
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2020

Design and Test of an Autonomy Monitoring Service to Detect Design and Test of an Autonomy Monitoring Service to Detect

Divergent Behaviors on Unmanned Aerial Systems Divergent Behaviors on Unmanned Aerial Systems

Loay Y. Almannaei

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Graphics and Human Computer Interfaces Commons, Risk Analysis Commons, and the

Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation Recommended Citation
Almannaei, Loay Y., "Design and Test of an Autonomy Monitoring Service to Detect Divergent Behaviors
on Unmanned Aerial Systems" (2020). Theses and Dissertations. 4057.
https://scholar.afit.edu/etd/4057

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F4057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1199?utm_source=scholar.afit.edu%2Fetd%2F4057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F4057&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4057?utm_source=scholar.afit.edu%2Fetd%2F4057&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

DESIGN AND TEST OF AN AUTONOMY MONITORING SERVICE

TO DETECT DIVERGENT BEHAVIORS ON UNMANNED AERIAL SYSTEMS

THESIS

Loay Y. Almannaei, Major, RBAF

AFIT-ENV-MS-20-J-059

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENV-MS-20- J-059

DESIGN AND TEST OF AN AUTONOMY MONITORING SERVICE

TO DETECT DIVERGENT BEHAVIORS ON UNMANNED AERIAL SYSTEMS

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Loay Y. Almannaei, BE

Major, Royal Bahrain Air Force (RBAF)

July 2020

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-20- J-059

DESIGN AND TEST OF AN AUTONOMY MONITORING SERVICE

TO DETECT DIVERGENT BEHAVIORS ON UNMANNED AERIAL SYSTEMS

THESIS

Loay. Y. Almannaei, BE

Major, Royal Bahrain Air Force (RBAF)

Committee Membership:

John M. Colombi, Ph.D.

Chair

Michael E. Miller Ph.D.

Member

David R. Jacques Ph.D

Member

iv

AFIT-ENV-MS-20- J-059

Abstract

Operation of Unmanned Aerial Vehicles (UAV) support many critical missions in the

United State Air Force (USAF). Monitoring abnormal behavior is one of many

responsibilities of the operator during a mission. Some behaviors are hard to be detect by

an operator, especially when flying one or more autonomous vehicles; as such, detections

require a high level of attention and focus to flight parameters. In this research, a

monitoring system and its algorithm are designed and tested for a target fixed-wing UAV.

The system is designed to identify divergent behaviors of the UAV resulting from

environmental or malicious activity. Also, the system will be aware of the dynamic

environmental effects such as wind speed and direction. The Autonomy Monitoring

Service (AMS) compares the real vehicle or simulated Vehicle with a similar simulated

vehicle using Software in the Loop (SITL). It is hypothesized that the resulting design has

the potential to reduce monotonous monitoring, reduce risk of losing vehicles, and increase

mission effectiveness. Performance of the prototyped AMS model was examined by

several measures, including divergence detection rate, synchronization time, and Upper

Control Limit (UCL) of aircraft location variability in different scenarios. Results showed

100% rate of divergence detection out of all divergent events occurred. The weighted mean

of AMS synchronization time was 4.02 seconds, and the weighted mean for aircraft

location variability was 44.8 meters. The overarching AMS functionality was achieved.

AMS supports the concept that humans and machines should be designed to complement

each other by sharing responsibilities and behaviors effectively, making final system safer

and more reliable.

v

AFIT-ENV-MS-20-J-059

To God, with whom all things are possible

To my Country

To my Parents

To my Lovely Wife

To my Kids

To my Brother

For their unwavering support

vi

Acknowledgments

I would like to express my sincere appreciation to my advisor Dr. John M. Colombi,

who has supported me throughout my thesis with his patience. I appreciate his patience. I

appreciate his vast knowledge and skill many areas. Without him, I would not have been

able to complete this thesis effort.

I would also like to extend my gratitude to Dr. Michael E. Miller and Dr. David R.

Jacques for their outstanding support and motivation through this process.

 Loay Y. Almannaei

vii

Table of Contents

Page

Abstract .. iv

Acknowledgments.. vi

Table of Contents .. vii

List of Figures .. ix

List of Tables ... xi

I. Introduction ..1

1.1 Background...1

1.2 Problem Statement..3
1.3 Research Objectives and Questions ..4

1.4 Methodology...4
1.5 Assumptions and Limitations ...5

1.6 Preview ...5

II. Literature Review ..6

2.1 Chapter Overview ...6
2.2 Small UAS ..6

2.3 UAS Mishaps..7

2.4 UAS Subject to Cyber Attack...9

2.5 Autonomy Monitoring ..11
2.6 Tools and Techniques ...14

2.7 Human Machine Teaming (HMT)..18
2.8 Human Machine Interface (HMI) ...20
2.9 Preview ...21

III. Methodology ...22

3.1 Chapter Overview ...22
3.2 AMS Objectives, Metrics, & Data ...22
3.3 Design of the AMS ...23
3.4 Testing Simulation..32

3.5 Preview ...40

IV. Analysis and Results ...41

4.1 Chapter Overview ...41
4.2 Simulation Results ..41
4.3 Preview ...60

V. Conclusions and Recommendations ...61

5.1 Chapter Overview ...61

viii

5.2 Conclusion of Research ..61
5.3 Investigative Questions Answered ...63

5.4 Recommendations for Future Research..65

Appendix A. AMS Algorithms ...69

Appendix B. Testing Simulation Results ..85

Bibliography ..88

ix

List of Figures

Figure Page

1. Mission Planner (Ardupilot Dev Team, 2019) .. 3

2. Breakdown of high-level mishap main causes .. 9

3. Waypoint locations Attack Flight Plans (Carnahan & Heiges, 2015) 10

4. Intelligent ICU Users Pervasive Sensing (Davoudi et al., 2018) 11

5. UAV System Prediction model (Pengbo et al., 2017) 13

6. Schematic Control Chart (Oakland, 2003) ... 15

7. Example of Monthly Sales Data (Oakland, 2003) ... 16

8. Fault Injector by Jayson Boubin (2017)... 17

9. System Overview ... 24

10. AMS Physical Decomposition ... 25

11. Test Environment Configuration ... 26

12. State Machine Diagram of AMS.. 27

13. Ubuntu Terminal showing a snapshot of the AMS .. 31

14. AMS Graphic User Interface (GUI) .. 32

15. Initial Flight Plan of a Square Mile .. 33

16. The New Flight Plan (in Red Color) .. 36

17. Trial 31, Multiple Sync .. 44

18. Percentage of Stability for Location and Altitude ... 45

19. Percentage of Stability for all Trials (115 Detection Events) 46

20. Trial 3, Snapshot of Vehicle 2 flying in Mission planner 49

x

21. Trial 3, 3D flight path .. 49

22. Trial 3, Statistical Process Control (C-Chart) .. 50

23. Trial 10, Snapshot of V1 starting to diverge to the new Waypoints 51

24. Trial 10, 3D flight path .. 52

25. Trial 10, Statistical Process Control (C-Chart) .. 53

26. Trial 15, 3D flight path .. 54

27. Trial 15, Statistical Process Control (C-Chart) .. 55

28. Snapshot of Vehicle 2 climbing until 1070 meters .. 56

29. Trial 21, 3D flight path .. 57

30. Snapshot of Vehicle 2 climbing until 150 meters .. 58

31. Trial 30, 3D flight path .. 59

32. Trial 30, Statistical Process Control (C-Chart) .. 60

33. State Machine Including Loss Communication State in the AMS Model 67

34. Future AMS Physical Decomposition ... 68

xi

List of Tables

Table Page

1. AMS Thresholds ... 30

2. Test, Scenarios, and Trials .. 33

3. Mission Plan 1... 34

4. Mission Plan 2... 34

5. Location Scenarios, Applying Environmental Effects.. 35

6. Mission Plan 3... 36

7. Location Scenarios, Applying Attack ... 37

8. Altitude Scenarios, Applying Environmental Effects ... 37

9. Altitude Scenarios, Applying Attack .. 38

10. Summary Statistics of Location, Applying Environmental Effects 41

11. Summary Statistics of Location, Applying Attack ... 42

12. Summary Statistics of Altitude, Applying Environmental Effects 42

13. Summary Statistics of Altitude, Applying Attack .. 42

14. Summary of Triggering Failsafe ... 47

15. Results of Trial 3 ... 50

16. Results of Trial 10 ... 53

17. Results of Trial 15 ... 55

18. Results of Trial 21 ... 57

19. Results of Trial 30 ... 59

20. Thresholds from AMS and Safety Pilot ... 62

1

DESIGN AND TEST OF AN AUTONOMY MONITORING SERVICE

TO DETECT DIVERGENT BEHAVIORS ON UNMANNED AERIAL SYSTEMS

I. Introduction

1.1 Background

A Unmanned Air Vehicle (UAV) is defined by the FAA as “one that is operated without

the possibility of direct human intervention from within or on the aircraft” (Giese et al.,

2013). The highly automated UAV operate within Unmanned Aerial Systems (UASs) to

include the aircraft itself as well as support elements like Ground Control Stations (GCSs),

radio- frequency data links and Launch and Recovery equipment. UAS are a strategic focus

for the United State Air Force (USAF) and other international military forces for providing

significant mission capabilities while reducing to human operators. UAS technologies

evolve rapidly, where it seems every day there is some update regarding the system

architecture, components or applications. The tactical important of the UAS to militaries

worldwide has been characterized by AL and Kiniskern as follows. “The UAV is a tool for

taking the human out of harm's way for at least a small time period. It is this tactical

advantage for ground troops that has created the necessity for an expanded UAV fleet for

all services, and it is this necessity that has created problems” (AL & Kniskern, 2006).

Today, UAS play an increasing role in many military and civilian missions such as

search and rescue, reconnaissance operations, real-time surveillance, military training,

weather monitoring, hazardous site inspection and range extension, traffic monitoring, and

agricultural monitoring. As their use has increased, so has interest in improving automation

capabilities within these systems. This has been characterized by Ramirez-Atencia and

2

colleagues as follows. “The increasing interest in the use of Unmanned Aerial Vehicles

(UAV) in the last years has opened up a new complex area of research applications. Many

works have been focused on the applicability of new Artificial Intelligence (AI) techniques

to facilitate the successfully execution of UAV operations from the Ground Control

Stations (GCSs)” (Ramirez-Atencia et al., 2017).

The GCS and the Operator are very important parts of the whole system where

communication between UAV and GCS are the only way to monitor and control the vehicle

during a mission. Operators are performing a sensitive job by monitoring the mission and

taking manual control when the UAV is not acting properly or when automation does not

provide adequate functionality. The operator is assumed to maintain a very high situation

awareness (SA) to avoid UAV accidents. Monitoring UAV operations is not an easy task

and requires the operator must focus on many things in the GCS. Abnormal behaviors or

activities should be detected immediately whether benign or adversarial. However, these

conditions are infrequent and therefore the operators can love vigilance regarding these

conditions, reducing their SA of items which indicate the onset of these infrequent

conditions.

When a UAV is flying a mission, the operator may not be able to observe some

divergent behaviors. There are many parameters that need to be observed and this can lead

to excessive operator workload. For example, detecting divergent behaviors in waypoints,

location, speed or altitude of the UAV is important during any real mission. Various

options available to the operator include:

• Return to Launch (RTL)

• Reload original plan

• Observation divergent behaviors

3

There are many important parameters in the Heads-Up Area (HUD) that can be missed

while observing the mission. Observing those changing parameters adds workload to the

operator, which can make it difficult to maintain vigilance operating the UAV. Figure 1

illustrates the information that the Operator needs to monitor in mission planner.

Figure 1. Mission Planner (Ardupilot Dev Team, 2019)

1.2 Problem Statement

Missing divergent behaviors while monitoring a flying UAV from the GCS can lead to

unsuccessful mission, injury or loss of life. It is hard for the operator to detect small

divergence through typical ground station software when there are a lot of parameters, or

the parameters are presented in small text in the HUD. Operators need an advanced system

to aid the task of monitoring a variety of divergent behaviors.

In this research, an Autonomy Monitoring Service (AMS) will be designed and

prototyped. Additionally, a Graphic User Interface (GUI) will be proposed for the UAV

Operator that will help detect abnormal behaviors and activities while flying. AMS will be

4

continuously monitoring and notifying the operator of any abnormal UAV behaviors,

displaying messages to Operator in real time.

1.3 Research Objectives and Questions

The main objective of this research is to design and test of an Autonomy Monitoring

Service (AMS) to notify the Operator of divergent UAV behaviors. AMS will work

autonomously in a GCS to help the Operator detect divergent behaviors and alert the

operators to the triggering of failsafe events.

The research questions are:

1. What is an architecture of an AMS?

2. What are the algorithms of the system for implementing AMS?

3. How will AMS be presented to the Operator during the mission?

4. How does AMS robustly use statistics of the environment and the UAV dynamics?

1.4 Methodology

In this thesis, simulation in SITL will be used to cumulatively gather quantitative data

to evaluate AMS performance. The data collection will be gathered from the simulation

and mission planner to provide clear results and analysis on utility and performance of the

AMS. As a result, the analysis will be largely quantitative with some qualitative

observations. Observations of AMS will be examined and evaluated under various realistic

scenarios in mission planner. The methodology will be a structured design followed by an

experimental study. Treatments will be given to the UAV through an error injection

software system which differ from the scenarios the operator inputs to the UAV. The

response of AMS to the resulting divergence of the UAV from the mission parameters

5

planned by the operator, referred to as divergent UAV behaviors, will be measured and

assessed.

1.5 Assumptions and Limitations

The following assumptions and limitations will be made to constrain the scope of this

research project. Assumptions to consider is that the simulated UAV, referred to as Vehicle

1, is assumed to represent a real flying UAV. A second simulated UAV, referred to as

Vehicle 2, is a simulated UAV. The behavior of Vehicle 2 is intended to represent the

planned behavior of Vehicle 1. AMS will monitor and react to any divergence in the

behavior or state variables between Vehicle 1 and Vehicle 2. It is the performance of AMS,

as compared to ground truth regarding error injects that will be the topic of this research.

AMS will monitor a limited number of parameters such as airspeed, mode, waypoints,

location, and altitude.

1.6 Preview

This chapter provided an overview of monitoring a divergent behavior in a UAV during

a mission and how one can predict those abnormal behaviors by designing an Autonomy

Monitoring Service (AMS). Chapter II will review previous research in this area of

autonomy monitoring. Chapter III explains the methodologies used in this research to

generate design the AMS and test data from SITL. In Chapter IV performance data is

examined and evaluated under various realistic scenarios. Finally, Chapter V provides a

summary of the design, the research conclusion and recommendations for future effort.

6

II. Literature Review

2.1 Chapter Overview

This chapter begin by familiarizing the reader with UAS utility and mishaps, as well

as, the root cause of the mishaps. Cyber-attack possibilities and prevention will be then be

discussed. This chapter will then review autonomy monitoring, human-machine teaming

and human-machine interface design to guide the baseline architecture framework of AMS.

Lastly, this chapter will explain two methods of tools and techniques such as statistical

process control (SPC) methods used to monitor a random process and Fault Injector

software system.

2.2 Small UAS

As mentioned in Chapter I, UAV is defined by the FAA as “one that is operated without

the possibility of direct human intervention from within or on the aircraft” (Giese et al.,

2013). A related term is Unmanned Aerial Systems (UASs) which includes the aircraft

UAV as well as support elements like Ground Control Stations (GCSs), data links and

Launch and Recovery equipment. Today, UAS play an increasing role in many military

and civilian missions such as search and rescue, reconnaissance operations, real-time

surveillance, military training, weather monitoring, hazardous site inspection and range

extension, traffic monitoring, and agriculture. “Unmanned aircraft have been part of

aviation for years in varied applications and uses. The success of unmanned aircraft use in

military operations has fostered a desire to integrate unmanned systems, for general

purpose use, into missions covering flights in all controlled and uncontrolled airspace

domains”(Wargo et al., 2014)

7

Wargo (2014) stated that the growth of UAS in Department of Defense (DoD) is

increasing.

The majority of UAS operating in the national Airspace system (NAS) today

are predominantly operated by the Department of Defense (DoD). They were

not designed with NAS compatibility in mind but rather to meet military

mission needs. It is expected future commercial UAS will be designed and

operated much more along the lines of manned aircraft. (Wargo et al., 2014).

The economic value of the UAS technology industry is projected to be about $30 billion

per year supporting 300,000 American jobs by 2035. UAS represents a new and disruptive

technology challenging policy, procedures and technologies that exist today and have

served manned aircraft well for the last fifty-years or more. This UAS technology supports

an incredibly wide range of uses that not only allows old challenges to be addressed in new

ways but also creates new innovative world markets for hundreds of employees, if not

thousands, of new creative applications answering the call of “better, faster and cheaper”.

2.3 UAS Mishaps

The Federal Aviation Administration (FAA) conducted research about human factors

implications of unmanned aircraft accident (Williams, 2006). The research stated that

“unmanned aircraft (UA) have suffered a disproportionately large number of mishaps

relative to manned aircraft. In 1996, the Air Force Scientific Advisory Board (AFSAB)

identified the human-system interface as the greatest deficiency in current UA designs”

(Williams, 2006).

