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AFIT/GSS/ENY/04-M03 
 

Abstract 

 

 Tethered satellite system end masses do not obey the normal laws of motion 

developed for determining their orbits.  In addition, tethered satellite systems cause 

unique problems for satellite tracking because there are potentially two or more objects 

which may be tracked. 

 This thesis provides insight into these issues by developing a method of sorting 

out observation data of tethered satellite systems into their appropriate end mass and 

providing an estimate on the center of mass orbit of the tethered satellite system.  The 

method used to accomplish both of these tasks is optimization of an estimated simulated 

orbit.  This orbit estimate is optimized to provide the minimum difference between the 

end mass position estimates and the observations obtained from one or more tracking 

sites.  This methodology also helps provide a baseline for tracking tethered satellite 

systems more accurately in the future. 
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DATA SORTING AND ORBIT DETERMINATION OF TETHERED SATELLITE 

SYSTEMS 

 

 

 

I.  Introduction 

 

 

Background 

 

 A Tethered Satellite System (TSS) can provide unique capabilities over a single-

body satellite.  Some of the potential applications of a TSS include power generation and 

orbital reboost (Beletsky and Levin., 1993:20).    In recent years, some of these ideas 

have started to become reality as tethered satellites are deployed in space.  As TSS’s 

become more of a reality, it is important to understand how to do proper orbit 

determination (OD) for these objects.  In order to accomplish this it is also important to 

understand how to properly identify which end mass is being tracked since there are 

generally two or more end masses connected to a TSS. 

 Orbit determination of a TSS requires different techniques than orbit 

determination of a single-body satellite.  The normal Keplerian equations of motion that 

apply to a single satellite do not work for the end masses of a TSS.  In fact, if normal 
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Keplerian techniques are applied to a TSS, under the right conditions it may appear as if 

one of the end masses is on a suborbital trajectory with the Earth (Lovell et al., 2000:1).  

For obvious reasons this provides motivation for wanting to properly identify the orbit of 

a TSS. 

 Although the subject of tethered satellite OD has received much attention in 

recent years, data sorting of TSS tracking data has received less attention.  But, if TSS 

tracking data is not tagged to the appropriate end mass then calculating an accurate 

estimate of a TSS orbit becomes extremely difficult, if not impossible.  For this reason, 

data sorting and OD of a TSS are closely related tasks. 

 Data sorting and OD of a TSS is more difficult if it is not known whether the 

satellite system is a TSS, or if the key parameters of the TSS are unknown.  Again, if 

normal techniques of orbit determination are applied to a TSS without some knowledge 

about the system the orbit prediction will not be very accurate. 

 With all of these items in mind, this research effort was undertaken to provide 

insight into a possible method of data sorting and doing OD for a known or unknown 

TSS only utilizing radar tracking data.  This type of data is the most commonly available 

measurement for satellite tracking purposes. 

 

 

Problem Statement 

 

 There are two main problems this research addresses.  The first problem takes a 

known TSS and determines if it is possible to allocate a given radar measurement to the 
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appropriate end mass and provide a good estimate of the TSS orbit.  The second problem 

is similar to the first, but the distinction is the TSS is now an unknown system.  Both 

problems use raw radar observation data to include slant range, elevation, and azimuth, 

but not range rate. 

 

 

Research Objectives 

 
 As given in the problem statement, there are two main research objectives for this 

thesis.  The first objective is to sort out raw radar observation data of either a known or 

unknown TSS into the appropriate end mass; i.e. assign an identification tag to each radar 

observation.  Typically, this is not an issue with single-body satellite systems because 

they only have one object to observe.  As far as a TSS is concerned, however, the end 

masses may not be easily distinguishable depending on the length of the TSS. 

 The second research objective of this thesis is to determine an approximate orbit 

for the TSS.  This does not mean identifying an orbit for each end mass, but, instead, 

determining an orbit for the Center of Mass (CM) of the TSS.  Identifying the CM orbit 

of a TSS is extremely useful because the CM orbit essentially follows a normal Keplerian 

orbit (Cochran et al., 2000:478).  Therefore, if the CM orbit is identified, standard orbit 

propagation techniques can be applied to determine where the CM will be at some time in 

the future.  Even though knowing the position of the CM at some time in the future does 

not precisely determine where each of the end masses is located at that time, it 

significantly narrows down the search space where the end masses might be located. 
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Methodology 

 

 The methodology used in this research focused mainly on determining estimated 

Classical Orbital Elements (COEs) of the CM of the TSS.  The estimated, or best- fit, 

COEs of the CM were determined using parameter optimization.  The COEs for the CM 

were optimized by determining the best-fit of all available observations of the end masses 

compared to the estimated location of the CM and end masses. 

 As a part of this estimation process the next part of the research was accomplished 

by determining which end mass each observation represented.  This was done by sorting 

the observations based on each observation’s Earth-Centered (EC) position vector 

magnitude and the estimated EC position vector magnitudes of the end masses at any 

particular time.  Since this method of sorting the observations relies on the accuracy of 

the estimated COEs of the CM, then, in general, a better COE estimate provides better 

sorting results. 

 

 

Preview 

 

 This thesis is divided into four additional chapters.  Chapter two reviews some of 

the most pertinent literature related to the topic of tethered satellites.  Specifically, the 

type of literature reviewed will concentrate on showing what research efforts have been 

accomplished in the past relating to data sorting and OD of TSS data.  Chapter three 

covers the preliminary analysis done to determine the best parameter to use for data 
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sorting.  Chapter four covers in-depth the methodology used in accomplishing the 

research goals of data sorting and OD for TSS data.  This methodology will discuss the 

main assumptions and the specific techniques used during the estimation process.  

Chapter five discusses and analyzes the results of several specific cases looked at during 

this research effort.  The results show the strengths of this technique for data sorting and 

TSS OD, and they also show where this technique starts to break down.  Finally, chapter 

six concludes by discussing the operational relevance of this particular research effort and 

also covers potential areas of further research on this topic. 
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II.  Literature Review 

 

 

Tethered Satellite Orbit Determination 

 

 There are two main approaches to modeling a TSS for OD.  The first approach 

uses the full equations of motion for tethered satellites to include all of the libration and 

tension affects.  The second approach attempts to simplify the equations of motion by 

trying to separate the orbital motion from the attitude dynamics of the system. 

 Numerous people have analyzed the full equations of motion of tethered satellite 

systems.  One of the most commonly accepted sets of dynamical equations for a TSS 

comes from Beletsky and Levin’s Dynamics of Space Tether Systems, Volume 83 in the 

Advances in the Astronautical Sciences, written in 1993.  This publication covers in-

depth the equations of motion and it also covers many other items of concern related to 

tethers to include perturbations and some of the potential uses of a TSS (Beletsky and 

Levin, 1993:20).  The most significant understanding that comes from this publication is 

the coupling which occurs between orbital motion and attitude motion for a TSS.  This 

coupling of the equations is what causes most of the difficulties in TSS orbit and attitude 

determination.  Specifically, coming up with approximate analytical solutions for TSS 

OD is extremely difficult, if not impossible in some cases. 

 The difficulties caused by the coupling of the dynamics of TSS’s are the cause for 

many people looking at ways to decouple the attitude dynamics from the orbital 
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dynamics.  One of the most commonly accepted methods of accomplishing this 

decoupling is to assume the TSS remains nadir-oriented at all times.  This assumption 

ignores the librational motion of the TSS.  This technique has been used in the past with 

some success for an actual TSS.  The Tether Physics and Survivability (TiPS) experiment 

was launched on 20 June 1996 and still continues to fly today.  A team of people at the 

Naval Research Laboratory usedd an assumed nadir-oriented tether initially to help 

analyze the orbital motion of TiPS separately from the attitude (Purdy et al., 1997:3). 

 

 

Identification of Tethered Satellite Systems  

 

 Extensive research has been accomplished in the last few years in trying to 

determine a method for identifying whether an object in space is part of a TSS.  Due to 

the importance of this task, several methods of identifying tethered satellites have arisen.  

These methods often use different types of filters to try and determine specific parameters 

that help identify whether a tracked object is part of a TSS.  For example, one method 

attempts to calculate the radial and tangential force components on the tracked object that 

would be caused by a tether which is attached to the object (Cicci et al., 2001:314).  If 

these additional forces are calculated to be above a certain level, then it is assumed that 

the object is part of a TSS because a single-body satellite should not have these additional 

forces present. 

 The aforementioned method of TSS identification, as well as several other 

methods currently in existence, usually assume the data points fed into the filter all come 
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from the same object.  If this is true, these methods may show promise in identifying a 

TSS. However, if some of the data points happen to come from the other end mass of the 

TSS, then the calculations may be thrown off enough to improperly identify whether an 

object is part of a TSS.  This is why data sorting becomes extremely important. 

 

 

TSS Data Sorting Problems  

 

 The data sorting problem, as it relates to TSS’s, was not discussed in-depth until 

the TiPS experiment was launched and tracked in 1996.  Since one of the main purposes 

of TiPS was to help provide understanding of the long-term dynamics of a TSS, a large 

amount of tracking data was collected over the years following its launch.  During the 

analysis of this tracking data, specifically radar tracking data, it became apparent that a 

significant portion, approximately 30%, of the data was not tagged, or sorted, properly 

into the appropriate end mass (Barnds and Coffey, 1999:1846).  This occurred when it 

was known that the system was a TSS, and all of the key parameters of the TSS were 

known.  Presumably with an unknown TSS the possibility of inappropriately sorting 

tracking data becomes greater. 

 The analysis team involved in sorting out the TiPS tracking data was able to 

approach the problem with much more certainty because of the use of many other sources 

of data available to them.  They were able to take sources such as Satellite Laser Ranging 

data and optical tracking data to come up with a more complete picture of what was 

going on with the satellite (Barnds and Coffey, 1999:1845).  Their analysis of multiple 



 

9 

tracking sources helped the team come up with a very accurate estimate of the TiPS orbit 

as well as determine an approximation on the libration and libration rate associated with 

TiPS over time. 

 The results of the TiPS analysis shows that data sorting and OD for TSS’s can be 

done with very good accuracy, but these results were achievable only with multip le types 

of tracking data, a large set of data, and much was known about the system.  Coming up 

with a way of doing data sorting on a much shorter timeframe with only radar tracking 

data is still an issue. 
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III.  Data Sorting Preliminary Analysis 

 

 

 Two parameters were initially considered as possibilities for accomplishing data 

sorting of TSS observations: tracking site (TS) slant range and Earth-Centered (EC) 

position vector magnitude.  For brevity, EC position vector magnitude and EC range will 

be synonomous for the rest of this paper.  An analysis was done to determine which of 

these two parameters more easily distinguishes the two end bodies of a TSS. 

 When a TS tracks an object in space it generally obtains a reading for slant range, 

elevation angle, and azimuth angle.  Slant range is the distance from the site to the object 

being tracked.  Elevation is defined as the angle between the TS’s local horizon and the 

location of the satellite, and it can assume any value between 0 and 90 degrees.  Finally, 

azimuth is an angle measured clockwise from north to the direction where the TS is 

tracking.  This means azimuth can assume any angle between 0 and 360 degrees (Bate et 

al., 1971:84). 

 

 

Elevation and Libration Analysis on TS Slant Range and EC Range 

 

The first parameter we analyzed to determine if it had good properties for data 

sorting was the TS slant range.  If it can be shown that the lower end mass (mass 1) of a 

TSS almost always has a smaller TS slant range than the upper end mass (mass 2) then 
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this would be a good parameter to use for data sorting.  This requires us to do a 

comparison between the TS slant ranges for both end masses.  In order to calculate the 

TS slant ranges we must define tether libration.  Figure 1 shows a coordinate component 

that defines the tether libration. 

 

 

 

 

 

 

 

Figure 1- 1û  Coordinate Component Defined 

 

The 1û  coordinate component is defined such that its origin is located at the center 

of the Earth and 1û  goes from the origin at the center of the Earth and passes through the 

lower end mass, 1m , of the TSS (Cicci et al., 2001:311).  Therefore, 1r
r

, the vector from 

the center of the Earth to 1m  is only defined in the 1û  direction.  Also, 1r
r

is the EC range 

for 1m , and 2r
r

 is the EC range for 2m .  The angle, ?, defines the angle between the 1û  

direction at 1m  and mass 2m .  This angle, ?, defines the libration angle.  Libration angles 

can have a component in the plane of the orbital plane, and a component out of the plane 

of the orbital plane.  Figure 1 only shows the in-plane portion of the angle.  For example, 

if ? equals zero degrees then the TSS is perfectly nadir-oriented (aligned vertically in the 
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1û

2m

θΡ
r

Earth

2rr

1m

1r
r

γ



 

12 

1û  direction) and 2r
r

simply becomes 1r
r

 plus the magnitude of the length of the tether, 

P
r

, in the 1û  direction.  Finally, γ  defines the angle between 1r
r

 and 2r
r

, which is a 

function of libration angle, tether length, and altitude of the TSS. 

 The next step is to look at how TS slant range is affected by the libration angle 

and the TS elevation angle.  Another figure helps show how important the tracking site’s 

elevation angle and the TSS libration angle are in determining TS slant range to a TSS.  

Figure 2 is similar to Figure 1 but it includes a tracking site located on the surface of the 

Earth. 

 

 

 

 

 

 

 

 

Figure 2- Slant Range from tracking Site to End Masses  
 

R
r

 defines the vector from the center of the Earth to the tracking site.  Each of the 

ρ
r

 terms describes the slant range vector from the site to one of the end masses of the 

TSS.  The TS slant ranges to the end masses, 1ρ  and 2ρ , are the magnitudes of the TS 

slant range vectors.  The dashed line at the site defines the local horizon for the TS.  The 

1ε  term defines the TS elevation angle to the lower end mass of the TSS.  A second 
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elevation angle, 2ε , represents the TS elevation angle to the upper end mass of the TSS.  

Finally, 1λ  represents the central earth angle between R
r

 and 1r
r

.  There is also an angle, 

2λ , which defines the central earth angle between R
r

 and 2r
r

 (not shown for clarity). 

Using Figures 1 and 2 together, the TS slant range to mass 1m , 1ρ , can be 

obtained if R
r

, 1r
r

, and 1ε  are known: 

 ( )11

22
11 90cos2 ερ +°∗∗∗+−= RrRr

rrrrr
 (1) 

Then by using the libration angle, θ , and the length of the tether, P
r

, the TS slant range 

to mass 2m , 2ρ , can also be obtained.  This is accomplished by first determining the 

central earth angle between the site and the lower mass: 

 
















∗∗

−+
= −

1

2
1

2
1

2

1
1

2
cos

rR

rR
rr

rrr
ρ

λ  (2) 

Next, determine 2r
r

 by using the law of cosines: 

 ( )θcos2 1

22
12 ∗∗∗++= PrPrr

rrrrr
 (3) 

The angle between 1r
r

 and 2r
r

 is then calculated by: 

 
















∗∗

−+
= −

21

22
2

2
11

2
cos

rr

Prr
rr

rrr

γ  (4) 

The Earth central angle to 2m , 2λ , is obtained simply by subtracting γ  from 1λ .  Finally, 

the slant range from the tracking site to the upper end mass is determined with: 
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 ( )22
2

2

2

2 cos2 λρ ∗∗∗−+= rRrR
rrrrr

 (5) 

 This sequence of equations allows us to compare the slant range from a tracking 

site to each of the end masses.  Using this tool, it can be shown that at lower elevations, 

smaller librations can cause the upper mass to have a smaller slant range than the lower 

mass.  For example, a 4 kilometer tethered satellite with 40 degrees of libration viewed at 

approximately 27 degrees elevation or lower, will cause the upper end mass to have a 

shorter slant range than the lower end mass.  In stark contrast to this, it is obvious that at 

90 degrees elevation the libration angle must be 90 degrees before the slant range for the 

two end masses is equal.  This analysis shows that the lower the elevation angle that a 

TSS is tracked, the less libration is needed to confuse the two objects apart solely on slant 

range alone. 

Comparing the effects of libration and elevation angle on TS slant range and EC 

range requires a look at how libration and elevation angle affects EC range for each of the 

end masses.  It is apparent that the TS elevation angle does not affect the EC range 

because the EC range is only related to the location of the TSS and the center of the Earth 

and has nothing to do with the location of the tracking site.  Therefore, 90 degrees of 

libration will always be required before the upper mass and lower mass have equal EC 

ranges. 

This analysis led our research to focus on EC range instead of TS slant range as a 

key parameter which could be used to tell TSS data points apart.  However, even though 

EC range seems to be a better indicator for TSS data sorting based on the previous, there 
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are some issues related to real-world tracking site errors that have an affect on data 

sorting, which leads us to our next preliminary analysis. 

 

 

Tracking Site Error Analysis 

 

In the perfect world, our previous analysis indicates EC range is a better 

parameter to use for data sorting than TS slant range.  Unfortunately, in the real world 

problems like tracking site errors need to be considered.  These real-world problems led 

us to analyze tracking site error impacts on TS slant range and EC range to help 

determine the potential impact on sorting out TSS data points. 

Analyzing tracking site errors on TS slant range is straightforward.  Since radar 

sites obtain slant range directly as a measurement, the slant range error is incorporated 

directly.  For example, if a tracking site has a potential slant range error of 0.02 km, and it 

obtains a reading on an object of 2000 km, then there is 68% confidence that the actual 

slant range of the object is between 1999.98 km and 2000.02 km.  The errors in the 

elevation and azimuth of the tracking site do not affect the slant range measurement in 

any way. 

