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Abstract 

 

 A statistically-based forecasting tool is developed for Dover AFB, McGuire AFB, 

and Andrews AFB for dissipation times of fog and low stratus.  Probability forecasts are 

produced at hourly increments from 0-6 hours for the most extreme reductions in 

visibility (less than 0.5 mi) and ceilings (below 200 ft).  Forecasts are based on surface 

observations, upper air observations, and climatological parameters. 

 Ceiling forecasts at Dover AFB and McGuire AFB show improvements over 

conditional climatology ranging from 1-51% with an average improvement of 19.2% 

when verified against an independent data set.  McGuire AFB visibility forecasts show an 

average improvement over conditional climatology of 3%.  These findings are of 

particular importance to the Air Force in general and specifically to the 15th Operational 

Weather Squadron (15 OWS) who produces forecasts for these airfields.  Implementing a 

method superior to conditional climatology is expected to provide improved forecasts and 

flight operations for these sites. 

 The two forecasts for Andrews AFB show relatively low mean square errors, but 

are unable to consistently improve on conditional climatology, demonstrating an average 

decrease in forecasting skill of 42%.  Small samples of data could be the reason for the 

decrease in skill.  The Dover visibility forecast also shows negative forecast skill, with an 

average decrease of 39%. 

 The method is a success in producing forecasts for ceiling and visibility criteria 

that had never previously been examined.  Further research on the technique could 

produce a powerful tool consistently able to defeat conditional climatology.  It is 

suggested that the 15 OWS incorporate this methodology into their operational 

forecasting routine.   
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A STATISTICALLY BASED METHOD FOR PREDICTING FOG AND STRATUS 

DISSIPATION 

 

I. Introduction 
 

 
 
 Weather forecasters in general are unable to consistently beat persistence in short-

term (0-6 hour) forecasts of ceiling and visibility.  Dagostraro et al. (1995) and Dallavalle 

and Dagostraro (1995), showed that not only is persistence competitive with National 

Weather Service (NWS) forecasts, but that NWS forecasts have not improved in the 

period from 1985-1995.  The same inadequacies found in the NWS are experienced 

throughout Air Force (AF) weather.  The standard to beat in the AF is conditional 

climatology, because it enables forecasters to incorporate knowledge of what has 

happened in similar situations in the past, thus it is considered a better predictor of future 

weather than persistence (Hilliker and Fritsch 1999). 

A statistical technique based on Vislocky and Fritsch (1997) and Hilliker and 

Fritsch’s (1999) work could provide a tool for the 15th Operational Weather Squadron (15 

OWS) to improve forecasts from conditional climatology tables.  This research develops 

an automated statistical data system using an observations-based network for operational 

implementation. 

Conditional climatology combines persistence and climatology by incorporating 

knowledge of outcomes of similar weather situations in the past in order to provide short-
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term forecasts of current weather parameters.  Because it represents averaged conditions 

over a long period of time, it is a more difficult tool to beat than persistence (Vislocky 

and Fritsch 1997).  However, conditional climatology tables do exhibit some problems.  

Murphy and Katz (1995) illustrate that small sample sets in certain cells can lead to 

unstable probabilities, as would be especially true for the extreme cases examined in this 

research.  It is therefore imperative that the AF develops a more skilled forecasting 

method for fog and stratus dissipation.   

 
 
1.1 Statement of the Problem 
 
 
 

Accurate predictions of fog and low stratus dissipation (for the purpose of this 

paper low stratus is defined as clouds at or below 200 ft AGL and the term fog refers to 

fog and/or low stratus) are essential to all aircraft operations.  The 15 OWS is responsible 

for producing forecasts for 11 airfields throughout the northeastern quadrant of the 

United States, stretching from North Dakota to Washington DC (Fig. 1).  Aircraft 

supported by the 15 OWS range from large fixed wing aircraft to rotary wing.  Among 

these are transport aircraft, which have critical thresholds for flight cancellations of 200 ft 

ceilings and 0.5 mile visibility.  Accurate ceiling and visibility forecasts are critical to 

ensure personnel and essential cargo is transferred in a timely manner.  Every hour of 

inaccuracy costs the United States government thousands of dollars and possibly lives 

(FAS 2003).     

There are numerous reasons for the lack of skill in predicting fog dissipation.  Fog 

dissipation is highly variable situation and based on small changes in a variety of  
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meteorological parameters (Anthis & Cracknell 1998).  Furthermore, the physical 

environment presents large, localized influences such as snow cover (Johnson 1978), 

variable terrain and bodies of water that contribute to variability in dissipation rates 

(Weiss and Gurka 1975).  Other important factors that would aid in prediction, such as 

depth of the fog and height of the inversion layer are not routinely measured nor easily 

obtained.  Vislocky and Fritsch (1997) noted that the single most important factor in 

short-term forecasting is the latest surface observation.  For this reason alone, numerical 

models are at a disadvantage when it comes to predicting dissipation.   

Of these forecast difficulties, the vast differences in terrain, climatology, and 

relationship to bodies of water among the airfields in the 15 OWS Area of Responsibility 

(AOR) represent a significant challenges.  These variations present forecasters with a  

KRDR 

KMIB 

KRCA 

KOFF KBLV

KFFO

KGTB 

KWRI 

KDAA
KADW 

KDOV 

  FIG. 1.  Location and ICAOs of the 15 OWS Airfields.  Airfields with the (♦ ) symbol 
are the critical bases, home to aircraft with minimums of 200ft/0.5 mi.  Adapted from the 
15 OWS homepage (15 OWS 2003). 
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  TABLE 1. Annual Number of Days with Reduced Ceiling and Visibility.  The three 
highlighted bases are home to transport aircraft with flight minimums of 200 ft/0.5 mi.  
(15 OWS 2003). 
                
   Ceiling/Visibility Threshold Criteria (ft/mi) 

Airfield ICAO vis < 7 <3000/3 <1500/3 <1000/2 <500/1.5 <200/.5 
        

Minot AFB (ND) KMIB 71 62 40 26 15 4 
Grand Forks AFB (ND) KRDR 72 66 40 26 15 4 
Ellsworth AFB (SD) KRCA 47 47 33 29 18 7 
Offutt AFB (NE) KOFF 109 73 47 33 15 4 
Scott AFB (IL) KDLV 197 69 40 26 11 4 
Wright-Patterson AFB (OH) KFFO 193 84 47 29 11 1 
Fort Drum (NY) KGTB 117 88 47 33 18 4 
McGuire AFB (NJ) KWRI 192 77 58 44 26 8 
Fort Belvoir (VA) KDAA 170 69 55 37 22 7 
Andrews AFB (VA) KADW 170 69 55 37 22 7 
Dover AFB (DE) KDOV 187 58 44 29 15 4 
 
 
 
variety of challenges from different types of fog and/or physical mechanisms contributing 

to formation and dissipation.  Table 1 quantifies some of these difficulties by 

summarizing the number of days in which fog impacts operations.  The data illustrate that 

low ceilings and visibility are common occurrences throughout the AOR. The eastern 

seaboard, home of a majority of the cargo aircraft in the AF inventory, experiences 

reduced ceilings and visibility on average half of the days of the year, significantly 

impacting military operations. 

 

1.2 Research Objectives 
 

 

The overall objective of this research is to produce an automated ceiling and visibility 

forecasting tool for the 15 OWS that will improve on all currently employed methods.   



 5

The specific research goals are as follows: 

1. Develop a statistically-based system using surface and upper air observations 

as well as climatological predictors to accurately forecast fog dissipation. 

2. Completely automate system to ensure ease of use. 

3. Present a viable forecasting tool for the 15th OWS. 
 
 The next topic addressed is a summary of past research on successful prediction 

methods of fog dissipation.  Various techniques are examined including numerical 

weather prediction, conditional climatology, observations-based methods, satellite 

imagery, and multi-source methods, which combine two or more of the above to produce 

a dissipation forecast.  The third chapter focuses on the methods employed in this 

research to develop the forecasting tool for the 15 OWS.  The fourth chapter provides 

detailed results of the research, and comparisons to conditional climatology are 

examined.  Finally, conclusions are made which demonstrate the effectiveness of the 

newly developed method, and suggestions are offered for possible improvements in the 

future. 

 Using statistical techniques for forecasting weather is not a new concept, 

however, with the development of physically-based numerical models, statistical 

techniques have become less prevalent in short-term forecasting.  Chapter two examines 

the success rate that statistically-based forecasting has produced in the past for short-term 

prediction of fog dissipation. 
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II. Literature Review 

 
 
 

This research is focused on the dissipation of fog and does not address fog 

formation or prediction.  This section focuses on several different methods to produce fog 

dissipation.  While it focuses mainly on statistically-based methods to predict dissipation, 

other techniques, such as numerical models, conditional climatology, satellite imagery, 

and multi-source methods are examined.  Advantages and disadvantages are examined, as 

well as areas where these techniques can be improved. 

 

2.1 Numerical Models 
 
 
 

Numerical models are favored by forecasters due to their ease of use, but are often 

not the best available asset for short-range forecasts.  Statistically-based products derived 

from high-resolution mesoscale models can predict fog dissipation times, but have not 

proven reliable.  Porter (1995) illustrated the fact that persistence is superior to mesoscale 

numerical model predictions in the short-term.  Furthermore, Vislocky and Fritsch (1997) 

showed that while Model Output Statistics (MOS) can consistently beat persistence and 

conditional climatology, there are still better methods.  The NWS (1981, 1995) concluded 

that observations are the most important ingredient in producing short-range forecasts, 

leading Vislocky and Fritsch (1997) to suggest that a surface-based observing network 

would be more effective than MOS guidance. 
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2.2 Conditional Climatology 
 

 
 

As mentioned earlier, conditional climatology offers an advantage over persistence 

in that it incorporates knowledge of what has happened in past situations to produce an 

accurate probability forecast.  Data are interpreted from tables which are stratified by 

station, month, time of day, and wind direction and offer probabilities out to 48 hours on 

the occurrence of select ceiling and visibility criteria.   Tables are applied based on the 

current ceiling criteria already being met.  As mentioned, these tables are stratified by 

time of day and wind direction, therefore, the only required meteorological parameter 

needed to produce a forecast is the current surface direction at the station.   

This methodology is favored by the Air Force for its simplicity and its consistent 

ability to produce fairly accurate forecasts.  The general problem with any climatological 

model is that it does not take into account the current meteorological event occurring at 

and around the station.  Observations-based networks include this data in statistical 

methodology to improve on conditional climatology. 

 
 

2.3 Observations-Based Statistical Methods 
 
 

 
Enger et al. (1964) introduced the concept of statistical techniques for 2-7 hr 

prediction of ceiling and visibility in the 1960’s.  Experiments in Chicago and major 

cities on the west coast of the US compared objective forecasts to conditional 

climatology and subjective forecasts.  Enger et al. (1964) used 450 binary predictors to 

forecast future values of 36 ceiling and visibility predictands.  The results showed that 
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statistical techniques were superior to conditional climatology, persistence, and 

subjective forecasts.  Improvement ranged from –0.4% to 33.0% with average 

improvement of 19.2% for ceiling forecasts and 12.8% for visibility forecasts (Enger et 

al. 1964).   

Vislocky and Fritsch (1997) showed more recently that observations-based 

statistical systems are more effective than MOS and conditional climatology for short-

term ceiling and visibility forecasts.  Their research focused on 25 major cities along the 

eastern corridor of the US and used surface observations from a predetermined area 

around each airfield to forecast future conditions of ceiling and visibility (Vislocky and 

Fritsch 1997).  Hilliker and Fritsch (1999) proved that a similar method could be used to 

predict fog dissipation at the San Francisco airport.   

 Vislocky and Fritsch (1997) used a number of predictands (Table 2) based on 

significant airfield flight restrictions.  They embarked on a pilot study to determine the 

optimal number of surrounding stations and predictors to use in order to eliminate data 

saturation.  The results produced five significant findings: 

1. The optimal number of stations to consider increases with desired lead-time 

and is not constant.  Variations exist with season, latitude-longitude, and 

weather among other factors. 

2. The ceiling and visibility predictors were the most important. 

3. Non-predictand observations outside the optimal number of stations had very 

little impact on the forecast. 

4. Multiplying, adding, or determining trends among predictors added minimal 

accuracy. 
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Variable Binary Thresholds 

     
Ceiling Height < 500 ft < 1000 ft < 3000 ft < 6500 ft 
Visibility < 1 mi < 3 mi < 5 mi < 7 mi 

 
 
 

5. The optimal number of stations to use for 1, 3, and 6-hr forecasts are 10, 25, 

and 40 respectively. 

Vislocky and Fritsch (1997) determined that 33 surface parameters were 

operationally significant in forecasting fog dissipation (Table 3).  They also concluded 

that the addition of climatological factors relating to incoming solar radiation produced a 

more accurate forecast.  

