
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

7-2004

Improving TCP Performance by Estimating Errors in a Long Delay, Improving TCP Performance by Estimating Errors in a Long Delay,

High Error Rate Environment High Error Rate Environment

Stephanie E. Carroll

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Carroll, Stephanie E., "Improving TCP Performance by Estimating Errors in a Long Delay, High Error Rate
Environment" (2004). Theses and Dissertations. 3984.
https://scholar.afit.edu/etd/3984

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3984?utm_source=scholar.afit.edu%2Fetd%2F3984&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

IMPROVING TCP PERFORMANCE BY ESTIMATING ERRORS IN A LONG
DELAY, HIGH ERROR RATE ENVIRONMENT

THESIS

Stephanie E. Carroll, SMSgt, USAF

AFIT/GCS/ENG/04-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/04-04

IMPROVING TCP PERFORMANCE BY ESTIMATING ERRORS IN A LONG
DELAY, HIGH ERROR RATE ENVIRONMENT

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Stephanie E. Carroll, BS

SMSgt, USAF

July 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/04-04

IMPROVING TCP PERFORMANCE BY ESTIMATING ERRORS IN A LONG
DELAY, HIGH ERROR RATE ENVIRONMENT

Stephanie E. Carroll, BS

SMSgt, USAF

Approved:

 //SIGNED// 22 July 2004
Dr. Rusty O. Baldwin (Chairman) Date

 //SIGNED// 22 July 2004
Dr. Richard A. Raines (Member) Date

 //SIGNED// 22 July 2004
Dr. Henry B. Potoczny (Member) Date

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr Rusty Baldwin,

for his guidance and support throughout the course of this thesis effort. The insight and

experience was certainly appreciated. His encouragement directly aided in completion of

this project.

 Stephanie E. Carroll

iv

Table of Contents

Page

Acknowledgments.. iv

Table of Contents...v

List of Figures .. ix

List of Tables ... xi

Abstract .. xiii

I. Introduction ...1

Background...1

Research Goals ...2

Document Overview...3

II. Literature Review..4

Chapter Overview...4

Satellite Channel Characteristics..4

TCP Congestion Control Mechanisms ...6

Overview... 6

Slow Start.. 7

Congestion Avoidance. ... 7

Fast Retransmit. .. 8

Fast Recovery.. 8

TCP Variants ..10

Background. .. 10

Tahoe... 10

Reno. ... 10

v

New Reno.. 11

Selective Acknowledgement (SACK). ... 11

Detecting Losses Due to Corruption ..12

Forward Error Correction. .. 12

Explicit Congestion Notification. ... 13

Transport Layer Approaches ..16

Explicit Transport Error Notification.. 17

Explicit Transport Error Notification Performance Conclusions. 19

Summary...21

III. CETEN-R Algorithm Description ..22

Overview ..22

CETEN-R Algorithm..22

Summary...23

IV. Methodology...24

Chapter Overview...24

Problem Definition ...24

Goals and Hypothesis. .. 24

Approach... 24

System Boundaries ...25

System Services..26

Metrics..27

Parameters ..27

System Parameters. ... 27

vi

Workload... 28

Factors ..28

Evaluation Technique...29

Workload ..29

Experimental Design ..30

Summary...30

V. Analysis and Results ..33

Chapter Overview...33

Model Verification and Validation...34

Side by Side Comparison of One Client Experiments ...34

ANOVA for One Client Experiments ..38

Side by Side Comparison of Four Client Experiments ..40

ANOVA for Four Client Experiments. ..46

Comparing One Client and Four Client Experiments ..47

ANOVA for both One and Four Client Experiments...52

Analysis of Four Client Mixed CETEN-R Experiments..58

Summary...63

VI. Conclusions and Recommendations ...65

Chapter Overview...65

Conclusions of Research ..65

Significance of Research ..67

Recommendations for Future Research..67

Summary...68

vii

Appendix A..69

Algorithm Code ..69

Bibliography ..87

viii

List of Figures

Page

Figure 1. Drop Tail Throughput, 100 ms TCP Clock, Four Connections [Flo94] 15

Figure 2. RED without ECN Throughput, 100 ms TCP Clock, Four Connections [Flo94]

.. 15

Figure 3. RED with ECN Throughput, 100 ms TCP clock, Four Connections [Flo94].. 16

Figure 4. TCP with ETEN Performance, High Delay, High Bandwidth Network

[KAP02] ... 19

Figure 5. TCP with ETEN Performance, Low Delay, High Bandwidth Network [KAP02]

.. 20

Figure 6. CETEN Performance with TCP Reno and UDP Crossflows [KAP02] 21

Figure 7. Block Diagram of System Under Test.. 25

Figure 8. Block Diagram of the OPNET Network Model ... 26

Figure 9. TCP Reno One Client Throughput ... 36

Figure 10. TCP New Reno One Client Throughput .. 37

Figure 11. TCP Reno Four Client Throughput .. 44

Figure 12. TCP New Reno Four Client Throughput.. 45

Figure 13. TCP New Reno One Client/Four Client CETEN-Off Throughput Comparison

.. 51

Figure 14. TCP New Reno One Client/Four Client CETEN-On Throughput Comparison

.. 51

ix

Figure 15. TCP Reno One Client/Four Client CETEN-R Off Throughput Comparison. 54

Figure 16. TCP Reno One Client/Four Client CETEN-R Enabled Throughput

Comparison .. 54

Figure 17. TCP New Reno Throughput Comparisons... 58

Figure 18. TCP Reno Throughput Comparisons ... 61

x

List of Tables

Page

Table 1. Experimental Factors ... 28

Table 2. Test Cases 1-24... 31

Table 3. Test Cases 25-60... 32

Table 4. One Client TCP Reno Mean Throughput Results ... 35

Table 5. One Client TCP New Reno Mean Throughput.. 37

Table 6. t-Test Calculation... 38

Table 7. ANOVA for One Client Experiments.. 41

Table 8. One Client Main Effects and Significant Interactions .. 42

Table 9. Four Client TCP Reno Mean Throughput ... 43

Table 10. Four Client TCP New Reno Mean Throughput... 45

Table 11. Four Client ANOVA.. 48

Table 12. Four Client Main Effects and Significant Interactions 49

Table 13. One Client/Four Client New Reno Comparison.. 50

Table 14. One Client/Four Client TCP Reno Comparison .. 53

Table 15. Overall ANOVA.. 56

Table 16. All Experiments Significant Effects and Interactions...................................... 57

Table 17. Mean Throughput Comparison, TCP New Reno, Four Client Mixed and Four

Client Homogenous Experiments .. 59

Table 18. Mean Throughput Comparison, TCP Reno, Four Client Mixed and Four Client

Homogeneous Experiments ... 60

xi

Table 19. Comparison of Differences in Mixed Versus Homogeneous Environments... 62

xii

AFIT/GCS/ENG/04-04

Abstract

 Interest in finding methods of improving TCP performance over satellite and

wireless networks is high. This has been an active area of research within the networking

community. This research develops an algorithm, CETEN-R for TCP to determine if a

particular packet is lost due to congestion or corruption and react accordingly. An

analysis of the performance of CETEN-R under a variety of conditions is studied and

then compared to TCP Reno and TCP New Reno. When delay is high and the error rate

is high CETEN-R showed a 77.5% increase in goodput over TCP New Reno and a 33.8%

increase in goodput over TCP Reno. When delay is low and the error rate is high,

CETEN-R showed a 146% increase in goodput over TCP New Reno and a 77% increase

in goodput over TCP Reno. At low error rates, CETEN-R provides no advantage over

TCP Reno or TCP New Reno.

xiii

IMPROVING TCP PERFORMANCE BY ESTIMATING ERRORS IN A LONG

DELAY, HIGH ERROR RATE ENVIRONMENT

I. Introduction

Background

 The Transmission Control Protocol (TCP) is the de facto standard transport

protocol for Internet transmissions requiring reliable delivery, such as file transfer, web

browsing, and e-mail. TCP was designed for and works quite well in a traditional wired

network. However, an active research area in the TCP field has been improving TCP

performance over satellite networks. Satellite and other wireless networks have unique

characteristics which impact the performance of TCP. In general, satellite

communications and other wireless networks offer lower link speeds than traditional

fixed networks. They also suffer from higher loss rates due to corruption and long

latency. The long latency problem is particularly pronounced for networks using

geostationary satellites.

 Improving TCP performance is of particular interest to the Department of Defense

(DoD) and Air Force (AF) communities. As warfare becomes more information based

and net-centric, and as it becomes more crucial for deployed forces to be able to

“reachback” from long distances to Continental United States (CONUS) for logistics

support and critical up-to-date information about the battlespace, it is vital that methods

1

be developed to improve the performance of TCP over satellite and other wireless

networks.

Research Goals

 The primary purpose of this research is to improve the performance of TCP over

satellite communications networks. TCP treats all lost packets as congestion losses. In

theory, if TCP can accurately determine the actual cause of a loss, either corruption or

congestion, performance in a high error rate environment can be improved by just

retransmitting the corrupted packets and avoiding going into the standard slow start mode

TCP uses to control congestion.

 An algorithm is developed to permit IP to notify TCP clients of the probability

that a packet was lost due to corruption. The TCP client uses this information to infer

whether a particular packet loss was due to corruption or congestion. If TCP determines

the packet was lost due to errors, it retransmits a single packet.

 To evaluate algorithm performance, a satellite network is simulated using the

Optimum Network Performance (OPNET) simulator. OPNET’s standard TCP/IP models

are modified to accommodate the algorithm and experiments are run using multiple error

rates, latency times, number of TCP flows and versions of TCP. The main result of this

study is a comparison under various conditions of the impact of the algorithm on TCP

performance.

2

Document Overview

 This document is organized as follows. This chapter provides an overview of the

problem; TCP over a long latency network with a high error rate, such as a satellite

communications network. Chapter 2 is a literature review of prior research into TCP

performance over satellite networks. Chapter 3 describes the methodology used

including parameters and workload factors selected and experimental design. Chapter 4

discusses the results and analysis of those results. Conclusions of this research are

presented in Chapter 5.

3

II. Literature Review

Chapter Overview

The purpose of this chapter is to review the characteristics of satellite channels

that impact TCP performance and the TCP mechanisms that can mitigate those effects.

First, specific satellite channel characteristics, in particular delay and latency, and their

impact on TCP performance are examined. Then, TCP congestion control mechanisms

are reviewed. Next, an overview of the characteristics of the commonly deployed

versions of TCP is provided. Methods of detecting corruption, including Explicit

Congestion Notification and Forward Error Correction are examined. Transport layer

approaches to detecting corruption are also reviewed.

Satellite Channel Characteristics

 Satellite networks have several characteristics that degrade the performance of

TCP/IP. First, the propagation delay inherent in satellite communications networks

results in users suffering long latencies. For geosynchronous satellites at an altitude of

36,000 kilometers, round trip propagation delay ranges from approximately 240

milliseconds if the ground station is directly below the satellite to 280 milliseconds if the

ground station is at the edge of the view area for that satellite. This accounts for one

ground station to satellite to ground station hop. In the TCP/IP protocol, messages

require acknowledgement. This means the message and its corresponding reply will be

delayed by at least 560 milliseconds [AGS99]. However, this is not the only component

of delay. Other delay factors include queuing delay, processing time (both at ground

4

stations and onboard the satellite itself), transmission time, and the propagation delay of

any other links in the network path.

 Other satellite characteristics that degrade the performance of TCP include the

long feedback loop, large delay times bandwidth product, and transmission errors. The

long feedback loop caused by the propagation delay of approximately 250 milliseconds

over geostationary satellites can result in a significant delay for a TCP node to determine

if a packet was received successfully. This results in poor performance of interactive

applications such as telnet or http and also adversely affects some TCP congestion

control algorithms [AGS99].

 Delay times bandwidth product is the amount of data that is in flight (i.e., data

that has been transmitted, but not yet acknowledged). The delay in this case is the round

trip time, or approximately 500 milliseconds and the bandwidth is the capacity of the

satellite link. Since the delay component in geostationary satellite networks is large, the

delay times bandwidth product will also be large and a large number of packets must be

in flight to use the channel efficiently [AGS99].

 Many satellite links have a higher bit error rate than typical terrestrial links. TCP

interprets all packet loss as an indication of network congestion and reduces its window

size to reduce congestion in the network. In a relatively high error environment, this can

results in the sliding window being reduced even though the packets were dropped due to

errors and not congestion in the network [AGS99].

5

TCP Congestion Control Mechanisms

Overview.

 The higher bit error rate typical of satellite links poses a particular obstacle to

good TCP/IP performance. TCP provides reliable data to applications by guaranteeing

that corrupted or missing packets will be retransmitted. But, TCP uses packet loss as an

indicator of the level of congestion in the network. In a traditional terrestrial network

packet loss is mainly due to buffer overflows caused by congestion. TCP responds to

packet loss by decreasing the size of the congestion window. The congestion window is

essentially an estimate of the available bandwidth on the path to the receiver. The size of

the window is increase or decreased based on the current estimate of congestion in the

network [KAP02].

The basic congestion control algorithm works in the following manner. Every

round trip time that an acknowledgment (ACK) is received, TCP increases the congestion

window by one maximum-sized segment. If the sender determines a packet was lost, it

assumes the loss occurred due to network congestion so it halves the size of the

congestion window. Transmission resumes increasing the size of the congestion window

by one each round trip time that an ACK is received. However, over geostationary

satellite links packet loss is more likely due to bit errors instead of congestion. The

standard congestion algorithm results in the available bandwidth being underestimated;

the TCP algorithm, as implemented, takes a long time to recover bandwidth capacity

[PaS97]. The end result is poor performance of the network.

6

Slow Start.

 TCP sessions begin with the slow start phase. As detailed in [Jac88, Ste97], the

slow start algorithm initializes the congestion window (cwnd) to 1 segment (1*smss),

where smss is the maximum segment size in bytes. TCP transmits one segment and then

waits until it receives and ACK for that segment; at this point the cwnd is increased by

one segment. During slow start, cwnd increases approximately exponentially as follows:

TCP starts by sending one packet; when this packet is successfully acknowledged, cwnd

is incremented from one to two. When those two packets are acknowledged, cwnd is

increased from two to four. This process continues until cwnd is equal to or exceeds the

slow start threshold (ssthresh), which is initially set equal to the size of the receiver’s

advertised window, unless loss is detected.

Congestion Avoidance.

 Congestion on a network can occur for two reasons: 1) packets arrive on a large

pipe, but get sent out on a smaller pipe; 2) multiple TCP connections arrive at a router

whose output capacity is smaller than the sum of the connections arriving at that router.

Congestion avoidance [Jac88, Ste97] is the method used to deal with these problems and

is entered when the value of cwnd is greater than or equal to ssthresh. The purpose of

congestion avoidance is to slowly probe the network for additional bandwidth; during this

phase the size of cwnd increases linearly instead of exponentially as during slow start.

Congestion avoidance increases cwnd by 1/cwnd whenever an ACK is received. During

congestion avoidance, cwnd increases by a maximum of one segment size each round trip

time regardless of how many ACKs are received.

7

 According to [AGS99], slow start and congestion avoidance result in poor

bandwidth utilization of satellite networks. For example, on a gigabit per second

geostationary satellite link with a 500 millisecond round trip time, it takes 29 round trip

times (14.5 seconds) to complete the slow start phase [PaS97]. Additionally, the entire

data transfer is often complete before slow start is finished, especially with bursty traffic

such as a web transfer [PaS97].

Fast Retransmit.

 TCP normally uses timeouts to detect dropped segments. If TCP does not receive

an acknowledgement for a packet within an expected time, the packet is retransmitted.

This expected time, or retransmission timeout (RTO) is based upon observed round trip

time. When the RTO expires, TCP retransmits the lost segment and halves the size of

cwnd and reenters slow start [AGS99].

 A TCP ACK acknowledges the highest in-order segment received; it also

implicitly acknowledges all segments which are less than that segment number. Because

TCP is required to generate an immediate acknowledgement when an out of order

segment is received, this leads to duplicate acknowledgements. As detailed in [Jac90,

Ste97], fast retransmit uses duplicate ACKs to detect lost segments. In particular, the fast

retransmit algorithm retransmits a segment if it receives 3 duplicate ACKs, even if the

RTO has not expired [Ste97].

Fast Recovery.

