
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2004

Concurrent Cognitive Mapping and Localization Using Concurrent Cognitive Mapping and Localization Using

Expectation Maximization Expectation Maximization

Kennard R. Laviers

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Laviers, Kennard R., "Concurrent Cognitive Mapping and Localization Using Expectation Maximization"
(2004). Theses and Dissertations. 3990.
https://scholar.afit.edu/etd/3990

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3990?utm_source=scholar.afit.edu%2Fetd%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

CONCURRENT COGNITIVE MAPPING AND LOCALIZATION

USING EXPECTATION MAXIMIZATION

THESIS

Kennard R. Laviers, First Lieutenant, USAF

AFIT/GCS/ENG/04-10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the United States Government.

AFIT/GCS/ENG/04-10

Concurrent Cognitive Mapping and Localization

using Expectation Maximization

THESIS

Presented to the Faculty of the

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Kennard R. Laviers, B.S.

First Lieutenant, USAF

March, 2004

Approved for public release; distribution unlimited

AFIT/GCS/ENG/04-10

Concurrent Cognitive Mapping and Localization

using Expectation Maximization

Kennard R. Laviers, B.S.

First Lieutenant, USAF

Approved:

Doctor Gilbert L. Peterson
Thesis Advisor

Date

Doctor Henry B. Potoczny
Committee Member

Date

Doctor John F. Raquet
Committee Member

Date

Major Timothy S. Webb
Committee Member

Date

kenny
Text Box
/signed/

kenny
Text Box
/signed/

kenny
Text Box
/signed/

kenny
Text Box
/signed/

kenny
Text Box
18 Feb 2004

kenny
Text Box
18 Feb 2004

kenny
Text Box
18 Feb 2004

kenny
Text Box
18 Feb 2004

Table of Contents

Page

List of Figures . vi

List of Tables . x

List of Abbreviations . xi

Abstract . xii

I. Introduction . 1-1

1.1 Overview . 1-1

1.1.1 Mapping . 1-2

1.1.2 Localization 1-4

1.1.3 Simultaneous Localization and Mapping . . . 1-5

1.1.4 Exploration and Planning 1-6

1.2 Research Goals and Objectives 1-6

1.3 Approach . 1-7

1.4 Software Design Process 1-7

1.5 Assumptions . 1-9

1.6 Risks . 1-9

1.7 Thesis Outline . 1-10

II. Background and Related Work 2-1

2.1 Exploration . 2-1

2.1.1 Kuipers and Byun Exploration 2-1

2.1.2 Next Best View 2-2

2.2 Occupancy Grid . 2-2

iii

Page

2.2.1 Bayes Mapping 2-4

2.2.2 Dempster-Shafer 2-7

2.2.3 Histogram In Motion Mapping 2-9

2.3 Expectation Maximization for Robotic Mapping and Lo-

calization . 2-11

2.4 Cognitive Mapping . 2-12

2.4.1 Absolute Space Representation 2-13

2.4.2 Topological Mapping 2-15

2.4.3 Polyline Simplification 2-15

2.4.4 Douglas-Peucker 2-16

2.4.5 Edge Detection 2-17

2.5 Localization . 2-17

III. Design . 3-1

3.1 Implementation . 3-1

3.1.1 Absolute Space Representation (ASR) Construc-

tion . 3-3

3.1.2 ASR Boundary Detection 3-4

3.1.3 Building a Mapping Algorithm 3-6

3.1.4 Modified Histogram In Motion Mapping Algo-

rithm . 3-8

3.1.5 Clean Map Algorithm 3-10

3.1.6 Point Extraction Algorithm 3-11

3.1.7 Edge Simplification Algorithm 3-11

3.1.8 Line Fitting 3-14

3.1.9 Localization Algorithm 3-15

3.1.10 Line Direction 3-21

iv

Page

IV. Results and Analysis . 4-1

4.1 Small Complex Mapping Regions 4-8

4.2 Localization . 4-11

V. Future Work and Conclusion 5-1

5.0.1 Extensions . 5-3

Appendix A. Algorithms . A-1

A.1 Mapping Algorithms A-1

A.2 Simplification Algorithms A-4

A.3 The EM Algorithm . A-6

A.4 Algorithm to Convert Vectors to Angles A-9

Bibliography . BIB-1

Vita . VITA-1

v

List of Figures

Figure Page

1.1. This map shows skewing caused by dead reckoning error. The

room in the middle is overlapping with the large room to right. 1-4

1.2. The robot travels in the heading that is most unexplored. This

is the shaded area on the left and bottom of the figure. 1-6

1.3. System dataflow . 1-8

2.1. Probabilistic Sonar Cone . 2-4

2.2. A three dimensional view the sonar cone. 2-7

2.3. Histogram in Motion Mapping Sonar Cone 2-9

2.4. Polar Vector Field Histogram 2-10

2.5. Two Room ASR Example . 2-14

2.6. Steps in the Duaglus Peuker Algorithm 2-16

3.1. Blue print of the mapping test environment. 3-2

3.2. Complete polyline process. The raw map is shown in (a), fol-

lowed by the cleaned map (b). Finally (c) is the simplified fitted

polyline. 3-3

3.3. Steps in the ASR creation process. These steps involve clean-

ing the raw HIMM map (a) which yields (b), then points are

extracted creating an ordered list of vertices (c), then simplified

(d) and (e). These points are fit to a line with a linear regres-

sion model (f) and (g). Finally, the ASR is added to the map

(h) and localized (i). 3-5

3.4. A state machine indicating the exit detection process. 3-6

3.5. Local coordinate system of a robot in a global map. 3-8

3.6. A HIMM before (a) and after (b) applying the HIMM cleaning

algorithm. The line inside the room represents the path of the

robot. 3-10

vi

Figure Page

3.7. Any occupied cell not able to draw a ray to the path that the

robot traveled without going through another occupied cell or

it exceeds the max effective distance of a sonar, it is discounted

as noise. 3-11

3.8. Algorithm to clean a modified HIMM map 3-12

3.9. ExtractPoints . 3-13

3.10. Vertex simplification process. 3-13

3.11. Line fitting before(a) and after(b) application of a linear regres-

sion fit. The points obtained from the Douglas-Peucker algo-

rithm are used as end points in the fitting process. 3-15

3.12. ASR directions needed to perform localization correction. . . 3-21

3.13. Vectors shown for a single ASR. 3-21

3.14. Angle directions are adjusted to point as close as it can along

the positive x axis. 3-23

4.1. ASR’s Represented as a Graph. The actual map is shown in

(a). The graph (b) shows how the rooms that were mapped

translates to a graph. 4-2

4.2. A 2 Room ASR Example showing the polygonal representation

(b) of the original HIMM map (a). This figure is rooms 5 and

6 of (Fig. 4.1a). 4-3

4.3. ASR Development . 4-4

4.4. Nine ASR’s Merged Together. 4-5

4.5. Three ASRs merged together showing little localization error

to correct, (a) is the unlocalized polyline map and (b) is the

localized polymap. 4-6

vii

Figure Page

4.6. The polyline map of the first floor of the engineering building

at the Air Force Institute of Technology. On the left (a), is the

grid representation of the map, (b) is the vertex map without

simplification, (c) shows a blowup of part of the map. In (d)

is the final simplified polyline map without localization, (e) is

a blowup of part of (d). The map after localization is shown in

(f). 4-7

4.7. Stages of an example using the Pioneer robot simulator of a very

small area being mapped. Area is approximately 20ft × 40ft.

The scalar ℘ is set equal to 85. 4-8

4.8. Stages of an example using the Pioneer robot simulator of a very

small area being mapped. Area is approximately 20ft × 40ft.

The scalar ℘ is set equal to 55. 4-9

4.9. Small messy real world environment 4-10

4.10. Real world polyline map of a small cluttered region before (a)

and after (b) localization. 4-10

4.11. Localized map of the AFIT hallway. 4-11

4.12. Polyline map of the AFIT hallway overlaid with the blueprint. 4-12

4.13. Processor time comparison required at which ASR in (Fig. 4.11) 4-13

5.1. The array map of the first floor of the engineering building at the

Air Force Institute of Technology is shown in Figure (a). Figure

(b) shows the polyline map with localization errors uncorrected,

figure (c) shows the polyline map after rotational localization

errors are fixed. 5-2

5.2. Various types of exits the robot may typically encounter. . . 5-4

A.1. General Occupancy Grid Mapping Algorithm A-1

A.2. Histogram In Motion Mapping Algorithm A-2

A.3. Modified Histogram In Motion Mapping Algorithm A-3

A.4. VertexSimplify Algorithm . A-4

A.5. Douglas-Peucker Edge Simplification Algorithm A-5

viii

Figure Page

A.6. Expectation Maximization Algorithm A-8

A.7. Calculating a value for sensor data from the abstracted map. A-9

ix

List of Tables

Table Page

2.1. Symbol key for Bayesian mapping formulas. 2-6

2.2. Bayesian mapping belief functions 2-6

2.3. Dempster-Shafer mapping belief functions 2-8

3.1. Symbol key for the general occupancy grid mapping algorithm. 3-7

4.1. Thresholds and parameters used while mapping. 4-1

4.2. Size(KB) differences of map representations 4-2

A.1. Symbol key for the mapping algorithms. A-1

x

List of Abbreviations

Abbreviation Page

SLAM Simultaneous Localization And Mapping 1-1

ASR Absolute Space Representation 1-3

CLM Concurrent Localization and Mapping 1-5

LCS Local Control Strategies 2-1

NBV Next Best View . 2-2

DS Dempster-Shafer . 2-7

EM Expectation Maximization 2-11

MCL Monte Carlo Localization 2-17

GCBB Geometric Constraints Branch and Bound 2-19

HIMM Histogram In Motion Mapping 3-9

MHIMM Modified Histogram In Motion Mapping 3-9

xi

AFIT/GCS/ENG/04-10

Abstract

Robot mapping remains one of the most challenging problems in robot pro-

gramming. Most successful methods use some form of occupancy grid for represent-

ing a mapped region. An occupancy grid is a two dimensional array in which the

array cells represents (x, y) coordinates of a cartesian map. This approach becomes

problematic in mapping large environments as the map quickly becomes too large

for processing and storage.

Rather than storing the map as an occupancy grid, our robot (equipped with

ultrasonic sonars) views the world as a series of connected spaces. These spaces

are initially mapped as an occupancy grid in a room-by-room fashion using a mod-

ified version of the Histogram In Motion Mapping (HIMM) algorithm extended in

this thesis. As the robot leaves a space, denoted by passing through a doorway, it

converts the grid to a polygonal representation using a novel edge detection tech-

nique. Then, it stores the polygonal representation as rooms and hallways in a set of

Absolute Space Representations (ASRs) representing the space connections. Using

this representation makes navigation and localization easier for the robot to process.

The system also performs localization on the simplified cognitive version of the map

using an iterative method of estimating the maximum likelihood of the robot’s cor-

rect position. This is accomplished using the Expectation Maximization algorithm.

Treating vector directions from the polygonal map as a Gaussian distribution, the

Expectation Maximization algorithm is applied, for the first time, to find the most

probable correct pose while using a cognitive mapping approach.

xii

Concurrent Cognitive Mapping and Localization

using Expectation Maximization

I. Introduction

Learning a map of its environment presents a complex problem for robots. The

problem begins with getting the robot to move in such a fashion that it explores

the entire environment, insuring a complete map is constructed. While the robot

explores and records real time sensor data, it uses that data (range and motor data)

to form a map of the explored region. These maps allow the robot to develop a

sense of a place and localize themselves in the world. Memory space limitations

(memory is finite in any robot) require creative solutions for the representation of

the map itself when mapping large environments. These maps can take on a number

of internal representations from a grid to a general graph of interconnected spaces;

our method combines the best of both approaches, allowing for greater efficiency

performing planning and localization.

An associated problem to learning the map includes localization of the robot.

Accurate localization is a prerequisite for building a good map and having an accurate

map is essential for good localization. Simultaneous Localization And Mapping

(SLAM) is a critical underlying factor for any successful mobile robot navigation.

1.1 Overview

The process of learning a map breaks into three main categories; mapping,

localization and exploration. Each of these categories function independently but

inevitably depend on each other. A robot maps a region by creating a representation

of the area it has explored. The robot can perform exploration without knowledge

1-1

of where it has been, but if so, is no more than a random wandering routine just

as prone to revisiting an already explored region than not. Localization without

consideration of observation data, called dead reckoning, is not very accurate as the

tires tend to slip and rotation sensors are not perfectly accurate. For these reasons, it

is important to use observation data along with dead reckoning data to gain a more

accurate estimation of the robot’s location. Thus, there is a mutual dependence

between mapping, localizing and exploring. Each of these categories has its own

associated challenges as explained in the following sections, starting with mapping.

1.1.1 Mapping. The representation of the map is a key factor of robot map-

ping. Implementations of robot mapping represent map data as either an occupancy

grid [26][4] or a topological network [17][16][13]. An occupancy grid is a matrix of

cells where cells containing a value greater than 0.0 indicates a belief that an obstacle

resides in space represented by the the cell. Using a matrix in this fashion requires

the reservation of a large amount of memory for representing the entire maximum

map size. A topological map is one in which objects are stored with respect to each

other based on a robot centric point of view. This representation makes it easy to

use memory only as needed, generating more efficient maps, but introduces imple-

mentation difficulties and cannot easily convert to human-understandable maps.

Generally, the robot is equipped with multiple sensors, and as sensor data

accumulates, the representation of the map is developed from the fusion of that

data. This process is usually referred to as sensor fusion [26].

Occupancy grids can be either discrete [4] or probabilistic [26] [27]. Discrete

grids produce maps by incrementing and decrementing cell values. Probabilistic

methods calculate the probability of a cell being occupied or empty with each update

using Bayes probability theorem [26]. Another technique incorporates the Dempster

Shafer-Belief theorem [27] to find the belief of the occupancy status of a cell by

representing each cell’s occupation with Shafer’s theory of belief and combining the

1-2

multiple sensors with Dempster’s combination theory. Probabilistic approaches tend

to generate more accurate and detailed maps than of the discrete methods, but are

slower due to the increase in the number of calculations.

Topological mapping, a more recent mapping approach, maps the world much

like a graph with nodes and edges as paths between locations. We can separate the

map into rooms or spaces and assign them as nodes in a graph connected by, in

the case of rooms; the exits, and in the case of spaces; the location that separates

the spaces. The issue still remains of how to represent the rooms or spaces. In this

thesis, the robot creates the room and spaces representation as a set of line segments

or polylines maintaining geometric spacial elements. This data representation sig-

nificantly reduces the size of the data structure and also lends itself to faster path

planning, a more human centric representation and the ability to localize without us-

ing local landmarks. However, generating the polygonal representation with sonars

remains difficult since the noise generated by the sonars significantly complicates the

process.

