
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2004

Automated Agent Ontology Creation for Distributed Databases Automated Agent Ontology Creation for Distributed Databases

Austin A. Bartolo

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Bartolo, Austin A., "Automated Agent Ontology Creation for Distributed Databases" (2004). Theses and
Dissertations. 3981.
https://scholar.afit.edu/etd/3981

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholar.afit.edu%2Fetd%2F3981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3981?utm_source=scholar.afit.edu%2Fetd%2F3981&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AUTOMATED AGENT ONTOLOGY CREATION FOR DISTRIBUTED
DATABASES

THESIS

Austin A. Bartolo, First Lieutenant, USAF

AFIT/GCS/ENG/04-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GCS/ENG/04-01

AUTOMATED AGENT ONTOLOGY CREATION FOR DISTRIBUTED
DATABASES

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Austin A. Bartolo, BS

First Lieutenant, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/04-01

AUTOMATED AGENT ONTOLOGY CREATION FOR DISTRIBUTED
DATABASES

Austin A. Bartolo, BS

First Lieutenant, USAF

Approved:

/SIGNED/ 8 Mar 04
____________________________________ ________
Dr. Gilbert L. Peterson (Chairman) Date

/SIGNED/ 8 Mar 04
____________________________________ ________
Lt. Col Michael L. Talbert (Member) Date

/SIGNED/ 8 Mar 04
____________________________________ ________
Maj Rusty O. Baldwin (Member) Date

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my faculty advisor, Dr. Gilbert

Peterson, for his guidance and support throughout the course of this thesis effort. The

insight and experience was certainly appreciated. I would like to thank my committee

members, Lt Col Talbert and Maj Baldwin for taking the time to provide great feedback.

I would also like to thank my family for without their love and support this research

would not have been possible. I would like to thank Maj Mayer and Mr. Speckman for

their outstanding support during this endeavor.

I would also like to thank the AFRL Information Directorate, the Joint Battlespace

Infosphere (JBI) team, Rome research site, Rome, NY for their outstanding support.

Finally, I would like to thank my fellow classmates. Without their help and support, I

would have never made it through this program.

