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Preface

Inquisitiveness is marked by a drive to bound experience. The inquisitive computation

achieves a primitive stage of critical thinking analogous to the Terrible 2s—the age where

children are infamous for asking “Why? Why?” ad nauseam. This behavior is an attention-

getting device, but the child is also acting on the recent revelation that their parents don’t

know everything. Children at this age aren’t really interested in knowing exactly why the

sky is blue; instead, they are attempting to bound the limits of what their parents know. If

so motivated, this stage in child development is a striking early sign of critical thinking—

the disciplined intellectual criticism that combines research, knowledge of historical context,

and balanced judgement. The advancement of scientific knowledge often turns on asking

the right question. We can expect the advancement of machine-based knowledge to turn

on the same point.

Amy L. Magnus
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AFIT/DS/ENG/03-09

Abstract

The Department of Defense and the Department of the Air Force have funded auto-

matic target recognition for several decades with varied success. The foundation of auto-

matic target recognition is based upon pattern recognition. In this work, we present new

pattern recognition concepts—specifically in the area of classification—and propose new

techniques that will allow one to determine when a classifier is being arrogant. Clearly,

arrogance in classification is an undesirable attribute. A human is being arrogant when

their expressed conviction in a decision overstates their actual experience in making sim-

ilar decisions. Likewise, given an input feature vector, we say a classifier is arrogant in

its classification if its veracity is high yet its experience is low. Conversely, a classifier is

non-arrogant in its classification if there is a reasonable balance between its veracity and

its experience. We quantify this balance and we discuss new techniques that will detect

arrogance in a classifier.

Inquisitiveness is, in many ways, the opposite of arrogance. In nature, inquisitiveness

is an eagerness for knowledge characterized by the drive to question, to seek a deeper un-

derstanding, and to challenge assumptions. The human capacity to doubt present beliefs

allows us to acquire new experiences and to learn from our mistakes. Within the discrete

world of computers, inquisitive pattern recognition is the constructive investigation and ex-

ploitation of conflict in information. This research defines inquisitiveness within the context

of self-supervised machine learning and introduces mathematical theory and computational

methods for quantifying incompleteness—that is, for isolating unstable, nonrepresentational

regions in present information models.

The key methods of inquisitiveness presented are (1) falsification and (2) the clas-

sification of confusion in feature space. This work also introduces a functional model for

persistent learning and a simplified model for data fusion tailored to the development of

pattern recognition algorithms. Artificial neural network demonstrations are provided to

illustrate inquisitive pattern recognition techniques.
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Inquisitive pattern recognition (IPR) is a relational reasoning capability that allows

computers to learn from imperfect decisions. IPR has immediate application to Air Force

problems—specifically treaty and terrorist monitoring—where rare events must be separated

from the mundane. This technology also represents a step forward in machine learning—

toward more viable, flexible computer tasking in adaptive, collaborative environments.
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INQUISITIVE PATTERN RECOGNITION

I. Introduction

The sophisticated computer should spur on, not squash, human innovation. Right

down to its cold computational heart, a computer should be dedicated to its user’s will,

striving continuously to become more effective in its assigned tasks, to perfect its knowledge

and performance in service of its user.

Over the years, computational machines have attained various levels of sophistication.

Let us consider the elusive: intelligence. In a 1950 article “Computing Machinery and

Intelligence” [99], Alan Turing introduced a test for computer intelligence—a concept that

has become known as the Turing Test. For his problem formation, Turing proposed an

imitation game in which, if a computer can fool a human interrogator, then the computer is

intelligent. Imagine a game played with three people: a man, a woman, and an interrogator.

The interrogator stays in a room apart from the other two but is allowed to submit questions

to them via a messaging system. The interrogator’s objective is to determine who is the

woman. The role of the woman is to be the expert and to convince the interrogator that

she is, indeed, the woman. The role of the man is to be the pretender—that is, to fool

the interrogator that he is the woman. In the Turing Test, Turing proposed replacing the

pretender with a computer—as seen in Figure 1—and suggested that an intelligent computer

would be able to fool an interrogator into believing that it is human. [99]

One problem with the Turing Test is its subversive nature. It is ethically dubious to

suggest that a computer must misrepresent itself in order to prove it is intelligent. We would

prefer a computer that is capable of weeding out the pretender rather than a computer that

aspires to be one. Consequently, we propose a modified Turing Test, which we shall call the

Inquisitive Test.

The Inquisitive Test, shown in Figure 2, asserts that a computer is inquisitive if it

is able to distinguish an expert from a pretender—for instance, if it is able to distinguish
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Expert
(Human)

Pretender
(Computer)

Interrogator
(Human)

Figure 1. Turing’s test for computer intelligence. If a computer is able to convince an
interrogator that it is human, Turing suggested that this is a sign of intelligence.

appropriate expressions of expertise from expressions of arrogance1. In our form of the

imitation game, we replace the human interrogator with a computer interrogator while

the expert and the pretender may be people or computers. Automated interrogators have

application in the evaluation of relative expertise and the promotion of intelligence amplifi-

cation2 among experts. Military applications for quantifying expertise abound, particularly

in systems involving technologies such as Information Fusion, Intelligence Amplification,

and Multi Agent Systems. One specific example is a new initiative from the Air Force

Office of Scientific Research, the Hybrid Inferencing from Fused Information (HIFI) pro-

gram; the goal of this program is to replicate expertise in human intelligence gathering

through automation and to create and maintain flexible ontologies shared between human

and automated systems. Another example of an Air Force application is sensor-based treaty

monitoring where automated experts must confidently separate rare events from events that

occur 1000+ times a day.

1Arrogance is a over-statement of expertise where the expert has no or insufficient experience. We define
arrogance in classification formally in Section 5.1.2 and demonstrate an arrogant classifier—the multilayer
perceptron—in Chapter VI.

2Intelligence Amplification (IA) is the enhancement of human intelligence through human-computer in-
teraction [84].
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Interrogator
(Computer)

Expert Pretender

Figure 2. Our proposed test for inquisitiveness. We suggest that an inquisitive computer
in its role as interrogator has the ability to distinguish an expert from a pre-
tender. In the case where all three players—the interrogator, the expert and
the pretender—are internal to an autonomous computer agent, the inquisitive
test is an exercise in self-evaluation.

The Inquisitive Test—more so than the Turing Test—has real and immediate applica-

tion to information management systems under development today. We see inquisitiveness

as a necessary component of true intelligence—that is, to say, an intelligent computer must

be inquisitive, but the inquisitive computer is not necessarily intelligent. Further, we believe

that the Inquisitive Test is an important intermediate step in our quest to demonstrate and

enhance intelligence and, to the benefit of Artificial Intelligence research, far more easily

realized.

1.1 Problem Statement

This dissertation develops a new thrust in pattern recognition research—called in-

quisitive pattern recognition—and extends the discipline to address the hard problem [20]

in computational intelligence: self-evaluation in machines. Traditional Pattern Recogni-

tion does not have a methodology for quantifying relative expertise. Inquisitive Pattern

Recognition directly addresses this deficit. We propose the mathematical development of

inquisitive pattern recognition as the constructive unification of multiple perspectives on a

3



single pattern recognition task. The challenge of inquisitiveness is negotiating among these

varied perspectives—in particular, leveraging the conflict and confusion between “experts”.

To comprehend an expert’s strengths and weaknesses, one must envision the expert’s knowl-

edge not as a seamless enigma but as the intermeshing of many beliefs tracing out a larger

truth. It is the “seams”—the transitions—among beliefs that demand our most careful

attention.

1.2 Scope

This dissertation introduces inquisitive pattern recognition (IPR), an investigative

methodology that supports the evaluation of data generalizations trained via self-supervised

learning3. Key to inquisitiveness is the isolation of those regions in a data generalization

that may lead to poor decision making. In support of this methodology, several concepts

are introduced and developed including the following:

1. Persistent learning—a process model for transitioning pattern recognition tasking from

supervised experimentation to self-supervised customization in the design and main-

tenance of a pattern.

2. The theory of confusion—measure theory for quantifying incompleteness of informa-

tion by contrasting peer experts.

3. Four-value logic—a label set for data generalization that expresses its relative ex-

perience level, i.e., {“extrapolation”, “interpolation”}, as well as its veracity, i.e.,

{“false”,“true”} of experts.

Other topics include Expertise Logic—an extension of Fuzzy Logic—and arrogant classi-

fiers. We show, for instance, that 4-value logic is a special case of expertise logic. The

mathematical constructs of confusion theory and 4-value logic are applied to the multi-

layer perceptron. In doing so, we offer an appropriate new tool for evaluating multilayer

perceptrons in data generalization applications.

3We define self-supervised learning as a training process that combines a priori knowledge and unlabeled
a posteriori observations into a unified representation. See Section 2.1.2 for further detail.
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The primary focus of this research is the development of novel techniques for evaluating

learned patterns. As such, it is not our goal to build better data generalizations but, instead,

to evaluate generalizations in order to (1) prevent instances of inappropriate application and

to (2) communicate with reasoning engines—such as an interrogator—that benefit from

explicit expressions of expertise.

1.3 Overview

The composition of this dissertation proceeds as follows. Chapter II discusses back-

ground on pattern recognition. Chapter III, Inquisitive Pattern Recognition, introduces a

model for persistent learning—derived, in part, from human behavioral science—and defines

inquisitive pattern recognition within this model—specifically, as the passive, investigative

skills in persistent learning. Chapter IV presents the Theory of Confusion in terms of

measure theory and introduces four-value logic. Chapter VI applies four-value logic to a

combinatorial-geometry treatment of multilayer perceptrons. Finally, in Chapter VII, Con-

clusions and Recommendations, summaries the contributions of this research and indicates

areas for further research.
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II. Background

Pattern recognition faces a rich set of challenges. For many years, the discipline was in-

solated as its practitioners designed dedicated solutions for sensor-to-computer-to-user ap-

plications. More recently, pattern recognition research has focused on the sensor-computer

interface leaving the human-computer interface to other disciplines. Applications in today’s

environment demand greater responsiveness, flexibility and explicit expression from the

embedded pattern recognition algorithms particularly since the algorithms must be respon-

sive to both the sensor and the human-computer interface. The discipline’s new challenges

come from the later interface where algorithms must ensure that—given present sensor

evidence—queries posed by the human-computer interface are relevant.

Classical pattern recognition investigates trends and consistencies in data. We seek

to flesh out the methodology of pattern recognition to include techniques that investigate

the incompleteness of data. Such examinations tender clues over what is real, but generally

unanticipated. Inquisitive pattern recognition is a method for solving knowledge aggrega-

tion problems1 by facilitating the identification and classification of conflict and ambiguity

in information models. Strategies for knowledge aggregation have broad appeal in collab-

orative software applications such as adaptive data fusion, negotiations between intelligent

agents, and the automated maintenance of knowledge bases—applications where multiple

information treatments must be allied to one purpose.

This chapter discusses trends and methods in pattern recognition, data fusion and

computer-augmented environments and—through these discussions—builds the case for re-

search into inquisitiveness.

2.1 Pattern recognition

Pattern recognition (PR) is the process of associating patterns to events of interest

[38]. Pattern recognition operates in two modes: the design of a pattern and the application

1Knowledge aggregation is the accumulation of knowledge for application in new and unique contexts;
problems in knowledge aggregation involve resolving value-added information from multiple, typically het-
erogeneous sources.
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of the pattern. Patterns take two forms: data reductions and data generalizations. A

data reduction is a relation or ordering reduced from a set of experimental observations.

Contrarily, a data generalization2 is a relation or ordering induced from a set of experimental

observations.

In pattern recognition research, data reduction first garnered the bulk of attention

mainly due to the importance of economy in communications, computer processing and

media storage. Now, with boons in communication bandwidth, processing power and mem-

ory capacity, we can afford to invest in data generalizations. Unfortunately, the early

emphasis on data reduction has biased research in data generalizations heavily and in some

cases inappropriately.

A paradigm shift is needed, and it is important to understand those forces that demand

this shift. Accordingly, in this section we present background discussion on the training and

application of data generalizations. Then, in Section 2.2 we discuss parallel research areas

in information management that demand more from pattern recognition.

2.1.1 Generalized data derived from incomplete populations. Let us consider the

data generalization. Often, a data generalization is a set of ordered pairs inferred from

the set of multiple observations and a set of corresponding labels3. At design, patterns are

generalized from sample sets of event data. A typical scheme is illustrated in Figure 3(a)

where sampled observations are matched to a corresponding set of observed labels v. Here,

the product of design is the relation θ, a data mapping from an observation set X to

a decision set Z. The mapping explicitly matches an observation x ∈ X to a decision

z ∈ Z. The relationship between labels and decisions is implied. In subsequent application

as in Figure 3(b), the data mapping θ translates present evidence x to the decision z—a

speculation on what event u likely occurred.

Given that a sample is a small (though hopefully representational) subset of a larger

set, we define a data generalization as follows:

2Discussed further in Section 2.1.1 below.
3In pattern recognition, a label implies—explicitly or implicitly—a sensitivity, a quantitative assessment

of the value of an observation—e.g. for example, the proportion of people who truly have a specific disease
and are so identified by a clinical test [96]. Explicit representations of sensitivity often take the form of
probability density functions (as in Bayesian networks) or membership functions (as in fuzzy logic).
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Pattern recognition: design
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events
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generalized
data

mapping

x

observation
mappings

z

V ÃV

collection of
observation

pairs

X Ã X

fitness
measure

m

(a) Design mode

Pattern Recognition: application

x Œ X
observation

x
z Œ Z

decision

q

sensor
mapping

data
mapping

u Œ U
event

(b) Application mode

Figure 3. Operating modes in Pattern Recognition: (a) At design, a data mapping θ is
generalized from a set of supervised events based on the collected observations
x and a corresponding set of labels v. The supervised collection of labels is
denoted by observation mapping ζ. (b) In application, the data mapping θ
transforms sensor observations x into decisions z relevant to an unsupervised
event u of interest.
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Definition 1 (Data generalization). A data generalization is an explicit relation designed

from a sample of experiences and extended to a larger set of new experiences as seen in the

application, or operational use, of the generalization. [62]

Let a population be an ordered set. Data—i.e., a sampled population—have meaning if the

data are ordered. Quality training data faithfully convey the order of the entire population.

One major challenge in pattern recognition is to capture quality training sets of minimal (or

reasonable) cardinality. The next challenge is to generalize populations from the training

data. Let PD represent the population. Given training data TD ⊂ PD, there exist several

data GD that generalize TD such that the generalized data GD contains TD. The goal is

to find a GD which maximizes the cardinality of GD ∩ PD.

If generalized data GD is an ordered set containing the training sample (TD ⊂ GD),

then let us define a data generalization as the ordering on GD. Because there exist several

sets GD that contain the incomplete population TD, many data generalizations also exist.

Any data generalization inferred from training data where TD 6= PD is by definition an

incomplete population (arguably even where GD = PD as this equality is impossible to

prove).

2.1.2 Training: distinctions in supervision. In the design and maintenance of

data generalizations, there are three basic modes of training4. Figure 3(a) depicts the most

common: supervised training. The other two are unsupervised and self-supervised. Training

is often supervised during the design of a generalization; but in application, if learning

continues, it must do so autonomously and, thus, either unsupervised or self-supervised. 5

The three modes of training are separated by distinctions in data collection, specif-

ically whether or how labeled training data are collected. A label is an abstract charac-

terization of an event of interest. Supervised and self-supervised training fits observations

x to labels, depicted as the decision z in Figure 3. Unsupervised training uses unlabeled

observations x. Let x be an observation and v be a label selected from object sets X and

L, respectively. Label v ∈ L is either collected directly from the experiment, or it is derived

4Training modes for data reductions are supervised and unsupervised learning. There is little motivation
for self-supervised learning in the production of data reductions.

5See Chapter 3.1 and Figure 6 for further discussion and an illustration.
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after the fact. Given observation x ∈ X and label v ∈ L, unsupervised, supervised, and

self-supervised may be distinguished as follows [27, 13, 98, 30, 61]:

• Unsupervised learning

— A training sample consists only of an observation x of present evidence.

— Inferred patterns are drawn from the “natural order” of observations—for

instance range, resolution, distribution, and correlations.

• Supervised learning

— A training sample consists of an observation x matched to a collected label v,

a label garnered from an authoritative source.

— Patterns are inferred from the parallel trends among observations and labels.

• Self-supervised learning

— A training sample consists of an observation x matched with a derived label

v, a label generated by a source of questionable reliability.

— Patterns are refined by contrasting the apparent natural order of observations

with the derived expectations.

Collected labels versus derived labels differentiate the training sets of supervised and self-

supervised learning, respectively. Collected labels are direct observations from the pattern

recognition experiment, or they are provided by an authoritative expert. Derived labels are

inferred a posteriori by artificial intelligence—either by the pattern recognition algorithm

itself or by a peer algorithm. In general, collected labels are more reliable. However, a

priori knowledge—such as domain context and assumptions—is more likely to be explicitly

stated when labels are derived. This is advantageous as, when new training data conflict

with derived labels, i.e., the explicit assumptions can be debugged and contextual awareness

enhanced.

2.1.3 Hold-out validation. The worthiness of a data generalization is completely

determined by the appropriateness of the generalization in analyzing new observations, i.e.,

by its competency in linking new observations to predicted outcomes [13, 83].
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Hold-out validation is a popular supervised learning technique which attempts to

select appropriate generalizations for a given data set. The hold-out method is used as a

means to select an appropriate stopping point for training. For this process, one separates

design exemplars into two sets: a training set and an evaluation set. A data generalization

is induced from the training set while the evaluation set is held back. An error trend is

drawn from the evaluation set and, when this trend begins to increase, training stops. As

advertised, the hold-out method stops training before memorization occurs—halting the

process when an appropriate level of complexity in the representation is achieved. Error

can be tracked because learning is supervised, but error trends for the training set tend to

be misleading. Given a convergent learning algorithm, the error from the training set will

continue to decrease until the set is memorized. Memorization is undesirable; it defeats the

purpose of training since the resultant knowledge representation does not generalize well in

recognizing new data. [83]

Hold-out validation and its computationally-intensive extensions—cross validation

and bootstrapping—are often successful at reducing the complexity of a trained gener-

alization. In practice, however, these data-centric techniques are inadequate to prevent

memorization. When any of these methods are used to select an appropriate generalization

from several different architecture, the estimate of the generalization error of the “best”

architecture will be optimistic [103, 44]. More reliable set-centric techniques—such as the

method described in Chapter VI—resolve trends over significant regions of the domain6 not

just at easily isolated data points.

2.1.4 Validation after design. Besides preventing memorization of supervised

training data, it is also desirable to be able to test the appropriateness of a data generaliza-

tion beyond supervised design and into application. In application, additional observations

are gathered and new experience may be gained. Hold-out validation tracks error trends for

isolated labeled data, but what patterns can be tracked when the preponderance of training

data is unlabeled? Error trends require supervision; we suggest other trends derived from

uncertainty or apparent incompleteness can be utilized.

6In domains of low dimension, it is possible to resolve trends over the entire domain as we will demonstrate
in Chapter VI.
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Figure 4. Justification for advanced investigative techniques in pattern recognition: De-
mands in adaptive information fusion and negotiating computer agents stipulate
more dynamic mappings within a pattern recognition system while insight into
the problem domain is diminished by an increased reliance on unsupervised
data collection to manage these dynamics.

2.1.5 Pattern recognition summary. The rise of data generalization applications

offers an opportunity for the pattern recognition community to take stock and reconsider

the discipline in a new light. Among the general classes of new applications, collaborative

systems offer fertile proving ground for inquisitive pattern recognition technologies. Multi-

source, multi-modal data inherently contain conflicting information. As artificial intelligence

researchers solve the problem of how to assimilate new information into existing knowledge

representations, it behooves pattern recognition researchers to ensure that relevant new

information is collected in an effective, manageable manner.
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2.2 The demands of collaborative software applications

Computer agents, information fusion, and computer-augmented environments belong

to a class of collaborative systems that use knowledge aggregation—the assimilation of

multiple perspectives or data treatments to manage information. Demand for collaborative

information systems is increasing [51, 69, 25, 1] and with it the demand for advances in pat-

tern recognition. Besides more flexible techniques in information management, the artificial

intelligence community is seeking on-line technologies to support algorithm maintenance,

learning, and task negotiation and innovation.

In response, pattern recognition must prepare products of increased sophistication and

expertise—expertise that must be hard-won. As depicted in Figure 4, pattern recognition

algorithms will operate under demands for greater flexibility and responsiveness while at the

same time with diminished insight on real world events. Negotiations with artificial or real

world entities and subsequent adaptations will destabilize the innerworkings of the pattern

recognition blackbox while the preponderance of data collected to manage adaptations will

be unlabeled data.

2.2.1 Incompleteness and agency. In resolving learning problems, it is important

for a computer agent to express its own value—having gauged the completeness of its

information model. A computer agent is a program that is autonomous, adaptive and

cooperative [71]. Given these characteristics, agency implies that an adaptive program is

relatively free from human supervision but that it must cooperate with peer programs. In

other words, computer agents must master self-supervised learning7.

Recovery. Recognizing incomplete information enables a computer

agent to label extrapolations—experiences outside the realm of normal operating modes.

When an autonomous agent falls into a strange new world, its internal programs should

recover functionality reasonably well and succeed in its principal task. Reminiscent of

Dorothy’s house landing in Oz, recovery is facilitated when the computer agent—like

Dorothy—has the wherewithal to realize “...we’re not in Kansas anymore”.

7See Section 2.1.2.
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Expressing expertise. Imagine two adaptive negotiating computer

agents both let loose to gather experience on a domain. Since agents are autonomous,

their experiences will differ. Each independently develops an internal domain represen-

tation based on distinct training sets with no common exemplars. The agents may even

employ different sampling strategies so that the data distributions may also differ. After

a time, the agents are given a joint task to negotiate. During this negotiation, the agents

should pool their collective knowledge and resolve to a single solution. If one agent lacks

experience in regard to the assigned task, it should defer to an agent that has more experi-

ence. Therefore it is useful for a negotiating agent to be able to express where its internal

representation reasonably interpolates and where it is extrapolating.

The primary task of an intelligent agent is not to learn but to act in an informed

manner8. Still, in its auxiliary role as “learner”, an agent should exhibit an awareness of

its strengths and shortcomings and be able to deduce the consequence thereof.

2.2.2 Information fusion. Information fusion is an information management tech-

nology that highlights the key relationships and suppresses the redundancies of data col-

lected from multiple sensors [69]. Data fusion evolved out of the development of military

weapon systems in the 1980’s. Today, the majority of information fusion applications op-

erate in stable domains where the collected data are expected to remain within predictable

boundaries for the life of the system. Typically, human operators are presented with aligned

data, and they, not the computer, are delegated the responsibility of providing situation

assessment. Besides these operators, most information fusion systems require another room

full of humans to provide off-line support. This group ensures the stability of the system

by maintaining its algorithms and knowledge base. [41]

Air Force leadership has established clear goals for acquiring information fusion sys-

tems. Data fusion is listed at the top of the critical technology list in the Air University

study Air power in 2025 [51]. Proposed Air Force applications include:

• Networked battlefields, enhancing battlefield awareness and information dissemina-

tion [101],

8See Principal task discussion in Section 3.1.1, The change wheel.
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Figure 5. The Joint Directors of Laboratories standard for information fusion: This stan-
dard is a system level model.

• Interactive demonstrations of missions [36],

• Telemedicine, a medical delivery system, for battlefield triage [90],

• Medical training for rapid-response, disaster-level emergency procedures [35],

• Modeling of C4I systems [25].

Due to this push for more and varied systems, it becomes necessary to minimize the need for

intervention from human operators and maintainers. To keep demand on human resources

reasonable, system designers must delegate more fusion tasks to the computer and provide

on-line capabilities for algorithm maintenance.

2.2.3 System-level functions of information fusion. The standard data fusion

model was first developed in 1985 by the Joint Directors of Laboratories (JDL) Data Fu-

sion Group [41]. This initial model and its subsequent revisions—the latest depicted in

Figure 5—is the most widely used for categorizing data fusion-related functions in informa-

tion management systems [92]. General categories include [92]:

• Level 0 - Sub-Object Data Assessment: estimation of observable entity states based

on pixel/signal level data association and characterization;
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• Level 1 - Object Assessment: estimation and prediction of entity states;

• Level 2 - Situation Assessment: estimation and prediction of relations among entities;

• Level 3 - Impact Assessment: estimation and prediction of effects on situations of

planned or estimated/predicted actions;

• Level 4 - Process Refinement: adaptive data acquisition and processing to support

mission objectives.

Level 1 and Level 0 are data or source management resources. Level 2 situational

assessment is required for passive contextual awareness—nominally world modeling—the

unified representation of the here and now. Both Level 3 and Level 4 functions are necessary

for adaptive and interactive information fusion, respectively where fusion systems adjust to

domain changes and where systems influence domain changes.

Progress in developing these functional areas has been mixed. The science of informa-

tion fusion is mature for Level 0 and Level 1, immature in Level 2, and primordial in Levels

3 and 4 [43]. Early research efforts and most deployed data fusion capabilities centered

efforts exclusively on Level 0 and Level 1 [41]. These efforts generally focused on early

signal processing of multiple sources, often mono-modal sources. For example, two world

class research sites—the MIT Media Lab and the Data Fusion Branch AFRL/IFE of the

Air Force Research Laboratory—built substantive portions of their reputations on image

fusion.

Systems incorporating automated Level 2-4 capabilities are much rarer [93, 92]. Most

operational data fusion leaves the derivation of contextual information—situation and im-

pact assessment—to human operators and support process refinement through dedicated

maintenance teams. At the Information Fusion Workshop sponsored by the Information

Institute on 22-24 May 2000, members concluded that many factors have stunted the au-

tomation of Levels 2 and above:

1. The exponential increase in the computational complexity of such functions,

2. The lack of standard guidelines,

3. The lack of common testbed problems for developing these standard guidelines,

16



4. The immaturity of pattern recognition in supporting interactive negotiation and per-

sistent learning,

5. The immaturity of hybrid knowledge representations and inference engines that can

move between the details of signal processing to the abstractions of natural language-

based contextual inference.

Robotics can boast the most progress in Level 2-4 research but little of the formal-

ism developed for robotics has been generalized and propagated to other disciplines [58].

For example, one fundamental flaw of the JDL fusion model is it does not include a cook-

book for writing data fusion algorithms9; here, generalized guidelines for assimilating new

observations into a robot’s world model would have substantial impact.

At the Information Fusion Workshop, it was asserted by those who maintain the JDL

fusion model that the biggest hurdle to Level 2-4 automation is the increased complexity

of these functions. Crucial to the continued advancement of information fusion are the

analytical and inference methods that master multimodal interaction within reasonable

resources of time, memory, and computational might.

2.2.4 Computer-augmented environments. Research into virtual environments

and augmented reality will also influence the development of information fusion. The tech-

nological demands of these highly interactive applications are destined to alter the course

of information fusion research. Certainly, to move information fusion technology towards

virtual environments is to move away from the specialized, narrowly tuned systems of today.

The military research establishment is motivated to ensure the success of computer-

augmented environments [1, 90, 94]. Using highly-interactive, multi-user applications of

virtual environments [91, 48] and augmented reality [95, 77], the military plans to improve

mission execution through realistic training and increased accessibility to information [1].

There are extreme situations that—though rare—military teams must readily meet with

practiced, certain skill. Real life enactments give such teams hands-on expertise; unfortu-

9This exclusion has been noted by the JDL model’s architects as an intentional omission in a fledgling
science and an attempt to keep the information fusion metaphor general—in the near term—encompassing
both natural language and mathematical disciplines [93].
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nately, these exercises are expensive and dangerous, and evaluating the training has proven

difficult [1, 90, 94, 101]. The military sees virtual technologies as a means to improve

command oversight of military exercises while increasing the safety of participants and

decreasing the cost of the enactments [1, 94, 101].

Human dynamics are a threat to the stability of collaborative virtual environments

(CVE) [7, 40, 102]. The success of these multi-user systems rely on the theories of computer-

supported cooperative work (CSCW). Unfortunately, CSCW theories are not mature. Hu-

man dynamics—both social and political factors—have blocked the adoption of CSCW

products in the workplace. The failure to garner group acceptance has led to many expen-

sive failures impeding research in this area. [40]

Users want virtual spaces where interesting things happen [56, 52]; and, accordingly,

the computer must allow for innovation from the human component. Jonathan Grudin

in his paper “Groupware and social dynamics: eight challenges for developers” [40] states

that a key contributing factor to past CSCW failures is the variability of group work.

Groups—unlike larger parent organizations—tend to operate in informal structures. This

informality lends flexibility so that group members continually renegotiate tasks of coordi-

nation, management, and allocation. Grudin stresses that flexibility does not necessarily

mean malleability: A mature group expects new members—even new tools—to adjust to

the established way of doing things. New groupware applications will likely be given the

cold shoulder if they create extra work for members without an obvious return of invest-

ment, violate the expectations of members, or otherwise disrupt the group’s social/political

order [40, 49, 12].

As envisioned by Gloria Davenport, head of MIT’s Interactive Cinema project, aug-

mented environments are about “taking the computer out of the box and the media off

the screen and burying them in the physical system [24]”. A computer-augmented envi-

ronment enhances the physical environment to allow users to interface with the computer

in natural, intuitive ways [78, 95]. Creating virtual objects that respond naturally to real

stimuli is no simple task [32, 11, 37, 26] and demands accurate, real-time recognition sys-

tems [91, 102, 11, 90]. Couple this interface response requirement with the requirement to

allow for innovation in recognition tasks, and one can read the writing on the wall—the call
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for intelligent interfaces and a disciplined pattern recognition approach that incorporates

on-line, continuous learning and quality assessment [60, 15, 78, 24, 100, 32, 39].

2.3 Background summary

Customizing knowledge in collaborative systems requires discipline to sustain clear,

complete, and timely representations. In keeping, pattern recognition must be augmented

in both design and application methodology to ensure the collection of relevant new infor-

mation in an effective manageable manner.

Classical pattern recognition is concerned—rightly—with representing knowledge fully

and accurately in the computer, and traditional methods investigate trends and consistencies

in data. Contrarily, inquisitive pattern recognition investigates the inconsistencies. It seeks

to assign meaning to the incomplete, biased or volatile portions of data generalizations. The

results of this investigation are then used to adapt a computer program’s internal knowledge

representation and to conform to an altered task.
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III. Inquisitive pattern recognition in learning

In this introduction to inquisitive pattern recognition, we describe investigative meth-

ods supporting the selection of appropriate data generalizations during self-supervised

learning—learning where the preponderance of training data is unlabeled. The objective

of this work is to derive computational methods paralleling the logics of human doubt and

intuition.

3.1 Persistent Learning: enabling online customization

The life of a pattern recognition algorithm unfolds in two main chapters: its design

and its subsequent application. Let us consider the design of computer systems where

learning must not end when the system is delivered to its end user but—as depicted in

Figure 6—continues throughout its application. We assert such systems require multiple

parallel investigations into the completeness of information models, at first offline during

design and then online in application.

Inquisitiveness is part of an overall strategy to design persistent learning into com-

puters. Persistent learning is the learning that continues after a knowledge representation

transitions from design to application. Initial design-stage learning creates a generalized

information model in a canned, offline environment. Then persistent learning customizes

the model online—“on the fly”—using real world observations.

Figure 6. Designing intervention: maintenance and customization of data generalizations
requires extending learning from initial design into online application.
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Figure 7. The change wheel—a model for persistent learning.

Successful persistent learning regulates the incremental, cumulative adaptations of

data generalizations while ensuring the principal computer task remains viable and center

stage. When training is self-supervised or autonomous, persistent learning schemes cannot

simply resolve to a single optimal solution but must maintain and contrast competing

solutions. Autonomous learning must also remain discretionary and stable.

3.1.1 The change wheel. In support of persistent learning, pattern recognition

is not limited to training routines. Significant additional components of learning are fal-

sification, discovery—the recognition of innovation—and consensus building. Our model

for persistent learning—chosen for its completeness—is the Prochaska/DiClemente change

wheel [81] shown in Figure 7. First developed to model human behavior modification, the

change wheel is a feedback process with multiple stages. Persistent learning has seven

stages: (1) steady state, (2) falsification, (3) discovery, (4) determination, (5) action, (6)

maintenance, and (7) relapse.

21



Principal task:

– Steady state features the principal pattern recognition task. The principal task

accomplishes prediction, and its resource demands dictate the pace of learning.

Passive learning stages:

– Falsification initiates learning. Upon a falsification stimulus—a contradiction to

present beliefs—the change wheel is entered.

– Discovery is an investigative process. Tasks include the collection and evaluation

of evidence that supports modifying the programs information model.

– Determination is a decision process. Here, recommendations are made regarding

appropriate modifications to present beliefs.

Active learning stages:

– Action is the actual modification process where the information model is altered.

– Maintenance involves various sustainment actions. Tasks include minor adjust-

ments to the information model, setting criteria for permanent exit from the

wheel, and setting relapse criteria.

– Relapse handles the termination of an intervention cycle in preparation for a new

cycle. Tasks may include archiving of data from the completed cycle and may

also involve a partial or complete regression to the former information model.

Inquisitive pattern recognition operates in the passive stages of persistent learning—

falsification, discovery, and determination—serving the investigative process and prioritizing

opportunities for new experiences.

3.1.2 Designing intervention: persistent learning in phases. Inquisitiveness is part

of an overall strategy to design intervention into computers—that is, to delegate the cus-

tomization and maintenance of pattern recognition algorithms to the computer. Inquisitive

pattern recognition is a transitional technology. The ultimate goal of on-line intervention

is to construct robust PR algorithms that adapt autonomously.
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Table 1. Phases of pattern recognition in relation to the stages of intervention.

Phases of pattern recognition research
Stage of
Automated
intervention Stationary Inquisitive Persisent

Steady State x x x
Discovery x x
Determination x x
Action x
Maintenance x
Relapse x

In the interest of building stable systems, we assert it is best to design intervention

into our pattern recognition algorithms in stages. The primary reason for phasing in per-

sistent learning capabilities is to promote stability. It is counter productive to offer active

intervention capabilities on-line without a formal discipline for recommending alterations

to existing data generalizations. Inquisitive pattern recognition is to concentrate on the

passive learning skills in order to minimize impact to the working order of the baseline

recognition task. Consequently, we have grouped the intervention model into three phases

of capability: respectively, stationary pattern recognition (SPR), inquisitive pattern recog-

nition (IPR), and persistent pattern recognition (PPR). Each phase of pattern recognition

capability incorporates ever more stages of intervention. See Table 1 for a summary. The

classical SPR algorithm remains in stage 1, steady state—as depicted in Figure 8—so that

all intervention processes must be performed off-line. Online intervention is designed into

inquisitive and persistent PR algorithms though the IPR algorithm only implements the

passive stages of the wheel, progressing only as far as stage 3, determination. Figure 9

illustrates inquisitive pattern recognition. The IPR algorithm responses to a stimulus for

change and enters the intervention wheel. The remaining stages are delegated to off-line

processes. The PPR algorithm implements both the passive and active stages of the change

wheel as depicted in Figure 7 and, ideally, is capable of cycling through the change wheel

multiple times.
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Steady State

  

intervention process 
conducted off-line

Figure 8. Off-line intervention in stationary pattern recognition.