We overcome the issue of sonar noise by using one of the sensor fusion tech-

niques (discussed above) with a grid representation first, then converting the grid

representation to a topological map. This process starts by creating a histogram map

or occupancy grid from the sonar input/data. Using a new technique of filtering the

data in the histogram (developed in this thesis), which reduces the histogram wall

thickness from thickness of as much as 10 cells to one, the data is cleaned and then

converted to a list of vertices and filtered using the Douglas-Peucker line reduction

algorithm [9]. The remaining set of lines represents the original map of the room.

These lines, along with other topological information, are stored in an Absolute

Space Representation (ASR) data structure and used later to form a complete map.

This process repeats for each room or space visited.

1-3

1.1.2 Localization. As the robot maps its environment, errors accumulate

within the robots dead reckoning system causing incorrect pose data and conse-

quently the map to skew (Fig. 1.1). The coordinates at which the robot believes

itself to be located is the robots pose. Localization is the process of determining

where in the environment the robot is located, and the process of correcting errors

in the robot’s pose.

Figure 1.1 This map shows skewing caused by dead reckoning error. The room in
the middle is overlapping with the large room to right.

Localization consists of two broad categories: local and global. Local tech-

niques compensate for odometer errors and require that the initial location of the

robot is approximately known. Localization in this fashion progresses iteratively, i.e.

after some fixed amount of distance traveled, the robot analyzes motor and sensor

data to determine an adjustment of the robot’s pose. Local techniques are weak in

that the robot usually cannot recover true pose information if the local techniques

lose track of the robot’s immediate position. Global techniques are stronger as they

localize the robot without any prior knowledge about its initial position. They can

also handle the kidnapped robot problem, wherein a robot is kidnapped and carried

to some unknown location. This technique, if no prior map is provided, waits until

the robot completes mapping then determines the most likely map based on all the

1-4

data. If a map is provided, the robot is able to localize its whereabouts at any given

time. Global localization techniques perform better than local ones and deal with

situations in which the robot is likely to experience serious positioning errors [32].

Our system performs localization on a simplified cognitive version of the map as

an iterative method of estimating the maximum likelihood of the correct position

of the robot for each pose. This is accomplished with the use of the Expectation

Maximization algorithm [8].

1.1.3 Simultaneous Localization and Mapping. A mapping technique which

performs both mapping and localization concurrently generates a more accurate map.

When operating together, this process is referred to as Simultaneous Localization

and Mapping (SLAM) or Concurrent Localization and Mapping (CLM). SLAM is

done either iteratively or once at the end. If the iterative approach is used, then

it localizes while the robot travels and maps. If the batch technique is used, then

mapping and motor data is stored while the robot travels. After stopping, the robot

compiles the data into a complete map using all available data. The later method

has proved the most successful in recent work using the Expectation Maximization

algorithm [36].

Expectation Maximization SLAM [36] (explained in greater detail in Section

2.3), perhaps the most successful SLAM algorithm available, provides the inspiration

for the localization method performed in this thesis. Expectation Maximization is

a general algorithm used to iteratively calculate the maximum likelihood function

of some probability distribution function. The term ”Expectation Maximization”

algorithm was coined by Dempster et al. [8]. The maximum likelihood function

(taken from probability theory) calculates the maximized expected value of some

probability distributionFor mapping, this probability distribution generally includes

obstacles and robot locations in a world format.

1-5

1.1.4 Exploration and Planning. Another key area of research in robotic

mapping is exploration. Does the robot wander randomly, or does it actively explore

areas that it has not yet experienced? Complicating the process, the robot should

move from explored to unexplored areas in such a way that it minimizes distance

traveled while maximizing new mapped areas. To actively explore the region, the

robot must know how to move from its current location to another location (Fig.

1.2). This requires that the robot have some criterion for selecting what is unexplored

and which unexplored region to travel to. This requires some path planning on part

of the robot. A natural extension that we propose to our technique is an exploration

feature that plans using simplified polyline data. More on the topic is discussed in

Section 2.1.2.

Figure 1.2 The robot travels in the heading that is most unexplored. This is the
shaded area on the left and bottom of the figure.

1.2 Research Goals and Objectives

Almost every robot system requires some sort of internal representation of the

world that the robot occupies. In today’s military, because of land mines and other

deadly traps, applications needing robots to scout and learn environments before

humans enter them are apparent. The goals of this research are to:

• map a region quickly,

• map an area as accurately as possible,

1-6

Lh

• provide mapping for large indoor areas,

• and represent the map using little memory.

The objectives used to accomplish these goals are:

1. Modify the histogram mapping algorithm to provide a map suitable to convert

to polylines.

2. Develop a new edge detection algorithm capable of quick and accurate edge

detection with the histogram map.

3. Create a method to represent histogram map data as polylines.

4. Develop a topological representation of the polylines, separating spaces or

rooms of the map and representing them as nodes in a graph.

5. Implement and test a new algorithm using Expectation Maximization to per-

form mapping and localization corrections on the simplified topological map.

1.3 Approach

The system is developed using a top down approach. In the following section,

a layered abstraction is shown of the complete system (Fig. 1.3). At the top is the

lowest level or the least abstracted level, and at the bottom is the most abstracted

level. That is what is meant by top down; modules are designed and implemented

starting at the lowest level of abstraction. However, sometimes as new components

are added, changes are needed to the previous components. As these components

are modified with new integrations they tend to evolve. This process of adding and

modifying is repeated until the system is complete.

1.4 Software Design Process

Development of a software system requires the use of a structured top down

design approach starting with a problem statement and ending with an implemented

1-7

system. The overall system is shown in (Fig. 1.3). At the top of the figure some

input sensor is used, whether it is sonar, stereo camera, laser(not shown), or some

other sensor device. If a camera is used, data from the camera goes first to an image

processing subsystem then to the histogram mapping algorithm. Using sonars, the

data is sent directly to the mapping algorithm. The next layer under the mapping

itself is where the interesting work is done. In this layer, the system converts the raw

map to polylines, topologically represented. Also, localization occurs simultaneously

with the topological map creation at this stage. If path planning is to be used it

would be placed at this level as well.

Figure 1.3 System dataflow

To build this system the following steps are repeated for each module of the

system [22]:

1-8

Virtual Field Histogram
(Belief Grid)

Sensor Fusion ^

Image
Processing

Z"^ Party

Obstacle
Avoidance

Cognitive Map

Local
ASR

Relative
Coordinates

Localize Path Plan/Explore

Exit
Identify

Step 1 Define/analyze domain requirements for each module.

Step 2 Develop a general solution and operational design specification using alge-

braic or symbolic notation.

Step 3 Refine the solution design to a low-level design incorporating additional data

structures and operations required to create an algorithmic design template.

Step 4 Map the algorithm template to a low level programming language.

1.5 Assumptions

Robotic mapping has many elements tied to computer science and mathemat-

ics. To reduce the scope of discussion, the following assumptions of the readers

academic background are made:

1. General understanding of trigonometry and geometry

2. Basic calculus

3. Comfortable with probability and set theory

4. General computer science background

Image manipulation requires an understanding of trigonometry and geometry. More-

over, sensor fusion and mapping in general is steeped in calculus, probability and set

theory. This thesis is written assuming that the reader is familiar with these types

of math in addition to elementary computer science and robots in general.

1.6 Risks

The Pioneer robot in which the mapping system is built has limited memory

and processor capabilities. Because the mapping software requires very close to real

time processing, this is the greatest risk. Moreover, the robot is controlled with

the ARIA robot architecture and compatibility issues with other standard library

templates is also a key risk.

1-9

1.7 Thesis Outline

In Chapter II, background information related to robot mapping is discussed

along with some key areas of research that are building blocks in this research.

In Section 2.2, obstacle mapping is explained in great detail with an emphasis on

Borenstein and Koren’s technique [4] and how we extend it in our work. In Section

2.4, some cognitive representations of the robot maps are discussed again focusing

on the use of ASRs for topological representation. These building blocks are pieced

together (along with some new techniques) into a design and implementation in

Chapter III. The implementation is tested and results are analyzed of simulated and

real world mapping in Chapter IV. Finally, future work and extensions are discussed

in Chapter V.

1-10

II. Background and Related Work

The goal of robot mapping is to build a useful map and provide a solid method for

the robot to identify and avoid obstacles in its path, and if revisiting a location,

to recognize that fact. While the robot explores the environment, it records data

readings from sensors and stores that data for this purpose. In the following sections

we discuss the two main approaches of maintaining and representing this information.

A survey of several robot exploration techniques is covered in Section 2.1. In Section

2.2, we explore obstacle mapping and how it relates to this work. Finally, Section 2.4

details cognitive mapping used with polylines and space/room map fragmentation.

2.1 Exploration

Many researchers have studied exploration strategies along with their research

of localization and mapping[21][11][20]. Exploration is a pivotal part of the learning

process; if we don’t explore, how do we learn anything new? Benjamin Kuipers and

Yung-Tai Byun[21] use a hill climbing strategy to perform exploration.

2.1.1 Kuipers and Byun Exploration. An algorithm proposed by Benjamin

Kuipers and Yung-Tai Byun provides a good method of exploration. They refer to a

place as a zero-dimensional local maximum, and a path followed during exploration

is defined by some distinctiveness criterion that is sufficient enough to specify a one-

dimensional set of points. The robot follows the midline of a corridor, or walks along

the edge of a large space, but does not venture into the interior of a large space.

This is because the points have no qualitatively distinctive characteristics, at least

to its limited-range sensors. Paths traveled connecting two distinctive places are

defined in terms of Local Control Strategies (LCS). A LCS is a strategy for what

to do based on the robots current location. Once a place has been identified, the

robot selects an appropriate local control strategy for moving into an open direction

(that is, a direction that has no obstruction). While following a path chosen, the

2-1

robot continues analyzing its input for signs of new distinctive features. Once the

next distinctive place is identified, the path connecting the two places is defined by

the LCS [21]. This method is deterministic in nature but offers a good guide to

structuring a non-deterministic method of accomplishing the same task [21].

2.1.2 Next Best View. When using a more accurate range device such as a

laser which only requires one scan, the robots exploration is viewed in terms of views

needed for scans. After performing a scan, the robot determines the Next Best View

(NBV) which will provide just enough overlap with the current scan as to allow

the robot to merge the two scans together properly and update the robots dead

reckoning system based on the merged data. Hector Gonzanos and John-Claude

Latombe make use of this strategy to perform this type of exploration [11].

Gonzanos and Latombe [11] define a safe region as the largest regions that

are safe to travel in given sensor readings obtained to that point, while providing

the minimum amount of overlap required to perform alignment. Exploration and

alignment are accomplished simultaneously, building the map iteratively, merging

scans from each safe region until the map is complete.

This technique works well but does offer some limitations. As their system

only uses a laser which scans only a cross section, obstacles can be missed in the

scan. Additionally, errors with the polyline extraction can result in a completely

unusable map which will produce incorrect exploration.

2.2 Occupancy Grid

Before beginning our discussion of mapping, it is appropriate to define occu-

pancy grids and how range data returns a positive reading for a specific cell within the

occupancy grid. One can think of the proposed map as an image to be created in a

two dimensional matrix denoted C. The first step is selecting a value ℘ that is a scaler

used to determine cell size, and making a determination of the world size to represent

2-2

Cmn where m is the max distance divided by ℘ expected in the x direction. n is the

max distance expected to travel in the y direction divided by ℘. All calculations are

based on a standard cartesian system. It is important to understand that information

from the sonars is polar, that is, we know how far away it sees an object and at what

angle. The robot has an orientation h : h = {−180,−179,−178, ..., 178, 179, 180}
relative to the initial orientation of the robot from when the mapping process be-

gan. Turns to the left decrease h and turns to the right increase h. Each sonar has

an angle shi : i = {1, 2, 3, ...number of sonars} relative to the robot. The global

angle of each sonar is then hi = h + shi. So a cartesian point for sensor i, (xi, yi) is

calculated by:

xi =
ri × cos(hi)

℘
(2.1)

yi =
ri × sin(hi)

℘
(2.2)

Cells are updated for each reading returned by the sonars using an update function

which is dependent upon the specific mapping algorithm used. Update functions vary

between the three main available methods of mapping which are: probabilistic [26],

belief [27] and discrete [4]. Generally, the most accurate is the belief method (using

the Dempster-Shafer belief theorem) followed by the probabilistic approach. Both

probabilistic mapping methods are slower, requiring more computation than discrete

mapping techniques. In Section 2.2.1 the first probabilistic mapping technique known

as Bayes mapping [26] is discussed, followed by the mapping technique providing a

major enhancement known as the Dempster-Shafer method. Finally, in Section 2.2.3,

a fast discrete mapping technique which approximates probability values calculated

in [26][27], known as Histogram in Motion Mapping (HIMM) [4], is explained in

great detail. HIMM, designed for speed, is the fastest and simplest of the algorithms

and is the method used and extended in this thesis.

2-3

2.2.1 Bayes Mapping. One of the most straightforward methods of rep-

resenting a map has been the occupancy grid [26]. In this method, the world is

represented as a two dimensional array of probability information about the occu-

pancy of a grid cell. Using information from the robot’s range sensors and pose, an

array cell is updated with new probability information after each sensing action [26].

The Bayesian method sees each sonars data as a probability distribution within a

cone of error (Fig. 2.1). The angle of error for the sonar is β. Area I in the cone

is the where an obstacle is thought to be. Because a sonar cannot sense through an

object, area II is assumed unoccupied.

Figure 2.1 Probabilistic Sonar Cone

2-4

' 1 1 r ■ 1

e
1 1—1—p—■—\—-■—■—\—1— 1 1 1

E yond Sonar Range J -J

\^.

