
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2004

Age Replacement and Service Rate Control of Stochastically Age Replacement and Service Rate Control of Stochastically

Degrading Queues Degrading Queues

Patrick S. Chapin

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Chapin, Patrick S., "Age Replacement and Service Rate Control of Stochastically Degrading Queues"
(2004). Theses and Dissertations. 4019.
https://scholar.afit.edu/etd/4019

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F4019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4019?utm_source=scholar.afit.edu%2Fetd%2F4019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AGE REPLACEMENT AND SERVICE RATE CONTROL OF

STOCHASTICALLY DEGRADING QUEUES

THESIS

Patrick S. Chapin, Second Lieutenant, USAF

AFIT/GOR/ENS/04-02

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense or

the United States Government.

AFIT/GOR/ENS/04-02

AGE REPLACEMENT AND SERVICE RATE CONTROL

OF STOCHASTICALLY DEGRADING QUEUES

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Patrick S. Chapin, B.S.

Second Lieutenant, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/04-02

AGE REPLACEMENT AND SERVICE RATE CONTROL

OF STOCHASTICALLY DEGRADING QUEUES

Patrick S. Chapin, B.S.

Second Lieutenant, USAF

Approved:

Dr. Jeffrey P. Kharoufeh
Thesis Advisor

Date

Dr. James W. Chrissis
Committee Member

Date

AFIT/GOR/ENS/04-02

Abstract

This thesis considers the problem of optimally selecting a periodic replacement

time for a multiserver queueing system in which each server is subject to degradation

as a function of the mean service rate and a stochastic and dynamic environment.

Also considered is the problem of optimal service rate selection for such a system.

In both cases, the performance metric is the long-run average cost rate. Analytical

expressions are obtained, in terms of Laplace transforms, for the nonlinear objective

functions, necessitating the use of numerical Laplace transform inversion to evaluate

candidate solutions in conjunction with standard numerical algorithms. Due to the

convexity of the objective function, the optimal replacement time is computed using a

hybrid bisection-secant method which yields globally optimal solutions. The optimal

service rates are obtained via gradient search methods but are only guaranteed to

provide locally optimal solutions. The analytical results are implemented on three

notional examples that demonstrate the benefits of dynamically adjusting service

rates under the described maintenance policy.

iv

Acknowledgements

I would like to take this opportunity to thank all those who made this thesis

possible. First, I would like to thank my advisor, Dr. Jeff Kharoufeh. Without his

guidance and instruction, this thesis would never have happened. I am grateful for

the many hours he spent assisting me in this effort.

Thanks are also due to my Committee Member, Dr. Jim Chrissis, for his

insightful questions and careful editing of the document. This thesis is a better

product because of his efforts. Furthermore, I would like to thank the rest of the

outstanding AFIT faculty for giving me the knowledge and capability to address this

thesis problem.

Most importantly, I would like to thank my wife for her love and understanding

during this process. She stoically accepted my absences and mood swings, and still

found it in her heart to love me. Thank you, love.

Patrick S. Chapin

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

1. Introduction . 1-1

1.1 Background . 1-1

1.2 Problem Definition and Methodology 1-3

1.3 Thesis Outline . 1-5

2. Literature Review . 2-1

2.1 Optimal Replacement Models 2-1

2.2 Optimal Service Rate Control 2-6

2.3 Queues Subject to Failure 2-9

2.4 Server Failure Distributions 2-12

3. Mathematical Model Description 3-1

3.1 Optimal Replacement Time 3-10

3.2 Optimal Service Rate Selection 3-15

4. Numerical Experiments . 4-1

4.1 Numerical Analysis Techniques 4-1

4.2 Example I . 4-5

4.3 Example II . 4-9

4.4 Example III . 4-13

vi

Page

5. Conclusions and Future Research 5-1

Bibliography . BIB-1

Appendix A. Simulation Code . A-1

Appendix B. Root-Finding Code . B-1

Appendix C. Gradient Search Code C-1

vii

List of Figures
Figure Page

2.1. An example of a switch curve structure. 2-6

3.1. A sample path of the wear level of one server. 3-4

4.1. An example of the bisection method. 4-2

4.2. An example of the secant method. 4-3

4.3. An example of the failure of the secant method. 4-4

viii

List of Tables
Table Page

4.1. Cost coefficients; Example I. 4-6

4.2. Simulated versus analytical CDF; Example I. 4-7

4.3. Results for optimal replacement time; Example I. 4-8

4.4. Service rate selection problem; Example I. 4-9

4.5. Cost coefficients; Example II. 4-10

4.6. Simulated versus analytical CDF; Example II. 4-11

4.7. Results for optimal replacement time; Example II. 4-11

4.8. Service rate selection problem; Example II. 4-12

4.9. Cost coefficients; Example III. 4-13

4.10. Simulated versus analytical CDF; Example III. 4-14

4.11. Results for optimal replacement time; Example III. 4-15

4.12. Service rate selection problem; Example III. 4-16

4.13. Service rate selection problem; Example III. 4-17

ix

AGE REPLACEMENT AND SERVICE RATE CONTROL OF

STOCHASTICALLY DEGRADING QUEUES

1. Introduction

1.1 Background

In this thesis, the optimal control of a stochastically degrading queueing sys-

tem is considered. A stochastically degrading queueing system is one in which the

server(s) of the system accumulate wear over time, and at some point cease to oper-

ate effectively. To optimally control a stochastically degrading system is to change

or control various parameters of the system to achieve the most desirable result, de-

pending on the particular attributes of the system being considered. The queueing

system parameters that are assumed to be controllable in this thesis are: 1) the

time at which servers are to be replaced, and 2) the mean service rate of each of the

servers.

This type of system is common in the real world, especially in the manufactur-

ing environment. For example, an outside diameter grinding wheel incurs wear as

it grinds workpieces to a desired finish, and after a certain level of wear is reached,

it can no longer effectively achieve engineering specifications. Another example of a

degrading queueing system is a satellite telecommunications network. The satellites,

which may be considered single server queueing stations, require power to operate.

Typically, such power is provided by large solar panels. The performance of these

panels degrades over time due to solar radiation, small particle strikes and other

hazards found in the space environment, until the panels can no longer power the

satellite, representing a failure of the server. Assume the operator of the satellite

network may alter the rate at which the satellites transmit messages, perhaps allow-

1-1

ing those satellites to furl their solar panels in an effort to prevent damage. Both

of these examples include servers that are subject to a myriad of factors external to

the system, yet can have significant impact on the wear rate of the server(s). For

example, the temperature of the surrounding environment could impact the grinding

wheel by inducing heat expansion in the workpiece, causing it to require additional

grinding, and hence causing the grinding surface to wear prematurely. Therefore,

it may be possible for the grinding machine to wear faster or slower depending on

the environment. Also, the rate at which damage is accrued by the solar panels

of a satellite is completely dependent on the space environment. Both the space

environment and the temperature of the surrounding environment of the grinding

wheel are unpredictable, and hence, must somehow be characterized as they evolve

in time. Usually, the objective of controlling these types of systems is to minimize

some measure of cost, or achieve a desired measure of performance. The minimiza-

tion of costs and maintenance of performance standards are of vital importance to

organizations in a highly competitive global market. Additionally, such systems can

be controlled to ensure worker safety.

Two methods of control are examined in this thesis. The first method of

control is an optimal replacement strategy. A k-replacement policy implies that

all the servers in a k-server queueing system will be replaced every T time units,

and that no other repairs or replacements occur. The goal for the first portion of

this thesis is to compute the value of T that minimizes the long-run expected cost

rate of the system. The second method of control seeks to balance the tradeoff

between the benefits of high service rates and the liabilities of an increased failure

rate. Higher service rates lead to increased throughput, shorter queue lengths, and

reduced waiting times for customers. On the other hand, high service rates also lead

to a high failure rate which, in turn, leads to higher costs due to premature failures.

Therefore, the objective is to compute the optimal mean service rates that balance

this tradeoff and minimize the long-run expected cost rate.

1-2

1.2 Problem Definition and Methodology

At its core, this problem is a single-station queueing optimization problem

where the server(s) accumulate wear and eventually fail. This queueing system is

subject to an external environment that can be modelled as a finite-state stochastic

process. That is, the random environment has a finite number of states between

which it transitions randomly and the environment spends a random amount of

time in each state. When the environment is in a given state, the server degrades

according to a linear rate dependent on that state.

For the purposes of this thesis, a k-replacement policy for the system is as-

sumed. That is, all k servers in the system are replaced every T time units, with

repair or replacement occurring only at integer multiples of T . One of the conse-

quences of this policy is that there may be times at which the number of operating

servers is not sufficient to fulfill the stability condition of the queue. Therefore, it

may be possible for the number of customers in the system to become unbounded.

To ensure that this does not happen, it is assumed that an outside service provider

is employed to pick up the workload of a failed server. That is, if a server has failed,

then customers that would have been served by the failed server are routed to the

outside entity. This external service provider, however, charges a relatively higher

price than the in-house server.

This thesis has two main objectives. The first objective is to compute the

optimal length of a replacement interval, T , given that the rate of wear on each server

is governed by the state of the ambient operating environment. The second objective

is to optimally compute the mean service rate for each state of the environment, given

that the linear rate of wear on each server is a function of both the mean service

rate and the state of the environment. The objective function for both optimization

problems is the long-run expected cost rate.

1-3

To optimize the long-run cost rate, the cost function itself must be defined.

The cost function examined in this thesis can be broken into four parts. The first

component of the cost function is the replacement cost which is the cost required to

replace the servers. The next component of the cost function is the work cost, or the

cost of operating the servers at the specified service rate. The third cost component is

a holding cost, which reflects cost of having a backlog of jobs to process. The last cost

component is associated with the inconvenience generated by servers failing before

they are replaced. This component takes into account the added cost of rerouting

incoming customers to an external service provider that handles the workload of the

failed server(s), as well as the payment due to this external service provider. It is

assumed that the increases in holding costs are significantly higher than the cost of

employing the outside service provider.

The minimization of this cost function is examined with respect to the re-

placement time and the environment-state-dependent mean service rates. Because

the failure time distribution of the individual servers cannot be expressed analyti-

cally in the real domain, it is necessary to approximate the optimal solutions to both

the replacement time problem and the service rate problem. Approximate solutions

are obtained via the secant method in the case of the replacement time, or a sim-

ple gradient search procedure in the case of the service rate problem. Both depend

on numerical inversion of Laplace transform expressions for the server failure time

distribution function.

This thesis contributes to the current Operations Research literature by unit-

ing techniques from failure modelling, optimal replacement theory, and the optimal

control of queues to solve two difficult problems in the theory of deteriorating queues.

Though these distinct areas have been well developed, relatively little research can

be found in the current literature on the optimization of queues with failing servers.

The results of this research may potentially save organizations valuable resources by

1-4

eliminating superfluous maintenance activities and mitigating the risk of catastrophic

failures.

1.3 Thesis Outline

The next chapter of this thesis examines the current body of literature in the

realms of optimal replacement strategies and the optimal control of queueing service

rates. In addition, a method for determining the failure time distribution of the

server is reviewed.

In chapter 3, the system under consideration is mathematically characterized,

and the long-run expected cost rate is examined. The first subsection of that chapter

proves the convexity of the long-run expected cost rate with respect to the replace-

ment time. A simple solution procedure using the secant method is then discussed.

The next subsection presents the necessary modifications to the model to examine

the optimal service rate control problem, and a numerical gradient search method

is discussed as a solution technique. Chapter 4 presents several numerical examples

of both problems, and the results are discussed and compared with simulation data.

Finally, chapter 5 provides concluding remarks and future research directions.

1-5

2. Literature Review

There are two main areas of literature relevant to this thesis: i) optimal

replacement strategies for stochastically deteriorating systems, and ii) the optimal

control of queueing service rates. As such, literature concerning elements of these

two topics is presented.

2.1 Optimal Replacement Models

Survey papers by McCall [25], Pierskalla and Voelker [31], and Valdez-Flores

and Feldman [37] review the optimal replacement literature from the early 1950s

through the late 1980s. These papers provide a good summary of the optimal re-

placement literature and models during that period.

Valdez-Flores and Feldman [37] divide optimal replacement models into four

broad categories, but underlying all four categories is the same basic premise; the

objective is to minimize some given cost function, or maximize a profit function. A

policy is said to be optimal if no other policy returns a lower cost or higher profit.

The first category is inspection models where the amount of wear accumulated by the

machine is unknown. Additionally, it may be unknown if the system has failed. The

objective of an inspection model is to determine the optimal inspection and repair

policy to minimize costs. The second category of replacement models is minimal

repair models. A minimal repair model is usually used in complex systems with

several components where, each time the system fails, a decision is made to either

replace the entire system or repair the failed component. Valdez-Flores and Feldman

[37] define a minimal repair to be one in which the repair of the failed component

restores function to the system, but the failure rate of the overall system remains

unchanged. The question then becomes,“When is it optimal to replace the entire

system as opposed to performing minimal repairs?”

2-1

The third category of optimal replacement models is the replacement of sys-

tems that degrade due to random damage shocks, also called shock models. These

models assume that the system is exposed to randomly occurring shocks, each shock

inflicting a random amount of damage, with damage accumulating additively until

the system is replaced or fails. These models are usually not age replacement mod-

els, in that most shock models give conditions for which there exists a control-limit

policy. A control-limit policy is a rule in which replacement occurs when accumu-

lated damage exceeds some threshold α or at failure. The final category of optimal

replacement models reviewed in [37] is a miscellaneous category. Here Valdez-Flores

and Feldmann [37] describe a wide variety of possible models including completely

observable models, partially observable models, replacement with spares that are

not on hand, and models for systems not in continuous operation. To elaborate, a

completely observable model is one in which the state of degradation of the system

is always known and failures are detected instantaneously. A partially observable

model is one in which the true state of the system is not known but can be inferred

from some other easily observable variable. This leads to the case in which the only

available information is the probability of the system being in a particular state.

One example of an inspection model is provided by Jeang [16], who developed a

linear tool-wear model based on linear wear of a tool with normally distributed linear

coefficients. This model in turn allows the author to apply Bernstein’s distribution

[3] to represent the lifetime of the tool. This model assumes costs are incurred for

replacement of the tool, sudden tool failure during processing, and for diminished

quality due to imperfections in the workpiece caused by a worn tool. The author

provides a method of calculating the optimal replacement time, as well as the optimal

inspection period and initial offset of the tool to minimize the objective function.

These results are relevant to the problem of this thesis in that the methodology is

applicable to analyzing the system. While the underlying failure distribution of the

2-2

tool in [16] differs from that under consideration in this thesis, the results of [16]

would suggest that a stationary optimal policy should exist.

There exists a large body of recent shock model literature which, at first glance,

does not appear to be relevant to the system in this thesis. However, the general

solution techniques are often independent of the method of wear accumulation. Using

the results of Kharoufeh [19], one may compute the distribution of failure time for

each tool and therefore have some information on the about the current state of the

tool. This makes these papers, especially those that deal with partial or imperfect

information, valid methodologies.

An interesting shock model was analyzed by Waldmann [38] who incorporates

a random environment that affects the magnitude of the shocks received by the

system. The author provided a proof of the optimality of a general state-dependent

control-limit policy and derives bounds on the critical values. This paper is useful

in that it gives conditions for which an optimal control-limit policy will exist in a

random environment. These types of optimal policies are also considered by Perry

[30], who considered a shock model with linear restoration between the arrivals of

shocks. Nakagawa [26] developed a shock model for n units in parallel, where the

optimal control policy was to replace the system if k of the n components had failed.

Hopp and Kuo [15] develop a shock model for the maintenance of aircraft

engines while taking imperfect information into account. This differs from the tradi-

tional control-limit policies in that the underlying amount of wear on the system is

unknown. In addition, the shocks are assumed to arrive according to a non-stationary

Poisson process. The optimal inspection and replacement policies were found by dis-

cretizing the state space and solving the resulting Markov decision process. Another

example of a shock model is due to Hopp and Nair [14] who account for technological

change in the replacement model. This model relaxes the assumption that the only

reason to replace a system is due to wear, and introduces technological advancement

as another possible reason for replacement. The model assumes that there can be

2-3

exactly one technological improvement and that its arrival is unknown, but predicted

via technological forecasts. The optimal policies generated by the author are still

of the control-limit type; however they are not stationary because the technological

forecast is assumed to be non-stationary.

Finally, Hopp and Wu [13] derive a multi-action model for a standard discrete

time maintenance problem with imperfect information. The system is assumed to

have n states where state 1 is the “best” state and state n is the worst. At each

decision point the operator must choose from a set of actions, A = {0, 1, . . . , n}

that deterministically move the state of the system to the level of the action taken

(choosing action 0 indicates doing nothing). The authors examine two cases, state-

dependent and state-independent maintenance. In state-dependent maintenance,

if the operator chooses action a and the system is actually in state i ≤ a, then

the system remains in state i. Under this condition, there does not exist a control

limit structure, but computation of an optimal policy is still possible utilizing a finite

Markov decision process formulation. The state-independent results are far stronger,

however, where they take on the familiar control-limit structure.

Rounding out the categories of replacement models is the catch-all “miscel-

laneous” category. In what follows, models which do not fit neatly into any of the

previous categories are examined. Shirmohammadi, et al. [34] develop a model where

the system degrades but is repaired in one of two ways. First, it is repaired on a fixed,

time-based schedule. Second, the system undergoes emergency repair whenever the

system fails prior to periodic maintenance. The authors define a policy where the

system is repaired on a periodic basis, but if an emergency repair is required within a

certain time before the renewal time, the scheduled periodic maintenance should be

skipped. The authors then derive a method of solving for the time radius in which

the periodic maintenance is skipped if an emergency failure is observed. This type

of behavior could be useful in the context of the problem examined in this thesis,

where a new replacement policy might be to fix each individual server as it failed,

2-4

then replace the system after some length of time. In this case, it may be possible

to find a threshold number of servers s such that if s servers have failed within a

certain radius of the replacement time, then that replacement should be skipped.

This is an avenue of potential future research and is not studied here.

Another paper due to Zhou, et al. [40] presents a cutting tool model based on

perfect information. This model assumes both the capacity of each new tool and the

capacity consumption of each workpiece are, respectively, i.i.d. random variables.