 In most TCP implementations, fast retransmit is implemented together with fast

recovery. The fast recovery algorithm [Ste97] performs congestion avoidance after a fast

8

retransmit; slow start is not performed. The fast recovery algorithm adjusts the

congestion window in the following manner as described in [Ste97]. After the third

duplicate ACK, set ssthresh equal to cwnd/2, but not less the two segments and then

retransmit the missing segment. Set cwnd equal to ssthresh plus number of duplicate

ACKs (typically three) times smss. This accounts for the segments being cached at the

TCP receiver. Whenever another duplicate ACK is received, cwnd is incremented by

smss. This inflation of the congestion window accounts for the segment removed from

the network. TCP continues to transmit packets if permitted by cwnd. When an ACK for

the retransmitted packet is received, cwnd is set equal to ssthresh and congestion

avoidance is entered.

 If TCP detects congestion is due to duplicate ACKs, fast retransmit and fast

recovery can be used, since TCP can infer congestion is not severe since traffic is still

flowing over the network. On the other hand, when a retransmit occurs due to a timeout,

TCP cannot infer anything about the status of the network and must resort to slow start or

risk congestion collapse [AGS99].

 Fast retransmit and fast recovery can result in multiple fast retransmits per

window. As [Flo94] showed, if window size is large and multiple nonconsecutive

packet losses occur within a window time, multiple fast retransmits can occur resulting in

cwnd being reduced multiple times for a single loss event and a reduction in performance.

 Performance of fast retransmit and fast recovery algorithms are improved by

using the selective acknowledgement (SACK) algorithm, which lets TCP receivers

inform TCP senders exactly which segments have been received [AGS99].

9

TCP Variants

 Background.

 This section describes the evolution of TCP implementations. Early

implementations of TCP used a model where the sender would transmit packets on the

network up to the receiver’s advertised window size. As packets were positively

acknowledged, the window would slide to the right. Any data lost during transport could

not be retransmitted until the retransmit timer expired. Although these implementations

were adequate if the two TCP hosts were on the same network, if there were routers or

slower links in between the two hosts, excessive network congestion and network

collapse were observed due to buffer overflows [Jac88, Ste97]. [Jac88] showed how this

led to a series of congestion collapses on the Internet in 1986.

 Tahoe.

 TCP Tahoe was the first implementation of TCP to add several algorithms

designed to control congestion while maintaining good user throughput. Tahoe added the

slow-start, congestion avoidance, and fast retransmit algorithms described in the previous

section. In addition, it modified the round-trip time estimator used to set retransmission

timeout values [Jac88, Ste94].

 Reno.

TCP Reno built upon the enhancements contained in TCP Tahoe by modifying

the fast retransmit mechanism to include fast recovery as described in [Jac90, FaF96].

In TCP Reno, the fast recovery algorithm is optimized for the case when a single

packet is dropped within a window of data; that is a maximum of one dropped packet per

10

round-trip time is retransmitted. The performance of TCP Reno is significantly better

than that of TCP Tahoe in this case. However, Reno can suffer from performance

problems when multiple packets are dropped from a window of data or in the presence of

burst errors.

 New Reno.

 TCP New Reno is based upon TCP Reno, but modifies the fast recovery

mechanism slightly [FlH99]. This change involves how TCP Reno behaves when a

partial acknowledgement (ACK) is received. In Reno, when a partial ACK, which

acknowledges some but not all of the outstanding data, is received during fast recovery,

TCP Reno reacts by taking TCP out of fast recovery and back into slow start. In New

Reno, partial ACKS do not cause TCP to come out of fast recovery and reinitiate slow

start. Instead, when a partial ACK is received during fast retransmit, New Reno treats

this as an indication that the packet immediately following the acknowledged packet is

lost and needs to be retransmitted. New Reno remains in fast recovery until all

segments that were outstanding when fast recovery was entered are acknowledged.

 Selective Acknowledgement (SACK).

TCP SACK is the version of TCP that uses all the standard congestion control

mechanisms used in TCP Reno plus the SACK option [MMF96]. When TCP is in fast

recovery, SACK maintains a variable called pipe, which contains the estimated number

of packets or bytes (depending upon the implementation) that are outstanding in the path.

Only when the size of the pipe is less than the congestion window will a SACK sender

transmit new data or retransmit old data. Senders also maintain a data structure called

11

scoreboard which maintains information about which packets have already been

acknowledged. During fast recovery, when a sender is permitted to transmit, it sends the

next packet from the list of packets it ‘infers’ are missing at the receiving end. When this

list is exhausted, the sender transmits a new packet if the congestion window is large

enough. Fast recovery is terminated when the sender receivers a recovery ACK

acknowledging all the data that was outstanding when fast recovery was initiated.

Detecting Losses Due to Corruption

 It would be beneficial if congestion and corruption could be differentiated.

Segments lost due to buffer overflow are due to congestion, and segments lost due to

damaged bits are due to corruption. This is a difficult problem for TCP since TCP treats

all lost segments as loss due to congestion [ADG00]. TCP should handle these two

situations differently. If congestion in the network is occurring, then adjusting the

congestion window is appropriate. On the other hand, if losses in the network are due to

corruption, there is no need for TCP to adjust its congestion window; instead it should

simply retransmit the bad segment [ADG00].

 This problem is particularly prevalent in satellite and other wireless networks

where bit error rates are typically higher than in terrestrial networks and loss due to

corruption is more common.

Forward Error Correction.

 A partial solution to the problem of loss due to corrupted data is to employ

forward error correction (FEC). FEC is a coding technique used to improve the bit-error

rate performance of a link. FEC is quite commonly used on satellite and other wireless

12

links. However, it is not always possible to correct bit errors in a satellite network. The

goal is to make the link as error-free as possible in order to prevent TCP from incorrectly

determining the network is congested [AGS99].

 FEC does not come without some costs. It requires additional hardware for

encoding/decoding, uses additional bandwidth, and can add delay and timing jitter due to

the encoding/decoding processing time. FEC will not solve all problems associated with

lossy satellite and wireless links. Problems with noise due to rain attenuation, jamming,

or interference cannot be solved by FEC [AGS99].

 Explicit Congestion Notification.

 Explicit congestion notification (ECN) [Flo94, ADG00, RFB01] is used by

routers to notify TCP of imminent congestion without dropping segments. There are two

major types of ECN: forward explicit congestion notification (FECN) and backward

explicit congestion notification (BECN). In FECN, a router specially marks a packet that

congestion is imminent and forwards the packet to the receiver. The receiver echoes the

congestion information back to the sender in the ACK message. BECN transmits

information about congestion directly to the originator.

Both ECN schemes require the deployment of active queue management schemes

such as Random Early Drop [FLJ93, BCC98] in network routers. The routers signal

congestion to the sender in the form congestion signs, i.e., segment drops or ECN

messages, instead of discarding large amounts of TCP segments. In FECN schemes, TCP

transmits segments with an “ECN-Capable Transport” bit set in the IP header of the

packet. If the active queue management algorithm would otherwise discard the packet, it

13

instead sets the “Congestion Experienced” bit in the IP header. The receiver sends the

information back to the TCP sender in the ACK message by using a bit in the TCP

header. The sender reacts by adjusting the size of the congestion window, just as it

would have if the segment had been dropped.

Since satellite networks tend to have higher error rates than terrestrial networks,

being able to determine if a packet was lost due to congestion or corruption may result in

better TCP performance over satellite networks. This is not a solution to the problem of

poor performance in a higher error rate system; rather, ECN can be one part of a means to

achieving the goal of better performance.

One advantage of ECN is avoiding unnecessary packet drops for short or delay-

sensitive TCP connections [Flo94]. Another advantage of ECN is it avoids some

unnecessary retransmission timeouts. A possible drawback of ECN is that a non-

compliant TCP connection could falsely advertise itself as ECN-capable, and a TCP

ACK packet carrying an ECN-Echo message could itself be dropped in the network.

Experimental evaluations of ECN include [SaA00, K98]. ECN TCP gets

moderately better throughput than non-ECN TCP; ECN TCP flows are fair with respect

to non-ECN TCP flows; and ECN TCP is robust with two-way traffic (i.e. congestion in

both directions) and with multiple congested gateways. Experiments with many short

web transfers show that most of the short connections have similar transfer times with or

without ECN. However, a small percentage of the short connections have very long

transfer times for the non-ECN experiments as compared to the ECN experiments. ECN

performance is summarized in Figure 1 through Figure 3.

14

Figure 1. Drop Tail Throughput, 100 ms TCP Clock, Four Connections [Flo94]

Figure 2. RED without ECN Throughput, 100 ms TCP Clock, Four Connections [Flo94]

15

Figure 3. RED with ECN Throughput, 100 ms TCP clock, Four Connections [Flo94]

Transport Layer Approaches

 The two approaches discussed thus far to improve TCP performance in a high

error rate environment were lower layer approaches. There are also transport layer

approaches. There are basically two ways to accomplish error notification. First, TCP

can be explicitly notified that errors are occurring and second, TCP can infer that errors

are occurring [PaS97]. The first approach is similar to explicit congestion notification

used with the IP protocol.

Generally speaking, a challenge with any explicit notification scheme is TCP/IP

usually does not know errors are occurring since those packets are discarded by lower

layers before they are passed to TCP/IP [PaS97]. The idea is to have TCP retransmit any

packets lost due to errors without reducing the size of the congestion window, which

16

reduces throughput, while still maintaining network stability by reducing the size of the

congestion window when congestion actually occurs on the network [KAP02].

Explicit Transport Error Notification.

 Explicit Transport Error Notification (ETEN) informs TCP of lost packets due to

errors. ETEN is similar to ECN, the difference being ETEN is notifying TCP of errors,

while ECN is notifying TCP of congestion in the network [APS03]. There are several

types of ETEN: Oracle ETEN, forward ETEN, backward ETEN, forward cumulative

ETEN and backward cumulative ETEN [KAP02].

 Oracle ETEN is an ideal, although unrealizable ETEN mechanism. Oracle ETEN

is a theoretical construct useful in determining cases where ETEN would improve

performance and cases where ETEN would provide no improvement to performance.

Oracle ETEN makes two assumptions: sufficient information about corrupted packets is

available to the device which detects the error and the TCP source can be immediately

notified of the packet’s corruption. Oracle ETEN provides an upper bound on the

performance gains possible using any implemented ETEN scheme.

Forward ETEN operates in a manner similar to FECN. Forward ETEN notifies

the TCP receiver about corrupted packets, and returns the corruption information to the

sender via TCP Acknowledgement (ACK) packets. Backward ETEN works similar to

BECN. In backward ETEN, the router or host that detects a packet with errors directly

notifies the source. Cumulative ETEN estimates the error rate in one of several possible

ways and lets the sender know by either forward or backward signaling. Cumulative

17

ETEN information can also be sent along with data and acknowledgement packets

[KAP02].

 Forward and backward ETEN can be used when the source and destination IP

addresses, the source and destination TCP ports, and the TCP sequence number can be

determined correctly from the packet. However, due to corruption it is often impossible

to determine one or more of these items. In that event, the node detecting errors can only

calculate cumulate errors for each link [KAS03].

 With cumulative ETEN (CETEN), information about errors on the link can be

conveyed to the end hosts in several different ways. An absolute error rate, in terms of

bits, bytes, or packets can be observed. The error rate can be categorized as one of a

small number of steps, e.g., low, medium, or high. An indication can be sent that the

error rate exceeds some threshold. Error rates can be classified relative to some previous

value, i.e., the rate has increased or decreased from the previous value. Error rates can be

estimated based upon likelihood a packet has not been corrupted [KAS03].

CETEN-specific software modifications have been made for a particular

implementation of CETEN [KAP02]. These include addition of fields and access

methods to carry corruption and congestion survival estimates; addition of variables and

methods to track packet corruption statistics and modify packet headers; and

modifications to initialize the CETEN packet header fields and to decide if a packet was

lost due to corruption.

18

Explicit Transport Error Notification Performance Conclusions.

 The initial study of ETEN led to some interesting conclusions. The per-packet

ETEN mechanisms (forward and backward) showed substantial gain in goodput when the

network was not experiencing congestion. The result held over a wide range of link

capacities and delays and was observed with both TCP Reno and TCP SACK. An

approximate 7-fold improvement was noted in some cases when the error rate was in the

range of 10-5 to 10-7 [KAP02]. Figure 4 displays a summary of ETEN performance over

a high delay, high bandwidth network. Figure 5 displays a summary of ETEN

performance over a low delay, high bandwidth network.

Figure 4. TCP with ETEN Performance, High Delay, High Bandwidth Network
[KAP02]

19

Figure 5. TCP with ETEN Performance, Low Delay, High Bandwidth Network [KAP02]

 Gains observed with forward and backward ETEN are not significant when the

network is congested. ETEN, by design, defers to TCP congestion avoidance in this case

and this result is expected. ETEN is mostly likely to be beneficial in high-error,

uncongested networks [KAP02].

 Gains observed with CETEN showed moderate improvement over TCP Reno

except at high error rates. As with the per packet ETEN mechanisms, CETEN provides

greater performance improvements when there is less congestion [KAP02]. CETEN

appears to be a promising approach in some situations. The greatest challenge to

developing an effective CETEN scheme is the inability of TCP endpoints to estimate

within a few packets of accuracy the total loss and to do so in a timely manner [KAP02].

20

Figure 6 summarizes CETEN performance with TCP Reno and User Datagram Protocol

(UDP) crossflows.

Figure 6. CETEN Performance with TCP Reno and UDP Crossflows [KAP02]

Summary

 In this chapter, an overview of the operation of TCP in a satellite communications

environment of high error rates and high latency was provided. TCP congestion control

mechanisms, slow start, congestion avoidance, fast retransmit and fast recovery were

discussed. The versions of TCP in used on operational networks were explained.

Finally, Explicit Congestion Notification and Explicit Transport Error Notification

mechanisms for detecting congestion and corruption were discussed.

21

III. CETEN-R Algorithm Description

Overview

 TCP retransmits lost packets under two conditions: (1) when it receives a set

number of duplicate acknowledgements, typically three, and (2) upon timeout. TCP

treats all lost packets as lost due to congestion in the network. The goal of CETEN-R is

to determine if a packet was lost due to corruption and retransmit just the dropped packet.

CETEN-R Algorithm

 Instead of treating all lost packets as lost due to congestion, CETEN-R attempts to

determine when a packet was lost due to the packet being corrupted. CETEN-R is only

used when a packet is being retransmitted due to duplicate acknowledgements being

received. When a duplicate acknowledgement is received, TCP determines whether it is

a true duplicate. If the packet is truly a duplicate, then TCP checks to see if CETEN-R is

enabled and if the packet was lost due to corruption on the network. If CETEN-R

determines the packet was lost due to corruption, it retransmits just the first

unacknowledged packet and then continues transmitting data normally, bypassing the

normal congestion control mechanisms.

 In OPNET, in the tcp_conn_v3 process model, tcp_ack_check function, once TCP

determines a packet is a true duplicate, the CETEN-R mechanism determines if CETEN-

R is turned on. If CETEN-R is enabled, then a new function tcp_ceten_packet_loss is

called to determine if the packet was lost due to congestion or corruption. If this function

determines the loss was due to corruption, then the congestion control mechanisms will

22

be bypassed and tcp_eten_retransmit is called. This function sends the first

unacknowledged segment and after the segment is sent restores the values of the next

segment to send and the congestion window to the state they were in before the function

was called, thereby bypassing the congestion control mechanisms. See Appendix A for

the OPNET implementation.

 To support this algorithm, the tcp_seg_sup header file and C file are modified to

add fields to the TCP header to track the corruption status of the link and functions to set

the values of these fields. This information is passed to and from the Internet Protocol

(IP) layer by modifying existing Interface Control Information (ICI) formats to account

for this information. When a packet arrives, the ip_rte_central_cpu process model uses

information about the state of the link and modifies the CETEN-R information in the ICI,

which is passed back up to TCP where it is used to determine whether a packet was lost

due to corruption or congestion. In OPNET, the state of the link is determined by using

built in functions to determine if a packet has errors. See Appendix A for the OPNET

implementation.

Summary

 This chapter describes the CETEN-R algorithm. This algorithm uses information

gathered from IP about the state of the network to determine whether a packet was lost

due to corruption or congestion.

23

IV. Methodology

Chapter Overview

The purpose of this chapter is to identify the goals of this thesis and to describe

the system and component under tests, selected metrics, system services, system and

workload parameters, and selected factors. Finally, the experimental design and

evaluation techniques are described.

Problem Definition

 Goals and Hypothesis.

 The primary goal of this study is to evaluate the improvement in goodput, i.e. user

throughput less loss due to congestion and corruption, achieved by implementing a

CETEN scheme, hereafter known as CETEN-R over TCP/IP networks on satellite and

other large delay*bandwidth product networks. The secondary goal of this study is to

determine the feasibility of implementing the CETEN-R scheme within the existing

TCP/IP framework.

 It is expected that goodput will improve with CETEN-R enabled. Further it is

expected that the improvement will be greater at higher error rates, since TCP itself

performs well at low error rates.

 Approach.

