
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2004 

Enhancing the Instantaneous Dynamic Range of Electronic Enhancing the Instantaneous Dynamic Range of Electronic 

Warfare Receivers Using Statistical Signal Processing Warfare Receivers Using Statistical Signal Processing 

Bryan E. Smith 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Signal Processing Commons 

Recommended Citation Recommended Citation 
Smith, Bryan E., "Enhancing the Instantaneous Dynamic Range of Electronic Warfare Receivers Using 
Statistical Signal Processing" (2004). Theses and Dissertations. 4051. 
https://scholar.afit.edu/etd/4051 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F4051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4051?utm_source=scholar.afit.edu%2Fetd%2F4051&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


AFIT/GE/ENG/04-22

ENHANCING THE INSTANTANEOUS DYNAMIC RANGE OF ELECTRONIC

WARFARE RECEIVERS USING STATISTICAL SIGNAL PROCESSING

THESIS
Bryan E. Smith

First Lieutenant, USAF

AFIT/GE/ENG/04-22

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.



AFIT/GE/ENG/04-22

ENHANCING THE INSTANTANEOUS DYNAMIC RANGE OF ELECTRONIC

WARFARE RECEIVERS USING STATISTICAL SIGNAL PROCESSING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Bryan E. Smith, B.S.E.E.

First Lieutenant, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.





Acknowledgements

The list is large and genuine. First, I would like to thank a great instructor Major

Claypoole, who always believed in me. I would like to thank Major Hale, who always

pushed me to my limits and beyond, but made me a much better engineer in the process.

I learned many of the required research skills for my thesis in Major Hale’s and Major

Claypoole’s classes. I would like to thank Dr. Tsui. It was an honor working with one of

the recognized experts in Electronic Warfare. I would also like to thank all of the support

staff at AFIT, especially the librarians who helped the Lt with the Tennessee accent find

books and Mr. Jim Gray who always seemed to show up and straighten out things in the

older Engineering building.

Last but not least, I owe a large debt of gratitude to my thesis advisor, Dr. Pachter,

who was a constant source of encouragement during the thesis process. I am a better

engineer, professional, and officer through my time spent with Dr. Pachter.

Bryan E. Smith

iv



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 EW Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1.1 EW System Operation . . . . . . . . . . . . . . . . . 1-2

1.1.2 EW Receiver Operation with Time-Coincident Signals 1-5

1.2 IDR Analysis Simplifying Assumptions . . . . . . . . . . . . 1-5

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1-7

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

1.6 Sponsor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Instantaneous Dynamic Range Literature Review . . . . . . . 2-1

2.3 Cramer-Rao Bound Literature Review . . . . . . . . . . . . . 2-1

2.4 Frequency Estimation Literature Review . . . . . . . . . . . 2-3

2.4.1 Direct ML Estimator for Complex Sinusoids in AWGN 2-4

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

III. IDR Analysis of a DFT-Based Intercept Receiver . . . . . . . . . . . . 3-1

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2 Deterministic Analysis: The FT of the Sum of Two Sinusoids 3-1

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2.2 Infinite Data Record . . . . . . . . . . . . . . . . . . 3-2

3.2.3 Finite Data Record . . . . . . . . . . . . . . . . . . . 3-2

3.2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . 3-5

3.2.5 Discrete Fourier Transform of Two Sinusoids . . . . 3-7

3.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.3 DFT-Based Intercept Receiver Frequency Detection/Estimation
in Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

v



Page

3.3.1 Frequency Interpolation Methods . . . . . . . . . . . 3-14

3.4 SLR Method Analysis . . . . . . . . . . . . . . . . . . . . . . 3-25

3.4.1 SLR Error Analysis . . . . . . . . . . . . . . . . . . 3-25

3.4.2 SLR Simulation Description . . . . . . . . . . . . . . 3-26

3.4.3 SLR Simulation Results . . . . . . . . . . . . . . . . 3-29

3.4.4 SLR IDR Results . . . . . . . . . . . . . . . . . . . . 3-32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32

IV. Cramer-Rao Bound for Instantaneous Dynamic Range . . . . . . . . 4-1

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.2 Derivation of the CRB for Multiple Sinusoids in AWGN . . . 4-1

4.2.1 Complex Signal CRB . . . . . . . . . . . . . . . . . 4-1

4.2.2 Real Signal CRB . . . . . . . . . . . . . . . . . . . . 4-7

4.3 Cramer-Rao Bound for Instantaneous Dynamic Range . . . . 4-9

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14

V. IGLS Algorithm-Based Parametric Receiver . . . . . . . . . . . . . . . 5-1

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2 IGLS Development . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2.1 Linear Prediction Theory . . . . . . . . . . . . . . . 5-1

5.2.2 Iterative Generalized Least Squares . . . . . . . . . 5-7

5.2.3 Confidence Intervals for IGLS Estimates . . . . . . . 5-9

5.2.4 IGLS Algorithm Simulations . . . . . . . . . . . . . 5-12

5.3 IGLS algorithm-based Parametric Receiver compared to the
IDR-CRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21

5.3.1 IGLS Algorithm-based Parametric Receiver IDR for
Loose Frequency Estimates . . . . . . . . . . . . . . 5-24

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28

VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

Appendix A. Interference in an EW Receiver . . . . . . . . . . . . . . . . . A-1

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.2 Random Process Theory . . . . . . . . . . . . . . . . . . . . A-1

A.3 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Appendix B. Power Spectral Density and the Periodogram . . . . . . . . . B-1

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

B.2 Deterministic Power Spectral Density . . . . . . . . . . . . . B-1

B.3 Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB-1

vi



List of Figures
Figure Page

1.1. Parameters measured by an EW receiver . . . . . . . . . . . . . . . 1-2

1.2. Typical Digital EW System Block Diagram . . . . . . . . . . . . . . 1-3

1.3. 3-Dimensional Parameter Cube . . . . . . . . . . . . . . . . . . . . 1-4

1.4. EW Receiver intercepting Time-Coincident Signals . . . . . . . . . 1-6

2.1. Direct ML estimator surface plot for two complex sinusoids . . . . . 2-6

3.1. Infinite measurement two sinusoid PSD . . . . . . . . . . . . . . . . 3-3

3.2. Two Sinusoids Non-windowed and Windowed FT Magnitude . . . . 3-5

3.3. Two Sinusoids within Fourier Resolution FT Magnitude . . . . . . 3-6

3.4. Single sinusoid continuous and sampled FT magnitude . . . . . . . 3-8

3.5. Two Sinusoids Zero Padded and Not Zero Padded DFT Magnitude 3-9

3.6. Orthogonal and Not Orthogonal Sinusoids DFT magnitude . . . . . 3-10

3.7. Threshold Demonstration with Noise and Noise+1 Sinusoid . . . . . 3-12

3.8. Two Sinusoid + Noise DFT Magnitude . . . . . . . . . . . . . . . . 3-13

3.9. Sinc Lobe Compensation Demonstration. . . . . . . . . . . . . . . . 3-14

3.10. MPP concept illustration. . . . . . . . . . . . . . . . . . . . . . . . 3-16

3.11. Deterministic bias of MPP interpolator for real and complex signals 3-17

3.12. MPP Interpolator MC MSE versus ∆ and SNR . . . . . . . . . . . 3-18

3.13. Deterministic bias of PBI interpolator for real and complex signals 3-19

3.14. PBI Interpolator MC MSE versus ∆ and SNR . . . . . . . . . . . . 3-20

3.15. Deterministic bias of GPBI interpolator for real and complex signals 3-21

3.16. GPBI Interpolator MC MSE versus ∆ and SNR . . . . . . . . . . . 3-22

3.17. Interpolator 2 Sin Bias . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

3.18. Interpolator 2 Sin interpolator estimate f̂1 MSE versus ∆ and SNR 3-24

3.19. Spectral Leakage Estimate Error Statitics vs. Signal 1 SNR and Bins 3-27

3.20. Pd and Pfa results for SLR method. . . . . . . . . . . . . . . . . . . 3-30

3.21. Pd and Pfa results for SLR method. . . . . . . . . . . . . . . . . . . 3-31

3.22. Pd and Pfa results for SLR method. . . . . . . . . . . . . . . . . . . 3-33

3.23. Histogram of SLR compensated DFT detections . . . . . . . . . . . 3-34

3.24. SLR method Pd for low SNR 1. . . . . . . . . . . . . . . . . . . . . 3-34

4.1. Equi-amplitude CRB validation . . . . . . . . . . . . . . . . . . . . 4-8

4.2. Complex IDR-CRB versus ∆f . . . . . . . . . . . . . . . . . . . . . 4-11

4.3. Real Signal IDR-CRB Algorithm Flowchart . . . . . . . . . . . . . 4-12

4.4. IDR-CRB (N = 64, 128, 256, 512) versus ∆f . . . . . . . . . . . . . 4-13

5.1. Extended Prony Method Estimation Accuracy . . . . . . . . . . . . 5-14

5.2. [IGLS Estimation Accuracy (EPM, N=32) . . . . . . . . . . . . . . 5-15

vii



Figure Page

5.3. IGLS Estimation Accuracy (FFT, N=32) . . . . . . . . . . . . . . . 5-17

5.4. IGLS Estimation Accuracy (FFT, N=128) . . . . . . . . . . . . . . 5-18

5.5. IGLS Estimation Accuracy (EPM, M=128) . . . . . . . . . . . . . . 5-19

5.6. Figure 5.5(a) zoom analysis . . . . . . . . . . . . . . . . . . . . . . 5-20

5.7. LP Variance Estimate Accuracy . . . . . . . . . . . . . . . . . . . . 5-21

5.8. Frequency Estimate Confidence Intervals . . . . . . . . . . . . . . . 5-22

5.9. IDR-CRB IGLS Performance Analysis Flowchart . . . . . . . . . . 5-23

5.10. IGLS performance for IDR-CRB A2b (EPM) . . . . . . . . . . . . . 5-25

5.11. IGLS performance for IDR-CRB A2b (FFT) . . . . . . . . . . . . . 5-26

5.12. IGLS performance for IDR-CRB A2b (M=128, facc = 1
40N ) . . . . . 5-27

5.13. IDR determination for two sinusoids in white noise. . . . . . . . . 5-28

viii



List of Tables
Table Page

1.1. Example of a typical PDW format . . . . . . . . . . . . . . . . . . . 1-3

3.1. SLR IDR Results (Noise only Pfa = 0.01) . . . . . . . . . . . . . . . 3-32

5.1. LP Coefficients to Frequency Relationship . . . . . . . . . . . . . . 5-4

ix



List of Symbols
Symbol Page

n Discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

p Number of sinusoidal signals . . . . . . . . . . . . . . . . . . . 1-7

Ai ith signal amplitude . . . . . . . . . . . . . . . . . . . . . . . . 1-7

fi ith signal RF frequency . . . . . . . . . . . . . . . . . . . . . . 1-7

φi ith signal phase . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

signal 1 Higher amplitude signal . . . . . . . . . . . . . . . . . . . . . . 1-7

signal 2 Lower amplitude signal . . . . . . . . . . . . . . . . . . . . . . 1-7

x EW Receiver Measurement Model . . . . . . . . . . . . . . . . 1-7

s Signal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

w AWGN vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

N Number of Discrete Time Measurement Samples . . . . . . . . 1-7

θ True Parameter Value . . . . . . . . . . . . . . . . . . . . . . . 2-2

θ̂ Estimated Parameter Value . . . . . . . . . . . . . . . . . . . . 2-2

b(θ̂) Estimate Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

var{θ̂} Estimate Variance . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

xc Complex signal measurement . . . . . . . . . . . . . . . . . . . 2-4

J(f) Direct ML objective function . . . . . . . . . . . . . . . . . . . 2-5

x(t) Continuous time measurement model . . . . . . . . . . . . . . 3-2

X(f) FT of continuous time measurement model . . . . . . . . . . . 3-2

xI(t) Infinite time measurement model . . . . . . . . . . . . . . . . 3-2

τ Measurement Time . . . . . . . . . . . . . . . . . . . . . . . . 3-3
1
τ Fourier Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

T Sampling Period (one) . . . . . . . . . . . . . . . . . . . . . . 3-6

fo Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . 3-6

xs(t) Sampled measurement signal . . . . . . . . . . . . . . . . . . . 3-6

X(k) DFT of x(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

XSLR(k) SLR method DFS . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
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Abstract

Accurately processing multiple, time-coincident signals presents a challenge to Elec-

tronic Warfare (EW) receivers, especially if the signals are close in frequency and/or mis-

matched in amplitude. The metric that quantifies an EW receiver’s ability to measure

time-coincident signals is the Instantaneous Dynamic Range (IDR), defined for a given

frequency estimation accuracy, a given frequency separation and a given SNR as the max-

imum signal amplitude ratio that can be accommodated. Using a two sinusoid time-series

model, this thesis analyzes IDR for ideal intercept and parametric digital EW receivers.

In general, the number of signals contained in the EW receiver measurement interval

is unknown. Thus, the non-parametric Discrete Fourier Transform (DFT) is employed in

an EW intercept receiver with the associated amplitude dependent spectral leakage which

limits IDR. A novel method to improve the DFT-based intercept receiver IDR by com-

pensating for the high amplitude signal’s spectral leakage using computationally efficient 3

bin interpolation algorithms is proposed and analyzed. For a desired frequency estimation

accuracy of 1.5 bins, the method achieves an IDR of 57 dB with little frequency separation

dependence when the signals are separated by more than 2 bins with a low amplitude

signal SNR of 10 dB.

For situations where the number of signals contained in the measurement interval is

known, the IDR of an Iterative Generalized Least Squares (IGLS) algorithm-based para-

metric receiver is analyzed. A real and complex signal IDR Cramer-Rao Bound (IDR-CRB)

is derived for parametric receivers by extending results contained in Rife. For tight fre-

quency estimate requirements (these requirements depend on the number of measurement

samples), the IDR-CRB yields achievable bounds. For less stringent frequency estimate

requirements, the IDR-CRB is unrealistic due to the noise threshold inherent to frequency

estimation. Thus, to achieve good results when less stringent frequency estimates are

required, the author defines the IGLS algorithm-based parametric receiver IDR at the am-

plitude ratio where the frequency estimates first achieve efficiency, i.e., the amplitude ratio

where the overmodelling condition first ceases.
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ENHANCING THE INSTANTANEOUS DYNAMIC RANGE OF ELECTRONIC

WARFARE RECEIVERS USING STATISTICAL SIGNAL PROCESSING

I. Introduction

T
he ability to identify threat radars is of primary concern to the warfighter. When

flying missions, pilots rely on the Electronic Warfare (EW) system to perform this

critical task by characterizing the threat radar’s signal. If a threat radar is misidentified or

worse, undetected, the consequences can be fatal. Of increasing concern to digital EW re-

ceiver designers is the growing number of RF transmissions; increasing the probability that

the EW receiver intercepts time-coincident signals. Because the time-coincident signals in-

terfere with the receiver’s ability to measure both signals correctly, special processing is

required which is the focus of this thesis.

1.1 EW Receiver

EW receivers are unique from other receivers operating in the RF region, e.g., radar

and communication receivers. The communication and radar receivers know the frequency,

types of modulation, and bandwidth of the incoming signal [1]. In an EW receiver, no

prior knowledge of the transmission signal is assumed. In addition, in an EW receiver,

even the number of intercepted signals is unknown. Thus, EW systems employ wideband

radio frequency spectrum and signal analyzers capable of continuous automatic real-time

wideband search, detection, and analysis of signals, e.g., the Australian Blue Owl System

[2].

An EW receiver measures certain signal parameters during each measurement interval

to enable the EW system to identify the signals. Figure 1.1 is an illustration of the

parameters, also listed below, that are measured by an EW receiver.

• Frequency

• Angle of Arrival (AOA)
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Figure 1.1: Parameters measured by EW receiver [1].

• Pulse Amplitude (PA)

• Pulse Width (PW)

• Time of Arrival (TOA)

• Polarization - EM polarization of pulse i.e. vertical, horizontal, right hand circular,

left hand circular.

These parameters are used by the EW system to associate pulses to emitters.

1.1.1 EW System Operation. To understand the purpose and requirements of an

EW receiver, it is also helpful to understand the entire system operation. In this section,

a walk-through of the operations encountered by a signal in the EW system is discussed.

The walk-through follows the block diagram of Figure 1.2 of a typical EW system with

digital receiver for radar pulse interception. The EW system is analyzed in three parts:

the receiver, the preprocessor, and the post-processor.

Following Fig. 1.2, the antenna intercepts the signal and propagates the signal to

the receiver RF amplifier where the information is down converted to an IF frequency.

The down converted signals are passed to the Analog-to-Digital Converter (ADC) where
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Figure 1.2: Typical Digital EW System Block Diagram [1].

Table 1.1: Example of a typical PDW format [1].

Parameters Range No. of Bits

Frequency Up to 32 GHz 15 (1-MHz resolution)
Pulse Amplitude Up to 128 dB 7 (1-dB resolution)
Pulse width Up to 204 µs 12 (0.05 µs resolution)
TOA Up to 50 sec 30 (0.05-µs resolution)
AOA 360 deg 9 (1-deg resolution)
BPSK signal flag 1
Chirp signal flag 1
Total no. of bits 75

they are time sampled, i.e., a discrete-time representation of the signal. This discrete-time

data is passed to the Frequency/Spectrum analysis module in measurement blocks where

spectrum/frequency estimation is performed. The frequency/spectrum analysis results

are passed to the encoder to form the Pulse Descriptor Word (PDW) containing all of

the parameters for any signals contained in the data. An example of a typical PDW is

contained in Table 1.1.

The preprocessor processes the stream of PDW’s received from the receiver into

specific radar pulse trains through a process called de-interleaving. Of the five parameters

contained in a PDW, the three parameters used to accomplish de-interleaving are the RF,

AOA, and TOA difference between the received pulses [1]. The other two parameters

are unsuitable for de-interleaving because PA is dependent on receiving and transmitting

antenna position and PW is susceptible to multipath [1]. Differences in AOA is by far the

most stable parameter to use for de-interleaving since even aircraft cannot quickly change
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Figure 1.3: 3-Dimensional cube of parameters determining the
parameter separating the Lethal threat from the Non-lethal threat
[4].

their angular position from pulse to pulse (unfortunately it is also the hardest to measure

with any accuracy) [1, 3]. Once the pulse trains are de-interleaved into individual radar

pulse trains, a number of parameters can be derived from the pulse train such as antenna

beamwidth and scan rate from successive amplitude comparisons, mode switching from

successive PW’s, frequency of emitter pulses from multiple TOA measurements referred to

as Pulse Repetition Frequency (PRF), and range from multiple AOA measurements. This

information is passed to the post-processor as an emitter report.

