
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-9-2004

Data Sorting and Orbit Determination of Tethered Satellite Data Sorting and Orbit Determination of Tethered Satellite

Systems Systems

Mark J. Faulstich

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Space Vehicles Commons

Recommended Citation Recommended Citation
Faulstich, Mark J., "Data Sorting and Orbit Determination of Tethered Satellite Systems" (2004). Theses
and Dissertations. 4122.
https://scholar.afit.edu/etd/4122

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/220?utm_source=scholar.afit.edu%2Fetd%2F4122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4122?utm_source=scholar.afit.edu%2Fetd%2F4122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

DATA SORTING AND ORBIT DETERMINATION OF TETHERED SATELLITE
SYSTEMS

THESIS

Mark J. Faulstich, Captain, USAF

AFIT/GSS/ENY/04-M03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GSS/ENY/04-M03

DATA SORTING AND ORBIT DETERMINATION OF TETHERED SATELLITE
SYSTEMS

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Space Systems)

Mark J. Faulstich, BS

Captain, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GSS/ENY/04-M03

DATA SORTING AND ORBIT DETERMINATION OF TETHERED SATELLITE
SYSTEMS

Mark J. Faulstich, BS

Captain, USAF

Approved:

 //signed// 9 March 04
Dr. Steven Tragesser (Cha irman) date

 //signed// 9 March 04
Dr. William Wiesel (Member) date

 //signed// 9 March 04
Joerg Walter, Maj, USAF (Member) date

iv

AFIT/GSS/ENY/04-M03

Abstract

 Tethered satellite system end masses do not obey the normal laws of motion

developed for determining their orbits. In addition, tethered satellite systems cause

unique problems for satellite tracking because there are potentially two or more objects

which may be tracked.

 This thesis provides insight into these issues by developing a method of sorting

out observation data of tethered satellite systems into their appropriate end mass and

providing an estimate on the center of mass orbit of the tethered satellite system. The

method used to accomplish both of these tasks is optimization of an estimated simulated

orbit. This orbit estimate is optimized to provide the minimum difference between the

end mass position estimates and the observations obtained from one or more tracking

sites. This methodology also helps provide a baseline for tracking tethered satellite

systems more accurately in the future.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Steven

Tragesser, for his guidance and support throughout the course of this thesis effort. The

insight and experience was certainly appreciated. I would also like to thank my sponsor,

Dr. Robert Racca, from the Space Warfare Center Analysis and Engineering Division for

both the support and latitude provided to me in this endeavor.

 Mark J. Faulstich

.

vi

Table of Contents

Page

Abstract …………………………………………………………………………………..iv

Acknowledgements ……………………………………………………………………….v

List of Figures ………………………………………………………………………......viii

I. Introduction ……………………………………………………………………………1

 Background ……………………………………………………………………….1
 Problem Statement ………………………………………………………………..2
 Research Objectives ………………………………………………………………3
 Methodology ……………………………………………………………………...4
 Preview …………………………………………………………………………...4

II. Literature Review ……………………………………………………………………..6

 Tethered Satellite Orbit Determination …………………………………………...6
 Identification of Tethered Satellite Systems ……………………………………...7
 TSS Data Sorting Problems ………………………………………………………8

III. Data Sorting Preliminary Analysis ………………..………………………………..10

 Elevation and Libration Analysis on TS Slant Range and EC Range ….……….10

Tracking Site Error Analysis ……………………………………………………15
Data Sorting Preliminary Analysis Conclusion …………….…………………...19

IV. Estimating the TSS Orbit and Sorting the Data …………………………………….21

 Assumptions ……………………………………………………………………..22
 Obtaining an Initial Estimate of the COEs of the CM ………...………………...25

Calculating Estimated EC pqw Position Vectors ……………………………......32
 Propagating Estimated CM COEs for all Observation Times .………….32
 Converting Estimated CM COEs into

 Estimated CM IJK Position Vectors ……………………………………35
 Calculating Estimated TSS End Mass pqw Position Vectors …………...36

Converting Observation Data into pqw Position Vectors ………………….……39
Minimizing Observed and Estimated Differences ………………………………40

 Calculating TSS Position Residuals …………………………………….40
 Optimizing the COEs and Data Sorting ……………………....…………42
 Sources of TSS Observation Data ……………………………………………….45

vii

 Page

Estimation and Data Sorting Conclusion .…...…………………………………..50

V. Results ……….………………………………………………………………………52

 Baseline Case ……………………………………………………………………52
 Baseline Case Parameters ……………………………………………….53
 Baseline Case Estimation ………………………………………………..54
 Comparing Baseline Case Results and Tracking Site Error Analysis …..58
 Parametric Studies of Different TSS and Tracking Site Parameters ……………60
 Time/Number of Observations Variations ………………………………61
 Tether Length/Elevation Angle Variations ……………….……………..62
 Single Object Only Data …………………………………….…………………..63
 TETHERSIMTM Results ………………………………….……………………..65
 Unknown TSS ………………………………………………………...…………67
 Single-Body Satellite System ………………………………...…………67

Unknown Baseline Case TSS ……………………………...……………68
 Single End Mass Observations for an Unknown TSS ………..…………70
Real-World TiPS Results ……………………………………………………..…73

VI. Conclusion …………...……………………………………………………………..78
 Operational Implications ………………………………………………………...78
 Future Research …………………………………………………………………79

Appendix: Primary MATLAB Programs ………………………………………………..82

Bibliography …………………………………………………………………………...110

viii

List of Figures

Figure Page

1. 1û Coordinate Component Defined ….…...………………………………………….11

2. Slant Range from Tracking Site to End Masses ……………………………………..12

3. Affect of Elevation Angle on rσ …………………………………………………….17

4. Affect of Larger Slant Range Error on rσ …………………………………………..18

5. Relationship Between 1û and IJK Coordinate Frame .……………………………….37

6. Baseline Case Plot of Observed versus Estimated EC Position Vector Magnitudes ...58

7. Error Analysis for Lowest Elevation Tracking Data for Baseline Case ……………..59

8. Bottom Mass Only Data for Baseline Case ……………………………………….....63

9. Bottom Mass Only Data for Baseline Case Showing Best of 3 Optimizations ……...64

10. TETHERSIMTM Known TSS Mixed Data Results ………………………………....66

11. Baseline Case Unknown TSS Results ……………………………………………....69

12. 20 km Unknown TSS Results ………………………………………………………71

13. TiPS Tracking Site Error Analysis …………………………………………………74

14. TiPS EC Position Vector Magnitude Plot …………………………………………..75

1

DATA SORTING AND ORBIT DETERMINATION OF TETHERED SATELLITE

SYSTEMS

I. Introduction

Background

 A Tethered Satellite System (TSS) can provide unique capabilities over a single-

body satellite. Some of the potential applications of a TSS include power generation and

orbital reboost (Beletsky and Levin., 1993:20). In recent years, some of these ideas

have started to become reality as tethered satellites are deployed in space. As TSS’s

become more of a reality, it is important to understand how to do proper orbit

determination (OD) for these objects. In order to accomplish this it is also important to

understand how to properly identify which end mass is being tracked since there are

generally two or more end masses connected to a TSS.

 Orbit determination of a TSS requires different techniques than orbit

determination of a single-body satellite. The normal Keplerian equations of motion that

apply to a single satellite do not work for the end masses of a TSS. In fact, if normal

2

Keplerian techniques are applied to a TSS, under the right conditions it may appear as if

one of the end masses is on a suborbital trajectory with the Earth (Lovell et al., 2000:1).

For obvious reasons this provides motivation for wanting to properly identify the orbit of

a TSS.

 Although the subject of tethered satellite OD has received much attention in

recent years, data sorting of TSS tracking data has received less attention. But, if TSS

tracking data is not tagged to the appropriate end mass then calculating an accurate

estimate of a TSS orbit becomes extremely difficult, if not impossible. For this reason,

data sorting and OD of a TSS are closely related tasks.

 Data sorting and OD of a TSS is more difficult if it is not known whether the

satellite system is a TSS, or if the key parameters of the TSS are unknown. Again, if

normal techniques of orbit determination are applied to a TSS without some knowledge

about the system the orbit prediction will not be very accurate.

 With all of these items in mind, this research effort was undertaken to provide

insight into a possible method of data sorting and doing OD for a known or unknown

TSS only utilizing radar tracking data. This type of data is the most commonly available

measurement for satellite tracking purposes.

Problem Statement

 There are two main problems this research addresses. The first problem takes a

known TSS and determines if it is possible to allocate a given radar measurement to the

3

appropriate end mass and provide a good estimate of the TSS orbit. The second problem

is similar to the first, but the distinction is the TSS is now an unknown system. Both

problems use raw radar observation data to include slant range, elevation, and azimuth,

but not range rate.

Research Objectives

 As given in the problem statement, there are two main research objectives for this

thesis. The first objective is to sort out raw radar observation data of either a known or

unknown TSS into the appropriate end mass; i.e. assign an identification tag to each radar

observation. Typically, this is not an issue with single-body satellite systems because

they only have one object to observe. As far as a TSS is concerned, however, the end

masses may not be easily distinguishable depending on the length of the TSS.

 The second research objective of this thesis is to determine an approximate orbit

for the TSS. This does not mean identifying an orbit for each end mass, but, instead,

determining an orbit for the Center of Mass (CM) of the TSS. Identifying the CM orbit

of a TSS is extremely useful because the CM orbit essentially follows a normal Keplerian

orbit (Cochran et al., 2000:478). Therefore, if the CM orbit is identified, standard orbit

propagation techniques can be applied to determine where the CM will be at some time in

the future. Even though knowing the position of the CM at some time in the future does

not precisely determine where each of the end masses is located at that time, it

significantly narrows down the search space where the end masses might be located.

4

Methodology

 The methodology used in this research focused mainly on determining estimated

Classical Orbital Elements (COEs) of the CM of the TSS. The estimated, or best- fit,

COEs of the CM were determined using parameter optimization. The COEs for the CM

were optimized by determining the best-fit of all available observations of the end masses

compared to the estimated location of the CM and end masses.

 As a part of this estimation process the next part of the research was accomplished

by determining which end mass each observation represented. This was done by sorting

the observations based on each observation’s Earth-Centered (EC) position vector

magnitude and the estimated EC position vector magnitudes of the end masses at any

particular time. Since this method of sorting the observations relies on the accuracy of

the estimated COEs of the CM, then, in general, a better COE estimate provides better

sorting results.

Preview

 This thesis is divided into four additional chapters. Chapter two reviews some of

the most pertinent literature related to the topic of tethered satellites. Specifically, the

type of literature reviewed will concentrate on showing what research efforts have been

accomplished in the past relating to data sorting and OD of TSS data. Chapter three

covers the preliminary analysis done to determine the best parameter to use for data

5

sorting. Chapter four covers in-depth the methodology used in accomplishing the

research goals of data sorting and OD for TSS data. This methodology will discuss the

main assumptions and the specific techniques used during the estimation process.

Chapter five discusses and analyzes the results of several specific cases looked at during

this research effort. The results show the strengths of this technique for data sorting and

TSS OD, and they also show where this technique starts to break down. Finally, chapter

six concludes by discussing the operational relevance of this particular research effort and

also covers potential areas of further research on this topic.

6

II. Literature Review

Tethered Satellite Orbit Determination

 There are two main approaches to modeling a TSS for OD. The first approach

uses the full equations of motion for tethered satellites to include all of the libration and

tension affects. The second approach attempts to simplify the equations of motion by

trying to separate the orbital motion from the attitude dynamics of the system.

 Numerous people have analyzed the full equations of motion of tethered satellite

systems. One of the most commonly accepted sets of dynamical equations for a TSS

comes from Beletsky and Levin’s Dynamics of Space Tether Systems, Volume 83 in the

Advances in the Astronautical Sciences, written in 1993. This publication covers in-

depth the equations of motion and it also covers many other items of concern related to

tethers to include perturbations and some of the potential uses of a TSS (Beletsky and

Levin, 1993:20). The most significant understanding that comes from this publication is

the coupling which occurs between orbital motion and attitude motion for a TSS. This

coupling of the equations is what causes most of the difficulties in TSS orbit and attitude

determination. Specifically, coming up with approximate analytical solutions for TSS

OD is extremely difficult, if not impossible in some cases.

 The difficulties caused by the coupling of the dynamics of TSS’s are the cause for

many people looking at ways to decouple the attitude dynamics from the orbital

7

dynamics. One of the most commonly accepted methods of accomplishing this

decoupling is to assume the TSS remains nadir-oriented at all times. This assumption

ignores the librational motion of the TSS. This technique has been used in the past with

some success for an actual TSS. The Tether Physics and Survivability (TiPS) experiment

was launched on 20 June 1996 and still continues to fly today. A team of people at the

Naval Research Laboratory usedd an assumed nadir-oriented tether initially to help

analyze the orbital motion of TiPS separately from the attitude (Purdy et al., 1997:3).

Identification of Tethered Satellite Systems

 Extensive research has been accomplished in the last few years in trying to

determine a method for identifying whether an object in space is part of a TSS. Due to

the importance of this task, several methods of identifying tethered satellites have arisen.

These methods often use different types of filters to try and determine specific parameters

that help identify whether a tracked object is part of a TSS. For example, one method

attempts to calculate the radial and tangential force components on the tracked object that

would be caused by a tether which is attached to the object (Cicci et al., 2001:314). If

these additional forces are calculated to be above a certain level, then it is assumed that

the object is part of a TSS because a single-body satellite should not have these additional

forces present.

 The aforementioned method of TSS identification, as well as several other

methods currently in existence, usually assume the data points fed into the filter all come

8

from the same object. If this is true, these methods may show promise in identifying a

TSS. However, if some of the data points happen to come from the other end mass of the

TSS, then the calculations may be thrown off enough to improperly identify whether an

object is part of a TSS. This is why data sorting becomes extremely important.

TSS Data Sorting Problems

 The data sorting problem, as it relates to TSS’s, was not discussed in-depth until

the TiPS experiment was launched and tracked in 1996. Since one of the main purposes

of TiPS was to help provide understanding of the long-term dynamics of a TSS, a large

amount of tracking data was collected over the years following its launch. During the

analysis of this tracking data, specifically radar tracking data, it became apparent that a

significant portion, approximately 30%, of the data was not tagged, or sorted, properly

into the appropriate end mass (Barnds and Coffey, 1999:1846). This occurred when it

was known that the system was a TSS, and all of the key parameters of the TSS were

known. Presumably with an unknown TSS the possibility of inappropriately sorting

tracking data becomes greater.

 The analysis team involved in sorting out the TiPS tracking data was able to

approach the problem with much more certainty because of the use of many other sources

of data available to them. They were able to take sources such as Satellite Laser Ranging

data and optical tracking data to come up with a more complete picture of what was

going on with the satellite (Barnds and Coffey, 1999:1845). Their analysis of multiple

9

tracking sources helped the team come up with a very accurate estimate of the TiPS orbit

as well as determine an approximation on the libration and libration rate associated with

TiPS over time.

 The results of the TiPS analysis shows that data sorting and OD for TSS’s can be

done with very good accuracy, but these results were achievable only with multip le types

of tracking data, a large set of data, and much was known about the system. Coming up

with a way of doing data sorting on a much shorter timeframe with only radar tracking

data is still an issue.

10

III. Data Sorting Preliminary Analysis

 Two parameters were initially considered as possibilities for accomplishing data

sorting of TSS observations: tracking site (TS) slant range and Earth-Centered (EC)

position vector magnitude. For brevity, EC position vector magnitude and EC range will

be synonomous for the rest of this paper. An analysis was done to determine which of

these two parameters more easily distinguishes the two end bodies of a TSS.

 When a TS tracks an object in space it generally obtains a reading for slant range,

elevation angle, and azimuth angle. Slant range is the distance from the site to the object

being tracked. Elevation is defined as the angle between the TS’s local horizon and the

location of the satellite, and it can assume any value between 0 and 90 degrees. Finally,

azimuth is an angle measured clockwise from north to the direction where the TS is

tracking. This means azimuth can assume any angle between 0 and 360 degrees (Bate et

al., 1971:84).

Elevation and Libration Analysis on TS Slant Range and EC Range

The first parameter we analyzed to determine if it had good properties for data

sorting was the TS slant range. If it can be shown that the lower end mass (mass 1) of a

TSS almost always has a smaller TS slant range than the upper end mass (mass 2) then

11

this would be a good parameter to use for data sorting. This requires us to do a

comparison between the TS slant ranges for both end masses. In order to calculate the

TS slant ranges we must define tether libration. Figure 1 shows a coordinate component

that defines the tether libration.

Figure 1- 1û Coordinate Component Defined

The 1û coordinate component is defined such that its origin is located at the center

of the Earth and 1û goes from the origin at the center of the Earth and passes through the

lower end mass, 1m , of the TSS (Cicci et al., 2001:311). Therefore, 1r
r

, the vector from

the center of the Earth to 1m is only defined in the 1û direction. Also, 1r
r

is the EC range

for 1m , and 2r
r

 is the EC range for 2m . The angle, ?, defines the angle between the 1û

direction at 1m and mass 2m . This angle, ?, defines the libration angle. Libration angles

can have a component in the plane of the orbital plane, and a component out of the plane

of the orbital plane. Figure 1 only shows the in-plane portion of the angle. For example,

if ? equals zero degrees then the TSS is perfectly nadir-oriented (aligned vertically in the

1û

2m

θΡ
r

Earth

2rr

1m

1r
r

γ

1û

2m

θΡ
r

Earth

2rr

1m

1r
r

γ

12

1û direction) and 2r
r

simply becomes 1r
r

 plus the magnitude of the length of the tether,

P
r

, in the 1û direction. Finally, γ defines the angle between 1r
r

 and 2r
r

, which is a

function of libration angle, tether length, and altitude of the TSS.

 The next step is to look at how TS slant range is affected by the libration angle

and the TS elevation angle. Another figure helps show how important the tracking site’s

elevation angle and the TSS libration angle are in determining TS slant range to a TSS.

Figure 2 is similar to Figure 1 but it includes a tracking site located on the surface of the

Earth.

Figure 2- Slant Range from tracking Site to End Masses

R
r

 defines the vector from the center of the Earth to the tracking site. Each of the

ρ
r

 terms describes the slant range vector from the site to one of the end masses of the

TSS. The TS slant ranges to the end masses, 1ρ and 2ρ , are the magnitudes of the TS

slant range vectors. The dashed line at the site defines the local horizon for the TS. The

1ε term defines the TS elevation angle to the lower end mass of the TSS. A second

1mTracking
Site

2m

R
r

1ε

1r
r

1λ

Earth

θ
1̂u

1ρ
r

2ρ
r

1mTracking
Site

2m

R
r

1ε

1r
r

1λ

Earth

θ
1̂u

1ρ
r

2ρ
r

13

elevation angle, 2ε , represents the TS elevation angle to the upper end mass of the TSS.

Finally, 1λ represents the central earth angle between R
r

 and 1r
r

. There is also an angle,

2λ , which defines the central earth angle between R
r

 and 2r
r

 (not shown for clarity).