 
 

 

 

Variable Binary Threshold 
         

Opaque Cloud Amount > 1/10 > 5/10 >9/10    
Total Cloud Cover Clear Scattered Broken Overcast Obscured  
Precipitation Occurrence Yes      
Ceiling Height < 200 ft < 500 ft < 1000 ft < 3000 ft < 6500 ft < 12000 ft 
Visibility < 0.5 mi < 1.0 mi < 3.0 mi < 5.0 mi < 7.0 mi < 10 mi 
Wind Direction 0° < 45°  < 90° < 135° < 180° < 235° 
     Wind Direction (cont.) < 270° < 315°     
Dew Point       
Dewpoint Depression       
Sea Level Pressure             

 

 

  TABLE 2.  List of Predictands.  Vislocky and Fritsch (1997) produced forecasts 
using the surface observational based system for these significant aviation 
operational thresholds. Adapted from Vislocky and Fritsch (1997). 

  TABLE 3. Surface Meteorological Parameters Used as Predictors.  These 33 conditions 
were determined to be the most significant predictors of fog dissipation.  Adapted from 
Vislocky and Fritsch (1997). 
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Vislocky and Fritsch (1997) used a least squares linear regression model to 

develop their predictive equations.  In this method, each predictand is the result of a 

combination of predictors.  A forward stepwise screening algorithm was used to select 

the best available predictors (Vislocky and Fritsch 1997).  One predictor is added at a 

time in order to gauge the effect each has on the predictand.  This method allows useless 

or redundant predictors to be discarded (Vislocky and Fritsch 1997). 

The results of Vislocky and Fritsch’s (1997) findings can be summarized:  

1. Observations-based methods on average produced 12% (with a 5-20% range) 

better results than conditional climatology and 4% better than MOS. 

2. Any short-range forecast should rely more heavily on observations than 

numerical models. 

3. At the 6-hour point, the observations and MOS predictands were similar, 

which verified that the 6-hr point is the time for numerical models to take 

over. 

Two major advantages of an observations-based system are that it is not tied to 

any numerical model and it can be run in a matter of seconds on any computer as soon as 

new data becomes available (Vislocky and Fritsch 1997). 

Suggested improvements to the observations-based statistical method include 

incorporation of radar data, satellite imagery, and upper air observations into the 

equations (Vislocky and Fritsch 1997).  Hilliker and Fritsch (1999) added upper air 

observations to the surface-based observations system in a study at the San Francisco 

International Airport.  They used upper air data from Oakland since it is within the area 
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of interest and developed additional upper air predictors (Table 4).  Static stability was 

added as a predictor in addition to basic upper air parameters.   

Hilliker and Fritsch (1999) used a predictand of 3000 ft ceiling height and surface 

predictors similar to Vislocky and Fritsch (1997) with modifications for local effects.    

Hilliker and Fritsch (1999) employed a logarithmic regression model with the addition of 

upper air parameters.  Hilliker and Fritsch’s (1999) research showed that: 

1. Including upper air predictors produced 0-3% improvements over the strictly 

surface based systems for 0-3 hr forecasts. 

2. The longer the forecast time, the less impact the upper air observations had on 

the forecast. 

3. Improvements of up to 32% were shown over MOS forecasts. 

Hilliker and Fritsch (1999) proved that even in a region with limited observations, 

observations-based systems are superior to conditional climatology, persistence, and 

MOS forecasts for short-term forecasts.  Furthermore, including upper air parameters, 

such as static stability, increased the accuracy of the forecasts.  Two additional 

parameters that could improve the forecast are the inversion height and the thickness of 

the cloud layer (Hilliker and Fritsch 1999).   

Vislocky and Fritsch (1997) and Hilliker and Fritsch (1999) showed success in 

producing dissipation forecasts using observations-based networks.  The next section 

examines the effectiveness of evaluating satellite imagery to forecast dissipation. 
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2.4 Satellite Imagery 
 
 
 

Another method in predicting the dissipation of fog is the use of satellite imagery.  

Gurka (1974, 1978) showed that high resolution visible imagery can be used to predict 

fog dissipation because of the strong correlation between fog brightness and duration.  

Dissipation occurs first on the outer edges of the fog (Gurka 1974), where the ground is 

heated more intensely along the boundaries than in the interior (Gustafson and 

Wasserman 1976).  Anthis and Cracknell (1999) concluded that the dissipation of fog 

proceeds inward with time and that it is dissipated according to layer thickness.   

Gurka’s (1978) work provided significant findings, concluding that enhanced 

visible satellite imagery could produce effective short-range forecasts of fog dissipation, 

especially for aviation.  Gurka (1978) also realized that computers would be able to 

ingest and process this data quickly enough to produce real time short-range predictions.   

Parameter Binary Threshold 
     
Height     
Temperature     
Relative Humidity > 30% > 50% > 70% > 90% 
Wind Direction 23° to < 68° 68° to < 113° 113° to < 158° 158° to < 203° 
    Wind Direction (cont.) 203° to < 248° 248° to < 293° 293° to < 338° 338° to < 23° 
Wind Speed     
Static Stability (dθ/dz)         

  TABLE 4. Upper Air Meteorological Parameters Used as Predictors.  Parameters were 
considered for 8 pressure levels between 1000 mb and 500 mb, with the exception of 
static stability, which was evaluated in three layers between 1000 mb-850 mb.  Adapted 
from Hilliker and Fritsch (1999).  
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  Since all previously mentioned methods had success in predicting dissipation 

time, the next section examines the possibility of combining parameters into a multi-

source method. 

 

2.5 Multi-Source Methods 
 
 
 

Reudenbach and Bendix (1998) made progress using multi-source data to predict 

dissipation in Germany.  Their work used four separate types of data for model 

development: thermodynamic equations, NOAA Advanced Very High Resolution 

Radiometer (AVHRR) imagery, terrain models, and surface and upper air meteorological 

observations.  Reudenbach and Bendix (1998) focused on multi-source data because 

single source methods are not able to account for all aspects of dissipation.  Of note is 

that although Gurka (1974) presented a method for nowcasting fog clearance, the method 

was never standardized, nor proven 100% reliable.  Reudenbach and Bendix (1998) also 

noted that numerical models cannot always account for local effects such as dissipation 

due to advective processes.  They successfully developed a straightforward model for 

forecasting clearance in 1km by 1km areas. 

This chapter summarizes multiple methods employed to accurately predict the 

dissipation of fog.  Vislocky and Fritsch (1997) and Hilliker and Fritsch (1999) showed 

that an observations-based method produces superior forecasts, while standards such as 

MOS guidance, persistence and conditional climatology are still regularly employed.  

Gurka (1974, 1978) and Anthis and Cracknell (1998, 1999) demonstrated that visible 

satellite imagery could be used to predict duration of fog events.  Reudenbach and 
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Bendix (1998) demonstrated the effectiveness of a multi-source data system on the 

accurate prediction of fog dissipation times 

Each method displayed some degree of success in predicting fog dissipation; 

however this research focuses on adapting a statistically-based method to forecast 

dissipation.  There are several reasons for this.  First, as shown by Vislocky and Fritsch 

(1997) this methodology is superior to model output and conditional climatology.  

Second, satellite imagery by itself has not proven to be a single effective tool for 

predicting dissipation.  A multi-source method, that includes an observations-based 

network and satellite imagery, could produce a superior forecast and should be evaluated 

in the future.  The next chapter details the process of developing and implementing the 

statistically-based system. 
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III.  Methodology 
 

 

3.1 Overview 

 

The literature review describes several methods for predicting fog dissipation that 

prove effective in all geographic areas.  Vislocky and Fritsch (1997) showed 

observations-based systems can be successfully employed along the east coast of the US, 

while Hilliker and Fritsch (1999) showed that the system is effective for the west coast.  

Since observations-based networks are superior to conditional climatology and model 

output (Vislocky and Fritsch 1997), this method is applied to the airfields in the 15 OWS 

to produce a superior fog dissipation forecast tool.  

This research follows Vislocky and Fritsch (1997) and Hilliker and Fritsch’s 

(1999) work into the use of a statistically-based observation network to produce accurate 

short-term dissipation forecasts.  Although this method is a proven success along the east 

coast, changes are made to fit the needs of the AF.  Specifically, a different set of 

predictands is required in order to meet the need of the 15 OWS, as Vislocky and Fritch’s 

(1997) original work failed to address the critical threshold of 200 ft ceilings and 0.5 mi 

visibility. 

The scope of the problem for the entire 15 OWS AOR may seem large, however, 

it is not insurmountable and is solved piecewise. The most critical problem, 200 ft 

ceilings and 0.5 mile visibility on the east coast, is addressed in this research.  Once the 
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technique and processes are established, equations tested, and methodology set, other 

airfields and predictands can be examined in the future. 

The remaining portion of this chapter is dedicated to an explanation on the 

procedures and processes employed to develop the predictive equations.  Section 3.2 

examines the surface, upper air, and climatological data sets used to develop the 

equations, while section 3.3 details the statistical approach taken in this research.   

 

3.2 Data 

 

3.2.1 Surface and Upper Air Data.  This research is based on a five-year data set (1998-

2002), consisting of standard surface observations in METAR format and raw upper air 

data in formatted ASCII text, provided by the Air Force Combat Climatology Center 

(AFCCC) in Asheville, NC.  The surface data consist of both standard hourly and special 

observations for stations along the east coast of the US.  The upper air data consist of 

both mandatory and significant levels and are available twice a day, 00Z and 12Z. 

The large data set is required for two reasons.  First, due to the relatively rare 

occurrence of the extreme conditions (200 ft ceilings/ 0.5 mile visibility), a large data set 

ensures a statistically significant number of occurrences.  Second, the data are broken 

into two subsets in order to develop the predictive equations with one set and 

independently verify the results with another. 

 The implementation of the Automated Surface Observing System (ASOS) 

program by the NWS in the middle to late 1990’s had a significant effect on this research.  

The advantages of the automated systems are significant.  The density of the surface 
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observation network in the US increased significantly both spatially and temporally.  

Increased spatial coverage results in smaller surface-based networks, which in turn are 

more representative of the conditions at the airfield of interest.  Increased temporal 

resolution occurs as many part time observing stations (which were excluded from 

Vislocky and Fritsch’s (1997) initial study) were transitioned into full time observing 

stations in the late 90’s.  This positively influences this study in two ways.  First, stations 

which were previously ignored, could now be evaluated, once again increasing the spatial 

density.  Second, more data are available for all hours of the day, resulting in evaluation 

of more cases of fog occurrence and dissipation.  While these advantages assist in this 

work, problems also arise.   

First, the system was not implemented instantaneously at each location.  That is, 

there is a significant difference between the times in which each airfield’s system came 

online.  For this reason, stations fitted with ASOS’s after 1998 are omitted from this 

study, even if they fell within the observations-based network, due to their lower data 

density.  Second, the initial period of data received from the ASOS is often missing 

weather variables.  These are two of the main factors for the development and 

implementation of missing data schemes. 

 

3.2.2 Missing Surface Data.  Missing data are broken up into three different categories, 

each of which is handled in a separate way.  The goal of the missing data algorithms is 

two-fold.  First, a scheme is developed to maximize the number of data points available 

for the study.  Second, the replacement data needs to reflect the current meteorological 
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conditions at each station as accurately as possible.  For this reason a three step missing 

data approach is implemented. 

 Step 1: Missing ceiling data due to the occurrence of fog.  One of the most 

common occurrences of missing data is the lack of sky condition and/or ceiling height 

when fog is reported.  For this reason ceiling, values are represented according to Table 

5, data are missing with reduced visibility due to the occurrence of fog. 

Step 2: Missing entire observation.  If an entire surface observation is missing, a 

nearest reliable neighbor approach is used.  A reliable neighbor is defined as a full time 

observing station throughout the entire data set.  The nearest neighbor approach is used 

because it is the most physically significant replacement process available.  Fog generally 

occurs in the cold season and is considered more of a synoptic scale rather than 

mesoscale event.  For this reason surface weather conditions at nearby locations are 

typically similar enough (especially along the data dense east coast) to make this a sound 

meteorological argument.  The exception is reduced visibility or ceiling conditions due to 

localized convective events or localized terrain influences, which are assumed to occur 

infrequently enough to not have a significant impact on this study. 

 

 

 

 

 

 

 

Observed Visibility   Binary Ceiling Value 
   
Vis < 0.5 mi  Cig < 200 ft 
Vis < 1.5 mi  Cig < 1000 ft 
Vis < 3 mi   Cig < 3000 ft 

  TABLE 5.  Binary Ceiling Replacement Values.  The 
replacement values used for ceilings when the sky condition is 
missing from an observation and fog is reported. 
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Step 3: Missing individual weather data from an observation.  This type of 

missing data occurs when single or multiple elements from a surface observation are 

missing.  Data are replaced once again using the nearest neighbor approach, but this time 

only replacing the individual element. 