The authors model the system as a renewal process where the system is replaced

whenever the remaining capacity of the current tool drops below the control-limit.

The optimal control-limit is found by differentiating the long term expected cost

rate and setting it equal to zero. This methodology is not unlike the proposed age

replacement methodology used in this thesis.

Koyanagi and Kawai [21] examined an M/G/1 queue where the server degrades

according to an underlying finite-state Markov chain: the server has s + 2 states

S = {0, 1, . . . , s, s + 1} where state 0 indicates a “good as new” server and state

s+1 indicates a failed state, with states 1 through s denoting successively increasing

levels of wear. The authors assume that when a system is repaired, all customers in

the system are forced out of the system incurring a cost per ejected customer, and all

new arrivals are rejected, again incurring a cost per rejected customer. Using a semi-

Markov decision process and dynamic programming, an optimal policy based on both

the number of customers in the queue and the state of deterioration of the server is

computed. This optimal policy has a two dimensional switch curve structure. The

threshold property, the one dimensional analog to the switch curve structure, implies

that if the state variable exceeds the threshold, a repair should be undertaken. The

switch curve structure is similar in that it partitions the state space, which in [21]

is a two-dimensional plane, into two partitions. A simple example of this structure

is illustrated in Figure (2.1). The optimal policy is to do nothing if the state vector

lies within Region A of the state space, and replace if the state vector is in Region B.

2-5

x

Region A

Region B

y

Figure 2.1 An example of a switch curve structure.

This methodology may also be valid for the analysis of the system in this thesis, even

though there are significant differences between the respective objective functions.

2.2 Optimal Service Rate Control

This section shifts the focus from determining when the server should be re-

placed, to the problem of optimally controlling the service rate of the server(s). While

none of the following papers examine a deteriorating server, they provide background

and foundational methodologies that can be modified to optimally control a server

that is subject to wear.

The optimal service rate problem describes scenarios wherein it is possible

to adjust the service rate of the server in a queueing system with the purpose of

minimizing some cost function. Many real-world systems have this ability, most

2-6

notably cutting and machining tools which can be operated at different speeds, but

tend to induce increased cost at higher operational speeds. Crabill [6] provides the

basis of this area of the literature, he derives a model where the state space of the

underlying queue is infinite (i.e., the waiting area of the queue has infinite capacity),

but that there is a finite number of allowable service rates. Crabill attacks the

problem by first solving a finite-state problem, and then extending those results

to the infinite case. In the finite case, Crabill shows the existence of an optimal

policy such that the solution partitions the state space of the queue into K disjoint

connected subsets with a single service rate used in each subset. Moreover, the

policy is monotone, which implies that the service rate does not decrease as the

number of customers in the system increases. In the infinite case, it is possible to

lose that property, and so the assumption that the holding cost with i customers in

the system approaches ∞ as i → ∞ is applied in order to retain the monotonicity.

These results are proven in the case where the number of allowable service rates

K = 2, but Crabill notes that K can be increased through straightforward yet tedious

calculation. Sabeti [32] examined the M/M/1/K case under a slightly different cost

structure, but found the same type of optimal policy.

A seminal work by Stidham and Weber [35] extended these results by rigorously

proving that there exists a monotonic, stationary policy that is average-cost-optimal

for an M/M/1 queue under moderate conditions. Specifically, the assumption of

finite allowable service rates is relaxed so that the allowable service rates need only

be bounded above. Stidham and Weber’s work [35] also contains other results,

including the existence of optimal, monotonic, stationary policies for queues under

various other constraints such as no arrivals, or alternate queueing disciplines. This

paper is critical to this thesis effort in that it proves the existence of a stationary,

optimal policy for at least the M/M/1 case. Jo [17] also studied the M/M/1 queue,

and derived sufficient conditions for optimal policies in both the finite and infinite

2-7

planning horizons. The optimal policies were shown to have a monotonic structure

in both cases, though Stidham and Weber’s [35] proof was more elegant.

George and Harrison [9] further extend the results of Stidham and Weber [35]

by deriving the optimal service rate of a M/M/1 queue in which the allowable ac-

tion space is uncountably infinite and unbounded, A = [0,∞), as well as dropping

assumptions on holding costs. George and Harrison note that under these assump-

tions there is no general result that guarantees an optimal policy. To circumvent this

problem, the authors truncate the holding cost such that after some point N , there

is no increase in the holding cost for an additional customer in the queue. George

and Harrison then rigorously prove that an optimal policy must exist for the altered

problem, and then show that these altered problems converge to the optimal policy

of the original problem as N gets large. [9] is useful to this research effort in that

it allows more latitude in defining the holding costs. Although the relaxation of the

upper bound requirement for the service rates is useful, most real world systems

posses a meaningful upper bound on the service rate due to physical considerations.

Grassmann, et al. [10] approach the problem of optimal service rates from

a completely different direction. The authors derive one optimal service rate for

an M/G/1 queue in steady state via differentiation of the cost function. Using a

general cost structure, the authors are forced to derive the number of customers in

the system and the throughput of the system. They do this using Bayes’ rule to

relate the probability of having i customers before an arrival, which is commonly

known to be equal to the probability of having i customers after a departure from

the system since Poisson arrivals see time averages (PASTA). Once this relation is

known, the throughput can be derived in terms of only the effective arrival rate and

the probability of having i customers after a departure. This in turn allows them to

derive the expected number of customers in the queue. Then, taking the derivative

of the overall cost function, which is difficult, the optimal solution is computed.

These results are useful in that they apply to queues with generalized service rates,

2-8

which implies that some solution should exist in the M/G/1 case of the deteriorating

system under consideration in this research.

Doshi [8] examined the continuous-time control of an M/G/1 queue by examin-

ing the residual workload of the system at any time t, where continuous-time control

implies that the “operator” of the system is able to alter the service rates at any

time, not only at arrival or service completion times. The author derives sufficient

conditions for a stationary policy to be optimal. Also, assuming the service and

holding costs are non-decreasing and convex, the author shows that these sufficient

conditions are met by a monotonic policy.

2.3 Queues Subject to Failure

The next section of this literature review considers one partial bridge between

the two areas discussed above, i.e. those of failure models and queueing optimization.

This section considers queueing models in which the server is subject to breakdowns,

but there is still little on the optimization of these systems.

There exist several papers in the literature involving queues subject to break-

downs. One such paper is by Thiruverngadam [36], in which a M/G/1 queue subject

to server breakdowns is examined. Thiruverngadam examines three variations of this

theme. The first case models the situation where multiple overlapping breakdowns

are possible, and customers will be served only when all breakdowns have been

cleared. The second case assumes that one breakdown causes the entire system to

cease functioning, and hence there can be only one breakdown at any time. The last

case does not allow for idle failures. That is, a breakdown cannot occur when the

queue is empty. Each case is modelled as a multi-class queueing system under the

“preemptive resume priority.” For all cases, Thiruverngadam derives the expected

number of breakdowns, the expected number of customers in the queue, the stabil-

ity condition and the steady state probabilities of the system. Thiruverngadam uses

2-9

partial differential equations with boundary conditions to derive these results. The

solution is in the form of Laplace transforms. This methodology, while powerful,

does not lend itself to the problem in this thesis due to the assumption that break-

downs occur according to a Poisson process. It does however provide a background

for examining queues with breakdowns, and may be an excellent technique to use

when optimizing queues with exponential failure times.

Avi-Itzhak and Naor [4] tackled a similar problem as Thiruverngadam [36],

examining three additional cases. Their first model describes a situation where the

repair process does not begin unless a customer is present to discover the breakdown.

The next model presents the case where repair actions begin at the request of a

customer who wishes to increase the standard of service. The final model considers

the case where failures can only occur when no customer is being serviced. The

authors derive the expected waiting time, and via Little’s Law, the expected number

of customers in the queue. This analysis is done from a probabilistic viewpoint,

hence no partial differential equations are utilized, and all results are in terms of the

expected values of the service and repair time distributions.

Mitrany and Avi-Itzhak [24] extend the work of Thiruvengadam, Avi-Itzahk

and Naor by allowing for more than one server. Mitrany and Avi-Itzhak’s model

is roughly equivalent to Thiruvengadam’s [36] model 2 and Avi-Itzhak and Naor’s

[4] model 2, where a breakdown causes the server to cease functioning, and hence

cannot have another breakdown until it is repaired. The authors note that this can

be viewed as a preemptive priority system with two classes of customers where there

are N high priority customers. The authors derive the generating function of the

long-run number of customers in the system, and from this the long-run expected

number of customers in the system. The authors calculate two specific cases. In

the first case, N is assumed to be 1, and these results are shown to agree with [4].

The second case, where N = 2, yields a complex generating function that cannot be

easily computed, and hence, the authors use numerical methods to find the expected

2-10

number in the system for various parameter values. This paper is more applicable

to this thesis than the previous two, since the model under examination here also

assumes multiple servers.

A final extension of the previous series of articles is due to Neuts and Lucantoni

[29]. The authors examine a model similar to the one of Mitrany and Avi-Itzhak [24],

except that there are a limited number of repair crews (Mitrany and Avi-Itzhak in

effect examined the case where the number of repair crews was equal to the number

of servers). The authors develop numerical algorithms to compute the steady-state

probabilities and waiting time distribution of the system. Numerical computation is

again required because, as in [24], these problems are not analytically tractable in

general.

Another way to handle server failures in queueing is via retrial queues. Kulkarni

and Choi [23] examine one such retrial queue that is subject to breakdowns and

repairs. In this retrial queue, customers are assumed to arrive according to a Poisson

process and require i.i.d. service times. If the server is empty, the arriving customer

enters service. If the server is busy, the customer conducts a retrial, or attempts to

join service again after a random, exponentially distributed amount of time. The

sever is assumed to have an exponential lifetime, and repairs are assumed to have

a general distribution. The authors examine two models. In the first model, if a

customer’s service is interrupted by a breakdown, then that customer can either

leave the system or join the retrial queue. In the second model, the customer is

allowed to remain at the service station until the server again becomes available.

Kulkarni and Choi tackle this problem by examining an embedded Markov chain

within the non-Markovian stochastic process and derive the limiting probabilities of

the system from this Markov chain. Both the existence and the limiting behavior

of the system are rigorously proven. Additionally, Wang, et al. [39] derived several

reliability measures for a similar system. These measures include availability, failure

frequency, and the reliability function.

2-11

2.4 Server Failure Distributions

The last section of this literature review considers articles that are useful and

necessary for the problem presented in this thesis. The first series of articles addresses

the failure distribution that is used to model the failure times of the server in this

thesis. Other papers examine previous work regarding queueing systems in random

environments.

In the previous subsections of this review, there have been many models for the

failure times of the object under consideration, from the shock models of subsection

2.1 to the assumed exponential failure time in all of subsection 2.3. Without quan-

tifying these failure distributions, there is no way to make meaningful statements

about the behavior of any system subject to failure.

The failure distribution used in this thesis was derived by Kharoufeh [18]. In

this paper, the author derives explicit results for the lifetime distribution and the

moments of a system that accumulates damage linearly, but with rates that are

dependent on an external random environment. These results are in the form of

multi-dimensional Laplace-Stieltjes transforms. Kharoufeh and Sipe [19] extended

the results of [18] by reducing the multi-dimensional transforms to one-dimensional

transforms.

Because this failure distribution is subject to a random environment, it is

worthwhile to examine other articles concerning queueing systems in random envi-

ronments. The first article in this series is the seminal work by Neuts [27]. In that

paper the author examined a M/M/1 queue subject to an environment defined by

a m-state continuous-time Markov chain. Specifically, when the environment is in

state j, the mean arrival rate is assumed to be λj and the mean service rate is as-

sumed to be µj. The author develops methodologies to compute the length of a busy

period, the steady-state probabilities, and the waiting time distributions. Once the

steady state probabilities have been computed, it is a simple matter to compute all

2-12

the moments, marginal and conditional densities of the queue length. These results

are critical to the research presented in this thesis in that the steady state proba-

bilities of the complicated queueing system under examination can be computed. In

[28], Neuts extended the results of [27] to the M/M/c queue.

In this thesis the objective is to bring together the research on optimal replace-

ment models and queue optimization to minimize the long-run expected cost rate of

a queue subject to server breakdowns. The majority of previous research in these ar-

eas assumed single server systems with exponential failure or no server failure at all.

This thesis assumes a multiple-server queueing system where each server is subject to

continuous wear dependent on a random environment that dictates the service dis-

tribution of the servers through the mean service rates and the associated wear rate

of the servers. This process is very similar to the model examined by Kharoufeh [18]

and Kharoufeh and Sipe [19]. When failures occur, an external service provider will

be utilized to process the workload of the failed servers. The k-server system will be

maintained according to a k-replacement policy, where all servers are replaced every

T time units. The goals of this thesis are two-fold. The first goal is to compute the

optimal replacement time T , where the mean service rates are constants. The second

goal is to compute the mean service rate in each environmental state such that the

long-run expected cost rate is minimized. This chapter has given an overview of the

literature relevant to the study of this system, as well as fundamental literature on

queues subject to breakdowns. In the next chapter, both the model and solution

methodology are formally described.

2-13

3. Mathematical Model Description

The optimal time to replace k servers and the optimal mean service rates of a

queueing system subject to the influences of a random environment are examined in

this chapter. The queueing system under consideration is a variation of a GI/G/k

queueing system, where the mean service rate is dependent on the state of the random

environment. The mean service rate when the random environment is in state j is

denoted by µj. The mean arrival rate is assumed to be equivalent for all states of

the environment and is denoted by λ.

The random environment is modelled as a continuous-time stochastic process

{Z(t) : t ≥ 0} on a finite sample space S = {1, 2, . . . , `}. It is assumed that

{Z(t) : t ≥ 0} is an ergodic process and thus possesses a steady-state probability

distribution given by

qj = lim
t→∞

P{Z(t) = j}, j ∈ S. (3.1)

Define the stochastic process that describes the number of jobs in the system by

{X(t) : t ≥ 0} where the state space of this process is E ⊆ {0, 1, 2, . . .}.

It is assumed that all k servers are identical. Because the performance metric

of interest is the long-run expected cost rate, the steady-state behavior of this queue

is examined, and hence the stability condition is assumed to be satisfied. Explicitly,

it is assumed that
λ

kµ̄
< 1 (3.2)

where

µ̄ =
∑̀

j=1

qjµj (3.3)

represents the mean service rate of the k servers. Denote the accompanying steady-

state probability distribution of the long-run number of jobs in the system as

pj = lim
t→∞

P{X(t) = j}, j ∈ E. (3.4)

3-1

Each server accumulates wear over time as a function of its mean service rate.

An example of this behavior is an outside-diameter grinding wheel which wears faster

as the processing speed increases. It is assumed that the mean service rates depend

explicitly on the state of a governing random environment. That is, if Z(t) = j

with j ∈ S, then the mean service rate of servers is µj. This implies that the rate

of wear accumulation must also depend on the governing random environment. Let

r(j) denote the rate of wear accumulation when Z(t) = j. Let {Ym(t) : t ≥ 0}, m =

1, 2, . . . , k, be the stochastic process which represents the cumulative wear on server

m up to time t. Define x to be the maximum allowable wear on each individual

server, such that once the wear on any given server exceeds x, that server has failed.

Then the state space of Ym(t) is a subset of R+ ≡ {x : x ∈ R, x ≥ 0}. Finally, for

each individual server define

Tm
x = inf{t : Ym(t) ≥ x} (3.5)

as the instant of time that the mth server fails. It is also assumed that the distri-

bution of Tm
x is stationary, and that it has cumulative distribution function (CDF)

denoted by Fm
x (t). Note that because all servers are assumed to be identical, the

failure times Tm
x are identically distributed and, hence, Fx(t) = Fm

x (t) for all m.

It is further assumed that there is no preference in choosing servers. That is, a

waiting customer chooses the first available server. If faced with N available servers,

the customer at the head of the waiting line chooses any one of the available servers

with probability 1/N . Whenever a server fails, it is instantaneously replaced by an

external server working at the same rate as the failed server, and hence, there is no

interruption in the service of customers. The objective is two fold. First, determine

the optimal time to replace servers using a k-replacement policy. Second, compute

the values of µj for each state in the random environment such that the long-run

expected cost rate is minimized.

3-2

The sequence of server replacement times constitutes a renewal process. Be-

cause this thesis assumes an age replacement model, the system renews once every T

time units, and hence, the inter-renewal time is always T time units in length, where

T is a deterministic value. From rudimentary renewal theory, a stochastic process

{N(t) : t ≥ 0} whose state space is a subset of Z+ ≡ {z : z ∈ Z, z ≥ 0} is said

to be a renewal process if it is a random walk that transitions only in the positive

direction, i.e. for t2 ≥ t1, N(t1) = j ⇒ N(t2) ≥ j, and that inter-renewal times are

non-negative, independent, identically distributed (i.i.d) random variables {τn} with

common CDF given by G(x) := P{τn ≤ x}, for all n. With respect to the k-server

queueing system, define the stochastic process {N(t) : t ≥ 0} as the number of times

all k servers have been replaced up to time t > 0. Then it is clear that the state

space of this process is a subset of Z+ and that this process transitions by unity in

the positive direction. Moreover, the inter-replacement times are independent and

identically distributed since τn = T for all n. Therefore, this system constitutes a

renewal process, where the nth cycle is defined to be the nth inter-renewal time, or

the time between the (n − 1)st and the nth renewal.

Figure 3.1 depicts a sample path for one of the k servers. In the first cycle, note

that this server is replaced at time T . However, in the second cycle the cumulative

degradation, Ym(t), reaches the threshold x before time 2T and the server has failed.

This occurs at the time labeled Tm
x . The server remains in a failed state until the

next group replacement, which occurs at time 2T .

The main benefit of the renewal structure is that it allows the utilization of

the renewal reward theorem. Let C(t) denote the cost incurred by the system up

to time t, and let Rn denote the cost incurred by the system during the nth cycle.

Define r = E[Rn] and τ = E[τn] where 0 ≤ E[Rn] < ∞ and 0 < E[τn] < ∞. Then

the renewal reward theorem states (see [22])

Theorem 3.1 As t −→ ∞,
E[C(t)]

t
−→

r

τ
. (3.6)

3-3

Failure Threshold

m
xTT T2

x

)(tYm

Figure 3.1 A sample path of the wear level of one server.