However, analyzing the tracking site errors on the EC range, r
r

, requires more 

complicated computations.  Since EC range error is not measured directly by a tracking 

site, it must be calculated from the tracking site errors for elevation and slant range.  The 

tracking site azimuth error does not affect the EC range error because EC range is 
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calculated using the law of cosines by rearranging Equation (1) to solve for r
r

and 

azimuth does not appear in this equation.  From now on, instead of writing out the full 

form of the magnitude of any particular vector, it will be assumed that r equals r
r

, and so 

forth for any other magnitude calculation.  To calculate the uncertainty of the EC range, 

rσ , given the uncertainties in slant range, ρσ , and elevation, εσ , we use: 

 T
r JJ ∗









∗=
2

2
2

0
0

ε

ρ

σ
σ

σ  (6) 

Where 

 







∂
∂

∂
∂

=
ερ
rr

J  (7) 

The elements 
ρ∂

∂r
, and 

ε∂
∂r

 are obtained by taking the partial derivatives of Equation (1) 

with respect to ρ , and ε , respectively.  These partials are: 

 
( )

( )ερρ

ερ
ρ +°∗∗∗−+

+°∗−
=

∂
∂

90cos2

90cos
22 RR

Rr
 (8) 

 
( )

( )ερρ

ερ
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 These equations provide the error covariance in the EC range as a function of the 

TS elevation angle and slant range error covariances.  For example, assume a tracking 

site has the following errors for slant range and elevation:  km021.0=ρσ  and 

°= 023.0εσ .  Next, assume a 2 km nadir-oriented tethered satellite has EC ranges for the 

bottom and top masses respectively of: kmr 5.73991 =  and kmr 5.74012 = .  This leads to 

the covariances in Figure 3.  The dotted line indicates the actual upper mass EC range, 
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and the curved dash-dot lines represent the 1 rσ  error bars for the upper mass EC range.  

The lower solid line indicates the actual lower mass EC range, and the curved dashed 

lines represent the 1 rσ  error bars for the lower mass EC range. 

 

Figure 3- Affect of Elevation Angle on rσ  

 

This figure shows how the potential EC range error grows larger as the elevation angle 

becomes smaller.  Figure 4 shows how increasing the TS slant range error to 

km5.0=ρσ affects the EC range error. 
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Figure 4- Affect of Larger Slant Range Error on rσ  

 

These figures can be used to draw two conclusions.  First, elevation angle and 

elevation angle error play a major role in determining the actual EC range of an object in 

space.  The TS slant range error is not as big of a factor as elevation error.  However, it is 

apparent that if a tracking site does have a larger slant range error then the error width 

even at 90 degrees is proportionately larger to incorporate the larger slant range error. 

The second important point to note concerning both figures is the point at which 

the lines cross determines where the end masses may be confused for each other and an 

unsuccessful data sort may occur.  This means that for these conditions and the 

previously mentioned tracking site errors, at approximately 10 degrees in elevation there 
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is an 84% chance that a data point will be properly identified if the actual position is 

known in advance (Bayer, 1991:497).  Figure 4 shows how the slant range error has only 

a minor affect on the elevation at which data points may be confused.  This shows that 

the elevation angle and elevation angle error are the main factors in determining a data 

point’s actual EC range. 

 The plots shown in both figures apply only for the specified TSS, TSS orbit, and 

tracking site parameters.  This important fact must be taken into consideration when 

analyzing the point at which a tracking site will probably start to have problems sorting 

out TSS tracking data. 

 This second analysis shows once again how elevation angle plays a role in being 

able to identify data points properly.  The EC range is more susceptible to error than the 

slant range, particularly at low elevation angles. 

 

 

Data Sorting Preliminary Analysis Conclusion 

 

 After looking at slant range and EC range as potential parameters for sorting out 

data points, it is evident that both exhibit different strengths and weaknesses.  However, 

an additional advantage of the EC range not mentioned previously is that the values of 

EC range over time should be fairly constant for low eccentricity orbits.  However, when 

looking at slant range, the values vary greatly over a short period of time, and if multiple 

sites are incorporated they will each have very different slant range values.  In fact, slant 

range changes so quickly as a TSS passes near a sight, the value can change by several 
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thousand kilometers in minutes.  Therefore, a plot of TS slant ranges for the upper and 

lower mass of a TSS can be very difficult to tell apart, by hand or by computer, because 

the slant range will have to cover such a large range of values.  This final piece of 

information helped us decide to use the EC range parameter to sort the observational 

data. 
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IV.  Estimating the TSS Orbit and Sorting the Data 

 

 

 Once a parameter was selected to use in the data sorting algorithm, the next step 

was to develop a method of estimating the orbit of the TSS CM based off of the tracking 

data.  The estimation method used for this research is a four- fold process.  The first 

process involves taking the observed azimuth, elevation, and slant range data from a 

tracking site and determining an initial estimated set of COEs.  The second process uses a 

simulator to propagate the estimated COEs of the CM over the same time frame as all of 

the tracking site observations.  These estimated COEs are then converted into estimated 

EC pqw coordinate frame position vectors.  The third process involves taking the 

observation data again and converting that data into observed EC pqw position vectors.  

The fourth process involves iterating on steps 2 and 3 in order to minimize the difference 

between the observed and estimated pqw position vectors.  This entire process allows us 

to take a poor initial guess of the CM COEs and optimize the initial guess until a much 

better estimate of the CM COEs is found. 

 The pqw coordinate system referred to above is also known as the perifocal 

coordinate system.  The perifocal coordinate system is a coordinate system which is 

based on the orbit of the satellite.  The origin of the pqw coordinate system is the center 

of the Earth.  The p̂  and q̂  directions lie in the plane of the orbit, with the p̂  direction 

aligned with the perigee point, while the q̂  direction is perpendicular to p̂ .  The ŵ  

direction is perpendicular to the plane of the satellite orbit, since it must be perpendicular 
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to both p̂  and q̂ .  Thus for a single satellite there should not ever be any value in the ŵ  

direction since the satellite should always lie in the plane of its orbit.  For the tethered 

satellite problem, we will also be making an assumption that the TSS maintains a nadir 

orientation, so each of the end masses and the CM of a TSS also should have no ŵ  value. 

 One might wonder why position vectors are calculated in the pqw coordinate 

frame instead of the IJK frame.  One benefit of the IJK frame is that we can calculate the 

actual values of the observations in IJK coordinates.  However, pqw coordinates are 

based off of the orbit, and in our case we only have a poor initial COE estimate and we 

do not know the actual orbit.  The reason for using pqw coordinates in the estimation 

process is simply that the algorithm is more robust.  The estimator was implemented with 

IJK components but the algorithm did not converge unless the first guess COEs were 

essentially the same as the actual COEs.  One potential reason why pqw coordinates work 

better centers on the ŵ  component of the pqw coordinate frame.  The ŵ  component for 

any satellite must be near-zero.  Even for a TSS, only the libration that occurs out of the 

plane of the orbit will affect the ŵ  values for the end masses.  So, this essentially 

decouples this component from the in-plane variables. 

 

 

Assumptions  

 

 There are four major assumptions used in the estimation process which simplify 

the problem.  These four assumptions include nadir orientation, rigid tether, CM and 
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center of gravity equal, and J2 perturbations being the only significant perturbations 

which affect the orbital motion of the CM. 

 As talked about in the introduction, nadir orientation is a commonly accepted 

starting point to analyze tethered satellites.  This is particularly important in our 

application since we are dealing with different TSS’s, and where we have little or no 

knowledge about the key parameters of the TSS.  Trying to handle libration in addition to 

estimating an orbit and data sorting, while only using a limited amount and type of 

tracking data, would cause the complexity of this issue to increase greatly.  In the future, 

as more TSS’s are flown and there is more understanding of the real-world dynamics of 

tethers, handling libration might become more reasonable.  In addition, nadir orientation 

is a reasonable assumption if the TSS maintains a fairly low libration angle.  Looking at a 

real-world case, the libration values for TiPS went from approximately 30-40 degrees 

down to approximately 5-7 degrees in less than a year (Purdy et al., 1997:2). 

 The second assumption in determining a CM orbit and data sorting is the tether 

will remain fully rigid.  This means the tether is treated as an inflexible bar.  This 

assumption eliminates the need to attempt to calculate the tension on the tether at any 

particular time.  Assuming a rigid tether is one important way to help simplify the 

differential equations and is often used in studying tether motion (Beletsky and Levin, 

1993:48). 

 The third important assumption for this research is the CM of a TSS is always 

equal to the center of gravity of the system, and, therefore, the CM follows a near-

Keplerian orbit.  In reality, tether motion does affect orbital motion because it causes the 

center of gravity to constantly change.  This changing force on orbital motion caused by 
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tether motion is related by the term 
2









r
P  (Cochran et al., 1999:1826).  Since the tether 

length, Ρ , is much, much smaller than r and this term is squared, the effects of tether 

motion are very small.  This is a well-accepted assumption used by many tether analysis 

techniques that deal with trying to determine the orbital motion of the CM of the TSS.  In 

addition, since we may not know much about the TSS, trying to calculate the 

perturbations on orbital motion caused by the changes in the attitude becomes almost 

impossible.  So, since these perturbations on orbital motion due to attitude motion are 

small and they are almost impossible to calculate with the information given, we will 

assume the CM and the center of gravity are always equal. 

 Finally, the last assumption used in this research deals with perturbations to two-

body motion.  The J2 perturbations caused by the oblateness of the Earth are generally 

one of the most common perturbations to include in the study of orbital motion.  While 

there are many other perturbations which affect all satellites such as solar pressure, J2 will 

generally dominate for Low-Earth Orbit (LEO) satellites. 

The one additional perturbation which might cause significant problems for TSS 

analysis is air drag.  Since a TSS most likely has a much larger surface area to mass ratio 

than normal satellites, very low flying tethers could have significant perturbations due to 

air drag.  However, since we are assuming to know very little about the TSS it also 

becomes hard to determine an accurate drag estimate.  In addition, as long as a TSS is 

flying high enough where drag becomes much less of a concern, then this perturbation 

becomes small enough to ignore.  Therefore, J2 perturbations are the only perturbations 

which are considered in this research. 
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Obtaining an Initial Estimate of the  COEs of the CM 

 

 Having scoped the problem with all of the assumptions and having developed an 

idea for what parameter works best for data sorting, the next step is to determine a first-

guess for the Classical Orbital Elements (COEs) of the CM at a specific epoch time.  This 

problem can be solved using any recognized orbit determination technique.  This paper 

uses the Herrick-Gibbs technique, but other methods such as Gauss or f and g may also 

be used. 

 The Herrick-Gibbs formula used here was obtained from Pedro Escobal’s 

Methods of Orbit Determination, 1965.  The Herrick-Gibbs technique requires 3 EC IJK 

position vectors to come up with an initial estimate for the COEs.  However, before 

showing the Herrick-Gibbs formula it is important to show how IJK position vectors are 

obtained in the first place from the tracking site data.  The technique for obtaining IJK 

position vectors from radar data was obtained from Bate, Mueller, and White’s 

Fundamentals of Astrodynamics. 

 The process of taking observations from radar data and converting it into accurate 

inertial IJK position vector data entails several coordinate transformations, an 

understanding of the eccentricity of the Earth, and being able to calculate local sidereal 

times (Bate et al., 1971:83).  The first step of converting radar data requires transforming 

the data into the Topocentric-Horizon Coordinate System.  This coordinate system has 

the radar’s location on the surface of the Earth as its origin.  The axes are defined as 

South, East, and Up or more commonly S, E, Z. 
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 The relationship which relates observed slant range ( oρ ), elevation ( oε ), and 

azimuth ( oα ) to an observed position vector in the SEZ frame, o
SEZ ρ

r
, can be arrived at 

through simple geometry: 
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where ρS , ρE , ρZ , are the S, E, and Z components of the SEZ slant range vector, 

o
SEZ ρ

r
, respectively.  This SEZ frame is not an inertial frame since the origin is a tracking 

site located on the surface of a rotating Earth.  So, to get to an inertial frame with the 

center of the Earth as its origin several more items must be discussed. 

 In order to potentially use tracking data from multiple sites it is important to be as 

accurate as possible when discussing where a tracking site is located.  The easiest way to 

calculate the position of a tracking site is simply to use the site’s latitude and longitude 

and convert those directly using a spherical model of the Earth.  However, since the Earth 

is not truly spherical, using this method can potentially lead to errors in the TS position 

on the order of kilometers.  Since data sorting relies on having the most accurate EC 

range possible, this potential error needs to be eliminated if possible.  One of the most 

common ways to handle the true shape of the Earth is to treat it as an ellipsoid instead of 

a sphere (Bate et al., 1971:93).  Bate, Mueller, and White go through an excellent 

discussion of calculating the position vector of a site on the Earth based on its latitude, 

longitude, and altitude above mean sea level.  We will summarize this set of calculations 

here since it is so vital for data sorting. 
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 When doing calculations using an ellipsoid model of the Earth there are a couple 

of constants to keep in mind.  These constants include Equatorial radius 

( kmae 165.6378≈ ), and Earth Eccentricity ( 08181.0≈ee ) (Bate et al., 1971:94).  The 

other quantities needed to calculate the location of a site on an ellipsoid Earth include the 

site’s geodetic latitude (φ ), geographic longitude ( β ), height above mean sea level (H), 

and the time of the observation. 

 The first step in this process is to calculate Greenwich sidereal time, gτ , at the 

time of the observation.  This is accomplished by looking up in a table the Greenwich 

sidereal time for a particular date, which we will term goτ .  For example, Bate, Mueller, 

and White give a value of °990704.99  for goτ  for 1 Jan 1971 at 0 hours Universal Time 

(Bate et al., 1971:104).  If it is known how many days (D) have passed since that time (to 

include fractions of a day), then gτ  is calculated by: 

 Dgog ∗°∗+= 3600027379093.1ττ  (11) 

Once gτ  is known for the specified time, the next step is to calculate the local sidereal 

time for the site, ( siteτ ).  There is a simple relationship between Greenwich sidereal time 

and the site’s geographic longitude: 

 βττ += gsite  (12) 

 Now that local sidereal time is known the next step is to calculate the inertial IJK 

position vector of the site at that time.  This is accomplished by initially calculating the 

following two quantities: 
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Next, the inertial IJK position vector of the tracking site, RIJK
r

, is obtained from: 

 ( ) ( ) KzJxIxR sitesite
IJK ˆˆsinˆcos +∗+∗= ττ

r
 (15) 

 Knowing the inertial IJK position of the site is only the first half of determining 

the IJK position vector of the observed object.  Now, the observed SEZ slant range 

vector, o
SEZ ρ

r
, found in Equation (10) needs to be converted into an observed inertial IJK 

slant range vector, o
IJK ρ

r
.  This is accomplished by using a transformation matrix: 
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where o
I ρ , o

J ρ , and o
K ρ , are simply the I, J, and K components of o

IJK ρ
r

, respectively.  

Finally, the observed inertial IJK position vector for the tracked object, o
IJK r

r
, is obtained 

by: 

 o
IJKIJK

o
IJK Rr ρ

rrr
+=  (17) 

 Once the tracking data is finally converted into observed IJK position vectors, the 

Herrick-Gibbs formula for calculating the observed velocity vector can be used (Escobal, 

1965:305).  The Herrick-Gibbs method essentially takes three position vectors to 

calculate a velocity vector for the second position vector.  Using this method, the second 

position vector time is set to zero, so the time for position vector one will be negative.  
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This technique is started by calculating what Escobal terms “modified times” (Escobal, 

1965).  If each of the three observed position vectors, oi
IJK r

r
, (i=1,2,3) has an associated 

time (tj), where 3,2,1=j , then the modified times (ψ ) are calculated by: 

 ( )ijij ttk −∗=ψ  (18) 

where 235 /10986.3 skmk e ∗== µ , which is the Earth gravitational parameter, and 

3,2,1=i .  Next, the following quantities are calculated: 
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In addition to the previous quantities, the following quantities must also be calculated: 

 

312

12
3

23
1

12

12

HHH

H

H

−≡

≡

≡

ψ

ψ

 (20) 

Using both the G  and H  quantities, the coefficients of the velocity vector are calculated 

as follows: 

 3
oi

i
ii r

H
Gd +=  (21) 

Which then leads to the observed velocity vector: 

 33221122 o
IJK

o
IJK

o
IJK

o
IJK

o
IJK rdrdrdrv

rrr&rr
∗+∗+∗−==  (22) 



 

30 

 It is important to remember where all of these calculations are leading, and that is 

to a first-guess of the COEs at an epoch time of the TSS CM.  This estimate is not going 

to be nearly accurate enough because of the fact that all of the methods for calculating 

velocity vectors from position vectors and then obtaining COEs from position and 

velocity vectors are designed for single-body satellites.  If a TSS is very short, or if all of 

the readings are taken from the same end mass and that end mass contains most of the 

mass of the system, then this estimate may be close, but in most cases for TSS’s this will 

only give a rough estimate.  But, we do need some starting point to get the estimation 

process started even if it is very rough.  So, the next step in obtaining an estimate of the 

COEs of the CM is to convert the position and velocity vectors into COEs.  We once 

again refer back to Bate, Mueller, and White for the method of calculating COEs from a 

position and velocity vector. 

 Position and velocity is all that is needed to uniquely determine the orbit of a 

satellite.  The method for accomplishing this first starts by calculating the angular 

momentum vector, h
r

 by the following equation: 

 o
IJK

o
IJK vrh

rrr
×=  (23) 

Next, the node vector is calculated by crossing the angular momentum vector with the K̂  

direction: 

 hKn
rr

×≡ ˆ  (24) 

The eccentricity vector is the next important item which will help us determine the COEs, 

and this vector is calculated as follows: 
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These three vectors enable us to obtain the initial estimate of the TSS CM COEs for the 

epoch time using the following set of equations: 
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For each of the angles calculated previously the following quadrant checks apply: 

i is always less than °180  

 If 0ˆ >⋅ Jn
r

 then °<Ω 180  (27) 

If 0ˆ >⋅ Ke
r

 then °< 180ω  

If 0>⋅vr
rr

 then °< 1800ν  

With all of these calculations we finally have an estimate for the CM COEs at our epoch 

time.  This initial guess is then used in the rest of the estimation process as a starting 

point. 
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Calculating Estimated EC pqw Position Vectors  

 

 Propagating Estimated CM COEs for all Observation Times. 

 Once the first-guess COEs are finally calculated for the epoch time, the estimated 

COEs for the CM at all times at which our observations occur need to be calculated.  

