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AFIT/GCS/ENG/04-03 

Abstract 

 

  As wireless networks become an increasingly common part of the infrastructure 

in industrialized nations, the vulnerabilities of this technology need to be evaluated. Even 

though there have been major advancements in encryption technology, security protocols 

and packet header obfuscation techniques, other distinguishing characteristics do exist in 

wireless network traffic.  These characteristics include packet size, signal strength, 

channel utilization and others.  Using these characteristics, windows of size 11, 31, and 

51 packets are collected and machine learning (ML) techniques are trained to classify 

applications accessing the 802.11b wireless channel.  The four applications used for this 

study included E-Mail, FTP, HTTP, and Print.  Using neural networks and decision trees, 

the overall success (correct identification of applications) of the ML systems ranged from 

a low average of 65.8% for neural networks to a high of 85.9% for decision trees.  These 

averages are a result of all classification attempts including the case where only one 

application is accessing the medium and also the unique combinations of two and three 

different applications.   
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MACHINE LEARNING TECHNIQUES FOR  
 

CHARACTERIZING 802.11B ENCRYPTED DATA  
 

STREAMS 
 
 

I. Introduction 
 
 

1.1    Motivation 
 
 As wireless networks become an increasingly common part of the infrastructure 

in industrialized nations, the capabilities of this technology needs evaluation.  Due to the 

inherent mobility of these networks, they have been implemented in many tactically 

mobile sectors such as the medical community and the military [JVZ01].  These areas 

often require more secure communications than other users of this technology due to the 

sensitive nature of the missions.  Wireless networks are unique; the transmission channel 

is not secure.  Also, wireless networks typically have lower data rates and higher error 

rates than a wired network.  The broadcast nature of wireless networks means they are 

much simpler targets for information warfare attacks such as jamming, interjection of 

spurious traffic, and traffic analysis [Gei02].   

 Most traffic analysis attacks rely on header information such as the sender and 

receiver IP addresses and protocol in use to gain information about a network [ChA99].  

Several methods of restricting access to headers have been proposed [FKK96], [GFX01], 

[GLX99], [JVZ01], [WoV91].  However, there is other information available in wireless 

packets to would be attackers.  This information includes packet size, channel utilization, 

signal strength, and packet inter-arrival times.  For groups implementing wireless 
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networks (especially the military), an analysis of the ability to exploit these other 

characteristics is clearly important.  Such an analysis has implications for both offensive 

and defensive information attack.   

1.2    Overview 

 The IEEE 802.11b [P802.11] protocol is the most common wireless network used 

today [And98].  This protocol uses the 2.4 GHz industrial, scientific and medical (ISM) 

band and a direct sequence spread spectrum modulation scheme.  The 802.11 protocol 

supports data rates ranging from 1 to 54 Mbps with the 802.11b specification supporting 

1, 2, 5.5 and 11 Mbps. There are two operating modes for 802.11b networks: 

infrastructure and ad-hoc.  In infrastructure mode, wireless nodes are connected to an 

existing wired network through a wireless access point.  In ad-hoc mode, nodes in the 

network communicate directly to each other without the use of any traditional wired 

network.  By definition, this type of network must include at least two computers.  An 

example of this is shown below in Figure 1-1.  This is the type of network considered in  

 

 

 

 

 

 

 

 

Figure 1-1  802.11b Wireless Ad-Hoc Network 
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this research.  The 802.11b wireless networks are generally capable of two different 

encryption and authentication schemes.  The first type of encryption known as Wired 

Equivalent Privacy (WEP), uses a shared secret key to both encrypt and decrypt 

messages.  This key must be configured on all the wireless clients attempting to 

communicate in the wireless network and is usually between 40 and 152 bits in size 

depending on the vendor.  A 40-bit key is specified in the 802.11b standard.  Although 

WEP is known to be vulnerable to various attacks, other standards for wireless encryption 

are under development.  IEEE 802.11i specifies certain improvements to wireless 

networking security.  While this standard is being developed, wireless vendors have 

agreed upon an interoperable interim standard known as Wi-Fi Protected Access (WPA) 

[Gri02].  WPA replaces WEP’s weaker encryption algorithm with the Temporal Key 

Integrity Protocol (TKIP).  Unlike WEP, TKIP provides a unique starting key for each 

authentication and also synchronized changing of the encryption key for each frame.    

 The trend of moving toward tougher encryption standards is sure to continue as 

wireless networks begin to carry the same sensitive data as wired networks.  It is this 

trend and the trend of obscuring header information that drives the need for other analysis 

techniques for wireless transmissions. 

 Research has shown that attributes other than the packet headers provide valuable 

information about the nature of transmissions on a wireless network [Bel97], [ChA99].  

Information such as packet size can be captured easily due to the broadcast nature of the 

wireless medium and used in inferring information about the nature of the transmissions.  

There are techniques that could hide such information like traffic padding, changing the 

maximum transfer unit (MTU) size, and making all packets the same size, but these 
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techniques all require significant overhead and cause a reduction in useful throughput 

[KeA98].  It is the combination of negative bandwidth implications and the failure to 

appreciate the rich information to be gained from packet analysis that makes the use of 

such techniques to defeat that analysis unlikely [JVZ01], [KeA98].  

 The goal of this research is to develop an automated algorithm to characterize 

wireless traffic.  More specifically, this algorithm will identify what applications are 

accessing the wireless channel.  In order to automate such a system, machine learning 

(ML) techniques are used.  Machine learning deduces patterns, regularities or rules from 

past “experiences” or samples.  Neural networks and decision trees are used to infer 

information from 802.11b packet attributes without examining the data contained in the 

packets themselves which are assumed encrypted.  Taking some of the unique attributes 

described above as input, these techniques will classify wireless transmissions into 

applications that are accessing the channel. 

1.3   Thesis Organization 

 This chapter presents the motivation for the research and an overview of the 

concepts involved.  Chapter II provides background in the area of traffic analysis 

techniques, and further discusses different methods of automatic data classification and 

machine learning.  Chapter III discusses the methodology used in this research.  System 

boundaries, parameters, workloads, and factors to be varied in the research are explained.  

Chapter IV contains the data collected and results of analysis techniques performed as 

well as an analysis of the variance of the data.  Finally, Chapter V presents conclusions, 

limitations, and suggestions for future research in this area. 
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II.  Literature Review 

2.1   Background 

 Whether discussing voice communications or packet information on a network, 

obtaining the source information has always been more difficult than obtaining meta 

information, or information about things such as routing and timing characteristics.  For 

example, wiretaps are so expensive to implement, and require such a high level of 

evidence to be presented to a judge before being authorized; police use them only as a 

tool of last resort.  In contrast, the phone numbers a suspect calls, and the numbers of 

those who call him provide valuable information.  The police use this meta data to infer 

information about the suspect and those he contacts.  In 1998, there were 1,329 full 

wiretap applications approved, while there were 4,886 warrants for pen registers (devices 

that record all the numbers dialed from a particular phone line) and 2,437 warrants for 

trap-and-trace devices (which record the calling-line phone number of incoming calls) 

[And01].  This means that there were approximately 11 times as many warrants for 

communications data as there were for actual content. 

 Disregarding the legal issues of reading the contents of packets on a network, 

there are still the technical problems.  It is fairly difficult to examine high data rate 

packets even when they are not encrypted.  Add to this the trend towards tougher 

encryption standards for wireless traffic, especially since the relaxation of the US 

encryption export rules in 1999, and it becomes much more difficult to decrypt these 

packets and will probably soon require an inordinate amount of time and resources 

[GFX01].  For this reason, other methods for analyzing traffic are needed.  Many 

intrusion detection systems use unencrypted header information to create classification 
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rules for attacks [Mar01].  However, there has been recent work on hiding this 

information for both wired and wireless networks including IPsec, Onion Routing, the 

Non-Disclosure Method (NDM), and the Dynamic Mix Method for Wireless Ad Hoc 

Networks [KeA98], [RSG98], [FKK96], [JVZ01].  In light of this, this research assumes 

that all packets have both the contents and the header information encrypted. 

 The following sections contain an in depth review of techniques used to monitor 

and characterize network traffic as well as techniques to characterize and classify 

information in general. 

2.2   Current Related Research 

 There are many papers and articles on traffic analysis techniques.  Many of these 

use routing information from packet headers [FKK96], [GFX01], [GLX99].  There are 

also a number of papers dealing with the prevention of traffic analysis [JVZ01], 

[WoV91], [WoV93].  Most prevention techniques aim to hide source and destination 

node information.  There are several interesting research efforts that deal with other 

aspects of traffic analysis and data characterization that provide support and motivation 

for this study.  These include a probability based attack on encrypted IP headers, a 

signature based attack for analysis of SSL encrypted web browsing, and a timing analysis 

attack on SSH [Bel97], [ChA99], [SWT01]. 

 A probability based attack on encrypted IP headers is more effective if traffic 

analysis is done first.  Different protocols and applications have their own characteristic 

traffic patterns or signatures.  For example, SMTP has a series of short data packet 

exchanges between the two nodes, followed by a longer message from the client, and 

another set of brief exchanges.  HTTP exchanges consist of a few hundred bytes sent in 
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one direction, followed by at least several hundred bytes in the other direction [Bel97].  

By identifying the type of protocol in use, more information is available about the 

probable contents of the headers.  The format of the IP header is shown below in Figure 

2-1.  The idea is that certain areas in an IP header can be predicted even though  

 

 

 

 

Figure 2-1 Format of the IP Header 

encrypted.  For example, the version number value is always 416 (representing IP version 

4); the header length is very often 516 (which shows that there are 5 32 bit words or 20 

bytes in the header), and the type of service field value is very often 1016 [Bel97].   This 

reveals useful information to use in conjunction with various cryptanalysis techniques 

and software.  If padding is not used, the length attribute can be determined for certain 

packets based on traffic analysis of the actual packet size.  Even in the presence of traffic 

padding, analyzing the distribution of lengths should yield information since the relative 

number of certain packets in traffic have been analyzed [Bel97].  For example, ACK 

packets are known to represent about 30 to 40 percent of those on the Internet and these 

have a length of 2816 (40 bytes).   

 The next area of related research is the traffic analysis of secure sockets layer 

(SSL) encrypted web browsing.  The SSL protocol is an application layer mechanism 

widely used for encrypted Web browsing.  However, SSL was not designed with traffic 

analysis in mind.  One approach used to analyze SSL traffic uses the sizes of known Web 
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pages and identifies when those pages are downloaded by a user [ChA99].  Since HTML 

files can be of arbitrary length, the sizes of particular web pages are often unique among 

files at a site.  Figure 2-2 below shows the size of Web pages served by the U.C.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Histogram of HTML page sizes served by U.C. Berkeley Web Site 

Berkeley Extension Web site.  Out of the approximately 500 pages on the site, only about 

ten percent are not unique. 

To understand how this particular form of traffic analysis attack is performed, a 

thorough understanding of the protocols used for Web browsing is needed.  HTTP, for 

example, has a simple procedure for downloading Web pages.  First, the client browser 

sends a request for a page.  The server responds with a stream of IP packets containing 

the HTML code for the page.  This code contains references to other embedded objects, 

such as images, which the browser must also fetch from the server.  After receiving and 
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 parsing the HTML, the browser issues requests for all of the embedded objects.  The 

characteristics of the protocol are used to create a database with size information for 

various encrypted and unencrypted Web pages taken from captured traffic.  It is 

interesting to note that the only difference between encrypted and unencrypted sizes is 

that the encrypted files are a constant byte amount larger than the unencrypted ones 

[ChA99].  This suggests that a hidden Markov model (HMM) with pages visited 

corresponding to hidden states and the hyperlinks to state transitions would work well.  

HMMs are discussed in Section 2.3.   

In what is perhaps the most novel of these related analysis techniques, timing 

analysis attacks performed on packets from an interactive Secure Shell (SSH) session 

revealed inter-keystroke timings [SWT01].  Traffic analysis reveals the exact timing of 

the transmission of the password since every keystroke is sent in a separate packet.  

Knowledge of the SSH password protocol allows a recognizable “signature” to be created 

to indicate when passwords are about to be entered.  The signature consists of three 

twenty byte packets sent for the password request, followed by an echo of two twenty 

byte packets from the remote host and a twenty-eight byte packet for the “password:” 

prompt as shown in Figure 2-3.  The local machine sends each character of the password  

 

 

 

 

 

Figure 2-3  “Signature” of SSH Password Prompt Entry 
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in twenty byte packets until it either successfully logs into the local host or fails indicated 

by other size packets from the host. 

 A hidden Markov model is used to model the behavior of the inter-keystroke 

timings.  In this example, the pair of keys is considered the hidden state, and the inter-

keystroke timing the observable output.  Using this approach, only 1/50th the number of 

guesses were required to identify the correct password compared to a brute force search.  

This represents a gain of 5.7 bits of information per password guessed using the latency 

information [SWT01].  Thus, information other than that available in packet headers can 

assist in inferring important characteristics about network traffic. 

 Although these traffic analysis techniques are promising note that there are also 

numerous papers and articles revealing methods for preventing this type of analysis.  