Application of Theorem 3.1 requires explicit specification of the expected cost

equation of this generalized queueing system. The overall objective is to minimize

the long-run expected cost rate of the queue. The cost function is assumed to have

four main components, each of which is defined in terms of the cost per cycle.

First, CN is defined as the cost of replacing the servers during a cycle. Define

the constant cN as the fixed cost per unit replaced when a server is replaced. As an

example, if there are k servers in the system and they are all replaced every T time

units, then CN = kcN . Further, because this value is deterministic, it is obvious that

E[CN] = kcN . (3.7)

Next, there is a cost associated with the time a job spends in the system; this

cost per cycle is denoted CH . Define cH as the holding cost per job per unit time.

Obviously, at any instant of time t, the holding cost rate (cost per unit time) is

simply the number of jobs in the system multiplied by cH . Then the expected value

3-4

of the holding cost rate is cH multiplied by the long-run expected number of jobs in

the system, which is commonly denoted as L. It follows that the expected holding

cost over one cycle is the expected cost rate multiplied by the expected cycle length,

which in this case is T . Therefore,

E[CH] = cHLT. (3.8)

The third component of the cost function represents the cost incurred by simply

operating the system denoted per cycle as CW . It is assumed that this cost is

a function of the mean service rate, which is in turn a function of the random

environment. Let the constant cW (µj) denote the cost of processing one customer

when the mean service rate is µj, j ∈ S. By the work conservation property of this

system, the expected number of customers coming into the system must equal the

expected number exiting the system. Therefore the expected number of customers

entering the system over a cycle of length T is simply λT and the expected work cost

per unit time is the expected number of customers served over the cycle, multiplied

by the expected cost per customer. This is

E[CW] = λT
∑̀

j=1

qjcW (µj). (3.9)

Equation (3.9) assumes that all customers are processed by servers that have not

failed; however, in this research the servers may fail. Hence, there must be some

additional cost incurred by the system due to these failures, the final component of

the cost function.

The final component of the cost function is associated with a premature server

failure. As noted previously, when a server fails before it is replaced, the jobs that

would have been processed by the failed server are instead processed by an external

service provider at increased cost. Let CF denote the additional cost incurred per

3-5

cycle because of failed servers. Further, let the constant cF denote the total addi-

tional cost of serving one customer using the outside service facility. The unit cost

cF encompasses not only the higher price charged by the external service provider,

but may also include inconvenience costs due to rerouting jobs to the external server

or the cost of customer ill-will generated because of the transfer. The expected value

of CF is the expected number of customers served by the outside service facility

multiplied by cF .

To compute the expected number of customers served by the external facility,

it is necessary to condition on the random number of failed servers in one cycle. First

define M(t) as the (random) number of failed servers up to time t with M(0) ≡ 0.

Since the probability that a server has failed by time t is known via the CDF Fx(t),

it is clear that M(t) has a binomial distribution with parameters k and Fx(t). Stated

more precisely, for m = 1, 2, . . . , k,

P{M(t) = m} =
k!

m!(k − m)!
(Fx(t))

m(1 − Fx(t))
k−m (3.10)

and

E[M(t)] = kFx(t). (3.11)

Next, let Tm
F be the length of time between the mth server’s failure and the

next replacement time. Then

Tm
F = max{T − Tm

x , 0} = (T − Tm
x)+. (3.12)

Since all servers are assumed to be identical, it is clear that E[T i
F] = E[T j

F] =

E[(T − Tx)
+] for all i, j = 1, 2, . . . , k. This value may be computed via conditioning

3-6

on the random failure time, Tx, as follows:

E
[

(T − Tx)
+
]

= E
[

E
[

(T − Tx)
+ |Tx

]]

=

∫

∞

0

E
[

(T − Tx)
+ |Tx = t

]

dFx (t)

=

∫ T

0

E [(T − Tx) |Tx = t] dFx (t)

=

∫ T

0

(T − t) dFx (t)

= T

∫ T

0

dFx (t) −

∫ T

0

tdFx (t)

= TFx (T) −

∫ T

0

tdFx (t)

= TFx (T) −

(

tFx (t)
∣

∣

∣

T

0

−

∫ T

0

Fx (t) dt

)

= TFx (T) − TFx (T) +

∫ T

0

Fx (t) dt

=

∫ T

0

Fx (t) dt. (3.13)

Finally, observe that because there is no preference on which server is assigned

a particular job, in the long run each server processes an equal share of the customers

that exit the system. Now recall that when the queue is in equilibrium, the expected

number of customers arriving to the system during a time period must equal the

expected number of customers exiting the system over the same period. Define NF

as the random number of customers that undergo service during the time between a

server failure and the end of a cycle (i.e., the time between failure and replacement).

Then

E[NF] = λE[(T − Tx)
+] = λ

∫ T

0

Fx (t) dt. (3.14)

Since E[NF] is the expected number of customers that undergo service, either from

the internal servers or the external processing facility, and each server processes

an equal share of the exiting customers in the long run, the expected number of

3-7

customers that undergo service with a failed server is the proportion of failed servers

multiplied by E[NF]. Therefore, the expected number of customers that undergo

service with a failed server during one cycle can be computed via conditioning on

the number of servers that failed during the cycle as follows:

E[CF] = E[E[CF |M(T)]] = cF E[NF]
k

∑

m=0

m

k

k!

m!(k − m)!
(Fx(T))m(1 − Fx(T))k−m

= cF E[NF]

(

E[M(T)]

k

)

= cF

(

λ

∫ T

0

Fx (t) dt

) (

kFx(T)

k

)

= cF λFx(T)

∫ T

0

Fx (t) dt. (3.15)

At this point, it is important to note that the Laplace-Stieltjes transform (LST)

of the distribution Fx(t) has been derived by Kharoufeh and Sipe [19], and those

results are used here. In [19], α is defined to be the initial distribution of the

random environment {Z(t) : t ≥ 0}. However, since this thesis assumes steady-

state conditions for the random environment, set α to be the vector of steady-state

probabilities of {Z(t) : t ≥ 0}, previously defined as {qn}. The next two definitions

are the same as in [19]; define RD ≡ diag(r(1), r(2), . . . , r(`)) and Q to be the

infinitesimal generator matrix of the random environment process {Z(t) : t ≥ 0}.

Since Fx(t) is the cdf of Tm
x , the LST of Fx(t) is given by (cf. Kharoufeh and Sipe

[19])

F̃x(s) = α exp
[

R−1

D (Q − sI) x
]

1, (3.16)

where s is the transform variable associated with time and Re(s) > 0, and 1 is a

column vector of ones. Note that the Laplace transform (LT) of a function is equal

to the LST of a function multiplied by s−1. Then the LT of the CDF is

F ∗

x (s) = s−1α exp
[

R−1

D (Q − sI) x
]

1. (3.17)

3-8

Hence the value of Fx(t) can be found via the inverse Laplace transform of Equation

(3.17) evaluated at the desired time t. For the sake of brevity, let

Ψ(s) ≡ α exp(R−1

D (Q − sI)x)1. (3.18)

In Equation (3.15) it is clear that it is also necessary to know something of

the integral of the CDF. Fortunately, this is relatively easy in the transform space.

Applying fundamental results of Laplace transform theory, it is well known (see [22])

that

L

(
∫ T

0

Fx(t)dt

)

=
F ∗

x (s)

s
= s−2α exp(R−1

D (Q − sI)x)1. (3.19)

Therefore, when this transform is inverted, it is evaluated at t = T .

The expected value of each component over one cycle has been examined, with

the goal of finding an expression for the total expected cost per cycle. This cost for

any cycle is given by

E[Rn] = E[CN] + E[CW] + E[CH] + E[CF]

= kcN + cHLT + λT
∑̀

j=1

qjcW (µj) + cF λFx(T)

∫ T

0

Fx (t) dt

= kcN + cHLT + λT
∑̀

j=1

qjcW (µj) + cF λL−1
{

s−1Ψ(s)
}

L−1
{

s−2Ψ(s)
}

(3.20)

so that this expected value is a function of both the replacement time T and the

vector of service rates ~µ ≡
[

µ1 µ2 . . . µ`

]

. Therefore, the objective function for

3-9

the minimization of the long-run expected cost rate is

g(T, ~µ) = lim
n→∞

E[Rn]

T

=
kcN + cHLT + λT

∑`

j=1
qjcW (µj) + cF λFx(T)

∫ T

0
Fx(t)dt

T

=
kcN + cHLT + λT

∑`

j=1
qjcW (µj) + cF λL−1 {s−1Ψ(s)}L−1 {s−2Ψ(s)}

T

(3.21)

The following two sections address minimizing this objective function by con-

trolling T and ~µ respectively. In both cases g(T, ~µ) is defined in terms of complex

inverse Laplace transforms that require numerical inversion techniques.

3.1 Optimal Replacement Time

The goal in this section is to compute an optimal value, T ∗ such that the long-

run expected cost rate is minimized. To this end, assume that the service rate for each

environmental state is given. Therefore in this section ~µ is considered to be a constant

vector that cannot be controlled, and hence, the wear rates, r(j), j = 1, 2, . . . , `, are

also considered to be constant.

The overall objective is to balance the benefits of frequent replacements with

the increased cost of these replacements. Obviously, as the replacement time becomes

shorter, the probability of failure decreases, and therefore, fewer customers will be

processed by an outside service facility. However, replacing k servers can be a costly

proposition, and hence, lengthening the replacement interval may decrease costs.

The first task accomplished in this section is the formulation of the mathe-

matical program. Next, the convexity of the objective function with respect to T

is proven. Finally, a numerical technique to find T ∗ is discussed. It is necessary

3-10

to accept approximate solutions due to the complex numerical Laplace transform

inversions.

Let decision variable, T , represent the length of the replacement interval for

the system. The mathematical program is thus

min g(T) =
kcN + cHLT + λT

∑`

j=1
qjcW (µj) + cF λL−1 {s−1Ψ(s)}L−1 {s−2Ψ(s)}

T

subject to

0 < T < ∞ (3.22)

The objective is to find T ∗ such that Equation (3.22) is minimized. Proposition

3.1 confirms the existence of an optimal replacement time T ∗.

Proposition 3.1 The long-run expected cost rate of Equation (3.22) is convex in

T .

Proof. Let u, v ∈ R+ and γ ∈ (0, 1). It will be proven that

g[γu + (1 − γ)v] ≤ γg(u) + (1 − γ)g(v). (3.23)

by showing

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] ≥ 0. (3.24)

Using Equation (3.22) the objective function is

g(T) =
kcN + cHLT + λT

∑`

j=1
qjcW (µj) + cF λFx(T)

∫ T

0
Fx(t)dt

T
. (3.25)

Now for simplicity let A = kcN , B = cHL+λ
∑`

j=1
qjcW (µj) and H(T) = cF λFx(T)

∫ T

0
Fx(t)dt.

Therefore Equation (3.25) is simply

g(T) =
A + B × T + H(T)

T
. (3.26)

3-11

Therefore,

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] = γ

(

A + Bu + H(u)

u

)

+ (1 − γ)

(

A + Bv + H(v)

v

)

−

(

A + B[γu + (1 − γ)v] + H[γu + (1 − γ)v]

γu + (1 − γ)v

)

.

(3.27)

Using common denominators to combine the fractions yields

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] =

γv[γu + (1 − γ)v]

(

A + Bu + H(u)

uv[γu + (1 − γ)v]

)

+ (1 − γ)u[γu + (1 − γ)v]

(

A + Bv + H(v)

uv[γu + (1 − γ)v]

)

− uv

(

A + B[γu + (1 − γ)v] + H[γu + (1 − γ)v]

uv[γu + (1 − γ)v]

)

. (3.28)

By arranging like terms simplifies Equation (3.28) to

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] =

A [γ2uv + γ(1 − γ)v2 + γ(1 − γ)u2 + (1 − γ)2uv − uv]

uv[γu + (1 − γ)v]

+
B {γuv[γu + (1 − γ)v] + (1 − γ)uv[γu + (1 − γ)v] − uv[γu + (1 − γ)v]}

uv[γu + (1 − γ)v]

+
{[γ2uv + γ(1 − γ)v2]H(u) + [γ(1 − γ)u2 + (1 − γ)2uv]H(v) + uvH[γu + (1 − γ)v]}

uv[γu + (1 − γ)v]
.

(3.29)

Since H(T) = λFx(T)
∫ T

0
Fx(t)dt, it is necessary to realize that because Fx(t) is a

CDF, Fx(t) ≥ 0 for all t ∈ R+. Therefore, zero is a lower bound for Fx(t) and also

3-12

for H(T). Noting that the B coefficients cancel out and setting H(T) = 0 yields

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] ≥

A {[γ2 + (1 − γ)2 − 1]uv + γ(1 − γ)(u2 + v2)}

uv[γu + (1 − γ)v]
. (3.30)

Expanding the squared terms yields

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v]

≥
A {[γ2 + 1 − 2γ + γ2 − 1]uv + (γ − γ2)(u2 + v2)}

uv[γu + (1 − γ)v]

=
A {2[γ2 − γ]uv + (γ − γ2)(u2 + v2)}

uv[γu + (1 − γ)v]
. (3.31)

Now note that the denominator is a function of positive numbers, and hence can

never be less than zero. Also, A is a constant cost, and is assumed to be greater

than zero. Therefore Equation (3.31) less than zero only if the coefficient of A is less

than zero. Thus, the coefficient of A must be examined. Note that γ − γ2 ≥ 0 for

all γ ∈ (0, 1), and that (γ − γ2) = −(γ2 − γ). Then

2[γ2 − γ]uv + (γ − γ2)(u2 + v2) = (γ − γ2)[(u2 + v2) − 2uv]

= (γ − γ2)(u − v)2 (3.32)

and this coefficient must be greater than zero, then

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] ≥
A {(γ − γ2)(u − v)2}

uv[γu + (1 − γ)v]
≥ 0 (3.33)

and

γg(u) + (1 − γ)g(v) − g[γu + (1 − γ)v] ≥ 0 (3.34)

and the result is proved.

3-13

Since g(T) is convex in T , it has at most one stationary point, and the global

minimum is either at that stationary point, or the boundary points of the feasible

set of T , i.e. T = 0 or T = ∞. Therefore, to find the stationary point, it is necessary

to differentiate Equation (3.22) with respect to T , set the result to zero and solve

for T . Applying the quotient rule to take the derivative of Equation (3.26) yields

dg(T)

dT
=

T (B + H ′(T)) − (A + BT + H(T))

T 2
. (3.35)

To find the stationary point, find T such that g′(T) = 0:

0 =
T (B + H ′(T)) − (A + BT + H(T))

T 2

= T (B + H ′(T)) − (A + BT + H(T))

= T (B + H ′(T) − B) − H(T) − A

= TH ′(T) − H(T) − A.

= T
d

dT

[

cF λFx(T)

∫ T

0

Fx(t)dt

]

− cF λFx(T)

∫ T

0

Fx(t)dt − A

= cF λT
d

dT
[Fx(T)]

∫ T

0

Fx(t)dt + cF λTFx(T)
d

dT

[
∫ T

0

Fx(t)dt

]

−cF λFx(T)

∫ T

0

Fx(t)dt − A

= cF λT
d

dT
[Fx(T)]

∫ T

0

Fx(t)dt + cF λT [Fx(T)]2

−cF λFx(T)

∫ T

0

Fx(t)dt − A (3.36)

Once again, exploiting the fact that the Laplace transform of Fx(t) is known, this

equation can be expressed in terms of inverse Laplace transforms. First, by funda-

mental results of Laplace transform theory, it is well known (see [22]) that, for a

continuous function f(t),

L

{

df(t)

dt

}

= sf ∗(s) − f(0). (3.37)

3-14

By Equation (3.17) it is clear that

F ∗(s) = s−1Ψ(s) (3.38)

and hence

L

{

d

dT
[Fx(T)]

}

= s × s−1Ψ(s) − Fx(0) = Ψ(s). (3.39)

Using the identity in Equation (3.37), Equation (3.36) can be rewritten as

0 = cF λTL−1 {Ψ(s)}L−1
{

s−2Ψ(s)
}

+ cF λT
(

L−1
{

s−1Ψ(s)
})2

− cF λL−1
{

s−1Ψ(s)
}

L−1
{

s−2Ψ(s)
}

− A. (3.40)

Note that Equation (3.36) is a complex integral formula, which implies that

it is impossible to isolate T even if Fx(T) is analytical. Therefore, some numerical

search procedure is required, regardless of the server failure distribution. Since the

left-hand side of Equation (3.40) is zero, any numerical root finding technique can

be used to find the optimal value T ∗. This thesis employs a hybrid bisection and

secant method (see [5]), which is reviewed further in chapter 4.

In the next section, it is assumed that the replacement time, T , is a constant,

and the aim is to compute an approximate optimal service rate for each environmen-

tal state using a numerical search algorithm.

3.2 Optimal Service Rate Selection

The objective of this section is to compute an optimal vector of service rates

~µ that minimizes the the long-run expected cost rate. In contrast to section 4.1 in

which T ∗ was computed and ~µ was held constant, in this section T is now fixed, and

an “approximately optimal” value of ~µ is computed.

3-15

Since the service rates vary in this section, the rate of wear in each environ-

mental state must also vary. To this end, define rj(µj) as the rate of wear while the

environment is in state j and the service rate for that state is µj. It is assumed that

rj(µj) is non-decreasing in µj. Because [r(j)] has changed, it is necessary to redefine

the matrix RD as well. Let

RD ≡ diag[r1(µ1), r2(µ2), . . . , r`(µ`)]. (3.41)

The goal is to balance the benefits of faster service rates against the negative

costs of higher failure rates. Higher service rates lead to cost savings in reduced

holding costs, but increase the cost of operating the machines, and increase the

failure rates. This increase in the failure rate, of course, increases the expected

number of customers served at external service facilities.

Before defining the mathematical program, it is necessary to discuss con-

straints. First, in order to ensure the stability of the queueing system, it is necessary

to ensure that all service rates are greater than the arrival rate, as per [12]. Further,

in real world systems it is reasonable to assume the existence of some upper bound

on the service rate, simply because it is impossible to work infinitely fast. In the

context of this problem, it is easy to choose the constant cost rates to induce infinite

optimal service rates. To guard against the trivial solution of µj = ∞, j ∈ S, it is

necessary to assign a real-valued upper bound, say ω, to each service rate.