Since we have chosen to ignore all perturbations except J2 the following set of equations 

apply for determining the estimated COEs of the CM at some time, t, when the initial 

estimated COEs are given for our epoch time, 0t : 
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where J2 has a dimensionless value of 0.00108263 (Wertz and Larson, 1999:143).  The 

anomalistic mean motion, n , (Escobal, 1965:369) is given by: 
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where 0n  is the unperturbed mean motion and is equal to 3aeµ .  The parameter p  is 

called the semi-parameter of the orbit and is equal to ( )21 ea −∗ .  The terms ( )tM  and 

0M  are the mean anomaly of the object’s position at time t and 0t , respectively.  The 

variable we are interested in determining at time t is the true anomaly, ν , not the mean 
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anomaly.  Calculating true anomaly for an elliptical orbit requires a series of calculations.  

The first step for calculating true anomaly at time t is to calculate the eccentric anomaly 

at time t0, E0, and then calculate M0.  This is accomplished with the following set of 

equations: 
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 ( )0000 sin EeEM ∗−=  (31) 

Calculating M at time t is calculated as follows: 

 ( ) ( )00 ttnMtM −∗+=  (32) 

There is no direct relationship for calculating true anomaly from mean anomaly, so an 

iterative procedure must be employed.  First, eccentric anomaly at time t is calculated 

from: 

 ( ) ( ) ( ) ( )( )tEtetMtE sin∗+=  (33) 

This equation can not be solved directly for eccentric anomaly, so an iteration technique 

must be applied.  One popular method of solving this problem is to use a Newton-

Rhapson Iteration Method.  We solve this problem by first guessing the value of ( )tE .  A 

good first guess for orbits which do not have a high eccentricity value is to set ( )tE  equal 

to ( )tM .  Then, substitute this guess for ( )tE  into equation (31).  If the new value for 

mean anomaly, ( )tM 2  is equal to ( )tM  within a certain tolerance level, say 12101 −∗ , 

then this guess for ( )tE  is the final answer for ( )tE .  However, if it is not less than the 

designated tolerance level, then a better estimate for ( )tE  is obtained from: 
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Once this new estimate for eccentric anomaly, ( )tE2  is calculated, then this new estimate 

becomes the new value to substitute into equation (31).  This process is repeated until the 

desired tolerance level is achieved.  This method of determining the eccentric anomaly 

converges quickly for small eccentricity.  Now that eccentric anomaly is calculated at 

time t we can finally calculate the true anomaly at t, ( )tν .  The equation used to calculate 

this value is the same as equation (30), but now it is reversed to solve for true anomaly: 
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 The equations and techniques described in this section are all that is needed to 

obtain estimated COEs for the CM of a TSS at any time as long as an initial estimate at 

some epoch time, t0 is obtained first.  Unfortunately, knowing the COEs of the CM at 

each time does not allow us to calculate the quantities needed for the estimation process.  

So, there are several additional steps which need to be accomplished  First, we need to 

convert the newly found estimated CM COEs at each particular time back into estimated 

IJK position vectors.  Second, we need to determine the estimated IJK position vectors of 

both of the end masses.  Finally, the estimated IJK position vectors of the end masses 

need to be converted into estimated pqw position vectors.  All of these processes are 

covered in the next two sections. 
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 Converting Estimated CM COEs into Estimated CM IJK Position Vectors. 

 Converting the estimated COEs back into estimated IJK position vectors is a two-

step process.  The first step is to calculate the estimated position vector in the pqw, or 

perifocal, coordinate system.  The second step is to accomplish a coordinate 

transformation on the estimated position vector in the pqw coordinate system into the IJK 

coordinate system.  Bate, Mueller, and White have an excellent discussion of this task 

(Bate et al., 1971:72).  We will briefly summarize what they cover next. 

 There are two equations which are needed to calculate the estimated EC position 

vector in the pqw frame.  The first equation is used to calculate the magnitude of the 

estimated position vector in the pqw frame and is related to the estimated COEs by: 

 ( ) ( ) ( )( )
( ) ( )( )tte

teta
tre νcos1

1 2

∗+
−∗

=  (36) 

Then calculate the estimated position vector in the pqw frame: 

 ( ) ( ) ( )( ) ( ) ( )( )qttrpttrtr eee
pqw ˆsinˆcos νν ∗+∗=

r
 (37) 

Now that the estimated position vector has been defined in the pqw coordinate 

system all that is needed to calculate the estimated position vector in the IJK frame is a 

coordinate transformation.  The transformation matrix required to go from the pqw frame 

to the IJK frame is shown in the next equation and is equal to 
IJK

pqw
R .  In regards to this 

transformation matrix, ( )c  represents cosine and ( )s  represents sine: 
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Using this transformation matrix the estimated IJK position vector of the CM, e
IJK r

r
, is 

obtained by the next equation. 
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 (39) 

This completes the method for determining the estimated inertial position vector of the 

CM in the EC IJK frame at time t.  For a TSS, however, the CM is most likely a point in 

space somewhere between the end masses, and a radar site will probably track one of the 

end masses and not the CM.  The next section discusses how to determine the estimated 

pqw position vectors of the end masses when given the estimated IJK position vector of 

the CM. 

 Calculating Estimated TSS End Mass pqw Position Vectors. 

 Determining the estimated IJK position vectors of the end masses of a TSS 

requires knowledge of the length of the tether, the mass of the end objects, and the mass 

of the tether.  If it is known that the system is a TSS and the tether parameters are known, 

such as TiPS, then those values can be used directly.  If, however, the length is unknown, 

or if it is an unknown TSS, then these parameters will be estimated along with the TSS 

orbit. 

 In order to determine the estimated end mass IJK position vectors from the 

estimated CM IJK position vector we refer back to the 1û  coordinate component.  Due to 

the nadir-oriented assumption the estimated position vectors for both end masses will 

only have values in the 1û  direction.  The equation for determining the distance 1m  is 

from the CM, cm
md 1 , is shown by: 
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The value, tm , is the mass of the tether.  We will assume the value is zero in the case of 

an unknown TSS.  By knowing the distance of 1m  from the CM, it is easy to calculate the 

distance of 2m  from the CM, cm
md 2 , by: 

 cm
m

cm
m dPd 12 −=  (41) 

Knowing the estimated distances of the end masses from the CM, the estimated 1û  

position vector values for end mass 1, 1e
u r
r

, and mass 2, 2e
u r
r

, are related to the estimated 

CM magnitude, er , by the next set of equations : 
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 (42) 

 The estimated IJK position vectors for end mass 1, 1e
IJK r

r
, and mass 2, 2e

IJK r
r

 can 

be obtained through simple geometry.  Figure 5 shows the relationship between the 1û  

direction and the IJK coordinate frame. 

 

 

 

 

 

 
 
 

Figure 5- Relationship between 1û  and IJK Coordinate Frame 
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The 1û  direction is given by two angles and the estimated IJK position vector of the CM, 

e
IJK r

r
.  Remember, the origin for both of these systems is the center of the Earth.  The first 

angle, β , is the angle measured from the Î  direction to the dashed line which is the 

projection of e
IJK r

r
 in the I-J plane.  The second angle, α , is the angle measured from the 

I-J plane to e
IJK r

r
.  Both angles are calculated by: 
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 (43) 

Once these two angles are known the estimated IJK position vectors for end mass 1, 

1e
IJK r

r
, and end mass 2, 2e

IJK r
r

 are calculated by: 
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 (44) 

 This is the final step in determining the estimated IJK position vectors for each of 

the TSS end masses.  Now, we can determine the estimated pqw position vectors for each 

of the TSS end masses.  The transformation of all of the end mass positions obtained 

from Equation (44) uses the inverse of the conversion from pqw coordinates to IJK 

coordinates given in Equation (38) and is given by: 

 

ie
K

e
J

e
I

TIJK

pqw

ie
w

e
q

e
p

r
r
r

R
r
r
r

















∗





=

















 (45) 



 

39 

where i is equal to 1 or 2 depending on the end mass we are calculating.  This is all that is 

needed to obtain estimated pqw position vectors for end mass 1, 1e
pqwr

r
, and end mass 2, 

2e
pqwr

r
 when the estimated IJK position vectors are known.  Having the estimated pqw 

position vectors now, the next step we need to do is convert all of the observation data 

into observed pqw position vectors, o
pqwr

r
. 

 

 

Converting Observation Data into pqw Position Vectors  

 

At first glance calculating the observed pqw position vectors, o
pqwr

r
, may not seem 

logical or possible.  The estimated orbit is known since we determined this earlier.  So, 

converting the estimated COEs into estimated end mass pqw position vectors is possible.  

But, we do not know the actual orbit which the satellite is following, so we cannot 

calculate the observed EC position vectors in the actual pqw frame.  Instead, we calculate 

the observed EC position vectors in the estimated pqw frame. 

 One of the important items to remember about the pqw frame is that any tracked 

object in space should have a zero or near-zero component in the ŵ  direction.  So, as 

position vectors are calculated in the estimated pqw frame, all of the estimated pqw 

position vectors will already be near-zero in the ŵ  direction, while the observed pqw 

position vectors may or may not have a near-zero component. 

 Up to this point, we have not discussed how to calculate observed position vectors 

in the pqw frame for all of the data points, but the general process of calculating pqw 
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position vectors has been shown.  In Equations (10)-(17), we calculated IJK position 

vectors for several of the observations in order to obtain an initial estimate.  So, the first 

step of calculating pqw position vectors for the observations is to take all of the 

observations and calculate all of their corresponding IJK position vectors using these 

equations.  The next step of calculating pqw position vectors for the observations requires 

the use of the estimated set of COEs in Equation (45) to convert the observed IJK 

position vectors into observed pqw position vectors. 

 Now that we have estimated and observed pqw position vectors we can begin the 

process of improving the initial guess of the COEs so the difference between the 

estimated and observed pqw position vectors is minimized. 

 

 

Minimizing Observed and Estimated Differences 

 

Calculating TSS Position Residuals. 

 A common method for comparing an estimate of an orbit with what is observed is 

computing residuals.  A residual is the difference between an observed and estimated 

quantity (Bate et al., 1971:123).  For this estimation problem, we computed residuals for 

both EC range and pqw position vector components. 

 Initial estimation attempts with just using the EC range residuals showed that this 

approach was very effective in sorting the data and determining the orbit semi-major axis, 

eccentricity, and true anomaly.  This information completely specified the distance to the 

center of the Earth for an end-body, so the other orbital elements are unobservable when 
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using only the EC range residuals.  Consequently, we added the pqw position vectors to 

the residuals in order to estimate the orbit plane (longitude of the ascending node, 

inclination, and argument of perigee).  As mentioned above, the pqw frame position 

vectors had better convergence properties than the IJK frame.  A combination of these 

two quantities for the residuals gave the most robust and accurate performance for both 

the data sorting and the orbit estimation. 

 It is common practice to calculate a residual by subtracting estimates from 

observations so this is the convention we use here (Wiesel, 2003:25).  Calculating the 

residuals for a TSS is different than calculating residuals for a single-body satellite.  

Since we have two end masses, and we do not know ahead of time which one is 

represented by the data, we have to calculate a set of residuals for each end mass. 

 Since there are two end mass estimates, but only one observation there will be 

two sets of residuals which are calculated.  Calculating the EC range residuals for mass 1, 

1rΧ , and mass 2, 2rΧ , is done by subtracting the estimates, ( )tre1  and ( )tre2 , from the 

observation, ( )tro , as shown by: 

 
( ) ( ) ( )
( ) ( ) ( )trtrtX

trtrtX

eor

eor

22

11

−=
−=

 (46) 

 Since there are three pqw components and a different pqw estimate for both end 

masses there are a total of six pqw component residuals.  These six residuals will be 

represented as follows: 1m  p component residual, pr 1
rΧ , 1m  q component residual, qr 1

rΧ , 

1m  w component residual, wr 1
rΧ , 2m  p component residual, pr 2

rΧ , 2m  q component 

residual, qr 2
rΧ , and 2m  w component residual, wr 2

rΧ .  Using the observed pqw position 
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vectors, ( )tro
pqwr , and the estimated pqw position vectors, ( )tre

pqw
1

r
 and ( )tre

pqw
2

r
, 

calculated previously from Equation (45) the pqw component residuals are shown as 

follows: 
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 (47) 

For our purposes, since there is no libration in our estimated TSS, subtracting the 

estimated terms out of wr 1
rΧ  and wr 2

rΧ  is not really necessary because those values should 

be zero.  But, we have inc luded the terms here for completeness. 

 We now have all of the residuals necessary to do the optimization and data 

sorting.  The next section describes how the optimization and data sorting was 

accomplished using MATLAB. 

 Optimizing the COEs and Data Sorting. 

 Knowing all of the residuals enables us to quantify how far the COE estimate is 

from the actual orbit.  It also allows us to try and find a new COE estimate which is 

better than the previous one.  The process we are using to determine a new estimate is 

optimization.  It is beyond the scope of this paper to discuss how the optimization process 

works, but we will explain how the optimization process was implemented in MATLAB. 

 The MATLAB optimization toolbox includes a function called fmincon.  This 

function takes a constrained state vector, and attempts to minimize some desired value.  
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In the case of a TSS there are two different state vectors depending on what is known 

about the system.  If the TSS parameters are known, then the state vector only includes 

the COEs of the CM.  With an unknown TSS, the state vector must include the COEs of 

the CM and three additional parameters.  The additional parameters required include the 

mass of 1m , mass of 2m , and the length of the tether.  We have ignored the mass of the 

tether itself in this case which is generally much smaller than the end masses.  The third 

parameter, tether length, may or may not be able to be accurately achieved using this 

optimization method, depending on the data.  The reasons for this will be shown and 

discussed in the Results chapter. 

 The objective function to be minimized by fmincon is the Root Sum Square of the 

residuals (RSS).  In the previous section all of the residuals were calculated between the 

estimates of both end masses and the observed object.  Since the observed object 

obviously cannot be both end masses at the same time we have to choose which object 

we think the observation really represents.  In order to make our choice at this point we 

have to compare the absolute values of the computed residuals of both end masses.  The 

smaller of the two absolute residuals is the choice for which one will be fed into the final 

RSS.  This applies separately to each paired set of residuals.  For example, if the absolute 

values of a particular set of residuals at time t for pr 1
rΧ  and pr 2

rΧ  are 20−  and 25 , 

respectively, then pr1rΧ  is the term which will be added into the final RSS, and pr 2
rΧ  is 

thrown out.  At the same time, if the absolute values of 1rΧ  and 2rΧ  at time t are 20−  

and 15 , respectively, then 2rΧ  will be added into the final RSS, and 1rΧ  is thrown out.  

This may not make sense at this point because the same observation is assigned to both 
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end masses for two different residual calculations, but, ultimately, when the optimization 

is through, the best-fit COEs should ideally cause all of the residuals to be assigned to the 

same end mass. 

 It is vital to note that this is the point where data sorting also occurs . 

As discussed in the preliminary analysis chapter, data sorting relies on comparing 

the estimated and observed EC range.  So, the data sorting process is really a comparison 

of the 1rΧ  and 2rΧ  residuals.  The final sort of the data points is based on the final 

iteration of the optimization process.  During the optimization process the assignment of 

the data points will be switching back and forth between 1m  and 2m  to try and determine 

what minimizes the RSS best, but when the optimization process is complete the data 

point assignments are finalized. 

 We now have a way of picking which residuals will be represented in the final 

RSS.  Since it is not known ahead of time which residual will be selected, several new 

terms must be defined.  These new terms, which are the absolute values of the smaller 

residuals found in Equations (46) and (47), are termed final residuals for each observation 

i, and are represented as follows: final p component residual, 
fpri rΧ , final q component 

residual, 
fqri rΧ , final w component residual, 

fwri rΧ , and, final EC range residual, 
rfi

Χ . 

 Through a trial-and-error process, it was found that adding a weighting factor to 

the EC range residual term, 
rfi

Χ , improved performance.  Since the data sorting process 

was such a crucial part of this research, and since there are three terms for calculating 

residuals in the pqw frame, there needed to be a weighting added onto the 
rfi

Χ  term to 
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ensure it retained its importance.  The weighting factor chosen for this research was 10, 

so the calculation for the final RSS is given by: 
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where n is equal to the total number of observations. 

 This entire process of optimizing and sorting data enables us to determine a final 

estimate on the CM orbit, and which end mass is being tracked for each individual 

observation.  But, before showing any results, we need to discuss how we obtain all of 

the observation data.  The next section explains the three different sources of observation 

data we used for this research and how we handled each type of data. 

 

 

Sources of TSS Observation Data 

 

 Up to now it has been assumed observation data is readily available and each 

individual observation includes the following information: tracking location, time of 

observation, azimuth, elevation, and slant range.  This assumption is true when dealing 

with real-world data, but when dealing with simulated data this is not the case.  Since 

real-world data is already obtained in the format described above there does not need to 

be any explanation as to how to handle this data.  However, we also used two different 

sources of simulated data for our research.  We will cover how each type of data is 

converted into the format described previously.  Once the data is in this format it is 

handled just like real-world data. 
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 The first source of simulated data comes from a simulator we developed 

specifically for this research.  This simulator is fairly simple because it uses all of the 

same assumptions we have already discussed.  So, a TSS simulated using this simulator 

always maintains nadir orientation, and follows the previously described motion in its 

CM COEs. 

 We first start this simulator with a known set of true COEs for the CM at a 

specific epoch time, t0.  Next, an end time and a timestep are selected for the simulation.  

We then use equation set (28) to obtain a set of COEs for each timestep after t0 until the 

end time.  For example, assume t0 starts at time 0, the timestep is 20 seconds, and the end 

time is 400 seconds.  This means there will be 21 total sets of COEs. 

 All of these CM COE sets calculated are then converted into the inertial IJK 

frame.  The procedure is the same as with the estimated data; i.e. Equations (36)-(39).  

Once the CM IJK position vectors are known, we can calculate the end mass IJK position 

vectors.  In order to calculate these position vectors we have to specify actual tether 

length, tether mass, and end-body masses in the simulator.  Using this information and 

equations (40)-(44) we now have IJK position vectors for each of the end masses. 

