain the best probability of true positive value. If the within fusion methodology had

been developed using a similar technique, the fused ROC curve C would be optimal,

relative to the classifier thresholds. (This result is found in Oxley and Bauer [63].) This

means this optimal within ROC curve would have probability of true positive values that

are at least equal to the values of the fused within ROC curve generated using set

operating points, and potentially have a number of values that exceed the values of this

fused within ROC curve. However, the within (and across) fusion methodology assumes

the sensors that provide data to the classifiers operate independently. This assumption

may not always hold, particularly if the sensors on a subcomponent are intended to be

redundant. If there is some degree of dependency between the sensors, then the optimal

within ROC curve will overestimate the actual within ROC curve. The fused within ROC

curve generated using set operating points may also overestimate the actual within ROC

curve, but to a smaller degree than the actual optimal within ROC curve. Hence, the

fused within ROC curve is used to provide the estimate of the actual within ROC curve.

5-22

With an established lower bound (the best single ROC curve) and a weak upper bound

(the fused within ROC curve) for the fused within ROC curve C, it is obvious that the

actual within ROC curve for a system with dependent sensors would lie between these

two extremes. Precisely where it would be located depends on the amount of dependency

between the two sensors. This amount of dependency may change from one operating

condition to another. There also may be a minimum level of dependency which is

present in every operating condition. The actual within ROC curve is probably best

determined through empirical observation of the actual system in question.

5.3 Application to a Two-Component System

In this section, two problems are constructed and solved using the within and across

fusion methods described in this chapter. Additionally, a solution algorithm is presented

for solving these problems. Section 5.3.1 presents the across fusion methodology, using

a simple system as an example. This simple system has a single component with two

subcomponents and two sensors on each subcomponent, as shown in Figure 5-9. Section

5.3.2 presents the general solution algorithm for solving these types of problems. Section

5.3.3 uses the solution algorithm presented in section 5.3.2 to solve a second, more

complicated problem. This second problem expands the first problem by adding a second

component to the system. This new component also has two subcomponents, but with

two sensors on the first subcomponent and three sensors on the second subcomponent.

Section 5.3.4 presents an excursion where the per component budget constraint is relaxed

to apply only to the overall system.

5-23

5.3.1 A Single Component Problem

This section presents a simple problem to demonstrate the application of the two fusion

methods. The notional system used for this problem has a single component and two

subcomponents.

Figure 5-9. Figure 4-2 reproduced for clarity

Figure 5-9 shows the design of the simple system which will be used to demonstrate

solving the across fusion problem. Solving this problem will require four notional ROC

curves (one for each sensor), two fused ROC curves (within curves) using the within

fusion methodology, and ultimately one ROC curve (across curve) using the across

fusion methodology. The objective is for this across ROC curve to be the best one

CSensors

Component ASystem

D

Reasoner

A B

Subcomp. 1 Subcomp. 2

C DA BClassifiers

CSensors

Component ASystem

D

Reasoner

A B

Subcomp. 1 Subcomp. 2

C DA BClassifiers

5-24

possible. To accomplish this objective will only require three fused ROC curves since

there is no budget constraint on the number of sensors that may be considered per

subcomponent.

The curves that were used to produce the illustrative examples in section 5.2.1 will be

used to solve this problem. As a reminder, the ROC curve for classifier A was given by

y1 = x0.1, and the ROC curve for classifier B was given by y2 =
6

1

)arcsin(
2

















x
π

.

Figure 5-10. Figure 5-6 reproduced for clarity

Figure 5-10 shows these two notional ROC curves and their associated within ROC

curve.

Notional and Fused ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve

ROC curve for sensor A

ROC curve for sensor B

Fused ROC curve for sensors
A & B

5-25

As before (section 5.2.1), let the ROC curve for classifier C be given by y3 = tanh(4x),

and let the ROC curve for classifier D be given by y4 = x0.13.

Figure 5-11. Two more notional ROC curves

Figure 5-11 shows these two notional ROC curves. Neither curve is completely

dominated by the other.

Two more Notional ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve

ROC curve for sensor C

ROC curve for sensor D

5-26

Figure 5-12. Graph of two more notional ROC curves, and the fused curve

Figure 5-12 shows the graph of ROC curves C and D, and their within ROC curve.

Figure 5-13. The across ROC curves for the two classifier pairs, and the across ROC

curve obtained by fusing all four classifiers using across fusion

Fused ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

ili
ty

 o
f

T
ru

e
P

o
si

ti
ve

ROC curve for fused
sensors A & B

ROC curve for fused
sensors C & D

ROC curve for all four
sensors

Notional and Fused ROC curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve

ROC curve for sensor C

ROC curve for sensor D

Fused ROC curve for sensors
C & D

5-27

Figure 5-13 shows the fusion of the two across curves into a single across ROC curve,

using the across fusion method. This is now the ROC curve for the component/system.

Note that the across ROC curve approximately splits the difference between these two

curves.

5.3.2 The General Solution Algorithm

This section presents the general solution algorithm for solving these types of problems.

Figure 5-14. Algorithm for problem solution

* Exploits
F(A, B, C) = F(F(A, B), C)
** Refers to costs that are

transferable among components

Get next subset via
natural ordering*

Is subset
employment
operational feasible?
structural

Fuse Components

Compute PTP, Cost **

Add to Portfolio
-or-

Keep Maximum

No
Yes

Yes

No

Last subset?
No

Finish

Get first subset

* Exploits
F(A, B, C) = F(F(A, B), C)
** Refers to costs that are

transferable among components

Get next subset via
natural ordering*

Is subset
employment
operational feasible?
structural

Is subset
employment
operational feasible?
structural

Fuse Components

Compute PTP, Cost **

Add to Portfolio
-or-

Keep Maximum

No
Yes

Yes

No

Last subset?
No

Finish

Get first subset

5-28

Figure 5-14 shows the algorithm employed to solve this problem. Each subset for a given

component is enumerated. The employment, operational, and structural costs are

determined for each subset. If any of these costs exceeds the values specified in the

problem constraints, the subset is considered to be infeasible. Infeasible subsets are

eliminated from the solution space. The subset fusion (using within and across

techniques) is performed only if a subset is feasible. When the fusion process has been

completed, the PTP value is computed and compared to the current maximum PTP value.

If the PTP of the current subset exceeds the current maximum, the current subset becomes

the new optimal solution. Otherwise, it is discarded and the next subset is checked for

feasibility. This process continues until all possible subsets have been considered.

5.3.3 A Two Component Problem

As was demonstrated in section 5.3.1, the across fusion method is used to fuse other

across curves. As previously stated, most systems will typically have more than one

component. Figure 4-3 (reproduced below) shows a more complex system.

5-29

Figure 5-15. Figure 4-3 reproduced for clarity

A mathematical programming framework was presented in chapter 4 to determine the

optimal allocation of sensors to subcomponents problem. This is a complex problem

because there are an exponential number of subsets that must be considered in light of

various structural and operational constraints. Each subset of sensors typically requires

multiple ROC curve fusions. These fusions are the most computationally intense

calculations encountered in the optimization. Some of the constraints are rapidly

evaluated and as such certain sensor subsets are eliminated from consideration.

Interestingly, this mathematical programming problem is actually easier to solve given

the addition of these easily evaluated structural and operational constraints. Consider the

problem posed by Figure 5-15. In this example, it is notionally assumed that one sensor

subset for component A and three sensor subsets for component B are not feasible. It is

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

C DA B

Component A

Subcomp. 1 Subcomp. 2

C DA B

System

Reasoner

Sensors

Classifiers

G HE F

Component B

Subcomp. 1 Subcomp. 2

G HE F

I

I

5-30

also assumed that at least one sensor is monitoring each subcomponent, which means the

subset of no sensors (the empty set) is excluded from consideration.

Table 5-6. Number of sensor subsets to consider given constraint types

Criteria Number of sensor combinations

1. Any non-empty sensor combinations 511

2. At least one sensor per component 465

3. At least one sensor per subcomponent 189

4. One sensor per subcomponent and cost feasible 144

Table 5-6 shows the number of sensor ensembles which must be considered given the

various constraint types. The number 511 in the first row was obtained by determining

the total number of subsets of the nine sensors available for use (512), and subtracting the

empty set. The number 465 was computed by determining the total number of subsets of

the four sensors available for use on the first component (16), and subtracting the empty

set to yield a total of 15. The total number of non-empty subsets on the second

component was similarly determined to be 31, and multiplying these two numbers gives

465. The number 189 in the third row was determined using a similar process. The

number of non-empty subsets for each subcomponent was determined, and these numbers

(3, 3, 3, and 7) were multiplied together to give the number of subsets that have at least

one sensor per subcomponent. The number in the fourth row incorporates cost

feasibility, so of the nine non-empty subsets for component one that have at least one

5-31

sensor per subcomponent, eight are assumed to be cost feasible. Similarly, 18 of the

second component subsets are cost feasible, and multiplying these two values gives 144.

Notice that the last row listed in the table, which embodies the mathematical

programming approach espoused in chapter 4, corresponds to a 72% reduction in the

number of ensembles to be considered. It should be noted that entries 2, 3, and 4 in the

table are not consistent with the mathematical programming assumption that each

subcomponent requires at least one sensor.

Solving this example will require five additional notional single classifier ROC curves.

For simplicity, let the classifiers E through H have the same ROC curves as classifiers A

through D. The ROC curves will then be defined as:

Classifier A and Classifier E -- y1 = x0.1,

Classifier B and Classifier F -- y2 =
6

1

)arcsin(
2

















x
π

,

Classifier C and Classifier G -- y3 = tanh(4x),

and Classifier D and Classifier H -- y4 = x0.13.

Let the ROC curve for classifier I be given by y5 = (1-(x-1)2)0.5 (the upper left quadrant of

a circle centered at (1, 0)).

5-32

Figure 5-16. Notional ROC curves for all 9 classifiers

Figure 5-16 shows the graphs for all of these notional ROC curves.

The overall sensor budget is divided into a portion for each component. This is because

the cost for employing a sensor includes power, weight, space, and other constraints that

are not readily transferable to other components. However, some of this cost is the actual

monetary cost required to purchase the sensor hardware. Consequently, some portions of

the unused budget amounts for a given component could be transferred to other

components. This point is addressed in section 5.3.4.

Notional ROC Curves

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of False Positive

P
ro

b
ab

il
it

y
o

f
T

ru
e

P
o

si
ti

ve
ROC curve for
sensors A & E

ROC curve for
sensors B & F

ROC curve for
sensors C & G

ROC curve for
sensors D & H

ROC curve for
sensor I

5-33

Table 5-7. Sensor costs for the employment cost constraint

Sensors/Component Per Unit Cost

A, E 45

B, F 30

C, G 25

D, H 35

I 35

Table 5-7 shows the cost for each sensor. The budget for component A is 125 and the

budget for component B is 135.. These values incorporate the notional assumption that

one sensor combination is infeasible for component A, and three sensor combinations are

infeasible for component B. The solution method rapidly determines all the feasible

sensor combinations, and then computes the respective ROC curves.

It is of interest to compute the “best” ROC curves (those that possess the largest PTP value

among all the ROC curves at a given PFP value) for subsets within the components. It

should be noted that in the range 0.0 ≤ PFP ≤ 0.04, there are many ensembles which have

the same probability of true positive, to four decimal places. However, a unique

ensemble is always the “best” ensemble when the probability of false positive value

reaches 0.05.

5-34

Figure 5-17. The solution for component A

Figure 5-17 shows the solution for component A. Sensor ensemble ABD is the “best”

ensemble until the probability of false positive value reaches 0.37, then sensor ensemble

ABC is the “best” ensemble. Sensor ensemble ABCD would have been included on this

graph if it had been cost feasible.

ROC curves of optimal ensembles

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
ABD

Sensor Ensemble
ABC

5-35

Figure 5-18. The solution for component B

Figure 5-18 shows the optimal ROC curves for component B. Sensor ensemble EFH is

the “best” ensemble until the probability of false positive value reaches 0.16, then sensor

ensemble EFGH is the “best” ensemble.

The actual solution process is implemented according to the algorithm presented in figure

5.9. Once all the feasible ROC curves have been generated for each component, they are

combined using the across fusion method. In this example, this means that each of the 8

feasible ROC curves from component A are individually combined with each of the 18

feasible ROC curves from component B. This creates the entire set of feasible ROC

curves. Then, for each probability of false positive value, the solution method determines

which ROC curve has the best TP value. This usually leads to a collection of a number

of ROC curves, as one ROC curve supersedes another as the maximization process

ROC curves of optimal ensembles

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
EFH

Sensor Ensemble
EFGH

5-36

continues. The optimal solution for this problem is given by the four curves shown

below.

Figure 5-19. The optimal ROC curves for this example

Figure 5-20 shows an enlarged view of the area of the graph where the probability of true

positive value is greater than0.8.