 A bulk data flow is sent across a TCP network to determine the goodput of the

system with CETEN-R enabled compared to off the shelf versions of TCP. A bulk data

flow will provide the most stress to the system, since over satellite networks an http

transaction is usually complete while the system is still in the slow start phase.

24

System Boundaries

 The System Under Test (SUT) in this study is a satellite communications

network. A block diagram of a notional system is provided in figure 1. The system

includes the following:

i) TCP endpoint(s)

ii) 1 IP Hubs

ii) 2 IP routers

iii) 2 Satellite Modems

iv) 2 Satellite Terminals

Figure 7. Block Diagram of System Under Test

25

 In the OPNET simulation, a simple model is constructed which takes into account

the satellite portion of the network. The satellite network is simulated by appropriately

configuring the router and link characteristics. The TCP endpoint at one end is replaced

by an FTP server. In the simulation model, TCP endpoint(s) transmit bulk data flows

over the network to the distant end; the FTP server is the endpoint device which

processes the file transfers. Figure 8 shows the network model.

Figure 8. Block Diagram of the OPNET Network Model

The Component Under Test (CUT) is the CETEN-R algorithm itself. This

algorithm extends the work done by [KAP02] and is an extension to TCP.

System Services

The network provides packet data transfer from a TCP source node to a TCP

destination node over a simulated satellite link. There are three possible outcomes of this

service. First, a packet can successfully reach its destination without error. Second, a

packet can be dropped, i.e., lost due to congestion. Finally, a packet can reach the

destination, but be corrupted due to errors on the transmission link.

26

IP Hub IP Router

TCP Endpoint(s)

Metrics

 The primary metric for this research is goodput; the measure of the amount of

user data in bits per second successfully transferred across the network. This metric most

fully supports the main goal of the study; to measure the performance enhancement

obtained by the CETEN-R algorithm.

The OPNET simulator statistic, throughput (bits/second), is computed by dividing

the number of bits successfully by a receiver to date by the current simulation time. This

statistic automatically takes into account packets which are dropped or contain errors and

is actually equal to goodput.

Parameters

 Parameters are the characteristics of the system and the workload that affect

system performance [Jai91].

System Parameters.

The system parameters of interest are:

i) Link capacity - the amount of data (10 Mb/s) that can be transmitted on a link

in a given period of time and provides a limit on throughput.

ii) Error rate – the rate of data corruption on a link affects network performance.

iii) TCP variant – network performance is affected by the version of TCP used.

iv) CETEN-R - whether CETEN-R is enabled or not affects network performance

v) Delay – for a single hop geostationary satellite network, this figure is a

minimum of 250 milliseconds and affects network performance.

27

Workload.

The workload parameters are:

i) Number of clients – varying the number of clients can have an impact on the

performance of the CETEN-R algorithm and on the network; one client and four clients

are used.

ii) Type of application – short bursty traffic, such as http; long file transfer. In

this research a long file transfer is used to provide the most stress to the system.

Factors

 The factors selected for this research are shown in Table 1:

Table 1. Experimental Factors
FACTOR LEVELS
Error Rate Low (10-7), Medium (10-6), High (10-5)

TCP Variant Reno, New Reno
CETEN-R On, Off

Delay 50 ms, 320 ms
Clients 1, 4

 Error rate was selected since the purpose of the CETEN-R algorithm is to

improve the performance of TCP in a high error rate environment such as a satellite

network. Since TCP performs well in a low error rate environment, it is expected that

that performance will improve with CETEN-R enabled as the error rate increases. Error

rates of 10-7, 10-6 and 10-5 are studied. During pilot testing it was discovered that for

error rates higher than 10-5, TCP collapsed and even the addition of CETEN-R did not

prevent collapse. For error rates lower than 10-7, pilot testing revealed TCP worked quite

well on its own and addition of the CETEN-R mechanism provided no benefit.

28

 TCP variants selected were TCP Reno and TCP New Reno. TCP Reno was

selected since it is still a commonly used version of TCP. TCP New Reno was selected

as it performs better than TCP Reno and is becoming more commonly deployed over the

Internet. It is expected that performance will improve with CETEN-R enabled.

 The number of clients is selected to evaluate how the algorithm behaves in the

presence of multiple clients. One client is selected as a baseline for performance. Four

clients are selected to evaluate the performance of CETEN-R in a multiple flow

environment. It is expected that total goodput will be higher with more clients; however,

per client goodput may be lower as the system becomes more congested.

Evaluation Technique

 The evaluation technique is simulation of the system. The simulation is

developed in OPNET. Direct measurement was impossible; it was not feasible or cost

effective to obtain satellite time. A simulation was deemed more valuable than an

analytical model as simulation allows measurement and analysis of how a proposed

change to an existing protocol could affect the network.

Workload

 Two different workloads are offered to the system. The small workload consists

of one client transmitting a TCP flow. The TCP flow will be configured to simulate

continuous traffic, such as a large file transfer. The high workload consists of four

clients. All flows are configured to simulate large file transfers. As discussed earlier,

large files are used instead of short bursty traffic, since over satellite links transmission of

29

short, bursty traffic usually completes before the slow start phase is completed [AGS99].

During pilot testing, it was discovered a single 500 Mb file would provide the maximum

load possible to the system, allowing packets to be transmitted for the duration of the

simulation, without causing unacceptable performance constraints from the OPNET

simulator.

Experimental Design

 There are two groups of experiments performed for this research. First, a full

factorial experimental design with 48 experiments with 5 replications is chosen for this

research. Each TCP variant, delay, error rate and number of clients combination is tested

with CETEN-R on and off. A second group of 12 experiments with 5 replications is

performed where each TCP variant, delay, and error rate combination is tested for 4

clients with one CETEN-R enabled client and three ordinary TCP clients. Test cases 1-

24 are shown in Table 2; test cases 25-60 are shown in Table 3.

Summary

 To determine the performance of a TCP satellite network with CETEN-R enabled,

a system is simulated using OPNET 10.0. The factors selected are error rate, number of

clients, client type, and CETEN-R enabled or disabled. A full factorial, 5 replication set

of tests is run to determine the effect of the various factor levels.

 The key metric of goodput is examined over a range of error rates, number of

clients and types of clients to evaluate the performance of the satellite network with

30

CETEN-R enabled and disabled. The results are analyzed to determine the impact

CETEN-R has on network performance.

Table 2. Test Cases 1-24.
Test # # Clients TCP Flavor Error Rate Delay (ms) CETEN-R

1 1 Reno 10-7 50 Off
2 1 Reno 10-6 50 Off
3 1 Reno 10-5 50 Off
4 1 Reno 10-7 50 On
5 1 Reno 10-6 50 On
6 1 Reno 10-5 50 On
7 1 Reno 10-7 320 Off
8 1 Reno 10-6 320 Off
9 1 Reno 10-5 320 Off
10 1 Reno 10-7 320 On
11 1 Reno 10-6 320 On
12 1 Reno 10-5 320 On
13 1 New Reno 10-7 50 Off
14 1 New Reno 10-6 50 Off
15 1 New Reno 10-5 50 Off
16 1 New Reno 10-7 50 On
17 1 New Reno 10-6 50 On
18 1 New Reno 10-5 50 On
19 1 New Reno 10-7 320 Off
20 1 New Reno 10-6 320 Off
21 1 New Reno 10-5 320 Off
22 1 New Reno 10-7 320 On
23 1 New Reno 10-6 320 On
24 1 New Reno 10-5 320 On

31

Table 3. Test Cases 25-60
Test # # Clients TCP Flavor Error Rate Delay (ms) CETEN-R

25 4 Reno 10-7 50 Off
26 4 Reno 10-6 50 Off
27 4 Reno 10-5 50 Off
28 4 Reno 10-7 50 On
29 4 Reno 10-6 50 On
30 4 Reno 10-5 50 On
31 4 Reno 10-7 320 Off
32 4 Reno 10-6 320 Off
33 4 Reno 10-5 320 Off
34 4 Reno 10-7 320 On
35 4 Reno 10-6 320 On
36 4 Reno 10-5 320 On
37 4 New Reno 10-7 50 Off
38 4 New Reno 10-6 50 Off
39 4 New Reno 10-5 50 Off
40 4 New Reno 10-7 50 On
41 4 New Reno 10-6 50 On
42 4 New Reno 10-5 50 On
43 4 New Reno 10-7 320 Off
44 4 New Reno 10-6 320 Off
45 4 New Reno 10-5 320 Off
46 4 New Reno 10-7 320 On
47 4 New Reno 10-6 320 On
48 4 New Reno 10-5 320 On
49 4 Reno 10-7 50 Mixed
50 4 Reno 10-6 50 Mixed
51 4 Reno 10-5 50 Mixed
52 4 Reno 10-7 320 Mixed
53 4 Reno 10-6 320 Mixed
54 4 Reno 10-5 320 Mixed
55 4 New Reno 10-7 50 Mixed
56 4 New Reno 10-6 50 Mixed
57 4 New Reno 10-5 50 Mixed
58 4 New Reno 10-7 320 Mixed
59 4 New Reno 10-6 320 Mixed
60 4 New Reno 10-5 320 Mixed

32

V. Analysis and Results

Chapter Overview

 Data was analyzed in two ways: (1) as one client and four client experiments

analyzed separately and (2) as an overall system. Additionally, holding error rate, delay

and CETEN-R constant, one client and four client experiments were compared to each

other to assess the impact of adding cross flows on CETEN-R algorithm performance.

 The one client experiments are paired and for each error rate, delay and TCP

version the mean throughput for the CETEN-R enabled experiments is compared to the

mean throughput for TCP Reno and TCP New Reno. Then an analysis of variance

(ANOVA) is performed on the one client experiments. Next, the four client experiments

are paired and for each error rate, delay and TCP version the mean throughput for the

CETEN-R experiments is compared to the mean throughput for TCP Reno and TCP New

Reno. Then an ANOVA is performed on this group of experiments. An ANOVA is

performed on all the experiments to determine the impact of the various factors on TCP

performance. Finally, a group of four client experiments where some clients are using

CETEN-R and others are not is analyzed to determine if CETEN-R is overly aggressive.

 Analysis is only conducted for error rates of 10-5, 10-6 and 10-7. As noted in

Chapter III, during pilot testing for error rates of 10-5 and lower, TCP experienced

congestion collapse and addition of the CETEN-R algorithm did not change this result.

33

Model Verification and Validation

 A group of pilot studies of a simple model with one client transmitting a large file

to an FTP server using standard TCP Reno were conducted at error rates ranging from

10-3 through 10-10 and delay of 320 ms were conducted. The results were compared to

the results obtained by [KAP02] for similar experiments to determine that the

modifications to the OPNET process models did not impact the performance of standard

TCP mechanisms. The maximum segment size was set to 536 bytes and receiver window

size was set to 20 segments, the same as the values used by [KAP02]. The results

obtained were consistent with the results obtained by that study.

 The pilot studies confirmed that TCP suffers from congestion collapse at very

high error rates; it would have been counterproductive to perform experimental

evaluation of error rates higher than 10-5. The purpose of the experiments was to

determine the impact of the CETEN-R algorithm on TCP goodput; improvements in

goodput were expected at high error rates and the study confirmed this result.

Side by Side Comparison of One Client Experiments

 Throughput is compared for each variant of TCP (Reno and New Reno) at two

delay measurements (50 ms and 320 ms). This is the one of the two most important

comparisons because when the results are paired, significant differences in mean

throughput are observed in several cases. TCP Reno results are contained in Table 4 and

displayed graphically in Figure 3. TCP New Reno results are in Table 5 and graphically

displayed in Figure 4.

34

Table 4. One Client TCP Reno Mean Throughput Results

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence Interval

(bps)
50 10-7 Off 808558 6171 2760 (802674, 814441)

 On 767317 5035 2252 (762517, 772118)
 10-6 Off 384695 8264 3696 (376816, 392574)
 On 398321 2681 1199 (395765, 400878)
 10-5 Off 45059 1156 517 (43957, 46162)
 On 79848 877 392 (79012, 80684)

320 10-7 Off 138178 1985 888 (136285, 140071)
 On 132471 2585 1156 (130006, 134936)
 10-6 Off 72374 2642 1181 (69856, 74893)
 On 71118 845 378 (70313, 71923)
 10-5 Off 15896 330 147 (15545, 16174)
 On 21274 428 191 (20866, 21682)

 For TCP Reno, at 320 ms delay and error rate of 10-5, CETEN-R mean goodput is

21274 bps compared to 15896 bps, a 33.8% performance increase. At the same delay and

an error rate of 10-6, the goodput confidence intervals overlap and the mean of the

CETEN-R throughput falls within the confidence interval of the TCP Reno throughput.

In this instance, the algorithms are not statistically different. For the 320 ms, 10-7 case,

Reno TCP goodput is 4% higher than CETEN-R.

 For the 50 ms experiments, CETEN-R performed better except at a low error rate,

where TCP Reno performed better than CETEN-R. For an error rate of 10-5, CETEN-R

mean goodput is 79848 bps compared to 45059 bps, a 77% increase. For an error rate of

10-6, CETEN-R mean goodput is 398321 bps compared to 384695 bps, a modest increase

of 3.5%. For an error rate of 10-7, TCP Reno mean goodput is 808558 bps compared to

767317 bps for CETEN-R. In this case the goodput for CETEN-R is 5% less than the

goodput for TCP Reno.

35

10000

100000

1000000

10 -̂5 10 -̂6 10 -̂7

Error Rate

Th
ro

ug
hp

ut
 (b

its
 p

er
 s

ec
on

d)

320 ms CETEN-R Off
320 ms CETEN-R On
50 ms CETEN-R Off
50 ms CETEN-R On

Figure 9. TCP Reno One Client Throughput

CETEN-R’s positive impact on TCP New Reno was more significant than TCP

Reno. For the 320 ms delay experiments, at an error rate of 10-5, CETEN-R goodput is

28465 bps compared to 16036 bps, a 77.5% increase. At an error rate of 10-6, CETEN-R

goodput is 85709 bps compared to 72093 bps, an increase of 18.9%. For an error rate of

10-7, a t-test was performed. The results were paired and sample mean was calculated as

2277.68 bits/second, sample variance was calculated as 9162866.46, and sample standard

deviation was 3072.02 (cf. Table 6). The 0.95-quartile t-variate with 4 degrees of

freedom is 2.132. The 90% confidence interval for the mean is calculated as

2277.68 +/- 2.132(1353.72) = (-607.45, 5164.81)

36

Since the confidence interval includes zero, for the 320ms, 10-7 case, CETEN-R and TCP

New Reno do not perform differently.

Table 5. One Client TCP New Reno Mean Throughput

Delay
(ms)

Error
Rate

CETEN-
R

Mean
(bps)

Std
Dev

Std
Err

Mean
90% Confidence Interval

(bps)
50 10-7 Off 777994 2245 1004 (775854, 780135)

 On 795913 6753 3020 (789475, 802352)
 10-6 Off 387657 4528 2025 (383339, 391974)
 On 486847 3617 1618 (483398, 490295)
 10-5 Off 45304 1048 469 (44305, 46303)
 On 111455 2908 1300 (108683, 114227)

320 10-7 Off 134248 1772 792 (132559, 135937)
 On 136526 2257 1009 (134374, 138678)
 10-6 Off 72093 1925 861 (70258, 73928)
 On 85709 1698 760 (84090, 87329)
 10-5 Off 16036 743 332 (15328, 16744)
 On 28465 728 326 (27771, 29159)

10000

100000

1000000

10 -̂5 10 -̂6 10 -̂7

Error Rate

Th
ro

ug
hp

ut
 (b

its
 p

er
 s

ec
on

d)

320 ms CETEN-R Off
320 ms CETEN-R On
50 ms CETEN-R Off
50 ms CETEN-R On

Figure 10. TCP New Reno One Client Throughput

37

 For the 50 ms delay experiments, CETEN-R performs better than TCP Reno at all

error rates. At an error rate of 10-5, CETEN-R goodput is 111455 bps compared to 45304

bps, a 146% increase. At an error rate of 10-6, CETEN-R goodput is 486847 bps

compared to 387657, an increase of 25.6%. At an error rate of 10-7, CETEN-R goodput

is 795913 bps compared to 777994 bps, a 2.3% increase.

Table 6. t-Test Calculation
Replication On Off Difference

1 137847.00 132562.30 5284.70
2 135952.40 132253.60 3698.80
3 136665.10 134581.60 2083.50
4 139072.80 136032.10 3040.70
5 133091.10 135810.40 -2719.30

Sum 11388.40
Mean 2277.68

Sample
Variance 9162866.46
Standard
Deviation 3027.02

ANOVA for One Client Experiments

 Table 7 shows the Analysis of Variance (ANOVA) for the one client experiments.