 The final step of generating an individual position vector observation is to 

randomly select one of the end masses to be the observed mass depending on what we are 

trying to test.  For example, if we want to run a simulation with approximately 50% lower 

mass observations and 50% upper mass observations, then we set the lower mass random 

percentage value to 50.  Then we use a random number generator function in MATLAB 

to generate a number between 1 and 100.  The MATLAB equation for doing this is 

shown next. 
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 100∗= randdatapt  (49) 

If the randomly generated number equals 50 or below, then the IJK position vector 

coordinates for the lower mass are used for that observation; otherwise the upper mass 

coordinates are used.  This process is then repeated for every observation.  This method 

does not permit correlated probability from one observation to the next which would be 

present in actual operations. 

 In addition to the previous time information we also have to specify an actual start 

time date.  This time date specifies the year, day, hour, minute, and second at which the 

simulation starts.  The time date allows us to calculate the inertial position of any number 

of tracking sites in the IJK frame, as long as the latitude, longitude, and height above 

mean sea level are specified.  Calculating a tracking site’s inertial position is done as 

described previously using equations (11)-(15). 

 Next we take our tracking site IJK position vector, RIJK
r

, and our observed IJK 

position vector, o
IJK r

r
, and determine the tracking site’s observed IJK slant range vector, 

o
IJK ρ

r
: 

 Rr IJK
o

IJK
o

IJK
rrr

−=ρ  (50) 

The next step is to convert the IJK slant range vector, o
IJK ρ

r
, into the SEZ slant range 

vector, o
SEZ ρ

r
, using the transpose of the coordinate transformation matrix shown in 

equation (16).  This transformation is shown next: 
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 The last part of obtaining true observations of the data is to convert o
SEZ ρ

r
 into 

azimuth, elevation, and slant range values for the specific tracking site.  The observed 

slant range value, oρ  is the easiest to obtain because it is just the magnitude of o
SEZ ρ

r
.  

This is shown in the next equation: 

 o
SEZ ρρ

r
=  (52) 

The elevation angle, ε , then is calculated by: 
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Obviously if this calculated elevation angle is less than zero degrees then the object is 

below the horizon and the site cannot see the object, so it is not a valid observation for 

that site. Last, calculating azimuth angle requires calculating two azimuth values and then 

doing a quadrant check.  The two azimuth values are calculated in the next set of 

equations. 
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 (54) 

The quadrant check is done as follows: 

If 02 >α  and 01 >α  then 1αα = ;  If 02 <α  and 01 >α  then 1180 αα −°=  

If 02 <α  and 01 <α  then 1180 αα −°= ;  If 02 >α  and 01 <α  then 1360 αα +°=  

 Noise must be added to this perfect data to get a realistic test of the data sort and 

tether OD algorithm.  In order to add realistic errors we need some information about the 
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tracking site.  As talked about in the preliminary analysis chapter every tracking site has 

some error in its measurements.  If it is known what the statistical error is for each of the 

three measurement values then these errors can be used in a simulation to add realistic 

errors to our perfect azimuth, elevation, and slant range data. 

 MATLAB has another random number generator that works for adding realistic 

errors to our readings if the tracking site statistics are known.  This random number 

generator generates a normally distributed random number with a zero mean, and the 

standard deviation and variance both equal to 1.  The random number generated by this 

function can be directly multiplied by the σ1  errors for a site to add realistic error to the 

data.  The equation used to generate this realistic random error is shown next. 

 εσεε ∗+= randnoo  (55) 

The term randn is the random number generator function in MATLAB and εσ  is the 

statistical σ1  error for the site’s elevation readings.  The same type of equation can also 

be used to generate realistic random errors in the observed slant range and azimuth. 

 This entire procedure takes simulated COEs and converts it into observation data 

with realistic errors.  From this point the same procedures as before are used to estimate 

the epoch time COEs and sort the simulated data. 

 The second source of simulated data used for this research is a high-fidelity tether 

simulator program called TETHERSIMTM developed by Tethers Unlimited, Inc.   

TETHERSIMTM uses a 4th order Runge-Kutta algorithm for the orbital dynamics 

propagation of the satellite, end masses, and tether elements.  It uses a more comlex 

gravitation model by using an 8th order spherical harmonic model of the geopotential.  In 
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addition, it includes a 1st order lunar gravity model.  TETHERSIMTM also uses the 

International Geomagnetic Reference Field for simulating a geomagnetic field model.  

Finally, this simulator accounts for air drag on a TSS by using the MSISE90 Neutral 

Atmospheric Empirical Model, but this drag model is only activated if a TSS is below 

400 kilometers in altitude.  Overall, the main reason for using TETHERSIMTM is to test 

the estimation method with a more realistic TSS model.  Using this model we can obtain 

an idea of how well the COE estimation and data sorting method works when other 

affects such as libration, higher-order perturbations and tether tension are added. 

For our purposes, TETHERSIMTM was used to provide an output of IJK position 

vectors for the end masses of a TSS.  We then randomly selected which end mass would 

represent a particular observation, and then the randomly selected IJK position vectors 

were converted into observed azimuth, elevation, and slant range readings for a specified 

tracking site as described previously.  We then added error into those readings as 

discussed before by using the tracking site’s statistical σ1  errors.  Finally, the new 

observed azimuth, elevation, and slant range readings were used to estimate the epoch 

time COEs and the data sorting was accomplished as previously discussed. 

 

 

Estimation and Data Sorting Conclusion 

 

 This entire chapter outlines the tools and methods we have used to solve the data 

sorting and OD problems for a TSS.  The next chapter, Results, describes the specific 
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cases we have attempted to solve using this method.  We also analyze the results of these 

cases and show the strengths and weaknesses of this methodology. 
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V.  Results 

 

 

 The results from this research show great promise in helping to sort data and 

determine estimates of the orbit for the CM of a TSS.  In addition, it also shows some 

promise for helping to identify an unknown TSS.  In order to validate these statements 

this chapter shows the results of several specific cases using data from all three sources of 

TSS data discussed in the methodology section.  The first case analyzed is a baseline case 

developed in great detail to ensure the case is well understood.  The rest of the chapter 

analyzes changes in the key parameters of this baseline case.  The variations in these 

parameters help to show the strengths and weaknesses of this TSS data sorting and OD 

method. 

 

 

Baseline Case 

 

 One of the key aspects of the baseline case is the TSS parameters are known.  

This means the optimization process assumes the masses of the various objects and the 

length of the tether are known and are not variables that need to be estimated.  There are 

several key parameters that make up the baseline case.  These parameters, along with the 

analysis tools developed for this research, help provide a great baseline for understanding 

how well this estimation method works.  The first item we set up for this baseline case is 
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the key parameters.  The second item includes using the analysis tools to give us an 

estimate of how well we expect the methodology to work. 

 Baseline Case Parameters. 

 The parameters used for the baseline case include specific tether information, 

tracking site details, and the orbit. 

 The specific tether information used to set up the baseline case include the length 

of the tether, the masses of each of the end-bodies in addition to the tether itself, and the 

orientation of the tether in space.  First, the length of the tether for the baseline case is set 

at 4.023km (Purdy et al., 1997:2).  The length was set at this value because it is the only 

value which can be used to provide a comparison between simulated data and a large 

supply of real-world data since TiPS is the only TSS which provides a large source of 

real-world data.  The mass properties of the TSS are also set to similar values as TiPS; 

therefore, the lower mass is 95.3lbs (43.32kg), the upper mass is 22.4lbs (10.18kg), and 

the tether mass is 12lbs (5.45kg) (Purdy et al., 1997:2).  The final piece of information is 

the orientation of the satellite in space.  While looking at the baseline case we used the 

simulator we developed to analyze the results of the methodology, so the orientation of 

the TSS is perfectly nadir-oriented.  Later, we will analyze the effects of libration by 

using TETHERSIMTM data. 

 The tracking site details needed to do a complete simulation of the baseline case 

include the location of the site, and the tracking site errors associated with the azimuth, 

elevation, and slant range readings.  The simulated tracking site used for this baseline 

case has the following values for latitude, longitude, and altitude above mean sea level: 
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N°57242.30 , W°21485.86 , and 0.03640km.  The tracking site errors simulated for this 

tracking site are: km021.0=ρσ , °= 023.0εσ , °= 019.0ασ . 

 The final piece of information needed for this baseline case is the true orbit of the 

TSS CM at the epoch time, and the source of the observations.  The epoch time and the 

COEs for the true orbit at the epoch time are listed next: 

Epoch time: 

Year = 1997 Day = 210 hour = 11 Zulu minute = 30 second = 30.000 

COEs: 
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The source of the data is a random mix of 50% upper mass data and 50% lower mass 

data.  In addition, the total time and the time step used for the baseline case is 200 

seconds with data points every 10 seconds. 

 Baseline Case Estimation. 

 The first item which needs to be shown is the first guess of the CM COEs.  The 

Herrick-Gibbs first-guess estimate determined by Equations (10)-(27) at the epoch time is 

shown next. 
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CM COEs- 1st Estimate at Epoch time determined by Herrick-Gibbs 
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However, to demonstrate the robustness of this algorithm, we will assume we have an 

even worse first-estimate, so outlined next is the first guess of the CM COEs at the epoch 

time. 

CM COEs- 1st Estimate at Epoch time 
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The next step propagates the actual COEs using equations (28)-(35) for the specified 

time period and then determines the actual CM IJK position vectors for those COEs 

using equations (36)-(39).  After determining the CM IJK position vectors, the actual IJK 

position vectors for each of the end masses are determined using equations (40)-(44).  

Now that the actual end mass position vectors are known, we randomly selected one end 

mass for each observation using our 50% criteria and equation (49).  With each 

observation being allocated to a particular end mass we then calculated perfect observed 

azimuth, elevation, and slant range readings for the specified tracking site using equations 
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(50)-(54).  These perfect readings then had error added into them randomly using the 

defined statistical tracking site errors and equation (55). 

 The process of OD and data sorting begins at this point as defined in the 

methodology.  First, the observed azimuth, elevation, and slant range readings are 

converted back into IJK values using equations (10)-(17).  The optimization routine is 

then called which does all of the calculations for the propagation of the first-guess COEs.  

The first-guess COEs of the CM are propagated over the time period for each particular 

observation using equations (28)-(35).  Once the estimated COEs of the CM are 

calculated for each observation those COEs are converted back into IJK position vectors 

and the estimated end mass pqw position vectors are also determined using equations 

(36)-(45).  The observed IJK position vectors are also converted into pqw position 

vectors using equation (45).  Once the observed and estimated pqw position vectors are 

determined, the residua ls are calculated as described in equations (46)-(47). 

 While MATLAB runs the fmincon function on the RSS function calculated in 

equation (48), the CM COEs at the epoch time are being refined and the data sorting is 

occurring.  Once the minimization function is complete, the final estimated COEs are 

determined.  The final estimated COEs for this particular run of the baseline case are 

shown next. 
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CM COEs- Final COE Estimate w/errors in Data at Epoch time 
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Considering the very poor initial guess on the initial CM COEs, this is a good estimate.  

In fact, the final estimated COEs determined by this process, in general, yield a smaller 

RSS than a perfect guess solution when errors are added into the data.  That is, the 

estimated orbit is a better fit for the corrupted observations than the true orbit.  In the case 

of dealing with perfect data the estimated COEs were essentially equal to the actual 

COEs.  The real key to this estimate though, is how well it does for properly identifying 

the observations.  Figure 6 shows how well a plot of the EC ranges matches up.  The ‘x’s 

correspond to the EC range observations with error added in them.  The lower set of dots 

represents the estimated EC range of the lower mass over time.  The upper set of asterisks 

represents the estimated EC range of the upper mass over time.  The ‘+’s represents the 

perfect observation with no error added.  The perfect observation is the observed object’s 

true state at time t.  The ‘O’s represent the lower mass estimates determined using perfect 

data.  The squares represent the upper mass estimates determined using perfect data.  The 

same convention will be used throughout all of the EC range plots except where noted. 
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Figure 6- Baseline Case Plot of Observed versus Estimated EC Position Vector Magnitudes 

 

This plot matches up very well, and the validation of this plot occurs by comparing the 

end mass assignments of the observed data points and the estimated data points.  When 

this comparison is done, it can be shown that all of the estimated data points have been 

assigned to the appropriate end mass. 

 Comparing Baseline Case Results and Tracking Site Error Analysis. 

 The key for understanding the excellent data sorting results is the analytic 

tracking site error analysis.  Figure 7 shows the EC range uncertainties for this case.  The 

uncertainty envelope corresponds to rσ62.3 .  This value was selected because the 
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envelope for the upper and lower masses intersect at exactly °28 , which is the lowest 

elevation for the observations of this case. 

 

 

Figure 7- Error Analysis for Lowest Elevation Tracking Data for Baseline Case 

For this value of uncertainty, we expect 0.01% (Beyer, 1991:503) of all 

observations to lie outside the envelope (which would result in the data point being 

tagged to the wrong end body).  This means we should ideally achieve 99.99% data 

sorting accuracy for this baseline case even at our lowest elevation reading.  The higher 

elevation observations should have an even higher percentage, but since we are looking at 

approximately 100% accuracy we can see why the baseline case did not misidentify any 

of the observations. 
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 The baseline case had a total of 21 observations to correctly identify.  To test 

whether any sorting errors would occur with more data, we ran the baseline case ten 

times in a row with different random errors.  Running the baseline case ten times gives us 

a total of 210 observations, so this is a much larger sample of data points where we can 

see if any incorrect identifications occur.  The results of doing this large run still gave us 

a total of zero misidentifications for all of the runs which helps to validate the usefulness 

of the tracking site error analysis tool. 

 The results of the baseline case show great promise in data sorting and 

determining an estimated set of COEs for a TSS.  But, the results shown previously only 

apply to one specific case.  The next section examines the affects of varying certain TSS 

and tracking site parameters.  The strengths and weaknesses of the chosen methodology 

for solving this problem are highlighted. 

 

 

Parametric Studies of Different TSS and Tracking Site Parameters  

 

 There are several key parameters that help provide an understanding of the 

strengths and weaknesses of this methodology.  To show the importance of these 

parameters, they will each be discussed and the results of some studies done on each will 

be shown.  The parameters we are interested in studying include time/number of 

observations, and tether length/elevation angle.  We will also address separately several 

other items which may not be considered parameters but still provide insight into this 
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problem and they include the affects of mixed versus single end mass data, 

TETHERSIMTM results, and the unknown TSS. 

 Time /Number of Observations Variations. 

 One of the weaknesses of this optimization process is that a sufficient number of 

data points are required over a certain time period.  When analyzing the baseline case by 

only changing the amount of time and the number of observations, the problem of not 

having enough observations became apparent.  Changing the total observation time did 

not cause any data sorting problems for the baseline case.  However, it is apparent that 

the less time an object is tracked the worse the estimated COEs will be.  Of more 

importance however, is the number of observations.  Running the baseline case over a 

time period of 100 seconds and obtaining 11 total observations 10 seconds apart, the 

results became very poor.  The COE estimate was not very accurate, and some of the 

observations were inappropriately tagged. 

 Due to the limitless combinations of different TSS and time/number of 

observations, it becomes difficult to define a timeframe and exact number of observations 

required for good results, but after doing many simulation runs, a minimum of 15 

observations almost always was needed, and 20 or more observations is recommended.  

As stated previously, the timeframe of the observations can vary to some extent but, in 

general, the shorter the timeframe the worse the COE results, so longer timeframes are 

recommended. 
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 Tether Length/Elevation Angle Variations. 

 The main conclusion of this section is that, in general, the longer a tether, the less 

likely misidentification will occur with mixed data.  But, the longer a tether is, the less 

likely it is that a tracking site will receive mixed data. 

 The tracking site error analysis tool illustrates the effect of tether length.  

Compare Figure 7 for a 4km tether with Figure 3 for a 2km tether.  Both of these figures 

have tracking sites with the same errors.  The only difference in the two is the tether 

length.  This shows that a 2km tether has a much greater chance of misidentifying an 

observation. 

 The tracking site error analysis was verified by feeding in a perfect guess for the 

COEs and comparing the number of observations correctly identified with the number of 

observations predicted to be identified correctly by the tool.  Using over a thousand data 

points for this validation technique the final number of correctly identified observations 

was always within %1±  of the predicted value.  For example, figure 3 predicts for a 2km 

TSS under the conditions shown at approximately 8.5 degrees elevation we should 

receive 84% correctly identified objects.  Performing a data sort for observations near 8.5 

degrees, the percentage obtained for correctly identified objects using 1050 data points 

was 84.1%. 

 As discussed before, this analysis tool provides a best-case confidence level.  So, 

it should generally be assumed that results obtained using less-than-perfect COEs will 

yield lower results.  As the estimated COEs become farther away from the truth, then the 

confidence level drops even more so obtaining estimated COEs which are as close to the 

truth as possible is important to yield results close to the maximum confidence level. 
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Single Object Only Data 

 
 While other TSS filter methods rely on having data from only one object, this 

estimation method assumes in advance that we do not know if we have data all from one 

end body.  Because of this assumption, when we do have data all from one end mass of a 

TSS, this sometimes causes a weakness to show up in the method.  The weakness can 

show up in one of two ways.  First, the optimization method may ‘lock’ onto the 

completely wrong object and assign all of the data points to the wrong end mass.  

Another common problem is that the optimizer will try and run the estimated positions of 

both end masses through the observations.  This problem is illustrated in Figure 8. 

 

Figure 8- Bottom Mass Only Data for Baseline Case 
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 Even though all of the data points are observations of the lower mass, the general 

optimization has tried to assign the observations to a mix of lower and upper mass 

observations.  The best way to handle this problem is to do two additional optimization 

runs.  The first additional run calculates all residuals by always assuming the 

observations are from the upper mass, and the second additional run assumes all of the 

observations are from the lower mass.  What this allows us to do is compare the three 

RSS values from all three runs.  We then assign the final solution to the lowest of the 

three RSS values.  Figure 9 shows the best of the three solutions for the previous case of 

all lower end mass observations on our baseline case. 

 

Figure 9- Bottom Mass Only Data for Baseline Case Showing Best of 3 Optimizations 
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 This figure shows that the perfect and imperfect data observations have all been 

assigned to the lower mass, which is the correct solution.  One problem with doing these 

additional optimization runs is the computing time required increases because now three 

optimization runs are done instead of one, but there is no good way to get around this 

problem.  Also, the tracking site errors can cause problems with this because it still may 

assign observations incorrectly if the error is large enough.  Therefore, using tracking 

sites’ with smaller errors and higher eleva tion viewing angles is important for accurate 

results. 