The post-processor functions associate the individual emitter reports to specific emit-

ters using parameters contained in the emitter report. This parameter matching is analo-

gous to determining where the emitter report overlaps with target emitters in N-dimensions

as in Fig. 1.3 for a 3-dimensional cube. Another way to view this process is querying a

database with specific fields and viewing the results. Often, there is overlap and multiple

emitters match an emitter report. When this occurs the emitter that is the greatest threat

is selected. When an emitter report does not match any entries, then an unknown emitter

is sent. Once the emitter is identified, it varies by platform on how the information is

utilized.
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1.1.2 EW Receiver Operation with Time-Coincident Signals. When time-coincident

signals are present in the receiver measurement interval, which is depicted in Fig. 1.4,

receiver performance depends on the spectral/frequency estimation function of the re-

ceiver. If the time-coincident signals are characterized correctly in the spectral estima-

tion/frequency estimation block of Figure 1.2, all other systems will operate normally.

Equi-amplitude signals well separated in frequency do not present much of a problem for

the spectral/frequency estimation function. However, signals with large amplitude ratios

and/or with close frequencies are difficult for the receiver to measure. The receiver metric

that quantifies the ability of an EW receiver to measure time-coincident signals is referred

to as the Instantaneous Dynamic Range (IDR) of an EW receiver. The standard IDR

definition is

• The standard IDR definition – The IDR is defined in [1] as the power ratio of the

maximum and minimum simultaneously received pulses that can be properly encoded

by the receiver (and is similarly defined in [4]).

Unfortunately, the standard IDR definition does not reflect the dependence IDR has on

signal frequency separation and SNR, which causes confusion when reporting results. Thus,

the IDR definition employed in this thesis is

! The thesis IDR definition – IDR is defined as the maximum signal amplitude
ratio for a given frequency estimation accuracy, a given frequency separation and
a given Signal-to-Noise Ratio (SNR) [5].

1.2 IDR Analysis Simplifying Assumptions

This thesis analyzes IDR for an ideal EW receiver. The following simplifying as-

sumptions are made for the thesis analysis:

• Operation of all devices prior to Spectrum/Frequency Estimation block is assumed

nominal to include a perfect ADC, i.e., no quantization error.

• Signals are considered pure sinusoidal tones

s(n) =

p
∑

i=1

Ai cos(2πfin + φi), (1.1)
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Figure 1.4: EW Receiver intercepting Time-Coincident Signals.

1-6



where s(n) is the received signal functional representation at discrete-time n, p is

the number of tones, Ai is the ith signal (pulse) amplitude, fi is the ith signal RF

frequency, and φi is the ith signal phase.

• Signals are assumed to fill the entire measurement period as depicted in Fig. 1.4.

• Thermal noise with the associated Additive White Gaussian Noise (AWGN) model

discussed in Appendix A is the only noise considered (no colored noise).

These same simplifying assumptions are made in [1, 5]. Throughout the thesis, signal

1 is considered the higher amplitude signal, while signal 2 is considered the

lower amplitude signal.

Under the above simplifying assumptions, the mathematical measurement model is

x(n) = s(n) + w(n), n = 0, . . . , N − 1 (1.2)

where the vector x= [x(0), x(1), . . . , x(N − 1)]T is the discrete-time measurement (after

the ADC block), s is the multiple sinusoidal tones defined in (1.1), w is AWGN, and N is

the number of samples. The measurement model of (1.2) is also the standard model used

in frequency estimation in statistical signal processing. Thus, there is a vast amount of

literature discussing the analysis of (1.2). Chapter II provides a brief review of frequency

estimation literature pertinent to the IDR focus.

1.3 Problem Statement

The goal of this research is to investigate the operation of an ideal EW digital receiver

when time-coincident signals are present to determine the maximum amplitude ratio of the

received signals at which the receiver can still properly measure all of the signals for a given

frequency estimation accuracy, a given frequency separation and a given SNR, referred to as

the receiver IDR. Because, in the ideal case considered, the measurement model is the same

as in frequency estimation; this research applies statistical signal processing techniques.

Due to the complexity of analyzing three or more signals, only two time-coincident signals

are considered in this research, however, all techniques analyzed (with the exception of the

confidence intervals established in Chapter V) can be extended to three or more signals.
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EW receivers operate on real signals, thus real signals are considered in the analysis,

although complex signals are sometimes employed to simplify examples and mathematical

analysis. The IDR definition employed throughout the thesis is defined in Section 1.1.2.

Two types of spectral/frequency estimation blocks are considered. The first type

assumes no prior knowledge of the number of signals and employs a non-parametric sig-

nal processing technique for spectral/frequency estimation, the Discrete Fourier Trans-

form (DFT). An EW receiver employing a non-parametric spectral/frequency estimation

technique is referred to as an intercept receiver in this thesis. The second type of spec-

tral/frequency estimation block assumes the number of signals is known and employs a

parametric based signal processing technique for frequency estimation, the novel Iterative

Generalized Least Squares (IGLS) algorithm. An EW receiver employing a parametric

spectral/frequency estimation technique is referred to as a parametric receiver in this the-

sis.

As the number of transmitters in the EW environment explodes, EW receivers effec-

tively processing time-coincident signals is increasing in importance. Understanding the

limitations and ways of extending IDR improves EW system operation, directly supporting

the war fighter in a critical area. Thus, this thesis has a direct impact on USAF operational

systems and results can be applied immediately to digital EW receiver design and software

updates.

1.4 Scope

IDR is analyzed for the model of (1.2) using a DFT-based intercept receiver, i.e. a

non-parametric frequency estimator, and an IGLS algorithm-based parametric receiver, i.e.

a parametric frequency estimator. Other algorithms are outside the scope of this document.

The DFT is selected because its universal applicability allows for use of hardware developed

for other applications besides EW. The IGLS algorithm is selected because it yields optimal

Maximum Likelihood frequency estimates.
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1.5 Methodology

The author assumes the reader is familiar with Fourier Transform (FT) theory and

statistical signal processing; although Chapter III only requires FT theory and basic knowl-

edge of statistics. The literature review in Chapter II is a brief overview of applicable

literature and current IDR research. In lieu of reviewing the required mathematical back-

ground for Chapters III, IV, and V in Chapter II, each of the Chapters performs a review

of the mathematics involved by (hopefully) finding a common starting point the reader

can follow in the development. In Chapter III, deterministic FT theory in the specific IDR

context is covered before the theory is extended to analyze the IDR of a novel multiple

signal estimation/detection technique. In Chapter IV, the Cramer-Rao bound for mul-

tiple equi-amplitude sinusoidal signals originally derived by Rife in [6] is re-derived, and

then extended to IDR analysis. In Chapter V, the novel frequency estimation algorithm,

Iterative Generalized Least Squares (IGLS), originally developed by Dr. Pachter and re-

searched by Zahirniak in [7] and Ingham in [8], is completely developed beginning with the

necessary linear prediction background; concluding with an IGLS comparison to the IDR

Cramer-Rao bound in Chapter IV and then a modification to parametric IDR analysis in

light of the IDR Cramer-Rao bound comparison results. Thus, original thesis results are

located at the end of Chapters III, IV, and V and are summarized in Chapter VI. The

author hopes this methodology strikes a delicate balance between inundating the reader

with information not pertinent to this research and ensuring the reader can fully under-

stand and interpret the research results. Finally, Matlab c© is employed where necessary

for simulations and analysis.

1.6 Sponsor

This research is funded by the Air Force Research Laboratory Sensors Directorate

Radio Frequency Analysis division Parametrics branch (AFRL/SNRP).

1.7 Summary

The research goal is to investigate the performance of an ideal EW digital receiver

when time-coincident signals are present in the measurement using the model of (1.2)
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to determine the maximum amplitude ratio of the received signals at which the receiver

can still properly measure all of the signals for a given frequency estimation accuracy, a

given frequency separation, and a given SNR, referred to as the receiver IDR. The IDR

is analyzed for a DFT-based intercept receiver and an IGLS algorithm-based parametric

receiver. This research is accomplished through the use of statistical signal processing

techniques coupled with extensive Matlab c© simulation and analysis.
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II. Literature Review

2.1 Introduction

T
he literature pertaining to the thesis falls under three veins. Literature concerning

IDR, the Cramer-Rao bound, and frequency estimation. Thus, all three of these

topics are discussed below. This literature review is intended to provide direction to

sources of information to understand the broad context of the research. Mathematical

background and literature pertaining directly to the methodology is covered in each of

Chapters III, IV, and V.

2.2 Instantaneous Dynamic Range Literature Review

There is little literature analyzing IDR from a statistical signal processing standpoint.

Most books mention the issue and provide a definition, but perform little analysis besides

mentioning that IDR is frequency dependent [1,3]. Part of the problem is that the standard

IDR definition is so broad that many different interpretations can be inferred. Some

engineers interpret the ability to measure the signal by using a human to interpret the

spectrum. However, the EW system requires numerical frequency estimates for proper

signal encoding. For this thesis, numerical frequency estimates are required [9].

Most analysis performed on IDR is on a finished receiver with clarification on how IDR

is defined for the tests seldom, if ever, provided, i.e., whether the spectrum is interpreted

or numerical estimates are obtained, what signal frequency difference is analyzed, etc. [9].

In addition to clarifying IDR for the analysis performed in the thesis, it is hoped that

the tests performed in this thesis become a standard for other EW engineers to use when

reporting IDR results.

2.3 Cramer-Rao Bound Literature Review

The standard optimality criteria for most estimators is Mean Square Error (MSE)

[10], defined as

MSE = E
[

(θ − θ̂)2
]

, (2.1)
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where θ is the parameter value to be estimated and θ̂ is the estimated parameter value

(Note that RMS error is defined as the square root of mean square error). MSE is used

for a variety of reasons: relates to a power statistic, penalizes large errors more than small

errors, and is the error variance for unbiased estimators as shown below.

An illuminating estimation result is obtained by multiplying out (2.1) and adding

and subtracting E{θ̂}2

MSE = E{θ̂2} − 2θE{θ̂} + θ2 + E{θ̂}2 − E{θ̂}2

= var{θ̂} + (θ − E{θ̂})2.
(2.2)

Define bias, b(θ̂) as the following

b(θ̂) = E
[

(θ − θ̂)
]

, (2.3)

and (2.2) becomes [10]

MSE = var{θ̂} + b(θ̂)2. (2.4)

Thus, the MSE is composed of the estimate variance, var{θ̂}, along with the squared

estimate bias.

Because of the bias term of (2.4), most estimators derived to minimize the MSE

directly are unrealizable [10]. However, estimators derived to minimize the estimator

variance are relatively simple to derive, and if the estimator can be made unbiased, the

estimator will minimize the MSE [10]. Limiting the analysis to unbiased estimators also

allows comparison to the Cramer-Rao Bound (CRB).

The CRB is a lower bound on the error covariance matrix for any unbiased estimator

of parameter θ [11]. The CRB is standard fare in most books on statistical signal processing

[10–12]. The CRB for multiple sinusoids in white noise is derived in [6]. In [5], a Cramer-

Rao bound is derived for complex signals IDR, when IDR is defined using the thesis

definition, and is referred to in the thesis as the complex Instantaneous Dynamic Range

Cramer-Rao Bound (IDR-CRB). The algorithm for the complex IDR-CRB is simplified in
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Chapter IV and extended to real signals. Note that algorithms that achieve the CRB are

referred to as efficient [11].

Unfortunately, comparison to the IDR-CRB is generally not valid for the intercept

receiver discussed in Chapter III because the DFT frequency estimates are dominated by

frequency quantization and bias when multiple signals are present. Thus, the CRB applies

mainly to the parametric receiver of Chapter V, since the estimates provided by the IGLS

algorithm are unbiased above threshold (the threshold effect is discussed in Chapter V).

2.4 Frequency Estimation Literature Review

Frequency estimation is a rich and varied subject. Frequency estimators estimate

the amplitude, phase and frequency parameters of sinusoidal signals. These parameters

are collectively referred to as the parameter vector θ, where θ = [A1 f1 φ1 . . . Ap fp φp]
T .

Frequency estimators are divided into two types:

• Non-parametric Frequency Estimators: Frequency estimators that do not assume

any prior knowledge concerning the data. Thus, non-parametric techniques must

also determine the number of signals present in the measurement interval

• Parametric Frequency Estimators: Methods that exploit the data consists of the sum

of sinusoids. Number of signals, referred to as model order, is assumed known.

Both types of frequency estimators estimate the amplitude, phase and frequency parame-

ters sinusoidal signals. Because parametric frequency estimators employ knowledge of the

signal structure, the estimates provided are much more accurate than the non-parametric

frequency estimators. However, if the parametric frequency estimator model order is wrong,

results are much worse than non-parametric frequency estimators.

The DFT is the non-parametric frequency estimator employed by the intercept re-

ceiver in the thesis (and most digital EW receivers). For a single complex sinusoid in white

noise, the zero-padded Periodogram (discussed in Appendix B) peak location is the Maxi-

mum Likelihood (ML) estimate [10,11]. For one or more real sinusoids or multiple complex

sinusoids, the location of resolvable Periodogram peaks provide biased frequency estimates
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as long as the frequencies are separated greater than the Fourier resolution (Fourier reso-

lution is defined in Chapter III).

There are many parametric frequency estimation techniques. To limit the scope of the

discussion, only techniques that yield optimal ML frequency estimates are mentioned, since

these are the techniques that achieve the IDR-CRB above threshold (the interested reader

can refer to [13] for a discussion of many sub-optimal frequency estimation techniques).

The four algorithms found in the literature that ML frequency estimates are listed below.

• The direct ML frequency estimator discussed below.

• The IGLS algorithm discussed in Chapter V.

• The IQML algorithm, which is closely related to IGLS, discussed in [14].

• The Mean Likelihood Frequency Estimation algorithm, discussed in [15].

2.4.1 Direct ML Estimator for Complex Sinusoids in AWGN. The direct ML

frequency estimate is a complicated function of frequencies with many local minimum.

Consider the case of two complex sinusoidal signals in white noise (which is a simpler case

than real signals)

xc(n) = A1e
j(2πf1n+φ1) + A2e

j(2πf2n+φ2) + w(n), n = 0 . . . N − 1 (2.5)

where the c subscript on xc denotes the complex sinusoids. Form the complex amplitude

vector Ac where Ac(i) = Ai exp(jφi). Now, let ei = [1, exp(j2πfi), . . . , exp(j2πfi(N − 1) ) ]T

and the N x 2 matrix E = [e1 e2]. The likelihood function of xc - referred to as like-

lihood because xc is known and the best estimate of the unknown parameter vector

θ = [A1 f1 φ1 . . . Ap fp φp] is the θ that makes xc most likely to occur - is [13]

fθ(xc) = (πσ2)−Nexp

{

− 1

σ2
(xc − AcE)H(xc − AcE)

}

. (2.6)

If the frequencies are known, the amplitudes and phases ML estimate is a simple least

squares estimate [13]

Ac = (EHE)−1EHx. (2.7)
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However, if the frequencies are also unknown, maximizing the following objective function

is required [13]

J(f) = xHE(EHE)−1EHx. (2.8)

J(f) is a highly non-linear function of the unknown frequencies. This non-linear least

squares problem is computationally intensive, and, if iterative techniques are employed,

there is no guarantee of achieving the global maximum.

Figure 2.1 is a plot of J(f) with no noise and signal parameters: N=32 (data record

length), [A1 = 1, f1 = 0.227, φ1 = 4π
3 ], [A2 = 1, f2 = 0.207, φ2 = π

3 ]. Note that even

without the noise, the function exhibits many local minima and maxima which complicates

iterative maximizing techniques - noise increases the estimation difficulty to the point

that directly maximizing J(f) is computationally prohibitive for real time applications

[13]. Thus, most practical multiple signal frequency estimation algorithms exploit the

relationship between the linear prediction coefficients and frequencies, which is the basis of

the IGLS frequency estimation algorithm discussed in Chapter V and the IQML frequency

estimation algorithm discussed in [14].

2.5 Conclusion

This Literature review is a brief, top-level overview of the issues involved in IDR

analysis. IDR, although an important receiver concept, is normally only reported with

an associated receiver with no discussion of how the results are obtained. The CRB is

normally covered in a typical class on statistical signal processing, with the CRB for mul-

tiple sinusoids in AWGN derived by Rife in [6]. Frequency estimation, a large and heavily

researched area, is discussed with emphasis on multiple frequency estimation algorithms

that achieve ML results. Finally, in Chapters III, IV, V, the necessary mathematical

background, assuming the reader is familiar with statistical signal processing concepts and

Fourier math, is discussed in order to interpret the results at the end of the chapter.
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Figure 2.1: Direct ML estimator surface plot for two complex sinusoids.
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III. IDR Analysis of a DFT-Based Intercept Receiver

3.1 Introduction

I
n EW intercept receivers, the number of received signals and the signals’ carrier frequen-

cies are assumed unknown. Thus, the intercept receiver must also detect the number of

signals present in the measurement interval in addition to measuring the signals frequencies.

Most new digital EW receivers employ the DFT for multiple signal detection/estimation. If

the signals are detected, the frequencies are estimated from the location of the DFT peaks.

Thus, in this chapter, the DFT-Based intercept receiver IDR is analyzed. In Section 3.2,

a no noise deterministic FT signal analysis is performed in the context of IDR. Then, in

Section 3.3 a DFT multiple frequency detection/estimation technique for the DFT-based

intercept receiver is proposed and IDR evaluated.

3.2 Deterministic Analysis: The FT of the Sum of Two Sinusoids

3.2.1 Introduction. In deterministic FT analysis, spectral leakage limits IDR.

Thus, the FT for the sum of two sinusoids is analyzed in this section to fully understand

spectral leakage. This section is organized as follows. In Section 3.2.2, an infinite data

record is considered, which is the easiest from an analysis standpoint. Then, Section 3.2.3

evaluates the impact of finite records on the FT and discusses spectral leakage. Data

record digitization is considered next in Sections 3.2.5 and 3.2.4 including the DFT and

IDFT; the DFT’s orthogonality principle is also considered. While deterministic Fourier

analysis is studied extensively in the literature, the subject matter covered in this section

in the specific IDR context yields important insights into the analysis of the DFT-based

intercept receiver’s IDR. During this sections analysis, a special type of IDR is considered,

called no noise IDR, which is defined as

! no noise IDR - Maximum amplitude ratio where the no noise FT technique
considered, i.e., FT or DFT, still exhibits resolvable peaks for multiple frequency
estimates. This is an analysis tool employed to aid the discussion on spectral
leakage.
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3.2.2 Infinite Data Record. General Fourier theory is developed here to motivate

the infinite time FT of two sinusoids. If the measurement interval of a signal, i.e., the data

record, approaches infinity, the signal can be represented using the FT as [16]

x(t) =

∫ ∞

−∞

X(f)ej2πftdf (3.1)

referred to as the Inverse Fourier Transform (IFT) of X(f). The FT, X(f), represents the

frequency content of x(t) [16]

X(f) =

∫ ∞

−∞

x(t)e−j2πftdt. (3.2)

Thus, x(t) and X(f) are both continuous-time and continuous-frequency representations

of the signal in the respective time and frequency domains.