Many of these traffic analysis prevention techniques involve the information assumed to 

be unavailable in the context of this effort, namely the packet header routing information.  

Techniques used to hide this information include link encryption and the insertion of 

dummy traffic into the network (traffic padding) [GLX99], [JVZ01].  Another technique 

used to defeat traffic analysis is to force all the packets in a given network to be a certain 

size.  This can also happen as a result of fragmentation due to underlying networks’ 

maximum transfer units (MTU) [Mar01].  Forcing constant packet sizes results in a 

reduction in useful bandwidth since many packets have useless padding material 

[WoV91].  To defend against timing attacks, round trip times (RTT) could be padded, 

increasing all RTTs to worst case round-trip times.  Of course, this is also a major 

inconvenience for users.  Given these inconveniences, and more importantly, worst-case 

delay requirements for some systems, it is questionable whether networks system 
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administrators will employ methods to defeat all traffic analysis techniques [GFX01].  

Before any serious traffic analysis can be performed, a decision has to be made about 

how to collect and analyze the data.  The next section covers several different methods 

for data analysis that have been applied to network traffic information in various ways.   

2.3   Data Analysis Techniques 

 There are many interesting characteristics that can be captured and analyzed in 

networks.  Some of these include source and destination addresses, source and destination 

port numbers, packet size, packet inter-arrival times, channel utilization, and signal 

strength in wireless traffic.  Techniques used to analyze this data range from simple 

empirical observation to complex models which infer information from the traffic stream 

using machine learning.  Statistics involves fitting models to data and making inferences 

from those models [Mar01].  Since this coincides well with the objective in this research, 

several of these statistical methods are described below. 

 2.3.1 Statistical Pattern Recognition 

 Pattern recognition is one subset of the larger class of data mining techniques.  In 

general, data mining is performed on much larger sets of data than pattern recognition.  

The automatic recognition and classification of patterns by machines represent statistical 

pattern recognition [JDM00].  The targets of pattern recognition techniques include 

fingerprints, handwritten letters and words, the human face, speech signals, and network 

information among others.  In pattern recognition, there are two major approaches:  

supervised and unsupervised learning [HTF01].  So called supervised learning gains its 

name from the presence of an outcome variable to guide the learning process of the 

model.  For example, an outcome measurement could be heart attack versus no heart 
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attack or something more complex like different categories of network traffic.  

Unsupervised learning examines data without any knowledge of the outcome and 

characterizes it based on how it is organized or clustered.  Sometimes it is useful to use 

both techniques.  The unsupervised technique might be used to determine unique 

characteristics in network traffic that could be used for inferring useful data.  Evaluation 

of the resulting categories or clusters of data found could be used to train a model in a 

supervised way by deciding on certain outcome variables that can be determined.   

 The design of a pattern recognition system generally includes the following three 

aspects: 1) data acquisition and preprocessing, 2) data representation, and 3) decision 

making [JDM00].  One of the simplest techniques in pattern recognition, template 

matching compares a captured sample against templates or prototypes stored in a 

database.  Quite often, templates are learned from a training set of data.  If a relatively 

small number of parameters are observed in network traffic, this method may prove to be 

an accurate way to infer important characteristics.    

 More formally, a pattern recognition system operates in two modes that include 

training or learning mode and classification or testing mode as seen in Figure 2-4.  The  

Test Feature Preprocessing Classification 
Pattern Measurement 

Figure 2-4  Model for Statistical Pattern Recognition 

Classification 

Training 

Training Feature 
Extraction 

Preprocessing
Pattern 

Learning 
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role of preprocessing is to separate interesting features of the data from those that are not 

statistically interesting.  The user can intervene by examining these interesting features 

and selecting those appropriate for extraction.  Next, the system is trained to separate the 

feature space according to the selected features.  Classification mode works in a similar 

fashion by separating the feature space and assigning the results to specific categories 

learned in the training process.   

 Perhaps one of the most important aspects of pattern recognition is the error 

estimation of the classifications.  This is especially true in the design phase of the pattern 

recognition model where different classifiers and combinations thereof can be selected 

from among the available features.  The error rate of a recognition system can be 

estimated by using the percentage of misclassifications of the test data.  The training and 

test sets need to be sufficiently large and independent in order for this estimation to be 

reliable in predicting future classification performance.  The following example attributed 

to [JDM00] helps to clarify this idea.  Given a classifier, suppose that τ is the number of 

samples out of a total of n that are misclassified.  It can be shown that the probability 

density function of τ fits a binomial distribution.  It follows that the maximum likelihood 

estimate,  is given by τ/n, with E( )eP̂ eP̂  = eP  and Var( ) =  (1- )/n.  This shows that eP̂ eP eP

eP̂  is an unbiased estimator and a confidence interval can be calculated.  For example, if n 

= 250 and τ = 50, then  is 0.2 and the 95% confidence interval for eP̂ eP̂  would be (0.15, 

0.25).  Given two classifiers, if the mean of either is included in the others’ confidence 

interval, their performance is statistically equivalent.  Since a larger n reduces the 

confidence interval, a large sample is desirable.  However, one has to consider the 

partitioning of the total set of available data as well.  In other words, using too few 
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training examples so that more can be used for testing to decrease the confidence interval 

will likely lead to higher error levels.  Some method for determining the ratio of training 

sets to test sets must be determined.  Table 2-1 discusses some possibilities.  If the 

amount of data used for training is too small, the classification technique will have poor 

generalization ability.  This is an intuitive result especially if the samples used for 

training do not represent all of the class possibilities.  On the other hand, using too much 

 
Table 2-1 Error Estimation Methods 

 
Method Property Comments 
Resubstitution Method All the available data is used 

for training and test sets are 
the same. 

Optimistically biased estimate, 
especially when the ratio of 
sample size to dimensionality 
is small. 

Holdout Method Half the data is used for 
training and the remaining 
data is used for testing; 
training and test sets are 
independent. 

Pessimistically biased 
estimate; different partitioning 
will give different estimates. 

Leave-one-out Method A classifier is designed using 
(n-1) samples and evaluated 
on the one remaining sample; 
this is repeated n times with 
different training sets of size 
(n-1). 

Estimate is unbiased but it has 
a large variance; large 
computational requirement 
because n different classifiers 
have to be designed. 

Rotation Method, n-fold cross 
validation 

A compromise between 
holdout and leave-one-out 
methods; divide the available 
samples into P disjoint 
subsets, 1 ≤ P ≤ n.  Use (P-1) 
subsets for training and the 
remaining subset for test. 

Estimate has lower bias than 
the holdout method and is 
cheaper to implement than the 
leave-one-out method. 

Bootstrap Method Generate many bootstrap 
sample sets of size n by 
sampling with replacement. 

Bootstrap estimates can have 
lower variance than the leave-
one-out method; 
computationally more 
demanding; useful in small 
sample size situations. 

 

data to train and only a small amount to test may lead to an inaccurate estimated error 

rate.  Deciding which method to use is more of an art than a science and may require 
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experimentation with the collected data [JDM00].  If a large number of data sets are 

available, all of the techniques described above are likely to approach the same error 

estimations.  

Statistical pattern recognition works very well especially when the feature space 

(d) is small compared to the number of training samples.  This is known as the peaking 

phenomenon [JaC87].  One problem with statistical pattern recognition is determining the 

period to be examined.  In other words, what amount of time is one sample for the 

purposes of training and testing?  In order to answer that question, a thorough 

understanding of the data to be used and the problem being solved is required.  Consider 

Internet traffic for example.  Making the decision of how many packets to use for one 

sample depends on the purpose or goal of the classification.  Once the goal of the 

classification attempt is understood, the salient features can be analyzed.  Those features 

that yield the most information toward the goal of the classification would be used for 

training.  Examining the Internet traffic, it can be determined how often the classifying 

characteristics appear.  This information is then used to determine an appropriate size for 

the samples.  Another closely related and popular machine learning technique used for 

classification is artificial neural networks (ANN). 

 2.3.2  Artificial Neural Networks 

 Neural networks fall into the artificial intelligence (AI) and machine learning 

categories.  Neural networks are learning and classification structures modeled after the 

human mind.  As such, they are composed of small components or neurons which accept 

an input, make a decision on that input, and forward an appropriate response.  These 

neurons function together to process information in a parallel fashion.  The neurons of an 
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ANN are connected by weighted links over which signals can pass and it is in these links 

that the actual learning and intelligence of the ANN resides.  There are different 

configurations of connections for these links but one common one, the feed forward 

network, is shown in Figure 2-5.  Signals are presented to the network at the input layer.  

In a typical network, the input neurons do little but forward the incoming signals.  

Changing these signals from input to an output response is the job of the transfer function 

 Input Signals 

 Input Layer 

 

 
Hidden 
Layer 

 

 
Output Layer 

  

Output Response  

Figure 2-5  Typical Neural Network Architecture 
 

which operates in three steps.  In the first step, the neuron computes the net weighted 

input it received from its input connections.  This can be done in different ways but a 

common formula is  

                                                                Ii  = ∑                               (2.1) 
=

n

j
jij xw

1

 where Ii is the net weight of the inputs received at neuron i from the n nodes in the 

network, is the weight from neuron j to neuron i, and  is the output from neuron j.  

In other words, each neuron receives input from every neuron in the layer before it and  

ijw jx
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these inputs are summed together after being multiplied by the weight of the 

corresponding connection.  Weights can be negative and therefore inhibitory in nature or 

positive and excitatory.  During the second step, the transfer function converts Ii to an 

activation level.   There are several different functions for doing this, but one commonly 

used function is that of a sigmoid or S-shaped curve.  A common formula used for this is 

                                                               f(I)  = Ie−+1
1                               (2.2) 

which effectively maps the signal to something between 0 and 1.  The third step for 

transferring the signal takes this function output and compares it to a global threshold 

value.  If the value exceeds the threshold, a common practice is to simply forward the 

value itself although any new value could be used while a 0 is forwarded if the threshold 

is not surpassed.  In this way, a signal propagates through the neural network and is 

transformed to an output signal. 

 The way a neural network “learns” its classification behavior is through 

modification of the weights on the connections.  There are many different learning 

algorithms that can be implemented within the neural network, but the most common one 

is backpropagation.  All of these algorithms work by updating the weights on the 

connections between neurons according to the amount of error calculated by taking the 

difference between the actual output of the system and the correct output. 

 Neural networks have been applied successfully to a wide range of data mining, 

prediction, and classification problems including hand writing or optical character 

recognition, speech recognition, stock market forecasting and many others.  Neural 

Networks are appealing because the restricted hypothesis space bias or constraints on the 

hypotheses that an algorithm is able to construct, is well suited for sequential and 
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temporal prediction or classification tasks [CrS97]. 

 On the negative side, neural networks suffer from the fact that the reasoning 

behind their results is often difficult to understand or explain.  This problem is often 

referred to as the “black box” effect of neural networks and limits their use in some areas 

where information about how classifications or decisions are being made is as important 

as the decisions themselves.  A data mining technique which does not suffer from the 

black box effect is that of decision trees. 

 2.3.3  Decision Trees 

 Decision trees are often used in data mining for prediction and classification 

purposes.  One of the most powerful characteristics of decision trees is the simple model 

structure they have.  It is a straight-forward matter to transform a decision tree into a set 

of logical “if-then” rules.   

 Decision trees are produced in a recursive manner by selecting an attribute to split 

on and placing it at the root node.  One branch is created for each possible value.  If the 

data is discrete, the number of branches is equal to the number of categories for that 

attribute whereas continuous numerical data is normally split in a binary fashion with one 

branch being less than and the other greater than or equal to the chosen split.  In order to 

determine which attribute from a set to split on, decision trees make use of different 

measures of node purity.  Node purity has several factors associated with it.  First, the 

major goal of node purity is to have only one of the classes of the decision tree model 

represented.  In other words, if the classes were yes and no, a node with all no instances 

is pure.  This purity could be achieved simply by partitioning the samples so that there 

was one node for each.  This would quickly lead to large decision trees for anything other 
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than a trivial case. To achieve models which make correct classifications while 

maintaining more reasonable decision tree sizes requires that the test for purity also favor 

those nodes which are not only pure but also have more members.  There are different 

measures of purity in use today, but one of the most common ones is called the 

information of the node and is measured in bits.  This measure of purity will be explained 

with the introduction of a simple decision tree example from [Qui86]. 

 Table 2-2 below summarizes the weather data used for this example.  The class  

Table 2-2 Weather Data 
 

Outlook Temperature Humidity Windy Play 

sunny hot high false no 
sunny hot high true no 

overcast hot high false yes 
rainy mild high false yes 
rainy cool normal false yes 
rainy cool normal true no 

overcast cool normal true yes 
sunny mild high false no 
sunny cool normal false yes 
rainy mild normal false yes 
sunny mild normal true yes 

overcast mild high true yes 
 

being determined is whether or not a game is played given certain conditions.  To 

determine the information gain from splitting on the categories, the purity of each split is 

tested by arranging the outcome variable within each category as shown in Figure 2-6. 