 A _______^

1 ^^"^^
\ . I /

_l \i i ' /
V 1

—-

\ / \ «■■■■—_ /
\

^^ ■ ^W
' Infprinr /

N^ \ ! ILTT/ . M
^\ ■. 1 / \ " 'R / = * \ i*^ / Exter lor _

\ /

\ '-^/

. ^ \ ' /-^-^^-^ VJL/ 1 \z* -1 1

_l J O » » H^ _ 1 1 1 1 1 1 L 1
T OUIIdr

—1 r 1 1— r r,— . -^ —

The Bayes formula (¬ implies negation):

Pr(o|A, B)

Pr(¬o|A, B)
=

Pr(A|o, B)

Pr(A|¬o, B)
× Pr(o|B)

Pr(¬o|B)
(2.3)

provides a combination of independent data A and B as single data item, Pr(o|A, B).

o is the observation, A is the current data item and B the prior probability. As

the sensors create readings independently of each other, each sensor is considered

an independent data source. Moravec [26] uses this as a basis to derive the map

combining formula:

Pr(o|A, B)

Pr(¬o|A, B)
=

Pr(o|B)

Pr(¬o|B)
× Pr(o|A)

Pr(¬o|A)
× Pr(¬o)

Pr(o)
. (2.4)

Let Pr(r) prior to a reading be the probability that the next reading results in

measurement r. Denote each possible range Ri (for example, if the sonars have a

max range of 10m and our cell size is 1m each then i = {0, 1, 2, ..., 10}). To find the

probability for each R use [26]:

Pr(Ri) = S(Ri)×
(

1−
i∑

j=0

Pr(Rj)

)
(2.5)

where S(Ri) is the sum of the products at Ri. The quantity emiss is the small

possibility that an occupied cell will not be detected. Calculate S(R) using:

S(r) =
∑

R

Pr(o|A)× (α− emiss). (2.6)

More specifically, Moravec defines two update functions that approximate the

sonar error, one for cells on the range (this is region I of (Fig. 2.1)) and another for

all cells that are before region I, denoted region II [30]. Define all symbols as shown

in (Table 2.1).

Putting it all together forms the equations in (Table 2.2)[30].

2-5

Table 2.1 Symbol key for Bayesian mapping formulas.
r Distance or range returned by sensor reading
α Angle of the sensor.
R Maximum distance of the sensor.
β Viewable range of sensor.
MO Probabilistic assumption that the reading is not always correct.
n Number of sensors.
ςi Range data returned by sensor i : i = 1, 2, 3, ..., n
H Belief of occupation.

Table 2.2 Bayesian mapping belief functions
Pr(Occupied) Pr(Empty)
⇒ Pr(ς|H) ⇒ Pr(ς|¬H)

Region I
R−r

R
+ β−α

β

2
×MO 1−

R−r
R

+ β−α
β

2
×MO

Region II 1−
R−r

R
+ β−α

β

2

R−r
R

+ β−α
β

2

Table 2.2 gives probabilities Pr(ς|Occupied) and Pr(ς|¬Occupied) for regions I

and II, but we need Pr(Occupied|ς) and Pr(¬Occupied|ς). Apply Bayes formula to

get [30]:

Pr(H|ς) =
Pr(ς|Occupied) Pr(Occupied)

Pr(ς|Occupied) Pr(Occupied) + Pr(ς|Empty) Pr(Empty)
(2.7)

The Pr(Occupied) and Pr(Empty) are the prior probabilities denoted Pr(H) and

Pr(¬H), respectively. Leading to the update rule [30]:

Pr(H|ς1, ..., ςn) =
Pr(ς1, ..., ςn|H) Pr(H)

Pr(ς1, ..., ςn|H) Pr(H) + Pr(ς1, ..., ςn|¬H) Pr(¬H)
(2.8)

⇒ Pr(H|ςi) =
Pr(ςi|H) Pr(H)

Pr(ςi|H) Pr(H) + Pr(ςi|¬H) Pr(¬H)
(2.9)

2-6

Figure (Fig. 2.2) shows a three dimensional view of the sonar cone as a probability

density function.

Figure 2.2 A three dimensional view the sonar cone.

2.2.2 Dempster-Shafer. Probably the most accurate and informative map-

ping technique without localization is the Dempster-Shafer (DS) method[30]. The

DS belief theorem allows possibilities to represent conflicting evidence. That is,

Proposition {Occupied ∧Empty}
⇒ Frame of discernment {Occupied, Empty, Don′t Know}

And the belief function must satisfy:

• Bel(�) = 0, (Define � as the empty set.)

• Bel() = 1 ⇒ Bel(H)+Bel(¬H)+ Bel() = 1.0, (is the set of all possible

outcomes.)

For every non-negative integer n and every {Ai|1 = 1, 2, 3, ..., n} ⊆ 	:

Bel(Ai) ≥
∑

I⊂{A1,...,An};I 6=�
−1I+1Bel

(
⋂

i=I

Ai

)
(2.10)

2-7

Simply stated, belief functions contributing evidence to	 can be combined to provide

a greater belief. Symbols are still defined by (Table 2.1) and the belief function is

defined as shown in (Table 2.3)[30].

Table 2.3 Dempster-Shafer mapping belief functions
m(Occupied) m(Empty) m(Don’t Know)

Region I
R−r

R
+ β−α

β

2
×MO 0.0 1−

R−r
R

+ β−α
β

2
×MO

Region II 0.0
R−r

R
+ β−α

β

2
1−

R−r
R

+ β−α
β

2

The update function is then [30]:

m(occupied) =

∑
Ai∧Bj=Occupied m(Ai)m(Bj)

1−
∑

Ai∧Bj=� m(Ai)m(Bj)
(2.11)

m(Empty) =

∑
Ai∧Bj=Empty m(Ai)m(Bj)

1−
∑

Ai∧Bj=� m(Ai)m(Bj)
(2.12)

m(Don′tKnow) =

∑
Ai∧Bj=Don′tKnow m(Ai)m(Bj)

1−
∑

Ai∧Bj=� m(Ai)m(Bj)
(2.13)

The conflict between readings is removed through normalization[30]:

Con(Bel1, Bel2) = log

(
1∑

Ai∧Bj=� m1(Ai)m2(Bj)

)
(2.14)

Borenstein and Koren improvised the occupancy grid map idea, allowing for

faster processing and making it possible for use in real time obstacle avoidance and

robot navigation by approximating the probability values [4].

2-8

2.2.3 Histogram In Motion Mapping. Borenstein and Koren’s approach,

Histogram In Motion Mapping (HIMM)[4], represents obstacle data in a two dimen-

sional array denoted as C. When a sonar indicates a reading for a specific cell Cxy in

the array, Cxy is modified so that C ′
xy ← Cxy+3 and all its adjacent cells (x±1)(y±1)

are incremented by .5. All cell values in C are limited so that 0 ≤ C ′
xy ≤ 15. Ad-

ditionally, cells along the path from the robot center point (x0, y0) to (x, y) denoted

as Cij are decreased by 1 (Fig. 2.3). Notice that this technique assumes a higher

Figure 2.3 Histogram in Motion Mapping Sonar Cone

belief that a cell is occupied than not occupied. This simple method of building a

map demands little processor time and memory space, so it is quickly processed by

a computer.

2-9

Beyond Sonar Range _._

+ 5+5+5 /
\ + 5B1+,5 /
\ +5+5+5

/
1

\ 1 -1
\' ' ' -' /
\ -1 /

L _ -1 \
r—1 iv^r 1 1 r - i i—i r / r i i r i

\ -1 /
\ -1 /

-
\ -! /

1 \ 1 /
1 i 1 \ -1 /, 1 1 1

\ -' /
\ -1 /

\^ ^ ' 1 r 1 1 1 1

oonar

Borenstein and Koren also introduce the idea of using a polar histogram (Fig.

2.4) for obstacle avoidance[5].

Figure 2.4 Polar Vector Field Histogram

Within a predetermined window around the robot, a polar sweep is made in 5◦

increments. The angle β of the current point (i, j) with respect to the vehicle center

point (x0, y0), is determined by,

βi,j = arctan

(
j − y0

i− x0

)
(2.15)

For each cell (i, j), magnitude is calculated by,

mij = C2
i,j ∗ κ (2.16)

and κ is set so that the value within Cij is scaled where the closer it is to the robot

the higher the value it is assigned, and the farther away, the less weight it is given.

2-10

For each cone φ, cells are summed to determine a magnitude vector ~kφ.

~kφ ←
∑

ij

mij (2.17)

Determination of which cone point (i, j) belongs to is accomplished by finding βij,

where φ − 1 < βij ≤ φ indicates point (i, j) in the cone from (φ− 1, φ]. The robot

travels in the direction with the largest grouping containing lower values of ~k.

An advantage of HIMM is its ability to progressively adapt the strength of an

obstacle avoidance reaction to the level of evidence for the existence of an obstacle,

and do so quickly. By using this technique which is computationally cheap, we free

up processor time for use in the cognitive conversion process while providing obstacle

avoidance. Another popular approach to mapping, known as Expectation Maximiza-

tion (EM) [36], holds probabilistic information about the world and constructs the

most likely map from it.

2.3 Expectation Maximization for Robotic Mapping and Localization

The Expectation Maximization algorithm or the concept of it has been around

since the late 1950’s. However, it was not put together as a complete algorithm until

1970 by Baum et al. [1]. Later in 1977, Dempster et al. [8] formalized the algorithm

and coined the term Expectation Maximization.

EM is used in many scientific fields including medicine, electrical engineering,

business, and computer science. Within computer science EM is used for imaging,

networking, robotic mapping and localization and many other applications. Thrun,

et al., [36] performed the seminal work that extends the EM algorithm to the use

of mapping and localization for robotic applications using landmarks. To use the

EM algorithm for mapping and localization, the map and robot path is formed as

a maximum likelihood function. This function is then maximized to determine the

most likely map and path traveled.

2-11

The Expectation Maximization algorithm alternates between an expectation

step (E-step) and a maximization step (M-step) [8]. In the E-step, the current

map is not changed but the probability distributions are calculated for past and

current robot locations. In the M-step, the most likely map is computed based on

the estimation result gained from the E-step [36]. Alternating both steps, the robot

simultaneously improves its localization and its map, performing hill-climbing or

gradient assent to lead to a local maximum in likelihood space. The probabilistic

nature of the estimation algorithm makes it considerably robust to ambiguities and

noise, both in the odometry and in perception. Additionally, it enables the robot to

revise past location estimates with new sensor data [36].

The Expectation Maximization method used in [36] is effective but has some

weaknesses. Even constraining the algorithm where only discrete probabilities are

considered with a spatial resolution of 1 meter and angular resolution of 5 degrees,

the processing time required for their experiments is still close to, 2 hours. Some

methods to speed up processing are [36]:

• caching,

• symmetry exploitation,

• coarse-grained temporal resolution,

• selective computation, and

• selective memorization.

Explanations of each can be found in [36]. These techniques applied in his experi-

mentations reduce computation time by approximately 2.98× 108 [36].

2.4 Cognitive Mapping

Using a simple occupancy grid presents several problems. Of these problems,

the amount of memory needed to represent a large area is of primary concern. For

example, if the grid resolution is 10 centimeter by 10 centimeter cells, mapping a

2-12

100×100 meter area requires (100×100)× (100×100)×16bytes = 1.53GB of memory

space. Performing localization on a dataset this large is computationally difficult

making it important for us to represent the same information in a more memory

friendly fashion.

Cognitive mapping with the use of ASRs is a topological mapping approach.

That is, the world is represented more from the perspective of the robot and in some

cases maintains very little metric information about the world. Instead, the map is

created with consideration to where the ASRs are with respect to each other and

the robot.

2.4.1 Absolute Space Representation. An Absolute Space Representation

(ASR) [13], is a cognitive mapping technique used to build models of rooms or spaces

visited. Absolute space comes from the idea that the representation for each space

should be independent of all other spaces. Also, humans view the world cognitively

and so should our robots for ease of relation.

Rooms/nodes are separated by access points/edges, that in the graph are rep-

resented as edges connecting nodes. This technique is explained by Hill, Han, and

Lent [13]. While the idea of the ASR [13] has a foundation with three dimensional

image based localization and mapping (much like Video SLAM [32], using video to

extrapolate range data and/or landmark data), it is also applicable with respect to

indoor mapping using ultrasonic sonars as the range device [20]. Figure 2.5 shows a

standard Cartesian map translated to an ASR. Notice the rooms become nodes and

the exits become edges connecting the nodes.

The use of ASRs becomes more necessary as the size of the mapped environ-

ment increases. By placing non-current ASR data in persistent storage, the robot

must only hold a limited amount of information in main memory at any given time.

Additionally, when the robot uses the cognitive map at a later time, it need only

2-13

Figure 2.5 Two Room ASR Example

know which ASR it currently occupies and have the data for that ASR and its

neighboring ASRs loaded into memory.

Jeffries and Yeap [17] expand the theory of cognitive maps which at its core

has the notion of an autonomous agent building a map in memory, i.e. a map in

the head termed a cognitive map, for the places it visits. The agent first develops

a representation for each space visited [39][38]. The space occupied by the robot,

termed the local space, is defined as the region which the robot perceives enclosing

it (a room; hall, etc). The robot’s cognitive map grows as the representation of each

local space it visits is added to a topological network or graph of ASRs.

Jeffries and Yeap [17] initially test this approach with a simulation of an agent

traveling in a complex 2D representation of a hospital environment. Data produced

by this simulation includes a comprehensive description of the underlying theory and

algorithms employed in its implementation. This theory is applied to the problem of

an autonomous mobile robot equipped with sonar sensors, building a map from its

experience of the places it has visited [17]. In this case the cognitive map consists

of a local space representation for each local space visited with connections to other

rooms that have been experienced as neighbors. All local space representations have

2-14

AER

their own local coordinate systems and are independent of all others. Our approach

builds on this method by applying the use of polylines to the representation of the

ASR. This enhances our ability to use the ASR for navigation and localization.

2.4.2 Topological Mapping. It is important to note that cognitive map-

ping is a subset of a more general type of mapping known as topological mapping.

Topological mapping, in the truest sense, is mapping where everything in the map

is represented with a position reference based on something else. In a typical indoor

environment a hall can be an edge connecting two rooms, and the rooms can be ver-

tices on a graph. Jensfelt [19] provides a good survey of some topological mapping

schemes. The advantage of this approach is that they can be constructed with-

out knowing the exact geographical relation between nodes as they are an abstract

construct[19].

2.4.3 Polyline Simplification. Most implementations of robot mapping

represent map data as some form of occupancy grid or topological network. Our

approach merges these two ideas. We maintain world data by transforming a tem-

porary occupancy grid to a set of lines and structuring those lines in a topological

network. The size of the data structure is significantly smaller using polylines in

place of an occupancy grid, and using a cognitive map for path planning and lo-

calization becomes much faster as the search space is reduced. Using a polygonal

representation with sonars has been previously considered infeasible, as the amount

of noise generated by the sonars complicates the process greatly [11]. Latombe and

Banos [11] use polylines with the help of a laser range finder, instead of sonars. The

vehicle moves from point to point and performs a polar sweep at each point. Each

new polar sweep is added to the current model. Lines are extracted from the raw

range data using a polar line fitting algorithm. Using sonars necessitates the need

for developing a new method of fitting range data to lines. We extend their system

2-15

by developing a new data fitting method and storing the data in a cognitive map for

use in later localization and navigation.

