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AFIT/GCS/ENG/04-01 

Abstract 

 In distributed database environments, the combination of resources from multiple 

sources requiring different interfaces is a universal problem. The current solution requires 

an expert to generate an ontology, or mapping, which contains all interconnections 

between the various fields in the databases. This research proposes the application of 

software agents in automating the ontology creation for distributed database 

environments with minimal communication. The automatic creation of a domain 

ontology alleviates the need for experts to manually map one database to other databases 

in the environment. Using several combined comparison methods, these agents 

communicate and negotiate similarities between information sources and retain these 

similarities for client agent queries without the manual mapping of different data sources 

achieving an average accuracy of 57% before leader negotiation and an average accuracy 

of 61% after leader negotiation. The best matching accuracy achieved in a single test is 

79%.  

 This is directly applicable to the Department of Defense (DOD) that possesses many 

systems, which share information that enables the military to achieve their objectives. 

The DOD created an environment called the Joint Battlespace Infosphere (JBI) to solve 

this integration problem. This research improves upon the JBI’s use of exact matching of 

field names for integrating the information within the environment. It simulates this type 

of interaction by demonstrating agents wrapped around different databases negotiating 

and generating an ontology. An agent-generated ontology is compared with an expert 

xi 



 

generated ontology and testing uses a set of queries run against the ontologies show that 

this technique can be useful in a distributed information environment. 
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AUTOMATED AGENT ONTOLOGY CREATION FOR DISTRIBUTED 
DATABASES 

 
1.  Introduction 

The United States is a technology-based society. Computers, cell phones, televisions, 

and stereos pervade the country. The smaller the device and the more features it has, the 

more attractive the device seems to be to the consumer.  

In the 1950s, computers filled large rooms and only large corporations could afford 

them. In the late 1980s and early 1990s, high-speed computers fit on a desk but were still 

expensive. For example, in 1992, computer memory sold for $30.00 to $45.00 per 

megabyte (MB) and hard drives sold at $1 per MB. Today, technology is smaller, 

cheaper, and faster than ever and millions of Americans own computers and 

communicate via the internet.  

The U.S. Department of Defense (DOD) has seen this same technological 

advancement as they harness this technology into a war fighting capability. A major 

problem is command and control’s (C2) ‘lack of interoperability’. In wartime, quick and 

efficient flow of timely information is a decisive factor in victory. Communication has 

been difficult in situations involving two or more services. Today when a military 

conflict arises the US military must be able to act together in a coordinated effort to 

accomplish military objectives. This is called joint operations.  

Joint operations require a joint language. The Joint Battlespace Infosphere (JBI) is the 

conceptual framework the military uses to consolidate information resources. JBI 

provides a repository wherein a user can query and receive every piece of information 
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needed from a distributed collection of information resources instead of querying each 

entity individually. While the JBI concept focuses on assisting the many systems of the 

military with interaction in a common environment [1], the real problem is the integration 

of these systems. Manual mapping database attributes is a solution but it is slow and 

requires a human expert. This research uses agents to automatically map database 

attributes making a distributed database system more robust: a system that recovers 

quickly from or holds up well under exceptional circumstances. Automated mapping add 

flexibility by removing the exact match restriction on the JBI. 

Section 1.1 discusses the nature of the problem. Section 1.2 outlines the assumptions 

and limitations of the research. Section 1.3 outlines background information discussing 

C2 and Joint Vision 2020, and Section 1.4 provides an outline of the rest of the thesis. 

1.1 Problem Statement 

The objective of this research is to design, implement, and test an automated system 

for querying multiple data stores in a distributed environment. The sample target 

environment is the Joint Battlespace Infosphere (JBI). 

Current distributed database technology manually integrates data and performs 

manual conversions. System administrators must manually map database attributes or 

even write scripts to facilitate interoperability, which takes a lot of time and effort. Thus, 

changes in the database structure require the database administrator to modify the 

database mapping in the best case and in the worst case to add additional values to 

current mappings. 
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Currently human experts painstakingly create ontologies. The type of ontology 

proposed herein is a domain ontology in which a human expert generates the domain 

ontologies in agent classes for specific instances of the objects in the system. This 

provides a communication language that allows the agents to communicate on the same 

level. A domain ontology is a mapping between fields of similar content in different 

databases. Reprogramming, re-instantiation, and retesting are required whenever the 

domain ontology changes. 

1.2 Research Methodology 

Agents do not use external help to create the ontology, i.e., data dictionaries, previous 

training, domain information, or thesauruses. Agents instead use a combination of a 

string-matching algorithm that compares four aspects of the distributed environment to 

create the ontology: 

1. Attributes of each database in the environment 

2. Samples of the data in each database field 

3. Database column features  

4. The format of the data  

This system provides the user with a common interface to diverse database stores thus, 

eliminating the need to query each data store individually.  Moreover, the user requires 

no information about how many databases exist or how the database stores the 

information, making the entire system appear as one large database to the user. 

In software development, agents must share a domain ontology to communicate. For 

example, if creating agents to simulate driving a vehicle, many agents need to cooperate 
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to make the vehicle move forward. The agents controlling the steering must communicate 

with the gas pedal agent, which must communicate with the engine agents. It is possible 

that these agents cannot communicate with a poorly designed domain ontology; therefore, 

the vehicle will not be able to move. 

Every time a new application is developed, a new ontology and data interface is 

needed for that application. A discussion of ontologies is in Chapter 2. To integrate the 

many different systems, multiple manual mappings between these systems must take 

place to enable data sharing and data communication between them. Every time a user 

needs to have different data or every time the data environment changes, a manual update 

of the mappings must occur. There is a risk of complicating the data environment by user 

error or unnecessary duplication of mappings. Automating this process will save time and 

labor allowing decision makers access to information without the aid of an expert. 

Additionally, this would aide human experts in the creation of the ontology whenever a 

new database comes on-line. 

This research implements agents in a distributed system similar to the JBI. The 

following goals measure the success of agent creation. 

• Database wrapping: Provide the ability to wrap information contained in a 

database into a common environment. The environment should provide 

mechanisms to publish and serve the information of the database. 

• Client subscription: Provide the ability to query and combine services within a 

common environment without including domain knowledge of the underlying 

environment structures.  
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• Agent Autonomy: Provide the capability for agents to act without the need of 

other agents to complete the task.  

• Limited Bandwidth Requirements: Provide the capability for agents to operate 

in environments where communication is restrictive and still provide ontology 

creation for the distributed environment. 

• Metrics: The automated ontology creation is evaluated by a set of queries. The 

total number of correct queries is divided by the total number of queries 

submitted and the percentage is the percent of ontology creation accuracy.   

Typically in a distributed database system, each data source stores information in its 

own way.  Database wrapping provides a mechanism to bring these differences together 

in a format that is consistent with the distributed environment. Therefore, no matter the 

organization of the data in each individual database, the data access occurs the same way, 

providing a common environment in which to read and use the data. In this thesis, the 

database wrapping uses the Java JDBC to ODBC Database Bridge. This bridge provides 

the agent access to the metadata and data from the database that the agent wraps.  

When making a query, the user has no knowledge of where the data originates. The 

client subscribes to the JBI and queries for information contained within the distributed 

environment. The query could activate any number of agents depending upon the 

information each agent maintains in its database. If the agent has the data in question, that 

agent will return its data to the querying agent. For example, if a client makes a query to 

provide a list of all instructors and one agent has a column called ‘instructor’ and another 

agent has a column called ‘professor’, both agents will return their data because the 
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domain ontology created by these agents identifies that ‘professor’ means the same as 

‘instructor’. 

Any agent in the CoABS environment is capable of creating the ontology. It does not 

matter which agent enters the environment first. What does matter is that one agent must 

emerge as a leader to conduct the communication and negotiation for ontology creation. 

In this research, the agents are autonomous and seek a leader when necessary to facilitate 

ontology creation.  

There are locations around the world where networking bandwidth becomes an issue. 

The ontology creation system will not be effective if it requires a lot of bandwidth to 

negotiate and distribute the ontology. In fact, it could bring other resources down or 

restrict some resources from starting. This research chose an algorithm that is small and 

fast. The agents do not need external resources to negotiate the ontology and the agents 

send a minimal amount of data for the ontology creation. This keeps communication 

down and bandwidth available for other resources.  

Agents in this research negotiate and formulate an ontology facilitating 

communication in the environment by using the Jaro similarity metric, discussed in 

Section 3.3.2. The higher the Jaro metric the more likely the two attributes in question are 

similar. The agents support the JBI by eliminating the need for manual ontology creation 

enabling accurate communication.  

1.3   Assumptions/Limitations 

This research assumes every column in a database table has data in it. Many 

databases tested have column attributes without data. These columns are deleted for 
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testing. Wrapper agents are assumed to enter the environment before the query agents. 

The query agents do not deal with ontology creation and leader negotiation, therefore, 

query agents do not enter the environment until after all wrapper agents have entered and 

negotiated the ontology.  

A limitation of this research is that the databases used for each agent consists of only 

one table. In addition, this research does not use schema matching or real time data 

updating. 

1.4   Significance 

The following sections discuss the current state of C2 and the Chairman of the Joint 

Chiefs of Staff (CJCS) view on interoperability. 

1.4.1 Command and Control 

Advancements in technology provide the ability to gather an enormous amount of 

information to support military operations. Lack of interoperability limits the decision 

maker’s use of this information [2].  

Figure 1-1 shows the current state of information gathering in combat systems [2]. 

Notice all the arrows between the ground and air units go up and down, never horizontal. 

The lack of horizontal arrows equates to the lack of interoperability between these 

systems. For example, the Joint Surveillance, Target, and Attack Radar System 

(JSTARS) must send its information to the ground GSM mobile wireless 

communications unit to communicate with the Airborne Warning and Control System 

(AWACS) aircraft. The GSM then sends the information to the CA aircraft, and finally 
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the CA aircraft can send the JSTARS information to AWACS. This process is awkward 

and time consuming; time not available in a wartime environment.  

 
Figure 1-1. Current State of C2 Systems. The arrows between the ground and air 

units show the lack of interoperability between the air units [3] 
 

The JBI, Figure 1-2, integrates these systems into one cohesive environment enabling 

communications between any two nodes in the battlespace. In Figure 1-2, the Battlespace 

Infosphere (BI) integrates planning, command, execution, combat support, and 

information support into one environment. The BI will serve as an integration system 

since each function will interact with or be part of the BI while maintaining its own 

unique required actions [3]. The level of integration with the BI will depend on the 

information needs of the client and how those needs can be met [3]. 
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Figure 1-2. JBI information integration [3] 

 

1.4.2 Joint Vision 2020 

Joint Vision 2020 is a doctrine that the CJCS distributes throughout the DOD. It 

envisions how the US military will function in the year 2020 and puts that vision into 

doctrine.  

“The joint force, because of its flexibility and responsiveness, will remain the key 

to operational success in the future. The integration of core competencies 

provided by the individual Services is essential to the joint team, and the 

employment of the capabilities of the Total Force (active, reserve, guard, and 

civilian members) increases the options for the commander and complicates the 

choices for our opponents. To build the most effective force for 2020, we must be 

fully joint: intellectually, operationally, organizationally, doctrinally, and 

technically” [4].  
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This research explores interoperability and demonstrates innovative ideas to ensure 

that interoperability becomes a reality well before 2020. The CJCS states, “the overall 

goal is the creation of a force that is dominant across the full spectrum of military 

operations – persuasive in peace, decisive in war, and preeminent in any form of conflict” 

[4]. This concept is shown graphically in Figure 1-3. 

 
Figure 1-3. Full Spectrum Dominance [4] 

During military conflict, the DOD uses many systems to get information. Research is 

now beginning to examine ways to sift through and organize this information. This will 

enable decision makers to view data in an organized manner. Currently, a system 

administrator must select information needed from a list of metadata tags. If the tag is 

unavailable, there is no information retrieval. In JBI, if an agent registers in the JBI, that 
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agent communicates and coordinates with other agents in the system to retrieve the 

information requested without any manual intervention. 

1.5 Summary 

There are many distributed systems used in the DOD today. These distributed 

systems cannot communicate as one entity without an expert to map the information 

stores. If the information store changes, experts must adjust the mapping to reflect the 

change. The manual mapping is called domain ontology creation. The process of domain 

ontology creation in a distributed environment compounds the force interoperability 

issue. The JBI provides an environment that combines information stores under one 

umbrella enabling users to retrieve information from one entity instead of trying to query 

information from multiple entities. In order for the JBI to work, database administrators 

must change their data stores to conform to the restrictions of the JBI. This research 

automates the domain ontology creation by having agents communicate and negotiate the 

mapping between information stores in a distributed environment. It also helps the JBI by 

removing some of the restrictions allowing easier information retrieval from the system.  