FAA indicated that there are three flight-control categories that have been selected for

review regarding UAS mishaps. “The first category involves the use of an external pilot

(EP) to control the flight of the aircraft. The second category concerns the transfer of

8

control during flight. The third flight-control category is the automation of flight control”

(Williams, 2006). According to the FAA research, “automation problems occur because

not all circumstances can be predicted. The inability to anticipate all possible contingencies

leads to situations in which the system behaves as it was designed but not in a manner that

was expected” (Williams, 2006). FAA suggested two solutions to this problem; the first is

to design the system in a way that keeps the pilot more aware of what the aircraft is going

to do during the flight. The second solution to the automation problem is to design the

automation to be more flexible so that, even when a particular contingency has not been

anticipated, the system is still able to generate an appropriate response. This is a challenge

for those developing “intelligent” systems, and this field is still in its infancy (Williams,

2006).

Other research on mishap statistics as discussed by Giese et al. (2013) indicated that

there are many phases in interacting with UAVs in which errors can occur: set-up of

computers, monitoring the system, failure detection, and diagnosis and corrective action.

The demand for sustained attention and risk of fatigue during long periods of monitoring

present new Human Factor challenges. Awareness of cognitive psychology, dealing with

perception, information processing, thinking, memory, as well as emotions, is important in

the aviation context to ensure safe and efficient operation (Giese et al., 2013).

Giese et al.(2013) stated that U.S. Department of Defense (DoD) claims that human

error contributes to 20-70% of UAS mishaps in the military. The research that they did on

military UAV mishaps statistics, pointed out that “mishaps which occurred since 2004 and

only those involving aircraft classified as Remotely Piloted Aircraft were reviewed,

resulting in a total of 52 events. Consequently, the analysis included only MQ-1A and MQ-

9” (Giese et al., 2013). The data initially categorized to give brief understanding of the

9

percentage of mishaps with human factor involvement such as operator error. According

to their research of 52 mishaps events, 42% (22 of 52) mishaps studied involved human

error.

Figure 2 presented by Giese et al. (2013) shows that “operator error is by far the largest

issue, both as causal and contributing factors. Conversely, while the second largest main

cause is technical failure, the design of technology, interfaces as well as procedures and

guidance material are significant contributing factors. Maintenance plays a rather small

role” (Giese et al., 2013).

Figure 2. Breakdown of high-level mishap main causes (left)

 and contributing factors (right) (Giese et al., 2013)

2.4 UAS Subject to Cyber Attack

The increasing ubiquity of computerized, automated systems has led to growing

interest in the development and application of methods for defending against cyberattacks.

The concern is that vulnerabilities may exist in unmanned autonomous systems that could

be easily exploited to compromise the effectiveness of the system (Carnahan & Heiges,

2015). It is very important to create a defense system for regarding countering malicious

attacks such as cyber-attack or any strange divergent behavior that can happen to the UAS

while flying a real mission.

10

A group of researchers conducted a project on the system aware cyber security for

cyber-attack defense. The project was performed by the Georgia Tech Research Institute

(GTRI) and the University of Virginia. In the project. “a UAV system was selected as the

demonstration platform for showing the application of the cyber defense techniques that

they used” (Carnahan & Heiges, 2015).

One of the three types of cyber-attacks that they included in the project is the waypoint

attack. Steps has been identified to show waypoint attack scenarios to test the cyber-attack

defense system that they built. “The waypoint attack changes the waypoint locations in

the autopilot’s flight plan causing it to fly a different trajectory from the one intended by

the operator. To execute the attack, the tester sends a new list of waypoints via Ethernet to

a Raspberry Pi onboard the aircraft that connects to one of the autopilot’s serial

communication ports. The attack Pi pushes the new list of waypoints to the autopilot

through the autopilot message stream. Since the autopilot sends the updated waypoint list

to the operator’s station, the change would normally be readily apparent”(Carnahan &

Heiges, 2015). Figure 3 shows an example of a waypoint attack, where the UAV

commanded flight plan was one of two rectangular patterns aligned with the runway.

Figure 3. Waypoint locations Attack Flight Plans (Carnahan & Heiges, 2015)

11

Heiges et al. (2015) concluded that “the tester’s interface was developed primarily to

allow the test director to monitor the aircraft’s true state while it is undergoing a cyber-

attack and its perceived state. The waypoint attack takes command of the UAV’s flight

plan while masking the attack on the operator’s ground control station. As a result of the

masking, the operator’s display shows the aircraft on the intended route while, in reality,

the aircraft’s flight path is being rerouted” (Carnahan & Heiges, 2015)

2.5 Autonomy Monitoring

This thesis focuses on autonomy monitoring which automatically detects and identifies

divergence behaviors. Autonomy monitoring can increase the rate of incident detection in

any process that needs to be monitored. Research by University of Florida (Davoudi et al.,

2018) showed that pervasive sensing technology and artificial intelligence (AI) can be used

for autonomous patient monitoring in the Intensive Care Unit (ICU). They used wearable

sensors, light and sound sensors, and a camera to collect data on patients and their

environment. Figure 5 shows the intelligent ICU uses pervasive sensing for collecting data

on patients and their environment where the nurse is monitoring the autonomy monitoring

system through activity and pain level monitors that will display important information of

the patient. The system they built uses computer vision and deep learning techniques.

Figure 4. Intelligent ICU Users Pervasive Sensing (Davoudi et al., 2018)

12

Research on UAV flight autonomy monitoring done by Pengbo et al. (2017) provides

studies on the key technologies and simulation of UAV flight monitoring. They gave an

example of Airbus; this airline is the most representative company in a lot of foreign

airlines around the world. The company began to develop real-time monitoring which

included a fault diagnosis of plane troubleshooting rules, flight logs, and support

information.

UAV flight monitoring is a set of intelligent software services that displays the current

UAV flight status and remote sensing data with intuitive chart and real time data. The

autonomy monitoring can determine whether the UAV flight is normal or abnormal by

comparing deviation between actual flight parameters and rated parameters.

The Pengbo et al., (2017) introduced two models of autonomy monitoring which were

state monitoring model and prediction model. Those two models are foundational for this

thesis. In their research, the function of the state monitoring module is to provide the

current state of the system from the received data extraction module. The system can

identify fault data in the scheduled telemetry parameters. The second model is the UAV

prediction model where the system could receive control instruction from GCS computer

and predict the future motions of the UAV.

The Pengbo et al.(2017) presented prediction models for aircraft location, engine

operation, and autopilot status. Figure 6 shows the prediction model where the controller

has the same control law as the flight control computer.

It can also skip the model directly and use the flight control computer to

produce control instruction if necessary. UAV six degrees of freedom model

established with the "gray-box" modeling method. Engine model uses the

parametric method of system identification. By neural network model

13

learning the historical data, the model could get generalized dynamic model

of the cylinder temperature, engine speed (Pengbo et al., 2017)

Figure 5. UAV System Prediction model (Pengbo et al., 2017)

They concluded some advantages and features that indicate the major concepts of the

models, such as:

• The system displays the current UAV flight status and remote sensing data with

intuitive chart and real time data. It could determine whether the UAV flight is

normal by comparing deviation between actual flight parameters and rated

parameters.

• If there is an unexpected circumstance, the system will alarm in time and prompt

commander to give remote control instructions.

• The internal storage flight parameters of system can be used to record replay and

to analyze the whole flight process.

• The system can alarm to handler on the ground when necessary and reduce the risk

of accident.

UAV flight monitoring system can monitor UAV comprehensively and real-time. This

will improve the security, reliability, and efficiency of UAV flight. This feature has

important theoretical significance and application value for the growth of UAV in the

future.

14

2.6 Tools and Techniques

Statistical Process Control

One of the tools and techniques for autonomy monitoring is Statistical Process Control

(SPC). SPC is a method of quality control that uses statistical methods to monitor and

control a process to make sure it operates efficiently while working automatically. SPC is

a tool for measuring and controlling quality during any operation. “Walter Shewhart who

was the first to introduce the idea of process monitoring by regularly taking samples from

a production process and comparing the outcome of the measurement to appropriately

designed control limits”.(Panagiotidou et al., 2018). Now, many industries are using SPC

tools to monitor process behavior, and then discover production problems. “Statistical

Process Control (SPC) has been used for nearly a century in production processes for the

effective and fast identification of operation under undesirable conditions” (Panagiotidou

et al., 2018).

The most popular SPC tool is the control chart. The control chart is a graph of the data

with average and standard deviation (“sigma”) lines to determine process stability. “it is

often recommended to monitor the profiles using a separate control chart for each

parameter of a parametric model, provided the estimates of the parameters at each sampling

stage are independent”(Woodall et al., 2004). The average and sigma lines are calculated

from the data. The Upper Control Limit (UCL) and Lower Control Limit (LCL) represent

the +-3 standard deviations. Assuming the samples are independent and normally

distributed, 99.7% of the output data should fall between the UCL and LCL.

Oakland's book on statistical process control (2003) stated that SPC has three zones

and the action required depends on the zone in which the results fall in the chart. Figure 6

15

shows the schematic control chart with the three zones; these are stable, warning and

action.

Figure 6. Schematic Control Chart (Oakland, 2003)

The possibilities are:

• Carry on or do nothing (stable zone – common causes of variation only).

• Be careful and seek more information, since the process may be showing

special causes of variation (warning zone).

• Take action, investigate or, where appropriate, adjust the process (action zone

– special causes of variation present).

The chart consists of two types of variation that will help distinguish between stable

and action zone:

16

• Common cause variation (intrinsic to the process and will always be present)

• Special cause variation (indicates that the process is out of control)

Figure 7 shows an example of SPC on monthly sales data where there was average

sales increase after week 18. The observer’s task is to identify a special cause of variation

in monthly sales which shows shift in sales after week 18. This special cause of variation

gave us a prediction that it is possible to happen again and we can see that there was an

increase in average sales during week 25

Figure 7. Example of Monthly Sales Data (Oakland, 2003)

The use of SPC can help managers and process operators to ask useful questions about the

variation which leads to better process management and improvements in the future.

“These describe the extent of the variation that is being seen in the process due to all the

common causes, and indicate the presence of any special causes. If or when the special

causes have been identified, accounted for or eliminated, the control limits will allow the

managers to predict the future performance of the process with some

confidence.”(Oakland, 2003).

Fault Injector Tool

17

Fault Injector is a software system developed by Jason Boubin who was a student at

the Airforce Institute of Technology (AFIT) in 2017. Fault Injector trigger failsafes in

fixed wing Ardupilot aircraft in SITL using Dronekit, Mavproxy, and Mavlink. Fault

Injector runs on python 2.7, using a GUI written with tkinter. It connects to SITL instance

using Dronekit. it can be easily modified to inject failures into craft that can be simulated

in SITL, or to change any variable in the vehicle or simulation over mavlink. Figure 8

illustrates an example of fault injector program. It shows a snapshot of the fault injector

during a flying mission.

Figure 8. Fault Injector by Jayson Boubin (2017)

The wind can be set in the simulation by providing fault injector with wind direction

and wind speed. Wind direction is in degrees from north in the direction the wind is

blowing. For example, a 0-degree wind direction will cause the wind to blow directly north.

A 20-degree wind direction will cause the wind to blow slightly to the right of north. SITL

allows for the simulation of GPS failure. To simulate GPS using SITL simulation variable,

a GPS fault button will be used. This will initiate a GPS failsafe, and should result in

18

considerable drift of aircraft. The software program can emulate a battery failure by

changing the vehicle’s battery capacity failsafe value.

2.7 Human Machine Teaming (HMT)

With the growing complexity of environments in which systems are expected to

operate, adaptive Human Machine Teaming (HMT) has emerged as a key area of research

(Madni & Madni, 2018). Today, humans are surrounded by great technology. Humans can

play a big role of determining the effectiveness of a system in which they are teamed with

a machine or system. Shared goals, shared awareness, and trust toward team members,

human or artificial, can be factors in effective teamwork. Human and machine can

complete each other to accomplish successful mission with minimum risk.

Just as proper teaming between humans and machines, permit humans to have a greater

desired effect, the improper teaming can lead to effects with significant negative

consequences. That improper teaming, can lead to catastrophic accidents. For example, if

the operator is not able to maintain vigilance of system state during cyber-attack or system

failures mishap can occur. In most UASs, there are many parameters which need to be

monitor during a mission and human cannot be vigilante of every signal parameter in the

aircraft all the time. This issue is very important because many systems are designed with

the expectation that the operator will detect and correctly correct the aircraft during any

anomalous condition

Research at the University of Central Florida (Ad, 2017) about workload, situation

awareness, and teaming issues for UAV operations showed that complexity of UAV

systems, as well as mission demands on the operator, indicate that the problem of mental

workload deserves critical attention in the design of interfaces, displays, and how control

19

stations are staffed. “The concept of workload can be defined as the combination of task

demands, or load factors, and an operator's response to those demands”(Ad, 2017). HMT

involving the teaming of an autonomous system and operator supervision discussed as one

means for decreasing operator workload and stress, permitting increased situation

awareness during real mission operations

There are several misperceptions that need to be dispelled before addressing human-

machine relations in this new light. The first misperception is that automation will replace

or offload humans, thereby making the human role less critical. The reality is that with

increasing automation, there is an increasing need for training because the automation

invariably does not replace the human; rather, it changes the role of the human from that

of an operator to that of a monitor/supervisor. For example, “with increasing automation

in an aircraft, the role of the human changed from flying the aircraft to managing the

automation (e.g., flight deck automation). Importantly, this automation needs to be highly

reliable (i.e., failure-proof). Otherwise, the human will have to step in to take over flying

the aircraft if the automation malfunctions” (Madni & Madni, 2018). That is why we still

need the human to be part of this relationship for monitoring the machine or system to

make sure that everything is functioning properly and if something is wrong, such as

system failure, the human will need to step in to take responsibility by controlling and

correcting the automation system. This section supports the concept that humans and

machines should be designed to complete each other by sharing responsibilities and duties

to make sure the final products provides acceptable levels of safety, reliability, and

functionality.

20

2.8 Human Machine Interface (HMI)

For operators, the Human Machine Interface (HMI) represents the fundamental point

of interaction and the means of communicating knowledge between the system and the

individual. “HMI is critical for the effectiveness of human performance and the

maintenance of good situational awareness. It is also critical to determine what information

the operator needs during individual phases of each mission before considering how to

present such information” (Howitt & Richards, 2003). “The U.S. Department of Defense

(DoD) claims that human error contributes to 20-70% of UAS mishaps in the military.

These figures vary greatly between platforms though. This suggests emphasis is needed on

designing Human Machine Interfaces (HMIs) which minimize the likelihood of human

error to occur, to increase UAV reliability and thus safety” (Giese et al., 2013).

Quigley et al.(2016) provides in-depth studies on semi-autonomous Human-UAV

Interfaces for Fixed-Wing Mini-UAVs. They provide general interface considerations

regarding Human-UAV interfaces. Human-UAV interfaces must seriously consider

several factors that tend to be not as critical in ground-based human-robot interfaces:

• The unstable dynamics of a mini-UAV require the interface to support a significant

level of autonomy for the UAV to be accessible to many users.

• Many users have little to no experience flying air- planes, and can be confused and

disoriented by their many degrees of freedom.

• If the user loses control of the UAV, it may quickly result in significant damage or

destruction of the UAV.

• Since the UAV can fly considerable distances away from its operator, depending

on the accessibility and hostility of the environment, the UAV may not be

recoverable in the event of a crash.

21

Quigley et al.(2016) stated that “interfaces are designed to clearly present the state of

the UAV, produce timely feedback, and provide a straightforward mapping between

interface controls and the resultant actions of the UAV”. “Systems that combine manual

control with automation to provide operators with supervisory management capabilities

appear to offer the best opportunity to reduce the deleterious effects of both high workload

and loss of vigilance” (Ad, 2017). The HMI requirements for UAVs used in combat roles

have been investigated over many years. Each trial has increased the level of complexity,

highlighted new HMI requirements and demonstrated the potential for combined

manned/unmanned operations in a variety of roles. (Howitt & Richards, 2003)

2.9 Preview

Concluding this chapter, the reader should have an understanding of multiple concepts

related to this research. UAS utility and mishaps during real operations. UAS mishaps

studied involved human error. Cyber-attack possibilities and prevention that needs to be

considered in this research. The ides of autonomy monitoring, Human-machine teaming

and human-machine interface to give clear understanding of the baseline architecture

framework of AMS.

22

III. Methodology

3.1 Chapter Overview

Chapter III forms the foundation of methods used in this research and discusses the

development of the AMS algorithm. In the beginning of this chapter, objectives, metrics,

and data requirements are outlined describing how AMS will be created to meet the goals.

In this chapter, the main focus is the design of the algorithm, and testing simulation. First,

AMS design will be described with architecture diagrams to give readers an understanding

of the algorithm. Second, the test plan will be described through descriptions of the

treatments to be included in the simulation.