2.4.4 Douglas-Peucker. It is necessary after extracting vertices from range

data, to simplify and reduce vertices that are not needed to represent the map. A

popular method in the mathematics community known as the Douglas-Peucker line

simplification method [9] works well to reduce unneeded vertices in polylines. The

Douglas-Peucker line simplification algorithm [9] uses the closeness of a vertex to

an edge segment as judgment criterion for elimination. The algorithm starts with a

crude guess of a simplified polyline, the single edge joining the first and last vertices

of the polyline. Remaining vertices are tested for closeness to that edge. If these

vertices are further than a specified tolerance from the edge, then the furthest vertex

from it is added to the simplification. This process creates a new guess for the

simplified polyline. Applying this process recursively for each edge until all vertices

of the original polyline are within tolerance of the simplification yields the final

simplified set of edges (Fig. 2.6).

a. b.

c. d.

e. f.

Figure 2.6 Steps in the Duaglus Peuker Algorithm

2-16

2.4.5 Edge Detection. Extracting points from the grid is a close problem

to the more common edge detection problem in image processing. Consequently,

there are many algorithms available which work well to accomplish this task when

the edges (in our case obstacle boundaries) are well defined. Sonars produce noisy

edges and so most of these algorithms are not efficient to accomplish this task. One

algorithm called the Hough Transform [14] also works well when the edges are not

well defined and is used often in robotic mapping for edge extraction [18][32]. A

problem with using the Hough Transform is the amount of computation required

finding edges. This method is general in nature and not specific to robot maps.

With a map, more information is known about where edges should or should not be

based on the path of the robot and areas beyond the range of the robot’s sensors.

This information speeds up the location and determination of edges in the map.

2.5 Localization

Monte Carlo Localization (MCL) provides a solution to the global localization

and kidnapped robot problem in a highly robust and efficient way. MCL accommo-

dates arbitrary noise distributions and therefore avoids a need to extract features

from data originating from whatever sensors that may be used. These sensors can

be sonars, lasers, cameras, or any other type of range detection device. We denote

a belief to be the agent’s certainty when it detects an object, as how sure it is of

where that object is, and if it is even an object. Representing the belief is a set of

samples o, drawn according to the posterior distribution over robot poses a and is

the key idea of MCL. The set of particles is represented as random variable x. The

MCL performs a recursive update function to find the recursive function

Bel(xt) = p(o|xt)

∫
p(xt|xt−1, at−1)Bel(xt−1)dxt−1 (2.18)

where t is time.The MCL recursive update function is performed as a three stage

process[37]:

2-17

1. Sample xt−1 from the sample set. Distribute xt according to the belief distri-

bution Bel(xt−1).

2. The pair 〈xt, xt−1〉 is distributed according to the product distribution

qt = p(xt|xt−1, at−1)× Bel(xt−1) (2.19)

3. Correct the mismatch between distribution qt and the desired distribution

(Equation 2.18). The deference is accounted for using the following impor-

tance factor:

w =
p(ot|xt)p(xt|xt−1, at−1)×Bel(xt−1)

p(xt|xt−1, at−1)× Bel(xt−1)
= p(ot|xt) (2.20)

So, rather than approximating posterior distributions in parametric form, as is the

case for Kalman filter and Markov localization algorithms, MCL represents the pos-

teriors by a random collection of weighted samples that approximate the desired

distribution X. Most work estimating the state recursively, using samples, is very

recent. Computer vision researchers have proposed the same algorithm as the con-

densation algorithm [37].

The MCL method based on the condensation algorithm is a vision-based

Bayesian filtering method that uses a sampling-based density representation and

can represent multi-modal probability distributions [7]. Using a visual map of the

ceiling obtained by mosaicing, it localizes the robot globally using a scalar brightness

measurement. Jensfelt, et al. [19] introduced modifications allowing greater efficiency

in large symmetric environments. Sensor information (sonar, laser or brightness mea-

surements) provides low feature specificity requiring that they are probabilistic and

that the robot move around while probabilities gradually converge toward a localized

peak [32].

2-18

Several algorithms have been developed in detail to perform localization. Neira [28]

describes a recursive branch and bound algorithm called Geometric Constraints

Branch and Bound (GCBB), which computes the best hypothesis H from the avail-

able measurements and the features of the stochastic map, using unary (one) and

binary (two) location independent geometric constraints. The algorithm starts with

an empty hypothesis and proceeds in a depth-first branch and bound manner. At the

leaf-level solution space of the interpretation tree, the algorithm checks whether this

leaf is a hypothesis having more consistent pairings than the current best. Satisfying

binary geometric constraints does not guarantee that a hypothesis is globally consis-

tent [12], the vehicle location is then estimated and a joint compatibility test [28] is

used to verify global consistency of the matching hypothesis. The algorithm performs

a bounded search, evaluating the potential benefit of considering the star-branch be-

fore it recurses. Branching can be done by pre-ordering the sensor measurements so

that the most precise are considered first. We can pre-compute unary and binary

constraints before recursion starts because they are both location independent [29].

An alternative algorithm, originally developed for geometric object recogni-

tion by Bolles, et al. [2] and Faugeras, et al.[10], follows a hypothesis generation-

verification scheme. Location independent unary and binary geometric constraints

are useful to generate candidate hypotheses, just as in GCBB. However, as soon as

the number of pairings is adequate to determine the vehicle location (when we have

two points and two non-parallel segments), the verification of the hypotheses takes

place, predicting the location of map features and also searching for pairings with

the remaining measurements.

2-19

III. Design

Development of a software system requires the use of a structured top down de-

sign approach starting with a problem statement and ending with an implemented

system. Robotic mapping systems afford the opportunity for modular, sequential

development. First, the robot must travel before it can map, therefore the guidance

and control is accomplished first. Next, a mapping algorithm is picked to map as

the robot moves. After the robot wandering and mapping algorithms are completed,

the efficiency of the stored information is examined and optimized. The cognitive

conversion algorithm is developed before moving on to localization. Localization,

typically the most difficult step in performing Simultaneous Localization And Map-

ping (SLAM), is processor intensive, therefore it is important for the robot to localize

using the simplified cognitive map.

The first floor of the Air Force Institute of Technology building (Fig. 3.1)

provides an ideal testing environment for the robot mapping system and is where

we perform most real world testing. Another office building is used for the small

cluttered environment test however no blueprint is available for that office.

3.1 Implementation

The system developed in this thesis is comprised of several distinct algorithms.

At the highest level, the system consists of the robot traveling around its environment

creating a Modified Histogram in Motion Mapping (MHIMM) map. Each time the

robot detects that it leaves a room (enclosed area), it creates a complete polygonal

map of the previous room and saves that map to the hard drive as an Absolute

Space Representation (ASR) represented by polylines. A new map is started and

the process begins again in the new room. The mapping is accomplished real-time.

3-1

Figure 3.1 Blue print of the mapping test environment.

3-2

H> d
■r

j.

:n [

,lU

; 1

V.

i

1. . --^.1

.i

t

1
,■1

' ^
V

1 ft

E: J

.-, I.

I

5 1

0

V

- ^

[JUE
L^X_L

H

[

1
blvJ

r
rr -o=^

rA

 1

(H

Creating a map of a room is a multistage process. It begins by cleaning the

HIMM map (Fig. 3.2a) (50×50 = 2500 integer matrix) leaving walls represented by

no more than one cell thick lines in the grid (Fig. 3.2b) (50×50 integer matrix). Next,

an extraction algorithm is called to create an ordered list of vertices (250× 2 = 500

integers) using a nearest neighbor, follow-and-remove process. Using the new list of

vertices, a final representation (Fig. 3.2c) (9 × 2 = 18 integers) is generated using

vertex and edge reduction algorithms. Exit and entry locations are stored for later

use as pivot points for rotational adjustments to compensate for localization errors.

Finally, the robot combines all the ASRs to create a human readable master map.

(a) (b) (c)

Figure 3.2 Complete polyline process. The raw map is shown in (a), followed by
the cleaned map (b). Finally (c) is the simplified fitted polyline.

To create this map the robot performs a two staged process. first, it fragments

the map so that each discrete area or room visited can be mapped independently.

Second, it converts the occupancy grid to a series of polylines that are then stored

in a spatial representation.

3.1.1 Absolute Space Representation (ASR) Construction. When the robot

completes the mapping of one room/space it constructs an ASR from the MHIMM

map. This construction involves creating the raw MHIMM map, cleaning it, and

3-3

converting it to a cognitive map. Finally, the robot adds the map to the ASR

container. We break this process into the sequence;

1. cleaning the raw HIMM map (Fig. 3.3a) to (Fig. 3.3b),

2. creating an ordered list of vertices by extracting points (Fig. 3.3c),

3. eliminating points that are close together (Fig. 3.3d),

4. reducing the number of edges (Fig. 3.3d) to (Fig. 3.3e),

5. fitting the remaining edges to a line with linear regression model (Fig. 3.3e)

to (Fig. 3.3f) to (Fig. 3.3g),

6. calculating a reference point used later when all the ASRs are put back together

(Fig. 3.3h),

7. and finally calculating the localization drift and adding the new ASR to the

ASR container (Fig. 3.3h) to (Fig. 3.3i).

3.1.2 ASR Boundary Detection. Before mapping an ASR, the algorithm

must be able to detect the beginning of a new ASR and the end of the previous ASR.

The traversal from one room to another can be thought of as a series of states. In

a room, the robot typically will be close to no walls, one wall, or two walls that are

orthogonal to each other. Passing from one room to another, the robot passing an

access point will detect obstacles close to it, one on each side of the robot. All these

possibilities present the following:

• The robot is in a room.

• The robot is at an access point.

The following events are used to transition among states (¬ is the negation symbol,

∧ represents and, and ∨ represents or.):

• An obstacle is close to the left of the robot, denoted (L).

3-4

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i)

Figure 3.3 Steps in the ASR creation process. These steps involve cleaning the raw
HIMM map (a) which yields (b), then points are extracted creating an
ordered list of vertices (c), then simplified (d) and (e). These points
are fit to a line with a linear regression model (f) and (g). Finally, the
ASR is added to the map (h) and localized (i).

3-5

«go<iQOoaQCig<JO

<3 b POQ O ly Q a b
0 0 0 0 P o

• An obstacle is not close to the left of the robot, denoted (¬L).

• An obstacle is close to the right of the robot, denoted (R).

• An obstacle is not close to the right of the robot, denoted (¬R).

If the robot travels from a room to an access, as it enters a new room an exit

is detected at the access point. This is shown as a state machine in (Fig. 3.4).

Hallways are not considered in this algorithm. In later testing when hallways are

mapped ASRs are constructed based on the distance the robot travels; a new ASR

is created every 4.5 meters.

Figure 3.4 A state machine indicating the exit detection process.

3.1.3 Building a Mapping Algorithm. Section 2.2 gives the definitions

shown in (Table 3.1) that are used in this section to develop a general algorithm for

grid mapping.

3-6

LvR Iv-iR, Exit Detected

L'^R

Table 3.1 Symbol key for the general occupancy grid mapping algorithm.
Symbol Definition

℘ Scalar used to determine cell size.
C 2 dimensional matrix that represents the world.
m Max distance divided by ℘ expected in the x direction.
n Max distance expected to travel in the y direction divided by ℘.
h Robots direction.
shi Each sonar’s angle relative to the robot.

i = {1, 2, 3, ...number of sonars}
hi The global angle of each sonar. hi = h + shi.

Sensors are not at the center of the robot and the mapping requires the location

of obstacles relative to the center of the robot. Each sonar has an x offset and y offset

from the robot center point, denoted soxi and soyi respectively. This offset must

be transformed from the robots local coordinate system to the global coordinate

system. This gives us a modification to (Equation 2.1):

xi =
ri × cos(hi) + xoffseti

℘
(3.1)

yi =
ri × sin(hi) + yoffseti

℘
(3.2)

As expressed in [31] the relationship of a point (x, y) and its transformed point (x′, y′)

given a circular rotation of θ can be expressed as:

 x′

y′

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 x

y

=

 x cos(θ)− y sin(θ)

x sin(θ) + y cos(θ)

 (3.3)

and our offset for each sonar is:

xoffseti = x′ = soxi cos(h)− soyi sin(h) (3.4)

yoffseti = y′ = soxi sin(h) + soyi cos(h) (3.5)

3-7

substituting this into (Equation 3.1) and (Equation 3.2) and adding the offset for

the robots current pose (x0, y0) gives:

xi =
ri × cos(hi) + (soxi cos(h)− soyi sin(h)) + x0

℘
(3.6)

yi =
ri × sin(hi) + (soxi sin(h)− soyi cos(h)) + y0

℘
(3.7)

Figure 3.5 shows a transformation of a robot in a global map C where a sonar

detects an obstacle at point p that is transformed to point p′ to adjust for the

misalignment in the sonars x and y offsets caused by the difference in the robots

heading and the world frame.

Figure 3.5 Local coordinate system of a robot in a global map.

Mapping is then a matter of cycling through all the sonars for each sonar scan

and updating C, the map (Fig. A.1).

3.1.4 Modified Histogram In Motion Mapping Algorithm. The basis of the

mapping algorithm is the underlying modified version of the Histogram In Motion

3-8

t

I 1 1

Mapping (HIMM)[4]. Following is the development of the HIMM algorithm and

from it, modifications needed for this system.

From Section 2.2.3, obstacle data in a histogram is represented in a two di-

mensional array denoted C. The active spot of a sonar reading (x, y), C ′
xy ← Cxy +1

and all its surrounding cells (x±1)(y±1) are incremented by .5. All cell values in C

are limited so that 0 ≤ C ′
xy ≤ 15. Additionally, cells along the path from the robot

center point (x0, y0) to (x, y) denoted as Cij are decreased by 1 (Fig. 2.3). Moreover,

the further away an obstacle is detected by a sonar, the less accurate that reading

is as it moves further out in the sonar cone (Fig. 2.3). Because sonar data degrades

with distance, only points within a window {w : x0 − w to x0 + w and y0 − w to

y0 + w} around the robot are considered. Remember that each sonar has an x offset

and y offset from the robot center point, denoted soxi and soyi respectively. Range

data returned from the Pioneer robots’ sonars ri are in millimeters and setting ℘ to

10cm works well. Inserting the HIMM technique for the update function of the occu-

pancy grid mapping algorithm in (Appendix A, Fig. A.1) results with the algorithm

shown in (Appendix A, Fig. A.2).

The need to make more defined inside edges and information about the robot

path prompts a few small modifications leading to our Modified Histogram In Motion

Mapping (MHIMM) algorithm. These modifications are:

1. For all updates the vehicle center point (x0, y0) is set to −100 to mark the path

of the robot. Later the robot will need this information to clean the map.

2. Empty regions are permitted to drop below 0 to −3. For all x and y, −3 ≤
Cxy ≤ 15. This distinguishes explored from unexplored areas.

3. If the sonar range is greater then w then all cells in the direction of that sonar

to the window boundary are decreased by 1. This modification filters out close

proximity noise considerably.