Therefore, the nonlinear program (NLP) is of the form

min g(~µ) =
kcN + cHLT + λT

∑`

j=1
qjcW (µj) + cF λL−1 {s−1Ψ(s)}L−1 {s−2Ψ(s)}

T

3-16

subject to

µi > λ, i = 1, 2, . . . , `

µi ≤ ω, i = 1, 2, . . . , `. (3.42)

Because of the complex structure of the objective function, numerical analysis is

the only possible solution technique available. Therefore, a gradient search algorithm

is used to find an approximate optimal solution. This algorithm is slightly modified

in that the gradient is estimated using central differences, as per [2]. These methods

are examined more closely in chapter 4.

3-17

4. Numerical Experiments

In this chapter, the results of chapter 3 are illustrated on three notional

example problems. Each of the examples are examined with respect to both age

replacement and service rate selection. Moreover, the replacement time results are

compared to simulated data to verify the accuracy of the results. When selecting the

optimal replacement time, the objective is to find the value of T such that Equation

(3.40) is equal to zero. This is accomplished via a combination of the bisection and

secant methods [5], both of which are described. When selecting service rates, the

object is to minimize the objective function of Equation (3.42) using the gradient

search method.

For each example problem, numerical inversion of Laplace transforms is em-

ployed. This inversion (in one dimension) will be accomplished by the algorithm

of Abate and Whitt [1]. Moreover, Monte Carlo simulation is utilized to verify the

accuracy of the Laplace transform inversions. Specifically, a simulated CDF is used

in the same solution procedure outlined in the previous paragraph instead of the nu-

merical Laplace transform inversions. Each simulation uses 500,000 simulated failure

times to evaluate the CDF every 0.0001 time units from the minimum simulated fail-

ure time to the maximum simulated failure time. The number of CDF evaluations is

large because the methods presented here require numerical integration of the CDF

via the trapezoidal method. All methods and algorithms were implemented in the

MATLABr environment, version 6.5.0 Release 13 and executed on a Pentiumr III,

650 mhz notebook computer with 512 MB of RAM.

4.1 Numerical Analysis Techniques

This section briefly discusses the numerical techniques employed in the exper-

iments. Two categories of techniques are used, root-finding algorithms and gradient

search algorithms.

4-1

The objective of a root-finding algorithm is to find a root for some function

f . The Bisection method is examined first. This method calls for the repeated

halving of subintervals known to contain a root of the function. Figure 4.1 shows

an example of the bisection method using an arbitrary function f(x). The bisection

method requires an interval [a, b] such that f(a)×f(b) < 0. In the example of Figure

4.1, points p0 and p1 are inputs to the algorithm, with a = p0 and b = p1. The next

point p2 is generated by taking the midpoint of a and b and replacing one of the

endpoints of the interval. If f(a) × f(p1) > 0 then p1 replaces the lower bound,

x

f(x)

0

p0 p1p2p3 p

Figure 4.1 An example of the bisection method.

a; otherwise p1 replaces the upper bound b. The midpoint of p0 and p1 is p2, and

because f(p0)× f(p2) < 0, p2 replaces the upper bound of the interval. The process

is repeated, where p3 is the midpoint of p0 and p2, which then becomes the lower

bound of the interval because f(p0) × f(p1) > 0. The main disadvantage of the

bisection method is that it is slow to converge. However, it is not susceptible to the

instability caused by little to no change in the function value as the secant method

which is next described.

4-2

The secant method uses the x-intercept of the line connecting the previous

two points in the iteration as the next point. Figure 4.2 shows one example of the

secant method. Again, p0 and p1 are inputs to the system, but it is not required

x

f(x)

0

p0 p1p2p3

s1

s2

p

Figure 4.2 An example of the secant method.

that f(a) × f(b) < 0. The next point, p2, is the x-intercept of the line connecting

p0 and p1, and p3 is the x-intercept of the line connecting p1 and p2. The primary

advantage of the secant method is increased convergence speed. However, in certain

circumstances the secant method is unstable. If the function under consideration

has a region where there is no change in the function, the secant line between two

consecutive points may not actually intercept the x-axis. One example of this is

shown in Figure 4.3. Because f(p1) − f(p0) is essentially zero, the secant line never

intersects the x-axis. The bisection method is used to combat this potential error.

The bisection method is employed until [|f(xk+1 − f(xk)|]/f(xk) < 0.1 or 10,000

iterations is reached. The final two points of the bisection method are used as the

starting points of secant method, which terminates when pk+1 − pk < ε = 10−12

or when 10,000 iterations is reached. The purpose of using the bisection method

4-3

x

f(x)

0

p0 p1

s1

Figure 4.3 An example of the failure of the secant method.

is to have starting points close enough to the solution so that the secant method

converges.

The gradient search algorithm, also commonly known as the steepest descent

method, is the final numerical analysis technique used in this thesis. This method

finds local minima for an arbitrary function f : R
n → R. Essentially, this method

has three steps. First, the function is evaluated at an initial approximation. Next,

a direction from the initial approximation that results in a decrease in the value

of the function evaluation is determined. Third, move an appropriate amount in

this direction and call this point the next point in the iteration. The algorithm

terminates when one of four conditions is met. First, the algorithm is stopped at

10,000 iterations, as an unsuccessful trial. Second, the algorithm is stopped if the

norm of the gradient is close to zero, and this is considered a successful trial. Thirdly,

if the step size in the direction of the gradient is less than ε = 10−12 the algorithm is

4-4

halted as a successful trial. Lastly, if |f(xk+1) − f(xk)| < ε, the solution is stopped

as a successful trial.

For the purposes of this thesis, the gradient is approximated using central

differences as per [2]. The central difference approximating the gradient in the x1

direction of the arbitrary function f is defined as

∂f(x1, x2, . . . , xk)

∂x1

=
f(x1 + c, x2, . . . , xk) − f(x1 − c, x2, . . . , xk)

2c
(4.1)

where c is a small constant. For the purposes of this thesis, c = 0.005. Also note

that the derivative of the simulated CDF (required in Equation (3.40)) will be ap-

proximated using central differences.

4.2 Example I

Consider a single outer diameter grinding wheel that grinds metallic workpieces

to specific dimensions. Suppose that workpieces fall into one of two categories based

on the material hardness and that workpieces in the second category have a higher

hardness rating due to fluctuations in the manufacturing process. These components

are assumed to induce more wear on the grinding wheel, but do not change the

probability distribution of the time required to process the workpiece. Assume that

the queueing system is M/M/1 with service rate parameter µ = 1.1 and arrival rate

parameter λ = 1.

The type of workpiece being processed at time t is denoted by Z(t), (i.e. Z(t) ∈

S = {1, 2} for all t) in this example. Assume that {Z(t) : t ≥ 0} can be appropriately

modelled as a CTMC with infinitesimal generator matrix

Q =





−0.7 0.7

1.9 −1.9



 . (4.2)

4-5

Next, assume that the rate of wear incurred on the grinding wheel is equal to 1/10th

the service rate, and that workpieces in the second category induce twice the rate of

wear for a given service rate as category one workpieces. Then the matrix of wear

rates is

RD =





0.11 0

0 0.22



 . (4.3)

The maximum allowable damage is assumed to be x = 1.0 unit. The cost coefficients

associated with this example are defined as in Table 4.1.

Table 4.1 Cost coefficients; Example I.
Cost Coefficients Value
cN 18.0
cH 15.0
cW (µj) 5µj, j = 1, 2
cF 6.0

Several sample points of the numerical CDF of the server lifetime are provided

in Table 4.2, where the comparison is made between the Monte-Carlo simulation and

the numeric Laplace inversion using the Abate and Whitt [1] algorithm. The usual

measure of performance when comparing a simulated CDF to an analytical CDF is

the maximum absolute deviation (MAD) in probability. For this example, the MAD

is 0.0013.

4-6

Table 4.2 Simulated versus analytical CDF; Example I.
t Simulated CDF Laplace Inversion Absolute Deviation

4.4 0.000000 0.000000 0.000000
4.6 0.000118 0.000097 0.000021
4.8 0.000652 0.000649 0.000003
5.0 0.002142 0.002156 0.000014
5.2 0.005554 0.005540 0.000014
5.4 0.012094 0.012141 0.000047
5.6 0.023630 0.023681 0.000051
5.8 0.042074 0.042232 0.000158
6.0 0.069344 0.069989 0.000645
6.2 0.108360 0.108933 0.000573
6.4 0.159880 0.160488 0.000608
6.6 0.224936 0.225148 0.000212
6.8 0.302652 0.302158 0.000494
7.0 0.389568 0.389359 0.000209
7.2 0.483436 0.483265 0.000171
7.4 0.579064 0.579386 0.000322
7.6 0.672416 0.672739 0.000323
7.8 0.758264 0.758515 0.000251
8.0 0.832620 0.832753 0.000133
8.2 0.892892 0.892837 0.000055
8.4 0.937330 0.937837 0.000507
8.6 0.968256 0.968584 0.000328
8.8 0.986762 0.987234 0.000472
9.0 0.996412 0.996649 0.000237
9.2 1.000000 0.999982 0.000018

4-7

Table 4.3 summarizes the results of the combined bisection and secant root-

finding algorithm using both the analytical and simulated CDF. A comparison of

these results reveals that the techniques provide similar solutions to the replace-

ment time problem, with very little difference in the computed optimal replacement

times. The small error between simulated results and Laplace inversion results is

likely caused by error introduced by trapezoidal integration and the use of central

differences to approximate the derivative of the CDF.

Table 4.3 Results for optimal replacement time; Example I.
Method T ∗ g(T ∗)
Laplace Inversion CDF 7.272270 158.125345
Simulated CDF 7.281900 158.125240

For the service rate selection problem, assume the replacement time T is fixed,

with T = 7.272270, and ~µ =
[

µ1 µ2

]

is the vector of decision variables. An upper

and lower bound is assumed to exist for all mean service rates. In the context of this

problem, assume that 1 < µj ≤ 200 for all states j in the random environment. These

upper and lower bounds on the service rates make searching the entire allowable

space of mean service rates computationally feasible. To accomplish this, multiple

gradient searches were implemented, starting from each corner point of the feasible

space of mean service rates (i.e., the gradient search is performed four times with

starting points (1, 1), (1, 200), (200, 1), and (200, 200)). The results of these gradient

searches are summarized in Table 4.4. Examination of these results shows that each

gradient search computed approximately the same local minimum, making it likely

that ~µ = (3.176616, 1.000000) is the global minimum. Moreover, the optimal service

rates resulted in the reduction of the long-run expected cost rate by 130.16 units,

which implies an expected savings of course of the cycle is 946.56 units. This is

calculated by multiplying the long-run expected cost rate by the cycle length.

The service rate selection problem is more complex because the decision vari-

ables impact the distribution of the failure times; every time ~µ changes, the resulting

4-8

Table 4.4 Service rate selection problem; Example I.
Starting Point ~µ∗ g(~µ∗)
(1,1) (3.176616,1.000000) 27.965521
(200,1) (3.176616,1.000000) 27.965521
(1,200) (3.176616,1.000000) 27.965521
(200,200) (3.176616,1.000000) 27.965521

CDF of the failure time of the server changes. Therefore, every time the objective

function is evaluated, one must generate a simulated CDF. This is computationally

infeasible given the large number of objective function evaluations required by the

gradient search algorithm.

4.3 Example II

Now assume the grinding wheel processes workpieces that are identical. At

any point in time, the grinding wheel is operated by one of a pool of five workers of

varying skill levels. That is, Z(t) denotes the worker operating the machine at time

t so that Z(t) ∈ S = {1, 2, 3, 4, 5} for all t. Each worker processes workpieces with

the same mean service rate, but each worker wears the wheel at a different rate due

to varying worker skill levels.

The random process defining which worker is operating the machine at any

given time is modelled as a CTMC with infinitesimal generator matrix

Q =























−76.4653 19.1376 28.2982 16.5118 12.5177

25.6793 −81.1850 28.9809 14.8722 11.6526

15.2226 29.5272 −87.6932 29.3102 13.6332

28.4067 18.8163 11.3262 −79.1669 20.6177

14.1677 10.1135 19.5026 25.4786 −69.2624























. (4.4)

4-9

The rate of wear incurred by the wheel due to worker j’s operation of the machine

is

r(j) =











































µj j = 1

(µj)
2 j = 2

exp(µj) j = 3

ln(µj) j = 4

(µj)
3 j = 5

. (4.5)

Also, the cost coefficients for this example are listed in Table 4.5.

Table 4.5 Cost coefficients; Example II.
Cost Coefficients Value
cN 10.0
cH 5.0
cW (µj) µ2

j , j = 1, 2, 3, 4, 5
cF 20.0

Several sample points of the numerical CDF of the server lifetime are provided

in Table 4.6. For this example, the MAD is 0.0012.

To solve the optimal replacement time problem, assume that each worker pro-

cesses workpieces with a mean rate µj = 2 for all j. The object is to compute the

optimal time to replace the grinding machine. These results are found in Table 4.7.

It is clear that all methods yield similar results.

For the service rate selection problem, assume that management has chosen

to implement the optimal replacement solution, i.e., T = 2.198010. Now the objec-

tive is to adjust the mean service rate of each worker to minimize the long-run cost

rate. Then ~µ =
[

µ1 µ2 µ3 µ4 µ5

]

is the vector of decision variables. Again,

assume that, due to safety concerns and physical limitations, no worker can pro-

cess workpieces with a mean service rate greater than fifteen and no lower than

1, i.e. 1 < µj ≤ 15 for all j. The results of the gradient search algorithm at

the 32 corner points of the feasible region are summarized in Table 4.8. Again,

benchmarking via simulation is computationally infeasible. As seen in Table 4.8,

4-10

Table 4.6 Simulated versus analytical CDF; Example II.
t Simulated CDF Laplace Inversion Absolute Deviation

1.20 0.000000 0.000000 0.000000
1.30 0.000354 0.000364 0.000010
1.40 0.002822 0.002819 0.000003
1.50 0.010024 0.009960 0.000064
1.60 0.025154 0.025184 0.000030
1.70 0.051938 0.051992 0.000054
1.80 0.092950 0.092951 0.000001
1.90 0.148630 0.149125 0.000495
2.00 0.219174 0.219585 0.000411
2.10 0.300984 0.301537 0.000553
2.20 0.389780 0.390850 0.001070
2.30 0.482266 0.482720 0.000454
2.40 0.572396 0.572438 0.000042
2.50 0.655334 0.656026 0.000692
2.60 0.730060 0.730609 0.000549
2.70 0.794480 0.794546 0.000066
2.80 0.847350 0.847347 0.000003
2.90 0.889446 0.889448 0.000002
3.00 0.922282 0.921924 0.000358
3.25 0.970608 0.970581 0.000027
3.50 0.990382 0.990424 0.000042
4.00 0.999376 0.999329 0.000047
4.50 0.999982 0.999972 0.000010
5.00 1.000000 0.999999 0.000001

Table 4.7 Results for optimal replacement time; Example II.
Method T ∗ g(T ∗)
Laplace Inversion CDF 2.198010 13.915432
Simulated CDF 2.203700 13.913700

there is little difference between any of the results; and hence it is conjectured that

~µ∗ = (2.240, 2.086, 1.853, 2.257, 1.755). It should be noted that the long-run cost rate

of 13.564971 is slightly lower than the long-run expected cost rate of 13.915432 under

the assumptions of the optimal replacement strategy. This shows that for this par-

ticular value of T , it is beneficial to allow the workers to operate at different speeds

4-11

dependent on their skill level. This leads to a reduction of the long-run expected

cost rate of 0.35 units, with an expected cost savings of 0.77 units over one cycle.

Table 4.8 Service rate selection problem; Example II.

Starting Point ~µ∗ g(~µ∗)
(1,1,1,1,1) (2.240335,2.085599,1.853378,2.257171,1.754528) 13.564971

(200,1,1,1,1) (2.240237,2.085548,1.853392,2.257296,1.754530) 13.564971
(1,200,1,1,1) (2.240338,2.085697,1.853351,2.257106,1.754516) 13.564971
(1,1,200,1,1) (2.240335,2.085599,1.853378,2.257171,1.754528) 13.564971
(1,1,1,200,1) (2.240155,2.085707,1.853354,2.257283,1.754519) 13.564971
(1,1,1,1,200) (2.240233,2.085642,1.853368,2.257251,1.754529) 13.564971

(200,200,1,1,1) (2.240327,2.085703,1.853350,2.257114,1.754516) 13.564971
(200,1,200,1,1) (2.240338,2.085686,1.853354,2.257113,1.754518) 13.564971
(200,1,1,200,1) (2.240229,2.085565,1.853390,2.257294,1.754530) 13.564971
(200,1,1,1,200) (2.240242,2.085624,1.853377,2.257248,1.754528) 13.564971
(1,200,200,1,1) (2.240237,2.085675,1.853353,2.257216,1.754512) 13.564971
(1,200,1,200,1) (2.240182,2.085702,1.853356,2.257259,1.754520) 13.564971
(1,200,1,1,200) (2.240236,2.085596,1.853384,2.257271,1.754530) 13.564971
(1,1,200,200,1) (2.240171,2.085692,1.853359,2.257276,1.754521) 13.564971
(1,1,200,1,200) (2.240217,2.085712,1.853361,2.257212,1.754513) 13.564971
(1,1,1,200,200) (2.240236,2.085671,1.853351,2.257217,1.754510) 13.564971

(200,200,200,1,1) (2.240373,2.085696,1.853345,2.257069,1.754511) 13.564971
(200,200,1,200,1) (2.240288,2.085666,1.853358,2.257182,1.754527) 13.564971
(200,200,1,1,200) (2.240208,2.085672,1.853369,2.257247,1.754521) 13.564971
(200,1,200,200,1) (2.240106,2.085708,1.853350,2.257326,1.754512) 13.564971
(200,1,200,1,200) (2.240222,2.085695,1.853358,2.257222,1.754517) 13.564971
(200,1,1,200,200) (2.240240,2.085639,1.853373,2.257241,1.754527) 13.564971
(1,200,200,200,1) (2.240239,2.085697,1.853324,2.257225,1.754536) 13.564971
(1,200,200,1,200) (2.240232,2.085585,1.853386,2.257281,1.754531) 13.564971
(1,200,1,200,200) (2.240201,2.085749,1.853290,2.257245,1.754549) 13.564971
(1,1,200,200,200) (2.240236,2.085571,1.853390,2.257284,1.754530) 13.564971

(200,200,200,200,1) (2.240132,2.085790,1.853326,2.257248,1.754503) 13.564971
(200,200,200,1,200) (2.240227,2.085640,1.853375,2.257251,1.754525) 13.564971
(200,200,1,200,200) (2.240224,2.085668,1.853367,2.257237,1.754522) 13.564971
(200,1,200,200,200) (2.240229,2.085629,1.853376,2.257258,1.754528) 13.564971
(1,200,200,200,200) (2.240236,2.085665,1.853349,2.257219,1.754508) 13.564971

(200,200,200,200,200) (2.240236,2.085571,1.853390,2.257284,1.754530) 13.564971

4-12

4.4 Example III

This section examines a telecommunications satellite constellation comprised

of four satellites. Suppose this constellation is modelled as a queueing system, where

each satellite represents one server in a multiserver queueing system. For the sake

of convenience, assume that this constellation can be appropriately modelled as a

M/M/4 queueing system, with arrival rate λ = 1. Assume that the mean service rate

of the satellites is adjustable, but increasing the service rate requires more power to

increase the available bandwidth. This power must be provided by a set of large, yet

fragile, solar panels which can be damaged by the space environment. It is assumed

the solar panels can be furled to minimize damage when the power requirements of

the satellite are low.