The numbers of yes versus no for the classes of outlook are then [2, 3], [3, 0], and [3, 1] 

respectively and the information values of these nodes are determined by a calculation of 

the nodes’ entropy as seen by the samples.  Entropy is defined as 

 entropy (p1,p2,…,pn) = -p1logp1-p2logp2…-pnlogpn                            (2.3)    
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where (p1,p2,…,pn) are the fractions of the values at the leaf nodes of a particular split.                              

Outlook 

Yes Yes Yes
Yes Yes Yes
No Yes Yes
No No
No 

    Sunny    Overcast      Rainy 

 

Figure 2-6  Outcome Variable For Outlook 
 

These fractions always sum to 1.  Since the logarithms used in equation (2.3) are base 2, 

the entropy values will always be between 0 and 1.  The negative coefficient in front of 

each logarithm is required to get a positive value for the entropy since the log of a 

fraction is negative.  Using (2.3) we have  

entropy ((2/5), (3/5)) = 0.971                                                  (2.4) 

 entropy ((3/3), (0/3)) = 0.0                                                      (2.5) 

 entropy ((3/4), (1/4)) = 0.811                                                  (2.6) 

The next step is to find an average information value for this particular split.  This is done 

by multiplying the entropy for a particular branch by the fraction of total samples 

contained by it which gives 

      (5/12) * 0.971 + (3/12) * 0 + (4/12) * 0.811= 0.675                   (2.7) 

This result means that 0.675 bits of information are needed to classify a new example 

according to the outlook variable.  The original unsplit yes and no data contained eight 
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yes and four no nodes corresponding to an entropy of 0.918 bits using equation (2.6).  By 

splitting the data on the outlook variable, and simply subtracting the 0.675 bits from the 

original 0.918 we see that uncertainty is reduced by 0.243 bits.  This is the information 

gain from splitting on the outlook attribute.  This same procedure is carried out for each 

of the remaining splits (temperature, humidity, windy) and the one that has the best 

information gain (i.e., least uncertainty) is selected.  The procedure repeats with the 

remaining factors until no more splits can be made.  If the data presented for the decision 

tree model was ideal, leaf nodes would have entropy of 0 meaning that there was only 

one possible classification for any sample reaching that node.  Of course, this rarely 

occurs with real data sets.  Decision trees are a greedy divide and conquer approach to 

data mining and classification and have been made more popular in the past two decades 

by the proliferation of decision tree programs with good performance.    

 2.3.4  Discovery of Frequent Episodes in Event Sequences 

 Many data mining and machine learning techniques are used to discover 

correlations in unordered collections of data [MTV97].  In many situations, there is order 

to the data being examined in the form of sequences of events.  Certainly, packets in a 

network may be viewed in this way.  This is especially easy to recognize at lower channel 

utilization levels where a stream of packets in the network represents only a few 

exchanges between users and hosts.  The sequence of events still holds true even for fully 

utilized channels, but recognizing those sequences is more difficult. 

 The following example, modified to be more appropriate to this work, is due to 

[MTV97].  Suppose that the initial handshaking of a protocol makes up events A and B,  

the data that follows makes up event C, D, and the end of the transfer makes up E and F. 
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 Examining a stream of data could yield a sequence such as shown in Figure 2-7.  What is  

 

E D F A B C E F C D B A C E F C B E A E C F A 

                      Time 

Figure 2-7  Example Sequence of Events 
 

required is a way to examine this sequence of events and determine if there are any 

frequent episodes (collections of events occurring frequently together).  In this example, 

the events correspond to particular signatures for known network events.  However, the 

events could conceivably correspond to anything as long as they yield interesting or 

useful information about the data.  From the above sample, we could make several 

inferences.  For example, the E and F events occur several times together.  Also, it can be 

observed that whenever A and B occur (in no particular order), C soon follows.  It is 

obvious that some consideration must be given to the period or event window considered 

when discovering these frequent episodes. 

 The input is considered as a sequence of events where each has an associated time 

of occurrence.  Given a set of X event types, where an event is a pair (A,t) and A is the 

type (A, B, C, etc.) and t is an integer representing the occurrence time of the event.  An 

event sequence s on X is a triple (s,Ts,Te), where s = ),(,),,(),,( 2211 nn tAtAtA K  is an 

ordered sequence of events [MTV97] and Ts and Te are integers, Ts < Te, where Ts is the 

starting time and Te is the ending time for the sequence.  Applying this formalism to the 

example sequence above results in Figure 2-8.  In this figure, the event sequence  

s = )58,(,),32,(),31,( ADE K  is represented graphically.  For each event occurring in 

the time interval [30, 58), the event type and time of occurrence have been recorded.  At 

this point, the periodicity or length of window is considered.  Of interest are all frequent 
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episodes in a given sequence.  In order to be interesting, episodes must occur close  

E D F  A  B C E F  C  D  B A  C   B E A E C F  A 

      WINDOW 1                Time 

       WINDOW 2                  

30     35     40     45     50     55    

 
Figure 2-8  Example Sequence with Two Windows of Width 5 

 
enough together in relation to time to yield useful information about the events.  This 

choice is arbitrary, and will require experimentation with the actual data sets before 

choices yielding useful information can be made.  In Figure 2-8, the time chosen (known 

as the window width) is 5.  One way to proceed in this type of experimentation is to start 

with very small window widths, where it is unlikely many episodes will be found, 

increasing the size until the number of episodes becomes too large to yield any useful 

results.  This provides a good upper and lower bound for useful window definitions.  

Note that the windows overlap since dividing the sequence into non-overlapping sub-

sequences could cause lead to missing important episodes.  Another parameter that can be 

varied to achieve different results is the number of windows an episode must occur in 

before being considered frequent.  Episodes are partially ordered collections of events 

occurring together and can be described as directed acyclic graphs.  Consider episodes α, 

β, and γ in Figure 2-9.  Episode α is a serial episode in which event E occurs first, 

followed by event F with other events possibly occurring in between.  This is important 

   

A A E F 
C 

α 

 B B

β γ    

 
Figure 2-9  Episodes α, β, and γ 
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especially when considering the multi-access nature of networking.  Episode β is a 

concurrent episode with no constraints on the order of A and B.  Event A could have 

preceded B or B could have preceded A.  Episode γ is a combination of the others where 

A and B occur in some order before C.  There are definite parallels to this type of “rule” 

in the arena of intrusion detection systems where known attack signatures occur in a 

certain order.   

 Serial episode candidates can be recognized by using state automata that accept 

them and ignore all other input.  Any number of automatons for the same episode can 

exist at the same time.  The basic idea is each time the first event of an episode comes 

into the current window, a new automaton is initialized.  When that event leaves the 

current window, the automaton is removed.  In this way, the automata can keep track of 

what may be different episodes reaching different levels of completion.  This will be 

conducive to discovering multiple similar events in a stream of packet data.   

 Keeping an array, for example α.initialized[i], for each automaton with values of 

initialization times for individual instances will allow the removal of the automata at the 

proper time.  Further, a list (waits(A)) of automata waiting to reach their next states is 

kept.  A number of algorithms have been developed for the discovery of episodes and 

frequent episodes in data [MTV97]. 

 Experiments performed on sequences residing in flat text files representing a 

telecommunication network fault management database with 73679 alarms over 7 weeks 

showed greatly varying numbers of frequent episodes resulting from changing the 

frequency threshold from 0.001 to 0.100 [MTV97].  However, the number of frequent 

episodes increased as a function of the window width as can be seen in Figure 2-10.  In  
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Figure 2-10  Frequent Episodes as a Function of Window Width 
 
addition to the experiments on the alarm database, others were run on a variety of 

different data to show the methods general applicability.  These other data sets are shown 

in Table 2-3.  The WWW row in the table corresponds to part of the server log from the 

Department of Computer Science at the University of Helsinki.  The researchers 

considered the page fetched as the event type.  The slower input rate of users in the 

WWW row as compared with the alarm data in the telecommunications experiment  

 
Table 2-3 Experiments with Various Data Sets 

 

 

Data Set Events  Event Type Time Win. Threshold Freq. Epis. Rules 

Alarms 73679 287 60 0.8 826 6303 
WWW 116308 7634 120 0.2 454 316 
text 5417 1102 20 0.2 127 19 
protein 4941 22 10  21234  

required a doubling of the window time as shown in the data above.  However, it is 

appropriate to use a relatively small window to reduce the probability of incorrectly 

correlating unconnected events.  Some interesting information discovered with the 

WWW experiments include the fact that students rarely ever use bookmarks to access 
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course pages, but rather navigate there from department home pages.  The ability to vary 

the window width and frequency used for discovery of frequent episodes could be used to 

help discern multiple instances of similar events in relation to packet information streams 

may be useful. 

 2.3.5  Hidden Markov Models 

 Hidden Markov models were initially introduced and studied in the late 1960s and 

early 1970s [Edd00].  They are extremely rich mathematical structures and can therefore 

form the theoretical basis for many applications, especially where formalism is important.  

The underlying assumption of the statistical model used in Markov and other stochastic 

models is the signal examined can be characterized as a parametric random process, and 

the parameters of the stochastic process can be determined or estimated in a well-defined 

manner.   

 Of course, HMMs are based on Markov chains.  A collection of discrete-valued 

random variables {Qt ≥ 1} forms an nth order Markov chain if P(Qt = qt| Qt-1 = qt-1, Qt-2 = 

qt-2, …, Q1 = q1) = P(Qt = qt| Qt-1 = qt-1, Qt-2 = qt-2, …, Qt-n = qt-n) for all t ≥ 1, and all q1, q2, 

…, qt [Bil02].  In other words, given the previous n random variables, the current variable 

is conditionally independent of every variable earlier than the previous n.  It is 

noteworthy that this conditional independence is sometimes not strictly adhered to in 

practice while still achieving very good results from a HMM.  For example, words and 

sentences follow sets of grammars.  Clearly, there are some parts of a word or of a 

sentence that are conditionally dependent on what comes before them.  For example, if 

we start a valid word with “ch” there is a set number of possibilities for what can follow. 

However, HMMs have still been used for the recognition of the spoken and written word 
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with much success.  

 As a simple example of how HMMs can be used consider tossing a coin behind a 

curtain [Rab89].  In this scenario, the number of coins and mechanism of tossing is 

unknown, while the output of the tossing can be observed.  To design a HMM for this 

scenario, the number of states needed to represent the process must be decided.  For 

example, should a single coin or multiple coins be used to represent the unknown 

process.  A single coin model is shown in Figure 2-11 below.  In this model, the  

 

H

P(H) 1-P(H)P(H) 1-P(H)
1-P(H)

P(H)

T

 1-P(H)

 

H T 

P(H)
 
 

Figure 2-11 1 Coin Hidden Markov Model 
 

probabilities are written as P(H) and P(T) where P(T) = 1-P(H).  Since the number of 

actual coins being flipped is not known, other models may also be appropriate such as 

two, three, or n coin models.  The decision of which is the best model can only be 

accomplished once the different proposed models have been created and tested on the 

available data.  It is in this way that the use of hidden Markov models is considered more 

of a practice or an art form than a science.  Only through experimentation with the 

underlying model can the best representation be found.  The number of states and how 

they are connected is normally a task that is accomplished by hand with extensive 

knowledge of the characteristics of the data to be searched.  However, efforts have been 

made to develop algorithms to learn the needed architecture for general HMMs [Bil02].  
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Once a proper model is created, there are two ways it can be used.  A HMM can be used 

to produce a stream of output that is similar to what is produced by the system it is 

modeling.  Using the coin example, the HMM could produce a stream of heads and tails 

that should represent one possible outcome in the real system.  Another way to use 

HMMs is to take the observations from the system and choose a corresponding state 

sequence that best explains the observations [Rab89].  In other words, HMMs can be 

used for classification purposes. 

HMMs have been used effectively for many different problems such as hand 

writing recognition and speech recognition.  They have also been applied to packet 

information as in the case of the keystroke timing attack mentioned in Section 2.2.  In this 

specific example, the character pairs are considered to be unobservable states and the 

latency between keystrokes are the observable output [SWT01].  Several assumptions 

have to be made in order to model the data in this fashion.  First, the probability of 

transitioning to any other state or key has to be independent of the previous states as 

mentioned above.  This assumption is true for passwords chosen at random, but not in the 

case where passwords are chosen based on dictionary words or close groupings of letters.  

However, HMMs work well even when the conditional independence rule is not strictly 

followed as mentioned earlier.  Second, the probability distribution of the latency timing 

is only dependent on the current pair and not on any previous characters in the sequence.  

Of course, this is another relaxation of the formal independence rule since reaching for a 

far away letter in a previous sequence can have some effect on the latency.  Once again, 

this does not seem to affect the ability of the HMM to provide useful results [SWT01]. 

HMM parameters can either be obtained by training initially unlabeled sequences 
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or built from sequences where the state paths are assumed to be known.  Training  

algorithms are often used when a plausible alignment for the sequences in question is not  

already known.  The standard training algorithm is a Baum-Welch expectation 

maximization based on gradient descent.   

2.4   Summary 

 This chapter discusses techniques to characterize encrypted packet streams.  The 

chapter begins with some background into why this research is needed.  Next, current 

research in the area of traffic analysis that relates directly to this effort is covered.  