Using Figures 1 and 2 together, the TS slant range to mass 1m , 1ρ , can be

obtained if R
r

, 1r
r

, and 1ε are known:

 ()11

22
11 90cos2 ερ +°∗∗∗+−= RrRr

rrrrr
 (1)

Then by using the libration angle, θ , and the length of the tether, P
r

, the TS slant range

to mass 2m , 2ρ , can also be obtained. This is accomplished by first determining the

central earth angle between the site and the lower mass:

∗∗

−+
= −

1

2
1

2
1

2

1
1

2
cos

rR

rR
rr

rrr
ρ

λ (2)

Next, determine 2r
r

 by using the law of cosines:

 ()θcos2 1

22
12 ∗∗∗++= PrPrr

rrrrr
 (3)

The angle between 1r
r

 and 2r
r

 is then calculated by:

∗∗

−+
= −

21

22
2

2
11

2
cos

rr

Prr
rr

rrr

γ (4)

The Earth central angle to 2m , 2λ , is obtained simply by subtracting γ from 1λ . Finally,

the slant range from the tracking site to the upper end mass is determined with:

14

 ()22
2

2

2

2 cos2 λρ ∗∗∗−+= rRrR
rrrrr

 (5)

 This sequence of equations allows us to compare the slant range from a tracking

site to each of the end masses. Using this tool, it can be shown that at lower elevations,

smaller librations can cause the upper mass to have a smaller slant range than the lower

mass. For example, a 4 kilometer tethered satellite with 40 degrees of libration viewed at

approximately 27 degrees elevation or lower, will cause the upper end mass to have a

shorter slant range than the lower end mass. In stark contrast to this, it is obvious that at

90 degrees elevation the libration angle must be 90 degrees before the slant range for the

two end masses is equal. This analysis shows that the lower the elevation angle that a

TSS is tracked, the less libration is needed to confuse the two objects apart solely on slant

range alone.

Comparing the effects of libration and elevation angle on TS slant range and EC

range requires a look at how libration and elevation angle affects EC range for each of the

end masses. It is apparent that the TS elevation angle does not affect the EC range

because the EC range is only related to the location of the TSS and the center of the Earth

and has nothing to do with the location of the tracking site. Therefore, 90 degrees of

libration will always be required before the upper mass and lower mass have equal EC

ranges.

This analysis led our research to focus on EC range instead of TS slant range as a

key parameter which could be used to tell TSS data points apart. However, even though

EC range seems to be a better indicator for TSS data sorting based on the previous, there

15

are some issues related to real-world tracking site errors that have an affect on data

sorting, which leads us to our next preliminary analysis.

Tracking Site Error Analysis

In the perfect world, our previous analysis indicates EC range is a better

parameter to use for data sorting than TS slant range. Unfortunately, in the real world

problems like tracking site errors need to be considered. These real-world problems led

us to analyze tracking site error impacts on TS slant range and EC range to help

determine the potential impact on sorting out TSS data points.

Analyzing tracking site errors on TS slant range is straightforward. Since radar

sites obtain slant range directly as a measurement, the slant range error is incorporated

directly. For example, if a tracking site has a potential slant range error of 0.02 km, and it

obtains a reading on an object of 2000 km, then there is 68% confidence that the actual

slant range of the object is between 1999.98 km and 2000.02 km. The errors in the

elevation and azimuth of the tracking site do not affect the slant range measurement in

any way.

However, analyzing the tracking site errors on the EC range, r
r

, requires more

complicated computations. Since EC range error is not measured directly by a tracking

site, it must be calculated from the tracking site errors for elevation and slant range. The

tracking site azimuth error does not affect the EC range error because EC range is

16

calculated using the law of cosines by rearranging Equation (1) to solve for r
r

and

azimuth does not appear in this equation. From now on, instead of writing out the full

form of the magnitude of any particular vector, it will be assumed that r equals r
r

, and so

forth for any other magnitude calculation. To calculate the uncertainty of the EC range,

rσ , given the uncertainties in slant range, ρσ , and elevation, εσ , we use:

 T
r JJ ∗

∗=
2

2
2

0
0

ε

ρ

σ
σ

σ (6)

Where

∂
∂

∂
∂

=
ερ
rr

J (7)

The elements
ρ∂

∂r
, and

ε∂
∂r

 are obtained by taking the partial derivatives of Equation (1)

with respect to ρ , and ε , respectively. These partials are:

()

()ερρ

ερ
ρ +°∗∗∗−+

+°∗−
=

∂
∂

90cos2

90cos
22 RR

Rr
 (8)

()

()ερρ

ερ
ε +°∗∗∗−+

+°∗∗−
=

∂
∂

90cos2

90sin
22 RR

Rr
 (9)

 These equations provide the error covariance in the EC range as a function of the

TS elevation angle and slant range error covariances. For example, assume a tracking

site has the following errors for slant range and elevation: km021.0=ρσ and

°= 023.0εσ . Next, assume a 2 km nadir-oriented tethered satellite has EC ranges for the

bottom and top masses respectively of: kmr 5.73991 = and kmr 5.74012 = . This leads to

the covariances in Figure 3. The dotted line indicates the actual upper mass EC range,

17

and the curved dash-dot lines represent the 1 rσ error bars for the upper mass EC range.

The lower solid line indicates the actual lower mass EC range, and the curved dashed

lines represent the 1 rσ error bars for the lower mass EC range.

Figure 3- Affect of Elevation Angle on rσ

This figure shows how the potential EC range error grows larger as the elevation angle

becomes smaller. Figure 4 shows how increasing the TS slant range error to

km5.0=ρσ affects the EC range error.

18

Figure 4- Affect of Larger Slant Range Error on rσ

These figures can be used to draw two conclusions. First, elevation angle and

elevation angle error play a major role in determining the actual EC range of an object in

space. The TS slant range error is not as big of a factor as elevation error. However, it is

apparent that if a tracking site does have a larger slant range error then the error width

even at 90 degrees is proportionately larger to incorporate the larger slant range error.

The second important point to note concerning both figures is the point at which

the lines cross determines where the end masses may be confused for each other and an

unsuccessful data sort may occur. This means that for these conditions and the

previously mentioned tracking site errors, at approximately 10 degrees in elevation there

19

is an 84% chance that a data point will be properly identified if the actual position is

known in advance (Bayer, 1991:497). Figure 4 shows how the slant range error has only

a minor affect on the elevation at which data points may be confused. This shows that

the elevation angle and elevation angle error are the main factors in determining a data

point’s actual EC range.

 The plots shown in both figures apply only for the specified TSS, TSS orbit, and

tracking site parameters. This important fact must be taken into consideration when

analyzing the point at which a tracking site will probably start to have problems sorting

out TSS tracking data.

 This second analysis shows once again how elevation angle plays a role in being

able to identify data points properly. The EC range is more susceptible to error than the

slant range, particularly at low elevation angles.

Data Sorting Preliminary Analysis Conclusion

 After looking at slant range and EC range as potential parameters for sorting out

data points, it is evident that both exhibit different strengths and weaknesses. However,

an additional advantage of the EC range not mentioned previously is that the values of

EC range over time should be fairly constant for low eccentricity orbits. However, when

looking at slant range, the values vary greatly over a short period of time, and if multiple

sites are incorporated they will each have very different slant range values. In fact, slant

range changes so quickly as a TSS passes near a sight, the value can change by several

20

thousand kilometers in minutes. Therefore, a plot of TS slant ranges for the upper and

lower mass of a TSS can be very difficult to tell apart, by hand or by computer, because

the slant range will have to cover such a large range of values. This final piece of

information helped us decide to use the EC range parameter to sort the observational

data.

21

IV. Estimating the TSS Orbit and Sorting the Data

 Once a parameter was selected to use in the data sorting algorithm, the next step

was to develop a method of estimating the orbit of the TSS CM based off of the tracking

data. The estimation method used for this research is a four- fold process. The first

process involves taking the observed azimuth, elevation, and slant range data from a

tracking site and determining an initial estimated set of COEs. The second process uses a

simulator to propagate the estimated COEs of the CM over the same time frame as all of

the tracking site observations. These estimated COEs are then converted into estimated

EC pqw coordinate frame position vectors. The third process involves taking the

observation data again and converting that data into observed EC pqw position vectors.

The fourth process involves iterating on steps 2 and 3 in order to minimize the difference

between the observed and estimated pqw position vectors. This entire process allows us

to take a poor initial guess of the CM COEs and optimize the initial guess until a much

better estimate of the CM COEs is found.

 The pqw coordinate system referred to above is also known as the perifocal

coordinate system. The perifocal coordinate system is a coordinate system which is

based on the orbit of the satellite. The origin of the pqw coordinate system is the center

of the Earth. The p̂ and q̂ directions lie in the plane of the orbit, with the p̂ direction

aligned with the perigee point, while the q̂ direction is perpendicular to p̂ . The ŵ

direction is perpendicular to the plane of the satellite orbit, since it must be perpendicular

22

to both p̂ and q̂ . Thus for a single satellite there should not ever be any value in the ŵ

direction since the satellite should always lie in the plane of its orbit. For the tethered

satellite problem, we will also be making an assumption that the TSS maintains a nadir

orientation, so each of the end masses and the CM of a TSS also should have no ŵ value.

 One might wonder why position vectors are calculated in the pqw coordinate

frame instead of the IJK frame. One benefit of the IJK frame is that we can calculate the

actual values of the observations in IJK coordinates. However, pqw coordinates are

based off of the orbit, and in our case we only have a poor initial COE estimate and we

do not know the actual orbit. The reason for using pqw coordinates in the estimation

process is simply that the algorithm is more robust. The estimator was implemented with

IJK components but the algorithm did not converge unless the first guess COEs were

essentially the same as the actual COEs. One potential reason why pqw coordinates work

better centers on the ŵ component of the pqw coordinate frame. The ŵ component for

any satellite must be near-zero. Even for a TSS, only the libration that occurs out of the

plane of the orbit will affect the ŵ values for the end masses. So, this essentially

decouples this component from the in-plane variables.

Assumptions

 There are four major assumptions used in the estimation process which simplify

the problem. These four assumptions include nadir orientation, rigid tether, CM and

23

center of gravity equal, and J2 perturbations being the only significant perturbations

which affect the orbital motion of the CM.

 As talked about in the introduction, nadir orientation is a commonly accepted

starting point to analyze tethered satellites. This is particularly important in our

application since we are dealing with different TSS’s, and where we have little or no

knowledge about the key parameters of the TSS. Trying to handle libration in addition to

estimating an orbit and data sorting, while only using a limited amount and type of

tracking data, would cause the complexity of this issue to increase greatly. In the future,

as more TSS’s are flown and there is more understanding of the real-world dynamics of

tethers, handling libration might become more reasonable. In addition, nadir orientation

is a reasonable assumption if the TSS maintains a fairly low libration angle. Looking at a

real-world case, the libration values for TiPS went from approximately 30-40 degrees

down to approximately 5-7 degrees in less than a year (Purdy et al., 1997:2).

 The second assumption in determining a CM orbit and data sorting is the tether

will remain fully rigid. This means the tether is treated as an inflexible bar. This

assumption eliminates the need to attempt to calculate the tension on the tether at any

particular time. Assuming a rigid tether is one important way to help simplify the

differential equations and is often used in studying tether motion (Beletsky and Levin,

1993:48).

 The third important assumption for this research is the CM of a TSS is always

equal to the center of gravity of the system, and, therefore, the CM follows a near-

Keplerian orbit. In reality, tether motion does affect orbital motion because it causes the

center of gravity to constantly change. This changing force on orbital motion caused by

24

tether motion is related by the term
2

r
P (Cochran et al., 1999:1826). Since the tether

length, Ρ , is much, much smaller than r and this term is squared, the effects of tether

motion are very small. This is a well-accepted assumption used by many tether analysis

techniques that deal with trying to determine the orbital motion of the CM of the TSS. In

addition, since we may not know much about the TSS, trying to calculate the

perturbations on orbital motion caused by the changes in the attitude becomes almost

impossible. So, since these perturbations on orbital motion due to attitude motion are

small and they are almost impossible to calculate with the information given, we will

assume the CM and the center of gravity are always equal.

 Finally, the last assumption used in this research deals with perturbations to two-

body motion. The J2 perturbations caused by the oblateness of the Earth are generally

one of the most common perturbations to include in the study of orbital motion. While

there are many other perturbations which affect all satellites such as solar pressure, J2 will

generally dominate for Low-Earth Orbit (LEO) satellites.

The one additional perturbation which might cause significant problems for TSS

analysis is air drag. Since a TSS most likely has a much larger surface area to mass ratio

than normal satellites, very low flying tethers could have significant perturbations due to

air drag. However, since we are assuming to know very little about the TSS it also

becomes hard to determine an accurate drag estimate. In addition, as long as a TSS is

flying high enough where drag becomes much less of a concern, then this perturbation

becomes small enough to ignore. Therefore, J2 perturbations are the only perturbations

which are considered in this research.

25

Obtaining an Initial Estimate of the COEs of the CM

 Having scoped the problem with all of the assumptions and having developed an

idea for what parameter works best for data sorting, the next step is to determine a first-

guess for the Classical Orbital Elements (COEs) of the CM at a specific epoch time. This

problem can be solved using any recognized orbit determination technique. This paper

uses the Herrick-Gibbs technique, but other methods such as Gauss or f and g may also

be used.

 The Herrick-Gibbs formula used here was obtained from Pedro Escobal’s

Methods of Orbit Determination, 1965. The Herrick-Gibbs technique requires 3 EC IJK

position vectors to come up with an initial estimate for the COEs. However, before

showing the Herrick-Gibbs formula it is important to show how IJK position vectors are

obtained in the first place from the tracking site data. The technique for obtaining IJK

position vectors from radar data was obtained from Bate, Mueller, and White’s

Fundamentals of Astrodynamics.

 The process of taking observations from radar data and converting it into accurate

inertial IJK position vector data entails several coordinate transformations, an

understanding of the eccentricity of the Earth, and being able to calculate local sidereal

times (Bate et al., 1971:83). The first step of converting radar data requires transforming

the data into the Topocentric-Horizon Coordinate System. This coordinate system has

the radar’s location on the surface of the Earth as its origin. The axes are defined as

South, East, and Up or more commonly S, E, Z.

26

 The relationship which relates observed slant range (oρ), elevation (oε), and

azimuth (oα) to an observed position vector in the SEZ frame, o
SEZ ρ

r
, can be arrived at

through simple geometry:

() ()

() ()
()

∗
∗∗
∗∗−

=

oo

ooo

ooo

o
Z

o
E

o
S

ερ
αερ
αερ

ρ
ρ
ρ

sin
sincos
coscos

 (10)

where ρS , ρE , ρZ , are the S, E, and Z components of the SEZ slant range vector,

o
SEZ ρ

r
, respectively. This SEZ frame is not an inertial frame since the origin is a tracking

site located on the surface of a rotating Earth. So, to get to an inertial frame with the

center of the Earth as its origin several more items must be discussed.

 In order to potentially use tracking data from multiple sites it is important to be as

accurate as possible when discussing where a tracking site is located. The easiest way to

calculate the position of a tracking site is simply to use the site’s latitude and longitude

and convert those directly using a spherical model of the Earth. However, since the Earth

is not truly spherical, using this method can potentially lead to errors in the TS position

on the order of kilometers. Since data sorting relies on having the most accurate EC

range possible, this potential error needs to be eliminated if possible. One of the most

common ways to handle the true shape of the Earth is to treat it as an ellipsoid instead of

a sphere (Bate et al., 1971:93). Bate, Mueller, and White go through an excellent

discussion of calculating the position vector of a site on the Earth based on its latitude,

longitude, and altitude above mean sea level. We will summarize this set of calculations

here since it is so vital for data sorting.

27

 When doing calculations using an ellipsoid model of the Earth there are a couple

of constants to keep in mind. These constants include Equatorial radius

(kmae 165.6378≈), and Earth Eccentricity (08181.0≈ee) (Bate et al., 1971:94). The

other quantities needed to calculate the location of a site on an ellipsoid Earth include the

site’s geodetic latitude (φ), geographic longitude (β), height above mean sea level (H),

and the time of the observation.

 The first step in this process is to calculate Greenwich sidereal time, gτ , at the

time of the observation. This is accomplished by looking up in a table the Greenwich

sidereal time for a particular date, which we will term goτ . For example, Bate, Mueller,

and White give a value of °990704.99 for goτ for 1 Jan 1971 at 0 hours Universal Time

(Bate et al., 1971:104). If it is known how many days (D) have passed since that time (to

include fractions of a day), then gτ is calculated by:

 Dgog ∗°∗+= 3600027379093.1ττ (11)

Once gτ is known for the specified time, the next step is to calculate the local sidereal

time for the site, (siteτ). There is a simple relationship between Greenwich sidereal time

and the site’s geographic longitude:

 βττ += gsite (12)

 Now that local sidereal time is known the next step is to calculate the inertial IJK

position vector of the site at that time. This is accomplished by initially calculating the

following two quantities:

28

()

()φ
φ

cos
sin1 22

∗+
∗−

= H
e

a
x

e

e (13)

()

()
()φ

φ
sin

sin1

1
22

2

∗+
∗−

−∗
= H

e

ea
z

e

e (14)

Next, the inertial IJK position vector of the tracking site, RIJK
r

, is obtained from:

 () () KzJxIxR sitesite
IJK ˆˆsinˆcos +∗+∗= ττ

r
 (15)

 Knowing the inertial IJK position of the site is only the first half of determining

the IJK position vector of the observed object. Now, the observed SEZ slant range

vector, o
SEZ ρ

r
, found in Equation (10) needs to be converted into an observed inertial IJK

slant range vector, o
IJK ρ

r
. This is accomplished by using a transformation matrix:

() () () () ()
() () () () ()

() ()

∗

−
∗∗
∗−∗

=

o
Z

o
E

o
S

sitesitesite

sitesitesite

o
K

o
J

o
I

ρ
ρ
ρ

φφ
τφττφ
τφττφ

ρ
ρ
ρ

sin0cos
sincoscossinsin
coscossincossin

 (16)

where o
I ρ , o

J ρ , and o
K ρ , are simply the I, J, and K components of o

IJK ρ
r

, respectively.

Finally, the observed inertial IJK position vector for the tracked object, o
IJK r

r
, is obtained

by:

 o
IJKIJK

o
IJK Rr ρ

rrr
+= (17)

 Once the tracking data is finally converted into observed IJK position vectors, the

Herrick-Gibbs formula for calculating the observed velocity vector can be used (Escobal,

1965:305). The Herrick-Gibbs method essentially takes three position vectors to

calculate a velocity vector for the second position vector. Using this method, the second

position vector time is set to zero, so the time for position vector one will be negative.