The infinite FT of the sum of two sinusoids is the simplest to analyze from an IDR

standpoint. Let the infinite signal, xI(t), of interest consist of the sum of two carriers,

xI(t) = A1cos(2πf1t + φ1) + A2cos(2πf2t + φ2). (3.3)

The FT of xI(t) is

XI(f) =
A1e

jφ1

j2
δ(f −f1)−

A1e
−jφ1

j2
δ(f +f1)+

A2e
jφ2

j2
δ(f −f2)−

A2e
−jφ2

j2
δ(f +f2). (3.4)

Equation (3.4) is the infinite time (ideal) FT of the sum of two sinusoids without noise.

Note that in the noiseless, infinite time frequency representation of two sinusoids, the

frequency resolution is theoretically infinite. As far as IDR performance is concerned, the

frequencies can be detected/estimated perfectly regardless of frequency spacing. Figure 3.1

illustrates the infinite resolution for frequency detection/estimation using the magnitude

of the FT. Real world finite signal records do not yield infinite resolution.

3.2.3 Finite Data Record. For finite data record analysis, some background

tools must be developed. To analyze the finite data records, the rectangular window is
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introduced

rect

(

t

τ

)

=











1, if − τ
2 ≤ t ≤ τ

2

0, else

(3.5)

where τ is the measurement time/period1. The FT of rect( t
τ ) is

F

{

rect

(

t

τ

)}

=
cos(πfτ)

πf
= τsinc(fτ). (3.6)

Since the signals of interest are always causal, the rectangular window is shifted in the

time domain introducing a phase shift term in the FT of the rectangle window

F

{

rect

(

t − τ/2

τ

)}

= e−jπfττsinc(fτ). (3.7)

The following general convolution property of FT’s also aids the mathematical analysis of

the time-limited signal [16]

F {v(t)z(t)} = V (f) ∗ Z(f). (3.8)

1A typical measurement time for a digital EW receiver is 100 nanoseconds [1].
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The above FT tools are applied to the Fourier analysis of a signal consisting of the sum of

two sinusoids.

The signal of (3.3) is multiplied by the time-shifted rectangular time window to

model a finite data record. The Fourier Transform of the finite data record is

F {x(t)} = F

{

xI(t)rect

(

t − τ/2

τ

)}

= XI(f) ∗ e−jπfττsinc(fτ), (3.9)

using the convolution property of (3.8). Using the integral sifting property of the δ function

and linearity, the FT of two finite-time sinusoids is

X(f)=XI(f)∗e−jπfτ τsinc(fτ)

=
τA1

2
e−j(φ1+ π

2 +π(f+f1)τ)sinc(τ(f+f1))−
τA1

2
e−j(−φ1+ π

2 +π(f−f1)τ)sinc(τ(f−f1))

+
τA2

2
e−j(φ2+ π

2 +π(f+f2)τ)sinc(τ(f+f2))−
τA2

2
e−j(−φ2+ π

2 +π(f−f2)τ)sinc(τ(f−f2))

(3.10)

The sinc function side-lobe structure (called spectral leakage in academia or the splatter

effect by analog microwave receiver designers) is exclusively a result of the finite data

record and limits the detection/estimation of a small amplitude sinusoid in the presence

of a high amplitude sinusoid; even in the absence of measurement noise. Side-lobes can be

reduced using a technique called windowing. Windows are applied in the same manner as

the rectangular function, and gradually reduce the transition of the signal value to zero;

decreasing the side-lobe magnitude while increasing the main beam size - Reference [17] is

an excellent resource for windowing2. Another important limitation of the sinc structure

besides sidelobes: The signals cannot be detected/resolved (only one peak will occur) if

the sinusoids are closer in frequency than 1
τ , referred to as the Fourier resolution.

Figure 3.2 contains a plot3 of the sum of two sinusoids FT with the following pa-

rameters: [A1 = 1, f1 = 0.32815, φ1 = π
3 ], [A2 = 0.01, f2 = 0.1875, φ2 = 3π

4 ], τ = 32s. The

amplitude ratio between the two signals is 40 dB. In Fig. 3.2(a), the side-lobes from the

higher magnitude sinusoid masks the presence of the lower amplitude sinusoid. Thus, the

2Note the author has successfully applied windowing techniques to Space-Time Adaptive Processing
STAP) for radar [18].

3This plot was generated using Matlab’s DFT function and zero padding to approximate a continuous
FT, thus some minor aliasing occurs. However, the general shape of the continuous FT is the same.
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Figure 3.2: Two Sinusoids Non-windowed and Windowed FT Magnitude.

no noise non-windowed FT IDR for this particular frequency difference is less than 40 dB.

In Figure 3.2(b), the side-lobes are reduced by windowing, and the presence of the lower

amplitude sinusoid is easily discerned. The no noise Hamming windowed FT IDR at this

particular frequency difference is greater than 40 dB.

Figure 3.3 contains a plot of the sum of two sinusoids FT with the following param-

eters: [A1 = 1, f1 = 0.32815, φ1 = π
3 ], [A2 = 1, f2 = 0.1875, φ2 = 3π

4 ], τ = 32s. These

frequencies are within the Fourier resolution, 1
τ , thus the two frequencies cannot be re-

solved using conventional FT methods (windowing exacerbates the situation because of

the widening of the main beam). The no noise FT IDR for these two signals is zero; they

are not resolved.

3.2.4 Sampling. Since the EW receiver samples the signal, the sampling effects

on the above developments are now analyzed; however, quantization effects are ignored.

Assuming the signal is sampled uniformly, the following sampling function is introduced

to model the sampling [19]

g(t) =
∞
∑

n=−∞

δ(t − nT ), (3.11)
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where T is the sampling period. Equation (3.11) is periodic and can be represented in

terms of a Fourier Series [19],

g(t) =
∞
∑

n=−∞

Cnejn2πfot, (3.12)

where fo is the sampling frequency, fo = 1
T , and Cn is defined as

Cn =
1

T

∫ T

0
δ(t)e−jn2πfotdt

=
1

T
.

(3.13)

Recall that x(t) is the signal of interest and let xs(t) represent the sampled version of the

signal,

xs(t) = g(t)x(t)

=
∞
∑

n=−∞

1

T
ejn2πfotx(t)

(3.14)
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Taking the FT of (3.14) and reversing the order of integration and summation yields the

following expression

F {xs(t)} =

∫ ∞

−∞

∞
∑

n=−∞

1

T
ejn2πfotx(t)e−j2πftdt

=
1

T

∞
∑

n=−∞

∫ ∞

−∞

x(t)e−j2π(f−nfo)tdt

=
1

T

∞
∑

n=−∞

X(f − nfo).

(3.15)

Thus, as (3.15) illustrates, the sampled signal’s FT is a periodic version of the continuous

signal FT about the sampling frequency. The major developments for the continuous two

sinusoid signal will hold for the sampled sinusoid signal as long as the sampling rate is at

least twice the highest frequency in the signal, to prevent aliasing. However, since finite

signals have infinite frequency content, the infinite side-lobes of the sinc function will cause

some distortion effects from aliasing in (3.10).

Figure 3.4 contains a plot of a sampled signal FT and a continuous FT for a single

sinusoid with the following simulation parameters: [A1 = 1, f1 = 0.32815, φ1 = π
3 ], N = 32.

The effects of aliasing are noticeable on side-lobes near f = 0.5 and f = −0.5. The aliasing

causes the side-lobes of the sampled signal FT to be higher than the continuous FT, while

effects near the main lobe are negligible.

3.2.5 Discrete Fourier Transform of Two Sinusoids. Since the intercept receiver

is a digital receiver, the frequency domain is also digital. The FT of a finite, uniformly

sampled signal is

X(f) =
N−1
∑

n=0

x(nT )e−j2πfnT . (3.16)

The signal is uniformly sampled in the frequency domain by letting f = k
NT k =

0, ....., N − 1 [19]. Equation (3.16) then becomes

X(k) =
N−1
∑

n=0

x(nT )e−j2π kn
N , (3.17)
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Figure 3.4: Single sinusoid continuous and sampled FT magnitude.

where X(k) is the DFT of x(nT )4. X(k) is referred to as the Discrete Fourier Spectrum

(DFS). Note that if the number of frequency samples is a power of two (the number of

frequency samples can be more than the number of time samples if the signal is zero

padded), the number of arithmetic operations required to perform the DFT is reduced

dramatically using the Fast Fourier Transform (FFT) algorithm. The inverse of the DFT,

the Inverse Discrete Fourier Transform (IDFT), is

F−1 {X(k)} = x(n) =
1

N

N−1
∑

k=0

X(k)ej2π kn
N . (3.18)

Through use of the IDFT and DFT, a discrete-time signal can be digitally represented in the

time or frequency domain. The resolution in frequency when the DFT is used is delimited

by the number of frequency sample points, i.e. frequency quantization [15]. Increasing the

frequency sampling by zero padding the time sequence increases the frequency resolution,

but at a cost of increased computational complexity. When the sinusoids are orthogonal,

4Further developments will assume that the sampling rate, T, is equal to one unless stated otherwise
since all results can be scaled for the appropriate sampling rate (This is a standard practice in most of the
literature on Signal Processing).
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Figure 3.5: Two Sinusoids Zero Padded and Not Zero Padded DFT Magnitude.

i.e. their frequencies are exactly sample points of the DFT, the side-lobes do not mask the

signals, and the no noise DFT IDR is infinite.

Figure 3.5 contains a plot of the sum of two sinusoids zero padded and non-zero

padded DFT with the following parameters: [A1 = 1, f1 = 0.32815, φ1 = π
3 ], [A2 = 1, f2 =

0.1875, φ2 = 3π
4 ], N = 32. The outline of the continuous FT (generated using a 4096-

point zero-padded DFT) is also plotted to illustrate where the samples are located. Fig.

3.5(a) shows the frequency sample points are referred to as bins, numbered 0 to 31 starting

with the positive frequencies. A common way to refer to frequency in the DFT is the bin

position. Thus, f1 = 0.32815 is bin position 10.5, f1 = 10.5/M . The plot in Fig. 3.5(b)

illustrates the point that zero padding increases the number of frequency samples.

Figure 3.6 contains of plot of the sum of two sinusoids for orthogonal and non-

orthogonal sinusoids over the observation interval for the simulation parameters: [A1 =

200, f1 = Bin 10, φ1 = π
3 ], [A2 = 2, f2 = Bin 6, φ2 = 3π

4 ], M = 32. For the orthogonal

sinusoids plotted in Fig. 3.6(a), the no noise DFT IDR is infinite in because the frequency

samples lie along the zeroes of the other signals sinc functions. For Fig. 3.6(b), the

frequency of f1 is changed to Bin 10.5. The spectral leakage of signal 1 is maximum in

this case, and signal 2 cannot be resolved. Thus in this situation, the no noise DFT IDR

is less than 40 dB.
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Figure 3.6: Orthogonal and Not Orthogonal Sinusoids DFT magnitude.

3.2.6 Conclusion. The above discussion shows that Fourier techniques are quite

robust for the detection and estimation sinusoids at least, so far, in the absence of noise.

The two areas where the no noise FT needs compensation to increase no noise IDR are

1. Sinusoids within the Fourier Resolution Limit. Other frequency estimation

and detection methods must be employed when within the Fourier resolution, re-

gardless of amplitude.

2. Detection interference from the side lobes of a stronger signal. Windowing

is one popular method to increase no noise IDR.

The next section analyzes a DFT-based EW intercept intercept receiver for its IDR in the

presence of sidelobes and noise.

3.3 DFT-Based Intercept Receiver Frequency Detection/Estimation in Noise

Now, return to the measurement model of (1.2)

x(t) = A1 cos(2πf1 + φ1) + A2 cos(2πf2n + φ2) + w(n). (3.19)

In the following analysis, signal 1 is considered the higher amplitude signal, while signal

2 is considered the lower amplitude signal. Determining the number of sinusoids present

for signals buried in white noise is a difficult problem, especially for high amplitude ratio
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signals. The most accurate methods employ statistical tests that attempt to find the

hypothesis with the least error energy, such as information theoretic criteria approaches

[13]. Such methods are preferred because they avoid the use of thresholds and have higher

resolution than the Fourier resolution. However, the methods are computationally intensive

and not practical for Electronic Warfare applications.

The most robust method for an EW intercept receiver is to use either the DFS or

Periodogram - described in Appendix B. Assuming the noise variance is known, a noise

threshold can be set for detection by determining an acceptable probability of false alarm

Pfa, i.e. probability that the noise will exceed the threshold at any frequency bin for a

single measurement interval, and setting the threshold accordingly5. If any bin exceeds the

threshold, a detection is declared, and the maximum bin of the measurement is a coarse

(quantized) frequency estimate (if noise exceeds the threshold, it is a false alarm).

Figure 3.7 contains a demonstration of the above concepts. The noise alone exceeds

the bin threshold for Fig. 3.7(a), thus a false alarm would be declared for this measurement

interval. If multiple bins exceed the threshold for a given measurement, only one false alarm

is declared. In Figure 3.7(b), a single sinusoid has exceeded the threshold and a detection

is declared with simulation parameters6: [A1 = 1, f1 = 10.5 bins, φ1 = 4π
3 ], SNR = 20

(dB), N = 32. A coarse frequency estimate for the sinusoid is the bin location of the

maximum peak, as shown in the figure. Note that for the assumed single sinusoid case,

the side-lobes exceeding the threshold are ignored.

If more than one signal could be in the measurement record, as is the case in EW,

the detection problem becomes more complex because of the spectral leakage. Fig. 3.8

contains a plot of the DFT with simulation parameters: [A1 = 1, f1 = 10.5 bins, φ1 = π
3 ],

[A2 = 0.2, f2 = 14.2 bins, φ2 = 3π
4 ], SNR = 20 (dB) referenced to signal 1, N = 32.

Note that the side-lobe bin magnitude pointed to in the figure is above the signal 2 bin

magnitude. EW receivers require that the presence of the weaker signal must be recognized

by automation; the spectral leakage exceeding the threshold near the main lobe must be

5Typical Pfa for an EW receiver is 10−11.
6Since real signals are considered, from here on out in this development only bins 1 through M

2
(sample

number is assumed even) will be considered; the negative frequency images will be ignored unless stated
otherwise.

3-11



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|X
(k

)|

f

Threshold 

False Alarm 

(a) Noise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

|X
(k

)|

f

Threshold 

Course Frequency 
Estimate 

Side−lobes exceed
threshold. 

(b) Noise + 1 Sinusoid

Figure 3.7: Threshold Demonstration with Noise and Noise+1 Sinusoid.

disregarded, and the presence of the weaker signal must be recognized. This is a difficult

pattern recognition problem to implement in a machine [1]. Recall that the frequency

estimate must be numerical. There is no human evaluating a DFS display.

A method employed to avoid the pattern recognition problem by the AFRL Labo-

ratory exploits the prior knowledge of the spectral leakage shape to subtract the spectral

leakage [9]. Thus, a method, referred to here as the Spectral Leakage Reduction (SLR)

method, with the same general concept is proposed and analyzed here. The method entails

the following steps

1. Find the peak of the DFS and ensure it is above threshold.

2. Estimate the high amplitude signal’s frequency, amplitude, and phase.

3. Subtract the spectral leakage from the DFS (this subtraction would be accomplished

via a lookup table with the actual system; for simulations, the DFS is calculated).

4. Find the peak of the subtracted DFS and check if it is above threshold.

5. Declare a detection if the peak is above threshold.

If the sinusoidal model is correct, the above method hinges on the accuracy of the frequency,

phase, and amplitude estimates for accurate spectral leakage estimation. This method

is similar to a method proposed in [20], although [20] is using the method to reduce

bias for extremely accurate interpolation multiple frequency estimation (the approximate
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Figure 3.8: Two Sinusoid + Noise DFT Magnitude.

locations of the peaks are assumed known). Whereas, the SLR method is reducing the

spectral leakage in order to detect low amplitude sinusoids in the presence of high amplitude

sinusoids.

Figure 3.9 contains a plot of the signal DFT of Figure 3.8 with the spectral leakage

of signal 1 compensated for by subtracting the DFT magnitude of signal 1 from the DFT

magnitude of signal 1 and 2 + noise

XSLR(k) = |S2(k) + S1(k) + W (k) − Ŝ1(k)|

= |S2(k) + W (k) + eSLR(k)|
(3.20)

where XSLR(k) is the SLR method DFS (with the spectral leakage from signal one com-

pensated for), Ŝ1(k) is the estimated DFS of signal 1, S1(k) is the estimated DFS of signal

1, W (k) is the DFS of the noise, S2(k) is the estimated DFS of signal 2 and eSLR is the

error between the estimated signal 1 DFS and the actual DFS of signal 1. In Fig. 3.9(a),

the first signal frequency is known exactly and, as expected, the compensation removes

the side-lobes to below threshold, allowing the second signal to be detected via a threshold

test, i.e. eSLR is very low. In Fig. 3.9(b), the frequency used to estimate the side-lobes is
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Figure 3.9: Sinc Lobe Compensation Demonstration.

at 10.75 bins and, as a result of the poor frequency estimate, the side-lobes are not ade-

quately compensated for, i.e. a larger eSLR. Thus, good frequency estimates are required

for the SLR method.

3.3.1 Frequency Interpolation Methods. DFS peak interpolation algorithms are

developed in this section in order to estimate the frequency for the SLR method accurately.

The algorithms analyzed are computationally efficient and only rely on the three DFS

points closest to the actual sinusoids frequency (note that these three points contain ≥ 85%

of the signal energy [20]), thus they are suitable for EW applications. All algorithms are

developed for the one complex sinusoidal signal condition, or cisoid, because there is no

spectral leakage bias to contend with (for one real signal, the negative frequency image has

spectral leakage in the positive frequency image). Simulations are performed to gauge the

effect of the presence of one and two real sinusoids on algorithm performance.

3.3.1.1 Modulus Peak Position Interpolation. The first DFS interpolation

algorithm, called here the Modulus Peak Position (MPP) interpolator, is discussed in [1,20].