3.2 AMS Objectives, Metrics, & Data

The aim of this study was to design an Autonomy Monitoring Service (AMS) to notify

the Operator of divergent UAV behaviors. AMS will work autonomously in the GCS to

help the Operator detect divergent behaviors. The first stage of the design is to identify

AMS objectives, metrics, and required data sets to reflect the research objectives and

questions.

1. AMS Objectives

(a) Compare the real vehicle (i.e., Vehicle1) with digital representation of

the vehicle (i.e., Vehicle 2). It this thesis each vehicle will be simulated

in ArduPilot.

(b) Continuously monitor Vehicle 1 for abnormal behaviors such as flying

unplanned:

i. Waypoints locations

ii. Altitudes

iii. Airspeeds

23

(c) Continuously monitor vehicle 1 abnormal behaviors, aiding the operator

to anticipate fail safe states, such as:

i. GPS disable

ii. Battery fail

iii. GeoFence engagement

(d) Adapt to changing statistics of the environment without giving false

notifications of divergent behaviors.

(e) Provide a Graphic User Interface (GUI) that supplements the existing

Ground Control Station (GCS).

(f) Displaying system output to the Operator in real time.

(g) Implementing a Statistical Process Control (SPC) tool to show control

charts for any special cause variation in the process of conducting the

mission.

2. Metrics

a. Average AMS divergence detection accuracy and false alarms of

divergent behaviors.

b. Average AMS synchronization time.

3. Required Data

a. Both vehicles position in 3D space.

b. SPC chart of the special cause variation in Waypoint location and

Altitude.

3.3 Design of the AMS

This section presents the architecture, including components and interfaces to aid the

reader’s understanding of the AMS design. AMS environment embodies a set of structured

principles to fulfill the objectives mentioned previously. The basic idea behind this design

is to compare state and behavior information between the real vehicle (Vehicle 1) and a

digital representation of this vehicle (Vehicle 2), notifying the operator of any special cause

variation in the process of Vehicle 1’s flight. This concept assumes that both the real

vehicle and the imaginary vehicle receive the same flight plans and therefore, should

24

perform nearly identical flight patterns, this variation between the two aircraft is assumed

to be divergent behaviors of the real vehicle.

Figure 9. System Overview

Figure 9 illustrates a system overview of the mission. It shows the main operational

concepts of AMS and describes the interactions between the subject architecture and its

environment, and between the architecture and external systems. AMS will be designed to

support a Graphic User Interface (GUI) for the UAV Operator as a human-machine system

that will help detect abnormal behaviors and activities while flying UAV. AMS will be

continuously monitoring and notifying the UAV of abnormal behaviors while displaying

messages to the operator in real time through the GUI in the GCS. On the other side, an

attacker (Cyber-Attack) will change the path of Vehicle 1. In this research, the attacker will

be the Test Director that will implement attacks to Vehicle 1.

25

Figure 10. AMS Physical Decomposition

Figure 10 illustrates a SysML block definition diagram of the AMS design that shows

the architecture of the system. AMS is consists of Algorithms code, a State Machine,

Dronekit, SPC graph, GUI, and SITL. On the right side, the operator is monitoring Vehicle

1 through Mission Planner software 1.3.57 on Windows. Vehicle 1 can be a Pixhawk 2 real

vehicle such as Sig Rascal 110 or can be another simulated vehicle in SITL 1. SITL 2 is

part of AMS that represents vehicle 2 (simulated vehicle). Ubuntu 16.04 operating system

is used to create and test Dronekit-Python codes without hardware.

The programing language of the AMS is Python 2.7 which provides the algorithms

including the design, analysis, and implementation. PyCharm on Windows was used for

algorithm development and analysis. Dronekit-Python contains the Python language

implementation of DroneKit that allows communication with vehicles over MAVLink. It

provides programmatic access to Vehicle 1 telemetry, state and parameter information, and

enables both mission management and direct control over vehicle movement and

operations (see Appendix A. for AMS Algorithms). As mentioned in Chapter II, SPC is a

26

great quality tool for measuring and controlling processes during any autonomous

operation. A control chart will be presented in AMS to show special cause variation in the

process.

Figure 11. Test Environment Configuration

Figure 11 illustrates a SysML block definition diagram of the test environment

configuration of the whole system. In this system, the UAV will be a simulated vehicle

using SITL and it will be part of simulated environment. There are two crews, one of them

is the Operator that will monitoring AMS in GCS while the other one is the Test Director

who will be examining AMS functionality by using Fault Injector software system to inject

error into the vehicle, by passing the mission planning software.

27

Figure 12. State Machine Diagram of AMS

AMS consists of a state machine that can change from one state to another in response

to some external input signal or event. Figure 11 illustrates a SysML state machine diagram

of the AMS design that shows five states. The system will initialize in the Starting Up state

and it will end with Pre-Terminating state. The following are the events, behaviors and

transition for each state:

1. Starting Up state:

(a) Show the time of the state execution.

(b) Start to save all data in dedicated excel sheet for every single mission and it will

keep saving data until terminating AMS in Pre-Terminating state.

(c) Connect to vehicle 1 and vehicle 2. If Vehicle 1 is simulated in SITL, the

connection type will be User Datagram Protocol (UDP).

(d) Synchronize Vehicle 1 Waypoints to Vehicle 2 on ground; clear the old mission

and upload the new mission to Vehicle 2 every 0.5 second. System will stop

looking for mission if Vehicle 1 is armed. If AMS is starting up again after

terminating and both vehicles are flying; AMS will synchronize the mission to

Vehicle 2 immediately.

(e) Synchronize all Vehicle 1 parameters to Vehicle 2 while both vehicles are on

ground.

28

(f) Synchronize Vehicle 1 attributes (global location, altitude, battery, last

heartbeat, system status, mode, and armed). For example; if Vehicle 1 is in auto

mode, Vehicle 2 will be immediately on auto.

(g) Show all starting up procedures to operator in GUI.

(h) When both Vehicles are taking off, AMS will go to Monitoring state.

2. Monitoring state:

(a) Show time of the state execution.

(b) Extract wind values from Vehicle 1 to Vehicle 2, every 0.5 second to make sure

AMS is adapting environment regarding wind as measured by Vehicle 1.

(c) Monitor divergent behavior every 0.5 second:

i. Waypoint location divergence between Vehicle 1 and Vehicle 2.

ii. Altitude divergence between Vehicle 1 and Vehicle 2.

iii. Show SPC charts for both behaviors in GUI to identify special cause

variation in the process.

(d) Monitor GPS disable for Vehicle 1. If this event happens, AMS will go to

Failsafe State.

(e) Monitor battery fail for vehicle 1. If this event happens, AMS will go to Failsafe

State.

(f) Monitor vehicle 1 heading with respect to Geo-Fence. If the vehicle is

approaching the Geo-Fence, AMS will notify the operator in GUI. If vehicle 1

is hitting the Geofence, AMS will go to Failsafe State.

(g) If mission has been accomplished and both vehicles have landed, AMS will go

to Pre-Terminating state.

3. Syncing state:

(a) Show time of the state execution.

(b) AMS will keep monitoring and showing SPC charts for divergent behaviors

every 0.5 second even if AMS is not in Monitoring state.

(c) Set Vehicle 2 mode to “GUIDED” instead of “AUTO” for Simple Go To

command rules.

(d) Command Vehicle 2 to travel towards a target by using Simple Go To

command.

29

(e) Change the speed of the simulation for Vehicle 2 to a value of 3 (means 3x real

time). Increasing the simulation speed will allow Vehicle 2 to catch Vehicle 1.

(f) If the divergence is altitude, Vehicle 2 will grab the altitude information by

uploading the new mission of Vehicle 1.

(g) If the divergence is waypoint, Vehicle 2 will grab the waypoint information by

uploading the new mission of Vehicle 1.

(h) If the divergence is altitude and waypoint, Vehicle 2 will grab the information

by uploading the new mission of Vehicle 1.

(i) If the is no divergence:

i. Calculate and show the correction time (from divergence to no

divergence).

ii. AMS will changing the speed of the simulation for Vehicle 2 to a value

of 1 (a value of 1 means normal real clock time).

iii. Set Vehicle 2 mode to “AUTO” instead of “GUIDED”

iv. AMS will go to Monitoring state.

4. Failsafe state:

(a) Showing time of the state execution

(b) If Vehicle 1 is failsafe; GPS disable, Vehicle 2 will be placed into this failsafe

too.

(c) If Vehicle 1 is failsafe; Battery fail, Vehicle 2 will be placed into this failsafe

too.

(d) If Vehicle 1 is failsafe; GeoFence early warning, AMS will notify the Operator

that Vehicle 1 is reaching to the fence. Vehicle 2 will trigger the failsafe, if it

is triggered by Vehicle 1.

5. Pre-Terminating state

(a) Show time of the state execution.

(b) AMS will be terminating after 5 seconds.

(c) All the data of the mission will be in dedicated excel sheet for research and

analysis by the operator.

(d) 3D plot of the two vehicles will be

30

AMS Thresholds

There are two different thresholds for each divergence. Table 1 shows the thresholds

that have been chosen by the researcher to study AMS. In the Monitoring state, 100 meters

horizontally will be the threshold before AMS determines divergence in location. At 100

meters, AMS will transition to Syncing state; then and it will look for a divergence of 60

meters be between the two vehicles. This insures that the distance between the two vehicles

is less than 60% to return to the Monitoring state. The same concept will be applied with

respect to altitude, where the vertical threshold to exit the Monitoring state is 15 meters

and the threshold to exit the Syncing State is 10 meters.

Table 1. AMS Thresholds

Index Divergence Monitoring State Syncing State

1 Location Distance Threshold [m] 100 60

2 Altitude Distance Threshold [m] 15 10

 Further on in this Chapter and Chapter IV, a survey with an AFIT safety pilot will be

introduced. This survey was conducted to determine the safety pilot opinion regarding the

divergence threshold distance as compared to the values chosen by the researcher.

AMS Output

There are two ways to get the output of the system while running. The first way is

Ubuntu Terminal which will provide the Operator output during the mission. Figure 12

illustrates an example of the AMS output in Ubuntu Terminal. It shows a snapshot of the

AMS during a flying mission. In this example, AMS is shifting from the Starting Up state

to Monitoring state after establishing connection, downloading the mission profile from

Vehicle 1, clearing and uploading mission to Vehicle 2, and finally taking off. In the

Monitoring state, AMS is showing wind direction that Vehicle 2 is adapting from Vehicle

31

1. As soon as AMS is in the Monitoring state, the system will start calculating location and

altitude difference between both vehicles. AMS will show the output every 0.5 second in

Ubuntu terminal. All messages in Ubuntu terminal are outlined by different colors to

distinguish between them while the operator is monitoring AMS.

Figure 13. Ubuntu Terminal showing a snapshot of the AMS

The other way to monitor the output of the system is through a GUI. Figure 13

illustrates a Graphic User Interface (GUI) of the AMS. Using a GUI written with tkinter,

AMS displays objects that convey information of the divergence behaviors and failsafe

events. It represents actions that can be taken by the UAV operator. On the right side of

the GUI are two SPC control charts that represent distance and altitude statistics. The

control charts monitor a process variable over time and identifies both common cause

variation (normal behavior) and special cause variation (abnormal behavior). Information

such AMS state, time, duration, state transitions, and type of divergence behavior will be

shown on the left side of the GUI.

32

Figure 14. AMS Graphic User Interface (GUI)

3.4 Testing Simulation

Several treatments will be given to Vehicle 1 to observe AMS reaction and

functionality toward divergent behaviors (Location, and Altitude), and failsafe conditions

(GPS disable, Battery fail, Geofence early warning). Some test scenarios will be a single

event during a single mission and some test scenarios will be multiple events in one

mission. Metrics and Measurements will be described in this section for every test. To

accomplish most of the tests, the Fault Injector software, that was mentioned in Chapter II,

will be used to inject wind speed, wind direction, and failsafe events into Vehicle 1. Note

that Fault Injector bypasses the normal operator user interface, permitting the test director

to change information on the aircraft without the operator’s knowledge, which might

simulate events such as cyber-attacks. The researcher for this study will act as both, the

Test Director and the AMS Operator. Multiple trials for the main test scenario were

executed to make sure that results are consistent and averaged across random events. In

33

this research, a total of 39 trials have been observed subjecting the AMS baseline to three

types of test. Tests, scenarios, and trials are shown in Table 2.

Table 2. Test, Scenarios, and Trials

Index Test Scenario Trial

1 Location Divergent Applying Environment effect 9

2 Applying Attack 9

3 Altitude Divergent Applying Environment effect 9

4 Applying Attack 9

5

Triggering Failsafe

GPS disable 1

6 Battery fail 1

7 Geofence 1

Total:

39

Figure 15. Initial Flight Plan of a Square Mile

Figure 15 illustrates the UAV flight operating area around San Francisco International

Airport (SFO) that was used for this evaluation and the flight plan of 1 square mile in front

of the runway. The idea of making a square shape in the flight plan is to test Vehicle 1 with

different cardinal directions. The vehicle will follow the path through Waypoints A, B, C,

and D, then repeat the pattern. This is the mission plan that will be used for Location

34

divergence scenarios shown in Table 3, as well as Altitude divergence scenarios shown in

Table 4.

Table 3. Mission Plan 1

Waypoint Latitude [deg] Longitude [deg] Altitude [m] Airspeed

[m/s]

1 37.6112398 -122.3525047 100 22

2 37.6113078 -122.3528481 100 22

3 37.6112738 -122.3346519 100 22

4 37.6256188 -122.3346090 100 22

5 37.6256188 -122.3528910 100 22

6 37.6113078 -122.3528051 100 22

7 37.6112738 -122.3346734 100 22

Table 4. Mission Plan 2

Waypoint Latitude [deg] Longitude

 [deg]

Altitude

[m]

Airspeed

[m/s]

1 37.6112416 -122.3524992 100 22

2 37.6112568 -122.3528695 100 22

3 37.6112736 -122.3346432 100 22

4 37.6256192 -122.3346048 110 22

5 37.6256192 -122.352896 115 22

6 37.6112568 -122.3528695 120 22

7 37.6112738 -122.3346519 150 22

8 37.6256188 -122.334609 150 22

9 37.6256188 -122.3528963 150 22

10 37.6112611 -122.3528641 120 22

11 37.6112398 -122.334609 115 22

12 37.6256103 -122.3346037 110 22

13 37.6256231 -122.3528990 100 22

14 37.6112611 -122.3528641 100 22

Location Divergence: Applying Environmental effects

In this scenario, AMS will be tested under environmental effects, such as varying wind

speed and direction to observe AMS reaction and functionality resulting from this

environmental variable. The application of this scenario, will help in understanding the

statistics of the environmental impact on vehicle 1 and its effect on vehicle 2. Summary of

35

the mission and the injected environment for each trial are shown in Table 5. Note the goal

of AMS is not to alert the Operator due to aircraft divergence which might occur due to

environmental effects. These effects are assumed to introduce noise into aircraft location,

which complicates the identification of true divergent behavior.

Table 5. Location Scenarios, Applying Environmental Effects

Trial Mode Environmental Effect for V1

Vehicle 1 Vehicle 2

Wind Speed

[m/s]

Wind direction

[deg]

1 AUTO AUTO 0 0

2 AUTO AUTO 5 0

3 AUTO AUTO 5 90

4 AUTO AUTO 5 180

5 AUTO AUTO 5 270

6 AUTO AUTO 10 0

7 AUTO AUTO 10 90

8 AUTO AUTO 10 180

9 AUTO AUTO 10 270

Location Divergence: Applying Attack

In this scenario, AMS will be tested by implementing an attack that will cause

divergence in Vehicle 1’s location or waypoints with respect to the mission plan. The Test

Director will change the location of a waypoint by injecting a new mission plans through

the fault injector interface. The idea is to create another one square mile shape offset from

the initial flight path, but a half mile away from the user’s intended location. Figure 16

illustrates the new mission plan in red, as compared to the intended mission, depicted in

yellow. Since this is a simulated attack, Vehicle 2 still has the original flight plan.

36

Figure 16. The New Flight Plan (in Red Color)

Table 6. Mission Plan 3

Index Latitude

[deg]

Longitude [deg] Altitude [m] Airspeed

[m/s]

1 37.6112416 -122.3524992 100 22

2 37.6042362 -122.3438787 100 22

3 37.6041683 -122.3256826 100 22

4 37.6186846 -122.3255968 100 22

5 37.6186506 -122.3439217 100 22

6 37.6041683 -122.3438787 100 22

7 37.6112738 -122.3346734 100 22

The new mission plan is shown in Table 6. There will be no environmental effects

introduced while testing divergence in these scenarios. Summary for each trial are shown

in Table 7. Trials 10, 11, 12, and 13 are for a single event which occur in one mission,

where the Test Director will load the new mission plan in Table 4 when Vehicle 1 reaches

a certain point in the desired flight plan. This enables AMS to reaction be observed from

different angles. Trials 14, 15, 16, 17, and 18 are for a multiple event in one mission where

the Test Director will shift between the two mission plans, at specific times in the pattern.