29

This technique is started by calculating what Escobal terms “modified times” (Escobal,

1965). If each of the three observed position vectors, oi
IJK r

r
, (i=1,2,3) has an associated

time (tj), where 3,2,1=j , then the modified times (ψ) are calculated by:

 ()ijij ttk −∗=ψ (18)

where 235 /10986.3 skmk e ∗== µ , which is the Earth gravitational parameter, and

3,2,1=i . Next, the following quantities are calculated:

312

1323

12
3

1312

23
1

1313

GGG

T
G

T
G

ttT

−≡

∗
≡

∗
≡

−=

ψ
ψ

ψ
ψ

 (19)

In addition to the previous quantities, the following quantities must also be calculated:

312

12
3

23
1

12

12

HHH

H

H

−≡

≡

≡

ψ

ψ

 (20)

Using both the G and H quantities, the coefficients of the velocity vector are calculated

as follows:

 3
oi

i
ii r

H
Gd += (21)

Which then leads to the observed velocity vector:

 33221122 o
IJK

o
IJK

o
IJK

o
IJK

o
IJK rdrdrdrv

rrr&rr
∗+∗+∗−== (22)

30

 It is important to remember where all of these calculations are leading, and that is

to a first-guess of the COEs at an epoch time of the TSS CM. This estimate is not going

to be nearly accurate enough because of the fact that all of the methods for calculating

velocity vectors from position vectors and then obtaining COEs from position and

velocity vectors are designed for single-body satellites. If a TSS is very short, or if all of

the readings are taken from the same end mass and that end mass contains most of the

mass of the system, then this estimate may be close, but in most cases for TSS’s this will

only give a rough estimate. But, we do need some starting point to get the estimation

process started even if it is very rough. So, the next step in obtaining an estimate of the

COEs of the CM is to convert the position and velocity vectors into COEs. We once

again refer back to Bate, Mueller, and White for the method of calculating COEs from a

position and velocity vector.

 Position and velocity is all that is needed to uniquely determine the orbit of a

satellite. The method for accomplishing this first starts by calculating the angular

momentum vector, h
r

 by the following equation:

 o
IJK

o
IJK vrh

rrr
×= (23)

Next, the node vector is calculated by crossing the angular momentum vector with the K̂

direction:

 hKn
rr

×≡ ˆ (24)

The eccentricity vector is the next important item which will help us determine the COEs,

and this vector is calculated as follows:

31

 ()

∗⋅−∗

−∗= oooo

o

e
o vvrr

r
ve

rrrrr µ
µ

21 (25)

These three vectors enable us to obtain the initial estimate of the TSS CM COEs for the

epoch time using the following set of equations:

()

∗
⋅

=

 ⋅
=Ω

∗
⋅

=

 ⋅
=

=

−∗
=

−

−

−

−

o

o

e

re
re

n
In

en
en

h
Kh

i

ee

e
h

a

rr

r

rr

r

r

1
0

1
0

1
0

1
0

0

2

2

0

cos

ˆ
cos

cos

ˆ
cos

1

ν

ω

µ

 (26)

For each of the angles calculated previously the following quadrant checks apply:

i is always less than °180

 If 0ˆ >⋅ Jn
r

 then °<Ω 180 (27)

If 0ˆ >⋅ Ke
r

 then °< 180ω

If 0>⋅vr
rr

 then °< 1800ν

With all of these calculations we finally have an estimate for the CM COEs at our epoch

time. This initial guess is then used in the rest of the estimation process as a starting

point.

32

Calculating Estimated EC pqw Position Vectors

 Propagating Estimated CM COEs for all Observation Times.

 Once the first-guess COEs are finally calculated for the epoch time, the estimated

COEs for the CM at all times at which our observations occur need to be calculated.

Since we have chosen to ignore all perturbations except J2 the following set of equations

apply for determining the estimated COEs of the CM at some time, t, when the initial

estimated COEs are given for our epoch time, 0t :

()
()
()

() () ()

() () ()

() ()00

02
2

0

0
2

2
2

0

0

0

0

cos
2
3

sin
2
5

2
2
3

ttnMtM

ttni
p
J

t

ttni
p
J

t

ete

iti
ata

−∗+=

−∗∗

∗∗−Ω=Ω

−∗∗

 ∗−∗∗+=

=

=
=

ωω (28)

where J2 has a dimensionless value of 0.00108263 (Wertz and Larson, 1999:143). The

anomalistic mean motion, n , (Escobal, 1965:369) is given by:

 ()

 ∗−∗

−
∗∗+∗= i

p
e

Jnn 2
2

2

20 sin
2
3

1
1

2
3

1 (29)

where 0n is the unperturbed mean motion and is equal to 3aeµ . The parameter p is

called the semi-parameter of the orbit and is equal to ()21 ea −∗ . The terms ()tM and

0M are the mean anomaly of the object’s position at time t and 0t , respectively. The

variable we are interested in determining at time t is the true anomaly, ν , not the mean

33

anomaly. Calculating true anomaly for an elliptical orbit requires a series of calculations.

The first step for calculating true anomaly at time t is to calculate the eccentric anomaly

at time t0, E0, and then calculate M0. This is accomplished with the following set of

equations:

∗
+
−

∗= −

2
tan

1
1

tan2 0

0

01
0

ν
e
e

E (30)

 ()0000 sin EeEM ∗−= (31)

Calculating M at time t is calculated as follows:

 () ()00 ttnMtM −∗+= (32)

There is no direct relationship for calculating true anomaly from mean anomaly, so an

iterative procedure must be employed. First, eccentric anomaly at time t is calculated

from:

 () () () ()()tEtetMtE sin∗+= (33)

This equation can not be solved directly for eccentric anomaly, so an iteration technique

must be applied. One popular method of solving this problem is to use a Newton-

Rhapson Iteration Method. We solve this problem by first guessing the value of ()tE . A

good first guess for orbits which do not have a high eccentricity value is to set ()tE equal

to ()tM . Then, substitute this guess for ()tE into equation (31). If the new value for

mean anomaly, ()tM 2 is equal to ()tM within a certain tolerance level, say 12101 −∗ ,

then this guess for ()tE is the final answer for ()tE . However, if it is not less than the

designated tolerance level, then a better estimate for ()tE is obtained from:

34

 () () () ()
() ()()tEte

tMtM
tEtE

cos1
2

2 ∗−
−

+= (34)

Once this new estimate for eccentric anomaly, ()tE2 is calculated, then this new estimate

becomes the new value to substitute into equation (31). This process is repeated until the

desired tolerance level is achieved. This method of determining the eccentric anomaly

converges quickly for small eccentricity. Now that eccentric anomaly is calculated at

time t we can finally calculate the true anomaly at t, ()tν . The equation used to calculate

this value is the same as equation (30), but now it is reversed to solve for true anomaly:

 () ()
()

()

∗

−
+

∗= −

2
tan

1
1

tan2 1 tE
te
te

tν (35)

 The equations and techniques described in this section are all that is needed to

obtain estimated COEs for the CM of a TSS at any time as long as an initial estimate at

some epoch time, t0 is obtained first. Unfortunately, knowing the COEs of the CM at

each time does not allow us to calculate the quantities needed for the estimation process.

So, there are several additional steps which need to be accomplished First, we need to

convert the newly found estimated CM COEs at each particular time back into estimated

IJK position vectors. Second, we need to determine the estimated IJK position vectors of

both of the end masses. Finally, the estimated IJK position vectors of the end masses

need to be converted into estimated pqw position vectors. All of these processes are

covered in the next two sections.

35

 Converting Estimated CM COEs into Estimated CM IJK Position Vectors.

 Converting the estimated COEs back into estimated IJK position vectors is a two-

step process. The first step is to calculate the estimated position vector in the pqw, or

perifocal, coordinate system. The second step is to accomplish a coordinate

transformation on the estimated position vector in the pqw coordinate system into the IJK

coordinate system. Bate, Mueller, and White have an excellent discussion of this task

(Bate et al., 1971:72). We will briefly summarize what they cover next.

 There are two equations which are needed to calculate the estimated EC position

vector in the pqw frame. The first equation is used to calculate the magnitude of the

estimated position vector in the pqw frame and is related to the estimated COEs by:

 () () ()()
() ()()tte

teta
tre νcos1

1 2

∗+
−∗

= (36)

Then calculate the estimated position vector in the pqw frame:

 () () ()() () ()()qttrpttrtr eee
pqw ˆsinˆcos νν ∗+∗=

r
 (37)

Now that the estimated position vector has been defined in the pqw coordinate

system all that is needed to calculate the estimated position vector in the IJK frame is a

coordinate transformation. The transformation matrix required to go from the pqw frame

to the IJK frame is shown in the next equation and is equal to
IJK

pqw
R . In regards to this

transformation matrix, ()c represents cosine and ()s represents sine:

() () () () () () () () () () () ()
() () () () () () () () () () () ()

() () () () ()

∗∗
∗Ω−∗∗Ω+∗Ω−∗∗Ω+∗Ω

∗Ω∗∗Ω−∗Ω−∗∗Ω−∗Ω

=
iccissis

iscciccsssicccs

isscicsscsicscc

R
IJK

pqw

ωω
ωωωω

ωωωω

 (38)

36

Using this transformation matrix the estimated IJK position vector of the CM, e
IJK r

r
, is

obtained by the next equation.

∗=

e
w

e
q

e
p

IJK

pqw

e
K

e
J

e
I

r
r
r

R
r
r
r

 (39)

This completes the method for determining the estimated inertial position vector of the

CM in the EC IJK frame at time t. For a TSS, however, the CM is most likely a point in

space somewhere between the end masses, and a radar site will probably track one of the

end masses and not the CM. The next section discusses how to determine the estimated

pqw position vectors of the end masses when given the estimated IJK position vector of

the CM.

 Calculating Estimated TSS End Mass pqw Position Vectors.

 Determining the estimated IJK position vectors of the end masses of a TSS

requires knowledge of the length of the tether, the mass of the end objects, and the mass

of the tether. If it is known that the system is a TSS and the tether parameters are known,

such as TiPS, then those values can be used directly. If, however, the length is unknown,

or if it is an unknown TSS, then these parameters will be estimated along with the TSS

orbit.

 In order to determine the estimated end mass IJK position vectors from the

estimated CM IJK position vector we refer back to the 1û coordinate component. Due to

the nadir-oriented assumption the estimated position vectors for both end masses will

only have values in the 1û direction. The equation for determining the distance 1m is

from the CM, cm
md 1 , is shown by:

37

t

t
cm
m mmm

P
mPm

d
++

∗+∗
=

21

2

1
2 (40)

The value, tm , is the mass of the tether. We will assume the value is zero in the case of

an unknown TSS. By knowing the distance of 1m from the CM, it is easy to calculate the

distance of 2m from the CM, cm
md 2 , by:

 cm
m

cm
m dPd 12 −= (41)

Knowing the estimated distances of the end masses from the CM, the estimated 1û

position vector values for end mass 1, 1e
u r
r

, and mass 2, 2e
u r
r

, are related to the estimated

CM magnitude, er , by the next set of equations :

()
() 122

111

ˆ

ˆ

udrr

udrr
cm
mee

u

cm
mee

u

+=

−=
r

r
 (42)

 The estimated IJK position vectors for end mass 1, 1e
IJK r

r
, and mass 2, 2e

IJK r
r

 can

be obtained through simple geometry. Figure 5 shows the relationship between the 1û

direction and the IJK coordinate frame.

Figure 5- Relationship between 1û and IJK Coordinate Frame

Î

Ĵ

K̂

1û

β
α

e
IJK r

r

Î

Ĵ

K̂

1û

β
α

e
IJK r

r

38

The 1û direction is given by two angles and the estimated IJK position vector of the CM,

e
IJK r

r
. Remember, the origin for both of these systems is the center of the Earth. The first

angle, β , is the angle measured from the Î direction to the dashed line which is the

projection of e
IJK r

r
 in the I-J plane. The second angle, α , is the angle measured from the

I-J plane to e
IJK r

r
. Both angles are calculated by:

 ⋅
=

⋅
⋅

=

−

−

e

e
IJK

e
IJK

e
IJK

r
Kr

Ir
Jr

ˆ
tan

ˆ
ˆ

tan

1

1

r

r
r

α

β

 (43)

Once these two angles are known the estimated IJK position vectors for end mass 1,

1e
IJK r

r
, and end mass 2, 2e

IJK r
r

 are calculated by:

() () () () ()
() () () () ()KrJrIrr

KrJrIrr

e
u

e
u

e
u

e
IJK

e
u

e
u

e
u

e
IJK

ˆsinˆsincosˆcoscos

ˆsinˆsincosˆcoscos

2222

1111

αβαβα

αβαβα

∗+∗∗+∗∗=

∗+∗∗+∗∗=
rrrr

rrrr

 (44)

 This is the final step in determining the estimated IJK position vectors for each of

the TSS end masses. Now, we can determine the estimated pqw position vectors for each

of the TSS end masses. The transformation of all of the end mass positions obtained

from Equation (44) uses the inverse of the conversion from pqw coordinates to IJK

coordinates given in Equation (38) and is given by:

ie
K

e
J

e
I

TIJK

pqw

ie
w

e
q

e
p

r
r
r

R
r
r
r

∗

=

 (45)

39

where i is equal to 1 or 2 depending on the end mass we are calculating. This is all that is

needed to obtain estimated pqw position vectors for end mass 1, 1e
pqwr

r
, and end mass 2,

2e
pqwr

r
 when the estimated IJK position vectors are known. Having the estimated pqw

position vectors now, the next step we need to do is convert all of the observation data

into observed pqw position vectors, o
pqwr

r
.

Converting Observation Data into pqw Position Vectors

At first glance calculating the observed pqw position vectors, o
pqwr

r
, may not seem

logical or possible. The estimated orbit is known since we determined this earlier. So,

converting the estimated COEs into estimated end mass pqw position vectors is possible.

But, we do not know the actual orbit which the satellite is following, so we cannot

calculate the observed EC position vectors in the actual pqw frame. Instead, we calculate

the observed EC position vectors in the estimated pqw frame.

 One of the important items to remember about the pqw frame is that any tracked

object in space should have a zero or near-zero component in the ŵ direction. So, as

position vectors are calculated in the estimated pqw frame, all of the estimated pqw

position vectors will already be near-zero in the ŵ direction, while the observed pqw

position vectors may or may not have a near-zero component.

 Up to this point, we have not discussed how to calculate observed position vectors

in the pqw frame for all of the data points, but the general process of calculating pqw

40

position vectors has been shown. In Equations (10)-(17), we calculated IJK position

vectors for several of the observations in order to obtain an initial estimate. So, the first

step of calculating pqw position vectors for the observations is to take all of the

observations and calculate all of their corresponding IJK position vectors using these

equations. The next step of calculating pqw position vectors for the observations requires

the use of the estimated set of COEs in Equation (45) to convert the observed IJK

position vectors into observed pqw position vectors.

 Now that we have estimated and observed pqw position vectors we can begin the

process of improving the initial guess of the COEs so the difference between the

estimated and observed pqw position vectors is minimized.

Minimizing Observed and Estimated Differences

Calculating TSS Position Residuals.

 A common method for comparing an estimate of an orbit with what is observed is

computing residuals. A residual is the difference between an observed and estimated

quantity (Bate et al., 1971:123). For this estimation problem, we computed residuals for

both EC range and pqw position vector components.

 Initial estimation attempts with just using the EC range residuals showed that this

approach was very effective in sorting the data and determining the orbit semi-major axis,

eccentricity, and true anomaly. This information completely specified the distance to the

center of the Earth for an end-body, so the other orbital elements are unobservable when

41

using only the EC range residuals. Consequently, we added the pqw position vectors to

the residuals in order to estimate the orbit plane (longitude of the ascending node,

inclination, and argument of perigee). As mentioned above, the pqw frame position

vectors had better convergence properties than the IJK frame. A combination of these

two quantities for the residuals gave the most robust and accurate performance for both

the data sorting and the orbit estimation.

 It is common practice to calculate a residual by subtracting estimates from

observations so this is the convention we use here (Wiesel, 2003:25). Calculating the

residuals for a TSS is different than calculating residuals for a single-body satellite.

Since we have two end masses, and we do not know ahead of time which one is

represented by the data, we have to calculate a set of residuals for each end mass.

 Since there are two end mass estimates, but only one observation there will be

two sets of residuals which are calculated. Calculating the EC range residuals for mass 1,

1rΧ , and mass 2, 2rΧ , is done by subtracting the estimates, ()tre1 and ()tre2 , from the

observation, ()tro , as shown by:

() () ()
() () ()trtrtX

trtrtX

eor

eor

22

11

−=
−=

 (46)

 Since there are three pqw components and a different pqw estimate for both end

masses there are a total of six pqw component residuals. These six residuals will be

represented as follows: 1m p component residual, pr 1
rΧ , 1m q component residual, qr 1

rΧ ,

1m w component residual, wr 1
rΧ , 2m p component residual, pr 2

rΧ , 2m q component

residual, qr 2
rΧ , and 2m w component residual, wr 2

rΧ . Using the observed pqw position

42

vectors, ()tro
pqwr , and the estimated pqw position vectors, ()tre

pqw
1

r
 and ()tre

pqw
2

r
,

calculated previously from Equation (45) the pqw component residuals are shown as

follows:

() ()() ()()
() ()() ()()
() ()() ()()
() ()() ()()
() ()() ()()
() ()() ()()wtrwtrt

wtrwtrt

qtrqtrt

qtrqtrt

ptrptrt

ptrptrt

e
pqw

o
pqw

wr

e
pqw

o
pqw

wr

e
pqw

o
pqw

qr

e
pqw

o
pqw

qr

e
pqw

o
pqw

pr

e
pqw

o
pqw

pr

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆ

ˆˆ

22

11

22

11

22

11

⋅−⋅=Χ

⋅−⋅=Χ

⋅−⋅=Χ

⋅−⋅=Χ

⋅−⋅=Χ

⋅−⋅=Χ

rr

rr

rr

rr

rr

rr

r

r

r

r

r

r

 (47)

For our purposes, since there is no libration in our estimated TSS, subtracting the

estimated terms out of wr 1
rΧ and wr 2

rΧ is not really necessary because those values should

be zero. But, we have inc luded the terms here for completeness.

 We now have all of the residuals necessary to do the optimization and data

sorting. The next section describes how the optimization and data sorting was

accomplished using MATLAB.

 Optimizing the COEs and Data Sorting.

 Knowing all of the residuals enables us to quantify how far the COE estimate is

from the actual orbit. It also allows us to try and find a new COE estimate which is

better than the previous one. The process we are using to determine a new estimate is

optimization. It is beyond the scope of this paper to discuss how the optimization process

works, but we will explain how the optimization process was implemented in MATLAB.

 The MATLAB optimization toolbox includes a function called fmincon. This

function takes a constrained state vector, and attempts to minimize some desired value.

43

In the case of a TSS there are two different state vectors depending on what is known

about the system. If the TSS parameters are known, then the state vector only includes

the COEs of the CM. With an unknown TSS, the state vector must include the COEs of

the CM and three additional parameters. The additional parameters required include the

mass of 1m , mass of 2m , and the length of the tether. We have ignored the mass of the

tether itself in this case which is generally much smaller than the end masses. The third

parameter, tether length, may or may not be able to be accurately achieved using this

optimization method, depending on the data. The reasons for this will be shown and

discussed in the Results chapter.

 The objective function to be minimized by fmincon is the Root Sum Square of the

residuals (RSS). In the previous section all of the residuals were calculated between the

estimates of both end masses and the observed object. Since the observed object

obviously cannot be both end masses at the same time we have to choose which object

we think the observation really represents. In order to make our choice at this point we

have to compare the absolute values of the computed residuals of both end masses. The

smaller of the two absolute residuals is the choice for which one will be fed into the final

RSS. This applies separately to each paired set of residuals. For example, if the absolute

values of a particular set of residuals at time t for pr 1
rΧ and pr 2

rΧ are 20− and 25 ,

respectively, then pr1rΧ is the term which will be added into the final RSS, and pr 2
rΧ is

thrown out. At the same time, if the absolute values of 1rΧ and 2rΧ at time t are 20−

and 15 , respectively, then 2rΧ will be added into the final RSS, and 1rΧ is thrown out.