 One benefit of single-object only data for the known TSS case is the number of 

observations required decreases in some cases.  This variation of the known TSS allowed 

the optimization to obtain fairly good results even with as few as 5 observations.  

However, this only applies to the known TSS case.  As will be shown later the unknown 

TSS case still requires many observations to yield accurate results. 

  

 

TETHERSIMTM Results 

 

 As discussed previously in the sources of data, TETHERSIMTM is a tether 

simulation program that generates more realistic tether motion.  The purpose for testing 

this data is to see how additional factors such as libration and higher-order perturbations 

affect the optimization process.  The TETHERSIMTM data analyzed is similar to the 

baseline case in that it is a 50% mix of data from both end masses and the tether 

properties are the same as the baseline case.  As shown in Figure 10 the data sorting 
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results for TETHERSIMTM are still very good as long as the tracking site errors remain 

reasonable. 

 

Figure 10- TETHERSIMTM Known TSS Mixed Data Results  

 

The RSS results for TETHERSIMTM data are higher than the RSS results from the 

simulator developed in-house.  The main reason for this is because the libration angles 

now essentially make the tether look ‘shorter’ than it really is.  As can be seen in the 

figure, even the perfect observations are not completely aligned with the estimated 

solution of that data.  Although there are still significant residuals (because the model in 

the estimator does not match the more sophisticated model used to generate the data), all 

all of the data points have been assigned properly. 
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The libration angles for this particular case of TETHERSIMTM data were 

approximately 5-7 degrees for both in-plane and out-of-plane libration angles.  The 

results from this case help to show that as long as libration angles are reasonable then this 

estimation method is effective. 

 

 

Unknown TSS 

 

 After analyzing numerous known TSS cases, this estimation method shows great 

promise for doing data sorting and OD for known TSS’s.  However, the other important 

part of this research is to see how well this methodology applies to the unknown TSS 

case.  We will look at an unknown TSS similar to the baseline case, and then we will also 

look at the results of a longer unknown TSS case where the data comes only from one 

end-mass.  But, first, we investigate what happens when this optimization method is 

applied to a single-body satellite. 

 Single-body Satellite System. 

 The reason for applying this methodology to a single-body satellite system is we 

want to ensure that a satellite which is not a TSS is not identified as a TSS.  This was 

accomplished by using the in-house simulator to generate observations for a satellite that 

has a tether length of zero.  The simulator used the same COEs and the same tracking site 

errors as the baseline case.  The estimation process gave back very good estimates of the 

COEs for the CM for this case, and, more importantly, it identified that the CM was 

approximately zero kilometers away from the observed object.  This distance to the CM 
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from the observed object is the key to identifying whether a satellite is part of a TSS or 

not.  If the distance is close to zero it can be assumed that the satellite is a single-body 

satellite.  However, there is one problem with this assumption.  If a TSS has a large 

portion of the mass all in one end-body such that the CM is very near that mass and if 

that mass happens to be the observed end mass then it will look like this is a single-body 

satellite.  There is nothing which can be done in this case because the observed end mass 

is essentially traveling on a normal Keplerian orbit, and unless the other tiny mass is 

observed there is no way to tell that the larger mass is part of a TSS. 

 One other problem which might occur with a single-body satellite depends on the 

tracking site errors.  If the errors are large enough the optimization method may try and 

assign the observations to multiple end masses and it may say the single-body satellite is 

a short TSS and that both end masses have been observed.  This is why reducing tracking 

site errors is important for properly identifying TSS. 

 Unknown Baseline Case TSS. 

 When analyzing an unknown TSS using this methodology it is much better to 

obtain observations from both end masses if at all possible.  By observing both end 

masses it becomes much easier to get a good estimate of the length of the tether.  This is 

demonstrated in Figure 11 by taking the baseline case and saying it is an unknown TSS. 



 

69 

 

Figure 11- Baseline Case Unknown TSS Results  

 

 The determined tether lengths of the perfect observations and imperfect 

observations are 4.0231km and 3.6117km, respectively.  Considering the actual length of 

the tether is 4.023km these results are extremely good.  In addition, all of the observations 

were assigned to the correct end mass, and the COE results even for the imperfect data 

were still fairly good as shown next. 
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CM COEs- Final COE Estimate for Data with Errors for Unknown Baseline Case TSS 
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 One thing to note about the COE results are that the argument of perigee and true 

anomaly terms are not very close to the actual values which are both °70 .  The orbit is 

nearly circular, so perigee is hard to observe.  However, the sum of the two values for the 

estimate and the actual values is equal to °140 .  The more total time and data used for the 

unknown case the closer the COEs will be to the truth.  Of course, this may also make it 

necessary to use multiple tracking sites to obtain enough good observations over enough 

time to get as accurate an estimate as possible. 

 Single End Mass Observations for an Unknown TSS. 

 The last scenario we want to look at to analyze the unknown TSS is to look at 

what happens when all of the observed data of an unknown TSS is from only one of the 

end masses.  Since this is more likely to occur with longer tethers than shorter tethers we 

chose to analyze a TSS that has different tether parameters, but the orbit is the same as 

the baseline case.  A longer time frame of data is needed to obtain accurate results with a 

single-mass only observed unknown tether, so the time parameters were set to 400 total 

seconds with data points taken every 20 seconds.  The tether parameters for this new case 

include the following values: m1 and m2 are of equal mass and the tether is 20km long.  

This means the CM of the TSS is 10km away from each end mass.  All of the observed 
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data was taken from the bottom mass for this case.  The results of analyzing this case are 

shown next in Figure 12. 

 

Figure 12- 20 km Unknown TSS Results  

 

The most important item to note about this figure is that with perfect and 

imperfect data all of the observations have been correctly assigned to the lower end mass.  

The next analysis of this case comes from looking at the estimated COE and tether 

parameter results.  The final estimated COEs are still fairly accurate considering how 

little is known about the TSS. 
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CM COEs- Final COE Estimate for Data with Errors for 20km Unknown TSS 
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 The estimated argument of perigee and true anomaly add up to the same value as 

the actual argument of perigee and true anomaly of °140 .  For this case, the masses of 

the two bodies and the tether length are unobservable individually.  The only observable 

quantity is the distance of the observed body to the CM.  There are an unlimited number 

of combinations of tether lengths and masses which can provide the correct distance to 

the CM in this situation, so these numbers in and of themselves do not mean anything, 

but it is the combination of the data which provides the important information.  Using 

equation (40) to determine the distance from the CM to m1 we find this distance is 

11.523km.  In analyzing the perfect data, the distance is found to be even closer to the 

truth at 10.001km. 

 The unknown TSS case with only data from one end mass is by far the most 

difficult case to analyze.  The results for the case shown are ve ry good, but there are also 

times when the results have not been nearly as spectacular using this method.  In order to 

come up with accurate results for this situation it is extremely important the data be as 
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accurate as possible.  In addition it definitely takes more observations and time to do 

good data sorting and OD. 

 

 

Real-World TiPS Results 

 

 Analyzing real-world data presents additional problems which do not appear 

when dealing with simulated data.  The most obvious difference with real-world data is 

that we have no truth to compare the results.  Specifically, there is no way of knowing if 

the data sorting has occurred properly.  As far as the OD process goes, we can compare 

the results with long-term estimates of the orbit of TiPS, but this only gets us an 

approximate orbit. 

 One other important factor when dealing with real-world TiPS data deals with the 

CM of TiPS.  There is a dipole antenna sewn into the tether itself for TiPS which is less 

than 100 meters away from the CM.  This causes problems because the tracking sites 

occasionally obtain tracking data inadvertently from this dipole antenna.  This means we 

now have 3 separate objects which must be taken into account.  In addition, due to the 

actual masses of each end body of TiPS the CM is less than 1 kilometer away from the 

lower end mass.  Using our tracking site error analysis tool to estimate the confidence 

level of a particular set of observations, we observe that the dipole antenna may cause 

significant problems for data sorting.  Figure 13 shows a plot of sigma values relating to 

TiPS and a tracking site with the same errors as given before.  The CM actual EC range 

and sigma limits have been included in this figure as solid dots. 
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Figure 13- TiPS Tracking Site Error Analysis  

 

This figure shows that even with observations at approximately 40 degrees 

elevation there is only an 84% chance of correctly identifying the lower mass and CM 

observations and this is with a perfect COE estimate.  This means the chances of telling 

the dipole antenna from the lower mass are even lower since we do not know the actual 

COEs. 

We analyzed real-world tracking data for TiPS taken in July 1997.  We chose this 

specific set of tracking data because of the favorable tracking site viewing geometry.  

Even with the favorable geometry for this tracking site pass, the highest elevation angles 

obtained from the site were approximately °67 , while the lowest elevation angle was 
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approximately °3 .  Many other tracking site passes looked at had much worse viewing 

geometries than this pass.  The EC range plot for this data has a couple of differences 

from previous EC range plots.  The ‘x’ locations for the observations now include 3 rσ  

bars to show the area where the actual value is most likely located.  These sigma bars are 

not a true representation of the real tracking site errors, but are estimates instead.  The 

estimated CM of TiPS is shown in this figure as the ‘O’.  The estimated lower and upper 

mass locations are indicated by their appropriate symbols as shown in the legend. 

 

Figure 14- TiPS EC Position Vector Magnitude Plot 

 

This figure shows how well the estimation process has done even with the real-

world difficulties mentioned previously.  The locations of the ‘x’s compared to the 
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estimated locations of the end masses and the CM match well, especially for the higher 

elevation angle observations indicated by the shorter covariance bars.  The chart seems to 

indicate all of the observations taken before 500 seconds are observations of the lower 

mass.  After the large time gap in the middle is when it appears the tracking site started to 

observe the CM and the upper mass.  The results of this figure show how important data 

sorting is when dealing with a TSS because it is obvious that not all of the observations 

are of the same end mass, even though all of the data was supposed to be from the lower 

end mass. 

Also, looking at the figure, the very last ‘x’ looks like it is nowhere near the 

estimate or the rest of the data points, but looking at the upper sigma limit for that 

particular observation it may just be a very bad reading on the lower end mass because 

the upper limit is near the estimated location of the lower end mass.  This is a great 

example of how low elevation data can potentially cause problems for sorting 

observations.  The next part of analyzing the solution obtained by this optimization is to 

look at the COEs for the estimate. 

CM COEs- Final Estimate at Epoch time for Real-World TiPS Data 
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These COE results are consistent with long-term plots of TiPS data, especially when 

looking at how eccentricity changed slowly over time for TiPS and how the argument of 

perigee did not seem to change over time at all. 

 One more item which can be inferred from the plot of the TiPS data is it appears 

as long as a tracking site continues to take observations it usually tracks the same end 

mass.  The times when it switches to one of the other objects usually occur after a time 

lapse.  This might either occur because the site temporarily loses the object or the time 

interval is built in for some other reason.  The other case where the data switching seems 

to occur is the very low elevation data case that corresponds to the last set of three 

observations.  For example, the last three observations look like they are mass 1, CM, and 

then mass 1 again.  Whether this is due to errors or tracking the different object is 

unclear, but this also helps to illustrate how low elevation data causes problems for 

tracking a TSS. 

 Overall, the results of analyzing real-world TiPS tracking data shows that this 

method definitely has promise for helping to sort out observations and determine a decent 

estimate of the COEs for the CM of a TSS. 
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VI.  Conclusion 

 

 Data sorting and orbit determination of tethered satellite systems is a difficult 

problem.  There are many complications which can arise when dealing with a TSS, but 

this research has helped to show how optimization can potentially be used to help solve 

the data sorting and OD problem.  There are several operational implications to be taken 

away from this research.  In addition, there is also room for future research on this topic.  

Both of these items are discussed next to help show the way ahead for further 

understanding of TSS’s. 

 

 

Operational Implications  

 

 There are three important operational implications to be taken away from this 

research.  First, and foremost, it is fairly apparent that accurate data sorting and OD for 

TSS requires more total observations and more accurate observations than normal single-

body satellites.  In fact, where a decent COE estimate for a single-body satellite can be 

obtained using only 2 or 3 observations using techniques such as Herrick-Gibbs, this is 

probably not possible for tethered satellites.  The method used in this research tells a TSS 

apart from a single-body satellite by analyzing the differences in the motion of the CM to 

the motion of the observed object(s).  In order to obtain an accurate estimate there needs 

to be a significant amount of data in order to tell the two motions apart. 
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 The second important implication is that real-world tracking site errors have to be 

accounted for when discussing the possibility of identifying TSS’s.  If tracking site errors 

are very large, it might not be possible to sort the data or obtain accurate COE estimates.  

It does not do any good to only look at perfect or near-perfect simulated data if the real-

world data is so bad that no accurate information can be obtained from it.  The more 

accurate a tracking site is, especially in elevation angle readings, the better chance there 

is of observing the difference in the motion of a single-body satellite versus a TSS.  The 

tracking site error analysis tool is an excellent tool to help identify the limits of a tracking 

site’s data sorting capabilities.  In addition, tracking site errors also play a role in 

determining how well the COEs can be estimated. 

 Third, any methods of trying to obtain accurate COE estimates of the CM for a 

TSS need to account for possible mixed data.  It does not do any good to just assume all 

tracking site data comes from one end mass when in reality it has definitely been shown 

that this is not the case.  Any further research into optimization methods or filter methods 

concerning TSS’s should take note of this important fact because the results yielded will 

most likely be poor if the data sorting problem is not taken into account. 

 

 

Future Research 

 

 A future in which TSS’s provide unique capabilities in space is approaching 

rapidly.  TiPS is just the beginning as far as tethered systems are concerned, and therefore 

further research should be undertaken to help understand the unique nature of these 
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satellite systems.  Specifically, it is important to understand how to obtain accurate COEs 

for TSS’s because as more tethered systems are deployed in space the harder it will be to 

keep track of everything unless accurate COEs are determined.   

This research shows good promise for using optimization as a method to help 

identify accurate TSS COEs.  One area of potential future research deals with the 

optimization process.  Looking at other optimization methods or different optimizer tools, 

such as a FORTRAN optimizer, may help provide an understanding of what methods 

work best.  The MATLAB optimization process has been shown to yield fairly good 

results for the cases analyzed, but since there are so many different cases to potentially 

analyze there is no way to say this optimization tool is the best. 

Another area of further research for data sorting and OD of TSS’s is to try and 

take into account tether libration.  This research analyzed the data by always assuming 

the nadir-oriented case.  The TETHERSIMTM and real-world results show this is a good 

starting point to analyze tethered systems which have fairly low libration angles.  

However, it may become necessary to account for larger libration angles by adding in 

libration angles as a part of the optimization routine.  Of course, this will increase the 

optimization solution space and this may cause problems, but it is worth researching 

further.  In addition, if a future method can account for libration and determine decent 

estimates on the libration this may help provide insight into the attitude dynamics of the 

TSS as well as the orbital dynamics. 

Finally, since there is so little real-world TSS data doing further research with the 

higher- fidelity tether simulator programs, such as TETHERSIMTM becomes an important 

way to simulate and obtain more realistic data.  Further research was not done using more 
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TETHERSIMTM data because it takes a large amount of time to fully understand how to 

use a simulator as complex as TETHERSIMTM.  That is why only a couple of baseline 

cases were analyzed using this type of data.  If more cases can be developed in this 

simulator, or another tether simulator program, it may help provide more insight into the 

best way to handle data sorting and OD for TSS’s. 