The resulting algorithm is shown in (Appendix A, Fig. A.3).

3-9

3.1.5 Clean Map Algorithm. From the MHIMM built occupancy grid

map, our cleanup algorithm incorporates some modifications of the original mapping

technique provided [4]. In their article, empty cells empty(Cxy) are decreased by -

1 but not allowed to drop below 0. To increase the difference between occupied

and unoccupied cells, the lower bound of C is decreased so that empty(Cxy) ≥ −3

allowing us to distinguish between an unexplored region and an empty region. More

importantly, spaces occupied by the robot itself are marked as robotpath (-100) for use

in the map cleaning algorithm (the update function is prevented from modifying this

value). This is shown in (Fig. 3.6a) and the modified map demonstrates a cleanly

mapped region inside the empty space and messy area in the unexplored region (Fig.

3.6b).

(a) (b)

Figure 3.6 A HIMM before (a) and after (b) applying the HIMM cleaning algo-
rithm. The line inside the room represents the path of the robot.

The cleaning process is straight forward; any cell deemed empty or occupied

is checked to see if a ray from it to the path of the robot is possible. If the ray

traverses occupied cells then it is set to an unexplored or unknown state (Fig. 3.7).

We represent the map to be cleaned as a matrix H where Hx,y is a specific position of

the map. The final filtered map is H ′. Let maxdist be the maximum effective range of

the sonars. Part of our algorithm requires creating a ray from every point (x, y) where

Hx,y > 0 to x±maxdist, y±maxdist. All line functions use Bresenham’s line algorithm

3-10

Figure 3.7 Any occupied cell not able to draw a ray to the path that the robot
traveled without going through another occupied cell or it exceeds the
max effective distance of a sonar, it is discounted as noise.

[6] for efficiency. To represent the line algorithm, we define Γ(pa, pb, {start, next})
which returns points along the line from pa to pb. Finally, ε is a threshold value

where Hx,y > ε is considered occupied. The full algorithm is shown in (Fig. 3.8).

3.1.6 Point Extraction Algorithm. One of the big challenges is taking point

data from the two dimensional array and turning it into a list of organized vertices,

V . The points must be retrieved in such a fashion that they form organized polylines,

the point on the map that the edge extraction starts being arbitrary. Simply adding

vertices to a list and treating them as a polyline results in a jumble of seemingly

random lines. A point in H is only added to the vertex list V if Hx,y > ε. Consecutive

vertices creates segments that start at point ps and end at pe.

In general, the algorithm retrieves points by following occupied cells, adding

the point to V and removing it from H until |H| = 0. This algorithm is detailed in

(Fig. 3.9).

While retrieving points on the map, it is important to identify where one

polyline ends and another begins. To do this, a threshold variable γ, is defined as

the maximum allowable distance between two cells containing no occupied spaces.

If the distance is greater then γ, a break is inserted denoting the end of a polyline.

3.1.7 Edge Simplification Algorithm. Before we perform any edge simplifi-

cation, it is important to reduce unnecessary vertices first. The process of simplifying

3-11

Robot Path

i ^,

CleanMap(H)
For (every point (x, y) of H)
If(Hx,y > ε)
pa ← (x, y)
found← false
For (−maxdist to +maxdist as j)
For (−maxdist to +maxdist as i)

pb ← ((x + i), (y + j))
pt ← Γ(pa, pb, start)
While (pt 6= pb)

pt ← Γ(pt, pb, next)
If(Hpt

= robotpath)
found← true
H ′

pa
← Hpa

Break While loop
If(Hpa

> ε)
Break While loop

If (found) Break For loop
If (found) Break For loop

End For

H ← H ′

Figure 3.8 Algorithm to clean a modified HIMM map

the list of vertices V extracted from the map begins by eliminating clusters of closely

grouped points (Fig. 3.10). This is done to reduce the size of the vertex list sent

to the edge simplification algorithm. While not required, the vertex simplification is

simple and quick, and speeds up the overall line simplification process.

A tolerance value τ is defined such that for any point Vi, if ∆(Vi, Vi+m) < τ for

m = {i, i + 1, i + 2, i + 3, ...n}, then Vi+m is removed from V . When ∆(Vi, Vi+m) > τ

then i is set i ← i + m. Refer to (Appendix A, Fig. A.4) for pseudo code of this

algorithm. The Douglas-Peucker algorithm [9] uses the closeness of a vertex to an

edge segment as judgment criterion for elimination. It starts with a crude initial

guess at a simplified polyline, i.e. the single edge joining the first and last vertices

of the polyline. The remaining vertices are tested for closeness to that edge. If

these vertices are further than a specified tolerance from the edge, then the furthest

3-12

ExtractPoints(V, H)
For (0 to |Hy| as j)
For (0 to |Hx| as i)

If (Hi,j > ε)
ps ← (i, j)
pe ← ps

j ← |Hy|
i← |Hx|

DO

V ← V ∪ {ps}
Hpsx ,psy

← 0
ps ← Next closest occupied cell
If (∆(ps, pe) > γ))
Mark point this as the end of a polyline

pe ← ps

UNTIL (|H| = 0)

Figure 3.9 ExtractPoints

vertex from it is added to the simplification. This process creates a new guess for

the simplified polyline. Applying this process recursively for each edge until all

vertices of the original polyline are within tolerance of the simplification yields the

final simplified set of edges.

More specifically, two endpoints of a polyline are connected with a straight line

as the initial rough approximation of the polyline. Computing the distances from

Figure 3.10 Vertex simplification process.

3-13

\

°<9 o

all intermediate polyline vertices to that (finite) line segment, allows us to judge

how well it approximates the whole polyline. If all these distances are less than a

specified tolerance η, then the approximation is acceptable and the endpoints are

retained while the other vertices are eliminated. If any of these distances exceed η,

the approximation is not considered good enough to use. In this case, the point that

is furthest away is selected as a new vertex subdividing the original polyline into

two shorter polylines [9]. The simplify function is initialized with W0 = Wn =true,

where W0 is the first vertex and Wn is the last vertex. Let Wo be the set of output

vertices. The full algorithm is shown in (Appendix A, Fig. A.5).

3.1.8 Line Fitting. The final step of the process involves using vertices

returned by the Douglas-Peucker algorithm as end points to fit a linear regression

line [25] of the form y = b0 + b1x using the least squares method where

b1 =
n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=1 yi)

n
∑n

i=1 x2
i − (

∑n

i=1 xi)
2 (3.8)

b0 = ȳ − b1x̄ (3.9)

Letting x̄ and ȳ be the averages of the x and y points respectively.

Pearson’s correlation coefficient [25] ρ̂ is calculated to determine line suitability

for a linear fit and if not, reject the fitted line. The coefficient ρ̂ is represented as:

ρ̂ =
n
∑

xy −
∑

x
∑

y√(
n
∑

x2 − (
∑

x)2) (n
∑

y2 − (
∑

y)2
) (3.10)

A line with |ρ̂| < .9 (testing showed .9 as a value which produced the best results)

where −1 < ρ̂ < 1, is classified as a bad correlation in our implementation. The

Douglas-Peucker algorithm restricts this from allowing small noise data to produce

large errors in the output map (Fig. 3.11) requiring this extra fitting process. This

3-14

process will work equally well if the mapped wall is straight or curved. The Douglas-

Peucker algorithm produces more vertices when simplifying a rounded environment

then it does in a symmetric environment. The increased vertices allow the map to

maintain its curved geometric data.

(a)

(b)

Figure 3.11 Line fitting before(a) and after(b) application of a linear regression fit.
The points obtained from the Douglas-Peucker algorithm are used as
end points in the fitting process.

3.1.9 Localization Algorithm. Localization is a computationally expensive

task, especially if localization is performed using the full map and pose dataset. To

overcome this time/complexity issue, the robot performs localization on the simpli-

fied cognitive map which in turn corrects map errors. Localization is accomplished

using the Expectation Maximization (EM) algorithm finding drift error for each ASR

and performed iteratively while the robot maps.

3.1.9.1 Expectation Maximization. The Expectation Maximization

(EM) algorithm [8] is used often in computer science to iteratively calculate the

maximum likelihood of some distribution with incomplete or missing data.

Dempster et al., [8] postulates a family of sampling densities as:

θ(~x|φ) =

∫

q(x)

f(~q|φ)d~q (3.11)

The EM algorithm seeks to find parameters φ that maximizes θ(~x|φ) with observation

~x. This is done in two steps, an Expectation step (E-step) and Maximization-step

(M-Step), iteratively converging to the maximize likelihood of f(~q|φ).

3-15

O^ QO ^OOOO O

O 00*^ QO '^QOQQ ^

In section 3.1.9.2, we develop a model of the Expectation Maximization algo-

rithm as a mixture model of the sonar and dead-reckoning sensors using [8][24].

3.1.9.2 Statistical Model of the EM Algorithm for Localization. We

have a set of parameters θk = (πk, φk) that defines a probability distribution function

of the robot’s location, where k = s, m; s being the abstracted sonar data detailed

in Section 3.1.10 and m the motor data of the probability distribution function.

E-step: During the E-step, we develop the expected complete log-likelihood

function, Q(θ, θ′, (x1, x2, x3, ..., xN)) based on the previous guess θ′ and the data set

(x1, x2, x3, ..., xN) which is the combined data {range ∪motor}. This step produces

a new better guess of the robot’s pose µ̂m and sensor data µ̂s and is also used for

the calculation of σ̂k
2 and π̂k.

Let Q be the expected value of the log-likelihood given the data (x1, ..., xN)

and φk = (µk, σk).

Q(θ, θ′, (x1, ..., xN)) = E

[
N∑

i=1

∑

k

log
(
Pr(qk

i , xi; θ)
)
|x = (x1, ..., xN)

]

=

N∑

i=1

∑

k

∑

q

log
(
Pr(qk

i , xi; θ)
)
Pr(qk

i |xi; θ
′)

=
N∑

i=1

∑

k

∑

q

qk
i log(πk Pr(xi|φk)) Pr(qk

i |xi; θ
′)

=

N∑

i=1

∑

k

< qk
i > log(πkp(xi|φk)) (3.12)

3-16

where,

< qk
i >=

∑

q

qk
i Pr(qk

i |xi; θ
′)

=

∑
q Pr(xi|qk

i ; θ
′) Pr(qk

i)qk
i

Pr(xi; θ′)

=
π′p(xi|φ′

k)∑
k Pr(xi|qk

i ; θ′) Pr(qk
i)

=
π′p(xi|φ′

k)∑
k π′

kp(xi|φ′
k)

(3.13)

Substituting our calculation for the M-Step (Eq. 3.17) into (Eq. 3.13) we get

< qk
i >=

πk′

exp

(
− (xi−µ

k′
)2

2σ2
k′

)

√
(2π)σk′

π′
s

exp

(
− (xi−µ

s′)
2

2σ2
s′

)

√
(2π)σs′

+ π′
m

exp

(
− (xi−µ

m′)2

2σ2
m′

)

√
(2π)σm′

(3.14)

Substituting (Eq. 3.14 and 3.16) into (Eq. 3.12) we get

Q(θ, θ′, (x1, ..., xN)) =

N∑

i=1

π′
s

exp

(
− (xi−µ

s′
)2

2σ2
s′

)

√
(2π)σs′

log

(
πs

exp

(
− (xi−µs)2

2σ2
s

)

√
(2π)σs

)

π′
s

exp

(
− (xi−µ

s′
)2

2σ2
s′

)

√
(2π)σs′

+ π′
m

exp

(
− (xi−µ

m′)
2

2σ2
m′

)

√
(2π)σm′

+

π′
m

exp

(
− (xi−µ

m′)
2

2σ2
m′

)

√
(2π)σm′

log

(
πm

exp

(
− (xi−µm)2

2σ2
m

)

√
(2π)σm

)

π′
s

exp

(
− (xi−µ

s′
)2

2σ2
s′

)

√
(2π)σs′

+ π′
m

exp

(
− (xi−µ

m′)
2

2σ2
m′

)

√
(2π)σm′

(3.15)

3-17

M-step: Find the value of θ that maximizes Q. Assuming that sensor noise

and motor error fit a Guassian distribution, it follows:

Pr(x|µ, σ2) =
exp

(
− (x−µ)2

2σ2

)

√
(2π)σ

(3.16)

∑

k

p(xi|φk) = ps(xi|µs, σ
2
s) + pm(xi|µm, σ2

m)

=
exp

(
− (x−µs)2

2σ2
s

)

√
(2π)σs

+
exp

(
− (x−µm)2

2σ2
m

)

√
(2π)σm

(3.17)

Add the Lagrange multiplier λ to (Eq. 3.12), we optimize,

Opt

(
N∑

i=1

∑

k

< qk
i > log (πkp (xi|φk)) + λ

(
1−

∑

k

πk

))
, (3.18)

and take the partial derivatives with respect to πk and φk = (µk, σk) to get,

∂Q

∂πk

=

N∑

i=1

< qk
i >

πk

− λ ⇒ π̂k =

∑N

i=1 < qk
i >

N
(3.19)

∂Q

∂µk

=

N∑

i=1

< qk
i > (xi − µk)

σ2
k

= 0

⇒
N∑

i=1

< qk
i > xi

σ2
k

−
N∑

i=1

< qk
i > µk

σ2
k

= 0

⇒
N∑

i=1

< qk
i > µk

σ2
k

=

N∑

i=1

< qk
i > xi

σ2
k

3-18

⇒ µk

σ2
k

N∑

i=1

< qk
i >=

1

σ2
k

N∑

i=1

< qk
i > xi

⇒ µk

N∑

i=1

< qk
i >=

N∑

i=1

< qk
i > xi

⇒ µ̂k =

∑N

i=1 < qk
i > xi∑N

i=1 < qk
i >

(3.20)

∂Q

∂σk

=

N∑

i=1

< qk
i > [(xi − µk)

2 − σ2
k]

σ3
k

= 0

⇒
N∑

i=1

< qk
i > (xi − µk)

2

σ3
k

−
N∑

i=1

< qk
i > σ2

k

σ3
k

= 0

⇒
N∑

i=1

< qk
i > (xi − µk)

2

σ3
k

=
N∑

i=1

< qk
i >

σk

⇒ 1

σk

N∑

i=1

< qk
i >=

1

σ3
k

N∑

i=1

< qk
i > (xi − µk)

2

⇒ σ3
k

σk

=

∑N
i=1 < qk

i > (xi − µk)
2

∑N

i=1 < qk
i >

⇒ σ̂k
2 =

∑N

i=1 < qk
i > (xi − µ̂k)

2

∑N

i=1 < qk
i >

. (3.21)

3-19

Substituting (Eq. 3.14) into (Equations 3.19, 3.20 and 3.21) we get,

π̂k =

∑N

i=1

πk′

exp

−
(xi−µ

k′
)2

2σ2
k′

√
(2π)σ

k′

π′
s

exp

−
(xi−µ

s′
)2

2σ2
s′

√
(2π)σ

s′
+π′

m

exp

−
(xi−µ

m′)
2

2σ2
m′

√
(2π)σ

m′

N
(3.22)

µ̂k =

∑N

i=1

πk′

exp

−
(xi−µ

k′
)2

2σ2
k′

√
(2π)σ

k′

π′
s

exp

−
(xi−µ

s′
)2

2σ2
s′

√
(2π)σ

s′
+π′

m

exp

−
(xi−µ

m′)
2

2σ2
m′

√
(2π)σ

m′

xi

∑N
i=1

πk′

exp

−
(xi−µ

k′)
2

2σ2
k′

√
(2π)σ

k′

π′
s

exp

−
(xi−µ

s′
)2

2σ2
s′

√
(2π)σ

s′
+π′

m

exp

−
(xi−µ

m′)
2

2σ2
m′

√
(2π)σ

m′

(3.23)

σ̂k
2 =

∑N

i=1

πk′

exp

−
(xi−µ

k′
)2

2σ2
k′

√
(2π)σ

k′

π′
s

exp

−
(xi−µ

s′
)2

2σ2
s′

√
(2π)σ

s′
+π′

m

exp

−
(xi−µ

m′)
2

2σ2
m′

√
(2π)σ

m′

(xi − µ̂k)
2

∑N
i=1

πk′

exp

−
(xi−µ

k′)
2

2σ2
k′

√
(2π)σ

k′

π′
s

exp

−
(xi−µ

s′
)2

2σ2
s′

√
(2π)σ

s′
+π′

m

exp

−
(xi−µ

m′)
2

2σ2
m′

√
(2π)σ

m′

. (3.24)

The E and M steps of the EM algorithm are repeated until convergence.