ROC curves of optimal sensor ensembles

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
ABDEFH

Sensor Ensemble
ABDEFGH

Sensor Ensemble
ABCEFGH

Sensor Ensemble
ABCEFHI

5-37

Figure 5-20. A closer view of the optimal ROC curves

Figure 5-19 shows that the sensor ensembles ACDEH, ACDEFH, ACDEFGH, and

ABCEFGH are the “best” curves for this notional example. These ensembles will be

referred to as sensor ensembles 1-4, respectively, for simplicity. As an example, sensor

ensemble 1 (ACDEH) is represented by the diamonds, and dominates the other curves

over a small part of the range, from domain values 0.05 through 0.06. At the domain

values 0.07 through 0.23, sensor ensemble 2 (ACDEFH) dominates. For the domain

values 0.24 through 0.61, sensor ensemble 3 (ACDEFGH) dominates. And sensor

ensemble 4 (ABCEFGH) dominates for the remainder of the domain values, 0.62 through

1.00.

Once these best sensor ensembles have been identified, the best overall ensemble is

selected. This is done by selecting a maximum allowable value for the probability of

ROC curves of optimal sensor ensembles

0.8

0.84

0.88

0.92

0.96

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
ABDEFH

Sensor Ensemble
ABDEFGH

Sensor Ensemble
ABCEFGH

Sensor Ensemble
ABCEFHI

5-38

false positive. The ensemble with the largest probability of true positive value at that

particular point is chosen as the ensemble to employ on the system. In this example, if

the maximum allowable value for the probability of false positive is 0.2, the best sensor

ensemble is ACDEFH.

5.3.4 Two Component Problem Excursion

As previously stated, some unused portions of the budget for a particular component are

not transferable to other components, in the context of this model. However, excess cost

may be transferred between components. This ability to transfer excess cost may require

the calculation of new solutions. Assuming the excess budget amounts may be

transferred between the two components, the optimal solution changes.

Figure 5-21. The optimal ROC curves if unused budget allocations could be transferred

among components

ROC curves of optimal sensor ensembles

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
ABDEFHI

Sensor Ensemble
ABCDEFHI

Sensor Ensemble
ABCDEFGH

5-39

Figure 5-22. A closer view of the optimal ROC curves

Figure 5-21 shows the optimal solution to the problem if the entire budget could be

shifted among the two components. The change from sensor ensemble ABDEFHI to

sensor ensemble ABCDEFHI occurs at 0.29. The change from sensor ensemble

ABCDEFHI to sensor ensemble ABCDEFGH occurs at 0.63. These ROC curves are

generally only a few thousandths better than the ROC curves presented in Figure 5-19.

ROC curves of optimal sensor ensembles

0.8

0.84

0.88

0.92

0.96

1

0 0.2 0.4 0.6 0.8 1

Probability of false positive

P
ro

b
ab

ili
ty

 o
f

tr
u

e
p

o
si

ti
ve

Sensor Ensemble
ABDEFHI

Sensor Ensemble
ABCDEFHI

Sensor Ensemble
ABCDEFGH

6-1

VI. Summary and Recommendations

6.1 Overview

This dissertation research makes contributions in the emerging field of prognostics. This

section summarizes these contributions and presents recommendations for future

research.

6.2 Theoretical Contributions

A mathematical programming model was developed to optimally allocate sensors and

their respective classifiers among system components. The model includes structural,

employment cost, and operational cost constraints, allowing this formulation to be

tailored for any given system and budget.

System data fusion methods were developed to allow for the combination of information

from the classifiers associated with different sensors. Two different types of fusion

methods were employed. The first method, called within fusion, uses the characteristics

of sensors on a single system component to provide an assessment of that component’s

functionality, and is developed here. The second method, called across fusion, combines

within fusion measures (and other across fusion measures) to ultimately provide an

assessment of the system’s functionality.

A proof was given demonstrating to show that in the absence of noise for independent

sensors, adding sensors of any capability to a given sensor ensemble will improve the

6-2

ability of the ensemble to accurately determine the system state. This allows for rapid

evaluation of points in the solution space, since if all ensembles of a certain size are

feasible, all smaller ensembles will have smaller objective function values and can be

eliminated from consideration.

A methodology was developed to assess the relative merit of various fusion rules. There

are many different methodologies for combining the information from multiple sensors.

The method presented for scoring the different methodologies allows for the selection of

the best methodology for fusing sensor information, based on the capabilities of the

sensors, the relative importance of avoiding false negatives compared to false positives,

and the reliability of the system components under consideration.

A proof was given demonstrating that demonstrate that under the conditions of sensor

independence and no system “noise”, a “logical or” fusion rule is the best methodology

for combining sensor information. It also demonstrates that there is no “best” fusion rule

for situations which do not meet the conditions required for this proof.

A similar proof was given to show that under the conditions of sensor independence and

no system “noise”, a “logical and” fusion rule is the best methodology for combining

sensor information. It also demonstrates that there is no best fusion rule for situations

which do not meet the conditions required for this proof.

6-3

6.3 Applied Contributions

A comprehensive literature review was written summarizing research activities

associated with applying the science of prognostics to various military and industrial

applications. This review includes descriptions of efforts to develop both system-wide

and component-part prognostic systems. It also discusses some of the technical

challenges that must be overcome in order to successfully implement a prognostics

system.

A Prognostics and Health Management system taxonomy was developed to provide a

common frame of reference for discussions about prognostics systems. This taxonomy

included the definitions of various types of faults, and the expected outputs from a

prognostics system.

Sample problems using the mathematical program and the system data fusion

methodology were presented and solved to show the application of this methodology. A

notional two-component system was constructed with places for notional sensors to be

employed. ROC curves were used to approximate the sensors’ classification

performance. Notional costs were assigned to each sensor, and a problem solution

algorithm was developed to ensure the optimal solution was found, while avoiding

unnecessary sensor fusion computations.

6-4

6.4 Areas for Future Research

This methodology could be employed to perform prognostics functions on real world

systems. Data can be collected from a given system of interest. Once sufficient data has

been collected analysis of that data should reveal unique data patterns which correspond

to different failure states. An appropriate set of classifiers can then be trained to

recognize these unique patterns and provide high confidence diagnoses of system

problems. The algorithm for optimum sensor allocation from this research can be

employed to appropriately deploy sensors on this system and use these classifiers to

provide system prognostics.

The prognostic information from the preceding effort could be used to manage

operational systems. Once information about the future health of multiple systems is

known, that information can be used to proactively schedule maintenance actions, assess

population health, determine future mission/production capability rates, and adjust future

mission/production schedules. These capabilities have been collectively described as an

Autonomic Logistics System (ALS). A possible research effort would involve actually

designing an ALS which performed these functions.

System damage generation and prediction mechanisms could be developed. Real system

damage data streams are hard to find. The goal of system maintenance is to prevent

damage from occurring. Additionally, allowing a system to be destroyed to capture the

actual failure data can be prohibitively expensive. In virtually all cases, modeling

catastrophic failure paths must be accomplished via analytical models or simulation as

6-5

opposed to actual data. The development of a damage generation model would allow for

the simulation of catastrophic damage processes for a wide variety of systems. This

would provide data for a prognostics system to recognize the early symptoms of

catastrophic damage, and allow for preventative action to terminate system operations

before the catastrophic failure occurred.

The sensor fusion methodology presented in this dissertation can be applied to other

sensor fusion problems. These problems include Automatic Target Recognition, Combat

Identification, Battle Damage Assessment, and related battlefield issues. All these issues

require a high degree of confidence in the answer, and consequently employ a number of

different data streams to ensure the answer provided is as accurate as possible. The

fusion methodology presented in this work could be used to combine the different data

streams to provide the accurate answer required.

A-1

Appendix A. Methodology Comparison

The following table [95] briefly describes and compares 18 different methods, including

variations on neural network and fuzzy logic implementations.

The column headings on each page list the different techniques, and the row headings on

each page describe a characteristic of interest associated with each technique. The row

headings begin with “Nature of the required data” and “Nature of the system”. The first

heading describes the kind and amount of data required for the particular technique to be

useful. The next heading describes the kind of system for which the technique would be

most effective. The next row headings are “Time required to generate a solution” and

“’Cost’ of the solution (in a relative sense)”. The “Time” heading provides an

assessment of the time required to develop an appropriate solution. The “Cost” heading

provides a relative idea of how much time and how many resources would be expended

to develop a good solution, compared to other the other techniques. Next are the

“Reliability (robustness) of the solution” and “Stability of the solution” headings. The

“Reliability” heading describes how accurately model results reflect the true nature of the

system. The “Stability” heading describes the technique’s consistency over time. The

last heading “Changes required if something new is introduced to the underlying system”

describes what changes must be made to the model if the underlying system changes.

This row provides an idea of how easy or hard it is to maintain an appropriate model

using a particular technique. Nearly all systems will be changed (through maintenance,

upgrades, etc.) from their original configuration during their operational lifetime, and the

A-2

model in use must adapt to these changes to continue to provide accurate system

diagnoses. Some modeling techniques are inherently more flexible than others, and this

row indicates which techniques are more flexible.

A-3

Table 3-1. Summary of Diagnostic/Prognostic Methods [95]
Technique/

Problem

Parameters

Fuzzy Logic

(“reasoning”)

Neural nets

(“associative”)

Genetic
Algorithms

(optimization)

Dempster-
Schafer

(evidential
theory)

Nature of the
required data

Maybe
Incomplete,
low-fidelity,

small amounts

Lots of data,
high fidelity,
need to cover

dynamic range
of system, need
large separation

between data
classes

“Large”
solution

population, data
can be missing,
incomplete or
discontinuous

Incomplete,
low-fidelity,

small amounts
conflicting

Nature of the
system

Non-linear,
highly complex

(use other
techniques if

system is
“linear”, has
lots of data)

Non-linear,
highly complex

(use other
techniques if

system is
“linear”)

Non-linear,
highly complex

(use other
techniques if

system is
“linear”)

Missing or
conflicting

information-
need to

combine
information

Time required
to generate a

solution

Moderate/Very
long if experts’
opinions must

be gathered

Short,
moderate, or
long training

time depending
on size of net

Very long Short to
moderate

“Cost” of the
solution (in a
relative sense)

Moderate Moderate to
large

Large Moderate

Reliability
(robustness) of

the solution

Optimal—
depending on
initial expert

opinions

Optimal,
guaranteed to

exist (finding it
another matter)

Optimal
solution not

guaranteed to
exist/be found

Optimal—
depending on
initial expert

opinions
Stability of the

solution
Depends on

inherent
“disagreement”

among the
“experts”

Very stable for
data on which

the network has
been trained,
unpredictable

otherwise

Stable for the
initial problem

Depends on the
accuracy of the

prior
probabilities

Changes
required if

something new
is introduced to
the underlying

system

Requires
updating but

easy to update

Net requires
more training

Requires re-
computation of

the solution

Requires re-
computation of

the solution

A-4

Technique/

Problem

Parameters

Feature
Selection/
Extraction

Sensor/
Knowledge/
Information/

Fusion

Rule-Based
Expert systems

Fuzzy
Clustering/
Classifying

Nature of the
required data

Lots of data,
high fidelity,

needs to cover
dynamic range

of system

More is better,
can handle
incomplete,
low-fidelity,

small amounts

Incomplete,
low-fidelity,

small amounts

Moderate
amount, hi-

fidelity, large
separation

between data
classes

Nature of the
system

Doesn’t matter Doesn’t matter Doesn’t matter Doesn’t matter

Time required
to generate a

solution

Depends on
selection/

development
method chosen

Depends on
selection/

development
method chosen

Long for
development,
short to run

Moderate

“Cost” of the
solution (in a
relative sense)

Depends on
selection/

development
method chosen

Depends on
selection/

development
method chosen

Large if
development
must be done,

small otherwise

Moderate

Reliability
(robustness) of

the solution

Depends on
initial data

Depends on
initial data

Optimal—
depending on
initial expert

opinions

Depends on
location and
number of

clusters
Stability of the

solution
Depends on
selection/

development
method chosen

Depends on
selection/

development
method chosen

Depends on the
accuracy of the

heuristics

Depends on
location and
number of

clusters
Changes

required if
something new
is introduced to
the underlying

system

Process must be
repeated

Process must be
repeated

Requires re-
computation of

the solution

Requires re-
computation of

the solution

A-5

Technique/

Problem

Parameters

Least Squares
Fit

Kalman
Filtering

Simulation

Fuzzy wavelet
analysis

Nature of the
required data

Need clear
definition of
independent,

dependent
variables, lots

of data

Need accurate
system model.