Chapter 2 provides information concerning the domain of the research and compares 

the paradigms and technologies used in this research with other available paradigms and 

technologies. Chapter 3 discusses the design and implementation details this research 

proposes. Chapter 4 evaluates the implementation according to the requirements of 

Chapter 3. Finally, Chapter 5 concludes the research and describes future work to expand 

this research. 
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2.  Background 

Chapter 2 provides further explanation of the concepts and goals discussed in Chapter 

1. Section 2.1.1 details the JBI and the systems used to simulate the environment. Section 

2.2 provides information on agents and Sections 2.3 and 2.4 discuss the underlying 

network used for the JBI. This underlying network consists of JiniTM and CoABS. 

Section 2.5 covers the concept of ontology, the basis of this research. Section 2.6 

discusses data mining and its usefulness in developing domain ontologies, and Section 

2.7 covers related work on automated agent ontology creation. 

Many approaches have been proposed in the areas of agent and ontology development 

for application in the Joint Battlespace Infosphere (JBI); however, none of them address 

the problem of automating domain ontology creation. This thesis expands on previous 

research [1, 5] by incorporating artificial intelligence techniques into the agents so that 

agents that register in distributed database environments will coordinate and develop a 

domain ontology with minimal human intervention.  

2.1 Department of Defense (DOD) 

The DOD is looking for way to wage war effectively and efficiently with minimal 

loss of life. To be effective and efficient the right information must be at the right place at 

the right time. Computer systems and networking bring information to the war fighter. 

The problem is that there are so many computer systems and so many networks, 

throughout the DOD, that there is an over abundance of information. To complicate 

matters, Air Force systems are not compatible with Army systems and information, Army 

information is not compatible with Navy information, etc. This problem impedes force 

interoperability.  
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The importance of force interoperability cannot be overstated.  

“Future military operations will require close coordination and information 

sharing among heterogeneous units, coalition forces, and other civil and 

nongovernmental organizations” [6].  

The 1990 Gulf War showed the United States’ military might and the success of precision 

guided munitions. This war also demonstrated that the United States military found 

electronic communication between sister services and coalition forces difficult; 

interoperability was minimal or nonexistent. Today, the Department of Defense aims to 

remedy interoperability issues, with the Joint Battlespace Infosphere (JBI). The JBI is the 

vehicle implementing information sharing and making interoperability a reality, by 

allowing anyone that registers and connects to be interoperable within the theater of 

operations The following section discusses the JBI in more detail.  

2.1.1 Joint Battlespace Infosphere (JBI) 

Putting information in one location does not solve the interoperability issue; however, 

it is the first step. There is a lot of information that needs to be examined efficiently to 

make the information valuable. This could ultimately result in putting bombs on target 

anywhere, anytime.  

Two US Air Force Scientific Advisory Board (SAB) reports outline JBI’s conceptual 

framework. Marmelstein [6] summarizes this framework with four key concepts: 

- Information is exchanged through publish, subscribe, and query 

- Data is transformed into knowledge via fuselets 

- Distributed collaboration is achieved through shared, updateable knowledge 

objects 

13 



 

- Assigned units are incorporated via force templates.  

 

Figure 2-1. The Joint Battlespace Infosphere (JBI) [7]. 

Figure 2-1 illustrates the interconnections of the JBI with the first key concept being 

the ability to publish, subscribe, and query, seen in the center controlling all aspects of 

information gain and information retrieval. Having one system to integrate to enables the 

military to communicate and exchange useful information with each other. The three core 

services that the JBI provides are:  

- Publish: A client registers itself with JBI and makes available its useful 

information to any other client in the JBI. 

- Subscribe: A client registers itself with the JBI to access information in JBI. 

- Query: A client queries JBI for information and perhaps receives what is 

asked for.  

These JBI core services are the foundation for knowledge creation, knowledge 

exchange, and knowledge retrieval. Additionally, JBI can filter information with fuselets. 
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Fuselets are compact subroutines designed for a specific purpose or function, such as a 

searching or computation tool with result returned to the requesting client.  

Distributed collaboration through shared, updateable knowledge objects is the third 

key concept of the JBI. This concept incorporates object oriented programming to create 

agents (programs) that are able to access, update, and share data with other agents.  

 

Figure 2-2. Force Template Content [7]. 

The fourth key concept is unit incorporation via force templates. Force templates 

allow access to and interaction with other JBI entities. Using force templates enables 

modularity and the ability to handle content changes which in turn allows JBI to grow or 

shrink based on the needs of the battlespace. Figure 2-2 depicts force template content. 

Figure 2-2 also shows where domain ontologies fit in the force template construct.  

This research specifically addresses the third key concept of distributed collaboration 

through shared, updateable knowledge objects. Agents communicate and negotiate 

formulating an automated domain ontology creating an information-sharing environment 

from different distributed data sources. 
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The JBI is currently in its infancy and the Air Force Research Laboratory (AFRL) in 

Rome, New York, has implemented a test JBI. Using the JBI core services, information 

flows between clients by sending software objects from one client to another. JBI 

information consists of two objects, a metadata object, and a published object. Metadata 

describes the structure and meaning of an object’s information and uses for matching a 

publisher with a subscriber [8].  

Before a user publishes an object, a publisher must register it and provide metadata. 

To retrieve published objects, the subscriber must also register. Publishers and 

subscribers are matched using metadata attributes and values. A publisher receives 

metadata attributes and values when it registers. These must match exactly with the 

attributes and values a subscriber registered. If they do match, the system links them. If 

they do not match exactly, no linking takes place.  

After registering successfully, the client application can publish. The object published 

can have attributes and values of any type. For example, an XML document, GIF, JPEG, 

or an ASCII text file. When a publisher and subscriber are registered and matched, the 

object is published and placed in the subscriber’s queue. To use the object, the subscriber 

must request the object from the queue [8]. After receiving the object, the subscriber can 

do anything needed with it.  

This research focuses on the matching of metadata attributes and values from the 

publisher with those from the subscriber. Currently the match must be exact. Therefore, if 

the publisher has a metadata attribute “Windspeed” and the subscriber requested a 

metadata attribute “windspeed”, a match would not occur even though the words are the 
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same and differ by a capital letter. JBI is too restrictive with the requirements to operate 

in a contingency environment. The next section gives an overview of a program agent. 

2.2 Agents 

Russell and Norvig [9] define an agent to be “an encapsulated computer system that is 

situated in some environment and is capable of flexible, autonomous action in that 

environment, in order to meet its design objectives”. An agent is a program that performs 

some information gathering or processing task to meet defined goals. Agents also provide 

a mechanism for integrating multiple software systems.  

There are two classifications of agents: weak and strong. Weak agents are 

autonomous, social, reactive, and proactive. Autonomy means that agents can act on their 

own. Social agents are able to interact with each other. Reactive agents respond to 

stimulus and agent pro-activity means agents take initiative. Strong agents have all the 

characteristics of weak agents but are also mobile, veracious, benevolent, and rational. 

Mobile agents can move. Agents having veracity are agents that are truthful, benevolent 

agents do what they are told. When agents are rational, the agents will perform 

purposefully to achieve goals.  

Agents are powerful programming entities useful in a wide variety of areas. Agents 

are used to simulate two aspects of the JBI. The first agent is the database agent. The 

database agent simulates the JBI data repository that holds all of the information 

currently in the JBI. The second is the query agent and the query agent simulates a client 

querying the JBI system to retrieve information. 

The next two sections describe JiniTM and CoABS, two applications that handle agent 

discovery and agent-to-agent communication. 
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2.3 JiniTM

Sun Microsystems released JiniTM technology in 1999 as a platform for building 

applications with knowledge of the resources of their underlying network. The JiniTM 

architecture provides an agent the ability to announce itself to the network, provide some 

details about its capabilities, and immediately become accessible to other agents in the 

network environment.   

JiniTM provides a reliable network interface so services can join and leave a network. 

A reliable network has the ability to continue operating in the event of a system failure 

with little impact to the user. If a service crashes, the client locates another or waits for 

the initial service to reappear. If a communications link is lost, the client and service 

renegotiate another [2]. All of this happens without user intervention.  

A JiniTM network is scalable and secure. It has no central control; allowing networks 

to manage themselves [2]. Users can add and remove services without the need for a 

central entity to coordinate. In addition, JiniTM maintains the integrity of network look-up 

tables. Dynamic discovery of JiniTM services make this happen.  
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Figure 2-3. How JiniTM Technology Works [10]. 

Communication across a JiniTM network is a six-step process as shown in Figure 2-3. 

The first two steps of JiniTM communication comprise the registration portion of JiniTM. 

During the registration process, a service sends a service proxy to all lookup services 

(LUS) on the network, or to a selected subset [10]. Services are the cornerstone of a 

JiniTM network and use lookup services to advertise their capabilities.  

Steps 3 and 4 comprise the discovery portion of JiniTM. Discovery occurs when a 

requesting service locates a LUS and asks for a registered service. If the LUS does not 

have the service, the service requester locates another LUS [2]. 

The fifth and sixth steps are the communication portion. If the LUS has the service 

requested, it returns the proxy of that service to the requester [2]. From here on, the proxy 

brokers all communication between the client and the service. 
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JiniTM Network Technology provides a powerful infrastructure that allows services to 

interact with little foreknowledge of location or underlying network. It offers a highly 

scalable solution to the problems of network transport [7]. 

To make this networking and agent-to-agent communications complete, however, 

some middleware services are required. 

2.4 Control of Agent Based Systems (CoABS) 

CoABS is a framework built on top of JiniTM [5]. CoABS supports the seamless 

integration of agent-based systems. Like JiniTM, CoABS provides a scalable and flexible 

environment for systems to participate in, Figure 2-4. 

 

Figure 2-4. CoABS Grid [11]. 

The CoABS grid includes a method-based application programming interface to 

register agents, advertise their capabilities, discover agents based on their capabilities, 

and send messages between agents. The Grid also provides a logging service to log both 

20 

?HdS.rvic.M.Ur__J 

:::T^^" 

m CoABS Grid Core Services 
Logging | Admin | Subscribe | Instrumentation 
Events    | Pubiish | Security    i  Visualization 



 

message traffic and other information; a security service to provide authentication, 

encryption, and secure communication; and event notification when agents register, 

deregister, or change their advertised attributes [11]. 

Software agents use CoABS to register within a common distributed environment 

gaining access to several services that help them communicate. One of these services is a 

LUS, which provides agent discovery services [1]. Along with registration and the LUS, 

CoABS features an agent messaging system. This messaging service provides a transport 

mechanism to deliver messages between agents [1].  

CoABS also has a Graphical User Interface (GUI) that allows an administrator to 

manage and monitor the CoABS grid [11]. This grid is the front end to three daemons, 

HTTP daemon, LUS daemon, and Remote Method Invocation (RMI) daemon. These 

daemons provide the necessary services for agents to advertise their capabilities and 

solicit capabilities from other agents [11]. Since CoABS is built upon the JiniTM Network 

Technology, CoABS utilizes JiniTM’s six-step process to facilitate clients and services to 

connect and communicate.  

While the CoABS grid is up and running, JiniTM is working transparently in the 

background. These two applications work in tandem, creating an ideal environment for 

agent negotiation and automated ontology creation.  

2.5 Ontology 

The field of Ontology studies the nature of existence. Applying this definition to 

agents: “an ontology is a description, like a formal specification of a program, of the 

concepts and relationships that can exist for an agent or a community of agents” [12]. In 

software development, an ontology implies agents that communicate, communicate on 
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the same level. Every agent in the system knows how to communicate and understand the 

messages communicated.  

During the initial design of a multiagent system, an ontology is user-defined. With an 

ontology in place, agents in the system have a vehicle for communication and each agent 

understands the language communicated. The programmer implements an ontology 

within an agent so agents can perform and achieve their goal. Agents using ontologies 

can increase the efficiency and effectiveness of current Internet services thereby reducing 

human intervention [5]. If multiagent systems could effectively communicate with each 

other via an ontology, human intervention could be largely eliminated. A user would 

simply submit a query and obtain results.  

One type of ontology is domain ontology. Domain ontologies define all concepts and 

relationships in a specific domain [13]. Developing a complete domain ontology takes 

time. In addition, reprogramming, re-instantiation, and retesting are required when an 

ontology requires a change. Problems arise from manual domain ontologies because the 

domain expert cannot define everything there is to know in a specific domain. Over time, 

things change and evolve, and the multiagent system will only be as good as the expert. If 

the expert does not know something about the domain, then the agents will not either. If 

agents could create, modify, and apply their own ontology, a multiagent system could 

adapt, grow, and shrink autonomously.   