Inquisitiveness is intended as a transitional capability between classical PR algorithms

and persistent ones. The classical pattern recognition algorithm, or SPR algorithm, is

assumed to operate within a stationary domain [27, 13]. Thus, the algorithm’s knowledge

model remains fixed over its lifetime. Conversely, an PPR algorithm should adjust its

knowledge model in response to the dynamics of its domain [24]. In the transitional method

of an IPR algorithm, intervention is merely “contemplated”, that is to say information

is collected and weighed to discover (1) if a domain shift has occurred and (2) if some

adjustment to the PR algorithm is needed. The ultimate challenge of inquisitive pattern

recognition is to determine—once a stimuli for change is detected—to what degree the

algorithm should be augmented or modified.

3.1.3 Persistent Learning summary. The time is ripe for developing inquisitive

pattern recognition. Besides the technological motivations discussed in Chapter II, the ma-

turity of distributed processing [59] and parallel processing [45, 54] along with the low cost

of memory offer researchers the greater computational resources in time and spaces. Addi-

24



Enter upon 
falsification

Steady State (1)

pre-stimulation 

Discovery (2)Action (4)

Maintenance (5) Relapse (6)

Determination (3)

Exit to continue 
intervention process 

off-line

Figure 9. The passive modes of autonomous intervention incorporated by inquisitive pat-
tern recognition.

tional resources will very likely be needed to fully develop persistent pattern recognition—

particularly to enable the relapse capability—but for now we have sufficient resources to

develop the passive intervention skills of inquisitive pattern recognition.

3.2 The concepts of Inquisitive Pattern Recognition

The goal of this research is to form a mathematical formalism for inquisitiveness,

but such a formalism first requires a philosophy. The key components of inquisitive pattern

recognition are falsification, confusion recognition, and relevancy testing. These three learn-

ing skills embody discretion, focus and prioritization—the virtues of doubt and intuition.

• Falsification identifies where in a feature set decision-making is known to be confused.

• Confusion recognition connects decision-related meaning to these regions in order to

direct conflict resolution processes.

• Relevancy testing promotes important discoveries.
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Together these learning skills compose the decision engine which proposes what unstable

regions in an information model hold the most promise for yielding important new discov-

eries.

3.2.1 Background. When we first developed the concepts for inquisitive pattern

recognition [61], we began by considering established models of human behavior modification

with particular interest in what drives us to seek out new learning experiences. Here,

we postulate that doubt and intuition are—arguably—key drives in humans. Together

they spur on the innovative student, the learner who wishes a deeper understanding than

his teachers have resources to give. As logical processes within critical thinking, doubt

and intuition focus attention on resolvable trouble spots within an incomplete knowledge

representation. A computational entity with the capacity to doubt is able to judge the

incompleteness or inappropriateness of its prior knowledge. Intuition is fed bu the entity’s

resourcefulness at selecting viable opportunities to hone its knowledge while keeping its

computation stable and relevant.

Doubt is a straightforward concept embodied in the cognitive science term falsification,

the refutation of presently-held beliefs [9, 80]. Intuition is a fuzzier concept that balances

two considerations in resolving new beliefs: (1) confusion recognition—the opportunity to

define a beneficial pattern recognition experiment and (2) relevancy testing—the ability to

identify evidence that is readily available to realize these benefits.

Doubt and intuition fit nicely into the change wheel: Doubt corresponds to falsifica-

tion, and intuition corresponds to discovery and determination. In the next three sections,

we will flesh out falsification, confusion recognition and relevancy testing as concepts and

supported this discussion with a simple illustration of an object recognition problem.

3.2.2 Falsification. Doubt is the first step in unsupervised learning; it initiates

the process. Cognitive science teaches us that humans predict through a set of beliefs, and

we learn by first refuting present beliefs [9]. If a computer “doubts” itself, this means it has

the capability of falsification—that is, the ability to autonomously recognize failings within

its programs own knowledge representations. Consequently, learning benefits from having

a focused goal and a definable context [30].
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Figure 10. Event hypotheses are derived from disparate prior opinions. The hypotheses
are then contrasted to flag apparent flaws in prior knowledge.

Falsification provides discretion. We envision persistent learning as a reaction to

a stimulus, not a full-on full-time process. Falsification is intended to identify learning

opportunities, concentrating on those portions of a program’s knowledge representation in

most need of attention.

3.2.2.1 Forming opinions for falsification.

Definition 2 (Falsification). Falsification is a test that refutes a belief A through the use

of the contrapositive [80]: Given beliefs A,B such that A implies B, if B is proven false

then A is also false.

Falsification is a test that requires prior opinions—generalizations, or restrictions, of

a comprehensive opinion. The test refutes a comprehensive opinion by provong the simplier

prior opinion false.

Definition 3 (Comprehensive opinion). A comprehensive opinion is a pattern that can be

restricted into prior opinions. Restrictions may affect prior knowledge or present observa-

tions or both.
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Definition 4 (Prior opinion). Let A and B be patterns. If A implies B but B does

not necessarily imply A, then, as we have defined, B is a prior opinion with respect to

comprehensive opinion A.

Note then if a prior opinion is proved false, by contrapositive logic, the comprehensive

opinion is also proved false. Consider also that conflicting prior opinions apprehend weak-

nesses in the comprehensive—weaknesses that should be addressed through augmentation,

either additional prior knowledge or supplementary observations or both.

3.2.2.2 Complexity testing. Falsification may be used to gauge the effective

complexity of a data generalization. Complexity is a relative measure that conveys the

ability of a knowledge representation to capture the underlying data structure of task-related

observations. When a data generalization is too complex, it over-fits training samples and

memorization occurs1. Falsification offers self-supervised complexity testing as unlabeled

observations turn up in unanticipated regions of a feature set or in distributions other than

what was hypothesized at design.

3.2.2.3 Belief testing. Falsification can also be used to test beliefs, or logical

groupings within a knowledge model. As shown in Figure 10, new observations are collected

and considered in the context of each prior opinion, forming respective event hypotheses. If

hypotheses for an event vary significantly, we can reason that either certain beliefs are not

appropriate to present observations or they are obsolete in light of recent evidence. Ide-

ally, we want to be able to localize and replace inadequate beliefs—customizing knowledge

without losing what still works.

3.2.2.4 An illustration of falsification. Falsification algorithms are know-

ingly naive—containing incomplete information structures that break conspicuously so that

the computer can examine their fallacy in action. A falsification algorithm requires (1)

disparate prior opinions and (2) a measure quantifying significant confusion among either

prior opinions (for complexity testing) or event hypotheses (for belief testing). Falsification

1Recall from Section 2.1.3, memorization is undesirable as the resulting representation is conformed
tightly (in the extreme, point-wise) to the training observations but rarely proves competent at recognizing
new data (even those adjacent to the training observations) [83].
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Figure 11. The target object and two representational sets—one comprised of circles, the
other of squares.

is powerful in unsupervised learning because, though new observations are not labeled, the

relationships between prior opinions can be specified.

Here is a simple illustration of an object reconstruction problem. For this illustration,

prior opinions are contrasted in the falsification process. Consider the triangle of Figure 11.

The triangle Y is a real-world object that cannot—for the purposes of this illustration—be

represented completely. To reconstruct the triangle Y , we are given two separate basis

sets—a set A of circles and a set B of squares—to fill in the two-dimensional space. As

depicted in Figure 11, let the circle basis set A contain three circle sizes, and the square

basis set B contain three square sizes.

A → {small circle, medium circle, large circle}

B → {small square, medium square, large square}

The two basis sets are used to form two separate prior opinions θA and θB. See Figures 12

and 13. The opinions of the triangle are estimated by filling the two-dimensional space—one

with the circle basis set, the other with the square basis set2. An OR operation is performed

on the two sets to merge the space filled by the circles so that θA = ∪N
n=1An. The same

operation is applied separately to the squares, θB = ∪M
m=1Bm.

2For this example, we are restricted to using only one basis set at a time. This is a realistic limitation
paralleling restrictions in imaging methods used to capture real world objects. In a simplistic way, the circles
correspond to imaging onto film and the squares correspond to scanning the object and storing an image
matrix.
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Figure 12. Designing the prior opinions.

Due to the limitations of the basis sets, neither the circle-based prior opinion nor

the square-based prior opinion captures the entire essence of the triangle. The missing

essence, as seen in Figure 13, is the error set. For this illustration, let us form each error

set, errA = Y 	 θA and errB = Y 	 θB, by applying an XOR operation to the triangle

and each prior opinion in turn. Often, we do not have perfect knowledge of the real world

object; so, normally, we cannot calculate the error set directly. Instead, here is where we

perform falsification as the best we can do is evaluate the confusion between opinions. In

this example, the prior opinions are contrasted by taking their symmetric difference3 to form

the falsification subset of the confusion set Falsify(θA, θB) = C−,+(θA, θB)∪C+,−(θA, θB) =

θA 	 θB as described in the Appendix Section A.1 and shown in Figure 14.

The falsification set is where contrapositive logic allows us to state with certainty that

the object is not well understood. Again, falsification identifies the regions of feature set

where decision making is known to be poor as identified by Falsify(θA, θB), and in these

regions, both decision-making models θA, θB are incomplete.

Confusion is not error. Nor is it a complete measure of uncertainty, as confusion set

does not include all subsets where it is likely that decision making is poor. But it is a good

3Symmetric difference is a binary set operation that selects elements that belong to only one of the two
sets. Logically the operation is expressed A	B = (A ∩ ¬B) ∪ (¬A ∩B).
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Figure 13. The two prior opinions and their respective error sets. An XOR operation is
applied to the triangle and each prior opinion in turn to form the error sets.

Figure 14. The falsificaltion subset of the confusion set is formed by applying an XOR to
the prior opinions.

starting point, and with a little more manipulation, a better estimate of the error set and

thus a better understanding of the original object can be formed.

The tools for this additional manipulation are confusion recognition and relevancy

testing. Respectively, these persistent learning skills partition the confusion set and priori-

tize the refinement of the partitions.

3.2.3 Confusion recognition. Confusion recognition interprets features in confu-

sion space by leveraging the known idiosyncrasies of the applied basis sets. The recognition

process divides confusion space and associates meaning with each piece.

3.2.3.1 Bounding the learning opportunity.

”When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.”

31



Corners

Borderlines

Figure 15. Confusion recognition. The falsification set of Figure 14 can be partitioned
into six separate regions. These regions have then been classified into two
categories, corners and borderlines.

Sir Arthur Conan Doyle
The Sign of Four [1890]

Inquisitive pattern recognition that stops at falsification is rather weak. Doubt may

initiate the learning process but, if the cause of confusion is not known, then context for

customization is unclear and learning flounders unregulated. As a result, the conclusions

that can be drawn from mere falsification are severely limited and often regressive [80].

When forming new experiences, the cause of confusion is decidedly not known [30].

Instead, one might go through the process—as the fictional Sherlock Holmes does in The

Sign of Four—of eliminating potential causes. Take, for example, the three-class problem

of separating apples from oranges from tangerines. If we can eliminate the choice of—say—

apples as contributing to the confusion of one region, we can narrow down the context to

a choice between oranges and tangerines and bound the learning opportunity that region

constitutes.

3.2.3.2 The association of decision-related meaning. The true power in

confusion recognition is not found in associating task-related meaning, as in our apples-

to-oranges-to-tangerines example, but in associating decision-related meaning to confusion
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space. In the modeling of decision boundaries, confusion occurs in transitional regions

between what is believed to be true and what is believed false [97, 50]. Transitional regions

do not all look alike and (This is key!) are as much a function of the basis sets we choose

to model a decision as the form of the decision itself. If this were not true, the confusion

space of Figure 14 would be null space.

Confusion recognition separates confusion space into distinct regions that may benefit

from being resolved in different ways. For instance, in Figure 15 we have divided regions of

confusion space into two categories—corners and borderlines—and assert that the confusion

associated with corners is significantly different from the confusion associated with border-

lines. From this assertion, we can infer that any given strategy to resolve the confusion

within these disparate regions will yield disparate results.

Confusion recognition enables the capture of new experiences. It serves to bound

unsupervised learning by associating meaning to new information that is either task-related

or—more generally—decision-related. When learning is properly bounded, it is more effi-

cient as training requires fewer exemplars and fewer features. This lessens demands placed

on the collection of new training data. Moreover, fewer features enhance the probability of

reducing confusion. [13, 83]

3.2.4 Relevancy testing. The last and crucial step of inquisitive pattern recogni-

tion is relevancy testing—assigning priority to learning opportunities. Before attempting

to resolve confusion, it is best to weigh the benefits and risks posed by each opportunity—

pursuing only those where there is both sufficient evidence and justifiable need. In the end,

relevancy testing determines what, if any, action should be taken to refine a knowledge

model. Relevancy testing calls for an excellent understanding of how the limitations of the

applied basis sets hinder the goals of the computer task. Again, take our object reconstruc-

tion illustration: Note that the corners of the triangle are not engulfed by the confusion

space but that the borderlines essentially are. Here it is more important to determine that

the corners are poorly modeled. This declaration requires not only an understanding of

representational shortcomings—acute corners are difficult to fill—but also an appreciation

for the task at hand, i.e., object reconstruction.
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Relevancy testing must cross-index representational limitations with task goals, and

this is where our effort to build task-savvy, decision-oriented knowledge bases comes in.

Within these knowledge bases, we are endeavoring to capture the idiosyncrasies of our

favorite representational tools—tools that include data pyramids, wavelets, and neural net-

works. These knowledge bases provide the reasoning resources (1) to cross-index specific

task-related knowledge with decision-making expertise and (2) to infer from this mapping

which learning opportunities constitute important discoveries.

3.2.5 IPR summary. Falsification triggers learning when the refutation of one

belief can be combined with other knowledge to further the task at hand [80]. Inquisitive

pattern recognition seeks to harness the power of falsification by augmenting the process

with confusion recognition and relevancy testing. These additional skills provide a means

to form new experiences by bounding and regulating unsupervised learning opportunities.

Supporting research involves the generation of knowledge bases that grasp the mechanics

of mathematical representations and capture inherent implications to decision making.

3.3 Summary

Automated intervention strategies delegate customization and maintenance tasks to

the computer. Designing intervention opens up the computer’s potential for innovation—

giving the computer the capacity to absorb new experiences, to learn practical knowledge

on its own—awakening the computer to it’s role as team member, not just team tool.

Toward designing a computer capable of innovation, concepts of inquisitiveness have been

derived from models of human behavior modification with particular interest in what drives

humans to seek new experiences. This chapter has asserted that doubt and intuition are

key incentives spurring on the innovative student. As logical processes, doubt and intuition

focus attention on resolvable trouble spots within an incomplete knowledge representation.

• Doubt is the capacity of a computational entity to judge the incompleteness or inap-

propriateness of its prior knowledge.

• Intuition is the entity’s resourcefulness at selecting viable opportunities to hone its

knowledge while keeping its computation stable and relevant.
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Customizing data generalizations requires discipline to sustain clear, complete, and

timely representations. In keeping, pattern recognition must be augmented in both design

and application methodology to ensure the collection of relevant new information in an

effective manageable manner. This dissertation advocates a shift in the PR discipline away

from training single “optimal” solutions from static data sets. For one, the paradigm that

the single best solution is found at design does not serve dynamic domains. Secondly, too

many training/evaluation methods fail to explicitly state the range and resolution of pattern

recognition solutions, to investigate potential flaws in interpolations or to post warnings on

extrapolations. It behooves the pattern recognition to consider the design and mainte-

nance of multiple working “opinions”, strategies to recognize and resolve incompleteness in

representation and to affirm enduring trends throughout a program’s lifecycle and domain.
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IV. Measuring the incompleteness of information

This chapter presents the Theory of Confusion—quantifying and qualifying incompleteness

of information. This theory handles different types of confusion among classifiers and yields

the regions in a feature set where confusion occurs. Using measure theory, we propose

confusion set and 4-value logic in order to characterize the apparent incompleteness of

information—particularly to separate the extrapolations of an empirically-derived function

from its interpolations.

In this chapter, we present formal definitions of data, information and knowledge.

In the development of these definitions, we draw from the writings of Charles S. Peirce

and Richard T. Cox—respected figures in logic and entropy theory. Next, we discuss the

difference between error and confusion and formalize this difference via measure theory.

Finally, we conclude the chapter by introducing and demonstrating 4-value logic.

4.1 Experience and information

In pattern recognition, there is a vague consensus that knowledge is something more

than information, and information is something more than data. To develop a formal

definition of information, let us consult Charles S. Peirce1 and his later writings on the

nature of experience. In his 1902 manuscript “MS L75: Logic, Regarded As Semeiotic”

[76], Peirce lumped experience into three categories—fact, representation, and essence.

1. Fact is the external experience—stimulus or action—an ordered, windowed observa-

tion or stimulant on the real world [76].

2. Representation is an internalization of experience unique to each computational entity,

one internal conceptualization in an infinite realm of possibilities [76].

3. Essence is the communal or shared experience—a symbol affirmed by many and en-

during [76].

1Charles Sanders Peirce (1839-1914) was a engineer whose contributions to logic include 3-valued logic
[29], Boolean algebra [57], and quantification logic [75]. A chemist and geodesist by profession, his life’s
work was devoted to the study and research of logic, including the theory of signs [16] from which we draw
for our discussion of experience.

36



Figure 16. The categories of experience.
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Figure 16 conveys the concepts behind these categories. The figure also illustrates how we

believe Peirce’s categories of experience relate to data, information and knowledge. Data are

a collection of facts, information is a collection of facts and representations, and knowledge

is a collection of facts, representations, and symbols.

4.1.1 Quantifying experience via probability and bearing. An experience arises in

the presence of an event, an observer and an internal response to the event by the observer

[76]. To represent a sign, ı.e. a fundamental element of observer’s experience, we propose the

triad {x, q, `} where x is the event, q is a query representing a perspective of the observer,

and ` is an assertion, the observer’s internal response to the query q given event x.

Definition 5 (Event). An event x is an instantiated element from the set of all possible

events.

Definition 6 (Query). A query q asks something about an event and is represented by the

set of assertions that answer that query over the set of all possible events. [21]

Definition 7 (Assertion). An assertion ` says something about an event in response to a

query and is represented by the set of events for which the assertion gives a truthful response

to the query. [21]

This triad formalizes Peirce’s notion of a sign by drawing on Richard Cox’s essay “On

inference and inquiry, an essay in inductive logic” [21] in which Cox describes the parallel

logics of queries and assertions. The important connection we make here is that an observer

can be represented by a set of queries.

From Cox, we learn that a query may assigned a bearing, i.e., a measure of relevancy,

with respect to an assertion or event. Let bearing map to the interval b ∈ [0, 1] where

b(q) = 0 for a query asked in vain and b(q) = 1 for a query that is real, or wholly relevant.

Assertions are assigned a probability on the interval p ∈ [0, 1] where p(`) = 0 for an assertion

that is false and p(`) = 1 for an assertion that is true. [21]

Thus, given a set of queries Q and a set of assertions L∗, there exists a mapping

ζ : Q × L∗ → [0, 1] × [0, 1] from the 2-tuple of a query and an assertion to a 2-tuple of a

bearing and a probability, ζ(q, `) = {b, p}.
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One way to look at the differences between bearing and probability is to consider

decision boundaries. Probability is constant along a decision boundary while bearing varies.

As we move away from the decision boundary, bearing remains constant while probability

varies.

According to Cox, bearing and probability are quantities that have the same properties

only the former is used to order queries and the latter orders assertions [21]. A query may

be represented by a set of assertions [33], and probability allows us to order the set of

assertions that respond to the query. For instance, if I was a hat check attendant, over the

course of the work day I might ask many people what color their coat is. Based on the

apparent charateristics of each person, I form a list of likely responses, a set of colors where

each color is assigned a probability. If the color pink is assigned a high probability, then

likely I am querying a young girl. We can make this inference because, in our culture, the

color pink is associated with clothing of young girls more so that with the clothing of young

women, mature women, and males in general. An assertion may also be represented by a

set of queries [33], and that set may be ordered by bearing. Pink is an asssertion associated

with a host of questions including “What is the color of your coat?” and “What is your

favorite color?” each of which assigned a bearing again based on context. Context, then,

can be represented by a ordering of queries and an ordering of assertions. The ordering

of queries captures mainly the interrogator’s point of view while the ordering of assertions

captures the responder’s point of view.

In Chapter IV, we present an example of a probability-bearing pair, the quantities of

veracity and experience which we use to explore certain dynamics between an interrogator

and an expert under evaluation. Veracity is a special quantity of an assertion’s probability,

expressing an expert’s conviction or belief in an assertion. Experience is a special quantity

of a query’s bearing, denoting the accumulation of experiences relevant to a query and

expressing the fitness of an expert to answer the query in light of those experiences. To

ask an expert a question where the expert has no experience is to ask that question in

vain. Questions that asked in vain are important tools of an interrogator. If an interrogator

knowingly asks a question in vain and the responder strongly asserts an answer, then the

interrogator can reasonably infer that the responder is an arrogant pretender and not a
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true expert. Note that the interrogator makes this inference of arrogance based on both

veracity and experience (i.e., the interrogator has discerned that veracity is represented as

high where experience is low). A judgement of arrogance cannot be made without both

quantities.

4.1.2 Defining experience in terms of set theory. Let us present the relationships

of event, assertion, and query sets using the formal definitions of relations and orderings.

Definition 8 (Relation). Let X and Y be two sets and let X×Y be their Cartesian product.

Any subset R ⊂ X × Y is called a relation. If R is a relation, the set of all elements x that

occur as first members of pairs (x, y) ∈ R is called the domain of R, denoted D(R). The set

of second members y is called the range of R, denoted by R(R). [47]

Definition 9 (Ordering). The special relation R ∈ X ×X is called a ordering of a set X if

and only if, given a, b, c ∈ X , (1) R is reflexive (aRa for every a ∈ X ) and (2) R is transitive

(whenever aRb and bRc, then aRc). [47]

Definition 10 (Partial Ordering). The special relation R ∈ X × X is called a partial

ordering of a set X if and only if, given a, b, c ∈ X , (1) R is reflexive (aRa for every

a ∈ X ), (2) R is transitive (whenever aRb and bRc, then aRc), and (3) R is antisymmetric

(if aRb and bRa, then a = b). [47]

Definition 11 (Total Ordering). The special relation R ∈ X ×X is called a total ordering

of a set X if and only if, given a, b, c ∈ X , (1) R is reflexive (aRa for every a ∈ X ), (2) R

is transitive (whenever aRb and bRc, then aRc), (3) R is antisymmetric (if aRb and bRa,

then a = b), and (4) Relation is for any two elements a, b ∈ X , either aRb or bRa. [70]

Let X be a nonempty event set, let L be a nonempty label set, and let Q be a

nonempty set of queries. Given the formalism we’ve discussed above, we can now define the

three levels of experience—fact, representation and essence—starting with fact.

Definition 12 (Fact). A fact is an ordered pair (x, `) ∈ X × L. The first object x ∈ X is

an observed or enacted event; the second object ` ∈ L is a label.
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Let L∗ ⊃ L be a superset of L. We make a mild distinction here between a label and an

assertion: A label remains linked with the instantiated event while an assertion is assigned

a probability and projected forward in the decision process.

Definition 13 (Representation) A representation R is a subset of (X ×L)× (X ×L∗) such

that representation R is the explicit relation that matches an event to an assertion.

Experiences of general utility evolve into symbols which are represented as the ordered

3-tuple (x, `, s) ∈ (X × L∗)×Q.

Definition 14 (Essence) Essence Ω is the explicit relation defined on a set of symbols and

matches a set of assertions to a query.

From the three levels of experience described above, we form the definitions of data, infor-

mation and knowledge.

Definition 15 (Data) Data D is a set of facts such that D ⊂ X × L. Data are a sample

of ordered pairs, not a relation.

Definition 16 (Information) Information (D,R) is a collection of facts and representa-

tions where D is a set of facts and R is a set of representations.

Definition 17 (Knowledge) Knowledge (D,R,Ω) is a collection of facts, representations,

and essence.

Ordering a set of queries imposes an ordering on a set of labels or assertions; and, in

turn, the ordering on a set of labels implies an ordering on a set of events. This property

allows us to form knowledge from a set of facts.

4.1.3 Affirmation in the accumulation of experience. Multiple observers or com-

peting hypotheses are fundamental to the accumulation of experience. Essence in experience

arises from the affirmation of persistent truths, and affirmation explicitly implies the consul-

tation of a self and an other: two (or more) computations that uniquely interpret a shared

experience.

A consultation requires at least two discernible entities, each capable of internalizing

the experience and providing independent feedback about that experience. For there to be a
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true self and a true other, each computational engine must employ an internal representation

that is innovative—unique from its peers in patterning the same experience. If I see a

shooting star streak across the night sky, my first instinct is to turn to my neighbor and say

“Did you see that?” A positive response lends greater confidence to my observation of a

fleeting, unexpected stimulus and the moment passes. A negative response, however, forces

me to pause, take stock of the situation and discern the cause of the discrepancy. Say the

fault was in one’s own observation: for instance, a perceived streak of light could be the

manifestation of a migraine headache. One learns upon negative reinforcement to be more

cautious in categorizing similar stimuli.

The recognition and advancement of innovation is an important part of affirmation.

Majority rule dumbs down the recognition process by degrading into group think—the

tendency to gloss over what is not easily understood and cling to long-held or majority-

sponsored beliefs—slowing down the group’s responsiveness to domain changes. It is con-

structive to explore other, more expressive forms of consensus building.

4.1.4 Summary. Learning is the active, cumulative, incremental process of con-

verting observations into experience, and a learning algorithm masters new experiences

through training, innovation, and consensus building. From facts, a training algorithm de-

rives representations. Learning can stop there, but a training algorithm—unaware of its own

consequence—must remain under close scrutiny to prevent the indiscriminate application

of its derived representations. A learning algorithm—in the full sense of “learning”—seeks

more than information; it seeks knowledge, or signs, the common threads that link over

multiple observations or among multiple observers.

An inquisitive learning algorithm strives to capture the apparent context in which

the trained generalization appropriately serves. One important aspect of context hinges

on the interplay of assertions and queries. Cox foot-stomped the connection in his essay

“On inference and inquiry” [21], and Turning noted the connection himself in pondering

the role of the interrogator [99]: An interrogator must judge whether a query is a relevant

in addition to judging whether an expert’s answer to the question is true [99].
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We will expound on dual measures of experience ourselves in the next chapter on

expertise logic. For now, we shall continue our discussion of incompleteness in information

and the presentation of the Theory of Confusion.

4.2 The Theory of Confusion

The Theory of Confusion measures the degrees to which information is substantiated

by an authoritative source, prior experience or reasonable induction. To define incomplete

information, let us start from the axiom that facts2 are useful only if ordered and ordered

appropriately. This ordering—a relation in the strict sense—may be explicit or implicit. If

the relation is implicit, the collection of facts constitutes data. If the relation is explicit, the

collection constitutes information. Thus, information is a collection of facts and an explicit

relation defined on those facts. [62]

Incomplete information implies a lack of experience with the facts and/or a lack of

expertise such as a poorly rendered relation. When the ordering of an incomplete set of

facts is generalized, the resulting relation is shaped by an odd mix of experience, induction

and chance. To quantify the incompleteness of information it is important to (1) quantify

the extent to which a collection of facts adequately constrains the induction of an explicit

relation and (2) identify the subset of unsubstantiated facts (experiences that have not been

truthed by an authoritative expert) within the domain of an underconstrained relation.

Additionally, it is instructive to bound what information is currently missing but would be

particularly useful if it were fleshed out.

4.2.1 Distinguishing confusion from error. In pattern recognition literature, the

term confusion matrix is used interchangeably with error matrix [55]. Here—as illustrated

in Figure 17—we make a distinction:

Definition 18 (Error). Error quantifies the discrepancy between truth and an expert’s

opinion.

2See Section 4.1 for a discussion of facts and their relationship to information.
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Figure 17. The structure of an error matrix and a confusion matrix for two-class classi-
fiers.

Definition 19 (Confusion). Confusion quantifies the difference between the opinions of

experts.

We assert there are benefits to delineating error and confusion. In strict interpre-

tation, measures of error require supervision by an omnipotent authority. As such, error

measures are fully realizable in applications where truth is known completely—for instance,

in certain compression and reconstruction applications. Measures of confusion are less

rigorous as they involve consultations among peer experts. Confusion measures are realiz-

able in autonomous systems featuring collaborative computations and—through disciplined

interpretation—edge pattern recognition closer to the elusive capability of self-evaluation.

[61]

4.2.2 Quantifying incompleteness in information. The strategy administered for

collecting data (both the sampling rate and observation field) and succeeding training meth-

ods limit the range, resolution and complexity of resolved data generalizations. It is im-

portant to express these consequences in order to speak to the incompleteness of a data

generalization and to ensure appropriate application by its end user. [62, 61]

A data generalization, as defined in Section 2.1.1, is an explicit relation or ordering

designed from a sample of experiences to cover a larger set of new experiences. When

forming a data generalization, instances of truth are collected and—through training—
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broadened to cover other instances. By interpolating between all that is known, a data

generalization offers an opinion on what is unknown. [62]

The success of a data generalization hinges on its ability to interpolate operational

data accurately. Interpolations occur near training data where there is reason to presume

operational data will be collected. When new data are collected where a mapping is hy-

pothesized to be interpolating, that mapping is suspect but may be trusted if its results

are not reasonably contradicted by other expert opinions. If interpolation is risky, extrap-

olation is downright dangerous. Extrapolations occur “far” from training data where new

data are not expected. If operational data are collected where a mapping is hypothesized

to be extrapolating, the mapping is not representative of any real trend and computational

results are based capriciously on chance. [62]

A data generalization is best evaluated in consideration of its operational set, as

opposed to its training set. Such consideration must balance the two key uncertainties in

generalizations: (1) the completeness of the training set in representing the operational set

and (2) the fitness of a generalization in ordering the hypothesized operational set. [62]

To quantify incompleteness in a data generalization, confusion is a more appropri-

ate measure than error. Confusion measures are particularly useful for investigating the

interpolations and extrapolations of a data generalization. Interpolation implies the con-

sideration of an unlabeled data point between labeled data. Therefore, as defined above,

error measures may not express discrepancies in the interpolated regions of a feature set,

but confusion measures may. Certainly, the success of a data generalization is directly pro-

portional to its behavior in interpolated regions, and—by default—confusion becomes the

appropriate measure to convey the stability and completeness of the model within these

regions. [62]

4.2.3 Background in measure theory. The incompleteness of information is defined

formally using measure theory. As presented in Section 4.1, we have defined information as

a collection of facts and representations. To quantifying confusion, one identifies apparent

“holes” in this collection and determines whether the incompleteness of information is due

to inadequate facts or inadequate representations.
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4.2.3.1 Measure Theory. Let X be a nonempty feature set. A σ-algebra B

is a collection of subsets of X that forms a Boolean algebra with the added property that,

for each countable collection of subsets {Sn} ⊂ B then

⋃
n

Sn ∈ B.

The pair (X ,B) is called a measurable space [42, 88]. A subset E ⊂ X is called a measurable

set (i.e., measurable with respect to B) if E is an element of B. [88]

A measure is a non-negative set function3 defined on a σ-algebra of subsets that must

satisfy the two properties

µ(∅) = 0 (1)

µ(
∞⋃
i=1

Ei) =
∞∑
i=1

µ(Ei) (2)

for any countable collection {Ei} ∈ B of disjoint measurable sets. The second property

says that a measure is countably additive. It follows that a measure is also finitely additive

in that

µ(
N⋃

i=1

Ei) =
N∑

i=1

µ(Ei) (3)

for all disjoint measurable subsets Ei belonging to B since we may set Ei = ∅ ∀i > N . [88]

A measurable space (X ,B) together with the measure µ defined on B yields the triple

(X ,B, µ) which is called a measure space. If µ(X ) is finite, then (X ,B, µ) is called a finite

measure space. If µ(X ) = 1, then the finite measure space is called a probability space. A

measure space (X ,B, µ) is called a σ-finite measure space if there is a sequence {Xn} of

sets in B such that

X =
∞⋃

n=1

Xn (4)

and µ(Xn) < ∞ for each n. Hence, every finite measure space is a σ-finite measure space

(but not vice versa). [88]

3A set function is a function whose input is a set and whose output is a real number.
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4.2.4 Integral measure. Consider the special case of the measure generated from

an integral. Let X = Rd and let m be the Lebesgue measure on Rd. Let f ∈ L1(X ,R) so

that f is a Lebesgue integrable function. Given any measurable subset E ∈ X define the

measure µ in terms of an integral

µ(E) =
∫
E

f(x)m(dx). (5)

It can be shown that µ satisfies the conditions in equations (1) and (2) above. [88]

4.2.5 Classifiers. Over the next several sections, we shall define incomplete in-

formation in terms of classifiers. A classifier is a special data generalization, that is, a

relation designed from a labeled training set (i.e., a sample of experiences) to cover a larger

operational set (i.e., new experiences seen in the application, or operational use, of the

generalization) [62].

In measure theory, a classifier is a special relation. Let us formally define a relation

and then define the terms function and classifier.

Definition 20 (Relation). Let X and Y be two sets and let X×Y be the Cartesian product.

Any subset R ⊂ X × Y is called a relation. If R is a relation, the set of all elements x that

occur as first members of pairs (x, y) ∈ R is called the domain of R, denoted D(R). The set

of second members y is called the range of R, denoted by R(R).

Definition 21 (Function). A function is a special relation. Define function F as a set of

ordered pairs (x, y) where no two distinct pairs have the same first member. That is, given

x ∈ D(F ) and y, z ∈ R(F ), if (x, y) ∈ F and (x, z) ∈ F then y = z.

Definition 22 (Classifier). Given a nonempty feature set X and a nonempty label set

L, a classifier C is defined as a correspondence between X and L, and we write this as

C : X → L.

4.2.6 Measurable classifiers. Let C be a classifier defined on a feature set X with

output label set L. If an input/output pair (xk, `k) ∈ C then the feature vector xk ∈ X and

label `k ∈ L. Assume (X ,B) is measurable space.
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Definition 23 (Measurable classifier). We say classifier C is a measurable classifier if the

inverse image of each label ` ∈ L, denoted C−1[{`}] = {x ∈ X : C(x) = `}, is a measurable

set in algebra B.

Let L be a finite set of N labels. We assume there exists at least one feature vector that

maps to each label.

Assuming crisp logic, classifier C partitions X into N disjointed, nonempty subsets

{X1,X2, . . . ,XN}. Each subset Xi corresponds to a label `i. Additional properties for the

N -element collection of subsets in X are: (1) every subset is measurable with respect to B,

i.e., Xi ∈ B, and; (2) the collection is exhaustive, i.e.,

N⋃
i=1

Xi = X (6)

and (3) mutually disjoint, i.e., Xi ∩ Xj = ∅ for all i 6= j.

Given X = Rd, a measurable space (X ,B), a density function f ∈ L1(X ,R) and a

measurable classifier C, define a measure µ as in Equation 5. Assume that f is a density

function, i.e., f is nonnegative and

µ(X ) =
∫
X

f(x)m(dx) = 1.

Therefore, given a label ` ∈ X , the measure µ(C−1[{`}]) takes the form

µ(C−1[{`}]) =
∫

C−1[{`}]

f(x)m(dx). (7)

In this treatment, density function f is the weighing on the population of feature set X ;

i.e., it bounds and weighs the relevant elements of that feature set with respect to the

population.

4.2.6.1 Error rates between truth and a measurable classifier. Truth map-

pings are definitive classifiers, the ultimate authority on the partitioning and labeling of a

feature set. Let truth mapping T be defined on X with the same output label set L. In-
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dividually, the inverse images of classifier C and the truth mapping T effectively partition

feature set X into N subsets. (Assume that T takes on each label for now.) Classifier C

and truth mapping T can be used to partition X into N2 subsets.