“Noise”
associated with

data must be
Gaussian white,

must have
“confidence”

(variance)
associated with
each data point

Good insight on
system

functions—
math models

used to
represent

system must be
accurate

Hi-fidelity,
quantity not as

important

Nature of the
system

Independent
variables must

be independent,
system must be
linear with few
non-linearities

Linear (non-
linear models
exist but not
covered in

class)

Can be of any
kind

Non-linear,
highly complex

(use other
techniques if

system is
“linear”)

Time required
to generate a

solution

Short Moderate Depends
directly on
number of

system
functions

Long if
knowledge base

must be
created, else

moderate
“Cost” of the
solution (in a
relative sense)

Small Moderate Depends
directly on time

Moderate

Reliability
(robustness) of

the solution

Only over the
range where

data was
collected

Optimal for a
linear system

Depends on
accuracy of
math model

Very reliable

Stability of the
solution

Very stable

Filter “adapts”
to new data-
compare to

some baseline

Very stable Very stable

Changes
required if

something new
is introduced to
the underlying

system

Recomputation
required

Only if baseline
changes, then

change
comparison

baseline

Math model
functions must

be altered

Knowledge
base must be
updated—

feature set must
be re-validated

A-6

Technique/

Problem

Parameters

Statistical
Change

Detection
(SCD)

State-Based
Feature

Recognition

Case-Based
Reasoning

Dynamic
Neural Nets

Nature of the
required data

Accurate data
collection, need
to know “defect

frequencies”

Accurate
pattern

representation,
state machines
for each failure

mode

Hi-fidelity,
sufficient to
describe the

event

Moderate
amount of high-

fidelity data

Nature of the
system

Can be of any
kind producing

frequency
information

Signal data Can be of any
kind

Can be of any
kind

Time required
to generate a

solution

Moderate Long if failure
modes need to
be identified

Short if case
library

exists/Very
long if case

library needs to
be built

Long if fuzzy
sets need to be

built

“Cost” of the
solution (in a
relative sense)

Moderate Small to
Moderate

Large if library
needs to be
built, small
otherwise

Large

Reliability
(robustness) of

the solution

Optimal change
detection point

Very reliable Reliable, not
optimal—has
difficulty with
novel events

Optimal

Stability of the
solution

May be
affected by
noise, other

frequencies not
of interest

Very stable Very stable Very stable

Changes
required if

something new
is introduced to
the underlying

system

Ensure
frequency set of
interest is still

correct

Modify
appropriate

state machines

None—new
events will be
added to the

library as they
occur

New rule sets
must be

generated and
WNN must be
trained further

A-7

Technique/

Problem

Parameters

ARMA/ARIMA Weibull
Modeling

Nature of the
required data

“Noise”
associated with

data must be
Gaussian white,
data collected is
evenly spaced

and consecutive
in time

Actual failure
data, hi-fidelity,

as much as
possible

Nature of the
system

Linear

Failure events
should follow a

Weibull
distribution,

otherwise this
technique is

useless
Time required
to generate a

solution

Moderate Moderate/Very
long if failure
data must be

collected
“Cost” of the
solution (in a
relative sense)

Moderate Moderate

Reliability
(robustness) of

the solution

Reliable

Somewhat
reliable—
generated

solution will
never be

correct, but
may be “close

enough”
Stability of the

solution
Stable

Somewhat

stable
Changes

required if
something new
is introduced to
the underlying

system

Baseline
operation series
must be updated

New failure
data must be
collected and
the curve re-

generated

B-1

Appendix B. Sensor Ensemble Accuracy

If the assumption is made that each sensor in an ensemble has a positive probability of

detecting a problem (a positive value for PTP), then adding such a sensor to an ensemble

only increases the value of PTP for the ensemble (ignoring any system noise contribution).

The sensors are also assumed to be independent. This assertion is formalized in the

following theorem.

First, given a set X of sensors, define the maximum probability of obtaining a true

positive by max PTP(x).

Theorem 1: Let T ∈ AAAA
nnnn
, S ∈ AAAA

mmmm
, where n < m, and T ⊂ S. Then maxTP(T) < maxTP(S).

Proof:

Since there are n sensors in T, the probability of not detecting a true fault with this sensor
suite is

 Pnodetect(T) = ∏
=

n

i 1

(1 – PTP(Si)) (4a-1)

Hence, the probability of detecting any problem is given by

 maxPTP (T) = 1 – ∏
=

n

i 1

(1 – PTP(Si)) (4a-2)

This expression is the “logical or” fusion rule—if any one of the sensors detects a true

fault, the fault is defined to be detected.

Consider a set S containing m= n + k sensors, where k ∈ Z+. T = {s1, s2, …, sn}, and S =

{s1, s2, …, sn, sn+1, …, sm}. Clearly, T ⊂ S. The probability of not detecting a true fault

with this sensor suite is

B-2

 Pnodetect(S) = ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-3)

Hence, the probability of detecting a true fault is

 maxPTP (S) = 1 – ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-4)

Note that equations (4a-1) and (4a-3) have the same first n terms. Notice also that each

term in each equation is strictly less than 1. If the terms in common between the

expansions in each equation are removed, then

 ω = ∏
+

+=

kn

ni 1

(1 – PTP(Si)) (4a-5)

Since each term in the expansion in equation (4a-5) is less than 1, it is clear that ω < 1. If

both sides of equation (4a-5) are multiplied by ∏
=

n

i 1

(1 – PTP(Si)), the equation becomes

 ∏
=

n

i 1

(1 – PTP(Si)) > ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-6)

Multiplying both sides of equation (4a-6) by –1 and then adding 1 to each side yields

 1 - ∏
=

n

i 1

(1 – PTP(Si)) < 1 - ∏
+

=

kn

i 1

(1 – PTP(Si)) (4a-7)

But the left-hand side of (4a-7) is (4a-2) by definition, and the right-hand side of (4a-7) is

(4a-4) by definition, so replacement yields

 maxPTP (T) < maxPTP (S) (4a-8)

the desired result.

B-3

It should be noted that even if a sensor is completely dependent with respect to another

sensor in the ensemble, although it will not add to the accuracy of the sensor ensemble, it

will add to the ensemble’s reliability.

This theorem implies that it is possible to reduce the size of the solution space. The first

step is to determine the set of cost-feasible sensors. Each ensemble size is searched for

cost feasibility, beginning with ensembles containing only one sensor (cardinality 1). If

the entire group of sensor ensembles of a particular size (cardinality n) is cost feasible,

the process is repeated on the next ensemble set (cardinality n + 1). If all elements of this

next ensemble set (cardinality n + 1) are cost feasible, the previous set (cardinality n) is

discarded from the solution space since this larger ensemble set will have a higher value

of PTP for any sensor combination, by the previous theorem. However, once a cost

infeasible solution is found in a set of cardinality k , all sensor ensembles of cardinality

k - 1 and greater are retained for further examination (except for cost infeasible

ensembles). All sets of cardinality k – 2 and lower are eliminated from consideration.

This reduces the solution space by ∑
−

=







2

1

k

j j

M
 possible solutions, where M is the total

number of sensors available.

Alternatively, the search for cost feasibility could begin at the ensemble containing all the

sensors (cardinality M). The search would terminate when all ensembles of a particular

size are found to be cost feasible. If this particular size is k – 1 (as above), then all

ensembles of cardinality k – 2 and below are eliminated from consideration.

C-1

Appendix C. Application of Fusion Rules to the Model

5.A1 Application of Fusion Rules to the Model (Optimality considerations)

This model uses a logical or rule to declare a system failure: if either or both of two

classifiers on a subcomponent indicates a failure, the reasoner concludes a failure has

occurred and reports a failed condition on the system. Both fusion techniques introduced

in the previous section use a logical or rule to combine the ROC curves associated with

each classifier to produce a new ROC curve. This section addresses whether or not a

“logical or” fusion rule may be considered optimal.

The model used for this assessment is the one Oxley and Bauer [63] used to develop the

across fusion methodology (see Figure 5-11). If the two systems’ a priori failure rates

are equal (pf = qf), and the two classifiers’ failure and nominal detection capabilities are

equal (PTP(Aθ) = PTN(Aθ) = PTP(Bφ) = PTN(Bφ)), then the “logical or” rule is the best

fusion rule. If there is even a slight inequality in one of these probabilities, then it is

possible to set the values for the other pair of variables so that a fusion rule other than

“logical or” is the best fusion rule. However, in the general case, “logical or” is the best

fusion rule. The appendix provides a general description of the values of these

parameters showing where the transition from “logical or” to a different fusion rule

occurs.

This appendix also presents a scoring rule for determining which fusion rule is best. This

scoring rule adds the PTP result and the PTN, or (1 – PFP), result obtained from a particular

C-2

fusion rule, given a set of values for the six parameters specified above. More formally,

the equation is

 Fusion rule score = w1PTP + w2(1 – PFP) (5a-1)

where w1 and w2 are weights which can be manipulated to reflect the importance of each

quantity. Note that w1, w2 ∈ [0, 1] and w1 + w2 = 1. The relative importance of each of

these terms depends on the system for which the prognostic system is being designed.

Once the scoring rule is developed, all eight parameters (pf, qf, PTP(Aθ), PTN(Aθ), PTP(Bφ),

PTN(Bφ), w1, and w2) are analyzed to determine the optimal fusion rule based on the

scoring rule, and where the optimal fusion rule changes, based on varying values of these

parameters. As previously stated, the “logical or” fusion rule is the best in most cases.

Other fusion rules only become the best fusion rule if the a priori probability of failures

are relatively high, or the classifier’s accuracy is not very good, or one term of the

scoring rule is weighted much more heavily than the other term. All of these conditions

interact to some extent. The rest of this appendix provides the development and analysis

of these ideas.

The system model is developed as before. Certain aspects will be repeated here for

clarity and further development. Figure 5-8 (reproduced below) is again the basis for this

discussion.

C-3

Figure 5a-1. Figure 5-8 reproduced for clarity

The conditional probabilities associated with this model are assigned a notional value as

indicated below. The terms “high” and “low” refer to a notional relative probability

value for the given condition. The variables “x” and “y”, respectively, correspond to

those probability values.

P(classifier declares failure|actual failure) = A
TPP , B

TPP = high = x

P(classifier declares failure|actual nominal) = A
FPP , B

FPP = low = y

P(classifier declares nominal|actual nominal) = A
TNP , B

TNP = high = x

P(classifier declares nominal|actual failure) = A
FNP , B

FNP = low = y

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers

Sensors

System

Reasoner

A B

Comp. A Comp. B

A BClassifiers

C-4

These probability values are assumed to be equal to each other (within the high and low

categories) for the sake of the discussion that follows. The joint probability table is

reproduced below for clarity. The cells are numbered for ease of reference.

Table 5a-1. Joint probability values [63]
Classifier
Reports
(A, B)

True State

F, F F, N N, F N, N

F, F 1. A
TPP B

TPP pfqf 2. A
TPP B

FNP pfqf 3. A
FNP B

TPP pfqf 4. A
FNP B

FNP pfqf

F, N 5. A
TPP B

FPP pfqn 6. A
TPP B

TNP pfqn 7. A
FNP B

FPP pfqn 8. A
FNP B

TNP pfqn

N, F 9. A
FPP B

TPP pnqf 10. A
FPP B

FNP pnqf 11. A
TNP B

TPP pnqf 12. A
TNP B

FNP pnqf

N, N 13. A
FPP B

FPP pnqn 14. A
FPP B

TNP pnqn 15. A
TNP B

FPP pnqn 16. A
TNP B

TNP pnqn

Again, Table 5a-1 summarizes these joint probabilities as a series of disjoint events. The

failure on component A is reflected with the a priori probability pf, and the nominal

condition on component B is reflected with the a priori probability qn.

Replacing the this table’s contents with the qualitative values of “high” (x) and “low” (y)

as previously defined in the table yields an assessment of which combinations of

classifier readings and actual data streams would have relatively large likelihoods. Note

that pn = qn = x and pf = qf = y.

C-5

Table 5a-2. Table of relative likelihoods

Classifier
Reports
(A, B)

True State

F, F F, N N, F N, N

F, F 1. x2y2 2. xy3 3. xy3 4. y4

F, N 5. x2y2 6. x3y 7. xy3 8. x2y2

N, F 9. x2y2 10. xy3 11. x3y 12. x2y2

N, N 13. x2y2 14. x3y 15. x3y 16. x4

Table 5a-2 summarizes the relative likelihoods of these 16 disjoint events. The cell

entries in bold (cells 6, 11, 14, 15, and 16) indicate a cell with a relatively high

likelihood. The cells 1, 6, 11, and 16 (on the main diagonal) indicate an accurate

assessment of performance. The cells 4, 7, 10, and 13 (on the anti-diagonal) indicate an

inaccurate assessment of performance from both systems. All the other cells have one

performance report right and one performance report wrong. This table provides a

notional idea of which events are more likely than others.

As can be seen from the table, there are four combinations of readings from the two

classifiers:

1. F, F 2. F, N 3. N, F 4. N, N

These combinations of readings can be thought of as four rules for declaring a system

failure. If a “logical and” fusion method is chosen, then a system failure would be

declared only if the situation described by rule one occurred. This will be referred to

specifically as “applying rule one”, and more generally as “applying a fusion rule”. If a

C-6

“logical or” fusion method is chosen, then a system failure would be declared if rules

one, two, and three were applied. Since there are four rules, there are fifteen different

combinations of rule sets (including the two previously presented) to consider. The

results are presented in the following table.