This may not make sense at this point because the same observation is assigned to both

44

end masses for two different residual calculations, but, ultimately, when the optimization

is through, the best-fit COEs should ideally cause all of the residuals to be assigned to the

same end mass.

 It is vital to note that this is the point where data sorting also occurs .

As discussed in the preliminary analysis chapter, data sorting relies on comparing

the estimated and observed EC range. So, the data sorting process is really a comparison

of the 1rΧ and 2rΧ residuals. The final sort of the data points is based on the final

iteration of the optimization process. During the optimization process the assignment of

the data points will be switching back and forth between 1m and 2m to try and determine

what minimizes the RSS best, but when the optimization process is complete the data

point assignments are finalized.

 We now have a way of picking which residuals will be represented in the final

RSS. Since it is not known ahead of time which residual will be selected, several new

terms must be defined. These new terms, which are the absolute values of the smaller

residuals found in Equations (46) and (47), are termed final residuals for each observation

i, and are represented as follows: final p component residual,
fpri rΧ , final q component

residual,
fqri rΧ , final w component residual,

fwri rΧ , and, final EC range residual,
rfi

Χ .

 Through a trial-and-error process, it was found that adding a weighting factor to

the EC range residual term,
rfi

Χ , improved performance. Since the data sorting process

was such a crucial part of this research, and since there are three terms for calculating

residuals in the pqw frame, there needed to be a weighting added onto the
rfi

Χ term to

45

ensure it retained its importance. The weighting factor chosen for this research was 10,

so the calculation for the final RSS is given by:

Χ+

Χ+

Χ+

 Χ= ∑

=

n

i rfifwrifqrifpri
RSS

1

2222

*10rrr (48)

where n is equal to the total number of observations.

 This entire process of optimizing and sorting data enables us to determine a final

estimate on the CM orbit, and which end mass is being tracked for each individual

observation. But, before showing any results, we need to discuss how we obtain all of

the observation data. The next section explains the three different sources of observation

data we used for this research and how we handled each type of data.

Sources of TSS Observation Data

 Up to now it has been assumed observation data is readily available and each

individual observation includes the following information: tracking location, time of

observation, azimuth, elevation, and slant range. This assumption is true when dealing

with real-world data, but when dealing with simulated data this is not the case. Since

real-world data is already obtained in the format described above there does not need to

be any explanation as to how to handle this data. However, we also used two different

sources of simulated data for our research. We will cover how each type of data is

converted into the format described previously. Once the data is in this format it is

handled just like real-world data.

46

 The first source of simulated data comes from a simulator we developed

specifically for this research. This simulator is fairly simple because it uses all of the

same assumptions we have already discussed. So, a TSS simulated using this simulator

always maintains nadir orientation, and follows the previously described motion in its

CM COEs.

 We first start this simulator with a known set of true COEs for the CM at a

specific epoch time, t0. Next, an end time and a timestep are selected for the simulation.

We then use equation set (28) to obtain a set of COEs for each timestep after t0 until the

end time. For example, assume t0 starts at time 0, the timestep is 20 seconds, and the end

time is 400 seconds. This means there will be 21 total sets of COEs.

 All of these CM COE sets calculated are then converted into the inertial IJK

frame. The procedure is the same as with the estimated data; i.e. Equations (36)-(39).

Once the CM IJK position vectors are known, we can calculate the end mass IJK position

vectors. In order to calculate these position vectors we have to specify actual tether

length, tether mass, and end-body masses in the simulator. Using this information and

equations (40)-(44) we now have IJK position vectors for each of the end masses.

 The final step of generating an individual position vector observation is to

randomly select one of the end masses to be the observed mass depending on what we are

trying to test. For example, if we want to run a simulation with approximately 50% lower

mass observations and 50% upper mass observations, then we set the lower mass random

percentage value to 50. Then we use a random number generator function in MATLAB

to generate a number between 1 and 100. The MATLAB equation for doing this is

shown next.

47

 100∗= randdatapt (49)

If the randomly generated number equals 50 or below, then the IJK position vector

coordinates for the lower mass are used for that observation; otherwise the upper mass

coordinates are used. This process is then repeated for every observation. This method

does not permit correlated probability from one observation to the next which would be

present in actual operations.

 In addition to the previous time information we also have to specify an actual start

time date. This time date specifies the year, day, hour, minute, and second at which the

simulation starts. The time date allows us to calculate the inertial position of any number

of tracking sites in the IJK frame, as long as the latitude, longitude, and height above

mean sea level are specified. Calculating a tracking site’s inertial position is done as

described previously using equations (11)-(15).

 Next we take our tracking site IJK position vector, RIJK
r

, and our observed IJK

position vector, o
IJK r

r
, and determine the tracking site’s observed IJK slant range vector,

o
IJK ρ

r
:

 Rr IJK
o

IJK
o

IJK
rrr

−=ρ (50)

The next step is to convert the IJK slant range vector, o
IJK ρ

r
, into the SEZ slant range

vector, o
SEZ ρ

r
, using the transpose of the coordinate transformation matrix shown in

equation (16). This transformation is shown next:

() () () () ()

() ()
() () () () ()

∗

∗∗
−

−∗∗
=

o
K

o
J

o
I

sitesite

sitesite

sitesite

o
Z

o
E

o
S

ρ
ρ
ρ

φτφτφ
ττ

φτφτφ

ρ
ρ
ρ

sinsincoscoscos
0cossin

cossinsincossin
 (51)

48

 The last part of obtaining true observations of the data is to convert o
SEZ ρ

r
 into

azimuth, elevation, and slant range values for the specific tracking site. The observed

slant range value, oρ is the easiest to obtain because it is just the magnitude of o
SEZ ρ

r
.

This is shown in the next equation:

 o
SEZ ρρ

r
= (52)

The elevation angle, ε , then is calculated by:

 ⋅
= −

ρ
ρ

ε
Zo

SEZ ˆ
sin 1

r
 (53)

Obviously if this calculated elevation angle is less than zero degrees then the object is

below the horizon and the site cannot see the object, so it is not a valid observation for

that site. Last, calculating azimuth angle requires calculating two azimuth values and then

doing a quadrant check. The two azimuth values are calculated in the next set of

equations.

()

()

∗−
⋅

=

∗
⋅

=

−

−

ερ
ρ

α

ερ
ρ

α

cos

ˆ
sin

cos

ˆ
sin

1
2

1
1

S

E

o
SEZ

o
SEZ

r

r

 (54)

The quadrant check is done as follows:

If 02 >α and 01 >α then 1αα = ; If 02 <α and 01 >α then 1180 αα −°=

If 02 <α and 01 <α then 1180 αα −°= ; If 02 >α and 01 <α then 1360 αα +°=

 Noise must be added to this perfect data to get a realistic test of the data sort and

tether OD algorithm. In order to add realistic errors we need some information about the

49

tracking site. As talked about in the preliminary analysis chapter every tracking site has

some error in its measurements. If it is known what the statistical error is for each of the

three measurement values then these errors can be used in a simulation to add realistic

errors to our perfect azimuth, elevation, and slant range data.

 MATLAB has another random number generator that works for adding realistic

errors to our readings if the tracking site statistics are known. This random number

generator generates a normally distributed random number with a zero mean, and the

standard deviation and variance both equal to 1. The random number generated by this

function can be directly multiplied by the σ1 errors for a site to add realistic error to the

data. The equation used to generate this realistic random error is shown next.

 εσεε ∗+= randnoo (55)

The term randn is the random number generator function in MATLAB and εσ is the

statistical σ1 error for the site’s elevation readings. The same type of equation can also

be used to generate realistic random errors in the observed slant range and azimuth.

 This entire procedure takes simulated COEs and converts it into observation data

with realistic errors. From this point the same procedures as before are used to estimate

the epoch time COEs and sort the simulated data.

 The second source of simulated data used for this research is a high-fidelity tether

simulator program called TETHERSIMTM developed by Tethers Unlimited, Inc.

TETHERSIMTM uses a 4th order Runge-Kutta algorithm for the orbital dynamics

propagation of the satellite, end masses, and tether elements. It uses a more comlex

gravitation model by using an 8th order spherical harmonic model of the geopotential. In

50

addition, it includes a 1st order lunar gravity model. TETHERSIMTM also uses the

International Geomagnetic Reference Field for simulating a geomagnetic field model.

Finally, this simulator accounts for air drag on a TSS by using the MSISE90 Neutral

Atmospheric Empirical Model, but this drag model is only activated if a TSS is below

400 kilometers in altitude. Overall, the main reason for using TETHERSIMTM is to test

the estimation method with a more realistic TSS model. Using this model we can obtain

an idea of how well the COE estimation and data sorting method works when other

affects such as libration, higher-order perturbations and tether tension are added.

For our purposes, TETHERSIMTM was used to provide an output of IJK position

vectors for the end masses of a TSS. We then randomly selected which end mass would

represent a particular observation, and then the randomly selected IJK position vectors

were converted into observed azimuth, elevation, and slant range readings for a specified

tracking site as described previously. We then added error into those readings as

discussed before by using the tracking site’s statistical σ1 errors. Finally, the new

observed azimuth, elevation, and slant range readings were used to estimate the epoch

time COEs and the data sorting was accomplished as previously discussed.

Estimation and Data Sorting Conclusion

 This entire chapter outlines the tools and methods we have used to solve the data

sorting and OD problems for a TSS. The next chapter, Results, describes the specific

51

cases we have attempted to solve using this method. We also analyze the results of these

cases and show the strengths and weaknesses of this methodology.

52

V. Results

 The results from this research show great promise in helping to sort data and

determine estimates of the orbit for the CM of a TSS. In addition, it also shows some

promise for helping to identify an unknown TSS. In order to validate these statements

this chapter shows the results of several specific cases using data from all three sources of

TSS data discussed in the methodology section. The first case analyzed is a baseline case

developed in great detail to ensure the case is well understood. The rest of the chapter

analyzes changes in the key parameters of this baseline case. The variations in these

parameters help to show the strengths and weaknesses of this TSS data sorting and OD

method.

Baseline Case

 One of the key aspects of the baseline case is the TSS parameters are known.

This means the optimization process assumes the masses of the various objects and the

length of the tether are known and are not variables that need to be estimated. There are

several key parameters that make up the baseline case. These parameters, along with the

analysis tools developed for this research, help provide a great baseline for understanding

how well this estimation method works. The first item we set up for this baseline case is

53

the key parameters. The second item includes using the analysis tools to give us an

estimate of how well we expect the methodology to work.

 Baseline Case Parameters.

 The parameters used for the baseline case include specific tether information,

tracking site details, and the orbit.

 The specific tether information used to set up the baseline case include the length

of the tether, the masses of each of the end-bodies in addition to the tether itself, and the

orientation of the tether in space. First, the length of the tether for the baseline case is set

at 4.023km (Purdy et al., 1997:2). The length was set at this value because it is the only

value which can be used to provide a comparison between simulated data and a large

supply of real-world data since TiPS is the only TSS which provides a large source of

real-world data. The mass properties of the TSS are also set to similar values as TiPS;

therefore, the lower mass is 95.3lbs (43.32kg), the upper mass is 22.4lbs (10.18kg), and

the tether mass is 12lbs (5.45kg) (Purdy et al., 1997:2). The final piece of information is

the orientation of the satellite in space. While looking at the baseline case we used the

simulator we developed to analyze the results of the methodology, so the orientation of

the TSS is perfectly nadir-oriented. Later, we will analyze the effects of libration by

using TETHERSIMTM data.

 The tracking site details needed to do a complete simulation of the baseline case

include the location of the site, and the tracking site errors associated with the azimuth,

elevation, and slant range readings. The simulated tracking site used for this baseline

case has the following values for latitude, longitude, and altitude above mean sea level:

54

N°57242.30 , W°21485.86 , and 0.03640km. The tracking site errors simulated for this

tracking site are: km021.0=ρσ , °= 023.0εσ , °= 019.0ασ .

 The final piece of information needed for this baseline case is the true orbit of the

TSS CM at the epoch time, and the source of the observations. The epoch time and the

COEs for the true orbit at the epoch time are listed next:

Epoch time:

Year = 1997 Day = 210 hour = 11 Zulu minute = 30 second = 30.000

COEs:

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

0.70
45.220

0.70
3.65

004.0

7400

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

The source of the data is a random mix of 50% upper mass data and 50% lower mass

data. In addition, the total time and the time step used for the baseline case is 200

seconds with data points every 10 seconds.

 Baseline Case Estimation.

 The first item which needs to be shown is the first guess of the CM COEs. The

Herrick-Gibbs first-guess estimate determined by Equations (10)-(27) at the epoch time is

shown next.

55

CM COEs- 1st Estimate at Epoch time determined by Herrick-Gibbs

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

855.98
16.220

84.41
626.65

023539.0

8.7366

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

However, to demonstrate the robustness of this algorithm, we will assume we have an

even worse first-estimate, so outlined next is the first guess of the CM COEs at the epoch

time.

CM COEs- 1st Estimate at Epoch time

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

0.20
2.190

0.25
3.45

0001.0

7000

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

The next step propagates the actual COEs using equations (28)-(35) for the specified

time period and then determines the actual CM IJK position vectors for those COEs

using equations (36)-(39). After determining the CM IJK position vectors, the actual IJK

position vectors for each of the end masses are determined using equations (40)-(44).

Now that the actual end mass position vectors are known, we randomly selected one end

mass for each observation using our 50% criteria and equation (49). With each

observation being allocated to a particular end mass we then calculated perfect observed

azimuth, elevation, and slant range readings for the specified tracking site using equations

56

(50)-(54). These perfect readings then had error added into them randomly using the

defined statistical tracking site errors and equation (55).

 The process of OD and data sorting begins at this point as defined in the

methodology. First, the observed azimuth, elevation, and slant range readings are

converted back into IJK values using equations (10)-(17). The optimization routine is

then called which does all of the calculations for the propagation of the first-guess COEs.

The first-guess COEs of the CM are propagated over the time period for each particular

observation using equations (28)-(35). Once the estimated COEs of the CM are

calculated for each observation those COEs are converted back into IJK position vectors

and the estimated end mass pqw position vectors are also determined using equations

(36)-(45). The observed IJK position vectors are also converted into pqw position

vectors using equation (45). Once the observed and estimated pqw position vectors are

determined, the residua ls are calculated as described in equations (46)-(47).

 While MATLAB runs the fmincon function on the RSS function calculated in

equation (48), the CM COEs at the epoch time are being refined and the data sorting is

occurring. Once the minimization function is complete, the final estimated COEs are

determined. The final estimated COEs for this particular run of the baseline case are

shown next.

57

CM COEs- Final COE Estimate w/errors in Data at Epoch time

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

538.80
45.220

468.59
309.65

0037208.0

7.7394

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

Considering the very poor initial guess on the initial CM COEs, this is a good estimate.

In fact, the final estimated COEs determined by this process, in general, yield a smaller

RSS than a perfect guess solution when errors are added into the data. That is, the

estimated orbit is a better fit for the corrupted observations than the true orbit. In the case

of dealing with perfect data the estimated COEs were essentially equal to the actual

COEs. The real key to this estimate though, is how well it does for properly identifying

the observations. Figure 6 shows how well a plot of the EC ranges matches up. The ‘x’s

correspond to the EC range observations with error added in them. The lower set of dots

represents the estimated EC range of the lower mass over time. The upper set of asterisks

represents the estimated EC range of the upper mass over time. The ‘+’s represents the

perfect observation with no error added. The perfect observation is the observed object’s

true state at time t. The ‘O’s represent the lower mass estimates determined using perfect

data. The squares represent the upper mass estimates determined using perfect data. The

same convention will be used throughout all of the EC range plots except where noted.

58

Figure 6- Baseline Case Plot of Observed versus Estimated EC Position Vector Magnitudes

This plot matches up very well, and the validation of this plot occurs by comparing the

end mass assignments of the observed data points and the estimated data points. When

this comparison is done, it can be shown that all of the estimated data points have been

assigned to the appropriate end mass.

 Comparing Baseline Case Results and Tracking Site Error Analysis.

 The key for understanding the excellent data sorting results is the analytic

tracking site error analysis. Figure 7 shows the EC range uncertainties for this case. The

uncertainty envelope corresponds to rσ62.3 . This value was selected because the

59

envelope for the upper and lower masses intersect at exactly °28 , which is the lowest

elevation for the observations of this case.

Figure 7- Error Analysis for Lowest Elevation Tracking Data for Baseline Case

For this value of uncertainty, we expect 0.01% (Beyer, 1991:503) of all

observations to lie outside the envelope (which would result in the data point being

tagged to the wrong end body). This means we should ideally achieve 99.99% data

sorting accuracy for this baseline case even at our lowest elevation reading. The higher

elevation observations should have an even higher percentage, but since we are looking at

approximately 100% accuracy we can see why the baseline case did not misidentify any

of the observations.

60

 The baseline case had a total of 21 observations to correctly identify. To test

whether any sorting errors would occur with more data, we ran the baseline case ten

times in a row with different random errors. Running the baseline case ten times gives us

a total of 210 observations, so this is a much larger sample of data points where we can

see if any incorrect identifications occur. The results of doing this large run still gave us

a total of zero misidentifications for all of the runs which helps to validate the usefulness

of the tracking site error analysis tool.

 The results of the baseline case show great promise in data sorting and

determining an estimated set of COEs for a TSS. But, the results shown previously only

apply to one specific case. The next section examines the affects of varying certain TSS

and tracking site parameters. The strengths and weaknesses of the chosen methodology

for solving this problem are highlighted.

Parametric Studies of Different TSS and Tracking Site Parameters

 There are several key parameters that help provide an understanding of the

strengths and weaknesses of this methodology. To show the importance of these

parameters, they will each be discussed and the results of some studies done on each will

be shown. The parameters we are interested in studying include time/number of

observations, and tether length/elevation angle. We will also address separately several

other items which may not be considered parameters but still provide insight into this

61

problem and they include the affects of mixed versus single end mass data,

TETHERSIMTM results, and the unknown TSS.

 Time /Number of Observations Variations.

 One of the weaknesses of this optimization process is that a sufficient number of

data points are required over a certain time period. When analyzing the baseline case by

only changing the amount of time and the number of observations, the problem of not

having enough observations became apparent. Changing the total observation time did

not cause any data sorting problems for the baseline case. However, it is apparent that

the less time an object is tracked the worse the estimated COEs will be. Of more

importance however, is the number of observations. Running the baseline case over a

time period of 100 seconds and obtaining 11 total observations 10 seconds apart, the

results became very poor. The COE estimate was not very accurate, and some of the

observations were inappropriately tagged.

 Due to the limitless combinations of different TSS and time/number of

observations, it becomes difficult to define a timeframe and exact number of observations

required for good results, but after doing many simulation runs, a minimum of 15

observations almost always was needed, and 20 or more observations is recommended.

As stated previously, the timeframe of the observations can vary to some extent but, in

general, the shorter the timeframe the worse the COE results, so longer timeframes are

recommended.

62

 Tether Length/Elevation Angle Variations.

 The main conclusion of this section is that, in general, the longer a tether, the less

likely misidentification will occur with mixed data. But, the longer a tether is, the less

likely it is that a tracking site will receive mixed data.

 The tracking site error analysis tool illustrates the effect of tether length.

Compare Figure 7 for a 4km tether with Figure 3 for a 2km tether. Both of these figures

have tracking sites with the same errors. The only difference in the two is the tether

length. This shows that a 2km tether has a much greater chance of misidentifying an

observation.