Finally, techniques of data analysis and classification methods are discussed and shown 

to be applicable in the area of network traffic analysis. 
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III. Methodology 
 
3.1    Background 
 

In Chapter II, current research in network traffic analysis and methods for the 

analysis and interpretation of network data are presented.  Three different types of traffic 

analysis are described to include a probability based attack on encrypted IP headers 

[Bel97], a signature based attack for analysis of SSL encrypted web browsing [ChA99], 

and a timing analysis attack on SSH [SWT01].  This research shows that the study of 

traffic characteristics yields useful information about the network and that further 

research into this area is warranted.   

The techniques used to analyze and interpret the wireless 802.11 traffic in this 

research include training a neural network and a decision tree model, both of which are 

machine learning approaches.  Pilot studies are conducted to determine the relevant 

factors and the settings for the different techniques that provide appropriate performance 

and these will be discussed in Section 3.2.2 and in more detail in Chapter 4. 

As the trend toward wireless communications continues to increase, the 

possibilities of in depth traffic analysis, even of encrypted data, need exploration in order 

to provide both offensive and defensive capabilities. 

3.2  Problem Definition 
 
 3.2.1  Goals and Hypothesis 
 
 The primary goal of this research is to determine which applications and how 

many instances of each are accessing the wireless medium during a given time window 

under the assumption that the traffic is encrypted.  It has been shown that unique 

characteristics of applications are manifested within packet transmissions due to the 
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802.11 protocol [And98].  This research shows that such characteristics can be 

recognized using machine learning concepts and therefore demonstrates that the 

identification process can be automated. 

 3.2.2  Approach 

 Wireless data is captured and machine learning techniques trained to recognize 

which applications are accessing the channel.  The two techniques used for testing are 

neural networks and decision trees.  Data streams are analyzed based on a sliding time 

window where the size of the window varies.  For example, the window may be set to a 

size of 11 packets if that is sufficient information for the neural network and decision 

trees to make correct decisions a given percentage of the time at a certain confidence 

level.  A sliding window for network data is important for determining how many 

instances of applications are accessing the network and has been discussed in Chapter II 

[MTV97].  The results from the different algorithms and settings within algorithms are 

compared and analyzed in order to find the most effective technique.  For example, the 

neural network technique shows an appropriate level of performance when using back 

propagation to reduce the mean squared error after each training epoch.  Back 

propagation is a form of supervised learning used in neural networks whereby the inputs 

to the network must include the sample to be analyzed and the anticipated or desired 

outputs in order to calculate the error for a particular training cycle.  An important choice 

when using decision trees is whether or not to allow pruning. Pruning both reduces the 

size of decision trees and also increases the ability of the system to generalize.   

3.3  System Boundaries 
 
 The System Under Test (SUT) is called the Application Determination System 
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 (ADS) as shown in Figure 3-1.  This system includes the machine learning  

algorithm used for identification, size of the time window used for training, percentage of 
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Figure 3-1:  Application Determination System 

data used for training vs. testing, and parameters that apply to the algorithms used.  

Within this system, the Component Under Study (CUS) is the algorithm used (neural 

network vs. decision trees) to classify the data. 

 Although this work is being carried out on an ad-hoc IEEE 802.11b wireless 

network, the results are applicable to any network where packets have not been padded to 

prevent analysis.  Machine learning techniques are inherently resistant to network 

protocol differences [KaV94].  No attempt is made to decrypt information in the packets 

or the headers. It is assumed this information is too difficult to obtain [Mul02].  It should 

be noted that machine learning techniques are equally adept at learning both encrypted 

and unencrypted traffic characteristics.  This study limits the applications accessing the 

medium to e-mail, ftp, http, and print jobs.   
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 3.4  System Services 

 The ADS system identifies the type of applications accessing the medium.  There 

are three possible outcomes of this identification process.  One possible outcome is the 

correct identification of all applications accessing the channel.  A second possibility is the 

false positive identification of applications.  False positives occur when the system 

reports that applications are present on the channel when they are not.  The third 

possibility is the combination of both true and false positives.  Since the designs of both 

the neural networks and decision trees in this experiment force all samples to be placed 

into one of the four categories, there is no possibility of an unknown classification.   

3.5  Performance Metrics 

 The ADS is similar to some commercially available intrusion detection systems 

except that it looks for a “signature” to identify an application rather than an attack 

[And01].  Therefore, one way to measure the performance of the ADS is to use a 

Receiver Operating Characteristic (ROC) curve.  A ROC is a graph of correct 

identifications (true positives) as a function of incorrect ones (false positives) or, in other 

words, the sensitivity versus specificity of the system.  While in an intrusion detection 

system, the ROC measures attacks identified over false alarms, in the ADS it instead 

measures the ratio of correct identification of applications to incorrect ones.  Consider the 

following modified extension of Bayes’ theorem:  

P(M|IDM) = 
)|()()/()(

)|()(
MIDMPMPMIDMPMP

MIDMPMP
¬¬+

                                (3.1) 

where M is e-mail accessing the medium and IDM is the correct identification of e-mail 

[Mar01].  For example, if the probability of e-mail accessing the medium, correctly 

identifying mail, and false identification as e-mail are 0.25, 0.80, and 0.05 respectively, 
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the probability of correctly identifying the e-mail given an e-mail accessing the medium 

is 0.842.  Another metric of interest is the ratio of correct identifications to the total 

number of applications for a given time frame.  For example, the system may correctly 

identify 70 out of 100 applications sent in some arbitrary time frame which results in a 

70% success rate.  This identifies the performance of the system as the third type of 

possible outcome listed in the system services section.  In a similar fashion, a 100% 

success rate would identify the first outcome, while 0% would identify the second. Since 

four applications are being targeted for this study, another value to compare the system 

against is the probability of correct random guessing which is 0.25.  In other words, 0.25 

is the baseline from which success is measured and a success rate of 30% is only 5% 

better than random guessing.  A combination of these techniques is used to determine the 

outcomes of the system. 

3.6 Parameters 

 3.6.1  System 

 The system parameters for the ADS are enumerated in Table 3-1 and include the  

algorithm used for identification (neural network vs. decision tree model), size of the 
 

time window used for training, percentage of data used for training vs. testing, and 
 
 

Table 3-1 System Parameters for ADS 
 

Algorithm Used: Neural Network, Decision Trees 

Sliding Window Size: Small, Medium, Large (11, 31, 51 Packets) 

Distribution of Data: Holdout Method, Rotation Method 

Algorithm Parameters: Underlying Model, Learning Method, 
Activation Function, Etc. 
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parameters that apply to the particular algorithms used.  For the neural network, these 

parameters include the design of the network itself which includes the number of input, 

hidden and output nodes, the selection of training method (i.e., back propagation vs. 

radial basis learning), number of training cycles (epochs), and type of activation function.  

For the decision trees, the parameters also include the design of the underlying network.  

Although there are many parameters to consider for each algorithm, pilot studies are 

conducted to determine the appropriate settings to use. 

 3.6.2  Workload 

 Typically, workload parameters are characteristics of service requests to the 

system.  However, in the case of the ADS it is more appropriate to define the workload 

by the amount of data on the wireless medium.  Since packets are either present or not, 

“service requests” exhibit an on-off characteristic.  Thus, the packets on the channel are 

the workload.  The workload, then, varies from no traffic on the medium to many clients 

and applications competing for the medium at the same time.  This workload will affect 

the way the recognition algorithms are set up.  In an 802.11b network, the absence of any 

applications accessing the medium typically results in a majority of traffic being beacon 

packets (61 bytes).  Since the detection of this “non-application” state is fairly trivial it is 

not incorporated into these experiments.    

3.7  Factors 

 Table 3-2 shows the factors that are varied.  The algorithms used to learn and  

recognize applications are a feed forward, back propagating neural network and a pruned  
 

decision tree model.  The sliding window size has been shown to have a major impact in 

other similar studies of pattern detection and is varied between a small, medium and large 
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Table 3-2 Factors Varied 
 

Algorithm Used: Neural Network,  Decision Tree 

Sliding Window Size: Small, Medium, Large (11, 31, 51 Packets) 

Type and Number of Application(s)  E-mail, Ftp, Http, Print (1, 2, or 3) 

   

level [MTV97].  These levels are 11, 31, and 51 packets respectively.  The task of 

recognizing which applications are accessing the medium is more complicated as the 

number of applications to be identified increases.  The levels for this factor are varied 

from one to four and the relative performance at each level measured.  It is likely that this 

factor is heavily dependent on the window size.   

3.8  Evaluation Technique 

 For this study, direct measurement is the most appropriate evaluation technique.  

While techniques for constructing analytical models for common performance metrics 

such as system throughput and delay are abundant, few if any such techniques exist for 

modeling the pattern recognition ability of a system.  A wireless encrypted data stream is 

captured and analyzed.  Significant characteristics are parsed and separated into groups of 

data for the testing and training of the machine learning techniques.  Since the 

implementation of both techniques used in this research rely on supervised learning, the 

knowledge about what applications are accessing the network is used to assist in the 

learning and evaluation of those techniques. 

3.9  Workload 

 The workload is the number of applications and clients accessing the channel.  It 

ranges from one to three systems.  The difficulty of identifying the correct number of 
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applications is expected to increase significantly with the inclusion of each additional 

system.  It may also be the case that the ideal window size used in training and testing 

will vary according to the workload.  For example, with only one system accessing the 

medium, only one of each type of application can be accessing the medium in a given 

window.  This will likely have a positive effect on the classification ability of the 

different algorithms and also affect the size of the window required.  Another possibility 

suggested by the pilot studies is the existence of unique packet size “signatures” which 

can be used to determine the approximate start, end and therefore also the number of 

applications present on the channel.   

 Text files taken from the early chapters of this work are used to create the files for 

the workload.  These file sizes included 1, 10, 50, and 100 Kbytes.  The text is copied and 

pasted into the body of the e-mail messages versus being included as an attachment.  The 

copied text is pasted into word pad files and saved for use with ftp.  These same word pad 

files are printed for that portion of the workload.  Very simple web pages are also created 

using the same text.  Since the type of files used is not a factor in this study, the same text 

is used for all applications. 

3.10  Experimental Design 

 There are four factors in this experiment:  detection algorithm, sliding window 

size, types of applications accessing the medium and number of nodes.  For the detection 

algorithm, there are two levels which include a back propagating feed forward neural 

network and a decision tree model.  Pilot studies show that the appropriate levels for the 

size of the sliding window are 11, 31, and 51 packets.  Using a sliding window results in 

samples that overlap from the data stream.  For example, using a window size of eleven, 
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the first segment analyzed is packet one through eleven and the next segment is packet 

two through twelve.  For the next factor there are four levels:  e-mail, ftp, http, and print.  

The last factor, number of nodes, ranges from one to three.  This means that the number 

of experiments, n, for a full factorial design is  

                                                              n = ∏ = 84                              (3.2) 
=

k

i
im

1

where k = 3 is the number of factors and m is the number of levels for each factor.  The 

number of experiments indicate a full factorial design is appropriate.   

 Based on pilot studies, the variability in the performance of the machine learning 

algorithms using different training and testing sets is fairly small with a maximum range 

of approximately thirteen percent observed with neural networks and only four percent 

with decision trees.  From these pilot studies, settings that produced good results for the 

different algorithms were determined.  For example, back propagation is used for the 

training algorithm within the neural network because that technique repeatedly 

demonstrated good performance with low variability compared to other techniques such 

as radial basis learning.  This low variability means a fairly narrow confidence interval at 

a 0.05 significance level can be achieved to characterize the performance of ADS with 

only four replications of the neural network experiments.  Since the algorithm used to 

build the decision trees is deterministic, no replications are necessary.  Assuming an SSE 

of 370 for a sample size of 1000, (values taken from pilot study) the standard deviation of 

error is                            

                                            = es
)1(2 −r

SSE
k  = 3.40                                                       (3.3) 
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where k = 3 is the number of factors and r = 4 is the number of replications.  The standard 

deviation of effects is  

           =  /qis es rk2  = 0.491                                                   (3.4) 

The t-value at 16 degrees of freedom and a 95% confidence is 2.120.  Multiplying this by 

the standard deviation of effect obtained in (3.4) gives the resulting value of 1.041 which 

gives a confidence interval of 

         .                                                           (3.5) 041.1miq

Using the case of the response variable in this study, this means it has a range of (61.96, 

64.04) which is acceptable and verifies that a total of 210 experiments (4 replications for 

NN experiments for 168 plus 42 for decision trees) is appropriate. 

3.11  Analyze and Interpret Results 

 The data gathered is used to calculate confidence levels as indicated above.  The 

confidence intervals are used to show that the system will perform within a specified 

range 95% of the time.  The ratio of correct responses to total number of applications will 

be compared against both actual data (100%) and random guessing (25%) to determine 

the performance of the system. 