To compare and contrast a classifier to the authoritative truth mapping T , construct

the measurements of sets for all i, j = 1, . . . , N such that

µ(T−1[{`j}] ∩ C−1[{`i}]) =
∫

T−1[{`j}]∩C−1[{`i}]

f(x)dx. (8)

Consider the 2-class, 2-value logic crisp classification problem. In this case, the output

label set L has two elements, for example {false,true}, {f,t} or {0,1}. Here we will use

L = {0, 1} where 0 denotes false and 1 denotes true. As a result, there are N2 = 4 disjoint

subsets of feature set X and

X =
(
T−1[{0}] ∩ C−1[{0}]

)
∪
(
T−1[{1}] ∩ C−1[{0}]

)
∪
(
T−1[{0}] ∩ C−1[{1}]

)
∪
(
T−1[{1}] ∩ C−1[{1}]

)
.

Precision sets T−1[{`i}]∩C−1[{`i}] denote where the truth mapping and the classifier agree.

When i 6= j, omission/commission sets denote which elements x ∈ X were incorrectly parsed

into subset C−1[{`i}] (commission set) instead of into the appropriate subset C−1[{`j}]

(omission set). For L = {0, 1}, there are four measurements in the collection {µ(T−1[{`j}]∩

C−1[{`i}])} and—in the tradition of error matrices [14, 55]—we call these 4 measured values

error rates.

Definition 24 (Error rates). Let truth mapping T and classifier C be 2-class, measurable

classifiers defined on measure space (X ,B, µ) where X = Rd and measure µ is the integral

measure defined in Equation 7 such that µ(X ) = 1. Then, the four error rates of classifier

C follow.
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Measurement of Class 0 precision set

µ(T−1[{0}] ∩ C−1[{0}]) =
∫

T−1[{0}]∩C−1[{0}]
f(x)dx

Measurement of Class 0 omission (or Class 1 commission) set

µ(T−1[{1}] ∩ C−1[{0}]) =
∫

T−1[{1}]∩C−1[{0}]
f(x)dx

Measurement of Class 1 precision set

µ(T−1[{1}] ∩ C−1[{1}]) =
∫

T−1[{1}]∩C−1[{1}]
f(x)dx

Measurement of Class 1 omission (or Class 0 commission) set

µ(T−1[{0}] ∩ C−1[{1}]) =
∫

T−1[{0}]∩C−1[{1}]
f(x)dx

These error rates quantify how often over a weighted feature space the classifier agrees or

does not agree with truth. The weighting of feature space must be representative of the

sampling of the feature space. Precision rates µ(T−1[{`i}] ∩ C−1[{`i}]) quantify how often

over a weighted feature space the classifier agrees with truth. Measurements µ(T−1[{`j}]∩

C−1[{`i}]) for all i 6= j quantify the rate of omission/commission errors.

As defined, we can show the following theorems regarding the error rates of classifier

C hold true.

Theorem 1 The summation of a class’s precision and commission rates is the measure

µ(C−1[{`i}])

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) =
∫

C−1[{`i}]

f(x)dx

= µ(C−1[{`i}]).

Theorem 2 The summation of the precision and omission rates for a class is the measure

µ(T−1[{`i}])

N∑
i=1

µ(T−1[{`j}] ∩ C−1[{`i}]) =
∫

T−1[{`j}]

f(x)dx

= µ(T−1[{`j}]).
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Theorem 3 The summation of the rate measures is equal to one

N∑
i=1

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) =
∫
X
f(x)dx

= µ(X ) = 1.
(9)

These assertions are easily determined since we know from the properties of a measure that

N∑
i=1

µ(Xi) = µ(
N⋃

i=1

Xi) (10)

where {Xi ⊂ X : i = 1, . . . , N} are mutually disjoint subsets. It follows that

N∑
i=1

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) = µ(
N⋃

i=1

N⋃
j=1

T−1[{`j}] ∩ C−1[{`i}])

where

N⋃
i=1

N⋃
j=1

T−1[{`j}] ∩ C−1[{`i}] =

(
N⋃

i=1

C−1[{`i}]

)⋂ N⋃
j=1

T−1[{`j}]


= X ∩ X = X

and

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) = µ(
N⋃

j=1

T−1[{`j}] ∩ C−1[{`i}])

where

N⋃
j=1

T−1[{`j}] ∩ C−1[{`i}] =
(
C−1[{`i}]

)⋂ N⋃
j=1

T−1[{`j}]


= C−1[{`i}] ∩ X = C−1[{`i}]

and also

N∑
i=1

µ(T−1[{`j}] ∩ C−1[{`i}]) = µ(
N⋃

i=1

T−1[{`j}] ∩ C−1[{`i}])
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where

N⋃
i=1

T−1[{`j}] ∩ C−1[{`i}] =
(
T−1[{`j}]

)⋂(
N⋃

i=1

C−1[{`i}]

)
= T−1[{`j}] ∩ X = T−1[{`j}].

4.2.6.2 Error rates per class. Error matrices traditionally present precision

and omission rates per class [17]. To capture the error rate per class, a variation on the

measurement µ(T−1[{`j}] ∩ C−1[{`i}]) is used. Define the error rates for class j as

ε(j,i)(C−1[{`i}]) =
µ(T−1[{`j}] ∩ C−1[{`i}])

µ(T−1[{`j}])
(11)

for all i ∈ {1, . . . , N}. The measure ε is defined on the inverse image of the truth mapping

for class j so that the measure space for class j is the triple (T−1[{`j}],B(j), ε(j,·)) where

B(j) = {S ∩ T−1[{`j}] : S ∈ B}.

Typically, the error matrix is set up as follows


ε(1,1) · · · ε(1,N)

...
. . .

...

ε(N,1) · · · ε(N,N)

 (12)

where the columns of the matrix list the error rates for each class.

4.2.6.3 A partial ordering of classifiers. Now, having constructed the mea-

sure space (X ,B, µ), we define a relation � to gauge whether or not classifier A is more

authoritative than classifier B. Recall, a set of ordered pairs is a relation. Relation � on a

set S is a partial ordering of S if and only if (1) � is reflexive (a � a for every a ∈ S), (2)

� is transitive (if a � b and b � c, then a � c), and (3) � is antisymmetric (if a � b and

b � a, then a = b).

Definition 25 (Partially ordered set). A partially ordered set (or poset) is an ordered pair

consisting of a set S and a relation � defined on the Cartesian set S×S. A poset is denoted

(S,�). [47]
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Definition 26 (Dual of Poset). Given the poset (S,�), (S,�) is called the dual of (S,�)

where the relation � is defined such that, for all a, b ∈ C, a � b iff b � a. [47]

Let C be a collection of classifiers and the authoritative relation � be defined on

the Cartesian map C × C to form the poset (C,�). We define relation � such that, given

classifiers A,B ∈ C, classifier A is more authoritative than B (written as A � B) if and

only if

µ(T−1[{`j}] ∩A−1[{`i}]) ≤ µ(T−1[{`j}] ∩B−1[{`i}]) ∀i 6= j. (13)

Note, it is necessary for poset (C,�) to be defined on measure space (X ,B, µ) instead of

the measure spaces (T−1[{`j}],B(j), ε(j,·)) in order to keep the relation � meaningful across

feature set X .

4.2.6.4 Estimation of error rates. In practice, the expression of measurement

µ(T−1[{`j}]∩C−1[{`i}]) contains several unknowns. Among them are truth mapping T and

density function f . Throughout the pattern recognition literature, a common strategy for

overcoming this ignorance is to sample pairs from the truth mapping T . An estimate of f

is implied by the sampling scheme. Let D be the collection of sampled pairs D = {(xk, `k) :

k = 1, . . . ,K}. The implied estimate of f has the general form fD(x) =
∑K

k=1 δ(x − xk)

where δ is the Dirac delta function. Then, error rates can be approximated as

µ(T−1[{`j}] ∩ C−1[{`i}]) ≈
∫

T−1[{`j}]∩C−1[{`i}]
fD(x)m(dx)

≈
∫

T−1[{`j}]∩C−1[{`i}]

∑K
k=1 δ(x− xk)m(dx)

≈ card(D ∩ T−1[{`j}] ∩ C−1[{`i}])
K

(14)

such that
N∑

i=1

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) ≈
card(D)

K
=
K

K
= 1. (15)

The precision of the error rates is known to be highly susceptible to the sampling strategy

[17] and, thus, highly susceptible to estimates of f .
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There are other unknowns in the expression µ(T−1[{`j}] ∩ C−1[{`i}]). Specifically, it

is unclear whether the complete feature set X and the complete label set L have been speci-

fied. Incomplete feature and label sets contribute significantly to confusion in classification.

Overpopulated feature/label sets also contribute to confusion in classification, but this is

due to shortcomings in training where, due to the higher ratio of parameters to training

points, it is more difficult to generalize models of the appropriate form and complexity.

[18, 73]

4.2.7 Confusion defined for measurable classifiers. Confusion measures compare

and contrast the opinions of experts. Given this definition, error is a special instance

of a confusion measure where one of the experts is the all-knowing authority on truth.

Confusion merely involves a consultation among peers. In that sense, measuring confusion

is less demanding. Interpreting confusion, however, is less straightforward.

Partitioning a feature set X using two peer classifiers A and B—a la A−1[{`j}] ∩

B−1[{`i}]—does not yield subsets that can be defined as measures of precision or commission

omission rates but rates of different meaning and utility. This different meaning is captured

in 4-value logic and utilized in the proposed confusion measure.

4.2.7.1 Class overlap in an N3 partitioning of feature space. The severity

of separation issues in a classification problem may be gauged by considering the nonempty

partitions A−1[{`j}]∩B−1[{`i}] where j 6= i. Given a classifier C defined on measure space

(X ,B, µ) with output label set L = `1, . . . , `N , recall from Theorem 1 that the summation

of a class’s precision and commission rates is equal to the measurement µ(C−1[{`i}])

N∑
j=1

µ(T−1[{`j}] ∩ C−1[{`i}]) = µ(
N⋃

j=1
T−1[{`j}] ∩ C−1[{`i}])

= µ(C−1[{`i}])
(16)

From this theorem, we can prove the following:

Theorem 4 With respect to measurable classifiers A, B, and the truth mapping T , there

is a total of a N3 summations within the measurement of sets µ(A−1[{`j}]∩B−1[{`i}]) for

all i, j ∈ {1, . . . , N}.
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Proof. From Theorem 1, we can rewrite the value µ(A−1[{`j}] ∩B−1[{`i}]) as

µ(A−1[{`j}] ∩B−1[{`i}])

= µ

(〈
N⋃

k=1

T−1[{`k}] ∩A−1[{`j}]
〉⋂〈 N⋃

n=1
T−1[{`n}] ∩B−1[{`i}]

〉)

Let i, j ∈ {1, . . . , N} then feature set X is comprised of N2 disjoint subsets of the form

A−1[{`j}] ∩ B−1[{`i}]. Each of these subsets can be partitioned further into N disjoint

subsets as seen by manipulating the subset A−1[{`j}] ∩B−1[{`i}]. First, consider

A−1[{`j}] ∩B−1[{`i}] =
〈

N⋃
k=1

T−1[{`k}] ∩A−1[{`j}]
〉⋂〈 N⋃

n=1
T−1[{`n}] ∩B−1[{`i}]

〉
=

〈
N⋃

k=1

T−1[{`k}]
〉
∩A−1[{`j}]

⋂〈 N⋃
n=1

T−1[{`n}]
〉
∩B−1[{`i}]

=
N⋃

n=1
T−1[{`n}] ∩

〈
N⋃

k=1

T−1[{`k}]
〉
∩B−1[{`i}] ∩A−1[{`j}].

Next, since T−1[{`n}] ∩ T−1[{`k}] ∩B−1[{`i}] ∩A−1[{`j}] = ∅ for all k 6= n, it follows that

A−1[{`j}] ∩B−1[{`i}] =
N⋃

n=1
T−1[{`n}] ∩B−1[{`i}] ∩ T−1[{`n}] ∩A−1[{`j}]

=
N⋃

n=1
T−1[{`n}] ∩B−1[{`i}] ∩A−1[{`j}].

Therefore, the measurement µ(A−1[{`j}] ∩ B−1[{`i}]) can be expressed as the summation

of N measurements

µ(A−1[{`j}] ∩B−1[{`i}]) =
N∑

n=1
µ(T−1[{`n}] ∩B−1[{`i}] ∩A−1[{`j}]).

and the calculation of all N2 measurements µ(A−1[{`j}] ∩ B−1[{`i}]) thus involves N3

summations.

The amount of confusion among classifiers A and B may be gauged—in part—by

assessing the non-empty partitions A−1[{`j}] ∩B−1[{`i}] where j 6= i. A full set of subsets

implies interpolation issues as it suggests considerable overlap among classes. Unfortunately,

this limited analysis leaves out the confusion that may lie in the partitions A−1[{`j}] ∩

B−1[{`j}]. Confusion in these partitions is generally caused not by overlapping class data
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but instead by a lack of data. In order to capture both forms of confusion (uncertainty due

to interpolation or extrapolation issues), we turn to four-value logic.

4.2.7.2 Four-value logic. Four-value logic addresses ambiguities in 2-value

and 3-value logics in representing experience. Two-value logic implements the rudimentary

binary decision set: “false” and “true”. Three-value logic allows for the possibility of a non-

decisive computation and implements “false”, “uncertain”, and “true” decision sets. Along

this vein, 4-value logic resolves an ambiguity in 3-value logic. The label set of 3-value logic—

{false, uncertain, true}={f, u, t}—provides no distinction between vague experience and the

absence of experience. Four-value logic splits the “uncertain” label in two resulting in the

label set {false, true, uncertain interpolation, uncertain extrapolation}={f, t, i, e}. We have

summarized the distinctions of 4-value logic from 2-value and 3-value logic treatments in

Figure 18. [62]

Four-value logic interprets classifiers as class experts—classifiers which isolate class

data rather than merely separate.

Definition 27 (Class expert). A class expert is a classifier designed to isolate features near

the training data of a specific class from other data.

For instance, in a 4-value interpretation of a two-value classifier, we might replace the label

set L2v = {f, t} with the label set L2v = {{f, e}, {t, i}}. The label set L2v = {{f, e}, {t, i}}

implies that the 2-value classifier was trained based on a strategy to isolate elements that

are considered near or similar to Class “true” data. An isolation strategy is motivated

to capture the sensitivity4 of a classification, more so than capturing its separability from

other classes.

Define a classifier B on the Cartesian set X ×L2v. Let label set L2v = {{f, e}, {t, i}}

so that classifier B dichotomizes the feature set X into two subsets B−1[{f, e}], B−1[{t, i}].

Subset B−1[{t, i}] contains “true”-labeled data and interpolations between “true” data.

Alternately, B−1[{f, e}] contains “false”-labeled data and extrapolations from “true” ele-

ments. Now define a different 2-value classifier A with a label set L′2v = {{t, e}, {f, i}}

4Sensitivity of classifier B is the probability p(x ∈ X|B(x) = `) that a feature x ∈ X is assigned a
particular label ` ⊂ L.
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A = ¬B == “false”
B = ¬A == “true”

(a) Two-value logic

A ∩ ¬B == “false”
B ∩ ¬A == “true”

(A ∩ B) ∪ (¬A ∩ ¬B) == “uncertain”

(b) Three-value logic

A ∩ ¬B == “false”
B ∩ ¬A == “true”
A ∩ B == “interpolated”

¬A ∩ ¬B == “extrapolated”

(c) Four-value logic

Figure 18. Class arrangements in 2-value, 3-value and 4-value logic where “©”∈ Class
False and “�”∈ Class True.
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to isolate those elements considered near “false” data, so that subset A−1[{f, i}] contains

“false”-labeled data and interpolations between those false elements and subset A−1[{t, e}]

contains “true”-labeled data and extrapolations from “false” data.

In the next section, we derive a 4-value classifier from a pair of classifiers—the first

classifier with output label set L2v = {{f, e}, {t, i}}, the second with output label set

L′2v = {{t, e}, {f, i}}—using a construction called the confusion set.

4.2.7.3 Four-value logic confusion set for the two-class problem. Let A and

B be classifiers defined on feature set X with output label set L = {f, t, i, e}. For each pair

of subsets of labels L,M ⊂ L, define the set-valued mapping C(L,M) defined on classifiers

A and B to be

C(L,M)(A,B) = A−1[L] ∩B−1[M ]. (17)

Assume classifier A is an expert on class “false” and classifier B is an expert on class “true”.

Classifier A, then, is an expert on the features in the set A−1[{f, i}] ⊂ X . Similarly, B is

an expert on the set B−1[{t, i}]. Define the expertise sets of A and B to be, respectively,

A = A−1[{f, i}] and B = B−1[{t, i}]. For special choices of the label subsets L = {f, i},

L = {t, e} = 1− {f, i} and M = {t, i}, M = {f, e} = 1− {t, i}, one gets the confusion set,

a 4-tuple partition of feature set X, in terms of classifiers A and B

C({f,i},{t,i})(A,B) = A−1[{f, i}] ∩B−1[{t, i}] = A ∩ B

C({t,e},{f,e})(A,B) = A−1[{t, e}] ∩B−1[{f, e}] = ¬A ∩ ¬B

C({f,i},{f,e})(A,B) = A−1[{f, i}] ∩B−1[{f, e}] = A ∩ ¬B

C({t,e},{t,i})(A,B) = A−1[{t, e}] ∩B−1[{t, i}] = ¬A ∩ B.

Observe since, by definition, the classifiers’ domains are all X then, indeed, the set comple-

ments are correct since

X = A−1[{f, t, i, e}]

= A−1[{f, i} ∪ {t, e}]

= A−1[{f, i}] ∪A−1[{t, e}].
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Therefore,

A−1[{t, e}] = X−A−1[{f, i}]

= X−A

= ¬A.

For clarification, consider the table:

Table 2. The confusion set as a confusion matrix of sets.

M = False ∪ Extrapolated M = True ∪ Interpolated
L = False ∪ Interpolated A ∩ ¬B A ∩ B
L = True ∪ Extrapolated ¬A ∩ ¬B ¬A ∩ B

Table 2 denotes the confusion set in matrix form—that is, the table presents the confusion

matrix of sets. Thus given classifier A, an expert on the set A (that corresponds to the first

label, i.e., f in this case), and the classifier B, an expert on the set B (that corresponds

to the second label, i.e., t in this case), define the confusion mapping that produces the

confusion matrix of sets to be

C(L,M)(A,B) =

 A ∩ ¬B A ∩ B

¬A ∩ ¬B ¬A ∩ B

 .
To construct the measure of the confusion sets, we define the matrix-valued measure −→µ to

be

−→µ (C(L,M)(A,B)) =

 µ(A ∩ ¬B) µ(A ∩ B)

µ(¬A ∩ ¬B) µ(¬A ∩ B)

 .
4.2.7.4 Constructing a 4-value classifier. A 4-value classifier C defined on

feature set X with output label set L = {f, t, i, e} may be derived from the confusion set.

C−1[{f}] = A ∩ ¬B C−1[{i}] = A ∩ B

C−1[{e}] = ¬A ∩ ¬B C−1[{t}] = ¬A ∩ B
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True set C−1[{t}] includes those features hypothesized far from “false” and near “true”;

therefore, we believe these features to be “true” and easily separated from “false” data.

The false set C−1[{f}] includes those features we believe to be “false” and easily separated

from “true” data. Together, the true set C−1[{t}] and false set C−1[{f}] comprise the

confirmation set

Confirm(A,B) = C−1[{f, t}]

= C−1[{f}] ∪ C−1[{t}]

= A	 B.

(18)

where 	 denotes the XOR operation. The confirmation set affirms the expertise of A

and B in those regions of feature set X where the class experts are not in conflict. The

interpolation set C−1[{i}] specifies features hypothesized to be similar to data of both

class—regions of X where experts A and B are in direct conflict. The extrapolation set

C−1[{e}] encompasses features considered far from all classes. Recall, a primary motivation

in 4-value logic treatments is to identify the operational set—the set of largely unrealized,

but anticipated data in the operational use of a classifier. The operational set of 4-value

classifier C is the subset C−1[{f, t, i}] ⊂ X. This subset excludes the extrapolation set

C−1[{e}] so that the operational set encompass only those features hypothesized to be

similar to training data or previous experiences.

Operational(A,B) = C−1[{f, t, i}]

= C−1[{f}] ∪ C−1[{t}] ∪ C−1[{i}]

= X − C−1[{e}]

(19)

Finally let us note, for a collection of 4-value classifiers C on measure space (X ,B,−→µ ),

we can define a relation �4v to gauge whether or not classifier C1 is more general than clas-

sifier C2 given C1, C2 ∈ C. This relation contrasts the cardinality of the classifiers’ confir-

mation and operational sets since their memberships decrease as data generalizations range

from oversimplification to memorization. We anticipate as operational experience is accu-

mulated and set memberships are more fully realized, the appropriate size and complexity

of the operational set will become clear. [18, 73]
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Figure 19. Data set for interlocking spirals: Class True == ‘o’, Class False == ‘x’.

4.3 Illustration of the 4-tuple confusion set

To illustrate the construction of a 4-value classifier, we separate two interlocking spirals

using a special treatment of multilayer perceptrons. The interlocking spirals are partitioned

using two class experts: Class expert A isolates false points (the x’s in Figure 19) from

all other points, and class expert B isolates true points (the o’s in Figure 19). Both class

experts use a 2-hidden-layer MLP architecture. Each classifier has memorized the training

set by employing a nearest neighbor rule base, but the classifiers differ in that each is more

generous in corralling neighborhoods for the particular class it isolates.

Let A, B and C be classifiers defined on the X = R2 with output label set L =

{x, o, i, e}. Classifier A is illustrated in Figure 20 (a) in terms of its set of hyperplanes and

(c) with respect to its partitioning of R2. Classifier B is illustrated in Figure 20 (b) and

(d). Figure 21 depicts 4-value classifier C, the 4-value logic interpretation of classifiers A

and B as given in the confusion set CL,M (A,B) for the two-class problem.

C−1[{x}] = CL+,M−(A,B) = A ∩ ¬B C−1[{i}] = CL+,M+(A,B) = A ∩ B

C−1[{e}] = CL−,M−(A,B) = ¬A ∩ ¬B C−1[{o}] = CL−,M+(A,B) = ¬A ∩ B

where L ∈ {L−, L+} = {{o, e}, {x, i}} and M ∈ {M−,M+} = {{x, e}, {o, i}}.
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(a) Arrangement A (b) Arrangement B

True, Extrapolated False, Interpolated False, Extrapolated True, Interpolated

(c) Output of MLP implementing A (d) Output of MLP implementing B

Figure 20. Two multilayer perceptrons—respectively class experts A and B—implement
overlapping generalizations of the two-class spiral data shown in Figure 19.

False
�����
eExtrapolated Interpolated

Figure 21. Four-value logic generalization of spiral data.
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(a) Original data set (b) Four-value logic generalization

Figure 22. Four-value logic generalization with overlay of the original data.

The overlay of original data in Figure 22(b) illustrates that, even though the original

data set was memorized, training has not led to poor generalization in the final solution.

Since the training data was sampled at an appropriate resolution, new information within

the range of the original training set is classified correctly while points outside the range of

training data are properly labeled as extrapolations in the 4-value classifier. In the mean-

squared-error sense, all three classifiers A, B and C perform equally for training data and

any new points generated by the original functions xo(z) = [(1− 0.95
144 z). ∗ cos(

π
2 + π

18z); (1−
0.95
144 z).∗sin(π

2 + π
18z)] and xx(z) = −xo(z) within the range z ∈ [33, 144]. This holds because

there is ample experience within this range to resolve xo(z) and xx(z). The 4-value classifier

C is more desirable because it expresses the conditions where the original function was not

sampled adequately and no certain solution can be tendered.

4.4 The 4-value classifier

In summary, let us review the construction of a four-value classifier as first discussed

in Section 4.2.7.4. A crisp-set classifier partitions a feature set and tags each partition

with a particular label. Let classifier C be a function defined on the Cartesian product

X ×L. Feature set X and label set L form an input/output pair (xk, `k) ∈ C where feature
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xk ∈ X and label `k ∈ L. Assuming crisp logic, classifier C partitions X into N disjointed,

nonempty subsets {X1,X2, . . . ,XN}. Let each subset Xi correspond to one label `i and each

label correspond to at least one feature xk ∈ X . The collection {X1,X2, . . . ,XN} is then

exhaustive, i.e.,
⋃N

i=1Xi = X , and mutually disjoint, i.e., Xi ∩ Xj = ∅ for all i 6= j, and the

inverse image of any label ` ∈ L denotes a subset of X , i.e., C−1[{`}] ⊂ X .

A 4-value classifier is constructed by creating expert classifiers for each class in a

training set. Let 2-class dataset D be a subset of the Cartesian product X ×L where label

set L = {false, true} = {f, t}. The class expert in false is prepared by isolating domain

regions near Class false points. Let the class expert A partition X into the signed set

(A,Ac) where subsets

A = A−1[{f, i}] = A−1[{f}] ∪A−1[{i}],

Ac = A−1[{t, e}] = X −A.

Partition A is the inverse image of the false and interpolation labels—the subset of X that

contains both truthed false points and those untruthed points considered near false points.

Complement Ac contains all other points. Similarly, the expert in true isolates regions

near Class true points. Let class expert B partition X into the signed set (B,Bc) such

that B = B−1[{t, i}] and Bc = B−1[{f, e}] = X − B. The 4-value logic interpretation of

class experts A and B is expressed as four disjoint partitions of X . Let classifier C be a

function defined on Cartesian product X × L4v where L4v = {False, True, Interpolation,

Extrapolation} = {f, t, i, e} such that

C−1[{f}] = A ∩ Bc C−1[{i}] = A ∩ B

C−1[{t}] = Ac ∩ B C−1[{e}] = Ac ∩ Bc.

Classifier C defines the inverse image of label False as C−1[{f}] = A ∩ Bc where expert A

isolates regions near false points and is not contradicted by expert B. The inverse image

of label True is C−1[{t}] = Ac ∩ B where expert B isolates regions near true points and

is not contradicted by expert A. The inverse image of Interpolation C−1[{i}] = A ∩ B

specifies where the class experts contradict each other—both asserting “nearness”—while
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the inverse image of Extrapolation C−1[{e}] = Ac∩Bc denotes where neither expert asserts

prior experience. [47, 62]

4.5 Summary

Formal confusion measures edge us closer to the elusive capability of self-evaluation.

The power of the Theory of Confusion pivots on the assertion that a data generalization

embodies a hypothesis of what is considered near training data and what is considered far.

By contrasting the hypotheses of multiple classifiers, one can partition a feature space

into regions of confidence (i.e., the confirmation set), regions of uncertainty due to inter-

polation confusion, and regions of high uncertainty due to extrapolation confusion. This

partition constitutes a more analytical, expressive declaration of confidence than can be of-

fered in the sample mean error rate tabulated by an error matrix and is valuable in selecting

a single classifier or committee of classifiers to process particular regions of feature space

with realistic expectations of performance.
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V. Expertise logic

The goal of this chapter is the quantification of expertise in classification. Quantifying

expertise allows one to separate expert classifiers from “pretenders”. The proficiency of a

classifier hinges on its ability to interpolate operational data accurately. Success is measured

by quantifying (1) the fitness of the classifier in ordering the hypothesized operational set

and (2) the completeness of the training set in representing the operational set. When the

operational set is largely untruthed, error measures—model versus truth comparisons—have

limited utility in gauging a classifier’s competency. To compensate, we propose the use of

confusion measures—model versus model comparisons—to evaluate expert classifiers over

untruthed, but interesting, portions of the operational set.

We begin this chapter with an introduction to expertise logic, its elements and its

utility in recognizing arrogance in classification; we wrap up with proposed fusion rules for

expert classifiers. In the next section, we define the expert classifier and propose a figure of

merit—the ordered veracity-experience response curve—to judge appropriate expressions of

expertise over the domain of such a classifier. We base our concept of computational exper-

tise on the premise that learning agents do not need to be authoritative experts in a task

to be able to recognize confusion among themselves. As a motivation to this conceptualiza-

tion, consider that students in a classroom can advise each other of subjects in a curriculum

where retraining with additional resources and special care is required. In other words, the

students do not need to be experts in a subject to make reasonable judgements on whether

their teachers’ instruction needs to be augmented. We would like computer agents to be

able to exhibit similar reasoning skill in self and peer-to-peer evaluation. Toward this end,

we construct a confusion measure by contrasting a classifier’s veracity to its apparent skill.

We have deemed this construction expertise logic.

5.1 Expertise logic and arrogance in classification

Expertise logic orders the opinions of experts. An expert is a special classifier—a

relational computation with not only a mechanism for decision making but also a quan-

tifiable skill level. We propose expertise logic as a means of conveying relative experience
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(a) Expert veracity (b) Experience level
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(c) Expert veracity versus experience

Figure 23. The uncertainty of an expert is quantified in two intervals: (a) Expert veracity,
(b) Experience level. Uncertainty is conceptualized as a function of grayscale
on (c) the experience level versus veracity set.

among experts and avoiding expressions of arrogance. Expertise logic is derived from the

two quantities called veracity and experience as shown in Figures 23(a) and (b). In this

section, we shall define these quantities and how they relate to arrogance in classification.

5.1.1 Veracity versus Experience. Let us define veracity and experience. Let A be

a classifier defined on feature set X with label set L. Assume that classifier A was trained

on subset A ⊂ X ×L. We consider the pair (A,A) together. Given a feature vector x ∈ X ,

one wishes to derive an expert—a relation that maps the information (x,A,A) to a decision

(`, e, v). The 3-tuple decision of the expert is comprised of the label ` = A(x) ∈ L and

two additional outputs e and v. The output e quantifies the experience associated with the

input x and training set A, and the output v quantifies the veracity of the classifier towards

its choice of label ` = A(x).
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5.1.1.1 Veracity of a Classifier. Veracity1 is the classifier’s internal convic-

tion towards truthfulness of a label ` ∈ L. There are established methods for quantifying

veracity. Veracity is a special quantity of an assertion’s probability and may be derived

from confidence, certainty or uncertainty scores such as fuzzy logic, Bayesian error bars,

error matrices, and entropy. Here, it is not our intention to derive new or improved veracity

quantifiers but to make a subtle distinction in definition.

Definition 28 (Veracity) The veracity of a classifier A at feature x is a quantity of the

strength of conviction in the classification ` = A(x). Let v = VA(x) ∈ [0, 1] denote the

veracity of classifier A at x. If VA(x) = 0 then the classifier has no conviction toward the

chosen label `. If VA(x) = 1 then the classifier is fully convicted towards its choice of label.

In this definition, veracity must not be misinterpreted as a measure of correctness. A clas-

sifier may assign an incorrect label but still have a sizable strength of conviction towards

its labeling. Given the 2-class problem with label set L = {false, true}, veracity is mapped

into two different intervals Vfalse(x) ∈ [0, 1] and Vtrue(x) ∈ [0, 1]. For illustration pur-

poses, we have depicted the two veracities in a single interval in Figure 23(a) by mapping

−Vfalse(x) ∈ [−1, 0] and Vtrue(x) ∈ [0, 1] to form the interval V (x) ∈ [−1, 1], ranging then

from false to uncertain to true. Note if the conviction for a true classification is small, it

does not necessarily follow that the classification is false. This is an important distinction,

because otherwise we assume the classifier is always interpolating. To assume a classifier

is always interpolating is to assume that if a feature is not near training data of one class

then it is near training data of another class. This assumption leads to false positives.

5.1.1.2 Experience of a Classifier. Experience is a special quantity of a

query’s bearing, expressing the fitness of an expert to answer a query based on what the

expert knows a priori. The experience of a classifier depends on the data set used to train

the classifier.

Definition 29 (Experience) The experience of a classifier A at feature x is a quantity of

closeness of feature x to training data A. Let experience e = EA(x) ∈ [0, 1] denote the

1For further motivation on veracity, see the paper by Alsing et al [3].
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experience of classifier A at x. If EA(x) = 0 then the classifier has no experience with data

near x. If EA(x) = 1 then the classifier has all-knowing experience with data near x.

Of the two quantities, experience is more often ignored in classification problems so let us

spend time in its discussion. To understand the concept, let us start with some background

material concerning metric spaces. Let ρ be a metric defined on the feature set X so that

(X , ρ) is a metric space. Recall the definition of a metric.

Definition 30 (Metric [5]). Let X be a nonempty set. A metric is a real-valued function

ρ defined on all of X × X such that the following properties hold true:

1. ρ(x, y) ≥ 0 for all x, y ∈ X . (nonnegativity)

2. ρ(x, y) = ρ(y, x) for all x, y ∈ X . (symmetry)

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X . (triangle inequality)

4. ρ(x, y) > 0 if and only if x 6= y. (positive definiteness)

Definition 31 (Metric Space [5]). Let X be a nonempty set and let ρ be a metric defined

on X , then the pair (X , ρ) is said to be a metric space.

Definition 32 (Ball). Let (X , ρ) be a metric space. An open ball, or open hypersphere, at

x with radius r is defined to be the set B(x, r) = {y ∈ X : ρ(x, y) < r}. A closed ball is the

set B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

Definition 33 (Distance to a Set). Given a subset S ⊂ X and a feature x ∈ X , we define

the distance from x to S to be dist(x,S) = inf{ρ(x, y) : y ∈ S}.

There are many ways to construct the experience quantifiers; but, before we present

an example, we should discuss a few axioms that we can assume about experience. Let A

be a classifier defined on X trained on data A, and let the set of features from the data be

denoted as the set of first components,

A1 = {x ∈ X : (x, `) ∈ A}.

Our first three axioms establish experience EA(x) as a normalized quantity inversely pro-

portional to dist(x,A1).
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Axiom 1 Given a feature x ∈ X , if x is a training datum, then experience EA(x) = 1.

Axiom 2 Given a feature x ∈ X , if there are no training data near x, then the experience

EA(x) is small (close to 0).

Axiom 3 Given a feature x ∈ X , if there are training data near x, then the experience

EA(x) is large (close to 1) .

In considering the distribution of experience values over a domain, with respect to density

we formulate the following axioms.

Axiom 4 Given a feature x ∈ X , if there are few training data near x, then the experience

EA(x) is likely to be small but is not necessarily small.

Axiom 5 Given a feature x ∈ X , if there are many training data near x, then the experience

EA(x) is likely to be large but is not necessarily large.

These last two axioms say that EA(x) is proportional to card(A) though other forces—such

as the closeness of a training datum or the local complexity of the data distribution—can

supercede. To construct the example of an experience mapping, let us first consider a

definition based directly on the density at x with respect to A1,

den(x,A1) = lim
r→0+

card(A1 ∩ B(x, r))
vol(B(x, r))

.

Of course, for finite sets A1 with x /∈ A1 then den(x,A1) = 0. If x ∈ A1 then den(x,A1) =

∞ since card(A1 ∩ B(x, r)) ≥ 1 for all r > 0. Therefore, we modify the definition to work

for finite sets. Choose the radius to be rx = 2 dist(x,A1). Now determine the volume of the

ball with radius rx. We know that the set A1 ∩ B(x, rx) is nonempty, hence the cardinality

is nonzero. Consider
card(A1 ∩ B(x, rx))

vol(B(x, rx))

which approximates the density at x. But, this quantity is not bounded between 0 and 1,

nor does it satisfy Axiom 1. We apply the function z/(z + 1) to force the values to lie in
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Figure 24. The expert classifier with a 3-tuple output representing a decision—the label
`, a veracity score v and a quantification of experience e—in relation to a given
feature x.
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Figure 25. A classifier with a 2-tuple output representing a decision—the label ` and a
confidence score c—in relation to a given feature x.