 The tracking site error analysis was verified by feeding in a perfect guess for the

COEs and comparing the number of observations correctly identified with the number of

observations predicted to be identified correctly by the tool. Using over a thousand data

points for this validation technique the final number of correctly identified observations

was always within %1± of the predicted value. For example, figure 3 predicts for a 2km

TSS under the conditions shown at approximately 8.5 degrees elevation we should

receive 84% correctly identified objects. Performing a data sort for observations near 8.5

degrees, the percentage obtained for correctly identified objects using 1050 data points

was 84.1%.

 As discussed before, this analysis tool provides a best-case confidence level. So,

it should generally be assumed that results obtained using less-than-perfect COEs will

yield lower results. As the estimated COEs become farther away from the truth, then the

confidence level drops even more so obtaining estimated COEs which are as close to the

truth as possible is important to yield results close to the maximum confidence level.

63

Single Object Only Data

 While other TSS filter methods rely on having data from only one object, this

estimation method assumes in advance that we do not know if we have data all from one

end body. Because of this assumption, when we do have data all from one end mass of a

TSS, this sometimes causes a weakness to show up in the method. The weakness can

show up in one of two ways. First, the optimization method may ‘lock’ onto the

completely wrong object and assign all of the data points to the wrong end mass.

Another common problem is that the optimizer will try and run the estimated positions of

both end masses through the observations. This problem is illustrated in Figure 8.

Figure 8- Bottom Mass Only Data for Baseline Case

64

 Even though all of the data points are observations of the lower mass, the general

optimization has tried to assign the observations to a mix of lower and upper mass

observations. The best way to handle this problem is to do two additional optimization

runs. The first additional run calculates all residuals by always assuming the

observations are from the upper mass, and the second additional run assumes all of the

observations are from the lower mass. What this allows us to do is compare the three

RSS values from all three runs. We then assign the final solution to the lowest of the

three RSS values. Figure 9 shows the best of the three solutions for the previous case of

all lower end mass observations on our baseline case.

Figure 9- Bottom Mass Only Data for Baseline Case Showing Best of 3 Optimizations

65

 This figure shows that the perfect and imperfect data observations have all been

assigned to the lower mass, which is the correct solution. One problem with doing these

additional optimization runs is the computing time required increases because now three

optimization runs are done instead of one, but there is no good way to get around this

problem. Also, the tracking site errors can cause problems with this because it still may

assign observations incorrectly if the error is large enough. Therefore, using tracking

sites’ with smaller errors and higher eleva tion viewing angles is important for accurate

results.

 One benefit of single-object only data for the known TSS case is the number of

observations required decreases in some cases. This variation of the known TSS allowed

the optimization to obtain fairly good results even with as few as 5 observations.

However, this only applies to the known TSS case. As will be shown later the unknown

TSS case still requires many observations to yield accurate results.

TETHERSIMTM Results

 As discussed previously in the sources of data, TETHERSIMTM is a tether

simulation program that generates more realistic tether motion. The purpose for testing

this data is to see how additional factors such as libration and higher-order perturbations

affect the optimization process. The TETHERSIMTM data analyzed is similar to the

baseline case in that it is a 50% mix of data from both end masses and the tether

properties are the same as the baseline case. As shown in Figure 10 the data sorting

66

results for TETHERSIMTM are still very good as long as the tracking site errors remain

reasonable.

Figure 10- TETHERSIMTM Known TSS Mixed Data Results

The RSS results for TETHERSIMTM data are higher than the RSS results from the

simulator developed in-house. The main reason for this is because the libration angles

now essentially make the tether look ‘shorter’ than it really is. As can be seen in the

figure, even the perfect observations are not completely aligned with the estimated

solution of that data. Although there are still significant residuals (because the model in

the estimator does not match the more sophisticated model used to generate the data), all

all of the data points have been assigned properly.

67

The libration angles for this particular case of TETHERSIMTM data were

approximately 5-7 degrees for both in-plane and out-of-plane libration angles. The

results from this case help to show that as long as libration angles are reasonable then this

estimation method is effective.

Unknown TSS

 After analyzing numerous known TSS cases, this estimation method shows great

promise for doing data sorting and OD for known TSS’s. However, the other important

part of this research is to see how well this methodology applies to the unknown TSS

case. We will look at an unknown TSS similar to the baseline case, and then we will also

look at the results of a longer unknown TSS case where the data comes only from one

end-mass. But, first, we investigate what happens when this optimization method is

applied to a single-body satellite.

 Single-body Satellite System.

 The reason for applying this methodology to a single-body satellite system is we

want to ensure that a satellite which is not a TSS is not identified as a TSS. This was

accomplished by using the in-house simulator to generate observations for a satellite that

has a tether length of zero. The simulator used the same COEs and the same tracking site

errors as the baseline case. The estimation process gave back very good estimates of the

COEs for the CM for this case, and, more importantly, it identified that the CM was

approximately zero kilometers away from the observed object. This distance to the CM

68

from the observed object is the key to identifying whether a satellite is part of a TSS or

not. If the distance is close to zero it can be assumed that the satellite is a single-body

satellite. However, there is one problem with this assumption. If a TSS has a large

portion of the mass all in one end-body such that the CM is very near that mass and if

that mass happens to be the observed end mass then it will look like this is a single-body

satellite. There is nothing which can be done in this case because the observed end mass

is essentially traveling on a normal Keplerian orbit, and unless the other tiny mass is

observed there is no way to tell that the larger mass is part of a TSS.

 One other problem which might occur with a single-body satellite depends on the

tracking site errors. If the errors are large enough the optimization method may try and

assign the observations to multiple end masses and it may say the single-body satellite is

a short TSS and that both end masses have been observed. This is why reducing tracking

site errors is important for properly identifying TSS.

 Unknown Baseline Case TSS.

 When analyzing an unknown TSS using this methodology it is much better to

obtain observations from both end masses if at all possible. By observing both end

masses it becomes much easier to get a good estimate of the length of the tether. This is

demonstrated in Figure 11 by taking the baseline case and saying it is an unknown TSS.

69

Figure 11- Baseline Case Unknown TSS Results

 The determined tether lengths of the perfect observations and imperfect

observations are 4.0231km and 3.6117km, respectively. Considering the actual length of

the tether is 4.023km these results are extremely good. In addition, all of the observations

were assigned to the correct end mass, and the COE results even for the imperfect data

were still fairly good as shown next.

70

CM COEs- Final COE Estimate for Data with Errors for Unknown Baseline Case TSS

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

944.79
45.220

06.60
309.65

0036867.0

2.7394

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

 One thing to note about the COE results are that the argument of perigee and true

anomaly terms are not very close to the actual values which are both °70 . The orbit is

nearly circular, so perigee is hard to observe. However, the sum of the two values for the

estimate and the actual values is equal to °140 . The more total time and data used for the

unknown case the closer the COEs will be to the truth. Of course, this may also make it

necessary to use multiple tracking sites to obtain enough good observations over enough

time to get as accurate an estimate as possible.

 Single End Mass Observations for an Unknown TSS.

 The last scenario we want to look at to analyze the unknown TSS is to look at

what happens when all of the observed data of an unknown TSS is from only one of the

end masses. Since this is more likely to occur with longer tethers than shorter tethers we

chose to analyze a TSS that has different tether parameters, but the orbit is the same as

the baseline case. A longer time frame of data is needed to obtain accurate results with a

single-mass only observed unknown tether, so the time parameters were set to 400 total

seconds with data points taken every 20 seconds. The tether parameters for this new case

include the following values: m1 and m2 are of equal mass and the tether is 20km long.

This means the CM of the TSS is 10km away from each end mass. All of the observed

71

data was taken from the bottom mass for this case. The results of analyzing this case are

shown next in Figure 12.

Figure 12- 20 km Unknown TSS Results

The most important item to note about this figure is that with perfect and

imperfect data all of the observations have been correctly assigned to the lower end mass.

The next analysis of this case comes from looking at the estimated COE and tether

parameter results. The final estimated COEs are still fairly accurate considering how

little is known about the TSS.

72

CM COEs- Final COE Estimate for Data with Errors for 20km Unknown TSS

()
()
()
()
()

()

kmP
kgm

kgm
t
t

t
ti

te
kmta

cm

cm

cm

cm

cm

cm

227.15
646.10

4218.3
517.61

45.220

484.78
305.65

00406.0
7406

2

1

0

0

0

0

0

0

=
=

=
°=
°=Ω

°=
°=

=
=

ν

ω

 The estimated argument of perigee and true anomaly add up to the same value as

the actual argument of perigee and true anomaly of °140 . For this case, the masses of

the two bodies and the tether length are unobservable individually. The only observable

quantity is the distance of the observed body to the CM. There are an unlimited number

of combinations of tether lengths and masses which can provide the correct distance to

the CM in this situation, so these numbers in and of themselves do not mean anything,

but it is the combination of the data which provides the important information. Using

equation (40) to determine the distance from the CM to m1 we find this distance is

11.523km. In analyzing the perfect data, the distance is found to be even closer to the

truth at 10.001km.

 The unknown TSS case with only data from one end mass is by far the most

difficult case to analyze. The results for the case shown are ve ry good, but there are also

times when the results have not been nearly as spectacular using this method. In order to

come up with accurate results for this situation it is extremely important the data be as

73

accurate as possible. In addition it definitely takes more observations and time to do

good data sorting and OD.

Real-World TiPS Results

 Analyzing real-world data presents additional problems which do not appear

when dealing with simulated data. The most obvious difference with real-world data is

that we have no truth to compare the results. Specifically, there is no way of knowing if

the data sorting has occurred properly. As far as the OD process goes, we can compare

the results with long-term estimates of the orbit of TiPS, but this only gets us an

approximate orbit.

 One other important factor when dealing with real-world TiPS data deals with the

CM of TiPS. There is a dipole antenna sewn into the tether itself for TiPS which is less

than 100 meters away from the CM. This causes problems because the tracking sites

occasionally obtain tracking data inadvertently from this dipole antenna. This means we

now have 3 separate objects which must be taken into account. In addition, due to the

actual masses of each end body of TiPS the CM is less than 1 kilometer away from the

lower end mass. Using our tracking site error analysis tool to estimate the confidence

level of a particular set of observations, we observe that the dipole antenna may cause

significant problems for data sorting. Figure 13 shows a plot of sigma values relating to

TiPS and a tracking site with the same errors as given before. The CM actual EC range

and sigma limits have been included in this figure as solid dots.

74

Figure 13- TiPS Tracking Site Error Analysis

This figure shows that even with observations at approximately 40 degrees

elevation there is only an 84% chance of correctly identifying the lower mass and CM

observations and this is with a perfect COE estimate. This means the chances of telling

the dipole antenna from the lower mass are even lower since we do not know the actual

COEs.

We analyzed real-world tracking data for TiPS taken in July 1997. We chose this

specific set of tracking data because of the favorable tracking site viewing geometry.

Even with the favorable geometry for this tracking site pass, the highest elevation angles

obtained from the site were approximately °67 , while the lowest elevation angle was

75

approximately °3 . Many other tracking site passes looked at had much worse viewing

geometries than this pass. The EC range plot for this data has a couple of differences

from previous EC range plots. The ‘x’ locations for the observations now include 3 rσ

bars to show the area where the actual value is most likely located. These sigma bars are

not a true representation of the real tracking site errors, but are estimates instead. The

estimated CM of TiPS is shown in this figure as the ‘O’. The estimated lower and upper

mass locations are indicated by their appropriate symbols as shown in the legend.

Figure 14- TiPS EC Position Vector Magnitude Plot

This figure shows how well the estimation process has done even with the real-

world difficulties mentioned previously. The locations of the ‘x’s compared to the

76

estimated locations of the end masses and the CM match well, especially for the higher

elevation angle observations indicated by the shorter covariance bars. The chart seems to

indicate all of the observations taken before 500 seconds are observations of the lower

mass. After the large time gap in the middle is when it appears the tracking site started to

observe the CM and the upper mass. The results of this figure show how important data

sorting is when dealing with a TSS because it is obvious that not all of the observations

are of the same end mass, even though all of the data was supposed to be from the lower

end mass.

Also, looking at the figure, the very last ‘x’ looks like it is nowhere near the

estimate or the rest of the data points, but looking at the upper sigma limit for that

particular observation it may just be a very bad reading on the lower end mass because

the upper limit is near the estimated location of the lower end mass. This is a great

example of how low elevation data can potentially cause problems for sorting

observations. The next part of analyzing the solution obtained by this optimization is to

look at the COEs for the estimate.

CM COEs- Final Estimate at Epoch time for Real-World TiPS Data

()
()
()
()
()

() °=
°=Ω

°=
°=

=

=

93.142
48.144

67.357
423.63

0043427.0

2.7396

0

0

0

0

0

0

t
t

t
ti
te

kmta

cm

cm

cm

cm

cm

cm

ν

ω

77

These COE results are consistent with long-term plots of TiPS data, especially when

looking at how eccentricity changed slowly over time for TiPS and how the argument of

perigee did not seem to change over time at all.

 One more item which can be inferred from the plot of the TiPS data is it appears

as long as a tracking site continues to take observations it usually tracks the same end

mass. The times when it switches to one of the other objects usually occur after a time

lapse. This might either occur because the site temporarily loses the object or the time

interval is built in for some other reason. The other case where the data switching seems

to occur is the very low elevation data case that corresponds to the last set of three

observations. For example, the last three observations look like they are mass 1, CM, and

then mass 1 again. Whether this is due to errors or tracking the different object is

unclear, but this also helps to illustrate how low elevation data causes problems for

tracking a TSS.

 Overall, the results of analyzing real-world TiPS tracking data shows that this

method definitely has promise for helping to sort out observations and determine a decent

estimate of the COEs for the CM of a TSS.

78

VI. Conclusion

 Data sorting and orbit determination of tethered satellite systems is a difficult

problem. There are many complications which can arise when dealing with a TSS, but

this research has helped to show how optimization can potentially be used to help solve

the data sorting and OD problem. There are several operational implications to be taken

away from this research. In addition, there is also room for future research on this topic.

Both of these items are discussed next to help show the way ahead for further

understanding of TSS’s.

Operational Implications

 There are three important operational implications to be taken away from this

research. First, and foremost, it is fairly apparent that accurate data sorting and OD for

TSS requires more total observations and more accurate observations than normal single-

body satellites. In fact, where a decent COE estimate for a single-body satellite can be

obtained using only 2 or 3 observations using techniques such as Herrick-Gibbs, this is

probably not possible for tethered satellites. The method used in this research tells a TSS

apart from a single-body satellite by analyzing the differences in the motion of the CM to

the motion of the observed object(s). In order to obtain an accurate estimate there needs

to be a significant amount of data in order to tell the two motions apart.

79

 The second important implication is that real-world tracking site errors have to be

accounted for when discussing the possibility of identifying TSS’s. If tracking site errors

are very large, it might not be possible to sort the data or obtain accurate COE estimates.

It does not do any good to only look at perfect or near-perfect simulated data if the real-

world data is so bad that no accurate information can be obtained from it. The more

accurate a tracking site is, especially in elevation angle readings, the better chance there

is of observing the difference in the motion of a single-body satellite versus a TSS. The

tracking site error analysis tool is an excellent tool to help identify the limits of a tracking

site’s data sorting capabilities. In addition, tracking site errors also play a role in

determining how well the COEs can be estimated.

 Third, any methods of trying to obtain accurate COE estimates of the CM for a

TSS need to account for possible mixed data. It does not do any good to just assume all

tracking site data comes from one end mass when in reality it has definitely been shown

that this is not the case. Any further research into optimization methods or filter methods

concerning TSS’s should take note of this important fact because the results yielded will

most likely be poor if the data sorting problem is not taken into account.

Future Research

 A future in which TSS’s provide unique capabilities in space is approaching

rapidly. TiPS is just the beginning as far as tethered systems are concerned, and therefore

further research should be undertaken to help understand the unique nature of these

80

satellite systems. Specifically, it is important to understand how to obtain accurate COEs

for TSS’s because as more tethered systems are deployed in space the harder it will be to

keep track of everything unless accurate COEs are determined.

This research shows good promise for using optimization as a method to help

identify accurate TSS COEs. One area of potential future research deals with the

optimization process. Looking at other optimization methods or different optimizer tools,

such as a FORTRAN optimizer, may help provide an understanding of what methods

work best. The MATLAB optimization process has been shown to yield fairly good

results for the cases analyzed, but since there are so many different cases to potentially

analyze there is no way to say this optimization tool is the best.

Another area of further research for data sorting and OD of TSS’s is to try and

take into account tether libration. This research analyzed the data by always assuming

the nadir-oriented case. The TETHERSIMTM and real-world results show this is a good

starting point to analyze tethered systems which have fairly low libration angles.

However, it may become necessary to account for larger libration angles by adding in

libration angles as a part of the optimization routine. Of course, this will increase the

optimization solution space and this may cause problems, but it is worth researching

further. In addition, if a future method can account for libration and determine decent

estimates on the libration this may help provide insight into the attitude dynamics of the

TSS as well as the orbital dynamics.

Finally, since there is so little real-world TSS data doing further research with the

higher- fidelity tether simulator programs, such as TETHERSIMTM becomes an important

way to simulate and obtain more realistic data. Further research was not done using more

81

TETHERSIMTM data because it takes a large amount of time to fully understand how to

use a simulator as complex as TETHERSIMTM. That is why only a couple of baseline

cases were analyzed using this type of data. If more cases can be developed in this

simulator, or another tether simulator program, it may help provide more insight into the

best way to handle data sorting and OD for TSS’s.

Understanding how to sort observations and obtain accurate COEs for a TSS has

real-world operational impact. This is why further research concerning these problems

should be continued. Without a more in-depth understanding of how to accomplish these

tasks, as more tethered systems are deployed in space, this could potentially cause real-

world problems. This research has helped provide a step in the right direction for

understanding data sorting and OD for TSS’s, but further research is definitely warranted.