3.12  Summary 

           This chapter presents the methodology for conducting this research.  The goal is 

to use machine learning techniques to determine the number of each of four different 

application types accessing the wireless medium.  Based on this goal, a procedure is 

developed to make use of insights gained from pilot studies and direct the rest of the 

research and experimentation.  The ABS is described as the SUT with the specific CUS 

being the algorithms used to learn the traffic patterns.  The system parameters are 
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described and factors to be varied are selected and explained.  Finally, an analysis of the 

experimental design is covered to include the number of experiments and the number of 

repetitions required to achieve the goals of the study. 
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IV. Analysis and Findings 
 
 The purpose of this chapter is to present and interpret the findings from this 

research.  The chapter begins with a brief description of the 802.11b network topology 

used for data collection.  Next, an analysis of the collected data describing unique 

characteristics which allow the machine learning (ML) techniques to classify the different 

applications is presented.  Following this is a more detailed description of the specific 

algorithm settings used for the neural network and the decision trees.  After that, results 

from the machine learning classifications are presented and analyzed with the final 

section presenting the ANOVA for the data. 

4.1    802.11b Ad-Hoc Network Topology 

 Three computers, two laptops and one desktop, are configured as members of an 

Independent Basic Service Set (IBSS) or ad-hoc work group.  The computers use 

Enterasys Networks csi6d-aa-128 IEEE 802.11b cards with a maximum bit rate of 11 

Mbps.  A fourth computer is used as a passive “sniffer” using Airopeek NX software by 

Wildpackets and a Cisco Aironet 350 series PCMCIA wireless local area network (LAN) 

card.  Experiments are run with both encryption disabled and also with Wired Equivalent 

Privacy encryption enabled.   

 Two of the computers from the work group are set up as servers for ftp, e-mail, 

and http using Microsoft Internet Information Services (IIS).  Both of those computers 

have printers configured and shared although no real printers are attached to them.  Using 

IIS, ftp servers are used to transfer files.  For e-mail, Simple Mail Transfer Protocol 

(SMTP) is configured via IIS and Microsoft Outlook Express Version 6 is used.  Web 

traffic is accessed via a folder on the server machine. Privileges are set so any user may 
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access them.  The “phantom” printers are added to each of the other computers in the 

work group. 

4.2    Collected Data 

 The data used consists of text only for the four applications used (e-mail, ftp, http, 

print).  Text taken from the first several chapters of this work is placed into the body of 

the e-mail messages.  For the file transfers (ftp), the text files (.txt) are saved in Microsoft 

Notepad version 5.1.  The DOS ftp put command is the only protocol used in the ftp 

research. The web pages are created using the text data with links between different 

pages of text.  Print jobs are executed directly from Notepad. 

 The total combinations of collected traffic are shown in Table 4-1.  Note that the 

e-mail, e-mail combination (EE) is only tested once to show that this case is not 

significantly different than the single e-mail case and show why other multiple cases are 

excluded from this research.   

Table 4-1 Combinations of Data Collected 
 

EMAIL (E) EMAIL-PRINT (EP) 
FTP (F) FTP-HTTP (FH) 

HTTP (H) FTP-PRINT (FP) 
PRINT (P) HTTP-PRINT (HP) 

EMAIL-EMAIL (EE) EMAIL-FTP-HTTP (EFH) 
EMAIL-FTP (EF) EMAIL-FTP-PRINT (EFP) 

EMAIL-HTTP (EH) EMAIL-HTTP-PRINT (EHP) 
 FTP-HTTP-PRINT (FHP) 

 

 Collecting the samples of single applications is straight-forward as instances of 

each application are sent on an otherwise empty channel (except for 802.11b beacon 

packets).  Several sizes of the files are sent or viewed (in the case of http) in order to 

analyze unique characteristics of the different applications that would permit proper 
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classification via machine learning techniques.  The file sizes used for each application 

ranged from 1 kilobyte to 100 kilobytes. 

 Collecting samples of applications two at a time results in a total of six unique 

combinations of applications.  One experiment was run to show that there is little or no 

difference between the single application and two instances of the same application with 

respect to identification via the machine learning techniques.  For the three application 

case, four unique combinations result.   

 Although signal strength, channel utilization, throughput and other characteristics 

are collected, only the packet size is used for analysis and classification of the 

applications.  This is because packet size proved to be the strongest indicator of the 

classification goal (application type).  An initial analysis of the distribution of packet 

sizes amongst the four applications revealed several interesting facts.  First, there are 

definitely packet sizes unique to each application.  Of course, this is limited to only the 

four applications studied.  There are generally two classes of unique packet sizes which 

occur in each type of transmission.  The first kind are the “leftover” packets which occur 

in application transmissions of fairly large (>20Kbyte) size.  These occur in different 

ratios after the 1544 byte maximum transfer units (MTU) of the transmission.  For 

example, the leftover packets for e-mail transmissions are 976 bytes.  These unique sizes 

are probably due to the underlying protocols of the application programs.  One problem, 

however, is that these unique size packets do not occur when transferring smaller files 

such as the 1 and 10 kilobyte transmissions.  The second kind of unique packet sizes 

found occur in both the small and large transmissions.  These packet sizes are not only 

unique among the four applications, but among the individual transmissions as well.  
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Furthermore, these sizes occur near the beginning or the end of such transmissions.  

Some of these unique packet sizes occur in “signature” sequences which allow the 

identification of the start and end of an application transmission.  For example, the packet 

size 182 is in every e-mail sent regardless of size and the packet size sequence 154-14-

82-14-132 is always near the end.  The 182 byte packet near the beginning of every e-

mail transmission is the SMTP application announcing itself as a mail service.  The basis 

of this research is that unique characteristics exist in encrypted traffic and as such a 

comparison is made between unencrypted traffic sizes and encrypted traffic sizes for the 

same files.  The results in Table 4-2 show that the unique sizes found in the unencrypted 

traffic also occur in the encrypted version in the same numbers.  For all but the 802.11b 

Table 4-2 Unique Sizes for Unencrypted vs. Encrypted E-Mail 
 

Packet Type Unencrypted Encrypted 
    

802.11 ACK 14 14 
802.11 BEACON 61 61 
SMTP 76 84 
SMTP 81 89 
SMTP QUIT 82 90 
SMTP 84 92 
SMTP 90 98 
RCPT TO 98 106 
HELLO 105 113 
MAIL FROM 106 114 
SENDER OK 116 124 
START MAIL INPUT 122 130 
SERVICE CLOSING CHANNEL 132 140 
MAIL FOR DELIVERY 154 162 
MAIL SERVICE 182 190 
SMTP DATA 968 976 
SMTP DATA 1536 1544 

 

acknowledgement packets (14 bytes) and beacon packets (61 bytes), the unique sizes in 

the encrypted traffic are 8 bytes larger which results from the encryption process.   

Although only WEP encryption is examined, the same unique characteristics likely exist 
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with other encryption techniques as well with different amounts added to the unencrypted 

packet size due to the particular encryption technique and strength used.  Other 

information could be gained from examining packet size as well.  For example, in file 

transfers (ftp), there is always one unique packet size from a range of sizes.  Files named 

(1K.txt, 10K.txt, 50K.txt, 100K.txt) result in packet sizes of 89, 90, 90, and 91 bytes 

respectively.  This packet contains the file name being transferred.  The number of 

characters in the name of the file being transferred can be determined by simply 

subtracting 83 bytes from the size of this packet.  Using encrypted files, the same result 

can be obtained by subtracting 122 bytes from this unique packet that appears near the 

beginning of a file transfer. 

 This is significant since machine learning techniques require some unique 

characteristic be present in the data to perform classifications.  The decision of attributes 

to use for training is often much more important in these types of classifications than the 

design of the system itself. 

4.3    Data Preparation 

To use ML techniques for the classification of data, it must first be prepared.  The 

program used to model neural networks is Java Neural Network Simulator (JNNS) which 

is a graphical version of the Stuttgart Neural Network Simulator (SNNS) [Fis98], 

[Zel94].  Data must be randomized and equally distributed for training to work 

effectively.  After normalizing the data to fall between 0.0 and 1.0, the packet sizes for 

single cases of e-mail, ftp, http, and print applications are randomly selected as the next 

sample.  As each of these samples is written out, the desired output is added.  Since there 

are four nodes in the output of this neural network, the output corresponding to the   
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appropriate node is set to 1 while the others are left as 0 as shown in Figure 4-1.  For  
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Figure 4-1:  Neural Network with Desired Output for Email Sample 

example, if an application is e-mail, the desired output is 1000.  In the interest of space, 

only four input nodes are shown in Figure 4-1 though the true number is 11, 31, or 51.  

The files created for training and testing thus consisted of groups of 11, 31, or 51 packets 

and the appropriate output response for each based on which application it came from. 

 The Waikato Environment for Knowledge Analysis (WEKA) [WiF00] is used in 

the decision tree experiments.  To prepare the data for this application, the files needed to 

be put into an attribute relation file format (ARFF) [WiF00].  In this format, attributes are 

listed at the beginning of the file preceded by an @ symbol as shown in Figure 4-2.  If the 

data is nominal or categorical, categories must follow the name in curly braces. 

Otherwise the type of data must follow (i.e., numeric).  Of course, the number of packets 

per sample is 11, 31 or 51 as with the neural networks but Figure 4-2 only shows 4 to  

conserve space.   The final attribute in the relation portion of an ARFF file is the class to  
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% Comments 
%  
%  
@RELATION PacketSize 
 
@ATTRIBUTE packet1  NUMERIC 
@ATTRIBUTE packet2  NUMERIC 
@ATTRIBUTE packet3  NUMERIC 
@ATTRIBUTE packet4  NUMERIC 

 
@ATTRIBUTE application    {email, ftp, http, print} 
   
@DATA 
0.009067358,1,0.009067358,1,http 
0.073834197,0.009067358,0.066709845,0.009067358,ftp 
0.009067358,0.234455959,0.009067358,0.124352332,print 
0.009067358,0.054404145,0.009067358,0.123056995,email 
 

 

 

 

 

 

 

 

 

Figure 4-2:  Sample ARFF File 

be determined (application).  After that, the data for training or testing follows.  After 

each sample of packet size data is the class for that particular sample.  Unlike the data for 

the neural networks, there is no reason to randomize the data for the decision tree 

induction algorithm.   

4.4    Neural Network Configuration  

 Learning in a neural network can be implemented by any one of a large number of 

very different algorithms.  Pilot studies with the 802.11b packet size data indicated 

backpropagation would be effective.  Other learning algorithms used for the pilot studies 

included radial basis learning, quick propagation, and batch backpropagation.  About 80 

percent of all neural network projects use backpropagation because of its ability to 

classify well in diverse situations [BuC93]. 

 The topology of the network is feed-forward.  This means that the connections 

between the nodes only go in one direction, from the input to the hidden and then the 

output nodes.  The network used consists of three layers.  The input layer has 11, 31, or 
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51 nodes depending on the test being run.  The nodes in the middle of the network, 

known as hidden nodes, allow the network to solve problems other than those that are 

linearly separable (the only problems solvable with single layer neural networks).  The 

decision of how many nodes to include in the hidden layer is more of an art than a 

science, but most designers suggest somewhere between 1 and the number of input nodes 

in the network.  Again, pilot studies measured the effects of changing the number of these 

nodes from one to ten.  Five nodes showed the best results.  The output layer represents 

the classes of applications and so there are four of them.  The nodes correspond to e-mail, 

ftp, http, and print applications accordingly. 

 The transfer function is a combination of the activation function and the output 

function for a node.  The default output function in JNNS is identity which means the 

input signal is propagated if the activation threshold is surpassed.  The logistic activation 

function is used since it resulted in the best performance in pilot studies comparing it 

against the tanH function. 

 Backpropagation uses a generalized delta rule to update weights on connections.  

The generalized delta rule is 

∆wij = βEf(I)                                                        (4.1)  

where wij is the weight between node i and j, β is the learning constant (a parameter 

between 0 and 1 set to a default 0.2), E is the error for the neuron, and f(I) is the input to 

the neuron.  Errors for neurons can be calculated in two ways.  Output neuron errors are 

calculated by subtracting the actual output of the neuron from the desired output minus an 

error acceptance value.  These are set to 1 and 0.1 respectively.  In other words, if the 

output of a particular node is supposed to be 1, and the actual output is 0.89, the error 
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would be 0.9 – 0.89 or 0.01.  This calculation cannot be done on the internal nodes of a 

network since the number of nodes differs from the number in the output layer.  Instead, 

the error in the output layer neurons is passed back to the middle layer neurons and is 

weighted by the same connection weights that propagate the input forward.  The overall 

error in the middle neurons is therefore the weighted sum of the errors for each of the  

output neurons.  It is these weights on the connections that contain the “learning” of the 

system.    

4.5    Neural Network Results 

 Since initialization of a neural network takes random weights, the learning of the 

network will vary.  To determine a confidence interval for the results, four replications of 

the neural network experiments were done.  An important consideration is how to split 

the data up for training and testing of the network.  One common approach is known as 

cross validation and a four-fold cross validation is performed for the single application 

case in this research.  The data for the single case (5,224 samples) is separated into four 

equal sections.  Four different training procedures are applied such that each of the four 

data partitions takes its turn as the testing data and the rest are used for the training data.  