2.5.1 Multiagent Systems Engineering (MASE) 

Tools for automating agent creation in multiagent systems are in development. These 

tools make agent creation easier but the user must know the system well to take 

advantage of the tools. Ontology creation is one-step of this process and is currently a 
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manual process. DiLeo [13] takes the reader through the process of manual ontology 

creation from the software engineer’s point of view. The steps for manual ontology 

creation are: 

1. Define purpose and scope. 

2. Collect and analyze data. 

3. Construct the initial ontology. 

4. Refine and validate the ontology. 

 The next few paragraphs discuss these steps in detail. 

A lot of time and thought must go into an effective ontology design. It is an 

evolutionary software engineering process. DiLeo argues engineers developing software 

systems using agents should allow equal design time to the agents and the ontology 

because once you release the agents into the system, agents do what they are told and 

adapt if the environment changes. If agents are to perform consistently and provide the 

same expected output no matter how the environment changes, the agents need a domain 

ontology. In addition, the domain ontology must be adaptable. With DiLeo’s process 

every time something changes in the environment, a manual change to the domain 

ontology must take place.  

A designer must describe ontology requirements as well as the range of intended 

users of the ontology [13]. For example, when designing a multiagent system to perform 

course scheduling, the ontology must define abstract classes regarding courses, quarters, 

instructors, and classrooms. The software requirements and the goal hierarchy help define 

the ontology’s purpose. The purpose describes why the ontology exists, such as to list all 

classes in the education domain required when scheduling courses. The scope defines to 
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what level of detail that an ontology describes the objects, such as defining only the 

semantic ideas necessary to schedule courses in a distributed network environment [13].  

After defining the scope, the designer can build the model. The designer creates a list 

of possible terms or concepts that the ontology must describe. Designers form this list by 

examining the goal hierarchy, use cases, and sequence diagrams from the previous MaSE 

steps for candidate ontology terms [13]. Actions in a sequence diagram show which terms 

could be part of the information passed in the system. The designer examines the system 

requirements, goal hierarchy, and use case models in a similar manner to create the 

candidate term list for the ontology [13].  

To construct the initial ontology, the term list is organized into classes and attributes, 

and an initial draft of the data model is produced. Before creating an entirely new 

ontology, a designer must determine whether any existing ontologies can meet the system 

needs. If no existing ontologies fully specify the information needed for the system, the 

designer must build a new ontology [13].  

At this point, a designer must refine and validate the ontology. A designer reviews 

use cases and sequence diagrams to ensure the information specified in the ontology 

accurately reflects system events. If not, the designer makes corrections until the 

ontology accurately reflects system events.  

This brief overview of the manual process of ontology creation illustrates the labor-

intensive nature of the process. This research differs from DiLeo’s in that it provides an 

implementation of an agent created ontology system so that the ontology can change as 

the environment changes without the human intervention. A system where if the 

environment changes, the agent ontology also changes—keeping everything in lock step.  
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The previous sections discussed the importance of the JBI to the DOD, the JBI and 

how it works, the underlying network of JiniTM and CoABS, and ontology creation in 

multiagent systems. Before trying to program agents to negotiate ontologies, the focus 

turns to data mining concepts. An application of data mining is extracting general 

concepts from relational databases. The next section discusses data mining and how data 

mining is used in this work 

2.6 Data Mining 

Data mining is the process of extracting knowledge from a large amount of data [14]. 

Several data mining approaches exist and, as with most design problems, the application 

dictates the approach. There has been a wealth of research in databases making use of 

data mining techniques to merge many databases into a single unit. This research makes 

use of some data mining techniques, specifically, cluster analysis.  We discuss cluster 

analysis in detail in Section 2.6.2.   

2.6.1 Database Record Matching 

There are many techniques to implement record matching in databases. Record 

matching or name matching has been explored in many fields; statistics, database, and 

AI. In statistics, the problem is called probabilistic record linkage [15]. Probabilistic 

record linkage allows the assembling of information from different data sources [16]. 

Record linkage is the process of finding a unified record from two or more records that 

are in different files but belonging to the same entity. Probabilistic linkage takes into 

account the uncertainty that exists in comparing variables used for comparison in both 

files [16]. 
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 Knowledge intensive approaches provide the basis for record matching in the 

database community [15]. Finally, in AI, learning the parameters of string distance 

metrics and combining the results of different distance functions uses supervised learning 

[15]. Three types of distance functions used are: 

1. Edit-distance like functions 

2. Token-based distance functions 

3. Hybrid distance functions. 

All three distance functions listed above map a pair of strings s and t to a real number 

r, where a smaller value of r indicates greater similarity between s and t [15]. The edit 

distance functions represent distance as the cost of the best sequence of edit operations 

that convert s to t. Edit operations include character insertion, deletion, and substitution, 

and the function assigns each operation a cost. Token-based distance functions are those 

that operate on groups of characters (tokens). Hybrid distance functions are those that use 

pruning methods to reduce the set of string pair comparisons.  

Since database agents will be working in a distributed environment, the sizes of the 

databases are potentially unknown so the Jaro similarity metric was used. The Jaro 

similarity metric is not an edit distance metric but it provides effective results with a 

minimal amount of computation. Section 3.3.2 discusses the Jaro similarity metric in 

detail. 

The Boyer-Moore string-matching algorithm [17] was considered. Implementations 

of text editors use this algorithm more frequently for search and inserts. Boyer-Moore is 

more efficient as the search string gets longer. In this application, the string compares are 
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generally short, so the Boyer-Moore algorithm was not used. The Jaro similarity metric is 

efficient and works best with short strings, and provides us with a numerical matching, 

and the substrings for storage. 

This thesis combines techniques from all three data-mining areas, statistics, to 

measure the success of automatic agent ontology creation; databases, implement 

clustering to analyze the data and group similar data objects; and AI, to determine the 

degree of similarity between two data objects. These agents will accomplish this task 

without the use of external word matching sources, like data dictionaries, previous 

training, domain information, or thesauruses.  

2.6.2 Cluster Analysis 

Clustering is a method of grouping objects into classes by some metric of similarity 

[14]. Clustering sifts through large data stores, grouping related objects together into a 

cluster. Clustering uses statistical techniques like mean and variance, to manipulate the 

clusters extracting information about the data so the data provides meaning to the user. 

The difficulty in clustering is finding the right balance of technique and speed so that data 

searches take a minimal amount of time.  

The database agents are implemented as wrapper agents. Wrapper agents have access 

to all of a database’s information. When clustering, two agents communicate and decide 

whether they have matching fields. Agents calculate cluster information on their database 

and then communicate these metrics to decide whether a match exists. Agents create a 

logical link between the fields in the database.   
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Several authors have explored the intelligent database querying and ontology 

creation.  In the following section, we discuss their work and analyze how it relates to 

this research. 

2.7 Related Work 

The benefit of the research described herein consists of relieving a programmer from 

generating all metadata mappings from one database to another. Agents are able to set up 

their own mapping and the programmer will only have to monitor the progress or adjust 

mappings as needed. 

Name matching research has been on going for years and is still relevant today. 

Researchers have run experiments using applications such as WordNet, described below, 

to improve name matching success rates. Section 2.7.2 discusses RETSINA. Sections 

2.7.3 and 2.7.4 discuss two other projects that have implemented name matching, 

DELTA and SemInt, respectively. Lastly, there is a discussion of different algorithms 

showing correct name matching results.  

2.7.1 WordNet 

WordNet is an application to ease syntax learning in a given project. WordNet 

organizes nouns, verbs, adjectives and adverbs into synonym sets, each representing an 

underlying lexicographical concept [18]. Different relations link the synonym sets, and 

provides a way to match words from one data source to other data sources. In 

applications requiring a method to decide whether words are topically similar, WordNet 

can make that distinction. WordNet requires a programmer to provide the ontology for 

the application domain. In addition, since WordNet is a separate program, the application 
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must have a place in your distributed environment. Each time there is a call to WordNet 

to check for a match, the communication required uses precious bandwidth. Depending 

upon how many WordNet accesses there are, it could be a time intensive task and could 

affect network performance.  

JBI is a distributed environment that, depending on the contingency location, can 

possibly be a restrictive, low bandwidth network with minimal services. Further, using an 

application like WordNet may not be conducive to wartime operations. This research 

uses agents combined with data mining techniques to negotiate an ontology in whatever 

application the agents are running in. It eliminates the need for an external translation 

service and it enhances the JBI for worldwide implementation. 

2.7.2 Artificial Intelligence 

There are two principle categories of learning in multi-agent systems: centralized and 

decentralized. In centralized learning, a single agent executes the entire the learning 

process and does not require any interaction with other agents [19]. Decentralized 

learning has more than one agent engaged in the same learning process. Negotiation and 

cooperation is mandatory for successful decentralized learning. Given the distributed 

nature of the agents, centralized learning is not feasible, and this thesis focuses on 

decentralized learning where multiple agents communicate and coordinate toward a 

common goal.  

The following are a few examples of decentralized learning of agent communication 

in different environments. A discussion of Reusable Environment for Task-Structured 

Intelligent Networked Agents (RETSINA) [20] and its significance is in the next section.  
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2.7.2.1 Reusable Environment for Task-Structured Intelligent Networked Agents 

(RETSINA) 

RETSINA is an open multi-agent system (MAS) that supports communities of 

heterogeneous agents. The RETSINA system agents form a community of peers that 

engage in peer-to-peer interactions. Any coordination structure in the community of 

agents should emerge from the relations between agents, instead of the imposed 

constraints of the infrastructure itself. In accordance with this premise, RETSINA does 

not have a centralized control within the MAS; rather, it implements distributed 

infrastructural services that facilitate the interactions between agents, as opposed to 

managing them [21]. 

RETSINA most closely resembles the JBI concept. The JBI implements concepts 

from RETSINA such as no centralized control within the MAS and it allows CoABS to 

monitor the agent-to-agent communication. 

The next sections discuss successful applications designed for name matching. These 

applications are useful for agent ontology creation, but have positives and negatives 

associated with them.  

2.7.3 Data Element Tool-Based Analysis (DELTA) 

DELTA is a tool that uses textual similarities between data element definitions to find 

candidate attribute correspondences [22]. A commercial full-text information retrieval 

tool (Personal Librarian) is used to search and find attribute matches. DELTA first gets 

all available metadata for an attribute and saves that information as a text document. A 
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human, called the integrator, has to choose the attribute and the database to perform the 

match. 

Querying the Personal Librarian is a way to find attributes. The query returns 

documents ranked using a weighted similarity of terms. The search for corresponding 

attributes in the list is a manual search. The default search pattern is the full text of a 

metadata document in one of the databases [22]. In addition, query searches are applied 

to all the words in a document. This allows finding matches even where the attribute 

names are very different but where there are similarities in the definition. For example, 

searching for delivery address found the proper attribute from two different data 

dictionaries and the attribute names were different [22].  

Control over the order of tasks is manual [22]. This provides tool flexibility, but also 

requires manpower to make DELTA useful. This research proposes intelligent agents 

respond to a query on their own without a human controller. The agents query each other 

to decide which attributes are the same freeing the analyst to examine the data from the 

query. 

The data used to test DELTA comes from three databases. The first, Advanced 

Planning System (APS) is a relational database that has 884 attributes in 107 tables with a 

dictionary with 739 elements. The second database, Computer Aided Force Management 

System (CAFMS) is another relational database that consists of 1056 attributes in 162 

tables with 637 data elements, and no data dictionary. The third database, Wing 

Command and Control System (WCCS), has 2578 attributes in 294 tables with 1760 data 

elements. Because no data dictionary was available for the CAFMS database, DELTA 
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was not tested with it. Identifying the correct attribute in the table involves a manual 

search. The authors state that manual search takes approximately 15 minutes per attribute. 

DELTA achieved a 40% match success rate. Without perfect knowledge and a perfect 

data dictionary, DELTA is not a good choice for database attribute matching. The risk is 

that people make mistakes, which cannot be tolerated during wartime. 

SemInt is an extension to DELTA that differs in two ways. First, SemInt does not 

need perfect knowledge to provide good results and second, SemInt uses a neural 

network instead of the personal librarian. 

2.7.4 SemInt 

SemInt is an automated system for determining candidate attribute correspondences 

[22]. SemInt differs from DELTA by providing good results when databases are not well 

documented and a client does not have perfect domain knowledge. 

SemInt generates 20 numeric properties from the metadata and population for each 

attribute. It then determines which properties are most useful for discriminating among 

attributes and produces a classifier function using a back-propagation neural network. 