82

Appendix: Primary MATLAB Programs

%%
%%%%%%
% Capt Mark Faulstich- AFIT/ENY
% TSS data sorting & OD Final Optimization Program
% Final Version- 6 February 2004
%%
%%%%%%
clear all % Clears all variables in memory
format short g %Sets screen output format
warning off MATLAB:divideByZero % Turns off MATLAB divide by zero warning
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Global Variable Declarations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global rpqw_est rm2pqw_est rm1pqw_est rm1ijkest rm2ijkest rijk_est estdatapt calccmRSS
ConCM compareperfectRSS UNKSS dtr rtd J2 mu RE tetherparameters rijkdatapt
rijkdataptperfect IJKtimes IJKtimesperfect calcbtmRSS calctopRSS
%%
% Source of Observation Data (Datasource)
% 1 = in-house data generator
% 2 = TETHERSIM data
% 3 = Real-World TiPS data
%%%
Datasource = 1;

%%%
% Variable which decides if you actually want
% to optimize the imperfect data or not
%%
evalimperfectdata = 1;
% 1 = optimize imperfect data
% 0 = do not optimize imperfect data

%%
%%%%%%%%%%%%%%%
% Set certain parameters
% If the source of the data is the in-house generator
% or TETHERSIM
%%
%%%%%%%%%%%%%%%
if ((Datasource == 1) | (Datasource == 2))
 lowerpct = 100; % percentage of data points that are lower
 upperpct = 100; % lowerpct - upperpct is the percentage of upper mass observations
 setseed = 1; %sets whether a seed is used for the rand function
 % 0 = no random seed set
 % 1 = random seed set

83

 askforsite = 1;
 % 1 = ask for user input to decide which site data to evaluate
 % 0 = hardwire in site data to evaluate
 evalperfectdata = 0; % sets whether to evaluate perfect data
 % 1 = optimize perfect data
 % 0 = do not optimize perfect data
 if setseed == 1
 randn('seed',25); % seed used for randn
 rand('seed',2500); % seed used for rand
 end
 if askforsite == 0
 sitetoeval = 399;
 end
end

%%
% On off values which set certain parameters
% needed in the program
% 1 = value is active
% 0 = value is inactive
%%
UNKSS = 1; % Sets whether the parameters of the Satellite System are known in advance
(global variable)
% 0 = Satellite System Parameters known in advance
% 1 = Satellite System Parameters are unknown

EllEarth = 1; % Sets whether calculations are done with an elliptical Earth model instead of
spherical
% 0 = Calculations done using spherical Earth model
% 1 = Calculations done using elliptical Earth model

CalcEstOrbit = 0; % Sets whether the initial CM COE estimate is calculated from the observations
or an estimate is given
% 0 = An estimate is given in the program
% 1 = Calculate an initial estimated orbit using Herrick-Gibbs

ConCM = 0; % Sets whether to check if any of the data points are from the CM
% This is useful for real-world TiPS data because some observations come from the dipole
antenna
% 0 = does not check if any observations are the CM
% 1 = does check if any observations are the CM

CalcGrndtrack = 1; % Sets whether to calculate and plot the ground track of the data
% 0 = do not calculate the ground track of the data
% 1 = calculate the ground track of the data

Plotsigmabars = 1; % Sets whether to plot 3 sigma bars for imperfect data observations for the
EC range plot
% 0 = do not plot 3 sigma bars
% 1 = plot 3 sigma bars for imperfect data

%%
%%%%%%%%%%%
% This next parameter sets whether to do an optimization

84

% over the CM first, and then proceed to do optimizations
% from there. It also still does the normal optimizations
% so there are a total of 7 optimizations done if
% this variable is turned on.
% This sometimes helps identify
% single-body satellites or helps with known TSS's to get
% even better estimates.
% WARNING!!!!!- This setting sometimes hurts unknown TSS
% identification, especially for shorter unknown tethers
% with single-mass only data, and shorter timeframes.
% Sometimes it is useful to try this optimization
% with this setting off and on and then
% compare the results by hand.
%%
%%%%%%%%%%%%%
CMoptimizationfirst = 0;
% 0 = do not do a set of CM optimizations
% 1 = do all 7 different types of optimizations

%%
%%%%%
% Global Conversion Factors and Constants
%%
%%%%%
dtr = pi/180; % converts degrees to radians
rtd = 180/pi; % converts radians to degrees
J2 = 0.00108263; % Dimensionless J2 geopotential coefficient
mu = 3.986032e5; % Earth Gravitational Parameter (km^3/sec^2)
RE = 6378.165; % Equatorial radius of the Earth (km)
Ae = RE;
if EllEarth == 1
 %%%
 % Earth elliptical model constant
 % obtained from
 % Fundamentals of Astrodynamics
 % by Bate et al.- p. 94
 %%%
 Ee = 0.08181; % Earth Eccentricity needed if using elliptical Earth model
 f = 1/298.30; % flattening of the earth quantity used to do ground track obtained from Escobal
else
 Ee = 0; % Earth eccentricity if using spherical Earth model
 f = 0; % flattening of the Earth if spherical Earth
end

%%
%%%%%%%%%%%%%%%
% Actual Tether parameters-
% Always needed for UNKSS = 0
% Always needed for Datasource = 1
%%
%%%%%%%%%%%%%%%
m1 = 1; %43.32; % lower body (mass 1) mass (kg)
m2 = 1; %10.18; % upper body (mass 2) mass (kg)
tethermass = 5.45; % mass of the tether (kg)

85

ro = 20; %4.023; % length of the tether (km)
% Calculate distance of both end masses from the CM
distancem1 = (m2*ro + tethermass*ro/2)/(m1 + m2 + tethermass); % m1 distance to CM
distancem2 = ro - distancem1; % m2 distance to CM
'tetherparameters = [m1, m2, tethermass, ro, distancem1, distancem2]'
tetherparameters = [m1, m2, tethermass, ro, distancem1, distancem2]
tetherparameterstemp = [tetherparameters];

%%
%%
% Tether Parameters Guess needed for UNKSS = 1
%%
%%%
m1guess = 1; %kg
m2guess = 1; %kg
tethermassguess = 0; %kg
roguess = 0; %km

%%
%%%%%%%%%%%
% Set up the first estimate if not calculating the estimate
% from the observations
%%
%%%%%%%%%%%%
if CalcEstOrbit == 0
 aguess = 7000; %km
 eguess = 0.0001;
 iguess = 45.3; %deg
 wguess = 25; %deg
 Capwguess = 190.2; %deg
 taguess = 20; %deg
 if UNKSS == 1
 'COEguess = [a, e, i, w, Capw, v, m1, m2, ro]'
 COEguess = [aguess, eguess, iguess, wguess, Capwguess, taguess, m1guess, m2guess,
roguess]
 COEguess2 = [aguess, eguess, iguess, wguess, Capwguess, taguess];
 else
 'COEguess = [a, e, i, w, Capw, v]'
 COEguess = [aguess, eguess, iguess, wguess, Capwguess, taguess]
 COEguess2 = COEguess;
 end
end

%%
%%%%%%%%%%%%%%%%
% Set the options for the optimization and
% Set the lower and upper bounds for the optimization routine
% depending on whether the satellite system parameters are known
%%
%%%%%%%%%%%%%%%%%
if UNKSS == 1
 % bounds are [a, e, i, w, Capw, ta, m1, m2, ro]

86

%%
%%%%%%%%%%%%%%%
 % w, Capw, and ta bounds go below 0 deg and above 360 deg
 % because if they do not sometimes the program can get 'stuck'
 % at 0 or 360 degrees because it can't go any farther.
 % These values are adjusted after the optimization is complete
 % so they are between 0 and 360 degrees

%%
%%%%%%%%%%%%%%%%

%%
%%%%%%%%%%%%%%%%
 % if the m1 and m2 lower bounds are set to 0 this sometimes
 % causes divide by zero type issues

%%
%%%%%%%%%%%%%%%%
 lb = [6400; 0; 0; -360; -360; -360; 1e-010; 1e-010; 0];
 ub = [57440; 0.9; 90; 720; 720; 720; 1000; 1000; 1000];
 lb2 = [6400; 0; 0; -360; -360; -360];
 ub2 = [57440; 0.9; 90; 720; 720; 720];
else
 % bounds are [a, e, i, w, Capw, ta]
 lb = [6400; 0; 0; 0; 0; 0];
 lb2 = lb;
 ub = [57440; 0.9; 90; 720; 360; 720];
 ub2 = ub;
end
% options just sets the main fmincon options needed for the optimization
options=optimset('LargeScale', 'off', 'MaxFunEvals', 10000, 'MaxIter', 10000, 'display', 'off');

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain information about all possible tracking sites to include
% Latitude, Longitude, altitude, and statistical tracking site errors
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[numbersensors, sensorlats, sensorlongs, sensoraltitudes, sensorlatsrad, sensorlongsrad,
sigmasrall, sigmaeall, sigmaeallrad, sigmaaall, sigmaaallrad, sensorid] = sensorinfo;

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain observation data based on what the data source is
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Datasource 1 is the in-house
% data generator
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if Datasource == 1

87

 % Generate IJK position vector data using in-house simluator

%%
%%%%%%%%%%%%%%%%%%%
 % Actual Orbit parameters

%%
%%%%%%%%%%%%%%%%%%%
 asim = 7400; % km
 esim = 0.004;
 isim = 65.3; % deg
 wsim = 70.0; % deg
 Capwsim = 220.45; % deg
 tasim = 70.0; % deg
 'COEsim = [a, e, i, w, Capw, v]'
 COEsim = [asim, esim, isim, wsim, Capwsim, tasim]

%%
%%%%%%%%%%%%%%
 % Time parameters needed for Datasource = 1

%%
%%%%%%%%%%%%%%
 timestep = 20; % time step (sec) used to generate additional COEs
 totalnumseconds = 420; % total seconds to generate additional COEs
 starttime = 97210113030.000; % actual start time at time t0
 % in the format YYDDDHHMMSS.SSS
 % Generate an array of timesteps to generate COEs
 counter0 = 0; % place holder counter
 for counter1 = 0:timestep:totalnumseconds
 counter0 = counter0 + 1;
 COEtimes(counter0) = counter1; % array of COE times
 end

%%
%%%%%%%%%%%%%
 % Propagate the initial COEs

%%
%%%%%%%%%%%%%
 [AllCOEs, AllCOEsrad, endcount] = COEpropagator(COEsim, COEtimes);

%%
%%%%%%%%%%%%
 % Convert COEs into Earth-centered pqw position vectors

%%
%%%%%%%%%%%%
 [rpqw_out] = coe2rpqw(endcount, AllCOEsrad);

%%
%%%%%%%%%%%%%%%%%%
 % Convert from r in the pqw frame to the Earth-centered ijk frame

88

%%
%%%%%%%%%%%%%%%%%%
 [r_sat_ijk] = pqw2ijk(rpqw_out, AllCOEsrad, endcount);

%%
%%%%%%%%%%%%%%%%%%%%%%%
 % Determine IJK position vectors of end masses relative to CM assuming
 % nadir orientation of the TSS

%%
%%%%%%%%%%%%%%%%%%%%%%%%
 [rm1ijk, rm2ijk] = calc_r_endmasses(r_sat_ijk, tetherparameters, endcount);

%%
%%%%%%%%%%%%%%%%%%
 % Pick which end mass is the observed mass

%%
%%%%%%%%%%%%%%%%%%
 [rijkdataptperfect, obs] = pickrandom(r_sat_ijk, rm1ijk, rm2ijk, endcount, lowerpct, upperpct);
 IJKtimes = COEtimes;
end % end of acquiring IJK observation data from in-house simulator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Datasource 2 is the TETHERSIM
% data generator
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if Datasource == 2
 filename = 'TiPS copy.out'; % name of TETHERSIM data file
 tethersimfiletype = 1; %specifies the style of TETHERSIM data file
 starttime = 97212230000.000; % actual start time at time t0
 % in the format YYDDDHHMMSS.SSS

%%
%%%%%%%%%
 % Obtaining TETHERSIM data and picking random data pts.

%%
%%%%%%%%%
 tethersimdata = importdata(filename);
 totalcount = size(tethersimdata,1);
 for datacounter = 1:totalcount

%%
%%%%%%%%%%%%%%%%%%%
 % TETHERSIM data can be outputted in various formats
 % the two formats here are the two formats used to generate data
 % more formats are possible, but the important thing is to know
 % where the IJK vectors are located in the data

%%
%%%%%%%%%%%%%%%%%%%

89

 if tethersimfiletype == 0
 tsimtime(datacounter) = tethersimdata(datacounter,1);
 r2(datacounter,:) = [tethersimdata(datacounter,2)/1000,
tethersimdata(datacounter,3)/1000, tethersimdata(datacounter,4)/1000];
 r1(datacounter,:) = [tethersimdata(datacounter,5)/1000,
tethersimdata(datacounter,6)/1000, tethersimdata(datacounter,7)/1000];
 else
 tsimtime(datacounter) = tethersimdata(datacounter,1);
 r2(datacounter,:) = [tethersimdata(datacounter,18)/1000,
tethersimdata(datacounter,19)/1000, tethersimdata(datacounter,20)/1000];
 r1(datacounter,:) = [tethersimdata(datacounter,21)/1000,
tethersimdata(datacounter,22)/1000, tethersimdata(datacounter,23)/1000];
 end
 if datacounter == 1
 time(datacounter) = 0;
 else
 time(datacounter) = tsimtime(datacounter) - tsimtime(1);
 end
 r1mag(datacounter) = sqrt(r1(datacounter,1)^2 + r1(datacounter,2)^2 + r1(datacounter,3)^2);
 r2mag(datacounter) = sqrt(r2(datacounter,1)^2 + r2(datacounter,2)^2 + r2(datacounter,3)^2);
 end
 if time(1) == time(2)
 % TETHERSIM files sometimes have two of the same readings at time 0
 for counter = 2:totalcount
 rm1ijk(counter-1,:) = [r1(counter,:), r1mag(counter)];
 rm2ijk(counter-1,:) = [r2(counter,:), r2mag(counter)];
 IJKtimes(counter-1) = time(counter);
 end
 totalcount = totalcount - 1;
 else
 for counter = 1:totalcount
 rm1ijk(counter,:) = [r1(counter,:), r1mag(counter)];
 rm2ijk(counter,:) = [r2(counter,:), r2mag(counter)];
 IJKtimes(counter) = time(counter);
 end
 end
 endcount = totalcount;
 [rijkdataptperfect, obs] = pickrandom2(rm1ijk, rm2ijk, endcount, lowerpct);
end % end of acquiring IJK observation data from TETHERSIM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Datasource 3 is Real-world data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if Datasource == 3

%%
%%%%%%%%%%%%%%
 % Read in the datafile

%%
%%%%%%%%%%%%%%
 filename = 'sensor334.xls';
 filetype = 1; % filetype = 1 if file is .xls, or 0 if a text file

90

 [totalcount, sensor, actualtime, IJKtimes, azimuth, elevation, slantrange] =
acquiredata(filename, filetype);
 starttime = actualtime(1);
 endcount = totalcount;

%%
%%
 % Convert azimuth, elevation, slantrange to
 % ro in the sez frame

%%
%%
 [rosezobs] = azelslant2sez(sensor, endcount, azimuth, elevation, slantrange);
end

%%
%%%%%%%%
% Calculate Actual times using starttime and IJKtime for
% Datasource = 1 or 2
%%
%%%%%%%%
if ((Datasource == 1) | (Datasource == 2))
 [actualtime] = Calculateactualtime(starttime, IJKtimes, endcount);
 IJKtimesperfect = IJKtimes;
end
%%
%%%
% Calculate Greenwich Sidereal Times for all of the
% corresponding actual times
%%
%%%%
[GSTtimes] = CalculateGSTtime(actualtime, endcount);
%%
%%%%%
% Compute Earth-Centered Inertial IJK coordinates
% for all of the trackings sites
%%
%%%%%
[Rsensors, LSTall] = computesensorR(sensorid, Ee, GSTtimes, endcount, numbersensors,
sensorlatsrad, sensorlongsrad, sensoraltitudes);
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert from ro SEZ coordinates to ro IJK coordinates for Datasource = 3
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if Datasource == 3
 [roijkobs] = sez2ijk(sensorid, rosezobs, endcount, numbersensors, sensorlatsrad, LSTall);
 [rijkdatapt] = roijk2rijk(roijkobs, endcount, numbersensors, Rsensors);
 endcount2 = endcount;
 GSTtimes2 = GSTtimes;
end
%%
%%%%%

91

% Calculate Azimuth, elevation, and slant range data
% for Datasource = 1 or 2
%%
%%%%%%
if ((Datasource == 2) | (Datasource == 1))
 %%
 % Convert from rijkdataptperfect to
 % roijkdataptperfect
 %%
 [roijkdataptperfect] = rijk2roijk(rijkdataptperfect, endcount, numbersensors, Rsensors);
 %%
 % Convert from roijkdataptperfect
 % to rosezdataptperfect
 %%
 [rosezdataptperfect] = roijk2rosez(roijkdataptperfect, endcount, numbersensors, sensorlatsrad,
LSTall);
 %%
 % Convert from rosezdataptperfect
 % to az, el, slant readings for all sites
 % which can actually see the object
 %%
 [allsensordataperfect, trackingsite, trackercount, totalcount] = rosez2azelslant(IJKtimes,
actualtime, rosezdataptperfect, endcount, numbersensors);

%%
%%%%%%%%
 % ask for site to optimize data for if askforsite = 1

%%
%%%%%%%%
 if askforsite == 1
 [sitetoeval] = picksite(trackingsite, trackercount);
 end
 [GSTtimes2, R1sensor, LSTsensor, sensor, endcount2, azimuth, elevation, slantrange,
actualtime, IJKtimes, tracknumber] = getsitedata(GSTtimes, Rsensors, LSTall, sitetoeval,
totalcount, allsensordataperfect);
 for counter = 1:numbersensors
 if sensor == sensorid(counter)
 sensoridnum = counter;
 end
 end

%%
%%%%%%
 % add realistic tracking site errors to the data

%%
%%%%%%
 [badaz, badel, badslant] = messupdata(endcount2, azimuth, elevation, slantrange,
sensoridnum, sigmasrall, sigmaaall, sigmaeall);
 for counter = 1:endcount
 observed = obs(tracknumber);
 end
 [rosezobs] = azelslant2sez(sensor, endcount2, badaz, badel, badslant);

92

 [roijkobs] = sez2ijk2(sensorid, sensoridnum, rosezobs, endcount2, numbersensors,
sensorlatsrad, LSTsensor);
 [rijkdatapt] = roijk2rijk2(roijkobs, endcount2, R1sensor);
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain sigma information to plot on the position magnitude
% plot if desired
%%
%%%%%%%%%%%%%%%%%%%%%%%%%
if ((Datasource == 2) | (Datasource == 1))
 [totalsigma] = findtotalsigma(sensoraltitudes, endcount2, azimuth, elevation, slantrange,
sensoridnum, sigmasrall, sigmaaall, sigmaeallrad);
else
 [totalsigma] = findrealworldsigma(sensoraltitudes, sigmasrall, sigmaeallrad, sensor, endcount,
azimuth, elevation, slantrange, sensorid, numbersensors);
end

%%
%%%%%%%%%%%%%%%%
% Calculate the first estimated orbit from the observations
% if desired
%%
%%%%%%%%%%%%%%%
if CalcEstOrbit == 1
 if ((Datasource == 2) | (Datasource == 1))
 [COEguessperfect] = herrickgibbs(rijkdataptperfect, IJKtimesperfect);
 if UNKSS == 1
 COEguessperfect2 = COEguessperfect;
 COEguessperfect = [COEguessperfect, m1guess, m2guess, roguess]
 else
 COEguessperfect2 = COEguessperfect
 end
 end
 [COEguessnotperfect] = herrickgibbs(rijkdatapt, IJKtimes);
 if UNKSS == 1
 COEguessnotperfect2 = COEguessnotperfect;
 COEguessnotperfect = [COEguessnotperfect, m1guess, m2guess, roguess]
 else
 COEguessnotperfect2 = COEguessnotperfect
 end
end

%%
%%%%%%%%%%%%%%%
% set some initial parameters needed for the optimization
% these values are needed as is, so they should not be altered
%%
%%%%%%%%%%%%%%%%
calcbtmRSS = 0;
calctopRSS = 0;
calccmRSS = 0;
compareperfectRSS = 0;