The results for all four tests are averaged for an overall result.  Since the scope of this 

effort is to demonstrate a system can be automated to characterize encrypted data 

streams, the full combination of applications are not trained.  The reason for this is that in 

this pedagogical example, only four applications are used and the unique combinations of 

those applications are already 14.  In a real system, it would not be practical to train a ML 

algorithm on every combination of applications.  Instead, the network is only trained on 

the individual applications.   
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 To test the system, a confusion matrix is used.  A confusion matrix is simply a 

table listing the true positives and false positives for a particular classification attempt as 

shown in Table 4-3.  A DOS-based function from the SNNS suite called analyze is used.  

This function uses a winner takes all (WTA) approach to the confusion matrix.  In other 

words, whichever node for a particular output is the highest is the one the system 

identifies a particular sample as.  In Table 4-3, there are only single applications.   

Table 4-3 Sample Confusion Matrix 
 

 EMAIL FTP HTTP PRINT % 
Correct 

EMAIL 900 312 27 27 0.710 
FTP 294 870 40 62 0.687 

HTTP 497 586 48 135 0.037 
PRINT 5 49 7 1205 0.951 

 

However, it is intuitive that if the first row sample actually contained e-mail and ftp data, 

the e-mail row should be added to the ftp row and divided by the row total.  This is how 

the percentages are calculated in the results that follow. 

  To determine if the WTA approach might be effective in this case, the node 

outputs for a trained sample (e-mail and http) are examined as shown in Table 4-4.  The  

Table 4-4 Node Output for Email-Http Sample 
 

EMAIL   FTP   
Mean 0.369 Mean 0.306 
Standard Deviation 0.265 Standard Deviation 0.093 
Confidence Level 
(95.0%) 0.006 

Confidence Level 
(95.0%) 0.002 

Confidence Interval   (0.363, 0.376) Confidence Interval   (0.304, 0.309) 
    

HTTP   PRINT   
Mean 0.336 Mean 0.050 
Standard Deviation 0.171 Standard Deviation 0.161 
Confidence Level 
(95.0%) 0.004 

Confidence Level 
(95.0%) 0.004 

Confidence Interval   (0.332, 0.340) Confidence Interval   (0.046, 0.054) 
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means for the node outputs show that the e-mail and http nodes are higher on average.   

Further, none of the confidence intervals overlap which means these ranges are 

statistically significant.  Using this approach, the number of correct classifications over 

the total number of samples in a file is the percent correct.  Since the function is designed 

to only declare one node the winner, the confusion matrix had to be analyzed in another 

way for a multiple application case.  The true positives of the one case allowed by the 

system and the “false positives” of those cases that actually are in the sample are added 

together and then divided by the total number of samples for a true classification rate.  

 The neural networks trained in this research performed on average 38 percentage 

points better than what would be expected for random guessing (25%) or at an average of 

63% correct classifications.  The 95% confidence interval for the classifications is (0.525, 

0.733) which does not include 0.25 so the result is statistically significant.  This is 

certainly enough to show that classification is possible, but not enough for any sort of real 

implementation of an ADS.  Table 4-5 is an example of the overall confusion matrix for  

Table 4-5 Neural Network Performance for Small Window (11) 
 

 EMAIL FTP HTTP PRINT 
% 
Correct 

EMAIL 11 70 941 284 0.008 
FTP 26 72 724 484 0.055 
HTTP 47 40 884 335 0.676 
PRINT 6 5 251 1044 0.799 
EF 118 43 2797 465 0.047 
EH 123 75 6006 858 0.867 
EP 134 70 5085 2242 0.315 
FH 571 343 8589 1080 0.843 
FP 630 270 8915 2234 0.207 
HP 12 22 258 1013 0.973 
EFH 711 488 11279 2978 0.807 
EFP 894 724 14044 9514 0.442 
EHP 150 174 4710 7810 0.986 
HFP 595 613 8060 3893 0.954 
      
    OVERALL 0.657 
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one replication of the neural network experiment at the small window size level.  It is 

important to notice that the total numbers of samples for the various combinations are 

different.  This is why obtaining the percentage correct by taking the sum of the number 

of correctly classified samples over the total number of samples is important.  In other 

words, instead of just taking the average of averages we must take the sum of the 

numerators and divide this by the sum of the denominators (weighted average).  These 

ratios are different when the bases are different.  Although the file sizes used to create the 

different combinations are the same, the number of packets generated varies from 

application to application.  For example, printing always takes from two to five times the 

number of packets for the same size file as the other three applications.  Furthermore, it is 

intuitive that there are more packets when transmissions of more than one application are 

sent.  Four replications were run for each of the three different window sizes (11, 31, and 

51).  Instead of showing the confusion matrix for each replication (available in Appendix 

A), the weighted average for each neural network is combined in Table 4-6.  The sections  

Table 4-6 Averages for All Replications of Neural Network Performance 
 

X11    X31    X51   
EH 0.829  EH 0.939  EH 0.818 
EF 0.346  EF 0.309  EF 0.853 
EP 0.543  EP 0.480  EP 0.740 
FH 0.547  FH 0.603  FH 0.380 
FP 0.267  FP 0.203  FP 0.450 
HP 0.881  HP 0.807  HP 0.648 
FEH 0.792  FEH 0.808  FEH 0.793 
FEP 0.647  FEP 0.634  FEP 0.895 
PEH 0.966  PEH 0.960  PEH 0.811 
PHF 0.784  PHF 0.757  PHF 0.725 
EMAIL 0.251  EMAIL 0.395  EMAIL 0.701 
FTP 0.213  FTP 0.220  FTP 0.595 
HTTP 0.445  HTTP 0.622  HTTP 0.149 
PRINT 0.821  PRINT 0.871  PRINT 0.900 
        
OVERALL 0.657  OVERALL 0.658  OVERALL 0.723 
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of the table are grouped by window size and number of applications.  

 Using ML techniques for the classification of applications based on the size of 

packets relies on unique packet sizes present in those applications.  It is intuitive that the 

larger the collected sample size is the more of these unique sized packets there should be 

and so the ML techniques should perform better.  The weighted averages for the systems 

are 65.7%, 65.8%, and 72.3% respectively.  The ML technique seems to perform better 

with more data available.  Applying a 90% confidence level to these averages results in 

(62.2, 69.3), (64.1, 67.4), and (68.2, 76.4) for the three window sizes respectively.  At the 

90% confidence level, there is no statistically significant difference between the 

performances of the 11 and 31 window neural networks. 

 The mean for the single data seem to add credence to the hypothesis that the 

systems should perform better as the window size increases as shown in Table 4-7.  In   

 Table 4-7 Averages for Single Application Neural Network Performance 

 

X11   X31   X51  
EMAIL 0.251  EMAIL 0.395  EMAIL 0.701 
FTP 0.213  FTP 0.220  FTP 0.595 
HTTP 0.445  HTTP 0.622  HTTP 0.149 
PRINT 0.821  PRINT 0.871  PRINT 0.900 

every case except for HTTP the percentage of correct classifications does increase as the 

window increases from 11 to 51.  It is not clear why the HTTP percentage correctly 

classified decreases at the window level of 51.  The variability of the HTTP percentages 

is high as the values for the four replications ranged from about 1.4% to 51.3%.  All three 

systems performed very well on the print data.  This is probably because the number of 

unique packet sizes in print transmissions is much higher than in the other applications.  

A graph of inter-application packet sizes is shown in Table 4-8.  Note that this is not an 
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Table 4-8 Packet Sizes by Application 

EMAIL HTTP PRINT FTP 
14 14 14 14
20 20 20 20
28 61 61 61
61 84 84 84
72 88 172 92
84 92 176 102
90 123 180 104
92 129 184 108
98 147 188 114

112 148 192 141
113 150 200 364
114 156 216 1544
124 160 224  
130 173 236  
190 184 272  
976 188 288  

1544 204 336  
 205 382  
 210 398  
 212 404  
 216 418  
 218 432  
 221 484  
 222 520  
 223 712  
 264 720  
 272 848  
 276 860  
 288 888  
 375 908  
 384 920  
 1316 940  
 1324 968  
 1401 1012  
 1544 1140  
  1156  
  1308  
  1348  
  1396  
  1400  
  1416  
  1452  
  1488  
  1544  

 

all inclusive list but contains those packets observed throughout this effort.  Unique  
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packet sizes are highlighted for each application. 

 As for the multiple application data, no clear trends can be observed.  In fact, 

occasionally the 11 window system performs better than the 31 which performs better 

than the 51.  This is the reverse of what is expected since more information should be 

available as the window size increases.  The percentages for the multiple cases could 

probably be improved by training the network on those samples.  However, this would 

make the system impractical for anything other than a “toy” implementation since the 

number of training instances would increase exponentially with the number of 

applications used. 

4.6   Decision Tree Configuration 

 Decision trees incorporate divide and conquer techniques. Data samples to be 

classified are analyzed based on some measure of the pureness of the nodes produced.  

The particular tree induction algorithm used herein is an implementation of the C4.5 

algorithm in the Waikato Environment for Knowledge Analysis system known as J48 

[WiF00].   

 The idea of purity involves entropy and the information gain achieved by splitting 

on the different nodes available.  However, this method of determining the purity of a 

split suffers from a strong bias toward tests with many outcomes [Qui93].  In other 

words, if a particular attribute is made up of unique entries (such as a phone number for 

different people) the information gain will favor that attribute for the next split even 

though that attribute may or may not be a good indicator of class since the entropy for a 

node with only a single case is 0.  However, another goal of decision trees is to produce 

models with the least number of splits while achieving low entropy.   
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 To correct this deficiency, the decision tree implementation in WEKA uses what 

 is known as the gain ratio criterion [Qui93].  The gain ratio tests to ensure the 

information gain is at least as large as the average gain over all tests examined.  Split 

information is  

split info  (X) = - ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
= T

T
T
T i

n

i

i
2

1
log                                       (4.2)  

where n is the number of outcomes possible for a particular attribute, T is the set of 

training samples,  and iT  is the number of cases which take each path if the attribute is 

selected.  The gain ratio then becomes 

    gain ratio (X) = 
)(
)(

Xsplit
Xgain                                             (4.3) 

Revisiting an example from Chapter 2, the information gain for splitting on the outlook 

data is the entropy of the original unsplit data minus the entropy after splitting on the 

outlook variable so that we have 0.918 – 0.675 = 0.243.  The data for splitting on the 

outlook variable is shown in Table 4-9.  To calculate the split information using this data  

Table 4-9 Outcome Variable for Outlook 

Sunny Overcast Rainy 
Yes Yes Yes 
Yes Yes Yes 
No Yes Yes 
No  No 
No   

 

gives 

            - (5/12) * log2(5/12) - (3/12) * log2(3/12) - (4/12) * log2(4/12) = 1.554            (4.4) 

Applying (4.3) to get the gain ratio gives 0.243/1.554 = 0.156.  This modification has the 

effect of increasing the denominator and therefore reducing the overall gain ratio when 
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the number of splits increases.  This ratio is still a “bigger is better” metric so splits that 

tend to separate the data into single case nodes should be avoided. 

 Since the data used is continuous, another point must be made about the way 

decision trees deal with this type of data.  So far, the examples have discussed only 

discrete data.  The difference with continuous, numerical data is that there are as many 

possible thresholds in the data as there are unique numbers in the range of that data 

[WiF00].  The training instances T are sorted on the values v of the attribute being 

considered.  If there are m such values, then there are a total of m-1 possible splits on the 

attribute and each one is considered as described above for the discrete data.  This work 

is necessary to find the right split for every attribute in the data.  The analysis of packet 

sizes from e-mail, ftp, http and print showed packet sizes ranged from 14 for an 802.11b 

acknowledgement to 1544 for a data packet with approximately 72 unique sizes in 

between.  Since the window size used for samples is 11, 31, and 51, the numbers of tests 

needed are 869, 2449, and 4029 respectively.  Each packet in the collection window is 

treated as a separate attribute.  Since the values are arranged in order, the tests can be 

performed in one pass while the class distributions are updated on the fly and the training 

of the network usually takes less than 30 seconds. 

 Pruning reduces a decision tree’s size.  This makes the model more 

comprehensible, and may correct any over-fitting of the model which boosts its 

generalization ability.  There are two methods of pruning, prepruning and postpruning.  

The decision tree algorithm employed in WEKA used postpruning to reduce the size of 

the tree model.  Trees are usually “pruned” by removing one or more subtrees and 

replacing them with leaves.  The test used to decide whether or not a branch should be 
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pruned should be “taken with a large grain of salt” and “does violence to statistical 

notions of sampling and confidence limits” [Qui93].  However, the test does frequently 

produce good results.  In the author’s own words: 

When N training cases are covered by a leaf, E of them incorrectly, the 
resubstitution error rate for this leaf is E/N.  However, we can regard this 
somewhat naively as observing E “events” in N trials.  If this set of N training 
cases could be regarded as a sample (which, of course, it is not), we could ask 
what this result tells us about the probability of an event (error) over the 
entire population of cases covered by this leaf.  The probability of error 
cannot be determined exactly, but has itself a (posterior) probability 
distribution that is usually summarized by a pair of confidence limits.  For a 
given confidence level (CF), the upper limit on this probability can be found 
from the confidence limits for the binomial distribution.  Then, C4.5 simply 
equates the predicted error rate at a leaf with this upper limit, on the argument 
that the tree has been constructed to minimize the observed error rate. 
 