1. E-Step: Compute Q(θ, θ′, (x1, ..., xN)) =
∑N

i=1

∑
k < qk

i > log(πkp(xi|φk))

2. M-Step: Find
{
π̂k, µ̂k, σ̂k

2
}

3. Repeat until convergence.

The pseudo code for the EM algorithm can be found in Appendix A, Section A.3.

3-20

3.1.10 Line Direction. To calculate s from each ASR, a direction for each

line within an ASR is calculated to obtain an ASR direction (Fig. 3.12). Each ASR

Figure 3.12 ASR directions needed to perform localization correction.

contains a list of vertices representing the polylines that make up the ASR. Every

two vertices is a line segment and the direction of each line segment is obtained

by treating it as a vector and calculating the angle of the vector. Slight variations

in these angles (Fig. 3.13), caused by noise or obstacles, results in error that is

accounted for using the EM algorithm, as described in the previous section. Let

Figure 3.13 Vectors shown for a single ASR.

A denote the current vector and B the vector that comes before A. The origin

of A is the termination of B and normalization of A is accomplished by setting

Ax ← Ax−Bx and Ay ← Ay−By. To find the angle of A let U be the normal vector

along the positive x axis of the cartesian map represented by the current ASR, use:

φ = cos−1

(
A • U

|A| × |U |

)
(3.25)

3-21

//"■^^^^=^-

Because U is the unit vector along the x axis, (Equation 3.25) simplifies to:

φ = cos−1

(
Ax × 1 + Ay × 0

|A| × 1

)
= cos−1

(
Ax

|A|

)
. (3.26)

To get a general direction for an ASR we need to normalize all vector angles

within the ASRs so that we only consider a vector to be pointing in quadrants I (0

to 90 degree) and IV (0 to -90 degrees). Additionally, each angle is only considered

as it’s offset from the positive x axis. Because of the generally symmetric and

perpendicular nature of indoor environments most vectors are parallel or normal to

each other; so rather than creating a set containing two distributions (one at around

ninety degrees and another around zero degree) any angle that is greater then forty

five degrees is decreased by ninety degrees to acquire its normal angle. These steps

are detailed in the following text.

Initially 0 ≤ φ ≤ 180 but this does not tell us if the angle is negative or

positive. To determine negative angles, if Ax < 0 use:

φ← −φ. (3.27)

Now to adjust each line so that they all point to the right, if φA > 90◦ (Fig. 3.14a)

then the recorded φ′
A is (Fig. 3.14b):

φ′
A = 180◦ − φA (3.28)

and if φA < −90◦ then:

φ′
A = 180◦ + φA (3.29)

if neither of these conditions are met then A′ = A.

3-22

(a) Angle adjustment when the (b) Angle adjustment when the
angle is greater than 90◦ angle is greater than 90◦

(c) Angle adjust if the new angle is greater than 45◦

Figure 3.14 Angle directions are adjusted to point as close as it can along the
positive x axis.

Finally, if φ′
A > 45◦ then (Fig. 3.14c):

φ′
A = 90◦ − φ′

A (3.30)

and if φ′
A < −45◦ then:

A′ = −90◦ − φ′
A (3.31)

3-23

90
' -• 'ts"

/ \
\
\

180' A .
1 J, ,

h -fii-BO /

^
""■•/ -45°

90

180'
IHO' •\^ = 50*

•< -45°

90 ■■
■

,■<

45°

/ \
\

,' \
; \

,' \
/ /' \

180"
'/-90° 1

~^.>M=-y 1
'"•C^^---^ /

""■v -45°

It is important to understand that this only gives us the s data set. This data,

along with the center point of the exit locations, the m data set, is sent to the EM

algorithm as described in Section 3.1.9.1 to find the actual direction of the ASR.

The EM algorithm then uses the vectors and their positions by bringing φ′
A to the

same orientation from the x−axis and moving the origins of A to its most probable

location. The difference between the current ASR and the previous one is used as

the error in localization to correct the robots pose. The algorithm to fill the s data

set is shown in (Appendix A, Fig. A.7).

3-24

IV. Results and Analysis

Testing the implementation of the mapping system is accomplished modularly for

each algorithm, and as a complete system. Results of these tests are shown and

explained in the remainder of this chapter.

The first series of tests includes running the system using the Pioneer robot

simulator which simulates the Pioneer P2-AT robot. The Pioneer P2-AT robot

possesses a 400Mhz Pentium processor and 64MB of random access memory. Cell

size in all results is 10cm× 10cm by setting ℘ = 100. Additionally, thresholds are set

as shown in (Table 4.1).

Table 4.1 Thresholds and parameters used while mapping.
Symbol Value Description
ε 7 The value in a cell deemed occupied
τ 2 Closest allowed distance of a vertex
γ 4 Threshold for the Douglas-Peucker algorithm

to determine edge angle cutoff
℘ 100 Scalar used to determine resolution of the map

Each of these thresholds were extensively tested, and these were found to

produce the clearest map under the largest variety of mapping circumstances (large,

small, cluttered, and uncluttered environments). Increasing τ , reduces the size of

the final polyline map but will decrease the detail of the map at the same time.

Changing the size of the scalar ℘ results in a inversely proportional change in the

memory size of the map. Additionally, mapping was accomplished in real time with

the robot traveling at approximately 0.5m/s.

The map in (Fig. 4.1a) shows a map created using the Pioneer robot simulator

that includes 9 ASRs, and those rooms represented as a graph (Fig. 4.1b). In

(Fig. 4.2) an example ASR before and after conversion to its simplified polygonal

representation, mapped from rooms 5 and 6 of (Fig. 4.1a). The polygon requires

less than 0.1KB, while the MHIMM used 42KB for representing the rooms. In (Fig.

4-1

4.4) nine ASR’s are mapped. When the rooms are put back together after mapping

is complete, localization errors have caused overlapping; (Fig. 4.5) shows a similar

map with less localization error.

In (Table 4.2) the respective file sizes of each representation of the map in (Fig.

4.6) is shown. Each stage of the process provides a substantially reduced data set,

and (Fig. 4.6d) is only 1.06% the size of (Fig. 4.6b).

Table 4.2 Size(KB) differences of map representations
Map Size

(Fig. 4.6a) 784
(Fig. 4.6b) 56
(Fig. 4.6d) and (Fig. 4.6f) 8

In (Fig. 4.1b) the separate ASRs are shown as a graph with their corresponding

representations to the map in (Fig. 4.1a). This map was generated using the Pioneer

robot simulator.

(a) (b)

Figure 4.1 ASR’s Represented as a Graph. The actual map is shown in (a). The
graph (b) shows how the rooms that were mapped translates to a graph.

Enlarging part of the map corresponding to rooms five and six of (Fig. 4.1a) in

(Fig. 4.2a) is the array map with the rooms reconstructed to their proper location.

4-2

C] ASR2
ASn4j fASRl| i V

|ASR 5
> J ASR 6"

ASR9

lU,

r-' r
\ r

ASR7
ASR8

The final polyline map (without localization) of these two rooms is shown in (Fig.

4.2b).

(a) (b)

Figure 4.2 A 2 Room ASR Example showing the polygonal representation (b) of
the original HIMM map (a). This figure is rooms 5 and 6 of (Fig. 4.1a).

In (Fig. 4.3) the complete process of mapping the nine rooms is shown without

the localization step. As the robot moves from room to room the array map is created

(left side of (Fig. 4.3)) and cleaned (right side of (Fig. 4.3)). But only the polyline

information is maintained as the robot moves onto the next room. This process is

accomplished real time while the robot maps the environment, without localizing.

4-3

L-.--.--^

/ '-^

Figure 4.3 ASR Development

4-4

a Q

n Cl:

s .o
J

.J

'ir- j

Hi

'it

(r^

':ni

■1

I'i^-x-a^

(OJ

1

r

In (Fig. 4.4) is the completely reconstructed map from (Fig. 4.3), also showing

the path of the robot.

Figure 4.4 Nine ASR’s Merged Together.

Applying the full SLAM algorithm, mapping only rooms five, six, and seven

of (Fig. 4.4) gives the map in (Fig. 4.5b). The unlocalized map is shown in (Fig.

4.5a) for comparison. Using the system in a real world area produced better results

then when using the Pioneer robot simulator. We show in (Fig. 4.6) a mapping of

the first floor of the engineering building at the Air Force Institute of Technology,

the black lined area of (Fig. 3.1), minus some offices with dimensions approximately

(255′ × 255′). The robot is this figure is sent around the hallway one time with no

overlap of areas mapped. On the left (Fig. 4.6a), is the grid representation of the

map. On the right (Fig. 4.6b), the vertex map without simplification is illustrated

4-5

(a)

(b)

Figure 4.5 Three ASRs merged together showing little localization error to correct,
(a) is the unlocalized polyline map and (b) is the localized polymap.

with a piece of the map expanded to show greater detail in (Fig. 4.6c). In (Fig.

4.6d) is the final simplified polyline map without localization with the top right

corner blown up in (Fig. 4.6e). After localization (Fig. 4.6f) the map is almost

corrected however some areas remain within the map that were unable to localize

leaving slight imperfection. However, if there were overlap, i.e. the robot revisits the

location, this localization error most likely would be rectified.

4-6

(a) (b)

(c) (d)

(e) (f)

Figure 4.6 The polyline map of the first floor of the engineering building at the Air
Force Institute of Technology. On the left (a), is the grid representation
of the map, (b) is the vertex map without simplification, (c) shows a
blowup of part of the map. In (d) is the final simplified polyline map
without localization, (e) is a blowup of part of (d). The map after
localization is shown in (f).

4-7

v-> viA
^/

I

Af

/

^^^*\ /

/ •'
■ r

t j

,=^^=Q^i
L—-L^, r

-1* A^'^

4.1 Small Complex Mapping Regions

Testing small complex spaces at first posed something of a problem which is

solved by decreasing the scalar ℘. The scaling factor used in the larger maps resulted

in incoherent smaller maps (Fig. 4.7). This map was made using the Pioneer robot

simulator. A real world environment is shown later producing similar results.

(a)

(b) (c) (d)

(e)

(f)

Figure 4.7 Stages of an example using the Pioneer robot simulator of a very small
area being mapped. Area is approximately 20ft× 40ft. The scalar ℘ is
set equal to 85.

4-8

ru J u

"V I .
n t

However, reducing the scalar ℘ from 100 to 55 for more complex regions pro-

duces a better map (Fig. 4.8).

(a) (b)

(c)

(d)

Figure 4.8 Stages of an example using the Pioneer robot simulator of a very small
area being mapped. Area is approximately 20ft× 40ft. The scalar ℘ is
set equal to 55.

If the region to be mapped is a large simple region, the reduced scaling factor

makes little difference except perhaps an increased processing time as more infor-

mation must be processed. Because of the small memory space needed using this

4-9

mapping system, the scale can be reduced very low even in a large, highly complex

area with the potential to provide a surprisingly detailed map.

To test the small/messy type of environment in a real world environment,

the robot was sent through part of another building (the AFIT robotics lab) which

currently has items and furniture laying about almost randomly (Fig. 4.9). In this

figure all the ASRs are shown as the raw array maps along with the robot path.

Figure 4.9 Small messy real world environment

(a)

(b)

Figure 4.10 Real world polyline map of a small cluttered region before (a) and
after (b) localization.

4-10

f ^-

^/-_ _

•^^^^T-^

J

4.2 Localization

Applying the localization algorithm in the hallway of the AFIT building, which

is a relively simple environment but very large, produces the map in (Fig. 4.11). This

environment represents the ideal arena for the SLAM algorithm implemented in this

thesis.

Figure 4.11 Localized map of the AFIT hallway.

4-11

Figure 4.11 is shown overlaid with the blueprint in (Fig. 3.1) in (Fig. 4.12).

Figure 4.12 Polyline map of the AFIT hallway overlaid with the blueprint.

4-12

'-

1 _

S

I

n
' »r)t)r>ri f

-T:

I
(

The processing requirements to perform the mapping in (Fig. 4.11) does not

incur any constraints, because the data set in which localization was performed on

is so small. The total processing time in a batch mode with all of the data from

a recorded robot took 38 seconds. A graph showing the processing time taken to

process 1 to 43 of the 4m fixed sized ASRs in (Fig. 4.11) is shown in (Fig. 4.13).

The processor time is calculated without included time required to traverse the

environment and acquire sensor readings.

Figure 4.13 Processor time comparison required at which ASR in (Fig. 4.11)

The complete SLAM process performs in real-time. The robot is sent through

the hall and as the robot progresses through the environment, ASRs are constructed

and compared against the previous ASR to perform localization.

4-13

V. Future Work and Conclusion

While many methods exist for robots to map their environment [4][20][26][17][34],

as the size of these environments increases, methods using occupancy grids start

to approach maximum constraints [4][26][34]. The two-fold method (polylines and

ASRs using sonars) [4][11][17] combines the best of two robot mapping philosophies.