As the table shows, the main factors account for 79.24% of variation, with delay and

error rate accounting for virtually all (79.082%) of that variation. First-order interactions

accounted for another 20.596% of variation, with the interaction between delay and error

rate accounting for 20.267% of that total. Main effects and first-order interactions

account for 99.836% of total variation, with second-order interactions, third-order

interactions and experimental error accounting for the remaining 0.164% of total

38

variation. Since the probability associated with the F-ratio is <0.0001 for all effects and

interactions, the model is considered to be a better fit for the data statistically than the

response mean alone.

 As expected, when all of the one client experiments are analyzed as a whole,

delay and error rate account for the greatest amount of variation in mean goodput. TCP

goodput is primarily a function of round trip time and loss rate [PFT98]. Round trip time

includes the propagation delay of all links in the network path, processing time at all

nodes, transmission time and queuing delay. As round trip time increases, goodput will

naturally decrease. In the network model, propagation delay and processing time for the

ground stations and satellite itself are accounted for in the delay value selected. Loss rate

includes losses from both congestion and corruption. At higher error rates, total losses

are higher, resulting in lower goodput. The interaction between delay and error rate also

accounted for a substantial portion of total variation. This is expected; for example, high

delay but low error rate has better goodput than low delay high error rate. The

combination of high delay and high error rates results in poor performance, while the

combination of low delay and low error rates results in the best performance.

 Table 8 shows the main effects and first-order interaction between delay and

error. Since these account for over 99.5% of total variation, all other interactions are

statistically insignificant. For all significant effects and interactions, the probability that

the absolute value of the t-ratio is greater than the computed t-value is less than 0.0001.

This indicates the effect or interaction is not zero. The values in Table 8 are the expected

amounts in bits per second each factor/level causes goodput to vary from the mean. For

39

example, let’s examine the case of TCP New Reno, CETEN-R Off, error rate 10-7 and

delay of 320 ms. Using the values in Table 8, we can calculate an estimate of goodput as

follows:

25055 + 5966 – 173526 – 9050 + 210846 – 152519 = 132272

This calculated estimate is very close to the observed mean goodput of 134248 bps; only

1.5% of the observed goodput is unaccounted for, which is acceptable amount of error for

the purposes of estimating the goodput.

 When CETEN-R is considered along with all other factors and interactions, it

appears to not have a significant impact on TCP performance. This is true, when the

experimental design as a whole is considered, since delay and error rate have the greatest

impact on TCP performance. However, when you compare experiments side by side,

controlling for all factors except CETEN-R, it is apparent that in some cases CETEN-R

can provide moderate to significant improvements in throughput.

Side by Side Comparison of Four Client Experiments

 As with the one client experiments, average per client throughput is compared for

each variant of TCP (Reno and New Reno) at two delay measurements (50 ms and 320

ms). As with the one client side by side comparison, this comparison is important

because when the results are paired, significant differences in mean goodput are observed

in several cases. These results only compare the experiments where all the clients had

CETEN-R enabled or all the clients were using a standard version of TCP. TCP Reno

results are contained in Table 9 and displayed graphically in Figure 5. TCP New Reno

results are in Table 10 and displayed graphically in Figure 6.

40

Table 7. ANOVA for One Client Experiments

Component Sum of Squares

Percentage
of

Variation

Degrees
of

Freedom F Ratio
Prob >

F
y 16481261625731 120
ybar 7533339392812 1
y - ybar 8947922232919 100.000 119
Main Effects 7090312191271 79.240 5
TCP Flavor
(F) 4270497987 0.048 1 380.542 <0.0001
Delay (D) 3613339349705 40.382 1 321983.300 <0.0001
Error Rate
(E) 3462873228420 38.700 2 154287.661 <0.0001
CETEN-R
(A) 9829115159 0.110 1 875.869 <0.0001
First-Order
Interactions 1842871971197 20.596 9
FD 2065421299 0.023 1 184.049 <0.0001
FE 3688542224 0.041 2 164.342 <0.0001
FA 8837107186 0.099 1 787.471 <0.0001
DE 1813470880115 20.267 2 80798.851 <0.0001
DA 5580255068 0.062 1 497.254 <0.0001
EA 9229765305 0.103 2 411.230 <0.0001
Second-
Order
Interactions 12984015724 0.145 7
FDE 2034630841 0.023 2 90.653 <0.0001
FDA 4453810033 0.050 1 396.877 <0.0001
FEA 1205669494 0.013 2 53.718 <0.0001
DEA 5289905355 0.059 2 235.691 <0.0001
Third-Order
Interactions 676729980 0.008 2
FDEA 676729980 0.008 2 30.152 <0.0001
Errors 1077324747 0.012 96

41

Table 8. One Client Main Effects and Significant Interactions

Term Estimate
Std

Error t Ratio Prob>|t|
TCP Flavor[New Reno] 5966 305.81 19.51 <0.0001
TCP Flavor[Reno] -5966 305.81 -19.51 <0.0001
Delay[320 ms] -173526 305.81 -567.44 <0.0001
Delay[50 ms] 173526 305.81 567.44 <0.0001
CETEN-R[Off] -9050 305.81 -29.60 <0.0001
CETEN-R[On] 9050 305.81 29.60 <0.0001
Error Rate[10-5] -205142 432.48 -474.34 <0.0001
Error Rate[10-6] -5703 432.48 -13.19 <0.0001
Error Rate[10-7] 210846 432.48 487.53 <0.0001
Delay[320 ms]*Error Rate[10-5] 148522 432.48 343.42 <0.0001
Delay[320 ms]*Error Rate[10-6] 3998 432.48 9.24 <0.0001
Delay[320 ms]*Error Rate[10-7] -152519 432.48 -352.67 <0.0001
Delay[50 ms]*Error Rate[10-5] -148522 432.48 -343.42 <0.0001
Delay[50 ms]*Error Rate[10-6] -3998 432.48 -9.24 <0.0001
Delay[50 ms]*Error Rate[10-7] 152519 432.48 352.67 <0.0001

For TCP Reno, at 320 ms delay and an error rate of 10-5, CETEN-R mean

goodput is 21344 bps compared to 15695 bps, a 36% increase. At the same delay and an

error rate of 10-6, TCP Reno mean goodput is 73392 bps compared to 71470 bps for

CETEN-R; in this case TCP Reno mean goodput is 2.7% higher than CETEN-R. In the

320 ms, 10-7 case, TCP Reno mean goodput is 138410 bps compared to 132052 bps for

CETEN-R; in this case TCP Reno goodput is 4.8% higher than CETEN-R.

For the 50 ms delay experiments, CETEN-R performed better except at an error

rate of 10-7. At an error rate of 10-5, CETEN-R mean goodput is 78580 bps compared to

44034 bps, a 78% increase. At an error rate of 10-6, CETEN-R mean goodput is 335767

bps compared to 328435 bps, an increase of 2.2%. At an error rate of 10-7, the

confidence intervals overlap and both means are within the other confidence interval;

42

therefore, in this instance CETEN-R and TCP Reno are not different. These results are

comparable to the results seen for the one client group of experiments.

Table 9. Four Client TCP Reno Mean Throughput

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
50 10-7 Off 359536 554 248 (359007, 360064)

 On 359507 541 242 (358990, 360023)
 10-6 Off 328435 1281 573 (327213, 329656)
 On 335767 918 411 (334892, 336643)
 10-5 Off 44034 895 400 (43181, 44888)
 On 78580 588 263 (78019, 79140)

320 10-7 Off 138410 729 326 (137505, 139315)
 On 132052 856 383 (130990, 133115)
 10-6 Off 73392 865 387 (72567, 74216)
 On 71470 601 269 (70897, 72043)
 10-5 Off 15695 436 195 (15279, 16111)
 On 21344 91 41 (21257, 21429)

 As with the one client experiments, CETEN-R’s impact on performance was more

significant for TCP New Reno than TCP Reno. For the 320 ms delay experiments, at an

error rate of 10-5, CETEN-R mean goodput is 28226 bps compared to 16186 bps, a 74%

increase. At an error rate of 10-6, CETEN-R mean goodput is 86291 bps compared to

71890 bps, an increase of 20%. At an error rate of 10-7, the goodput confidence intervals

overlap and the CETEN-R goodput mean falls within the confidence interval of TCP

New Reno mean goodput; there is no statistical difference in this case.

43

10000

100000

1000000

10 -̂5 10 -̂6 10 -̂7

Error Rate

Th
ro

ug
hp

ut
 (b

its
 p

er
 s

ec
on

d)

320 ms CETEN-R Off
320 ms CETEN-R On
50 ms CETEN-R Off
50 ms CETEN-R On

Figure 11. TCP Reno Four Client Throughput

 For 50 ms delay experiments, CETEN-R again outperformed TCP New Reno at

all error rates except 10-7, in which case the goodput was not statistically different. At an

error rate of 10-5, CETEN-R mean goodput was 108477 bps compared to 45352 bps, a

139% increase. At an error rate of 10-6, CETEN-R mean goodput was 348976 bps

compared to 328936 bps, an increase of 6.1%. At an error rate of 10-7, the goodput

confidence intervals overlap and the both goodput means fall within the other confidence

interval; there is no statistical difference in this case. Again, these results are comparable

to the results observed for the one client experiments.

44

Table 10. Four Client TCP New Reno Mean Throughput

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
50 10-7 Off 359520 556 249 (358990, 360050)

 On 359619 642 287 (359006, 360231)
 10-6 Off 328936 1052 471 (327933, 329939)
 On 348976 700 313 (348308, 349643)
 10-5 Off 45352 479 214 (44896, 45809)
 On 108477 1883 842 (106682, 110272)

320 10-7 Off 134677 1028 460 (133697, 135656)
 On 135753 1547 692 (134278, 137228)
 10-6 Off 71890 937 419 (70997, 72783)
 On 86291 1025 458 (85314, 87268)
 10-5 Off 16186 296 133 (15904, 16469)
 On 28226 374 167 (27870, 28582)

10000

100000

1000000

10 -̂5 10 -̂6 10 -̂7

Error Rate

Th
ro

ug
hp

ut
 (b

its
 p

er
 s

ec
on

d)

320 ms CETEN-R Off
320 ms CETEN-R On
50 ms CETEN-R Off
50 ms CETEN-R On

Figure 12. TCP New Reno Four Client Throughput

45

ANOVA for Four Client Experiments.

 Table 11 shows the ANOVA for the four client experiments where all clients

either had CETEN-R enabled or all clients were using Stock TCP. The results are similar

to the results for the one client experiments. The main factors account for 87.504% of

variation, which is even more than the one client experiments, with delay and error rate

accounting for virtually all (87.242%) of that variation. First-order interactions

accounted for another 12.357% of variation, with the interaction between delay and error

rate accounting for 11.936% of that total. Main effects and first-order interactions

account for 99.861% of total variation, with second-order interactions, third-order

interactions and experimental error accounting for the remaining 0.139% of total

variation. Since the probability associated with the F-ratio is <0.0001 for all effects and

interactions, the model is considered to be a better fit for the data statistically than the

response mean alone.

 As previously discussed, delay and error rate account for most of the variation in

goodput, since goodput is primarily a function of round trip time and loss rate. In the

four client experiments, the additional clients result in a reduction in mean goodput per

client as delay and error rate decrease, causing the interaction between delay and error

rate to have a less significant effect on mean goodput than for the one client experiments,

although the interaction still accounts for 11.963% of total variation.

 Table 12 shows the main effects and first-order interaction between delay and

error. Since these account for over 99.4 of total variation, all other interactions are

statistically insignificant. For all significant effects and interactions, the probability that

46

the absolute value of the t-ratio is greater than the computed t-value is less than 0.0001.

This indicates the effect or interaction is not zero. As discussed in the ANOVA for the

one client experiments, the values in Table 12 are the expected amounts in bits per

second each factor/level causes goodput to vary from the mean.

Comparing One Client and Four Client Experiments

 To determine the impact of adding clients to a link, the mean goodput of a typical

client in the four client experiments is compared to the mean goodput for a client in the

one client experiments. Results are compared when all other factors are held constant.

Table 13 and Figures 7 and 8 summarize the results for TCP New Reno. Table 14 and

Figures 9 and 10 summarize the results for TCP Reno.

 For TCP New Reno, for the 320 ms experiments, average goodput per client in

the four client experiments is statistically the same as average client throughput in the one

client experiments at error rates of 10-5, 10-6 and 10-7. The corresponding goodput

confidence intervals overlap, and the goodput means are contained in the opposite

confidence interval indicating there is no statistical difference.

 For the 50 ms experiments, however, at error rates of 10-6 and 10-7, per client

average throughput for the four client experiments is less than average throughput for a

single client. An examination of the raw data obtained from the simulations reveals that

for an error rate of 10-7, in the one client experiments average segment delay was 56 ms

compared to 125 ms for the four client experiments; four client average segment delay is

123% higher. This additional delay helps explain the reduced per client goodput seen in

the four client experiments. Since round trip time is one of the major factors influencing

47

Table 11. Four Client ANOVA

Component
Sum of
Squares

Percentage
of Variation

Degrees
of

Freedom F Ratio
Prob >

F
y 5438334657038 120
ybar 3303607604992 1
y - ybar 2134727052047 100.000 119
Main Effects 1867966277030 87.504 5
TCP Flavor
(F) 898773333 0.042 1 1166.060 <0.0001
Delay (D) 946388369944 44.333 1 1227835.243 <0.0001
Error Rate
(E) 915991751361 42.909 2 594199.480 <0.0001
CETEN-R
(A) 4687382392 0.220 1 6081.365 <0.0001
First-Order
Interactions 263784067649 12.357 9
FD 123623034 0.006 1 160.387 <0.0001
FE 488532236 0.023 2 316.909 <0.0001
FA 1066895064 0.050 1 1384.179 <0.0001
DE 255372887082 11.963 2 165659.174 <0.0001
DA 2092736322 0.098 1 2715.096 <0.0001
EA 4639393911 0.217 2 3009.553 <0.0001
Second-
Order
Interactions 2579920735 0.121 7
FDE 231703431 0.011 2 150.305 <0.0001
FDA 26437914 0.001 1 34.300 <0.0001
FEA 259878947 0.012 2 168.582 <0.0001
DEA 2061900443 0.097 2 1337.545 <0.0001
Third-Order
Interactions 322791947 0.015 2
FDEA 322791947 0.015 2 209.394 <0.0001
Errors 73994686 0.003 96

48

Table 12. Four Client Main Effects and Significant Interactions

Term Estimate
Std

Error t Ratio Prob>|t|
Intercept 165922 80.14 2070.28 <0.0001
TCP Flavor[New Reno] 2737 80.14 34.15 <0.0001
TCP Flavor[Reno] -2737 80.14 -34.15 <0.0001
Delay[320 ms] -88806 80.14 -1108.08 <0.0001
Delay[50 ms] 88806 80.14 1108.08 <0.0001
CETEN-R[Off] -6250 80.14 -77.98 <0.0001
CETEN-R[On] 6250 80.14 77.98 <0.0001
Error Rate[10-5] -121185 113.34 -1069.20 <0.0001
Error Rate[10-6] 39723 113.34 350.47 <0.0001
Error Rate[10-7] 81462 113.34 718.73 <0.0001
Delay[320 ms]*Error Rate[10-5] 64432 113.34 568.48 <0.0001
Delay[320 ms]*Error Rate[10-6] -41077 113.34 -362.42 <0.0001
Delay[320 ms]*Error Rate[10-7] -23355 113.34 -206.06 <0.0001
Delay[50 ms]*Error Rate[10-5] -64432 113.34 -568.48 <0.0001
Delay[50 ms]*Error Rate[10-6] 41077 113.34 362.42 <0.0001
Delay[50 ms]*Error Rate[10-7] 23355 113.34 206.06 <0.0001

goodput, this increase in segment delay corresponds to an increase in round trip time in

the four client experiments, causing a reduction in goodput. Total goodput for the four

client low delay, low error rate experiments, however, was higher than for the one client

experiments and at 1.4 Mb/s was very close to the router’s datagram forwarding rate of

1.544 Mb/s.

 For TCP Reno, the comparisons reveal some ambiguous results. For the 320 ms

delay and an error rate of 10-5 experiments where CETEN-R is enabled, each client in the

four client experiments had a mean goodput of 28226 bps compared to a mean goodput

of 21274 bps for the one client experiments, a 32.7% increase. The reasons for this

anomaly are not apparent and further investigation is needed to determine the cause. For

49

Table 13. One Client/Four Client New Reno Comparison

Num
Clients

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
1 50 10-7 Off 777994 2245 1004 (775854, 780135)
4 50 10-7 Off 359520 556 249 (358990, 360050)
1 50 10-7 On 795913 6753 3020 (789475, 802352)
4 50 10-7 On 359619 642 287 (359006, 360231)
1 50 10-6 Off 387657 4528 2025 (383339, 391974)
4 50 10-6 Off 328936 1052 471 (327933, 329939)
1 50 10-6 On 486847 3617 1618 (483398, 490295)
4 50 10-6 On 348976 700 313 (348308, 349643)
1 50 10-5 Off 45304 1048 469 (44305, 46303)
4 50 10-5 Off 45352 479 214 (44896, 45809)
1 50 10-5 On 111455 2908 1300 (108683, 114227)
4 50 10-5 On 108477 1883 842 (106682, 110272)
1 320 10-7 Off 134248 1772 792 (132559, 135937)
4 320 10-7 Off 134677 1028 460 (133697, 135656)
1 320 10-7 On 136526 2257 1009 (134374, 138678)
4 320 10-7 On 135753 1547 692 (134278, 137228)
1 320 10-6 Off 72093 1925 861 (70258, 73928)
4 320 10-6 Off 71890 937 419 (70997, 72783)
1 320 10-6 On 85709 1698 760 (84090, 87329)
4 320 10-6 On 86291 1025 458 (85314, 87268)
1 320 10-5 Off 16036 743 332 (15328, 16744)
4 320 10-5 Off 16186 296 133 (15904, 16469)
1 320 10-5 On 28465 728 326 (27771, 29159)
4 320 10-5 On 28226 374 167 (27870, 28582)

50

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut 1 Client 50 ms CETEN-R Off
4 Client 50 ms CETEN-R Off
1 Client 320 ms CETEN-R Off
4 Client 320 ms CETEN-R Off

Figure 13. TCP New Reno One Client/Four Client CETEN-Off Throughput Comparison

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut
 (b

ps
)

1 Client 320 ms CETEN-R On
4 Client 320 ms CETEN-R On
1 Client 50 ms CETEN-R On
4 Client 50 ms CETEN-R On

Figure 14. TCP New Reno One Client/Four Client CETEN-On Throughput Comparison

error rates of 10-6 and 10-7 and a delay of 320 ms, experiments reveal per client mean

goodput is the statistically the same for both the four client and one client experiments.