The missing data schemes are only applied to predictors and never to the 

predictand.  If the predictand is missing at any time, that occurrence is not included in the 

study for either model building or verification purposes.  After the surface data is 

replaced missing upper air data algorithms are implemented. 

 

3.2.3 Missing Upper Air Data.  Missing upper air data are handled quite differently than 

missing surface data due to the relative sparseness of observations both spatially and 

temporally.  Missing data are replaced using data from the upper air observation 24 hours 

earlier.  Therefore, 00Z upper air observations are replaced with 00Z data the day prior.  

If the data are unavailable 24 hours ago, the event is not included in the study.  Data from 

the previous 24 hours are used in order to best represent atmospheric conditions.  Since 

observations are only taken twice a day, the 00Z data are not typically representative of 

the 12Z observations and visa versa.   

This technique is applied as an accurate representation based on two factors.  

First, the synoptic situation typically associated with fog events is stable and not rapidly 

changing.  Second, replacement algorithms are used infrequently enough in most cases to 

not have a significant effect on this research.  The Dover AFB and McGuire AFB data 

sets each have 3.7% missing data rates.  The Andrews AFB data set has a 12% missing 
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data rate, this case is a concern heading into equation development.   Next examined is 

the processing of the data. 

 

3.2.4 Data Assimilation and Manipulation.  The first step in this procedure is setting up 

the surface networks for each of the airfields for each of the six hour increments.  

Vislocky and Fritsch (1997) concluded that the 10, 25, and 40 closest observing stations 

are the optimal number of stations to be used in 1, 3, and 6 hour forecasts.  The optimal 

number of stations is interpolated as 19, 30, and 35 for the 2, 4, and 5 hour forecasts.  

Observational networks are built independently for each forecast location and time.  The 

surface observing stations for the observational networks included in this study are for 

Dover AFB (KDOV), McGuire AFB (KWRI), and Andrews AFB (KADW) and are 

detailed in the Appendix. 

Data processing is the main challenge of this exercise and is summarized in 

Figure 2.  The first step is an evaluation of the airfield of interest for occurrence of the 

predictand value (e.g. ceiling less than 200 ft).  If an observation has an occurrence below 

one of the predictand thresholds, it is extracted.  The same observation may meet multiple 

criteria (i.e. ceiling below 200 ft and visibility less than 0.5 mi).  In this case, the 

observation is used for all applicable predictand criteria.  This experiment is set up to 

evaluate every case of fog that meets the criteria regardless of time or season.   

The next step is an evaluation of network observations.  The date time group of 

each of the 40 stations in the observations network is compared to the main station’s date 

time group.  Observations within an hour are extracted to a separate file.  If no 

observation is available within an hour, it is left for missing data algorithms to replace.  
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The same process is then applied to the upper air and climatological data.  With the 

extraction of the relevant data, the statistical approach is now reviewed. 

 

3.3 Statistical Approach 

 

3.3.1 Predictands.  After the network is constructed new predictands are evaluated.  As 

noted earlier, the predictands offered by Vislocky and Fritsch (1997) do not fit the needs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 2. Flowchart for Data Manipulation. 
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of the 15 OWS, where the critical thresholds (200 ft ceilings and 0.5 mi visibility) are not 

addressed.  This work evaluates predictands of 200 ft ceiling and 0.5 mile visibility at 

three airfields along the eastern seaboard of the US: McGuire AFB, Dover AFB, and 

Andrews AFB.  Predictands are assigned a binary value of ‘1’ for occurrence of an event 

and ‘0’ for non-occurrence of event.  Predictive equations are developed for each 

individual predictand at each airfield at hourly increments spanning one to six hours 

beyond the observation of fog occurrence.  The predictors that influence the predictand 

forecast are now examined. 

 

3.3.2 Predictors.   This investigation deviates from Vislocky and Fritsch’s (1997) work in 

terms of surface predictors.  The main discrepancy is opaque cloud cover, which is 

omitted from this study.  The reason for this is twofold.  First, Vislocky and Fritsch’s 

(1997) work used an earlier data set consisting of surface observations in SA (surface 

airways) format.  These observations include more ceiling information than is currently 

reported in METAR observations (namely the presence or absence of a ceiling).  

Furthermore, SA ceilings were more subjective, that is, even if 8/10 of the sky were 

covered by clouds, an observer could determine it to not be a ceiling due to the lack of 

opacity.  The second reason is inconsistency in remark data, especially reporting the eight 

and nine cloud groups which detail cloud amount and type.  Since these are not present 

on a majority of observations, it is impossible to determine with the current available data 

the opacity of the sky.   

A second difference in this research from Vislocky and Fritsch’s (1997) is the use 

of altimeter setting rather than sea level pressure.  The reason for this is that altimeter is 
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reported in all observations and sea level pressure is not always reported in the remarks 

of the data set.  Since all stations are within a couple of hundred meters of sea level, the 

approximation of altimeter setting for sea level pressure is valid.  Binary predictors are 

coded with a “dummy” value of ‘0’ representing non-occurrence or ‘1’ representing 

occurrence, and non-binary predictors maintain their observed values.  Each set of 30 

predictors (Table 6) is evaluated at each surface observing station within the observing 

network (the number of stations in each observations network varies with time). 

 

 

 

Occurrence Non occurrence

SKY (SKC) 1 0
SKY (FEW/SCT) 1 0
SKY (BKN) 1 0
SKY (OVC) 1 0
SKY (OBSCURED) 1 0
PRECIP 1 0
CIG HT <200 FT 1 0
CIG HT <500 FT 1 0
CIG HT <1000 FT 1 0
CIG HT <3000 FT 1 0
CIG HT <6500 FT 1 0
CIG HT <12000 FT 1 0
VIS < 800 M 1 0
VIS < 1600 M 1 0
VIS < 4800 M 1 0
VIS < 8000 M 1 0
VIS < 9999 M 1 0
VIS >= 9999 M 1 0
WIND DIR (VRB) 1 0
WIND DIR (<45) 1 0
WIND DIR (<90) 1 0
WIND DIR (<135) 1 0
WIND DIR (<180) 1 0
WIND DIR (<225) 1 0
WIND DIR (<270) 1 0
WIND DIR (<315) 1 0
WIND DIR (<360) 1 0
DEWPOINT X
DEWPOINT DEPRESSION X
ALT X

Dewpoint Depression
Altimeter Setting

Wind Direction < 270
Wind Direction < 315
Wind Direction < 360
Dewpoint

Wind Direction < 90
Wind Direction < 135
Wind Direction < 180
Wind Direction < 225

Visibility < 7 mi
Visibility < 10 mi
Wind Direction: Variable
Wind Direction < 45

Visibility < 0.5 mi
Visibility < 1 mi
Visibility < 3 mi
Visibility < 5 mi

Ceiling Height < 1000 ft
Ceiling Height < 3000 ft
Ceiling Height < 6500 ft
Ceiling Height < 12000 ft

Non-Binary

Precipitation
Ceiling Height < 200 ft
Ceiling Height < 500 ft

Sky Condition: Broken
Sky Condition: Overcast
Sky Condition: Obscured

Variable Binary

Sky Condition: Clear
Sky Condition: Few/Scattered

Designator

 

  TABLE 6. Surface Predictors for the 15 OWS AOR.  The surface meteorological 
predictors used to create the observations-based forecasts for the 15 OWS AOR.  All 
predictors are evaluated at each airfield in the specific network (which varies depending 
on the time of the forecast). 
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 The upper air predictors follow the work of Hilliker and Fritsch (1999) and are 

available in Table 7.  Each predictor is evaluated at six levels, surface, 1000 mb, 925 mb, 

850 mb, 700 mb, and 500 mb, with the exception of static stability, which is evaluated in 

three layers: 1000 mb-850 mb, 1000 mb-925 mb, and 925 mb-850 mb.  The binary 

predictors are coded in the same manner as the surface predictors.  Upper air data from 

00Z are used for fog occurrence times of 03Z-15Z (12Z data are used for the hours 15Z-

03Z) in order to represent lag times in data availability, ensuring this method can be 

implemented operationally.  The upper air sounding that is closest to each airfield of 

interest is used (Table 8) and is considered to be representative of the upper air conditions 

for the entire surface observation network.   

 Numerous climatological predictors are available for selection by the 

predictive equations.  First among these are climatological frequencies of occurrence of  

 

 

 

Occurrence Non occurrence

HT X
T X
RH > 30% 1 0
RH > 50% 1 0
RH > 70% 1 0
RH > 90% 1 0
WIND N 1 0
WIND NE 1 0
WIND E 1 0
WIND SE 1 0
WIND S 1 0
WIND SW 1 0
WIND W 1 0
WIND NW 1 0
WIND SPEED X
STATIC STABILITY (1000-925 MB) X
STATIC STABILITY (1000-850 MB) X
STATIC STABILITY (925-850 MB) X

Relative Humidity > 30%
Relative Humidity > 50%
Relative Humidity > 70%
Relative Humidity > 90%

Temperature

Designator Non-Binary

Wind Direction: 158° to < 203°
Wind Direction: 203° to < 248°
Wind Direction: 248° to < 293°

Wind Direction: 23° to < 68°
Wind Direction: 68° to < 113°
Wind Direction: 113° to < 158°

Variable Binary

Height

Wind Direction: 293° to < 338°
Wind Direction: 338° to < 23°
Wind Speed
Static Stabililty (dθ/dz): (1000-925 mb)
Static Stabililty (dθ/dz): (1000-850 mb)
Static Stabililty (dθ/dz): (925-850 mb)  

  TABLE 7. Upper Air Predictors for the 15 OWS AOR.  The upper air meteorological 
predictors used to create the observations-based forecasts for the 15 OWS AOR.  All 
predictors are evaluated at each pressure with the exception of static stability, which is 
evaluated in the three layers. 
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Airfield ICAO ICAO

McGuire AFB (NJ) KWRI KOKX
Andrews AFB (VA) KADW KIAD

Dover AFB (DE) KDOV KWAL

Upper Air Station

Brookhaven (NY)
Washington DC

Wallops Island (MD)  
 

 

ceiling and visibility threshold at the airfield of interest.  Predictor values including 200 

ft/0.25 mi, 500 ft/0.5 mi, 1000 ft/1.5 mi are extracted from the Operational Climatic Data 

Summary tables available through AFCCC.  Sine and cosine of the day of the year are 

also included as predictors of solar radiation effects per Vislocky and Fritsch (1997). 

  A better understanding of the effect of solar radiation on the dissipation process is 

also included.  Following the work of Campbell (1977), the maximum amount of 

incoming solar radiation reaching the surface of the earth for the time of year is 

calculated.  These calculations do not take into account clouds above the fog and stratus; 

however, for this study it is assumed that all of this radiation is reaching the top of the 

cloud/fog layer.  All of the climatological predictors are non-binary, and a summary is 

available in Table 9.  Now that predictors and predictands are explained the statistical 

methods behind equation development is examined.  

 

3.3.3 Equation Development.  A least squares multiple linear regression model is used to 

develop six predictive equations for each of the two predictands at each airfield.   The 

first assumption made in order to use linear regression is that errors are uncorrelated 

random variables with constant variance and zero for a mean (defined as 

  TABLE 8.  Upper Air Stations in the 15 OWS AOR.  The three upper 
air stations used in equation development along with the airfield they 
represent. 
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Occurrence Non occurrence

CLIMO < 200/0#25 X
CLIMO < 500/0#5 X
CLIMO < 1000/1#5 X
SIN DAY X
COS DAY X

XSOLAR RADIATION

Frequency of Occurrence: 200 ft/0.25 mi 
Frequency of Occurrence: 500 ft/0.5 mi 
Frequency of Occurrence: 1000 ft/1.5 mi 

Cosine of the Day
Solar Radiation

Non-BinaryVariable Binary

Sine of the Day

Designator

 

 

homoscedasticity) (Montgomery and Runger 2003).  Analysis of the residuals from each 

linear model can prove these assumptions valid.  The residual of a regression model is 

defined: 

    ei=yi-ŷi  i=1,2…, n    (1) 

Where yi is the observed value and ŷi is the fitted value obtained from the linear 

regression model.  A randomly distributed residual scatter plot, e.g. showing no pattern or 

trend, verifies the above assumptions.  

 Figure 3 shows sample residual scatter plots for each of the three data sets.  The 

above characteristic, a random scattering of points around the zero line, is present in the 

diagrams below.  This leads to the conclusion that the models have a mean of zero and 

constant variance.  The above test is performed on each of the 36 models individually. 