[0, 1] and be increasing. Hence, consider

EA(x) =
card(A1 ∩ B(x, rx))

card(A1 ∩ B(x, rx)) + vol(B(x, rx))
.

Observe that this satisfies Axiom 1, since if x ∈ A1 then rx = 2 dist(x,A1) = 0, thus,

vol(B(x, rx)) = 0 and EA(x) = 1. Also, the other axioms hold true by construction.

5.1.1.3 Mapping expertise logic. Given the definitions of veracity and expe-

rience, we may now formally define the expert classifier.

Definition 34 (Expert classifier) Given a classifier A ⊂ X × L, its training data A ⊂ A,

and feature vector x ∈ X , the expert classifier is the mapping Ã(x,A,A) = (`, e, v) where

the 3-tuple (`, e, v) represents the expert’s decision—the label ` ∈ L, the experience e, and

the veracity v.

It is possible to map the veracity and experience of an expert classifier (per Figure 24)

to a single quantity of certainty c (per Figure 25). Unfortunately, there is significant expres-
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sion lost in this reduction. Such a mapping is not one-to-one as several veracity-experience

pairs map to a certainty of c = 0. That is, there are many conditions where certainty c = 0,

and predominantly among of them are expressions of arrogance.

For each class label ` ∈ L, we can relate a quality of certainty to corresponding

veracities and experience. Figure 23 conceptualized this relation in veracity-experience

space for the 2-class problem. Given L = {false, true}, we mapped the veracity scores

along the horizontal axis: The veracity Vtrue(x) of the true class maps into the interval

[0, 1], and the veracity of the false class maps into the interval [−1, 0] so that −Vfalse(x) ∈

[−1, 0]. Let c denote certainty. The range of certainty is depicted within bright-to-dark

grayscale in Figure 23(c) corresponding to the interval [−1, 1] so that “Certain False”= −1,

“Uncertain”= 0, and “Certain True”= 1 respectively. The exact form of certainty c(x) =

c(V`(x), E`(x)) is domain dependent, but we can form the following axioms.

Axiom 6 Certainty c approaches 0 as experience e approaches 0.

Axiom 7 Certainty c approaches 1 as both veracity vtrue → 1 and experience etrue → 1 for

class true.

Axiom 8 Certainty c approaches −1 as both veracity vfalse → 1 and experience efalse → 1

for class false.

Following these axioms, we have conceptualized a generic form of certainty in Figure 23(c)

such that certainty c = 0 for the entire veracity interval where experience e = 0, then c = 0

for an increasingly smaller and smaller subinterval of the veracity interval as experience

increases until, finally, c = 0 is a point at experience e = 1 and veracity v = 0. When mapped

into this conceptualization, we see fuzzy logic corresponds to the veracity interval where

e = 1 as shown in Figure 26(a). Thus, fuzzy logic presumes an expert encapsulates specific

experience, and we conclude that fuzzy logic is most appropriate for data compression

applications where this assumption holds true.

When we project data generalizations onto the 2-dimensional veracity-experience set,

care must be taken to map onto the “V” illustrated in Figure 26(b). This restriction in ex-

pertise logic ensures veracity does not overstate skill where there is little or no justification.
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Figure 26. Mapping (a) fuzzy logic and (b) expertise logic onto the uncertainty set.

As we shall demonstrate in Chapter VI, the multilayer perceptron is a prime example of

a data generalization that tends to overstate experience. A single-hidden-layer MLP com-

pactly represents high order logic by overly partitioning a feature space. Methods such as

back propagation and cross validation do nothing to regulate the ordering of partitions that

do not contain training data. This leads to arbitrary and often misleading representations

of veracity in regions where there are no training data. Where an unpopulated region is

arbitrarily assigned a strong veracity (|v| → 1), we say the classifier expresses arrogance.

5.1.2 Arrogance in Classification. Expert classifiers may be too bold or too

timid in extending their training data to the larger operational set. Traditionally, we judge

classifiers by assessing the amount of apparent memorization in classification. When a

classifier memorizes—or overfits—training data, it is too timid in associating data near

training data with the training data’s label. Classifiers may also be too bold in assigning

labels to data far from training data. We call this arrogance in classification. When a

classifier has a tendancy to express an internal conviction toward certain answers without

the necessary collaborating experience, one must trade off veracity versus experience before

accepting a classifier’s answer. We use an arrogance curve in veracity-experience space to
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do this. To select an arrogance curve, we wish to define a function g : [0, 1] → [0, 1] such

that the following properties hold true:

(a) g is defined on all of [0, 1];

(b) g is non-decreasing on [0, 1];

(c) g(0) ≥ 0;

(d) g(1) ≤ 1.

Examples of functions g are:

1. g(s) = s;

2. g(s) =
√
s;

3. g(s) = sq for some q ∈ (0, 1];

4. g(s) = log(s+ 1)/ log 2;

5. g(s) =

 0 for 0 ≤ s < b

c for b ≤ s ≤ 1.

Let function g define an arrogance curve such that, if experience e is less than g(v) for verac-

ity v then the classifier expresses a certain amount of veracity without sufficient experience

to back it up. The classifier is an arrogant classifier in this case. A decision maker should

choose a threshold of arrogance that they can “live with”; thus, they choose a function g.

Definition 35 (Arrogant Classifier) Let g be a function that satisfies the properties (a)-(d)

above. Let A : X → L be a classifier with training set A. Given a vector x ∈ X we say A is

arrogant at x if EA(x) < g(VA(x)).

Let us consider the arrogance curve given above in Example 5. We use this particular

curve in the construction of 4-value logic [64], a crisp-set interpretation of expertise logic.

We use expertise logic to represent 4-value logic in crisp sets in much the same way as

fuzzy logic represents 3-value logic, but take note: As shown in Figure 27(b), 4-value logic

is actually a 6-value logic with two forbidden values. To clarifiy, let us first examine fuzzy

logic. As illustrated in Figure 26(a), fuzzy logic maps expert opinions into the interval

[0, 1] along the veracity dimension. Given two thresholds a, b ∈ [0, 1] where a < b, fuzzy
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Figure 27. Three-value and four-value logic projected onto the uncertainty set. (a) Using
two thresholds a, b, three-value logic divides the uncertainty set into 3 disjoint
partitions. (b) Using three thresholds a, b, c, four-value logic divides the un-
certainty set into 6 disjoint partitions: 4 subsets corresponding to 4-value logic
and 2 subsets (the crossed-out regions above) corresponding to arrogance.

logic represents 3-value logic as relaxed intervals: False=[0, a], Uncertain=(a, b), True=[b, 1];

these relaxed intervals and the thresholds a and b are depicted in Figure 27(a). Figure 27(b)

shows a similar treatment for expertise logic with the following three exceptions: Expertise

logic maps into two dimensions instead of one, (2) the veracity scores are mapped in to a

[−1, 1] interval instead of [0, 1], and (3) our crisp logic treatment prescribes an additional

threshold, c, applied along the second dimension. Given a, b ∈ [−1, 1] where a < b and the

third threshold c ∈ [0, 1], 4-value logic is represented in the relaxed intervals

False = [−1, a]× [c, 1],

True = [b, 1]× [c, 1],

Uncertain Interpolation = (a, b)× [c, 1], and

Extrapolation = [−1, 1]× [0, c].

The Extrapolation interval splits further into 3 partitions: [−1, a] × [0, c], (a, b) × [0, c],

and [b, 1] × [0, c]. The second partition (a, b) × [0, c] expresses Uncertain Extrapolation

(an appropriate expression) as shown in Figure 27(b); the first and third partition convey
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Figure 28. The above figures of merit illustrate appropriate and inappropriate expres-
sions of expertise respectively. (a) The appropriate expression of expertise:
Specific experience clusters in the asymptotic regions such where |v(x)| → 1,
while extrapolations cluster tightly where v(x) = 0. (b) Expressions of arro-
gant classification: Extrapolations dominate the asymptotic regions pushing
specific experience away from the asymptotes toward v(x) = 0.

Arrogance. By forbidding a generalization to map into intervals that convey Arrogance,

we restrict the mapping’s output to 4-value logic: {False, True, Uncertain Interpolation,

Uncertain Extrapolation} or {f, t, i, e}.

5.1.3 Depicting expertise in a figure of merit, the OVER curve. We assert that a

good generalization isolates data, allowing extrapolations and uncertain interpolations to be

easily separated from class data in a feature set. To illustrate good isolation, we recommend

a figure of merit in which we order the feature set of a classifier in terms of its veracity

scores and, then, cross reference this ordering to the classifier’s experience scores. A figure

of merit is “a parameter or characteristic of a machine, component, or instrument that is

used as a measure of its performance” [86]. Here, we are using the term in the characteristic

sense, and we shall call this characteristic the ordered veracity-experience response curve,

or OVER curve.

For good separation and appropriate expression of expertise, we prefer a classifier

which orders its domain similar to the OVER curve in Figure 28(a). Note, it is desirable for

feature vectors near “false” training points to score veracities approaching -1 and to have
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features near “true” points to score veracities approaching 1. To provide good isolation of

classes, it is further desirable for feature vectors near both “true” and “false” exemplars to

score veracities approaching 0 (that is, along the non-linear transition between asymptotes)

and for features far from any exemplar to score veracities of 0.

Some classifiers merely separate training data from disparate classes and do not iso-

late the classes. These classifiers arbitrarily order extrapolated data (and may erratically

order interpolated data depending on the classifier’s complexity). In the arrogant classifier,

significant regions of extrapolated regions receive veracity scores that are higher than scores

assigned to truthed data. Instead of producing the desired domain ordering in Figure 28(a),

the arrogant classifier orders the domain as depicted in the OVER curve of Figure 28(b). We

will demonstrate instantiations of such an ordering using a 4-node-input/3-node-output mul-

tilayer perceptron in Chapter VI. For this demonstration, we chose an MLP trained using

back propagation—a popular optimization technique—which separates class data without

isolating the classes. Consequently, we expect the MLP to exhibit some degree of arrogance.

5.1.4 Summary of arrogance in classification. The training of good generalizations

must mitigate both memorization and arrogance. Memorization is characterized as being

too timid in associating new observations with previous experience. Arrogance is being too

bold. In classification problems, memorization is traditionally assessed via error matrices

and iterative error-based techniques such as cross validation. These techniques, however,

do nothing to assess arrogance in classification. To identify arrogant classifications, we have

proposed a confusion-based figure of merit called the ordered veracity-experience response

curve, or OVER curve. To produce the OVER curve, one must employ expert classifiers. In

this section, we defined the elements of both the expert classifier and the OVER curve and,

in Chapter VI, we shall demonstrate their utility using the multilayer perceptron. But, for

now, we shall complete this chapter with a presentation of fusion rules for expert classifiers.

5.2 Fusion rules for expert classifiers

Given a finite collection of classifiers trained on n-class data, one wishes to fuse the

classifiers to form a new classifier with improved performance. Typically, the fusion is
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performed on the output level using logical ANDs and ORs. We propose a fusion method

based on the mitigation of arrogance among expert classifiers and the location of the feature

vector with respect to training data. Given a feature x, if any one of the classifiers is a true

expert on x, then that classifier should dominate the fusion. If the classifiers are confused at

x, then the fusion rule should be defined in such a way to reflect this confusion. If a classifier

is arrogant, then its results should not be considered and, thus, filtered out from the fusion

process. We give this fusion rule based upon the metrics of veracity and experience.

5.2.1 Classifier Theory. Classifiers categorize interesting events by mapping cer-

tain event observations to a predetermined class. Let Ξ be a nonempty event set. Let X

be a random variable representing a sensor (with no noise) whose image is contained in a

set of observations, i.e., the feature set X . Thus, we can represent the data collection of a

sensor as the function X : Ξ → X as illustratrated in the block diagram below.

Ξ X X

Event Set −→ Feature Set

Formally, a classifier is a special relation that maps from a feature set to a decision set.

Elements of a decision set may include class labels, situational qualifiers, and measures

quantifying the ease of assigning a given decision. Consider the simple case where the

decision set is a label set such that each classification—or element of the decision set—is

a class label. Let classifier A be a function that maps a feature vector x ∈ X to a label

` ∈ L where L is a label set. For a 2-class problem, the label set could be L = {false,

true}, L = {f,t}, L = {0, 1} or L = {−1, 1}. For other problems, the label set might be a

continuum, e.g., L = R, or L = [−1, 1]. We want a classifier to be a function so that an

input feature vector maps to a single output label (possibly a vector). The corresponding

block diagram follows.

X A L

Feature set −→ Label set

Composing the two functions yields the block diagram below.
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Ξ X X A L

Event Set −→ Feature set −→ Label set

Suppose there is another random variable (or sensor) Y that also observes instantiations

from the event set Ξ and produces a feature vector y∈Y. In general, Y may be a different

feature set from X . Assume there is another classifier B : Y →M, where M is some other

(possibly different) label set. The composition block diagram is given similarly.

Ξ Y Y B M

Event Set −→ Feature set −→ Label set

5.2.2 Classifier Fusion. Consider the case where the two sensors X and Y observe

events occurring in the same event set Ξ as above. Assume they produce feature vectors in

different feature sets X and Y. In particular, assume X : Ξ → X and Y : Ξ → Y. How

can one combine or “fuse” two different classifiers designed from different training sets to

produce results better than the individual classifiers separately? This is a basic question

in classifier fusion theory. Usually, the fusion occurs on the outputs of the classifiers. To

understand this, form Cartesian products and define the feature set Z = X × Y and label

set N = L ×M. Define the “system” classifier C : Z → N by

C(z) = C(x, y) = f(A(x), B(y))

for z = (x, y) ∈ Z = X × Y. Thus, the block diagram

X A L

X Feature set −→ Label set

Ξ ↗ ↘ N

Event set f Fused label set

Y

↘ Y B M ↗

Feature set −→ Label set

simplifies to the block diagram below.
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Ξ (X,Y) Z = X × Y C = f(A,B) N = L ×M

Event set −→ Fused feature set −→ Fused Label set

Assume that the feature sets are the same for the remainder of this paper, that is, X = Y.

Given two classifiers A and B defined on the same feature set X and label set L, we wish

to fuse them into a new classifier C also defined on X × L. Let f denote the fusion rule,

or mapping. We wish this rule to be a function, that is, there is a unique output given the

input classifiers A and B. Hence, we denote classifier C by C = f(A,B) and the following

block diagram.

L

A Label set

Ξ X X ↗ ↘ N

Event set −→ Feature set f Fused label set

B

↘ L ↗

Label set

One way to produce a fused classifier C is given by

C(x) = f1(A,B)(x) = A(x) ∧B(x) for every x

where ∧ denotes logical AND operation. That is, if classifiers A and B agree on a label `,

then the label for classifier C is `. Another fusion example is

C(x) = f2(A,B)(x) = A(x) ∨B(x) for every x

where ∨ denotes the logical OR operation. That is, if A or B says that x is a target, then

C will declare it a target. But these two fusion examples are based upon the labels only.

We seek a fusion rule—to be denoted f3—that not only uses the output labels but also

considers the feature vector x as well.
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5.2.3 Fusion rule for expert classifiers. Given two classifiers A and B, we wish

to produce a fused classifier C based upon the veracities and experiences of both A and B.

Let A and B be defined on feature set X with output label set L, with respective training

data A and B. Given x ∈ X , we define the fused classifier C = f3(A,B) as follows

C(x) = f3(A,B)(x) =

A(x) if A,B agree

A(x) if [A,B are confused] ∧ [A not arrogant] ∧ [B is arrogant]

B(x) if [A,B are confused] ∧ [A is arrogant] ∧ [B is not arrogant]

A(x) if

 [A,B are confused] ∧ [A is not arrogant] ∧ [B is not arrogant]∧

[A has more experience than B]

B(x) if

 [A,B are confused] ∧ [A is not arrogant] ∧ [B is not arrogant]∧

[B has more experience than A]

A(x) if

 [A,B are confused] ∧ [A is not arrogant] ∧ [B is not arrogant]∧

[A has the same experience as B] ∧ [A has more veracity than B]

B(x) if

 [A,B are confused] ∧ [A is not arrogant] ∧ [B is not arrogant]∧

[A has the same experience as B] ∧ [B has more veracity than A]

0 if

 [A,B are confused] ∧ [A is not arrogant] ∧ [B is not arrogant]∧

[A has the same experience as B] ∧ [A has the same veracity as B] .

Given gA as the arrogance curve for classifier A, define arrogance indicator χA(x) such that

χA(x) =

 1 if EA(x) ≥ g(VA(x))

0 otherwise.

Similarly, given gB as the arrogance curve for classifier B, let χA(x) = 1 if EB(x) ≥

g(VB(x)), otherwise χB(x) = 0. Therefore, the fused classifier at x becomes

C(x) = f3(A,B)(x)

= sign [A(x)VA(x)χA(x) +B(x)VB(x)χB(x)

−(A(x) ∧B(x))VA(x)VB(x)χA(x)χB(x)] .
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Define the training set for the fused classifier to be C = A∪B. Then we define the veracity

and experience of the fused classifier C by the following:

VC = |`AVAχA + `BVBχB − (`A ∧ `B)VAχAVBχB|

EC = EAχA + EBχB − EAχAEBχB.

Notice experience EC is larger than max{EA, EB} for nonarrogant classification, even if the

classifiers are confused. Veracity—in contrast—will decrease if there is confusion.

Table 3. Fusing experts A and B. Let a = arrogant, n = nonarrogant, α = v + µ − vµ,
β = |v − µ+ vµ| , γ = |−v + µ+ vµ|, δ = e+ ε− eε. The symbol * denotes any
value. The symbol ** denotes that the formula above will produce the label.
The symbol *** that it depends on the values, specifically, if |v + µ− vµ| >
g(e+ ε− eε) then χC = 1, otherwise χC = 0.

Aa Aa An An, Bn An, Bn An, Bn
Ba Bn Ba agree disagree disagree

`A * * ` ` 1 −1
VA * * v v v v

EA * * e e e e

χA 0 0 1 1 1 1
`B * ` * ` −1 1
VB * µ * µ µ µ

EB * ε * ε ε ε

χB 0 1 0 1 1 1
`C 0 ` ` ` ** **
VC 0 µ v α β γ

EC 0 ε e δ δ δ

χC 0 1 1 1 *** ***

There exists a mapping M that maps the feature vector x, a classifier A, and its

corresponding training set A to the 3-tuple (`, v, e). That is,

M(x,A,A) = (`, v, e)

= (`A(x), VA(x), EA(x)).
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Given another classifier B with its corresponding training set B then

M(x,B,B) = (`B(x), VB(x), EB(x)).

In Table 3, we give the values for the 3-tuple M(x,C, C) = M(x, f3(A,B),A ∪ B) =

(`C(x), VC(x), EC(x)) given the values for (`A(x), VA(x), EA(x)) and (`B(x), VB(x), EB(x)).

For brevity of notation, we have suppressed the x dependence in the table.

5.2.4 Measure of Performance. It is possible to quantify the improvement of the

fusion rule f3 over standard rules like f1 and f2 by viewing their corresponding Receiver

Operator Characteristic (ROC) curves [2, 4]. However, ROC curves are based on error,

not confusion. Thus, a ROC curve relates a classifier’s performance with respect to its

training set and without particular respect to its operational set. For a confusion based

technique, we recommend the figure of merit first discussed in Section 5.1.3 and which we

shall demonstrated in Chapter VI.

5.3 Summary

The goal of expertise logic and 4-value logic is to construct expert classifiers that

realistically model experience across an entire domain. Expertise logic gives us the degree

of freedom to separate uncertain decisions based on vague experience from decisions based

on no experience. For data generalizations, we must anticipate encountering regions of

the domain where experience is incomplete and, in these regions, avoid making arrogant

classifications. The power of expertise logic rests in the assertion that a classifier embod-

ies a hypothesis of what is considered near training data and what is considered far. By

contrasting the hypotheses of multiple experts, feature space can be partitioned into re-

gions of certainty, regions of uncertainty due to interpolation conflicts, and regions of high

uncertainty due to extrapolation.
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VI. Arrogance in the multilayer perceptron

So far in this dissertation, we have presented new pattern recognition concepts—specifically

in the area of classification—and proposed a new diagnostic technique, the OVER curve,

that allows one to determine when a classifier is being arrogant. We proposed the OVER

curve—a confusion-based figure of merit—to augment established error-based metrics in

order to properly regulate generalizations safely between the extremes of arrogant classifi-

cation and memorization.

Arrogance in classification is clearly an undesirable attribute. In this chapter, we

demonstrate that single-hidden layer perceptrons trained by back propagation are arrogant

in their classification of certain regions in a feature space. When a classifier has been

optimized to perform well on truthed data, one hopes that the classifier will perform well

on operational (unknown) data. In turn, if a classifier performs well on operational data,

then we say that the classifier generalizes well. For a multilayer perceptron (MLP), we

detail where in a feature set the classifier generalizes poorly due to arrogance. Our analysis

yields new evaluation tools for the MLP based upon combinatorial geometry techniques that

have existed for more than a decade but are just now being exploited in the computational

intelligence community.

Quantifying MLP generalization performance has several approaches, as the literature

shows, including cross validation and bootstrapping. In a marked departure from these

stochastic approaches, we use 4-value logic to quantify generalization performance. Four-

value logic is a simplified expression of both veracity and experience. The benefits of our

4-value logic technique over other iterative and stochastic methods include the following:

(1) Our technique evaluates the generalization of an MLP after model selection, requiring

only the classifier’s weights and biases and the data used to train these parameters. Iterative

methods require that the evaluation of generalization take place over multiple training runs

prior to the selection of a specific model; then, once a model is selected, the estimation of

generalization for the selected model is optimistic. (2) The results of our evaluation do not

change based on the order that data are presented. (3) Stochastic techniques exercise very
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little use of the domain—that is, the measure of the set of feature vectors used is zero. For

our technique, the measure of feature sets used is positive.

In general, we expect arrogant classification to occur in classifiers that separate but

do not isolate data. The multilayer perceptron is one such classifier, and in this chapter we

shall present the mathematical theory and algorithms necessary to identify arrogance in a

an multilayer perceptron. We shall also provide demonstrations of our evaluation algorithms

using the classic XOR and Fisher iris problems. To mitigate arrogance in classification, we

advocated the use of isolation strategies which strike a reasonable balance between being

too timid and too bold in assigning class labels, and we outline an isolation strategy for the

multilayer perceptron in the next section.

6.1 Observations on the multilayer perceptron

We have selected the multilayer perceptron trained by backpropagation as an example

of an arrogant classifier. The first reason should be obvious from our discussions in the pre-

vious chapter. That is, we believe arrogance in classification is likely to occur when training

criteria do not require isolation of class data, and successful training in backpropagation

need only separate class data. Thus, we suspect that backpropagation must be augmented

as a training technique for generalizations in order to prevent arrogant expressions in the

final solution. A second reason stems from a new observation we have made in this research

regarding the multilayer perceptron: Overfitting, or memorization, in the MLP corresponds

to the over-isolation of training data. It falls out from this second point that it is easy

to apply the OVER curve to the multilayer perceptron—easy, that is, relative to other

classifiers.

6.1.1 Arrogance in MLP simple solutions. In preparing MLP classifiers, there are

many techniques that seek to limit a network’s complexity1 in an effort to avoid memoriza-

tion. The implication is that a generalization should only be as complex as it needs to be

to implement a training set and no more complex. However, if we apply the principles of

Ockham’s razor to multilayer perceptrons, we can run into problems. Ockham’s razor is

1We define complexity as the total variation of a function.
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(a) (b)

Figure 29. Separation versus isolation in 2-dimensional space (a) Two points may be
separated by a line (parameter set: 1 slope and bias). (b) The same points
are isolated by two circles (parameter set: 2 radii and 2 biases).

the “scientific rule that simple explanations should be preferred to more complicated ones,

and that the explanation of a new phenomenon should be based on what is already known”

[86]. One can be led astray by taking the first part of this rule too much to heart as we

find the simplest solution is not necessarily the best solution for generalization purposes.

A simple solution that implements a training set may still be a poor generalization if that

solution expresses arrogance. Recall, as discussed in Chapter V, poor generalization occurs

as a result of memorization and/or arrogance. Other researchers have found a strong cor-

relation between complexity and memorization [68] but, empirically, we have not found the

same correlation between complexity and arrogance. Nor do we expect such a correlation.

Instead, we believe that arrogance occurs in architectures that separate training data but

do not isolate the data. Since a classifier of high complexity may fail to isolate data, it is

possible to generate classifiers that exhibit both memorization and arrogance.

If we apply a technique—such as pruning—to reduce the complexity of a neural net-

work, it may reduce memorization in the solution but do nothing to address arrogance and,

in fact, may exacerbate such expression. Architectures that merely separate data tend to

be much less complex than architectures that isolate data. Figure 29 gives a rudimentary

2-dimensional example where two points may be separated by a line (two parameters) but

are isolated by two circles (four parameters). When pruning alters an isolation architecture

to a separation architecture, arrogance will result and generalization degrades.
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6.1.2 Convergence speed versus generalization. Two key aspects of training an

MLP are (1) the ability of the solution to generalize well and (2) the convergence speed—i.e.,

the time or computational effort it takes to converge to a solution. Unfortunately, certain

conditions that serve to speed up convergence have negative effects on the generalization

capability of the attained solution. For example, separation architectures in general have

faster convergence speeds than isolation architectures with respect to the size of the training

set. The reasons for the disparity in speed is that the training rules that generate separation

architectures tend to be less complex than training techniques for isolation architectures

and more conducive to optimization.

The benefits of converging quickly to a separation architecture that implements a

dataset can be significant, but the danger of arrogance is real if nothing further is done to

the architecture. To optimize both convergence speed and generalization ability of a neural

network solution, we advocate a 3-fold learning technique:

1. The training of a complex separation architecture,

2. A modification step to prune the separation architecture to simpler model, and

3. The conversion of the simplified model to an isolation architecture.

When building a multilayer perceptron solution, the third step can be achieved by (1) finding

the populated polytopes which are unbounded, which can be shown to be a polynomial

time algorithm2 of quadratic degree; (2) converting the unbounded, populated polytopes to

bounded polytopes, a well-understood problem in combinatorial geometry; and (3) adjusting

the network’s bias. Alternatively, the conversion to an isolation architecture can be achieved,

as we shall demonstrate in Section 6.3.1.3, by wrapping the entire training set in a convex

hull and adding each hyperplane of the convex hull as a strongly weighted perceptron in

the first hidden layer.

2See the discussion on local max and local min chambers in Section 6.3.2 and Theorem C.6 on unbounded
central chambers in Appendix C. The gist of the proof is based on the fact that, if an arrangement of
hyperplanes forms an unbounded central chamber, the arrangement contains only one local min chamber.
We show in this chapter that any chamber can easily be converted to a central chamber. From there, it
is possible to write a simple routine to walk from the central chamber to any local min chamber using the
adjacency rules discussed in Section 6.3.1.2. If the discovered local min chamber tests true to being the only
local min chamber in the arrangement (see Lemma C.3), then the central chamber is unbounded.
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The necessity of the second step in our 3-fold learning technique—which calls for

pruning the complex separation architecture—stems from the fact that training an MLP

is a constraints problem. In Constraints Programming, we find the simplest solution is

among the hardest solutions to find. Imagine trying to cast 25 roles in a play from a pool

of temperamental actors. Some of the actors hate one another and refuse to be in the same

production. Others will participate only if their friends are hired. This problem formulation

is called a satisfiability problem [46]. Now, imagine that you are the casting director and

the play’s producer has preselected actors to fill certain roles. You find the more actors

the producer preselects, the less degree of freedom you have in filling the vacant roles from

the remaining pool of actors and the cleverer you must be in order to retain a workable

mix of temperaments. The satisfiability problem has now become a constraints problem as

some of the problem’s variables come preselected in the given instantiation of the problem

formulation. In the example above, the variables of this problem formation are the roles in

the play, and the constraints are the actors that must fill certain roles as stipulated by the

producer. Note that the constraints that must be met (i.e., exactly how many and which

ones) are known only when an instantiation of the constraints problem is formed.

Constraints problems have a range of difficulty depending on the set of constraints

that must be met [67]. Let γ be the ratio of constraints to variables. Having observed

various instantiations of a constraints problem (say your production has gone through a lot

of producers, each with a different idea on how various roles should be cast), we can plot the

time required to find a solution versus the ratio γ. From the empirical evidence collected

by scientists on constraints problems, we can expect our plot to manifest an apparent phase

shift—such as in Figure 30—exhibiting a behavior such that, as the ratio γ is increased, the

problems suddenly change from easy to impossible.

The training of a multilayer perceptron qualifies as a constraints problem. An MLP

chunks a feature set into multiple polytopes. Some of these polytopes contain training data;

others do not. The polytopes that are populated with training data are the constraints of

the MLP training problem. Given a training set, as the ratio of populated chambers to

unpopulated polytopes increases, the number of potential solutions that implement the

training set decreases until there are no solutions that can implement the training set.

88



Solvable
Impossible

More

Less

α, ratio of constraints to variables

Computational
effort

Figure 30. An example of the phase shift manifested in a Constraints Problem as reported
in an article on the research of Remi Monasson et al [46].

In order to converge to a MLP solution in a reasonable amount of time using back

propagation, we find that one may have to risk a complex architecture. For our discussion,

let a complex architecture be one that can be simplified and still implement the training

set. If the added complexity is not managed effectively, then memorization and, thus,

poor generalization are likely to occur. The greater the ratio γ of unpopulated polytopes

to populated polytopes there are, the more solutions exist for a given MLP architecture.

There are two ways of increasing this ratio:

1. For a given architecture, select a set of parameters that clusters more points in fewer

polytopes, or

2. Increase the number of total polytopes by choosing a more complex architecture (i.e.,

adding more first-hidden layer nodes).
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The first method corresponds to an initialization problem3; the second method is, unfor-

tunately, the one more often used. We say unfortunately because this method can exac-

erbate memorization by creating smaller polytopes which hold less training points—thus,

over-isolating training points. In a architecture that over-isolates, it is easier to find the

solutions that result in over-fitting, or memorization, as they outnumber the solutions do

not over-fit. When an MLP is over-populated with first-hidden layer nodes, memorization

can be so bad that every data point in the training and evaluation set is isolated in its own

polytope. Selecting a good generalization is highly unlikely in such a case.

6.1.3 Overfitting in the MLP. The multilayer perceptron is capable of compactly

representing high order logic, but it does so at the expense of generality. To represent

functions of high complexity, a multilayer perceptron overly partitions a feature space

creating disjoint subsets, many unpopulated by training data. The unpopulated subsets

can be assigned arbitrary values—whatever works to fit the overall function to populated

partitions—without affecting optimization objectives that rely on sampled data to regulate

training. Consequently, optimization routines such as back propagation and cross valida-

tion promote single hidden-layer MLPs that form functions of far greater complexity than

the training data warrants and with no special claim to good generalization. Cross valida-

tion, for one, promises to find appropriate generalizations by preventing memorization, i.e.,

the over-fitting of training points. Cross validation is a data-centric method based on the

hold-out method:

1. Split training data into two sets—a training set and an evaluation set.

2. Fit training set using an iterative optimization routine (e.g., back propagation) with

a slow learning rate.

3. Compute the validation error trend from the evaluation set.

4. Stop fitting when the validation error starts to increase for the evaluation set.

3By initializing a multilayer perceptron such that the class points are dispersed among only a few pop-
ulated polytopes, we expect—on average—to improve convergence speed. This improvement cannot be
guaranteed especially for simple architectures where there are few if any solutions.
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= {"False","None"} = {"Uncertain","None"}

(a) (b)

Figure 31. The two multilayer perceptrons trained to 100% classification, and their solu-
tions are mapped over a portion of the 2-dimensional feature set. (a) A single
hidden-layer MLP trained by back propagation and regulated by cross vali-
dation rules, and (b) a three hidden-layer MLP constructed using a modified
support vector machine rule base in support of four-value logic. At the extrap-
olated evaluation point denoted by the star ?, the single hidden-layer MLP
does not map onto the “V” of the expertise map while the three hidden-layer
MLP models experience more appropriately.

Proponents of cross validation promise the technique will promote good generalization, but

in multilayer perceptrons—where over-fitting equates to over-isolating training—it cannot.

This is because the method has inadequate controls over memorization and no control over

expressions of arrogance. Indeed, the method is doomed to fail on both counts when a

complex architecture is being tested because (1) cross validation does not optimize the

membership of populated polytopes implemented by the architecture and has no mecha-

nism to recognize over-isolation, and (2) it does not regulate the ordering of unpopulated

polytopes or provide a mechanism to select an appropriate generalization with respect to

these unpopulated polytopes.

Because of its propensity to over-isolate training data, the multilayer perceptron must

be carefully schooled into expertise logic. Unfortunately, current “state of the art” training

techniques do not properly restrict the unpopulated partitions of the multilayer percep-
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tron and expressions of arrogance result. To illustrate, note the renderings of two MLPs

in Figure 31. Both have been trained to 100% classification: (a) A single hidden-layer

MLP is trained by back propagation and regulated by cross validation rules, and (b) a

3-hidden-layer MLP is constructed using a modified support vector machine rule base for

4-value logic treatments. In these figures, veracity is depicted as color and experience is

gauged by distance from the depicted training data. At an extrapolated evaluation point

denoted by the star ? in the figure, the single hidden-layer MLP maps to “False” in a region

where experience is rated as “None” while the 3-hidden-layer MLP models veracity more

appropriately in relation to its experience. Due to its blatantly unbalanced representation

of veracity and experience, we say the single-hidden-layer MLP expresses arrogance.

6.1.4 Summary. Arrogance in classification is one of three new observations we

have made in this research regarding the multilayer perceptron. The other two observations

are as follows:

1. Overfitting in the MLP corresponds to the over-isolation of data points.

2. The training of an MLP is a constraints problem.

These two points follow from an understanding that the MLP partitions a feature space via

the arrangement of hyperplanes implemented in the network’s first hidden layer, and it falls

out from the first point that the application of the OVER curve (introduced in Chapter V)

is relatively easy to implement with respect to other classifiers. Using a confusion-based

measure to delineate the experience of the MLP across its domain, our analysis yields new

evaluation tools for the MLP and paves the way for other classifiers. The specific measure of

experience for the multilayer perceptron is based upon combinatorial geometry techniques

which we discuss the next three sections. Combinatorial geometry enable us to observe the

ordering of a feature set as implemented by a multilayer percetron and allow us to prune and

otherwise manipulate the network in an informed manner. Finally, we shall present how to

include an ordered veracity-experience response treatment as part of an investigation into

memorization and arrogance in specific MLP solutions, not just architectures.
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Figure 32. A multilayer perceptron.
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Figure 33. A perceptron. Each input xi is multiplied by a synaptic weight wi. The
weighted inputs are summed together, and a bias term b is added. Finally, a
non-linear activation function f is applied to the sum.
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6.2 The multilayer perceptron as ordered arrangement of hyperplanes

For this application of the ordered veracity-experience response curve, we shall derive

an original algorithm that orders the domain of a classification problem in response to a

multilayer perceptron (MLP) solution. First, we construct a partially ordered set over the

problem domain based on the arrangement of hyperplanes implemented by the MLP’s first

layer of weights and biases. Then, we map the partially ordered set against a 4-value logic

representation derived in response to the MLP’s training set. Constructing the partially

ordered set from the MLP’s weights and biases is the first order of business; and, for this,

we enter into a lengthy discussion on the multilayer perceptron and its manipulation of a

domain in terms of combinatorial geometry.