The MPP estimates the points by using the largest DFS absolute value peak and the largest

absolute value of the peak’s two neighbors (the one also lying on the main lobe). It then

interpolates the value in between them. The mathematics of this interpolation follows.
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First, find the maximum DFS sample point magnitude, max(|X(k)|) equals |X(p)|.
Next, find the neighboring peak with the highest absolute value amplitude and set the

variable α according to the position, that is

α =











1, if |x(p + 1)| > |x(p − 1)|;

−1, otherwise.

(3.21)

Now, assume the DFS value is X(∆
N ) where ∆ is the distance from the true signal frequency

in fractions of a bin 1
N (p + ∆) = f , where ∆ ≤ |0.5|. Thus, the value is

X

(

∆

N

)

= Nβsinc

(

∆

N

)

= β
sin(π∆)

π ∆
N

(3.22)

where β is the continuous signal complex amplitude. The highest magnitude neighbor DFS

value is

X

(

1 − ∆

N

)

= β
sin(π(1 − ∆)

π(1−∆
N )

(3.23)

Now, ∆ is interpolated as [1, 20]

∆̂ = α
|X(m + α)|

|X(m)| + |X(m + α)| . (3.24)

The corresponding frequency estimate is

f̂ = (p + ∆̂)
1

N
. (3.25)

where the sampling frequency is assumed one for the above development.

Figure 3.10 is an illustration of the above math. For larger ∆, as in Fig. 3.10(a),

the amplitude difference is well pronounced between |X(p − 1)| and |X(p + 1)| (For this

example α = −1). For small ∆, as in Fig. 3.10(b), the amplitude difference is negligible

and this will cause errors when noise is present.

Small systematic errors are present in all of the interpolation algorithms (including

the above method) which cause a slight bias in the estimate [20]. When real signals are

considered, the negative frequency image side-lobes introduce larger bias to the interpolator
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Figure 3.10: MPP concept illustration.

frequency estimates. Figure 3.11 contains a MPP no noise frequency estimate deterministic

bias analysis for a single real sinusoid and complex cisoid with the following parameters:

[A1 = 1, φ1 = 0]. In the figure, the deterministic bias is calculated between the interpolated

frequency, f̂∆̂, and the actual frequency, f∆, for the bin positions indicated

bias = |f∆ − f̂∆̂| (3.26)

at 0.01 intervals of ∆ and plotted as −10 log10(bias) (which means good performance is

plotted above bad performance). The negative frequency side-lobe aliasing into the positive

frequencies causes an increase in bias of approx 30 dB at some points over the complex

cisoid case. This real signal bias value varies according to the bin position. This real signal

bias would be reduced by using a window based interpolator because of the associated

spectral leakage reduction, but windowing adversely effects probability of detection and

frequency resolution of close frequency signals.

Figure 3.12 contains a pseudocolor plot of a Monte Carlo (MC) MSE analysis for

estimating a real sinusoid’s frequency using the MPP interpolator with one real sinusoid

and noise, where MSE is calculated as

MSEvar =
1

M

M
∑

i=1

(f∆ − f̂ i
∆̂

)2. (3.27)
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Figure 3.11: Deterministic bias of MPP interpolator for real and complex signals.

where M is the number of Monte Carlo trials and f̂ i
∆̂

is the ith frequency estimate of the

MC trial. For the intercept receiver simulations, the phase is randomly distributed between

0 and 2π. The plot is generated by performing 1000 MC trials at each of 33 evenly spaced

∆ from bin 32 and repeating for each SNR step with simulation parameters: [A1 = 1, φ1 =

U [0, 2π]], N=256. The color bar indicates the −10 log10(MSE), thus the higher the value,

the better the estimate. From the plots, the MPP interpolator performance significantly

degrades for low ∆ values. This poor performance is due to the α sign being switched at

low ∆, which introduces a larger error and bias. Also, the bias from the real signal spectral

leakage dominates the MSE above 30 dB SNR, which is why the MSE values plateau at

this point.

3.3.1.2 Phase Based Interpolator. Because of inaccuracy in determining α

for low ∆, the following phase based interpolation algorithms, called the Phase Based In-

terpolator (PBI), is introduced to overcome this deficiency [20]. First, the two neighboring

DFS bins phase X(α) are referenced to the largest bin’s phase and then the real part of
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Figure 3.12: MPP Interpolator MSE versus ∆ and SNR. Color bar indicates value of
−10 log10(MSE). Thus the higher the value is, the better the performance.

this operation is taken [20]

V (µ) = Re{X(p + µ)X∗(p)} (3.28)

where V (µ) is called the Phase Indexed Variable (PIV). The following test is used to

calculate ∆̂ [20]

iff V (−1) − V (1) > 0, ∆̂ = ∆̂+, else∆̂ = ∆̂−. (3.29)

where ∆̂+ and ∆̂− are defined as [20]

∆̂+ =
−V (1)

V (0) − V (1)
∆̂− =

V (−1)

V (0) − V (−1)
. (3.30)

As ∆ approaches zero, V (1) ≈ V (−1) and the PBI estimate exhibits much less error than

the MPP.

Figure 3.13 contains a PBI no noise frequency estimate bias analysis for a single real

sinusoid and complex cisoid with the same setup as Fig. 3.11. The negative frequency

sidelobe aliasing into the positive frequencies causes an increase in bias of approx 20 dB at
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Figure 3.13: Deterministic bias of PBI interpolator for real and complex signals.

some points over the complex cisoid case. This real signal bias value varies according to the

bin position, which is no different than the MPP. The PBI complex cisoid bias is slightly

higher than the MPP bias. However, the PBI does not experience the jagged increase in

bias at low ∆.

Figure 3.14 contains a pseudocolor plot of a MC MSE analysis for estimating a real

sinusoid’s frequency using the PBI interpolator with one real sinusoid and noise with the

same setup as Fig. 3.12. From comparing Fig. 3.14 to Fig. 3.12, the PBI performance

significantly improves for low ∆ values over the MPP, which is expected because of the

phase referencing to decrease the increased MPP bias associated with picking the wrong

α value. Also, the bias from the real signal spectral leakage dominates the MSE above 30

dB SNR, which is why the MSE values plateau at this point (except for the spike locations

in 3.13 for bin 32).

3.3.1.3 Gamma Phase Based Interpolator. The PBI can also be improved

upon by using the following algorithm, the Gamma Phase Based Interpolator (GPBI).

When ∆ is small, V(1) and V(-1) provide independent estimates of ∆. Thus, some esti-

mation gain over PBI is gained by averaging the two [20]. In [20], the following average is
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Figure 3.14: PBI Interpolator MSE versus ∆ and SNR. Color bar indicates value of
−10 log10(MSE). Thus the higher the value is, the better the performance.

proposed

γ =
V (−1) − V (1)

2V (0) + V (−1) + V (1)
. (3.31)

Using γ, Reference [20] gives the ∆̂ estimate as

∆̂ =

√

1 + 8γ2 − 1

4γ
. (3.32)

Figure 3.15 contains a GPBI no noise frequency estimate bias analysis for a single

real sinusoid and complex cisoid with the same setup as Fig. 3.11. The negative frequency

side-lobe aliasing into the positive frequencies bias is reduced from the PBI and MPP by

using the gamma interpolator. The GPBI complex cisoid bias is also slightly higher than

the MPP cisoid bias. Again, however, the GPBI does not experience the jagged increase

in bias at low ∆.

Figure 3.16 contains a pseudocolor plot of a MC MSE analysis for estimating a real

sinusoid’s frequency using the PBI interpolator with one real sinusoid and noise with the

same setup as Fig. 3.12. From the plots, the GPBI shows some improvement over the
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Figure 3.15: Deterministic bias of GPBI interpolator for real and complex signals.

PBI and marked improvement over the MPP. Also, the bias from the real signal spectral

leakage dominates the MSE above 30 dB SNR, which is why the MSE values plateau at

this point.

3.3.1.4 Two Sinusoid Interpolator Performance. With two sinusoids, the

interpolator estimate bias increases. Figure 3.17 is a two sinusoid bias analysis of the

interpolator algorithms for the following parameters: [A1 = 1, φ1 = 0], [A2 = 0.8, φ2 = 0].

Three bin positions are considered for the first sinusoid: 32, 64, and 100. The second

sinusoid is at bin 35.5 for maximum leakage. Sinusoids within 2 bins will be considered high

resolution for the DFT-based intercept receiver and are not considered in this Chapter [9].

For reference, the bias of using |X(p)| as an estimate is plotted. For the MPP estimate

in Fig. 3.17(a), the low ∆ performance decreases considerably; below using the FFT

bin |X(p)| as the estimate. The PBI and GPBI for Figures 3.17(b) and 3.17(c) both

outperform using the FFT bin as the estimate, with the GPBI performing the best of the

three interpolation algorithms. In terms of IDR, the 2 sinusoid interpolator bias decreases

as the IDR increases, which is good in terms of estimating the spectral leakage. In other
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Figure 3.16: GPBI Interpolator MSE versus ∆ and SNR. Color bar indicates value of
−10 log10(MSE). Thus the higher the value is, the better the performance.

words, the estimate performance improves as the IDR increases, which in turn means the

spectral leakage estimate is improving, which is a desirable characteristic.

Figure 3.18 contains a pseudocolor plot of a two sinusoid MSE analysis of the in-

terpolator algorithms with the same signal parameters as Fig. 3.17 except the phase is

uniformly distributed for both signals between 0 and 2π. The colorbar indicates the value

of −10 log10(MSE) between f1 and f̂1 for 1000 MC runs at the specified SNR and ∆ value.

The first sinusoid is centered at bin 32 with 34 ∆ evenly distributed around the bin. The

second sinusoid is located at bin 35.5 for maximum leakage with the amplitude ratio of

the signals maintained the same as Fig. 3.17. The close proximity of frequency and ampli-

tude of the first signal to the second signal makes this a demanding test. As expected, the

MPP algorithm exhibits the worst MSE performance of the three interpolation algorithms,

especially for small ∆. The GPBI algorithm exhibits a slightly better performance than

the PBI. Above 20 dB SNR, the MSE of all of the algorithms is dominated by the bias.

Once again though, the estimate performance improves as the IDR increases, which in turn

means the spectral leakage estimate is improving, which is a desirable characteristic.
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Figure 3.17: Interpolator 2 Sin Bias.
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Figure 3.18: Interpolator 2 Sin interpolator estimate f̂1 MSE versus ∆ and SNR. Col-
orbar indicates −10log10(MSE) value.
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3.4 SLR Method Analysis

As discussed in the introduction to this section, the following algorithm, called the

SLR Method, is proposed to increase weak signal detection/estimation performance using

the frequency interpolation algorithms developed above.

1. Calculate the signal DFT, the DFS.

2. Find the DFS maximum max(|X(k)|) = |X(p)|, and check if above threshold.

3. Interpolate signal frequency, amplitude, and phase using interpolation algorithms.

4. Subtract estimated spectral leakage of large signal values from DFS .

5. Check if the maximum subtracted DFS bin, max(XSLR(k)) = XSLR(p), is above

threshold.

For the above interpolation algorithms, the amplitude of the sinc peak, a, is estimated

as [20]

â = |B| (1 − |∆̂|)
(1 − 2|∆̂| + 2∆̂2)

(

π∆̂

sin(π∆̂)

)

. (3.33)

where B is a weighted combination of the peak X(p) and the peak’s largest neighbor

B = (1 − |∆̂|)X(p) − |∆̂|X(p + α). (3.34)

For real signals, the signal amplitude is obtained from the sinc peak amplitude using

Ai = 2a
N . The signal phase is estimated as [20]

φ̂i = arg(B) − π∆̂. (3.35)

3.4.1 SLR Error Analysis. As stated previously, the effectiveness of the SLR

method hinges on how well the side-lobes have been estimated, which depends on the

frequency (i.e. centering), amplitude, and phase estimates. Figure 3.19(a) contains a

plot of the mean spectral leakage estimate error versus bins and Signal 1 SNR from a

1000 trial MC trial using the GPBI algorithm for frequency estimates for the following

simulation parameters: [f1 = 32 + ∆ bins , φ1 = U [0, 2π]], Signal 2 SNR=10 dB, [f1 =
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35 + ∆ bins, φ2 = U [0, 2π]], N=256. The ∆ values are uniformly distributed between

−0.5 and 0.5 for the MC simulation. The estimated DFS spectral leakage for signal 1 is

estimated as (the real system would use a look-up table)

Ŝ1(k) = DFS{Â1cos(2πf̂1 + φ̂1)} (3.36)

The error is calculated in dB as

em
SLR(k) = 20 log10(

1

M

M
∑

i=1

|S1(k) − Ŝi
1(k)|) (3.37)

where em
SLR(k) is the mean error for the kth bin. The mean estimated spectral leakage

error is extremely small except near the peak which is expected since any percentage error

is higher near the peak since the spectral leakage is higher (the peak and its two neighbors

used for interpolation are ignored for detection purposes in the SLR method). Also the

mean error increases as SNR 1 increases which is also expected because the magnitude of

the spectral leakage increases.

For comparison to the mean error, the signal 1 spectral leakage versus bins and

Signal 1 SNR is plotted in Fig. 3.19(b). The mean error is close to 55 dB down from the

associated Signal 1 Spectral leakage in most places.

Figure 3.19(c) contains a plot of the estimated spectral leakage for signal 1. The

variance is relatively small, except near the signal 1 peak which is expected due to the

large swing in values from varying ∆ values.

The above analysis confirms that the SLR method compensates for the signal 1

spectral leakage. Thus, the next step is to determine how well the SLR method performs

estimation/detection of the signal 2 through simulation.

3.4.2 SLR Simulation Description. With so many variables in play, the best

method is for a robust MC simulation to determine the Probability of Detection Pd and

the Probability of False Alarm Pfa due to spectral leakage for a given noise threshold. The

simulation is setup as follows:
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Figure 3.19: Spectral Leakage Estimate Error Statitics vs. Signal 1 SNR and Bins.
Colorbar indicates dB value of parameter.
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1. Generate M N-length AWGN sequences, where M is the number of MC trials (set an

arbitrary noise power, in the plots σ2 = 0.01 is used).

2. Calculate the noise DFS of each N-length sequence.

3. Set the noise threshold by taking the max magnitude of each of the M N-length

noise sequences for the positive frequency bins. Then, sorting the max values by

magnitude and setting the threshold at the 10th highest value (for a noise only Pfa

of 10
M ).

4. Specify center bins for two signals.

5. Generate M uniformly distributed ∆1 and ∆2 values and add to the corresponding

center bins.

6. Generate the M N-length two sinusoids sequences for the generated ∆ values for a

specified Signal 1 SNR and Signal 2 SNR.

7. Calculate the DFS of the 2 sinusoids plus noise measurements.

8. Interpolate the Signal 1 frequency, amplitude and phase using one of the frequency

interpolation algorithms (assuming Signal 1’s amplitude is above threshold, which it

is for all simulations).

9. To simulate a perfect look-up table, calculate the the signal 1 spectral leakage with

estimated frequency, amplitude, and phase as in (3.36).

10. Subtract the estimated signal 1 DFS from the DFS of the 2 sinusoids plus noise and

take the absolute value as in (3.20).

11. Perform a threshold check to see if any bin values exceed the threshold, ignoring the

max Signal 1 DFT bin and its two closest neighbors7; i.e. the ones involved with

the Signal 1 interpolation. a.) If the threshold is not exceeded, nothing is declared

(Signal 2 is not detected). b.) If the threshold is exceeded for any bin, find the

maximum bin value. If the maximum bin value is within 1 bin of the signal center

bin a detection is declared, i.e. if true f2 is 40.3, the threshold exceeded at bins 39,

7Signals within 2 bins are considered high resolution in this thesis and are not considered for the DFT
intercept receiver, they are analyzed in the IGLS parametric receiver in Chapter V.
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40, and 41 would all be declared detections. c.) If the threshold is exceeded by other

bins, a false alarm is declared.

3.4.3 SLR Simulation Results. Figure 3.20 contains the Pd and Pfa for the

MC simulation described above with the following simulation parameters: [f1 = 32 +

∆ bins , φ1 = U [0, 2π]], [f1 = 36 + ∆ bins, φ2 = U [0, 2π]], N=256, ∆ = U [−0.5, 0, 5]. The

second signal SNR is fixed at 10 dB (for a sinc peak that is well above the detection

threshold), and the first signal SNR is increased at 1 dB increments. The threshold for the

simulation is set at 0.01 Pfa for noise only by generating the 1000 trials of noise, thus the

false alarms are for sinc sidelobes from signal 1 exceeding the threshold. The second signal

is detected with a Pd of 1 until the signal 1 SNR exceeds 63 dB for the MPP and PBI

algorithms, and 67 dB for the GPBI algorithm. Detection and false alarm performance

deteriorates from this Signal 1 SNR value up. Thus for a Pd of 1, the IDR when the signals

are this close is 63 − 10 = 53 dB for the MPP and PBI algorithms, and 67 − 10 = 57 dB

for the GPBI algorithm. The MPP and PBI performance is similar because their signal 1

estimation performance is similar except for low ∆ where there is little spectral leakage to

contend with. The GPBI slightly outperformed the MPP and PBI algorithms across all ∆

values, thus the GPBI has a slightly higher IDR.

Figure 3.21 contains the Pd and Pfa for the MC simulation described above with

signal 2 centered at bin 64. The performance mirrors the performance for bin 36 in 3.21.

Figure 3.22 contains the Pd and Pfa for the MC simulation described above with

signal 2 centered at bin 100. The performance mirrors the performance for bin 36 in 3.21.

Thus, using the SLR method, the IDR has little dependence on frequency separation, which

is an excellent property. This frequency separation independence can be can be explained

by examining the histogram of the maximum bin for the compensated DFT at an SNR

of 70 dB in Figure 3.23. The detections are clustered around bin 100 as expected, and

the false alarms are all clustered at bin 30 and 34, which is where the spectral leakage is

greatest in the signal 1 DFT (recall that bins 31, 32, and 33 are not considered because

they are used by the interpolation algorithm). Which means that because of the signal

1 magnitude, the compensated spectral leakage of signal 1 is exceeding the signal 2 bins
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Figure 3.20: Pd and Pfa results for SLR method (Noise alone Pfa = 0.01, Signal 1 bin
32)).