Table 5a-3. Summary of probability values for different fusion rules

Probability
Measure

Fusion Rule

Cells used to declare
a failure

(Cells with an actual
failure are 1-12)

PTP True Positive
(intersection with cells

1-12)

PFP False Positive
(intersection with cells

13-16)

1 (logical and) 1, 5, 9, 13 3x2y
(2x3 + 5x2y + 4xy2 + y3)

y2
(x + y)2

2 2, 6, 10, 14 x3 + 2xy2
(2x3 + 5x2y + 4xy2 + y3)

xy
(x + y)2

3 3, 7, 11, 15 x3 + 2xy2
(2x3 + 5x2y + 4xy2 + y3)

xy
(x + y)2

4 4, 8, 12, 16 2x2y + y3
(2x3 + 5x2y + 4xy2 + y3)

x2
(x + y)2

1, 2 1, 2, 5, 6, 9, 10, 13,
14

x3 + 3x2y + 2xy2
(2x3 + 5x2y + 4xy2 + y3)

xy + y2
(x + y)2

1, 3 1, 3, 5, 7, 9, 11, 13,
15

x3 + 3x2y + 2xy2
(2x3 + 5x2y + 4xy2 + y3)

xy + y2
(x + y)2

1, 4 1, 4, 5, 8, 9, 12, 13,
16

5x2y + y3
(2x3 + 5x2y + 4xy2 + y3)

x2 + y2

(x + y)2
2, 3 2, 3, 6, 7, 10, 11, 14,

15
2x3 + 4xy2

(2x3 + 5x2y + 4xy2 + y3)
2xy

(x + y)2
2, 4 2, 4, 6, 8, 10, 12, 14,

16
x3 + 2x2y + 2xy2 + y3

(2x3 + 5x2y + 4xy2 + y3)
x2 + xy
(x + y)2

3, 4 3, 4, 7, 8, 11, 12, 15,
16

x3 + 2x2y + 2xy2 + y3
(2x3 + 5x2y + 4xy2 + y3)

x2 + xy
(x + y)2

1, 2, 3 (logical
or)

1-3, 5-7, 9-11, 13-15 2x3 + 3x2y + 4xy2
(2x3 + 5x2y + 4xy2 + y3)

2xy + y2

(x + y)2

1, 2, 4 1-2, 4-6, 8-10, 12-
14, 16

x3 + 5x2y + 2xy2 + y3
(2x3 + 5x2y + 4xy2 + y3)

x2 + xy + y2
(x + y)2

1, 3, 4 1, 3-5, 7-9, 11-13,
15-16

x3 + 5x2y + 2xy2 + y3
(2x3 + 5x2y + 4xy2 + y3)

x2 + xy + y2
(x + y)2

2, 3, 4 2-4, 6-8, 10-12, 14-
16

2x3 + 2x2y + 4xy2 + y3
(2x3 + 5x2y + 4xy2 + y3)

x2 + 2xy

(x + y)2
1, 2, 3, 4 1-16 1 1

C-7

Since it is hard to see from Table 5a-3 which rules have high and low probability values,

the following section provides an example with specific values.

5.5 Scoring Rule

Table 5a-4. Fusion rule probability values for a specific case

Table 5a-4 shows the values that would be obtained if the following substitutions were

made: pf = qf = PFP = PFN = .01, PTP = PTN = .99.

In this table, there is also a column titled “Score”. Determining the “best” fusion rule is

done initially by selecting the fusion rule which provides the highest PTP and the lowest

PFP (highest PTN). The formula to determine the fusion rule “score” is:

 Fusion rule score = {PTP + (1 – PFP)} or {PTP + PTN} (5a-2)

Probability
Measure

PTP (overlap
with cells 1-

12)

PFP (cells 13-
16 over all in

formul.) Score:

Fusion Rule
1 0.960888119 0.0001 1.960788119
2 0.019408911 0.0099 1.009508911
3 0.019408911 0.0099 1.009508911
4 0.000294059 0.9801 0.020194059

1,2 0.98029703 0.01 1.97029703
1,3 0.98029703 0.01 1.97029703
1,4 0.961182178 0.9802 0.980982178
2,3 0.038817822 0.0198 1.019017822
2,4 0.01970297 0.99 0.02970297
3,4 0.01970297 0.99 0.02970297

1,2,3 0.999705941 0.0199 1.979805941
1,2,4 0.980591089 0.9901 0.990491089
1,3,4 0.980591089 0.9901 0.990491089
2,3,4 0.039111881 0.9999 0.039211881

1,2,3,4 1 1 1

C-8

The scoring rule was selected to maximize the benefit obtained from a particular fusion

rule combination. In this context, the best results from the reasoner are true negatives

and true positives. The best fusion rule combination is defined to be the one that

provides the highest probability of true positive and the highest probability of true

negatives (alternatively, the smallest probability of false positive). The fusion rule that

has the highest score for the selected values of pf, qf, PFP, PFN, PTP, and PTN is the “logical

or” fusion rule. These six parameters are used to develop the notion of an “optimal

fusion rule” in the following section.

5.A3 Optimal Fusion Rule Analysis

This result leads to the question of which rule, if any, is optimal, given the set of six

inputs pf, qf, PFP, PFN, PTP, and PTN. (It should be noted that PTP and PTN determine the

values of PFP and PFN.) To answer this question, the following assumptions are made.

The classifiers are assumed to be independent of each other. The a priori component

probability of failure values pf and qf are assumed to be equal. The PFP and PFN values

are assumed to be equal for each classifier, as are the PTP and PTN values. Additionally,

the PFP and PFN values are assumed to be equal to 1 - PTP. The following graph shows

which is the best fusion rule, given the preceding assumptions.

C-9

Figure 5a-2. Where the decision rule changes based values of pf and qf (x-axis) and
values of PTP and PTN (y-axis)

Figure 5a-2 shows a graph of system accuracy vs. the a priori probability of system

failure. Points on the graph that fall above the line indicate the “logical or” rule for

declaring failures should be used for a given system having those characteristics. Points

that fall below the line indicate all rules except number 1 should be used to declare a

failure. That is, a system should be declared operational only if both classifiers indicate a

system failure. This makes sense because the a priori probabilities of the classifiers

being correct is less than 0.5, and hence the opposite of what the classifiers are reading

will be correct more often than the actual readings. As an example, if the two

components are expected to fail 10% of the time, and the system correctly reports errors

with 80% or better accuracy, the “logical or” fusion rule should be used to make

decisions.

System probability sensitivity

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

A priori probability of system failure

S
ys

te
m

 a
cc

ur
ac

y
pr

ob
ab

ili
ty Use “logical or”

fusion rule

Use all fusion rules but #1-
“perpetually” declare a failure

C-10

Although perpetually declaring a failure may result in the best fusion rule score, it would

not result in productive operation of the equipment. This fusion rule ignores all data from

sensors and their associated system, making it pointless to install them. The perpetual

failure rule contains rule 4. Rule 4 states that if both classifiers declare a normal reading,

then a system failure is declared. This doesn’t make much sense. Declaring a perpetual

failure states that regardless of the classifier readings, a failure is declared. This makes

even less sense. In effect, all fusion rules containing rule 4 make no sense, and would not

be followed in practice.

If these eight rules for declaring a failure are dropped, then the remaining seven rules are

all the combinations of rules 1 (F, F), 2 (F, N), and 3 (N, F). Of these seven

combinations, the remaining one that would not be followed in practice would be the

combination of rules 2 and 3. This rule states that a failure is declared if one system or

the other declares a failure, but no failure is declared if both systems declare a failure.

Again, this is not realistic, and this rule would not be followed in practice.

The remaining rule combinations which will be used to further develop the notion of an

optimal rule are:

C-11

Table 5a-5. Practical fusion rule combinations

Rule Combination Rules used
“Logical and” 1

Single sensor 2

Single sensor 3

Single sensor plus

“Logical and”

1,2

Single sensor plus

“Logical and”

1,3

“Logical or” 1,2,3

Table 5a-5 shows the six rule combinations that will be used for all further analysis in

this section.

The next issue is weighting different parts of the scoring rule. The new equation is:

 Fusion rule score = w1PTP + w2(1 – PFP) (5a-3)

Recall that w1, w2 ∈ [0, 1] and w1 + w2 = 1. The weights w1 and w2 are set to appropriate

values depending on which capability is more important. As an example, inspectors on

an assembly line may need to ensure that absolutely no defective parts get through. In

probability terms, this means that false positives (claiming a defect exists when it actually

doesn’t) are less important than false negatives (passing a defective part through as a

functional part). Consequently, the value for w2 would be set much higher than for w1 in

this application. Conversely, it may be more important to ensure that a defect really does

exist if there is time pressure to produce the product, and/or defective products don’t cost

C-12

much if they are mistakenly sent through. In that case, the value for w1 would be set

much higher than for w2.

It is of interest to examine which fusion rule is best if w1 ≠ w2. For the following

discussion, only the ratio w2/w1 is considered. PTP is defined to be a function of pf, qf,

w2/w1 , and R, where R ∈ {(1); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (the six different fusion

rules). Let pf = qf = ρ ∈ [0, 0.6], and recall that w1, w2 ∈ [0,1]. Let (w2/w1) = r (w1 ≠ 0).

Then let

PTP* (ρ, r) ≡ PTP(ρ, r, R)
 Max R ∈ R

where

{(ρ, r) ∈ [0,1] × [1, ∞)|PTP(ρ, r, R) ≥ PTP* (ρ, r)}

If the weight w1 is larger than the value of w2, then the “logical or” fusion rule is always

the best, regardless of the difference in the weights, provided PTP
A and PTP

B is at least 0.5.

(If the values for these probabilities fall below 0.5, then rules 2 and 3 tie for the best rule.

These results are independent of the prior probabilities of failure.) However, if w2 was

set higher, then the fusion rule would change, based on other system parameters. If the

prior probability of system failure was varied, the weight at which the decision rule

changed also varied, as shown in the graph below.

C-13

Figure 5a-3. Where the decision rule changes based values of pf and qf (x-axis) and
weights applied to the scoring rule (y-axis). The values of PTP and PTN are held constant

at differing values, as shown in the legend.

Figure 5a-3 shows the ratio of w2 to w1 that causes a change in the best decision rule, for

the given values of PTP and PTN (recall that PTP = PTN). The best decision rule under each

curve is the “logical or” decision rule. Above each curve, the best decision rule is the

“logical and”. As an example, consider the top curve, where PTP = 0.99. If the prior

probability of system failure is 0.1, then the ratio w2/w1 must be at least 45 before the

best decision rule changes from “logical or” to “logical and”. If the value of PTP becomes

0.6 (the bottom curve) and the prior probability of system failure remains constant, then

the ratio drops to 1 before the best decision rule changes. For all practical purposes, the

“logical or” fusion rule is the best decision rule for all “realistic” values of PTP and the

ratio w2/w1.

Decision Rule Weight Sensitivity

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

Prior Probability of System Failure

W
e

ig
h

t
R

a
ti

o
 w

h
e

re
 D

e
ci

si
o

n
 R

u
le

C

h
a

n
g

e
s

PTP 0.99

PTP 0.98

PTP 0.95

PTP 0.9

PTP 0.8

PTP 0.6

Use “logical and” above the curves—use
“logical or” below them

C-14

In each case, the best decision rule was either “logical or” or “logical and”. No other

decision rule obtained the best score. The best decision rule also changed when the ratio

of the prior probabilities of failure that changed (the weights on the scoring rule were set

equal).

It is also of interest to examine which fusion rule is best if pf ≠ qf. Again, only the ratio

w2/w1 is considered. PTP is still defined to be a function of pf, qf, w2/w1 , and R, where R

∈ {(1); (2); (3); (1, 2); (1, 3); (1, 2, 3)} (the six different fusion rules). Let max (pf, qf) =

r ∈ [0, 0.6], and recall that w1, w2 ∈ [0,1]. Let w2/w1 = r (w1 ≠ 0). Then let

PTP* (ρ, r) ≡ PTP(ρ, r, R)
 Max R ∈ R

where

{(ρ, r) ∈ [0,1] × [1, ∞)|PTP(ρ, r, R) ≥ PTP* (ρ, r)}

C-15

Figure 5a-4. Where the decision rule changes based on max {pf, qf} (x-axis) and the
ratio of pf to qf (y-axis). The values of PTP and PTN are held constant at differing values,

as shown in the legend.

Figure 5a-4 shows where the decision rule changes based on the prior probabilities of

system failure and the probabilities of detection. The decision rule changes between only

“logical or” and a two-rule combination. The two rules are “logical and”, and using the

classifier on the system with the larger probability of failure. The other classifier is

ignored except for the “logical and” rule. If the prior probabilities of system failure are

low, and the probability of a true positive is high, then the ratio of the larger probability

of system failure to the smaller probability of system failure is also high. Specifically, if

PTP = 0.99 and the value of the larger probability of failure is 0.1, then the ratio of this

larger probability of failure to the smaller probability of failure is about 90 before the

decision rule changes from “logical or” to the two-rule combination. Provided the

Point at where Optimal Decision Rule Changes

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6

Value of Larger Prior Probability of Failure

P
ri

o
r

P
ro

b
a

b
il

it
ie

s
o

f
F

a
il

u
re

 R
a

ti
o

PTP 0.99

PTP 0.98

PTP 0.95

PTP 0.9

PTP 0.8

PTP 0.6

Use “logical and”, plus the rule which uses
the sensor on the system which has the
higher probability of failure, above the
curves—use “logical or” below them

C-16

expected failure rates of the two components are not vastly different, “logical or” is still

the best decision rule.

5.A4 Proof that a Logical OR Fusion rule is the Best For a Logical OR Failure Model

THEOREM: Assume there are two components, each with an equal probability of failure

less than 0.5. Assume there are two sensors, one for each component, each with an equal

probability of (accurately) detecting a failure greater then 0.5 PTP(Aθ) = PTN(Aθ) =

PTP(Bφ) = PTN(Bφ). Then the “logical or” fusion rule provides the best score (Score = PTN

+ PTP) among all six useful fusion rules (1, 2, 3, 1 and 2, 1 and 3, 1 and 2 and 3—see

Table 5-12.). (Note that this result does not hold if either or both of the sets of

probabilities is not strictly equal.)