The multilayer perceptron4 is a feed-forward artificial neural network composed of

perceptrons. First proposed in 1943 by McCulloch and Pitts [66], the perceptron5 is a

generalization capable of discriminating two linearly separable classes. Figure 33 illustrates

a perceptron’s components. Given feature set X = Rd and output set Y = R, these

components are:

1. Input vector x ∈ X ,

2. Weight vector w ∈ Rd,

3. Bias b ∈ R,

4. Activation function f : R → Y, and

5. Output vector y ∈ Y.

A perceptron transforms its input vector x = (x1, . . . , xd)T into a scalar via a composite

of two transformations. The first transform is the affine map α : X → R. Given the

input column vector x ∈ X , a weight row vector w ∈ Rd, and a scalar bias b ∈ R, the

affine mapping is α(x) = w · x+ b. The second transform is a nonlinear activation function

f : R → Y that is composed with α so that output y = f(α(x)). Forms of this composition

include

4See Figure 32.
5See Figure 33.
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(a) Sigmoid (b) Hyperbolic Tangent

Figure 34. The Sigmoid and Hyperbolic Tangent transformation functions.

• Sigmoid f(α) = 1
1+e−α ,

• Hyperbolic tangent f(α) = tanh(α), or

• Tansig f(α) = 2
1+e−2α − 1.

Two popular activation functions—the sigmoid and hyperbolic tangent—are shown in Fig-

ure 34. The tansig function is mathematically equivalent to the hyperbolic tangent but has

the advantage of being computationally faster when implemented on most systems. The

perceptron separates a feature set into two halves along the hyperplane {x ∈ X : α(x) = 0}.

Separation is achieved by selecting a threshold y0 = f(0) and, then, assigning “true” to

outputs y ≥ y0 and “false” to y < y0. As seen in Figure 34, the choice of activation function

affects the range of y and the value of threshold y0. When the activation function is the

sigmoid function, output y → 1 in the “true” halfspace and y → 0 in the “false” halfspace;

threshold y0 = 0.5 separates the halfspaces. Alternately, if the activation function is the

hyperbolic tangent or tansig function, y → 1 in the “true” halfspace, y → −1 in the “false”

halfspace, and threshold y0 = 0. [13, 66, 87, 85]

The MLP organizes its perceptrons, or nodes, into layers so that the nodes in one

layer connect forward only to nodes occupying the next layer. Layering adds order to

the mapping. At a minimum, an MLP requires an input layer, one hidden layer and an

output layer. Additional hidden layers may be added. In 1989, Cybenko proved that a

single-hidden-layer multilayer perceptron is a universal mapping capable of estimating any

function in the mean-squared sense given a sufficient number of hidden layer nodes [23].

Since this proof, several respected researches [8, 10] have supposed that Universal Mapping

= Valid Generalization, but we can challenge this assumption by considering the fact that
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Figure 35. Three variations of an MLP based on thresholding. The superposition of the
MLP’s sigmoidal nodes (a) without thresholding applied, (b) with the highest
threshold applied, (c) with a lower threshold applied, (d) with the lowest. Note
how the logical complexity of the neural network varies significantly with only
simple adjustments to the output node’s bias.

variations in an MLP’s thresholds may alter its functional form without affecting its mean-

squared error.

Simple variations in an MLP’s thresholds may yield significant variations in overall

complexity even while the function adheres to certain localized constraints. It is difficult

to select a valid generalization from the MLP solutions that implement a dataset in the

mean-squared sense given the wide range of complexity among these solutions. Consider

a single-hidden-layer MLP for a 2-dimensional problem. We wish to dichotomize a simple

dataset and view manipulations of the network by projecting its solution set back onto its

2-dimensional domain. Let the multilayer perceptron have 5 hidden nodes which form a
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pentagon-shaped convex hull that contains a “true” point. Let the parameter set of the

hidden-layer nodes, [W1,n : b1,n], remain fixed such that the nodes’ outputs—generating

the five halfspaces {H1,H2,H3,H4,H5}—project into the domain in relation to the “true”

point and five “false” points as depicted in Figure 36. Given that each output-layer weight

W2,n = 1 and the output bias b2 ∈ R, there are essentially 3 solutions that implement

the simple dataset and yet uniquely partition the feature set. Each unique solution can be

implemented by a particular range of biases

b2,1 ∈ (−5,−4],

b2,2 ∈ (−4,−3],

b2,3 ∈ (−3,−2].

We select a bias from each interval to construct 3 output weights

[W2,1 : b2,1] = [1, 1, 1, 1, 1,−4.5]

[W2,2 : b2,2] = [1, 1, 1, 1, 1,−3.5]

[W2,3 : b2,3] = [1, 1, 1, 1, 1,−2.5]

such that each implements a unique partitioning of the feature set. The solutions imple-

mented by these output vectors are shown in Figure 35(b), (c), and (d) respectively. In

Figure 35(b), the weight vector with the highest-magnitude bias produces the simplest and

most reasonable decision boundary, a convex hull. In Figure 35(c), the next lower-magnitude

bias produces a star-shaped decision boundary, a complex interpolation of “true”. In Fig-

ure 35(d), the lowest magnitude bias produces a complex decision boundary—shaped like

a shining star—yielding unreasonable, arrogant classifications.

For regularization purposes, let us impose Ockham’s razor to whittle down the 3

solutions above to 1. The solutions portrayed in Figure 35 differ only in the choice of

threshold, but these slight adjustments in the output bias dramatically alter the complexity

of the multilayer perceptron’s decision boundary. Below, we represent the 3 variant solutions

in terms of the intersects ∩ and unions ∪ of the outputs {H1, . . . ,H5} from the MLP’s five
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Figure 36. We are given the outputs of the fixed hidden nodes are given as five halfspaces
superimposed in (a) and illustrated separately in (b)-(f).

hidden nodes.

g([w2,1 : b2,1]) = H1 ∪H2 ∪H3 ∪H4 ∪H5

g([w2,2 : b2,2]) = (H1 ∩H2) ∪ (H2 ∩H3) ∪ (H3 ∩H4) ∪ (H4 ∩H5) ∪ (H5 ∩H1)

g([w2,3 : b2,3]) = (H1 ∩H3) ∪ (H2 ∩H4) ∪ (H3 ∩H5) ∪ (H4 ∩H1) ∪ (H5 ∩H2)

From the above equations, we see that the first output weight vector [w2,1 : b2,1] implements

a first order logic solution and the second and third output weight vectors implement second-

order logic solutions. So, again we see that the first output weight vector implements the

simplest solution of the three. Since it is the simplest and appears to be reasonably based

on known data, the first solution is the preferred solution per Ockham’s razor. The second

weight vector [W2,2 : b2,2] yields a solution that is arguably too complex for its purpose,

while it is clear that the third weight vector [W2,3 : b2,3] produces an overly complex solution

that is excessively generous in its association of new data to the known “true” datum.
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When training an MLP using data-centric techniques, we must carefully select biases

to properly regulate the final solution. Notice, for instance, that the magnitude of the

augmented vector [W2,1 : b2,1]—the one that implements the preferred solution—is largest

of the 3 vectors. The magnitude of the weight vector is of interest because backpropagation

tends to incrementally increase the magnitude of an MLP’s weight vectors during training.

This means, when backpropagation is used, training is apt to fix on a output weight vector

with a low-magnitude bias before it finds a similar vector with a higher-magnitude bias

to implement the training set. As a result, backpropagation training tends to favor MLP

solutions with overly generous thresholds over preferable solutions with more conservative

thresholds.

Using combinatorial geometry, it can be shown that the shattering capability6 of a

multilayer perceptron with a single hidden layer is limited [18, 73]. This assertion appears

contrary to Cybenko’s proof that a single-hidden layer MLP is a universal mapping capable

of estimating any function given a sufficient number of hidden layer nodes. Though Cy-

benko is technically correct, it is important to understand that the MLP approximates a

function in the mean-squared error sense and, as such, the approximation is highly suscepti-

ble to memorization and extrapolation errors as illustrated above. In addition to the above

commentary, it has been noted [82, 28] as a practical matter that a single-hidden layer MLP

requires an unreasonable number of hidden layer nodes to implement datasets of second-

order logic or greater—such as the spiral data problem in Chapter IV—resulting in functions

of unwieldy geometric complexity at least within today’s computational resources. Bottom

line: Cybenko’s proof that a single hidden layer MLP with sufficient nodes approaches any

function in the mean-squared error sense holds true at the expense of generalization.

In summary, due to variations caused by simple changes in thresholding, MLP general-

izations fit by mean-squared error techniques are suspect. Remedies to such techniques may

be achieved by moving from data-centric evaluations of data generalizations to evaluations

that are set-centric such as the confusion-based techniques we propose.

6Shattering is the ability of a logical architecture to reorder a dataset into all possible partial orderings.
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6.2.1 The first hidden layer’s arrangement of hyperplanes. The set of all nodes in

the first hidden layer of a multilayer perceptron corresponds to an arrangement of hyper-

planes in the feature set. Each perceptron f ◦ αm,n in an MLP’s first hidden layer m = 1

represents a hyperplane in X defined by hn = {x ∈ X : α1,n(x) = 0}. Given feature set

X = Rd and output set Z = Rk, let F be the set of all multilayer perceptrons whose domain

is X and range is Z. Let the set A represent all hyperplane arrangements in the domain set

X . Define the mapping ℵ1 : F → A. Given a multilayer perceptron F ∈ F , the mapping ℵ1

erects an arrangement of hyperplanes with one hyperplane hn for each perceptron f(α1,n)

in F .

6.2.1.1 Hyperplanes. A hyperplane linearly partitions a d-dimensional space.

Hyperplane h = {x ∈ X : w ·x+ b = 0} is a translated subspace of dimension (d−1) defined

by two fixed parameters: a normal vector w ∈ Rd and a bias term b ∈ R. The normal w is a

row vector denoting the slope of the hyperplane; bias b is a scalar denoting the translation

of the hyperplane in d-space. [72, 89]

Let h be the set of all real hyperplanes in Rd. Given hyperplane h ∈ h, there exists a

mapping Λ : h → Rd+1 such that Λ(h) = (w, b). Parameter vector (w, b) ∈ Rd+1 specifies

the normal w ∈ Rd and bias b ∈ R of hyperplane h, respectively. The mapping Λ : h → Rd+1

is not one-to-one. For a one-to-one mapping, let us restrict the range of Λ. Let ‖·‖ be the

Euclidean norm. A hyperplane can be expressed various ways such as

hi = {x ∈ X : wi
‖wi‖ · x+ bi

‖wi‖ = 0, wi 6= 0} so Λ(hi) = ( wi
‖wi‖ ,

bi
‖wi‖)

= {x ∈ X : wi·x
‖(wi,bi)‖ + bi

‖(wi,bi)‖ = 0, ‖(wi, bi)‖ 6= 0} Λ(hi) = ( wi
‖(wi,bi)‖ ,

bi
‖(wi,bi)‖).

Therefore, let us restrict our choice of parameters to the “unit-vector” normal and scaled

bias ( wi
‖wi‖ ,

bi
‖wi‖). Hence, let

Λ(h) = (w, b) such that ‖w‖ = 1 and b ∈ R1. (20)

The range of function Λ is a d-dimensional manifold S, a cylinder in Rd+1 defined by

S =
{

(w, b) ∈ Rd+1
∣∣ ‖w‖ = 1 ∧ b ∈ R1

}
. (21)
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In this way, we defined Λ : h → S, a one-to-one mapping from any hyperplane h ∈ h to

parameter vector (w, b) ∈ S. It is now possible to define the inverse mapping Λ−1 : S → h.

Given a parameter vector (w, b) ∈ S, then Λ−1[(w, b)] returns hyperplane h = {x ∈ X |

w · x+ b = 0}.

6.2.1.2 An arrangement of hyperplanes. An arrangement of hyperplanes is a

finite set of hyperplanes that collectively partition a d-dimensional space. Given a nonempty

arrangement A = {h1, h2, . . . , hN} in X , define mapping Λ : hN → SN by

Λ(A) = {Λ(h1),Λ(h2), . . . ,Λ(hN )}

= {(w1, b1), (w2, b2), . . . , (wN , bN )}.

Alternately, we can express the range of Λ in matrix form

Λ(A) = (W : b) (22)

where W is a N × d matrix formed by stacking row vectors wn and b is a N × 1 matrix of

bias terms bn.

W =


w1

w2

...

wN

 b =


b1

b2
...

bN

 . (23)

We designate the augmented matrix (W : b) as the parameter set of the arrangement A.

Given a multilayer perceptron, we leverage Equations 22 and 23 to specify the parameters

of the hyperplane arrangement implemented by the MLP. In Section 6.2.1, we defined

mapping ℵ1 : F → A to construct an arrangement of hyperplanes ℵ1(F ) ∈ A from the first-

hidden-layer perceptrons of network F ∈ F . Each hyperplane hn = {x ∈ X : wn ·x+bn = 0}

in the arrangement ℵ1(F ) derives its parameters from the activation of perceptron f(α1,n).

Given the set of affine activations {α1,n(x) = w1,n · x+ b1,n : n = 1, 2, . . . , N}, we write the
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(a) Arrangement A of hyperplanes (b) Set of chambers Cham(A)

Figure 37. An arrangement of hyperplanes and the set of chamber formed by the arrange-
ment. A set of 4 two dimensional hyperplanes arranged in general position
form a set of q = 11 chambers.

parameter set of arrangement ℵ1(F ) in matrix form

Λ(ℵ1(F )) = (W 1 : b1)

where

W 1 =


w1,1

w1,2
...

w1,N

 b1 =


b1,1

b1,2
...

b1,N

 . (24)

6.2.1.3 On cardinality, subarrangements and chambers. Now, we define a

few important terms for hyperplane arrangements. Let A = {h1, h2, . . . , hN} be a nonempty

hyperplane arrangement.

Definition 36 The number of hyperplanes in arrangement A is the cardinality of A, de-

noted card(A).

Definition 37 If B ⊂ A, then B is called a subarrangement of A and card(B) ≤ card(A).

Definition 38 The intersection of A is given by

a(A) =
⋂
h∈A

h.
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The intersection of an arrangement is often the null set when card(A) > d, the dimension-

ality of the feature set. However, an arrangement implies a set of nonempty intersections

specified by its subarrangements. Given the set of all subarrangements, an intersection

a(Bi) is unique within the arrangement A if a(B) 6= a(B′) for all B 6= B′ and B,B′ ⊂ A.

The set complement of a hyperplane arrangement forms a collection of disjointed

subsets called chambers. Each chamber is an open convex polytope. A closed chamber

includes the polytope and the convex hull that encloses it. Consider the set of closed

chambers. Let int(V ) denote the interior of the set V and cl(V ) denote the set closure of

V . For an open set, V = int(V ); for a closed set, V = cl(V ). [22, 53]

Definition 39 Let A be a hyperplane arrangement. The chamber set Cham(A) denotes

the set of closed chambers formed by A. That is,

Cham(A) = {C ⊂ Rd : C 6= int(C), int(C) ∩ h = ∅ ∀h ∈ A}.

Given an arrangement ofN hyperplanes in d-dimensional space, the maximum number

of chambers, q, is realized where

q =
min{N,d}∑

i=0

(
N

i

)
. (25)

To achieve the maximum number of chambers, the hyperplanes of A must be arranged in

general position.

Definition 40 An arrangement A is in general position if, given any subarrangement B ⊂

A where card(B) ≤ d,

1. The dimension of the intersection of the subarrangement B equals d−card(B), and

2. The intersection of the subarrangement B is unique.

Figure 37 illustrates an arrangement of 4 hyperplanes partitioning a two-dimensional

space. Here, the general position assumption holds true. Therefore, given d = 2 and N = 4,

we can compute from Equation 25 that the number of chambers formed by this arrangement

is, in fact, the maximum q = 11. [72, 18, 19]
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Figure 38. Halfspace H as designated by hyperplane h.

6.2.2 An arrangement of signed hyperplanes. A multilayer perceptron implements

a special hyperplane arrangement called an arrangement of signed hyperplanes. The signed

hyperplanes h+ = {x ∈ X : w · x + b = 0} and h− = {x ∈ X : −w · x − b = 0} are not

considered the same hyperplane due to the fact Λ(h+) 6= Λ(h−). An arrangement of signed

hyperplanes is especially interesting because it implies an arrangement of halfspaces—a

finite set of halfspaces partitioning the same feature set X—and implements an ordering of

chambers.

6.2.2.1 Halfspaces. A halfspace is the set of points to one side of a hyper-

plane. Given a hyperplane h = {x ∈ X : w ·x+b = 0}, it is possible to define two halfspaces:

H = {x ∈ X : w ·x+b ≥ 0} and Hc = {x ∈ X : w ·x+b ≤ 0} = Hc∪h where Hc denotes the

set complement of H, and the overbar denotes set closure7. Hyperplane h and its normal

w suggest the first halfspace, H, as shown in Figure 38, but we have occasion to specify the

halfspace Hc. For such occasions, let us define a directed halfspace H such that, given a

point x ∈ X and a halfspace H,

H(x,H) =

 H if x ∈ H

Hc if x /∈ H.
(26)

7Note, Hc ∪H = X and Hc ∩H = h.
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Let H be the set of all halfspaces in Rd. Given the halfspace H ∈ H, we wish to define a

mapping Λ∗ : H → S much as we defined Λ in Equation 20. Let

Λ∗(H) = (w, b)

where, recall, output parameter vector (w, b) ∈ S is scaled so that ‖w‖ = 1 and b ∈ R1.

Mapping Λ∗ : H → S is one-to-one and onto, so the inverse mapping Λ−1
∗ : S → H exists.

Hence, given a vector (w, b) ∈ S, then Λ−1
∗ [(w, b)] returns a unique halfspace H = {x ∈ X :

w · x+ b ≥ 0}.

6.2.2.2 An arrangement of halfspaces. An arrangement of signed hyper-

planes implies a unique arrangement of halfspaces. Given a nonempty feature set X and a

finite halfspace arrangement A = {H1,H2, ...,HN} in X , define mapping Λ∗ : HN → SN

Λ∗(A) = (W : b),

similar to Equation 22. For every arrangement of signed hyperplanes A ∈ hN , there is

a unique halfspace arrangement A ∈ HN such that Λ∗(A) = Λ(A). Let inverse mapping

Λ−1
∗ [(W : b)] return a set of halfspaces so that, given the signed hyperplane arrangement A,

a unique arrangement of halfspaces can be expressed as

A = Λ−1
∗ [Λ(A)]. (27)

Subarrangement and intersection operations readily apply to halfspace arrangements.

Let A be an arrangement of N signed hyperplanes {h1, h2, . . . , hN} and A be the unique

arrangement of halfspaces {H1,H2, . . . ,HN} where Λ∗(A) = Λ(A). The cardinality of the

halfspace arrangement is equal to the number of halfspaces in the arrangement, card(A) =

N , and equal to the cardinality of hyperplane arrangement. A subarrangement of halfspaces

behaves like an subarrangement of hyperplanes—for example, if B ⊂ A then card(B) ≤
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card(A). The intersection of a halfspace arrangement A is given by

a(A) =
⋂

H∈A
H. (28)

Definition 41 If an intersection of halfspaces, a(A) 6= ∅, is non-empty, the intersection

forms a single chamber (closed set). This chamber is called the central chamber of chamber

set Cham(A) where hyperplane arrangement A = Λ−1[Λ∗(A)].

Given an arrangement A of signed hyperplanes and a point x ∈ X , we can define the

chamber that contains x by combining Equation 28 with Equations 26 and 27 above.

Theorem 5 Given the hyperplane arrangement A and feature x /∈ ∪h, h ∈ A, let C(x) be

the closed chamber in Cham(A) that contains x. Then, chamber C(x) is the intersection of

directed halfspaces derived from hyperplane arrangement A and the point x.

A set of directed halfspaces {H(x,H1),H(x,H2), . . . ,H(x,HN ))} always forms a non-empty

intersection since, by definition, they all contain point x.

C(x) =
⋂

H∈Λ−1
∗ [Λ(A)]

H(x,H). (29)

6.2.2.3 The partial ordered set of chambers. An arrangement of signed

hyperplanes represents a partial ordering of chambers.

Definition 42 Let A be an arrangement of signed hyperplanes. Given a chamber C ∈

Cham(A), define the mapping ρ : Cham(A) → R so that

ρ(C,A) = card({H ∈ A : C ⊂ H}). (30)

where A = Λ−1
∗ [Λ(A)]. Thus, ρ(C,A) is the number of halfspaces in arrangement A that

contain the chamber C.

To define a relation 4 on Cham(A) , we say chamber C ∈ Cham(A) “precedes” chamber

B ∈ Cham(A) and write C 4 B if and only if ρ(C,A) ≤ ρ(B,A). From this definition, we

form the theorem below.
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(a) Signed arrangement (b) Ordered set of chambers

Figure 39. An ordered set of chambers as designated by a signed arrangement of 4 hyper-
planes. The ordered set is ({C10, C11}, {C6, C7, C8, C9}, {C2, C3, C4, C5}, C1).

Theorem 6 Let A be a hyperplane arrangement, then ρ defines an ordering 4 on chamber

set Cham(A). Thus, (Cham(A),4) is an ordered set.

Proof of Theorem 6. The partially ordered set (R,≤) is well-defined. Clearly, 4 is

reflexive over Cham(A). Also, transitivity is clear. Antisymmetry does not hold true, since

if ρ(C,A) = ρ(B,A) then there is no reason to conclude that C = B. Hence, 4 defines an

ordering on Cham(A), though not a partial ordering.

In order to make a partially ordered set, we create equivalence classes of chambers.

Define the collection of equivalence classes for Cham(A) to be Class(Cham(A)). Define

the class [C]ρ = {C ′ ∈ Cham(A) : ρ(C ′,A) = ρ(C,A)}. We define the relation 4 on

Class(Cham(A)) to be [C] 4 [B] if and only if ρ(C ′,A) ≤ ρ(B′,A) for all C ′ ∈ [C] and B′ ∈

[B]. Now, reflexivity, transitivity, and antisymmetry hold true, and (Class(Cham(A)),4) is

a partially ordered set. Thus, the following theorem holds true.

Theorem 7 Let A be a hyperplane arrangement, then ρ defines an ordering 4 on the

collection of equivalence classes for Cham(A). Thus, (Class(Cham(A)),4) is a partially

ordered set.

Figure 39(a) illustrates an arrangement of four hyperplanes A = {h1, h2, h3, h4} and

their respective set of normals {w1, w2, w3, w4}. Figure 39(b) represents the ordering of

Cham(A) with respect to ρ as a function of grayscale (from light to dark). Note C2 4 C1 is
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true as ρ(C1,A) = 4, ρ(C2,A) = 3 and, thus, ρ(C2,A) < ρ(C1,A). Also, ρ(C10) = ρ(C11),

therefore C11 ∈ [C10]ρ. In fact, [C10]ρ = {C10, C11}. The ordering of the chamber set with

respect to ρ summarizes as ρ(Ci,A) < ρ(Cj ,A) < ρ(Ck,A) < ρ(C1,A) where i ∈ {10, 11},

j ∈ {6, 7, 8, 9}, k ∈ {2, 3, 4, 5}. Given the definition of equivalence classes above, the

set (Class(Cham(A)),4) = {{C10, C11}, {C6, C7, C8, C9}, {C2, C3, C4, C5}, {C1}} is partially

ordered. In this example, chamber set Cham(A) has a central chamber, C1. If a central

chamber exists, it supersedes all other chambers—that is, it ranks last and exclusively last

in the ordered set as chamber C1 does in (Class(Cham(A)),4) above.

By changing “signs” on an arrangement’s parameter vectors, additional orderings of

a chamber set may be explored. Let P be an N × N diagonal matrix whose diagonal

elements are restricted to -1 or 1. Given a hyperplane arrangement A with parameter

set Λ(A) = (W : b) ∈ S and chamber set Cham(A) , let PΛ(A) = (PW : Pb) so that

PΛ(A) ⊂ S. Thus, we can specify a new arrangement AP = Λ−1
∗ [PΛ(A)] with the same

chamber set, Cham(A) = Cham(AP ), but a different ordering on that set, (Cham(A),4)

6= (Cham(AP ),4).

6.2.3 Summary. In this section, we derived an ordering of a feature set for

use in the application of the ordered veracity-experience response curve, or OVER curve.

The ordering of the feature set is derived from an ordering of the chamber set formed by

the hyperplane arrangement implemented in an MLP’s first hidden layer. The chamber

set allows us to order an infinitely large feature set using a finite number of elements.

From this ordering, we can derive the first part of the OVER curve which is an ordering

of a domain based on a classifier’s veracity over the features of that domain. We will

demonstrate this capability in the next section. Also, we shall demonstrate the derivation

of the second part of the OVER curve which requires us to cross-reference a classifier’s

apparent experience with a feature to the veracity assigned to that feature. We shall derive

and demonstrate algorithms that allow us to investigate the memberships of the ordered

chambers in relation to the MLP’s training set and, from these investigations, to assign

a quantification of apparent experience to each chamber in the domain. Finally, we shall

demonstrate OVER curves for several MLPs used to implement a classic XOR dataset.
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Figure 40. An arrangement A of 16 hyperplanes forms a set of chambers Cham(A).

6.3 The unconstrained multilayer perceptron

When designing the multilayer perceptron, today’s pattern recognition community

relies on training tools that ignore the partial ordering of chambers. Resulting information

models are biased toward memorization and littered with false positives as they arbitrarily

order unpopulated chambers, i.e., chambers that do not contain training data. When gov-

erned by training tools such as mean-squared error measures, backpropagation and cross

validation, the multilayer perceptron is ill suited for generalization tasks as design solutions

prove to be poor interpolators and unregulated extrapolators.

6.3.1 Ordered chambers. To explore the ordered set (Cham(A),4), we begin by

resolving all populated chambers. Define a populated chamber as a closed chamber that

contains training data. Given a hyperplane arrangement A ∈ h and a dataset D ⊂ X , let

QD ⊂ Cham(A) be the set of populated chamber—that is,

QD = {C ∈ Cham(A) : x ∈ C for some x ∈ D}.
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Assume we have trained a multilayer perceptron to partition a signed, truthed dataset

D = D+ ∪D−. Given the set F of all MLPs whose range is R, we say a classifier F ∈ F

implements D if

F (x) =

 +1 if x ∈ D+

−1 if x ∈ D−.
(31)

Let FD = {F ∈ F : F implements D} be the set of all MLPs that implement the dataset

D. Given a multilayer perceptron F ∈ FD, there is a hyperplane arrangement A = ℵ1(F )

whose collection of populated chambers QD we now define.

6.3.1.1 Defining a populated chamber. From Section 6.2.2.1 we know, given

an arrangement of hyperplanes and any point x ∈ X , we can define a closed chamber C(x)

per Equation 29. Given a point x ∈ D and a hyperplane arrangement A = ℵ1(F ), we can

express a populated chamber as the intersection of directed halfspaces

C(x) =
⋂

H∈Λ−1
∗ [Λ(ℵ1(F ))]

H(x,H).

Alternatively, we can define chamber C(x) in terms of an N -tuple set of labels
−→
φ =

(φ1, . . . , φN ) ∈ LN where the label set L = {−1, 1}. Given some x′ in C(x) ∈ Cham(ℵ1(F ))

and a halfspace H ∈ Λ−1
∗ [Λ(ℵ1(F ))], define the label mapping φ(x′,H)

φ(x′,H) =

 1 if x′ ∈ H

−1 if x′ /∈ H.
(32)

Label φ(x′,H) represents the condition for the directed halfspace H(x′,H) given a point

x′ ∈ C(x).

Given the arrangement of halfspaces A = {H1,H2, . . . ,HN} and a point x ∈ Rd,

define the mapping for a label vector as
−→
φ (x,A) to be

−→
φ (x,A) = (φ(x,H1), φ(x,H2), . . . , φ(x,HN )) (33)
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(a) Select a point x.

(b) Arrangement A′ of directed halfspaces H(x,Hn)

(c) Chamber C(x)

Figure 41. A point x is selected within one of the chambers. The set of halfspaces are
directed toward the point; their intersect specifies the chamber containing x.
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such that
−→
φ ∈ {−1, 1}N . We call label vector

−→
φ (x,Λ−1

∗ [Λ(A)]) the signed diagonal of cham-

ber C(x) ⊂ Cham(A) as the vector
−→
φ constructs a scaling matrix to transform parameter

set Λ(A) = [W : b] per Equation 22. Let the signed diagonal
−→
φ ∈ {−1, 1}N form the

diagonal of an N ×N scaling matrix P = diag(
−→
φ ). Given PΛ(A) = [PW : Pb], the signed

diagonal
−→
φ corresponds to chamber C(x) if

C(x) =
⋂

H∈Λ−1
∗ [PW :Pb]

H.

Recall from Section 6.2.2.1, a central chamber is the non-empty intersection of a set of

halfspaces. Therefore, chamber C(x) is the central chamber of arrangement Λ−1[PW : Pb],

and is formed by the intersection of halfspace arrangement Λ−1
∗ [PW : Pb].

As an example of calculating the signed diagonal
−→
φ of a chamber, consider Figures 40

and 41. Figure 40 illustrates an arrangement A of 16 signed hyperplanes forming two

octagons. The coloring assigned to each chamber in this figure indicates its ordering in

(Cham(A),4). We can resolve a chamber within the chamber set Cham(A) by selecting

an arbitrary point x the centroid to the larger octagon as shown in Figure 41(a). Let the

parameter set of arrangement A be the augmented matrix [W : b] = Λ(A). To determine

the signed diagonal
−→
φ for chamber C(x), we evaluate the product [W : b] · [x; 1] such that,

given any x′ ∈ C(x),

−→
φ =

−→
φ (x′,A) = ([W : b] · [x′; 1] ≥ 0)− ([W : b] · [x′; 1] < 0).

In this expression, each element of the signed diagonal is derived as

φi = φ(x′,Hi) =

 1 if wi · x′ + bi ≥ 0

−1 if wi · x′ + bi < 0

where halfspace Hi = {x ∈ X : wi · x + bi ≥ 0} ∈ Λ−1
∗ [Λ(A)]. Once we have the signed

diagonal
−→
φ (x′,A), we can define the arrangement A′ of directed hyperplanes in which

chamber C(x) is the central chamber: Let scaling matrix P = diag(
−→
φ ), then we can

express arrangement A′ = Λ−1[PW : Pb] as shown in Figure 41(b). Finally, from the
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 % populatedQ.m
 % define a set of populated chambers
  function Phi_Q=populatedQ(dataSet,W,b)
 % Get data set
  store dataSet: matrix of data points
  store ones: row vector of ones
 % Get parameter set for arrangement
  store W: matrix of inward normals 
  store b: column vector of biases
 % Find populated chambers  
  D=[dataSet; ones];
  chamberLabels=([W b]*D>=0)-([W b]*D<0);
 % Eliminate redundant label vectors 
  Phi_Q = [];
  phiLeft = chamberLabels;
  while ~isempty(phiLeft)
    phi=phiLeft(:,1);
    Phi_Q=[Phi_Q phi];
    rho=phi'*phiLeft;
    rhoMax=phi'*phi;
    indexMembersLeft = find(rho~=rhoMax);
    phiLeft=phiLeft(:,indexMembersLeft);
  end %while 
 % Return label vectors specifying Q,
 %     the set of populated chambers
  return Phi_Q: set of signed diagonals
 % end populatedQ.m

Figure 42. Pseudo code describing Algorithm populatedQ.
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Figure 43. A multilayer perceptron is trained by back propagation to implement a solu-
tion for the XOR problem.

directed halfspace arrangement A′ = Λ−1
∗ [Λ(A′)] = Λ−1

∗ [PW : Pb], we specify chamber

C(x)—depicted in Figure 41(c)—as the intersection C(x) = a(A′) =
⋂

H∈A′
H.

Let us define a matrix Φ of signed diagonals where each column defines the signed

diagonal of a unique populated chamber in Cham(A). Given a dataset D ⊂ X and a

hyperplane arrangement A, matrix elements are φi,j = φ(xj ,Hi) and matrix columns are
−→
φ j =

−→
φ (xj ,Λ−1

∗ [Λ(A)]) for each xj ∈ D. When we create Φ using every point in D,

the matrix reflects the cardinality of the dataset and not necessarily QD. Each column in

Φ represents a chamber and, since multiple points may populate a chamber, it is neces-

sary to eliminate redundant columns. The Algorithm populatedQ8 describes one technique

8See Figure 42 for the pseudo code that summarizes a technique for reducing redundant columns. This
technique relies on the property that a central chamber (as specified by the directed arrangement A =
Λ−1[(PW : Pb)] will uniquely supersede all other chambers in the ordering (Cham(A), 4) described in
Equation 30.
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Figure 44. Ordering QD, the set of populated chambers, via (a) Φ, the matrix of signed
diagonals. The columns of matrix Φ are summed to create bar charts (c) ρ̃ and
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ρ or, equivalently, (d) the sort of function ρ̃.
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for reducing redundant columns. Once redundant columns
−→
φ j have been eliminated, the

cardinality of QD is equal to the number of remaining columns in Φ.

 % orderQ.m
 %   order set of chambers 
  function posetPhi_Q=orderQ(Phi_Q)
 % Get signed diagonals specifying Q, 
 %     the set of populated chambers
  store Phi_Q: set of signed diagonals
 % Derive partial ordering of set Q
  rho_tilda=sum(Phi_Q);
  [dum,order]=sort(rho_tilda);
  posetPhi_Q=Phi_Q(:,order);
 % Return ordered set of signed diagonals 
 %     specifying poset {Q,<=}
  return posetPhi_Q: ordered chamber set
 % end orderQ.m

Figure 45. Pseudo code describing Algorithm orderQ.

Given we have the set of signed diagonals designating the populated chambers of an

arrangement, we can order these chambers by summing each column vector in Φ and then

sorting the sums. The sum of a signed diagonal is linearly proportional to set function ρ

defined in Equation 30. Given an arrangement A of N hyperplanes and point x ∈ X , we

can rank the chamber C(x) via

ρ(C(x),A) =
∑

H∈Λ−1
∗ [Λ(A)]

φ(x,H) + 1
2

(34)

=
N

2
+

1
2

N∑
i=1

φ(x,Hi)

or

ρ̃(C(x),A) =
∑

H∈Λ−1
∗ [Λ(A)]

φ(x,Hi). (35)

Given the transformation from ρ̃ to ρ is a positive scaling and a translation, ρ̃ = 2ρ − N

can be used to rank C(x) in the ordered set (QD,4).
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Let matrix Φ(QD,A) be the set of non-redundant signed diagonals representing the

populated chambers of QD, and let matrix Φ((QD,4),A) be the set of signed diagonals for

the ordered set (QD,4). For a demonstration of deriving Φ((QD,4),A) from Φ(QD,A),

let us consider the dataset D and the arrangement A of N = 5 hyperplanes depicted in

Figure 43. In Figure 43, we depict Class True points as diamonds and Class False points

as circles. Using Algorithm populatedQ, the Class True points were tested resulting in the

discovery of 6 unique populated chambers. Next, a test of the Class False points resulted

in the discover of two more populated chambers. Thus, we found a total of eight populated

chambers and specified the signed diagonal of each in a column of matrix Φ(QD,A) below.

Φ(QD,A) =


1 −1 1 1 1 1 1 −1

−1 −1 1 1 1 −1 −1 −1
1 1 1 1 −1 1 −1 1
1 1 1 1 1 1 1 1
1 1 1 −1 1 −1 1 −1


Figure 44(a) also portrays matrix Φ(QD,A) where, again, we ranked the signed diagonals

in the order the test points x ∈ D were presented to Algorithm populatedQ.

To order of the chambers of QD, we sum the columns of matrix Φ(QD,A) per Algo-

rithm orderQ9 such that

ρ̃(QD,A) = [ 3 1 5 3 3 1 1 − 1 ],

ρ(QD,A) = [ 4 3 5 4 4 3 3 2 ].