The corresponding goodput confidence intervals overlap, and the goodput means are

contained in the opposite confidence interval indicating there is no statistical difference.

51

 For the 50 ms delay, error rate of 10-5 experiments where CETEN-R is enabled,

for the one client experiments, mean goodput is 79848 bps compared to 78580 bps for the

four client experiments, which is 1.6% greater. No apparent cause could be discovered

for this difference. For error rates of 10-6 and 10-7 and a delay of 50 ms, average

throughput for the four client experiments is less than average throughput for a single

client experiment. Total goodput is higher and was very close to the router datagram

forwarding rate of 1.544 Mb/s. This result is the same as for TCP New Reno.

ANOVA for both One and Four Client Experiments

 Next, an ANOVA was done over the entire one client and four client experiments

where all clients either had CETEN-R enabled or all clients were using a standard version

of TCP. The results are summarized in Table 15. When experimental design is

considered as a whole, main effects account for 73.306% of total variation, with delay

accounting for 35.866% and error rate accounting for another 33.545%. An additional

3.733% of variation is accounted for by the number of clients. This accounts for

73.144% of total variation. The remaining two main effects account for only 0.162% of

total variation. First order interactions account for another 22.007% of total variation,

with the bulk of that variation accounted for by three interactions: number of

clients*delay (3.741%), number of clients*error rate (4.491%) and delay*error rate

(13.491%). Second order interactions account for 4.616% of total variation, with number

of clients*delay*error rate accounting for most of that variation (4.480%). All higher

order iterations and errors explain only 0.074% of total variation and are considered

insignificant. Since the probability associated with the F-ratio is <0.0001 for all

52

significant effects and interactions, the model is considered to be a better fit for the data

statistically than the response mean alone.

Table 14. One Client/Four Client TCP Reno Comparison

Num
Clients

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
1 50 10-7 Off 808558 6171 2760 (802674, 814441)
4 50 10-7 Off 359536 554 248 (359007, 360064)
1 50 10-7 On 767317 5035 2252 (762517, 772118)
4 50 10-7 On 359507 541 242 (358990, 360023)
1 50 10-6 Off 384695 8264 3696 (376816, 392574)
4 50 10-6 Off 328435 1281 573 (327213, 329656)
1 50 10-6 On 398321 2681 1199 (395765, 400878)
4 50 10-6 On 335767 918 411 (334892, 336643)
1 50 10-5 Off 45059 1156 517 (43957, 46162)
4 50 10-5 Off 44034 895 400 (43181, 44888)
1 50 10-5 On 79848 877 392 (79012, 80684)
4 50 10-5 On 78580 588 263 (78019, 79140)
1 320 10-7 Off 138178 1985 888 (136285, 140071)
4 320 10-7 Off 138410 729 326 (137505, 139315)
1 320 10-7 On 132471 2585 1156 (130006, 134936)
4 320 10-7 On 132052 856 383 (130990, 133115)
1 320 10-6 Off 72374 2642 1181 (69856, 74893)
4 320 10-6 Off 73392 865 387 (72567, 74216)
1 320 10-6 On 71118 845 378 (70313, 71923)
4 320 10-6 On 71470 601 269 (70897, 72043)
1 320 10-5 Off 15896 330 147 (15545, 16174)
4 320 10-5 Off 16186 296 133 (15904, 16469)
1 320 10-5 On 21274 428 191 (20866, 21682)
4 320 10-5 On 28226 374 167 (27870, 28582)

53

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut
 (b

ps
)

1 Client 50 ms CETEN-R Off
4 Client 50 ms CETEN-R Off
1 Client 320 ms CETEN-R Off
4 Client 320 ms CETEN-R Off

Figure 15. TCP Reno One Client/Four Client CETEN-R Off Throughput Comparison

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut
 (b

ps
)

1 Client 320 ms CETEN-R On
4 Client 320 ms CETEN-R On
1 Client 50 ms CETEN-R On
4 Client 50 ms CETEN-R On

Figure 16. TCP Reno One Client/Four Client CETEN-R Enabled Throughput
Comparison

 As shown in the one client and four client ANOVAs, error rate and delay account

for most of the variation in mean goodput because goodput is largely a function of round

54

trip time and loss rate [PFT98]. The number of clients impacts goodput because as the

number of clients increases, the router queues can lose the ability to process all the

packets as they arrive, leading to an increase in congestion, causing greater loss due to

congestion, reducing goodput [Jac88, Ste94]. The first order interactions between the

number of clients and delay and the number of clients and error rate and the second order

interaction between number of clients, delay and error are significant. Looking back at

Tables 13 and 14 provides clues as to why these interactions are significant. When delay

is high, the mean goodput for comparable one client and four client experiments was

statistically the same. When delay is low, as the number of clients increases, per client

goodput decreases if error rates are moderate or low. This suggests that there is a

significant interaction between the number of clients, delay and error rate and is

expected.

 Table 16 shows the significant main effects and interactions. Since these account

for over 99.3% of total variation all other interactions and errors are not considered here.

A t-test was performed on each significant effect or interaction. In all cases, the

probability that the absolute value of the t-ratio is greater than the computed t-value is

less than 0.0001 indicating the effect or interaction is not zero. As previously discussed

in the ANOVA for the one client experiments, the values in Table 16 are the expected

amounts in bits per second each factor/level causes goodput to vary from the mean.

55

Table 15. Overall ANOVA

Component Sum of Squares
Percentage of

Variation DOF F Ratio
Prob >

F
y 21919596282770 240
ybar 10407180476575 1
y - ybar 11512415806195 100.000 239
Main Effects 8439266670600 73.306 6
Clients (N) 429767000000 3.733 1 71670.094 <0.0001
TCP Flavor
(F) 4543770600 0.039 1 757.743 <0.0001

Delay (D) 4129090000000 35.866 1
688587.78

8 <0.0001

Error Rate (E) 3861820000000 33.545 2
322008.24

3 <0.0001
CETEN-R (A) 14045900000 0.122 1 2342.375 <0.0001
First-Order
Interactions 2533561696928 22.007 14
NF 625500721 0.005 1 104.312 <0.0001
ND 430642000000 3.741 1 71816.055 <0.0001
NE 517049000000 4.491 2 43112.875 <0.0001
NA 470552456 0.004 1 78.472 <0.0001
FD 1599827665 0.014 1 266.796 <0.0001
FE 2862461857 0.025 2 238.679 <0.0001
FA 8022549290 0.070 1 1337.882 <0.0001

DE 1553120000000 13.491 2
129503.08

0 <0.0001
DA 7253804939 0.063 1 1209.682 <0.0001
EA 11916000000 0.104 2 993.588 <0.0001
Second-Order
Interactions 531398783900 4.616 16
NDE 515725000000 4.480 2 43002.478 <0.0001
All others 15673783900 0.136 14
Third-Order
Interactions 6148557912 0.053 9
Fourth-Order
Interactions 1255005198 0.011 2 74.939 <0.0001
Errors 1151319433 0.010 192

56

Table 16. All Experiments Significant Effects and Interactions
Term Estimate StdErr t Ratio Prob>|t|

Clients[1] 42317 158 267.71 <0.0001
Clients[4] -42317 158 -267.71 <0.0001
Delay[320 ms] -131166 158 -829.81 <0.0001
Delay[50 ms] 131166 158 829.81 <0.0001
Error Rate[10-5] -163164 224 -729.91 <0.0001
Error Rate[10-6] 17010 224 76.09 <0.0001
Error Rate[10-7] 146154 224 653.81 <0.0001
Clients[1]*Delay[320 ms] -42360 158 -267.99 <0.0001
Clients[1]*Delay[50 ms] 42360 158 267.99 <0.0001
Clients[4]*Delay[320 ms] 42360 158 267.99 <0.0001
Clients[4]*Delay[50 ms] -42360 158 -267.99 <0.0001
Clients[1]*Error Rate[10-5] -41979 224 -187.79 <0.0001
Clients[1]*Error Rate[10-6] -22713 224 -101.61 <0.0001
Clients[1]*Error Rate[10-7] 64692 224 289.40 <0.0001
Clients[4]*Error Rate[10-5] 41979 224 187.79 <0.0001
Clients[4]*Error Rate[10-6] 22713 224 101.61 <0.0001
Clients[4]*Error Rate[10-7] -64692 224 -289.40 <0.0001
Delay[320 ms]*Error Rate[10-5] 106477 224 476.32 <0.0001
Delay[320 ms]*Error Rate[10-6] -18540 224 -82.94 <0.0001
Delay[320 ms]*Error Rate[10-7] -87937 224 -393.38 <0.0001
Delay[50 ms]*Error Rate[10-5] -106477 224 -476.32 <0.0001
Delay[50 ms]*Error Rate[10-6] 18540 224 82.94 <0.0001
Delay[50 ms]*Error Rate[10-7] 87937 224 393.38 <0.0001
Clients[1]*Delay[320 ms]*Error Rate[10-5] 42045 224 188.09 <0.0001
Clients[1]*Delay[320 ms]*Error Rate[10-6] 22538 224 100.82 <0.0001
Clients[1]*Delay[320 ms]*Error Rate[10-7] -64582 224 -288.91 <0.0001
Clients[1]*Delay[50 ms]*Error Rate[10-5] -42045 224 -188.09 <0.0001
Clients[1]*Delay[50 ms]*Error Rate[10-6] -22538 224 -100.82 <0.0001
Clients[1]*Delay[50 ms]*Error Rate[10-7] 64582 224 288.91 <0.0001
Clients[4]*Delay[320 ms]*Error Rate[10-5] -42045 224 -188.09 <0.0001
Clients[4]*Delay[320 ms]*Error Rate[10-6] -22538 224 -100.82 <0.0001
Clients[4]*Delay[320 ms]*Error Rate[10-7] 64582 224 288.91 <0.0001
Clients[4]*Delay[50 ms]*Error Rate[10-5] 42045 224 188.09 <0.0001
Clients[4]*Delay[50 ms]*Error Rate[10-6] 22538 224 100.82 <0.0001
Clients[4]*Delay[50 ms]*Error Rate[10-7] -64582 224 -288.91 <0.0001

57

Analysis of Four Client Mixed CETEN-R Experiments

 A group of experiments was performed to determine the impact having some TCP

flows with CETEN-R enabled sharing a single TCP link with other flows which were

using a standard TCP version. Table 17 and Figure 17 compare the goodput for TCP

Reno. Table 18 and Figure 18 compare the goodput for TCP New Reno. The data in

Tables 17 and 18 are examined to determine CETEN-R enabled TCP flows are too

“aggressive” when sharing a single link with standard TCP flows. If the CETEN-R flows

are unfair to the normal TCP flows, they will, on average, use more than their fair share

of the bandwidth or more bandwidth than an average CETEN-R flow receives when all

flows are CETEN-R enabled.

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut
 (b

ps
)

50 ms CETEN-R On/Mixed
50 ms CETEN-R On/All
50 ms CETEN-R Off/Mixed
50 ms CETEN-R Off/All
320 ms CETEN-R On/Mixed
320 ms CETEN-R On/All
320 ms CETEN-R Off/Mixed
320 ms CETEN-R Off/All

Figure 17. TCP New Reno Throughput Comparisons

58

Table 17. Mean Throughput Comparison, TCP New Reno, Four Client Mixed and Four
Client Homogenous Experiments

Delay
ms

Error
Rate

CETEN-
R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
50 7-Oct Off/All 359520 556 249 (358990, 360050)
50 Off/Mixed 358394 1416 633 (357043, 359744)
50 On/All 359619 642 287 (359006, 360231)
50 On/Mixed 362872 4004 1791 (359055, 366689)
50 6-Oct Off/All 328936 1052 471 (327933, 329939)
50 Off/Mixed 316227 2199 983 (314131, 318324)
50 On/All 348976 700 313 (348308, 349643)
50 On/Mixed 399656 5114 2287 (394780, 404532)
50 5-Oct Off/All 45352 479 214 (44896, 45809)
50 Off/Mixed 45789 568 254 (45248, 46330)
50 On/All 108477 1883 842 (106682, 110272)
50 On/Mixed 112272 2662 1191 (109734, 114811)

320 7-Oct Off/All 134677 1028 460 (133697, 135656)
320 Off/Mixed 134399 818 366 (133619, 135178)
320 On/All 135753 1547 692 (134278, 137228)
320 On/Mixed 134249 2112 945 (132235, 136263)
320 6-Oct Off/All 71890 937 419 (70997, 72783)
320 Off/Mixed 72057 859 384 (71238, 72877)
320 On/All 86291 1025 458 (85314, 87268)
320 On/Mixed 87122 2123 949 (85098, 89146)
320 5-Oct Off/All 16186 296 133 (15904, 16469)
320 Off/Mixed 16148 207 93 (15951, 16346)
320 On/All 28226 374 167 (27870, 28582)
320 On/Mixed 28698 657 294 (28072, 29323)

59

Table 18. Mean Throughput Comparison, TCP Reno, Four Client Mixed and Four Client
Homogeneous Experiments

Delay
ms

Error
Rate CETEN-R

Mean
bps

Std
Dev

Std
Err

Mean
90% Confidence

Interval (bps)
50 10-7 Off/All 359536 554 248 (359007, 360064)
50 10-7 Off/Mixed 363217 1022 457 (362242, 364192)
50 10-7 On/All 359507 541 242 (358990, 360023)
50 10-7 On/Mixed 348480 2813 1258 (345798, 351162)
50 10-6 Off/All 328435 1281 573 (327213, 329656)
50 10-6 Off/Mixed 327789 817 365 (327010, 328567)
50 10-6 On/All 335767 918 411 (334892, 336643)
50 10-6 On/Mixed 337600 6797 3040 (331119, 344081)
50 10-5 Off/All 44034 895 400 (43181, 44888)
50 10-5 Off/Mixed 44389 915 409 (43516, 45261)
50 10-5 On/All 78580 588 263 (78019, 79140)
50 10-5 On/Mixed 78999 1435 642 (77631, 80367)
320 10-7 Off/All 138410 729 326 (137505, 139315)
320 10-7 Off/Mixed 138824 544 243 (138306, 139343)
320 10-7 On/All 132052 856 383 (130990, 133115)
320 10-7 On/Mixed 132614 1573 704 (131114, 134114)
320 10-6 Off/All 73392 865 387 (72567, 74216)
320 10-6 Off/Mixed 71462 1139 509 (70376, 72548)
320 10-6 On/All 71470 601 269 (70897, 72043)
320 10-6 On/Mixed 71158 1223 547 (69992, 72325)
320 10-5 Off/All 15695 436 195 (15279, 16111)
320 10-5 Off/Mixed 15679 313 140 (15381, 15978)
320 10-5 On/All 21344 91 41 (21257, 21429)
320 10-5 On/Mixed 21381 444 199 (20958, 21805)

60

10000

100000

1000000

10 -̂7 10 -̂6 10 -̂5

Error Rate

Th
ro

ug
hp

ut
 (b

ps
)

50 ms CETEN-R On/Mixed
50 ms CETEN-R On/All
50 ms CETEN-R Off/Mixed
50 ms CETEN-R Off/All
320 ms CETEN-R On/Mixed
320 ms CETEN-R On/All
320 ms CETEN-R Off/Mixed
320 ms CETEN-R Off/All

Figure 18. TCP Reno Throughput Comparisons

 A line by line comparison of these tables and a visual comparison of the figures

reveal that in most cases CETEN-R is not “unfair” TCP Reno or TCP New Reno.