The metadata used includes data types, length, keys, foreign keys, range constraints, and 

access restrictions. Population information used includes average, maximum, and 

variance for numeric values. For the text field values, string length statistics are used. The 

authors call these calculated items discriminators, and are used to determine attribute 

matches. The network needs training before it can be useful, because SemInt uses a 

neural network. For large databases, this training can take from a few hours up to days of 

CPU time to complete. In a distributed wartime environment where execution time is 
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paramount, this is an unacceptable risk; as foreknowledge of data requirements needed is 

required. 

SemInt operates in a two-phase process. The first phase is the training of the network 

on a database chosen as the reference database. The human integrator provides the 

classification for the training of the network. SemInt computes the discriminator vector. 

The second phase uses the neural network to map attributes of other databases onto 

attributes of the first database effectively comparing attributes from the foreign database 

with those in the reference database. Discriminator computations use the foreign 

attributes and the classifier applies to a discriminator vector. The vector and each cluster 

in the reference database returns a similarity. Once all attributes are processed, SemInt 

returns a list of similarities. The high valued attributes for each cluster are the suggested 

correspondences for that cluster [22]. 

A correspondence is the relationship between two attributes. Put another way, a 

correspondence means ‘means the same’. The best average number of candidate 

correspondences SemInt found for each attribute is 43% out of 50 correspondences 

identified. The recall percentage is the number of correspondences found divided by the 

total number of correspondences identified [22]. SemInt’s best recall percentage is 44%. 

Thus, by itself, SemInt is not adequate. However, it does not require domain knowledge 

or a database with a data dictionary to provide good results. On the other hand, the 

authors claim that SemInt along with techniques from DELTA may provide results with 

less human intervention to determine attribute matches.  
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This research is different from SemInt in many ways. Database agents learn the 

domain ontology with string matching techniques and store that knowledge in a hash 

table. This research does not require a neural network, which means no time spent 

training a neural network (which for SemInt, could take days). Further, it then is not 

restricted to the concepts capable of being learned by a neural network.  

2.7.5 Other Related Works 

Another system, Automatch uses Bayesian learning techniques. The system acquires 

probabilistic knowledge from domain experts stored in an attribute dictionary [23]. 

Automatch uses the attribute dictionary to find optimal matching. Using cross validation, 

Automatch achieved a match rate of 66%. In a separate experiment, and using random 

guessing to generate the same attribute matching pairs, Automatch only achieved a match 

rate of 10%.  

COMA combines multiple matches in a flexible way. The match operation takes as 

input two schemas and determines a mapping indicating which elements of the input 

schemes logically correspond to each other. COMA can make use of results from 

previous match operations. Without reuse, the single-matchers’ average precision is 50% 

and the average recall is 81%. The average overall match rate is no more than 45% [24].  

Cupid considers two types of matches, a thesaurus for linguistic matching, and a 

structured matching based upon similarity of contexts or vicinities. Cupid does well using 

the thesaurus and very poorly without the thesaurus in some instances. No measurable 

results were provided [25].  
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Madhaven, et al. [26] introduces the concept of corpus based schema matching. They 

save previous matchings in a component called the mapping knowledge base (MKB). 

The MKB learns classifiers for each of the schema elements seen in the past. When the 

classifier for an element e is applied to a new schema element e1, it predicts the degree of 

similarity between e and e1 [26]. Coupled with the MKB, the authors use five different 

base learners trained to recognize each type of element the MKB captured. 

The authors compared their MKB matching with a basic matcher. The basic matcher 

uses the five base learners, but the training is only on the matching attributes. The basic 

matcher achieved between a 65% and 85% recall accuracy. The MKB achieved between 

72% and 84% accuracy and the combination of the two achieved between 78% and 90% 

recall accuracy. 

Paolo Bouquet, et al. proposes a new algorithm to use for schema matching [27]. 

They address the problem of deducing relations between sets of logical formulae that 

represent the meaning of concepts belonging to different classification. The matching 

consists of three knowledge parts:  

• Lexical: knowledge about the words used in the labels 

• Domain: knowledge about the relation between the senses of labels in the real 

world or in a specific domain 

• Structural knowledge: knowledge derived from how labels are arranged in a 

given hierarchical classification (HC) [27].  

Lexical and domain knowledge is not used to improve the results of structural 

matching. Instead, knowledge from all three levels is used to build a new representation 
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of the problem, where a logical formula represents the meaning of each node and relevant 

domain knowledge and structural relations between nodes are added to nodes as sets of 

axioms that capture background knowledge [27]. 

Once the meaning of each node, together with all relevant domain and structural 

knowledge is encoded as a set of logical formulae, the problem of discovering the 

semantic relation between two nodes becomes a simple problem of logical deduction 

[27]. 

The algorithm used is CTXMatch, which takes two HCs and returns a set of 

mappings between their nodes. WordNet provides both lexical and domain knowledge 

[27]. Results show the percentages of accuracy and recall between the two search 

domains of architecture and medicine with the Google and Yahoo! search engines. The 

best equivalence achieved was 78% precision with a recall of only 13%. The architecture 

search did a bit worse with 71% precision and 10% recall. 

Authors Williams and Tsatsoulis research matching diverse ontologies using concept 

cluster integration [28]. Each agent has their own ontology and tries to discover 

relationships between themselves if one exists. For example, if one agent’s ontology was 

‘NBA’ and the second agent’s ontology was ‘College Hoops’, the two agents should 

discover their relationship ‘basketball’ [28]. The authors’ agents use supervised inductive 

learning to learn their individual ontologies. Only 20% of the queries produced verified 

concept cluster relations.  

The final system discussed is the Learning Source Descriptions (LSD) system [29]. 

LSD employs and extends current machine learning techniques to find attribute matches, 
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semi-automatically. The user must provide semantic mappings for a small set of data 

sources, ‘small’ being undefined. LSD uses these mappings together with the sources to 

train a set of learners. After training the learners, LSD finds semantic mappings for a new 

data source by applying the learners and combining their predictions using a meta-learner 

[29]. The results are very good using this technique. LSD achieves high accuracy from 

71% to 92%.   

Do, Melnik, and Rahm suggest that to identify a solution for a particular match, it is 

important to understand which of the proposed techniques performs best, i.e., effectively 

reduce the amount of manual work required for the match task [30]. To show the 

effectiveness of their system, they demonstrate its application to some real world 

scenarios [30]. The system evaluations were done using diverse methodologies, metrics, 

and data making it difficult to assess the effectiveness of each single system. 

Furthermore, the systems are primarily not publicly available making it virtually 

impossible to apply them to a common test problem or benchmark in order to obtain a 

direct quantitative comparison [30]. 

Four different comparison criteria were used: input, output, quality measures, and 

effort. Input considers schema languages, relational, XML, etc; number of schemas and 

match tasks; schema information; schema similarity; and additional information used, i.e. 

data dictionaries or thesaurus’ used to help facilitate the matching. The output considers 

which elements correspond to each other. The quality measures used are the results 

compared to a manual match. To assess the manual effort they consider both the pre-

match effort required before an automatic matcher can run as well as the post-match 
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effort to add the false negatives to and to remove the false positives from the final match 

result [30]. They review the evaluations of eight different match prototypes, Autoplex, 

Automatch, COMA, Cupid, LSD, GLUE, SemInt, and SF.  

The results show that the best match quality range from under 20% to over 90%, but 

the way the systems have been tested varies to a great extent from evaluation to 

evaluation [30]. 

Yatskevich [31] completes another evaluation of different schema matching 

algorithms between Similarity Flooding (SF), COMA, and Cupid. Yatskevich states that 

there are five different classifications of attribute-matching approaches:  

• Hybrid or composite. Hybrid matcher uses multiple criteria to obtain mapping. 

A composite matcher combines results obtained by exploiting several 

matching algorithms. 

• Weak or strong semantics. Weak semantic techniques includes string, data 

type and soundex analysis. Strong semantic techniques use precompiled 

thesaurus and dictionaries. 

• Instance based or schema based. Instance based matchers consider data 

instances. Schema based matchers rely only on schema level information. 

• Element or structure level. Element level matching is performed to individual 

elements. Structure level matchers consider combinations of elements such as 

complex schema structures. 
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• Language or constrained based. Language based matchers use a linguistic 

approach like comparing names of element s. Constrained based matchers 

exploit constraint information i.e., relations, keys. 

Weak semantic schema based matchers represent both hybrid and composite 

approaches for the evaluation. Various element and structure level techniques of analysis 

language and constrained based information. Comparing all three matching algorithms, 

SF, COMA, and Cupid, the best precision achieved was 84%. However, overall precision 

was significantly worse at 30%.  

All of the approaches described above are attempts at automating ontology creation. 

Table 2-1 summaries these approaches and gives a picture of how each technique 

performs, giving the best match percentage and what the technique uses in order to 

achieve that best match percentage. 
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Table 2-1. Comparison of Different Approaches 

Approach Technique Used 
Level of user input 
required 

Outside 
Sources 

Amount of 
Communication 

Best match 
percentage 

DELTA 

Manual 
Searching for 
corresponding 
attributes 

A human chooses the 
attribute and the 
database to perform 
the match. 

Personal 
Librarian 

Name/Information/
entire field 
contents 

40% match success 
rate.  

SemInt Back-propagation 
neural network 

User provides the 
training data None Name/Information/

Statistics 
43% match success 
rate 

Automatch Bayesian 
Learning 

Knowledge from 
domain experts 

Attribute 
Dictionary Name 

Using cross 
validation: 66%, 
otherwise only 10% 

COMA Schema Matching 
Provides match and 
mismatch 
information 

Previous 
Matches Name/Information 

No reuse, Average 
overall is no more 
than 45% match rate 

Cupid 
Linguistic and 
structural 
matching 

None Thesaurus Name/Statistics No Quantitative 
Results 

MKB 
Matching 

Learns classifiers 
for each of the 
schema elements 
seen in the past 

None 
Previous 
Schema 
Matches 

Name/Information/
Statistics/entire 
field contents 

84%-72% match 
success rate 

CTXMatch Hierarchical 
Classifications None WordNet Name/Information 78% match success 

rate 

Concept 
Cluster 
Integration 

Supervised 
inductive learning None None 

Name/Information/
Statistics/entire 
field contents 

20% match success 
rate 

LSD Machine 
Learning 

User provides 
semantic mappings 
for a small set of data 
sources 

None Name/Information/
Statistics 

92%-71% match 
success rate 

 

This thesis’ best match result is a 79% agent response rate. As can be seen in the 

comparison these results are competitive to the best systems while requiring much less 

user input and prior training. For those systems that do not require these elements 

(COMA, Cupid, etc) this research outperforms them significantly.  

 The ‘Amount of Communication’ column identifies the particular technique used to 

obtain the results. For example, in order for DELTA to achieve its 40% match success 

rate, DELTA uses the attribute name, attribute information (data type, etc), and it 
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searches the entire column contents to determine its match. CTXMatch only needs the 

attribute name and attribute information to achieve its 78% match success rate, but it uses 

WordNet to help with its attribute matches. 

2.8 Background Summary 

The automatic generation of domain ontologies assists with the DOD’s interest in 

creating an interoperable environment for information sharing. JiniTM and CoABS 

provide the networking backbone that emulate the functionality of the JBI and make 

agent communication easy, flexible, and secure. In this environment, agents facilitate 

their own communication and as a group negotiate a domain ontology with minimal 

human intervention. 

Many of the implementations discussed in this chapter provide background into agent 

ontology creation applicable in a distributed database environment. However, several 

methods require overhead or manpower that in a JBI like distributed wartime 

environment is not feasible. This research overcomes these limitations by eliminating 

user and external information to create the corresponding ontology all while maintaining 

match accuracy.  

DELTA and SemInt are tools that attempt attribute matching across heterogeneous 

databases. DELTA requires perfect knowledge and data dictionaries in order to be 

successful. SemInt is an improvement over DELTA in that it does not need perfect 

knowledge, and user interaction, and can attribute match with good results. SemInt uses a 

neural network that requires training before it can be of any use. Depending on the 

training set, this training can take hours or even days to complete. The advantage is that 
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computations are fast once training is complete for the network. The advantage to this 

research is that like SemInt, there is no need for perfect knowledge or data dictionaries. 

In addition, this research does not use a neural network because of the complexity and 

overhead of using the technique.  

As in the related work, this implementation seeks to provide a method of finding 

matches between two database fields without comparing the entire set of records. Unlike 

these approaches, this research attempts matches based only on the data and the data’s 

attribute information, through substring statistics. Even so, incorporating the features 

used in SemInt, and the other systems into this work could possibly produce more 

accurate ontology mappings, as will be discussed in the results section, after discussing 

the implementation details in the following chapter. 

42 



 

3. Design and Implementation 

Many researchers have tried to solve the attribute matching problem using many 

different techniques or combinations of techniques in order to obtain good results [15, 22, 

23, 24, 25, 27, and 29] as discussed in the previous chapter. This chapter discusses how 

the goals in Chapter 1 are met through database wrapping, client subscription, agent 

autonomy, and limited bandwidth requirements.  