More detail on the C4.5 decision tree algorithm can be found in [Qui93]. 

 The pilot studies for the decision tree experiments led to using a boosting 

algorithm known as AdaBoost.M1 [Qui96].  Boosting is a technique applicable to many 

ML algorithms.  It was originally intended for taking relatively weak (slightly better than 

random guessing) classifiers and turning them into strong ones.  However, the technique 

has been applied to decision trees in general, and the C4.5 (and so J48) algorithm in 

particular with good results [Qui96].  In general, boosting keeps all training instances per 

training cycle, but increases the weight or how important the sample is each time it is 

misclassified.  In this way, a system is forced to “work harder” to classify those samples 

that are more difficult. 

 Many of the different settings in WEKA simply relate to the output format of the 

data, but some have an impact on the performance of the algorithms and so all the 

settings used for this research are included in Appendix B. 
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4.6   Decision Tree Results 

 Unlike neural networks, the decision tree induction algorithm is deterministic   

and only required one replication at each window setting (11, 31, and 51).  Splitting the 

data up into portions for cross-validation purposes is still important though and a four 

fold split was performed just as with the neural network data.   

 Although decision trees are more comprehensible in nature than neural networks, 

the size of the trees for large attribute cases makes them difficult to visualize.  The 

assumption that part of the reasoning behind the split decisions has to do with the unique 

packet sizes present in the different application transmissions is true when looking at a 

small portion of an induced decision tree as in Figure 4-3.  Since the data has been 

normalized by dividing by the MTU (1544), we are actually looking for 976/1544 (the 

“leftover” packets for e-mail) or approximately 0.6321.  In the small portion of decision 

tree shown, the value for this unique packet size is highlighted and the rule for this 

particular value shows that about 65 samples of e-mail were correctly classified based on  

 

 

  

 

 

 

 
 

 
 

Figure 4-3  Portion of J48 Induced Decision Tree 
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it while 4.22 were incorrect.  Further analysis of the tree revealed that the unique packet  
 
sizes are exclusively used for the identification of e-mail. 

 The same confusion matrices were used to determine the percent of correct 

classifications for the decision tree models as with the neural networks.  The decision 

trees performed much better and took less time to train than the neural networks.  The 

classification levels for the single replications of the three window experiments are 

shown in Table 4-10.  The variability among the three different window sizes is much 

less than that for the neural networks ranging from 86.4% to 88%.  An interesting 

similarity in the performance of the two algorithms is that print jobs are the most 

correctly classified ranging from 97.6% to 99.8% success.  Since there are more unique 

packet sizes in print transmissions than any of the others, this result is expected.  Looking 

Table 4-10 Classification Percentages for All Decision Tree Experiments 
 

X11   X31   X51  
EH 0.832  EH 0.663  EH 0.930 
EF 0.879  EF 0.934  EF 0.922 
EP 0.769  EP 0.866  EP 0.873 
FH 0.765  FH 0.797  FH 0.681 
FP 0.687  FP 0.723  FP 0.605 
HP 0.924  HP 0.941  HP 0.948 
FEH 0.995  FEH 0.995  FEH 0.998 
FEP 0.838  FEP 0.879  FEP 0.882 
PEH 0.902  PEH 0.915  PEH 0.925 
PHF 0.822  PHF 0.734  PHF 0.677 
EMAIL 0.828  EMAIL 0.908  EMAIL 0.932 
FTP 0.900  FTP 0.984  FTP 0.987 
HTTP 0.984  HTTP 0.986  HTTP 0.976 
PRINT 0.976  PRINT 0.994  PRINT 0.997 
        
OVERALL 0.843  OVERALL 0.859  OVERALL 0.839 

 

at the weighted mean for the systems the performance is 84.3%, 85.9% and 83.9% 

respectively.  Since the decision tree algorithm is deterministic, no confidence intervals 

are required.  The first two systems perform as expected (in relation to each other) in that 
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the second performs better.  However, the 51 window system performs worse than both 

the 11 and 31 window systems. 

 A similarity in the performance of the different algorithms is apparent in the 

single data classifications.  As expected, the percentage of correct classifications rises 

with the number of packets used in the training data except for in the HTTP case.  The 

difference is not as dramatic as in the neural network system (44.5%, 62.2%, 14.9%), but 

the trend is still the same.  Unfortunately, yet another similarity between the performance 

of the two algorithms is that there are no clear relationships among the multiple data 

cases.   

4.7   Comparative Analysis 

 On 36 out of 42 (85.7%) experiments, the decision tree approach classifies the 

samples at a much better rate of up to 85% in some cases.  In 26 of those experiments, 

decision trees are statistically better with the classification rate falling outside the 

confidence interval of the neural network performance.  This means that in ten of the 

experiments, the decision trees perform better than the average neural network 

performance but the value falls within the 90% confidence interval of the NN response.  

On the six experiments where the neural network performs better, the maximum 

difference is 6% and only three of these cases are statistically significant.  

 The decision tree algorithm is a better candidate for an ADS implementation. 

Decision trees classify at a higher percentage, train faster, and are more comprehendible 

than neural networks.  However, it is clear that both ML techniques have successfully 

learned their classification tasks when compared to the baseline of 25% for correct 

random guessing. 
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 This does not imply that the methods outlined in this research are ready to 

implement in an ADS.  There are still problems to be overcome such as how to determine 

which of the different cases (single, double, triple) are occurring at any given time on the 

network.  With the decision trees, it is a fairly simple process to determine if only one 

sample is accessing the medium since the other three application levels should account 

for less than 10% of the overall classifications.  These difficulties occur due to the 

differences in training a model on a “flat” file of collected transmissions versus 

attempting to classify samples “on the fly”.  For example, the decision trees are forced to 

make a determination among the four applications for every sample presented to them.  

Out of a large number of samples of combined traffic, this method is successful since the 

algorithm votes fairly equally among the correct choices.  This presents a problem for the 

real-time detection of multiple applications via decision trees.  For example, if e-mail and 

http traffic are combined on the channel, the decision tree will give a classification of one 

or the other.  It may be the case that the oscillation of the decision tree classification 

could act as the input to another layer of programming or ML which could make the 

ultimate determination about which applications and how many are accessing the 

channel.  Perhaps the nature of the neural network output nodes could be useful in 

multiple application decisions.   

4.8   Analysis of Variance 

 Statistical methods are used throughout the analysis of the classification results 

obtained and they reveal that there is little difference in system performance among the 

different window sizes for each ML technique.  An analysis of variance between the two  

systems is not necessary since the outcome would be obvious:  the choice of algorithm 
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accounts for nearly all of the variance in performance.   

4.9 Summary 
 
 This chapter presents and analyzes the results of this research.  Two kinds of 

unique packet sizes occur within transmissions of the four applications used, “leftover” 

packets and “signature” ones.  Decision trees and neural networks use these unique 

 packets to achieve correct classification rates that are statistically significant ranging 

from 65.8% to 85.9%.  The single application classifications perform as expected in 

regard to the increase in percent correct corresponding to an increase in window size.  

The multiple application classifications achieve statistically significant results.  However, 

no other clear trends can be observed.  Statistically, the choice of window size changes 

little of the performance of the algorithms.  An ANOVA is not necessary since 

confidence levels are used for each result and the major source of variance clearly results 

from the choice of algorithm.     

 

 

 

 
 
 
 
 
 
. 

 
 
 
 
 

 63



V. Conclusions and Recommendations 
 

 This chapter summarizes the problem, research contributions, limitations and 

recommendations for future research in this area.   

5.1    Problem Summary 
 
 As wireless networks become an increasingly common part of our nation’s 

infrastructure, we need to evaluate the vulnerabilities of this technology.  Wireless 

networks are unique in that the channel is not physically secure and typically has lower 

data rates and higher error rates when compared to a wired network.  There is a major 

push toward tougher encryption for wireless networks embodied in such documents as 

802.11i.  As encryption grows stronger, it becomes less and less likely that packets can be 

decrypted in a timely manner.  For this reason other techniques for analyzing wireless 

network traffic need to be discovered.  Such study is of value from both the offensive and 

defensive standpoint.  In other words, what might our adversaries be learning from our 

wireless networks?  Conversely, what might we learn from the networks of our 

adversaries?  Unique characteristics have been shown to exist within such wireless packet 

attributes as the packet size and these are used to train ML techniques for the automatic 

detection of applications accessing the channel.  

5.2    Findings 
 
 This research shows that ML techniques can be applied successfully to the 

problem of inferring important information from 802.11b encrypted transmissions.  The 

overall success of the neural networks and decision trees ranges from 65% to 86% correct 

classification of the applications accessing the channel.  For the single application case, 

the success varies a great deal in the neural networks ranging from an average low of 
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approximately 15% to a high of 90%.  The success of the decision tree algorithm varied 

much less and ranged from a low of approximately 83% to a high of 99.8% for the single 

application case.  In both ML techniques, the print jobs are the most successfully 

classified.     

 To understand how the ML techniques determined their rules, a thorough analysis 

of the packet sizes within the four applications studied is undertaken.  This analysis 

reveals a number of unique inter-application packet sizes and some “signature” intra-

application packet sizes.  Since these signature packets appear in every size of the 

applications tested they can be used to identify even small (1-30 KByte) transmissions.  

Further, these signature packet sizes tend to mark the beginning and end of transmissions.  

For example, the packet size of 108 bytes is unique among all four applications studied 

(e-mail, ftp, http, print) and occurred near the end of every ftp.  By analyzing 

unencrypted versions of the same e-mail transmission, it is revealed that this packet is an 

“end of ftp service” packet.  Since the hypothesis of this research is that encryption can 

not hide all the information in packets, an analysis between the unencrypted and WEP 

encrypted transmissions of all four applications is also performed.  The results show that 

the same unique packet size characteristics do indeed exist in the encrypted versions of 

802.11b transmissions, and that the encrypted versions are simply 8 bytes larger which is 

due to the encryption overhead.  In other words, the 100 byte end of ftp service packet is 

108 bytes in the encrypted version.  The ML techniques for this research are trained using 

the encrypted version of all traffic.    

5.3    Limitations  

 Since this research is carried out on an ad-hoc 802.11b network, the results 

 65



might not apply to an infrastructure where the wireless computers communicate via an 

access point to a wired network since the packet sizes could be changed once they are 

processed by the access point.  However, it is likely that unique packet sizes occur in 

most networks where the sizes of the packets vary. 

 Another limitation of this research is that only four applications are studied.  

Further, only text data is used for the applications.  The work likely generalizes to more 

applications, but the number would have to be bounded since the number of unique 

packet sizes obviously is.  In other words, it is possible that several applications will have 

similar packet sizes and so confuse any ML technique trying to classify them.   

 A third limitation is that the data transformed and classified by the ML techniques 

is collected and resides in “flat” files.  Identifying the number of applications accessing 

the medium at any one time is inherently problematic for the ML techniques.  This is true 

even when viewing a transmission with a-priori knowledge and with the benefit of 

knowing the applications that make up each file of samples.  This problem is worsened 

when transformed to the real-time application detection scenario. 

5.4    Recommendations for Future Research 

 One area of future research should include the analysis of more applications to see 

if there are unique packets available for classification.  Along the same lines, other types 

of data should be used in order to ensure that the classification process can handle these.  

Perhaps even more detailed classifications are possible with the inclusion of other types 

of data.  For example, we may learn that a print job is accessing the channel and that the 

job includes graphics. 

 Future research could also include the eventual production of an ADS.  One 
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possibility for creating such a system is to use the unique intra-application packets with 

some sort of finite state automatons (FSA).  These FSAs would be responsible for 

identifying how many applications were accessing the channel.  In a pristine environment 

(where only one transmission is occurring) these FSAs could also track the approximate 

sizes of application transmissions.  By combining FSAs with decision trees (or another 

appropriate ML technique) the accuracy of the system would likely be improved. 

 Another interesting area for research is the combination of information gained via 

the headers with the data gleaned from the packet sizes.  For example, if the IP address of 

a computer is identified as commonly being associated with http traffic, that computer 

can possibly be identified as a web host machine. 

 This research relies on unique packet sizes in order to infer information from 

transmissions.  Other characteristics of packet transmissions should be studied to 

determine if they can provide as much information.  One such characteristic, signal 

strength, could be used to help determine the number of applications accessing the 

channel.  For example, if the ML technique identified e-mail as the application, but there 

were two signal strengths involved then there could be two e-mails on the channel. 