Now assume that the space environment can be adequately modelled as a 10-

state CTMC where the infinitesimal generator matrix is randomly generated. The

rate at which the CTMC transitions between each pair of states is continuously and

uniformly distributed between 100 and 600. Suppose the solar panels, and hence the

satellites, incur damage linearly with the rate of damage dependent on the state of

the environment. For the purposes of this example, assume that the rate of wear for

state j is

r(j) =

(

jµj

2

)2

. (4.6)

Also assume that a satellite’s solar panels are non-functional when the cumulative

damage reaches 1.0. The cost coefficients used in this example are found in Table

4.9.

Table 4.9 Cost coefficients; Example III.
Cost Coefficients Value
cN 5.0
cH 20.0
cW (µj) µ2

j , j = 1, 2, . . . , 10
cF 10.0

4-13

Table 4.10 Simulated versus analytical CDF; Example III.
t Simulation CDF Laplace Inversion Absolute Deviation

1.30 0.000000 0.000001 0.000001
1.40 0.000012 0.000017 0.000005
1.50 0.000114 0.000125 0.000011
1.60 0.000650 0.000658 0.000008
1.70 0.002762 0.002631 0.000131
1.80 0.008386 0.008389 0.000003
1.90 0.022122 0.022150 0.000028
2.00 0.049408 0.049784 0.000376
2.10 0.097208 0.097403 0.000195
2.20 0.168744 0.168981 0.000237
2.25 0.213422 0.213835 0.000413
2.30 0.263740 0.264110 0.000370
2.35 0.318896 0.318930 0.000034
2.40 0.377044 0.377153 0.000109
2.45 0.437342 0.437449 0.000107
2.50 0.498400 0.498400 0.000000
2.55 0.558750 0.558597 0.000153
2.60 0.616586 0.616736 0.000150
2.65 0.671882 0.671691 0.000191
2.70 0.722562 0.722569 0.000007
2.75 0.768520 0.768737 0.000217
2.80 0.809424 0.809830 0.000406
2.90 0.875516 0.876519 0.001003
3.00 0.923458 0.923986 0.000528
3.10 0.955104 0.955584 0.000480
3.25 0.981922 0.981954 0.000032
3.50 0.996828 0.996836 0.000008
4.00 0.999954 0.999957 0.000003
4.25 0.999998 0.999998 0.000000
4.50 1.000000 0.999999 0.000001

Several sample points of the numerical CDF of the server lifetime are provided

in Table 4.10, where the comparison is made between the Monte-Carlo simulation

and the numeric Laplace inversion using the Abate and Whitt [1] algorithm. In this

example problem the MAD is 0.0012.

Table 4.11 summarizes the results of both the secant root finding algorithm

and a gradient search for T ∗, where the service rate is assumed to be µj = 2 for all j.

4-14

A comparison of these results reveals that the techniques provide similar solutions

to the replacement time problem.

Table 4.11 Results for optimal replacement time; Example III.
Method T ∗ g(T ∗)
Laplace Inversion CDF 2.728415 22.073548
Simulated CDF 2.734100 22.073067

The service rate selection problem is much more complex than in the previous

sections. Since there are now ten states in the random environment, there are ten

decision variables. Further, the feasible region in this example is a ten-dimensional

hypercube. This implies that there are a total of 1024 corner points to the feasible

space. Again, suppose management has decided to implement the results of the

optimal replacement problem, and that T = 2.734100. The objective is to adjust

the service rates, and through the service rates, the amount of power required by

the satellite to minimize the long-run cost rate. Again, for the sake of simplicity, an

upper bound is assumed to exist for all mean service rates, and hence µj ≤ 20 for all

j. Similarly, assume a lower bound of 1/4 ≤ µj to ensure stability. Tables 4.12 and

4.13 present the results of the gradient search algorithm using only a small subset

of the available corner points. These tables clearly show that the gradient search

converged to approximately the same point for all the starting points listed in the

tables. Furthermore, the long-run expected cost rate of 21.376584 is less than the

long-run expected cost rate of 22.073067 implying that, in this case, adjusting the

service rate is beneficial. This results in a 0.70 reduction in the long-run expected

cost rate and an expected savings of 1.90 units over the course one cycle.

These three examples have illustrated the techniques to compute the globally

optimal replacement time as well as the locally optimal mean service rates. While

the mean service rates are only guaranteed to be local minima, the fact that many

iterations of the gradient search algorithm converged to the same point provides

strong evidence that the local minimum may be globally optimal.

4-15

Table 4.12 Service rate selection problem; Example III.
Starting Point ~µ∗ g(~µ∗)
(0, 0, 0, 0, 0, (2.383157,2.360698,2.325098,2.259523,2.171928, 21.376584
0, 0, 0, 0, 0) 2.067354,1.955693,1.842288,1.688630,1.565746)

(20, 0, 0, 0, 0, (2.383180,2.360704,2.325067,2.259522,2.171924, 21.376584
0, 0, 0, 0, 0) 2.067379,1.955699,1.842294,1.688622,1.565742)

(0, 20, 0, 0, 0, (2.383162,2.360674,2.325057,2.259536,2.171952, 21.376584
0, 0, 0, 0, 0) 2.067361,1.955706,1.842292,1.688621,1.565740)

(0, 0, 20, 0, 0, (2.383134,2.360696,2.325058,2.259534,2.171948, 21.376584
0, 0, 0, 0, 0) 2.067368,1.955704,1.842291,1.688620,1.565739)

(0, 0, 0, 20, 0, (2.383117,2.360691,2.325075,2.259535,2.171953, 21.376584
0, 0, 0, 0, 0) 2.067356,1.955706,1.842292,1.688619,1.565738)

(0, 0, 0, 0, 20, (2.383190,2.360665,2.325055,2.259533,2.171950, 21.376584
0, 0, 0, 0, 0) 2.067357,1.955706,1.842293,1.688622,1.565741)

(0, 0, 0, 0, 0, (2.383153,2.360681,2.325074,2.259535,2.171951, 21.376584
20, 0, 0, 0, 0) 2.067328,1.955709,1.842297,1.688623,1.565741)

(0, 0, 0, 0, 0, (2.383273,2.360640,2.325045,2.259517,2.171941, 21.376584
0, 20, 0, 0, 0) 2.067361,1.955702,1.842290,1.688618,1.565735)

(0, 0, 0, 0, 0, (2.383140,2.360677,2.325062,2.259541,2.171955, 21.376584
0, 0, 20, 0, 0) 2.067357,1.955706,1.842292,1.688620,1.565739)

(0, 0, 0, 0, 0, (2.383219,2.360665,2.325081,2.259506,2.171928, 21.376584
0, 0, 0, 20, 0) 2.067397,1.955699,1.842291,1.688622,1.565742)

(0, 0, 0, 0, 0, (2.383215,2.360663,2.325079,2.259509,2.171930, 21.376584
0, 0, 0, 0, 20) 2.067396,1.955700,1.842291,1.688621,1.565741)

4-16

Table 4.13 Service rate selection problem; Example III.
Starting Point ~µ∗ g(~µ∗)

(0, 20, 20, 20, 20, (2.383164,2.360668,2.325072,2.259535,2.171952, 21.376584
20, 20, 20, 20, 20) 2.067350,1.955707,1.842292,1.688622,1.565741)

(20, 0, 20, 20, 20, (2.383331,2.360637,2.325029,2.259508,2.171930, 21.376584
20, 20, 20, 20, 20) 2.067387,1.955695,1.842296,1.688624,1.565745)

(20, 20, 0, 20, 20, (2.383371,2.360620,2.325008,2.259515,2.171940, 21.376584
20, 20, 20, 20, 20) 2.067350,1.955706,1.842296,1.688626,1.565746)

(20, 20, 20, 0, 20, (2.383362,2.360623,2.324999,2.259526,2.171948, 21.376584
20, 20, 20, 20, 20) 2.067321,1.955710,1.842299,1.688627,1.565746)

(20, 20, 20, 20, 0, (2.383379,2.360613,2.325012,2.259513,2.171939, 21.376584
20, 20, 20, 20, 20) 2.067353,1.955705,1.842295,1.688626,1.565746)

(20, 20, 20, 20, 20, (2.383419,2.360607,2.324997,2.259509,2.171937, 21.376584
0, 20, 20, 20, 20) 2.067345,1.955705,1.842296,1.688626,1.565746)

(20, 20, 20, 20, 20, (2.383396,2.360613,2.324988,2.259525,2.171947, 21.376584
20, 0, 20, 20, 20) 2.067317,1.955710,1.842299,1.688627,1.565746)

(20, 20, 20, 20, 20, (2.383345,2.360624,2.325017,2.259517,2.171941, 21.376584
20, 20, 0, 20, 20) 2.067352,1.955706,1.842296,1.688626,1.565746)

(20, 20, 20, 20, 20, (2.383344,2.360636,2.324999,2.259526,2.171947, 21.376584
20, 20, 20, 0, 20) 2.067352,1.955706,1.842296,1.688626,1.565746)

(20, 20, 20, 20, 20, (2.383344,2.360636,2.324999,2.259526,2.171947, 21.376584
20, 20, 20, 20, 0) 2.067323,1.955710,1.842299,1.688627,1.565747)

(20, 20, 20, 20, 20, (2.383412,2.360609,2.324998,2.259512,2.171938, 21.376584
20, 20, 20, 20, 20) 2.067342,1.955705,1.842296,1.688627,1.565746)

4-17

5. Conclusions and Future Research

This thesis unites techniques for optimal tool replacement and the optimal

control of queueing systems to optimally control a k-server queueing system in which

the servers are subject to failures due to a stochastic and dynamic environment.

Specifically, the queueing system is controlled through two distinct methods. First,

assuming a k-replacement policy, the optimal replacement time was analytically

computed. Second, the locally optimal mean service rate for each environmental

state was computed. Both the optimal replacement time and the mean service were

computed using numerical search techniques, due to the complex structure of the

objective function as well as the existence of Laplace transforms of matrix expo-

nentials. Additionally, notional examples of these types of systems were examined,

not only to show how these methodologies may be applied, but also to illustrate the

effectiveness of the numerical Laplace transform inversion.

The assumed k-replacement policy of the system was modelled explicitly as a

renewal process, which in turn allowed the application of the renewal-reward theo-

rem. The renewal-reward theorem provides an expression for the long-run expected

cost rate, which was the measure of performance used in this thesis. The objective

function was derived with respect to the cost per renewal cycle. Of the four cost

components, three were relatively straightforward. The fourth component, the cost

incurred by outside processing, was defined as a fixed cost paid to process each cus-

tomer served by an external service provider. This expected cost per cycle requires

the evaluation of the expected number of customers served by the outside service

provider. An analytical expression for this quantity was obtained using a conditional

expectation argument.

Using the long-run average cost criterion as the primary metric of interest, the

next step was to compute the optimal replacement time. Prior to this derivation,

Proposition (3.1) proved the convexity of the objective function with respect to

5-1

the replacement time. This proposition is critical in that it guarantees an optimal

solution for the replacement time problem in one of two places: either at a stationary

point or at infinity. Thus, simple root-finding techniques, such as the bisection and

secant methods, were used to compute the stationary point. When such a point is

found, it is known to be the optimal replacement time. When these root-finding

methods fail, the optimal replacement time is infinite, and hence, the best policy

is simply to never replace the servers and rely exclusively on the outside service

provider.

After the optimal replacement time was computed, the problem of optimal

service rate selection for each environmental state was considered. Unfortunately,

the objective function cannot be shown analytically to be convex with respect to the

service rates, and hence there may be many stationary points, each of which may be

a minimum, a maximum or a saddle-point. The gradient search method was used

to compute the optimal service rates. However, this method finds local minima and

not a global minimum. To circumvent this, multiple gradient searches were used

with different starting points. While this technique does not guarantee a globally

optimal solution, it will at least find several local minima which have lower objective

function values than the initial starting points.

The next step in the thesis process was to illustrate these methods through

numerical examples. A series of three notional scenarios were used to illustrate the

utility of the techniques presented. Once each scenario was modelled as a queue-

ing system with the appropriate failure mechanisms, Equation (3.40) was used to

compute the optimal replacement time by employing the bisection and secant root-

finding techniques in conjunction with numerical Laplace transform inversion. To

benchmark these results, a simulation model was used to construct an empirical dis-

tribution of the server failure times. These two CDFs (analytical and simulated)

were then used in Equation (3.36) to calculate competing T ∗ values. The optimal

5-2

solutions were found to be nearly identical in each example. Because the objective

function is convex with respect to T , these stationary points must be global minima.

The optimal service rate selection problem was more difficult. In each scenario

the optimal replacement time was used as the fixed replacement time. The gradient

search algorithm was then employed to control the mean service rates to further

reduce the long-run expected cost rate. These results were not benchmarked utilizing

simulation because each change in a service rate alters the distribution of the server’s

failure time, and hence requires a new simulated CDF, an extremely computationally

intensive process. Because the gradient search method only finds local minima,

multiple initial conditions were used in an effort to adequately search the feasible

space and identify the global minimum. In all the examples examined in this thesis,

the result of the gradient search was approximately identical for each starting point,

which provides a reasonable measure of evidence that a global minimum has been

reached. In each case, the objective function value was decreased by employing the

gradient search algorithm.

This work has contributed two methodologies for controlling a queueing system

in which the servers are subject to break downs. The queueing system is interesting

in that it models the effects of the surrounding environment on the degradation of

the server. The first methodology computes the optimal replacement time of the

queueing system. This methodology is guaranteed to converge to an approximate

optimal replacement time because it was shown that the objective function is convex

with respect to the replacement time. Furthermore, this methodology has great

potential to save organizations valuable resources by avoiding premature failures

and unnecessary replacements. The second methodology allows the controller of

the queueing system to adapt to the random environment by adjusting the service

rate whenever the status of the environment changes. While this technique is not

guaranteed to find a globally optimal long-run expected cost rate, it will at least

find a local minimum, whose objective function value must be equal to the initial

5-3

starting point or less. Therefore, by using this technique, it is possible to adjust the

service rates to further reduce long-run average operating costs.

The most obvious avenue of further research lies in the relaxation of the as-

sumptions of the system dynamics. For example, there exist many replacement

policies other than the k-replacement policy examined in this thesis, and optimizing

the queueing system under any one of them would further extend the current state

of the art. Also, there are many techniques in the tool replacement literature that

could be used in conjunction with this thesis. One example is an inspect-and-replace

policy, where at fixed intervals of time, the operator inspects the system and takes

some action based on that inspection. Perhaps the true level of wear is not easily in-

spected, a scenario that is common in the real world, in which it would be interesting

to examine the best course of action to take.

Another assumption that could be relaxed is that of nondiscriminatory server

selection. This assumption states that even though there may be an idle, operative

server, it is possible to send a customer to the outside service provider at a higher

cost. If a more logical server-preference system were introduced, it would alter the

expected number of customers that undergo service with the outside service provider,

and hence alter the results of this thesis.

Further research could also be conducted into alternative numerical techniques.

There are many (derivative-free) algorithms to minimize functions other than the

gradient search method, and one of these techniques may be able to provide a globally

optimal solution to the service rate selection problem. In addition, further research

could be aimed at simultaneously controlling both the age replacement time and

service rates.

Finally, another interesting avenue of future research is an explicit performance

analysis of the queueing system described in this thesis. The assumption of external

service providers ensures that server failures do not effect the long-run performance of

the queue. Relaxation of this assumption would require the derivation of traditional

5-4

queueing performance measures, such as the long-run expected number of customers

in the system and the expected waiting time in the system. Such an analysis may

more realistically capture the dynamics of the system as queue instability may result

due to server failures.

5-5

Bibliography

1. Abate, J. and W. Whitt (1995). Numerical inversion of Laplace transforms of
probability distributions. ORSA Journal on Computing, 7, 36-43.

2. Andradóttir, S. (1998). Chapter 9: Simulation optimization. Handbook of Sim-
ulation. John Wiley & Sons, Inc., New York.

3. Ahmad, M. and A. K. Sheikh (1984). Bernstein reliability model: derivation
and estimation of parameters. Reliability Engineering, 8, 131-148.

4. Avi-Itzhak, B. and P. Naor (1963). Some queuing problems with the service
station subject to breakdown. Operations Research, 11, 303-320.

5. Burden, R. L. and J. D. Faires (2001). Numerical Analysis. 7th ed., Brooks/Cole,
Pacific Grove CA.

6. Crabill, T. B. (1972). Optimal control of a service facility with variable exponen-
tial service times and constant arrival rate. Management Science, 18, 560-566.

7. Daigle, J. N. and M. N. Magalhães (1991). Transient behavior of M/M ij/1
queues. Queueing Systems, 8 357-378.

8. Doshi, B. T. (1978). Optimal control of the service rate in an M/G/1 queueing
system. Advances in Applied Probability, 10, 682-701.