Table 19 summarizes the four cases where the mean throughput differs in a mixed

CETEN-R/standard TCP version environment as compared to a homogenous

environment, where all clients are either using standard TCP or all are CETEN-R

enabled.

 For TCP New Reno, at a delay of 50 ms and an error rate of 10-6, comparing

CETEN-R flows, in the mixed environment case, the flow with CETEN-R enabled had a

mean goodput of 399656 bps compared to 348976 bps per client when all are CETEN-R

enabled, a 14.5% higher goodput. Conversely, for TCP New Reno at a delay of 50 ms

and an error rate of 10-6, comparing standard TCP New Reno flows, when all flows were

using TCP New Reno, mean goodput is 328936 bps compared to 316227 bps in a mixed

61

environment, a 3.8% decrease. In this case, CETEN-R is behaving slightly aggressive

and receives more bandwidth that it otherwise would.

Table 19. Comparison of Differences in Mixed Versus Homogeneous Environments

Flavor
Delay
(ms)

Error
Rate

CETEN-
R

Mean
Tput
(bps)

90% Confidence
Interval (bps)

New Reno 50 10-6 On/Mixed 399656 (394780, 404532)
New Reno 50 10-6 On/All 348976 (348308, 349643)
New Reno 50 10-6 Off/Mixed 316227 (314131, 318324)
New Reno 50 10-6 Off/All 328936 (327933, 329939)
New Reno 50 10-5 On/Mixed 112272 (109734, 114811)
New Reno 50 10-5 On/All 108477 (106682, 110272)
New Reno 50 10-5 Off/Mixed 45789 (45248, 46330)
New Reno 50 10-5 Off/All 45352 (44896, 45809)
Reno 50 10-7 On/Mixed 348480 (345798, 351162)
Reno 50 10-7 On/All 359507 (358990, 360023)
Reno 50 10-7 Off/Mixed 363217 (362242, 364192)
Reno 50 10-7 Off/All 359536 (359007, 360064)
Reno 320 10-6 On/Mixed 71158 (69992, 72325)
Reno 320 10-6 On/All 71470 (70897, 72043)
Reno 320 10-6 Off/Mixed 71462 (70376, 72548)
Reno 320 10-6 Off/All 73392 (72597, 74216)

 For TCP New Reno, a delay of 50 ms and an error rate of 10-5, comparing

CETEN-R flows, in a mixed environment, the CETEN-R mean goodput was 112272 bps

compared to 108477 bps when all flows are CETEN-R enabled, a 3.5% increase, but

there was no statistical difference between the goodput of the standard TCP New Reno

flows in the mixed and homogeneous environments. In this case, the small advantage

62

CETEN-R appears to have in a mixed environment may be due to the relatively small

number of replications of the experiment.

 For TCP Reno, with 50 ms delay and an error rate of 10-7, for the CETEN-R

flows, in a mixed environment, the CETEN-R goodput is 348480 bps compared to

359507 bps when all flows are CETEN-R enabled, a 3% decrease. For the TCP Reno

flows, in a mixed environment, the goodput is 363217 bps compared to 359536 bps when

all flows are using TCP Reno, an increase of 1%. These differences are very small and

not very significant.

 The final case is TCP Reno, an error rate of 10-6 and delay of 320 ms. For the

CETEN-R enabled flows, the goodput confidence intervals overlap and the mean goodput

is contained within the confidence interval so there is no statistical difference. For the

TCP Reno flows, in a mixed environment the TCP Reno flow’s goodput is 71462 bps

compared to 73392 bps when all flows are using TCP Reno, a 2.6% decrease. This

difference is small and not very significant.

 It appears that for most cases CETEN-R is not unfair to TCP Reno and TCP New

Reno in a mixed client system; however, the results are curious and further

experimentation is required to determine the exact causes of the anomalies seen.

Summary

 In this chapter, the results of this research and analysis of this research have been

presented. First, a comparison of goodput between standard versions of TCP and

CETEN-R enabled TCP was done with a single client on a link. CETEN-R enabled TCP

performed better than TCP Reno and TCP New Reno at higher error rates. As the error

63

64

rate decreased, little or no improvement in goodput was observed. Then goodput was

compared with four clients sharing the bandwidth. Again improvements were more

significant at higher error rates than at lower error rates, where little or no improvement

in performance was observed. ANOVAs were done delay and error rate and the

interaction between delay and error rate accounted for most of the variation in goodput,

as expected. However, when experiments are examined side by side, holding latency,

error rate, number of flows and TCP version constant, CETEN-R demonstrates an

increase in goodput in some cases, especially at low delay and high error rates; it also

showed a significant increase in goodput when delay and error rates are high. Finally, an

analysis of experiments in which some clients were CETEN-R enabled and some were

using standard TCP versions was conducted. This analysis showed that in general

CETEN-R was not “unfair” to standard TCP, with a couple of minor exceptions.

 65

VI. Conclusions and Recommendations

Chapter Overview

 This chapter discusses the conclusions of this research, noting areas where

CETEN-R provides the greatest improvements in TCP performance over standard

versions of TCP. Next, an overview of the significance of this research is discussed.

Finally, recommendations for future research are outlined.

Conclusions of Research

CETEN-R is a technique which shows some promise in improving TCP

throughput over satellite and wireless links. The results of a previous CETEN study

[KAP02] noted gains in goodput over TCP Reno except at high error rates. In contrast,

this research has shown CETEN-R to provide significant improvements in goodput over

TCP Reno and TCP New Reno at high error rates and both low and high latencies.

CETEN-R’s most pronounced effect was when combined with TCP New Reno at high

error rates. For TCP New Reno combined with CETEN-R, 320 ms delay, goodput

increased by 77% at an error rate of 10-5, by 18.9% at an error rate of 10-6 and was not

statistically different at an error rate of 10-7. For TCP New Reno combined with CETEN-

R, 50 ms delay, goodput increased by 146% at an error rate of 10-5, by 15.6% at an error

rate of 10-6, and by 2.3% at an error rate of 10-7. For TCP Reno combined with CETEN-

R, 320 ms delay, goodput increased by 33.8% at an error rate of 10-5, was not statistically

different at an error rate of 10-6, and goodput was reduced by 4% at an error rate of 10-7.

For TCP Reno combined with CETEN-R, 50 ms delay, goodput increased by 77% at an

 66

error rate of 10-5 and by 3.5% at an error rate of 10-6; goodput was reduced by 5% at an

error rate of 10-7.

CETEN-R also performed well in a four flow scenario. Improvements in goodput

were similar to those noted for the single flow experiments. For TCP New Reno

combined with CETEN-R, 320 ms delay, goodput increased by 74% at an error rate of

10-5, by 20% at an error rate of 10-6 and was not statistically different at an error rate of

10-7. For TCP New Reno combined with CETEN-R and 50 ms delay, goodput increased

by 139% at an error rate of 10-5, by 6.1% at an error rate of 10-6, and was not statistically

different at an error rate of 10-7. For TCP Reno combined with CETEN-R, 320 ms

delay, goodput increased by 36% at an error rate of 10-5, was reduced by 2.7% at an error

rate of 10-6, and was reduced by 4.8% at an error rate of 10-7. For TCP Reno combined

with CETEN-R, 50 ms delay, goodput increased by 78 at an error rate of 10-5 and by

2.2% at an error rate of 10-6 and was not statistically different at an error rate of 10-7.

Finally, when a single link is shared between CETEN-R flows and TCP flows,

CETEN-R does not perform overly aggressively; in only one case was the goodput in the

mixed environment significantly different from the goodput in the experiments where all

flows were using standard TCP. The one anomaly was TCP New Reno, latency of 50

ms, and an error rate of 10-6. In this in instance, in a mixed environment, the CETEN-R

enabled flow had a 14.5% increase in goodput, while the TCP New Reno flows had a

3.5% reduction in goodput.

This research shows that it is always to better to opt for a low delay, low

environment when possible. CETEN-R provides an improvement in goodput when error

rates are high; when error rates are low, TCP Reno or TCP New Reno is a better choice.

 67

Significance of Research

TCP performs quite well in a traditional fixed network environment. This

research focused on a technique to improve TCP goodput over nontraditional networks,

such as satellite communications and wireless networks. These networks typically have

longer latency and higher error rates than fixed wired networks. Satellite and wireless

networks are becoming more ubiquitous and methods of improving TCP performance,

thereby improving customer satisfaction, are vitally important. This research focused on

developing and testing an algorithm, CETEN-R, which uses information it receives from

IP about the state of the network and determines whether a lost packet was dropped due

to congestion or corruption. If TCP can accurately determine a packet was lost due to

corruption, it can retransmit the unacknowledged packet and dispense with the traditional

congestion control mechanisms.

Recommendations for Future Research

 There are several areas of further investigation that are warranted. First, the

current CETEN-R algorithm needs to be implemented in conjunction with TCP SACK

and its performance characterized. TCP SACK is recommended over satellite links

[AGS99]. A study of CETEN performance should be conducted over a more realistic

network, with multiple links and both wireless and wired hops. CETEN should be

studied in an environment where not all routers are CETEN capable, since any

deployment of CETEN would most likely be incremental. This research used simulated

file transfers as the workload. A study of CETEN performance with more typical traffic,

 68

such as http traffic is warranted. Finally, CETEN should be studied over a “real-world”

network. Both this study and the original [KAS02] study were simulation studies.

Summary

CETEN-R is a technique developed to enhance TCP performance; this approach

shows promise for improving TCP goodput over any network, but in particular over

networks which are experiencing high rates of packet corruption, as would be typical

over satellite and wireless networks. The main goal of this research was achieved.

CETEN-R was shown to improve TCP goodput over long latency, high error rate

networks. However, additional investigation is necessary to fine-tune the algorithm and

explore its use with TCP SACK.

 69

Appendix A

Algorithm Code

tcp_conn_v3 process model

tcp_ack_check function

static int
tcp_ack_check (void)
 {
 TcpT_Seg_Fields* fd_ptr;
 char str0 [128];
 TcpT_Seq old_snd_una;
 TcpT_Size acked_bytes;
 double current_time;
 double next_timeout_time;
 char stra [256];

 /** Check the ACK bit and ACK sequence number of the received segment. **/
 /** Use the segment information to update congestion window, remote **/
 /** receive window and to flush the acknowledged data from the retrans **/
 /** buffer. This check is used in the following states: **/
 /** ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING,
 **/
 /** LAST-ACK, and TIME-WAIT.
 **/
 /** Returns 1 if ACK is acceptable, 0 otherwise.
 **/
 FIN (tcp_ack_check ());

 …

 /* Check for a duplicate acknowledgment. Duplicate ACKs are those which */
 /* repeat an ACK sequence number already seen in a previous ACK. Hence, */
 /* snd_una has already been advanced up to or past the seg_ack in the pkt */
 /* just received. There are several situations which can cause dup-ACKs: */
 /* 1) the ACK-sender could be in error or the packet might have been */
 /* delayed and thus received out of order.
 */
 /* 2) a TCP might repeat an ACK sequence when transmitting new data or a */
 /* new send window if no new data had been received between the time */
 /* the new packet was sent and the time the previous ACK was sent. */
 /* 3) another possibility is that TCP is duplicating ACKs because it is */
 /* receiving packets but it is missing a packet prior to those being */
 /* received. Thus, it must still send ACKs because new data has arrived */
 /* but the cumulative ACK cannot be advanced. This might indicate */
 /* packet loss, or it might simply indicate packet reordering */

 70

 /* somewhere in the network.
 */
 if (tcp_seq_lt (seg_ack, snd_una))
 {
 /* This segment duplicates an ACK older than the most recently received */
 /* ACK. Count only consecutive receptions of the most recent ACK reset */
 /* counter, as long as Fast Retransmit has not occurred.
 */
 if (dup_ack_cnt < tcp_parameter_ptr->fr_dup_ack_thresh)
 dup_ack_cnt = 0;

 if (tcp_trace_active || tcp_extns_trace_active)
 op_prg_odb_print_major ("TCP received an old duplicate ACK; ignoring.",
 OPC_NIL);

 /* Check if the incoming segment contains data. */
 if (seg_len > 0)
 {
 /* Even though this segment is not in order, accept its */
 /* data; however, dont process the other details. */
 FRET (1);
 }

 else
 {
 FRET (0);
 }
 }

 /* Check if this segment duplicates the most recently received ACK. */
 else if (seg_ack == snd_una)
 {
 if ((seg_len != 0) && (conn_supports_ts == TCPC_OPTION_STATUS_ENABLED))
 {
 /* Time stamp is supported and this is not a duplicate ACK. */

 /* Process timestamp information carried in the packet. */
 tcp_ts_info_process (ev_ptr->pk_ptr);
 }

 /* Does this duplicate ACK contain any new data or a window update? */
 if ((seg_len != 0) || (fd_ptr->rcv_win << snd_scale != snd_wnd))
 {
 if ((tcp_trace_active || tcp_extns_trace_active) && dup_ack_cnt != 0)
 {
 op_prg_odb_print_major ("TCP received a duplicate ACK containing
 new data or a window update.", OPC_NIL);
 }

 /* Process SACK-data contained in this packet, if any. */
 tcp_sack_processing (ev_ptr->pk_ptr);

 /* Reset the duplicate count, as long as Fast Retransmit has not */

 71

 /* already occured.
 */
 if (dup_ack_cnt < tcp_parameter_ptr->fr_dup_ack_thresh)
 {
 dup_ack_cnt = 0;
 }
 }
 else
 {
 /* This segment is a true duplicate, i.e., no new data/window */
 /* update. Thus, it must indicate packet drop. Now there is */
 /* outstanding unacknowledged data which was may have been lost. */
 if (tcp_seq_gt (snd_max, snd_una))
 {
 /* Increment the count of "pure" duplicate ACK segment. */
 dup_ack_cnt++;
 if (tcp_trace_active || tcp_extns_trace_active)
 {
 sprintf (str0, "TCP received consecutive duplicate ACK
 number %d.", dup_ack_cnt);
 op_prg_odb_print_major (str0, OPC_NIL);
 }
 /* Process SACK-data contained in this packet, if any. */
 tcp_sack_processing (ev_ptr->pk_ptr);

 if ((ceten_support == 1) && tcp_ceten_packet_loss())
 {
 tcp_eten_retransmit();
 }
 else
 {

 /* Perform fast-retransmission, if applicable. */
 tcp_frfr_processing ();
 }

 /* Additional packets from snd/una buffers will be sent */
 /* if allowed by the congestion control/send window. */
 FRET (1);
 }
 else
 {
 /* Completely duplicate ACK, but there is no outstanding data so
 simply */
 /* discard the packet. */

 …

 72

tcp_eten_retransmit function

static void
tcp_eten_retransmit (void)
 {
 char msg [128];
 char msg1 [256];
 TcpT_Seq onxt, cwnd_old;

 FIN (tcp_eten_retransmit (void));

 /* If RTT measurements are currently being taken, reset the timer. */
 rtt_active = 0;

 /* Retransmit the segment lost due to error. This will be donw by calling */
 /* tcp_una_buf_process (). Temporarily set the value of snd_nxt, so that */
 /* the next sent packet is indeed the lost packet. Then reset snd_nxt back */
 /* to its original value. To send only one segment, temporarily set the */
 /* cwnd value to 1 MSS.
 */

 /* Store current snd_nxt value. This is being done as when we call */
 /* una_buf_process. We need to start sending from the dropped segment, */
 /* rather than snd_nxt. After the function call, values will be restored. */

 if ((SACK_PERMITTED && (pipe < cwnd)) || !SACK_PERMITTED)
 {
 /* Retransmit the missing packet. Only one will be transmitted due to cwnd. */
 onxt = snd_nxt;
 snd_nxt = snd_una;

 /* Store current congestion window value. This is done to send just one
 segment. */
 cwnd_old = cwnd;
 cwnd = snd_mss;
 tcp_una_buf_process (OPC_FALSE);