93

%%
% Optimize perfect data if desired
%%
if ((Datasource == 2) | (Datasource == 1))
 if evalperfectdata == 1
 if CalcEstOrbit == 1
 COEguess = COEguessperfect;
 COEguess2 = COEguessperfect2;
 end
 compareperfectRSS = 1;
 [RSS1stperfectdata] = optimizedata(COEguess)
 if CMoptimizationfirst == 1
 if UNKSS == 1
 tetherparameters = [1, 0, 0, 0, 0, 0];
 tempUNKSS = 1;
 else
 tempUNKSS = 0;
 end
 UNKSS = 0;
 calccmRSS = 1;
 [COEfinperfectcm, RSSfinperfectcm, Exitflag, output] = fmincon(@optimizedata,
COEguess2, [],[],[],[],lb2,ub2, [], options);
 [RSSfinperfectcm] = optimizedata(COEfinperfectcm);
 cmobsperfect = estdatapt;
 cmm1ijkestperfect = rm1ijkest;
 cmm2ijkestperfect = rm2ijkest;
 cmcmijkestperfect = rijk_est;
 cmm1pqwestperfect = rm1pqw_est;
 cmm2pqwestperfect = rm2pqw_est;
 cmcmpqwestperfect = rpqw_est;
 if tempUNKSS == 1
 tetherparameters = tetherparameterstemp;
 UNKSS = 1;
 COEfinperfectcm2 = [COEfinperfectcm, m1guess, m2guess, roguess];
 else
 COEfinperfectcm2 = COEfinperfectcm;
 end
 calccmRSS = 0;
 [COEfinperfectcmf, RSSfinperfectcm2, Exitflag, output] = fmincon(@optimizedata,
COEfinperfectcm2, [],[],[],[],lb,ub, [], options);
 [RSSfinperfectcm2] = optimizedata(COEfinperfectcmf);
 cmobsperfect2 = estdatapt;
 cmm1ijkestperfect2 = rm1ijkest;
 cmm2ijkestperfect2 = rm2ijkest;
 cmcmijkestperfect2 = rijk_est;
 cmm1pqwestperfect2 = rm1pqw_est;
 cmm2pqwestperfect2 = rm2pqw_est;
 cmcmpqwestperfect2 = rpqw_est;
 calcbtmRSS = 1;
 [COEfinperfectcmm1, RSSfinperfectcmm1, Exitflag, output] = fmincon(@optimizedata,
COEfinperfectcm2, [],[],[],[],lb,ub, [], options);
 [RSSfinperfectcmm1] = optimizedata(COEfinperfectcmm1);
 cmobsperfectm1 = estdatapt;
 cmm1ijkestperfectm1 = rm1ijkest;

94

 cmm2ijkestperfectm1 = rm2ijkest;
 cmcmijkestperfectm1 = rijk_est;
 cmm1pqwestperfectm1 = rm1pqw_est;
 cmm2pqwestperfectm1 = rm2pqw_est;
 cmcmpqwestperfectm1 = rpqw_est;
 calcbtmRSS = 0;
 calctopRSS = 1;
 [COEfinperfectcmm2, RSSfinperfectcmm2, Exitflag, output] = fmincon(@optimizedata,
COEfinperfectcm2, [],[],[],[],lb,ub, [], options);
 [RSSfinperfectcmm2] = optimizedata(COEfinperfectcmm2);
 cmobsperfectm2 = estdatapt;
 cmm1ijkestperfectm2 = rm1ijkest;
 cmm2ijkestperfectm2 = rm2ijkest;
 cmcmijkestperfectm2 = rijk_est;
 cmm1pqwestperfectm2 = rm1pqw_est;
 cmm2pqwestperfectm2 = rm2pqw_est;
 cmcmpqwestperfectm2 = rpqw_est;
 calctopRSS = 0;
 if ((RSSfinperfectcm < RSSfinperfectcm2) & (RSSfinperfectcm < RSSfinperfectcmm1) &
(RSSfinperfectcm < RSSfinperfectcmm2))
 bestcmfirstRSSfinperfect = RSSfinperfectcm;
 bestcmfirstCOEfinperfect = COEfinperfectcm;
 bestcmfirstobsperfect = cmobsperfect;
 bestcmfirstm1ijkperfect = cmm1ijkestperfect;
 bestcmfirstm2ijkperfect = cmm2ijkestperfect;
 bestcmfirstcmijkperfect = cmcmijkestperfect;
 bestcmfirstm1pqwperfect = cmm1pqwestperfect;
 bestcmfirstm2pqwperfect = cmm2pqwestperfect;
 bestcmfirstcmpqwperfect = cmcmpqwestperfect;
 cmbestoptimization = 1;
 else
 if ((RSSfinperfectcm2 < RSSfinperfectcmm1) & (RSSfinperfectcm2 <
RSSfinperfectcmm2))
 bestcmfirstRSSfinperfect = RSSfinperfectcm2;
 bestcmfirstCOEfinperfect = COEfinperfectcmf;
 bestcmfirstobsperfect = cmobsperfect2;
 bestcmfirstm1ijkperfect = cmm1ijkestperfect2;
 bestcmfirstm2ijkperfect = cmm2ijkestperfect2;
 bestcmfirstcmijkperfect = cmcmijkestperfect2;
 bestcmfirstm1pqwperfect = cmm1pqwestperfect2;
 bestcmfirstm2pqwperfect = cmm2pqwestperfect2;
 bestcmfirstcmpqwperfect = cmcmpqwestperfect2;
 cmbestoptimization = 2;
 else
 if (RSSfinperfectcmm1 < RSSfinperfectcmm2)
 bestcmfirstRSSfinperfect = RSSfinperfectcmm1;
 bestcmfirstCOEfinperfect = COEfinperfectcmm1;
 bestcmfirstobsperfect = cmobsperfectm1;
 bestcmfirstm1ijkperfect = cmm1ijkestperfectm1;
 bestcmfirstm2ijkperfect = cmm2ijkestperfectm1;
 bestcmfirstcmijkperfect = cmcmijkestperfectm1;
 bestcmfirstm1pqwperfect = cmm1pqwestperfectm1;
 bestcmfirstm2pqwperfect = cmm2pqwestperfectm1;
 bestcmfirstcmpqwperfect = cmcmpqwestperfectm1;

95

 cmbestoptimization = 3;
 else
 bestcmfirstRSSfinperfect = RSSfinperfectcmm2;
 bestcmfirstCOEfinperfect = COEfinperfectcmm2;
 bestcmfirstobsperfect = cmobsperfectm2;
 bestcmfirstm1ijkperfect = cmm1ijkestperfectm2;
 bestcmfirstm2ijkperfect = cmm2ijkestperfectm2;
 bestcmfirstcmijkperfect = cmcmijkestperfectm2;
 bestcmfirstm1pqwperfect = cmm1pqwestperfectm2;
 bestcmfirstm2pqwperfect = cmm2pqwestperfectm2;
 bestcmfirstcmpqwperfect = cmcmpqwestperfectm2;
 cmbestoptimization = 4;
 end
 end
 end
 end
 calcbtmRSS = 1;
 [COEfinperfectbtm, RSSfinperfectbtm, Exitflag, output] = fmincon(@optimizedata,
COEguess, [],[],[],[],lb,ub, [], options);
 [RSSfinperfectbtm] = optimizedata(COEfinperfectbtm);
 btmobsperfect = estdatapt;
 btmm1ijkestperfect = rm1ijkest;
 btmm2ijkestperfect = rm2ijkest;
 btmcmijkestperfect = rijk_est;
 btmm1pqwestperfect = rm1pqw_est;
 btmm2pqwestperfect = rm2pqw_est;
 btmcmpqwestperfect = rpqw_est;
 calcbtmRSS = 0;
 calctopRSS = 1;
 [COEfinperfecttop, RSSfinperfecttop, Exitflag, output] = fmincon(@optimizedata, COEguess,
[],[],[],[],lb,ub, [], options);
 [RSSfinperfecttop] = optimizedata(COEfinperfecttop);
 topobsperfect = estdatapt;
 topm1ijkestperfect = rm1ijkest;
 topm2ijkestperfect = rm2ijkest;
 topcmijkestperfect = rijk_est;
 topm1pqwestperfect = rm1pqw_est;
 topm2pqwestperfect = rm2pqw_est;
 topcmpqwestperfect = rpqw_est;
 calctopRSS = 0;
 [COEfinperfect, RSSfinperfect, Exitflag, output] = fmincon(@optimizedata, COEguess,
[],[],[],[],lb,ub, [], options);
 [RSSfinperfect] = optimizedata(COEfinperfect);
 genobsperfect = estdatapt;
 genm1ijkestperfect = rm1ijkest;
 genm2ijkestperfect = rm2ijkest;
 gencmijkestperfect = rijk_est;
 genm1pqwestperfect = rm1pqw_est;
 genm2pqwestperfect = rm2pqw_est;
 gencmpqwestperfect = rpqw_est;
 if UNKSS == 1
 'bestCOEperfect = [a, e, i, w, Capw, v, m1, m2, ro]'
 else
 'bestCOEperfect = [a, e, i, w, Capw, v]'

96

 end
 if ((RSSfinperfect < RSSfinperfectbtm) & (RSSfinperfect < RSSfinperfecttop))
 bestoptimization = 3;
 bestRSSfinperfect = RSSfinperfect;
 bestCOEfinperfect = COEfinperfect;
 bestobsperfect = genobsperfect;
 bestm1ijkperfect = genm1ijkestperfect;
 bestm2ijkperfect = genm2ijkestperfect;
 bestcmijkperfect = gencmijkestperfect;
 bestm1pqwperfect = genm1pqwestperfect;
 bestm2pqwperfect = genm2pqwestperfect;
 bestcmpqwperfect = gencmpqwestperfect;
 else
 if (RSSfinperfecttop < RSSfinperfectbtm)
 bestoptimization = 2;
 bestRSSfinperfect = RSSfinperfecttop;
 bestCOEfinperfect = COEfinperfecttop;
 bestobsperfect = topobsperfect;
 bestm1ijkperfect = topm1ijkestperfect;
 bestm2ijkperfect = topm2ijkestperfect;
 bestcmijkperfect = topcmijkestperfect;
 bestm1pqwperfect = topm1pqwestperfect;
 bestm2pqwperfect = topm2pqwestperfect;
 bestcmpqwperfect = topcmpqwestperfect;
 else
 bestoptimization = 1;
 bestRSSfinperfect = RSSfinperfectbtm;
 bestCOEfinperfect = COEfinperfectbtm;
 bestobsperfect = btmobsperfect;
 bestm1ijkperfect = btmm1ijkestperfect;
 bestm2ijkperfect = btmm2ijkestperfect;
 bestcmijkperfect = btmcmijkestperfect;
 bestm1pqwperfect = btmm1pqwestperfect;
 bestm2pqwperfect = btmm2pqwestperfect;
 bestcmpqwperfect = btmcmpqwestperfect;
 end
 end
 if CMoptimizationfirst == 1
 if (bestcmfirstRSSfinperfect < bestRSSfinperfect)
 if cmbestoptimization == 1
 'best perfect solution is cm optimization only'
 else
 if cmbestoptimization == 2
 'best perfect solution is cm optimization then general optimization'
 else
 if cmbestoptimization == 3
 'best perfect solution is cm optimization then bottom mass optimization'
 else
 'best perfect solution is cm optimization then top mass optimization'
 end
 end
 end
 bestRSSfinperfect = bestcmfirstRSSfinperfect;
 bestCOEfinperfect = bestcmfirstCOEfinperfect;

97

 bestobsperfect = bestcmfirstobsperfect;
 bestm1ijkperfect = bestcmfirstm1ijkperfect;
 bestm2ijkperfect = bestcmfirstm2ijkperfect;
 bestcmijkperfect = bestcmfirstcmijkperfect;
 bestm1pqwperfect = bestcmfirstm1pqwperfect;
 bestm2pqwperfect = bestcmfirstm2pqwperfect;
 bestcmpqwperfect = bestcmfirstcmpqwperfect;
 else
 if bestoptimization == 1
 'best perfect solution is bottom case optimization'
 else
 if bestoptimization == 2
 'best perfect solution is top case optimization'
 else
 'best perfect solution is general case optimization'
 end
 end
 end
 else
 if bestoptimization == 1
 'best perfect solution is bottom case optimization'
 else
 if bestoptimization == 2
 'best perfect solution is top case optimization'
 else
 'best perfect solution is general case optimization'
 end
 end
 end
 if UNKSS == 1
 m1estimateperfect =
bestCOEfinperfect(8)*bestCOEfinperfect(9)/(bestCOEfinperfect(7)+bestCOEfinperfect(8))
 m2estimateperfect = bestCOEfinperfect(9)-m1estimateperfect
 end
 [bestCOEfinperfect(4)] = adjustvalue(bestCOEfinperfect(4));
 [bestCOEfinperfect(5)] = adjustvalue(bestCOEfinperfect(5));
 [bestCOEfinperfect(6)] = adjustvalue(bestCOEfinperfect(6));
 bestCOEfinperfect
 bestRSSfinperfect
 bestobsperfect
 end
end

%%
% Optimize imperfect data if desired
%%
if evalimperfectdata == 1
 if CalcEstOrbit == 1
 COEguess = COEguessnotperfect;
 COEguess2 = COEguessnotperfect2;
 end
 compareperfectRSS = 0;
 [RSS1stdata] = optimizedata(COEguess)

98

 if CMoptimizationfirst == 1
 if UNKSS == 1
 tetherparameters = [1, 0, 0, 0, 0, 0];
 tempUNKSS = 1;
 else
 tempUNKSS = 0;
 end
 UNKSS = 0;
 calccmRSS = 1;
 [COEfincm, RSSfincm, Exitflag, output] = fmincon(@optimizedata, COEguess2,
[],[],[],[],lb2,ub2, [], options);
 [RSSfincm] = optimizedata(COEfincm);
 cmobs = estdatapt;
 cmm1ijkest = rm1ijkest;
 cmm2ijkest = rm2ijkest;
 cmcmijkest = rijk_est;
 cmm1pqwest = rm1pqw_est;
 cmm2pqwest = rm2pqw_est;
 cmcmpqwest = rpqw_est;
 if tempUNKSS == 1
 tetherparameters = tetherparameterstemp;
 UNKSS = 1;
 COEfincm2 = [COEfincm, m1guess, m2guess, roguess];
 else
 COEfincm2 = COEfincm;
 end
 calccmRSS = 0;
 [COEfincmf, RSSfincm2, Exitflag, output] = fmincon(@optimizedata, COEfincm2,
[],[],[],[],lb,ub, [], options);
 [RSSfincm2] = optimizedata(COEfincmf);
 cmobs2 = estdatapt;
 cmm1ijkest2 = rm1ijkest;
 cmm2ijkest2 = rm2ijkest;
 cmcmijkest2 = rijk_est;
 cmm1pqwest2 = rm1pqw_est;
 cmm2pqwest2 = rm2pqw_est;
 cmcmpqwest2 = rpqw_est;
 calcbtmRSS = 1;
 [COEfincmm1, RSSfincmm1, Exitflag, output] = fmincon(@optimizedata, COEfincm2,
[],[],[],[],lb,ub, [], options);
 [RSSfincmm1] = optimizedata(COEfincmm1);
 cmobsm1 = estdatapt;
 cmm1ijkestm1 = rm1ijkest;
 cmm2ijkestm1 = rm2ijkest;
 cmcmijkestm1 = rijk_est;
 cmm1pqwestm1 = rm1pqw_est;
 cmm2pqwestm1 = rm2pqw_est;
 cmcmpqwestm1 = rpqw_est;
 calcbtmRSS = 0;
 calctopRSS = 1;
 [COEfincmm2, RSSfincmm2, Exitflag, output] = fmincon(@optimizedata, COEfincm2,
[],[],[],[],lb,ub, [], options);
 [RSSfincmm2] = optimizedata(COEfincmm2);
 cmobsm2 = estdatapt;

99

 cmm1ijkestm2 = rm1ijkest;
 cmm2ijkestm2 = rm2ijkest;
 cmcmijkestm2 = rijk_est;
 cmm1pqwestm2 = rm1pqw_est;
 cmm2pqwestm2 = rm2pqw_est;
 cmcmpqwestm2 = rpqw_est;
 calctopRSS = 0;
 if ((RSSfincm < RSSfincm2) & (RSSfincm < RSSfincmm1) & (RSSfincm < RSSfincmm2))
 bestcmfirstRSSfin = RSSfincm;
 bestcmfirstCOEfin = COEfincm;
 bestcmfirstobs = cmobs;
 bestcmfirstm1ijk = cmm1ijkest;
 bestcmfirstm2ijk = cmm2ijkest;
 bestcmfirstcmijk = cmcmijkest;
 bestcmfirstm1pqw = cmm1pqwest;
 bestcmfirstm2pqw = cmm2pqwest;
 bestcmfirstcmpqw = cmcmpqwest;
 cmbestoptimization = 1;
 else
 if ((RSSfincm2 < RSSfincmm1) & (RSSfincm2 < RSSfincmm2))
 bestcmfirstRSSfin = RSSfincm2;
 bestcmfirstCOEfin = COEfincmf;
 bestcmfirstobs = cmobs2;
 bestcmfirstm1ijk = cmm1ijkest2;
 bestcmfirstm2ijk = cmm2ijkest2;
 bestcmfirstcmijk = cmcmijkest2;
 bestcmfirstm1pqw = cmm1pqwest2;
 bestcmfirstm2pqw = cmm2pqwest2;
 bestcmfirstcmpqw = cmcmpqwest2;
 cmbestoptimization = 2;
 else
 if (RSSfincmm1 < RSSfincmm2)
 bestcmfirstRSSfin = RSSfincmm1;
 bestcmfirstCOEfin = COEfincmm1;
 bestcmfirstobs = cmobsm1;
 bestcmfirstm1ijk = cmm1ijkestm1;
 bestcmfirstm2ijk = cmm2ijkestm1;
 bestcmfirstcmijk = cmcmijkestm1;
 bestcmfirstm1pqw = cmm1pqwestm1;
 bestcmfirstm2pqw = cmm2pqwestm1;
 bestcmfirstcmpqw = cmcmpqwestm1;
 cmbestoptimization = 3;
 else
 bestcmfirstRSSfin = RSSfincmm2;
 bestcmfirstCOEfin = COEfincmm2;
 bestcmfirstobs = cmobsm2;
 bestcmfirstm1ijk = cmm1ijkestm2;
 bestcmfirstm2ijk = cmm2ijkestm2;
 bestcmfirstcmijk = cmcmijkestm2;
 bestcmfirstm1pqw = cmm1pqwestm2;
 bestcmfirstm2pqw = cmm2pqwestm2;
 bestcmfirstcmpqw = cmcmpqwestm2;
 cmbestoptimization = 4;
 end