37

The underlying goal for these tests was to observe AMS reaction to a varying waypoint, at

different approach distances to that waypoint.

Table 7. Location Scenarios, Applying Attack

Trial Vehicles

Mode

Action Taken When Reached V1 Toward Event

10 AUTO Load New Mission plan Initial A Next New

Waypoint

One

11 AUTO Load New Mission plan Initial B Next New

Waypoint

One

12 AUTO Load New Mission plan Initial C Next New

Waypoint

One

13 AUTO Load New Mission plan Initial D Next New

Waypoint

One

14 AUTO Shifting Between Them 30s, 1min, 1min 30s,

2min, 2min 30s

Next New

Waypoint

Multiple

15 AUTO

Shifting Between Them 30s, 1min, 1min 30s,

2min, 2min 30s

Next New

Waypoint

Multiple

16 AUTO

Shifting Between Them 30s, 1min, 1min 30s,

2min, 2min 30s

Next New

Waypoint

Multiple

17 AUTO

Shifting Between Them 30s, 1min, 1min 30s,

2min, 2min 30s

Next New

Waypoint

Multiple

18 AUTO

Shifting Between Them 30s, 1min, 1min 30s,

2min, 2min 30s

Next New

Waypoint

Multiple

Altitude Divergence: Applying Environmental effects

In this scenario, AMS will be tested under environmental effects, such as wind speed

and direction to observe divergence in altitude and the AMS reaction in response to this

divergence. In applying this scenario, the statistics of the environment and its impact to

Vehicle 1 will be understood. The flight plan using the one square mile box pattern from

the previous scenarios will be used again here (Figure 14). Table 4 presents the mission

plan for this scenario. Summary of the mission and the conditions injected into the

environment for each trial are shown in Table 8.

Table 8. Altitude Scenarios, Applying Environmental Effects

Trial Vehicles Mode Environmental Effect for V1

38

1 2 Wind Speed

[m/s]

Wind dir.

[deg]

19 AUTO AUTO 0 0

20 AUTO AUTO 5 0

21 AUTO AUTO 5 90

22 AUTO AUTO 5 180

23 AUTO AUTO 5 270

24 AUTO AUTO 10 0

25 AUTO AUTO 10 90

26 AUTO AUTO 10 180

27 AUTO AUTO 10 270

Altitude Divergence: Applying Attack

In this scenario, AMS will be tested by causing altitude divergence in Vehicle 1. The

Test Director will change the flight plan by uploading waypoints with new altitudes. Figure

14 shows the one square mile flight profile used for this scenario, that was used in the

previous scenarios. Table 9 shows the altitude scenarios tested.

Table 9. Altitude Scenarios, Applying Attack

Trial Vehicles

Mode

Action Taken When Reached V1 Toward Event

28 AUTO Altitude of 120 m Initial C Next New

Waypoint

One

29 AUTO Altitude of 125 m Initial C Next New

Waypoint

One

30 AUTO Altitude of 130 m Initial C Next New

Waypoint

One

31 AUTO Altitude of 135 m Initial C Next New

Waypoint

One

32 AUTO Altitude of 140 m Initial C Next New

Waypoint

One

33 AUTO Altitude of 150 m Initial C Next New

Waypoint

One

34 AUTO

Shifting Between

100m, 120m, 140m

30s, 1min, 1min 30s Next New

Waypoint

Multiple

35 AUTO

Shifting Between

100m, 120m, 140m

30s, 1min, 1min 30s Next New

Waypoint

Multiple

36 AUTO

Shifting Between

100m, 120m, 140m

30s, 1min, 1min 30s Next New

Waypoint

Multiple

Triggering Failsafe

39

Testing failsafe triggers, such as GPS disable, Battery fail, and GeoFence will be tested

in three trials. AMS will be tested triggering by injecting a failsafe event in Vehicle 1 using

the Fault Injector. For this section, straight forward scenarios will be implemented by

qualitatively observing AMS behavior specially by monitoring Vehicle 2 reaction to a

change in Vehicle 1’s state. The Mission plan from Table 3, used in previous scenarios,

will be used for three failsafe trials. The same one square mile flight profile from the

previous scenarios will again be used. The Test Director will implement the failsafe after

Vehicle 1 end a complete cycle of the pattern.

 Safety Pilot Survey

It is an important to get appropriate limitations regarding threshold distance for

divergence in practice. Mr. Rick Patton, from the AFIT Autonomous and Navigation

Technology (ANT) Center, an expert safety pilot that will provide the needed input to this

research. These questions were provided in an email request. The answers will be shown

in Chapter IV.

The questions were:

1- How many meters can a UAV shift in Location (Horizontally) from the original

plan before you consider “something is wrong with the UAV?

2- How many meters can a UAV shift in Altitude from the original plan before

you consider “something is wrong with the UAV”?

3- How many seconds can a small UAV be divergent from the original plan, such

that you still consider “it normal”?

4- For a reasonably windy day, how many more meters can a UAV shift that you

will still consider it "normal”?

40

3.5 Preview

In summary, this chapter outlined the development of AMS algorithm, objectives,

metrics, and required data to give a clear idea of the design that will meet the research

objectives and questions in Chapter I. In this research, the design of the AMS and testing

simulation were introduced to the reader. The results of simulation tests will be shown in

Chapter IV.

41

IV. Analysis and Results

4.1 Chapter Overview

This chapter discusses the results of the test methods described in Chapter III. A variety

of data collected and findings gathered from the simulations test scenarios provide clear

results on utility and performance of the AMS. As a result, the analysis will be largely

quantitative with some qualitative observations to answer research questions in Chapter I.

4.2 Simulation Results

Observations of AMS were examined and evaluated under various realistic scenarios

in mission planner. After running 39 experimental trials in SITL, a summary of the results

are presented, including average AMS detection accuracy and false alarms of divergent

behaviors, average of AMS synchronization time, both vehicles position in 3D space, and

SPC chart of the special cause variation in Waypoint location and Altitude. Also, the results

from the Safety Pilot survey are presented in this section. Appendix B. has all the results

documented for the 39 trials (including 115 divergent events).

Summary Statistics

The summary statistics for every scenario shown in Tables 10, 11,12, and 13 will

include the weighted mean, weighted standard deviation, and the range of the results for

Mission duration, UCL, Mean, and LCL.

Table 10. Summary Statistics of Location, Applying Environmental Effects

9 Trials (9 Detection Events)

Statistic Mission Duration

[min]

SPC

UCL Mean LCL

Weighted Mean 10.7 30.1 18.5 7.4

Weighted StdDev. 1.9 22.5 16.6 10.5

Max 15.2 74.1 52.4 30.7

Min 9.0 2.4 0.4 0.0

42

9 Trials (9 Detection Events)

Statistic Mission Duration

[min]

SPC

UCL Mean LCL

Range 6.2 71.7 52.0 30.7

Table 11. Summary Statistics of Location, Applying Attack

9 Trials (49 Detection Events)

Statistic Mission

Duration [min]

synchronization

time [s]

SPC

UCL Mean LCL

Weighted Mean 9.9 6.7 58.5 40.5 22.5

Weighted StdDev. 1.7 3.2 27.8 21.1 14.6

Max 13.1 13.3 90.1 65.8 41.0

Min 8.1 2.3 35.0 21.2 7.4

Range 4.9 11.0 55.1 44.6 33.6

Table 12. Summary Statistics of Altitude, Applying Environmental Effects

9 Trials (11 Detection Events)

Statistic Mission

Duration [min]

synchronization

time [s]

SPC

UCL Mean LCL

Weighted Mean 15.8 3.9 38.8 25.0 11.3

Weighted StdDev. 6.7 2.5 32.4 26.5 20.5

Max 30.1 6.8 137.6 106 75.7

Min 5.6 2.4 13.2 5.9 1.3

Range 24.5 4.4 124.4 100.7 16.5

Table 13. Summary Statistics of Altitude, Applying Attack

9 Trials (46 Detection Events)

Statistic Mission

Duration [min]

synchronization

time [s]

SPC

UCL Mean LCL

Weighted Mean 9.2 5.5 51.9 34.5 17.1

Weighted StdDev. 1.2 3.4 12.8 10.0 7.3

Max 12.1 17.9 73.2 51.7 30.1

Min 8.2 2.0 26.3 14.8 3.2

Range 3.9 15.9 47.0 36.9 26.9

The weighted mean in Table 10 is 18.5 meters across 9 trials in varying wind. Also, the

weighted standard deviation for UCL is 22.5 meters in the same environment. The lowest

43

weighted standard deviation is in Table 13, which is 10.0 meters for altitude divergence

while applying an attack. The highest weighted standard deviation in Table 12 is 26.5

meters for altitude divergence while also applying environmental effects. The

synchronization time of Table 13 is the shortest for this research where the minimum

syncing time while applying an attack was 2.0 seconds. The weighted standard deviation

for the mean location distance was 21.1 meters. The weighted mean of AMS

synchronization time was 4.02 seconds. These values indicate very good AMS

performance across the range of scenarios.

In Table 11, which shows the results for a Waypoints Location attack, the maximum

synchronization time is 17.9 seconds, which is higher than any other condition. The reasons

for this extended time is due to the multiple syncing that occurs for some events. This

situation adds more time to the total synchronization time. To account for this behavior,

the concept of stability of Syncing State is introduced in this section. As mentioned

previously in this Chapter, one of the interesting observations was Syncing state behaviors.

The results showed that sometimes the Syncing State was not “stable”, where Vehicle 2

performed multiple times to regain alignment with Vehicle 1 instead of undergoing a single

synchronization as expected. Figure 17, illustrates an example of multiple sync in one

mission.

44

Figure 17. Trial 31, Multiple Sync

This behavior is not harming the main goal of AMS which is monitoring and detecting

because AMS eventually return to the Monitoring State in the end even when multiple

synchronization are required. A lot of rules and logic drive this behavior. Suggestions and

recommendations about this situation will be introduced in Chapter V. Figure 18 illustrates

the percentage of Stability in Syncing state for location and altitude.

45

Figure 18. Percentage of Stability for Location and Altitude

The percentage of the Syncing State stability (i.e., the percentage of trials in which the

position of the two vehicles were aligned after entering the Syncing State a single time) is

shown in Figure 16. For location divergence with attack, the aircraft synchronization was

stable in 56% of the trials where the percentage of stable synchronization for altitude

46

divergence with environmental effects is 100%. When applying an attack on altitude, the

percentage of stable synchronization was 44%.

Figure 19. Percentage of Stability for all Trials (115 Detection Events)

As mentioned before, this behavior is not harming the main goal of AMS which is

monitoring and detecting because both kinds of syncing will be stabilizing after a few

events. However, if an operator is warned of all divergence detections, they might find this

alert to present a nuisance. Figure 18 illustrates the stability of synchronization for 115

detection events in this research. A single sync is sufficient in 55% of the total

synchronization events. This indicates that AMS is more doing single sync than multiple

sync while operating.

All the 115 events were detected by AMS where there is no detection if there is no

divergent. They didn’t miss any divergent in all trials. some of the events was detected but

there was no attack implemented by the Test Director. This situation happened in altitude

divergent when we apply environment effect.

The qualitative analysis of testing Failsafe warning was conducted after observing three

trials for three 3 Failsafes. The Test Director injected failsafe events to Vehicle 1 using the

47

Fault Injector software system. AMS reacted to monitoring GPS disable, battery fail, and

Geofence heading by copying the state of the vehicle and passing it to Vehicle 1. AMS

went to Failsafe state by commanding Vehicle 2 to exactly what Vehicle 1 is doing during

the mission. If the failsafe will let Vehicle 1 do RTL, then Vehicle 2 will do the same. AMS

was constructed to make monitoring and triggering parameters an easy task.

Table 14. Summary of Triggering Failsafe

State Trial 37 Trial 38 Trial 39

Failsafe Type GPS disable battery fail Geofence heading

Scenario Type Applying Attack Applying Attack Applying Attack

Number of Event 1 1 1

Mission Duration [min] 8.5 8.2 10.1

Triggering Failsafe Yes Yes Yes

Message warning Yes Yes Yes

Keep monitoring for Enable GPS Deactivate battery Geofence heading

From the observation of the system, AMS is monitoring failsafe disable. When the Test

Director is enabling or deactivating failsafe event, the AMS is copying again the state of

vehicle and passing it to Vehicle 2. The AMS is monitoring failsafe trigger every 0.5

seconds. It is very important for the model to monitor those events to increase situation

awareness during the mission. This what the Operator needs to minimize risk on the job.

Safety Pilot Survey

The survey was conducted via email. The Safety Pilot provided answers to the questions

mentioned in Chapter III. These values for acceptable divergence of distance and time will

help understand the difference between this research threshold and the Safety Pilot

threshold. More explanation and comparison will be discussed in Chapter V.

The Safety Pilot answers are:

1- How many meters can a UAV shift in Location (Horizontally) from the original plan

before you consider “something is wrong with the UAV?

48

Answer: 20 Meters

2- How many meters can a UAV shift in Altitude from the original plan before you

consider “something is wrong with the UAV”?

Answer: Between 5 to 10 Meters

3- How many seconds can a small UAV be divergent from the original plan, such that

you still consider “it normal”?

Answer: Between 5 to10 Seconds

4- For a reasonably windy day, how many more meters can a UAV shift that you will

still consider it "normal”?

Answer: The above values would apply in windy condition with a 10% tolerance factor

Location Divergence: Applied Environmental effects

For all nine trials representing different scenarios of environmental wind effects due to

wind speed and wind direction, AMS adapts Vehicle 2 with the statistics of the Vehicle 1

environment without giving a false notification of divergent behaviors. There was no

divergence detected by AMS due to the applied environment conditions.

Trial 3

Trial 3 involves AMS adapting to changing environmental statistics without giving a

false notification of divergent behavior. Figure 19 illustrates Vehicle 2 flying the same

mission as Vehicle 1 while AMS is in the Monitoring State. Vehicle 2 is crabbing into the

east wind blowing where the wind speed is 5 m/s and the wind direction is 90 degrees (from

the East). In this example, Vehicle 1 is facing a little into the wind to overcome the wind,

which is being sensed by and relayed from Vehicle 1.

49

Figure 20. Trial 3, Snapshot of Vehicle 2 flying in Mission planner

Figure 21. Trial 3, 3D flight path

Figure 18 illustrates the 3D path of the two vehicles. The path of both vehicles appear

identical to each other where it is hard for the observer to identify the red color line that

represents Vehicle 1. The blue color line represents Vehicle 2 and is drawn after the red

color line represents Vehicle 1. Both vehicles are close to each other flying the mission

plan. The results of this mission is shown in Table 15 and Figure 21.

Start

End

Wind Direction

W
E

50

Table 15. Results of Trial 3

Index Trial 3

1 Scenario Type Applying Environmental Effects

2 Wind Speed [m/s] 5

3 Wind Direction [deg.] 90

4 Mission Duration [min] 9.39

5 Divergent No

7

Location Distance [m],

SPC analysis

UCL 17.02

Mean 8.4

LCL 0.0

Figure 22. Trial 3, Statistical Process Control (C-Chart)

Trial 3 show what was expected after observing the 3D path of the two vehicles as they

fly very close to each other. The mean distance between vehicles is small, 8.4 meters, which

indicates little special cause variation in the process. The UCL was 17.02 meters as the

highest limit calculated by SPC during this mission.

Location Divergence: Applied Attack

Trial 10 to 18 examine AMS’s reaction to divergent behaviors. As mentioned

previously in Chapter III, there are two types of test, half of them implement single events

and the other half implement more than one event (multiple events). Based on the

observations from those trials, AMS detected all the divergent events.

51

Trial 10

Trial 10 is an example of AMS detecting a single divergent behavior during an attack

on Vehicle 1. The Test Director changed the location of the waypoint by implementing a

new mission plan provided in Table 6. Figure 23 illustrates the attack on Vehicle 1. The

snapshot on the left represent the first moment of the attack, where the pink color path

showed the initial mission plan. The snapshot on the right represents Vehicle 1 flying

toward the new mission plan caused by the attack.

Figure 23. Trial 10, Snapshot of V1 starting to diverge to the new Waypoints

52

Figure 24. Trial 10, 3D flight path

Figure 24 illustrates the 3D path of the two vehicles. For most of the path, the location

of both vehicles appears nearly identical until the Test Director applied an attack. When

the attack occurred, Vehicle 1 shifted its heading to the new mission plan. Vehicle 2 was

flying the path represented by the waypoints established by user within mission planner

and the divergence distance in aircraft was detected by the AMS. The location divergence

distance became greater than 100 meters. Immediately, AMS transitioned to the Syncing

state, assuming that the operator accepted the new flight path and requested the AMS to

synchronize Vehicle 2 location with Vehicle 1 location. As a result, Vehicle 2 traveled

towards the new target. Speeding the simulation by 3X real time permits Vehicle 2 to reach

the Syncing state threshold in distance which is 60 meters. When the divergence was

53

reduces to this value, AMS transitions the Monitoring state. The results of the mission are

shown in Table 16 and Figure 25.