In addition to these goals, this research considers two other goals. The first goal is 

simulation of the JBI environment. The agent environment should provide the most 

accurate test environment possible. This will ease porting this research agent code into 

the current JBI. 

The second goal is domain ontology creation with minimal communication. This goal 

has agents create a specific ontology, one that depends upon the data inside the JBI, 

allowing services within the environment to find and communicate with one another. The 

number of successful query returns given a set number of queries made measures the 

success of ontology creation. 

This chapter outlines the procedure on how this research automates ontology creation. 

This not only aids efforts in the JBI development, but also assists any organization 

needing to merge data from different sources in a distributed environment without 

manual data mappings.  

This chapter is organized as follows.  Section 3.1 discusses the requirements for the 

research. Section 3.2 details the architecture of how the agents integrate into a distributed 

environment. Section 3.3 discusses database wrapping and the agent implementation, 
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respectively. Section 3.4 defines the query process and Section 3.5 provides the summary 

of the chapter.  

3.1 Requirements  

For agent-to-agent communication to take place, the agents must be in a distributed 

environment. JiniTM and COABS provide the distributed environment where agents can 

communicate quite easily. Once CoABS is successfully operational, the agents enter and 

run in this environment. 

Creation of the domain ontology begins by matching agents’ metadata. If the 

metadata do not match, the agents examine a sample of the data in the database. Using 

the Jaro similarity metric a determination of match is calculated. Once updates to the 

domain ontology are complete with the metadata, the lead agent distributes the updated 

domain ontology to all agents in the system.  

3.2 Architecture 

In the JBI, data sources vary as does the information contained therein. There is 

aircraft information, weather, weapons, locations, targets, and so on. To publish to the 

JBI, the client must conform to a rigid set of rules. This helps keep the JBI in a uniform, 

consistent state. XML takes care of the matching, but one big restriction of XML is that 

the match must be exact. If a client wishing to make a query does not know how or what 

to query, or does not know the exact spelling of the query, it is likely the client will not 

retrieve any information from JBI at all.  

This research creates database wrapper agents that access the data contained within 

the databases. These agents communicate, negotiate, and create a domain ontology 
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without any help from an outside human expert or application. The agents themselves 

determine if ‘professor’ matches ‘instructor’. When a query comes in asking for 

professor, both agents respond; the client does not have to make another query for 

instructor.  

Figure 3-1 shows how agents operate in the CoABS environment. Explanations of the 

elements of the figure are below. 

 

Database
Database agent

Agent Ontology

Database

Database Agent 

Agent Ontology

Client querying agent

same

CoABS
Environment

 
Figure 3-1. Agents in CoABS Overview  

3.2.1  Agents 

As shown in Figure 3-1, there are two types of agents the database agents and the 

query agents. Section 3.2.1.1 discusses the details of the database agents including how 

they create the domain ontology. The domain ontology is created when the second agent 

enters the system. This second agent transmits its database information to the lead agent 

where the lead agent invokes the Jaro similarity metric method, updates the ontology, and 
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distributes the updated ontology to all agents in the environment. Section 3.2.1.2 

discusses the details of the query agents including how they register in the CoABS 

environment and how they query the wrapper agents to get the information they request.  

3.2.1.1 Database Agent 

When the database agent wraps itself around this repository, the agent has access to 

and provides all of the data contained within if queried. The agent also knows all of the 

metadata about the database, for example, data types, and field lengths. Upon wrapping, 

the agent stores all of the repository attributes into a vector. It pulls random data from 

each field, depending upon the size of the database, to develop keyword vectors for each 

field. The keyword vector holds information on the commonality found within each 

attribute column of the database. For example, suppose a column in the database was 

‘instructor’. The agent looks at random data elements of ‘instructor’ and sees if there is 

commonality in the data; the data may all start with ‘Dr.’ or ‘Prof’. The agent finds these 

common elements and stores them in a keyword vector. Creating a keyword vector 

eliminates the need to send all of the agent’s database data to the lead agent. This keeps 

communication and data transmission to a minimum while still providing acceptable 

results. 

The keyword vector is created using part of the Jaro similarity metric method with 

samples of the data contained inside the databases. The keyword vector generated holds 

the attribute, the format of the data, the keyword, and the probability of the number of 

times the agent found the keyword in the data. The lead agent uses both vectors to create 

the ontology when a second wrapper agent registers in the distributed environment.  
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The agent also constructs a feature set vector on startup. The feature set vector saves 

three statistics about the data contained in each column of the database. Specifically the 

type name, the column size, and decimal digits. The type name stores the type of the data, 

for example if the attribute name is day and the data is all numbers, the type saved would 

be ‘integer’. If the data were city names, then the type saved would be ‘character’. The 

column size statistic saves the maximum length of the column. For example if the type 

name is ‘integer’, the default column size in Microsoft Access is 4 bytes. If the type were 

‘character’, the column size would be the maximum number of characters Microsoft 

(MS) Access allows, unless the user adjusted the value during the creation of the 

database. The decimal digits statistic shows whether the data has any fractional digits in 

its format.   

3.2.1.2 Query Agent 

The query agent broadcasts its query to the wrapper agent(s) in CoABS. If a wrapper 

agent has the information the query agent is looking for, the wrapper agent will send the 

query agent the data. If the wrapper agent does not have the information or does not 

know if it has the information requested, the wrapper agent checks the ontology mapping 

to see if the query matches an attribute in the map. If it does, the wrapper agent rebuilds 

the query with the attribute it is most familiar with, and sends the requested information 

to the query agent.  

 

 

 

47 



 

3.3 Database Agent Implementation 

This research uses Java’s JDBC::ODBC Bridge to connect agents to MS Access 

databases. Once the agent connects to the database, the agent has access to a wealth of 

information including database attributes, properties of those attributes, and the actual 

data contained inside the database.  

Each agent on start-up calculates metrics for the database it wraps. Each field in the 

database has metrics generated, and includes an estimate of the field format, the substring 

similarity vector, the substring frequency vector, and the feature vector. Section 3.3.2 

discusses the metric calculations in detail.  

Once an agent successfully registers in the environment, the agent can access 

available information and advertise information contained in their database. As each 

agent enters CoABS, the agent looks for other agents in the system. Agents carry out all 

ontology negotiation in the system upon entering the environment. The agents first look 

for the current ontology ‘leader’ who is responsible for maintaining the ontology as well 

as negotiating any changes. 

Upon entering an environment with no agents, the agent declares itself leader, sets up 

an ontology containing only its information, and waits for other agents to enter. If one or 

more agents are present, the agent that entered last initiates communication with the 

leader agent, and transmits a subset of its keyword and metric information to the leader. 

The new agent and the leader will negotiate and make modifications to the global 

ontology as necessary. Once the lead agent updates the ontology, the lead agent sends the 

updated ontology to all agents currently in the system. If the leader leaves the 
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environment, and a new agent enters, all the agents currently in the environment elect a 

new leader. Since every agent has a carbon copy of the global ontology; the system does 

not rely on any one agent or system maintaining the distributed environment. Figure 3-2 

depicts the leader decision algorithm. Section 3.3.1 details the leader election process, 

Section 3.3.2 discusses the Jaro method, and Section 3.3.3 details the ontology creation 

process.  

Agent1 is first in and 
declares self as leader 

Agent2 enters and asks who 
the leader is 

Agent3 enters and asks who 
the leader is 

Tells Agent2 I’m the leader 
and assigns a priority 
number 

Receives priority number 2 
from Agent1 

Tells Agent3 I’m the leader 
and assigns a priority 
number 

Responds back to Agent3 
with I’m not the leader 

Receives priority number 3 
from Agent1 

Agent1 leaves  

Agent1 reenters and asks 
who leader is. Priority 
number is -1 and sends it to 
all agents in system. 
 

Agent2 sends its number to 
all agents in the system. 

Agent3 sends its number to 
all agents in the system. 

  

Compares numbers it  Compares numbers it  Compares numbers it  
received with its own received with its own received with its own 

Since its number is lowest 
and not -1, Agent2 
emerges as new leader and 
sends new priority 
numbers to the other 
agents. 

Receives new number Receives new number 
from Agent2  

from Agent2 

Figure 3-2. Agent leader communication 
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3.3.1 Leader Election Procedure 

Figure 3-2 shows how three agents, Agent1, Agent2, and Agent3, select a new leader. 

For clarity, agent names are italicized when referenced. Agent1 enters CoABS first and 

declares itself as leader (priority number 1) because no other agents are present. Agent2 

then enters and searches for other agents. Agent2 finds Agent1 and initiates a dialog to 

determine the leader. Agent1 responds to Agent2 and assigns Agent2 the priority number 

2.  

Agent3 enters the environment and executes the same transactions that Agent2 

executed. Agent3 looks for the leader; Agent1 responds and assigns Agent3 the next 

priority number in sequence (3). 

Agent1 leaves and reenters CoABS. Agent1 proceeds to inquire Agent2 and Agent3 as 

to the ID of the leader. Since neither is the leader, both Agent2 and Agent3 respond to 

Agent1 stating that they are not the leader. Agent1 tracks the replies and when Agent1 

receives all replies from all agents, and Agent1 does not find a leader, Agent1 initiates the 

leader decision procedure. 

All agents broadcast their priority numbers. Since Agent1 just entered the system, 

Agent1’s priority number is -1 signifying that Agent1 does not have a number. Each agent 

compares the priority numbers. The agent with the lowest priority number and the 

number is not -1 becomes the new leader and broadcasts to all agents currently in the 

environment. Finally, the new lead agent (Agent2) sends a message to each agent 

assigning new priority numbers in the same order that each agent contacted the lead 

agent.  
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The Jaro similarity metric is the string matching technique used to determine whether 

two attributes match or not.  

3.3.2 Metric Calculation 

An estimate of the field format, the substring similarity vector and the substring 

frequency vector provide the basis for the metrics used to calculate the ontology. Before 

any agent-to-agent communication takes place, each agent invokes two methods. These 

methods collect the attribute and sample data from the database that the agent wraps.   

The first procedure stores the entire database attributes in a vector. In this research, 

the database attributes are the column names of the database. For example, the vector 

shown below in Figure 3-3 is from an educational institution database. The attributes of 

that database are the contents of the vector. This vector is stored for as long as the agent 

remains in the CoABS environment.  

[ Dept, CourseID, Course, HRS, Type, Professor, Day, Time, Bldg, Room, Status ] 

Figure 3-3. Attribute vector the agent stores 

To create a domain ontology, the lead agent compares this vector along with other 

agent vectors to determine whether an attribute match exists. If it does, the match is 

stored in the ontology map providing agents with knowledge to answer client queries.  

The second method takes samples from the database and stores these in a second 

vector, the keyword vector. In the event that the lead agent cannot determine a match 

with just the attribute vectors of the databases, this keyword vector is used to check the 

actual data contained within the fields to determine if two attributes are similar. If the 

lead agent determines that the data inside is similar, the lead agent concludes that the 

attributes are similar and the ontology map is updated.  
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For this method to work, the method requires the calculation of the keyword vector. 

This is done by first determining the number of rows (numRows) in the database; this is 

used for two things. First, the agent uses it to calculate the number of samples taken from 

a database. In this research, the number of rows used for calculating the sample size is 

bound (α). The α bound used in most examples is 0.20, which makes use of 20% of the 

samples. The agent randomly selects α * numRows from each field and uses this subset to 

generate the substring vector.  

The agent loops through this data subset, and for each two valid strings, the agent 

compares the two strings to see how similar they are. This comparison uses the Jaro 

Method [15], discussed in detail in the next section. 

If after the Jaro Method the two strings are the same, the agent saves only one string 

in a vector and a counter is incremented. The counter tracks the number of matches made 

for each substring element. For example, if there is an attribute called ‘instructor’ and all 

of the data inside begins with the string ‘Dr.’, the agent will process the string through the 

Jaro similarity metric method and store ‘dr.jhn’ with the number of times it was found. 

The agent converts this number into a probability. For example, if the agent found 

‘dr.jhn’ 10 times and the agent pulled 20 pieces of data, the vector will hold ‘dr.jhn’ and 

the probability ‘0.50’. The agent uses this probability when comparing two attributes 

from different data sources to help determine if the attributes are similar.  

After the agent has pulled the data from the first attribute and stored the data with its 

probability, the agent moves to the next attribute and completes the same process until all 
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attributes are processed. The data structure used for this storage is a doubly linked list 

with the internal list formatted as: 

[attribute name, format, keyword, probability, keyword, probability, … ]. 