3-30



20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR of Signal 1

P
d

MPP
PBI
GPBI

IDR Point 

(a) Bin 64 Pd

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR of Signal 1

P
fa

MPP
PBI
GPBI

(b) Bin 64 Pfa

Figure 3.21: Pd and Pfa results for SLR method (Noise alone Pfa = 0.01, Signal 1 bin
32)).
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Table 3.1: SLR IDR results (Noise only Pfa = 0.01)

freq Signal 2 SNR Freq Sep GPBI IDR

freq < 1.5 bins 10 dB 4 bins 57 dB
freq < 1.5 bins 10 dB 32 bins 57 dB
freq < 1.5 bins 10 dB 68 bins 57 dB

maximum height, most likely for large ∆ values. The Pd and Pfa gracefully degrades as

lower and lower ∆ values compensated spectral leakage exceeds the signal 2 bins maximum

height. The false alarms are clustered around the same 2 bins for simulations when signal

2 is centered around bins 64 and 36 also.

In Figure 3.24, the first signal SNR is set at 15 dB, and the SNR of Signal 2 is slowly

increased until detected with a Pd of one at -2 dB for simulation parameters: [f1 = 32 +

∆ bins , φ1 = U [0, 2π]], [f1 = 100+∆ bins, φ2 = U [0, 2π]], N=256, ∆ = U [−0.5, 0, 5]. This

can be considered the detection threshold limited detection scenario. Notice that all three

methods exhibit the same performance since the side-lobes of signal are well compensated

by all three methods to below the detection threshold. This threshold prevents false alarms

from the noise, and thus is not considered to limit IDR.

3.4.4 SLR IDR Results. The SLR method provides coarse numerical frequency

estimates which is an EW requirement. Table 3.1 summarizes the SLR IDR results for

the thesis definition of IDR. In the table, freq is the required detection frequency accuracy

(note that since the intercept receiver is detecting and quantizing that this is not the Mean

Square Error accuracy). This number is worst case, most likely the worst case accuracy

is freq < 1 bin. Future work could analyze employing an interpolation algorithm on the

signal 2 peak to improve frequency estimates.

3.5 Conclusion

A DFT-based intercept receiver is analyzed without and then with noise. With no

noise, it is shown that the DFT-based intercept receiver IDR is limited by spectral leakage

that is exclusively a result of finite measurement time. To handle spectral leakage, the novel

SLR method is analyzed for its IDR performance in white noise using a detection threshold
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Figure 3.22: Pd and Pfa results for SLR method (Noise alone Pfa = 0.01, Signal 1 bin
32)).
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scheme. The method’s IDR performance is shown to have little frequency separation

dependence and provides high IDR with the required numerical frequency estimates.

Because of the spectral leakage biasing the estimates, it is very difficult, if not impos-

sible, to achieve optimal (ML) estimates using only the DFT. However, if the number of

sinusoids present in the measurement is known already, optimal estimates can be obtained.

This optimal estimate analysis is the topic of the next two chapters.
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IV. Cramer-Rao Bound for Instantaneous Dynamic Range

! For Chapters IV and V in the thesis, the number of signals present in the
measurement is assumed known.

4.1 Introduction

Before the discussion of the IGLS algorithm-based parametric receiver in Chapter

V, a natural question is what is the best IDR that can be achieved for a desired RMS

frequency estimation accuracy. For unbiased estimators, the Cramer-Rao Bound (CRB) is

used to provide a lower bound on the MSE of the estimates [11–13]. The CRB is a lower

bound for the variance of any unbiased ML Estimator. Thus, the IDR-CRB is derived

below. Section 4.2 derives the multiple frequency CRB originally derived by Rife [6]. The

multiple frequency CRB is modified by the author in Section 4.3 to arrive at the IDR-CRB

for complex and real signals.

4.2 Derivation of the CRB for Multiple Sinusoids in AWGN

In this section, the CRB for multiple sinusoids in white noise, originally derived

by Rife in [6], is derived. First, in Section 4.2.1, the multiple sinusoid CRB is derived

for complex signals. Next, in Section 4.2.2, the complex signals’ CRB [6] is extended to

develop the real signals’ CRB.

4.2.1 Complex Signal CRB. Consider the following complex sinusoidal signal

vector, sc, with unknown parameters

sc(n) =

p
∑

i=1

Aiexp{ j(ωin + φi)} =

p
∑

i=1

Aih(ωi, φi). n = 0 . . . N − 1 (4.1)

Let the unknown parameter vector θ be defined as

θ = [ω1 A1 φ1 . . . ωp Ap φp]. (4.2)
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The signal sc is combined in a transmission channel with noise to form the measurement

vector

xc = sc + wc, (4.3)

where wc is complex noise distributed as

wc = N (0,R). (4.4)

Since xc is a linear combination of a Gaussian distributed random variable, xc is itself a

Gaussian distributed random variable

xc = N (sc,R). (4.5)

Thus, the Probability Density Function (PDF) of xc (with the complex noise assumption)

is [13]

fθ(xc) = (πσ2)−N |R|−1exp
{

−(xc − sc)
HR−1(xc − sc)

}

. (4.6)

Using the AWGN assumption, Equation (4.6) simplifies to

fθ(xc) = (πσ2)−Nexp

{

− 1

σ2
(xc − sc)

H(xc − sc)

}

. (4.7)

For the Cramer-Rao development, the natural log of (4.7) is helpful,

ln (fθ(xc)) = Lθ(xc) = −N ln(πσ2) − 1

σ2
(xc − sc)

H(xc − sc), (4.8)

where Lθ(xc) is called the log likelihood function (referred to as Likelihood because the

value of the unknown parameter vector θ, which characterizes the transmitted signal sc,

is estimated by determining the value that made the known measurement vector xc most

likely to occur [10]).

The derivative of (4.8) is

s(θ,xc) =
∂L(θ,xc)

∂θ
, (4.9)
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where s(θ,xc) is called the score function. The values of θ where the score function vanishes

is the ML estimate of θ - see Section 2.4.1. The score function covariance is referred to as

the Fisher information matrix, J(θ)

J(θ) = E
{

s(θ,xc)s(θ,xc)
H
}

. (4.10)

A per-element formula for the Fisher information matrix is [11]

J(θi, θj) = −E
{

∂2L(θ,xc)

∂θi∂θj

}

. (4.11)

The Fisher Information contains information on the maximum rate of change near the peak

of the pdf which corresponds to the ML estimate. The inverse of the maximum rate of

change yields the minimum variance the unbiased estimate can attain, thus the inverse of

the Fisher information matrix contains information on the minimum value the covariance

can attain [10]. If the estimate is unbiased, the inverse is also the minimum MSE a ML

estimate can attain [10] - see Section 2.3.

A more specific formula for the per element Fisher information matrix of xc is derived

below. Inserting (4.8) into (4.11) yields

Jx(θi, θj) = −E
{

− 1

σ2
(

∂2

∂θi∂θj
(xc − sc)

H(xc − sc))

}

. (4.12)

Using the chain rule from Calculus, (4.12) becomes

Jx(θi, θj) = E
{

1

σ2
((

∂2sH
c

∂θi∂θj
)(xc − sc) + (xc − sc)

H(
∂2sc

∂θi∂θj
) + (

∂sH
c

∂θi
)(

∂sc

∂θj
) + (

∂sH
c

∂θj
)(

∂sc

∂θi
))

}

.

(4.13)

Taking the expectation of the terms of (4.13) and noting that following expectation value,

E {xc − sc} = 0, the formula for the Fisher information matrix simplifies to

Jx(θi, θj) =
1

σ2
((

∂sH
c

∂θi
)(

∂sc

∂θj
) + (

∂sH
c

∂θj
)(

∂sc

∂θi
)). (4.14)

Let
∂sc

∂θi
= a + jb (4.15)
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where a is the real part and b is the imaginary part of the complex vector quantity. Also,

let
∂sc

∂θj
= c + jd (4.16)

where c is the real part and d is the imaginary part of the vector quantity. Then (4.14)

becomes

Jx(θi, θj) =
1

σ2
((a + jb)H(c + jd) + (c + jd)H(a + jb)). (4.17)

Equation (4.17) simplifies to

Jx(θi, θj) =
2

σ2
(aT c + dTb). (4.18)

Inserting the derivatives from (4.15) and (4.16) into (4.18), the desired formula for the

Fisher information matrix for complex sinusoids in complex white Gaussian noise is ob-

tained

Jx(θi, θj) =
2

σ2
Re

{

∂sH
c

∂θi

∂sc

∂θj

}

=
2

σ2
Re {Sj} , (4.19)

where

Sj =
∂sH

c

∂θi

∂sc

∂θj
. (4.20)

The above formula is used to calculate the Fisher information matrix elements for

the following θ vector parameters:

sc1 sc2

θ(1) = ω1 θ(4) = ω2

θ(2) = A1 θ(5) = A2

θ(3) = φ1 θ(6) = φ2
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The hermitian matrix Sj contains the values

Sj=











































A2
1

∂hH
1

∂ω1

∂h1
∂ω1

A1
∂hH

1
∂ω1

h1 A2
1

∂hH
1

∂ω1

∂h1
∂φ1

A1A2
∂hH

1
∂ω1

∂h2
∂ω2

A1
∂hH

1
∂ω1

h2 A1A2
∂hH

1
∂ω1

∂h2
∂φ2

(1, 2)∗ hH
1 h1 A1h1

∂hH
1

∂φ1
A2h1

∂hH
2

∂ω2
hH

1 h2 A2h1
∂hH

2
∂φ2

(1, 3)∗ (2, 3)∗ A2
1

∂hH
1

∂φ1

∂h1
∂φ1

A1A2
∂hH

1
∂φ1

∂h2
∂ω2

A1
∂hH

1
∂φ1

h2 A2A1
∂hH

1
∂φ1

∂h2
∂φ2

(1, 4)∗ (2, 4)∗ (3, 4)∗ A2
2

∂hH
2

∂ω2

∂h2
∂ω2

A2
∂hH

2
∂ω2

h2 A2
2

∂hH
2

∂ω2

∂h2
∂φ2

(1, 5)∗ (2, 5)∗ (3, 5)∗ (4, 5)∗ hH
2 h2 A2h

H
2

∂h2
∂φ2

(1, 6)∗ (2, 6)∗ (3, 6)∗ (4, 6)∗ (5, 6)∗ A2
2

∂hH
2

∂φ2

∂h2
∂φ2











































(4.21)

The structure of Sj allows the Fisher information matrix (4.19) to be factored as [6]

J =
2

σ2
CMC, (4.22)

where C is the diagonal matrix of amplitudes

C =





C1 0

0 C2



 , Ci =











Ai 0 0

0 1 0

0 0 Ai











. (4.23)

The M matrix from (4.22) incorporates the h terms of (4.19) and has the following block

form

M =





M11 M12

M21 M22



 . (4.24)

Mij is a 3 by 3 matrix that is derived in the following manner. Note the following

∂h(ωi, φi)

∂ωi
= jnexp{j(ωin + φi)} (4.25)

∂h(ωi, φi)

∂φi
= jexp{j(ωin + φi)} (4.26)

Using (4.25), the elements of Mij are

Mij(1, 1) = Re{∂hH
i

∂ωi

∂hj

∂ωj
} =

N−1
∑

n=0

n2cos((ωi − ωj)n + (φi − φj)) (4.27)
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Mij(1, 2) = Re{∂hH
i

∂ωi
hj} =

N−1
∑

n=0

−nsin((ωi − ωj)n + (φi − φj))} (4.28)

Mij(1, 3) = Re{∂hH
i

∂ωi

∂hj

∂φj
} =

N−1
∑

n=0

ncos((ωi − ωj)n + (φi − φj)) (4.29)

Mij(2, 1) = Re{hH
i

∂hj

∂ωj
} =

N−1
∑

n=0

nsin((ωi − ωj)n + (φi − φj)) (4.30)

Mij(2, 2) = Re{hH
i hj} =

N−1
∑

n=0

cos((ωi − ωj)n + (φi − φj)) (4.31)

Mij(2, 3) = Re{hH
i

∂hj

∂φj
} =

N−1
∑

n=0

sin((ωi − ωj)n + (φi − φj)) (4.32)

Mij(3, 1) = Re{∂hH
i

∂φi

∂hj

∂ωj
} =

N−1
∑

n=0

ncos((ωi − ωj)n + (φi − φj)) (4.33)

Mij(3, 2) = Re{∂hH
i

∂φi
hj} =

N−1
∑

n=0

−sin((ωi − ωj)n + (φi − φj)) (4.34)

Mij(3, 3) = Re{∂hH
i

∂φi

∂hj

∂φj
} =

N−1
∑

n=0

cos((ωi − ωj)n + (φi − φj)) (4.35)

Let ∆ij = (ωi − ωj)n + (φi − φj), then the matrix form of Mij is

Mij =











∑N−1
n=0 n2cos(∆ij)

∑N−1
n=0 −nsin(∆ij)

∑N−1
n=0 ncos(∆ij)

∑N−1
n=0 nsin(∆ij)

∑N−1
n=0 cos(∆ij)

∑N−1
n=0 sin(∆ij)

∑N−1
n=0 ncos(∆ij)

∑N−1
n=0 −sin(∆ij)

∑N−1
n=0 cos(∆ij)











. (4.36)

The inverse of the Fisher Information Matrix is the minimum estimation error co-

variance matrix

J−1 =
σ2

2
C−1M−1C−1. (4.37)
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Each element of the diagonal of (4.37) is the CRB for the corresponding parameter. It can

be shown that a formula for the inverse of the blocked matrix M is [13]

M−1 =





(M11 − M12M
−1
22 M21)

−1 −(M11 − M12M
−1
22 M21)

−1M12M
−1
22

−(M22 − M21M
−1
11 M12)

−1M21M
−1
11 (M22 − M21M

−1
11 M12)

−1



 .

(4.38)

Due to the symmetry of M for the complex sinusoid case, M−1(1, 1) = M−1(4, 4) [6].

Thus, the CRB for minimum ωi estimation variance is

var{ω̂i} ≥ σ2D(1, 1)

2A2
i

(4.39)

where D is defined as

D = (M11 − M12M
−1
22 M21)

−1. (4.40)

The corresponding CRB for frequency estimation is

var{f̂i} ≥ σ2D(1, 1)

2(2π)2A2
i

. (4.41)

To ensure the computer code generating the multiple sinusoid CRB accuracy, com-

parisons to the results in [13] and [6] are contained in Figure 4.1. Figure 4.1(a) contains the

CRB versus SNR for two complex sinusoids in complex noise with the following parame-

ters: N=25, [A1 = 1, f1 = 0.5, φ1 = 0], [A2 = 1, f2 = 0.52, φ2 = π
4 ]; SNR = −10 log10(σ

2).

The results match those in [13]. Figure 4.1(a) contains the CRB versus frequency for one

real sinusoid with worst phase difference between negative and positive frequency images

(which consists of two complex sinusoids)) in real noise with the following parameters:

[A1 = 1, φ1 = 0, φ1i = Nπf2 −π−Nπf1]; SNR = −10 log10(2σ
2) = 20. Results match [6].

Thus, the code generating the multiple sinusoid CRB is validated.

4.2.2 Real Signal CRB. For real signals in real white noise, the development

from above is modified. The signal is now

s(n) =

p
∑

i=1

Aicos(ωit + φi) =

p
∑

i=1

Aig(ωi, φi). n = 0 . . . N − 1 (4.42)
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Equation (4.22) becomes [6]

J =
1

σ2
CQC, (4.43)

where Q has the same block structure as (4.24). Each block matrix of elements of Q is

defined as [6]

Qij =
1

2
[Mij(ωi − ωj , φi − φj) − Mij(ωi + ωj , φi + φj)BJ ], (4.44)

where Mij was defined in (4.36), and BJ is a 3 by 3 diagonal matrix defined as

BJ = diag(1,−1, 1). (4.45)

Because the tones are real instead of complex, J−1(4, 4) is not in general equal to J−1(1, 1)

(usually only a slight difference). Thus, a formula for each frequency is used for the bound

on the corresponding frequency estimate of real signals. The Cramer-Rao bound for the

first frequency estimate is

var{f̂1} ≥ σ2E(1, 1)

(2π)2A2
1

(4.46)

where E is defined by substituting Qij for Mij in (4.40). The Cramer-Rao bound for the

second frequency estimate is

var{f̂2} ≥ σ2F (1, 1)

(2π)2A2
2

(4.47)

where the matrix F is defined as

F = (Q22 − Q21Q
−1
11 Q12)

−1. (4.48)

4.3 Cramer-Rao Bound for Instantaneous Dynamic Range

In [5], the IDR-CRB for complex signals is derived. The method of [5] uses an

iterative method in terms of delta values for the calculation of the IDR-CRB, which is

computationally intensive and difficult to implement. Because the Fisher information

matrix can be factored as shown in (4.22), a simpler and more reliable method is introduced

here to calculate the complex signal IDR-CRB and then extended to the real signal IDR-

CRB.
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Recall the definition of IDR employed in this thesis

• The thesis IDR definition – IDR is defined as the maximum signal difference for

a given frequency estimation accuracy, a given frequency separation and a given

SNR [5].

From this definition, the CRB for instantaneous dynamic range for two complex exponen-

tials is derived by modifying the multiple sinusoid CRB using the following method.

1. Specify the noise power, σ2, and the desired SNR (in terms of A1), RMS frequency

estimation accuracy1, and frequency separation ∆f .

2. The A1 amplitude is

A1 =
√

σ210(SNR/10). (4.49)

3. Use the following modified form of (4.41) to solve for the bound amplitude of A2

A2b ≥
√

σ2D(1, 1)

2(2π)2f2
acc

(4.50)

where facc is the desired RMS frequency estimation accuracy and A2b is the bound

amplitude. If A2b is greater than A1, then the desired frequency accuracy is not

achievable for the given parameters.

4. If achievable, the Cramer Rao bound for the instantaneous dynamic range is then

defined as

IDR(dB) ≤ 20 log10

(

A1

A2b

)

. (4.51)

Figure 4.2 is a plot of the complex signal IDR-CRB vs. frequency difference for

the parameters: [A1 = 1, f1 = 0.2, φ1 = 0], [φ2 = Nπf2 − π − Nπf1]; facc = 1
10N ;

SNR = −10 log10(σ
2) = 20, N = 100. The phase value φ2 used to generate Fig. 4.2

φ2 = Nπf2 − π − Nπf1, (4.52)

1Recall from Chapter 2.3 that the RMS squared is the MSE, which is equal to the estimate variance for
an unbiased estimator.
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Figure 4.2: Complex IDR-CRB versus ∆f .

is the worst phase difference for frequency estimation [5]. The point where the plot flat-

tens out where the phase difference and frequency difference interaction terms M become

negligible and the single signal required amplitude is attained for the desired estimation

accuracy.