100

 end
 end
 end
 calcbtmRSS = 1;
 [COEfinbtm, RSSfinbtm, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub,
[], options);
 [RSSfinbtm] = optimizedata(COEfinbtm);
 btmobs = estdatapt;
 btmm1ijkest = rm1ijkest;
 btmm2ijkest = rm2ijkest;
 btmcmijkest = rijk_est;
 btmm1pqwest = rm1pqw_est;
 btmm2pqwest = rm2pqw_est;
 btmcmpqwest = rpqw_est;
 calcbtmRSS = 0;
 calctopRSS = 1;
 [COEfintop, RSSfintop, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub, [],
options);
 [RSSfintop] = optimizedata(COEfintop);
 topobs = estdatapt;
 topm1ijkest = rm1ijkest;
 topm2ijkest = rm2ijkest;
 topcmijkest = rijk_est;
 topm1pqwest = rm1pqw_est;
 topm2pqwest = rm2pqw_est;
 topcmpqwest = rpqw_est;
 calctopRSS = 0;
 [COEfin, RSSfin, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub, [],
options);
 [RSSfin] = optimizedata(COEfin);
 genobs = estdatapt;
 genm1ijkest = rm1ijkest;
 genm2ijkest = rm2ijkest;
 gencmijkest = rijk_est;
 genm1pqwest = rm1pqw_est;
 genm2pqwest = rm2pqw_est;
 gencmpqwest = rpqw_est;
 if UNKSS == 1
 'bestCOE = [a, e, i, w, Capw, v, m1, m2, ro]'
 else
 'bestCOE = [a, e, i, w, Capw, v]'
 end
 if ((RSSfin < RSSfinbtm) & (RSSfin < RSSfintop))
 bestoptimization = 3;
 bestRSSfin = RSSfin;
 bestCOEfin = COEfin;
 bestobs = genobs;
 bestm1ijk = genm1ijkest;
 bestm2ijk = genm2ijkest;
 bestcmijk = gencmijkest;
 bestm1pqw = genm1pqwest;
 bestm2pqw = genm2pqwest;
 bestcmpqw = gencmpqwest;
 else

101

 if (RSSfintop < RSSfinbtm)
 bestoptimization = 2;
 bestRSSfin = RSSfintop;
 bestCOEfin = COEfintop;
 bestobs = topobs;
 bestm1ijk = topm1ijkest;
 bestm2ijk = topm2ijkest;
 bestcmijk = topcmijkest;
 bestm1pqw = topm1pqwest;
 bestm2pqw = topm2pqwest;
 bestcmpqw = topcmpqwest;
 else
 bestoptimization = 1;
 bestRSSfin = RSSfinbtm;
 bestCOEfin = COEfinbtm;
 bestobs = btmobs;
 bestm1ijk = btmm1ijkest;
 bestm2ijk = btmm2ijkest;
 bestcmijk = btmcmijkest;
 bestm1pqw = btmm1pqwest;
 bestm2pqw = btmm2pqwest;
 bestcmpqw = btmcmpqwest;
 end
 end
 if CMoptimizationfirst == 1
 if (bestcmfirstRSSfin < bestRSSfin)
 if cmbestoptimization == 1
 'best solution is cm optimization only'
 else
 if cmbestoptimization == 2
 'best solution is cm optimization then general optimization'
 else
 if cmbestoptimization == 3
 'best solution is cm optimization then bottom mass optimization'
 else
 'best solution is cm optimization then top mass optimization'
 end
 end
 end
 bestRSSfin = bestcmfirstRSSfin;
 bestCOEfin = bestcmfirstCOEfin;
 bestobs = bestcmfirstobs;
 bestm1ijk = bestcmfirstm1ijk;
 bestm2ijk = bestcmfirstm2ijk;
 bestcmijk = bestcmfirstcmijk;
 bestm1pqw = bestcmfirstm1pqw;
 bestm2pqw = bestcmfirstm2pqw;
 bestcmpqw = bestcmfirstcmpqw;
 else
 if bestoptimization == 1
 'best solution is bottom case optimization'
 else
 if bestoptimization == 2
 'best solution is top case optimization'

102

 else
 'best solution is general case optimization'
 end
 end
 end
 else
 if bestoptimization == 1
 'best solution is bottom case optimization'
 else
 if bestoptimization == 2
 'best solution is top case optimization'
 else
 'best solution is general case optimization'
 end
 end
 end
 if UNKSS == 1
 m1estimate = bestCOEfin(8)*bestCOEfin(9)/(bestCOEfin(7)+bestCOEfin(8))
 m2estimate = bestCOEfin(9)-m1estimate
 end
 [bestCOEfin(4)] = adjustvalue(bestCOEfin(4));
 [bestCOEfin(5)] = adjustvalue(bestCOEfin(5));
 [bestCOEfin(6)] = adjustvalue(bestCOEfin(6));
 bestCOEfin
 bestRSSfin
 bestobs
end

%%
%%%%%%%%%%%%%%%
% Calculate the ground track of the observed data if desired
%%
%%%%%%%%%%%%%%%
if CalcGrndtrack == 1
 [datalat, datalong] = calculategroundtrack(endcount2, GSTtimes2, rijkdatapt, Ae, f);
 %%%
 % Plot the ground track
 %%%
 [sensorlongs, sensorlats] = plotsensors(numbersensors, sensorlongs, sensorlats);
 plot(datalong, datalat, 'b.')
end
%%
%%%%%%%
% Plot Earth-centered position vector magnitude; EC Range
%%
%%%%%%%
if (evalimperfectdata == 1)
 figure(2), clf
else
 if ((Datasource == 2) | (Datasource == 1))
 if (evalperfectdata == 1)
 figure(2),clf
 end

103

 end
end
if ((Datasource == 2) | (Datasource == 1))
 if ((evalperfectdata == 1) & (evalimperfectdata == 1))
 plot(IJKtimesperfect, rijkdataptperfect(:,4), 'k+', IJKtimesperfect, bestm1ijkperfect(:,4), 'ro',
IJKtimesperfect, bestm2ijkperfect(:,4), 'bs', IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4),
'r.', IJKtimes, bestm2ijk(:,4), 'b*'), hold on
 xlabel('time-seconds')
 ylabel('EC Range-Km')
 Legend('Perfect Observation', 'm1 Estimate w/ perfect data', 'm2 Estimate w/
perfect data', 'Observations', 'm1 Estimate', 'm2 Estimate',0)
 legend boxoff
 if Plotsigmabars == 1
 errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx')
 end
 else
 if evalperfectdata == 1
 plot(IJKtimesperfect, rijkdataptperfect(:,4), 'k+', IJKtimesperfect, bestm1ijkperfect(:,4), 'ro',
IJKtimesperfect, bestm2ijkperfect(:,4), 'bs')
 xlabel('time-seconds')
 ylabel('EC Range-Km')
 Legend('Perfect Observation', 'm1 Estimate w/ perfect data', 'm2 Estimate w/ perfect
data',0)
 legend boxoff
 else
 if evalimperfectdata == 1
 plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4),
'b*'), hold on
 xlabel('time-seconds')
 ylabel('EC Range-Km')
 Legend('Observations', 'm1 Estimate', 'm2 Estimate',0)
 legend boxoff
 if Plotsigmabars == 1
 errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx')
 end
 end
 end
 end
else
 if evalimperfectdata == 1
 plotcm = 1; % variable if you want to plot the estimated CM location for Real-World TiPS
data
 % 0 = do not plot estimated CM location
 % 1 = plot estimated CM location
 if plotcm == 1
 plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4), 'b*',
IJKtimes, bestcmijk(:,4), 'ko'), hold on
 Legend('Observations', 'm1 Estimate', 'm2 Estimate', 'CM estimate',0)
 legend boxoff
 else
 plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4),
'b*'), hold on
 Legend('Observations', 'm1 Estimate', 'm2 Estimate',0)
 legend boxoff

104

 end
 if Plotsigmabars == 1
 errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx')
 end
 end
 xlabel('time-seconds');
 ylabel('EC Range-Kilometers');
end

% End of Main Program

105

function [RSS] = optimizedata(COEguess)

global rpqw_est rm2pqw_est rm1pqw_est rm1ijkest rm2ijkest rijk_est estdatapt calccmRSS
ConCM compareperfectRSS endcount2 UNKSS dtr rtd J2 mu RE tetherparameters rijkdatapt
rijkdataptperfect IJKtimes IJKtimesperfect calcbtmRSS calctopRSS

RSS = 0;
%%%
% Extract data from COEguess depending on
% if the tether parameters are known or not
%%
if UNKSS == 1
 COEestimate = [COEguess(1), COEguess(2), COEguess(3), COEguess(4), COEguess(5),
COEguess(6)];
 m1estimate = COEguess(7);
 m2estimate = COEguess(8);
 roestimate = COEguess(9);
 distancem1estimate = (m2estimate*roestimate/(m1estimate+m2estimate));
 distancem2estimate = roestimate-distancem1estimate;
else
 COEestimate = COEguess;
 m1estimate = tetherparameters(1);
 m2estimate = tetherparameters(2);
 roestimate = tetherparameters(4);
 distancem1estimate = tetherparameters(5);
 distancem2estimate = tetherparameters(6);
end

[COEestimate(4)] = adjustvalue(COEestimate(4));
[COEestimate(5)] = adjustvalue(COEestimate(5));
[COEestimate(6)] = adjustvalue(COEestimate(6));

%%%
% Store the estimated tether parameters
%%%
tetherparametersest = [m1estimate, m2estimate, 0, roestimate, distancem1estimate,
distancem2estimate];

%%
%%%%%%%%%
% Determine if optimizing perfect data or imperfect data
%%
%%%%%%%%%%
if compareperfectRSS == 1
 rijkobs = rijkdataptperfect;
 COEestimatetimes = IJKtimesperfect;
else
 rijkobs = rijkdatapt;
 COEestimatetimes = IJKtimes;
end

%%
%%%%%%%
% Propagate the estimated COEs

106

%%
%%%%%%%
[AllCOEest,AllCOEestrad, estendcount] = COEpropagator(COEestimate, COEestimatetimes);
%%
%%
% Convert the estimated COEs into Earth-Centered
% pqw position vectors
%%
%%%
[rpqw_est] = coe2rpqw(estendcount, AllCOEestrad);
%%
%%%%
% Convert the estimated pqw data into IJK data
%%
%%%%
[rijk_est] = pqw2ijk(rpqw_est, AllCOEestrad, estendcount);
%%
%%%
% Calculate the estimated IJK coordinates
% of the upper and lower masses
%%
%%%
[rm1ijkest, rm2ijkest] = calc_r_endmasses(rijk_est, tetherparametersest, estendcount);
%%
%%%%
% Convert the end mass estimated IJK coordinates
% back into pqw frame coordinates
%%
%%%%
[rm1pqw_est] = ijk2pqw(estendcount, rm1ijkest, AllCOEestrad);
[rm2pqw_est] = ijk2pqw(estendcount, rm2ijkest, AllCOEestrad);
%%
%%%
% Convert the observation data from Earth-Centered
% IJK coordinates to pqw coordinates using the
% ESTIMATED orbit as the reference
%%
%%%%
[rpqwobs] = ijk2pqw(estendcount, rijkobs, AllCOEestrad);
%%
%%%%%%
% Calculate the Residuals depending on the parameters
% for calcbtmRSS, calctopRSS, calccmRSS, and ConCM
%%
%%%%%%%
for counter = 1:estendcount
 if calcbtmRSS == 1
 pestimate = rm1pqw_est(counter,1);
 qestimate = rm1pqw_est(counter,2);
 westimate = rm1pqw_est(counter,3);
 magest = rm1pqw_est(counter,4);
 pobs = rpqwobs(counter,1);
 qobs = rpqwobs(counter,2);
 wobs = rpqwobs(counter,3);

107

 magobs = rpqwobs(counter,4);
 residualp = pobs - pestimate;
 residualq = qobs - qestimate;
 residualw = wobs - westimate;
 residualmag = magobs - magest;
 estdatapt(counter) = 1;
 else
 if calctopRSS == 1
 pestimate = rm2pqw_est(counter,1);
 qestimate = rm2pqw_est(counter,2);
 westimate = rm2pqw_est(counter,3);
 magest = rm2pqw_est(counter,4);
 pobs = rpqwobs(counter,1);
 qobs = rpqwobs(counter,2);
 wobs = rpqwobs(counter,3);
 magobs = rpqwobs(counter,4);
 residualp = pobs - pestimate;
 residualq = qobs - qestimate;
 residualw = wobs - westimate;
 residualmag = magobs - magest;
 estdatapt(counter) = 2;
 else
 if calccmRSS == 1
 pestimate = rpqw_est(counter,1);
 qestimate = rpqw_est(counter,2);
 westimate = rpqw_est(counter,3);
 magest = rpqw_est(counter,4);
 pobs = rpqwobs(counter,1);
 qobs = rpqwobs(counter,2);
 wobs = rpqwobs(counter,3);
 magobs = rpqwobs(counter,4);
 residualp = pobs - pestimate;
 residualq = qobs - qestimate;
 residualw = wobs - westimate;
 residualmag = magobs - magest;
 estdatapt(counter) = 3;
 else
 p1estimate = rm1pqw_est(counter,1);
 q1estimate = rm1pqw_est(counter,2);
 w1estimate = rm1pqw_est(counter,3);
 mag1est = rm1pqw_est(counter,4);
 p2estimate = rm2pqw_est(counter,1);
 q2estimate = rm2pqw_est(counter,2);
 w2estimate = rm2pqw_est(counter,3);
 mag2est = rm2pqw_est(counter,4);
 pobs = rpqwobs(counter,1);
 qobs = rpqwobs(counter,2);
 wobs = rpqwobs(counter,3);
 magobs = rpqwobs(counter,4);
 residualp1 = pobs - p1estimate;
 residualq1 = qobs - q1estimate;
 residualw1 = wobs - w1estimate;
 residualmag1 = magobs - mag1est;
 residualp2 = pobs - p2estimate;

108

 residualq2 = qobs - q2estimate;
 residualw2 = wobs - w2estimate;
 residualmag2 = magobs - mag2est;
 if ConCM == 1
 pcmestimate = rpqw_est(counter,1);
 qcmestimate = rpqw_est(counter,2);
 wcmestimate = rpqw_est(counter,3);
 magcmest = rpqw_est(counter,4);
 residualpcm = pobs - pcmestimate;
 residualqcm = qobs - qcmestimate;
 residualwcm = wobs - wcmestimate;
 residualmagcm = magobs - magcmest;
 if ((abs(residualmagcm) < abs(residualmag1)) & (abs(residualmagcm) <
abs(residualmag2)))
 residualmag = residualmagcm;
 estdatapt(counter) = 3;
 else
 if (abs(residualmag2) < abs(residualmag1))
 residualmag = residualmag2;
 estdatapt(counter) = 2;
 else
 residualmag = residualmag1;
 estdatapt(counter) = 1;
 end
 end
 if ((abs(residualpcm) < abs(residualp1)) & (abs(residualpcm) < abs(residualp2)))
 residualp = residualpcm;
 else
 if (abs(residualp2) < abs(residualp1))
 residualp = residualp2;
 else
 residualp = residualp1;
 end
 end
 if ((abs(residualqcm) < abs(residualq1)) & (abs(residualqcm) < abs(residualq2)))
 residualq = residualqcm;
 else
 if (abs(residualq2) < abs(residualq1))
 residualq = residualq2;
 else
 residualq = residualq1;
 end
 end
 if ((abs(residualwcm) < abs(residualw1)) & (abs(residualwcm) < abs(residualw2)))
 residualw = residualwcm;
 else
 if (abs(residualw2) < abs(residualw1))
 residualw = residualw2;
 else
 residualw = residualw1;
 end
 end
 else
 if (abs(residualmag2) < abs(residualmag1))

109

 residualmag = residualmag2;
 estdatapt(counter) = 2;
 else
 residualmag = residualmag1;
 estdatapt(counter) = 1;
 end
 if (abs(residualp2) < abs(residualp1))
 residualp = residualp2;
 else
 residualp = residualp1;
 end
 if (abs(residualq2) < abs(residualq1))
 residualq = residualq2;
 else
 residualq = residualq1;
 end
 if (abs(residualw2) < abs(residualw1))
 residualw = residualw2;
 else
 residualw = residualw1;
 end
 end
 end
 end
 end
 totalresidual = residualp^2 + residualq^2 + residualw^2 + 10*residualmag^2;
 RSS = RSS + totalresidual;
end
RSS = sqrt(RSS);

% End of optimizedata function

110

Bibliography

Barnds, William J. and Coffey, Shannon L. “Tracking of the TiPS Tethered Satellite
System,” Advances in the Astronautical Sciences, Volume 103, Astrodynamics
Part II: 1843-1853 (August 1999).

Bate, Roger R. et al. Fundamentals of Astrodynamics. New York: Dover Publications,

Inc., 1971.

Beletsky, Vladimir V. and Levin, Evgenii M. “Dynamics of Space Tether Systems,”

Advances in the Astronautical Sciences, Volume 83 (1993).

Beyer, William H. CRC Standard Mathematical Tables and Formulae (29th Edition).

Boston: CRC Press, 1991.

Cicci, D.A. et al. “A Filtering Method for the Identification of a Tethered Satellite,” The

Journal of the Astronautical Sciences, Volume 49, Number 2: 309-326 (April-
June 2001).

Cochran, J.E. et al. “Evaluation of the Information Contained in the Motion of One

Satellite of a Two-Satellite Tethered System,” The Journal of the Astronautical
Sciences, Volume 48, Number 4: 477-493 (October-December 2000).

Cochran, J.E. et al. “Modeling Tethered Satellite Systems for Detection and Orbit

Determination,” Advances in the Astronautical Sciences, Volume 103,
Astrodynamics Part II: 1821-1841 (August 1999).

Escobal, Pedro Ramon. Methods of Orbit Determination. New York: John Wiley &

Sons, Inc., 1965.

Lovell, T.A. et al. “Use of Tethered Satellite Estimation Methods in Identifying Re-

Entering Objects,” AAS/AIAA Space Flight Mechanics Meeting Clearwater,
Florida. San Diego: AAS Publications Office (23-26 January 2000).

Purdy, William et al. “TiPS: Results of a Tethered Satellite Experiment,” Advances in

the Astronautical Sciences, Volume 97, Astrodynamics Part I: 3-23 (August
1997).

Wertz, James R. and Larson, Wiley J. Space Mission Analysis and Design (3rd Edition).

El Segundo, California: Microcosm Press, 1999.

Wiesel, William E. Modern Orbit Determination. Independently Published by William

Wiesel, Copyright: William Wiesel, 2003.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2004
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

June 2003 – March 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

DATA SORTING AND ORBIT DETERMINATION OF
TETHERED SATELLITE SYSTEMS

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
ENR #
5e. TASK NUMBER

6. AUTHOR(S)

Faulstich, Mark J., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GSS/ENY/04-M03

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Dr. Robert A. Racca
HQ AFSPC/XPY
1150 Vandenberg St. Suite 1105
(719) 556-3714

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Tethered satellite system end masses do not obey the normal laws of motion developed for determining their orbits.
In addition, tethered satellite systems cause unique problems for satellite tracking because there are potentially two
or more objects which may be tracked.
This thesis provides insight into these issues by developing a method of sorting out observation data of tethered
satellite systems into their appropriate end mass and providing an estimate on the center of mass orbit of the tethered
satellite system. The method used to accomplish both of these tasks is optimization of an estimated simulated orbit.
This orbit estimate is optimized to provide the minimum difference between the end mass position estimates and the
observations obtained from one or more tracking sites. This methodology also helps provide a baseline for tracking
tethered satellite systems more accurately in the future.

15. SUBJECT TERMS
 Orbits, Artificial Satellites, Orbiting Satellites, Satellites(Artificial)

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Dr. Steven G. Tragesser, AFIT/ENY

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

120

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4286
(steven.tragesser@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Data Sorting and Orbit Determination of Tethered Satellite Systems
	Recommended Citation

	I:\Thesis\thesis writeup\AFIT-GSS-ENY-04-M03.prn.pdf