The first index of this vector contains the attribute name of the column the agent is 

working on. The second element of the vector contains the format of the string. The agent 

uses this format string to help solidify the similarity results between two attributes. The 

format string represents an expected format of the data, i.e., (###) ###-#### for a 10 digit 

phone number. The format string calculation attempts to find a general format, 

representing upper case letters with ‘U’, lower case letters with ‘L’, and non-alpha 

characters with ‘$’. For example, if one keyword was ‘Dr. Doe’ the format string would 

equal ‘UL$ULL’; where U is an uppercase letter, L is a lowercase letter, and $ represents 

a special character; in this example, the $ represents ‘.’, spaces are ignored. When making 

comparisons, the agent compares the format to determine if there is a format match. To 

prevent erroneous matches, the format is used as an exact match. This prevents errors 

such as ‘instructor’ matching to ‘course name’.  

In trying to boost result percentages, modifications were made to the format string 

calculation in the agents. Instead of storing the most general format every time, a process 

holds the most specific format string. For example, if string1 is ‘Dr. John’ and string2 is 

‘Dr. Doe’, the format string would save the most specific string1 and compare it with 

string2. If the characters in the same positions match, the agent saves those characters. If 

no characters match, one of the symbols U, L, or $ is saved in that characters place. The 

result is the best format string possible that resembles the majority of the data contained 
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within the database. Back to the example, the format string saved would be ‘Dr. UoLL’. 

Table 4-10 in Chapter 4 displays the results of this test. The formula for the calculation of 

the format match is: 

Ω
=∀
∑
Ω

=

),(
, 1

i
i

i yxchfeatureMat
yx β  [3.1] 

where β is the number of feature matches divided by the set of features, Ω. The 

featureMatch(x, y) variable is a function that compares features and either two features 

match or they do not. For example, if there is a total of 20 feature set matches possible, 

and the agent only matched 10 features, then β is 10/20 = 0.5.  

The third element of the vector is the Jaro processed keyword, with the fourth 

element being the probability of the frequency of the keyword. Both the keyword and 

probability values repeat until the agent processes all of the samples taken for each 

attribute. As with the attribute vector, this keyword vector is also stored for as long as the 

agent remains in the environment.  

Once the agent leaves CoABS, all feature information is lost. If that same agent 

comes back in, it must reinitialize to create its attribute and keyword vectors. This keeps 

the feature setup up-to-date for any changes that occur in the database. 

If Agent1 is the first agent to register in the CoABS environment, Agent1 invokes the 

Jaro method to update the ontology map and distribute the map to all agents currently 

registered in the system. When the second agent registers in CoABS, that agent, who 

already has its attribute vector and keyword vector, looks for the lead agent. Upon finding 
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the lead agent, the second agent sends that agent its attribute vector and keyword vectors 

so that the lead agent can update the ontology.  

The Jaro method is a method similar to edit distance functions. Distance functions 

map a pair of strings s and t to a real number r, where a smaller value of r indicates 

greater similarity between s and t [15]. Similarity functions are the same except that 

larger values indicate greater similarity [15]. The Jaro metric is not a distance function 

but does obtain good results. The number and order of the common characters between 

two strings provides the basis for the Jaro similarity metric [15]. Given two strings s and 

t, the Jaro similarity metric is 

Jaro (s,t) = )(* '
'''

3
1 ','

s
Ts

t
t

s
s ts−++  [3.2] 

where 

|s| = Length of string s, 

|t| = Length of string t, 

s’ = Characters in s which share the same position as they appear in t, 

t’ = Characters in t which are common in s, 

|s’| = Length of string s’, 

|t’| = Length of string t’, 

Transposition = Letters in s’ that do not equal and are not in the same position with 

the letters in t’, 

55 



 

Ts’,t’ = Transposition / 2, and  

H = 2
),min( ts

. 

The Jaro similarity metric is used to compare the attributes and keywords resulting in 

an automated ontology creation. The lead agent compares the first attribute in its attribute 

vector with each attribute of the second agent. If the first two attributes match, move on 

to the next attribute. If the attributes do not match, the agent sends those two attributes to 

the Jaro method.  

In step one of the Jaro method, the lengths of each attribute is stored in integer 

variables. H is calculated using these lengths.  

In the next step, character arrays store attribute strings so the agent can examine and 

test the characters more easily. In addition, a conversion of the attributes to lowercase 

letters takes place as they enter the character array.  

In keeping with the notation in the formula, let s equal the lead agent’s attribute and 

let t equal the second agent’s attribute. The next step is to determine the letters in s that 

are common with t and the letters in t that are common with s. H is used to calculate a 

‘moving’ window. A lower bound and an upper bound define this window. Upon 

reaching the upper bound, the window moves. Once reaching the upper bound, the agent 

calculates a new lower and upper bound, the agent makes character comparisons, and the 

window moves again. This process continues until reaching the ends of the character 

arrays. For example, let s = ‘Help’ and t = ‘HelpMe’. In the first step, the agent converts 

both strings to lowercase letters and puts them into character arrays, Figure 3-4. 

56 



 

 
Figure 3-4. Example Character Arrays 

The agent calculates the lower and upper bounds with a loop index and H. Referring 

to Figure 3-4 and comparing s with t the following for loop applies:  

for (int i=0; i < s.length; i++) 
The lower bound ← i – H ← 0 – 2 ← -2, when i ← 0. 
The upper bound ← i + H ← 0 + 2 ← 2, when i ← 0. 

 
 Since the lower bound falls outside the dimensions of the array that bound is set to 

zero if it was the lower bound or its set to the array length if the upper bound value went 

outside the dimension of the array. For the first iteration described above, the window is 

bounded   from element zero to element 2, which correspond to the letters ‘h’, ‘e’, and ‘l’ 

in the t character array. This method takes the first letter of s and compares it to all letters 

in the window. The first letter in array s is ‘h’. This matches the ‘h’ in the t window so 

the character ‘h’ is saved in the string s’ and an ‘*’ replaces the ‘h’ in the window to 

show that the element has been visited. Once ‘h’ is compared with the letters in the 

window, the index is incremented, new lower and upper bounds are calculated, and the 

string s’ is built. This same process is used to build the t’ string and the window moves 

through the s character array instead of the t character array.  

So far in the Jaro method, |s|, |t|, s’, and t’ are calculated. The next step is to calculate 

the transposition. This is a straightforward computation and works as follows: the agent 

compares s’ and t’ letter-by-letter. If the letters do not match, a counter is incremented. 

s =  h e l p t = h e l p m e 
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After comparing the two prime strings s’ and t’, the counter is divided by two and this 

result is the transposition number. 

The agent compares both s’ and t’ against its keyword vector. If the agent finds either 

of these words in its vector, that keyword’s number quantity is incremented. If the agent 

does not find either s’ or t’ in its keyword vector, the agent adds these words to the 

keyword vector with a number quantity of 1 for each, because it was the first time the 

agent found these words. The agent does not calculate the Jaro number for the substring 

vector because the calculated number is not used here. 

Finally, the s’ and t’ string lengths are found and the Jaro similarity metric is 

computed for these two attributes. Once the Jaro number is calculated the Jaro number, s, 

and t are sent to the method updateOntology() to build and update the ontology.  

3.3.3 Building the Ontology 

When a new agent enters the environment and transmits its metrics to the leader, the 

first thing the leader does is compare each field in its field vector with the fields of the 

newly entered agent. If the field names of two attributes match, move on to the next 

attribute. If the attributes do not match, the similarity of the two fields is calculated.  

For calculating two fields’ similarity, the agent sends each keyword through the Jaro 

method to obtain a Jaro number. Remember, along with the keyword the probability 

number and the format match is stored. For the set of best substring keyword matches, 

the agent multiplies the substring probabilities together with the Jaro number, and then 

sum over all matches. Once all of the keywords for these attributes are processed, the 

agent analyzes the summation of the probabilities and Jaro numbers. If the summation is 
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above confidence threshold (τ) and the format match is the same, the field match is 

confirmed and the ontology is updated. Otherwise, the agent discards the two attributes 

and two new attributes are processed. The formula for the calculation of an attribute 

match is  [3.3] ∑
2,1

**)2Pr(*)1Pr(
keywordkeyword

jaroNumkeywordkeyword β

where the confidence threshold (τ) determines how similar a match is based upon the 

metric comparison information and the feature match value. For all testing in this 

research, τ is set to 0.80, meaning that the agent is 80% confident the two words its 

comparing are similar. The higher the metric comparison, the more confidence there is a 

match. If the confidence threshold is set low, some of the results will likely be erroneous. 

There is a delicate balance in setting the threshold as high as possible while still obtaining 

all of the attribute matches the agents should find. Table 3-1 shows a sample-negotiated 

ontology.  

Table 3-1. Negotiated Ontology between agents in CoABS 

Automated Agent Ontology

ACFT_QTY Aircraft_QTY

WPN_QTY WPN_Quantity

ACFT_TYPE ACFT_TYPE

WPN_Quantity WEAPoN_QTY

Aircraft_QTY Aircraft_QTY

WPN_Name WPN_Name

PROB_DAMAGE

WEAPoN_QTY WPN_QTY

PROB_DAMAGE_
TOTAL

DAMAGE

PROB_DAMAGEDAMAGE

PROB_DAMAGE_
TOTAL
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Table 3-1 is the ontology created that every agent in the environment stores. One can 

see which attributes the agents matched. For example, agents concluded that WPN_QTY 

is the same or similar to WPN_Quantity. When a client queries for WPN_QTY, the agent 

first looks at its attribute vector. If the agent has WPN_QTY as one of its attributes, the 

agent returns the information. If the agent does not have WPN_QTY as one of its 

attributes, the agent will look to this table and see if there is a match with its attributes. If 

a match exists, the agent will rebuild the query with the new value and return the 

information to the querying client. The last step is to query the wrapper agents with a 

querying agent to test the accuracy of the ontology.  

3.4 Query Process 

A query agent makes queries to other agents in the CoABS system. It must register 

with the environment just like the database agents. After the query agent successfully 

registers, the query agent searches for wrapper agents in the environment. The query 

agent targets this search either to specific agents or to all agents, depending upon what 

the client needs information on. For example, if the query agent wants to query Agent1 

for course names, instead of getting a list of all course names from all the agents in the 

system, the query agent will send a message specifically to Agent1. When the query agent 

finds the agent or agents it is looking for, the query agent sends a SQL query statement to 

those agents in CoABS.  

After the query agent sends the message, the receiving agents process the message. 

The wrapper agents compare the SQL string with their individual attribute vectors. If the 

words are in the wrapper agent’s attribute vector, the agent retrieves the requested 
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information and sends it back to the querying agent. If the wrapper agent does not 

recognize an attribute in the query, the agent will check the ontology map for the word. If 

the agent finds the word in the ontology map, the agent rebuilds the query with the new 

word, and the agent retrieves the information and sends it back to the querying agent. If 

the agent does not find the word in the ontology map, the wrapper agent does not reply to 

the query because it does not have the requested information.  

For example, if the query received is SELECT ACFT_QTY FROM Weapon, Agent1 

will process each word of the query. The first word SELECT is a SQL keyword, so 

Agent1 ignores this word and grabs the next word, ‘ACFT_QTY’. If ‘ACFT_QTY’ is not 

in Agent1’s attribute vector, Agent1 checks its ontology map. If Agent1 finds 

‘ACFT_QTY’, the map returns its equivalent. In this example, the equivalent to 

‘ACFT_QTY’ is ‘Aircraft_QTY’, Table 3-1. Agent1 replaces the word ‘ACFT_QTY’ 

with ‘Aircraft_QTY’ and finishes processing the SQL string which now looks like 

SELECT Aircraft_QTY FROM Weapon. Agent1 has ‘Aircraft_QTY’ in its attribute 

vector; therefore, Agent1 retrieves the information and sends it back to the querying 

agent.  

3.5 Summary 

This chapter discusses the goals and requirements for successfully automating 

ontology creation in the JBI. It also summarizes the approach used to satisfy the 

requirements. This chapter also discusses the implementation details of this research. 

This system, as detailed in this chapter, provides the initial concept for automated 

ontology creation on large databases within the JBI. Although not perfect, this system 
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provides the ability to relax some formatting restrictions in the JBI environment. For 

example, clients will no longer have to provide exact spelling on attributes. The syntax 

can be close, and the agents will recognize that “windspeed” is the same as “Windspeed”. 

Chapter 4 discusses the testing environment and the results of those tests. 
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4.  Analysis and Results 

This chapter discusses the evaluation of the domain ontology generating agents 

wrapped around similar databases and their performance when creating an ontology as 

defined in Chapter 3. This chapter also measures the effectiveness of leader negotiation 

as implemented from Chapter 3. The testing used thirteen queries to measure agent 

ontology mapping accuracy. To achieve 100% accuracy, all agents must return correct 

responses to the queries. With the exception of the five agent test, each set of queries is 

run on each different combination of the order the agents enter the CoABS environment. 