PROOF:

Let 0 < ε < 0.5.

Assume each component’s probability of failure is (0.5 - ε).

Assume each sensor’s probability of accurate detection is (0.5 + ε).

The approach used is to compute the score for each distinct case. Note that the score for

rule 2 will be the same as that for rule 3 (the formulas in the table are exactly the same).

Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1

and 3. This leaves four distinct cases.

C-17

We have x = (0.5 + ε) and y = (0.5 - ε). Using the preceding table, the denominator of

the PTP expression (2x3 + 5x2y + 4xy2 + y3) reduces to (1.5 + ε) with these substitutions,

and is the same for all cases. The denominator of the PTN (or 1 - PFP) expression, (x + y)2,

simplifies to 1. The PTN results were therefore multiplied by (1.5 + ε) so both the PTP

results and the PTN results were additive. The results that are shown for PTN below are

after this multiplication, without showing the (1.5 + ε) in the denominator.

Case 1: Rule 1. (“logical and”) (from the formulas in the table)
 num(PTP) = 0.375 + 0.75ε - 1.5ε2 - 3ε3.
 num(PTN) = 0.75 + 2ε + ε2.
 num(Score) = 1.125 + 2.75ε - 0.5ε2 - 3ε3.

Case 2: Rule 2/Rule 3.
 num(PTP) = 0.375 + 0.25ε + 0.5ε2 + 3ε3.
 num(PTN) = 0.75 + ε2.
 num(Score) = 1.5 + ε + 2ε2 + 4ε3.

Case 3: Rules 1 and 2/Rules 1 and 3.
 num(PTP) = 0.75 + ε - ε2.
 num(PTN) = 0.75 + 2ε + ε2.
 num(Score) = 1.5 + 3ε.

Case 4: Rules 1 and 2 and 3 (“logical or”)
 num(PTP) = 1.125 + 1.25ε - 0.5ε2 + 3ε3.
 num(PTN) = 0.375 + 1.75ε + 2.5ε2 + ε3.
 num(Score) = 1.5 + 3ε + 2ε2 + 4ε3.

Clearly, case 4 has the highest score of all the cases. Furthermore, the cases are ordered

from lowest score to highest score. The only place this is not obvious is for cases 2 and

3. The difference between the two cases (case 3 minus case 2) is 2ε - 2ε2 - 4ε3.

The claim is

 2ε > 2ε2 + 4ε3, for all 0 < ε < 0.5 (5a-4)

or equivalently

C-18

 ε + 2ε2 < 1 (5a-5)

or

 ε(1 + 2ε) <1. (5a-6)

Notice that

 1 < 1 + 2ε <2. (5a-7)

Multiplication by ε yields

 ε < ε(1 + 2ε) < 2ε < 1, (5a-8)

which shows the desired result

 ε(1 + 2ε) <1. (5a-9)

This is obviously true for 0 < ε < 0.5. Hence case 3 has a larger score than case 2, and the

cases are arranged in increasing score order.

5.A5 Proof that a Logical AND Fusion rule is the Best For a Logical AND Failure

Model

The result from the preceding section suggests that a “logical and” failure rule would be

optimal for a “logical and” failure model.

The implicit assumption in a “logical and” failure model is that a system component

(subcomponent, etc.) is functional until every part in the component has failed. This

means that not every part is critical to system operation. This assumption contradicts the

general formulation of the system model presented in this paper, where every part of the

component is considered to be critical to system operation. However, there are system

C-19

components that are designed to be redundant. These components have many

subcomponents which all perform the same operation. If some subcomponents fail, the

remaining subcomponents will continue to perform the operation that is critical to system

functionality. In the extreme case, if all the subcomponents fail except one, that single

remaining subcomponent can still perform the component’s function. Since some

components of a system may be designed to be redundant, it seems worthwhile to

determine which fusion rule is best (if there is a “best” rule) for those components which

have a redundant functional design.

Figure 5a-5. A notional component designed to have redundant functionality

Figure 5a-5 shows a system component designed to have redundant functionality. Each

subcomponent has the same number to indicate identical functionality. This component

would not be considered to have failed until all three subcomponents fail.

Component A

Subcomp. 1

Subcomp. 1

Subcomp. 1

A

B

C

A

B

C

ReasonerComponent A

Subcomp. 1

Subcomp. 1

Subcomp. 1

A

B

C

A

B

C

Reasoner

C-20

Table 5a-6. Table 5a-2 reproduced for ease of reference

Classifier
Reports
(A, B)

True State

F, F F, N N, F N, N

F, F 1. x2y2 2. xy3 3. xy3 4. y4

F, N 5. x2y2 6. x3y 7. xy3 8. x2y2

N, F 9. x2y2 10. xy3 11. x3y 12. x2y2

N, N 13. x2y2 14. x3y 15. x3y 16. x4

Table 5a-6 shows the likelihood of the occurrence of a particular event, and is reproduced

here as an aid for Table 5a-7.

Table 5a-7. Summary of probability values for different fusion rules
Probability
Measure

Fusion Rule

Cells used to declare
a failure

(Cells with an actual
failure are 1-4)

PTP True Positive
(intersection with cells

1-4)

PFP False Positive
(intersection with cells

5-16)

1 (logical and) 1, 5, 9, 13 x2
(x + y)2

3xy2

(x3 + 4x2y + 5xy2 + 2y3)
2 2, 6, 10, 14 xy

(x + y)2
2x2y + y3

(x3 + 4x2y + 5xy2 + 2y3)
3 3, 7, 11, 15 xy

(x + y)2
2x2y + y3

(x3 + 4x2y + 5xy2 + 2y3)
4 4, 8, 12, 16 y2

(x + y)2
x3 + 2xy2

(x3 + 4x2y + 5xy2 + 2y3)
1, 2 1, 2, 5, 6, 9, 10, 13,

14
x2 + xy
(x + y)2

2x2y + 3xy2 + y3
(x3 + 4x2y + 5xy2 + 2y3)

1, 3 1, 3, 5, 7, 9, 11, 13,
15

x2 + xy
(x + y)2

2x2y + 3xy2 + y3
(x3 + 4x2y + 5xy2 + 2y3)

1, 4 1, 4, 5, 8, 9, 12, 13,
16

x2 + y2

(x + y)2
x3 + 5x2y

(x3 + 4x2y + 5xy2 + 2y3)
2, 3 2, 3, 6, 7, 10, 11, 14,

15
2xy

(x + y)2
4xy2 + 2y3

(x3 + 4x2y + 5xy2 + 2y3)

C-21

2, 4 2, 4, 6, 8, 10, 12, 14,
16

xy + y2
(x + y)2

x3 + 2x2y + 2xy2 + y3
(x3 + 4x2y + 5xy2 + 2y3)

3, 4 3, 4, 7, 8, 11, 12, 15,
16

xy + y2
(x + y)2

x3 + 2x2y + 2xy2 + y3
(x3 + 4x2y + 5xy2 + 2y3)

1, 2, 3 (logical
or)

1-3, 5-7, 9-11, 13-15 x2 + 2xy

(x + y)2
4x2y + 3xy2 + 2y3

(x3 + 4x2y + 5xy2 + 2y3)
1, 2, 4 1-2, 4-6, 8-10, 12-

14, 16
x2 + xy + y2

(x + y)2
x3 + 2x2y + 5xy2 + y3

(x3 + 4x2y + 5xy2 + 2y3)
1, 3, 4 1, 3-5, 7-9, 11-13,

15-16
x2 + xy + y2

(x + y)2
x3 + 2x2y + 5xy2 + y3

(x3 + 4x2y + 5xy2 + 2y3)
2, 3, 4 2-4, 6-8, 10-12, 14-

16
2xy + y2
(x + y)2

x3 + 4x2y + 2xy2 + 2y3
(x3 + 4x2y + 5xy2 + 2y3)

1, 2, 3, 4 1-16 1

1

Table 5a-7 shows the PTP and PFP values for each of the 15 different fusion rules. Since it

is hard to see from Table 5a-7 which rules have high and low probability values, the

following table provides an example with specific values.

Table 5a-8. Fusion rule probability values for a specific case

Probability
Measure

PTP (overlap
with cells 1-4)

PFP (overlap
with cells 5-16) Score:

Fusion Rule
1 0.9801 0.009850754 1.970249246
2 0.0099 0.487686935 0.522213065
3 0.0099 0.487686935 0.522213065
4 0.0001 0.014775377 0.985324623

1,2 0.99 0.497537688 1.492462312
1,3 0.99 0.497537688 1.492462312
1,4 0.9802 0.024626131 1.955573869
2,3 0.0198 0.975373869 0.044426131
2,4 0.01 0.502462312 0.507537688
3,4 0.01 0.502462312 0.507537688

1,2,3 0.9999 0.985224623 1.014675377
1,2,4 0.9901 0.512313065 1.477786935
1,3,4 0.9901 0.512313065 1.477786935
2,3,4 0.0199 0.990149246 0.029750754

1,2,3,4 1 1 1

C-22

Table 5a-8 shows the values that would be obtained if the following substitutions were

made: pf = qf = PFP = PFN = .01, PTP = PTN = .99. Note that the “logical and” rule

provides the highest fusion rule score.

The theorem and proof are analogous to the preceding section.

THEOREM: Assume there are two components, each with an equal probability of failure

less than 0.5. Assume there are two sensors, one for each component, each with an equal

probability of (accurately) detecting a failure greater then 0.5 PTP(Aθ) = PTN(Aθ) =

PTP(Bφ) = PTN(Bφ). Then the “logical and” fusion rule provides the best score (Score =

PTN + PTP) among all six useful fusion rules (1, 2, 3, 1 and 2, 1 and 3, 1 and 2 and 3).

(Note that this result does not hold if either or both of the sets of probabilities is not

strictly equal.)

PROOF:

Let 0 < ε < 0.5.

Assume each component’s probability of failure is (0.5 - ε).

Assume each sensor’s probability of accurate detection is (0.5 + ε).

The approach used is to compute the score for each distinct case. Note that the score for

rule 2 will be the same as that for rule 3 (the formulas in the table are exactly the same).

Similarly, the score for rule combination 1 and 2 will be the same for rule combination 1

and 3. This leaves four distinct cases.

C-23

We have x = (0.5 + ε) and y = (0.5 - ε). Using the preceding table, the denominator of

the PTN (or 1 - PFP) expression (x3 + 4x2y + 5xy2 + y3) reduces to (1.5 - ε) with these

substitutions, and is the same for all entries in the table. The denominator of the PTP

expression, (x + y)2, simplifies to 1. The PTP results were therefore multiplied by (1.5 - ε)

so both the PTP results and the PTN results were additive. The results that are shown for

PTP below are after this multiplication, without showing the (1.5 - ε) in the denominator.

Case 1: Rule 1. (“logical and”) (from the formulas in the table)
 num(PTP) = 0.375 + 1.25ε + 0.5ε2 - ε3.
 num(PTN) = 0.625 + 0.75ε + 1.5ε2 - 3ε3.
 num(Score) = 1 + 2ε + 2ε2 - 4ε3.

Case 2: Rule 2/Rule 3.
 num(PTP) = 0.375 - 0.25ε - 1.5ε2 + ε3.
 num(PTN) = 0.375 + 0.25ε - 0.5ε2 +3ε3.
 num(Score) = .75 - 2ε2 + 4ε3.

Case 3: Rules 1 and 2/Rules 1 and 3.
 num(PTP) = 0.75 + ε - ε2.
 num(PTN) = 0.25 + ε + ε2.
 num(Score) = 1 + 2ε.

Case 4: Rules 1 and 2 and 3 (“logical or”)
 num(PTP) = 1.125 - 0.75ε - 2.5ε2 + ε3.
 num(PTN) = -0.675 + 1.25ε + 0.5ε2 + 3ε3.
 num(Score) = 0.5 + 0.5ε - 2ε2 + 4ε3.

Clearly, the “logical and” fusion rule has the highest score among these four cases (note

that 2ε2 > 4ε3 because 2 is always greater than 4ε when ε < 0.5). Not surprisingly, the

“logical or” rule has the lowest score. This result indicates that the “logical and” fusion

rule should be used to assess the health of components which have redundant

functionality.