 /* Restore the value of send_nxt. */
 snd_nxt = MAX(snd_nxt, onxt);

 /* Restore the congestion window value */
 cwnd = cwnd_old;

 /* Collect statistics related to delays in sending segments. */
 tcp_seg_send_delay_stat_record ();
 }
 FOUT;

 73

tcp_ceten_packet_loss function

static Boolean
tcp_ceten_packet_loss()
 {

 double ceten_test;
 double scale_forward_error;
 double scale_forward_congestion;
 Boolean bypass_congestion = OPC_FALSE;

 FIN (tcp_ceten_packet_loss());

 if (ceten_support)
 {
 ceten_test = op_dist_uniform (1.0);
 scale_forward_error = 1 - ceten_forward_error_ratio;
 scale_forward_congestion = 1 - ceten_forward_congestion_ratio;
 if (scale_forward_error + scale_forward_congestion <= 0)
 {
 bypass_congestion = OPC_FALSE;
 }
 if (ceten_test < (scale_forward_error / (scale_forward_error +
 scale_forward_congestion)))
 {
 bypass_congestion = OPC_TRUE;
 }
 }
 FRET (bypass_congestion);
 }

 74

tcp_manager_v3 process model

tcp_mgr_tcp-params_parse function

tcp_mgr_tcp_params_parse()

…

/* Read in the values for CETEN attributes */
if (op_ima_obj_attr_get (tcp_parameter_objid, "Ceten Status", &tcp_parameter_ptr->ceten_options_flag)
 == OPC_COMPCODE_FAILURE)
 {
 tcp_mgr_error ("Unabel to get CETEN Status attribute");
 }
if (op_ima_obj_attr_get (tcp_parameter_objid, "Ceten Alpha", &tcp_parameter_ptr->ceten_alpha_ratio) ==
 OPC_COMPCODE_FAILURE)
 {
 tcp_mgr_error ("Unable to get CETEN Alpha attribute.");
 }
…

ip_encap_v4 process model

encap state – enter executives

...

if (op_ici_attr_get (ul_iciptr, "ceten_options_flag", &ceten_stat) ==
 OPC_COMPCODE_FAILURE)
 {
 ip_encap_error ("Unable to get CETEN Options Flag from transport ICI.");
 }

if (op_ici_attr_get (ul_iciptr, "ceten_alpha_ratio", &ceten_alpha_value) ==
 OPC_COMPCODE_FAILURE)
 {
 ip_encap_error ("Unable to get CETEN Alpha Ratio from transport ICI.");
 }

if (op_ici_attr_get (ul_iciptr, "ceten_cumulative_probability", &ceten_cum_prob) ==
 OPC_COMPCODE_FAILURE)
 {
 ip_encap_error ("Unable to get CETEN cumulative probability from transport ICI.");
 }

/* If the destination address is multicast, then we need to retrieve */
/* major and minor ports, which the higher layer specifies. */
if (inet_address_is_multicast (dest_addr) && (protocol_type != IpC_Protocol_Rsvp))
 {
 if (op_ici_attr_get (ul_iciptr, "multicast_major_port", &mcast_major_port) ==
 OPC_COMPCODE_FAILURE)
 {
 mcast_major_port = 0;

 75

 ipnl_protwarn_mcast_no_major_port_specified (pkptr, dest_addr);

 /* inet_address_print (dest_addr_str, dest_addr); */
 /* sprintf (error_string, "Unable to retrieve multicast major port for multicast
 address (%s)", */
 /* dest_addr_str);
 */
 /* ip_encap_error (error_string); */
 }

 if (op_ici_attr_get (ul_iciptr, "multicast_minor_port", &mcast_minor_port) ==
 OPC_COMPCODE_FAILURE)
 {
 inet_address_print (dest_addr_str, dest_addr);
 sprintf (error_string, "Unable to retrieve multicast minor port for multicast
 address (%s)",
 dest_addr_str);
 ip_encap_error (error_string);
 }

 /* Prepare an ICI that is to be sent to ip_dispatch,indicating the major*/
 /* and minor ports on which to send the multicast packet. */
 ip_iciptr = op_ici_create ("ip_rte_req_v4");
 op_ici_attr_set (ip_iciptr, "multicast_major_port", mcast_major_port);
 op_ici_attr_set (ip_iciptr, "multicast_minor_port", mcast_minor_port);

 op_ici_attr_set (ip_iciptr, "ceten_status", ceten_stat);
 op_ici_attr_set (ip_iciptr, "ceten_alpha", ceten_alpha_value);
 op_ici_attr_set (ip_iciptr, "ceten_cum_prob", ceten_cum_prob);
 op_ici_install (ip_iciptr);
 }
 else if (protocol_type == IpC_Protocol_Isis)
 {
 /* Get the output index from the incoming ICI
 */
 if (op_ici_attr_get (ul_iciptr, "out_intf_index", &isis_out_intf_index) ==
 OPC_COMPCODE_FAILURE)
 {
 sprintf (error_string, "Unable to retrieve the ISIS packet's output index");
 ip_encap_error (error_string);
 }

 /* Prepare an ICI that is to be sent to ip_dispatch,indicating the */
 /* output index in the major port
 */
 ip_iciptr = op_ici_create ("ip_rte_req_v4");
 op_ici_attr_set (ip_iciptr, "out_intf_index", isis_out_intf_index);

 op_ici_attr_set (ip_iciptr, "ceten_status", ceten_stat);
 op_ici_attr_set (ip_iciptr, "ceten_alpha", ceten_alpha_value);
 op_ici_attr_set (ip_iciptr, "ceten_cum_prob", ceten_cum_prob);

 /* Install this ICI
 */

 76

 op_ici_install (ip_iciptr);

 /* The ISIS packets don't use the IP header, so reduce the IP */
 /* header length from the packet bulk length */
 data_len -= IPC_DGRAM_HEADER_LEN_BYTES;
 }
else if (protocol_type != IpC_Protocol_Rsvp)
 {
 ip_iciptr = op_ici_create ("ip_rte_ind_v4");

 intf_ici_fdstruct_ptr = ip_rte_ind_ici_fdstruct_create ();

 intf_ici_fdstruct_ptr->ceten_status = ceten_stat;
 intf_ici_fdstruct_ptr->ceten_alpha = ceten_alpha_value;
 intf_ici_fdstruct_ptr->ceten_cumulative_probability = ceten_cum_prob;

 op_ici_attr_set (ip_iciptr, "rte_info_fields", &intf_ici_fdstruct_ptr);
 op_ici_install (ip_iciptr);

 }

/* If this is an RSVP packet, also get Next hop Address and Interface index */
if (protocol_type == IpC_Protocol_Rsvp)
 {
 if (op_ici_attr_get (ul_iciptr, "RSVP Packet Route Info", &pkt_route_info_ptr) ==
 OPC_COMPCODE_FAILURE)
 {
 ip_encap_error ("Unable to get routing information from transport ICI.");
 }

 /* Prepare an ICI that is to be sent to ip_dispatch, indicating interface on */
 /* which to send the RSVP packet so as IP does not do route query */
 ip_iciptr = op_ici_create ("ip_rte_req_v4");

 op_ici_attr_set (ip_iciptr, "RSVP Packet Route Info", pkt_route_info_ptr);

 op_ici_attr_set (ip_iciptr, "ceten_status", ceten_stat);
 op_ici_attr_set (ip_iciptr, "ceten_alpha", ceten_alpha_value);
 op_ici_attr_set (ip_iciptr, "ceten_cum_prob", ceten_cum_prob);
 op_ici_install (ip_iciptr);

 /* Destroy the ICI only for RSVP packets. */
 op_ici_destroy (ul_iciptr);
 }

…

 77

Decap state – enter executives

…
/* Get data from lower level ici */
ceten_stat = intf_ici_fdstruct_ptr->ceten_status;
ceten_alpha_value = intf_ici_fdstruct_ptr->ceten_alpha;
ceten_cum_prob = intf_ici_fdstruct_ptr->ceten_cumulative_probability;
…

/* Set info in higher layer ici */

if (op_ici_attr_set (transp_iciptr, "ceten_status", ceten_stat) == OPC_COMPCODE_FAILURE)
 ip_encap_error ("Unable to set ceten status field in transport layer ICI.");
if (op_ici_attr_set (transp_iciptr, "ceten_alpha", ceten_alpha_value) == OPC_COMPCODE_FAILURE)
 ip_encap_error ("Unable to set ceten alpha field in transport layer ICI.");
if (op_ici_attr_set (transp_iciptr, "ceten_cumulative_probability", ceten_cum_prob) ==
 OPC_COMPCODE_FAILURE)
 ip_encap_error ("Unable to set ceten cumulative probability field in transport layer ICI.");

…

ip_rte_central_cpu process model

ip_rte_central_cpu_packet_arrival function

static void
ip_rte_central_cpu_packet_arrival (void)
 {
 Packet * pkptr = OPC_NIL;
 int instrm;
 Ici * iciptr;
 IpT_Rte_Ind_Ici_Fields * intf_ici_fdstruct_ptr = OPC_NIL;
 IpT_Interface_Info * rcvd_iface_info_ptr = OPC_NIL;
 int result;
 char stra [256];
 char strb [256];
 char strc [256];
 char strd [256];
 char stre [256];
 char strf [256];
 char format_name[128];
 char target_format[128] = "tcp_seg_v2\0";
 IpT_Dgram_Fields * packet_fields_ptr;
 Packet * ul_pkptr = OPC_NIL;
 Packet * ul_pkptr_copy = OPC_NIL;
 OpT_Packet_Size packet_size;

 /** An incoming packet has arrived. It might **/
 /** be from an "upper layer", a "lower layer", **/
 /** or generated from within ip. **/
 FIN (ip_rte_central_cpu_packet_arrival ());

 78

 if (invoke_mode == OPC_PROINV_INDIRECT)
 {
 /* Packet generated from withing IP and forwarded by our */
 /* parent process.
 */
 pkptr = (Packet *)op_pro_argmem_access ();
 instrm = IpC_Pk_Instrm_Child;

 /* if (op_sim_debug () == OPC_TRUE)
 {
 op_prg_odb_print_major ("packet generated from within IP and forwarded by
 parent process");
 }
 }
 else
 {
 /* Packet coming from some stream */
 instrm = op_intrpt_strm ();
 pkptr = op_pk_get (instrm);
 if (pkptr == OPC_NIL)
 ip_rte_cpu_error ("Unable to get packet from input stream.");
 else
 {
 /* Check if GTP encapsulation is enable on this node */
 /* then the GTP module must process this packet. */
 if (module_data_ptr->gtp_status == OPC_TRUE)
 {
 /* Prepare shared memory with the arriving packet. */
 module_data_ptr->ip_ptc_mem.child_pkptr = pkptr;
 module_data_ptr->ip_ptc_mem.pk_processed_by_gtp = OPC_FALSE;

 /* Invoke GTP process model, which processes the */
 /* GTP packet contained in the IP datagram. */
 op_pro_invoke (module_data_ptr->gtp_process_handle, OPC_NIL);

 /* The packet will be processed by IP if GTP didn't */
 /* take control of it. */
 if (module_data_ptr->ip_ptc_mem.pk_processed_by_gtp ==
 OPC_TRUE)
 FOUT;

 /* Get the packet that the child process sent. */
 pkptr = module_data_ptr->ip_ptc_mem.child_pkptr;
 }
 }
 }

 /* Make sure we care about this packet */
 if (ip_rte_packet_format_valid (module_data_ptr, pkptr) == OPC_FALSE)
 {
 FOUT;
 }

 79

 /* Perform standard IP processing of incoming packet */
 /* 1. Perform forwarding decision and populate the ICI */
 /* 2. Populate rcvd_iface_info_ptr. It is set to NIL */
 /* if packet arrives from higher layer. */
 /* op_pk_print (pkptr); */

 result = ip_rte_packet_arrival (module_data_ptr,
 &pkptr, instrm, &intf_ici_fdstruct_ptr, &rcvd_iface_info_ptr);

 /*op_pk_print (pkptr);*/

 op_pk_nfd_access (pkptr, "fields", &packet_fields_ptr);
 if ((packet_fields_ptr->protocol == 6) && (op_pk_nfd_is_set (pkptr, "data")))
 {
 op_pk_fd_get_pkt (pkptr, 3, &ul_pkptr);
 ul_pkptr_copy = op_pk_copy (ul_pkptr);
 op_pk_nfd_set (pkptr, "data", ul_pkptr, op_prg_mem_copy_create, op_prg_mem_free,
 packet_size);
 packet_size = op_pk_total_size_get (ul_pkptr_copy);
 if (ul_pkptr == OPC_NIL)
 {
 }
 else
 {
 op_pk_format (ul_pkptr_copy, format_name);
 if (strcmp(format_name, target_format) == 0)
 {
 intf_ici_fdstruct_ptr->ceten_status = get_CETEN_status (ul_pkptr_copy);
 intf_ici_fdstruct_ptr->ceten_alpha = get_CETEN_alpha (ul_pkptr_copy);
 if (intf_ici_fdstruct_ptr->ceten_status == 1)
 {
 if (op_td_is_set (pkptr, OPC_TDA_PT_NUM_ERRORS))
 {
 if (op_td_get_int (pkptr, OPC_TDA_PT_NUM_ERRORS) > 0)
 {
 intf_ici_fdstruct_ptr->ceten_cumulative_probability = (1.0 -
 intf_ici_fdstruct_ptr->ceten_alpha) *
 intf_ici_fdstruct_ptr->ceten_cumulative_probability;
 }
 else
 {
 intf_ici_fdstruct_ptr->ceten_cumulative_probability =
 intf_ici_fdstruct_ptr->ceten_alpha + ((1.0 –
 intf_ici_fdstruct_ptr->ceten_alpha) *
 intf_ici_fdstruct_ptr->ceten_cumulative_probability);
 }
 }
 else
 {
 intf_ici_fdstruct_ptr->ceten_cumulative_probability =
 intf_ici_fdstruct_ptr->ceten_alpha + ((1.0 –

 80

 intf_ici_fdstruct_ptr->ceten_alpha) *
 intf_ici_fdstruct_ptr->ceten_cumulative_probability);
 }
 adjust_forward_CETEN_survival_ratio (ul_pkptr_copy,
 intf_ici_fdstruct_ptr->ceten_cumulative_probability);
 }
 }
 }
 op_pk_destroy (ul_pkptr_copy);
 }

 if (result == OPC_FALSE)
 {
 /* Packet was dropped in call */
 FOUT;
 }

 /* Attempt to place new packet in pending queue */
 if (oms_buffer_bgutil_enqueue (routing_buffer, pkptr)
 != OmsC_Buffer_Enqueue_Success)
 {
 /* The insertion failed (due to a full buffer). */
 char intf_addr_str [IPC_ADDR_STR_LEN];

 /* Thesis modification */

 if (intf_ici_fdstruct_ptr->ceten_status == 1)
 {
 intf_ici_fdstruct_ptr->ceten_cumulative_probability = (1.0 –
 intf_ici_fdstruct_ptr->ceten_alpha) *
 intf_ici_fdstruct_ptr->ceten_cumulative_probability;
 adjust_forward_CETEN_congestion_ratio (ul_pkptr, intf_ici_fdstruct_ptr->ceten_status);
 }

 /* Get a printable version of the interface addr. */
 if (rcvd_iface_info_ptr == OPC_NIL)
 sprintf (intf_addr_str, "Higher Layer");
 else
 ip_address_print (intf_addr_str,
 rcvd_iface_info_ptr->addr_range_ptr->address);

 /* Issue a warning message to the sim. log. */
 ipnl_reswarn_pktinsert (op_pk_id (pkptr),
 op_pk_tree_id (pkptr), intf_addr_str);

 /* Update packets dropped statistics and destroy */
 /* the IP datagram.
 */
 ip_rte_dgram_discard (module_data_ptr, pkptr, op_pk_ici_get (pkptr), "Buffer
 overflow");
 }
 FOUT;
}

 81

tcp_seg_support – header file

/** tcp_seg_sup.h **/

/**/
/* Copyright (c) 1987 - 2002 */
/* by OPNET Technologies, Inc. */
/* (A Delaware Corporation) */
/* 7255 Woodmont Av., Suite 250 */
/* Bethesda, MD 20814, U.S.A. */
/* All Rights Reserved. */
/**/

/* Protect against multiple includes. */
#ifndef _TCP_SEG_SUP_H_INCLUDED_
#define _TCP_SEG_SUP_H_INCLUDED_

/** Include directives. **/
#include <opnet.h>
#include "oms_dt.h"
#include "tcp_v3.h"