The combination queries run under two conditions, before and after a leader negotiation. 

 All agents exist independently. Each agent can function and process queries without 

other agents in the system. Communication during leader negotiation satisfies the agent 

autonomy requirement by providing agent communication and the means to negotiate 

who is in charge. When the lead agent leaves the environment and another agent enters, 

leader negotiation takes place. Only one agent will emerge as the new leader, and 

ontology negotiation will commence thereafter. Section 4.2 shows the result of both agent 

ontology creation and the leader negotiation. 

4.1 System Evaluation 

The entire agent architecture allows a user to interact with it as if it were one large 

database. When query agents register in CoABS to make standard SQL queries to access 

data from the distributed environment, the client does not need to know which database 

or which wrapper agent to query. The client simply makes the query and the wrapper 
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agents return the information whether it is from one agent or from all of the agents 

currently registered in the environment.  

4.1.1 Ontology Creation 

As each agent enters the CoABS environment, the agent assesses its surroundings 

and determines how to proceed next in creating the ontology. If it is the only agent in the 

environment, there is no agent negotiation for an ontology. When the second agent enters 

the environment, this second agent recognizes the first agent as the lead agent and 

proceeds to initiate communication and negotiation. The result is an agent created 

ontology that is used by the agents when query agents access the system.  

During a query, the wrapper agents look at their data. If they do not have the 

requested attribute name, the wrapper agent will look to the ontology map for a 

translation. If there is a translation in the mapping that references one of its attributes, the 

wrapper agent translates the query and sends the requested information back to the 

querying agent. If there is no translation in the ontology, the wrapper agent simply does 

not reply to the query. Using this technique prevents unnecessary communication 

between agents. 

4.2 Three Agent Results 

For the 3 agent results, three wrapper agents wrap databases that contain data split 

from a simulated JBI information resource. The databases contain data pertaining to 

aircraft mission sorties, including targeting information and the attributes as follows: 

Aircraft quantity (ACFT_QTY), Aircraft Type (ACFT_TYPE), Date and time created 

(DATETIME_CREATED), Date and time last changed (DATETIME_LAST_CHG), 
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Probable damage total (PROB_DAMAGE_TOTAL), Weapon name (WPN_NAME), and 

Weapon quantity (WPN_QTY). Changes made to each database attribute simulate 

different columns that contain similar data. Appendix A shows each agent with its 

corresponding database attributes and how they compare.  

To simulate erroneous data entry, incomplete data, and statistically different data, 

modifications are made to the data in each database. Data is modified: sometimes a field 

is deleted, a number changed, or the data for the particular field made completely 

unrecognizable. These results show two aspects of this research. The first is the success 

rate of the automated ontology creation, the second is how well the wrapper agents 

decide who the next leader is, and the impact that has on the ontology.  

This section compares the agent created ontology and an expert created ontology to 

evaluate how well the agents created the ontology. Table 4-1 shows the expert ontology 

mapping.  

Table 4-1. Human Expert Ontology 

ACFT_QTY ACFT_Quantity 
Aircraft_QTY ACFT_QTY 

ACFT_Quantity Aircraft_QTY 
ACFT_TYPE Aircraft_TYPE 

DATETIME_CREATED DATETIME_CREATED 
DATETIME_LAST_CHG DATETIME_LAST_CHG 

PROB_DAMAGE_TOTAL DAMAGE 
PROB_DAMAGE PROB_DAMAGE_TOTAL 

DAMAGE PROB_DAMAGE 
WPN_NAME Weapon_NAME 

WeaPoN_NAME WPN_NAME 
Weapon_NAME WeaPoN_NAME 

WPN_QTY WPN_Quantity 
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Table 4-2 shows the agent ontology mapping, which performed the best, before 

leader negotiation. This mapping produced a 62% agent response with Agent3, Agent2, 

then Agent1 entering the system in that order, and with each agent generating substring 

statistics (α) for 80% of the records, but only transmitting the best 20, with the threshold 

(τ) set at 80%. 

Table 4-2. Agent Ontology Matching Before Leader Negotiation 

Weapon_NAME WPN_NAME 
ACFT_QTY DATETIME_CREATED 

DATETIME_LAST_CHG DATETIME_LAST_CHG 
ACFT_TYPE ACFT_TYPE 
WPN_NAME WeaPoN_NAME 

PROB_DAMAGE_TOTAL PROB_DAMAGE 
DATETIME_CREATED DATETIME_CREATED 

 

 As can be seen when comparing Table 4-1 with Table 4-2, the agent generated 

ontology matched the string based fields properly, ACFT_TYPE and WPN_NAME. 

However, the numeric fields, the ontology tended to mismatch, ACFT_QTY, 

DATETIME_LAST_CHG. This is due to the matching method being predominantly 

string based. With the numerical methods, combining the substring match with the 

information used by SemInt better results should be possible. 

Periodically, after the agents renegotiate a new leader, the ontology created contains 

duplicate and erroneous mappings. The reason is agent ontology creation is dynamic. The 

lead agent updates and distributes a new ontology every time a new agent enters the 

environment. After a leader negotiation, the agent that requested a leader sends its 

database vectors to the new leader making an ontology creation start again. Table 4-3 

shows the best mapping created by the agents that obtained a 79% agent response rate to 
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the 13 queries used in testing, with an ontology very similar to the expert generated 

version in Table 4-1. 

Table 4-3. Agent Ontology Matching After Leader Negotiation 

Weapon_NAME WPN_NAME 
ACFT_QTY ACFT_QTY 
WPN_QTY WPN_QTY 

DATETIME_LAST_CHG DATETIME_LAST_CHG 
ACFT_TYPE ACFT_TYPE 
Aircraft_QTY Aircraft_QTY 

WeaPoN_NAME WPN_NAME 
WPN_NAME WPN_NAME 

PROB_DAMAGE PROB_DAMAGE_TOTAL 
PROB_DAMAGE_TOTAL PROB_DAMAGE_TOTAL 

DATETIME_CREATED DATETIME_CREATED 
DAMAGE PROB_DAMAGE_TOTAL 

 

Figures 4-1, 4-2, 4-3, 4-4, and 4-5 below show how the agents responded to queries 

after negotiating the ontology using varying amounts of the database to build the 

substring vector. The bound (α) is the value of the sample size taken from the database. 

The α bound used for creating the sample sizes in generating the substring vectors were 

20%, 40%, 60%, 80%, and 100%, respectively, with only the best 20 substrings being 

transmitted and used for ontology creation. The 100% data sample only uses each piece 

of data and is not an exhaustive n*(n-1) matching of data items. The confidence threshold 

(τ) is set at 0.80. The graphs show how the agents responded correctly to a query over the 

13 queries in six different runs. The results in Figures 4-1 and 4-2 shows that the agents 

responded correctly over 50% of the time and that the more data used for substring 

creation, the better the generated ontology.  
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Figure 4-1. 20% Query results before (left) and after (right) leader negotiation 
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Figure 4-2. 40% Query results before (left) and after (right) leader negotiation 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

 
Figure 4-3. 60% Query results before (left) and after (right) leader negotiation 
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Figure 4-4. 80% Query results before (left) and after (right) leader negotiation 
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Figure 4-5. 100% Query results before (left) and after (right) leader negotiation 
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Figure 4-6. Summary query results before (left) and after (right) leader negotiation 

 

Figure 4-6 displays the average summary results before and after the leader 

negotiation. The percentages along the x-axis of the graphs are the α bound percentages 

pulled from the databases. These percentages map to the percentages in the tables in 
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Figures 4-1 through 4-5. All results show that the agents responded correctly at least 51% 

of the time. These two tables also show that after the leader negotiation, the generated 

ontology is better. The reason for this is that instead of being a statistical combination of 

all of the agents’ information, agents build the ontology using a comparison between the 

leader and the new agent.  

Based on the before leader negotiation Figures 4-1 through 4-5, the ontology creation 

accuracy falls between 50% and 61% on average. It is easy to see that no matter what 

order the agents enter CoABS the average results are statistically the same. The median 

values before leader negotiation in Figure 4-6 shows that the mean falls between 53% and 

55%. Just as with the agent order, no matter how much data is sampled from the database 

the ontology creation accuracy is statistically the same. This is significant because if 

communication bandwidth requirements are an issue, the agents only need to transfer 

20% of the data to negotiate an ontology and achieve these results. There is no need to 

sample the entire database when the result is going to be the same. 

Analyzing the after leader negotiation results in Figures 4-1 through 4-5, the results 

are similar but the percentages are a little higher. The accuracy falls between 51% and 

71%. The results are better because when agents negotiate a leader, first, the agents 

already have an ontology from the first negotiation, and second, the agents have a second 

chance of correcting and making correct mappings adding to the already created 

ontology. Therefore, the results are slightly higher and the mean values in Figure 4-6 also 

support this conclusion.  
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One reason for the errors in the agent created ontology resulting in the query errors is 

when agents build their keyword vectors, the agent uses sample percentages of the data in 

the database to build the keyword vectors. With the exception of the 100% test, since the 

sample percentage is stochastic, every time an agent negotiation takes place, the results 

are slightly different from the previous run. This is why on certain runs 

PROB_DAMAGE mapped to WPN_NAME. It is possible that on a subsequent run of the 

agent negotiation, the agents will not produce the PROB_DAMAGE to WPN_NAME 

mapping. 

The addition of a feature set vector and a new format match method improves the 

algorithm by achieving slightly better results. Chapter 3 explains these improvements in 

detail. The improved code ran the experiment set up that produced the best result from 

the original code Figure 4-7 shows that the improved code performed no less than 56% 

and no higher than 72%, whereas the unimproved code peaked low at 51% and high at 

79%. As before, the numbers along the x-axis show the order in which the agents enter 

the environment.  
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Figure 4-7. 80% Query Result without Feature Match Improvement (left) and with Feature 

Match Improvement (right) 
 

To see how ontology creation and leader negotiation performs with more than three 

agents, two more agents with different databases where added to the environment. The 

database attributes for Agent4 and Agent5 are in Appendix A. 

Table 4-4 shows the proper mapping that should take place between all five agents. 

After 10 runs, using an α of 0.80 sample size, Tables 4-5 and 4-6 show the best ontology 

created between the five agents.  
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Table 4-4. Human Expert Ontology Matching with five Agents 

ACFT_QTY ACFT_Quantity 
Aircraft_QTY ACFT_QTY 

ACFT_Quantity Aircraft_QTY 
ACFT_TYPE Aircraft_TYPE 

DATETIME_CREATED DATETIME_CREATED 
DATETIME_LAST_CHG DATETIME_LAST_CHG 

PROB_DAMAGE_TOTAL DAMAGE 
PROB_DAMAGE PROB_DAMAGE_TOTAL 

DAMAGE PROB_DAMAGE 
WPN_NAME Weapon_NAME 

WeaPoN_NAME WPN_NAME 
Weapon_NAME WeaPoN_NAME 

WPN_QTY WPN_Quantity 
CATEGORY CAT 
COORD_LT COORD_LAT 

COORD_LONG COORD_L 
COORD_L_ORD COORD_LONG_ORD 

DATETIME_CREATED DATE_CREATED 
DATETIME_LAST_CHG TIME_LAST_CHG 

 

Table 4-5. Best Agent Ontology Creation with Five Agents 1 

COORD_LONG PROB_DAMAGE 
WPN_QTY WPN_Quantity 
COORD_L PROB_DAMAGE 

Aircraft_TYPE PROB_DAMAGE 
WPN_NAME PROB_DAMAGE 

WeaPoN_NAME Weapon_NAME 
ACFT_TYPE WPN_Quantity 
Aircraft_QTY DMPI_ID 

CAT PROB_DAMAGE 
ACFT_Quantity WPN_Quantity 

DATE_CREATED Aircraft_QTY 
TIME_LAST_CHG Aircraft_QTY 

ACFT_QTY Aircraft_QTY 
PROB_DAMAGE_TOTAL PROB_DAMAGE 

DMPI_ID Aircraft_QTY 
DAMAGE PROB_DAMAGE 
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Table 4-6. Best Agent Ontology Creation with Five Agents 2 

DATETIME_LAST_CHG DATETIME_LAST_CHG 
FAC_NAME FAC_NAME 
NO_STRIKE NO_STRIKE 

COLLATERAL_DAMAGE COLLATERAL_DAMAGE 
FUNCT_PRIMARY FUNCT_PRIMARY 

COORD_LT COORD_LT 
COORD_LONG_ORD COORD_LONG_ORD 

WPN_Quantity WPN_Quantity 
TGT_OBJ_NAME TGT_OBJ_NAME 
OPER_STATUS OPER_STATUS 
COORD_L_ORD COORD_L_ORD 

EVAL EVAL 
MSN_TYPE MSN_TYPE 

PROB_DAMAGE PROB_DAMAGE 
DATETIME_CREATED DATETIME_CREATED 

CONDITION CONDITION 
CC CC 

TGT_DTL_NAME TGT_DTL_NAME 
COORD_DERIV COORD_DERIV 

COORD_LAT COORD_LAT 
COORD_ROA COORD_ROA 

COORD_LAT_ORD COORD_LAT_ORD 
REMARK REMARK 

 

4.3 Five Agent Results 

Using the same settings as the three agent results, negotiation is tested with five 

agents. This test determines if an increase in the number of agents would have an effect 

on the applicability of the generated domain ontology. 