9. George, J. M. and J. M. Harrison (2001). Dynamic control of a queue with
adjustable service rate. Operations Research, 49, (5), 720-731.

10. Grassmann, W. K., Chen X. and B. R. K. Kashyap (2001). Optimal service rates
for the state-dependent M/G/1 queues in steady state. Operations Research
Letters, 29, 57-63.

11. Gross, D. and C. M. Harris (1998). Fundamentals of Queueing Theory. 3rd ed.,
Wiley & Sons Inc, New York.

12. Harris, C. M. (1967). Queues with state dependent stochastic service rates.
Operations Research. 15, 117-130

13. Hopp, W. J. and S. Wu (1988). Multiaction maintenance under markovian
deterioration and incomplete state information. Naval Research Logistics, 35

447-462.

14. Hopp, W. J. and S. K. Nair (1994). Markovian deterioration and technological
change. IIE Transactions, 26 (6), 74-82.

15. Hopp, W. J. and Y. Kuo (1998). An optimal structured policy for maintenance
of partially observable aircraft engine components. Naval Research Logistics, 45,
335-352.

BIB-1

16. Jeang, A. (1999). Tool Replacement policy for probabilistic tool life and random
wear procss. Quality and Reliability Engineering International, 15, 205-212.

17. Jo, K. Y. (1983). Optimal service rate control of exponential queueing systems.
Journal of the Operations Research Society of Japan, 26, 147-165.

18. Kharoufeh, J. P. (2003). Explicit results for wear processes in a Markovian
environment. Operations Research Letters, 31, 237-244.

19. Kharoufeh, J. P. and J. A. Sipe (2004). Evaluating failure time probabilites for
a Markovian wear process. Forthcoming in Computers and Operations Research.

20. Kodera, T. and M. Miyazawa (2002). An M/G/1 queue with Markov-dependent
exceptional service times. Operations Research Letters, 30, 231-244.

21. Koyanagi, J. and H. Kawai (1995). An optimal maintenance policy for a deterio-
rating server of an M/G/1 queueing system. Proceedings of Stochastic Modelling
in Innovative Manufacuring, Cambridge, UK, July 21 - 22, 215-224.

22. Kulkarni, V. G. (1995). Modeling and Analysis of Stocahstic Systems. 1st ed.,
Chapman & Hall, London.

23. Kulkarni, V. G. and B. D. Choi (1990). Retrial queues with server subject to
breakdowns and repairs. Queueing Systems, 7, 191-208.

24. Mitrany, I. L. and B. Avi-Itzhak (1968). A many-server queue with service
interruptions. Operations Research, 16, 628-638.

25. McCall, J. J. (1965). Maintenace policies for stochastically failing equipment: a
survey. Management Science, 11, 493-521.

26. Nakagawa, T. (1979). Replacement problem of a parrallel system in random
environment. Journal of Applied Probability, 16, 203-205.

27. Neuts, M. F. (1978). The M/M/1 queue with randomly varying arrival and
service rates. Opsearch, 15 (4), 139-157.

28. Neuts, M. F. (1978). Further results on the M/M/1 qeueue with randomly
varying rates. Opsearch, 15 (4), 158-168.

29. Neuts, M. F. and D. M. Lucantoni (1979). A Markovian queue with N servers
subject to breakdowns and repairs. Management Science, 25, 849-861.

30. Perry, D. (2000). Control limit policies in a replacement model with additive
phase-type distributed damage and linear restoration. Operations Research Let-
ters, 27, 127-134.

31. Pierskalla, W. P. and J. A. Voelker (1976). A survey of maintenance models:
the control and surveillance of deterioriating systems. Naval Research Logistics
Quarterly, 23, 353-288.

BIB-2

32. Sabeti, H. (1973). Optimal selection of service rates in queueing with different
cost. Journal of the Operations Research Society of Japan, 16, 15-35.

33. Sennott, L. I. (1989). Average cost optimal stationary policies in infinite state
Markov decision processes with unbounded costs. Operations Research, 37 (4),
626-633.

34. Shirmohammadi, A. H., Love, C. E., and Z. G. Zhang (2003). An optimal
maintenance policy for skipping imminent preventive maintenance for systems
experiencing random failures. Journal of the Operational Research Society, 54,
40-47.

35. Stidham, S. Jr. and R. R. Weber (1989). Monotonic and insensitive optimal
policies for control of queues with undiscounted costs. Operations Research, 37

(4), 611-625.

36. Thiruvengadam, K (1963). Queuing with breakdowns. Operations Research, 11,
62-71.

37. Valdez-Flores, C. and R. M. Feldman (1989). A survey of preventive mainte-
nance models for stochastically deteriorating single unit systems. Naval Research
Logistics, 36, 419-446.

38. Waldmann, K. H. (1983). Optimal replacement under additive damage in ran-
domly varying environments. Naval Research Logistics Quarterly, 30, 377-386.

39. Wang, J., J. Cao and Q. Li (2001). Reliability analysis of the retrial queue with
server breakdowns and repairs. Queueing Systems, 38, 363-380.

40. Zhou, C., Chandra, J. and Richard Wysk (1990). Optimal cutting tool replace-
ment based on tool wear status. International Journal of Production Research,
28 (7), 1357-1367.

BIB-3

Appendix A. Simulation Code

%***
% PROGRAM MARKOV
%
% The purpose of this code is to simulate the failure distribution of a server
% undergoing environmentally driven wear. The environment is modeled by a
% finite state CTMC which dictates the rate of wear on the server.
%
% Author: Patrick S Chapin, altered from original source code by
% J.P. Kharoufeh, Ph.D.
% Date: 1 Feb 2004
% Last Revised: 7 Mar 2004
%**

% VARIABLE DEFINTIONS

%
% L = The maximum amount of wear for one server
% k = an index variable
%
%***

% VECTOR/FUNCTION DEFINITIONS**
%
% T = Vector of simulated failure times
% B = Vector for the initial probability distribution of the Markov process
% R = Vector of transition rates
% P = Probability transition matrix
% V = Vector of wear rates (i.e., V(i)= wear rate when environment is in state i).
% Z = Vector of environment states
% Q = Infitesimial Generator Matrix of the random environment.
%**

% The program assumes a state space of the form S={1,2,...K}
function Output = markov(soe)

TimeStart = clock;
%markov_input; % Obtain intialization parameters
L = 1.0; %Max wear
N = 2; %Size of Environment
T = 1:25000; %Number of Tries
B = [1 zeros(1,N-1)]; %Initial Condition
V = []; %Vector of R_D

%establish Q.
if soe == 2
 a = 19;
 b = 7;
 Q = [-b b;a -a];

 Q = Q*(1/10);
 %define the service rate
 mu = [1.1,1.1];
 V = [1*mu(1),2*mu(2)];

A-1

 V = V*(1/10);
elseif soe == 5
 Q=[-76.4653 19.1376 28.2982 16.5118 12.5177
 25.6793 -81.185 28.9809 14.8722 11.6526
 15.2226 29.5272 -87.6932 29.3102 13.6332
 28.4067 18.8163 11.3262 -79.1669 20.6177
 14.1677 10.1135 19.5026 25.4786 -69.2624];
 Q=Q./10;
 %define the service rate
 mu = [2,2,2,2,2];
 V(1) = mu(1);
 V(2) = (mu(2))^2;
 V(3) = exp(mu(3));
 V(4) = log(mu(4)+1);
 V(5) = (mu(5))^3;
 V= V*(1/10);
elseif soe == 10
 Q = [-3472.932 573.5848 518.6157 247.7199 222.8372 282.9065 276.7697 486.86 377.6327 486.0055
 528.9639 -3464.2659 346.6875 268.6725 494.174 390.0185 421.1792 561.8889 120.426 332.2554
 215.1789 379.774 -2638.3644 445.3362 471.2741 265.6516 244.8543 334.6254 134.4901 147.1798
 110.7218 506.8413 170.6219 -2467.6896 142.3301 107.2723 533.6251 270.8044 410.6428 214.8299
 142.7507 411.9563 491.1781 101.2544 -3160.385 140.8118 596.2472 501.9074 517.8909 256.3882
 499.5321 392.8141 165.9629 104.3732 586.9225 -3679.0386 479.72 591.5364 423.7168 434.4606
 257.7228 585.8839 100.8181 323.5683 358.0541 564.9279 -3297.6269 230.9467 326.5551 549.15
 563.2924 295.443 340.6363 232.606 471.9588 585.0955 238.3625 -3438.1854 289.4849 421.306
 192.9471 252.2573 157.9861 374.6915 508.0261 531.4705 259.1157 250.9286 -3058.4467 531.0238
 316.1591 119.4228 205.5623 578.4263 399.5693 167.2138 333.538 177.418 582.0245 -2879.3341
];
 Q=Q./ 100;
 mu=[2,2,2,2,2,2,2,2,2,2];
 for k = 1:soe
 V(k) = (k*mu(k)/2)^2;
 end
 V= V*(1/100);
else
 return
end

%Solve for the steady state probabilites of the CTMC environment,
%and make those stead state probs the initial condition.
Qnew11 = [Q';ones(size(Q,1),1)'];
RHS11 = [zeros(size(Q,1),1);1];
q11=Qnew11\RHS11; %11s added to ensure I'm not overwriting anything later on in the program
B = q11';

R = 1:N;
for i = 1:N
 R(i)=-Q(i,i);
end

for i = 1:N
 for j = 1:N
 P(i,j)=Q(i,j)/(sum(Q(i,:))-Q(i,i));
 end
 P(i,i)=0.0;
end

A-2

V(1) = mu(1);
V(2) = mu(2)*2;
V = V/10;

Z = []; % Initialize Z.

for k = 1:length(T)
 Z = [];
 Z(1)=rando(B); % Initial state of the environment at time 0
 T(k) = exprv(R(Z(1))); % Time spent in initial state
 D = 0.0; % At time 0, amount of wear is 0
 D = D + T(k)*V(Z(1)); % Add accumulated wear to cumulative wear
 i=1;
 while D < L % Do while cumulative wear is less than L
 Z(i+1) = rando(P(Z(i),:)); % Use the matrix P to determine next state
 new_time = exprv(R(Z(i+1))); % Obtain a new exponential time via exprv().
 D = D + new_time*V(Z(i+1)); % Update cumulative wear
 T(k) = T(k) + new_time; % Update total time
 i=i+1;
 end
 T(k)=T(k)-(1/V(Z(i)))*(D-L);
end

%Left over code from Kharoufeh's original source code.
%Y=[];
% Y = zeros(size(T));
% m=0;
% for i = 1:length(T)
% if T(i)>mean(T)
% Y(i)=T(i);
% m = m+1;
% end
% end
%
% res_avg = sum(Y)/m;
% disp(res_avg);

%T2 = T.^2;
% disp('E(T)=')
% disp(mean(T));
% disp('E(T2)=')
% disp(mean(T2));
% disp('Var(T)=')
% disp((std(T))^2);
%get_cdf;
%disp(F');

%Getting the CDF

t=floor(min(T))-.01:0.0001:ceil(max(T))+.01;

F = 1:length(t); %This ensures that t and F are vectors of equal length
%U = 1:length(t);

% Compute the cdf value at the point t0

A-3

for i = 1:length(t)
 F(i) = 0.0;
 for j = 1:length(T)
 if T(j)<= t(i)
 F(i) = F(i) + 1/length(T);
 else
 F(i) = F(i);
 end
 end
end

Output = [t' F'];

string = strcat('simulationresultsfor',int2str(soe),'state.txt');

fid = fopen(string,'w');
for k=1:length(t)
 fprintf(fid, '%4.6f\t%4.6f\n',t(k),F(k));
end

TimeToRun = clock - TimeStart;
fprintf(fid, '\n%4.6f',TimeToRun);
fclose(fid)

%**
% rando.m generates a discrete random variable in S={1,2,...,n} given a distribution
% vector p = [p1 p2 ... pn].

function [index] = rando(p)
u = rand;
i = 1;
s = p(1);

while ((u > s) & (i < length(p))),
 i=i+1;
 s=s+p(i);
end

index=i;

%**
%exprv generates an exponential random variable using the rand function.
function eq = exprv(lambda)

eq = -(1/lambda)*log(1-rand(1));

A-4

Appendix B. Root-Finding Code

%***
% PROGRAM Hybrid_Root_Finding
%
% The purpose of this MATLAB program is to find the
% root of the give objective function
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03
% Last Revised: 4 Feb 04
% References: Burden, R. L. and J. D. Faires (2001). NUMERICAL ANALYSIS, 7th
% edition, Brooks/Cole, Pacific Grove, CA.
% Inputs: sizeofenvironment, the size of the random environment.
% Note that this program is set up accomplish 3 examples, a 2 state,
% a 5 state and a 10 state problem.
%
%
%***

% VARIABLE DEFINTIONS***
% C_N = Replacement cost for 1 server
% C_H = Holding cost for 1 customer per unit time
% C_F = Additional cost of serving 1 customer at an outside facility.
% kservers = the number of servers
% lambda = arrival rate of customers to the system.
% mu = the service rate at each of the environmental states
% soe = Size of the random environment.
% Q = infitesimal generator matrix of the random environment.
% qswitch = a counter so that the the steady state solutions of the random environment
% only calculated once.
% R_D = matrix of the rate of wear during each environmental state. if the
% environment is in state j and the wear rate is a, then R_D(j,j)
% = a.
% Type1 - Type4 = Counters to differentiate between different laplace inversion
% functions. It is easier to tell what is going on if Type1 is
% passed as opposed to just 1.
%***

function Final_Cost_Rate = Chapin_Hybrid_Root_Finding(sizeofenvironment)

 %fid = fopen(fid2,'w');

 maxiterations = 10000;
 StepCounter = 1;

 global Tolerance
 global soe
 global lambda
 global upperbound
 global qswitch
 global C_N

 lambda = 1;
 soe = sizeofenvironment;
 upperbound = 5000;

B-1

 qswitch = 1;
 Tolerance = 1*10^-12;

 if soe == 2
 mu = [1.1;1.1];
 elseif soe == 5
 mu = [2;2;2;2;2];
 elseif soe == 10
 mu = [2;2;2;2;2;2;2;2;2;2];
 else
 return
 end

 Tzero = .001;
 Tone = 1;

 tempcounter = 1;

 %Find an upper and lower bound of the root
 while Chapin_Objective_Function(Tzero,mu) * Chapin_Objective_Function(Tone,mu) > 0
 %Tzero = Tzero*.5;
 Tone = Tone * 2;
 if tempcounter > 500
 fprintf('Upper bound is greater than 2^500. Hence no singularity found');
 return
 end
 tempcounter = tempcounter +1;
 end

 %now do the bisection method

 tempcounter = 1;

 while abs(Chapin_Objective_Function(Tzero,mu) -
Chapin_Objective_Function(Tone,mu))/Chapin_Objective_Function(Tzero,mu) > .1
 Ttemp = (Tzero + Tone)/2;
 if Chapin_Objective_Function(Ttemp,mu) < 0
 Tzero = Ttemp;
 else
 Tone = Ttemp;
 end

 if tempcounter > 500
 break
 end

 tempcounter = tempcounter + 1;
 end

 if Chapin_Objective_Function(Tzero,mu) * Chapin_Objective_Function(Tone,mu) > 0
 return
 end

 qzero = Chapin_Objective_Function(Tzero,mu);
 qone = Chapin_Objective_Function(Tone,mu);

B-2

 %Implement the secant method, see Burden
 while StepCounter < maxiterations

 T = Tone-qone*(Tone-Tzero)/(qone-qzero);

 if mod(StepCounter,10) == 0
 fprintf('step');
 end

 if abs(T-Tone) < Tolerance
 %fprintf(fid,' \n Successful proceedure, less than tolerance change between steps');
 %fprintf(fid,'\n The Solution is: %4.9f',T);
 Final_Cost_Rate = T;
 %fprintf(fid,'\n It took %d steps',StepCounter);
 %fprintf(fid,'\n \n');
 %fclose(fid);
 fprintf('\nComplete. T* = %f, function eval is %f',T,Chapin_Objective_Function(T,mu));
 return
 end

 StepCounter=StepCounter+1;

 Tzero = Tone;
 qzero = qone;
 Tone = T;
 qone = Chapin_Objective_Function(T,mu);

 end

 fprintf(fid,' \n Maximum Iterations Reached, proceedure unsuccessful \n');

 %fclose(fid);

%**
% PROGRAM Chapin_Obective_Function
%
% The purpose of this MATLAB program is to evaluate the objective
% function of the queueing system under consideration
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03
% Last Revised: 4 Feb 04
% References: None
% Inputs: T, the replacement time of the system
% mu, the vector of service rates
%
%***

% VARIABLE DEFINTIONS ***
% C_N = Replacement cost for 1 server
% C_H = Holding cost for 1 customer per unit time
% C_F = Additional cost of serving 1 customer at an outside facility.
% kservers = the number of servers
% lambda = arrival rate of customers to the system.
% soe = Size of the random environment.