 The second assumption required to use linear regression is that the errors are 

normally distributed (Montgomery & Runger 2003).  First, the Central Limit Theorem 

states that as a sample size gets larger (typically assumed to be greater than 30), the 

distribution tends towards normal (Montgomery & Runger 2003).  A more precise way to 

check the distribution is by examining a normal probability plot of the residuals for each  

  TABLE 9. Climatological Predictors for the 15 OWS AOR.  The climatological 
predictors used to create the observations-based forecasts for the 15 OWS AOR.  All 
predictors are evaluated at only the airfield of interest (either Dover AFB, McGuire AFB, 
or Andrews AFB). 
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of the 36 models.  To assume normality, the residuals should fall along a straight line.  

Figure 4 shows two examples of normal probability plots.  The first is from the Andrews 

AFB ceiling less than 200 ft forecast at one-hour (Fig. 4a).  Notice the plot is in almost a 

normal distribution of residuals.  The second example is from the Dover AFB ceiling less 

than 200 ft forecast at two-hours (Fig. 4b).  Notice the plot falls essentially along a 

straight line, allowing the conclusion of normality (Montgomery & Runger 2003).    

 Table 10 lists the 36 derived models for this work and details the statistical tests run 

for each.  Notice that 10 of the 36 models have errors which are not normally distributed 

(bold, column 2, Table 10).  Six of the non-normal distributions are found in the Andrews 

AFB data set.  Despite these discouraging indicators, regression models are nonetheless  

  FIG. 3. Residual Plots from Data Sets.  Residual plots from the KDOV Cig LT 200 ft 
(T+2) (a), KADW Cig LT 200 ft (T+2) (b), and KWRI Vis LT 0.5 mi (T+2) (c) data sets.  
These typical patterns show residual plots scattered and randomly distributed around the 
zero line, confirming the assumptions necessary to use linear regression. 

a) b) 

c) 
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stair step pattern, not close to resembling a straight line.  This is an example of a non-  

 

developed and analysis of effects of the non-normal distributions is found in Chapter IV.  

A lack of homoscedasticity (e.g. heteroscedasticity) is present in only three of the models 

(bold, column 3, Table 10).  However, as Neter et al. (1990) point out, if 

heteroscedasticity is inherent, the results obtained are still unbiased, consistent 

estimators, but no longer possess minimum variance.  Since the KWRI Vis LT 0.5 mi 

(T+1) and KADW Cig LT 200 ft (T+1) possess neither homoscedacity nor normal 

distributions, these data are of particular concern going into model development.   

 Multiple linear regression examines the relationship between two or more variables 

(Montgomery and Runger 2003) with each equation taking the form:  

     Y=β0 +β1x1+β2x2+…+βnxn+ε     (2) 

 

  FIG. 4.  Normal Probability Plots.  Plots for KADW Cig LT 200 ft (T+1) (a) and KDOV 
Cig LT 200 ft (T+2) (b).  Note the non-linear shape of the first model, leading to the 
conclusion of a lack of normalcy.  Panel (b) exhibits a linear pattern, indicating a normal 
distribution of the residuals, which is a necessary assumption for linear regression. 

a) b) 
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Normal Homoscedasticity

Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No No
Yes Yes
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No No
Yes No
No Yes
Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes
No Yes
No Yes
Yes Yes
Yes YesKADW Vis LT 0.5 mi (T+6)

KADW Vis LT 0.5 mi (T+2)
KADW Vis LT 0.5 mi (T+3)
KADW Vis LT 0.5 mi (T+4)
KADW Vis LT 0.5 mi (T+5)

KADW Cig LT 200 ft (T+4)
KADW Cig LT 200 ft (T+5)
KADW Cig LT 200 ft (T+6)
KADW Vis LT 0.5 mi (T+1)

KWRI Vis LT 0.5 mi (T+6)
KADW Cig LT 200 ft (T+1)
KADW Cig LT 200 ft (T+2)
KADW Cig LT 200 ft (T+3)

KWRI Vis LT 0.5 mi (T+2)
KWRI Vis LT 0.5 mi (T+3)
KWRI Vis LT 0.5 mi (T+4)
KWRI Vis LT 0.5 mi (T+5)

KWRI Cig LT 200 ft (T+4)
KWRI Cig LT 200 ft (T+5)
KWRI Cig LT 200 ft (T+6)
KWRI Vis LT 0.5 mi (T+1)

KDOV Vis LT 0.5 mi (T+6)
KWRI Cig LT 200 ft (T+1)
KWRI Cig LT 200 ft (T+2)
KWRI Cig LT 200 ft (T+3)

KDOV Vis LT 0.5 mi (T+2)
KDOV Vis LT 0.5 mi (T+3)
KDOV Vis LT 0.5 mi (T+4)
KDOV Vis LT 0.5 mi (T+5)

KDOV Cig LT 200 ft (T+4)
KDOV Cig LT 200 ft (T+5)
KDOV Cig LT 200 ft (T+6)
KDOV Vis LT 0.5 mi (T+1)

Forecast

KDOV Cig LT 200 ft (T+1)
KDOV Cig LT 200 ft (T+2)
KDOV Cig LT 200 ft (T+3)

 

 

where Y is the dependant or response variable, in this case, the predictand.  Each x is a 

regressor variable, in this case the predictors, having a correlation with the dependant 

variable.  Each β is a regression coefficient, calculated using a method of least squares, 

  TABLE 10. Statistical Tests.  Definitions of the 36 models derived in 
this study along with the results of the statistical tests for normality and 
heteroscedasticity needed to confirm assumptions necessary to use 
linear regression. 
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which minimizes the error between the predictand (Y) and each predictor (x).  The 

response variable is interpreted as the expected value of Y for any specific combination of 

x’s, the regressor variables (Neter et al. 1990).  For this reason, Y is interpreted as a 

probability forecast for future occurrence or non-occurrence of a particular 

meteorological event.  Finally, ε  is a random error term. 

 Predictors are added to the regression equations based on a mixed stepwise 

regression technique.  A mixed stepwise technique adds regressor variables to the 

predictive equation one at a time based on the lowest F-statistic.  As more variables are 

added, F-statistics are recomputed and regressor variables may be removed from the 

equation if their F-statistic value is increased based on interaction between terms.  The 

major advantage to using a mixed stepwise technique over a forward technique is the 

ability to remove terms whose F-statistic value has increased after new terms are added.  

This takes into account interaction between predictors, thereby minimizing the chances of 

redundant or interactive predictors remaining in the final predictive equation. 

 The F-test is the criteria for adding a predictor to a stepwise regression 

(Montgomery and Runger 2003); there is no limit to the number of predictors in each 

equation, as long as they meet the F-test requirements (which are set stringently at 

P<0.001).  The F-statistic is ratio between the sum of the square errors of the coefficients 

(β) and the mean square error (MSE) of the dependant variables (Montgomery and 

Runger 2003).  For this reason, a minimized F-statistic produces a model with less error 

and is therefore most desirable.  Surface and upper air predictors are added or removed 

individually to each regression equation based on the above method.  
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 Development of a single equation for one predictand at a specific time in the future 

occurs as follows (Fig 5).  Predictor sets from each network surface observing station, 

upper air level, and climatological data are first regressed individually against the 

predictand value (e.g. KDOV CIG LT 200 ft), using an F-test significance of 0.001.  Each 

predictor that meets the strict 0.001 F-test significance level is then combined and 

regressed against the predictand once again, using a much looser significance level of 

F<0.1.  Since all terms meet the original F-statistic criteria, the larger error rate is 

accepted simply to remove interactive or redundant terms.  This procedure produces one 

regression equation for each predictand at each time interval. 

 To produce a single probabilistic forecast, data are fed into the regression equations, 

which predict a value between 0 and 1 that can be interpreted as a forecasted probability 

of occurrence (Vislocky and Fritsch 1997).  For example, the occurrence of a ceiling less 

than 200 ft at Dover AFB is coded as a ‘1’.  After the regression equation is calculated, 

the resulting value is the probability of the 200 ft ceiling existing at some future time.  A 

problem with linear regression, as noted by Wilks (1995) is that in rare cases probabilities 

can fall outside of the 0 to 1 probability range.  However, this is not a significant problem 

for the operational meteorologist, as forecast values outside of this range can be rounded 

to 0 or 1 and still produce accurate forecasts (Wilks 1995).  All statistical analysis is 

performed using the JMP statistical software.   

 After predictive equations are developed, verification is required for each airfield 

for each predictand at each time period.  Verification is accomplished on an independent 

data set.  Each predictive equation is computed and the probability forecast value is 

compared with the conditional climatology forecast (once again obtained through 
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AFCCC).  Forecasts are produced for a one year independent data set for each fog 

occurrence using both the observations-based method and conditional climatology.  This 

methodology is detailed in Figure 6. 
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FIG 5. Linear Regression Flowchart. 
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 Assessment of forecast accuracy is first made by calculating the mean square errors 

for both forecast methods.  The MSE is the averaged squared difference between the  

forecast and actual event.  The lower the MSE, the higher the accuracy of the forecast.  A 

skill score was then calculated per Wilks (1995) to show the percent improvement of the 
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observations-based network over conditional climatology.   

    

MSE
1
n

yfcst yobs−( )2⋅ (3) 

SS 1
MSEobs

MSEcc
− (4)

 

 Attempts are made to quantify the accuracy of the forecast in an operational 

environment.  The first category evaluated is “bad forecasts,” which is defined as a 

forecast with an absolute error greater than 0.50--e.g. more than 50% error between the 

forecast and observed conditions.  A second assessment is made of “good forecasts.”  

These are defined as having an absolute error of less than 0.30.  In order for this 

methodology to be implemented operationally, good forecast must be the norm.  Forecast 

probabilities between 30-60% have little operational value to the operational forecaster, 

regardless of the MSE.  Mean square errors, number of good forecasts, and number of 

bad forecasts are computed for both the observations-based network and conditional 

climatology and are compared.  

This chapter details the methodology employed to develop a forecast tool for 

accurate prediction of fog dissipation.  An observations-based network consisting of 

surface observations, upper air observations, and climatological parameters is developed 

for the 15 OWS.  A multiple linear regression model is implemented for each of the 

predictands at the three 15 OWS airfields. 

The results of the research are now examined.  The initial goal is to provide a 

superior forecast technique to conditional climatology.  To accomplish this, 36 

probabilistic forecasts are developed for the predictands listed in Table 10.  The next 
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chapter details the successes and failures of the observations-based system and examines 

the characteristics of the predictive equations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36

 
 
 

IV. Analysis and Results 
 
 
 

4.1 Overview 
 
 
 
 Predictive equations are developed using the aforementioned statistical technique 

for two predictands, ceiling less than 200 ft and visibility less than 0.5 mi, at each 

airfield, for hourly intervals one to six hours in the future, for a total of 36 predictive 

equations.  Of the 36 equations, 16 are able to consistently better conditional climatology 

when analyzed against an independent data set. 

 This section provides predictive equations, verification statistics on the 

independent data set, analysis of the predictive equations, and development of trends.  

Analysis on the successes and limitations of the technique are examined.  Section 4.2 

details the results obtained at Dover AFB, with the following sections looking at 

McGuire AFB and Andrews AFB individually.  After each individual airfield is 

examined, underlying problems persistent throughout the forecast technique are 

thoroughly examined.  Finally, examples of application of the methodology to real world 

situations are examined. 

 

4.2 Dover AFB 

 

4.2.1 Ceiling Less than 200 ft.  Mean square errors are calculated using both conditional 
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climatology and the observations-based network for an independent one year sample of 

data consisting of approximately 45 occurrences and are graphed in Figure 7a.  Note that 

the MSEs for the observations-based system are superior to conditional climatology at 

each forecast time.  Note also decrease in the MSEs with time.  While this is counter 

intuitive, the set up of the experiment results in this trend.  Occurrences of ceilings below 

200 ft and visibility less than 0.5 are rare and typically short-lived events, therefore, there 

is less variability in the observed conditions at the later hours (e.g. the observed condition 

is coded as a “0” representing non-occurrence for a majority of the events).  The 

observations-based network and conditional climatology typically produce low forecast 

probabilities at these hours resulting in the decreased MSE with time.    Three measures 

of forecast accuracy, as discussed in the methodology section, are also shown in Figures 

7b-d. 

 First, skill scores for each forecast time are illustrated, with positive values 

indicating an improvement over climatology of the observations-based network.  All six 

forecast times show significant improvement over conditional climatology.  Forecast 

improvements range from 1.3% to 50%, with an average improvement of 15.8%.  The 

bad forecast category (Fig. 7d) shows that the observations-based network is equal to or 

superior to conditional climatology at all six hourly forecasts.  Bad forecasts range from 

2-18 per hour for the observations-based network and 2-26 per hour for conditional 

climatology.  The extreme case demonstrates conditional climatology can be inaccurate 

on over 50% of the forecasts.  The final forecast measure, good forecasts (Fig. 7c), again 

demonstrates a significant improvement over conditional climatology.  The only case 

where conditional climatology is better is at the 6-hour point where it is favored due to 
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the fact that 200 ft ceilings are typically a short-lived event.  On average, the 

observations-based network produces 15% more good forecasts at each hourly interval. 