Table 4-5 shows an ontology result with agents entering the environment in 1, 2, 3, 4, 

5 order, pulling 80% of their database data, α = 0.80. The agents only correctly matched 

29% of the possible attribute matches. Table 4-6 lists the mappings that are common in 

two or more databases. Table 4-4 shows the mappings the five agents should have 
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negotiated, 17 in all. Figure 4-8 shows the ontology creation results with five agents. The 

data was taken from 10 runs of the five different α bounds.  
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Figure 4-8. Five Agent Ontology Results 

Figure 4-8 shows agents created the best ontology when α is 0.20. Both the 0.80 

bound and the 1.0 bound data resulted in ontology creation where none of the 17 required 

matches matched. This indicates that as more agents enter the system, the more difficult 

the ontology generation becomes. A way to alleviate this is to cooperatively create the 

ontology by eliminating the sole leader. Essentially, each agent has the ability to create, 

modify, and finalize an ontology. However, this alternative is more memory and 

communication intensive because each agent must maintain a representation of other 

agents’ data.  
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4.4 Large Dataset Results 

Testing was accomplished with the sample size (α) set at the five different settings 

0.20, 0.40, 0.60, 0.80, and 1.00, the confidence threshold (τ) is set at 0.80, and only the 

best 20 substrings are transmitted to the lead agent for ontology negotiation.  

This database is larger than the previous with 6 attributes and over 4700 rows of 

information. Appendix B shows the agents used and their attribute values. Appendix B 

also shows the proper mappings that should take place for a successful agent ontology 

negotiation. Figures 4-9 through 4-13 show the results of those tests. Figure 4-14 shows 

the summary results of all percentage queries before and after leader negotiation using 

the same α bounds as in the previous tests.  
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Figure 4-9. 20% Oracle data query results before (left) and after (right) leader negotiation 
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Figure 4-10. 40% Oracle data query results before (left) and after (right) leader negotiation 
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Figure 4-11. 60% Oracle data query results before (left) and after (right) leader negotiation 
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Figure 4-12. 80% Oracle data query results before (left) and after (right) leader negotiation 
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Figure 4-13. 100% Oracle data query results before (left) and after (right) leader negotiation 
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Figure 4-14. Oracle summary query results before (left) and after (right) leader negotiation 
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This set of tests ran 13 queries against three agents. As in the previous tests, there are 

a possible 39 responses and the best result achieved 64% match success rate, with an α of 

0.60 before leader negotiation, and the agents entering the environment in Agent2, 

Agent1, and Agent3 order. Figure 4-11 shows this result. This ontology creation was more 

difficult for the agents that the previous. Two of the six attribute fields are number fields 

and the agents have a difficult time determining whether the attribute match exists or not. 

These fields are mapped based upon the keyword data making the resulting queries 

incorrect.  

The box and whisker plots in Figures 4-9 through 4-13 are comparable to the smaller 

dataset results above. The before leader negotiation results support the conclusion that 

even with a large dataset, no matter how the agents enter CoABS, the accuracy of the 

ontology created is statistically the same. The results fall between 41% and 50%. After 

leader negotiation, results show less variance with the large dataset because just as with 

the small dataset results, the agents have a second chance to correct mappings in the 

ontology making the results slightly better. The results fall between 42% and 52%. The 

median summaries in Figure 4-14 also support this conclusion. 

4.5 String Only Results 

This result shows how this research technique performs when the databases contain 

only strings, no numbers. For this test, three agents were used and the databases contain 7 

attributes and 306 rows of information. Appendix C lists the attribute values for the three 

agents used. The agent settings are the same as in the previous tests, the sample size (α) 
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is set at 0.80, the confidence threshold (τ) is set at 0.80, and only the best 20 substrings 

are transmitted to the lead agent for ontology negotiation. Figure 4-15 shows this result. 
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Figure 4-15. 80% String only query results before (left) and after (right) leader 

negotiation 
 

The string only best result was 64% match success rate after leader negotiation with 

the agents entering in Agent1, Agent3, and Agent2 order. These results are comparable to 

the previous testing, but more testing is required to see if there is more improvement 

when dealing strictly with strings, or if it makes no difference what kind of data is being 

processed.  

One last test was accomplished to test the theory that if all databases in the test were 

the same, except for the attributes, then the Jaro similarity metric should perform better 

than the string only case. This test pulled 20% sample data and ran 13 queries. There is a 

possible 39 correct responses as in the previous tests. The match accuracy result was only 

36%. This leads to one of two conclusions. Either 79% is the best that the Jaro Similarity 

Metric can do with mixed data or due to the sampling of the data that generates the 

keyword vector, the process is stochastic not deterministic. The result is that this method 

will most likely not achieve a true 100% match without additional information. However, 
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a 79% match by making a comparison with the best 20 keywords from a 20% sampling 

of the data is very good.  

4.6 Research Benefits 

The benefits of this research are two-fold. It provides a feasible way to automate 

agent ontology creation and each agent involved is autonomous. 

Results show that an automated ontology creation is possible relieving the human 

expert from manual mapping the data. Other research experienced comparable results, 

but with some using external techniques in the matching. For example, the best matching 

SemInt achieved was 44% for 2578 attributes in 293 tables, with 1760 data elements [22].  

Using string matching algorithms and techniques without external data dictionaries or 

thesauruses, the agents in the environment compare words and come up with a similarity 

metric. Depending on the value of the metric, the agents decide whether the words are 

similar and the results are stored for all agents to use. Since each agent has a copy of the 

ontology data retrieval is quick. If another agent entering CoABS updates the ontology, 

the agent sends the new ontology map out to all agents again ensuring global consistency 

throughout the environment.  

This research also keeps all agents autonomous. Every wrapper agent has the same 

code as every other agent. This means that if the lead agent leaves the environment all 

other agents can still function and process queries. Only upon a new agent entering 

CoABS does ontology negotiation take place. In this case, the agents decide amongst 

themselves which agent will emerge as leader and provide the ontology negotiation 

facilities to the new agent updating the ontology as needed.  
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4.7 Summary 

These results show that automated agent ontology creation is feasible. The three agent 

experiments produced results no less than 51% correctness while other research efforts 

produced results anywhere from less than 20% to over 98% correctness. The five agent 

and string only experiments produced results no less than 39%. In order for these other 

research efforts to achieve such high correctness percentages, they use data dictionaries, 

thesauruses, neural networks, and some used combinations of techniques together. This 

research uses no outside help and works solely on the attributes, data, and metadata 

information. Implementing the two code enhancements, specific to general format 

matching and feature set vector, improved the results slightly. Chapter 5 discusses the 

conclusion and suggests ways to expand this research.  
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5.  Conclusions and Recommendations 

This research provides a multi-agent methodology and implementation that provides 

services for accessing multiple information sources, each of which make use of different 

data and message formats. Currently an expert integrates these data sources by hand. The 

implementation of this research proposes automatic mapping of the relationships using 

intelligent agents. These intelligent agents communicate and negotiate an ontology 

thereby eliminating the need for an expert to develop the ontology by hand. The ontology 

created is as dynamic as the agents themselves are. When a new agent enters the 

distributed environment, the lead agent negotiates and distributes a new ontology to all 

agents in the environment.  

Coupled with this approach all the agents are autonomous and can negotiate, update, 

and distribute the ontology. When the agents enter the environment, a leader is decided 

and that leader is the one that commands all ontology negotiations until that agent leaves 

the system.  

This solution, automated agent ontology creation, meets the criteria for a successful 

implementation to automated ontology creation. The wrapper agents enter the CoABS 

environment, transmit vectors to the lead agent, and the lead agent invokes the Jaro 

similarity metric method. The lead agent updates and distributes the newly created 

ontology to all agents in the environment. In comparison to related work, this solution 

proved to be more simplistic and require little or no human expert for manually mapping 

an ontology to integrate distributed database systems. In satisfying the criteria for a 

successful implementation, this research lays the groundwork for a solution to automate 

agent ontology creation.  
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This solution is feasible for the DOD to implement. Tackling the interoperability 

problem, this research enables a JBI implementation that does not need the XML exact 

match implementation. In addition, experts need not fully scrub and correct data in their 

databases before publishing their information to the JBI. 

5.1 Recommendations for Future Research 

This research is a step toward automating ontology creation. Using this method in the 

JBI will enable some JBI restrictions to relax and make it a more viable solution to 

implement. This research requires more work to ensure that the ontology creation process 

is less volatile and more consistent. The following improvements suggest ways to 

accomplish these goals. 

The ontology should maintain all of the metric information from the other agents in 

the environment. This will ensure that any ontology updating that takes place, matches 

with all of the agents, not just the leader.  

If agents could recognize that two fields in one database represent one combined field 

in another, the ontology created would be more accurate and more automated. There is no 

need for a human expert to go in and correct this relationship. The ontology would look 

something like, ‘time’ → ‘day_time’ and ‘day’ → ‘day_time’.  

SemInt, discussed in Section 2.7.4, uses numerical methods that operate on more 

metadata features than was done in this research. Combining the substring match with the 

information used by SemInt should produce better results than those found in Chapter 4. 

Instead of leaving the ontology negotiation up to one agent, allow agents to 

cooperatively create the ontology eliminating the sole leader. Although this will result in 
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more communication and memory requirements, this technique could also produce better 

results than those in Chapter 4.    

In addition, exploring different distance similarity metrics could produce better 

results that are more consistent. The Jaro metric provided a way to see how feasible 

automated agent ontology creation was for string-based fields. There are other distance 

metrics, which could prove to be better and more accurate than the Jaro similarity metric 

method for numeric or number related fields. 
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Appendix A 

Agent Attribute Values 

Agent1 Agent2 Agent3 
ACFT_QTY ACFT_Quantity Aircraft_QTY 
ACFT_TYPE Aircraft_TYPE ACFT_TYPE 

DATETIME_CREATED DATETIME_CREATED DATETIME_CREATED 
DATETIME_LAST_CHG DATETIME_LAST_CHG DATETIME_LAST_CHG 

PROB_DAMAGE_TOTAL DAMAGE PROB_DAMAGE 
WPN_NAME Weapon_NAME WeaPoN_NAME 
WPN_QTY WPN_QTY WPN_Quantity 

 

Agent4 Agent5 
CATEGORY CAT 
CONDITION CC 

COORD_DATUM COLLATERAL_DAMAGE 
COORD_DERIV CONDITION 

COORD_LT COORD_LAT 
COORD_LAT_ORD COORD_LAT_ORD 

COORD_LONG COORD_L 
COORD_L_ORD COORD_LONG_ORD 

COORD_ROA DATE_CREATED 
DATETIME_CREATED TIME_LAST_CHANGED 

DATETIME_LAST_CHG FAC_NAME 
DMPI_ID FUNCT_PRIMARY 

EVAL NO_STRIKE 
MSN_TYPE OPER_STATUS 

OPER_STATUS REMARK 
TGT_DTL_NAME   
TGT_OBJ_NAME    
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Appendix B 

 

Oracle Data Agent Attribute Values 

Agent1 Agent2 Agent3 
MSN_WW_ID Mission MissionID 

AIR_MSN_EVNT_ID MISSION_EVENT EVENT_ID 
ABP_WW_ID ABP_WW_ID WW_ID 
ABP_REQ_ID REQ_ID ABP_ID 

AMO_ID AMO_ID AMO_ID 
AIR_MSN_EVNT_ACTUAL_DTTM ACTUAL_DTTM DATETIME 
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Appendix C 

String Only Agent Attribute Values 

Agent1 Agent2 Agent3 
CC BB AA 

COLLATERAL_DAMAGE XTRA_DAMAGE OTHER_DMG 
CONDITION COND STATE 
FAC_NAME FACILITY NAME_OF_FACILITY 

FUNCT_PRIMARY PRIMARY_FUNCTION TARGET_TYPE 
OPER_STATUS O_STAT OPERATOR 

REMARK COMMENTS ADD_INFO 
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