Another possibility for future research could involve improved methods for 

defeating this type of traffic analysis.  In other words, methods need to be developed that 

are less costly in terms of performance and overhead so that they will more likely be used 

in the field. 
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Appendix A 

Neural Network  Results:Window=11, Replication 1 
 EMAIL FTP HTTP PRINT Overall % 
EH 123 75 6006 858 0.867 
EF 118 43 2797 465 0.047 
EP 134 70 5085 2242 0.315 
FH 571 343 8589 1080 0.843 
FP 630 270 8915 2234 0.207 
HP 12 22 258 1013 0.973 
FEH 711 488 11279 2978 0.807 
FEP 894 724 14044 9514 0.442 
PEH 150 174 4710 7810 0.986 
PHF 595 613 8060 3893 0.954 
    Total 0.646 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 11 70 941 284 0.008 
FTP 26 72 724 484 0.055 

HTTP 47 40 884 335 0.676 
PRINT 6 5 251 1044 0.799 

    Total 0.384 
    Overall 0.634 

 

Neural Network  Results:Window=11, Replication 2 
 EMAIL FTP HTTP PRINT Overall % 
EH 658 206 5343 855 0.849 
EF 275 37 2470 641 0.091 
EP 486 173 4593 2280 0.367 
FH 756 102 7916 1809 0.757 
FP 676 91 8309 2973 0.254 
HP 17 95 217 976 0.914 
FEH 911 363 10432 3750 0.757 
FEP 714 642 13174 10646 0.476 
PEH 278 333 4335 7898 0.974 
PHF 464 460 7371 4866 0.964 
    Total 0.647 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 111 198 843 154 0.084 
FTP 77 310 631 288 0.237 

HTTP 54 50 854 348 0.653 
PRINT 8 22 186 1090 0.834 

    Total 0.452 
    Overall 0.638 
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Neural Network  Results:Window=11, Replication 3 
 EMAIL FTP HTTP PRINT Overall % 
EH 4151 937 972 1002 0.725 
EF 1879 492 465 587 0.692 
EP 3410 833 904 2385 0.769 
FH 5815 2167 1125 1476 0.311 
FP 5872 2235 1331 2610 0.402 
HP 137 120 65 983 0.803 
FEH 7382 2918 1723 3433 0.777 
FEP 8952 3759 2413 10050 0.904 
PEH 2996 931 802 8115 0.927 
PHF 5025 2640 1282 4213 0.618 
    Total 0.711 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 617 317 186 186 0.472 
FTP 492 479 69 266 0.366 

HTTP 585 177 201 343 0.153 
PRINT 122 42 36 1106 0.846 

    Total 0.459 
    Overall 0.700 

 

Neural Network  Results:Window=11, Replication 4 
 EMAIL FTP HTTP PRINT Overall % 
EH 3875 190 2302 694 0.874 
EF 1860 37 1049 477 0.554 
EP 3255 148 1946 2183 0.721 
FH 6465 120 2827 1171 0.278 
FP 6466 84 3081 2418 0.207 
HP 140 74 136 955 0.836 
FEH 7758 453 4598 2647 0.828 
FEP 9425 744 5828 9179 0.768 
PEH 3081 276 2033 7452 0.978 
PHF 5260 530 3733 3638 0.600 
    Total 0.669 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 575 175 399 157 0.440 
FTP 525 252 260 269 0.192 

HTTP 600 52 386 268 0.295 
PRINT 112 8 136 1050 0.803 

    Total 0.433 
    Overall 0.658 

 

 69



Neural Network  Results:Window=31, Replication 1 
 EMAIL FTP HTTP PRINT Overall % 
EH 3318 111 3254 349 0.934 
EF 1422 7 1571 410 0.419 
EP 2691 217 2773 1397 0.577 
FH 4513 20 5033 996 0.478 
FP 4349 48 5301 2331 0.197 
HP 214 231 116 724 0.653 
FEH 11160 402 898 2976 0.807 
FEP 11750 1095 1871 8283 0.918 
PEH 3435 815 981 7593 0.936 
PHF 7220 556 1133 4240 0.450 
    Total 0.679 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 863 276 96 51 0.671 
FTP 378 354 428 126 0.275 

HTTP 339 38 706 203 0.548 
PRINT 56 28 63 1139 0.885 

    Total 0.595 
    Overall 0.675 

 

Neural Network  Results:Window=31, Replication 2 
 EMAIL FTP HTTP PRINT Overall % 
EH 684 55 5983 310 0.948 
EF 224 12 2882 292 0.069 
EP 463 100 4794 1721 0.308 
FH 431 21 9043 1067 0.858 
FP 383 32 9142 2472 0.208 
HP 55 58 128 1044 0.912 
FEH 704 73 11563 3096 0.799 
FEP 629 189 12985 9196 0.435 
PEH 313 215 3753 8543 0.983 
PHF 369 105 7909 4766 0.971 
    Total 0.657 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 206 101 907 72 0.160 
FTP 88 208 827 163 0.161 

HTTP 16 30 1078 162 0.838 
PRINT 1 4 124 1157 0.899 

    Total 0.514 
    Overall 0.650 
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Neural Network  Results:Window=31, Replication 3 
 EMAIL FTP HTTP PRINT Overall % 
EH 141 132 6570 189 0.954 
EF 7 24 3121 258 0.009 
EP 94 172 5244 1568 0.234 
FH 20 53 9579 910 0.911 
FP 21 60 9819 2129 0.181 
HP 74 73 140 998 0.885 
FEH 100 150 12472 2714 0.824 
FEP 164 411 13996 8428 0.391 
PEH 119 277 4020 8408 0.978 
PHF 76 226 8559 4288 0.994 
    Total 0.649 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 156 78 1017 35 0.121 
FTP 248 153 824 61 0.118 

HTTP 22 28 1098 138 0.853 
PRINT 7 9 124 1146 0.891 

    Total 0.496 
    Overall 0.642 

 

Neural Network  Results:Window=31, Replication 4 
 EMAIL FTP HTTP PRINT Overall % 
EH 5614 295 857 266 0.920 
EF 2489 43 575 303 0.742 
EP 4115 384 1010 1569 0.803 
FH 7808 181 1586 986 0.167 
FP 6886 239 2434 2470 0.225 
HP 87 198 80 920 0.778 
FEH 8750 440 3184 3060 0.801 
FEP 8431 1096 4750 8722 0.793 
PEH 2339 731 1688 8066 0.942 
PHF 5112 592 2967 4478 0.611 
    Total 0.670 
      

 
Single Application Confusion 

Matrix   
 EMAIL FTP HTTP PRINT  

EMAIL 811 244 192 39 0.630 
FTP 594 420 201 71 0.326 

HTTP 775 64 321 126 0.249 
PRINT 96 68 76 1046 0.813 

    Total 0.505 
    Overall 0.662 
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Neural Network  Results:Window=51, Replication 1 
 EMAIL FTP HTTP PRINT Overall % 

EH 4148 611 1961 307 0.869 
EF 1813 396 986 195 0.651 
EP 2785 1332 1772 1597 0.585 
FH 4856 1792 3227 590 0.479 
FP 4178 1900 3414 2516 0.367 
HP 52 650 50 513 0.445 

FEH 5707 2451 3950 3308 0.785 
FEP 4314 4584 4895 10141 0.795 
PEH 1401 3560 1433 6410 0.721 
PHF 2705 2636 3198 4574 0.793 

    Total 0.687 
      

EFHP EMAIL FTP HTTP PRINT  
EMAIL 779 277 137 73 0.615 

FTP 333 641 221 71 0.506 
HTTP 268 248 649 101 0.512 
PRINT 4 203 32 1027 0.811 

    Total 0.611 
    Overall 0.684 

 

Neural Network  Results:Window=51, Replication 2 
 EMAIL FTP HTTP PRINT Overall % 

EH 5236 1364 124 304 0.762 
EF 2221 862 104 203 0.909 
EP 3635 1404 267 2180 0.776 
FH 5314 4247 246 658 0.429 
FP 4882 3625 693 2809 0.535 
HP 67 208 6 984 0.782 

FEH 6630 4358 1017 3411 0.778 
FEP 5247 5362 1821 11504 0.923 
PEH 1592 1640 417 9155 0.871 
PHF 3268 3828 1143 4876 0.750 

    Total 0.760 
      
      

EFHP EMAIL FTP HTTP PRINT  
EMAIL 900 312 27 27 0.710 

FTP 294 870 40 62 0.687 
HTTP 497 586 48 135 0.037 
PRINT 5 49 7 1205 0.951 

    Total 0.596 
    Overall 0.753 
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Neural Network  Results:Window=51, Replication 3 
 EMAIL FTP HTTP PRINT Overall % 
EH 5391 1268 73 296 0.777 
EF 2333 811 65 181 0.927 
EP 3809 1373 232 2072 0.785 
FH 5618 4111 138 598 0.406 
FP 5334 3592 491 2592 0.514 
HP 70 232 2 961 0.761 
FEH 7728 4338 789 3061 0.807 
FEP 6148 5498 1497 10791 0.937 
PEH 1817 1699 343 8945 0.867 
PHF 3837 3915 888 4475 0.707 
    Total 0.759 
   

 EMAIL FTP HTTP PRINT  
EMAIL 915 302 10 39 0.722 

FTP 323 857 12 74 0.676 
HTTP 553 560 18 135 0.014 
PRINT 7 56 19 1184 0.935 

    Total 0.587 
    Overall 0.751 

 

Neural Network  Results:Window=51, Replication 4 
 EMAIL FTP HTTP PRINT Overall % 
EH 6033 698 52 245 0.865 
EF 2723 411 84 171 0.924 
EP 4278 1169 236 1803 0.812 
FH 7694 2003 174 594 0.208 
FP 6805 2016 613 2575 0.382 
HP 77 423 5 760 0.604 
FEH 8687 2704 980 3044 0.802 
FEP 7115 4628 1794 10397 0.925 
PEH 2166 2766 414 7458 0.783 
PHF 4600 2945 1075 4495 0.649 
    Total 0.709 
      
   

 EMAIL FTP HTTP PRINT  
EMAIL 959 293 1 13 0.757 

FTP 600 647 13 6 0.511 
HTTP 770 396 42 58 0.033 
PRINT 3 91 27 1145 0.904 

    Total 0.551 
    Overall 0.702 
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Decision Tree Results:Window=11 
 EMAIL FTP HTTP PRINT Overall % 

EH 5234 1153 648 32 0.832 
EF 1781 1233 402 12 0.879 
EP 3801 1060 677 1993 0.769 
FH 2481 7270 826 5 0.765 
FP 2513 6419 1257 1859 0.687 
HP 70 29 156 1049 0.924 

FEH 6081 7606 1697 62 0.995 
FEP 5420 8293 4059 7401 0.838 
PEH 2670 1255 1207 7711 0.902 
PHF 2339 6686 2017 2126 0.822 

    Total 0.839 
      
      

EFHP EMAIL FTP HTTP PRINT  
EMAIL 1081 170 46 8 0.828 

FTP 119 1175 9 2 0.900 
HTTP 12 6 1285 2 0.984 
PRINT 12 10 9 1274 0.976 

    Total 0.922 
    Overall 0.843 

 

Decision Tree Results:Window=31 
 EMAIL FTP HTTP PRINT Overall % 

EH 2019 1150 249 2 0.663 
EF 6069 527 429 33 0.934 
EP 4369 616 389 2148 0.866 
FH 2140 7664 769 0 0.797 
FP 2434 6824 894 1887 0.723 
HP 54 22 159 1060 0.941 

FEH 6081 7606 1697 62 0.995 
FEP 6027 8540 3045 7555 0.879 
PEH 3089 1081 958 7706 0.915 
PHF 3488 6654 1762 1244 0.734 

    Total 0.854 
      
      

EFHP EMAIL FTP HTTP PRINT  
EMAIL 1178 99 16 3 0.908 

FTP 12 1276 8 0 0.984 
HTTP 10 8 1278 0 0.986 
PRINT 3 3 1 1299 0.994 

    Total 0.968 
    Overall 0.859 
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Decision Tree Results:Window=51 
 EMAIL FTP HTTP PRINT Overall % 

EH 6139 458 400 30 0.930 
EF 2151 977 261 0 0.922 
EP 4458 548 402 2083 0.873 
FH 3331 6275 857 1 0.681 
FP 3652 5633 1088 1635 0.605 
HP 37 28 130 1069 0.948 

FEH 7515 6186 1697 17 0.998 
FEP 7616 7373 2966 7181 0.882 
PEH 3285 957 974 7587 0.925 
PHF 4232 6110 1696 1090 0.677 

    Total 0.833 
      
      

EFHP EMAIL FTP HTTP PRINT  
EMAIL 1179 68 17 1 0.932 

FTP 39 1224 2 0 0.967 
HTTP 16 14 1235 0 0.976 
PRINT 3 0 0 1262 0.997 

    Total 0.968 
    Overall 0.839 
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Appendix B

Settings for WEKA Decision Tree Algorithm J48 and AdaBoost.M1 
       
  AdaBoostM1     
  Classifier J48    
  debug FALSE    
  maxIterations 10    
  useResampling FALSE    
  weightThreshold 100    
       
  J48     
  binarySplits FALSE    
  confidenceFactor 0.25    
  minNumObj 2    
  numFolds 3    
  reducedErrorPruning FALSE    
  saveInstandeData FALSE    
  subtreeRaising TRUE    
  unpruned FALSE    
  useLaplace FALSE    
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