The method of calculating the real signal IDR-CRB is similar to the method for

complex signals, with the following exceptions:

• The A1 is now calculated as

A1 =
√

2σ210(SNR/10). (4.53)

• The following equation must be used in place of (4.50) to calculate the bound am-

plitude

A2b ≥
√

σ2E(1, 1)

(2π)2f2
acc

(4.54)
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Figure 4.3: Real Signal IDR-CRB Algorithm Flowchart.

A slight error term is introduced using the above equation when the amplitude is near

the instantaneous dynamic range resolvable threshold because of the slight difference

in the values of J−1(1, 1) and J−1(4, 4) for real tones. The algorithm is modified

without iterating to handle this slight difference in the following way.

• Compare the estimation accuracy of (4.46) to the desired estimation accuracy if the

value of A2b is close to the value of A1. If the estimation accuracy is higher, the

threshold has not been met even though A2 amplitude is less than one, and the

desired estimation accuracy is not achievable.

• The IDR-CRB values for real signals are frequency dependent, especially at frequen-

cies near zero (i.e. if f1 = 0.001).

Figure 4.3 is a flow chart representation of the method to generate the IDR-CRB.

! Throughout the rest of the thesis, IDR-CRB denotes the real signal IDR-CRB
unless otherwise stated.

Figure 4.4 is a plot of the real signal IDR-CRB for different values of N generated

using the method of Figure 4.3. In the plots, the IDR-CRB is calculated at ∆f = 0.001

intervals for specified N samples of two sinusoids in noise with worst phase difference with

parameters: [A1 = 1, f1 = 0.2, φ1 = 0], [φ2 = Nπf2−π−Nπf1]; SNR = −10 log10(2σ
2) =

20 dB. For comparison purposes, the frequency estimation accuracy is also scaled as a

function of N, where N is the number of measurement points. As expected, the bound for

the higher N exhibits a sharper rise time than the lower N. In the Chapter V, an IGLS

algorithm-based parametric receiver IDR-CRB comparison validates the IDR-CRB results.
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4.4 Conclusion

A Cramer-Rao bound is developed for an unbiased estimator’s IDR by modifying

Rife’s result in [6] for both real and complex sinuoidal signals in AWGN. To achieve the

IDR-CRB, the estimator must be an unbiased ML estimator of frequency; i.e. the estimator

must be unbiased and efficient [11]. The next chapter compares an IGLS-algorithm based

parametric receiver to the IDR-CRB derived in this chapter.
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V. IGLS Algorithm-Based Parametric Receiver

5.1 Introduction

When the number of signals is known, the EW receiver frequency estimates are im-

proved dramatically by basing the receiver on a parametric frequency estimation algorithm,

i.e. a parametric EW receiver 1. The parametric algorithms achieve these improved esti-

mates because prior knowledge of the signal form is exploited. To bound IDR performance

and compare to the IDR-CRB derived in Chapter IV, a parametric frequency estimation

algorithm that achieves ML results is desired. Thus, a frequency estimation algorithm

based on Linear Prediction (LP) called Iterative Generalized Least Squares is introduced

for application in the parametric receiver and shown to yield Maximum Likelihood fre-

quency estimates in Section 5.2. The IGLS algorithm is compared to the IDR-CRB in

Section 5.3. Finally, in Section 5.3.1, experimental results from the IDR-CRB compari-

son result in defining IDR differently for a Parametric based receiver when the frequency

estimate requirements are loose.

5.2 IGLS Development

In this section, the IGLS algorithm, related to the IQML algorithm discussed in

[14], is fully developed and shown to yield ML frequency estimates. This is the author’s

development of the IGLS algorithm originally derived by Dr. Pachter and researched

by Ingham in [8] and Zahirniak in [7]. Section 5.2.1 provides the necessary background

on LP theory including Prony’s method and the Extended Prony Method. Section 5.2.2

derives the IGLS algorithm. In Section 5.2.3, frequency estimate confidence intervals are

developed. Simulations then verify IGLS ML performance in Section 5.2.4.

5.2.1 Linear Prediction Theory. Consider the real sinusoidal signal

s(n) =

p
∑

i=1

Ai cos(ωin + φi). (5.1)

1Determining the number of signals for a parametric receiver is an area of research in its own right and
is not discussed here. See Reference [13] for more details.
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The signal’s samples satisfy the difference equation [21,22]

s(n) =

2p
∑

m=1

a(m)s(n − m), (5.2)

where the coefficients of the 2p length vector a are called the LP coefficients. The proof

for this relationship is quite involved, but very informative (this proof follows [21] closely

with an example at the end to clarify).

Consider now the following factored polynomial, Φ(z), with the real signal frequencies

of (5.2) as roots (for a complex signal remove the negative exponential),

Φ(z) =

p
∏

i=1

(z − ejωi)(z − e−jωi). (5.3)

Expanding the above equation yields the following polynomial

Φ(z) =

2p
∑

m=0

a(m)z2p−m. (5.4)

where a(0) is constrained to be 1. Form a linear difference equation by multiplying a(m)

by s(n − m) and summing over m to yield

2p
∑

m=0

a(m)s(n − m) =

2p
∑

m=0

a(m)

2p
∑

i=1

Ai

2
(ejωi(n−m)ejφi + e−jωi(n−m)e−jφi). (5.5)

Switching the order of summations and making the following substitution n − m = n −
2p + 2p − m (realizing that n ≥ 2p), yields

2p
∑

m=0

a(m)s(n − m) =

2p
∑

i=1

Ai

2
ejωi(n−2p)ejφi

2p
∑

m=0

a(m)ejωi(2p−m)

+

2p
∑

i=1

Ai

2
e−jωi(n−2p)e−jφi

2p
∑

m=0

a(m)e−jωi(2p−m) (5.6)
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Note that (This is beautiful!!)

2p
∑

m=0

a(m)(ejωi(2p−m)) = 0 (5.7)

2p
∑

m=0

a(m)e−jωi(2p−m)) = 0. (5.8)

because the exponentials are roots of the polynomial from (5.4) as shown in (5.3). Thus,

the LP equation

s(n) = −
2p
∑

m=1

a(m)s(n − m), (5.9)

is arrived at (recall a(0) is constrained to be one). In matrix format, the exactly determined

system to solve for the polynomial values is

















s(2p − 1) s(2p − 2) . . . s(0)

s(2p) s(2p − 1) . . . s(1)
...

...
. . .

...

s(4p − 2) s(4p − 3) . . . s(2p − 1)

































a(1)

a(2)
...

a(2p)

















= −

















s(2p)

s(2p + 1)
...

s(4p − 1)

















(5.10)

where the matrix of signal values is 2p by 2p. After solving for the 2p LP coefficients, the

frequencies are obtained by rooting the polynomial (5.4) formed by the LP coefficients.

Note that the nonlinearity of estimating the frequencies has been compressed into the

rooting of the polynomial comprised of the LP coefficients a [21]. The above math can

be interpreted in the following way: Equation (5.9) is a linear difference equation with

associated characteristic equation (5.4) that has the homogeneous solution given by (5.3)

[21]. The above LP-based method of determining frequencies via rooting the LP coefficient

characteristic polynomial is called Prony’s Method [21]2.

Formulas for the relationships between the LP coefficients a and the frequencies f

are derived below for the case of two real sinusoids. For two real sinusoids, Equation (5.3)

2Originally developed by Gaspard Riche, Baron de Prony in 1795 in his study of the expansion of various
gases [21].
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Table 5.1: LP Coefficients to Frequency Relationship.

LP Coeff Formula

a(0) 1
a(1) −2 cos(ω1) − 2 cos(ω2)
a(2) 2 + 4 cos(ω1) cos(ω2)
a(3) −2 cos(ω1) − 2 cos(ω2)
a(4) 1

becomes

Φ(z) = (z − ejω1)(z − e−jω1)(z − ejω2)(z − e−jω2). (5.11)

Combining the two like frequency terms yields

Φ(z) = (z2 − 2 cos(ω1)z + 1)(z2 − 2 cos(ω2)z + 1). (5.12)

Multiplying out (5.12) yields the polynomial

Φ(z) = z4−(2 cos(ω1)+2 cos(ω2))z
3+(2+4 cos(ω1) cos(ω2))z

2−(2 cos(ω1)+2 cos(ω2))z+1.

(5.13)

Table 5.1 relates the coefficients of the polynomial to the frequencies. Note that the Table

5.1 polynomial terms are symmetric; it can be shown in general that the polynomial terms

for real sinusoids are symmetric [22].

For two sinusoids a closed form solution for the cosines in Table 5.1 in terms of a(1)

and a(2) using the formulas of Table 5.1 can be obtained. Solving the formula for a(2) in

terms of cos(ω2) yields

cos(ω2) =
a(2) − 2

4 cos(ω1)
. (5.14)

Insert the value for cos(ω2) into the formula for a(1) to obtain

−a(1) = 2 cos(ω1) +
a(2) − 2

2 cos(ω1)
(5.15)

0 = cos2(ω1) +
a(1)

2
cos(ω1) +

a(2) − 2

4
(5.16)
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The above is a quadratic equation with roots at cos(ω1) and at cos(ω2) (switch around

(5.14) to see the second root). Thus, a quadratic must be solved, and the following rela-

tionship is arrived at

cos(ω1), cos(ω2) =
−a(1) ±

√

a(1)2 − 4a(2) + 8

4
. (5.17)

When noise is not present, the LP coefficients are estimated perfectly from the data by

solving (5.10) for the vector a, and thereby the frequencies can be calculated error-free from

(5.17) regardless of frequency spacing, i.e. no Fourier Resolution limit. Conceptually, the

difference between the Periodogram method and Prony’s method is that the Periodogram

evaluates certain frequencies, while Prony’s method estimates the frequencies exactly from

the data [21].

When measurement noise is added to the system, error is introduced into the above

linear prediction relationship and Prony’s method performs poorly. Therefore, the above

equations are modified to handle the presence of noise.

5.2.1.1 Extended Prony Method. The measured signal with noise is

x(n) = s(n) + w(n), n = 0, . . . , N − 1 (5.18)

where s(n) is defined in (5.1) and w(n) is AWGN. Normally, more samples are present than

required for the exact solution of the LP coefficients using Prony’s Method. In the presence

of noise, these additional samples can be exploited to obtain a least squares solution that

washes out the error introduced by the measurement noise. For the following development,

reshape the measurement vector x of (5.18) into a M − 2p by 2p+1 observation matrix X

X=



























x(M − 1) x(M − 2) . . . x(M − 2p)

x(M − 2) x(M − 3) . . . x(M − 2p − 1)
...

...
. . .

...

x(2p) x(2p − 1) . . . x(0)



























. (5.19)
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The following 2p + 1 by p + 1 constraint matrix B is introduced to exploit the real signal

LP coefficients’ symmetry and reduce the parameter vector size

B =











Ip 0p

0T
p 1

IBp 0p











, (5.20)

where IBp is the p by p ‘backwards’ identity matrix defined by IBp = δ(P + 1 − i − j),

Ip is a p by p identity matrix, and 0p is a p by 1 vector of zeroes. Using B, the linear

prediction vector a = [a(0)...a(2p)]T can be formed in the following way

a = Bα. (5.21)

where the reduced parameter vector α is defined as α = [1 a(1) . . . a(p)]T . The observation

matrix X is multiplied by the constraint matrix B yielding

Xc = XB = [xo|Xo], (5.22)

where the matrix Xc is the constrained data matrix, xo contains the first column of Xc,

and Xo contains the remaining columns of Xc. Using (5.22), the linear prediction model

is

eo = xo + Xoao. (5.23)

where the vector ao is the vector of LP coefficients, ao = [a(1)...a(p)]T , and the vector eo

is the prediction error vector due to the noise.

The error power, ||eo||22, is equal to

||eo||22 = (xo + Xoao)
T (xo + Xoao). (5.24)

A good estimate of the unknown LP coefficients are the LP coefficients that minimize the

expression in (5.24), i.e. the Least Squares (LS) estimate

âo = −(XT
o Xo)

−1XT
o xo. (5.25)
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Equation (5.25) is referred to as the Extended Prony Method (EPM) [21]. Although an

improvement over the exactly determined method -e.g. (5.10)-, the EPM does not provide

efficient LP estimates, and performs poorly in low SNR [21] as shown in the simulations

in Section 5.2.4.

5.2.2 Iterative Generalized Least Squares. To improve upon (5.25), it is first

necessary to understand why efficiency is not achieved. To this end, the M by M - 2p

Toeplitz matrix AT defined by the LP coefficients is introduced

AT = Toeplitz(1, a(1) . . . a(2p), 0 . . . 0). (5.26)

Using (5.26), an equivalent representation of the LP equation error eo of (5.23) is

eo = ATx

= AT s + ATn

= ATn.

(5.27)

Thus, the noise vector n of the measurement vector x is subjected to a moving average

process that yields eo. The vector eo is a colored, normally distributed, zero mean random

vector with covariance matrix

Ceo = ATCnA, (5.28)

where Ceo is the error vector covariance, eo, and Cn = σ2I is the noise vector covari-

ance. The EPM least squares estimate in (5.25) weights each term’s contribution equally.

However, since a moving average process has been applied to the noise, coloring the error

covariance matrix, this assumption is invalid [7]; unfortunately, this is often overlooked in

system identification work [23,24].

To account for the colored noise, the extended Prony method is modified in the follow-

ing way. Perform a Cholesky decomposition of the positive semi-definite error covariance

matrix inverse to obtain

C−1
eo

= GGT , (5.29)
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where G is the Cholesky decomposition of C−1
eo

, G = C
− 1

2
eo . Equation (5.27) is multiplied

by G to yield

e1 = GATn, (5.30)

where the vector e1 is a normally distributed, zero mean, random vector with covariance

matrix

Ce1 = E
{

GATnnTAGT
}

= GCeoG
T

= I.

(5.31)

Thus the matrix G has the desired effect of whitening, a.k.a. decorrelating, the error vector

e1.

Returning to the LP representation of (5.23), multiply (5.23) by the matrix G to

yield

e1 = Gxo + GXoao. (5.32)

The error power of (5.32), ||e1||22, is equal to

||e1||22 = (Gxo + GXoao)
T (Gxo + GXoao). (5.33)

It can be shown that minimizing the expression in (5.33) is equivalent to minimizing (5.24).

If G is assumed not to be a function of ao, the weighted least squares solution to minimize

(5.33) is

âo = −(XT
o (GTG)Xo)

−1XT
o (GTG)xo. (5.34)

Inserting the value of GTG and Cn = σ2I from (5.29) into the above equation yields

âo = −(XT
o (ATA)−1Xo)

−1XT
o (ATA)−1xo. (5.35)

Equation (5.35) correctly accounts for the coloring of the equation error by the moving

average process.
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G is a function of ao. However, it can be shown that sufficiently close to ao (5.35)

is a contraction mapping. Thus, when (5.35) is iterated, it will converge to a fixed point

that is, in view of (5.34) and (5.35), close to the minimum of the error given by (5.33)

(and thereby (5.24)) - see [7, 23–26]. Thus, the following iterative weighted least squares

estimate of the LP coefficients is formed from (5.35)

âk+1
o = −(XT

o (AT
k Ak)

−1Xo)
−1XT

o (AT
k Ak)

−1xo, (5.36)

where Ak is constructed using the kth iterate of the LP coefficients â
(k)
o , and â

(k+1)
o of

the left hand side of (5.36) is the k + 1 iterate of the LP coefficients. Equation (5.32) is

minimized when â
(k+1)
o = â

(k)
o . The above efficient algorithm is referred to as Iterative

Generalized Least Squares (IGLS). A good initial guess for the values of a(0) is needed to

ensure convergence to the global minimum, especially in low SNR. Initializing via a low-

resolution Periodogram or the EPM solution is normally sufficient. Note that initializing

via the EPM can be accomplished by setting ATA = I for the first iteration of (5.36).

Simulation experiments have established 10 iteration steps will suffice.

In [7], it is shown that minimizing the objective function via (5.36) is equivalent

to obtaining the ML estimate of the LP coefficients, since both same objective function

is minimized. By the invariance property of ML estimation, since there is a one to one

mapping from the LP coefficients to the frequencies, it is also a ML estimate of the frequen-

cies [11]. Although derived under different assumptions, note there are many similarities

between the IGLS algorithm and the Iterative Quadratic Maximum Likelihood (IQML)

algorithm, as would be expected, since both yield ML estimates of the LP coefficients.

IQML was itself shown to be equivalent to the Iterative Pre-filtering algorithm of Steiglitz

and McBride [27]. For brevity’s sake, those similarities are not discussed here. The inter-

ested reader should refer to [14] for the most comprehensive discussion of IQML and [8]

for a comparison of IQML and IGLS. The author notes that the IGLS algorithm has been

successfully applied to diverse applications [23,24,28].

5.2.3 Confidence Intervals for IGLS Estimates. It is important to predict the

accuracy of the frequencies’ estimates for EW receivers, especially when frequency can
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discriminate different threat types as in Fig. 1.3. To this end, confidence intervals must be

established. Normally, confidence intervals are specified in terms of probabilities of error

contained within k standard deviations

P (−kσ < ε < kσ) = 1 − ρ, (5.37)

where σ is the estimate’s standard deviation and 1-ρ is the probability the error is con-

tained in the confidence interval. Data driven confidence intervals for IGLS estimates are

developed below.

To establish confidence intervals for the LP coefficients, the LP coefficients’ variance

must be determined. This covariance can be determined using ML theory if the SNR is

above threshold3. Note that the whitened Linear Prediction equation error is

e1 − Gso = GSoao + GATn, (5.38)

where So and so are the signal components of Xo and xo respectively. Let q = e1 − Gso.

Since (5.38) is a linear transformation of a Gaussian random variable, q is also a Gaussian

random variable

q = N(GSoao, I). (5.39)

Taking the log of the pdf of q (5.39) and then the gradient with respect to ao yields

∂ ln fq

∂ao
= ST

o GTq − ST
o GTGSoao. (5.40)

Setting the right hand side of (5.40) equal to zero and solving for âo yields the Maximum

Likelihood estimate for the LP coefficients

âo ML = (ST
o GTGSo)

−1ST
o GTq. (5.41)

The covariance of the LP coefficients’ ML estimation error (Note that this estimator is

unbiased) can be obtained by backtracking to Equation (5.40) and factoring its right hand

3The threshold effect is discussed in Section 5.2.4.
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side
∂ ln fq

∂ao
= (ST

o GTGSo)((S
T
o GTGSo)

−1ST
o GTq − ao). (5.42)

Note the form of (5.40) matches the form of the Cramer-Rao Lower bound theorem given

by [10]; an estimator only achieves efficiency if the partial derivative with respect to the

parameter to be estimated can be written in the following form

∂lnfx(x)

∂θ
= J(θ)(g(x) − θ), (5.43)

where x is an arbitrary vector of interest, J(θ) is the Fisher information matrix, and g(x) is

the ML estimator. Thus, the Fisher information matrix of the LP coefficient ML estimate

of (5.41) is (ST
o GTGSo), and therefore the covariance of the estimation error, provided

ML estimation of the LP coefficients, is

Câo
= (ST

o GTGSo)
−1. (5.44)

Unfortunately, (5.44) features So which is not available. If the observation matrix is

substituted for the signal matrix, the covariance has randomness associated with it because

of the noise. However, if the SNR is high enough and assuming the LP coefficients are

sufficiently close to the true value, the noise can be neglected, and an estimate of the LP

coefficient estimation error covariance matrix is [7]

Ĉâo
= (XT

o GTGXo)
−1

= σ2(XT
o (ATA)−1Xo)

−1.
(5.45)

The Ĉâo
diagonals are the LP coefficient’s predicted estimation error variance, that is

Ĉâo
(m, m) = E{(ao(m) − âo(m))2}.