D-1

Appendix D. Computer Code

function [subset] = subsetgen()

global subset tot N

% This program lists the natural lexicographic order of all subsets for a given number of sensors, up to 9
total

% Input number of sensors, total count, and storage matrix

N=3;
tot=2^N-1;
subset=zeros(tot,2); % First column is index, second is subset

% Initialize counts
a=0;
b=0;
c=0;
d=0;
e=0;
f=0;
g=0;
h=0;
k=0;

t=0; % Used as sensor subset index

% Subsets of size 1

for a=1:N
 t=t+1;
 subset(t,1)=t;
 subset(t,2)=a;
end

% Subsets of size 2

for a=1:N-1
 for b=2:N
 if b>a
 t=t+1;
 input=10*a+b;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
end

% Subsets of size 3

for a=1:N-2
 for b=2:N-1

D-2

 for c=3:N
 if b>a
 if c>b
 t=t+1;
 input=100*a+10*b+c;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
end

% Subsets of size 4

for a=1:N-3
 for b=2:N-2
 for c=3:N-1
 for d=4:N
 if b>a
 if c>b
 if d>c
 t=t+1;
 input=1000*a+100*b+10*c+d;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
 end
 end
end

% Subsets of size 5

for a=1:N-4
 for b=2:N-3
 for c=3:N-2
 for d=4:N-1
 for e=5:N
 if b>a
 if c>b
 if d>c
 if e>d
 t=t+1;
 input=10000*a+1000*b+100*c+10*d+e;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
 end

D-3

 end
 end
 end
end

% Subsets of size 6

for a=1:N-5
 for b=2:N-4
 for c=3:N-3
 for d=4:N-2
 for e=5:N-1
 for f=6:N
 if b>a
 if c>b
 if d>c
 if e>d
 if f>e
 t=t+1;
 input=100000*a+10000*b+1000*c+100*d+10*e+f;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
end

% Subsets of size 7

for a=1:N-6
 for b=2:N-5
 for c=3:N-4
 for d=4:N-3
 for e=5:N-2
 for f=6:N-1
 for g=7:N
 if b>a
 if c>b
 if d>c
 if e>d
 if f>e
 if g>f
 t=t+1;
 input=1000000*a+100000*b+10000*c+1000*d+100*e+10*f+g;
 subset(t,1)=t;
 subset(t,2)=input;
 end

D-4

 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
end

% Subsets of size 8

for a=1:N-7
 for b=2:N-6
 for c=3:N-5
 for d=4:N-4
 for e=5:N-3
 for f=6:N-2
 for g=7:N-1
 for h=8:N
 if b>a
 if c>b
 if d>c
 if e>d
 if f>e
 if g>f
 if h>g
 t=t+1;

input=10000000*a+1000000*b+100000*c+10000*d+1000*e+100*f+10*g+h;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
end

% Subsets of size 9

for a=1:N-8

D-5

 for b=2:N-7
 for c=3:N-6
 for d=4:N-5
 for e=5:N-4
 for f=6:N-3
 for g=7:N-2
 for h=8:N-1
 for k=9:N
 if b>a
 if c>b
 if d>c
 if e>d
 if f>e
 if g>f
 if h>g
 if k>h
 t=t+1;

input=100000000*a+10000000*b+1000000*c+100000*d+10000*e+1000*f+100*g+10*h+k;
 subset(t,1)=t;
 subset(t,2)=input;
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
end

D-6

function [fD] = combinet(rocA,rocB)

% This program combines 2 ROC curves using within fusion

global M N x roc rocA rocB I J K Q alpha beta gam temp
global fA fB fC fD fBQ

% ROC curve computation

xFP=2*x-x.^2;
rocTP=zeros(1,N);
for I=1:N
 rocTP(I)=rocA(I)+rocB(I)-rocA(I)*rocB(I);
end
fD=rocTP;
fA=rocA;
fB=rocB;

fD=interp1(xFP,rocTP,x);

figure
plot(x,fA,'red.');
hold on
plot(x,fB,'blue.');
hold on
plot(x,fD,'green.');
hold off

function [fC] = combine(rocA,rocB,fBQ)

% This program combines 2 ROC curves using across fusion

global M N x roc rocA rocB I J K Q alpha beta gam temp
global fA fB fC fD fBQ

% ROC curve computation
fA = rocA;
FA = alpha*fA + (1-alpha)*x;
GA = 1 - FA;

fB = rocB;
fBQa = fBQ(K,1:N,1:N);
fBQaa = zeros(N,N);
for I=1:N
 for J=1:N
 fBQaa(I,J)=fBQa(1,I,J);
 end
end
FBQ = beta*fBQaa + (1-beta)*Q;
GBQ = 1 - FBQ;

fC = zeros(1,N);
for I=1:N,

D-7

 minvalue = min(GA(1:I).*GBQ(I,1:I));
 fC(I) = temp - (temp-1)*((I-1)/M) - temp*minvalue;
end
%fC=interp1(?,fCa,x)
figure
plot(x,fA,'red.');
hold on
plot(x,fB,'blue.');
hold on
plot(x,fC,'green.');
hold off

D-8

% This program computes every cost feasible ROC curve combination of sensors on a two component
system. Each component consists of two subcomponents. Three of the subcomponents have two sensors,
and one has three.

global M N x roc rocA rocB C I J K Q alpha beta gam temp
global fA fB fC fD fBQ fCout

salloc22 % (get combined curves from other component-
 % 2x2 subcomponent configuration)

M=100;% the number of subintervals
 % used to partition the interval [0,1]

%%% Initialize x coordinates
N = M+1; % number of points used to plot
x = zeros(1,N);
for I=1:N,
 x(I) = (I-1)/M;
end

% Enter the prior probability alpha
alpha = 0.5;

% Enter the prior probability beta
beta = 0.5;

% Initialize Q
gam = alpha + beta - alpha*beta;
temp = 1/gam;
Q = zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 if J <= I;
 Q(I,J) = (I-J)/(N-J);
 end
 R = Q(I,1:J);
 %fBQ(I,1:J) = interp1(p,fB,R);
 end
end

roc=zeros(5,N); % 5 ROC curves
fBQ=zeros(10,N,N); % 10 different entries

% ROC 1
roc(1,1:N)=(x).^.1;
fBQ(1,1:N,1:N) = (Q).^(.1);

% ROC 2
roc(2,1:N)=((2/pi)*asin(x)).^(1/6);
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).^(1/6);

% ROC 3
roc(3,1:N)=tanh(4*x);
fBQ(3,1:N,1:N) = tanh(4*Q);

D-9

% ROC 4
roc4=(x).^.13;
roc(4,1:N)=roc4;
fBQ(4,1:N,1:N) = (Q).^(.13);

% ROC 5
roc5=zeros(1,N);
for p=1:N
 pp=(p/100)-.01;
 roc5(p)=((1-(pp-1)^2)^(.5));
end
roc(5,1:N)=roc5;
fBQ(5,1:N,1:N)=((1-(Q-1).^2).^(.5));

% Plot all five ROC curves

figure
plot(x,roc(1,1:N),'r',x,roc(2,1:N),'y',x,roc(3,1:N),'g',x,roc(4,1:N),'b',x,roc(5,1:N),'k')
legend('ROC curve E', 'ROC curve F', 'ROC curve G', 'ROC curve H','ROC Curve I',4);
xlabel('Probability of False Positive');
ylabel('Probability of True Positive');
title('Individual Sensor ROC Curves');

% Set cost for each curve, and total budget

cost1=45;
cost2=30;
cost3=25;
cost4=35;
cost5=35;
budget=135;

% 3 combinations are not cost feasible

% Determine cost for each combination

cost13=cost1+cost3;
cost14=cost1+cost4;
cost15=cost1+cost5;
cost23=cost2+cost3;
cost24=cost2+cost4;
cost25=cost2+cost5;
cost123=cost1+cost2+cost3;
cost124=cost1+cost2+cost4;
cost125=cost1+cost2+cost5;
cost134=cost1+cost3+cost4;
cost135=cost1+cost3+cost5;
cost145=cost1+cost4+cost5;
cost234=cost2+cost3+cost4;
cost235=cost2+cost3+cost5;
cost245=cost2+cost4+cost5;
cost1234=cost1+cost2+cost3+cost4;
cost1235=cost1+cost2+cost3+cost5;

D-10

cost1245=cost1+cost2+cost4+cost5;
cost1345=cost1+cost3+cost4+cost5;
cost2345=cost2+cost3+cost4+cost5;
cost12345=cost1+cost2+cost3+cost4+cost5;

%Initialize ROC curves

fC13=zeros(1,N);
fC14=zeros(1,N);
fC15=zeros(1,N);
fC23=zeros(1,N);
fC24=zeros(1,N);
fC25=zeros(1,N);
fC123=zeros(1,N);
fC124=zeros(1,N);
fC125=zeros(1,N);
fC134=zeros(1,N);
fC135=zeros(1,N);
fC145=zeros(1,N);
fC234=zeros(1,N);
fC235=zeros(1,N);
fC245=zeros(1,N);
fC1234=zeros(1,N);
fC1235=zeros(1,N);
fC1245=zeros(1,N);
fC1345=zeros(1,N);
fC2345=zeros(1,N);
fC12345=zeros(1,N);

% Run combinations if cost eligible

% Same side

% Combination 12
K=1;
rocA=roc(K,1:N);
K=2;
rocB=roc(K,1:N);
combinet;
fD12=fD;
%xFP=2*x-x.^2;

% Combination 34
K=3;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combinet;
fD34=fD;
%xFP=2*x-x.^2;

% Combination 35
K=3;
rocA=roc(K,1:N);

D-11

K=5;
rocB=roc(K,1:N);
combinet;
fD35=fD;
%xFP=2*x-x.^2;

% Combination 45
K=4;
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combinet;
fD45=fD;
%xFP=2*x-x.^2;

%Combination 345
rocA=fD34;
K=5;
rocB=roc(K,1:N);
combinet;
fD345=fD;

% Different sides (2 sensors)

% Combination 13
if cost13 <= budget
K=1;
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;
fC13=fC;
end

% Combination 14
if cost14 <= budget
K=1;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;
fC14=fC;
end

% Combination 15
if cost15 <= budget
K=1;
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combine;
fC15=fC;
end

D-12

% Combination 23
if cost23 <= budget
K=2;
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;
fC23=fC;
end

% Combination 24
if cost24 <= budget
K=2;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;
fC24=fC;
end

% Combination 25
if cost25 <= budget
K=2;
rocA=roc(K,1:N);
K=5;
rocB=roc(K,1:N);
combine;
fC25=fC;
end

% Different sides (3 sensors)

% Combination 123
if cost123 <= budget
rocA=fD12;
K=3;
rocB=roc(K,1:N);
combine;
fC123=fC;
end

% Combination 124
if cost124 <= budget
rocA=fD12;
K=4;
rocB=roc(K,1:N);
combine;
fC124=fC;
end

% Combination 125
if cost125 <= budget
rocA=fD12;
K=5;

D-13

rocB=roc(K,1:N);
combine;
fC125=fC;
end

% Combination 134
if cost134 <= budget
rocA=fD34;
K=1;
rocB=roc(K,1:N);
combine;
fC134=fC;
end

% Combination 135
if cost135 <= budget
rocA=fD35;
K=1;
rocB=roc(K,1:N);
combine;
fC135=fC;
end

% Combination 145
if cost145 <= budget
rocA=fD45;
K=1;
rocB=roc(K,1:N);
combine;
fC145=fC;
end

% Combination 234
if cost234 <= budget
rocA=fD34;
K=2;
rocB=roc(K,1:N);
combine;
fC234=fC;
end

% Combination 235
if cost235 <= budget
rocA=fD35;
K=2;
rocB=roc(K,1:N);
combine;
fC235=fC;
end

% Combination 245
if cost245 <= budget
rocA=fD45;
K=2;

D-14

rocB=roc(K,1:N);
combine;
fC245=fC;
end

% Different sides (4 sensors)

%Combination 1234
if cost1234 <= budget
rocA=fD12;
rocB=fD34;
fBQs=zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,fD34,R);
 end
end
fBQ(6,1:N,1:N)=fBQs;
K=6;
combine;
fC1234=fC;
end

%Combination 1235
if cost1235 <= budget
rocA=fD12;
rocB=fD35;
fBQs=zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,fD35,R);
 end
end
fBQ(7,1:N,1:N)=fBQs;
K=7;
combine;
fC1235=fC;
end

%Combination 1245
if cost1245 <= budget
rocA=fD12;
rocB=fD45;
fBQs=zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,fD45,R);
 end
end
fBQ(8,1:N,1:N)=fBQs;
K=8;

D-15

combine;
fC1245=fC;
end

% Combination 1345
if cost1345 <= budget
rocA=fD345;
K=1;
rocB=roc(K,1:N);
combine;
fC1345=fC;
end

% Combination 2345
if cost2345 <= budget
rocA=fD345;
K=2;
rocB=roc(K,1:N);
combine;
fC2345=fC;
end

% Different sides (5 sensors)

if cost12345 <= budget
rocA=fD12;
rocB=fD345;
fBQs=zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,fD345,R);
 end
end
fBQ(9,1:N,1:N)=fBQs;
K=9;
combine;
fC12345=fC;
end

% Store results in a single array
fCouta=zeros(21,N);
fCouta(1,1:N)=fC13;
fCouta(2,1:N)=fC14;
fCouta(3,1:N)=fC15;
fCouta(4,1:N)=fC23;
fCouta(5,1:N)=fC24;
fCouta(6,1:N)=fC25;
fCouta(7,1:N)=fC123;
fCouta(8,1:N)=fC124;
fCouta(9,1:N)=fC125;
fCouta(10,1:N)=fC134;
fCouta(11,1:N)=fC135;
fCouta(12,1:N)=fC145;

D-16

fCouta(13,1:N)=fC234;
fCouta(14,1:N)=fC235;
fCouta(15,1:N)=fC245;
fCouta(16,1:N)=fC1234;
fCouta(17,1:N)=fC1235;
fCouta(18,1:N)=fC1245;
fCouta(19,1:N)=fC1345;
fCouta(20,1:N)=fC2345;
fCouta(21,1:N)=fC12345;