Predictive equations for Dover AFB ceilings are available in Table 11.  The 

number of predictors selected for each equation varies from 10 at the earliest times to 16 

at the latest forecast hours.  Standardized beta (std beta) values are included in order to 

gauge the relative strength of each predictor on each model.  The highest absolute value 

among the standardized betas have the most influence on the forecast.  Predictors are now 

examined for trends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   FIG. 7.  Forecast Statistics for KDOV Ceiling Less than 200 ft.  Panel (a) displays MSE, 
panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts 
for each hour. 
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 A successful trend is the KDOV SKY (OBSCURED) predictor showing up in the 

first few hours of the forecast.  This is important because it is indicates a foggier situation 

that may persist longer into time.  The standardized beta values decrease with time, 

indicating that this condition has less impact on the forecast as time advances.  The least 

influential region for predictors comes from stations due west of Dover AFB.  The early 

time periods demonstrate a uniformity of direction among the selected network stations, 

however, as time advances, stations to the southwest become more dominant in the 

equations.  These trends are expected, since weather typically moves from west to east in 

mid latitudes.  All geographical directions influence the earlier hours as the situation is 

stagnant under typically stable, light wind environment. 

Another successful trend is the presence of at least one easterly wind predictor 

(bold, Table 11), which indicates a higher likelihood of ceilings remaining, due to low-

level moisture advection from the Atlantic Ocean.  These predictors maintain their 

strength throughout the six forecast hours.  The fact that the only upper air predictors are 

temperature and moisture predictors, not wind predictors, indicates the model detects 

ceilings dissipated through lifting processes better than advective processes.   

Of concern is the large number of occurrences of unrestricted visibility as a 

dissipation predictor.  While unrestricted visibilities reported at stations close to Dover 

AFB indicate dissipation, stations further away indicate the persistence of the ceiling.  

While visibility and ceiling certainly have a correlation, it is a concern that this is one of 

the most influential predictors, especially in the early forecasts. 

Overall, the ceiling forecasts for Dover AFB are very successful in defeating 

conditional climatology, producing low MSEs, a large number of good forecasts and a 
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small number of bad forecasts.  Section 4.2.2 looks at the visibility less than 0.5 mi 

forecast for Dover AFB. 

 

4.2.2 Visibility Less than 0.5 mi.  The forecasts for visibility at Dover AFB are not as 

successful as the ceiling forecasts.  Mean square errors are calculated for each forecast 

method and are displayed in Figure 8a.  The MSEs for the observations-based network, 

while still relatively low, are higher than those for conditional climatology for each 

forecast time.  While the observations network may still produce accurate forecasts, in 

this case conditional climatology is more accurate, when verified against the independent 

data set. 

The skill scores and forecast statistics determine if there are any advantages to the 

observations-based network.  Figure 8b shows an average 39% decrease in skill for the 

observations-based network.  The observations-based network averages 8 more bad 

forecasts (out of a sample size of approximately 150) at each hour.  While not a positive 

result, this is a better percentage of bad forecasts than conditional climatology exhibits on 

the ceiling forecasts.  A positive sign for the observations-based network lies in the good 

forecasts.  In the first hour forecast, the observations-based network produces 19 more 

good forecasts, and in the second hour they are even.  Of the 100 times fog persisted into 

the one hour forecast, the observations-based network produced a good forecast 78 times.  

This is positive because the first couple of hours are typically the most critical and often 

highly variable. 

Upon closer examination, the bad forecasts (e.g. higher MSEs) can be explained 

by the data.  The first problem is overestimating non-occurrences of fog through all six  
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hours of the forecast.  This is illustrated by the fact that the average predicted value of 

occurrence at the one-hour point is 76%.  This results in the high number of misses on the 

situations where fog is not present, essentially driving up the false alarm rate and MSE.  

This problem of overestimating the probability of occurrence is magnified in the later 

forecasts as the actual chance of fog is more likely to be zero.  The second reason for the 

higher MSE is a probability forecast of 1 or 0 being produced and the opposite value 

being observed.  This problem is magnified by the set up of the experiment.  That is if the 

observations network is not accurately forecasting fog for a particular event, it is very 

Good Forecasts for KDOV Visibility Less than 0.5 mi

79

53
58

80

97

60

43

66

80

95

110

43

0

20

40

60

80

100

120

1 2 3 4 5 6

Forecast Time (+ HR)

# 
of

 F
or

ec
as

ts

OBS

CC

Bad Forecasts for KDOV Visibility Less than 0.5 mi

52

62

50
54

32

23

39
43

38 39

26

15

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Forecast Time (+ HR)

# 
of

 F
or

ec
as

ts
OBS

CC

MSE for KDOV Visibility Less Than 0.5 mi

0.25
0.28

0.24 0.23

0.18

0.14

0.08

0.12

0.20
0.22

0.19

0.15

0.000

0.050

0.100

0.150

0.200

0.250

0.300

1 2 3 4 5 6
Forecast Time 

(+HR)

M
SE

OBS

CC

Skill Scores for KDOV Visibility Less Than 0.5 mi

-21.0 -23.2 -22.7

-54.8
-49.7

-63.3
-70

-60

-50

-40

-30

-20

-10

0
1 2 3 4 5 6

Forecast Time (+ HR)

Pe
rc

en
t I

m
pr

ov
em

en
t

Skill Scores

  FIG. 8.  Forecast Statistics for KDOV Visibility Less than 0.5 mi.  Panel (a) displays 
MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad 
forecasts for each hour. 

a) b) 

d) c) 



 43

likely to miss the occurrence of fog at all time intervals.  Therefore the MSE is increased 

for each forecast hour.  Examination of the predictive equations as shown in Table 12, 

could offer a possible physical explanation for the inferior forecasts. 

Analyses of the equations reveal two significant factors most strongly influencing 

a dissipation forecast.  This first is in the short-term (one to two hours and to a lesser 

extent the third hour forecast) and occurs at the Georgetown, DE observing station 

(KGED, bold in Table 12).  Two to three values per forecast predict dissipation among 

these predictors (the negative estimates in the equations).  Of particular note is the 

influence of broken sky conditions at KGED having one of the strongest correlations with 

dissipation (based on standardized beta values) at each of the first two hours.  

Examination of the independent data set reveals that on occasions with inaccurate 

dissipation forecasts, these conditions are not present at KGED, which in turn keep the 

probability forecast at a higher level than it should be.  With dissipation probability so 

closely tied to this one station, especially in the early forecasts, slight changes in 

meteorological parameters (e.g. sky condition broken versus overcast) have significant 

impact on producing an inaccurate dissipation forecast.  

The second predictor subset leading to a dissipation forecast is wind direction 

between south and northwest (italicized in Table 12).  Unfortunately, this condition is not 

present in a majority of cases where dissipation occurs.  This is found throughout all 

forecasts and is related to these particular wind directions, regardless of station.  This 

finding implies that this method has difficulty detecting dissipation unless the correct 

wind sector predictors are present. 
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Finally, the equations developed for the first two forecast hours exhibit underlying 

problems in the model data set.  Note from Table 10 these two data sets have 

distributions of errors which are not normal.  This statistical problem helps explain some 

of the inaccuracies the first two models demonstrate. 

Overall the forecasts for Dover AFB show promise, especially in the ceiling 

category.  Although conditional climatology has a lower MSE, there are advantages to 

the visibility forecasts, especially when the good forecasts in the very short term are 

considered.  The predictive equations for McGuire AFB are examined next.      

  

4.3 McGuire AFB 

 

4.3.1 Ceiling Less than 200 ft.  Mean square errors for the six forecast hours are 

illustrated in Figure 9a.  The MSEs are smaller for the observations-based network for all 

six forecast hours.  Examination of the skill scores (Fig. 9b) show improvement over 

conditional climatology for each of the six forecast hours ranging from 3%-49% with an 

average improvement of 22.5%.  The number of good forecasts (Fig. 9c) is consistent 

with both forecast methods, averaging about 32 good forecasts out of approximately 55 

samples.  Aside from the skill score, the other distinctive advantage of the method is the 

minimization of bad forecasts (Fig 9d).  Conditional climatology produces an average 6% 

more bad forecasts per hour.  

An examination of the forecast equations (Table 13) leads one to conclude which 

variables produce the most accurate forecasts.  First, as the forecast advances into the  
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future, the climatological factors are among the stronger predictors influencing the 

equations.  This is expected, since in general, as the forecast time increases, the relevance 

of the current observation decreases.  Second, the geographic region of the predictor 

station relative to McGuire AFB has a significant influence, especially as time increases.  

Stations from the southwest and west dominate the predictive equations, especially in the 

later stages.  This is consistent with the findings for the ceiling at Dover AFB, where the 

southwest and west stations dominate the predictive equations at the longer time periods.  

Of the 96 predictors in the six equations, wind predictors dominate as 43 (indicated in 
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  FIG. 9.  Forecast Statistics for KWRI Ceiling Less than 200 ft.  Panel (a) displays MSE, 
panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts 
for each hour. 
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bold in Table 13) are based on wind speed or direction.  Wind speed and dew point 

depression, have a significant effect on the prediction of dissipation, especially in the 

earlier forecast hours.  These are positive signs, since they are two of the most important 

meteorological parameters indicating dissipation.  Also of note is the higher number of 

upper level predictors as compared to the Dover AFB ceiling forecast equations. 

A final factor indicating the strength and accuracy of this model is the lack of 

dependence on erroneous predictors.  Whereas the Dover AFB ceiling forecast appears 

overly dependant on visibility predictors, relatively few are included in McGuire AFB’s 

ceiling forecast.  The equations are heavily influenced by wind, moisture, ceiling, and sky 

condition predictors as would be expected with a ceiling forecast model.  Next examined 

is the McGuire AFB visibility forecast that exhibits some advantages despite not being as 

strong as the ceiling forecast. 

 

4.3.2 Visibility Less than 0.5 mi.  Mean square errors for both forecast techniques are 

shown in Figure 10a.  Half of the forecasts of the observations-based network are 

superior, while the other three favor conditional climatology.  The three-hour forecast 

shows the largest difference in MSE, likely due to the large difference in number of bad 

forecasts between the two techniques (Fig. 10d).  Removing the three-hour forecast 

leaves the overall average MSEs almost even.  Figure 10b shows a wide variety of range 

among the skill scores, from an improvement of 34% in the observations-based network 

to a decrease in skill of 14%, with an average increase of 3%.  The observations-based 

network shows a higher number of good forecasts for the first half of the forecast period 

while conditional climatology becomes superior at the later forecast hours (Fig. 10c).  
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The equations for each forecast are in Table 14.  There are two significant 

differences when comparing the one-hour forecast equation to the 2, 3, and 4 hour 

forecast equations, which are the successful equations.  The first, and least significant, is 

the absence of any climatological parameters.  Climatological parameters are not believed 

to be the main source of error in equation one because they are typically more influential 

on the later forecasts.  The second major ingredient missing is the presence of any dew 

point or dew point depression parameters from the one-hour equation.  At least one or 

more of these predictors generally appear in all of the other equations and are the most 
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important factors in fog formation or dissipation.  This is believed to be the reason for the 

low skill score (Fig. 10b) in the one-hour forecast.  However, there are still advantages to 

the one hour forecast, including its producing 81 good forecasts (Fig. 10c) out of 150, 

significantly more than the 66 issued by conditional climatology.   

The five and six-hour equations also have negative skill score, however moisture 

and climatological parameters are included in them.  The reason for the decrease in skill  

score in this case is over prediction of the event.  While bad forecasts (Absolute Error > 

50%) are comparable with conditional climatology, forecast values between 30%-50% 

produce a large forecast error.  Due to conditional climatology generally converging to 

zero at the later hours, it produces lower MSEs in the five to six hour period.  For 

example, in the five hour forecast, the average predicted value using the observations-

based network is 21% while the conditional climatology average is 17%.  The lower 

average forecast value produces the lower MSE when over 75% of the observations are 

for non-occurrence of the event. 

The most influential geographical region, as evidenced in the 2, 3, and 4-hour 

forecasts, is southwest.  This is another factor in the degradation of the forecast skill in 

the 5 and 6-hour forecasts.  A more omni-directional sampling of station data is evident at 

the longer hours, which is contrary to successful forecasts which are typically heavily 

based on the westerly and southwesterly observations.  The lack of influence of the 

dominant flow on the later hour forecasts likely results in the decreased skill scores at 

these times. 

Note that the upper air predictors are some of the weakest throughout the forecast 

period, while the climatological predictors, which appear in five of the six equations, are 
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some of the strongest.  Other than the climatological predictors, there are no distinct 

trends among the meteorological predictor selection. 