Table 16. Results of Trial 10

Index Trial 10

1 Scenario Type Applying Attack

2 Number of Event 1

3 Mission Duration [min] 13.1

4 Divergent Yes

5 AMS Detect Yes

6 Synchronization time [s] 4.5

7

Location Distance [m],

SPC analysis

UCL 44.06

Mean 28.15

LCL 12.23

Figure 25. Trial 10, Statistical Process Control (C-Chart)

The results of Trial 10 show that AMS detected the divergence when the threshold in

the Monitoring state was reached. The special cause variation in the SPC chart that indicate

the divergence where the UCL was 44.06 meters and the LCL was 12.23 meters and the

mean of the location distance was 28.15 meters.

54

Trial 15

An example of multiple events in one mission is present during Trial 15. The Test

Director implemented multiple attacks on Vehicle 1 to see the reaction of AMS under these

conditions. Figure 26 illustrates the 3D path of the two vehicles. There are four attacks

implemented by the Test Director. AMS was reacting fast for every event. This test was a

good example of how AMS react to multiple attacks within a single mission. The results

of the mission is shown in Table 17 and Figure 27.

Figure 26. Trial 15, 3D flight path

55

Table 17. Results of Trial 15

Index Trial 15

1 Scenario Type Applying Attack

2 Number of Event 4

3 Mission Duration [min] 10.2

4 Divergent Yes

5 AMS Detect Yes

6 Synchronization time [s] 7.7 – 11.5 – 6.2 – 10.5

7

Location Distance [m],

SPC analysis

UCL 72.92

Mean 51.41

LCL 29.90

Figure 27. Trial 15, Statistical Process Control (C-Chart)

The results of Trial 15 shows that AMS properly detected divergence in location when

the threshold in the Monitoring state was obtained. There are four waves of special cause

variation in the SPC chart shown in Figure 27, indicating the multiple divergent events.

The UCL is 72.92 meters and the LCL is 29.90 meters and the mean of the location distance

is 51.41 meters. These results are considered to be very good response across four events.

56

Altitude Divergence: Applied Environmental effects

The next nine trials represent different scenarios for applying environmental effects of

wind speed and direction. AMS adapts properly to the estimated environment in 7 of the 9

trials. Two of the trials illustrated enough variation in altitude between Vehicle 1 and

Vehicle 2 that algorithm detected the variation as a divergent behavior. Each of these events

occurred while implementing environmental effects during takeoff. After takeoff, AMS

aligns the two vehicles on the mission plan. From the observations, AMS updates the wind

estimate for Vehicle 2 every 0.5 second and the results showed good performance.

Trial 21

Trial 21 is an example of AMS adapting to the changing statistics of the environment

without giving a false notification of divergence. Figure 28 and 29 illustrates Vehicle 2

flying the same mission of Vehicle 1 where AMS is in the Monitoring state. Vehicle 2

climbs while the wind is blowing from the down to the up (90 degrees) and the wind speed

is 5 m/s. In this trial, Vehicle 2 performs a very similar maneuver to Vehicle 1, gaining

altitude to the next waypoint, through consistently with a positive bias over vehicle 1.

Figure 28. Snapshot of Vehicle 2 climbing until 1070 meters

57

Figure 29. Trial 21, 3D flight path

Table 18. Results of Trial 21

Index Trial 21

1 Scenario Type Applying Environmental Effect

2 Wind Speed [m/s] 5

3 Wind Direction [deg.] 90

4 Mission Duration [min] 30.15

5 Divergent No

7

Altitude Distance [m],

SPC analysis

UCL 14.30

Mean 7.87

LCL 0.00

Trial 21 shows Vehicle 2 and AMS performing as expected shown in the 3D path of

the two vehicles, during which they climb in way that there is a small variation in altitude

between them. From Table 18, the mean variation of 7.87 is not considered significant in

this environment with wind speed of 5 m/s blowing from down to up. The UCL is 14.5

58

meters as the highest limit calculated by the SPC chart during this simulated windy mission.

The UCL value was very close to the threshold.

Altitude Divergence: Applied Attack

Results of Trials 28 to 36 demonstrate AMS reaction to an altitude attack that was

implemented by the Test Director. As mentioned previously in Chapter III, there are two

types of test where half of them implement a single event per missions and the other half

implement more than one event (multiple events). From the observation of those trials,

AMS detected all the divergent events appropriately. Trial 30 is selected to show a single

divergent behavior.

 Trial 30

Trial 30 is an example of AMS detecting a single divergent behavior during an attack

on Vehicle 1. The Test Director changed the altitude of Vehicle 1 to 150 meters after a

certain point. Figure 30 and 31 illustrates the attack on Vehicle 1 and how AMS handled

the resulting altitude increase, as commanded by the Test Director.

Figure 30. Snapshot of Vehicle 2 climbing until 150 meters

59

Figure 31. Trial 30, 3D flight path

Table 19. Results of Trial 30

Index Trial 30

1 Scenario Type Applying Attack

2 Number of Event 1

3 Mission Duration [min] 8.08

4 Divergent Yes

5 AMS Detect Yes

6 Synchronization time [s] 2.4

7

Altitude Distance [m],

SPC analysis

UCL 8.20

Mean 3.00

LCL 0.00

60

Figure 32. Trial 30, Statistical Process Control (C-Chart)

The results of Trial 30 shows that AMS detected the divergence in altitude when the

threshold for the Monitoring state was reach. The special cause variation in the SPC chart

indicate the divergence where the UCL is 8.2 meters and the mean of the altitude distance

is 3.0 meters. The synchronization time is 2.4 seconds, which is the second fastest

synchronization time in this research. AMS is fast and functioning as expected for

monitoring, detecting, and syncing.

4.3 Preview

In this chapter, performance of the developed AMS model was examined by several

measures, response time of the model with different scenarios were evaluated. This chapter

was dedicated to presenting largely quantitative with some qualitative observations.

Chapter V will provide concluding remarks, answers to the investigative questions from

Chapter I, and recommendation for future research.

61

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter presents a summary of the work accomplished during this research.

Investigative questions from Chapter I are answered, and the conclusion of this research

along with recommendations for future work are described.

5.2 Conclusion of Research

The main objective of this research was to design and test an Autonomy Monitoring

Service (AMS) which is capable of notifying the Operator of divergent UAV behaviors. In

concluding, the overarching goal of providing and verifying AMS functionality was met.

The objectives in Chapter I and the AMS objective in Chapter III guided the course of this

research. AMS supports the concept that humans and machines should be designed to

complement each other by sharing responsibilities and behaviors effectively, making final

system safer and more reliable. This also supports the autonomy monitoring perspective,

which can increase the rate of incident detection in any process that needs to be monitored.

AMS consist of 859 lines of codes written in Python 2.7 to provide the algorithms

within the AMS state machine. The output information of AMS are displayed in Ubuntu

Terminal and GUI to be observed by the Operator. Those outputs display objects that

convey information of any divergent behaviors, change of AMS state and differences

between Vehicle 1 and the AMS simulated Vehicle 2.

Scenarios and trials were conducted to quantify AMS performance. These results

provide a baseline for future development and recommended improvements to the system.

After testing 115 divergent events in 39 trials, AMS generally performed the tasks as

envisioned. AMS detected all the attacks that was implemented by the Test Director with

62

100% rate of divergence detection out of 95 divergent events occurred. The weighted mean

of AMS synchronization time was 4.02 seconds. These values indicate very good AMS

performance across the range of scenarios.

 From the observations, AMS updates the wind estimate for Vehicle 2 every 0.5 second

and the results showed good performance of capturing the environmental effects. There are

only two cases out of the 18 trials from the applied environmental effects, where the Test

Director did not implement an attack on Vehicle 1, but AMS showed false alarms. The two

cases are Trial 22 and 25, where the Operator observed a divergence occurred immediately

after takeoff. It is hypothesized that Vehicle 2 did not have an accurate wind estimate. After

a few seconds of divergence, Vehicle 2 was synchronized flying with Vehicle 1.

As mentioned previously, there are two different thresholds that have been chosen by

the researcher for AMS. Also, there are the Safety Pilot thresholds inputs on his opinion of

distance and time regarding divergence suspicion. Table 20 shows the difference between

the AMS thresholds and Safety Pilot thresholds.

Table 20. Thresholds from AMS and Safety Pilot

Threshold AMS AFIT

Safety Pilot In the

Monitoring state

In the

Syncing state

Location [m]

(Horizontal)

100 60 20

Altitude [m]

(Vertical)

15 10 10

From the results of all 115 divergent events, the minimum UCL was 30.1 meters, where

the maximum UCL was 58.5 meters. The weighted UCL mean for all trails is 44.8 meters.

For the location distance, it is better to modify the AMS threshold with a new value that is

close to 44.8 meters. The Safety Pilot threshold which is 20 meters is not recommended

63

because the lowest UCL was 30.1 meters. It appears the threshold chosen by the researcher

of 100 meters may be too high, too liberal. A value such as 50-60 meters would be a

reasonable compromise between environment variation and Safety Pilot conservative

opinion. For the altitude distance, the threshold chosen by the researcher is reasonable

threshold value because the minimum UCL is 12.8 meters which is higher than the value

that was provided by the Safety Pilot. Keeping the threshold at 15 meters for the altitude

distance is recommended.

5.3 Investigative Questions Answered

1- What is an architecture of an AMS?

The architecture of AMS consist of coded Algorithms, a State Machine, Dronekit,

Statistical Process Control (SPC) graph, Graphical User Interface (GUI), and Software in

the Loop (SITL). The core structure of the AMS architecture is described by the State

Machine, which can change from one state to another in response to some external input

signal or event. The State Machine imposes a structure to automatically change the

implementation (AMS behavior). The changing state-based methods are derived from the

main design concept to compare mode, location, speed and mission parameters between

the real vehicle (Vehicle 1) and a digital representation of this vehicle (Vehicle 2). The

design was built on this concept of comparison within statistical process variation. Creating

an imaginary vehicle in SITL flying and doing exactly what the Operator intended and that

the real vehicle should be doing in the air is the presumed method to catch divergent or

abnormal behaviors. In this research, a simulated environment was applied around AMS

to provide representative stochastic behavior.

2- What are the algorithms of the system for implementing AMS?

64

The algorithms include a collection of functions especially designed to be used on range

of elements. Functions such as logic and thresholds. The programing language is Python

2.7 which provides the algorithms including the design, analysis, and implementation (See

Appendix A. AMS Algorithm). PyCharm on Windows was used for algorithm

development and analysis. Dronekit-Python contains the python language implementation

of DroneKit that allows communication with vehicles over MAVLink. It provides

programmatic access to Vehicle 1 telemetry, state and parameter information, and enables

both mission management and direct control over vehicle movement and operations.

3- How will AMS be presented to the Operator during the mission?

AMS can be presented by two ways to the Operator. One of the ways is Ubuntu

Terminal where the output of AMS will be shown in steps and information to read by the

Operator. All messages in SITL are outlined by different colors to distinguish between

them while the operator is monitoring AMS. The second way is a GUI that is part of the

AMS Architecture. It is written with tkinter, displays objects that convey information of

the divergent behaviors. It represents information and SPC control charts that shows

location and altitude distance live.

4- How does AMS robustly use statistics of the environment and the UAV dynamics?

AMS can adapt to the changing statistics of the environment under certain rules and

regulation of wind speed and direction. From the results analysis in Chapter IV, AMS

adapts to the changing statistics of the environment if the speed wind is less than or equal

to10 m/s. Applying greater speed wind such as 15 m/s will disable the capability of AMS

to reach target (Vehicle 1) when using the currently simulated vehicles. In this situation,

Vehicle 2 will perform a synchronization multiple times to regain alignment with Vehicle

1 instead of undergoing a single synchronization as expected. AMS will be in the Syncing

65

state, giving a false alarm to the Operator, where the divergence is only environmental. A

lot of rules and logic drive this behavior. Suggestions and recommendations about this

situation will be introduced in recommendations for future research.

5.4 Recommendations for Future Research

AMS 1.0 is the baseline design for future research. The current design facilitates future

research regarding autonomy monitoring of UAVs. Working on this area will improve the

security, reliability, and efficiency of UAV missions. Autonomy monitoring has important

theoretical significance and application value for the growth of UAV. There are many

features could be added to future AMS architecture design.

Recommendations for future research including the following seven ideas:

1- Future testing should include incorporating the autonomy monitoring system in real

flight (i.e., 110 Sig Rascal). Real results with a real environment can bring more accurate

results to the analysis, especially when the system is dealing with a dynamic

environment. This research was using SITL simulation to test this concept for a fixed

wing plane. The decision of choosing a fixed wing plane instead of rotorcraft is to have

more realistic results even when the results will have a lot of variation and deviation

because fixed wing plane is very close to realty, where most of real military UAVs are

fixed wing planes. The simulation used in this thesis supports higher fidelity models for

fixed wing aircraft than rotorcraft.

2- Introducing more rules, more states, environmental effects, and errors injection by

are great to modify the system.

3- Exploring the effects of other autopilot tuning parameters on AMS. There are many

parameters and attributes to be included in the Monitoring state. Adding more vehicle

66

attributes and parameter information to the system will make the system smarter. Future

AMS can observe any of the vehicle attributes and monitor for change. Same thing with

parameters, where AMS can get, set, list, and observe parameters change during the

mission.

4- A dynamic threshold that is able to adapt to changing statistics using Statistical

Process Control (SPC) as a part of AMS state machine. This can solve problems

regarding AMS capability of adapting to dynamic environments without notifying false

alarm to the Operator. For a windy day with speed wind of 20 m/s, AMS needs to be

capable of dynamically adapting to the environment effects. This will shift the system

from updating the wind to a dynamic threshold using machine learning. Having a

dynamic UCL and LCL in AMS, calculating the best threshold limit will likely avoid

false notifications under high wind condition.

5- Loss Communication with a flying UAV is a dangerous situation that can leads to

loss of the UAV. AMS can also be improved through the addition of a Loss

Communication state. This state will ideally monitor and look for any signal such as the

heartbeat of the vehicle. It will be entered immediately when last heartbeat found by the

AMS. Then a connection will be established again between the UAV and AMS. Figure

33 illustrate the future AMS state machine including Communication state.

67

Figure 33. State Machine Including Loss Communication State in the AMS Model

6- As mentioned previously in Chapter IV, the results showed that sometimes the

Syncing State was not “stable”, where Vehicle 2 performed multiple times to regain

alignment with Vehicle 1 instead of undergoing a single synchronization as expected.

One of the ideas to eliminate multiple syncing in the AMS system is to make Vehicle 2

reach the tail of Vehicle 1. flying to a certain waypoint in the back of Vehicle 1 will

make Vehicle 2 makes the best alignment. Coming from behind with decreasing the

speed of simulation may help to eliminate the issue of multiple sync. Calculating the

heading of Vehicle 1 and catching the tail of Vehicle 1 is expected to significantly

modify the effectiveness of the Syncing state.

7- In this research, AMS transitioned to the Syncing state, assuming that the operator

accepted the new flight path and requested the AMS to synchronize Vehicle 2 location

with Vehicle 1 location. A future modification could allow AMS to involve the Operator

decision when there is critical situation. The Human response input is very important to

include in the system. For example, if there is divergence in Vehicle 1, The AMS will

ask the Operator if he would like the system to procced with syncing procedure or wait

for more observation. The Operator may response in different way for every different

68

situation. Those things are important for sharing the decisions with the machine. Human

Machine Teaming (HMT) is what is needed to modify AMS for future researchers.

Figure 34 illustrate the future AMS state machine including the human input connection

between the Operator and GUI.