B-3

% Q = infitesimal generator matrix of the random environment.
% qswitch = a counter so that the the steady state solutions of the random environment
% only calculated once.
% R_D = matrix of the rate of wear during each environmental state. if the
% environment is in state j and the wear rate is a, then R_D(j,j)
% = a.
% Type1 - Type4 = Counters to differentiate between different laplace inversion
% functions. It is easier to tell what is going on if Type1 is
% passed as opposed to just 1.
%**

% VECTOR/FUNCTION DEFINITIONS***
%
%**

function output = Chapin_Objective_Function(T,mu)

MaximumWear = 1.0;

global soe
global lambda
global qswitch
global q
global R_D
global C_N

kservers =1;
C_N = 15;

if soe == 2
 C_F = 2;
 C_N = 18;
 C_H = 15;
elseif soe ==5
 C_F = 20;
 C_N = 10;
 C_H = 5;
elseif soe == 10
 C_F = 10;
 C_N = 5;
 C_H = 20;
 kservers = 4;
else
 return
end

%Variables to denote which function I am inverse Laplacing.
Type1 = 1;
Type2 = 2;
Type3 = 3;

B-4

Type4 = 4;

%Assume M/M/1 Queue, 5 state random enivornment
if soe == 2
 a = 19;
 b = 7;
 Q = [-b b;a -a];

 Q = Q*(1/10);
elseif soe == 5
Q=[-76.4653 19.1376 28.2982 16.5118 12.5177
25.6793 -81.185 28.9809 14.8722 11.6526
15.2226 29.5272 -87.6932 29.3102 13.6332
28.4067 18.8163 11.3262 -79.1669 20.6177
14.1677 10.1135 19.5026 25.4786 -69.2624];

Q=Q./10;
elseif soe == 10
Q = [-3472.932 573.5848 518.6157 247.7199 222.8372 282.9065 276.7697 486.86 377.6327 486.0055
528.9639 -3464.2659 346.6875 268.6725 494.174 390.0185 421.1792 561.8889 120.426 332.2554
215.1789 379.774 -2638.3644 445.3362 471.2741 265.6516 244.8543 334.6254 134.4901 147.1798
110.7218 506.8413 170.6219 -2467.6896 142.3301 107.2723 533.6251 270.8044 410.6428 214.8299
142.7507 411.9563 491.1781 101.2544 -3160.385 140.8118 596.2472 501.9074 517.8909 256.3882
499.5321 392.8141 165.9629 104.3732 586.9225 -3679.0386 479.72 591.5364 423.7168 434.4606
257.7228 585.8839 100.8181 323.5683 358.0541 564.9279 -3297.6269 230.9467 326.5551 549.15
563.2924 295.443 340.6363 232.606 471.9588 585.0955 238.3625 -3438.1854 289.4849 421.306
192.9471 252.2573 157.9861 374.6915 508.0261 531.4705 259.1157 250.9286 -3058.4467 531.0238
316.1591 119.4228 205.5623 578.4263 399.5693 167.2138 333.538 177.418 582.0245 -2879.3341
];

 Q=Q./ 100;
else
 return
end
%For now, assume r(j) = mu_j.
%R_D = diag(mu);
%solve for steady state probabilities of the random environment
%Solve qQ = 0 and q'*m = 1
if qswitch ==1
 qswitch = 2;
 Qnew = [Q';ones(size(Q,1),1)'];
 RHS = [zeros(size(Q,1),1);1];
 q=Qnew\RHS;
end
%the purpose of the next statement is to check to ensure the given policy
%matches the size of the random environment. If not, this statement should
%cause an error and abort the routine.
mu - q;

for k=1:soe
 if soe == 10
 R_D(k,k) = (k*mu(k)/2)^2;
 elseif soe == 5
 R_D(1,1) = mu(1);
 R_D(2,2) = mu(2)^2;
 R_D(3,3) = exp(mu(3));
 R_D(4,4) = log(mu(4)+1);

B-5

 R_D(5,5) = mu(5)^3;
 elseif soe == 2
 R_D(k,k) = mu(k)*k;
 end
end
if soe == 2
 R_D = R_D * (1/10);
elseif soe == 5
 R_D = R_D * (1/10);
elseif soe == 10
 R_D = R_D * (1/100);
end

inverselap1 = Chapinmod_invt_lap(T,mu,Type1,Q,R_D,MaximumWear,q);
inverselap2 = Chapinmod_invt_lap(T,mu,Type2,Q,R_D,MaximumWear,q);
inverselap3 = Chapinmod_invt_lap(T,mu,Type3,Q,R_D,MaximumWear,q);
inverselap4 = Chapinmod_invt_lap(T,mu,Type4,Q,R_D,MaximumWear,q);

output = C_F*lambda*(T*inverselap3*inverselap2 + T*inverselap1*inverselap1 -
inverselap1*inverselap2) - kservers*C_N;

%==
%The Invert Laplace function -- This code is from Dr. J. P. Kharoufeh

function f1 = Chapinmod_invt_lap(t,mu,type,Q,R_D,maxwear,q)
rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m;

for k=0:m
 d=nchoosek(m,k);
 c=[c d];
end
for t = t; %50.0; %t=0.5:0.5:20.0
 tx = t; %[tx t];
 ntr=15;
 u=exp(A/2)/t;
 x=A/(2*t);
 h=pi/t;
 su=zeros(m+2);
 sm=chapin_evaluate_fct(x,0,mu,type,Q,R_D,maxwear,q)/2;
 for k=1:ntr
 y=k*h;
 sm=sm+((-1)^k)*chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q);
 end
 su(1)=sm;
 for k=1:12
 n=ntr+k;
 y=n*h;
 su(k+1)=su(k)+((-1)^n)*chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q);
 end
 av1=0; av2=0;

B-6

 for k=1:12
 av1=av1+c(k)*su(k);
 av2=av2+c(k)*su(k+1);
 end
 f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2];
end

%==
%The functional Evaluation Required in the invert Laplace function

function eq=chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q)

s=x+y*i;
% Input the form of your Laplace transform here. For example, if you have
% the LT of the pdf of an Exp(lambda) r.v., then the LT is:
%lambda = 5.0;
%z = (5/(5+s));
%eq = real(z);
m=ones(size(Q,1),1);
I=eye(size(Q));

%===
% Type 1
if type == 1
 z = (1/s) * q' * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);

%End Part 1
%==
%Type 2
elseif type ==2
 z = (1/s)^2 * q' * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);
elseif type ==3
% z = q' * inv(R_D) * maxwear * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 z = q' * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);
elseif type ==4
 z = (1/s)* q' * inv(R_D) * maxwear * expm(inv(R_D)*(Q-(s*I))*maxwear) * m + (1/s)^2 * q' *

expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);
end

%***
% PROGRAM Chapin_Obective_Function
%
% The purpose of this MATLAB program is to evaluate the objective
% function of the queueing system under consideration
%
% *******NOTE: This function uses the empirical CDF generated using the
% ******* Simulation Data to evaluate the objective function
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03
% Last Revised: 4 Feb 04

B-7

% References: None
% Inputs: T, the replacement time of the system
% mu, the vector of service rates
%
%**

% VARIABLE DEFINTIONS **
% C_N = Replacement cost for 1 server
% C_H = Holding cost for 1 customer per unit time
% C_F = Additional cost of serving 1 customer at an outside facility.
% kservers = the number of servers
% lambda = arrival rate of customers to the system.
% soe = Size of the random environment.
% Q = infitesimal generator matrix of the random environment.
% qswitch = a counter so that the the steady state solutions of the random environment
% only calculated once.
% R_D = matrix of the rate of wear during each environmental state. if the
% environment is in state j and the wear rate is a, then R_D(j,j)
% = a.
% Type1 - Type4 = Counters to differentiate between different laplace inversion
% functions. It is easier to tell what is going on if Type1 is
% passed as opposed to just 1.
%**

% VECTOR/FUNCTION DEFINITIONS**
%
%***

function output = Chapin_Objective_Function(T,mu)

MaximumWear = 1.0;

C_F = 10;
C_H = 8;

global soe
global lambda
global qswitch
global Tformat %This is the matrix of the cdf.

kservers =1;
C_N = 10;

if soe == 2
 C_F = 6;
 C_N = 18;
 C_H = 15;
elseif soe ==5
 C_F = 20;
 C_N = 10;
 C_H = 5;
elseif soe == 10
 C_F = 10;
 C_N = 5;
 C_H = 20;

B-8

 kservers = 4;
else
 return
end

if qswitch == 1
 qswitch = 2;
 if soe == 2
 load Tformat2.mat
 elseif soe == 5
 load Tformat5.mat
 elseif soe ==10
 load Tformat10.mat
 else
 return
 end
end

CDFEVAL = GetCDF(T);
INTEVAL = integratecdf(T);
DERIVEVAL = derivofcdf(T);

output = C_F*lambda*(T*DERIVEVAL*INTEVAL+T*(CDFEVAL)^2-CDFEVAL*INTEVAL) -
kservers*C_N;

function output = GetCDF(T)

 global Tformat
 %objective is to return the value of the cdf at a point.
 Times = Tformat(:,1);
 Values = Tformat(:,2);
 if T >= max(Times)
 output = 1;
 elseif T <= min(Times)
 output = 0;
 else
 k=1;
 while Times(k) < T
 k = k+1;
 end
 if T == Times(k)
 output = Values(k);
 else
 if k == 1
 fprintf('problem');
 T
 Times(k)
 end
 j = k-1;
 while Times(j) > T
 j=j-1;
 end
 %interpolate between the two points
 Temp1 = Values(k);

B-9

 Temp2 = Values(j);
 Temp3 = Times(k);
 Temp4 = Times(j);
 Temp5 = (T-Times(j));
 output = (Values(k)-Values(j))/(Times(k)-Times(j))*(T-Times(j))+Values(j);

 end
 end

function output = integratecdf(T)

 global Tformat
 Times = Tformat(:,1);
 Values = Tformat(:,2);

 if T >= max(Times)
 output = trapz(Times,Values) + T-max(Times);
 elseif T <= min(Times)
 output = 0;
 else
 k=1;
 while Times(k) < T
 k = k+1;
 end
 if T == Times(k)
 newtimes = Tformat(1:k,1);
 newvalues = Tformat(1:k,2);
 output = trapz(newtimes,newvalues);
 else
 j=k-1;
 while Times(j) > T
 j=j-1;
 fprintf('problem');
 end
 interp = (Values(j)-Values(k))/(Times(j)-Times(k))*(T-Times(k))+Values(j);
 newvalues = Tformat(1:j,2);
 newtimes = Tformat(1:j,1);
 newvalues = [newvalues;interp];
 newtimes = [newtimes;T];
 output = trapz(newtimes,newvalues);
 end
 end

function output = derivofcdf(T)
 global Tformat
 Times = Tformat(:,1);
 Values = Tformat(:,2);

 if T >= max(Times)
 output = 0;
 elseif T <= min(Times)
 output = 0;
 else
 k=1;
 while Times(k) < T
 k = k+1;

B-10

 Temp1 = Times(k);
 end
 if T == Times(k)
 %We know T = Times(k), now find the derivative
 if k+50 > size(Times)
 k = size(Times);
 elseif k-50 < 1
 k = 51;
 end
 output = (Values(k+5)-Values(k-5))/(Times(k+5)-Times(k-5));
 else
 j=k-1;
 while Times(j) > T
 j=j-1;
 fprintf('problem');
 return
 end
 if k+50 > size(Times)
 k = size(Times);
 elseif k-50 < 1
 k = 1;
 end
 output = (Values(k+5)-Values(j-5))/(Times(k+5)-Times(j-5));

 end
 end

B-11

Appendix C. Gradient Search Code

%***
% PROGRAM Chapin_Steepest_Descent
%
% The purpose of this MATLAB program is to use the method of steepest
% descent to minimize the long run expected cost rate of the system under
% consideration in Chapin's masters thesis.
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03, 2003
% Last Revised: 21 Oct 03, 2003
%
% References: Burden, Richard L. and J. Douglas Faires.
% _Numerical_Analysis_, 7th ed. Brooks/Cole, Pacific Grove CA.
%
%**

% VARIABLE DEFINTIONS**
% C_N = Replacement cost for 1 server
% C_H = Holding cost for 1 customer per unit time
% C_F = Additional cost of serving 1 customer at an outside facility.
% kservers = the number of servers
% lambda = arrival rate of customers to the system.
% mu = the service rate at each of the environmental states
% soe = Size of the random environment.
% Q = infitesimal generator matrix of the random environment.
% qswitch = a counter so that the the steady state solutions of the random environment
% only calculated once.
% R_D = matrix of the rate of wear during each environmental state. if the
% environment is in state j and the wear rate is a, then R_D(j,j)
% = a.
% Type1 - Type4 = Counters to differentiate between different laplace inversion
% functions. It is easier to tell what is going on if Type1 is
% passed as opposed to just 1.
%***

% VECTOR/FUNCTION DEFINITIONS***
%
%***

function output = Chapin_Steepest_Descent(initialguess,sizeofenvironment,fid)

maxiterations = 200;
 %Step 1
 StepCounter = 1;

 gradientg = ones(sizeofenvironment,1);
 ematrix = eye(sizeofenvironment);
 c=.005;

 global Tolerance
 global soe
 global lambda
 global upperbound
 global qswitch
 global kservers

C-1

 if soe == 10
 kservers = 4;
 T= 2.734100;
 elseif soe == 5
 T = 2.198010;
 kservers = 1;
 elseif soe == 2
 T = 7.272270;
 kservers = 1;

 end

 lambda = 1;
 soe = sizeofenvironment;
 upperbound = 300;
 qswitch = 1;
 Tolerance = 1*10^-12;

 %Check for valid mu
 lastmu = muchecker(initialguess);

 %Step 2
 while StepCounter < maxiterations

 if mod(StepCounter,10)==0
 fprintf(' %d \n',StepCounter);
 end

 %Step 3
 g1 = Chapin_Objective_Function(T,muchecker(lastmu));

 for k = 1:sizeofenvironment
 %Build the gradient approximation using central differences
 gradientg(k) = (Chapin_Objective_Function(T,muchecker(lastmu + c * ematrix(:,k)))-
Chapin_Objective_Function(T,muchecker(lastmu - c * ematrix(:,k))))/(2*c);
 end

 grad0 = sqrt(dot(gradientg,gradientg));

 %Step 4
 if all(grad0 == 0)
 fprintf(fid,' \n finished, gradient equal to zero');
 if soe == 2
 fprintf(fid,'\n The Solution is: [%f %f]',lastmu);
 elseif soe == 5
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f]',lastmu);
 elseif soe == 10
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f %f %f %f %f %f]',lastmu);
 end

 Final_Cost_Rate = Chapin_Objective_Function(T,muchecker(lastmu));
 fprintf(fid,'\n The Final Cost Rate is: %f',Final_Cost_Rate);
 fprintf(fid,'\n It took %d steps',StepCounter);
 fprintf(fid,'\n \n');
 output = lstmu;

C-2

 return
 end

 gradientg = gradientg / grad0;

 %Step 5
 alpha1 = 0;
 alpha3 = 8;
 g3 = Chapin_Objective_Function(T,muchecker(lastmu - alpha3 * gradientg));

 %Step 6
 while (g3 >= g1)
 %Step 7
 alpha3 = alpha3 / 2;
 g3 = Chapin_Objective_Function(T,muchecker(lastmu - alpha3 * gradientg));

 %Step 8
 if alpha3 < Tolerance / 2
 fprintf(fid,' \n Very Small Step size, likely no improvement');
 if soe == 2
 fprintf(fid,'\n The Solution is: [%f %f]',lastmu);
 elseif soe == 5
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f]',lastmu);
 elseif soe == 10
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f %f %f %f %f %f]',lastmu);
 end

 Final_Cost_Rate = Chapin_Objective_Function(T,muchecker(lastmu));
 fprintf(fid,'\n The Final Cost Rate is: %f',Final_Cost_Rate);
 fprintf(fid,'\n It took %d steps',StepCounter);
 fprintf(fid,'\n \n');
 output = lastmu;
 return
 end
 end

 %Step 9
 alpha2 = alpha3 /2;
 g2 = Chapin_Objective_Function(T,muchecker(lastmu - alpha2 * gradientg));

 %Step 10
 h1 = (g2-g1)/alpha2;
 h2 = (g3 - g2)/(alpha3 - alpha2);
 h3 = (h2- h1)/alpha3;

 %Step 11
 alpha0 = .5*(alpha2 - h1/h3);
 g0 = Chapin_Objective_Function(T,muchecker(lastmu - alpha0 * gradientg));

 %Step 12
 if g0 < g3
 alphanext = alpha0;
 else
 alphanext = alpha3;
 end

C-3

 %Step 13
 %update
 oldmu = lastmu;
 lastmu = muchecker(lastmu - alphanext * gradientg);

 temp1 = abs(Chapin_Objective_Function(T,lastmu) - g1);
 temp2 = Chapin_Objective_Function(T,lastmu);
 %Step14, check for finish
 if abs(Chapin_Objective_Function(T,lastmu) - g1) < Tolerance
 fprintf(fid,' \n Successful proceedure, less than tolerance change in objective function');
 if soe == 2
 fprintf(fid,'\n The Solution is: [%f %f]',lastmu);
 elseif soe == 5
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f]',lastmu);
 elseif soe == 10
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f %f %f %f %f %f]',lastmu);
 end

 Final_Cost_Rate = Chapin_Objective_Function(T,muchecker(lastmu));
 fprintf(fid,'\n The Final Cost Rate is: %f',Final_Cost_Rate);
 fprintf(fid,'\n It took %d steps',StepCounter);
 fprintf(fid,'\n \n');
 output = lastmu;
 return
 end

 %Step 16
 StepCounter = StepCounter +1;

 end

 if StepCounter >= maxiterations-1
 fprintf(fid,' \n Maximum Iterations Reached, proceedure unsuccessful \n');
 if soe == 2
 fprintf(fid,'\n The Solution is: [%f %f]',lastmu);
 elseif soe == 5
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f]',lastmu);
 elseif soe == 10
 fprintf(fid,'\n The Solution is: [%f %f %f %f %f %f %f %f %f %f]',lastmu);
 end

 Final_Cost_Rate = Chapin_Objective_Function(T,muchecker(lastmu));
 fprintf(fid,'\n The Final Cost Rate is: %f',Final_Cost_Rate);
 fprintf(fid,'\n It took %d steps',StepCounter);
 fprintf(fid,'\n \n');
 output = lastmu;
 end

%==
%==
%Define a function to check the mus

function out = muchecker(mu)

C-4

 global soe
 global lambda
 global upperbound
 global Tolerance
 global kservers

 for k=1:soe
 %if mu(k) <= lambda(k) + 10^-8
 % mu(k) = lambda(k) + 10^-8;
 %end
 if mu(k) <= lambda/kservers + 10^-8
 mu(k) = (lambda)/kservers + 10^-8;
 end
 if mu(k) > upperbound
 mu(k) = upperbound;
 end

 end

 out = mu;

%**
% PROGRAM Chapin_Obective_Function
%
% The purpose of this MATLAB program is to simply evaluate the objective
% function of the queueing system under consideration
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03
% Last Revised: 4 Feb 04
% References: None
% Inputs: T, the replacement time of the system
% mu, the vector of service rates
%
%***

% VARIABLE DEFINTIONS

% C_N = Replacement cost for 1 server
% C_H = Holding cost for 1 customer per unit time
% C_F = Additional cost of serving 1 customer at an outside facility.
% kservers = the number of servers
% lambda = arrival rate of customers to the system.
% soe = Size of the random environment.
% Q = infitesimal generator matrix of the random environment.
% qswitch = a counter so that the the steady state solutions of the random environment
% only calculated once.
% R_D = matrix of the rate of wear during each environmental state. if the
% environment is in state j and the wear rate is a, then R_D(j,j)
% = a.
% Type1 - Type4 = Counters to differentiate between different laplace inversion
% functions. It is easier to tell what is going on if Type1 is
% passed as opposed to just 1.