Of the 12 predictive equations developed for McGuire AFB, nine show superior 

forecast skill to conditional climatology.  The unsuccessful predictive equations produce 

good forecasts, with slight biases.  Overall, the application of the surface-based observing 

method for McGuire AFB is considered a success.  Next, evaluation of the forecast 

equations for Andrews AFB is examined. 

 

4.4 Andrews AFB 

 

4.4.1 Ceiling Less than 200 ft.  The graph of MSEs verified on the independent sample of 

data is shown in Figure 11a.  It is evident in all Andrews AFB cases that the MSE for 

conditional climatology is smaller than that of the surface-based observations system.  

Although the one and six-hour forecasts are competitive, the other four clearly are not.  

The main reason for the variability in MSEs is a small sample size.  While the Dover 

AFB and McGuire AFB forecast parameters have approximately 50 observations for 

verification, Andrews only has approximately 30.  There are a couple of reasons for this.  

First, the number of occurrences of ceiling below 200 ft at Andrews AFB is significantly 

lower than the other two stations.  Dover AFB and McGuire AFB have approximately 

400 observations of fog, while Andrews AFB has only about 200.  The second reason is 

the non-reporting of ceilings.  As previously mentioned, forecasts are not verified if 

ceiling data is not available at the forecast hours.  This is especially a problem at   
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Andrews AFB, where the occurrence of reduced visibility often resulted in no sky 

condition being reported.   

 A second problem in the Andrews AFB data set is the large amount of missing 

upper air data.  Section 3.2.3 shows that 12% of the upper air data is missing for Andrews 

AFB, much higher than the other two data sets.  This results in fewer upper air predictors 

being selected for each forecast.   A final problem to note in the Andrews AFB data set is 

the failure to meet the necessary assumptions required for linear regression.  Table 10 in 

Chapter III illustrates that the first three forecast hours exhibit non-normality, 
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  FIG 11.  Forecast Statistics for KADW Ceiling Less than 200 ft.  Panel (a) displays 
MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad 
forecasts for each hour. 
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heteroscedasticity, or both.  The linear regression model is probably not applicable to this 

data set and has a strong influence on the excessively high MSEs in the first three hours. 

The average skill score for the six forecasts is -46% (Fig. 11b).  The one-hour forecast is 

most competitive with conditional climatology, it has a skill score of -1%, but it offers 

fewer bad forecasts than conditional climatology and almost the same MSE (Fig. 11a & 

11d).  Aside of the inherent problems with the data, an analysis of the equations produced 

by the observations-based network (Table 15) provides some insight into why the results 

from Andrews AFB base differ from Dover AFB and McGuire AFB. 

An analysis of the equations reveals significant findings.  First, the number of 

predictors varies from 4-15 throughout the six equations.  This is much lower than the 

previous equations, which typically vary from about 10-25 predictors.  The small data set 

does not adequately detect the dominant atmospheric conditions resulting in dissipation, 

therefore, the regression is unable to select ample predictors.  The smaller number of 

predictors (which as stated before are mostly binary), unfortunately are not representative 

enough of the atmosphere surrounding the station.  Variations in the atmospheric 

conditions that could lead to accurate dissipation predictions are therefore not well 

represented by the model. 

Upper air and climatological predictors are also omitted from the equations.  

These are often the driving forces in the previous successful forecast models.  Uniformity 

of station selection is also evident in the later forecasts. Successful models typically have 

a majority of the stations used in the prediction from the southwest and west in the later 

periods.  This model has an omni-directional, or uniform geographic distribution in the  
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later forecast hours, which is also troublesome in the Dover AFB and McGuire AFB 

cases where it appears.  The predictors selected by the model do not appear ambiguous.   

That is, the model focuses mainly on sky conditions and ceiling predictors and veers 

away from the visibility predictors.  Overall, it is believed that with a larger, normally 

distributed sample and some fine tuning this model could be made to accurately represent 

the forecast conditions.  Examined next is the visibility forecast for Andrews AFB. 

 

4.4.2 Visibility Less than 0.5 mi.  The MSE (Fig. 12a) for the one-hour forecast is 

superior in the observations-based system; however, it is the only case that illustrates the 

superiority of this methodology.  The MSEs are significantly better for conditional 

climatology for the other five forecast hours.  This is also evident in the skill scores (Fig. 

12b) where the average decrease in skill score of the observations-based network is 45%.  

The other forecast statistics (Fig 12c, 12d) significantly favor conditional climatology, 

with the observations network competitive on only a few occasions. 

Once again, it is believed that the largest problem for the Andrews AFB visibility 

forecasts is the data itself.  The number of occurrences is about one third the number of 

occurrences for both Dover AFB and McGuire AFB.  Also note from Chapter III (Table 

7) that the first four forecast hours exhibit errors that are not normally distributed.  This 

violates the assumptions required for linear regression.  This is the main reason for the 

inadequacies in the Andrews AFB forecast. 

Examining the equations (Table 16) provides further insight on the problems with 

the visibility forecast.  The best forecast time, at one hour, has relatively few predictors, 

but is geographically uniform around the station.  The model remains consistent in its 
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selection of parameters throughout the six hours, and also appears to hone in on the 

meteorological processes that lead to dissipation.  For example, at least one moisture 

parameter is present in all six forecasts (bold in Table 16) and the standard beta values 

show that they are one of the most influential factors predicting dissipation.  Another 

noticeable trend is the strong presence of northeasterly to southeasterly winds, which 

would intuitively indicate moisture advection from the Atlantic Ocean.  In the first hour’s 

forecast, the easterly wind term indicates dissipation, while the other five forecasts  
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  FIG 12.  Forecast Statistics for KADW Visibility Less than 0.5 mi.  Panel (a) displays 
MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad 
forecasts for each hour. 
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remain consistent in indicating the presence of reduced visibility with these wind 

conditions.  This discrepancy is left unexplained in the statistical analysis. 

The later forecast hours again show neither climatological predictors, nor a 

dependence on westerly or southwesterly stations for predictors.  These could be two 

contributing factors to the lack of skill shown later in the period.   

 Although the Andrews AFB forecasts overall fail to verify well on independent 

data, there are positive trends, such as the lack of erroneous predictor selection indicating 

that success could be achieved in the future.  The small number of predictors, due to the 

smaller data set, has a large influence on the negative skill scores of the model.  

However, the most significant problem in the models is the failure of the data set to meet  

the assumptions required for linear regression.  Underlying problems throughout the 

models are examined next. 

 

4.5 Underlying Model Problems.  There are inherent problems that persist through all the 

models that are addressed.  The first is the linearity of the model.  In linear regression, an 

R2 value is calculated, this is the coefficient of determination and represents the adequacy 

of fit of the regression model, or the variability in the data accounted for by the model 

(Montgomery and Runger 2001).  The R2 values range from 0 to 1 with 1 being a perfect 

fit.  The R2 values for the forecast models presented in this work typically are between 

0.25 and 0.6.  Although these values may seem low, they are not of major concern for the 

following reasons.  First, R2 values can be erroneously inflated by adding an excessive 

amount of terms (Montgomery and Runger 2001).  This study keeps with the strict F-test 

criteria to minimize the number of predictors added to the equation.  Second, this is a 
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linear model of the atmosphere, an entity that usually behaves non-linearly, making high 

R2 values difficult to obtain.  Third, according to Montgomery and Runger (2003) large 

R2 values do not necessarily imply accurate predictions of future events.  Finally, as 

Wilks (1995) points out the goal of the statistical methodology is to produce an accurate 

forecast, not a perfect model.  Therefore, this work focuses on developing accurate 

dissipation forecasts, regardless of the model’s linear relationship to the data set. 

 A second issue is the absence of sky conditions in observations.  Although 

replacement data are used to fill in the missing values, sky condition is never used as a 

predictand value.  This reduces the sample size considerably for both equation 

development and verification, especially in the Andrews AFB data set. 

 Third, this system is designed independent of time of day so that one forecast 

equation could suffice for the airfield.  This varies from Vislocky and Fritsch’s (1997) 

work that focused on two short time intervals for their forecasts.  Breaking the data into 

intervals (2-4 hours) would be more representative of diurnal differences in weather 

patterns and could produce improved equations for fog dissipation.  Furthermore, it 

eliminates some of the advantages conditional climatology has.  That is, as fog is 

primarily a nocturnal/early morning event conditional climatology has an advantage in 

the afternoon cases in that probabilities decrease to zero much faster, typically mirroring 

the observations.  Many of the over forecasting occurrences occur in late morning or 

afternoon situations, where the observations-based network is working regardless of time.  

While the observations network is based on the physical mechanisms that lift the fog, 

different processes are at work in the overnight versus daylight hours.  Breaking into time 
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blocks could allow the equations to pick different predictors, e.g. different physical 

mechanisms for afternoon versus nocturnal events. 

 A final remark is the impact automated observing systems employed by the NWS 

had on this study.  Vislocky and Fritsch’s (1997) original work used abundant full time 

manual reporting stations along the east coast, many of which no longer exist.  The 

disadvantage of the ASOS observations is missing data due to staggered implementation 

and spin-up times.  These two factors cause many of the observations from ASOS 

stations to be strongly influenced by missing data techniques.  Examples of the how this 

technique is applied to real world events follow. 

 

4.6 Applications of the Observations-Based Method.  To implement this method 

operationally, each equation is calculated to produce a probability forecast.  Forecast 

probabilities range from ‘1’ representing a 100% chance of occurrence of the event (e.g. 

ceiling below 200 ft). to ‘0’ representing a 0% chance of the event occurring. 

Table 17 provides an application of this process to produce a prediction forecast 

for 1-hour in the future at Dover AFB.  The first column represents the predictor labels 

(the physical meaning of the response variable) with the regression coefficients (β) in the 

second column.  The third column is the actual or observed value of the predictor (x).  

Notice that a majority of the predictors are binary values, coded as either a ‘0’ for non-

occurrence or a ‘1’ for occurrence.  The values are multiplied, and then summed, per Eq. 

2 (including the intercept, β0) to produce the forecast of 76.9% probability of occurrence. 

Probabilities are calculated for each of the six hourly forecasts for each of the two 

network versus conditional climatology on actual observed events.  The first event took 
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Predictor 
Estimate 
(β) 

Observed 
Value Equation Result 

    
Intercept: 0.6999357  0.6999357 
700 MB T -0.018243 4.6 -0.0839178 
KWWD CIG HT <3000 FT -0.4099 0 0 
KWWD VIS >= 9999 M -0.11243 0 0 
KSBY VIS >= 9999 M -0.120956 0 0 
KILG VIS >= 9999 M -0.11369 0 0 
KILG WIND DIR (<235) -0.494969 0 0 
KMIV WIND DIR (<90) 0.2029688 0 0 
KGED CIG HT <3000 FT -0.382974 0 0 
KDOV SKY (OBSCURED) 0.1530178 1 0.1530178 
KDOV VIS < 4800 M -0.139053 0 0 
    
Forecast Probability: 0.7690357     

 
 

place on 24 Jan 01 at 0627Z at Dover AFB and the forecast is for ceiling below 200 ft.  

Figure 13 illustrates the two probability forecasts for the six valid times along with the 

actual observed event.  Notice at the one-hour point, the observations-based network 

produces a forecast of over 80% probability of occurrence, while conditional climatology 

has probabilities in the 60-65% range.  As the low ceiling lifts, slightly after 0800Z, the 

two-hour observations-based forecast accurately detects dissipation, generating a 

probability forecast of 17% compared to 33% for conditional climatology.  The 

observations forecast remains in sync with the actual observation at the three-hour point.  

The four-hour point shows both methods producing forecast probabilities of 25%, still 

within the good forecast range.  Finally, the observations-based network accurately 

forecasts the last two hours, while conditional climatology lags behind in its prediction. 

The second example (Fig. 14) is from 26 Oct 00, 0500Z at McGuire AFB, with 

visibility less than 0.5 mi as the forecasted predictand.  This situation persists for over six 

Table 17.  Example Predictive Equation. 
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KDOV Ceiling Less than 200 ft Example
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hours and is forecasted more accurately by the observations-based network.  The one-

hour forecast is accurate for both forecast techniques, with a 92% probability for the 

observations-based network and an 81% probability for conditional climatology.  The 

second hour illustrates the strength of the observations-based forecast, where conditional 

climatology almost always decreases probabilities with time; the observations network 

adjusts and produces a more accurate forecast based solely on the current conditions.  

Thus the two-hour forecast is actually more accurate than the one-hour forecast and 

significantly better than conditional climatology.  Although the probabilities decrease as 

time goes on, the observations-based method continues to produce a superior forecast.  