The bar charts of Figure 44(c) and Figure 44(e) depict ρ̃ and ρ = N+ρ̃
2 , respectively. Finally,

(QD,4) is realized by ranking the chamber set based on Figure 44(f) the sort of set function

ρ or, equivalently, Figure 44(d) the sort of function ρ̃. Figure 44(b) portrays the result of

this ranking where

Φ((QD,4),A) =


−1 −1 1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1

1 1 1 −1 1 1 −1 1
1 1 1 1 1 1 1 1

−1 1 −1 1 1 −1 1 1

 .

9See Figure 45.
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Figure 46. Reordering populated chambers (a)-(b) using a set of weighted, signed hyper-
planes and (c)-(d) using a pruned set of weighted, signed hyperplanes.

With matrix Φ(QD,A), we can evaluate how adding or removing perceptrons from an

MLP affects the ordering of chambers. To prune a perceptron is to prune one hyperplane,

so we simply remove the hyperplane’s row from matrix Φ(QD,A) before calculating ρ̃. For

instance, we can remove the fourth hyperplane in arrangement A so that our pruned set of
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signed hyperplanes looks like

Φ(QD,A− h4) =


1 −1 1 1 1 1 1 −1

−1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 1 −1 1

1 1 1 −1 1 −1 1 −1


and ρ(QD,A − h4) = [ 3 2 4 3 3 2 2 1 ] = ρ(QD,A) − 1. Note, removing the fourth

hyperplane does not affect the cardinality of QD or the order of (QD,4). However, if we

were to prune the first hyperplane h1,

Φ(QD,A− h1) =


−1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 1 −1 1

1 1 1 1 1 1 1 1

1 1 1 −1 1 −1 1 −1


the number of non-redundant populated chambers decreases to 6.

Φ(Q′
D,A− h1) =


−1 1 1 1 −1 −1

1 1 1 −1 1 −1

1 1 1 1 1 1

1 1 −1 1 −1 1


and ρ(Q′

D,A− h4) = [ 3 4 3 3 2 2 ].

We can also evaluate the chamber set ordering implemented by the weighted outputs

of an MLP’s hidden perceptrons. Here, we transform Φ via the scaling matrix P , then sum

the columns of matrix PΦ. In this application, the diagonal elements of P may be any

real number. The transformed parameter set PΦ is not restricted to the manifold S, but

such a restriction is unnecessary to order the chamber set. Figure 46 illustrates an ordering

using the weighted perceptrons implemented in Figure 31(a). From this illustration, we can

choose an appropriate bias (or threshold) for the complete set of weighted perceptrons and

for the pruned set.
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 % psiChamber.m  
 % find minimum arrangement for chamber
  function psi_C=psiChamber(W,b,phi_C)
 % Get parameter set for arrangement
 %  of N hyperplanes
  store W: matrix of inward normals
  store b: column vector of biases
  store N: number of hyperplanes
  store d: dimension of space   
 % Get specification of chamber C  
  store phi_C: signed diagonal of C
 % Eliminate redundant hyperplanes
  psi_C=phi_C;
  P=diag(phi_C);
  V=P*[W b];
  for k=1:N
    kCompliment=find([1:N]~=k);    
    g=V(k,1:d);
    t=V(k,d+1);
    U=V(kCompliment,1:d);
    c=V(kCompliment,d+1);
    xMax=linearProgram(-g,U,c);	
    isHyperplane=g*xMax-t >= 0;
    psi_C(k)=isHyperplane*psi_C(k);
  end % for
 % Return label vector specifying minimum 
 %  arrangement with central chamber C
  return psi_C: signed aliasing diagonal 
 % end psiChamber.m

Figure 47. Pseudo code describing Algorithm psiChamber.
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6.3.1.2 Defining unpopulated chambers via Linear Programming. To order

an entire chamber set, we resolve adjacent chambers and work our way out. Given the

signed diagonal
−→
φ C of a populated chamber C, the signed diagonal of an adjacent chamber

Cadj is exactly the same except for the sign of one of the vector’s elements. That ele-

ment corresponds to the only directed halfspace that must “flip” differently in Equation 29

when evaluating points in chamber C versus points in chamber Cadj . Given a nonempty

arrangement A of hyperplanes, every chamber C ∈ Cham(A) has a nonempty set of ad-

jacent chambers [C]adj ⊂ Cham(A). The cardinality of [C]adj is equal to the number of

hyperplanes that bound C.

We say a hyperplane h bounds a chamber if h ∩ C 6= ∅, i.e. some subset of points

on the hyperplane h are members of the closed chamber C. Given an arrangement A

of hyperplanes and chamber C ⊂ Cham(A), there exists a subarrangement B ⊂ A that

includes all the hyperplanes h ∈ A where h ∩ C 6= ∅ and none of the hyperplanes h ∈ A

where h∩C = ∅. Specifying the subarrangement B suggests another label besides “-1” and

“1”—the label “0” denoting the condition h ∩ C = ∅. Given a halfspace H ∈ Λ−1
∗ [Λ(A)]

and a chamber C ∈ Cham(A), define the mapping ψ(C,H) ∈ {−1, 0, 1} such that

ψ(C,H) =


1 if (H ∩Hc) ∩ C 6= ∅ and C ⊂ H

0 if (H ∩Hc) ∩ C = ∅

−1 if (H ∩Hc) ∩ C 6= ∅ and C 6⊂ H

(36)

where h = H ∩ Hc. Given arrangement of halfspaces A = {H1,H2, . . . ,HN}, define the

label vector mapping
−→
ψ (C,A) = (ψ(C,H1), ψ(C,H2), . . . , ψ(C,HN )) ∈ {−1, 0, 1}N . We

call
−→
ψ the signed aliasing diagonal as it is used to construct an aliasing matrix M . An

aliasing matrix M is a matrix formed by removing every row from a N ×N identity matrix

that corresponds to a ψ(C,H) = 0 label in the vector
−→
ψ . Let Mn denote an identity matrix

with the nth row removed. This aliasing matrix removes one non-bounding hyperplane if

C(x) =
⋂

H∈Λ−1
∗ [MnW :Mnb]

H(x,H).
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Definition 43 (Minimum Arrangement). Given the signed hyperplane arrangement A and

a chamber C ∈ Cham(A), B ⊂ A is the minimal subarrangement with respect to C if

1. C ∈ Cham(B),

2. C 6∈ Cham(B′) for all B′ ⊂ B with B′ 6= B.

The chamber C is a convex polytope and, accordingly, we use Linear Programming

(LP) to resolve the minimum arrangement that defines C [6, 34]. Linear programming is a

problem formation in parametric optimization. The form is used to find a parameter vector

defined as optimal with respect to a linear objective function. The objective function is

minimized or maximized subject to equality constraints Ui(x) = 0 and inequality constraints

Uj(x) ≤ 0. The Linear Programming problem is stated formally as

min gT · x subject to: Ux ≤ c

x ∈ Rd
(37)

where x, g and c are column vectors and U is a matrix. Both equality and inequality

constraints are defined using U and c; the convention is to list the equalities first in the

rows of matrix U and vector c. To realize maximization in linear programming, supply

−gT · x to the minimization routine. [65, 34]

max −gT · x subject to: Ux ≤ c

x ∈ Rd
(38)

Given a central chamber, the Linear Programing test checks each signed hyperplane in

the arrangement to see if it is or is not a member of the chamber’s minimal subarrangement.

Given the signed diagonal
−→
φ = (φ1, . . . φN ) and a scaling matrix P constructed from the

signed diagonal, the linear programming test states ψn = 0 if and only if φnwn·xmax−φnbn <

0 where the optimized point xmax is derived from the inequality constraints of the linear

programming problem formation

max −φnwn · x subject to: MnPWx ≤MnPb.

x ∈ Rd
(39)
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(a) Set of directed halfspaces

(b) Central chamber

(c) Minimal subarrangement

Figure 48. Given an arrangement with a central chamber C, linear programming deter-
mines the minimum subarrangement B in which chamber C ∈ Cham(B) but
the chamber is not in the chamber set of any subarrangement of B.
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Recall, Mn is an aliasing matrix—an identity matrix with the nth row removed—and strips

parameters wn, bn from the parameter set [W : b]. Consider again the arrangement first

depicted in Figure 40 as it has been manipulated in Figures 48(a)-(c). Figure 48(a) depicts

the halfspace arrangement A′ = Λ−1
∗ [PW : Pb] in which chamber C is the central chamber

and Figure 48(b) renders chamber C as the intersection of the halfspace arrangement A′.

Algorithm psiChamber10 calculates the signed aliasing diagonal
−→
ψ (C,A) once the

signed diagonal
−→
φ for any chamber C ∈ Cham(A) is derived. Each non-zero element of

−→
ψ

corresponds to a hyperplane in the minimum arrangement B ⊂ A that implements chamber

C(x). Let matrix M be a signed aliasing matrix such that M = diag(
−→
ψ ). Figure 48(c)

depicts the set of directed hyperplanes for the minimum arrangement B ⊂ A with respect

to chamber C.

Once the set of signed aliasing diagonals is determined and stored in a matrix, an

augmented set of signed diagonals can be determined to specify both the set of populated

chambers QD and those chambers adjacent to the populated chambers [QD]adj . Vector
−→
ψ is calculated via Algorithm psiChamber. Given

−→
ψ and

−→
φ for a chamber C, Algorithm

adjChambers11 computes the signed diagonals for the adjacent chambers to C and augments

matrix Φ accordingly. Let matrix Ψ store the set of known signed aliasing diagonals. To

resolve the chamber set Cham(A), we iterate between augmenting the matrix Φ of signed

diagonals and resolving the matrix Ψ of signed aliasing diagonals via Linear Programming.

Ordering Cham(A) via set function ρ̃ is then trivial.

6.3.1.3 Ordering a set of chambers. For a demonstration of the ordered

veracity-experience curve, let us order a chamber set implemented by the weights and

biases of a single-hidden layer MLP. The architecture of the multilayer perceptron is set

so that each hidden-layer perceptron uses a tansig activation function and the output-layer

perceptrons implement a linear activation function allowing us to visualize the ordering

of each chamber. Let the MLP’s unbiased output take the form z =
∑N=5

n=1 unf(αn(x))

where input feature x ∈ X , output z ∈ R, and vector u ∈ RN specifies the output layer

10See Figure 47.
11See Figure 49.
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% adjChambers.m  
% find set of adjacent chambers
 function adj_C=adjChamber(phi_C,psi_C)
% Get specifications for chamber C
 store phi_C: signed diagonal
 store psi_C: signed aliasing diagonal
% Index bounding hyperplanes
 indexFlippers=find(psi_C~=0);
% Specify one chamber for each  
%   bounding hyperplane 
 adj_C=[];
 for k=1:length(indexFlippers)
  h=indexFlippers(k);
  adjacentChamber=phi_C;
  % flip sign of one bounding hyperplane
  adjacentChamber(h)=-phi_C(h);
  adj_C=[adj_C adjacentChamber];   
 end % for
% Return set of adjacent chambers
 return adj_C: adjacent chamber set 
% end adjChambers.m

Figure 49. Pseudo code describing Algorithm adjChambers.
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Figure 50. The ordering of a chamber set implemented by an MLP with N = 5 first-
hidden layer perceptrons and three different sets of output layer weights.
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Figure 51. Given an arrangement A = {h1, h2, . . . , hN} of signed hyperplanes, the com-
plete set of chambers—populated and unpopulated—is presented in the order
each chamber was resolved. The graph includes an overlay of each chamber’s
value of set function ρ(Ck,A).

weights (sans bias). We trained a 5-hidden node, 2-output node MLP that implements the

XOR dataset given in Table 5 of Appendix D. The MLP’s parameter sets are given in

Equations 50 and 51, Appendix D. Solution sets from this MLP are presented in Figure 50

such that the ordering of the chamber set is depicted in grayscale over an interesting subset

of the 2-dimensional feature set. Solution (b) illustrates the natural ordering of the first

hidden layer’s arrangement of signed hyperplanes where the weight vector u = (u1, . . . , uN )

is set so that each output layer weight un = 1 for all n ∈ {1, . . . , 5}. Figures 50(c) and

(d) respectively show two output-layer parameter sets that successfully dichotomize the

XOR training data. Figure 51 presents the complete set of signed diagonals designating

all chambers in Cham(A)—populated and unpopulated—in the order each chamber was

resolved using Algorithms populatedQ and adjChambers. The graph includes an overlay

of each chamber’s value of set function ρ(Ck,A). For display purposes, the overlay of the

function has been scaled and shifted such that σ > 0 and ∆ ∈ R. Note, this figure is not an

OVER curve as the chambers have not been reordered to reflect an ordering of ρ(Ck,A).

For a sample OVER curve, Figure 52(a) presents the natural ordering of chambers where
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Figure 52. Given an arrangement A = {h1, h2, . . . , hN} of signed hyperplanes, (a) the
natural ordering of chambers versus (b) the preferred order.
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Figure 53. Given an arrangement A = {h1, h2, . . . , hN} of signed hyperplanes and two
weight vectors u1 = (u1,1, . . . , u1,N ) and u2 = (u2,1, . . . , u2,N ), the complete
set of chambers—populated and unpopulated—is weighted by u1 and u2 re-
spectively and reordered. Note, using either weight vector, the populated
chambers can be separated by class using a single threshold.
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the outputs of the MLP’s hidden-layer perceptrons are summed without weighting those

outputs. Note, the natural ordering does not provide class separation. Figure 52(b) presents

the preferred order of the chambers where “true” and “false” class data are separable and,

additionally, unpopulated chambers are easily separable from populated chambers. OVER

curves based on the two sets of output layer weights are depicted in Figure 53. Given weight

vector ui = (ui,1, . . . , ui,N ) from the ith output node, it is possible to reorder the complete

set of chambers—populated and unpopulated—to reflect the ordering of the MLP’s output

by vector multiplication ρui(C,A) = ui ·φ(C,A). Using either output-layer weight vector u1

or u2, the populated chambers can be separated by class using a single threshold t. Potential

threshold values t ∈ (a, b) are noted in Figures 53 and implemented in Figures 54 and 55.

Two-valued separation {false,true} is achieved using the single threshold t ∈ (a, b); three-

valued separation {false,uncertain,true} is achieved using two thresholds a, b. Evaluated in

terms of data reduction, both solutions perform well as both implement the training set.

However, in terms of the generalization, both do poorly as noted by the arbitrary ordering

of unpopulated chambers. Note, all or most of the unpopulated chambers fall outside of

the “uncertain” interval (a, b).

In Figures 54 and 55, we have applied the orderings of a chamber set implemented by

an MLP with N = 5 first-hidden layer perceptrons and two different sets of output layer

weights to the solution set of the MLP by using the orderings to select appropriate threshold

values for a and b. Threshold a gives the upper bound for the false class such that output

z ≤ a is associated with false training data. Similarly, threshold b gives the lower bound

for the true class such that z ≥ b is associated with true training data. Given a multilayer

perceptron F ∈ F that implements the hyperplane arrangement A = ℵ1(F ), threshold a is

found by determining the value of a = ρ(Cf,last,A) where Cf,last is the last chamber with

false points in the set of ordered chambers. Threshold b is found by determining the value of

ρ(Ct,first,A) where Ct,first is the first chamber with true points in the set of ordered cham-

bers. These thresholds can be used to implement 2-valued separation in the MLP’s solution

set where thresholding with t ∈ (a, b) results in a binary image as illustrated Figures 54(b)

and 55(b). The thresholds can also be used to implement 3-valued separation as in Fig-

ures 54(c) and 55(c). Note, for weights give for this particular multilayer perceptron, there

130



-3

-2

-1

0

1

2

3

4

5

6

true
false

(a) weighted summation
∑N

n=1 u1,nf(αn(x))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
true
false

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
true
false

(b) two-valued separation (c) three-valued separation

Figure 54. Two-valued and 3-valued treatments for a 5-hidden-node MLP trained by
backpropagation.
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Figure 55. Two-valued and 3-valued treatments for a 5-hidden-node MLP with different
output weights.
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is little difference in the 2-valued separation and 3-valued separation images; this similarity

is expected since there were no unpopulated chambers listed between chambers Cf,last and

Ct,first in the ordered chamber set for the first weight vector u1 and only two unpopulated

chambers listed between chambers Cf,last and Ct,first in the ordered chamber set for weight

vector u2. Three-value logic adds little expression in these cases. We expect 3-value logic

to produce confusing results in more complex solutions as is apparent when we apply the

OVER curve to several multilayer perceptrons of greater complexity. Figure 56 portrays

a 3-valued treatment for a complex network, a 15-hidden-layer-node MLP also trained by

backpropagation. Chambers fall in the uncertain range in an arbitrary manner that is dif-

ficult to predict when the MLP architecture was initialized. We see similar confusion as

we explore the orderings of the chamber sets implemented by MLPs as shown in Figure 57,

where the number of first-hidden-layer nodes are N = 3, 5, 10 as specified. Figure 58 con-

tains the respective 3-valued treatments of these multilayer perceptrons. Considering the

populated chambers, the complex MLPs (where N = 10 or more) produce solution sets in

which most training points have been isolated in finite chambers. There is no guaranteed,

however, that all populated chambers are finite and, when they are, in many case the finite,

populated chambers are smaller than is desirable leading to memorization. The association

of unpopulated chambers to populated chambers is arbitrary leading to jagged, overly com-

plex decision boundaries. Considering the populated chambers in the simpler MLPs (N = 5

or less), many of the populated chambers are infinitely large—i.e., unbounded—resulting

in arrogant classification in the extremes of the unbound chambers.

Figure 59 illustrates the most promising chamber set ordering implemented by a simple

3-hidden-layer-node MLP whose solution set is first shown in Figure 57(a). Note the sole

unpopulated chamber is ordered between the chambers Cf,last and Ct,first that provide our

thresholds a = ρ(Cf,last,A) and b = ρ(Ct,first,A). Given this ordering where the true, false,

and unpopulated chambers are grouped nicely, we can easily convert the MLP to an isolation

architecture by adding 4 addition perceptrons to the MLPs hidden layer. These additional

perceptrons serve a special purpose in that they wrap the entire training set in a bounded

convex hull. These perceptrons are assigned large magnitude output weights (as recorded

in Equation 53, Appendix D) to ensure that the chambers contained within the bounded
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convex hull supersede all chambers outside the convex hull in the chamber ordering. Once

we add the additional nodes to the first hidden layer, we recalculate thresholds a and b for

the new chamber set and derive a third threshold c = ρ(Cf,first,A) where Cf,first is the first

chamber with false points in the new set of ordered chambers. Figure 60 presents the results

of a 4-valued isolation treatment to the augmented MLP such that, given the MLP output

z ∈ R for a chamber C ∈ Cham(A), chambers where z(C) < c are labeled as extrapolations,

chambers where c ≤ z(C) ≤ a are labeled as false, chambers where a < z(C) < b are labeled

as interpolations, and chambers where z(C) ≥ b are labeled as true.

Often, it is not possible to order all of the unpopulated chambers together as in

the case above. Such cases require additional hidden layers to implement proper 4-valued

isolation. To produce an alternate 4-value treatment for the multilayer perceptron, we must

isolate the chambers to be labeled true, false, extrapolations and interpolations separately.

The extrapolation class is determined by taking the set complement of the convex hull used

to wrap all of the training data. Figure 61 presents an isolation treatment for “true” points

in the 3-hidden-layer-node MLP. Figure 62 presents the isolation treatment for “false”

points. The membership of the interpolation class are all those chambers not included in

the membership of the true, false or extrapolation classes and does not need to be determined

directly. Thus, the membership of the true, false and extrapolated class can be captured in

a second hidden layer and the output node sums the weighted output from these class nodes.

Figure 63(d) shows the solution set from this output node which combines the output of the

class nodes given respectively in Figures 63(a), (c) and (d) to produce the alternate 4-value

treatment for the multilayer perceptron.

Thus, we have presented an application of the ordered veracity-experience curve and

demonstrated its utility in understanding the manipulations of an multilayer perceptron

over an entire feature set. Though our algorithms are designed to work in any dimension

that is computationally feasible, our visualization of the OVER curve must be simplified

for larger chamber sets. Later in the chapter, we shall present a simplified OVER curve

and demonstrate arrogance in an MLP trained to solve a 4-dimensional problem.
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Figure 56. A 3-valued treatment for a 15-hidden-node MLP trained by backpropagation.
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Figure 57. The ordering of various chamber sets implemented by MLPs with N = 3, 5, 10
first-hidden layer perceptrons. The weights and biases used in these MLPs are
listed in Appendix D.
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Figure 58. Three-valued treatments of various MLP with N = 3, 5, 10 first-hidden layer
perceptrons.
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Figure 59. A 3-value treatment for a 3-hidden-node MLP.
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Figure 60. A 4-valued treatment for a 3-hidden-node MLP augmented with 4 additional
hidden nodes.
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Figure 61. An isolation treatment for “false” points in the 3-hidden-node MLP.
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Figure 62. An isolation treatment for “false” points in the 3-hidden-node MLP.
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Figure 63. An alternate 4-valued treatment for a 3-hidden-node MLP.
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6.3.2 Local max and local min chambers. As the dimension of a feature set

increases, it quickly becomes implausible to resolve an entire chamber set. To keep compu-

tations to a minimum, it is wise to use perceptrons sparingly and implement architectures

where first hidden-layer perceptrons merely separate class data in the feature set and ad-

ditional layers isolate and order the partitions. This keeps the number of chambers imple-

mented by the first layer of the MLP down. It is a good rule of thumb to limit the number

of bounded chambers12 implemented by a multilayer perceptron to the number of training

points.

To extend the ordered-veracity scheme into higher dimensions, we shall define a much

smaller subset of “interesting” chambers. The size of a chamber set grows exponentially

in relation to d, the dimension of the feature set, and polynomially in relation to N , the

cardinality of the hyperplane arrangement as seen in Equation 25. Thus, the computational

complexity of any algorithm that derives an entire chamber set grows exponentially.

As d and N increase, determining the ordering of an entire chamber set becomes

burdensome both in terms of CPU time and memory space. To work on more complex

problems in a reasonable amount of memory, we propose an interesting subset of the cham-

ber set: the set of local min chambers and local max chambers. In the remaining sections of

this chapter, we define these interesting chambers and explain why they are so interesting.

Appendix C presents some of the characteristics and behaviors of these chambers for use

in developing prunable search routines that resolve local max and local min chambers in a

reasonable amount of time.

Definition 44 (Local Max Chamber). Given a signed hyperplane arrangement A and a

chamber C ∈ Cham(A) with minimal subarrangement B ⊂ A per Definition 43, we say

chamber C is a local max chamber of A if

C =
⋂

H∈Λ−1
∗ [Λ(B)]

H.

12See Section C.2 for a definition of a bounded chamber.
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Definition 45 (Local Min Chamber). Given a signed hyperplane arrangement A and a

chamber C ∈ Cham(A) with minimal subarrangement B ⊂ A per Definition 43, we say

chamber C is a local min chamber of A if

C =
⋂

H∈Λ−1
∗ [Λ(B)]

Hc.

Ordering the local max and min chambers of a chamber set simplifies the evaluation of

single-hidden layer MLP solutions as local max and min chambers correspond respectively

to the local peaks and valleys of the MLP’s output. Given a threshold ρ0, if a local max

chamber Cmax does not survive the threshold—i.e., ρ(Cmax,A) ≤ ρ0—then from Theorem 42

it follows that none of the chambers adjacent to Cmax survive the threshold—i.e., ρ(C ′,A) ≤

ρ(Cmax,A) ≤ ρ0 for all C ′ ∈ [Cmax]adj . It also follows from Theorem 42 that if a local min

chamber Cmin does survive the threshold—i.e., ρ(Cmin,A) ≥ ρ0—then all chambers adjacent

to Cmin also survive the threshold—i.e., ρ(C ′′,A) ≥ ρ(Cmin,A) ≥ ρ0 for all C ′′ ∈ [Cmin]adj .

% localChamber.m  
% determine if a chamber C is a local
% max or min chamber
  function local_C=localChamber(phi_C)
% Get specifications for chamber C
  store psi_C: signed aliasing diagonal
% Test for local chamber behavior 
  localMax=sum(abs(psi_C))==sum(psi_C);
  localMin=sum(abs(psi_C))==-sum(psi_C);
  local_C=localMax-localMin;
% Return state of chamber C
%   local_C=1 if local max chamber
%   local_C=-1 if local min chamber
%   local_C=0 if neither
  return local_C: state of chamber C
% end localChamber.m

Figure 64. Pseudo code describing Algorithm localChamber.
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6.3.2.1 Selecting local max and min chambers. Local max and min cham-

bers are distinguishable by their signed aliasing diagonals
−→
ψ . Recall from Section 6.3.1.2

that, given a signed hyperplane arrangement A, a chamber C ∈ Cham(A) has a signed

aliasing diagonal
−→
ψ (C,Λ−1

∗ [Λ(A)]) ∈ {−1, 0, 1}N . A local max chamber Cmax ∈ Cham(A)

has a signed aliasing diagonal such that
−→
ψ (Cmax,Λ−1

∗ [Λ(A)]) ∈ {0, 1}N ⊂ {−1, 0, 1}N .

Similarly, a local min chamber Cmin ∈ Cham(A) has a signed aliasing diagonal such that
−→
ψ (Cmin,Λ−1

∗ [Λ(A)]) ∈ {−1, 0}N .

Let the set of local max and min chambers be denotedQo ⊂ Cham(A). We defineQo =

Qmin ∪Qmax where the set of local min chambers is Qmin = {C ∈ Cham(A) : γ(
−→
ψ (C,A)) =

−1} and the set of local max chambers is Qmax = {C ∈ Cham(A) : γ(
−→
ψ (C,A)) = 1}. Figure

65 shows the chamber set depicted in Figure 50(a) contains one local max chamber and

three local min chambers. Chamber subset Qo was derived by testing each signed aliasing

diagonal in matrix Ψ via Algorithm localChamber13. Given a hyperplane arrangement A

and a chamber C ∈ Cham(A), the Algorithm localChamber can be summarized in the

mapping γ as

γ(
−→
ψ ) =


1 if

∑N
n |ψ(C, hn)| =

∑N
n ψ(C, hn)

−1 if
∑N

n |ψ(C, hn)| = −
∑N

n ψ(C, hn)

0 otherwise

.

where hn ∈ A.

In the example of Figure 65, the overlaid plot of ρ(Qo,A) shows that, for a particular

set of weights, the local max chamber survives threshold ρ0 = 0 while the local min chambers

do not. As such, our evaluation of the MLP’s generalization focuses on the local max

chamber Cmax and resolving those chambers near Cmax. Of particular interest are the set

of chambers near the decision boundary between what is considered near Cmax and what

is near the local min chambers—i.e., those chambers that just survive the threshold (i.e.,

ρ0 + ε ≥ ρ(C,A) ≥ ρ0 for small ε > 0) and those that just do not (i.e., ρ0 ≥ ρ(C,A) ≥ ρ0− ε

for small ε > 0).

13See Figure 64.
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Figure 65. Given the arrangement A in Figure 50(a), the subset of local max and local
min chambers. The arrangement implements one local max chamber whose
ρ(C,A) > 0 and 3 local max chambers whose ρ(C,A) < 0.

6.3.3 Summary. In this section, we presented the means to succinctly view the

partial ordering imposed by a multilayer perceptron over a feature set. This representation

of (Class(Cham(A)),4) allows for informed manipulation of the partial ordering over both

populated and unpopulated disjoint subsets. The representation (Class(Cham(A)),4) also

accomplishes the first part of the OVER curve—that is, the ordered veracity. Further,

we presented simple OVER curve representations by overlaying the ordered veracity scores

over grayscale-coded representations of each chamber such that the grayscale-coding por-

trayed the chamber’s experience (i.e., whether a chamber contained true, false, both or no

training points); however, this form of visualization will not be appropriate for problems

whose chamber sets have a cardinality N > 100. In the next section, we shall develop an

OVER curve representation appropriate for larger chamber sets and apply the curve to a

4-dimensional feature set, the Fisher iris dataset.
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6.4 The arrogant multilayer perceptron

As the literature shows, quantifying generalization performance has several approaches

based on error measures. Besides being computationally expensive, training methods such as

cross validation and bootstrapping do not support persistent learning where it is desirable

to test the appropriateness of a data generalization beyond supervised design and into

unsupervised application. In application, additional observations will be gathered and new

experience may be gained. Hold-out validation tracks error trends of isolated labeled data;

but, after training is complete and a model solution is selected for application, we wish

to continue tracking patterns in the operational data. Error trends require supervision; we

need other trends to investigate the apparent incompleteness in the training set with respect

to the unlabeled operational set. The ordering of chambers constructed by an MLP is such

a trend—that is, one that does not require additional supervision past the design stage.

For a multilayer perceptron, we detail where in a feature set the classifier is arrogant

and non-arrogant as we quantify the overall generalization performance. In this treatment,

we use the output of a MLP for the veracity measure and a four-value logic interpretation

of the MLP’s arrangement of hyperplanes to express relative experience over an entire

feature set. To demonstrate arrogance, we shall first define our measures that map a

multilayer perceptron’s veracity and experience across partitions of the feature set. Then,

using the veracity scores we order the MLP’s domain based on the veracity measures and

cross reference the experience measures to form an ordered veracity-experience response

curve. Finally, we compare the OVER curve to Figures 28(a) and 28(b) from Chapter V—

respectively, the ordering we desire for a classifier with good isolation and the ordering we

expect from an arrogant classifier.

As previously listed, the benefits of our approach over other iterative and stochastic

methods can be summed up in the following: (1) Our technique evaluates the generalization

of an MLP after model selection, requiring only the classifier’s weights and biases and the

data used to train these parameters. (2) The results of our evaluation do not change

based on the order that data are presented. (3) Stochastic techniques exercise little of the

domain—that is, the measure of the set of feature vectors evaluated is zero whereas, for our

technique, the measure of such sets used is positive.
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6.4.1 Ordering the domain of a multilayer perceptron. Our new method of resolv-

ing and ordering populated chambers allows one to evaluate the quality of a training set in

view of the MLP’s representation of the operational set. Let us define unpopulated cham-

bers of interest as the chambers unpopulated by training data but populated by operational

data. To evaluate the effectiveness of an existing MLP design, we employ the steps below.

1. Gauge memorization: Track the operational data “hits” in populated chambers versus

hits in unpopulated chambers. If the ratio of hits in the populated chambers to hits in

unpopulated chambers of interest is near 0, then the MLP trained by back propagation

has memorized the data. If the ratio of hits in the populated chambers to hits in

unpopulated chambers of interest is 1, then the MLP has not memorized the data.

2. Apply a consistency test: Compare the adjacency of populated chambers to unpopu-

lated chambers of interest and test if the local ordering of chambers make sense.

From here, we can determine a desired re-ordering of the local chambers and update the

MLP architecture and parameters appropriately. We can also determine if the network

architecture should be simplified or expanded to better achieve the desired ordering. Let

D be two-class truthed data. Thus, D can be partitioned into two disjoint subsets D+ and

D− where D = D+ ∪D− and D+ ∩D− = ∅. A multilayer perceptron F trained on the data

D yields a hyperplane arrangement A. From this arrangement, one forms the associated

chamber set Cham(A). Some of the chambers are populated with the “+” class data vectors;

other chambers are populated with the “-” class data vectors. Some chambers—and, often,

most—are not populated at all. If the MLP has done an excellent job of separating the

data, then no chamber exists that contains both “-” class and “+” class vectors.

Based upon the truthed data D, we can define three subsets of the chamber set

Cham(A) as

Cham(A)+ = {C ∈ Cham(A) : x ∈ C for some x ∈ D+}

Cham(A)− = {C ∈ Cham(A) : x ∈ C for some x ∈ D−}

Cham(A)u = Cham(A)− (Cham(A)+ ∩ Cham(A)−).
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Since D+ ∩ D− = ∅, one hopes that the MLP has done an excellent job of separating the

data into separates chambers, such that Cham(A)+ ∩Cham(A)− = ∅. When the MLP has

not separated the data then Cham(A)+ ∩ Cham(A)− 6= ∅. Often, the MLP creates more

chambers than needed and several chambers have no data in them; thus, in general, we

have that the set of unpopulated chambers Cham(A)u 6= ∅ or

Cham(A)+ ∪ Cham(A)− 6= Cham(A).

6.4.2 Ordering chambers by relative veracity. Consider a single-hidden-layer mul-

tilayer perceptron constructed using hard-limiter sigmoids in the hidden layer nodes and

tansig sigmoids in the output layer. Thus, given a chamber C and a point x ∈ int(C), the

MLP output yields a veracity v(x) ∈ [−1, 1] and, in fact, this veracity is the same value

for all x ∈ C. Therefore, we consider the entire chamber C and define the veracity of

the chamber v(C) = v(x). Since the space Rd is partitioned into the disjoint subsets of

Cham(A) by the MLP, then we need only to consider each chamber separately.

6.4.3 Ordering chambers by relative experience. We seek to identify each cham-

ber C ∈ Cham(A) with a label representing experience. Define the experience mapping

e : Cham(A) → {t, f, i, e}. Populated chambers shall be identified as containing specific

experience. Let the true label t denote specific experience with “+”class, and let false label

f denote specific experience with “-” class data. Unpopulated chambers shall be identified

as either interpolations or extrapolations of training data. The interpolation label i implies

marginal experience in training data, and the extrapolation label e implies insignificant-to-

no experience with class data.

Our experience mapping e utilizes a distance metric between chambers. For a simple

metric, we determine whether or not a chamber intersects with any populated chamber.

Let us construct a mapping that convenes this notion. Define the distance mapping σ on
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chambers in Cham(A) to be

σ(C ′, C ′′) =


0 if C ′ = C ′′

1 if C ′ ∩ C ′′ 6= ∅

2 if C ′ ∩ C ′′ = ∅

for every C ′, C ′′ ∈ Cham(A). Recall, chambers are closed sets so if C ′∩C ′′ 6= ∅ then C ′∩C ′′

is contained in one of the hyperplanes in the arrangement A.

We have the result that the above mapping is a metric.

Theorem 8 The mapping σ is a metric on Cham(A), and (Cham(A), σ) is a metric space.

Proof. Note that σ(C ′, C ′′) is defined for every possible choice of C ′, C ′′ ∈ Cham(A).

1. Clearly, σ(C ′, C ′′) ≥ 0 for all C ′, C ′′ ∈ Cham(A).

2. Clearly, σ(C ′, C ′′) = σ(C ′′, C ′) for all C ′, C ′′ ∈ Cham(A).

3. Given C ′, C ′′, C ′′′ ∈ Cham(A) then, enumerating the different cases, we see

σ(C ′, C ′′′) ≤ σ(C ′, C ′′) + σ(C ′′, C ′′′).

4. If C ′ 6= C ′′ then σ(C ′, C ′′) = 1 or 2, thus σ(C ′, C ′′) 6= 0 so σ is positive definite.

Therefore, σ is a metric defined on Cham(A). It follows that (Cham(A), σ) is a metric

space.

Now, suppose C is a subset of chambers in Cham(A). We define the distance from a

chamber C to a set of chambers C by

dist(C,C) = min{σ(C,C ′) : C ′ ∈ C}.

Observe that if dist(C,C) = 0 then chamber C ∈ C. We may choose special subsets for C

among our populated chambers. Let us assume that Cham(A)+ ∩ Cham(A)− = ∅. Then,
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we can produce a mapping based upon the data set D = D+ ∪ D−

e(C) =



t if dist(C,Cham(A)+) = 0

f if dist(C,Cham(A)−) = 0

i if dist(C,Cham(A)u) = 1

e if dist(C,Cham(A)u) = 2.