% Combine results from both components
C=0;
fCboth=zeros(189,N); % Change based on configuration
for II=1:21 % Change based on configuration
 for JJ=1:9 % Change based on configuration
 C=C+1;
 if fCout(JJ,50)>0
 rocA=fCout(JJ,1:N);
 rocB=fCouta(II,1:N);
 fBQs=zeros(N);
 for I = 1:N; %r=(I-1)/M
 for J = 1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,rocB,R);
 end
 end
 fBQ(10,1:N,1:N)=fBQs;
 K=10;
 combine;
 fCboth(C,1:N)=fC;
 end
 end
end

% Determine best curve
fCbotht=fCboth';
for I=1:N
 [maxroc(I),maxind(I)]=max(fCbotht(I,:));
end
figure
plot(maxind);
figure
plot(maxroc);

D-17

function [fCout] = salloc22()

% This program determines the optimal sensor allocation for a particular system component. The
component is assumed to consist of 2 subcomponents, each with 2 sensors. Each subcomponent is assumed
to require at least one sensor.

global M N x roc rocA rocB I J K Q alpha beta gam temp
global fA fB fC fD fBQ fCout

M=100;% the number of subintervals used to partition the interval [0,1]

%%% Initialize x coordinates
N = M+1; % number of points used to plot
x = zeros(1,N);
for I=1:N,
 x(I) = (I-1)/M;
end

% Enter the prior probability alpha
alpha = 0.5;
% Enter the prior probability beta
beta = 0.5;

% Initialize Q
gam = alpha + beta - alpha*beta;
temp = 1/gam;
Q = zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 if J <= I;
 Q(I,J) = (I-J)/(N-J);
 end
 R = Q(I,1:J);
 %fBQ(I,1:J) = interp1(p,fB,R);
 end
end

roc=zeros(4,N);
fBQ=zeros(5,N,N);

% ROC 1
roc(1,1:N)=(x).^.1;
fBQ(1,1:N,1:N) = (Q).^(.1);

% ROC 2
roc(2,1:N)=((2/pi)*asin(x)).^(1/6);
fBQ(2,1:N,1:N) = ((2/pi)*asin(Q)).^(1/6);

% ROC 3
roc(3,1:N)=tanh(4*x);
fBQ(3,1:N,1:N) = tanh(4*Q);

% ROC 4
roc4=(x).^.13;

D-18

roc(4,1:N)=roc4;
fBQ(4,1:N,1:N) = (Q).^(.13);

% Set cost for each curve, and total budget

cost1=45;
cost2=30;
cost3=25;
cost4=35;
budget=125;

% Determine budget eligibility for each combination

cost13=cost1+cost3;
cost14=cost1+cost4;
cost23=cost2+cost3;
cost24=cost2+cost4;
cost123=cost1+cost2+cost3;
cost124=cost1+cost2+cost4;
cost134=cost1+cost3+cost4;
cost234=cost2+cost3+cost4;
cost1234=cost1+cost2+cost3+cost4;

%Initialize ROC curves

fC13=zeros(1,N);
fC14=zeros(1,N);
fC23=zeros(1,N);
fC24=zeros(1,N);
fC123=zeros(1,N);
fC124=zeros(1,N);
fC134=zeros(1,N);
fC234=zeros(1,N);
fC1234=zeros(1,N);

% Run combinations if cost eligible

% Same side

% Combination 12
K=1;
rocA=roc(K,1:N);
K=2;
rocB=roc(K,1:N);
combinet;
fD12=fD;
%xFP=2*x-x.^2;

% Combination 34
K=3;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combinet;

D-19

fD34=fD;
%xFP=2*x-x.^2;

% Different sides (2 sensors)
% Combination 13
if cost13 <= budget
K=1;
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;
fC13=fC;
end

% Combination 14
if cost14 <= budget
K=1;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;
fC14=fC;
end

% Combination 23
if cost23 <= budget
K=2;
rocA=roc(K,1:N);
K=3;
rocB=roc(K,1:N);
combine;
fC23=fC;
end

% Combination 24
if cost24 <= budget
K=2;
rocA=roc(K,1:N);
K=4;
rocB=roc(K,1:N);
combine;
fC24=fC;
end

% Different sides (3 sensors)
% Combination 123
if cost123 <= budget
rocA=fD12;
K=3;
rocB=roc(K,1:N);
combine;
fC123=fC;
end

D-20

% Combination 124
if cost124 <= budget
rocA=fD12;
K=4;
rocB=roc(K,1:N);
combine;
fC124=fC;
end

% Combination 134
if cost124 <= budget
rocA=fD34;
K=1;
rocB=roc(K,1:N);
combine;
fC134=fC;
end

% Combination 234
if cost234 <= budget
rocA=fD34;
K=2;
rocB=roc(K,1:N);
combine;
fC234=fC;
end

% Different sides (4 sensors)
%Combination 1234
if cost1234 <= budget
rocA=fD12;
rocB=fD34;
fBQs=zeros(N);
for I = 1:N; %r=(I-1)/M
 for J =1:M; %p=(J-1)/M
 R = Q(I,1:J);
 fBQs(I,1:J) = interp1(x,fD34,R);
 end
end
fBQ(5,1:N,1:N)=fBQs;
K=5;
combine;
fC1234=fC;
end
fCout=zeros(9,N);
fCout(1,1:N)=fC13;
fCout(2,1:N)=fC14;
fCout(3,1:N)=fC23;
fCout(4,1:N)=fC24;
fCout(5,1:N)=fC123;
fCout(6,1:N)=fC124;
fCout(7,1:N)=fC134;
fCout(8,1:N)=fC234;
fCout(9,1:N)=fC1234;

Bib-1

Bibliography

1. Aamodt, A. and Plaza, E. “Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches.” AI Communications, vol. 7,
no. 1, pp 39-59, 1994.

2. Albus, J. “A New Approach to Manipulator Control: The Cerebellar Model

Articulation Controller (CMAC), Transactions of the ASME: Journal of Dynamic
Systems, Measurement, and Control, pp 220-227, 1975.

3. Alkon, Blackwell, Barbour, Werness, and Vogl. “Intelligent Robots and Computer

Vision: Fifth in a Series.” Proceedings of SPIE – The International Society for
Optical Engineering, vol. 726, pp 552-557, 1986.

4. Allison Engine Company. “AE 3007 High Reliability Engine Control Program –

Development/Demonstration of Reliability Enhanced Control Technologies to
Improve Aircraft Dispatch Reliability.” NASA3 – 27394 Task Order 008,
April 1998.

5. Alsing S. “The Evaluation of Competing Classifiers”. Ph D Dissertation, Air Force

Institute of Technology, March 2000.

6. Anonymous. Webpage at http://www.fmeca.com/.

7. Anonymous. Webpage at http://www.libinst.com/cepst.htm.

8. Anonymous. Webpage at http://www.mtain.com/relia/relfmeca.htm

9. Atlas, L., Bloor, G., Brotherton, T., Howard, L., Jaw, L., Kacprzynski, G., Karsai,

G., Mackey, R., Mesick, J., Reuter, R., and Roemer, M. “An Evolvable Tri-
Reasoner IVHM System”. The Boeing Company, 1999.

10. Azzam, H. and Brindley, J. “Structural Health Monitoring.” MJA Dynamics

Briefing. Hampshire, UK. 15 Jul 97.

11. Bearse, T. “Deriving a Diagnostic Inference Model from a Test Strategy.” 1998

IEEE International Workshop on System Test and Diagnosis. 7-9 April 1998.

12. Ben-Bassat, M., Beniaminy, I., and Joseph, D. “Can Model-Based and Case-Based

Expert Systems Operate Together?” 1998 IEEE International Workshop on System
Test and Diagnosis. 7-9 April 1998.

13. Ben-Basset, M., Beniaminy, I., and Joseph, D. “Different Approaches to Fault

Isolation Support Software.” 1998 IEEE International Workshop on System Test
and Diagnosis. 7-9 April 1998.

http://www.fmeca.com/
http://www.libinst.com/cepst.htm
http://www.mtain.com/relia/relfmeca.htm

Bib-2

14. Biasizzo, A., Zuzek, A., and Novak, F. “Sequential Diagnostics Toll.” 1998 IEEE

International Workshop on System Test and Diagnosis. 7-9 April 1998.

15. Bishop, C. “Neural Networks for Pattern Recognition.” Oxford University Press,

1998.

16. Blemel, K. “Dynamic Autonomous Test Systems for Prognostic Health

Management.” Joint Strike Fighter Program Office paper. 10 Nov 98.

17. Bogert, B., Healy, M., and Tukey, J. "The Quefrency Alanysis of Time Series for

Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking."
Proceedings of the Symposium on Time Series Analysis, pp. 209-243, 1963.

18. Borden, A. “The Impact of Advanced Computer Systems on Avionics Reliability.”

Computers and Avionics. pp S7-S21.

19. Borky, J., Lachenmaier, R., Messing, J., and Frink, A. “Architectures for Next

Generation Military Avionics Systems.” 1998 IEEE Aerospace Conference
Proceedings, pp 265-81, vol. 1.

20. Bursch, P., Meisner, J., and Winegar, K. “A PC Based Expert Diagnostic Tool.”

Honeywell, Inc. paper. 1988.

21. Cardona, R. “Aircraft Prognostics and Advanced Diagnostics Project: Problem

Identification Task Group Study and Recommendations”. Air Force Research
Laboratory Logistics Readiness Branch, 1999.

22. Chu, S. “Using a Neural Network and a Statistical Classifier for Aircraft Fault

Diagnostics.” Human Resources Directorate, Logistics Research Division,
WPAFB. Aug 1996.

23. Conway, J. and Sloane, N. “Lexicographic Codes: Error-Correcting Codes from

Game Theory”. IEEE Trans. Information Theory, pp 337-348, 1986.

24. Cover, T. “Geometrical and Statistical Properties of Systems of Linear Inequalities

with Applications in Pattern Recognition.” IEEE Transactions on Neural Networks,
vol. 2, no. 2. 1965.

25. Dasarathy, B. Webpage at http://www.inforfusion.org/mission.htm. 1999.

26. De Montauk, J.P. “On-Board Maintenance Aids.” Airbus Industrie. (private
communication)

http://www.inforfusion.org/mission.htm

Bib-3

27. Dean, J. “Integrated Diagnostics: Confusion and Solutions.” SA-ALC/LDAE
paper. Undated.

28. Dill, H. “Pass/Fail Limits-The Key to Effective Diagnostic Tests.” 1998 IEEE

International Workshop on System Test and Diagnosis. 7-9 April 1998.

29. Dussault, H., Clothier, R., and Ferrell, B. “Integrated Diagnostics During Design.”

Rome Air Development Center paper. Undated draft. (private communication)

30. Eilbert, R. and Christensen, R. “Contrivedness: The Boundary Between Pattern

Recognition and Numerology.” Pattern Recognition, vol. 15, no. 3. 1982.

31. Federici, D., Bisgambiglia, P., and Santucci, J. “VHDL Behavioral Fault

Simulator: Experiments o (sic) the ITC’99 Benchmarks”. 1999 IEEE International
Workshop on System Test and Diagnosis.

32. Feldkamp, L., and Marko, K. “Model Based Controls and Diagnostics.” General

Electric, Ford Motor Company Final Program Review. Dearborn MI. 7 Jan 98.

33. Ferlez, R. and Lang, D. “Gear Tooth Fault Detection and Tracking Using the

Wavelet Transform.” Proceedings of the Conference on Prognosis of Residual Life
of Machinery and Structures; 52nd Meeting of the Machine Failure Prevention
Technology Society; Virginia Beach VA. 1998. pp 451-460.

34. Furnival, G. and Wilson, R. “Regressions by Leaps and Bounds”. Technometrics,

vol. 16, no. 4, pp 499-511, Nov 1974.

35. Girosi, F. and Poggio, T. “Networks and the best approximation property.”

Biological Cybernetics, pp 169-176, 1990.

36. Greitzer, F., Stahlman, E., Ferryman, T., Wilson, B., Kangas, L., and Sisk, D.

“Development of a Framework for Predicting Life of Mechanical Systems: Life
Extension Analysis and Prognostics (LEAP)”. Pacific Northwest Laboratories
paper presented at the International Society of Logistics (SOLE) 1999 Symposium,
Las Vegas NV, August 30 – September 2, 1999.

37. Hadden, G., Bergstrom, P., Bennett, B., Vachtsevanos, G., and Van Dyke, J.

“Machinery Diagnostics and Prognostics/Condition Based Maintenance: A Progress
Report”. Proceedings of the 53rd Meeting of the Society for Machinery Failure
Prevention Technology, pp 367-378, 1999.

38. Hansen L. and Salamon P. “Neural network ensembles”. IEEE Transactions

Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp.993 - 1001, 1990.

Bib-4

39. Hartman E., Keeler J., and Kowalski J. “Layered Neural Networks with Gaussian
Hidden Units as Universal Approximations.” Neural Computations, vol. 2, no. 2,
pp 210-215, 1990.

40. Hornik, K., Stinchcombe, M., and White, H. “Universal Approximation of

Unknown Mapping and its Derivatives Using Multilayer Feedforward Neural
Networks”. Proceedings of the Second Joint Technology Workshop on Neural
Networks and Fuzzy Logic, NASA, pp 62-76, 1990.