Figure 34. Future AMS Physical Decomposition

69

Appendix A. AMS Algorithms

#!/usr/bin/python

from dronekit_sitl import SITL

Import DroneKit-Python

from dronekit import connect, VehicleMode, CommandSequence, LocationGlobalRelative

from transitions import Machine

from tkinter import *

import tkinter as tk

from tkinter import ttk

from tkinter.messagebox import showinfo

from Tkinter import Tk, Checkbutton, Label

from Tkinter import StringVar, IntVar

from subprocess import Popen, PIPE

from colorama import init

from termcolor import colored

import time, sys, struct, os, math, csv, random, tkFileDialog, pdb, subprocess

from datetime import datetime

import matplotlib.pyplot as plt

import multiprocessing

from matplotlib import style

from matplotlib import pyplot

from matplotlib import pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import FuncAnimation

from matplotlib.pyplot import figure

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

from random import randrange

import numpy as np

from numpy import log as ln

import scipy.linalg as la

from multiprocessing import Process, Pipe, Value, Array

import openpyxl

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

import _thread

try:

 import _thread

except ImportError:

 import _thread as thread

class AutonomyMonitoringService():

 def __init__(self):

 # Define States

 states = ['Starting Up', 'Monitoring', 'Syncing', 'Losing COMM.', 'FailSafe', 'Pre-Terminating']

 # Initialize the state machine

 self.machine = Machine(states=states, initial='Starting Up')

 """Initialize AMS variables"""

 self.diverging_location = None # location

 self.diverging_altitude = None # altitude

 self.Vehicle1 = None # Vehicle1

 self.Vehicle2 = None # Vehicle2

 self.north_divergence = None # North location

 self.east_divergence = None # East location

 self.altitude_divergence = None # Altitude

 self.parent_conn, self.child_conn = Pipe() # Pipe

 self.shared_location = Value('d', 0.0) # Shared Location in (locationFile) in linux

 self.shared_altitude = Value('d', 0.0) # Shared Altitude in (altitudeFile) in linux

70

 self.diagonal = None # Distance between North and East

 self.workbook_name = '/mnt/c/linux/Results.xlsx' # Excel sheet in Linux folder

 self.workbook = openpyxl.load_workbook(self.workbook_name) # using openpyxl library

 self.worksheet = self.workbook.active # creating worksheet

 self.excel_time = time.time() # associate time to data in Excel

 self.excel_row = 12 # specifying row in Excel associated w/time

 self.syncing_excel_row = 12 # specifying row that not related in time

 self.shared_wind = Value('d', 0.0) # shared wind

 self.bad_gps = None

 self.bad_battery = None

 self.iteration_counter = 0

 self.x_position_array_1 = []

 self.y_position_array_1 = []

 self.z_position_array_1 = []

 self.x_position_array_2 = []

 self.y_position_array_2 = []

 self.z_position_array_2 = []

 def monitor_for_divergence_location(self, threshold=100): # (2) is altitude

 while True:

 north_distance = self.Vehicle1.location.local_frame.north - self.Vehicle2.location.local_frame.north

 east_distance = self.Vehicle1.location.local_frame.east - self.Vehicle2.location.local_frame.east

 self.diagonal = la.norm([north_distance, east_distance])

 self.shared_location.value = self.diagonal

 f=open("locationfile.txt","w+") # open, save file, so we can use it in SPC in TK

 f.write(str(int(self.diagonal)))

 f.close()

 if self.diagonal < threshold:

 # sys.stdout.write("\r" + 'L: ' + colored('Normal < 100m ', 'white', 'on_green') + ' D:' + str(self.diagonal))

 # sys.stdout.flush() # only if something is changing in the same line

 self.diverging_location = False

 else:

 self.north_divergence = abs(self.Vehicle1.location.local_frame.north -

self.Vehicle2.location.local_frame.north)

 self.east_divergence = abs(self.Vehicle1.location.local_frame.east - self.Vehicle2.location.local_frame.east)

 # sys.stdout.write("\r" + 'L: ' + colored('Abnormal > 100m', 'white', 'on_red') + ' D:' + str(self.diagonal))

 # sys.stdout.flush()

 self.diverging_location = True

 time.sleep(.1)

 break

 def monitor_for_divergence_altitude(self, threshold=15): # (2) is altitude

 while True:

 altitude_distance = (self.Vehicle1.location.global_frame.alt - self.Vehicle2.location.global_frame.alt)

 self.shared_altitude.value = altitude_distance

 f = open("altitudefile.txt", "w+") # open, save file, so we can use it in SPC in TK

 f.write(str(int(altitude_distance)))

 f.close()

 if altitude_distance < threshold:

 # sys.stdout.write("\r" +' | A: ' + colored('Normal < 10m', 'white', 'on_green')+ ' D:' +

str(altitude_distance) + ' m')

 # sys.stdout.flush() # only if something is changing in the same line

 self.diverging_altitude = False

 else:

 self.altitude_divergence = abs((self.Vehicle1.location.global_frame.alt -

self.Vehicle2.location.global_frame.alt))

71

 # sys.stdout.write("\r" +' | A: ' + colored('Abnormal > 10m', 'white', 'on_red') + ' D:' +

str(altitude_distance) + ' m')

 # sys.stdout.flush()

 self.diverging_altitude = True

 time.sleep(.1)

 break

 def wind_update(self):

 # graping wind value from Vehicle 1

 while True:

 if self.Vehicle1.parameters['SIM_WIND_SPD'] != self.Vehicle2.parameters['SIM_WIND_SPD']:

 self.Vehicle2.parameters['SIM_WIND_SPD'] = self.Vehicle1.parameters['SIM_WIND_SPD']

 if self.Vehicle1.parameters['SIM_WIND_DIR'] != self.Vehicle2.parameters['SIM_WIND_DIR']:

 self.Vehicle2.parameters['SIM_WIND_DIR'] = self.Vehicle1.parameters['SIM_WIND_DIR']

 if self.Vehicle1.parameters['SIM_WIND_DIR_Z'] != self.Vehicle2.parameters['SIM_WIND_DIR_Z']:

 self.Vehicle2.parameters['SIM_WIND_DIR_Z'] = self.Vehicle1.parameters['SIM_WIND_DIR_Z']

 if self.Vehicle1.parameters['SIM_WIND_TURB'] != self.Vehicle2.parameters['SIM_WIND_TURB']:

 self.Vehicle2.parameters['SIM_WIND_TURB'] = self.Vehicle1.parameters['SIM_WIND_TURB']

 time.sleep(.5)

 break

 def download_mission(self):

 '''Downloads the current mission and returns it in a list.'''

 missionlist = []

 cmds = self.Vehicle1.commands

 cmds.download()

 cmds.wait_ready()

 for cmd in cmds:

 missionlist.append(cmd)

 return missionlist

 def upload_mission(self, aFileName):

 '''Upload a mission from a file.'''

 # Read mission from file

 missionlist = aFileName

 cmds = self.Vehicle2.commands

 cmds.clear()

 '''Add new mission to vehicle 2'''

 for command in missionlist:

 cmds.add(command)

 self.Vehicle2.commands.upload()

 def excel_update(self):

 if time.time() - self.excel_time > .5:

 self.excel_row += 1

 self.worksheet['B' + str(self.excel_row)].value = time.time()

 if self.diagonal is not None:

 self.worksheet['C' + str(self.excel_row)].value = self.diagonal

 if self.Vehicle1 and self.Vehicle2 is not None:

 self.worksheet['D' + str(self.excel_row)].value = self.Vehicle1.location.global_frame.alt -

self.Vehicle2.location.global_frame.alt

72

 self.worksheet['F' + str(self.excel_row)].value = self.Vehicle1.parameters['SIM_WIND_SPD']

 self.worksheet['G' + str(self.excel_row)].value = self.Vehicle1.parameters['SIM_WIND_DIR']

 self.worksheet['H' + str(self.excel_row)].value = self.Vehicle1.parameters['SIM_WIND_DIR_Z']

 self.worksheet['I' + str(self.excel_row)].value = self.Vehicle1.parameters['SIM_WIND_TURB']

 self.worksheet['J' + str(self.excel_row)].value = self.Vehicle1.parameters['SIM_SPEEDUP']

 self.worksheet['E' + str(self.excel_row)].value = self.Vehicle2.parameters['SIM_SPEEDUP']

 self.excel_time = time.time()

 def syncing_excel_update(self, entering=True, syncing_type=None, sync_length=None):

 if entering:

 self.syncing_excel_row += 1

 self.worksheet['L'+ str(self.syncing_excel_row)].value = 'Detect'

 self.worksheet['K'+ str(self.syncing_excel_row)].value = syncing_type

 self.worksheet['M' + str(self.syncing_excel_row)].value = time.time()

 else:

 self.worksheet['N' + str(self.syncing_excel_row)].value = time.time()

 self.worksheet['O' + str(self.syncing_excel_row)].value = sync_length

 def sim_speed_update(self):

 if self.diagonal > 1000:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 5

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red','on_yellow'))

 if self.diagonal > 400 and self.diagonal < 1000:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 4

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red', 'on_yellow'))

 if self.diagonal> 300 and self.diagonal < 400:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 3

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red', 'on_yellow'))

 if self.diagonal > 100 and self.diagonal < 300:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 2

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red', 'on_yellow'))

 if self.diagonal > 100 and self.diagonal < 10:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 1

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red', 'on_yellow'))

 time.sleep(0.1)

 def gps_fail(self):

 while True:

 print("%s" % self.Vehicle1.gps_0)

 if self.Vehicle1.parameters['SIM_GPS_DISABLE'] == 0:

 print(colored('GPS: rtk Fixed', 'green'))

 self.bad_gps = False

 else:

 print(colored('Bad GPS Signal Health', 'red'))

 self.bad_gps = True

 time.sleep(.5)

 break

 def battery_warning(self):

 while True:

 print("%s" % self.Vehicle1.battery)

73

 if self.Vehicle1.parameters['BATT_LOW_MAH'] == 0:

 print(colored('Battery Good', 'green'))

 self.bad_battery = False

 else:

 print(colored('Battery Bad', 'red'))

 self.bad_battery = True

 time.sleep(.5)

 break

 def heartbeat_warning(self):

 while True:

 print "Last Heartbeat: %s" % self.Vehicle1.last_heartbeat

 time.sleep(.5)

 break

 def save_position(self):

 if self.iteration_counter % 1 == 0:

 self.x_position_array_1 += [self.Vehicle1.location.local_frame.east]

 self.y_position_array_1 += [self.Vehicle1.location.local_frame.north]

 self.z_position_array_1 += [-self.Vehicle1.location.local_frame.down]

 self.x_position_array_2 += [self.Vehicle2.location.local_frame.east]

 self.y_position_array_2 += [self.Vehicle2.location.local_frame.north]

 self.z_position_array_2 += [-self.Vehicle2.location.local_frame.down]

 def main(self):

 # TKinter

 root = Tk()

 root.geometry('1500x790')

 root.title('Autonomy Monitoring Service (AMS)')

 root.state('normal')

 # root.configure(bg="light sky blue")

 # Adding widgets to the root window

 Label(root, text='Autonomy Monitoring Service (AMS)', font=('Verdana', 25)).pack(side=TOP, pady=15)

 # l2 = Label(root, text="AIR FORCE INSTITUTE OF TECHNOLOGY, 2020",

 # font=('Verdana', 14)).pack(side=BOTTOM, pady=10)

 l2 = Label(root, text="AIR FORCE INSTITUTE OF TECHNOLOGY, 2020", font=('Verdana', 14))

 l2.place(relx=0.05, x=-10, y=790, anchor=W)

 # label widget

 l3 = Label(root, text="AMS System :", font=('Verdana', 12))

 l3.place(relx=0.05, x=-10, y=110, anchor=W)

 l4 = Label(root, text="Time :", font=('Verdana', 12))

 l4.place(relx=0.05, x=-10, y=155, anchor=W)

 l5 = Label(root, text="Start", font=('Verdana', 12))

 l5.place(relx=0.05, x=70, y=155, anchor=W)

 l6 = Label(root, text="End", font=('Verdana', 12))

 l6.place(relx=0.05, x=300, y=155, anchor=W)

 l7 = Label(root, text="Duration :", font=('Verdana', 12))

 l7.place(relx=0.05, x=-10, y=200, anchor=W)

74

 l8 = Label(root, text="Environment Effect :", font=('Verdana', 12))

 l8.place(relx=0.05, x=-10, y=665, anchor=W)

 # l9 = Label(root, text="Maintenance Problem :", font=('Verdana', 12))

 # l9.place(relx=0.05, x=-10, y=740, anchor=W)

 l10 = Label(root, text="Statistic Process Control (SPC) for Location :", font=('Verdana', 12))

 l10.place(relx=0.05, x=540, y=100, anchor=W)

 l11 = Label(root, text="Statistic Process Control (SPC) for Altitude :", font=('Verdana', 12))

 l11.place(relx=0.05, x=540, y=440, anchor=W)

 l12 = Label(root, text="Operator \nDecision ", font=('Verdana', 12))

 l12.place(relx=0.05, x=415, y=540, anchor=W)

 l13 = Label(root, text="Starting Up State :", font=('Verdana', 12))

 l13.place(relx=0.05, x=-10, y=245, anchor=W)

 l14 = Label(root, text="Display info :", font=('Verdana', 12))

 l14.place(relx=0.05, x=-10, y=290, anchor=W)

 l15 = Label(root, text="Delta Location :", font=('Verdana', 12))

 l15.place(relx=0.05, x=-10, y=465, anchor=W)

 l16 = Label(root, text="Delta Altitude :", font=('Verdana', 12))

 l16.place(relx=0.05, x=-10, y=500, anchor=W)

 l17 = Label(root, text="Question :", font=('Verdana', 12))

 l17.place(relx=0.05, x=-10, y=555, anchor=W)

 # button widget

 def connect_thr():

 thread.start_new_thread(connect_ams, ())

 # creates connection button

 b1 = Button(root, text="Start", fg="black", font=('Verdana', 12), command=connect_thr)

 b1.place(relx=0.05, x=110, y=110, anchor=W, height=30, width=95)

 b1.configure(background="green") # Adding Colors

 b2 = Button(root, text="Terminate", fg="black", font=('Verdana', 12))

 b2.place(relx=0.05, x=210, y=110, anchor=W, height=30, width=95)

 b2.configure(background="red") # Adding Colors

 b3 = Button(root, text="Yes", fg="black", font=('Verdana', 12))

 b3.place(relx=0.05, x=400, y=575, anchor=W, height=30, width=95)

 b3.configure(background="green") # Adding Colors

 b4 = Button(root, text="No", fg="black", font=('Verdana', 12))

 b4.place(relx=0.05, x=400, y=610, anchor=W, height=30, width=95)

 b4.configure(background="red") # Adding Colors

 # Delete Button

 b5 = Button(root, text='Clear info', command=lambda: T6.delete(1.0, END))

 b5.place(relx=0.05, x=400, y=255, anchor=W, height=30, width=95)

 b5.configure(background="grey") # Adding Colors

 b6 = Button(root, text='Refresh Graphs', command=lambda: T6.delete(1.0, END))

 b6.place(relx=0.05, x=1270, y=90, anchor=W, height=30, width=95)

 b6.configure(background="grey") # Adding Colors

 # Textbox Window

 T1 = Text(root)

75

 T1.place(relx=0.05, x=330, y=95, anchor=NW, height=30, width=170)

 quote = """ Active / Inactive"""

 T1.insert(END, quote)

 T2 = Text(root)

 T2.place(relx=0.05, x=110, y=140, anchor=NW, height=30, width=170)

 quote = str(time.ctime())

 T2.insert(END, quote)

 T3 = Text(root)

 T3.place(relx=0.05, x=330, y=140, anchor=NW, height=30, width=170)

 quote = str(datetime.now())

 T3.insert(END, quote)

 T4 = Text(root)

 T4.place(relx=0.05, x=110, y=185, anchor=NW, height=30, width=170)

 quote = str(time.time())

 T4.insert(END, quote)

 T5 = Text(root)

 T5.place(relx=0.05, x=110, y=230, anchor=NW, height=30, width=170)

 quote = """State Machine: """

 T5.insert(END, quote)

 T6 = Text(root)

 S6 = Scrollbar(T6)

 T6.place(relx=0.05, x=110, y=275, anchor=NW, height=170, width=390)

 text = """ Steps & Information is here """

 T6.insert(END, text)

 S6.pack(side=RIGHT, fill=tk.Y)

 T6.config(yscrollcommand=S6.set)

 T7 = Text(root)

 T7.place(relx=0.05, x=110, y=455, anchor=NW, height=30, width=390)

 quote = """Normal / Divergent"""

 T7.insert(END, quote)

 T8 = Text(root)

 T8.place(relx=0.05, x=110, y=490, anchor=NW, height=30, width=390)

 quote = """Normal / Divergent"""

 T8.insert(END, quote)

 T9 = Text(root)

 T9.place(relx=0.05, x=110, y=540, anchor=NW, height=90, width=280)

 quote = """Questions for Operator/Decisions"""

 T9.insert(END, quote)

 T10 = Text(root)

 T10.place(relx=0.05, x=150, y=650, anchor=NW, height=70, width=350)

 quote = """WIND_SPD WIND_DIR WIND_DIR_Z WIND_TURB"""

 T10.insert(END, quote)

 # T11 = Text(root)

 # T11.place(relx=0.05, x=150, y=730, anchor=NW, height=30, width=350)

 # quote = """Failsafe /COMM. /GPS / ..."""

 # T11.insert(END, quote)

 #

 # Statistical process control (SPC)

 x_data_1, y_data_1 = [], []

 fig_1 = pyplot.figure()

 line_1, = pyplot.plot_date(x_data_1, y_data_1, '-', color='limegreen', label='Variation')

76

 Title_1 = pyplot.title('Process Control Chart (Location)')

 ax1 = pyplot.ylabel("Distance (m)", fontsize=11)

 ax2 = pyplot.xlabel("Time (s)", fontsize=11)

 ax3 = pyplot.legend(bbox_to_anchor=(1.01, 0.8), loc=2, borderaxespad=0.)