Understanding how to sort observations and obtain accurate COEs for a TSS has 

real-world operational impact.  This is why further research concerning these problems 

should be continued.  Without a more in-depth understanding of how to accomplish these 

tasks, as more tethered systems are deployed in space, this could potentially cause real-

world problems.  This research has helped provide a step in the right direction for 

understanding data sorting and OD for TSS’s, but further research is definitely warranted. 
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Appendix:  Primary MATLAB Programs 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%  Capt Mark Faulstich- AFIT/ENY 
%  TSS data sorting & OD Final Optimization Program 
%  Final Version- 6 February 2004 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
clear all % Clears all variables in memory 
format short g %Sets screen output format 
warning off MATLAB:divideByZero % Turns off MATLAB divide by zero warning 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Global Variable Declarations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global rpqw_est rm2pqw_est rm1pqw_est rm1ijkest rm2ijkest rijk_est estdatapt calccmRSS 
ConCM compareperfectRSS UNKSS dtr rtd J2 mu RE tetherparameters rijkdatapt 
rijkdataptperfect IJKtimes IJKtimesperfect calcbtmRSS calctopRSS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Source of Observation Data (Datasource) 
%  1 = in-house data generator 
%  2 = TETHERSIM data 
%  3 = Real-World TiPS data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Datasource = 1; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variable which decides if you actually want 
% to optimize the imperfect data or not 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
evalimperfectdata = 1; 
% 1 = optimize imperfect data 
% 0 = do not optimize imperfect data 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%  Set certain parameters 
%  If the source of the data is the in-house generator 
%  or TETHERSIM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
if ((Datasource == 1) | (Datasource == 2)) 
    lowerpct = 100; % percentage of data points that are lower 
    upperpct = 100; % lowerpct - upperpct is the percentage of upper mass observations 
    setseed = 1; %sets whether a seed is used for the rand function 
    % 0 = no random seed set 
    % 1 = random seed set  
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    askforsite = 1;   
    % 1 = ask for user input to decide which site data to evaluate 
    % 0 = hardwire in site data to evaluate 
    evalperfectdata = 0; % sets whether to evaluate perfect data 
    % 1 = optimize perfect data 
    % 0 = do not optimize perfect data 
    if setseed == 1 
        randn('seed',25); % seed used for randn 
        rand('seed',2500); % seed used for rand 
    end 
    if askforsite == 0 
        sitetoeval = 399; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  On off values which set certain parameters 
%  needed in the program 
%  1 = value is active 
%  0 = value is inactive 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
UNKSS = 1; % Sets whether the parameters of the Satellite System are known in advance 
(global variable) 
% 0 = Satellite System Parameters known in advance  
% 1 = Satellite System Parameters are unknown  
 
EllEarth = 1; % Sets whether calculations are done with an elliptical Earth model instead of 
spherical 
% 0 = Calculations done using spherical Earth model  
% 1 = Calculations done using elliptical Earth model 
 
CalcEstOrbit = 0; % Sets whether the initial CM COE estimate is calculated from the observations 
or an estimate is given 
% 0 = An estimate is given in the program 
% 1 = Calculate an initial estimated orbit using Herrick-Gibbs 
 
ConCM = 0; % Sets whether to check if any of the data points are from the CM 
%  This is useful for real-world TiPS data because some observations come from the dipole 
antenna 
% 0 = does not check if any observations are the CM 
% 1 = does check if any observations are the CM 
 
CalcGrndtrack = 1; % Sets whether to calculate and plot the ground track of the data 
% 0 = do not calculate the ground track of the data 
% 1 = calculate the ground track of the data 
 
Plotsigmabars = 1; % Sets whether to plot 3 sigma bars for imperfect data observations for the 
EC range plot 
% 0 = do not plot 3 sigma bars 
% 1 = plot 3 sigma bars for imperfect data  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%  This next parameter sets whether to do an optimization 
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%  over the CM first, and then proceed to do optimizations 
%  from there.  It also still does the normal optimizations 
%  so there are a total of 7 optimizations done if 
%  this variable is turned on. 
%  This sometimes helps identify 
%  single-body satellites or helps with known TSS's to get 
%  even better estimates. 
%  WARNING!!!!!- This setting sometimes hurts unknown TSS  
%  identification, especially for shorter unknown tethers 
%  with single-mass only data, and shorter timeframes. 
%  Sometimes it is useful to try this optimization 
%  with this setting off and on and then   
%  compare the results by hand. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
CMoptimizationfirst = 0; 
% 0 = do not do a set of CM optimizations 
% 1 = do all 7 different types of optimizations 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
%  Global Conversion Factors and Constants 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
dtr = pi/180; % converts degrees to radians 
rtd = 180/pi; % converts radians to degrees 
J2 = 0.00108263; % Dimensionless J2 geopotential coefficient 
mu = 3.986032e5; % Earth Gravitational Parameter (km^3/sec^2)  
RE = 6378.165; %  Equatorial radius of the Earth (km) 
Ae = RE; 
if EllEarth == 1 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %  Earth elliptical model constant 
    %  obtained from 
    %  Fundamentals of Astrodynamics 
    %  by Bate et al.- p. 94 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Ee = 0.08181; % Earth Eccentricity needed if using elliptical Earth model 
    f = 1/298.30; % flattening of the earth quantity used to do ground track obtained from Escobal 
else 
    Ee = 0; % Earth eccentricity if using spherical Earth model 
    f = 0; % flattening of the Earth if spherical Earth 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%  Actual Tether parameters-  
%  Always needed for UNKSS = 0 
%  Always needed for Datasource = 1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
m1 = 1; %43.32; % lower body (mass 1) mass (kg) 
m2 = 1; %10.18; % upper body (mass 2) mass (kg) 
tethermass = 5.45; % mass of the tether (kg) 
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ro = 20; %4.023; % length of the tether (km) 
% Calculate distance of both end masses from the CM 
distancem1 = (m2*ro + tethermass*ro/2)/(m1 + m2 + tethermass); % m1 distance to CM 
distancem2 = ro - distancem1; % m2 distance to CM 
'tetherparameters = [m1, m2, tethermass, ro, distancem1, distancem2]' 
tetherparameters = [m1, m2, tethermass, ro, distancem1, distancem2] 
tetherparameterstemp = [tetherparameters]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%  Tether Parameters Guess needed for UNKSS = 1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
m1guess = 1; %kg 
m2guess = 1; %kg 
tethermassguess = 0; %kg 
roguess = 0; %km 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
% Set up the first estimate if not calculating the estimate 
% from the observations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
if CalcEstOrbit == 0 
    aguess = 7000; %km 
    eguess = 0.0001; 
    iguess = 45.3; %deg 
    wguess = 25; %deg 
    Capwguess = 190.2; %deg 
    taguess = 20; %deg 
    if UNKSS == 1 
        'COEguess = [a, e, i, w, Capw, v, m1, m2, ro]' 
        COEguess = [aguess, eguess, iguess, wguess, Capwguess, taguess, m1guess, m2guess, 
roguess] 
        COEguess2 = [aguess, eguess, iguess, wguess, Capwguess, taguess]; 
    else 
        'COEguess = [a, e, i, w, Capw, v]' 
        COEguess = [aguess, eguess, iguess, wguess, Capwguess, taguess] 
        COEguess2 = COEguess; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
% Set the options for the optimization and 
% Set the lower and upper bounds for the optimization routine 
% depending on whether the satellite system parameters are known 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
if UNKSS == 1 
    % bounds are [a, e, i, w, Capw, ta, m1, m2, ro] 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
    % w, Capw, and ta bounds go below 0 deg and above 360 deg 
    % because if they do not sometimes the program can get 'stuck' 
    % at 0 or 360 degrees because it can't go any farther. 
    % These values are adjusted after the optimization is complete 
    % so they are between 0 and 360 degrees 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
    % if the m1 and m2 lower bounds are set to 0 this sometimes 
    % causes divide by zero type issues 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
    lb = [6400; 0; 0; -360; -360; -360; 1e-010; 1e-010; 0]; 
    ub = [57440; 0.9; 90; 720; 720; 720; 1000; 1000; 1000]; 
    lb2 = [6400; 0; 0; -360; -360; -360]; 
    ub2 = [57440; 0.9; 90; 720; 720; 720]; 
else 
    % bounds are [a, e, i, w, Capw, ta] 
    lb = [6400; 0; 0; 0; 0; 0]; 
    lb2 = lb; 
    ub = [57440; 0.9; 90; 720; 360; 720]; 
    ub2 = ub; 
end 
% options just sets the main fmincon options needed for the optimization 
options=optimset('LargeScale', 'off', 'MaxFunEvals', 10000, 'MaxIter', 10000, 'display', 'off');  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Obtain information about all possible tracking sites to include 
%  Latitude, Longitude, altitude, and statistical tracking site errors 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[numbersensors, sensorlats, sensorlongs, sensoraltitudes, sensorlatsrad, sensorlongsrad, 
sigmasrall, sigmaeall, sigmaeallrad, sigmaaall, sigmaaallrad, sensorid] = sensorinfo; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Obtain observation data based on what the data source is 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Datasource 1 is the in-house 
%  data generator 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Datasource == 1 
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    % Generate IJK position vector data using in-house simluator    
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
    %  Actual Orbit parameters 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
    asim = 7400; % km 
    esim = 0.004;  
    isim = 65.3; % deg 
    wsim = 70.0; % deg 
    Capwsim = 220.45; % deg 
    tasim = 70.0; % deg 
    'COEsim = [a, e, i, w, Capw, v]' 
    COEsim = [asim, esim, isim, wsim, Capwsim, tasim] 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
    %  Time parameters needed for Datasource = 1 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
    timestep = 20; % time step (sec) used to generate additional COEs 
    totalnumseconds = 420; % total seconds to generate additional COEs 
    starttime = 97210113030.000; % actual start time at time t0 
    % in the format YYDDDHHMMSS.SSS 
    %  Generate an array of timesteps to generate COEs 
    counter0 = 0; % place holder counter 
    for counter1 = 0:timestep:totalnumseconds 
        counter0 = counter0 + 1; 
        COEtimes(counter0) = counter1; % array of COE times 
    end 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
    %  Propagate the initial COEs 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
    [AllCOEs, AllCOEsrad, endcount] = COEpropagator(COEsim, COEtimes); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
    %  Convert COEs into Earth-centered pqw position vectors 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
    [rpqw_out] = coe2rpqw(endcount, AllCOEsrad); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
    %  Convert from r in the pqw frame to the Earth-centered ijk frame 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
    [r_sat_ijk] = pqw2ijk(rpqw_out, AllCOEsrad, endcount);     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
    %  Determine IJK position vectors of end masses relative to CM assuming 
    %  nadir orientation of the TSS 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
    [rm1ijk, rm2ijk] = calc_r_endmasses(r_sat_ijk, tetherparameters, endcount); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
    %  Pick which end mass is the observed mass 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
    [rijkdataptperfect, obs] = pickrandom(r_sat_ijk, rm1ijk, rm2ijk, endcount, lowerpct, upperpct); 
    IJKtimes = COEtimes; 
end % end of acquiring IJK observation data from in-house simulator 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Datasource 2 is the TETHERSIM 
%  data generator 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Datasource == 2 
    filename = 'TiPS copy.out'; % name of TETHERSIM data file 
    tethersimfiletype = 1; %specifies the style of TETHERSIM data file 
    starttime = 97212230000.000; % actual start time at time t0 
    % in the format YYDDDHHMMSS.SSS 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
    %  Obtaining TETHERSIM data and picking random data pts. 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
    tethersimdata = importdata(filename); 
    totalcount = size(tethersimdata,1); 
    for datacounter = 1:totalcount 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
        % TETHERSIM data can be outputted in various formats 
        % the two formats here are the two formats used to generate data 
        % more formats are possible, but the important thing is to know 
        % where the IJK vectors are located in the data 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% 
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        if tethersimfiletype == 0 
            tsimtime(datacounter) = tethersimdata(datacounter,1); 
            r2(datacounter,:) = [tethersimdata(datacounter,2)/1000, 
tethersimdata(datacounter,3)/1000, tethersimdata(datacounter,4)/1000]; 
            r1(datacounter,:) = [tethersimdata(datacounter,5)/1000, 
tethersimdata(datacounter,6)/1000, tethersimdata(datacounter,7)/1000]; 
        else 
            tsimtime(datacounter) = tethersimdata(datacounter,1); 
            r2(datacounter,:) = [tethersimdata(datacounter,18)/1000, 
tethersimdata(datacounter,19)/1000, tethersimdata(datacounter,20)/1000]; 
            r1(datacounter,:) = [tethersimdata(datacounter,21)/1000, 
tethersimdata(datacounter,22)/1000, tethersimdata(datacounter,23)/1000]; 
        end 
        if datacounter == 1 
            time(datacounter) = 0; 
        else 
            time(datacounter) = tsimtime(datacounter) - tsimtime(1); 
        end 
        r1mag(datacounter) = sqrt(r1(datacounter,1)^2 + r1(datacounter,2)^2 + r1(datacounter,3)^2); 
        r2mag(datacounter) = sqrt(r2(datacounter,1)^2 + r2(datacounter,2)^2 + r2(datacounter,3)^2); 
    end 
    if time(1) == time(2) 
        % TETHERSIM files sometimes have two of the same readings at time 0 
        for counter = 2:totalcount 
            rm1ijk(counter-1,:) = [r1(counter,:), r1mag(counter)]; 
            rm2ijk(counter-1,:) = [r2(counter,:), r2mag(counter)]; 
            IJKtimes(counter-1) = time(counter); 
        end 
        totalcount = totalcount - 1; 
    else 
        for counter = 1:totalcount 
            rm1ijk(counter,:) = [r1(counter,:), r1mag(counter)]; 
            rm2ijk(counter,:) = [r2(counter,:), r2mag(counter)]; 
            IJKtimes(counter) = time(counter); 
        end 
    end 
    endcount = totalcount; 
    [rijkdataptperfect, obs] = pickrandom2(rm1ijk, rm2ijk, endcount, lowerpct);         
end % end of acquiring IJK observation data from TETHERSIM 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Datasource 3 is Real-world data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Datasource == 3 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
    %  Read in the datafile 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
    filename = 'sensor334.xls'; 
    filetype = 1; % filetype = 1 if file is .xls, or 0 if a text file 
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    [totalcount, sensor, actualtime, IJKtimes, azimuth, elevation, slantrange] = 
acquiredata(filename, filetype); 
    starttime = actualtime(1); 
    endcount = totalcount; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
    %  Convert azimuth, elevation, slantrange to 
    %  ro in the sez frame 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
    [rosezobs] = azelslant2sez(sensor, endcount, azimuth, elevation, slantrange);  
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%  Calculate Actual times using starttime and IJKtime for 
%  Datasource = 1 or 2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
if ((Datasource == 1) | (Datasource == 2)) 
    [actualtime] = Calculateactualtime(starttime, IJKtimes, endcount); 
    IJKtimesperfect = IJKtimes; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%  Calculate Greenwich Sidereal Times for all of the 
%  corresponding actual times 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
[GSTtimes] = CalculateGSTtime(actualtime, endcount); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
%  Compute Earth-Centered Inertial IJK coordinates 
%  for all of the trackings sites 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
[Rsensors, LSTall] = computesensorR(sensorid, Ee, GSTtimes, endcount, numbersensors, 
sensorlatsrad, sensorlongsrad, sensoraltitudes); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Convert from ro SEZ coordinates to ro IJK coordinates for Datasource = 3 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Datasource == 3 
    [roijkobs] = sez2ijk(sensorid, rosezobs, endcount, numbersensors, sensorlatsrad, LSTall); 
    [rijkdatapt] = roijk2rijk(roijkobs, endcount, numbersensors, Rsensors); 
    endcount2 = endcount; 
    GSTtimes2 = GSTtimes; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
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%  Calculate Azimuth, elevation, and slant range data 
%  for Datasource = 1 or 2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
if ((Datasource == 2) | (Datasource == 1)) 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Convert from rijkdataptperfect to 
    % roijkdataptperfect 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [roijkdataptperfect] = rijk2roijk(rijkdataptperfect, endcount, numbersensors, Rsensors); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %  Convert from roijkdataptperfect 
    % to rosezdataptperfect 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [rosezdataptperfect] = roijk2rosez(roijkdataptperfect, endcount, numbersensors, sensorlatsrad, 
LSTall); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %  Convert from rosezdataptperfect 
    %  to az, el, slant readings for all sites 
    %  which can actually see the object 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [allsensordataperfect, trackingsite, trackercount, totalcount] = rosez2azelslant(IJKtimes, 
actualtime, rosezdataptperfect, endcount, numbersensors); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
    % ask for site to optimize data for if askforsite = 1 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
    if askforsite == 1 
        [sitetoeval] = picksite(trackingsite, trackercount); 
    end 
    [GSTtimes2, R1sensor, LSTsensor, sensor, endcount2, azimuth, elevation, slantrange, 
actualtime, IJKtimes, tracknumber] = getsitedata(GSTtimes, Rsensors, LSTall, sitetoeval, 
totalcount, allsensordataperfect); 
    for counter = 1:numbersensors 
        if sensor == sensorid(counter) 
            sensoridnum = counter; 
        end 
    end 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
    % add realistic tracking site errors to the data 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
    [badaz, badel, badslant] = messupdata(endcount2, azimuth, elevation, slantrange, 
sensoridnum, sigmasrall, sigmaaall, sigmaeall); 
    for counter = 1:endcount 
        observed = obs(tracknumber); 
    end 
    [rosezobs] = azelslant2sez(sensor, endcount2, badaz, badel, badslant); 
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    [roijkobs] = sez2ijk2(sensorid, sensoridnum, rosezobs, endcount2, numbersensors, 
sensorlatsrad, LSTsensor); 
    [rijkdatapt] = roijk2rijk2(roijkobs, endcount2, R1sensor); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
%  Obtain sigma information to plot on the position magnitude  
%  plot if desired 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% 
if ((Datasource == 2) | (Datasource == 1)) 
    [totalsigma] = findtotalsigma(sensoraltitudes, endcount2, azimuth, elevation, slantrange, 
sensoridnum, sigmasrall, sigmaaall, sigmaeallrad); 
else 
    [totalsigma] = findrealworldsigma(sensoraltitudes, sigmasrall, sigmaeallrad, sensor, endcount, 
azimuth, elevation, slantrange, sensorid, numbersensors); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
%  Calculate the first estimated orbit from the observations 
%  if desired 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
if CalcEstOrbit == 1 
    if ((Datasource == 2) | (Datasource == 1)) 
        [COEguessperfect] = herrickgibbs(rijkdataptperfect, IJKtimesperfect); 
        if UNKSS == 1 
            COEguessperfect2 = COEguessperfect; 
            COEguessperfect = [COEguessperfect, m1guess, m2guess, roguess] 
        else 
            COEguessperfect2 = COEguessperfect 
        end 
    end 
    [COEguessnotperfect] = herrickgibbs(rijkdatapt, IJKtimes); 
    if UNKSS == 1 
        COEguessnotperfect2 = COEguessnotperfect; 
        COEguessnotperfect = [COEguessnotperfect, m1guess, m2guess, roguess] 
    else 
        COEguessnotperfect2 = COEguessnotperfect 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
% set some initial parameters needed for the optimization 
% these values are needed as is, so they should not be altered 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
calcbtmRSS = 0; 
calctopRSS = 0; 
calccmRSS = 0; 
compareperfectRSS = 0; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Optimize perfect data if desired 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if ((Datasource == 2) | (Datasource == 1)) 
    if evalperfectdata == 1 
        if CalcEstOrbit == 1 
            COEguess = COEguessperfect; 
            COEguess2 = COEguessperfect2; 
        end 
        compareperfectRSS = 1; 
        [RSS1stperfectdata] = optimizedata(COEguess) 
        if CMoptimizationfirst == 1 
            if UNKSS == 1 
                tetherparameters = [1, 0, 0, 0, 0, 0]; 
                tempUNKSS = 1; 
            else 
                tempUNKSS = 0; 
            end 
            UNKSS = 0; 
            calccmRSS = 1; 
            [COEfinperfectcm, RSSfinperfectcm, Exitflag, output] = fmincon(@optimizedata, 
COEguess2, [],[],[],[],lb2,ub2, [], options); 
            [RSSfinperfectcm] = optimizedata(COEfinperfectcm); 
            cmobsperfect = estdatapt; 
            cmm1ijkestperfect = rm1ijkest; 
            cmm2ijkestperfect = rm2ijkest; 
            cmcmijkestperfect = rijk_est; 
            cmm1pqwestperfect = rm1pqw_est; 
            cmm2pqwestperfect = rm2pqw_est; 
            cmcmpqwestperfect = rpqw_est; 
            if tempUNKSS == 1 
                tetherparameters = tetherparameterstemp; 
                UNKSS = 1; 
                COEfinperfectcm2 = [COEfinperfectcm, m1guess, m2guess, roguess]; 
            else 
                COEfinperfectcm2 = COEfinperfectcm; 
            end 
            calccmRSS = 0; 
            [COEfinperfectcmf, RSSfinperfectcm2, Exitflag, output] = fmincon(@optimizedata, 
COEfinperfectcm2, [],[],[],[],lb,ub, [], options); 
            [RSSfinperfectcm2] = optimizedata(COEfinperfectcmf); 
            cmobsperfect2 = estdatapt; 
            cmm1ijkestperfect2 = rm1ijkest; 
            cmm2ijkestperfect2 = rm2ijkest; 
            cmcmijkestperfect2 = rijk_est; 
            cmm1pqwestperfect2 = rm1pqw_est; 
            cmm2pqwestperfect2 = rm2pqw_est; 
            cmcmpqwestperfect2 = rpqw_est; 
            calcbtmRSS = 1; 
            [COEfinperfectcmm1, RSSfinperfectcmm1, Exitflag, output] = fmincon(@optimizedata, 
COEfinperfectcm2, [],[],[],[],lb,ub, [], options); 
            [RSSfinperfectcmm1] = optimizedata(COEfinperfectcmm1); 
            cmobsperfectm1 = estdatapt; 
            cmm1ijkestperfectm1 = rm1ijkest; 