As far as five hours out, this method is still forecasting a 64% probability of occurrence, 

which may be below the good forecast criteria, but is still a solid forecast for five hours in 

  FIG. 13.  Forecast Comparison for Dover AFB.  Each forecast method 
is plotted for a six hour forecast beginning at 0627Z, 24 Jan 01 at Dover 
AFB.  Note that the observations-based network predicts dissipation 
faster and more accurately than conditional climatology. 
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the future based solely on the current conditions and is significantly better than 

conditional climatology. 

Overall these two examples illustrate the effectiveness of an observations-based 

system to accurately forecast timing of dissipation, as well as event duration.  

Conclusions arising from this research along with recommendations on implementation 

and future work follow. 

 

KWRI Visibility Less than 0.5 mi Example
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  FIG. 14.  Forecast Comparison for McGuire AFB.  Each forecast 
method is plotted for a six hour forecast beginning at 0500Z, 26 Oct 00 
at McGuire AFB.  Note that the observations-based network more 
accurately predicts the continued presence of the low ceiling through the 
duration of the event. 
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V. Conclusions and Recommendations 

 

5.1 Conclusions 

 

The goal of this research is to develop a forecast tool for the 15 OWS to predict 

dissipation of fog more accurately than their current methodology, conditional 

climatology.  To accomplish this, 36 probabilistic forecast equations are developed, 12 

for each of the three main airfields along the east coast, Dover AFB, McGuire AFB, and 

Andrews AFB.  Short-term forecast equations are developed at hourly intervals from 0-6 

hours beyond the initial time for each of two predictors, ceiling less than 200 ft and 

visibility less than 0.5 mi.   

The overall results of this research are mixed.  Of the 36 predictive equations, 16 

perform better statistically than conditional climatology when compared against an 

independent sample of data.  Of the forecasts that are better, a 17.6% average 

improvement is made over conditional climatology.  Some of the improved forecasts are 

the ceiling less than 200 ft criteria at both Dover AFB and McGuire AFB where all 6 

hourly forecasts had positive skill scores.  Also notable are the McGuire AFB visibility 

forecasts, which show a positive average skill score.  The two most successful forecasts, 

for ceilings less than 200 ft at Dover AFB and McGuire AFB both show large increases 

in skill score, a high number of good forecasts, and few bad forecasts. 
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In the cases where the observations-based network is superior, the predictive 

equations have similar characteristics.  First, is geographic influence.  The early forecasts 

have little dependence on the geographic location of the network station selected.  As the 

forecast lead time increases dependence on predictors from the southwest especially 

dominate the equations.  Second, many of the successful longer term forecasts (5 or 6-

hours) contain climatological parameters.  A strong dependence on wind predictors, both 

at the surface and upper levels is evident throughout the equations. 

With these similarities examined, it is noted that each of these forecasts is 

independently produced and validated for each station at each hour.  Although there 

appear to be trends, switching a predictor from one model to another will not produce a 

more accurate forecast.  Just because one predictor works at McGuire AFB does not 

mean it will be effective at Dover AFB. 

The most disappointing conclusions of this study are the Andrews AFB forecasts, 

which show large negative skill scores.  A majority of the forecast times for Andrews 

AFB fail the tests of normality and/or heteroscidacity required to meet the assumptions 

necessary to employ linear regression, indicating that a linear model is not the best 

representation of this data set.  Problems contributing to this include the Andrews AFB 

data set being smaller than the others, especially in the verification data set where 

missing observations dominate.  As a result, the Andrews AFB data set is unable to 

account for variability in surface observations (in fog cases), which prevents the 

production of an accurate forecast.  More research, with a larger, more complete data set 

may correct these forecasts for operational implementation. 
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Despite forecast scores below conditional climatology, the negative forecasts do 

show some advantages.  First, the number of forecasts with absolute error less than 30 

percent (e.g. good forecasts) often exceeds the number of good forecasts produced by 

conditional climatology.  Second, the MSEs in these cases are typically, with a few 

exceptions, low and very competitive with the climatology forecasts.  Many of the errors 

and decreased forecasting skill from the poor forecasts in the observations-based network 

are similar and shown to have bias.  The most common bias among the forecasts is an 

overestimate of event occurrence when the fog has already dissipated.  In the later 

forecast hours of the forecast this is especially significant and results in the higher 

degradation of skill scores.   

A final success noted is the overall application of the methodology to new 

“extreme” predictand values, representing the worst cases of fog.  The lowest values 

studied before now were 500 ft ceilings and 1 mi visibility (Vislocky and Fritsch 1997).  

This is encouraging as this allows the method to have significant impact on operations in 

the most marginal weather conditions.  Recommendations for implementation of this 

technique by the 15 OWS and possible future research to improve the shortfalls follow.  

 

5.2 Recommendations for the 15 OWS 

 

 It is recommended that the 15 OWS implement this program for the following 

cases: KDOV ceiling less than 200 ft, KWRI ceiling less than 200 ft, and KWRI visibility 

less than 0.5 mi.  For both of the ceiling forecasts, all six hourly forecasts show 

significant improvement over conditional climatology and are the superior forecast 
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model.  The six hourly visibility forecasts for KWRI only have three hours that are 

consistently better than conditional climatology; however, it has two advantages.  First, 

the earlier hours consistently produce the better forecasts; only the first hour had a 

negative skill score.  Second, the first hour had a distinct advantage in producing good 

forecasts--forecasts with an absolute error of less than 30%.  Therefore, this model can be 

used successfully in an operational environment. 

 Implementation of the other three models could be used on a trial basis.  Although 

the verification results are not optimal, the technique has some merit in these cases based 

on both previous work and this current research.  Implementation of these methods on a 

trial basis could produce better results than in the confined scope of this research.  

Realizing the shortfalls of each particular model is crucial for successful implementation.  

For example, the Dover AFB visibility forecasts, which all have negative skill scores do a 

solid job of forecasting occurrences in the short-term, however, the oveforecasting 

tendency is tied to the reliance on southwesterly winds to advect the fog from the area.  

Analysis of the presence or absence of these conditions could lead the forecaster to an 

accurate dissipation forecast.  Using these models on any type of basis could provide 

valuable information on the ability of the model to produce successful forecasts. 

  

5.3 Recommendations for Future Research 

 

 The observations-based method is successful for many areas, including the area 

currently researched for the 15 OWS.  This researcher believes that with some tweaking 
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of the system, this methodology could be applied across the AF.  There are factors that 

must be accounted for in future research to make this work operationally. 

 First, forecasts should be broken up temporally.  Forecast increments of 2-4 hours 

should be looked at individually in order to focus on the exact physical mechanisms that 

dissipate the fog.  This allows diurnal cycles to be taken into account, capitalizing on the 

advantages conditional climatology offers.  Distinct time periods would be more 

representative of different observed parameters predicting dissipation. 

 Vislocky and Fritsch (1997) suggest inclusion of satellite imagery into the system.  

This is a key element to determine spatially how large the extent of the fog area is.  

Although the statistical method is cut and dry, the input of both the spatial extent of the 

fog coverage, as well as how close the airfield of interest is to the outer edges of the fog 

(as suggested by Gurka 1978) would add considerable predictive ability to the model. 

 Additionally, further research is necessary to apply this technique throughout the 

remainder of the 15 OWS AOR.  The original intent of the research was to apply this 

methodology to all 11 airfields throughout the 15 OWS.  With some modification to the 

methodology, this could be a successful application for any site within the AOR.  It is 

envisioned that this methodology, with a significant amount of additional work, could be 

applied to airfields throughout the AF as an effective alternative to conditional 

climatology.  

 This study’s observations-based methodology could benefit significantly from the 

inclusion of mesonet data in regions where available.  States such as Oklahoma and 

Colorado currently have mesonets.  This spatially denser observing platform could 



 71

provide more insight, data, and information on the dissipation process and as a result 

produce more accurate forecasts. 

 Lastly, another process that could produce accurate forecast equations is the use 

of a logistic regression model as opposed to the linear model.  The advantage of the 

logistic model is that it always produces a value between 0 and 1 and is able to reduce 

forecast error (Hilliker and Fritsch 1999).  A comparison between linear and logistical 

regressions could demonstrate the advantages of the logistical regression and further 

improve forecasts.  
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Appendix: Surface Observing Networks 
 
 
 
 This appendix outlines the 40 surface observing stations used to produce the 

dissipation forecasts for the three airfields.  The 10, 19, 25, 30, 35, and 40 station 

networks used to produce the 1-6 hour forecasts are listed. 
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Dover AFB 
 
 
 

ICAO LAT LON Elevation (m)

KDOV 39 08 75 28 9
KGED 38 41 24 75 21 45 15
KILG 39 40 22 75 36 03 24

KWWD 39 01 74 55 7
KMIV 39 21 58 75 04 42 26
KPHL 39 52 06 75 14 37 6
KPNE 40 04 44 75 00 49 36
KSBY 38 20 21 75 30 15 15
KACY 39 27 53 074 35 12 23
KBWI 39 10 00 076 41 00 44

KMTN 39 20 076 25 7
KVAY 39 56 26 074 50 28 16
KNHK 38 16 43 076 24 50 12
KADW 38 49 076 51 86
KWAL 37 56 26 075 27 47 12
KWRI 40 01 074 36 41
KTTN 40 16 35 074 48 59 64
KRDG 40 22 24 075 57 34 105
KLNS 40 07 13 076 17 40 123

KABE 40 39 03 075 26 57 120
KDAA 38 43 077 11 21
KDCA 38 50 54 077 02 03 4
KCXY 40 13 13 076 51 14 105
KMDT 40 11 46 076 46 23 94
KTHV 39 55 22 076 52 41 146

KBLM 40 11 074 08 48
KMFV 37 39 075 46 15
KNYG 38 30 45 077 17 30 3
KIAD 38 56 05 077 26 51 95
KEZF 38 16 077 27 26

KCJR 38 31 36 077 51 32 95
KEWR 40 40 57 074 10 10 5
KCDW 40 52 35 074 16 59 52
KCHO 30 08 18 078 27 21 195
KRIC 37 30 40 077 19 24 51

KFRG 40 44 03 073 25 01 24
KJFK 40 38 19 073 45 44 3
KLFI 37 05 076 21 6

KLGA 40 46 45 073 52 48 6
KPTB 37 11 077 31 59

Philadelphia NE Airport (PA)
Philadelphia (PA)
Millville (NJ)

Quantico, MCAF (VA)

Belmar-Farmsdale (NJ)

New York City, JFK (NY)

Observing Station

Dover AFB (DE)

Wilmington (DE)
Georgetown Suffox County (DE)

10 Station Network

Wildwood (NJ)

Baltimore, Washington International (MD)
Atlantic City (NJ)
Salsbury (MD)

Petersburg (VA)

Newerk International Airport (NJ)

Langly AFB (VA)
New York, LaGuardia (NY)

Farmingdale Republic Airport (NY)

Andrews AFB (MD)

Melfa/Accomack Airport (VA)

York Airport (PA)

Washington-Dullus (VA)

Caldwell, Exxex County Airport (NJ)

Shannon Airport (VA)

Culpeper County Airport (VA)

Harrisburg International Airport (PA)

Reading Regional Airport (PA)

McGuire AFB (NJ)
Trenton, Mercer County Airport (NJ)

Charlottesville-Abermarle Airport (VA)
Richmond International Airport (VA)

40 Station Network

Lancaster Airport (PA)

Fort Belvoir (VA)
Washington, Reagan National (VA)

Allentown (PA)

19 Station Network

25 Station Network

30 Station Network

35 Station Network

Baltimore, Martin (MD)
Mount Holley (NJ)
Patuxent River NAS (MD)

Harrisburg, Capitol City Airport (PA)

Wallops Island (VA)

 
 

TABLE A1.  Surface Network Observing Stations for Dover AFB. 
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McGuire AFB 
 
 
 

ICAO LAT LON Elevation (m)

KWRI 40 01 074 36 41
KVAY 39 56 26 074 50 28 16
KBLM 40 11 074 08 48
KTTN 40 16 35 074 48 59 64
KPHL 39 52 06 075 13 52 6
KPNE 40 04 44 075 00 49 36
KACY 39 27 53 074 35 12 23
KMIV 39 21 58 075 04 42 26
KILG 39 40 22 075 36 03 24
KABE 40 39 03 075 26 57 120

KEWR 40 40 57 074 10 10 5
KCDW 40 52 35 074 16 59 52
KJFK 40 38 19 073 45 44 3
KLGA 40 46 45 073 52 48 6

KWWD 39 01 074 55 2
KTEB 40 51 32 074 03 24 2
KISP 40 47 38 073 06 06 30
KFRG 40 44 03 073 25 01 24
KDOV 39 08 075 28 9

KRDG 40 22 24 075 57 34 105
KLNS 40 07 13 076 17 40 123
KGED 38 41 24 075 21 45 15
KMGJ 41 30 33 074 15 54 111
KSWF 41 30 074 06 150
KAVP 41 20 20 075 43 36 293