 ax4 = pyplot.axhline(y=100, xmin=0.0, xmax=1.0, color='red', label='Monitoring threshold')

 ax5 = pyplot.axhline(y=-100, xmin=0.0, xmax=1.0, color='red')

 ax6 = pyplot.axhline(y=60, xmin=0.0, xmax=1.0, color='magenta', label='Syncing threshold')

 ax7 = pyplot.axhline(y=-60, xmin=0.0, xmax=1.0, color='magenta')

 ax8 = pyplot.axhline(y=0, xmin=0.0, xmax=1.0, color='black', label='Baseline')

 ax9 = pyplot.axhline(y=150, xmin=0.0, xmax=1.0, color='white')

 ax10 = pyplot.axhline(y=-150, xmin=0.0, xmax=1.0, color='white')

 # line.fill_between(line_1,0)

 # Statistical process control (SPC) 2

 x_data_2, y_data_2 = [], []

 fig_2 = pyplot.figure()

 line_2, = pyplot.plot_date(x_data_2, y_data_2, '-', color='limegreen', label='Variation')

 Title_2 = pyplot.title('Process Control Chart (Altitude)')

 ax11 = pyplot.ylabel("Distance (m)", fontsize=11)

 ax12 = pyplot.xlabel("Time (s)", fontsize=11)

 ax13 = pyplot.legend(bbox_to_anchor=(1.01, 0.8), loc=2, borderaxespad=0.)

 ax14 = pyplot.axhline(y=15, xmin=0.0, xmax=1.0, color='red')

 ax15 = pyplot.axhline(y=-15, xmin=0.0, xmax=1.0, color='red')

 ax16 = pyplot.axhline(y=10, xmin=0.0, xmax=1.0, color='magenta')

 ax17 = pyplot.axhline(y=-10, xmin=0.0, xmax=1.0, color='magenta')

 ax18 = pyplot.axhline(y=0, xmin=0.0, xmax=1.0, color='black')

 ax19 = pyplot.axhline(y=25, xmin=0.0, xmax=1.0, color='white')

 ax20 = pyplot.axhline(y=-25, xmin=0.0, xmax=1.0, color='white')

 def animate(frame):

 distance_1 = open("locationfile.txt", "r").read()

 if distance_1 != '':

 x_data_1.append(datetime.now())

 y_data_1.append(int(distance_1))

 if len(x_data_1) > 50:

 x_data_1.pop(0)

 y_data_1.pop(0)

 line_1.set_data(x_data_1, y_data_1)

 fig_1.gca().relim()

 fig_1.gca().autoscale_view()

 return line_1,

 pyplotcanvas = FigureCanvasTkAgg(fig_1, root, animate)

 pyplotcanvas.get_tk_widget().place(x=620, y=120, height=300, width=830)

 ani = animation.FuncAnimation(fig_1, animate, interval=1000, blit=True)

 pyplotcanvas.draw()

 def animate(frame):

 distance_2 = open("altitudefile.txt", "r").read()

 if distance_2 != '':

 x_data_2.append(datetime.now())

 y_data_2.append(int(distance_2))

 if len(x_data_2) > 50:

 x_data_2.pop(0)

 y_data_2.pop(0)

 line_2.set_data(x_data_2, y_data_2)

 fig_2.gca().relim()

 fig_2.gca().autoscale_view()

 return line_2,

77

 pyplotcanvas = FigureCanvasTkAgg(fig_2, root, animate)

 pyplotcanvas.get_tk_widget().place(x=620, y=460, height=300, width=830)

 ani = animation.FuncAnimation(fig_2, animate, interval=1000, blit=True)

 pyplotcanvas.draw()

 # Multiprocessing:

 p2 = multiprocessing.Process(target=root.mainloop)

 p2.start()

 # AMS State Machine Codes start from here:

 print(colored('\nAutonomy Monitoring Service is Active', 'white', 'on_magenta'))

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 # Start AMS Time. print in Excel:

 time1 = time.ctime()

 self.worksheet['C4'] = time1

 print' '

 time.sleep(.5)

 # Main loop for the State Machine of AMS

 while True:

 # Update excel sheet

 self.excel_update()

 self.iteration_counter += 1

 # self.save_position()

 """ -------------------------------- Starting Up State -------------------------------- """

 if self.machine.state == "Starting Up":

 print(colored('\nI am in Starting Up State', 'blue', 'on_cyan'))

 # Show Time

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print' '

 time.sleep(.1)

 # # AMS Connecting to Vehicle 1 & Vehicle 2:

 self.Vehicle1 = connect("udp:127.0.0.1:14551", wait_ready=True)

 self.Vehicle2 = connect("udp:127.0.0.1:14571", wait_ready=True)

 if connect:

 print(colored('\nAMS is Connected to V1 and V2', 'green'))

 time.sleep(.5)

 # If both Vehicles already flying:

 if self.Vehicle1.location.global_frame.alt > 10 and self.Vehicle2.location.global_frame.alt > 10:

 print(('Note:') + colored(' Both vehicles are flying', 'green'))

 # Reset Simulator Speed:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 1

 # # Do we really need this ???

 # # making sure that Vehicle 2 is (Reset Mission)

78

 # while self.Vehicle2.mode == VehicleMode("GUIDED"):

 # self.Vehicle2.mode = VehicleMode("AUTO")

 # time.sleep(.1)

 # self.Vehicle2.mode = VehicleMode("GUIDED")

 # No need to grip the mission list if they are both flying. we will do that in Monitoring state

 missionlist = None

 # I dont think that we should put the code to trigger mission list if change

 # Go to Monitoring:

 self.machine.set_state('Monitoring')

 # if Both Vehicles are on ground:

 else:

 # Reset Simulator Speed:

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 1

 missionlist = None

 # show info to Operator

 print(('Step (1):') + colored(' Downloading Mission from Vehicle 1', 'green'))

 print(('Step (2):') + colored(' Clearing & Uploading Mission to Vehicle 2', 'green'))

 # Grip Mission from V1 and upload it:

 while missionlist != self.download_mission(): # Not Equal

 missionlist = self.download_mission() # Equal

 self.upload_mission(missionlist)

 time.sleep(.5)

 if self.Vehicle1.armed == True: # Stop Updating WPs

 break

 print(('Step (3):') + colored(' Stop updating WPs. Missionlist is Equal', 'green'))

 time.sleep(.5)

 # Trigger V1 for armed:

 while self.Vehicle1.armed != True:

 time.sleep(.5)

 print(colored('Both Vehicles: Arming', 'green'))

 self.Vehicle2.armed = self.Vehicle1.armed

 time.sleep(.5)

 # Trigger V1 for Auto Mode

 while self.Vehicle1.mode != VehicleMode("AUTO"):

 time.sleep(.5)

 print(colored('Both Vehicles: Auto Mode', 'green'))

 self.Vehicle2.mode = self.Vehicle1.mode

 time.sleep(.5)

 # Trigger V1 for TakeOff

 while self.Vehicle1.location.global_frame.alt > 10 and self.Vehicle2.location.global_frame.alt > 10:

 time.sleep(.02)

 self.iteration_counter += 1

 self.save_position()

 print(colored('Both Vehicles: Taking off', 'green'))

 # Go to Monitoring:

 self.machine.set_state('Monitoring')

 """ ------------------------------- Monitoring State --------------------------------- """

79

 if self.machine.state == 'Monitoring':

 print(colored('I am in Monitoring State', 'blue', 'on_cyan'))

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print' '

 time.sleep(.5)

 # print Wind Direction for V1 (For Example)

 print "Wind Dir: %s" % self.Vehicle1.parameters['SIM_WIND_DIR']

 print' '

 asked = False

 asked_time = 0

 while True:

 self.monitor_for_divergence_location() # Monitoring Waypoint

 self.monitor_for_divergence_altitude() # Monitoring Altitude

 self.gps_fail() # GPS FailSafe

 self.battery_warning() # Battery FailSafe

 self.wind_update() # Monitoring Wind

 # self.parameters_update() # Updating Parameters

 # self.smooth_sim_speed_update() # controlling SIM Speed

 self.excel_update() # Update excel sheet

 self.iteration_counter += 1

 self.save_position()

 # if There is Divergent:

 if self.diverging_location or self.diverging_altitude and not asked and self.Vehicle1.armed is True:

 # AMS will Ask the Operator if he knew about Divergent and if he want to Sync immediately:

 # Question 1:

 answer1 = 'y' # raw_input(colored('\nAre you Responsible? [y/n] ', 'red'))

 if answer1 == 'y':

 # Question 2:

 answer2 = 'y' # raw_input(colored('\nDo we sync with you? [y/n] ', 'red'))

 if answer2 == 'y':

 # Go Syncing

 self.machine.set_state('Syncing')

 break

 else:

 asked = True

 asked_time = time.time()

 print(colored('\nOk, but I will ask you again in 15 Seconds', 'red'))

 else:

 print(colored('\nAction Taken: V2 will Sync to V1 for more Observing', 'red'))

 # Go Syncing

 self.machine.set_state('Syncing')

 break

 # after 15 seconds ask again:

 if time.time() - asked_time > 15 and asked:

 # Question 3

 answer2 = raw_input(colored('\nDo we sync with you? [y/n] ', 'red'))

 if answer2 == 'y':

 # Go Syncing

80

 self.machine.set_state('Syncing')

 break

 else:

 asked = True

 asked_time = time.time()

 if not self.diverging_location or self.diverging_altitude:

 asked = False

 if self.bad_gps:

 # asked = False

 self.machine.set_state('FailSafe')

 break

 if self.bad_battery:

 # asked = False

 self.machine.set_state('FailSafe')

 break

 # Trigger V1 and V2 for disarm:

 if self.Vehicle1.armed is False and self.Vehicle2.armed is False:

 print(colored('\nBoth Vehicles: DISARMED on Ground', 'green'))

 # Go to Terminating

 self.machine.set_state('Pre-Terminating')

 break

 """ -------------------------------- FailSafe State --------------------------------- """

 if self.machine.state == "FailSafe":

 print(colored('\nI am in FailSafe State', 'blue', 'on_cyan'))

 # Show Time

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print' '

 print' '

 time.sleep(.1)

 while True:

 self.monitor_for_divergence_location() # Monitoring Waypoint

 self.monitor_for_divergence_altitude() # Monitoring Altitude

 self.wind_update() # Monitoring Wind

 self.gps_fail() # GPS Failsafe

 self.battery_warning() # Battery Failsafe

 self.excel_update() # Update excel sheet

 self.iteration_counter += 1

 self.save_position()

 # print(" GPS: %s" % self.Vehicle1.gps_0)

 if self.bad_gps is True:

 self.Vehicle2.parameters['SIM_GPS_DISABLE'] = self.Vehicle1.parameters['SIM_GPS_DISABLE']

 if not self.bad_gps and not self.bad_battery:

 self.Vehicle2.parameters['SIM_GPS_DISABLE'] = self.Vehicle1.parameters['SIM_GPS_DISABLE']

 print(colored('GPS: rtk Fixed', 'green'))

 # Go to Monitoring:

 self.machine.set_state('Monitoring')

81

 break

 if self.bad_battery is True:

 self.Vehicle2.parameters['BATT_LOW_MAH'] = self.Vehicle1.parameters['BATT_LOW_MAH']

 if not self.bad_battery and not self.bad_gps:

 self.Vehicle2.parameters['BATT_LOW_MAH'] = self.Vehicle1.parameters['BATT_LOW_MAH']

 print(colored('Battery Good', 'green'))

 # Go to Monitoring:

 self.machine.set_state('Monitoring')

 break

 """ -------------------------------- Syncing State --------------------------------- """

 if self.machine.state == 'Syncing':

 print(colored('\nI am in Syncing State', 'blue', 'on_cyan'))

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print' '

 # Update Excel sheet

 new_sync = True

 enter_time =time.time()

 # Set Vehicle 2 to GUIDED Mode

 self.Vehicle2.mode = VehicleMode("GUIDED")

 print(('Step (3):') + colored(' Vehicle 2 : GUIDED Mode', 'green'))

 # Send Vehicle 2 to Vehicle 1 by using Simple goto command

 self.Vehicle2.simple_goto(self.Vehicle1.location.global_relative_frame)

 # Set Simulator Speed

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 3

 print(("V2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red', 'on_yellow'))

 # missionlist = None

 while True:

 self.monitor_for_divergence_location(threshold=60) # Monitoring Waypoint

 self.monitor_for_divergence_altitude(threshold=10) # Monitoring Altitude

 self.excel_update() # Update excel sheet

 self.iteration_counter += 1

 self.save_position()

 '''If only divergent in Altitude'''

 if self.diverging_altitude and self.Vehicle1.armed is True:

 # Update Excel sheet

 if new_sync:

 self.syncing_excel_update(entering=True, syncing_type='Altitude')

 new_sync = False

 # show info to Operator

 print(colored(' Altitude Only', 'magenta'))

 # Grip Mission from Vehicle 1

 missionlist = self.download_mission()

 self.upload_mission(missionlist)

 # Simple goto command

 self.Vehicle2.simple_goto(self.Vehicle1.location.global_relative_frame)

82

 '''If only divergent in Location'''

 if self.diverging_location and self.Vehicle1.armed is True:

 # Update Excel sheet

 if new_sync:

 self.syncing_excel_update(entering=True, syncing_type='Waypoints')

 new_sync = False

 # show info to Operator

 print(colored(' Location Only', 'magenta'))

 # Grip Mission from Vehicle 1

 missionlist = self.download_mission()

 self.upload_mission(missionlist)

 # Simple goto command

 self.Vehicle2.simple_goto(self.Vehicle1.location.global_relative_frame)

 '''If Both divergent in Location and Altitude '''

 if self.diverging_location and self.diverging_altitude and self.Vehicle1.armed is True:

 # Update Excel sheet

 if new_sync:

 self.syncing_excel_update(entering=True, syncing_type='WPs & Alt')

 new_sync = False

 # show info to Operator

 print(colored(' Location & Altitude', 'magenta'))

 # Grip Mission from Vehicle 1

 missionlist = self.download_mission()

 self.upload_mission(missionlist)

 # Simple goto command

 self.Vehicle2.simple_goto(self.Vehicle1.location.global_relative_frame) # Send vehicle

 '''If No Divergent, do some steps'''

 if not self.diverging_location and not self.diverging_altitude and self.Vehicle1.armed is True:

 # Set Simulator Speed

 self.Vehicle2.parameters['SIM_SPEEDUP'] = 1

 # show Simulator Speed to Operator

 print(("\nV2 Simulation Speed: ") + colored(self.Vehicle2.parameters['SIM_SPEEDUP'], 'red',

 'on_yellow'))

 # Grip Mission from Vehicle 1

 missionlist = self.download_mission()

 self.upload_mission(missionlist)

 # show info to Operator

 print(('Step (1):') + colored(' Downloading Mission from Vehicle 1', 'green'))

 print(('Step (2):') + colored(' Clearing & Uploading Mission to Vehicle 2', 'green'))

 self.Vehicle2.mode = VehicleMode("AUTO")

 print(('Step (3):') + colored(' Vehicle 2 : AUTO Mode', 'green'))

 self.Vehicle2.commands.next = self.Vehicle1.commands.next

 print(colored('V2 Reached there with new Missionlist', 'green'))

83

 self.syncing_excel_update(entering=False, sync_length=time.time()-enter_time)

 new_sync = True

 # print Correction Time

 print("\nCorrection:" + colored(' '+ str(time.time()-enter_time) + ' Seconds', 'green', 'on_white'))

 # Go to Terminating

 self.machine.set_state('Monitoring')

 break

 """ -------------------------------- Terminating State ------------------------------ """

 if self.machine.state == 'Pre-Terminating':

 print(colored('\nI am in Pre-Terminating State', 'blue', 'on_cyan'))

 sys.stdout.write("\r" + 'Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print' '

 time.sleep(2)

 asked = False

 asked_time = time.time()

 while True:

 self.excel_update() # Update excel sheet

 self.iteration_counter += 1

 self.save_position()

 # Question 1

 answer1 = raw_input(colored('\nDo you want to Terminate AMS ? [y/n] ', 'red'))

 if answer1 == 'y':

 print(colored('AMS will be Terminated in 5 Seconds', 'white','on_green'))

 time.sleep(6)

 print(colored('\nAutonomy Monitoring Service is Not Active', 'white', 'on_magenta'))

 sys.stdout.write("\r" + 'End Time : ' + time.ctime())

 sys.stdout.flush()

 print'\n'

 # Two Exits for multiprocessors

 exit()

 exit()

 else:

 while True:

 sys.stdout.write("\r" + colored('AMS will stand by for Manual Terminating ...\n', 'red'))

 sys.stdout.flush()

 """ -------------------------------- End of State Machine ------------------------------ """

try:

 AMS = AutonomyMonitoringService()

 AMS.main()

 AMS.workbook.save(AMS.workbook_name)

except KeyboardInterrupt:

 print(colored('\n\nI am in Terminating State', 'blue', 'on_cyan'))

84

 sys.stdout.write("\r" + 'End Time : ' + colored(time.ctime(), 'red'))

 sys.stdout.flush()

 print'\n'

 print(' Finally was hit\n\n')