 

94 

            cmm2ijkestperfectm1 = rm2ijkest; 
            cmcmijkestperfectm1 = rijk_est; 
            cmm1pqwestperfectm1 = rm1pqw_est; 
            cmm2pqwestperfectm1 = rm2pqw_est; 
            cmcmpqwestperfectm1 = rpqw_est; 
            calcbtmRSS = 0; 
            calctopRSS = 1; 
            [COEfinperfectcmm2, RSSfinperfectcmm2, Exitflag, output] = fmincon(@optimizedata, 
COEfinperfectcm2, [],[],[],[],lb,ub, [], options); 
            [RSSfinperfectcmm2] = optimizedata(COEfinperfectcmm2); 
            cmobsperfectm2 = estdatapt; 
            cmm1ijkestperfectm2 = rm1ijkest; 
            cmm2ijkestperfectm2 = rm2ijkest; 
            cmcmijkestperfectm2 = rijk_est; 
            cmm1pqwestperfectm2 = rm1pqw_est; 
            cmm2pqwestperfectm2 = rm2pqw_est; 
            cmcmpqwestperfectm2 = rpqw_est; 
            calctopRSS = 0; 
            if ((RSSfinperfectcm < RSSfinperfectcm2) & (RSSfinperfectcm < RSSfinperfectcmm1) & 
(RSSfinperfectcm < RSSfinperfectcmm2)) 
                bestcmfirstRSSfinperfect = RSSfinperfectcm; 
                bestcmfirstCOEfinperfect = COEfinperfectcm; 
                bestcmfirstobsperfect = cmobsperfect; 
                bestcmfirstm1ijkperfect = cmm1ijkestperfect; 
                bestcmfirstm2ijkperfect = cmm2ijkestperfect; 
                bestcmfirstcmijkperfect = cmcmijkestperfect; 
                bestcmfirstm1pqwperfect = cmm1pqwestperfect; 
                bestcmfirstm2pqwperfect = cmm2pqwestperfect; 
                bestcmfirstcmpqwperfect = cmcmpqwestperfect; 
                cmbestoptimization = 1; 
            else 
                if ((RSSfinperfectcm2 < RSSfinperfectcmm1) & (RSSfinperfectcm2 < 
RSSfinperfectcmm2)) 
                    bestcmfirstRSSfinperfect = RSSfinperfectcm2; 
                    bestcmfirstCOEfinperfect = COEfinperfectcmf; 
                    bestcmfirstobsperfect = cmobsperfect2; 
                    bestcmfirstm1ijkperfect = cmm1ijkestperfect2; 
                    bestcmfirstm2ijkperfect = cmm2ijkestperfect2; 
                    bestcmfirstcmijkperfect = cmcmijkestperfect2; 
                    bestcmfirstm1pqwperfect = cmm1pqwestperfect2; 
                    bestcmfirstm2pqwperfect = cmm2pqwestperfect2; 
                    bestcmfirstcmpqwperfect = cmcmpqwestperfect2; 
                    cmbestoptimization = 2; 
                else 
                    if (RSSfinperfectcmm1 < RSSfinperfectcmm2) 
                        bestcmfirstRSSfinperfect = RSSfinperfectcmm1; 
                        bestcmfirstCOEfinperfect = COEfinperfectcmm1; 
                        bestcmfirstobsperfect = cmobsperfectm1; 
                        bestcmfirstm1ijkperfect = cmm1ijkestperfectm1; 
                        bestcmfirstm2ijkperfect = cmm2ijkestperfectm1; 
                        bestcmfirstcmijkperfect = cmcmijkestperfectm1; 
                        bestcmfirstm1pqwperfect = cmm1pqwestperfectm1; 
                        bestcmfirstm2pqwperfect = cmm2pqwestperfectm1; 
                        bestcmfirstcmpqwperfect = cmcmpqwestperfectm1; 
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                        cmbestoptimization = 3; 
                    else 
                        bestcmfirstRSSfinperfect = RSSfinperfectcmm2; 
                        bestcmfirstCOEfinperfect = COEfinperfectcmm2; 
                        bestcmfirstobsperfect = cmobsperfectm2; 
                        bestcmfirstm1ijkperfect = cmm1ijkestperfectm2; 
                        bestcmfirstm2ijkperfect = cmm2ijkestperfectm2; 
                        bestcmfirstcmijkperfect = cmcmijkestperfectm2; 
                        bestcmfirstm1pqwperfect = cmm1pqwestperfectm2; 
                        bestcmfirstm2pqwperfect = cmm2pqwestperfectm2; 
                        bestcmfirstcmpqwperfect = cmcmpqwestperfectm2; 
                        cmbestoptimization = 4; 
                    end 
                end 
            end 
        end 
        calcbtmRSS = 1; 
        [COEfinperfectbtm, RSSfinperfectbtm, Exitflag, output] = fmincon(@optimizedata, 
COEguess, [],[],[],[],lb,ub, [], options); 
        [RSSfinperfectbtm] = optimizedata(COEfinperfectbtm); 
        btmobsperfect = estdatapt; 
        btmm1ijkestperfect = rm1ijkest; 
        btmm2ijkestperfect = rm2ijkest; 
        btmcmijkestperfect = rijk_est; 
        btmm1pqwestperfect = rm1pqw_est; 
        btmm2pqwestperfect = rm2pqw_est; 
        btmcmpqwestperfect = rpqw_est; 
        calcbtmRSS = 0; 
        calctopRSS = 1; 
        [COEfinperfecttop, RSSfinperfecttop, Exitflag, output] = fmincon(@optimizedata, COEguess, 
[],[],[],[],lb,ub, [], options); 
        [RSSfinperfecttop] = optimizedata(COEfinperfecttop); 
        topobsperfect = estdatapt; 
        topm1ijkestperfect = rm1ijkest; 
        topm2ijkestperfect = rm2ijkest; 
        topcmijkestperfect = rijk_est; 
        topm1pqwestperfect = rm1pqw_est; 
        topm2pqwestperfect = rm2pqw_est; 
        topcmpqwestperfect = rpqw_est; 
        calctopRSS = 0; 
        [COEfinperfect, RSSfinperfect, Exitflag, output] = fmincon(@optimizedata, COEguess, 
[],[],[],[],lb,ub, [], options); 
        [RSSfinperfect] = optimizedata(COEfinperfect); 
        genobsperfect = estdatapt; 
        genm1ijkestperfect = rm1ijkest; 
        genm2ijkestperfect = rm2ijkest; 
        gencmijkestperfect = rijk_est; 
        genm1pqwestperfect = rm1pqw_est; 
        genm2pqwestperfect = rm2pqw_est; 
        gencmpqwestperfect = rpqw_est; 
        if UNKSS == 1 
            'bestCOEperfect = [a, e, i, w, Capw, v, m1, m2, ro]' 
        else 
            'bestCOEperfect = [a, e, i, w, Capw, v]' 
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        end 
        if ((RSSfinperfect < RSSfinperfectbtm) & (RSSfinperfect < RSSfinperfecttop)) 
            bestoptimization = 3; 
            bestRSSfinperfect = RSSfinperfect; 
            bestCOEfinperfect = COEfinperfect; 
            bestobsperfect = genobsperfect; 
            bestm1ijkperfect = genm1ijkestperfect; 
            bestm2ijkperfect = genm2ijkestperfect; 
            bestcmijkperfect = gencmijkestperfect; 
            bestm1pqwperfect = genm1pqwestperfect; 
            bestm2pqwperfect = genm2pqwestperfect; 
            bestcmpqwperfect = gencmpqwestperfect; 
        else 
            if (RSSfinperfecttop < RSSfinperfectbtm) 
                bestoptimization = 2; 
                bestRSSfinperfect = RSSfinperfecttop; 
                bestCOEfinperfect = COEfinperfecttop; 
                bestobsperfect = topobsperfect; 
                bestm1ijkperfect = topm1ijkestperfect; 
                bestm2ijkperfect = topm2ijkestperfect; 
                bestcmijkperfect = topcmijkestperfect; 
                bestm1pqwperfect = topm1pqwestperfect; 
                bestm2pqwperfect = topm2pqwestperfect; 
                bestcmpqwperfect = topcmpqwestperfect; 
            else 
                bestoptimization = 1; 
                bestRSSfinperfect = RSSfinperfectbtm; 
                bestCOEfinperfect = COEfinperfectbtm; 
                bestobsperfect = btmobsperfect; 
                bestm1ijkperfect = btmm1ijkestperfect; 
                bestm2ijkperfect = btmm2ijkestperfect; 
                bestcmijkperfect = btmcmijkestperfect; 
                bestm1pqwperfect = btmm1pqwestperfect; 
                bestm2pqwperfect = btmm2pqwestperfect; 
                bestcmpqwperfect = btmcmpqwestperfect; 
            end 
        end 
        if CMoptimizationfirst == 1 
            if (bestcmfirstRSSfinperfect < bestRSSfinperfect) 
                if cmbestoptimization == 1 
                    'best perfect solution is cm optimization only' 
                else 
                    if cmbestoptimization == 2 
                        'best perfect solution is cm optimization then general optimization' 
                    else 
                        if cmbestoptimization == 3 
                            'best perfect solution is cm optimization then bottom mass optimization' 
                        else 
                            'best perfect solution is cm optimization then top mass optimization' 
                        end 
                    end 
                end 
                bestRSSfinperfect = bestcmfirstRSSfinperfect; 
                bestCOEfinperfect = bestcmfirstCOEfinperfect; 
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                bestobsperfect = bestcmfirstobsperfect; 
                bestm1ijkperfect = bestcmfirstm1ijkperfect; 
                bestm2ijkperfect = bestcmfirstm2ijkperfect; 
                bestcmijkperfect = bestcmfirstcmijkperfect; 
                bestm1pqwperfect = bestcmfirstm1pqwperfect; 
                bestm2pqwperfect = bestcmfirstm2pqwperfect; 
                bestcmpqwperfect = bestcmfirstcmpqwperfect;   
            else 
                if bestoptimization == 1 
                    'best perfect solution is bottom case optimization' 
                else 
                    if bestoptimization == 2 
                        'best perfect solution is top case optimization' 
                    else 
                        'best perfect solution is general case optimization' 
                    end 
                end 
            end 
        else 
            if bestoptimization == 1 
                'best perfect solution is bottom case optimization' 
            else 
                if bestoptimization == 2 
                    'best perfect solution is top case optimization' 
                else 
                    'best perfect solution is general case optimization' 
                end 
            end 
        end 
        if UNKSS == 1 
            m1estimateperfect = 
bestCOEfinperfect(8)*bestCOEfinperfect(9)/(bestCOEfinperfect(7)+bestCOEfinperfect(8)) 
            m2estimateperfect = bestCOEfinperfect(9)-m1estimateperfect 
        end 
        [bestCOEfinperfect(4)] = adjustvalue(bestCOEfinperfect(4)); 
        [bestCOEfinperfect(5)] = adjustvalue(bestCOEfinperfect(5)); 
        [bestCOEfinperfect(6)] = adjustvalue(bestCOEfinperfect(6)); 
        bestCOEfinperfect 
        bestRSSfinperfect 
        bestobsperfect 
    end 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Optimize imperfect data if desired 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if evalimperfectdata == 1 
    if CalcEstOrbit == 1 
        COEguess = COEguessnotperfect; 
        COEguess2 = COEguessnotperfect2; 
    end 
    compareperfectRSS = 0; 
    [RSS1stdata] = optimizedata(COEguess) 
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    if CMoptimizationfirst == 1 
        if UNKSS == 1 
            tetherparameters = [1, 0, 0, 0, 0, 0]; 
            tempUNKSS = 1; 
        else 
            tempUNKSS = 0; 
        end 
        UNKSS = 0; 
        calccmRSS = 1; 
        [COEfincm, RSSfincm, Exitflag, output] = fmincon(@optimizedata, COEguess2, 
[],[],[],[],lb2,ub2, [], options); 
        [RSSfincm] = optimizedata(COEfincm); 
        cmobs = estdatapt; 
        cmm1ijkest = rm1ijkest; 
        cmm2ijkest = rm2ijkest; 
        cmcmijkest = rijk_est; 
        cmm1pqwest = rm1pqw_est; 
        cmm2pqwest = rm2pqw_est; 
        cmcmpqwest = rpqw_est; 
        if tempUNKSS == 1 
            tetherparameters = tetherparameterstemp; 
            UNKSS = 1; 
            COEfincm2 = [COEfincm, m1guess, m2guess, roguess]; 
        else 
            COEfincm2 = COEfincm; 
        end 
        calccmRSS = 0; 
        [COEfincmf, RSSfincm2, Exitflag, output] = fmincon(@optimizedata, COEfincm2, 
[],[],[],[],lb,ub, [], options); 
        [RSSfincm2] = optimizedata(COEfincmf); 
        cmobs2 = estdatapt; 
        cmm1ijkest2 = rm1ijkest; 
        cmm2ijkest2 = rm2ijkest; 
        cmcmijkest2 = rijk_est; 
        cmm1pqwest2 = rm1pqw_est; 
        cmm2pqwest2 = rm2pqw_est; 
        cmcmpqwest2 = rpqw_est; 
        calcbtmRSS = 1; 
        [COEfincmm1, RSSfincmm1, Exitflag, output] = fmincon(@optimizedata, COEfincm2, 
[],[],[],[],lb,ub, [], options); 
        [RSSfincmm1] = optimizedata(COEfincmm1); 
        cmobsm1 = estdatapt; 
        cmm1ijkestm1 = rm1ijkest; 
        cmm2ijkestm1 = rm2ijkest; 
        cmcmijkestm1 = rijk_est; 
        cmm1pqwestm1 = rm1pqw_est; 
        cmm2pqwestm1 = rm2pqw_est; 
        cmcmpqwestm1 = rpqw_est; 
        calcbtmRSS = 0; 
        calctopRSS = 1; 
        [COEfincmm2, RSSfincmm2, Exitflag, output] = fmincon(@optimizedata, COEfincm2, 
[],[],[],[],lb,ub, [], options); 
        [RSSfincmm2] = optimizedata(COEfincmm2); 
        cmobsm2 = estdatapt; 
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        cmm1ijkestm2 = rm1ijkest; 
        cmm2ijkestm2 = rm2ijkest; 
        cmcmijkestm2 = rijk_est; 
        cmm1pqwestm2 = rm1pqw_est; 
        cmm2pqwestm2 = rm2pqw_est; 
        cmcmpqwestm2 = rpqw_est; 
        calctopRSS = 0; 
        if ((RSSfincm < RSSfincm2) & (RSSfincm < RSSfincmm1) & (RSSfincm < RSSfincmm2)) 
            bestcmfirstRSSfin = RSSfincm; 
            bestcmfirstCOEfin = COEfincm; 
            bestcmfirstobs = cmobs; 
            bestcmfirstm1ijk = cmm1ijkest; 
            bestcmfirstm2ijk = cmm2ijkest; 
            bestcmfirstcmijk = cmcmijkest; 
            bestcmfirstm1pqw = cmm1pqwest; 
            bestcmfirstm2pqw = cmm2pqwest; 
            bestcmfirstcmpqw = cmcmpqwest; 
            cmbestoptimization = 1; 
        else 
            if ((RSSfincm2 < RSSfincmm1) & (RSSfincm2 < RSSfincmm2)) 
                bestcmfirstRSSfin = RSSfincm2; 
                bestcmfirstCOEfin = COEfincmf; 
                bestcmfirstobs = cmobs2; 
                bestcmfirstm1ijk = cmm1ijkest2; 
                bestcmfirstm2ijk = cmm2ijkest2; 
                bestcmfirstcmijk = cmcmijkest2; 
                bestcmfirstm1pqw = cmm1pqwest2; 
                bestcmfirstm2pqw = cmm2pqwest2; 
                bestcmfirstcmpqw = cmcmpqwest2; 
                cmbestoptimization = 2; 
            else 
                if (RSSfincmm1 < RSSfincmm2) 
                    bestcmfirstRSSfin = RSSfincmm1; 
                    bestcmfirstCOEfin = COEfincmm1; 
                    bestcmfirstobs = cmobsm1; 
                    bestcmfirstm1ijk = cmm1ijkestm1; 
                    bestcmfirstm2ijk = cmm2ijkestm1; 
                    bestcmfirstcmijk = cmcmijkestm1; 
                    bestcmfirstm1pqw = cmm1pqwestm1; 
                    bestcmfirstm2pqw = cmm2pqwestm1; 
                    bestcmfirstcmpqw = cmcmpqwestm1; 
                    cmbestoptimization = 3; 
                else 
                    bestcmfirstRSSfin = RSSfincmm2; 
                    bestcmfirstCOEfin = COEfincmm2; 
                    bestcmfirstobs = cmobsm2; 
                    bestcmfirstm1ijk = cmm1ijkestm2; 
                    bestcmfirstm2ijk = cmm2ijkestm2; 
                    bestcmfirstcmijk = cmcmijkestm2; 
                    bestcmfirstm1pqw = cmm1pqwestm2; 
                    bestcmfirstm2pqw = cmm2pqwestm2; 
                    bestcmfirstcmpqw = cmcmpqwestm2; 
                    cmbestoptimization = 4; 
                end 
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            end 
        end 
    end 
    calcbtmRSS = 1; 
    [COEfinbtm, RSSfinbtm, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub, 
[], options); 
    [RSSfinbtm] = optimizedata(COEfinbtm); 
    btmobs = estdatapt; 
    btmm1ijkest = rm1ijkest; 
    btmm2ijkest = rm2ijkest; 
    btmcmijkest = rijk_est; 
    btmm1pqwest = rm1pqw_est; 
    btmm2pqwest = rm2pqw_est; 
    btmcmpqwest = rpqw_est; 
    calcbtmRSS = 0; 
    calctopRSS = 1; 
    [COEfintop, RSSfintop, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub, [], 
options); 
    [RSSfintop] = optimizedata(COEfintop); 
    topobs = estdatapt; 
    topm1ijkest = rm1ijkest; 
    topm2ijkest = rm2ijkest; 
    topcmijkest = rijk_est; 
    topm1pqwest = rm1pqw_est; 
    topm2pqwest = rm2pqw_est; 
    topcmpqwest = rpqw_est; 
    calctopRSS = 0; 
    [COEfin, RSSfin, Exitflag, output] = fmincon(@optimizedata, COEguess, [],[],[],[],lb,ub, [], 
options); 
    [RSSfin] = optimizedata(COEfin); 
    genobs = estdatapt; 
    genm1ijkest = rm1ijkest; 
    genm2ijkest = rm2ijkest; 
    gencmijkest = rijk_est; 
    genm1pqwest = rm1pqw_est; 
    genm2pqwest = rm2pqw_est; 
    gencmpqwest = rpqw_est; 
    if UNKSS == 1 
        'bestCOE = [a, e, i, w, Capw, v, m1, m2, ro]' 
    else 
        'bestCOE = [a, e, i, w, Capw, v]' 
    end 
    if ((RSSfin < RSSfinbtm) & (RSSfin < RSSfintop)) 
        bestoptimization = 3; 
        bestRSSfin = RSSfin; 
        bestCOEfin = COEfin; 
        bestobs = genobs; 
        bestm1ijk = genm1ijkest; 
        bestm2ijk = genm2ijkest; 
        bestcmijk = gencmijkest; 
        bestm1pqw = genm1pqwest; 
        bestm2pqw = genm2pqwest; 
        bestcmpqw = gencmpqwest; 
    else 
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        if (RSSfintop < RSSfinbtm) 
            bestoptimization = 2; 
            bestRSSfin = RSSfintop; 
            bestCOEfin = COEfintop; 
            bestobs = topobs; 
            bestm1ijk = topm1ijkest; 
            bestm2ijk = topm2ijkest; 
            bestcmijk = topcmijkest; 
            bestm1pqw = topm1pqwest; 
            bestm2pqw = topm2pqwest; 
            bestcmpqw = topcmpqwest; 
        else 
            bestoptimization = 1; 
            bestRSSfin = RSSfinbtm; 
            bestCOEfin = COEfinbtm; 
            bestobs = btmobs; 
            bestm1ijk = btmm1ijkest; 
            bestm2ijk = btmm2ijkest; 
            bestcmijk = btmcmijkest; 
            bestm1pqw = btmm1pqwest; 
            bestm2pqw = btmm2pqwest; 
            bestcmpqw = btmcmpqwest; 
        end 
    end 
    if CMoptimizationfirst == 1 
        if (bestcmfirstRSSfin < bestRSSfin) 
            if cmbestoptimization == 1 
                'best  solution is cm optimization only' 
            else 
                if cmbestoptimization == 2 
                    'best  solution is cm optimization then general optimization' 
                else 
                    if cmbestoptimization == 3 
                        'best  solution is cm optimization then bottom mass optimization' 
                    else 
                        'best  solution is cm optimization then top mass optimization' 
                    end 
                end 
            end 
            bestRSSfin = bestcmfirstRSSfin; 
            bestCOEfin = bestcmfirstCOEfin; 
            bestobs = bestcmfirstobs; 
            bestm1ijk = bestcmfirstm1ijk; 
            bestm2ijk = bestcmfirstm2ijk; 
            bestcmijk = bestcmfirstcmijk; 
            bestm1pqw = bestcmfirstm1pqw; 
            bestm2pqw = bestcmfirstm2pqw; 
            bestcmpqw = bestcmfirstcmpqw;   
        else 
            if bestoptimization == 1 
                'best  solution is bottom case optimization' 
            else 
                if bestoptimization == 2 
                    'best  solution is top case optimization' 
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                else 
                    'best  solution is general case optimization' 
                end 
            end 
        end 
    else 
        if bestoptimization == 1 
            'best  solution is bottom case optimization' 
        else 
            if bestoptimization == 2 
                'best  solution is top case optimization' 
            else 
                'best  solution is general case optimization' 
            end 
        end 
    end 
    if UNKSS == 1 
        m1estimate = bestCOEfin(8)*bestCOEfin(9)/(bestCOEfin(7)+bestCOEfin(8)) 
        m2estimate = bestCOEfin(9)-m1estimate 
    end 
    [bestCOEfin(4)] = adjustvalue(bestCOEfin(4)); 
 [bestCOEfin(5)] = adjustvalue(bestCOEfin(5)); 
 [bestCOEfin(6)] = adjustvalue(bestCOEfin(6)); 
 bestCOEfin 
 bestRSSfin 
    bestobs 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%  Calculate the ground track of the observed data if desired 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
if CalcGrndtrack == 1 
    [datalat, datalong] = calculategroundtrack(endcount2, GSTtimes2, rijkdatapt, Ae, f); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %  Plot the ground track 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [sensorlongs, sensorlats] = plotsensors(numbersensors, sensorlongs, sensorlats); 
    plot(datalong, datalat, 'b.') 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%  Plot Earth-centered position vector magnitude; EC Range 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
if (evalimperfectdata == 1) 
    figure(2), clf 
else 
    if ((Datasource == 2) | (Datasource == 1)) 
        if (evalperfectdata == 1) 
            figure(2),clf 
        end 
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    end 
end 
if ((Datasource == 2) | (Datasource == 1)) 
    if ((evalperfectdata == 1) & (evalimperfectdata == 1)) 
        plot(IJKtimesperfect, rijkdataptperfect(:,4), 'k+', IJKtimesperfect, bestm1ijkperfect(:,4), 'ro', 
IJKtimesperfect, bestm2ijkperfect(:,4), 'bs', IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 
'r.', IJKtimes, bestm2ijk(:,4), 'b*'), hold on 
        xlabel('time-seconds') 
  ylabel('EC Range-Km') 
  Legend('Perfect Observation', 'm1 Estimate w/ perfect data', 'm2 Estimate w/ 
perfect data', 'Observations', 'm1 Estimate', 'm2 Estimate',0) 
  legend boxoff 
        if Plotsigmabars == 1 
            errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx') 
        end 
    else 
        if evalperfectdata == 1 
            plot(IJKtimesperfect, rijkdataptperfect(:,4), 'k+', IJKtimesperfect, bestm1ijkperfect(:,4), 'ro', 
IJKtimesperfect, bestm2ijkperfect(:,4), 'bs') 
            xlabel('time-seconds') 
   ylabel('EC Range-Km') 
            Legend('Perfect Observation', 'm1 Estimate w/ perfect data', 'm2 Estimate w/ perfect 
data',0) 
            legend boxoff 
        else 
            if evalimperfectdata == 1 
                plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4), 
'b*'), hold on 
                xlabel('time-seconds') 
    ylabel('EC Range-Km') 
    Legend('Observations', 'm1 Estimate', 'm2 Estimate',0) 
    legend boxoff 
                if Plotsigmabars == 1 
                    errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx') 
                end 
            end 
        end 
    end 
else 
 if evalimperfectdata == 1 
        plotcm = 1; % variable if you want to plot the estimated CM location for Real-World TiPS 
data 
        % 0 = do not plot estimated CM location 
        % 1 = plot estimated CM location 
        if plotcm == 1 
            plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4), 'b*', 
IJKtimes, bestcmijk(:,4), 'ko'), hold on 
            Legend('Observations', 'm1 Estimate', 'm2 Estimate', 'CM estimate',0) 
   legend boxoff 
        else 
            plot(IJKtimes, rijkdatapt(:,4), 'kx', IJKtimes, bestm1ijk(:,4), 'r.', IJKtimes, bestm2ijk(:,4), 
'b*'), hold on 
            Legend('Observations', 'm1 Estimate', 'm2 Estimate',0) 
   legend boxoff 
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        end 
        if Plotsigmabars == 1 
            errorbar(IJKtimes, rijkdatapt(:,4), 3*totalsigma, 'kx') 
        end 
    end 
 xlabel('time-seconds'); 
 ylabel('EC Range-Kilometers'); 
end 
 