Our system makes it possible for a robot armed only with sonars to map an arbitrarily

large area. It is size scalable, with a non-increasing computational time required to

map and a linearly increasing computational time required to reconstruct the ASRs

after completion of mapping, that is, create a single global map using the individual

ASRs. Additionally, the reduced data set that makes up the polylines are used to

perform localization using the Expectation Maximization (EM) algorithm.

The objectives of this thesis was to:

1. Implement and test a fast histogram mapping algorithm which was done using

a modification to the HIMM mapping technique.

2. Develop a polygonal and topological representation from the occupancy grid

map. This was accomplished using a new technique of filtering the HIMM

map and converting the data to a vertex list and applying the Douglas Peuker

algorithm to simplify the list.

3. Implement and test an Expectation Maximization algorithm to perform local-

ization corrections of the cognitive map. This was also successfully accom-

plished fitting polygonal data into a representation which could be maximized

with the EM algorithm.

All objectives were successfully completed as was the goal for providing a fast

(using HIMM technique), accurate (EM and linear fitting) method using probability

theory, to quickly map a large area. Additionally, the map is stored in a small amount

5-1

of memory (polygonal ASR representation) where if needed, it could be transmitted

quickly to another device.

The cognitive mapping process allows robots to easily implement corrections

to localization errors using the simplified ASRs instead of grid data. In figure 5.1, a

before and after map is shown with a memory footprint of the map. Additionally,

the ASR is reduced to a fixed size of 4m, allowing the robot to perform iterative

localization using an expectation maximization algorithm similar to Thrun, et al.

[36], matching the current array window of the robot with the previous ASRs to

determine the more probable current pose. This idea is taken from work developed

by Schultz and William [33], where range sensor data is divided up into several time

slices and comparing them to determine an estimate of pose error. Our idea is to

extend this technique to ASRs and fix the size of the ASR to some small value then

compare them against each other in a similar fashion. This technique produces good

results. The map in Figure 5.1b is the polygonal representation of the map in Figure

5.1a. After localization adjusting rotation sensor error among room ASRs, yields

Figure 5.1c (this is the same map shown in (Fig. 4.11)).

(a) (b) (c)

Figure 5.1 The array map of the first floor of the engineering building at the Air
Force Institute of Technology is shown in Figure (a). Figure (b) shows
the polyline map with localization errors uncorrected, figure (c) shows
the polyline map after rotational localization errors are fixed.

5-2

5.0.1 Extensions. The technique used in this thesis affords the opportunity

of several extensions. While sonars are very common in robot mapping systems, they

are an older active method of sensing. The term active describes a sensor that needs

to send some sort of signal to take a measurement, unlike a passive sensor which

requires no emitted signal to gain a measurement. Replacing or enhancing range

data with a passive camera system could produce a cleaner, more accurate map

while at the same time not generate any detectable signal.

Using ASRs as a means of representing the map lends itself to multi-robot

mapping. It is an easy extension to use multiple robots, each mapping separate

ASRs at the same time and at some point communicating the maps to each other

and merging them to one comprehensive map. This would require some additional

calculations to determine where each robot is with respect to each other but not

much more.

This implementation places a low emphasis in exit detection. Many possible

configurations of exits exist including:

1. A room into another room through a doorway (Fig. 5.2a)

2. Room to a hallway that leads to yet another room (Fig. 5.2b)

3. From the middle of a room to a hallway to the side of another room (Fig. 5.2c)

4. Side of a room to a hallway to the side of another room (Fig. 5.2d)

5. Same but no hallway (Fig. 5.2e)

6. Partition in one room (Fig. 5.2f)

These are just a few of the many possible configurations. Of this list, only (Fig.

5.2a), (Fig. 5.2e), and (Fig. 5.2f) can be detected with the algorithm used in this

thesis. An obvious extension is to include a more sophisticated exit detection system

that can handle a wider variety of exit configurations.

5-3

(a) (b) (c)

(d) (e) (f)

Figure 5.2 Various types of exits the robot may typically encounter.

While this system will map an environment that changes slightly with time

without a serious degradation of the map it is not designed specifically to handle dy-

namic environments. Another enhancement to the system is the addition of an agent

responsible for identifying changes to the environment and sequentially registering

those changes to the appropriate ASR.

5-4

u
n ^1

Appendix A. Algorithms

A.1 Mapping Algorithms

Section 2.2 and Section 3.1.3 gives the definitions shown in (Table A.1) that

are used in this section to develop a general algorithm for grid mapping.

Table A.1 Symbol key for the mapping algorithms.
Symbol Definition

℘ Scalar used to determine cell size.
C 2 dimensional matrix that represents the world.
m Max distance divided by ℘ expected in the x direction.
n Max distance expected to travel in the y direction divided by ℘.
h Robots direction.
shi Each sonar’s angle relative to the robot.

i = {1, 2, 3, ...number of sonars}
hi The global angle of each sonar. hi = h + shi.
soxi Sonarin x offset from the center of the robot.
soyi Sonarin y offset from the center of the robot.

Map(C)
Loop

so← New sonar readings
h← GetPoseH(robot) //Vehicle direction
x0 ← GetPoseX(robot) //Vehicle center point x coordinate
y0 ← GetPoseY (robot) //Vehicle center point y coordinate
For (i = 1 to number of sonars)

xi ← ri×cos(hi)+(soxi cos(h)−soyi sin(h))
℘

yi ← ri×sin(hi)+(soxi sin(h)−soyi cos(h))
℘

Update(Cxi,yi
)

End For

End Loop

Figure A.1 General Occupancy Grid Mapping Algorithm

A-1

Map(C)
Loop

so← New sonar readings
h← GetPoseH(robot) //Vehicle direction
x0 ← GetPoseX(robot) //Vehicle center point x coordinate
y0 ← GetPoseY (robot) //Vehicle center point y coordinate
For (i = 1 to number of sonars)

xi ← ri×cos(hi)+(soxi cos(h)−soyi sin(h))
℘

yi ← ri×sin(hi)+(soxi sin(h)−soyi cos(h))
℘

If (dist(xi, yi, x0, y0) < w) Than Update(Cxi,yi
)

End For

End Loop

Update(Ctx,ty)
Ctx,ty = Ctx,ty + 1.5
For (l = −1 to 1)

For (m = −1 to 1)
Ctx+m,ty+l = Ctx+m,ty+l + 1.5
If (Ctx+m,ty+l > 15) than (Ctx+m,ty+l = 15)
End For

End For

//decrease all cells by 1 in the line from (tx, ty) to (x0, y0). Can drop to 0.0.
Bresenham’s line algorithm [6] is used to follow the line.

LineDecrease(tx, ty, x0, y0)

Figure A.2 Histogram In Motion Mapping Algorithm

A-2

Map(C)
Loop

so← New sonar readings
h← GetPoseH(robot) //Vehicle direction
x0 ← GetPoseX(robot) //Vehicle center point x coordinate
y0 ← GetPoseY (robot) //Vehicle center point y coordinate
For (i = 1 to number of sonars)

xi ← ri×cos(hi)+(soxi cos(h)−soyi sin(h))
℘

yi ← ri×sin(hi)+(soxi sin(h)−soyi cos(h))
℘

If (dist(xi, yi, x0, y0) < w) Than Update(C, xi, yi, x0, y0)
Else

xi ← w×cos(hi)+(soxi cos(h)−soyi sin(h))
℘

yi ← w×sin(hi)+(soxi sin(h)−soyi cos(h))
℘

//decrease all cells by 1 in the line from (xi, xi) to (x0, y0). Can drop to -3.
LineDecrease(C, ti, ti, x0, y0)

End For

End Loop

Update(C, tx, ty, x0, y0)
Ct0,t0 ← −100
Ctx,ty ← Ctx,ty + 1.5
For (l = −1 to 1)

For (m = −1 to 1)
Ctx+m,ty+l ← Ctx+m,ty+l + 1.5
If (Ctx+m,ty+l > 15) than Ctx+m,ty+l ← 15
End For

End For

LineDecrease(C, tx, ty, x0 , y0)
//decrease all cells by 1 in the line from (tx, ty) to (x0, y0).
//Allowed to drop to -3.
//Bresenham’s line algorithm [6] is used to follow the line.

Figure A.3 Modified Histogram In Motion Mapping Algorithm

A-3

A.2 Simplification Algorithms

The process of simplifying the list of vertices V extracted from the map begins

by eliminating clusters of closely grouped points. A tolerance value τ is defined such

that for any point Vi, if ∆(Vi, Vi+m) < τ for m = {i, i + 1, i + 2, i + 3, ...n}, then

Vi+m is removed from V . When ∆(Vi, Vi+m) > τ then i is set i← i + m.

VertexSimplify(V)
ε =2 /*The bigger ε the less accurate the map will be 2 seems to work

good.*/
For (from 0 to |V | − 2 as i)
For (from i to |V | as m)
d← ∆(Vi, Vi+m).
If (d < ε) V = V − {Vi+m} /*that is, Vi+m is removed from V */
If d ≥ ε Then Break

Figure A.4 VertexSimplify Algorithm

Let η be a specified tolerance for the smallest angel algorithm should recurse

on where if the angle is greater than η, then the approximation is acceptable and the

endpoints are retained. The simplify function is initialized with W0 = Wn =true,

where W0 is the first vertex and Wn is the last vertex. Let Wo be the set of output

vertices.

A-4

PolySimplify()
Simplify(η, W, 0, n, mark)
For (0 to |W | as i)
If (marki)
then add it to the output set Wo
Wonext ←Wi

Simplify(Float η, Set L, Int j, Int k, Set mark)
L is the original set of points mark is the vector used to identify points to
keep. j and k are used to keep track of the current and last point.

If (k < j) /*Nothing to simplify*/
Return

Segment S
Sjk ← Segment from Lj to Lk

maxdistance ← 0
maxi ← j
Let u be the segment direction vector
ux ← Sbx

− Sax

uy ← Sby
− Say

cu ← (u • u)
Pb is the base of perpendicular from vi to S

b, cw, dv2 /*dv2 ← dist(vi , S2)*/
For (j + 1 to k as i)
dv2 ←distance squared (Li, Pb)
If (dv2 ≤ maxd) continue
Else

maxi ← i
maxd ← dv2

If (maxd > η)
/*Split the polyline at the farthest vertex from S*/
markmaxi

← true
simplify(η, L, j, maxi, mark)
simplify(η, L, maxi, k, mark)

For(1 to k − 1 as i)
If((L(i−1)x

< 0) ∪ (Lix < 0) ∪ (L(i+1)x
< 0)) marki ← true

Figure A.5 Douglas-Peucker Edge Simplification Algorithm

A-5

A.3 The EM Algorithm

We have a set of parameters θk = (πk, φk) that defines a probability distribution

function of the robot’s location, where k = s, m; s being the abstracted sonar data

detailed in Section 3.1.10 and m the motor data of the probability distribution

function. All other variables and functions are defined as follows:

• k = {s, m}, x = {x1, x2, x3, ...xN} of s or m and φk = {µk, σk} as defined in

the previous section.

• Mean(X) calculates the mean of the set of X, µX

Returns:
∑|X|

i=1 Xi

|X|

• StdDev(X) calculates the standard deviation of the set X, σX

Returns:

√
∑|X|

i=1(Xi−Mean(X))

|X|−1

• Var(X) calculates the variance of the set X, σ2
X

Returns:
∑|X|

i=1(Xi−Mean(X))

|X|−1

• Gauss(xi, µ, σ) is the function of p(xi|µ, σ2)

Returns:
exp(− (xi−µ)2

2σ2)
√

2πσ

• SumGaussk(xi, πs, πm, µs, µm, σs, σm) is the function of
∑

k p(xi|µk, σ
2
k)

Returns: πs Guess(xi, µs, σs) + πm Guess(xi, µm, σm)

• SumGausskTimesLog(xi, πs, πm, µs, µm, σs, σm) is the function of
∑

k

(
< qk

i > log(πkp(xi|φk))
)

Returns: q(xi, πs, π
′
s, µ

′
s, σ

′
s, πm, µs, µm, σs, σm)× log(πsGuess(xi, µs, σs))+

q(xi, πs, π
′
m, µ′

m, σ′
m, πm, µs, µm, σs, σm)× log(πmGuess(xi, µm, σm)

• q(xi, πs, π
′
k, µ

′
k, σ

′
k, πm, µs, µm, σs, σm) is the function of < qk

i >

Returns: π′
kGuess(xi, µ

′
k, σ

′
k)/(SumGaussk(N, xi, πs, πm, µs, µm, σs, σm))

A-6

• sum< q > (k,x, πs, πm, µs, µm, σs, σm, π′
k, µ

′
k, σ

′
k)

For (i = 1 to |x|)

sum = sum + q(k, xi, πs, π
′
k, µ

′
k, σ

′
k, πm, µs, µm, σs, σm)

End For

Return: sum

• sumqXi(k,x, πs, πm, µs, µm, σs, σm, π′
k, µ

′
k, σ

′
k)

For (i = 1 to |x|)

sum = sum + xi × q(k, xi, πs, π
′
k, µ

′
k, σ

′
k, πm, µs, µm, σs, σm)

End For

Return: sum

• sumqXiMinusMu(k,x, πs, πm, µs, µm, σs, σm, π′
k, µ

′
k, σ

′
k, µ̂k)

For (i = 1 to |x|)

sum = sum + q(k, xi, πs, π
′
k, µ

′
k, σ

′
k, πm, µs, µm, σs, σm)× (xi − (̂µk))

2

End For

Return: sum

A-7

PerformEM(θ, k,x)
Initialize πk to some random numbers
While (error> ε)
Perform E-Step

For (N = 1 to |x|)
xN ← E-Step(θ, θ′,x, N)

End For
Perform M-Step
double SumqS←sumq(x, πs, πm, µs, µm, σs, σm, π′

s, µ
′
s, σ

′
s)

double SumqM←sumq(x, πs, πm, µs, µm, σs, σm, π′
m, µ′

m, σ′
m)

π̂s ←SumqS/|x|
π̂m ← SumqM/|x|
µ̂s ← sumqXi(x, πs, πm, µs, µm, σs, σm, π′

s, µ
′
s, σ

′
s)/SumqS

µ̂m ← sumqXi(x, πs, πm, µs, µm, σs, σm, π′
m, µ′

m, σ′
m)/SumqM

σ̂s
2 ←sumqXiMinusMu(x, πs, πm, µs, µm, σs, σm, π′

s, µ
′
s, σ

′
s, µ̂s)/SumqS

σ̂m
2 ←sumqXiMinusMu(x, πs, πm, µs, µm, σs, σm, π′

m, µ′
m, σ′

m, µ̂s)/SumqM
π′

s ← πs

πs ← π̂s

µ′
s ← µs

µs ← µ̂s

σ′2
s ← σ2

s

σ2
s ← σ̂2

s

π′
m ← πm

πm ← π̂m

µ′
m ← µm

µm ← µ̂m

σ′2
m ← σ2

m

σ2
m ← σ̂2

m

error ← |µs − µ′
s|+ |µm − µ′

m|
End While Loop

Figure A.6 Expectation Maximization Algorithm

A-8

A.4 Algorithm to Convert Vectors to Angles

To calculate s from each ASR, a direction for each line within an ASR is

calculated to obtain an ASR direction. Let A denote the current vector and B the

vector that comes before A. Let U be the normal vector along the positive x axis

of the cartesian map represented by the current ASR and V be the complete vertex

list.