Since above the threshold the LP coefficient’s estimation error covariance matrix

achieves efficiency, the method from [11] can be invoked to obtain the frequencies’ estima-

tion error covariance matrix

J−1(f̂) = HTJ−1(ao)H, (5.46)
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where the matrix H is defined as H(m, p) =
∂wp

∂ao(m) , and where wp is the mapping from

LP coefficients to frequency. Now, the unique mapping of LP coefficients to frequencies

for two sinusoids is4

fp = wp(ao) =
1

2π
cos−1

(

−a(1) + (−1)p+1
√

a(1)2 − 4a(2) + 8

4

)

. (5.47)

Let gp =
−a(1)+(−1)p+1

√
a(1)2−4a(2)+8

4 , then using the above equation, the following deriva-

tives can be calculated for the matrix H (values of derivatives from [7])

∂wp(ao)

∂ao(1)
=

1

8π
√

1 − g2
p

[

−1 − (−1)pa(1)
√

a(1)2 − 4a(2) + 8

]

(5.48)

∂wp(ao)

∂ao(2)
=

1

8π
√

1 − g2
p

[

2
(−1)p

√

a(1)2 − 4a(2) + 8

]

. (5.49)

The above derivatives coupled with (5.46) yields

Ĉ
f̂

= HT Ĉâo
H, (5.50)

where Ĉ
f̂
is the frequency estimation error covariance the values of the matrix H are defined

in (5.48) and (5.49). The estimated error variance of the individual frequency estimates lie

along the diagonal of the estimated frequency error covariance, Ĉ
f̂
(p, p) = E{(fp − f̂p)

2}.

Because of the non-linearity of the transformation in (5.47), it is very difficult to

calculate the value of ρ in (5.37) analytically. Therefore, Monte Carlo simulations are

employed to determine the percentage of estimates within one, two and three standard

deviations of the corresponding predicted variance to determine confidence intervals above

threshold.

5.2.4 IGLS Algorithm Simulations. MC simulations are performed to validate

the IGLS algorithm. The signal (5.18), with two real sinusoids, is considered in all of the

4For five sinusoids or greater a closed form relationship is not possible.

5-12



simulations. In the simulations, the experimental MSE is calculated as

MSE =
1

M

M
∑

i=1

(f − f̂i)
2 (5.51)

where M is the number of MC trials and f̂i is the ith frequency estimate. The negative log of

the MSE is plotted to highlight good performance. The SNR is defined as −10 log10(2σ
2).

The bias is calculated as

bias =
1

M

M
∑

i=1

(f − f̂i). (5.52)

The emphasis is on signals with low SNR, short data record, and close frequencies to

demonstrate the robustness of the IGLS algorithm-based parametric receiver in difficult

estimation environments.

Figure 5.1 contains a plot of MSE vs. SNR for a Monte Carlo (MC) simulation

calculated at every 1 dB using the EPM estimation algorithm with simulation parameters:

N=32, [A1 = 1, f1 = 0.227, φ1 = 4π
3 ], [A2 = 1, f2 = 0.207, φ2 = π

3 ]; SNR = −10 log10(2σ
2),

M=1000. Note that the EPM does not achieve the CRB.

Figure 5.2 contains a plot of MSE vs. SNR for a MC simulation calculated at every 0.5

dB using the IGLS algorithm with the same parameters as Figure 5.1. The initial estimate

for Figure 5.2 is taken from the extended Prony method estimate by setting AT A = I in

Equation (5.36). From Figures 5.2(a) and 5.2(b), if the noise threshold is defined where

the experimental MSE is within 2 dB of the CR bound, then the noise threshold for

f1 and f2 is 10 dB and 12 dB respectively. Below the noise threshold, the algorithm’s

performance quickly drops well below the CRB because the noise has overwhelmed the

estimation algorithm’s ability to estimate the signal. The noise threshold is inherent to

non-linear estimation. As expected, the experimental MSE achieves the CRB above the

noise threshold since the IGLS algorithm is a ML estimator of frequency. Below the

noise threshold, the estimates are biased, as can be seen in Figures 5.2(c) and 5.2(d) thus

comparison to the CRB is not appropriate. However, above threshold the estimates are

unbiased, and CRB comparison is appropriate. Finally, note by comparing Fig. 5.3 to Fig.

5.1 that the IGLS algorithm significantly outperforms the EPM algorithm.
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Figure 5.1: Extended Prony Method Estimation Accuracy.
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Figure 5.2: IGLS Estimation Accuracy with an EPM initial guess and N=32.
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Figure 5.3 contains the IGLS algorithm Monte Carlo simulation results for the same

parameters as Figure 5.2, except the initial guess is now assumed to be obtained from the

closest 32 point FFT sample frequency point to the two signals frequencies. This FFT

frequency sample point is used for both initial frequencies guesses and is converted to the

initial LP coefficients guess by using Table 5.1. From Figures 5.3(a) and 5.3(b), if the

noise threshold is defined where the experimental MSE is within 2 dB of the CR bound,

then the noise threshold for f1 and f2 is 4.5 dB and 6 dB respectively. Thus, a better

noise threshold is obtained by using more information about the frequencies values. As

expected, the experimental MSE achieves the CR bound above the noise threshold since

the IGLS algorithm is a MLE of frequency. Note from Figures 5.3(c) and 5.3(d) that the

estimate becomes unbiased above the noise threshold, hence comparison to the CRB above

the threshold is appropriate.

Figure 5.4 contains the IGLS algorithm Monte Carlo simulation results for the same

parameters as Figure 5.3 including using the same 32 point FFT frequency sample point

as the initial guess, except the number of sample points is increased to M=128. The IGLS

algorithm noise threshold in Figures 5.4(a) and 5.4(b) for these parameters decreased

dramatically to below -5 dB. Note that the bias in Figures 5.4(c) and 5.4(d) is negligible

for all SNR’s considered.

Figure 5.5 contains the IGLS algorithm Monte Carlo simulation results for the same

parameters as Figure 5.4, except the initial guess is from the EPM. The IGLS algorithm

noise threshold for the frequencies in Figures 5.5(a) and 5.5(b) is 7 dB and 5 dB respectively,

much higher than when an initial guess is provided. Thus increasing the data length by a

factor of four only decreases the noise threshold by 5 dB for both frequencies when using

the extended Prony method to initialize the estimate. The jagged anomaly below the

noise threshold contained in Figure 5.5(a) is partially explained by zooming in around the

anomaly in both the bias and frequency as in Figure 5.6 and noticing that there is a slight

rise in bias at the same point as the anomaly, which probably means the IGLS algorithm

is converging to a local minimum more often. The IGLS MC simulations in [8] and [7]

exhibited the same type of anomaly below the threshold.
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Figure 5.3: IGLS Estimation Accuracy with an FFT initial guess and N=32.
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Figure 5.4: IGLS Estimation Accuracy with an FFT initial estimate and N=128.
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Figure 5.5: IGLS Estimation Accuracy with an EPM initial estimate and N=128.
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Figure 5.6: Figure 5.5(a) zoom analysis: Spike area of Figure 5.5(a) zoomed in
along with bias of Figure 5.5(b). Note the dip in experimental bias which coincides with
the spike reduction in experimental MSE.

5.2.4.1 IGLS Confidence Interval Simulations. Figure 5.7 contains a com-

parison of the average predicted LP coefficient estimation error variance for the signal of

Fig. 5.1

Varpred{âo(m)} =
1

M

M
∑

i=1

Ĉi
âo

(m, m), (5.53)

and the MC experimentally obtained variance

Varexp{âo(m)} =
1

M − 1

M
∑

i=1

(âo(m)i − mean(âo(m)))2, (5.54)

where mean is calculated as 1
M

∑M
i=1 âi

o(m). Also plotted is the MSE between the calculated

variance and each variance estimate. At 11 dB for both â(1) and â(2), the experimental

variance converges to the calculated variance and the MSE is negligible. At this point the

noise power can be neglected and (5.45) becomes a good estimate of the variance.

Fig. 5.8 establishes confidence intervals for frequency estimates via Monte Carlo

simulation for the signal of Fig. 5.1. At each SNR point, the number of frequency estimates
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Figure 5.7: Average predicted LP estimation error variance, MC experimental variance,
and MSE between MC experimental variance and predicted LP estimation error variance
versus SNR.

within K σ is calculated by

M
∑

i=1

(|f̂i − f | < kσ̂i) for k = 1, 2, 3. (5.55)

where σ̂i is calculated using (5.50). From Fig. 5.8, the confidence intervals are valid for

f1 and f2 greater than 11 dB. Rough estimates of ρ are 0.7, 0.95, and less than 0.99

for K = 1, 2, 3. Thus, good data driven confidence intervals are established using the

measurements and knowledge of the noise variance.

In light of the results of the analysis and the MC simulations, it is apparent that

the IGLS algorithm yields Maximum Likelihood estimates of frequencies and therefore,

comparison to the IDR-CRB is valid above the noise threshold.

5.3 IGLS algorithm-based Parametric Receiver compared to the IDR-CRB

The IGLS algorithm-based parametric receiver, which is shown above to yield Max-

imum Likelihood estimates, is compared to the IDR-CRB by employing a Monte Carlo

simulation. The simulation signal is defined for these simulations as

x(n) = A1cos(2πf1t + φ1) + A2bcos(2πf2t + φ2) + n(t). n = 0 . . . N − 1 (5.56)

5-21



5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

%
 f 2 w

ith
in

 fr
eq

ue
nc

y 
K

−S
TD

s 
of

 E
st

im
at

e

SNR

K=1
K=2
K=3

(a) f̂1

5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1

%
 f 1 w

ith
in

 fr
eq

ue
nc

y 
K

−S
TD

s 
of

 E
st

im
at

e

SNR

K=1
K=2
K=3

(b) f̂2

Figure 5.8: Frequency Estimate Confidence Intervals for K = 1, 2, and 3 σ’s.

where A2b is the minimum value of A2 for the ML Estimator to still attain the desired

MSE of f2 as determined by the IDR-CRB. The simulation analysis follows the flowchart

of Figure 5.9. First, the simulation parameters for each frequency separation of interest are

input into the Fig. 4.3 IDR-CRB routine. If the IDR-CRB routine finds the parameters at

any frequency separation not achievable, the parameters are not considered by the IGLS

algorithm Monte Carlo simulation in the next step. If the parameters are viable, the IDR-

CRB routine generates the A2 bound amplitude, A2b; the lowest A2 amplitude that will

still theoretically achieve the given parameters. The IDR-CRB is plotted for valid A2b

values when this routine is finished. Also, as will become apparent from the simulation

results, the A2b SNR is also an important analysis tool and is defined as

SNRA2b
= 10 log

(

A2
2

2σ2

)

(5.57)

The SNRA2b
is also plotted after the IDR-CRB routine. The achievable parameters along

with the corresponding A2b values are sent to the next step, which is a Monte Carlo

simulation of the signal defined in Equation (5.56). At each frequency separation value

∆f , the corresponding A2b amplitude is assigned along with the signal parameters listed in

the caption and 1000 independent IGLS Monte Carlo trials are performed. The resulting

experimental MSE and bias for f̂1 and f̂2 are plotted. For a successful experimental

confirmation of the IDR-CRB, the f̂1 IGLS estimate experimental MSE should be less
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Figure 5.9: IDR-CRB IGLS Performance Analysis
Flowchart.

than the desired RMS frequency, f 2
acc, and the f̂2 IGLS estimate experimental MSE should

equal the desired f2
acc for all frequency separation values.

Figure 5.10 contains the MC results for the desired RMS frequency estimation ac-

curacies of facc = 1
30N and facc = 1

10N with initialization via the EPM and decreasing

∆f evaluated at 0.001 increments for the parameters: [A1 = 1, f1 = 0.207, φ1 = 0],

[A2 = A2b, f2 = f1 −∆f, φ2 = Nπf2 −π−Nπf1]; SNR = 10 log10(
A1
2σ2 ). In Figure 5.10(c),

the estimates experimental MSE clearly shows the IGLS algorithm-based parametric re-

ceiver achieves the IDR-CRB for all applicable values since f̂1 MSE is below the desired

MSE at all points and the f̂2 achieves the desired MSE within 1 dB at all points. In Figure

5.10(e), the experimental bias is negligible, thus comparison to the desired MSE is appli-

cable for both frequency estimates. In Figure 5.10(d), the estimates MSE does not achieve

the IDR-CRB for all applicable values. Noting that the SNR of A2b of Figure 5.10(b) is

well below the SNR of A2b of Figure 5.10(a) and that the bias is no longer negligible in

5.10(f), the conjecture is the noise threshold of the IGLS algorithm has been exceeded for

the parameter combination.

Figure 5.11 contains the performance analysis results for the same parameters as

Figure 5.10 with initialization via the closest frequency sample of a 32 point FFT. Figure

5.11(c) matches closely to Figure 5.10(c), achieving the desired MSE within 1 dB for all

applicable points. However, the f̂2 MSE in Figure 5.11(d) achieves the desired MSE within

4 dB for all applicable values, which means the estimate is right at the FFT initialized

5-23



IGLS algorithm’s noise threshold and the noise threshold is lower for the FFT initialized

IGLS algorithm, as expected.

Figure 5.12 contains the performance analysis results with the measurement samples

increased to N = 128, the desired RMS frequency tightened to facc = 1
40N with initial-

izations via EPM or closest 32 point FFT frequency sample point. The IGLS algorithm

performs as expected, once again validating the derived IDR-CRB in the FFT initialization.

The noise threshold is once again encountered with the EPM initialization5.

Thus, the Instantaneous Dynamic Range Cramer Rao Bound algorithm is validated

using the IGLS algorithm. From the experimental results, the IDR-CRB is useful for tight

bounds on parametric receivers performance. However, because of the noise threshold, the

IDR-CRB does not provide a bound that can be used for parametric receiver analysis for

loose frequency estimation requirements. Thus, in the next section, the author proposes

a method to determine the IDR for a parametric receiver for a loose frequency estimate

requirement.

5.3.1 IGLS Algorithm-based Parametric Receiver IDR for Loose Frequency Esti-

mates. Loose frequency estimates are obtained above the noise threshold for a paramet-

ric receiver. When the amplitude ratio is high, so that the low amplitude carrier is buried

in noise and the measurement is basically of a single carrier, overmodelling becomes an

issue that causes both frequency estimates to deteriorate (the CRB does not consider this

issue) as can be seen in Fig. 5.10(d). In an IGLS algorithm-based parametric receiver, for

loose frequency estimates, the amplitude ratio at the point where the estimate begins to

deteriorate can be considered the IDR for loose frequency estimate requirements. If the

lower amplitude signal is below the threshold, it is better to reduce the model order to

accurately estimate the higher amplitude sinusoid. Fig. 5.13 is a MC simulation with the

same parameters as Fig. 5.2, except the Sinusoid 1 SNR is fixed at 23 dB and the A2 SNR

is increased in 0.5 dB steps by increasing the A2 amplitude. For Sinusoid 2 SNR below 7.5

dB, the frequency estimates for Sinusoid 1 are almost 20 dB below efficiency, even though

5This noise threshold will be encountered even by functions that minimize the objective functions for
the two frequency estimates directly. It is inherent to non-linear estimation.
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Figure 5.10: IGLS performance for IDR-CRB A2b (EPM).
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Figure 5.11: IGLS performance for IDR-CRB A2b (FFT).
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Figure 5.12: IGLS performance for IDR-CRB A2b (M=128, facc = 1
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Figure 5.13: IDR determination for two sinusoids in white noise.

sinusoid 1 has an SNR of 23 dB. In this situation, the underlying model order in the algo-

rithm should be reduced to efficiently estimate Sinusoid 1. At 7.5 dB both sinusoids are

measured efficiently, thus the IDR is 23− 7.5 = 15.5 dB. This definition and simulation of

the IGLS parametric algorithm’s IDR for loose frequency estimates along with the IGLS

algorithm development has been submitted for publication [29].

5.4 Conclusion

The IGLS frequency estimation algorithm is developed and shown to achieve ML

estimates. The IDR-CRB is then experimentally verified using the IGLS algorithm-based

parametric receiver for tight frequency estimate requirements. For loose requirements, the

IDR-CRB is shown to be unachievable due to the noise threshold inherent to non-linear

estimation. Thus, an alternate method to determine the IGLS algorithm-based parametric

receiver IDR for loose estimation accuracies is proposed by determining the threshold point

where both signals are measured efficiently.
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VI. Conclusions

6.1 Introduction

This thesis investigates the EW receiver’s IDR for the following IDR definition: IDR

is defined as the maximum signal amplitude ratio for a given frequency estimation

accuracy, a given frequency separation and a given SNR [5]. The measured signal is as-

sumed to consist of multiple sinusoidal tones in white noise that fill the entire measurement

window, i.e.

x(n) = s(n) + w(n). n = 0 . . . N − 1 (6.1)

Two types of EW receivers are considered; a DFT-Based Intercept Receiver and an IGLS

Algorithm-Based Parametric Receiver. In Chapter III, the DFT-Based Intercept Receiver,

using the novel SLR method, is evaluated for IDR. The results provide numerical estimates

for 57 dB of IDR. The resulting analysis has a direct impact on digital EW receiver analysis

and design. In Chapter IV, the method used to calculate the IDR-CRB in [1] is simplified,

and the IDR-CRB is extended to real signals. In Chapter V, the novel IGLS frequency es-

timation algorithm, originally researched by [8] and [7], is completely developed and shown

to yield ML results. The IDR-CRB validates using the IGLS Algorithm-Based Parametric

Receiver for tight frequency estimate requirements. For loose frequency estimate require-

ments, the author proposes determining the parametric receiver IDR based on when both

measurements achieve efficiency.