 AMS.workbook.save(AMS.workbook_name)

 fig = plt.figure(figsize=[15, 10])

 ax = plt.axes(projection='3d')

 ax.plot3D(AMS.x_position_array_1, AMS.y_position_array_1, AMS.z_position_array_1, 'red', label='Vehicle 1')

 ax.plot3D(AMS.x_position_array_2, AMS.y_position_array_2, AMS.z_position_array_2, 'blue', label='Vehicle 2')

 ax.set_title('3D path')

 ax.set_xlabel('East Position')

 ax.set_ylabel('North Position')

 ax.set_zlabel('Altitude')

 ax.legend(frameon=False, loc='upper right', ncol=1)

 plt.savefig("3dfig.png")

 plt.show()

85

Appendix B. Testing Simulation Results

Sample

Trials

Mission

Duration

(min)

Injected

Event

Divergence

Type
Detect Syncing Time (s)

Total Detections

Numbers in

Mission

(n) UCL Mean LCL UCL Mean LCL

1 9.0 None None No None None 273.0 34.3 20.7 7.0 4.8 1.3 0.0

2 10.6 None None No None None 280.0 2.4 0.4 0.0 4.0 1.0 0.0

3 9.40 None None No None None 312.0 17.0 8.4 0.0 1.8 0.3 0.0

4 9.06 None None No None None 297.0 8.2 3.0 0.0 0.9 0.1 0.0

5 15.19 None None No None None 264.0 74.1 52.4 30.7 4.8 1.3 0.0

6 10.55 None None No None None 327.0 19.6 10.1 0.6 1.0 0.1 0.0

7 11.75 None None No None None 390.0 25.2 14.0 2.8 1.9 0.3 0.0

8 10.04 None None No None None 336.0 38.6 24.0 9.3 1.4 0.2 0.0

9 9.6 None None No None None 278.0 59.5 40.4 21.4 4.7 1.3 0.0

Sum 95.2 2757.0 279.0 173.3 71.7 25.2 5.8 0.0

Weighted Mean 10.7 306.3 30.1 18.5 7.4 2.7 0.6 0.0

Max 15.2 390.0 74.1 52.4 30.7 4.8 1.3 0.0

Min 9.0 264.0 2.4 0.4 0.0 0.9 0.1 0.0

Range 6.2 126.0 71.7 52.0 30.7 3.9 1.3 0.0

Variance (s²) 3.75 1603.3 554.8 302.8 121.4 2.9 0.3 0.0

Weighted StdDev 1.9 22.5 16.6 10.5 1.7 0.6 0.0

C Chart for Altitude (m)C Chart for Location (m)

Location + Environment
Autonomy Monitoring Service (AMS)

Sample

Trials

Mission

Duration

(min)

Injected

Event

Divergence

Type
Detect Syncing Time (s)

Total Detections

Numbers in

Mission

(n) UCL Mean LCL UCL Mean LCL

1 16.9 None None No None None 580 25.89 14.47 3.06 2.331 0.41 0

2 17.5 None None No None None 597 25.08 13.9 2.72 1.311 0.15 0

3 30.15 None None No None None 965 32.11 19.03 5.94 17.8 8.87 0

4 15 None Altitude Yes 2.4 2 1480 13.24 5.93 0 2.33 0.41 0

Location Yes 6.8

5 17.7 None None No None None 1450 30.66 17.95 5.24 2.47 0.454 0

6 20.43 None None No None None 1644 36.19 22.09 7.99 2.39 0.43 0

7 11.6 None Altitude Yes 2.4 None 766 137.63 106.65 75.67 14.79 6.91 0

Altitude Yes

8 20.6 None None No None None 1693 42.14 26.65 11.17 3.08 0.65 0

9 5.6 None None No None None 355 24.8 13.69 2.59 2.642 0.5 0

Sum 155.5 11.6 2.0 9530.0 367.7 240.4 114.4 49.1 18.8 0.0

Weighted Mean 15.8 3.9 1058.9 38.8 25.0 11.3 5.0 1.8 0.0

Max 30.1 6.8 1693.0 137.6 106.7 75.7 17.8 8.9 0.0

Min 5.6 2.4 355.0 13.2 5.9 0.0 1.3 0.2 0.0

Range 24.5 4.4 1338.0 124.4 100.7 75.7 16.5 8.7 0.0

Variance (s²) 45.1 6.5 263436.1 1382.8 932.8 568.4 38.5 11.1 0.0

Weighted StdDev 6.7 2.5 32.4 26.5 20.5 5.8 3.1 0.0

Altitude + Environment
Autonomy Monitoring Service (AMS) C Chart for Location (m) C Chart for Altitude (m)

86

Sample

Trials

Mission

Duration

(min)

Injected

Event

Divergence

Type
Detect Syncing Time (s)

Total Detections

Numbers in

Mission

(n) UCL Mean LCL UCL Mean LCL

1 13.1 1 Location Yes 4.5 1 430 44.06 28.15 12.23 2.765 0.547 0

2 12.5 1 Location Yes 7.6 3 424 37.91 23.4 8.89 2.3 0.4 0

Location Yes 4.1

Location Yes 6.3

3 11.8 1 Location Yes 10.4 1 411 35 21.19 7.38 4.69 1.29 0

4 8.1 1 Location Yes 3 2 269

Location Yes 6.2

5 9.4 1 Location Yes 6.8 8 364 76.11 54.06 32 6.22 1.99 0

Location Yes 11.9

2 Location Yes 2.7

Location Yes 6.5

3 Location Yes 10.7

Location Yes 2.4

4 Location Yes 6.4

5 Location Yes 7.1

6 10.2 1 Location Yes 7.7 4 354 72.92 51.41 29.9 4.6 1.25 0

2 Location Yes 11.5

3 Location Yes 6.2

4 Location Yes 10.5

7 10.36 1 Location Yes 6.57 9 405 80.82 57.98 35.13 6.61 2.18 0

2 Location Yes 13.3

3 Location Yes 6.56

4 Location Yes 10.7

5 Location Yes 2.9

6 Location Yes 6.8

7 Location Yes 2.8

8 Location Yes 6.3

9 Location Yes 7

8 8.9 1 Location Yes 5.2 16 381 90.11 65.78 41 5.66 1.72 0

2 Location Yes 2.3

3 Location Yes 6.6

4 Location Yes 5.2

5 Location Yes 3

6 Location Yes 6.9

7 Location Yes 2.3

8 Location Yes 2.8

9 Location Yes 4

10 Location Yes 12.5

11 Location Yes 4.1

12 Location Yes 6.4

13 Location Yes 8.3

14 Location Yes 10.5

15 Location Yes 2.9

16 Location Yes 6.2

9 9.9 1 Location Yes 12.5 5 376 78.91 56.39 33.86 6.18 1.97 0

2 Location Yes 5.7

3 Location Yes 11.8

4 Location Yes 5.45

5 Location Yes 10.6

Sum 94.2 330.3 49.0 3414.0 515.8 358.4 200.4 39.0 11.3 0.0

Weighted Mean 9.9 6.7 5.4 379.3 58.5 40.5 22.5 4.4 1.3 0.0

Max 13.1 13.3 16.0 430.0 90.1 65.8 41.0 6.6 2.2 0.0

Min 8.1 2.3 1.0 269.0 35.0 21.2 7.4 2.3 0.4 0.0

Range 4.9 11.0 15.0 161.0 55.1 44.6 33.6 4.3 1.8 0.0

Variance (s²) 2.7 10.0 23.8 2411.0 475.8 310.0 177.6 2.6 0.4 0.0

Standard Deviation (s) 1.7 3.2 4.9 49.1 21.8 17.6 13.3 1.6 0.7 0.0

Weighted StdDev 1.7 3.2 4.9 27.8 21.1 14.6 2.1 0.8 0.0

Location + Divergent

C Chart for Location (m) C Chart for Altitude (m)Autonomy Monitoring Service (AMS)

87

Sample

Trials

Mission

Duration

(min)

Injected

Event

Divergence

Type
Detect Syncing Time (s)

Total Detections

Numbers in

Mission

(n) UCL Mean LCL UCL Mean LCL

1 9.14 1 Altitude Yes 2.4 1 666 73.23 51.67 30.1 9.47 3.7 0

2 8.55 1 Altitude Yes 2.2 2 657 58.63 39.63 20.81 10.22 4.13 0

Location Yes 5.1

3 8.8 1 Altitude Yes 2.4 1 665 42.77 27.14 11.51 8.2 3 0

4 8.37 1 Altitude Yes 3.2 6 654 53.99 35.99 18 11.12 4.65 0

Location Yes 3.9

Location Yes 8.3

Location Yes 11.1

Location Yes 4.0

Location Yes 7.6

5 8.59 1 Altitude Yes 2.4 1 664 53.05 35.24 17.43 5.48 1.64 0

6 8.19 1 Altitude Yes 2.3 5 648 50.02 32.83 15.64 8.41 3.11 0

Location Yes 5.0

Location Yes 3.1

Location Yes 17.9

Location Yes 10.3

7 9.8 1 Altitude Yes 2.3 7 744 59.32 40.28 21.24 11.43 4.84 0

Location Yes 5.1

Location Yes 6.8

2 Altitude Yes 2.7

Location Yes 12.5

Location Yes 3.7

Location Yes 7.5

8 9.6 1 Altitude Yes 2.1 6 758 26.27 14.75 3.23 7.39 2.57 0

2 Altitude Yes 2.0

Location Yes 3.6

Location Yes 5.9

Location Yes 2,8

Location Yes 6.7

9 12.1 1st Altitude Yes 3.2 17 949 52.64 34.92 17.19 7.3 2.53 0

Location Yes 4.0

Location Yes 5.9

Location Yes 11.3

Location Yes 3.2

Location Yes 6.7

2 Altitude Yes 2.0

Location Yes 7.8

Location Yes 3.3

Location Yes 7.0

Location Yes 2.7

Location Yes 7.1

Location Yes 3.3

Location Yes 6.8

Location Yes 9.2

Location Yes 3.2

Location Yes 7.0

Sum 83.2 246.2 46.0 6405.0 469.9 312.5 155.2 79.0 30.2 0.0

Weighted Mean 9.2 5.5 711.7 51.9 34.5 17.1 8.7 3.3 0.0

Max 12.1 17.9 949.0 73.2 51.7 30.1 11.4 4.8 0.0

Min 8.2 2.0 648.0 26.3 14.8 3.2 5.5 1.6 0.0

Range 3.9 15.9 301.0 47.0 36.9 26.9 6.0 3.2 0.0

Variance (s²) 1.5 11.4 9552.8 163.1 100.5 53.3 3.8 1.1 0.0

Weighted StdDev 1.2 3.4 12.8 10.0 7.3 1.9 1.1 0.0

Autonomy Monitoring Service (AMS)

Altitude + Divergent
C Chart for Location (m) C Chart for Altitude (m)

88

Bibliography

Ad, W. O. R. K. L. O. (2017). Proceedings of the Human Factors and Ergonomics

Society. Proceedings of the Human Factors and Ergonomics Society, 2017-

Octob(1997), 162–165.

AL, A. I. R. C. A. N. D. S. C. M. A. F. B., & Kniskern, K. M. (2006). The Need for a

USAF UAV Center of Excellence. 2019.

Carnahan, K., & Heiges, M. (2015). How to safely flight test a UAV. AUVSI Unmanned

Systems 2015, 1–18.

Davoudi, A., Malhotra, K. R., Shickel, B., Siegel, S., Williams, S., Ruppert, M., Bihorac,

E., Ozrazgat-Baslanti, T., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). The

Intelligent ICU Pilot Study: Using Artificial Intelligence Technology for

Autonomous Patient Monitoring. 1–22. http://arxiv.org/abs/1804.10201

Giese, S., Carr, D., & Chahl, J. (2013). Implications for unmanned systems research of

military UAV mishap statistics. IEEE Intelligent Vehicles Symposium, Proceedings,

Iv, 1191–1196. https://doi.org/10.1109/IVS.2013.6629628

Howitt, S. L., & Richards, D. (2003). The human machine interface for airborne control

of UAVs. 2nd AIAA “Unmanned Unlimited” Conference and Workshop and

Exhibit, September, 1–10. https://doi.org/10.2514/6.2003-6593

Liu, Q., He, M., Xu, D., Ding, N., & Wang, Y. (2018). A Mechanism for Recognizing

and Suppressing the Emergent Behavior of UAV Swarm. Mathematical Problems in

Engineering, 2018. https://doi.org/10.1155/2018/6734923

Madni, A., & Madni, C. (2018). Architectural Framework for Exploring Adaptive

Human-Machine Teaming Options in Simulated Dynamic Environments. Systems,

6(4), 44. https://doi.org/10.3390/systems6040044

Oakland, J. S. (2003). TQM text and cases.

Panagiotidou, S., Nenes, G., & Georgopoulos, P. (2018). A sequential monitoring

Bayesian control scheme for attributes. Quality Technology and Quantitative

Management, 17(1), 108–124. https://doi.org/10.1080/16843703.2018.1556854

89

Pengbo, X., Jin, G., Lu, L., Tan, L., & Ning, J. (2017). The key technology and

simulation of UAV flight monitoring system. Proceedings of 2016 IEEE Advanced

Information Management, Communicates, Electronic and Automation Control

Conference, IMCEC 2016, 1551–1557.

https://doi.org/10.1109/IMCEC.2016.7867478

Quigley, M., Goodrich, M. A., & Beard, R. W. (n.d.). Semi-Autonomous Human-UAV

Interfaces for.

Ramirez-Atencia, C., Rodriguez-Fernandez, V., Gonzalez-Pardo, A., & Camacho, D.

(2017). New Artificial Intelligence approaches for future UAV Ground Control

Stations. 2017 IEEE Congress on Evolutionary Computation, CEC 2017 -

Proceedings, 2775–2782. https://doi.org/10.1109/CEC.2017.7969645

Wargo, C. A., Church, G. C., Glaneueski, J., & Strout, M. (2014). Unmanned Aircraft

Systems (UAS) research and future analysis. IEEE Aerospace Conference

Proceedings, 1–16. https://doi.org/10.1109/AERO.2014.6836448

Williams, K. W. (2006). 8. Human Factors Implications of Unmanned Aircraft

Accidents: Flight-Control Problems. Advances in Human Performance and

Cognitive Engineering Research, 7(April), 105–116. https://doi.org/10.1016/S1479-

3601(05)07008-6

Woodall, W. H., Spitzner, D. J., Montgomery, D. C., & Gupta, S. (2004). Using control

charts to monitor process and product quality profiles. Journal of Quality

Technology, 36(3), 309–320. https://doi.org/10.1080/00224065.2004.11980276

90

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

06-22-2020
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

October 2018 – July 2020

TITLE AND SUBTITLE

Design and Test of an Autonomy Monitoring Service to Detect

Divergent Behaviors on Unmanned Aerial Systems.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Loay Y. Almannaei, Major, RBAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way, Building 640

WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
REPORT NUMBER

 AFIT-ENV-MS-20-J-059

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 711th Human Performance Wing, RHCCT

Jessica Bartik, Research Psychologist

Area B, 2210 Eighth street, Bldg. 146

Wright-Patterson AFB, OH 45433-7541

Jessica.bartik.1@us.af.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

711HPW

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright protection in

the United States.
14. ABSTRACT
Operation of Unmanned Aerial Vehicles (UAV) support many critical missions in the United State Air Force

(USAF). Monitoring abnormal behavior is one of many responsibilities of the operator during a mission. Some

behaviors are hard to be detect by an operator, especially when flying one or more autonomous vehicles; as such,

detections require a high level of attention and focus to flight parameters. In this research, a monitoring system and

its algorithm are designed and tested for a target fixed-wing UAV. The Autonomy Monitoring Service (AMS)

compares the real vehicle or simulated Vehicle with a similar simulated vehicle using Software in the Loop (SITL).

It is hypothesized that the resulting design has the potential to reduce monotonous monitoring, reduce risk of losing

vehicles, and increase mission effectiveness. Performance of the prototyped AMS model was examined by several

measures, including divergence detection rate, synchronization time, and Upper Control Limit (UCL) of aircraft

location variability in different scenarios. Results showed 100% rate of divergence detection out of all divergent

events occurred. The weighted mean of AMS synchronization time was 4.02 seconds, and the weighted mean for

aircraft location variability was 44.8 meters. The overarching AMS functionality was achieved. AMS supports the

concept that humans and machines should be designed to complement each other by sharing responsibilities and

behaviors effectively, making final system safer and more reliable.

15. SUBJECT TERMS
Autonomy Monitoring, Unmanned Aerial Vehicles, Unmanned Aerial System, Detect Divergence Behaviors.

16. SECURITY
CLASSIFICATION OF:

17.
LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF
PAGES

90

19a. NAME OF RESPONSIBLE
PERSON
Dr. John M. Colombi, AFIT/ENV

a.
REPORT

U

b.
ABSTRACT

U

c.
THIS
PAGE

U

19b. TELEPHONE NUMBER
(Include area code)
(937) 255-3636 x3347
John.Colombi@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Design and Test of an Autonomy Monitoring Service to Detect Divergent Behaviors on Unmanned Aerial Systems
	Recommended Citation

	tmp.1604433281.pdf.kNnCn