C-5

%**

% VECTOR/FUNCTION DEFINITIONS***
%
%**

function output = Chapin_Objective_Function(T,mu)

MaximumWear = 1.0;
C_N = 10;
C_F = 10;
C_H = 8;

global soe
global lambda
global upperbound
global qswitch
global q
global kservers

if soe == 2
 C_F = 6;
 C_N = 18;
 C_H = 15;
 kservers = 1;
elseif soe ==5
 C_F = 20;
 C_N = 10;
 C_H = 5;
 kservers = 1;
elseif soe == 10
 C_F = 10;
 C_N = 5;
 C_H = 20;
 kservers =4;
else
 return
end

%Variables to denote which function I am inverse Laplacing.
Type1 = 1;
Type2 = 2;
Type3 = 3;
Type4 = 4;

%Assume M/M/1 Queue, 5 state random enivornment
if soe == 2
 a = 19;
 b = 7;
 Q = [-b b;a -a];

 Q = Q*(1/10);
elseif soe == 5

C-6

Q=[-76.4653 19.1376 28.2982 16.5118 12.5177
25.6793 -81.185 28.9809 14.8722 11.6526
15.2226 29.5272 -87.6932 29.3102 13.6332
28.4067 18.8163 11.3262 -79.1669 20.6177
14.1677 10.1135 19.5026 25.4786 -69.2624];

Q=Q./10;
elseif soe == 10
Q = [-3472.932 573.5848 518.6157 247.7199 222.8372 282.9065 276.7697 486.86 377.6327 486.0055
528.9639 -3464.2659 346.6875 268.6725 494.174 390.0185 421.1792 561.8889 120.426 332.2554
215.1789 379.774 -2638.3644 445.3362 471.2741 265.6516 244.8543 334.6254 134.4901 147.1798
110.7218 506.8413 170.6219 -2467.6896 142.3301 107.2723 533.6251 270.8044 410.6428 214.8299
142.7507 411.9563 491.1781 101.2544 -3160.385 140.8118 596.2472 501.9074 517.8909 256.3882
499.5321 392.8141 165.9629 104.3732 586.9225 -3679.0386 479.72 591.5364 423.7168 434.4606
257.7228 585.8839 100.8181 323.5683 358.0541 564.9279 -3297.6269 230.9467 326.5551 549.15
563.2924 295.443 340.6363 232.606 471.9588 585.0955 238.3625 -3438.1854 289.4849 421.306
192.9471 252.2573 157.9861 374.6915 508.0261 531.4705 259.1157 250.9286 -3058.4467 531.0238
316.1591 119.4228 205.5623 578.4263 399.5693 167.2138 333.538 177.418 582.0245 -2879.3341
];

 Q=Q./ 100;
else
 return
end
%For now, assume r(j) = mu_j.
%R_D = diag(mu);
%solve for steady state probabilities of the random environment
%Solve qQ = 0 and q'*m = 1
if qswitch ==1
 qswitch = 2;
 Qnew = [Q';ones(size(Q,1),1)'];
 RHS = [zeros(size(Q,1),1);1];
 q=Qnew\RHS;
end
%the purpose of the next statement is to check to ensure the given policy
%matches the size of the random environment. If not, this statement should
%cause an error and abort the routine.
mu - q;

for k=1:soe
 if soe == 10
 R_D(k,k) = (k*mu(k)/2)^2;
 elseif soe == 5
 R_D(1,1) = mu(1);
 R_D(2,2) = mu(2)^2;
 R_D(3,3) = exp(mu(3));
 R_D(4,4) = log(mu(4)+1);
 R_D(5,5) = mu(5)^3;
 elseif soe == 2
 R_D(k,k) = mu(k)*k;
 end
end
if soe == 2
 R_D = R_D* (1/10);
elseif soe == 5
 R_D = R_D * (1/10);
elseif soe == 10

C-7

 R_D = R_D * (1/100);
end

inverselap1 = Chapinmod_invt_lap(T,mu,1,Q,R_D,MaximumWear,q);
inverselap2 = Chapinmod_invt_lap(T,mu,2,Q,R_D,MaximumWear,q);
ReplacementCost = kservers * C_N;
HoldingCost = C_H * T * LFCT(mu,lambda,q);
WorkCost = lambda * T * WorkCostfct(mu,q);
FailureCost = C_F* lambda * inverselap1 * inverselap2;

output = (ReplacementCost + HoldingCost + WorkCost + FailureCost)/T;

%===
%The work cost function
function out = WorkCostfct(mu,q)
global soe
cost = 0;
for k = 1:soe

 if soe == 10
 cost = cost + q(k) * (mu(k)^2); % Here is were we put the work cost
 elseif soe ==5
 cost = cost + q(k) * (mu(k))^2;
 elseif soe ==2
 cost = cost + q(k) * 5 * mu(k);
 end

end

out = cost;

%===
%The waiting function
function out = LFCT(mu,lambda,q)
global soe
global kservers

mubar = mu' * q;
if soe == 10
 temp1 = 0;
 rho = lambda / (kservers * mubar);
 for k = 0:(kservers-1)
 temp1 = temp1 + 1/factorial(k) * (lambda /mubar)^k;
 end
 temp2 = temp1 + (1/kservers)*(lambda / mubar)^kservers*(1/(1-lambda/(kservers*mubar)));
 pnot = temp2^(-1);

 out = (pnot*((lambda/mubar)^kservers) * lambda)/(factorial(kservers)*kservers*(1-

lambda/(kservers*mubar))^2) + lambda / mubar;

else

C-8

 out = lambda / (mubar - lambda);
end

%==
%The Invert Laplace function -- This code is from Dr. J. P. Kharoufeh

function f1 = Chapinmod_invt_lap(t,mu,type,Q,R_D,maxwear,q)
rho=0.8; qx=[0.8]; tx=[0]; m=11; c=[]; ga=8; A=ga*log(10); mm=2^m;

for k=0:m
 d=nchoosek(m,k);
 c=[c d];
end
for t = t; %50.0; %t=0.5:0.5:20.0
 tx = t; %[tx t];
 ntr=15;
 u=exp(A/2)/t;
 x=A/(2*t);
 h=pi/t;
 su=zeros(m+2);
 sm=chapin_evaluate_fct(x,0,mu,type,Q,R_D,maxwear,q)/2;
 for k=1:ntr
 y=k*h;
 sm=sm+((-1)^k)*chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q);
 end
 su(1)=sm;
 for k=1:12
 n=ntr+k;
 y=n*h;
 su(k+1)=su(k)+((-1)^n)*chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q);
 end
 av1=0; av2=0;
 for k=1:12
 av1=av1+c(k)*su(k);
 av2=av2+c(k)*su(k+1);
 end
 f1 = u*av1/mm; f2=u*av2/mm; qx=[qx f2];
end

%==
%The functional Evaluation Required in the invert Laplace function

function eq=chapin_evaluate_fct(x,y,mu,type,Q,R_D,maxwear,q)

s=x+y*i;
% Input the form of your Laplace transform here. For example, if you have
% the LT of the pdf of an Exp(lambda) r.v., then the LT is:
%lambda = 5.0;
%z = (5/(5+s));
%eq = real(z);
m=ones(size(Q,1),1);
I=eye(size(Q));

%===
% Part 1, the expected value
if type == 1

C-9

 z = (1/s) * q' * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);

%End Part 1
%==
%Part 2, The integration of the cumulative distribution function
else
 z = (1/s)^2 * q' * expm(inv(R_D)*(Q-(s*I))*maxwear) * m;
 eq = real(z);
end

%***
% PROGRAM multrd
%
% The purpose of this matlab code is simply to run all the corner point
% initial solutions to the three example problems used in this thesis.
%
% Author: Patrick S. Chapin, AFIT, GOR-04M
% Date: 21 Oct 03
% Last Revised: 4 Feb 04
% References: None
% Inputs: None
%
%
%**

function output = multrd

T1 = clock;

fprintf('\nRunning Multiple Runs');
fprintf('\nStarting the 2 State Problem');

fid = fopen('2stateresultswithalteredC_H.txt','w');

fprintf('\nStarting First Run');
Chapin_Steepest_Descent([0;0],2,fid);
fprintf('\nStarting Second Run');
Chapin_Steepest_Descent([50;50],2,fid);
fprintf('\nStarting Third Run');
Chapin_Steepest_Descent([50;0],2,fid);
fprintf('\nStarting Fourth Run');
Chapin_Steepest_Descent([0;50],2,fid);

fprintf('\n2 State Problem Complete, Beginning 5 state problem');
fclose(fid);

fid = fopen('5stateresults.txt','w');
fprintf('\nstarting first run, 5 state');
Chapin_Steepest_Descent([0;0;0;0;0],5,fid);
fprintf('\nstarting second run, 5 state');
Chapin_Steepest_Descent([15;15;15;15;15],5,fid);
fprintf('\nstarting 3 run, 5 state');
Chapin_Steepest_Descent([15;0;0;0;0],5,fid);

C-10

fprintf('\nstarting 4 run, 5 state');
Chapin_Steepest_Descent([0;15;0;0;0],5,fid);
fprintf('\nstarting 5 run, 5 state');
Chapin_Steepest_Descent([0;0;15;0;0],5,fid);
fprintf('\nstarting 6 run, 5 state');
Chapin_Steepest_Descent([0;0;0;15;0],5,fid);
fprintf('\nstarting 7 run, 5 state');
Chapin_Steepest_Descent([0;0;0;0;15],5,fid);
fprintf('\nstarting 8 run, 5 state');
Chapin_Steepest_Descent([15;15;0;0;0],5,fid);
fprintf('\nstarting 9 run, 5 state');
Chapin_Steepest_Descent([15;0;15;0;0],5,fid);
fprintf('\nstarting 10 run, 5 state');
Chapin_Steepest_Descent([15;0;0;15;0],5,fid);
fprintf('\nstarting 11 run, 5 state');
Chapin_Steepest_Descent([15;0;0;0;15],5,fid);
fprintf('\nstarting 12 run, 5 state');
Chapin_Steepest_Descent([0;15;15;0;0],5,fid);
fprintf('\nstarting 13 run, 5 state');
Chapin_Steepest_Descent([0;15;0;15;0],5,fid);
fprintf('\nstarting 14 run, 5 state');
Chapin_Steepest_Descent([0;15;0;0;15],5,fid);
fprintf('\nstarting 15 run, 5 state');
Chapin_Steepest_Descent([0;0;15;15;0],5,fid);
fprintf('\nstarting 16 run, 5 state');
Chapin_Steepest_Descent([0;0;15;0;15],5,fid);
fprintf('\nstarting 17 run, 5 state');
Chapin_Steepest_Descent([0;0;0;15;15],5,fid);
fprintf('\nstarting 18 run, 5 state');
Chapin_Steepest_Descent([15;15;15;0;0],5,fid);
fprintf('\nstarting 19 run, 5 state');
Chapin_Steepest_Descent([15;15;0;15;0],5,fid);
fprintf('\nstarting 15 run, 5 state');
Chapin_Steepest_Descent([15;0;15;15;0],5,fid);
fprintf('\nstarting 21 run, 5 state');
Chapin_Steepest_Descent([0;15;15;15;0],5,fid);
fprintf('\nstarting 22 run, 5 state');
Chapin_Steepest_Descent([15;15;0;0;15],5,fid);
fprintf('\nstarting 23 run, 5 state');
Chapin_Steepest_Descent([15;0;15;0;15],5,fid);
fprintf('\nstarting 24 run, 5 state');
Chapin_Steepest_Descent([0;15;15;0;15],5,fid);
fprintf('\nstarting 25 run, 5 state');
Chapin_Steepest_Descent([15;0;0;15;15],5,fid);
fprintf('\nstarting 26 run, 5 state');
Chapin_Steepest_Descent([0;15;0;15;15],5,fid);
fprintf('\nstarting 27 run, 5 state');
Chapin_Steepest_Descent([0;0;15;15;15],5,fid);
fprintf('\nstarting 28 run, 5 state');
Chapin_Steepest_Descent([15;15;15;15;0],5,fid);
fprintf('\nstarting 29 run, 5 state');
Chapin_Steepest_Descent([15;15;15;0;15],5,fid);
fprintf('\nstarting 30 run, 5 state');
Chapin_Steepest_Descent([15;15;0;15;15],5,fid);
fprintf('\nstarting 31 run, 5 state');
Chapin_Steepest_Descent([15;0;15;15;15],5,fid);

C-11

fprintf('\nstarting 32 run, 5 state');
Chapin_Steepest_Descent([0;15;15;15;15],5,fid);

fprintf('\n5 state problem finished');
fclose(fid);

% T2 = clock;
%
% TimeRequired = (T2-T1)'

fprintf('\nbegining 10 state problem');
fid = fopen('10stateresults.txt','w');
runs = 2;

fprintf('\nstarting 1 run, 10 state');
fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',[0;0;0;0;0;0;0;0;0;0]);
Chapin_Steepest_Descent([0;0;0;0;0;0;0;0;0;0],10,fid);

% fprintf('\nstarting 1 run, 10 state');
% fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',[0;0;0;0;0;0;0;0;0;0]);
% Chapin_Steepest_Descent([0;0;0;0;0;0;0;0;0;20],10,fid);

% fclose(fid);
%1 20

for k = 1:10
 tempmu = zeros(10,1);
 tempmu(k) = 20;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
end

%2 20s
for k = 1:10
 %k = position of 1st 50
 for j = k:10
 if j ~= k
 tempmu = zeros(10,1);
 tempmu(k) = 20;
 tempmu(j) = 20;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
end

%3 20s
for k = 1:10
 %k = position of 1st 50
 for j = k:10

C-12

 for l = j:10
 if j ~= k && l ~= j && l ~= k
 tempmu = zeros(10,1);
 tempmu(k) = 20;
 tempmu(j) = 20;
 tempmu(l) = 20;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
 end
end

%4 20s
for k = 1:10
 %k = position of 1st 50
 for j = k:10
 for l = j:10
 for m = l:10
 if j ~= k && j~=l && j~=m && k~=l && l~=m && l ~= k
 tempmu = zeros(10,1);
 tempmu(k) = 20;
 tempmu(j) = 20;
 tempmu(l) = 20;
 tempmu(m) = 20;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
 end
 end
end

%5 20s
for k = 1:10
 %k = position of 1st 50
 for j = k:10
 for l = j:10
 for m = l:10
 for n = m:10
 if j ~= k && j ~= l && j ~= m && j ~= n && k ~=l && k ~= m && k ~=n && l ~= m && l
~=n && m ~=n
 tempmu = zeros(10,1);
 tempmu(k) = 20;
 tempmu(j) = 20;
 tempmu(l) = 20;
 tempmu(m) = 20;
 tempmu(n) = 20;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);

C-13

 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
 end
 end
 end
end

%4 0s or 6 20s
for k = 1:10
 %k = position of 1st 0
 for j = k:10
 for l = j:10
 for m = l:10
 if j ~= k && j ~= l && m ~= l
 tempmu = ones(10,1)*20;
 tempmu(k) = 0;
 tempmu(j) = 0;
 tempmu(l) = 0;
 tempmu(m)=0;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
 end
 end
end

%3 0s or 7 20s
for k = 1:10
 %k = position of 1st 0
 for j = k:10
 for l = j:10
 if j ~= k && j ~= l
 tempmu = ones(10,1)*20;
 tempmu(k) = 0;
 tempmu(j) = 0;
 tempmu(l) = 0;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
 end
end

%2 0s or 8 20s
for k = 1:10
 %k = position of 1st 0

C-14

 for j = k:10
 if j ~= k
 tempmu = ones(10,1)*20;
 tempmu(k) = 0;
 tempmu(j) = 0;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
 end
 end
end

for k = 1:10
 tempmu = ones(10,1)*20;
 tempmu(k) = 0;
 tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
 fprintf(tempstring);
 fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',tempmu);
 Chapin_Steepest_Descent(tempmu,10,fid);
 runs = runs+1;
end

tempstring = strcat('\nstarting ',int2str(runs),' run, 10 state');
fprintf(tempstring);
fprintf(fid,'\nStarting Point is: [%f %f %f %f %f %f %f %f %f %f]\n',[20;20;20;20;20;20;20;20;20;20]);
Chapin_Steepest_Descent([20;20;20;20;20;20;20;20;20;20],10,fid);

fclose(fid);

T2 = clock;
TimeRequired = (T2-T1)'

C-15

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS .
1. REPORT DATE (DD-MM-YYYY)

01-09-2004
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

March 2003 – Mar 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 AGE REPLACEMENT AND SERVICE RATE CONTROL OF
STOCHASTICALLY DEGRADING QUEUES

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Chapin, Patrick S., Second Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GOR/ENS/04-02

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRES S(ES)
N/A

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This thesis considers the problem of optimally selecting a periodic replacement time for a multiserver queueing system in which
each server is subject to degradation as a function of the mean service rate and a stochastic and dynamic environment. Also
considered is the problem of optimal service rate selection for such a system. In both cases, the performance metric is the long-run
average cost rate. Analytical expressions are obtained, in terms of Laplace transforms, for the nonlinear objective functions,
necessitating the use of numerical Laplace transform inversion to evaluate candidate solutions in conjunction with standard
numerical algorithms. Due to the convexity of the objective function, the optimal replacement time is computed using a hybrid
bisection-secant method which yields globally optimal solutions. The optimal service rates are obtained via gradient search methods
but are only guaranteed to provide locally optimal solutions. The analytical results are implemented on three notional examples that
demonstrate the benefits of dynamically adjusting service rates under the described maintenance policy.

15. SUBJECT TERMS
Queueing Theory; Control of Queueing Systems; Degrading Queueing Systems; Environment Driven Wear

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Jeffrey P. Kharoufeh, AFIT/ENS

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

101

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4336; e-mail: jeffrey.kharoufeh@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Age Replacement and Service Rate Control of Stochastically Degrading Queues
	Recommended Citation

	jpk_thesis_template.dvi