41. Hyafil, L. and Rivest, R. “Constructing Optimal Binary Decision Trees is NP-

complete.” Information Processing Letters, vol. 5, no. 1, pp 15-7. 1976.

42. John, B. “Fuzzy Inferencing Systems – Problems and Some Solutions.” Working

paper available at http://www.cms.dmu.ac.uk/People/rij/newrep/newrep.html. Dec
1995.

43. Kangas, L., Greitzer, F., and Illi, O. “TEDANN: Turbine Engine Diagnostic

Artificial Neural Network”. US Army Ordnance Center and School, Aberden
Proving Ground, Maryland. Presented at the Advanced Information Systems and
Technology Conference 28-30 March 1994.

44. Keller, K., Holland, J., Bartz, D., and Swearingen, K. “An Advanced Onboard

Diagnostic System for Vehicle Management.” 1998 IEEE International Workshop
on System Test and Diagnosis. 7-9 April 1998.

45. Klassen, M., Pao, Y., and Chen, V. “Characteristics of the Functional Link Net: A

Higher Order Delta Rule Net.” IEEE International Conference on Neural Nets, vol.
1, pp 507-513, 1988.

46. Krogh A and Vedelsby J. “Neural network ensembles, Cross Validation, and Active

Learning”. Advances in Neural Information Processing Systems 7, pages 231-238,
1995.

47. Lane, S., Flax, M., Handelman, D., and Gelfand, J. “Multi-layer Perceptrons with

B-spline Receptive Field Functions.” Advances in Neural Information Processing
Systems 3, pp 684-692, 1991.

48. Lee, C. “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II.” IEEE

Transactions on Systems, Man and Cybernetics, vol. 20(2), pp 419-435, 1990.

49. Lo, J., Van Dyck, R., Garga, A., and Hall, D. “Fault Prediction in Transmissions

Using Wavelet Analysis.” Proceedings of the Conference on Prognosis of Residual
Life of Machinery and Structures; 52nd Meeting of the Machine Failure Prevention
Technology Society; Virginia Beach VA. 1998. pp 441-450.

Bib-5

50. Logan, K., Galie, T., and Savage, C. “A Practical Application of Probabilistic
Neural Networks to Machinery Failure Prevention.” Proceedings of the 53rd
Meeting of the Society for Machinery Failure Protection Technology, pp. 223-236,
2000.

51. Logan, K., Inozu, B., and Roy, P. “Shipboard Learning of Diesel Engine Operating

Characteristics”. Interim Report from the Gulf Coast Region Maritime Technology
Center. 2001.

52. MacDonald, D. “Reducing the Maintenance Cost of the Joint Strike Fighter

through Condition-Based Maintenance.” SRI International briefing. 1998. (private
communication)

53. Malley, M. “A Methodology for Simulating the Joint Strike Fighter’s (JSF)

Prognostics and Health Management System.” Air Force Institute of Technology
GOR/ENS/01M-11 Master’s Thesis, March 2001.

54. Marko, K., Feldkamp, L., and Puskorius, G. “Automotive Diagnostics Using

Trainable Classifiers: Statistical Testing and Paradigm Selection,” Proceedings of
the International Joint Conference on Neural Networks, 1990.

55. Marko, K., James, J., Dosdall, J., and Murphy, J. “Automotive Control System

Diagnostics Using Neural Nets for Rapid Pattern Classification of Large Data Sets”.
Proceedings of the International Joint Conference on Neural Networks, 1989.

56. McDuff, R. and Simpson, P. “Using Neural Networks for F-16 Fault Diagnostics.”

Contract Extension Final Report, Electronics Division, General Dynamics.
Oct 1988.

57. Meisner, J., Bursch, P., and Funk, H. “Evolution of a Maintenance Diagnostic

System.” Honeywell, Inc. paper. 1990.

58. Mizumoto, M. and Tanaka, K. “Some Properties of Fuzzy Sets of Type 2”.

Information and Control, vol. 31, pp 312--340, 1976.

59. Moody, J. and Darken, C. “Fast Learning in Networks of Locally-Tuned

Processing Units.” Neural Computation, vol. 1, pp 281-294, 1989.

60. National Science Foundation Workshop on “Signal Processing for Manufacturing

and Machine Monitoring”. Draft 1.2 of Final Report. Mar 96.

61. Opitz, D. and Maclin, R. “Popular Ensemble Methods: An Empirical Study”.

Journal of Artificial Intelligence Research 11 (1999), pp. 169-198. August 1999.

Bib-6

62. Oppenheim, V. and Schafer, R. “Discrete-Time Signal Processing.” Prentice Hall,
1989.

63. Oxley, M. and Bauer, K. “Classifier Fusion for Improved System Performance.”

Working Paper No. 02-02, AFIT Department of Operational Sciences, 2002.

64. Pattipati, K. and Alexandridis, M. “Application of Heuristic Search and

Information Theory to Sequential Fault Diagnosis.” IEEE Transactions on
Systems, Man, and Cybernetics.

65. Powell, M. “Radial Basis Functions for Multivariable Interpolation: A Review.”

Algorithms for Approximation, pp 143-167, 1987.

66. Rabiner, L. and Schafer, R. “Digital Processing of Speech Signals”, Prentice Hall,

1978. vol. 20, no. 4. 1990.

67. Rao, V. Webpage at http://avalon.epm.ornl.gov/~nrao/history.html.

68. Rebulanan, R. “Simulation of the Joint Strike Fighter’s Autonomic Logistics

System Using the JAVA Programming Language.” Air Force Institute of
Technology GOR/ENS/00M-19 Master’s Thesis, March 2000.

69. Renals, S. and Rohwer, R. “Phoneme Classification Experiments Using Radial

Basis Functions.” International Joint Conference on Neural Networks, vol. 1,
pp 461-467, 1989.

70. Rimey, R., Gouin, P., Scofield, C., and Reilly, D. “Intelligent Robots and

Computer Vision: Fifth in a Series”. Proceedings of SPIE – The International
Society for Optical Engineering, vol. 726, pp 552-7, 1986.

71. Rolfe, R., Brown, H., Savage, H., Scalia, A., and Simpson, W. “Activities and

Results of the 1996 Joint Service Integrated Diagnostics Workshop.” Institute for
Defense Analysis, December 1996.

72. Ross, B. “Open Systems Approach Integrated Diagnostics Demonstration

(OSAIDD) Study Program Final Report.” DoD Automatic Test Systems Executive
Agent, Dec 98.

73. Rousseau, M. and Logan, K. “Machine Learning of Diesel Engine Operating

Characteristics.” Gulf Coast Region Maritime Technology Center, University of
New Orleans. July 1997.

74. Rummelhart, D., Hinton, G., and Williams, R. “Learning Internal Representation

by Error Propogation”. Parallel Distributed Processing: Exploration in the
Microstructure of Cognition, vol. I, 1986.

http://avalon.epm.ornl.gov/~nrao/history.html

Bib-7

75. Schaefer, C. and Haas, D. “A Simulation Model for Determining the Impact of

Health and Usage Monitoring Systems (HUMS) on Helicopter Maintenance and
Logistics Operations.” 58th Annual Forum of the American Helicopter Society,
2002.

76. Scheuren, W. “Joint Strike Fighter: Prognostics and Health Management”.

Internet homepage, http://www.jast.mil/html/body_phm.htm.

77. Scheuren, W. “Joint Strike Fighter: Prognostics and Health Management”.

Briefing presented at the 1998 Technology Showcase – Joint Oil Analysis Program,
and available at http://www.jast.mil/html/body_phm.htm.

78. Scheuren, W. “Safety & the Military Aircraft Joint Strike Fighter Prognostics &

Health Management.” DARPA. 34th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit. Cleveland OH, 13-15 July 98.

79. Shahdad, et. al. “VHSIC Hardware Description Language.” IEEE Computers

vol. 18, pp. 94-103, Feb 1985.

80. Sheppard, J. “Introducing Information Flow Models from Case Data.” 1998 IEEE

International Workshop on System Test and Diagnosis. 7-9 April 1998.

81. Sheppard, J. and Kaufman, M. “IEEE Test and Diagnostics Standards.” Available

at http://www.dtic.mil/ndia/systems/Kaufman.pdf.

82. Smith, G., Schroeder, J., Faas, P., and Williams, G. “Prognostics-The Cornerstone

of the Autonomic Logistic System.” 55th Annual Forum of the American
Helicopter Society, Montreal, Quebec, Canada. 25-7 May 99.

83. Smith, G., Schroeder, J., Navarro, S., and Halderman, D. “Development of a

Prognostics & Health Management Capability for the Joint Strike Fighter.” IEEE
Systems Readiness Technology Conference, Anaheim CA. 22-25 Sep 97.

84. Specht, D., “A General Regression Neural Network.” IEEE Transactions on Neural

Networks, vol. 2, no. 6, pp 568-576, 1991.

85. Specht, D.F. “Probabilistic Neural Networks”. Neural Networks, vol. 3, pp 109-

118, 1990.

86. Specht, D.F. “Probabilistic Neural Networks for Classification, Mapping, or

Associative Memory.” Proceedings, IEEE International Conference on Neural
Networks, vol.1, pp 525-532, 1988.

http://www.jast.mil/html/body_phm.htm
http://www.jast.mil/html/body_phm.htm
http://www.dtic.mil/ndia/systems/Kaufman.pdf

Bib-8

87. Stoll, F. and Vincent, P. “Advanced Diagnostics.” USAF Research Laboratory,
Final Report for Mar 99 - Dec 99. Wright-Patterson AFB OH. Dec 99.

88. Su, L., Nolan, M., DeMare, G., and Carey, D. “Prognostics Framework.” U.S.

Army Test, Measurement, and Diagnostic Activity, Advanced Technology Office
paper. 1999.

89. Takagi, H. and I. Hayashi. “NN-Driven Fuzzy Reasoning.” Approximate

Reasoning, vol. 5, pp 191-212, 1991.

90. Theodoridis, S. and Koutroumbas, K. “Pattern Recognition.” Academic Press,

1999.

91. Thesen, A. and Beringer, D. “Goodness-of-fit in the User-Computer Interface: A

Hierarchical Control Framework Related to Friendliness.” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-16, no. 1. Jan/Feb 1986.

92. Trachten, A. “Lexicographic Codes”. Located at

http://ipsit.bu.edu/phdthesis_html/node11.html.

93. US Army Research Laboratory. “Turbine Engine Diagnostics: Diagnostics

Intelligent Tutoring System – M1A1 AGT 1500 Turbine Engine.” Software
Package CD Version 1.5.

94. Vachtsevanos, G., Allgood, G., Goebel, K., and Hadden, G. "Fault

Diagnostics/Prognostics for Machine Health Maintenance Short Course", Georgia
Institute of Technology, 11-14 Sep 01.

95. Vachtsevanos, G. and Clutz, T. "Fault Diagnostics/Prognostics for Machine Health

Maintenance Short Course", Georgia Institute of Technology, Atlanta GA,
 11-14 Sep 01.

96. Widyantoro, D., Yen, J., Wall, J., Hanratty, T., Dumer, J., Hammel, R., and

Helfman, R. “A Radial Basis Function Networks Approach in Turbine Engine
Prognosis.” Proceedings of the 54th Meeting of the Society for Machinery Failure
Prevention Technology (MFPT'54): Improving Productivity through Applications
of Condition Monitoring, pp. 95-104, 1-4 May 2000, Virginia Beach VA.

97. Zadeh, L. “Fuzzy Logic and its Application to Approximate Reasoning.”

Information Processing, vol. 74, pp 591-594, 1974.

98. Zadeh, L. “Fuzzy Sets”. Information and Control, vol. 8, pp 338-353, 1965.

http://ipsit.bu.edu/phdthesis_html/node11.html

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

02-04-2003
2. REPORT TYPE

Doctoral Dissertation

3. DATES COVERED (From – To)

Jun 2001 – Mar 2003

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A FRAMEWORK FOR PROGNOSTICS REASONING

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

CLUTZ, THOMAS C., MAJ, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640, WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/DS/ENS/03-01

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM, Attn: MAJ JUAN VASQUEZ
801 North Randolph Street, Room 732 DSN: 428-8431
Arlington VA 22203-1977 e-mail: Juan.Vasquez@afosr.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The use of system data to make predictions about the future system state, commonly known as prognostics, is a rapidly developing
field. Prognostics seeks to build on current diagnostic equipment capabilities for its predictive capability. Many military systems,
including the Joint Strike Fighter (JSF), are planning to include on-board prognostics systems to enhance system supportability and
affordability. Current research efforts supporting these developments tend to focus on developing a prognostic tool for one specific
system component. This dissertation research presents a comprehensive literature review of these developing research efforts. It also
develops presents a mathematical model for the optimum allocation of prognostics sensors and their associated classifiers on a given
system and all of its components. The model assumptions about system criticality are consistent with current industrial philosophies.
This research also develops methodologies for combining sensor classifiers to allow for the selection of the best sensor ensemble.
15. SUBJECT TERMS

 Operations Research, Data Fusion, Non-linear Programming

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Kenneth W. Bauer, Jr.

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

287

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4328; e-mail: Kenneth.Bauer@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	A Framework for Prognostics Reasoning
	Recommended Citation

	Table of Contents