% End of Main Program 
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function [RSS] = optimizedata(COEguess) 
 
global rpqw_est rm2pqw_est rm1pqw_est rm1ijkest rm2ijkest rijk_est estdatapt calccmRSS 
ConCM compareperfectRSS endcount2 UNKSS dtr rtd J2 mu RE tetherparameters rijkdatapt 
rijkdataptperfect IJKtimes IJKtimesperfect calcbtmRSS calctopRSS 
 
RSS = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Extract data from COEguess depending on 
% if the tether parameters are known or not 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if UNKSS == 1 
    COEestimate = [COEguess(1), COEguess(2), COEguess(3), COEguess(4), COEguess(5), 
COEguess(6)]; 
    m1estimate = COEguess(7); 
    m2estimate = COEguess(8); 
    roestimate = COEguess(9); 
    distancem1estimate = (m2estimate*roestimate/(m1estimate+m2estimate)); 
    distancem2estimate = roestimate-distancem1estimate; 
else 
    COEestimate = COEguess; 
    m1estimate = tetherparameters(1); 
    m2estimate = tetherparameters(2); 
    roestimate = tetherparameters(4); 
    distancem1estimate = tetherparameters(5); 
    distancem2estimate = tetherparameters(6); 
end 
 
[COEestimate(4)] = adjustvalue(COEestimate(4)); 
[COEestimate(5)] = adjustvalue(COEestimate(5)); 
[COEestimate(6)] = adjustvalue(COEestimate(6)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Store the estimated tether parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tetherparametersest = [m1estimate, m2estimate, 0, roestimate, distancem1estimate, 
distancem2estimate]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% Determine if optimizing perfect data or imperfect data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
if compareperfectRSS == 1 
    rijkobs = rijkdataptperfect; 
    COEestimatetimes = IJKtimesperfect; 
else 
    rijkobs = rijkdatapt; 
    COEestimatetimes = IJKtimes; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%  Propagate the estimated COEs 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
[AllCOEest,AllCOEestrad, estendcount] = COEpropagator(COEestimate, COEestimatetimes); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%  Convert the estimated COEs into Earth-Centered 
%  pqw position vectors 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
[rpqw_est] = coe2rpqw(estendcount, AllCOEestrad); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% Convert the estimated pqw data into IJK data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
[rijk_est] = pqw2ijk(rpqw_est, AllCOEestrad, estendcount); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%  Calculate the estimated IJK coordinates 
%  of the upper and lower masses 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
[rm1ijkest, rm2ijkest] = calc_r_endmasses(rijk_est, tetherparametersest, estendcount); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%  Convert the end mass estimated IJK coordinates 
%  back into pqw frame coordinates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
[rm1pqw_est] = ijk2pqw(estendcount, rm1ijkest, AllCOEestrad); 
[rm2pqw_est] = ijk2pqw(estendcount, rm2ijkest, AllCOEestrad); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%  Convert the observation data from Earth-Centered 
%  IJK coordinates to pqw coordinates using the 
%  ESTIMATED orbit as the reference 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
[rpqwobs] = ijk2pqw(estendcount, rijkobs, AllCOEestrad); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%  Calculate the Residuals depending on the parameters 
%  for calcbtmRSS, calctopRSS, calccmRSS, and ConCM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
for counter = 1:estendcount 
    if calcbtmRSS == 1 
        pestimate = rm1pqw_est(counter,1); 
        qestimate = rm1pqw_est(counter,2); 
        westimate = rm1pqw_est(counter,3); 
        magest = rm1pqw_est(counter,4); 
        pobs = rpqwobs(counter,1); 
        qobs = rpqwobs(counter,2); 
        wobs = rpqwobs(counter,3); 
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        magobs = rpqwobs(counter,4); 
        residualp = pobs - pestimate; 
        residualq = qobs - qestimate; 
        residualw = wobs - westimate; 
        residualmag = magobs - magest; 
        estdatapt(counter) = 1; 
    else 
        if calctopRSS == 1 
            pestimate = rm2pqw_est(counter,1); 
            qestimate = rm2pqw_est(counter,2); 
            westimate = rm2pqw_est(counter,3); 
            magest = rm2pqw_est(counter,4); 
            pobs = rpqwobs(counter,1); 
            qobs = rpqwobs(counter,2); 
            wobs = rpqwobs(counter,3); 
            magobs = rpqwobs(counter,4); 
            residualp = pobs - pestimate; 
            residualq = qobs - qestimate; 
            residualw = wobs - westimate; 
            residualmag = magobs - magest; 
            estdatapt(counter) = 2; 
        else 
            if calccmRSS == 1 
                pestimate = rpqw_est(counter,1); 
                qestimate = rpqw_est(counter,2); 
                westimate = rpqw_est(counter,3); 
                magest = rpqw_est(counter,4); 
                pobs = rpqwobs(counter,1); 
                qobs = rpqwobs(counter,2); 
                wobs = rpqwobs(counter,3); 
                magobs = rpqwobs(counter,4); 
                residualp = pobs - pestimate; 
                residualq = qobs - qestimate; 
                residualw = wobs - westimate; 
                residualmag = magobs - magest; 
                estdatapt(counter) = 3; 
            else 
                p1estimate = rm1pqw_est(counter,1); 
                q1estimate = rm1pqw_est(counter,2); 
                w1estimate = rm1pqw_est(counter,3); 
                mag1est = rm1pqw_est(counter,4); 
                p2estimate = rm2pqw_est(counter,1); 
                q2estimate = rm2pqw_est(counter,2); 
                w2estimate = rm2pqw_est(counter,3); 
                mag2est = rm2pqw_est(counter,4); 
                pobs = rpqwobs(counter,1); 
                qobs = rpqwobs(counter,2); 
                wobs = rpqwobs(counter,3); 
                magobs = rpqwobs(counter,4); 
                residualp1 = pobs - p1estimate; 
                residualq1 = qobs - q1estimate; 
                residualw1 = wobs - w1estimate; 
                residualmag1 = magobs - mag1est; 
                residualp2 = pobs - p2estimate; 
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                residualq2 = qobs - q2estimate; 
                residualw2 = wobs - w2estimate; 
                residualmag2 = magobs - mag2est; 
                if ConCM == 1 
                    pcmestimate = rpqw_est(counter,1); 
                    qcmestimate = rpqw_est(counter,2); 
                    wcmestimate = rpqw_est(counter,3); 
                    magcmest = rpqw_est(counter,4); 
                    residualpcm = pobs - pcmestimate; 
                    residualqcm = qobs - qcmestimate; 
                    residualwcm = wobs - wcmestimate; 
                    residualmagcm = magobs - magcmest; 
                    if ((abs(residualmagcm) < abs(residualmag1)) & (abs(residualmagcm) < 
abs(residualmag2))) 
                        residualmag = residualmagcm; 
                        estdatapt(counter) = 3; 
                    else 
                        if (abs(residualmag2) < abs(residualmag1)) 
                            residualmag = residualmag2; 
                            estdatapt(counter) = 2; 
                        else 
                            residualmag = residualmag1; 
                            estdatapt(counter) = 1; 
                        end 
                    end 
                    if ((abs(residualpcm) < abs(residualp1)) & (abs(residualpcm) < abs(residualp2))) 
                        residualp = residualpcm; 
                    else 
                        if (abs(residualp2) < abs(residualp1)) 
                            residualp = residualp2; 
                        else 
                            residualp = residualp1; 
                        end 
                    end 
                    if ((abs(residualqcm) < abs(residualq1)) & (abs(residualqcm) < abs(residualq2))) 
                        residualq = residualqcm; 
                    else 
                        if (abs(residualq2) < abs(residualq1)) 
                            residualq = residualq2; 
                        else 
                            residualq = residualq1; 
                        end 
                    end 
                    if ((abs(residualwcm) < abs(residualw1)) & (abs(residualwcm) < abs(residualw2))) 
                        residualw = residualwcm; 
                    else 
                        if (abs(residualw2) < abs(residualw1)) 
                            residualw = residualw2; 
                        else 
                            residualw = residualw1; 
                        end 
                    end 
                else 
                    if (abs(residualmag2) < abs(residualmag1)) 
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                        residualmag = residualmag2; 
                        estdatapt(counter) = 2; 
                    else 
                        residualmag = residualmag1; 
                        estdatapt(counter) = 1; 
                    end 
                    if (abs(residualp2) < abs(residualp1)) 
                        residualp = residualp2; 
                    else 
                        residualp = residualp1; 
                    end 
                    if (abs(residualq2) < abs(residualq1)) 
                        residualq = residualq2; 
                    else 
                        residualq = residualq1; 
                    end 
                    if (abs(residualw2) < abs(residualw1)) 
                        residualw = residualw2; 
                    else 
                        residualw = residualw1; 
                    end 
                end 
            end 
        end 
    end 
    totalresidual = residualp^2 + residualq^2 + residualw^2 + 10*residualmag^2;  
    RSS = RSS + totalresidual; 
end 
RSS = sqrt(RSS); 
 
% End of optimizedata function 
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