Thus, populated chambers are labeled either t or f , and unpopulated chambers are labeled

either i or e. If we allow the case that Cham(A)+∩Cham(A)− 6= ∅, then chambers containing

both true and false data are labeled as i, or uncertain interpolations.

6.4.4 Mapping veracity versus expertise for the MLP. We can associate each

chamber C ∈ Cham(A) with a 2-tuple (v(C), e(C)). To visualize how the MLP will map

every chamber (and, thus, every vector in Rd) we consider the set

{(v(C), e(C)) : C ∈ Cham(A)}.

Since the chamber set Cham(A) is finite, we can order the chambers using their verac-

ity values to get the ordered set (Cham(A),4) = {C1, C2, ..., Cq} where q = card(Cham(A))

and

v(C1) ≤ v(C2) ≤ · · · ≤ v(Cq).

Thus, we have defined the relation 4 on Cham(A) such that chamber Ci ∈ Cham(A)

“precedes” chamber Cj ∈ Cham(A) and write C 4 B if and only if v(Ci) ≤ v(Cj).

Now consider the set of 3-tuples

{(i, v(Ci), e(Ci)) : i = 1, 2, ..., q}.

If the MLP F isolates all the data perfectly, then the graph of this set yields plots like

Figure 66. However, if the MLP F merely separates training data perfectly but arbitrarily

orders extrapolated data, then the graph of the 3-tuple set yields plots like Figure 67.
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Figure 66. An appropriate expression of expertise: The desired clustering of experience
based on the ordered veracity of a multilayer perceptron. Experience is rep-
resented in terms of 4-value logic. Specific experience should cluster in the
appropriate asymptotic regions such where |v(x)| → 1, while extrapolations
should cluster tightly where v(x) = 0.

6.4.5 Desired and expected chamber orderings of the MLP. We assert that a

good generalization isolates data, allowing extrapolations and uncertain interpolations to be

easily separated from class data in a feature set. Unfortunately, as a classifier, the multilayer

perceptron merely separates data from disparate classes and does not isolate the classes.

To provide good separation, it is desirable to have chambers containing false data points

to score veracities near -1 and to have chambers containing true points to score veracities

near 1. To provide good isolation of classes, it is further desirable for a chambers near

populated chambers to score veracities close to 0 (that is, along the non-linear transition)

and for chambers far from populated chambers to score veracities of 0.

Unfortunately, we have found that the ordering of the chamber set constructed by a

multilayer perceptron trained by back propagation rarely achieves the ordering shown in

Figure 66. Instead, the expected veracity is more closely reflexed in Figure 67—a result

that means that MLP mapping contains arrogant classifications. A multilayer perceptron

that maps in this way gives interpolated and extrapolated regions stronger veracity scores

than regions containing true and false training data.
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Figure 67. Expressions of arrogance in the multilayer perceptron: Our expected clustering
of experience based on the ordered veracity of a multilayer perceptron trained
by backpropagation.

The expectation of veracity shown in Figure 67 assumes that the chambers assigned as

true, false or interpolated are bounded, i.e., chambers of finite volume. This is a reasonable

assumption given d� N where d is the dimension of the feature set and N is the number

of first-hidden-layer nodes.

6.4.6 Resolving confusion in a Fisher iris solution. For a specific illustration of

an arrogant classifier, let us investigate an MLP solution for the Fisher iris classification

problem. The Fisher iris dataset [31] represents 150 observations of iris flowers, 50 each from

1 of 3 species of iris: Iris Setosa, Versicolor, and Virginica. Each observation is characterized

by a vector capturing 4 numerical attributes: sepal length, sepal width, petal length, and

petal width. We have selected to investigate a multilayer perceptron with 14 hidden layer

nodes and 3 output nodes trained via back propagation to separate the first class of iris

from the other two classes. This particular MLP was chosen because we had the necessary

elements to do a complete analysis: the MLP’s weights and biases, the network’s training

set and, additionally, its evaluation set). Additionally, the MLP is an interesting solution

on two accounts: (1) The MLP is complex (14 hidden nodes is excessive to solve the Fisher
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iris problem) and, yet, it has no significant issues with memorization; and (2), though

the MLP does not appear to have memorized its data, the solution still represents a poor

generalization because the MLP generates a significant number of arrogant classifications.

For the MLP, we were given the following: the weights and biases of a single-hidden

layer perceptron, two datasets (one used to train the MLP and the other used to evaluate the

MLP’s performance), and the error curve generated in the training of the MLP. We were not

privy to the training of this network, but we were supplied with the final parameter set of the

design—the hidden layer weights [W h : bh] and the output weights [W o : bo]T = [u1, u2, u3].

[W h : bh] =



0.2599 0.3348 −0.3876 −0.2779 0.4585
−0.3184 0.1027 0.3266 −0.3127 −0.1405
−0.2844 −0.0509 −0.0714 0.3860 0.0187

0.1902 0.1249 −0.3105 −0.3983 −0.0660
−0.1328 0.6630 0.0140 0.3430 0.3249
−0.2037 0.1119 0.0675 −0.0988 0.1614

0.3562 −0.2434 −0.3651 −0.3105 0.1878
−0.4330 0.1389 −0.1011 −0.3456 0.5038
−0.0740 −0.2961 −0.1801 0.2190 −0.0622

0.2210 −0.1963 −0.3508 −0.0272 0.0245
−0.3331 −0.4145 0.1865 0.1978 −0.3176

0.1955 −0.5565 −0.2773 −0.6217 −0.5234
0.6625 0.4879 −0.6841 −0.1655 0.0317

−0.1643 0.1604 0.2078 0.1187 −0.0467



[W o : bo]T =



2.8781 17.3599 3.2325
3.8707 −20.5670 −12.0076
0.9027 −15.2658 −12.6445
6.5404 −40.9967 −7.3975
1.1803 −21.1980 9.7689
2.0187 −17.7602 −4.9986
0.7589 −4.0878 −0.9049
2.4011 40.4554 −20.8312
0.5458 3.1439 −11.4082
1.0027 −4.8418 −6.2945
0.7954 9.6175 −18.5234
4.9099 −8.9478 −0.7643
3.5889 19.2883 −39.8599

−0.6176 3.6268 3.6068
−4.6405 −16.0082 −25.2557


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Figure 68. The populated chambers for a multilayer perceptron trained by back prop-
agation to solve the Fisher iris problem. The first four chambers were the
chambers populated by both the training set and test set. The fifth chamber
was populated by a single datum from the test set.
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Figure 69. The membership of the populated chambers by class. The bar charts repre-
sent the sum of the membership by training set (lower) and test set (upper)
respectively.

First, let us investigate whether or not the neural network is memorizing. It is simple

to show using principle component analysis [38] that the problem of separating the first

Fisher iris class from the other two classes is a linear problem. Thus, a successful solution

to the problem requires only a single perceptron. Since the MLP under investigation uses

a 14-hidden-node architecture, rules of thumb [68] tell us that the solution is unnecessarily

complex and the MLP has likely memorized the training data. However, an analysis of the

populated chambers and unpopulated chambers of interest belies this intuition. Instead

of constructing an error matrix, we use our method [63] of resolving populated chambers.

Figures 68 and 69 shows the results: out of a possible 1471 chambers14, only 4 chambers are

populated with training data and 5 chambers (the 4 populated chambers and one additional

chamber) contain data from the evaluation set—i.e., labeled data available at design that is

not used to train or select a model but is used to estimate the error in the solution. From

Figure 69, we see little evidence of memorization. Only a single evaluation exemplar fell

14Using Equation 25 with d = 4 and N = 14 and assuming the hyperplane arrangement is in general
position, then the cardinality of the arrangement’s chamber set is q=1471.
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Figure 70. Weighted ordering of chambers in the Fisher iris feature domain via output
node 1 of MLP F .

outside of the 4 populated chambers; and, though it is arguably excessive to separate Class

1 data into 3 separate chambers, the ratio of training data to evaluation data membership

in each of these chambers is relatively even.

There is very little evidence for memorization in this particular MLP solution; but,

now, let us consider arrogance. Recall, in Section 5.1.3 we asserted that a good general-

ization may be illustrated by ordering the feature set of a classifier in terms of its veracity

scores and, then, cross referencing this ordering to the classifier’s experience scores. Further,

we defined measures to specify the veracity and experience scores over the chambers of an

MLP given the network’s weights and biases and the data used to train the network. Now,

we have applied these measure to the 3-output-node MLP solution above and generated
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Figure 71. Weighted ordering of chambers in the Fisher iris feature domain via output
node 2 of MLP F .
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Figure 72. Weighted ordering of chambers in the Fisher iris feature domain via output
node 3 of MLP F .
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Figures 70, 71, and 72 to show the domain ordering specified by each output node. We

used unnormalized veracity scores to simplify the calculation of the plots as they are merely

scaled and shifted versions of the normalized graphs. In each plot, a point on the S-curve

specifies a chamber. Specially noted chambers include populated chambers (denoted as cir-

cles labeled C1, C2, C3, C4), the unpopulated chamber of interest (the larger triangle labeled

as C5), and unpopulated chambers labeled as interpolations e(C) = i (smaller triangles).

The remaining points are unpopulated chambers labeled as extrapolations, i.e., designated

by e(C) = e. Note in each graph, the veracity scores of populated chambers are not ordered

at the extremes of the S-curve but instead along the linear portion of the curve. Extrapo-

lated chambers appear arbitrarily along the entire length of the curve. These graphs each

reflect a significant number of arrogant classifications with Figure 72 representing the worst

offender, output node 3.

We have demonstrated a strong example of arrogance here. In further empirical ex-

periments, we have found that the ordering of the chamber set implemented by a multilayer

perceptron trained by back propagation rarely achieves the ordering of a good generaliza-

tion shown in Figure 66. Instead, the ordered veracity-experience pairs more closely reflex

those illustrated in Figure 67—a result that means that the classifier generates arrogant

classifications. A multilayer perceptron that maps in this way gives interpolated and ex-

trapolated regions stronger veracity scores than regions containing true and false training

data.

When applied to the multilayer perceptron, distribution of the ordered veracity-

experience pairs shown in Figure 67 assume that (1) the hyperplane arrangement A im-

plemented by the MLP does not define a convex hull, (2) the complement of the hyperplane

arrangement A also does not define a convex hull, and (2) the chambers that are assigned

as true, false and interpolated are bounded, i.e., chambers of finite volume. These are rea-

sonable assumptions given d� N where d is the dimension of the feature set and N is the

number of first-hidden-layer nodes. Note we are also relying on the fact that backpropa-

gation tends to iterate to an MLP solution where the hyperplane arrangement of the first

hidden layer is not symmetrically balanced as in a regular polygon.
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6.4.7 Improved isolation in a Fisher iris solution. We can use the MLP above

for guidance in preparing networks with better performance and architectures that more

appropriately represent the experience of the training set. We have included the results for

two new sets of input layer weights. Both sets of weights nearly implement the training

set, i.e., separate all three iris classes. In both solutions, we have allowed one chamber to

include the data of iris class B and C that appears to overlap. The first revised solution

represents a simplified MLP that implements a solution for the three classes using only

modified biases from the first MLP and a separation architecture. The second solution

augments the simplified MLP with nodes that ensure the isolation of training data. Thus, we

generated the new parameter sets following the 3-fold procedure for training and converting

multilayer perceptrons from a separation architecture to an isolation architecture outlined in

Section 6.1.2 and first demonstrated with a 3-hidden-node MLP at the end of Section 6.3.1.3.

1. Start with a complex multilayer perceptron, previously trained.

2. Prune the MLP to only those nodes required to implement the separation of class

data into distinct chambers.

3. Augment the simplified MLP to ensure populated chambers are reasonably finite.

The MLP that implements simplified separation has the following parameter set.

[W h : bh] =

 −0.4330 0.1389 −0.1011 −0.3456 2.5000
0.2210 −0.1963 −0.3508 −0.0272 0.4236
0.2599 0.3348 −0.3876 −0.2779 −0.2219



[W o : bo]T =


0.1806 −0.3106 −0.0180
0.1212 −0.3212 −0.1212
0.0311 0.3110 −0.3110
0.0398 0.3975 −0.3975

0 −0.7500 0


The chamber set implemented by the MLP above is shown in Figure 73. Figure 73(a)

lists the populated chambers in terms of their signed diagonal. After studying the mem-

berships in Figure 74, we label these 4 chambers, respectively, Class A, Class B, Uncertain

Interpolation (between Class B and C), and Class C. The output weights and biases were

chosen to separate the populated chambers in terms of class as shown in Figure 75. Note
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that chamber C3—the chamber populated with Class B and C training data—marginally

survives thresholding for the orderings favoring Iris Class B and C. This selection of biases

was done purposely per confusion set procedures discussed in Section 4.2.7.3.

Given that we have N = 4 nodes in a 4-dimensional space, the chamber set has a

cardinality of 24 = 16. Therefore, we generate OVER curves in Figure 76 much as we

did for the XOR problem. Note though separation has been achieved, we see that, for

these sets of output weights, isolation has not. There is significant mixing of unpopulated

chambers among the populated chambers for the orderings of Class B and Class C that due

to adjacencies cannot be overcome in a single-hidden layer architecture. Therefore, we need

to add an additional layer of nodes to implement a true isolation architecture.

Isolation can be improved in a single hidden layer MLP by augmenting the above MLP

with nodes that serve to wrap the entire training set. We have constructed an augmented

MLP with the following parameter set.

[W h : bh] =



−0.4330 0.1389 −0.1011 −0.3456 2.3000
0.2210 −0.1963 −0.3508 −0.0272 0.4236
0.1902 0.1249 −0.3105 −0.3983 0.6014
0.1806 0.1212 −0.3110 −0.3975 0.8445

−1.0000 0.0838 0.0305 0.0378 9.0000
0.0932 −1.0000 0.0190 0.0860 6.0000
0.0466 0.0681 −1.0000 0.0854 8.0000
0.0419 0.0379 0.0682 −1.0000 4.0000
0.0525 1.0000 0.0542 0.0900 1.0000
0.0203 0.0709 1.0000 0.0822 0.3529
2.0672 0.2429 3.0698 1.2000 1.1010



[W o : bo]T =



0.1806 −0.3106 −0.0180
0.1212 −0.3212 −0.1212
0.0311 0.3110 −0.3110
0.0398 0.3975 −0.3975
0.5000 0.5000 0.5350
0.5050 0.5050 0.5300
0.5100 0.5100 0.5250
0.5150 0.5150 0.5200
0.5250 0.5250 0.5100
0.5300 0.5300 0.5050
0.5350 0.5350 0.5000

−9.0000 −10.0000 −9.5000


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Figure 77 represents the signed diagonals of the populated chambers for the MLP with

an isolation architecture. Note, from Figure 73(a), the number of populated chambers has

not changed; also, the membership of the chambers as listed remains the same as Figure 74.

What has changed is that the populated chambers are now bounded, or finite, chambers;

and the biases had to be adjusted to maintain appropriate thresholding per Figure 78.

In the OVER curves illustrated in Figure 79, 80 and 81, we were able to use a simple

interpretation of what is an interpolated chamber among the unpopulated chambers. We

base this interpretation on the nodes that wrap the data set, defining interpolated chambers

as those unpopulated chambers contained within the intersection of the augmented nodes.

In Figures 82, 83 and 84, we tested a second set ofoutput weights

[W o : bo]T =



0.1806 −0.3106 −0.0180
0.1212 −0.3212 −0.1212
0.0311 0.3110 −0.3110
0.0398 0.3975 −0.3975
1.2500 1.2500 1.3375
1.2625 1.2625 1.3250
1.2750 1.2750 1.3125
1.2875 1.2875 1.3000
1.3125 1.3125 1.2750
1.3250 1.3250 1.2625
1.3375 1.3375 1.2500

−9.0000 −10.0000 −9.5000



.

From this alternate set of output weights, we realized improved separation—though not

complete isolation—of extrapolated chambers and interpolated chambers.

6.4.8 Benefits of the OVER characterization. Benefits of the ordered veracity-

experience characterization over other iterative and stochastic methods include (1) model

selection, (2) data presentation, and (3) domain coverage. In case (1), we feel strongly that

a generalization evaluation technique should determine the appropriateness of a selected

model. However, iterative methods such as cross validation and bootstrapping require that

the evaluation of generalization take place over multiple training runs15 prior to model

15In each run, the training dataset, or augmented dataset, is split into two: one subset is used to train
a solution iteratively, and the second (typically smaller) subset is used to calculate the classification error
for each training epoch. Training of the current model continues until the classification error stabilizes
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Figure 73. The chamber sets for a simplified MLP solution to the Fisher iris problem, (a)
the set of populated chambers and (b) the full set of chambers presented in the
order of discovery. The first four chambers listed in (b) are coded respectively
for Class A, Class B, Uncertain Interpolation between Class B and C, and
Class C.

163



1 2 3 4
0

20

40

60

membership of Class A training/evaluation points per Chamber

1 2 3 4
0

20

40

60

membership of Class B training/evalation points per Chamber

1 2 3 4
0

20

40

60

membership of Class C training/evalutation points per Chamber

0/01/2

0/0

5/3

20/22

0/0

24/23

0/0

0/0

0/0

0/0

25/25

Figure 74. The membership of the populated chambers by class. The bar charts represent
what portion of the membership of the training set (lower) and evaluation set
(upper) occupy each populated chambers, respectively.
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Figure 75. Three weighted orderings of the populated chambers favoring Class A, B, and
C, respectively.
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Figure 76. The 3 sets of weighted signed diagonals for the simplified MLP, favoring Class
A, Class B, and Class C, respectively.
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Figure 77. The populated chambers for the simplified MLP solution augmented to create
an isolation architecture.
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Figure 78. Three re-weighted orderings of the finite populated chambers favoring Class
A, B, and C respectively.
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Figure 79. Weighted ordering of chambers in the Fisher iris feature domain via the output
node for class A of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering.
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Figure 80. Weighted ordering of chambers in the Fisher iris feature domain via the output
node for class B of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering.
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Figure 81. Weighted ordering of chambers in the Fisher iris feature domain via the output
node for class C of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering.
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Figure 82. Improved ordering of chambers in the Fisher iris feature domain via the output
node for class A of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering. The improvement is
achieved by increasing the output weights evenly on the augmented nodes.
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Figure 83. Improved ordering of chambers in the Fisher iris feature domain via the output
node for class B of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering.
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Figure 84. Improved ordering of chambers in the Fisher iris feature domain via the output
node for class C of modified MLP F̂ , (a) ordering of entire domain and (b)
closeup in the superseding chambers of the ordering.
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selection. These iterative techniques serve to prevent memorization (and memorization

only); but, at best, they are appropriate for selecting an architecture for potential solutions.

Cross validation and bootstrapping are not appropriate for identifying the solution with

the best potential; that is because, in cross validation and bootstrapping, model selection

is delayed until after the generalization evaluation is complete and after many solutions

have been discarded arbitrarily. Once a model is selected, the estimation of generalization

determined for the model’s architecture is optimistic for the model itself. In contrast,

our technique evaluates the generalization of an MLP after model selection. The evaluation

requires only the classifier’s weights, biases and the data used to train these parameters. Our

technique demonstrates the weaknesses of a specific solution via deterministic measures—

not through estimates—uncovering existing problems in both memorization and arrogance.

One test of the effectiveness of a generalization evaluation technique is its sensitivity

to data presentation. A good technique should not be sensitive to changes in the order

that training data are presented. Estimates should vary with changes to the membership

of the training set, but not to mere changes in order of presentation. It should be a red flag

that cross validation and bootstrapping demonstrate sensitivity to data presentation. The

results of our evaluation do not change based on the order that data are presented. This is

because our technique is based on the membership of chambers, and a training datum—no

matter its order in the training set—is either a member of a particular chamber or it is

not. This leads to much more consistent estimates of generalization based directly on the

training set used to generate a particular solution and unbiased by alternative training sets

used to generate alternative solutions not currently under consideration.

Another simple test of the effectiveness of a generalization evaluation technique is

its domain coverage. We assert that, if the measure of the hypothesized operational set is

positive, then the measure of domain coverage for a generalization evaluation should also

be positive and preferably at least equal to the measure of the hypothesized operational

set. Stochastic techniques exercise very little use of the domain, that is, the measure of the

set of feature vectors used in the evaluation of generalization is zero since they are typically

and then starts to increase. In subsequent runs, a new solution is trained using a different subset of data.
The classification error curve calculated for each run is fused with the other curves to form an estimate of
generalization “error”. [13]
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finite. For our technique, the measure of domain coverage is positive; in low-dimensional

cases such as the Fisher iris dataset above, we are able to exercise the entire domain.

6.5 Summary

In this chapter, we discussed the difference between preventing memorization in the

multilayer percepton and the goal of our analysis which is to identify arrogance and mem-

orization in classification. To balance evaluations of generalizations, we have proposed the

ordered veracity-experience response (OVER) curve as a figure of merit which characterizes

arrogance in classification. In addition to this new construct, we also briefly described a

method similar (and superior) to error matrices tailored to identifying memorization in the

MLP where memorization equates to over-isolation of training data. This method com-

pares the membership of populated chambers (i.e., chambers containing training data) to

the membership of unpopulated chambers of interest (i.e., chambers that contain data from

an evaluation set or operational set but not data from the original training set). Where

there is little correlation between these two memberships, there is memorization.

Expert classifiers realistically model experience across an entire domain. The goal

of expertise logic and 4-value logic is to delineate appropriate expression of expertise from

expressions of arrogance. Using expert classifiers, we have presented the mathematics to

quantify expertise in a multilayer perceptron and the appropriate tools to resolve non-

arrogant MLP classifiers from arrogant ones.
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VII. Conclusions and Recommendations

This chapter summaries the contributions of this dissertation and indicates areas for further

research.

7.1 Conclusions

Alan Turing first introduced the concept of “computer as pretender” in his 1950 ar-

ticle “Computing Machinery and Intelligence” [99]. In this dissertation, we have fleshed

out the concept of “computer as interrogator”. The autonomous interrogator is capable of

quantifying experience and able to separate expert classifiers from “pretenders”. Tradition-

ally, we judge classifiers by assessing the amount of apparent memorization in classification.

When a classifier memorizes—or overfits—training data, it is too timid in associating data

near training data with the training data’s label. Classifiers may also be too bold in as-

signing labels to data far from training data. We call this arrogance in classification, an

over-statement of expertise where a classifier has no or insufficient experience.

We defined arrogance in classification formally in Chapter V and proposed a new

diagnostic technique that allows one to determine when a classifier is being arrogant. We

introduced the concept of the expert classifier as a special classifier that has a quantifiable

skill level. Given this quantification of skill level, it is possible to determine whether a

classifier is too bold or too timid in extending its training data to the larger operational set.

A human is being arrogant when their expressed conviction in a decision overstates their

actual experience in making similar decisions. Likewise, given an input feature vector, we

say a classifier is arrogant in its classification if its veracity is high yet its experience is low.

Conversely, a classifier is non-arrogant in its classification if there is a reasonable balance

between its veracity and its experience. It is possible to quantify this balance, and we have

discussed and demonstrated a new technique that will detect arrogance in a classifier.

We demonstrated an arrogant classifier—the multilayer perceptron—in Chapter VI,

and further postulated that single-hidden-layer MLPs tend to be arrogant in their classifica-

tion of significant regions in a feature space. This hypothesis is difficult to prove using first

principles due to the fact that fitting a single-hidden layer perceptron to a dataset amounts
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to—as we discussed in Chapter VI—a constraints problem. However, with our understand-

ing of local min and local max chambers and the demonstrable difficulty in regulating these

chambers in an arrangement of hyperplane, we go a long way in supporting our argument

that the single-hidden-layer MLP is not the flexible data generalization we often need it to

be.

When a classifier has been optimized to perform well on truthed data, one hopes that

the classifier will perform well on operational (unknown) data. If a classifier performs well

on new, previously-unseen data then we say that the classifier generalizes well. Quantifying

this generalization performance has several approaches including cross validation and boot-

strapping methods. In a departure from these stochastic approaches, we introduced the

ordered veracity-experience curve as a means to characterize generalization performance.

The OVER curve is a simplified expression of both veracity and experience and allows us

to detail where in feature space the classifier is arrogant and where it is not. The bene-

fits of our technique over other iterative and stochastic methods include the following: (1)

Our technique evaluates the generalization of an MLP after model selection, requiring only

the classifier’s weights and biases and the data used to train these parameters. Iterative

methods require that the evaluation of generalization take place over multiple training runs

prior to the selection of a specific model; then, once a model is selected, the estimation of

generalization for the selected model is optimistic. (2) The results of our evaluation do not

change based on the order that data are presented. (3) Stochastic techniques exercise very

little use of the domain, that is, the measure of the set of feature vectors used is zero. For

our technique, the measure of such sets used is positive.

This work is part of a larger research effort addressing the hard problem in compu-

tational intelligence: self-evaluation. Inquisitive pattern recognition (IPR) is a reasoning

capability that allows peer computer programs to compare relative skill levels and to learn

from imperfect decision making. With the Theory of Confusion, expertise logic and 4-value

logic, we have formed a mathematical basis for quantifying the expertise of data generaliza-

tions. This basis edges us closer to the elusive capability of self-evaluation by contrasting

the opinions of peer experts. Further, we have developed confusion measures that serve to

gauge the incompleteness of an data generalization beyond its initial design phase and into
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its application. By cumulatively collecting evidence which supports or refutes the quality of

the generalization’s training set, inquisitive pattern recognition enables persistent pattern

recognition, i.e., the continuous customization of the generalization specifically within its

end users’ application domain.

7.1.1 Contributions. The contributions presented in this dissertation are:

1. A process model for persistent learning1: transitioning pattern recognition tasking

from supervised experimentation to self-supervised customization in the design and

maintenance of a knowledge representation;

2. A simplified data fusion process model tailored for algorithm development (as opposed

to the JDL standard model which is system oriented and does not scale easily);

3. The development of the Theory of Confusion: measure theory for identifying and

labeling incomplete portions of information models;

4. The introduction and conceptualization of Expertise Logic and the proposed function

for fusing classifiers using expertise logic,

5. The development and application of 4-value logic, the crisp set interpretation of ex-

pertise logic;

6. The ordered veracity-experience curve, a novel characterization tool for classifiers that,

through investigating the ordering of a feature set, tests the generalization capability2

of a solution; and

7. Algorithm development enabling the application of the OVER curve to multilayer

perceptrons.

7.2 Recommendations for future research

The fundamentals addressed in this dissertation have broad application and are espe-

cially ripe for application to sensor-based classification problems. The military has several

1Recall, inquisitive pattern recognition corresponds to the passive stages of persistent learning.
2Appropriate data generalizations are determined by selecting the simplest architectures that success-

fully separate a training set while demonstrating low degrees of data memorization and inappropriate
extrapolation.
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applications for autonomous interrogators including automatic target recognition, treaty

monitoring, battle damage assessment, and intelligence gathering. Treaty monitoring has

proven an especially promising domain, and we developed the bulk of the theories and

concepts contained within this work to improve pattern recognition specifically for this

military application. Treaty monitoring—along with automatic target recognition, battle

damage assessment and intelligence gathering—typically requires the classification of un-

balanced training sets, i.e., the separation of rare events from the everyday; and the IPR

methodology shows promise in resolving the special issues posed by these training sets.

Immediate goals for future research include the following:

• The application of the ordered veracity-experience curve and 4-value logic treatments

to other classifiers,

• The application of 4-value logic to the selection of quality training and test sets in

order to improve the convergence rates of general training methods,

• The refinement of rules that convert separation architectures to isolation architectures

for the multilayer perceptron,

• Refinements to the conceptualization of the automated interrogator, and

• Demonstrations of the Inquisitive Test.

Of the items above, we find the demonstration of the Inquisitive Test the most com-

pelling. This dissertation has contributed to this ambitious charge by developing a compu-

tational basis for doubt and intuition. This is the easy part. The much bigger challenge

is to foster symbiotic interactions between artificial experts, to formalize the mathematics

necessary to rigorously model and optimize intelligence amplification [84] between cooper-

ating experts in a multi-agent system. When we achieve such capabilities, the autonomous

interrogator will not only be able tell the difference between the pretender and the expert

but will also be able to identify opportunities for bringing certain experts together to the

benefit of a complicated task.
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7.3 Summary

Inquisitive pattern recognition is a set of investigative skills that support persistent,

self-supervised learning capability. It harnesses the power of deductive analysis within a

computer program by augmenting decision-making processes with confusion recognition and

relevancy testing. These skills provide a means to bound and regulate self-supervised learn-

ing. Applications for Inquisitive Pattern Recognition abound. The discipline is suited for

generalization tasks, particularly classification problems with unbalanced training sets and

a preponderance of untruthed data. In conclusion, this new direction in pattern recognition

represents an important step forward toward the ultimate goal of machine learning—where

a computer identifies a learning problem, defines a self-supervised experiment, interprets

the results of that experiment, and finally applies these results in a practical manner.
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Appendix A. Confusion among experts

We propose measures of confusion as a means to resolve the incompleteness of information

among experts. Confusion is the state of uncertainty due to a dispute or disagreement over

the proper interpretation of facts. In contrast to error and its truth-versus-classification

evaluation, we express confusion as mapping-versus-mapping, a form based on logical ex-

pressions that can be evaluated, manipulated, and simplified over any part of feature space.

In this section, we shall define the confusion set—a construct to supplant the error

matrix in the evaluation of data generalizations. In pattern recognition, the error matrix is

a common tool used to evaluate an expert. Error is a state of certainty in which an expert is

know to hold incorrect opinions. Typically, an error matrix is constructed by comparing the

labels selected by an autonomous classifier against “truth”. The error matrix (sometimes

referred to as the confusion matrix in the literature) has distinct limitations. The form

obscures innovation as (1) it does not communicate data trends in feature space, (2) there

is no explicit comparison between the truth mapping and the autonomous mapping, only

a comparison drawn from a small, potentially biased sampling of facts, and (3) there is

no accounting for uncertainty in “truth” labeling. In remedy, we present an interpretation

of the confusion matrix where confusion is considered within the reduced syntax of expert

mappings and not on a point by point basis. For distinction sake only, we shall refer to this

mapping-versus-mapping confusion matrix as the confusion set.

A.1 The confusion set

Confusion contrasts the assertions of disparate experts none of which may be au-

thoritative. The confusion set is a logical partitioning of a feature set. The power of

this form comes from comparing explicit representations of expert opinion such as data

generalizations. Error is a special case of confusion where one expert knows truth; but,

realistically,“truth” is difficult to obtain as an explicit mapping. Confusion may be ex-

pressed in the syntax of set theory while error is crudely sketched on a point by point basis.

Formally-defined mappings readily partition feature space in ways sampled truth can not.
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Unlike the number-crunched error matrix, embedded expressions within confusion set can

be manipulated, simplified, and evaluated over any part of a feature set.

A.1.1 The 2 × 2 confusion set for crisp logic. Let a d-dimensional feature space

be defined by set Y = Rd. Also, let classifiers A and B be crisp subsets of set Y where

each is a function Y → {0, 1}. For two crisp subsets mapping to two-value logic, denote the

partition mapping Ci,j of confusion set as

C−,−(A,B) = ¬A ∩ ¬B

C+,+(A,B) = A ∩B

C−,+(A,B) = ¬A ∩B

C+,−(A,B) = A ∩ ¬B

where ¬A = Y − A and ¬B = Y − B are the complements of A and B, respectively. The

superscripts Ci,j “−” and “+” designate the partition of confusion set with respect to A

and B: For example, given an element y ∈ Y, if A(y) = 1, point y is labeled “+” or true.

If A(y) = 0, point y is labeled “−” or false. The superscripts i, j denote the partition of A

and B, respectively; in the case of {i, j} = {+,−}, A(y) = 1 and B(y) = 0.

There are four partitions to the confusion set C.

False True

False ¬A ∩ ¬B ¬A ∩B

True A ∩ ¬B A ∩B

Let us define the falsification subset Falsify(A,B) as the subset of confusion set where

classifiers A and B disagree: A(y) 6= B(y). The falsification subset is given by
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Falsify(A,B) = C−,+(A,B) ∪ C+,,−(A,B)

= (A ∩ ¬B) ∪ (¬A ∩B)

= A	B

where 	 is defined as the symmetric difference operator. Symmetric difference is a binary

set operation that selects elements that belong to only one of the two sets.

Also let us define the confirmation subset Confirm(A,B) as the subset of confusion

set where classifiers A and B are in agreement—i.e., A(y) = B(y). The confirmation subset

is given by

Confirm(A,B) = C−,−(A,B) ∪ C+,+(A,B)

= Y − (A	B).

A.1.2 The 2 × 2 confusion set for fuzzy logic. Let a fuzzy classifier A be defined

as a fuzzy subset of a set Y where the fuzzy classifier is a function Y → [0, 1]. Given fuzzy

classifiers A and B, the partitions of confusion set Ci,j ∈ [0, 1] are given by:

False True

False ¬A ∧ ¬B ¬A ∧B

True A ∧ ¬B A ∧B

Notice the notation for fuzzy logic is much the same but instead of using intersect ∩

and union ∪, fuzzy logic requires the use of meet ∧ and join ∨.

A.1.3 The 2n confusion set for the n-class problem. Given a set of n crisp classifiers

{A1, A2, . . . , An} that are defined on the feature set Y and such that each is a mapping
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Y → {0, 1}, then the confusion set is given by

Ca(A1, A2, . . . , An) = ∧n
i=1A

ai
i (40)

where a is a vector of length n whose elements ai ∈ {−,+} and classifiers Aai
i are designated

so that

Aai
i =

 A−i : ai = “−′′

A+
i : ai = “+′′

(41)

and

A−i (y) =

 1 : y ∈ ¬A

0 : y /∈ ¬A
(42)

A+
i (y) =

 1 : y ∈ A

0 : y /∈ A
(43)

A.1.4 Gleaning meaning from the confusion set. Confusion set has advantages

over the traditional confusion matrix in that it provides a capability for completely mod-

eling classification confidence over the entire feature set, not just at truthed samples. We

must stress, though, confusion set is no silver bullet. Over the life cycle of a pattern recog-

nition algorithm, only a small subset of the feature set will ever be relevant. Additional

processing—the clustering of training data first gathered under supervision at design, then

unsupervised during application—is necessary to focus on those pertinent regions of the fea-

ture set. This is where discussions on the need for intuition-based strategies—i.e. confusion

recognition and relevancy testing—come to bear.
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Appendix B. Data fusion in the change wheel

In information fusion systems, it is important to note that confusion may as likely result

from poor alignment models as from noisy data. Noise is best discarded, but data that

are merely poorly aligned are still of use. When applying inquisitive pattern recognition

techniques to fusion, our goal is to model multi-source information in ways that facilitate

the identification and classification of conflict between sources. Such methods culminate in

the recognition of misaligned data and also in the identification of value-added information

from single sources.

B.1 The three basic processes of information fusion

Information fusion aligns redundant information from disparate sources and then re-

fines this information further through the assimilation of source data that is both unique and

relevant. From an information management point of view, information fusion is beneficial

in two ways [69]: (1) It improves signal to noise ratios, and (2) it increases the information

bandwidth of a multi-source system—allowing more unique information to be captured and

processed simultaneously.

Aligning redundant information improves signal to noise ratios [74], and the assimi-

lation of unique data increases the information bandwidth of an information fusion system

[79]. To realize both benefits, fusion algorithms should include three basic processes1: (1)

the alignment of redundant data, (2) the assessment of unique information, and (3) the

assimilation of all relevant information—unique and redundant—into an exhaustive world

model. [74, 41, 92]

Definition B.1 Alignment is a process that orders redundant data from disparate sources

in relation to a common reference.