KBDR 41 09 30 073 07 44 3
KDXR 41 22 18 073 29 04 139
KFOK 40 51 03 072 37 14 20
KMTN 39 20 076 25 7
KBWI 39 10 00 076 41 00 44

KMSV 41 42 074 48 428
KPOU 41 37 32 073 52 55 50
KSBY 38 20 21 75 30 15 15
KADW 38 49 076 51 86
KDCA 38 50 54 077 02 03 4

KDAA 38 43 077 11 21
KIAD 38 56 05 077 26 51 95
KCXY 40 13 13 076 51 14 105
KMDT 40 11 46 076 46 23 94
KTHV 39 55 22 076 52 41 146

Bridgeport (CT)

Georgetown, Suxxex County Airport (DE)

Baltimore, Martin (MD)
Baltimore, Washington International (MD)

Salsbury (MD)

Danbury Municipal Airport (CT)
Westhampton Beach (NY)

Harrisburg International Airport (PA)

Newburgh/Stewart (NY)

York Airport (PA)

Monticello (NY)
Poughkeepsie (NY)

Fort Belvoir (VA)
Washington-Dullus (VA)
Harrisburg, Capitol City Airport (PA)

Newerk International Airport (NJ)

Washington, Reagan National (VA)

Teterboro Airport (NJ)
Islip, Long Island (NY)
Farmingdale Republic Airport (NY)

Reading Regional Airport (PA)

Montgomery, Orange County Airport (NY)

Lancaster Airport (PA)

New York, LaGuardia (NY)

Wilkes-Barre-Scranton International (PA)

Millville Municipal Airport (NJ)
Wilmington (DE)
Allentown (PA)

Philadelphia International Airport (PA)

Observing Station

McGuire AFB (NJ)

Atlantic City (NJ)

Mount Holley (NJ)
Belmar-Farmsdale (NJ)
Trenton, Mercer County Airport (NJ)

Philadelphia, NE Philadelphia Airport (PA)

10 Station Network

40 Station Network

19 Station Network

25 Station Network

30 Station Network

35 Station Network

Caldwell, Exxex County Airport (NJ)
New York City, JFK (NY)

Dover AFB (DE)

Wildwood ASOS (NJ)

Andrews AFB (MD)

 
 

TABLE A2.  Surface Network Observing Stations for McGuire AFB. 
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Andrews AFB 
 
 
 

ICAO LAT LON Elevation (m)

KADW 38 49 076 51 86
KDCA 38 50 54 077 02 03 4
KDAA 38 43 077 11 21
KHEF 38 43 077 31 59
KNYG 38 30 45 077 17 30 3
KIAD 38 56 05 077 26 51 95
KBWI 39 10 00 076 41 00 44
KMTN 39 20 076 25 7
KEZF 38 16 077 27 26
KHGR 39 42 21 077 43 48 214

KCJR 38 31 36 077 51 32 95
KOKV 39 09 078 09 222
KMRB 39 24 14 077 58 30 169
KTHV 39 55 22 076 52 41 146
KNHK 38 16 43 076 24 50 12
KRIC 37 30 40 077 19 24 51

KDOV 39 08 75 28 9
KLNS 40 07 13 076 17 40 123
KCXY 40 13 13 076 51 14 105

KMDT 40 11 46 076 46 23 94
KGED 38 41 24 75 21 45 15
KILG 39 40 22 75 36 03 24
KSBY 38 20 21 75 30 15 15
KWAL 37 56 26 075 27 47 12
KMFV 37 39 075 46 15

KPTB 37 11 077 31 59
KCHO 30 08 18 078 27 21 195
KRDG 40 22 24 075 57 34 105
KPHL 39 52 06 075 13 52 6
KPNE 40 04 44 75 00 49 36

KWWD 39 01 074 55 2
KMIV 39 21 58 075 04 42 26
KLFI 37 05 076 21 6

KSHD 38 16 078 54 366
KACY 39 27 53 74 34 02 23

KTTN 40 16 35 074 48 59 64
KEWR 40 40 57 074 10 10 5
KBLM 40 11 074 08 48
KABE 40 39 03 075 26 57 120
KWRI 40 01 074 36 41

Langly AFB (VA)

Charlottesville-Abermarle Airport (VA)

Millville Municipal Airport (NJ)

Reading Regional Airport (PA)
Philadelphia International Airport (PA)

Wildwood ASOS (NJ)

Belmar-Farmsdale (NJ)

Trenton, Mercer County Airport (NJ)

McGuire AFB (NJ)

Baltimore, Washington International (MD)

Martinsburg (WV)

Wallops Island (VA)

Georgetown Suffox County (DE)

Harrisburg, Capitol City Airport (PA)

York Airport (PA)

Wilmington (DE)

Dover AFB (DE)

Salsbury (MD)

Patuxent River NAS (MD)

Harrisburg International Airport (PA)

Hagerstown (MD)

Andrews AFB (MD)

Quantico MCAF (VA)
Manassas Municipal (VA)

Shannon Airport (VA)
Baltimore, Martin (MD)

Washington-Dullus (VA)

Culpeper County Airport (VA)

Allentown (PA)

Observing Station

10 Station Network

19 Station Network

30 Station Network

Washington, Reagan National (VA)
Fort Belvoir (VA)

Winchester Regional (VA)

Lancaster Airport (PA)

Richmond International Airport (VA)

Newerk International Airport (NJ)

35 Station Network

40 Station Network

25 Station Network

Staunton/Shenandoah (VA)

Petersburg (VA)

Philadelphia NE Airport (PA)

Atlantic City (NJ)

Melfa/Accomack Airport (VA)

 
 

TABLE A3.  Surface Network Observing Stations for Andrews AFB. 



 76

Bibliography 
 
 

 
15th Operational Weather Squadron Homepage, 2003: 15th Operational Weather 

Squadron, Scott AFB, IL. [On-line at https://ows.scott.af.mil] 
 
Anthis, A.I. and A.P. Cracknell, 1998: Fog detection and forecast of fog dissipation using 

both AVHRR and METOSAT data.  Ninth Conference on Satellite Meteorology 
and Oceanography, Paris, France, 270-273. 

 
Anthis, A.I. and A.P. Cracknell,1999: Use of satellite images for fog detection (AVHRR) 

and forecast of fog dissipation (METOSAT) over lowland Thessalia, Hellas.  Int. 
J. Remote Sens., 20, 1107-1124. 

 
Dagostraro, V.J., J.P. Dallavalle, M.D. Miller, and V.C. Southall, 1995: AFOS-era 

verification of guidance and location aviation/public weather forecasts-
21(October 1993-March 1994).  TDL Office Note 95-2, National Weather 
Service, NOAA, US Dept. of Commerce, 52 pp. 

 
Dallavalle, J.P. and V.J. Dagostraro, 1995: The accuracy of ceiling and visibility 

forecasts produced by the National Weather Service.  Preprints, Sixth Conference 
on Aviation Weather Systems, Dallas, TX, Amer. Meteor. Soc., 213-218. 

 
Campbell, G.S. 1977: An Introduction to Environmental Biophysics.  Springer-Verlang 

New York, New York. 176 pp 
 
Enger, I., J.A.Russo Jr., and E.L. Sorenson, 1964: A statistical approach to 2-7 hour 

prediction of ceiling and visibility.  .  US Weather Bureau/TN No. 2. Hartford, 
CT.  194 pp. 

 
Federation of American Scientists, 2003: FAS Military Analysis Network, Washington, 

DC. [On-line at http://www.fas.org] 
 
Gurka, J.J., 1974: Using satellite data for forecasting fog and stratus dissipation.  

Preprints, Fifth Conference on Weather Forecasting and Analysis, St. Louis, MO, 
Amer. Meteor. Soc., 54-57. 

 
Gurka, J.J., 1978a: The use of enhanced visible imagery for predicting the time of fog 

dissipation.  Preprints, Fifth Conference on Weather Forecasting and Analysis, 
Washington DC, Amer. Meteor. Soc., 343-346. 
 

Gustafson, A.V. and S.E. Wasserman, 1976: Use of satellite information in observing and 
forecasting fog dissipation and cloud formation.  Mon. Wea. Rev., 104, 323-324. 

 



 77

Hilliker, J. L. and J.M. Fritsch, 1999: An observations-based statistical system for warm-
season hourly problematic forecasts of low ceiling at the San Francisco 
International Airport.  J. Appl. Metoer., 38, 1692-1705. 

 
Johnson, E.C., 1978: Effect of snow cover on dissipation of fog and stratus.  Satellite 

Applications Information Note 78/5, National Weather Service, National 
Environmental Satellite Service, US Dept. of Commerce, 4 pp. 

 
Montgomery, D.C. and G.C. Runger, 2003: Applied Statistics and Probability for 

Engineers.  John Wiley & Sons, Inc. 706 pp. 
 
Murphy, A.H. and R.W. Katz, 1985: Probability, Statistics, and Decision Making in the 

Atmospheric Sciences.  Westerview Press, Boulder, CO, 545 pp.  
 
National Weather Service, 1981: The use of Model Output Statistics for predicting 

ceiling, visibility, cloud amount, and obstructions to vision.  NWS Tech. Proc. 
Bull. 303, 12 pp. 

 
National Weather Service, 1995: NGM-based MOS ceilings height guidance for the 

contiguous United States.  NWS Tech. Proc. Bull. 414, 14 pp. 
 

Neter, J., W. Wasserman, and M.H. Kutner 1990: Applied Linear Statistics Models.  
Richard D. Irwin Inc., USA.  1189 pp. 

 
Porter, C., 1995: Short-term high resolution forecasting of fog, cloud ceiling heights, and 

visibility with the PSU/UCAR mesoscale model.  M.S. Thesis, Dept. of 
Meteorology, The Pennsylvania State University, 197 pp. 

 
Reudenbach, Ch. and J. Bendix, 1998: Experiments with a straightforward model for the 

special forecast of fog/low stratus clearance based on multi-source data.  
Meteorol. Appl., 5, 205-216. 

 
Vislocky, R.L., and J.M. Fritsch, 1997: An automated observations-based system for 

short-term prediction of ceiling and visibility.  Wea. Forecasting, 12, 31-43. 
 
Weiss, C.E. and J.J. Gurka, 1975: Fog dissipation in the vicinity of the Chesapeake Bay.  

Satellite Applications Information Note 12/75-1, National Weather Service, 
National Environmental Satellite Service, US Dept. of Commerce, 4 

 
Wilks, D.S. 1995: Statistical Methods in the Atmospheric Sciences.  Academic Press San 

Diego California 467 pp. 
 

 



 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

March 2004 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 
Jun 2003 – Mar 2004 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
A STATISTICALLY-BASED METHOD FOR PREDICTING FOG AND 
STRATUS DISSIPATION 
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Lussier III, Louis L., Captain, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 P Street, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GM/ENP/04-09 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 15th OWS 
 Attn:  Lt Col Louis V. Zuccarello 
 102 West Losey Street                                             DSN:  576-9505 
 Scott AFB IL 62225  e-mail: Louis.Zuccarello@scott.af.mil 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  
A statistically-based forecasting tool is developed for Dover AFB, McGuire AFB, and Andrews AFB for dissipation times of fog and low stratus.  Probability forecasts 
are produced at hourly increments from 0-6 hours for the most extreme reductions in visibility (less than 0.5 mi) and ceilings (below 200 ft).  Forecasts are based on 
surface observations, upper air observations, and climatological parameters.  Ceiling forecasts at Dover AFB and McGuire AFB show improvements over conditional 
climatology ranging from 1-51% with an average improvement of 19.2% when verified against an independent data set.  McGuire AFB visibility forecasts show an 
average improvement over conditional climatology of 3%.  These findings are of particular importance to the Air Force in general and specifically to the 15th 
Operational Weather Squadron (15 OWS) who produces forecasts for these airfields.  Demonstrating a method superior to conditional climatology is expected to 
provide improved forecasts and flight operations in this region.  The two forecasts for Andrews AFB show relatively low mean square errors, but are unable to 
consistently improve on conditional climatology, demonstrating an average decrease in forecasting skill of 42%.  Small samples of data could be the reason for the 
decrease in skill.  The Dover visibility forecast also shows negative forecast skill, with an average decrease of 39%.  The method is a success in producing forecasts for 
ceiling and visibility criteria that had never previously been examined.  Further research into the forecasts could produce a powerful tool consistently able to defeat 
conditional climatology.  It is suggested that the 15 OWS incorporate this methodology into their operational forecasting routine 
  
15. SUBJECT TERMS 
       Fog/stratus forecasting, fog, stratus, fog/stratus dissipation, observations-based statistical methods 
 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Steven T. Fiorino, Maj, USAF (ENP) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

89 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4506; e-mail:  Steven.Fiorino@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	A Statistically-Based Method for Predicting Fog and Stratus Dissipation
	Recommended Citation

	Microsoft Word - Thesis final .doc