#if defined (__cplusplus)
extern "C" {
#endif

/* Size of TCP Timestamp option in bytes. */
#define TCPC_SEG_TIMESTAMP_SIZE 12

/* Size (in bytes) of kind-length block in the option fields of the TCP header. */
#define TCPC_KIND_LENGTH_BLOCK_SIZE 2

/* Size of CETEN option in bytes */
#define TCPC_SEG_CETEN_SIZE 32

/* Data structure for fields in the */
/* tcp segment. */
typedef struct
 {
 int src_port;
 int dest_port;
 unsigned int seq_num;
 unsigned int ack_num;
 unsigned int rcv_win;
 int urgent_pointer;
 int data_len;

 /* The following represents bytes 13 and 14 of the TCP header. */
 /*
 */
 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
 /* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ */
 /* | | | C | E | U | A | P | R | S | F | */
 /* | Header Length | Reserved | W | C | R | C | S | S | Y | I | */

 82

 /* | | | R | E | G | K | H | T | N | N | */
 /* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ */
 /*
 */
 TcpT_Flag flags; /* Information from bits 8 through 15.
 */

 /* The following two fields are not part of */
 /* the standard TCP header, but are used in */
 /* the OPNET TCP model for enhancing the */
 /* simulation performance. Each TCP process */
 /* assigns itself a unique "key" which can */
 /* be used to perform fast lookup when ever */
 /* is a need to match a connection ID. */
 OmsT_Dt_Key local_key;
 OmsT_Dt_Key remote_key;

 } TcpT_Seg_Fields;

/* Data structure for segment field containing TCP timestamp option. */
typedef struct
 {
 unsigned int timestamp_value; /* Timestamp value */
 unsigned int timestamp_echo; /* Timestamp echo reply. */
 } TcpT_Seg_Option_TS;

/* The following fields are not part of */
/* the standard TCP header, but instead of */
/* added for thesis research */

typedef struct
 {
 int ceten_value;
 double ceten_alpha;
 double forward_ceten_survival_ratio;
 double backward_ceten_survival_ratio;
 double forward_ceten_congestion_ratio;
 double backward_ceten_congestion_ratio;
 } TcpT_Seg_CETEN_Option;

/* Function Prototypes. */
TcpT_Seg_Fields* tcp_seg_fdstruct_create (void);
TcpT_Seg_Fields* tcp_seg_fdstruct_copy (TcpT_Seg_Fields* pk_fd_ptr);
void tcp_seg_fdstruct_destroy (TcpT_Seg_Fields* pk_fdstruct_ptr);
void tcp_seg_fdstruct_print (TcpT_Seg_Fields* pk_fdstruct_ptr);
void tcp_seg_fields_pkprint (void* arg_field_ptr, Prg_List* list);
void tcp_seg_msg_print (const char* dir_str, TcpT_Seq seq, TcpT_Seq ack_num, TcpT_Size len,
 TcpT_Flag flags);
void tcp_seg_timestamp_set (Packet* seg_ptr, unsigned int echoed_timestamp, unsigned int
 my_timestamp);
void tcp_seg_timestamp_pkprint (void* arg_field_ptr, Prg_List* output_list);

 83

/* Function Prototypes for CETEN. */
void tcp_seg_CETEN_set (Packet* seg_ptr, int ceten_val, double ceten_alpha_value);
void tcp_seg_CETEN_pkprint (void* arg_field_ptr, Prg_List* output_list);
void adjust_forward_CETEN_survival_ratio (Packet* seg_ptr, double adjustment);
void adjust_backward_CETEN_survival_ratio (Packet* seg_ptr, double adjustment);
void adjust_forward_CETEN_congestion_ratio (Packet* seg_ptr, double adjustment);
void adjust_backward_CETEN_congestion_ratio (Packet* seg_ptr, double adjustment);
unsigned int get_CETEN_status (Packet *seg_ptr);
double get_CETEN_alpha (Packet *seg_ptr);
double get_forward_CETEN_congestion_ratio ();
double get_backward_CETEN_congestion_ratio ();
double get_forward_CETEN_survival_ratio ();
double get_backward_CETEN_survival_ratio ();

/* End function prototypes for CETEN. */

#if defined (__cplusplus)
} /* end of 'extern "C" {' */
#endif

/* End if for protection against multiple includes. */
#endif /* _TCP_SEG_SUP_H_INCLUDED_ */

tcp_seg_support – C Code

…

void
tcp_seg_CETEN_set (Packet* seg_ptr, int ceten_val, double ceten_alpha_value)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;

 /** Create a CETEN field in the segment and set it **/
 FIN (tcp_seg_CETEN_set (seg_ptr, ceten_val, ceten_alpha_value));
 /* If the pooled memory object has not yet been defined, do */
 /* so now, prior to allocation.
 */
 if (pk_ceten_pmo_defined == OPC_FALSE)
 {
 /* Prevent redundant definition. */
 pk_ceten_pmo_defined = OPC_TRUE;

 tcp_seg_ceten_pmh = op_prg_pmo_define ("TCP Seg CETEN Option", sizeof
 (TcpT_Seg_CETEN_Option), 1000);
 /* Set the packet print procedure for "ETEN Capability" field print. */
 op_pk_format_print_proc_set ("tcp_seg_v2", "Ceten Option", tcp_seg_CETEN_pkprint);
 }
 /* Allocate memory for the field. */
 ceten_field_ptr = (TcpT_Seg_CETEN_Option *) op_prg_pmo_alloc (tcp_seg_ceten_pmh);
 if (ceten_field_ptr == OPC_NIL)
 {
 op_sim_end ("Error in TCP segment support code:",

 84

 "Unable to allocate memory for TCP segment CETEN option.",
 OPC_NIL, OPC_NIL);
 }
 /*Set survival and congestion values. */
 ceten_field_ptr->ceten_value = ceten_val;
 ceten_field_ptr->ceten_alpha = ceten_alpha_value;
 ceten_field_ptr->forward_ceten_survival_ratio = 1.0;
 ceten_field_ptr->backward_ceten_survival_ratio = 1.0;
 ceten_field_ptr->forward_ceten_congestion_ratio = 0.0;
 ceten_field_ptr->backward_ceten_congestion_ratio = 0.0;
 /* Set the field in the packet. */
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));
 FOUT;
 }

void
adjust_forward_CETEN_survival_ratio (Packet* seg_ptr, double adjustment)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;

 FIN (adjust_forward_CETEN_survival_ratio (seg_ptr, adjustment));
 op_prg_odb_bkpt ("adjust.forward.survival.ratio");

 op_pk_nfd_get (seg_ptr, "Ceten Option", &ceten_field_ptr);
 ceten_field_ptr->forward_ceten_survival_ratio = adjustment *
 ceten_field_ptr->forward_ceten_survival_ratio;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));

 FOUT;
 }

void
adjust_backward_CETEN_survival_ratio (Packet* seg_ptr, double adjustment)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;

 FIN (adjust_backward_CETEN_survival_ratio (seg_ptr, adjustment));

 ceten_field_ptr->backward_ceten_survival_ratio = adjustment *
 ceten_field_ptr->backward_ceten_survival_ratio;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));

 FOUT;
 }

void
adjust_forward_CETEN_congestion_ratio (Packet *seg_ptr, double adjustment)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;

 FIN (adjust_forward_CETEN_congestion_ratio (seg_ptr, adjustment));

 85

 ceten_field_ptr->forward_ceten_congestion_ratio = adjustment *
 ceten_field_ptr->forward_ceten_congestion_ratio;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));

 FOUT;
 }

void
adjust_backward_CETEN_congestion_ratio (Packet *seg_ptr, double adjustment)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;

 FIN (adjust_backward_CETEN_congestion_ratio (seg_ptr, adjustment));

 ceten_field_ptr->backward_ceten_congestion_ratio = adjustment *
 ceten_field_ptr->backward_ceten_congestion_ratio;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));

 FOUT;
 }

unsigned int
get_CETEN_status (Packet *seg_ptr)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;
 int ceten_val;

 FIN (get_CETEN_Status (seg_ptr));

 op_pk_nfd_get (seg_ptr, "Ceten Option", &ceten_field_ptr);
 ceten_val = ceten_field_ptr->ceten_value;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));

 FRET (ceten_val);
 }

double
get_CETEN_alpha (Packet *seg_ptr)
 {
 TcpT_Seg_CETEN_Option* ceten_field_ptr;
 double ceten_alpha_value;

 FIN (get_CETEN_alpha (seg_ptr));

 op_pk_nfd_get (seg_ptr, "Ceten Option", &ceten_field_ptr);
 ceten_alpha_value = ceten_field_ptr->ceten_alpha;
 op_pk_nfd_set (seg_ptr, "Ceten Option", ceten_field_ptr, op_prg_mem_copy_create,
 op_prg_mem_free, sizeof (TcpT_Seg_CETEN_Option));
 FRET (ceten_alpha_value);
 }

 86

void
tcp_seg_CETEN_pkprint (void* arg_field_ptr, Prg_List* output_list)
 {
 char temp_str[128];
 char* alloc_str;
 TcpT_Seg_CETEN_Option*
 ceten_option_ptr = (TcpT_Seg_CETEN_Option*) arg_field_ptr;

 /* Print the CETEN options as specified in the packet. */
 FIN (tcp_seg_CETEN_pkprint (ceten_option_ptr, output_list));

 sprintf(temp_str, " ceten_value unint
 %-16u(32)", ceten_option_ptr->ceten_value);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)
 sprintf(temp_str, " ceten_alpha double
 %-16f(32)", ceten_option_ptr->ceten_alpha);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)

 sprintf(temp_str, " forward_survival_ratio double
 %-16f(32)", ceten_option_ptr->forward_ceten_survival_ratio);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)
 sprintf(temp_str, " backward_survival_ratio double
 %-16f(32)", ceten_option_ptr->backward_ceten_survival_ratio);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)
 sprintf(temp_str, " forward_congestion_ratio double
 %-16f(32)", ceten_option_ptr->forward_ceten_congestion_ratio);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)
 sprintf(temp_str, " backward_congestion_ratio double
 %-16f(32)", ceten_option_ptr->backward_ceten_congestion_ratio);
 PKPRINT_STRING_INSERT (alloc_str, temp_str, output_list)

 FOUT;
 }

 87

Bibliography

[ADG00] Allman, Mark, Dawkins, Spencer, Glover, Dan, Griner, Jim, Tran, Diepchi,
Henderson, Tom, Heidemann, John, Touch, Joe, Kruse, Hans, Osterman,
Shawn, Scott, Keith and Semke, Jeffrey. “Ongoing TCP Research Related to
Satellites”, RFC 2760, February 2000.

[AGS99] Allman, Mark, Glover, Daniel L. and Sanchez, Luis A. “Enhancing TCP over
Satellite Channels using Standard Mechanisms”, RFC2488, January 1999.

[BCC98] Braden, Bob, Clark, David D., Crowcroft, Jon, Davie, Bruce, Deering, Steve,
Estrin, Deborah, Floyd, Sally, Jacobson, Van, Minshall, Greg, Partridge, Craig,
Peterson, Larry, Ramakrishnan, K. K., Shenker, Scott, Wroclawski, John,
Zhang, Lixia. “Recommendations on Queue Management and Congestion
Avoidance in the Internet”, RFC 2309, April 1998.

[FaF96] Fall, Kevin and Floyd, Sally. “Simulation-based Comparisons of Tahoe, Reno,
and SACK TCP”, ACM Computer Communication Review, V. 26, N. 3, July
1996, p. 5-21.

[FlJ93] Floyd, Sally and Jacobson, Van. “Random Early Detection gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking, V.1 N.4,
August 1993, p. 397-413.

[Flo94] Floyd, Sally. “TCP and Explicit Congestion Notification”, ACM Computer
Communication Review, V. 24, N. 5, October 1994, p. 8-23.

[FlH99] Floyd, Sally and Henderson, Tom. “The NewReno Modification to TCP’s Fast
Recovery Algorithm, RFC 2582, April 1999.

[FMM00] Floyd, Sally, Mahdavi, Jamshid, Mathis, Matt and Podolsky. “An Extension to
the Selective Acknowledgement (SACK) Option for TCP, RFC 2883, July
2000.

[Jac88] Jacobson, Van. “Congestion Avoidance and Control”, SIGCOMM
Symposium on Communications Architectures and Protocols, p. 314-329,
1988.

[Jac90] Jacobson, Van. “Modified TCP Congestion Avoidance Algorithm”, Technical
report, 30 April 1990.

 88

[Jai91] Jain, Raj. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. New York:
John Wiley & Sons, 1991.

[JBB92] Jacobson, Van, Braden, Robert and Borman, David. “TCP Extension for High
Performance”, RFC 1323, May 1992.

[KAP02] Krishnan, Rajesh, Allman, Mark, Partridge, Craig and Sterbenz, James P.G.
“Explicit Transport Error Notification (ETEN) for Error-Prone Wireless and
Satellite Networks”, Technical Report TR-8333, BBN Technologies, March
2002.

[MMF96] Mathis, Matt, Mahdavi, Jamshid, Floyd, Sally, and Romanow, Allyn. “TCP
Selective Acknowledgement Options, RFC 2018, October 1996.

[PFT98] Padhye, Jitendra, Firoiu, Victor, Towsley, Don and Kurose, Jim. “Modeling
TCP Throughput: A Simple Model and its Empirical Validation”, ACM
Computer Communication Review, V. 28, N. 4, October 1998, p. 303-314.

[PaS97] Patridge, Craig and Shepard, Timothy J. “TCP/IP Performance over Satellite
Links”, IEEE Network, September/October 1997, p. 44-49.

[RFB01] Ramakrishan, K., Floyd, Sally, Black. “The Addition of Explicit Congestion
Notification for IP”, RFC3168, September 2001.

[SaA00] Salim, Jamal Hadi, and Ahmed, Uvaiz. “Performance Evaluation of Explicit
Congestion Notification (ECN) in IP Networks, RFC 2884, July 2000.

[Ste94] Stevens, W. Richard. TCP/IP Illustrated, Volume I: The Protocols. Addison
Wesley, 1994.

[Ste97] Stevens, W. “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, RFC 2001, January 2001.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14-09-2004
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2003 – July 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Improving TCP Performance by Estimating Errors in a Long
Delay, High Error Rate Environment

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Carroll, Stephanie E., SMSgt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-04

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Emil Tejkowski DSN 576-5167
Air Force Communications Agency
203 West Losey Street Room 1065
Scott AFB, IL 62225

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Interest in finding methods of improving TCP performance over satellite and wireless networks is
high. This has been an active area of research within the networking community. This research
develops an algorithm, CETEN-R for TCP to determine if a particular packet is lost due to
congestion or corruption and react accordingly. An analysis of the performance of CETEN-R
under a variety of conditions is studied and then compared to TCP Reno and TCP New Reno.
When delay is high and the error rate is high CETEN-R showed a 77.5% increase in goodput
over TCP New Reno and a 33.8% increase in goodput over TCP Reno. When delay is low and
the error rate is high, CETEN-R showed a 146% increase in goodput over TCP New Reno and a
77% increase in goodput over TCP Reno. At low error rates, CETEN-R provides no advantage
over TCP Reno or TCP New Reno.

15. SUBJECT TERMS
Networks, Satellite Communications, Satellite Networks, Internet, Communications Protocols, Wireless
Communications
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Rusty O. Baldwin, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

103

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4445
(rusty.baldwin@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Improving TCP Performance by Estimating Errors in a Long Delay, High Error Rate Environment
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	I. Introduction
	Background
	Research Goals
	Document Overview

	II. Literature Review
	Chapter Overview
	Satellite Channel Characteristics
	TCP Congestion Control Mechanisms
	Overview.
	Slow Start.
	Congestion Avoidance.
	Fast Retransmit.
	Fast Recovery.

	Detecting Losses Due to Corruption
	Forward Error Correction.

	Transport Layer Approaches
	Explicit Transport Error Notification.
	Explicit Transport Error Notification Performance Conclusion

	Summary

	III. CETEN-R Algorithm Description
	Overview
	CETEN-R Algorithm
	Summary

	IV. Methodology
	Chapter Overview
	System Parameters.
	Workload.

	Factors
	Evaluation Technique
	Workload
	Experimental Design
	Summary

	V. Analysis and Results
	Chapter Overview
	Model Verification and Validation
	Side by Side Comparison of One Client Experiments
	ANOVA for One Client Experiments
	Side by Side Comparison of Four Client Experiments
	ANOVA for Four Client Experiments.
	Comparing One Client and Four Client Experiments
	ANOVA for both One and Four Client Experiments
	Analysis of Four Client Mixed CETEN-R Experiments
	Summary

	VI. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Significance of Research
	Recommendations for Future Research
	Summary

	Appendix A
	Algorithm Code

	Bibliography