Definition B.2 Assessment is a process that evaluates aligned information to identify con-

fusion in the world model and unique data from single or minority sources.

1See Figure 85 and Table 4.
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Figure 85. A flow diagram of the basic processes of an information fusion algorithm.

Table 4. The chief benefits of each information fusion process.

Key data
property

Data fusion
process

Alignment

Assessment

Assimilation Value-added

Uniqueness

Redundancy

Benefits

Adaptation
Conflict resolution

Unified world model

Bandwidth augmentation
Falsification

Conflict recognition

SNR improvement
Frame of reference

Data reduction
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Figure 86. The processes of an information fusion algorithm depicted within the change
wheel.

Definition B.3 Assimilation is the process that modifies the world model melding together

redundant and value-added unique information.

Information fusion is a manifestation of a persistent learning process which period-

ically updates a world model—a unified representation of multi-source information [74].

Figure 86 matches persistent learning skills to the three basic processes of information

fusion algorithms presented above. To summarize:

• Alignment is the steady state task and is not associated with the learning stages as

it leverages redundant information—information that should be well understood.

• Assessment corresponds to the passive stages of the wheel.

• Assimilation encompasses the active stages.

Multi-source systems with overlapping mono-modal sensors focus on the alignment

process—reducing signal to noise ratios to maintain high confidence in target detection. In

systems with multi-modal sensors or sensors with little overlap, assessment becomes the
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dominant processsiphoning value-added data from each sensor to form an understanding of

target behavior. [41]

As information fusion systems become more sophisticated, the reasoning to tracking

target behavior proves indispensable [92]. For efficiencys sake, it becomes crucial to rec-

ognize the shared properties of uniqueness and relevancythat is, to recognize value-added

information: Unique + Relevant = Value-added.

B.2 Summary

As information fusion researchers solve the problem of how to assimilate new obser-

vations into existing knowledge representations, it behooves pattern recognition researchers

to ensure that relevant new information is collected in an effective, manageable manner.

Inquisitive pattern recognition examines the conflicting observations from disparate

sources in reference to the natural order of the data collection. Such an examination tenders

clues over what is real, but generally unanticipated. The contributions of inquisitive pattern

recognition are particularly suited to the assessment of unique information—addressing

where is the value-added information and evaluating what opportunities this information

offers.
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Appendix C. Properties of local max and min chambers

Given the definition for a complement arrangement and the definitions for bounded and un-

bounded chambers, then we can demonstrate the certain interdependent properties for local

max and local min chambers. Definitions for the complement arrangement and bounded

and unbound chambers follow.

Definition C.1 Let A be a signed hyperplane arrangement. The complement arrangement

of A is defined to be Ac = Λ−1[−Λ(A)].

Definition C.2 Given a feature set X = Rd, an arrangement A of hyperplanes in that

feature set, and chamber C ∈ Cham(A), we say C is a bounded chamber if it is a polytope—

that is, if there exists a point x0 ∈ X and a radius r ∈ R+ such that the ball B(x0, r) ⊃ C.

Definition C.3 Given a feature set X = Rd, an arrangement A of hyperplanes in that

feature set, and chamber C ∈ Cham(A), we say chamber C is an unbounded chamber if it

is not a polytope–that is, if there does not exist a point x0 ∈ X and a radius r ∈ R+ such

that the ball B(x0, r) ⊃ C.

Armed with these definitions, we shall prove the following theorems within the next

several sections. These theorem detail key interdependencies of local max chambers and

local min chambers.

Theorem C.1 If an arrangement A has a central chamber then the central chamber is the

only local max chamber in chamber set Cham(A).

Theorem C.2 If there are more than one local max chambers, the chamber set contains

no central chamber.

Theorem C.3 If the complement arrangement of an arrangement A has a central chamber,

then that chamber is the only local min chamber in Cham(A).

Theorem C.4 If an arrangement produces a central chamber, all local min chambers are

unbounded.
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Theorem C.5 If the central chamber is unbounded, there is only one local min chamber.

Theorem C.6 If a local max chamber is bounded, there must be more than one local min

chambers.

Theorem C.7 If an chamber set contains only one local min chamber and that chamber

is bounded, then there are multiple local max chambers and all local max chambers are

unbounded.

C.1 Complement arrangements

Given a complement arrangement Ac = Λ−1[−Λ(A)], the following properties hold

true.

1. For every signed hyperplane h = {x ∈ Rd : w · x + b = 0} in A, there exists a signed

hyperplane h′ = {x ∈ Rd : −w · x− b = 0} in Ac. Note Λ(h) 6= Λ(h′).

2. For every halfspace H = {x ∈ Rd : w · x + b ≥ 0} in A = Λ−1
∗ [Λ(A)], there exists a

hyperplane H ′ = {x ∈ Rd : −w · x− b ≥ 0} in Ac = Λ−1
∗ [Λ(Ac). Note H ′ = Hc.

3. The chamber sets of the arrangements are the same, Cham(A) = Cham(Ac).

4. The ordering of chamber sets Cham(A) and Cham(Ac) are not the same—i.e., their

ordered sets are not equal, (Cham(A),4) 6= (Cham(Ac),4).

Consequently, the local max chambers of an arrangement A become the local min

chambers of the complement arrangement Ac. If the chamber set of an arrangement has a

bounded central chamber, then the chamber set of the complement arrangement does not

contain a central chamber. However, if the chamber set of an arrangement has a unbounded

central chamber, then the chamber set of the complement arrangement also contains an

unbounded central chamber. This is proved true in Theorem C.3.

C.2 Bounded and unbounded chambers

Given a d-dimensional space, we know from geometry that a polytope is formed by

at least d+ 1 hyperplanes. Therefore, if an arrangement A of hyperplanes has a cardinality
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N = card(A) less than the dimensional space, i.e., N ≤ d, all of the chambers are unbounded

and each chamber intersects N distinct hyperplanes. When card(A) ≤ d, the chamber

set contains one local max chamber—an unbounded central chamber—and one local min

chamber.

If we have an arrangement of hyperplanes in general position where card(A) = d+ 1,

the chamber set contains one bounded chamber and q =
d∑

i=1

(
d+1

i

)
unbounded chambers.

The bounded chamber—our polytope—is bounded by d + 1 hyperplanes; each unbounded

chamber intersects d distinct hyperplanes. If there is one local max chamber and it is

unbounded, again there is only one local min chamber also unbounded1. However, if the

local max chamber is the bounded chamber, there are
(
d+1

d

)
= d + 1 local min chambers.

This number is derived from the binomial coefficient
(
N
d

)
which gives the number of unique

subarrangements B ⊂ A that can be formed where the card(B) = d. When N = card(A) =

d + 1 and a local min chamber is the bounded chamber, it is the only local min chamber

and there are d+ 1 local max chambers.

An arrangement in general position whose cardinality is greater than d + 1 has less

predictable relationship with respect to its local max and local min chambers.

C.3 Proofs

C.3.1 Central chambers.

Lemma C.1 A central chamber is a local max chamber.

Proof of Lemma C.1. Let Cmax ∈ Cham(A) be a local max chamber of arrange-

ment A. Then, there exists a minimal subarrangement B ⊂ A such that

Cmax =
⋂

H∈Λ−1
∗ [Λ(B)]

H.

1This is proven true in Theorem C.4.
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Since only chamber boundaries may intersect, no other chamber in Cham(A) exists that is

contained in Cmax. That is, if C ∈ Cham(A) and C 6= Cmax then

C 6⊂
⋂

H∈Λ−1
∗ [Λ(B)]

H.

Observe that B ⊂ A implies that Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)] hence

⋂
H∈Λ−1

∗ [Λ(B)]

H ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

H.

If Cham(A) contains a central chamber Ccen, then we know Ccen =
⋂

H∈Λ−1
∗ [Λ(A)]

H. There-

fore,

Cmax =
⋂

H∈Λ−1
∗ [Λ(B)]

H ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

H = Ccen. (44)

Assume for contradiction purpose, that Ccen is a proper subset of Cmax. This is a

contradiction, since Cmax, Ccen ∈ Cham(A) and Cmax 6= Ccen imply that Ccen 6⊂ Cmax.

Consequently, Equation 44 holds true only if Cmax = Ccen and, thus, Cmax is a central

chamber of A.

The above proof is fairly trivial but it establishes the key arguments for the proof

of Theorem C.1—that shows that a central chamber is the only local max chamber of its

arrangement—and the proof of Theorem C.3.

Proof of Theorem C.1. Let A be a hyperplane arrangement with a central chamber

Ccen ∈ Cham(A). Then,

Ccen =
⋂

H∈Λ−1
∗ [Λ(A)]

H.

Since no other chamber in Cham(A) exists that contains Ccen, then C ∈ Cham(A) and

C 6= Ccen implies

C 6⊇
⋂

H∈Λ−1
∗ [Λ(A)]

H. (45)
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Let arrangement B be any subarrangement of A. Observe that B ⊂ A implies that

Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)] hence

⋂
H∈Λ−1

∗ [Λ(B)]

H ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

H

or

Ccen ⊆
⋂

H∈Λ−1
∗ [Λ(B)]

H. (46)

We know from Theorem C.1 that Ccen is also a local max chamber. Let chamber Cmax ∈

Cham(A) be local max chamber. Then, there exists a minimal subarrangement B′ ⊂ A

such that

Cmax =
⋂

H∈Λ−1
∗ [Λ(B′)]

H.

Assume for the sake of contradiction that Cmax 6= Ccen. This implies per Equation 45 that

Ccen 6⊆
⋂

H∈Λ−1
∗ [Λ(B′)]

H,

a contradiction to Equation 46. Therefore, Cmax = Ccen. We conclude that if an arrange-

ment has a central chamber then there is no other local max chamber besides the central

chamber.

Of course the contrapositive of Theorem C.1 is true: if there are more than one local

max chambers, the chamber set contains no central chamber.

Proof of Theorem C.2. Let Cmax, C
′
max ∈ Cham(A) be two distinct local max

chambers, then there exists minimal subarrangements B,B′ ∈ A such that

Cmax =
⋂

H∈Λ−1
∗ [Λ(B)]

H

and

Cmax =
⋂

H∈Λ−1
∗ [Λ(B′)]

H
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Suppose, for contradiction, that a central chamber Ccen exists in Cham(A). That is,

Ccen =
⋂

H∈Λ−1
∗ [Λ(A)]

H

Since B ⊂ A then Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)]. So,

⋂
H∈Λ−1

∗ [Λ(B)]

H ⊃
⋂

H∈Λ−1
∗ [Λ(A)]

H

and Cmax ⊃ Ccen. Similarly, C ′
max ⊃ Ccen. Hence, Cmax∩C ′

max ⊃ Ccen, and so Cmax∩C ′
max 6=

Ccen. This is a contradiction to original assumption that Cmax is distinct from C ′
max. Thus,

no Ccen exists.

C.3.2 Sink chambers. We can produce similar arguments to demonstrate that if

there is a chamber C ∈ Cham(A) that takes the form

C =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

then C is a local min chamber and the only local min chamber in Cham(A). First, let us

define this special chamber.

Definition C.4 Given a halfspace arrangement A, if the intersection of all closed comple-

ment halfspaces is non-empty then the intersection forms a chamber called the sink chamber

of the chamber set Cham(A) where A = Λ−1[Λ∗(A)]. That is, Csink ∈ Cham(A) is a sink

chamber if

Csink = a(Ac) =
⋂

H∈Λ−1
∗ [Λ(Ac)]

H

=
⋂

H∈Λ−1
∗ [Λ(A)]

Hc

6= ∅

where Ac = Λ−1[−Λ(A)].
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Lemma C.2 A sink chamber is a local min chamber.

Proof of Lemma C.2. Let Cmin ∈ Cham(A) be a local min chamber. Then, there

exists a minimal subarrangement B ⊂ A such that

Cmin =
⋂

H∈Λ−1
∗ [Λ(B)]

Hc.

Since only chamber boundaries may intersect, no other chamber in Cham(A) exists that is

contained in Cmin. That is, if C ∈ Cham(A) and C 6= Cmin then

C 6⊂
⋂

H∈Λ−1
∗ [Λ(B)]

Hc.

Observe that B ⊂ A implies that Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)] hence

⋂
H∈Λ−1

∗ [Λ(B)]

Hc ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

If Cham(A) contains a central chamber Csink, then we know Csink =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc. There-

fore,

Cmin =
⋂

H∈Λ−1
∗ [Λ(B)]

Hc ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

Hc = Csink. (47)

Assume for contradiction purpose, that Csink is a proper subset of Cmin. This is a

contradiction, since Cmin, Csink ∈ Cham(A) and Cmin 6= Csink imply that Cmin 6⊂ Csink. Con-

sequently, Equation 47 holds true only if Cmin = Csink and, thus, if chamber set Cham(A)

contains a sink chamber, the local min chamber Cmin must be that chamber.

Now that we have defined a sink chamber we can rewrite Theorem C.3 in a more

straight forward way.

Lemma C.3 If an arrangement A has a sink chamber then that chamber is the only local

min chamber in Cham(A).
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Proof of Lemma C.3. Let A be a hyperplane arrangement with a sink chamber

Csink ∈ Cham(A). Then,

Csink =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

Since no other chamber in Cham(A) exists that contains Csink, then C ∈ Cham(A) and

C 6= Csink then

C 6⊇
⋂

H∈Λ−1
∗ [Λ(A)]

Hc. (48)

Let arrangement B be any subarrangement of A. Observe that B ⊂ A implies that

Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)] hence

⋂
H∈Λ−1

∗ [Λ(B)]

Hc ⊇
⋂

H∈Λ−1
∗ [Λ(A)]

Hc

or

Csink ⊆
⋂

H∈Λ−1
∗ [Λ(B)]

Hc. (49)

We know from Lemma C.2 that Csink is also a local min chamber. Let chamber Cmin ∈

Cham(A) be local min chamber. Then, there exists a minimal subarrangement B′ ⊂ A such

that

Cmin =
⋂

H∈Λ−1
∗ [Λ(B′)]

Hc.

Assume for the sake of contradiction that Cmin 6= Csink. This implies per Equation 48 that

Csink 6⊆
⋂

H∈Λ−1
∗ [Λ(B′)]

Hc,

a contradiction to Equation 49. Therefore, Cmin = Csink. We conclude that if an arrange-

ment has a sink chamber then there is no other local min chamber besides the sink chamber.

Now we can use Lemma C.3 to demonstrate Theorem C.3 proving that if the comple-

ment arrangement of arrangement A has a central chamber then, not only is that chamber
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the only local max chamber in Cham(Ac), but it is also the only local min chamber in

Cham(A).

Proof of Theorem C.3. Let A be a hyperplane arrangement with a C ∈ Cham(A)

of the form

C =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

This chamber is, by definition, the sink chamber of Cham(A) and, by Lemma C.3, the only

local min chamber of Cham(A).

There exists a complement arrangement Ac = Λ−1[−Λ(A)]. Consequently, for every

halfspace H = {x ∈ Rd : w · x + b ≥ 0} in A = Λ−1
∗ [Λ(A), there exists a hyperplane

H ′ = {x ∈ Rd : −w · x− b ≥ 0} in Ac = Λ−1
∗ [Λ(Ac) so that H ′ = Hc. Thus, chamber C can

be rewritten

C =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc

=
⋂

H∈Λ−1
∗ [Λ(Ac)]

H.

such that it is, by definition, a central chamber with respect to arrangement Ac.

Next, we must demonstrate that a chamber set with more than one local min chamber

does not contain a sink chamber.

Lemma C.4 If there are more than one local min chambers, the chamber set contains no

sink chamber.

Proof of Lemma C.4. Let Cmin, C
′
min ∈ Cham(A) be two distinct local min

chambers, then there exists minimal subarrangements B,B′ ∈ A such that

Cmin =
⋂

H∈Λ−1
∗ [Λ(B)]

H

and

Cmin =
⋂

H∈Λ−1
∗ [Λ(B′)]

H
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Suppose, for contradiction, that a sink chamber Csink exists in Cham(A). That is,

Csink =
⋂

H∈Λ−1
∗ [Λ(A)]

H

Since B ⊂ A then Λ−1
∗ [Λ(B)] ⊂ Λ−1

∗ [Λ(A)]. So,

⋂
H∈Λ−1

∗ [Λ(B)]

H ⊃
⋂

H∈Λ−1
∗ [Λ(A)]

H

and Cmin ⊃ Csink. Similarly, C ′
min ⊃ Csink. Hence, Cmin∩C ′

min ⊃ Csink, and so Cmin∩C ′
min 6=

Csink. This is a contradiction to original assumption that Cmin is distinct from C ′
min. Thus,

no Csink exists.

C.3.3 Bounded and unbounded chambers. There is one circumstance in which

there is only one local min chamber and only one local max chamber. This circumstance is

discussed in the proof of Theorem C.5. First, however, we shall show that the existence of

a central chamber in a chamber set means that all local min chambers are unbounded.

Proof of Theorem C.4. Given a signed hyperplane arrangement A, assume a

central chamber Ccen exists in Cham(A). Therefore,

Ccen =
⋂

H∈Λ−1
∗ [Λ(A)]

H 6= ∅.

Let Cmin ∈ Cham(A) be a local min chamber, then there exists a minimal subarrangement

B ⊂ A such that

Cmin =
⋂

H∈Λ−1
∗ [Λ(B)]

Hc.

Assume for contradiction that Cmin is bounded. Let point x0 ∈ Ccen then there exists

a radius r0 > 0 such that the ball B(x0, r0) ⊃ Cmin. For each hyperplane h ∈ B, let

rh = dist(x0, h). Of these, define the largest distance between point x0 and a hyperplane in

B as

rl = max
h∈B

rh
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and observe that rl < r0. Therefore, ball B(x0, rl) is supported by hyperplane hl ∈ B.

By definition of Cmin then Cmin ⊂ Hc
l where Hl = Λ−1

∗ [Λ(hl)]. Therefore, the orientation

of hyperplane hl (and moreover the sign of it normal) is such that
⋂

H∈Λ−1
∗ [Λ(A)]

H = ∅,

a contradiction to the original hypothesis that the Cham(A) contains a central chamber.

Therefore, in conclusion, there are no bounded local min chambers in a chamber set that

contains a central chamber.

Now we can prove that if Ccen is the central chamber of A such that Ccen is unbounded,

then there is only one local min chamber Cmin and it is an unbounded sink chamber.

Proof of Theorem C.5. Let Ccen be the central chamber of Cham(A) such that

Ccen is unbounded. Because the chamber set contains a central chamber, we know from

Theorem C.4 that all local min chamber are unbounded.

Assume for contradiction that there are more than one local min chambers Cmin, C
′
min.

Let us define a ball B(x0, rh) such that x0 ∈ Cmin and the radius rh = dist(x0, h)

where h is any hyperplane in A. Note by definition of Ccen halfspace H = Λ−1
∗ [Λ(h)] shall

contain the central chamber but, by definition of Cmin, not the ball or the local min chamber.

As the local min chamber is not in any of the implied halfspaces, it is a sink chamber as

defined in Definition C.4. Thus, from Theorem C.3 there is no other local min chamber and

Cmin = C ′
min.

If a local max chamber is bounded, there must be more than one local min chambers.

Proof of Theorem C.6. Let Cmax be bounded local max chamber. Then, there

exists a minimal subarrangement B ⊂ A such that

Cmax =
⋂

H∈Λ−1
∗ [Λ(B)]

H.

Assume, for contradiction, that there is only one local min chamber Cmin in Cham(A). We

know from Lemma C.3 that if a chamber set contains only one local min chamber, then
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that chamber is a sink chamber of the form

Cmin = Csink

=
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

If Cmax is a bounded chamber, there exists a ball B(x0, r0) where x0 ∈ Cmin and the radius

r0 > 0 such that B(x0, r0) ⊃ Cmax. For each hyperplane h ∈ B, let rh = dist(x0, h) and let

the largest distance be

rl = max
h∈B

rh.

Thus, there exists a ball B(x0, rl) is supported by hyperplane hl ∈ B.

By definition of Cmax, the halfspace Hl = Λ−1
∗ [Λ(hl)] must contain the local max

chamber and thus the ball which contains points in the local min chamber. We conclude

Cmin is not a sink chamber as Cmin ⊂ Hl and, thus,

Cmin 6=
⋂

H∈Λ−1
∗ [Λ(A)]

Hc.

As the chamber set does not contain a sink chamber, there must be more than one local

min chamber in Cham(A).

Since a central chamber is a local max chamber Theorem C.6 can be extended easily

to Corollary 1.

Corollary 1 If a central chamber is bounded, there must be more than one local min cham-

bers.

Finally, Theorem C.7 is demonstrated via the following two Lemmas.

Lemma C.5 If an arrangement produces a sink chamber, all local max chambers are un-

bounded.
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Proof of Lemma C.5. Given a signed hyperplane arrangement A, assume a sink

chamber Csink exists in Cham(A). Therefore,

Csink =
⋂

H∈Λ−1
∗ [Λ(A)]

Hc 6= ∅.

Let Cmax ∈ Cham(A) be a local max chamber, then there exists a minimal subarrangement

B ⊂ A such that

Cmax =
⋂

H∈Λ−1
∗ [Λ(B)]

H.

Assume for contradiction that Cmax is bounded. Let x0 ∈ Csink then there exists a radius

r > 0 such that B(x0, r) ⊃ Cmax. Therefore, there must exist a smaller radius r0 (0 <

r0 < r) such that the radius is reduced until the ball B(x0, r0) is supported by some

hyperplane h ∈ B. This hyperplane implies a halfspace H = Λ−1
∗ [Λ(h)] such that due

to the ball’s orientation, H ∩ B(x0, r0) = B(x0, r0). This requires that H ⊃ Csink and⋂
H∈Λ−1

∗ [Λ(A)]

Hc = ∅, a contradiction to the original hypothesis that the Cham(A) contains

a sink chamber. Therefore, in conclusion, there are no bounded local max chambers in a

chamber set that contains a sink chamber.

Lemma C.6 If a local min chamber is bounded, there must be more than one local max

chambers.

Proof of Lemma C.6. Let Cmin be bounded local min chamber. Then, there exists

a minimal subarrangement B ⊂ A such that

Cmin =
⋂

H∈Λ−1
∗ [Λ(B)]

Hc.

Assume, for contradiction, that there is only one local max chamber Cmax in Cham(A). We

know from Theorem C.1 that if a chamber set contains only one local max chamber, then
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that chamber is a central chamber of the form

Cmax = Ccen

=
⋂

H∈Λ−1
∗ [Λ(A)]

H.

If Cmin is a bounded chamber, there exists a ball B(x0, r0) such that the center point

x0 ∈ Cmax and the radius r0 > 0 is large enough so that B(x0, r0) ⊃ Cmin. Then there exists

a smaller r (0 > r > r0) where the radius has been reduced until the ball is supported by

a hyperplane h ∈ B and the implied halfspace H = Λ−1
∗ [Λ(h)]. Due to the orientation of

ball B(x0, r), this halfspace H does not contain the local min chamber nor the ball which

contains points in the local max chamber. Therefore, Cmax 6⊂ H. We conclude Cmax is not

a central chamber as

Cmax 6=
⋂

H∈Λ−1
∗ [Λ(A)]

H.

Per Theorem C.2, as the chamber set does not contain a central chamber, there must be

more than one local max chamber in Cham(A).

Since a sink chamber is a local min chamber Lemma C.6 can be extended easily to

Corollary 2.

Corollary 2 If a sink chamber is bounded, there must be more than one local max chambers.

Other proofs in development shall demonstrate properties of adjacent chambers such

as the conjecture that, given a d-dimensional space, an unbounded chamber Cun bounded

by d hyperplanes is adjacent to only unbounded chambers such that card([C]adj) = d. In

a related conjecture, an unbounded chamber bounded by d + k chambers is adjacent to d

unbounded chambers and k bounded chambers.

C.4 Summary

In this appendix, we have demonstrated that local max and local min chambers have

the following general properties:

1. A central chamber is a local max chamber.
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(a) If an arrangement produces only one local max chamber, it is a central chamber.

(b) If an arrangement produces a central chamber, all local min chambers are un-

bounded.

(c) If the central chamber is unbounded, there is only one local min chamber.

(d) If the central chamber is bounded, there must be more than one local min cham-

bers.

2. If an chamber set contains only one local min chamber and that chamber is bounded

then there are multiple local max chambers and those local max chambers are un-

bounded.

3. If there are more than one local max chambers, the chamber set contains no central

chamber and one or multiple local min chambers.
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Appendix D. Data and multilayer perceptron parameters

Using backpropagation, we derived several single-hidden-layer MLPs that implemented the

XOR dataset given at the end of this appendix in Table 5 and illustrated in Figure 87.

Below, we list the parameter sets of the multilayer perceptrons.

The first MLP we investigated was a 5-hidden-node multilayer perceptron. We used

this MLP to demonstrate many of the algorithms and results of its investigation are given

in Figures 43, 44, 46, 50-55, and 65. The network’s hidden-layer weights [W h : bh] and sets

of output weights [W o : bo]T follow:

[W h : bh]T =


−4.2524 −1.7684 3.8185
−1.1778 3.2085 2.1537

2.7051 4.2477 −2.5031
3.3261 −3.1723 −1.4307

−2.3225 −2.6394 3.1606

 , (50)

[W o : bo]T =



2.0067 1.9402
0.5147 1.1525
2.7893 2.9208
1.9374 1.8115
1.0946 1.3958

−1.4431 −2.7789

 . (51)

We derived a second 5-hidden-node multilayer perceptron whose results are given in

Figures 57(b) and 58(b). The network’s hidden-layer weights [W h : bh] and sets of output

weights [W o : bo]T

[W h : bh]T =


3.8553 3.4229 −2.1822
1.8157 −3.7489 0.1545

−0.7123 −1.2915 1.2724
−3.6947 2.5422 −0.2209
−0.9548 0.3104 −0.3053

 [W o : bo]T =



3.2875
2.7693
1.5929
2.6929
0.7763
0.4950

 (52)

For the same XOR dataset, networks trained by backpropagation include a 15-hidden-

node MLP whose results are illustrated in Figure 56. The network’s parameter set is
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[W h : bh]T =



10.0544 26.7693 −13.6248
19.1789 20.3360 −11.6964
26.0609 10.9662 −4.4204
28.3137 −0.5089 4.6333
25.6589 −11.9810 13.9636
18.5674 −21.3816 22.2659
8.2655 −27.0851 28.1048

−3.5449 −28.2024 30.3699
−15.0252 −24.6709 28.3869
−22.7099 −16.1526 24.3250
−27.8009 −5.3887 15.9506
−27.7016 6.2911 6.3172
−22.6675 16.9213 −2.6535
−13.9875 24.3797 −10.1279
−2.3890 28.3996 −13.3388



[W o : bo]T =



0.6777 −0.6777
2.0362 −2.0362
0.5655 −0.5655
0.0256 −0.0256
0.0252 −0.0252
0.0252 −0.0252
0.0252 −0.0252
0.0984 −0.0984
1.2626 −1.2626
0.8205 −0.8205

−1.2976 1.2976
0.0395 −0.0395
1.1361 −1.1361
0.8494 −0.8494

−0.9806 0.9806
−2.9748 2.9748



.

We also derived two 10-hidden node MLPs. The first network’s results were illustrated

in Figures 57(c), 57(d), 58(c), and 58(c).
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[W h : bh]T =



12.6617 24.4726 −13.4804
23.9651 13.1706 −6.8326
27.3270 −3.3697 6.5654
20.1274 −18.7884 19.5908
5.2401 −27.0295 28.0299

−12.5842 −25.3943 27.7972
−23.3114 −13.2302 22.1696
−26.9902 3.4370 9.6167
−20.1681 18.6688 −4.7401
−4.5758 28.0143 −10.9840



[W o : bo]T =



1.9578 1.5083
1.1228 1.2153
0.3181 −0.1331
0.3180 −0.1331
0.3170 −0.1335
0.5488 0.7376
1.7557 1.0301

−1.6335 −1.3748
1.5422 1.7320

−1.5221 −1.5108
−2.6820 −1.1331


The second 10-hidden node MLPs results were illustrated in Figures 57(e), 57(f),

58(e), and 58(e).

[W h : bh]T =



12.6360 24.6478 −13.4388
24.0057 13.2309 −6.5619
27.3270 −3.3696 6.5654
20.1274 −18.7884 19.5907
5.2399 −27.0301 28.0292

−12.3563 −25.1863 28.0536
−23.3784 −13.2448 22.0867
−27.0213 3.4345 9.5005
−20.1669 18.6652 −4.7403
−4.6328 27.9094 −11.1840



207



[W o : bo]T =



1.6751 1.4599
1.0303 1.1061
0.2797 −0.2008
0.2796 −0.2008
0.2788 −0.2010
0.7410 0.8945
1.5217 1.0832

−1.4895 −1.3491
1.3387 1.5408

−1.2799 −1.3831
−2.7204 −1.2008


We chose the following 3-hidden-node solution for further manipulation. See Fig-

ures 57(a), 58(a), and 59.

[W h : bh]T =

 3.5553 3.4229 −2.1822
2.0157 −3.7489 0.1545

−3.6947 2.6422 −0.2209

 [W o : bo]T =


2.8015
2.3128
2.2482
0.4765


This particular network is a simplification of the 5-hidden-layer MLP listed in Equa-

tion 52. After its simplification, the 3-hidden-layer network was augmented with 4 addi-

tional hidden layer nodes. An isolation solution was derived from the resulting 7-hidden

node network, and results are illustrated in Figure 60.

[W h : bh]T =



3.5553 3.4229 −2.1822
2.0157 −3.7489 0.1545

−3.6947 2.6422 −0.2209
1.0000 0.1000 0.1500
0.1000 1.0000 0.1500

−1.0000 0 1.1500
0 −1.0000 1.1500


[W o : bo]T =



2.8015
2.3128
2.2482
6.5000
6.5000
6.5000
6.5000

−28.5235


(53)
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Alternatives to the above architecture were suggested and utilized an MLP which
isolates the true class,

[W h : bh]T =



3.5553 3.4229 −2.1822
2.0157 −3.7489 0.1545

−3.6947 2.6422 −0.2209
1.0000 0.1000 0.1500
0.1000 1.0000 0.1500

−1.0000 0 1.1500
0 −1.0000 1.1500


[W o : bo]T =



2.8015
2.3128
2.2482
0.7500
0.7500
0.7500
0.7500

−5.5235


and an MLP which isolates the false class

[W h : bh]T =



3.5553 3.4229 −2.1822
2.0157 −3.7489 0.1545

−3.6947 2.6422 −0.2209
−1.0000 −0.1000 −0.1500
−0.1000 −1.0000 −0.1500

1.0000 0 −1.1500
0 1.0000 −1.1500


[W o : bo]T =



2.8015
2.3128
2.2482
0.7500
0.7500
0.7500
0.7500
4.4765


.

The results from these two MLP are presented in Figures 61 and 62 respectively; the

combined result of the two networks is presenting in Figure 63.
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Figure 87. A plot of the 2-class dataset used in the XOR problem.
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Table 5. The training set D = D+∪D− used for the XOR problem. Dataset D+ contains
the “true” training vectors, and dataset D− contains the “false” training vectors.

D+

x1 x2

0.0503 0.9586
0.1336 0.7824
0.1319 0.8441
0.1230 0.8646
0.0935 0.6364
0.1654 0.5503
0.1348 0.7124
0.3314 0.8669
0.2112 0.7794
0.2700 0.9640
0.4133 0.7220
0.0962 0.7655
0.2473 0.9290
0.1449 0.8841
0.2863 0.7472
0.0448 0.7489
0.2546 0.8333
0.1113 0.7976
0.1730 0.7338
0.2447 0.6834
0.7107 0.1627
0.6603 0.2202
0.8407 0.3438
0.6632 0.2041
0.6818 0.3544
0.9560 0.2667
1.0156 0.2523
1.0296 0.1492
0.7357 0.1159
0.6594 0.1758
0.9316 0.1994
0.6558 0.2951
0.8199 0.3429
0.9129 0.1716
0.8458 0.0554
0.6685 0.0956
0.7729 0.3977
0.9099 0.1303
0.8329 0.0489
0.8134 0.1798

D−
x1 x2

0.0503 0.9586
0.1336 0.7824
0.1319 0.8441
0.1230 0.8646
0.0935 0.6364
0.1654 0.5503
0.1348 0.7124
0.3314 0.8669
0.2112 0.7794
0.2700 0.9640
0.4133 0.7220
0.0962 0.7655
0.2473 0.9290
0.1449 0.8841
0.2863 0.7472
0.0448 0.7489
0.2546 0.8333
0.1113 0.7976
0.1730 0.7338
0.2447 0.6834
0.7107 0.1627
0.6603 0.2202
0.8407 0.3438
0.6632 0.2041
0.6818 0.3544
0.9560 0.2667
1.0156 0.2523
1.0296 0.1492
0.7357 0.1159
0.6594 0.1758
0.9316 0.1994
0.6558 0.2951
0.8199 0.3429
0.9129 0.1716
0.8458 0.0554
0.6685 0.0956
0.7729 0.3977
0.9099 0.1303
0.8329 0.0489
0.8134 0.1798
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R. Kikinis, “An automatic registration method for frameless stereotaxy, image guided
surgery, and enhanced reality visualization,” Transactions on Medical Imaging 15(2),
pp. 129–140, 1996.

40. J. Grudin, “Groupware and social dynamics: eight challenges for developers,” in
Readings in Human-Computer Interaction: Toward the Year 2000, R. M. Baecker,
J. Grudin, W. A. S. Buxton, and S. Greenberg, eds., pp. 762–774, Morgan Kaufmann
Publishers, San Francisco, second ed., 1995.

41. D. L. Hall, Mathematical techniques in multi-sensor data fusion, Artech House, Boston,
1992.

42. P. R. Halmos, ed., Measure Theory, Springer Graduate Texts in Mathematics, New
York, 1950.

43. M. L. Hinman, Program Manager, Adaptive Sensor Fusion, Air Force Research Lab-
oratory. Interview, 22 May 2000.

44. J. S. U. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection,
and Bootstrap, Chapman & Hall, London, 1994.

214



45. K. Hwang and Z. Xu, Scalable parallel computing: technology, architecture, program-
ming, WCB/McGraw-Hill, Boston, 1998.

46. G. Johnson, “Separating insolvable and difficult.” New York Times, Science Section,
13 July 1999.

47. R. E. Johnson, University Algebra, Prentice Hall, Englewood, NJ, 1966.

48. R. Johnston, “Do you need VR? Implementing a needs assessment for virtual environ-
ments,” Virtual Reality Special Report 2, pp. 29–33, September/October 1995.

49. S. Kaufman, I. Poupyrev, E. Miller, M. Billinghurst, P. Oppenheimer, and S. Weghorst,
“New interface metaphors for complex information space visualization: an ECG moni-
tor object,” in Medicine Meets Virtual Reality: Global Healthcare Grid, K. S. Morgan,
H. M. Hoffman, D. Stredney, and S. J. Weghorst, eds., 39, IOS Press OHMSHA, Ams-
terdam, 1997. Available at http://www.hitl.washington.edu/projects/limit/papers.html.

50. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-
Hall, Upper Saddle River, NJ, 1993.

51. J. W. Kelley, “Air power in 2025: executive summary.” Air University, Maxwell AFB
AL, August 1996. Available at http://www.au.af.mil/au/2025/.

52. M. Kelso, P. Weyhrauch, and J. Bates, “Dramatic presence,” Presence, the Journal of
Teleoperators and Virtual Environments 2(1), pp. 1–15, 1993.

53. S. Krantz, Handbook of Complex Analysis, Birkhäuser, Boston, 1999.
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