Gets(Vertex List V)
For(i = 1 To |V |)

A = Vi

B = Vi−1

Ax ← Ax − Bx

Ay ← Ay − By

φ = cos−1
(

Ax

|A|

)

φ← φ

π
× 180

If (Ax < 0) φ← −φ
If (φ > 90) φ← 180− φ
If (φ < −90) φ← 180 + φ
If (φ > 45) φ← 90− φ
If (φ < −45) φ← 90 + φ
s← s ∪ {φ}

End For

Return s

Figure A.7 Calculating a value for sensor data from the abstracted map.

A-9

Bibliography

1. L. E. Baum, T. Petrie, G. Soules, and N. Weiss, A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains.
Annual Math Stat. Vol. 41, pp. 164-171, 1970.

2. R. C. Bolles and P. Horaud, 3DPO: A Three-Dimensional Part Orientation Sys-
tem. International Journal of Robotics Research, Vol. 5(2), pp. 326, 1986.

3. J. Borenstein, B. Everett, and L. Feng, Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd. Wellesley, MA, 1996.

4. J. Borenstein and Y. Koren, Histogramic In-Motion Mapping for Mobile Robot
Obstacle Avoidance. IEEE Journal of Robotics and Automation, Vol. 7, No. 4,
pp. 535-539, 1991.

5. J. Borenstein and Y. Koren, The Vector Field Histogram - Fast Obstacle Avoid-
ance for Mobile Robots. IEEE Journal of Robotics and Automation, Vol. 7, No.
4, pp. 278-288, 1991.

6. N. Cossitt, Introduction to Bresenham’s Line Algorithm Using the SBIT Instruc-
tion. Series 32000 Graphics Note 5, National Semiconductor Application Note
524, 1988.

7. F. Dellaert, W. Burgard, F. Dieter, and S. Thrun, Using the Condensation Algo-
rithm for Robust, Vision-Based Mobile Robot Localization. Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR99), Fort Collins,
CO, June 1999.

8. A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society, Series B, Vol.
39(1), pp. 1-38, 1977.

9. D. Douglas and T. Peucker, Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature. The Canadian
Cartographer, Vol. 10(2), pp. 112-122, 1973.

10. O. D. Faugeras and M. Hebert, The Representation Recognition, and Locating
of 3D Objects. Int. J. of Robotics Research, Vol. 5(3), pp. 27-52, 1986.

11. H. Gonzanos and J. Latombe, Navigation Strategies for Exploring Indoor Envi-
ronments. International Journal of Robotics Research, 2001.

12. W. E. L. Grimson, Object Recognition by Computer: The Role of Geometric
Constraints. The Massachusetts Institute of Technology Press, Cambridge, Mas-
sachusetts, 1990.

BIB-1

13. R. Hill, C. Han, and M. Lent, Applying Perceptually Driven Cognitive Mapping
to Virtual Urban Environments. AI magazine, Vol. 23, 2002.

14. P. Hough, A Method and Means for Recognizing Complex Patterns. U.S. Patent,
Number 3,069,654, 1962.

15. M. E. Jefferies and W. K. Yeap, Neural Network Approaches to Cognitive Map-
ping. Artificial Neural Networks and Expert Systems, 1995. In Proceedings of the
Second New Zealand International Two-Stream Conference, pp. 75-78, November
1995.

16. M. E. Jefferies and W. K. Yeap, The Utility of Global Representations in a
Cognitive Map. In Proceedings of the 2001 Conference on Spatial Information
Theory, 2001.

17. M. E. Jefferies, W. K. Yeap, L. Smith, and D. Fergusen, Building a Map for Robot
Navigation Using a Theory of Cognitive Maps. In Proceedings of the IASTED
International Conference on Artificial Intelligence and Applications, Marbella,
Spain, 2001.

18. P. Jensfelt, Approaches to Mobile Robot Localization in Indoor Environments.
Doctoral Thesis, Royal Institute of Technology, Department of Signals, Sensors
and Systems, 2001.

19. P. Jensfelt, O. Wijk, D. J. Austin, and M. Andersson, Experiments on a Aug-
menting Condensation for Mobile Robot Localization. In proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), San Francisco,
CA, April 2000.

20. D. Kortenkamp, Cognitive Maps for Mobile Robots: A Representation for Map-
ping and Navigation. PhD Thesis, University of Michigan, 1993.

21. B. Kuipers and Y. Byun, A Robot Exploration and Mapping Strategy Based on
a Semantic Hierarchy of Spatial Representations. Qualitative Reasoning Group
at the Artificial Intelligence Laboratory, Research of the Qualitative Reasoning
Group is supported in part by NSF grants IRI-8602665, IRI-8905494, and IRI-
8904454, and by NASA grants NAG 2-507 and NAG 9-200.

22. G. B. Lamont, Course Material, CSCE 686 Advanced Algorithm Design, Air
Force Institute of Technology, 2003.

23. D. G. Lowe, Object Recognition from Local Scale Invariant Features. In Pro-
ceedings of the Seventh International Conference on Computer Vision (ICCV99),
pp. 11501157, Kerkyra, Greece, September 1999.

24. J. Malik, Course Material, CS 294-2 Grouping and Recognition, University of
California at Berkeley, 1999.

BIB-2

25. J. S. Milton and J. C. Arnold, "Introduction to Probability and Statistics:
Principles and Applications for Engineering and Computing Sciences". McGraw-
Hill Primis Custom Publishing, 2002.

26. H. Moravec, Sensor Fusion in Certainty Grids for Mobile Robots. In Sensor
Devices and Systems for Robotics, Springer-Verlag, Nato ASI Series, pp. 253-276.
1989.

27. R. R. Murphy, Dempster-Shafer Theory for Sensor Fusion in Autonomous Mo-
bile Robots. IEEE Transactions on Robotics and Automation, 14(2):197-206, 1998.

28. J. Neira and J. D. Tardos, Data Association in Stochastic Mapping Using the
Joint Compatibility Test. IEEE Transactions on Robotics and Automation, Vol.
17, No. 6, pp. 890-897, December 2001.

29. J. Neira, J. D. Tardos, and J. A. Castellanos, Linear Time Vehicle Relocation
in SLAM. Universidad de Zaragoza.

30. G. L. Peterson, Course Material, CSCE 723 Advanced Topics in Artificial Intel-
ligence, Air Force Institute of Technology, 2003.

31. A. J. Pettofrezzo, "Matrices and Transformations". Dover Publications, Inc.
New York, 1978.

32. S. Se, D. Lowe, and J. Little, Global Localization using Distinctive Visual Fea-
tures . International Conference on Intelligent Robots and Systems, 2002.

33. A. C. Schultz and A. William, Continuous Localization Using Evidence Grids. In
proc. of the IEEE International Conference on Robotics and Automation, Leuven,
Belgium, pp.2833-2839, May 16-21, 1998.

34. S. Thrun, Probabilistic Algorithms in Robotics. AI Magazine, Vol. 21: pp. 93-109,
2000.

35. S. Thrun, Robotic Mapping: A Survey. In G. Lakemeyer and B. Neberl, editors,
Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, 2002.

36. S. Thrun, W. Burgard, and D. Fox, A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots. Machine Learning and Autonomous
Robots (joint issue), 31/5, pp. 1-25, 1998.

37. S. Thrun, W. Burgard, D. Fox, and F. Dellaert, Robust Monte Carlo Localization
for Mobile Robots. Artificial Intelligence, Vol. 128(1-2): pp. 99-141, 2001.

38. W. K. Yeap, Towards a Computational Theory of Cognitive Maps. Artificial
Intelligence, Vol. 34: 297-360, 1988.

39. W. K. Yeap and M. E. Jefferies, Computing a Representation of the Local Envi-
ronment. Artificial Intelligence, Vol. 107: 265-301, 1999.

BIB-3

Vita

Kennard R. Laviers (S’2003) was born in Hollywood, CA, in 1971. He received

a BSCS degree in computer science with honors from University of Texas, El Paso,

TX, in 2000. He is currently a M.S. student at The Air Force Institute of Technology,

where he is researching SLAM with cognitive applications under the supervision of

Professor Gilbert Peterson.

VITA-1

		REPORT DOCUMENTATION PAGE

		Form Approved

OMB No. 074-0188

		The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

		1. REPORT DATE (DD-MM-YYYY)

23-03-2004

		2. REPORT TYPE

Master’s Thesis

		3. DATES COVERED (From – To)

Oct 2002 – Mar 2004

		4. TITLE AND SUBTITLE

CONCURRENT COGNITIVE MAPPING AND LOCALIZATION USING EXPECTATION MAXIMIZATION

		5a. CONTRACT NUMBER

		5.

		5b. GRANT NUMBER

		6.

		5c. PROGRAM ELEMENT NUMBER

		6. AUTHOR(S)

Laviers, Kennard R., Lieutenant, USAF

		5d. PROJECT NUMBER

If funded, enter ENR #

		7.

		5e. TASK NUMBER

		8.

		5f. WORK UNIT NUMBER

		7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way, Building 640

WPAFB OH 45433-7765

		8. PERFORMING ORGANIZATION

 REPORT NUMBER

 AFIT/GCS/ENG/04-10

		9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Mikel M. Miller AFRL/SNRP

Capt Chris Brann AFRL/MNGN

Bldg. 620

101 West Eglin Blvd

2241 Avionics Circle

Eglin AFB, FL 32542

WPAFB, OH 45433-7333

(850)882-5388 ext. 1291

(937)255-6127 ext. 4274

DSN: 872-5388 ext. 1291

		10. SPONSOR/MONITOR’S ACRONYM(S)

		

		11. SPONSOR/MONITOR’S REPORT NUMBER(S)

		12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

		13. SUPPLEMENTARY NOTES

		14. ABSTRACT

 Robot mapping remains one of the most challenging problems in robot programming. Most successful methods use some form of occupancy grid for representing a mapped region. An occupancy grid is a two dimensional array in which the array cells represents (x,y) coordinates of a cartesian map. This approach becomes problematic in mapping large environments as the map quickly becomes too large for processing and storage.

 Rather than storing the map as an occupancy grid, our robot (equipped with ultrasonic sonars) views the world as a series of connected spaces. These spaces are initially mapped as an occupancy grid in a room-by-room fashion using a modified version of the Histogram In Motion Mapping (HIMM) algorithm extended in this thesis. As the robot leaves a space, denoted by passing through a doorway, it converts the grid to a polygonal representation using a novel edge detection technique. Then, it stores the polygonal representation as rooms and hallways in a set of Absolute Space Representations (ASRs) representing the space connections. Using this representation makes navigation and localization easier for the robot to process. The system also performs localization on the simplified cognitive version of the map using an iterative method of estimating the maximum likelihood of the robot's correct position. This is accomplished using the Expectation Maximization algorithm. Treating vector directions from the polygonal map as a Gaussian distribution, the Expectation Maximization algorithm is applied, for the first time, to find the most probable correct pose while using a cognitive mapping approach.

		15. SUBJECT TERMS

 Robot mapping, Occupancy grid, Histogram In Motion Mapping, Absolute Space Representations, Expectation Maximization,

 Cognitive mapping, Localization, Polygonal map

		16. SECURITY CLASSIFICATION OF:

		17. LIMITATION OF

 ABSTRACT

UU

		18. NUMBER

 OF

 PAGES

98

		19a. NAME OF RESPONSIBLE PERSON

Gilbert L. Peterson, Dr., USAF (ENG)

		a. REPORT

U

		b. ABSTRACT

U

		c. THIS PAGE

U

		

		

		19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext. 4281, e-mail: gilbert.peterson@afit.edu

		

		

		

		Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

kenny
File Attachment
SF 298.doc

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Oct 2002 – Mar 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

CONCURRENT COGNITIVE MAPPING AND LOCALIZATION USING
EXPECTATION MAXIMIZATION

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
If funded, enter ENR #
5e. TASK NUMBER

6. AUTHOR(S)

Laviers, Kennard R., Lieutenant, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-10

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Dr. Mikel M. Miller AFRL/SNRP Capt Chris Brann AFRL/MNGN
 Bldg. 620 101 West Eglin Blvd
 2241 Avionics Circle Eglin AFB, FL 32542
 WPAFB, OH 45433-7333 (850)882-5388 ext. 1291
 (937)255-6127 ext. 4274 DSN: 872-5388 ext. 1291

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Robot mapping remains one of the most challenging problems in robot programming. Most successful methods use some form of
occupancy grid for representing a mapped region. An occupancy grid is a two dimensional array in which the array cells represents (x,y)
coordinates of a cartesian map. This approach becomes problematic in mapping large environments as the map quickly becomes too
large for processing and storage.
 Rather than storing the map as an occupancy grid, our robot (equipped with ultrasonic sonars) views the world as a series of
connected spaces. These spaces are initially mapped as an occupancy grid in a room-by-room fashion using a modified version of the
Histogram In Motion Mapping (HIMM) algorithm extended in this thesis. As the robot leaves a space, denoted by passing through a
doorway, it converts the grid to a polygonal representation using a novel edge detection technique. Then, it stores the polygonal
representation as rooms and hallways in a set of Absolute Space Representations (ASRs) representing the space connections. Using
this representation makes navigation and localization easier for the robot to process. The system also performs localization on the
simplified cognitive version of the map using an iterative method of estimating the maximum likelihood of the robot's correct position.
This is accomplished using the Expectation Maximization algorithm. Treating vector directions from the polygonal map as a Gaussian
distribution, the Expectation Maximization algorithm is applied, for the first time, to find the most probable correct pose while using a
cognitive mapping approach.
15. SUBJECT TERMS
 Robot mapping, Occupancy grid, Histogram In Motion Mapping, Absolute Space Representations, Expectation Maximization,
 Cognitive mapping, Localization, Polygonal map

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Gilbert L. Peterson, Dr., USAF (ENG)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

98

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext. 4281, e-mail: gilbert.peterson@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Concurrent Cognitive Mapping and Localization Using Expectation Maximization
	Recommended Citation

	C:/Documents and Settings/kenny/Desktop/ThesisDoc/Thesis.dvi