6.2 Contributions

In Chapter III, the main contribution is a solid method in order to evaluate a DFT-

based intercept receiver’s IDR. Also, the novel SLR method’s IDR is evaluated and shown

to yield the IDR in Table 3.1. This IDR is independent of bin spacing for signals separated

by more than 2 bins and does not have the associated processing gain loss and widening

of the main beam inherent to window based approaches.

In Chapter IV, an improved method to calculate the complex IDR-CRB is introduced.

The old method in [1] relied on an iterative technique that is difficult to implement. The

new method exploits the fact that the Fisher information matrix can be factored as shown
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in [6] for a method that requires no iteration and is quite simple. The IDR-CRB is

extended to real signals, again based on the results in [6]. Plots are provided to evaluate

the results. Finally, it is firmly established that a receiver’s frequency estimates should

only be compared to the IDR-CRB if the estimates are unbiased, which is generally not

the case in intercept receivers but is true for most parametric receivers.

In Chapter V, the novel IGLS frequency estimation algorithm, developed by Dr.

Pachter and researched by Zahirniak [7] and Ingham [8], is completely developed and

shown to yield ML estimates. The author feels the explanation of IGLS provided is the

most concise and informative to date. The IDR-CRB is then evaluated using the IGLS

Algorithm-Based Parametric Receiver. For tight frequency estimate requirements, the

IDR-CRB is a valid bound on performance. For less stringent frequency estimate require-

ments, the author proposes determining the IDR based on when both estimates achieve

efficiency. The author’s loose definition of IDR coupled with the concise and informative

description of IGLS has been submitted for publication [29].

6.3 Future Work

Areas of future work include

• Implement the SLR method results using a lookup table and compare to the ideal

results in Table 3.1.

• Use the method of Chapter III to compare straight windowing results to the SLR

method results for IDR in Table 3.1.

• Consider other non-parametric spectral/frequency estimation algorithms for the in-

tercept receiver such as the minimum variance algorithm described in [13] and com-

pare results for IDR to Table 3.1.

• Compare other algorithms to the IDR-CRB when tight frequency estimates are re-

quired.

• Apply the IGLS algorithm to other applications such as a discrete frequency rate

estimator in a software radio.
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• Research ways to improve the IGLS noise threshold when initialized by the EPM,

such as an additional contraint.

6.4 Summary

The results in this thesis, whether taken collectively or individually, represent signif-

icant contributions to the field of Electronic Warfare. The IDR analysis performed in this

thesis standardizes how the two types of EW receivers IDR should be evaluated. These

contributions directly impact the design and updates for digital EW receivers. Thus, these

results directly and positively impact USAF operations in the critical EW field.
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Appendix A. Interference in an EW Receiver

A.1 Introduction

As with any system, noise interferes with the EW receiver measurements. Since the

noise is random, the noise is characterized using statistics for mathematical analysis. The

statistical noise model used throughout the thesis is developed below, with a brief review

of random process theory preceding the noise model development.

A.2 Random Process Theory

Random signals consist of an ensemble of member functions. The signal measured in

an experiment may only be a single member of a large ensemble of signals with a certain

probability of selection associated with each member of the ensemble. Thus, instead of

a deterministic mathematical description, random signals are specified in terms of their

statistical characteristics, with the following being the most important:

• The mean of a random signal is defined as

µx(n) = E {x(n)} . (1.1)

Thus, the mean of a random signal at time n is the expected value is of the ensemble

functions at time n.

• The autocorrelation of a random signal is defined as

Rxx(n, m) = E {x(n)x∗(m)} . (1.2)

where Rxx(n, m) is an autocorrelation value. A signal is defined to be Wide Sense

Stationary (WSS) if the autocorrelation depends only on the time difference, not

the actual time (very important) and the mean is constant over time. Note that

the Fourier transform of the autocorrelation function of a WSS process is the Power

Spectral Density (PSD)- see Appendix B.
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• The autocovariance of a random signal is defined as

Cxx(n, m) = Rxx(n, m) − µx(n)µ∗
x(m) (1.3)

where Cxx(n, m) is an autocovariance value.

• Note that the autocorrelation and the autocovariance can be extended to cross-

correlation and cross-covariance between two separate signals.

The above concepts are applied in the next section to mathematically model thermal noise.

A.3 Thermal Noise

In 1827, the British Botanist Robert Brown observed that small pollen grains exhibit

random motion in water. In 1905, Albert Einstein (who was unaware of Brown’s work)

showed that small particles (around 10−4 cm) move randomly due to the constant bom-

bardment from the molecules of the medium [30]. This random movement is now called

Brownian motion. In 1923, Norbert Wiener, using stochastic theory, derived a mathemat-

ical random process model for Brownian Motion called the Wiener Process [30].

The Wiener Process is used extensively to model the random motion of electrons

in electronic devices such as resistors, capacitors, inductors, and semiconductor devices

(which make up the RF amplifier of the EW receiver). These random fluctuations in

electron density interfere with the information bearing signals that flow through these

components. This interference is referred to as thermal noise. As the number of devices

increases, the collection of Wiener Processes become a zero-mean, stationary Gaussian

Process due to the Central Limit Theorem [30]. The Gaussian process model for thermal

noise exhibits a PSD that is flat over a wide range of frequencies, and is referred to as

Additive White Gaussian Noise (AWGN) [30].

The white noise PSD is [30]

SWW (f) =
No

2
Joules/Hz (1.4)
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where No is equal to kT (where k is boltzmann’s constant, and T is the temperature in

Kelvin of the noise source), and SWW (f) is the PSD of the white noise. This implies that

the autocorrelation function which is the IFT of the PSD is a delta function,

RWW (t) = σ2δ(t), (1.5)

where σ2 is the noise variance. From (1.5), each realization of thermal noise in time is

independent from the next realization. For the general case of colored or white noise, the

distribution of real noise for any stationary process for the general N-variate, zero mean

Gaussian case is given as [30]

fW (w) = (2π)
−N
2 |R|− 1

2 exp

{

−1

2
wTR−1w

}

, (1.6)

where the matrix R is the covariance matrix of the noise (for white noise R = σ2I, where I

is the identity matrix) and w is the AWGN vector. Thermal noise is assumed throughout

the thesis.
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Appendix B. Power Spectral Density and the Periodogram

B.1 Introduction

A
lthough the DFS is used for the frequency estimation algorithm in Section 3.3, the

Periodogram - an estimate of a WSS process’s PSD 1 - is still an important tool

for frequency estimation, and, because the Periodogram is a power statistic, has a natural

relation to the direct Maximum Likelihood estimate of multiple frequencies. Thus, in

Section B.2, the deterministic PSD is developed. In Section B.3, the PSD of a WSS

random signal is introduced and then estimated with the Periodogram.

B.2 Deterministic Power Spectral Density

If an arbitrary signal voltage is referenced to a one ohm resistor, then the energy of

the signal is defined as [19]

E , lim
T→∞

∫ T

−T
|x(t)|2dt, (2.1)

and the power of the signal is defined as

P , lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2dt. (2.2)

It is a well-known relationship [16, 19] that energy in the frequency domain equals the

energy in the time domain

E =

∫ ∞

−∞

|x(t)|2dt =

∫ ∞

−∞

|X(f)|2df. (2.3)

Equation (2.3) is known as Parseval’s theorem. A similar property applies to the power

relationship between the time and frequency representation of a signal [19]

P = lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2dt = lim
T→∞

1

T

∫ ∞

−∞

|X(f)|2df. (2.4)

1Since the signal’s contained in the measurement signal are deterministic, the measurement is actually
a mixed process, this fact is normally ignored in frequency/spectral estimation.
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For periodic signals the limiting operation can be ignored in the power equations of above,

and To can be substituted for T, where To is the period of the signals. A similar relationship

that was made in (2.3) can be applied in the discrete time and frequency domains

P =

N−1
∑

n=0

|x(n)|2 =
1

N

N−1
∑

k=0

|X(k)|2. (2.5)

Equation (2.4) can be rewritten as

P = lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2dt =

∫ ∞

−∞

Sx(f)df. (2.6)

where Sx(f) is the PSD of a signal defined as

Sx(f) = lim
T→∞

|X(f)|2
T

. (2.7)

The discrete PSD is defined as

Sx[k] = lim
M→∞

1

N
|X(k)|2. (2.8)

where N is the number of discrete frequency sample points. The PSD represents the power

per unit Hertz of a signal. An interesting result is the equivalent operation in the time

domain to the PSD

F−1 {Sx} = lim
T→∞

1

T

∫ ∞

−∞

|X(f)|2ej2πfαdf

= lim
T→∞

1

T

∫ ∞

−∞

X(f)X(f)∗ej2πfαdf

= lim
T→∞

1

T

∫ ∞

−∞

X(f)(

∫ T
2

−T
2

x(t)e−j2πftdt)∗ej2πfαdf

= lim
T→∞

1

T

∫ T
2

−T
2

x∗(t)

∫ ∞

−∞

X(f)ej2πf(t+α)dfdt

= lim
T→∞

1

T

∫ T
2

−T
2

x∗(t)x(t + α)dt

= Rf (α),

(2.9)
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where Rf (α) is the autocorrelation function and has a central role in random process

theory.

The PSD can be employed in digital EW systems for the detection/estimation of

sinusoids. Since the period of the sinusoids is unknown, the measurement time (window

time length) is substituted for the period. Thus, the PSD of the signal in (3.3) is

Sx(f) =
|X(f)|2

τ
. (2.10)

To make the task easier, rewrite X(f) as

X(f) = AB + CD (2.11)

where A,B,C, and D are defined as follows,

A =
τA1

2
e−j(πf1τ+π

2
) (2.12)

B = sinc(τ(f + f1))e
−jφ1 − sinc(τ(f − f1))e

jφ1 (2.13)

C =
τA2

2
e−j(πf2τ+π

2
) (2.14)

D = sinc(τ(f + f2))e
−jφ2 − sinc(τ(f − f2))e

jφ2 . (2.15)

Then the PSD of x(t) is

Sx(f) =
1

τ
(|AB|2 + A∗B∗CD + ABC∗D∗ + |CD|2). (2.16)

Although the above formula is for the continuous frequency case, it will match closely to

the discrete PSD at the frequency sample points with slight differences due to the aliasing

of the sinc function side-lobes. The cross terms of Equation (2.16) increase the frequency

estimates bias for closely spaced sinusoids. The deterministic PSD plot results mirror the

previous DFT magnitude plots in Chapter III for most results (since those results were

reported in dB), except for the 1
M scaling term.
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B.3 Periodogram

For WSS random signals, the PSD is defined as [13]

SXX(f) = lim
T→∞

E
{ |XR(f)|2

T

}

. (2.17)

Ignoring the expected value operator and using the available data yields the PSD estimate

ŜXX(f) =
|XR(f)|2

τ
, (2.18)

where ŜXX(f) is called the Periodogram. The Periodogram is an inconsistent spectral

estimator, i.e. the variance does not decrease as the number of measurements increases.

The Periodogram is often employed for frequency detection/estimation. However, because

the interpolation algorithms in Section 3.3 rely on phase information, the Periodogram is

not used in this thesis.

B-4



Bibliography

1. J. B. Tsui, Digital Techniques for Wideband Receivers. Massachussetts: Artech House
Publishers, second ed., 2001.

2. “Australia develops Blue Owl system,” Jane’s International Defense Review, vol. 37,
p. 11, Jan. 2004.

3. D. D. Vaccaro, Electronic Warfare Receiving Systems. Massachussetts: Artech House
Publishers, 1993.

4. D. C. Schleher, Electronic Warfare in the Information Age. Massachussetts: Artech
House Publishers, 1999.

5. J. B. Tsui, M. H. Thompson, and W. McCormick, “Theoretical limit on instantaneous
dynamic range of EW receivers,” Microwave Journal, pp. 147–152, Jan. 1987.

6. D. C. Rife and R. R. Boorstyn, “Multiple tone parameter estimation from discrete-
time observations,” The Bell System Technical Journal, vol. 55, no. 9, pp. 1389–1410,
1976.

7. D. R. Zahirniak, Parameter Estimation for Real, Filtered Sinusoids. PhD thesis, Air
Force Institute of Technology, Wright-Patterson AFB, Ohio, Sept. 1997. DTIC Report
ADA331303.

8. E. A. Ingham, Parameter Estimation for Superimposed Weighted Exponentials. PhD
thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, July 1996.
DTIC Report ADA310879.

9. J. B. Y. Tsui. private communication, 2003.

10. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Engle-
wood Cliffs, NJ: Prentice Hall, 1993.

11. L. L. Scharf, Statistical Signal Processing. Reading, MA: Addison-Wesley, 1990.

12. H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part 1. New York:
John Wiley & Sons, 1968.

13. S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs,
NJ: Prentice Hall, 1988.

14. Y. Bresler and A. Macovski, “Exact maximum likelihood parameter estimation of
superimposed exponential signals in noise,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-34, pp. 1081–1089, Oct. 1986.

15. S. Kay and S. Saha, “Mean likelihood frequency estimation,” IEEE Transactions on
Signal Processing, pp. 1937–1946, July 2000.

16. F. G. Stremler, Introduction to Communications Systems. New York: McGraw Hill,
third ed., 2001.

17. F. J. Harris, “On the use of windows for harmonic analysis with the Discrete Fourier
Transform,” Proceedings of the IEEE, vol. 66, pp. 51–83, Jan. 1978.

BIB-1



18. B. Smith and T. Hale, “An analysis of the effects of windowing on selected STAP
algorithms,” in Proc. IEEE Radar Conference 2004 (Accepted), (Philadelphia, Penn-
sylvania), Apr. 2004.

19. R. E. Ziemer, W. H. Tranter, and D. R. Fannin, Signals & Systems: Continuous and
Discrete. New Jersey: Prentice Hall, 1998.

20. M. D. Macleod, “Fast nearly ML estimation of the parameters of real or complex single
tones or resolved multiple tones,” IEEE Transactions of Signal Processing, vol. 46,
pp. 141–148, Jan. 1998.

21. S. L. Marple, Digital Spectral Analysis with Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

22. Y. T. Chan, J. M. M. Lavoie, and J. Plant, “A parameter estimation approach to
estimation of frequencies of sinusoids,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. ASSP-29, pp. 214–219, Apr. 1981.

23. M. Pachter and O. R. Reynolds, “Identification of a discrete-time dynamical system,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 212–225,
2000.

24. O. R. Reynolds and M. Pachter, “Phasor approach to continuous-time system iden-
tification,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 2,
pp. 683–699, 1999.

25. T. H. Li and B. Kedem, “Strong consistency of the contraction mapping method for
frequency estimation,” IEEE Transactions on Information Theory, vol. 39, pp. 989–
997, May 1993.

26. J. M. Brown, Optimal Inputs for System Identification. PhD thesis, Air Force Institute
of Technology, Wright-Patterson AFB, Ohio, Sept. 1995. DTIC Report ADA297483.

27. J. H. McClellan and D. Lee, “Exact equivalence of the Steiglitz-McBride iteration and
IQML,” IEEE Transactions on Signal Processing, vol. 39, pp. 509–512, Feb. 1991.

28. E. A. Ingham, J. Schofield, and M. Pachter, “Improved linear prediction for deep level
transient spectroscopy analysis,” Journal of Applied Physics, vol. 80, pp. 2805–2814,
Sept. 1996.

29. M. Pachter and B. Smith, “An efficient frequency estimation algorithm using linear
prediction,” in 43rd IEEE Conference on Decision and Control (Submitted).

30. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation, and
Data Analysis. New York: John Wiley & Sons, 1988.

BIB-2



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

23-03-2004 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 
Jun 2003 – Mar 2004 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
ENHANCING THE INSTANTANEOUS DYNAMIC RANGE OF ELECTRONIC 
WARFARE RECEIVERS USING STATISTICAL SIGNAL PROCESSING 
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
04ENG145 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Smith, Bryan, E., 1st Lt, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way Street, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GE/ENG/04-22 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 AFRL/SNRP 
 Attn:  Dr. James B. Tsui 
 2241 Avionics Building 620 N2-R1 DSN:  785-6127 x4320 
 WPAFB OH 45433                 e-mail:  James.Tsui@wpafb.af.mil 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
   Accurately processing multiple, time-coincident signals presents a challenge to Electronic Warfare (EW) receivers, especially if the signals are close in 
frequency and/or mismatched in amplitude.  The metric that quantifies an EW receiver's ability to measure time-coincident signals is the Instantaneous 
Dynamic Range (IDR), defined for a given frequency estimation accuracy, a given frequency separation and a given SNR as the maximum signal 
amplitude ratio that can be accommodated.  Using a two sinusoid time-series model, this thesis analyzes IDR for ideal intercept and parametric digital 
EW receivers. 
    In general, the number of signals contained in the EW receiver measurement interval is unknown.  Thus, the non-parametric Discrete Fourier 
Transform (DFT) is employed in an EW intercept receiver with the associated amplitude dependent spectral leakage which limits IDR. A novel method to 
improve the DFT-based intercept receiver IDR by compensating for the high amplitude signal's spectral leakage using computationally efficient 3 bin 
interpolation algorithms is proposed and analyzed. For a desired frequency estimation accuracy of 1.5 bins, the method achieves an IDR of 57 dB with 
little frequency separation dependence when the signals are separated by more than 2 bins with a low amplitude signal SNR of 10 dB. 
    For situations where the number of signals contained in the measurement interval is known, the IDR of an Iterative Generalized Least Squares (IGLS) 
algorithm-based parametric receiver is analyzed. A real and complex signal IDR Cramer-Rao Bound (IDR-CRB) is derived for parametric receivers by 
extending results contained in Rife.  For tight frequency estimate requirements (these requirements depend on the number of measurement samples), 
the IDR-CRB yields achievable bounds. For less stringent frequency estimate requirements, the IDR-CRB is unrealistic due to the noise threshold 
inherent to frequency estimation. Thus, to achieve good results when less stringent frequency estimates are required, the author defines the IGLS 
algorithm-based parametric receiver IDR at the amplitude ratio where the frequency estimates first achieve efficiency, i.e., the amplitude ratio where the 
overmodelling condition first ceases. 
15. SUBJECT TERMS 
       Parameter Estimation, Maximum Likelihood, Linear Prediction, Electronic Warfare 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Meir Pachter, Professor, (ENG) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

122 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4280; e-mail:  Meir.Pachter@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Enhancing the Instantaneous Dynamic Range of Electronic Warfare Receivers Using Statistical Signal Processing
	Recommended Citation

	AFITdissertation.dvi