 Austin A. Bartolo

iv

Table of Contents

Page

Acknowledgments.. iv

Table of Contents...v

List of Figures .. viii

List of Tables ... ix

Abstract...xi

1. Introduction …………………………………………………………………………….1

 1.1 Problem Statement .………………………………………………………………...2

 1.2 Research Methodology ...…………………………………………………………..3

 1.3 Assumptions/Limitations .………………………………………………………….6

 1.4 Significance ……………...…………………………………………………………7

 1.4.1 Command and Control .……………………………………………………..7

 1.4.2 Joint Vision 2020 …….……………………………………………………..9

 1.5 Summary ………………………………………………………………………......11

2. Background ...12

 2.1 Department of Defense (DOD) ……………………………………………………12

 2.1.1 Joint Battlespace Infosphere ……………………………………………....13

 2.2 Agents ………………………………………………………………………..…...17

 2.3 JiniTM …………………………………………………………………………......18

 2.4 Control of Agent Based Systems (CoABS) ………………………………………20

 2.5 Ontology ………………………………………………………………………….21

 2.5.1 Multiagent Systems Engineering (MASE) ………………………………..22

v

 2.6 Data Mining ………………………………………………………………………25

 2.6.1 Database Record Matching ………………………………………………..25

 2.6.2 Cluster Analysis …………………………………………………………...27

 2.7 Related Work ………………………………...…………………………………...28

 2.7.1 WordNet …………………………………………………………………...28

 2.7.2 Artificial Intelligence (AI) ………………………………………………...29

 2.7.2.1 RETSINA………………………………………………………...30

 2.7.3 Data Element Tool-Based Analysis (DELTA) ……………………………30

 2.7.4 SemInt ……………………………………………………………………..32

 2.7.5 Other Related Works ………………………………………………………34

 2.8 Summary..41

3. Design and Implementation ...43

 3.1 Requirements……………………………………………………………………...44

 3.2 Architecture …………………………………………………………………........44

 3.2.1 Agents ……………………………………………………………………..45

 3.2.1.1 Database Agent ………………………………………………….46

 3.2.1.2 Query Agent ..……………………………………………………47

 3.3 Database Agent Implementation…………………………………………………..48

 3.3.1 Leader Election Procedure …………….…………………………………..50

 3.3.2 Metric Calculation ……….………………………………………………..51

 3.3.3 Building the Ontology …………………………………………………….58

 3.4 Query Process …………………………………………………………………….60

 3.5 Summary ………………………………………………………………………….61

vi

4. Analysis and Results ..63

4.1 System Evaluation..63

 4.1.1 Ontology Creation ..………………………………………………………..64

4.2 Three Agent Results ...64

4.3 Five Agent Results ...74

 4.4 Large Dataset Results ………………………………………………………….76

 4.5 String Only Results …………………………………………………………….78

 4.6 Research Benefits ………………………………………………………………80

 4.7 Summary ……………………………………………………………………….81

5. Conclusions and Recommendations ..82

5.1 Recommendations for Future Research..83

Appendix ………………………………………………………………………………...85

Bibliography ..88

Vita ..91

vii

List of Figures

Page

Figure 1-1. Current State of C2 Systems ... 8

Figure 1-2. JBI Information Integration …………………………………………………..9

Figure 1-3. Full Spectrum Dominance …………………………………………………..10

Figure 2-1. The Joint Battlespace Infosphere ...………………………………………....14

Figure 2-2. Force Template Content …………………………………………………….15

Figure 2-3. How JiniTM Technology Works ...………………………………………......19

Figure 2-4. CoABS Grid ………………………………………………………………..20

Figure 3-1. Agents in CoABS Overview ……………………………………………….45

Figure 3-2. Agent Leader Communication ……………………………………………..49

Figure 3-3. Attribute Vector the Agent Stores ………………………………………….51

Figure 3-4. Example Character Arrays …………………………………………………57

Figure 4-1. 20% Query Results Before and After Leader Negotiation …………………68

Figure 4-2. 40% Query Results Before and After Leader Negotiation …………………68

Figure 4-3. 60% Query Results Before and After Leader Negotiation …………………68

Figure 4-4. 80% Query Results Before and After Leader Negotiation …………………69

Figure 4-5. 100% Query Results Before and After Leader Negotiation ..………………69

Figure 4-6. Summary Query Results Before and After Leader Negotiation ...………….69

Figure 4-7. 80% Query Result with and without Feature Match …………….………….72

Figure 4-8. Five Agent Ontology Results …………………………………….…………75

Figure 4-9. Oracle Data 20% Query Results Before and After Leader Negotiation…….76

viii

Figure 4-10. Oracle Data 40% Query Results Before and After Leader Negotiation…...76

Figure 4-11. Oracle Data 60% Query Results Before and After Leader Negotiation…...77

Figure 4-12. Oracle Data 80% Query Results Before and After Leader Negotiation…...77

Figure 4-13. Oracle Data 100% Query Results Before and After Leader Negotiation….77

Figure 4-14. Oracle Summary Query Results Before and After Leader Negotiation ..….77

Figure 4-15. String Only 80% Query Results Before and After Leader Negotiation …...79

ix

List of Tables

Page

Table 2-1. Comparison of Different Approaches ……………………………………….40

Table 3-1. Negotiated Ontology Between Agents in CoABS... 59

Table 4-1. Human Expert Matching …………………………………………………….65

Table 4-2. Agent Ontology Matching Before Leader Negotiation ……………………...66

Table 4-3. Agent Ontology Matching After Leader Negotiation ……………………….67

Table 4-4. Human Expert Ontology Matching with 5 Agents ..…………………………73

Table 4-5. Best Agent Ontology Creation with 5 Agents 1 ..……………………………73

Table 4-6. Best Agent Ontology Creation with 5 Agents 2 ..……………………………74

x

AFIT/GCS/ENG/04-01

Abstract

 In distributed database environments, the combination of resources from multiple

sources requiring different interfaces is a universal problem. The current solution requires

an expert to generate an ontology, or mapping, which contains all interconnections

between the various fields in the databases. This research proposes the application of

software agents in automating the ontology creation for distributed database

environments with minimal communication. The automatic creation of a domain

ontology alleviates the need for experts to manually map one database to other databases

in the environment. Using several combined comparison methods, these agents

communicate and negotiate similarities between information sources and retain these

similarities for client agent queries without the manual mapping of different data sources

achieving an average accuracy of 57% before leader negotiation and an average accuracy

of 61% after leader negotiation. The best matching accuracy achieved in a single test is

79%.

 This is directly applicable to the Department of Defense (DOD) that possesses many

systems, which share information that enables the military to achieve their objectives.

The DOD created an environment called the Joint Battlespace Infosphere (JBI) to solve

this integration problem. This research improves upon the JBI’s use of exact matching of

field names for integrating the information within the environment. It simulates this type

of interaction by demonstrating agents wrapped around different databases negotiating

and generating an ontology. An agent-generated ontology is compared with an expert

xi

generated ontology and testing uses a set of queries run against the ontologies show that

this technique can be useful in a distributed information environment.

xii

AUTOMATED AGENT ONTOLOGY CREATION FOR DISTRIBUTED
DATABASES

1. Introduction

The United States is a technology-based society. Computers, cell phones, televisions,

and stereos pervade the country. The smaller the device and the more features it has, the

more attractive the device seems to be to the consumer.

In the 1950s, computers filled large rooms and only large corporations could afford

them. In the late 1980s and early 1990s, high-speed computers fit on a desk but were still

expensive. For example, in 1992, computer memory sold for $30.00 to $45.00 per

megabyte (MB) and hard drives sold at $1 per MB. Today, technology is smaller,

cheaper, and faster than ever and millions of Americans own computers and

communicate via the internet.

The U.S. Department of Defense (DOD) has seen this same technological

advancement as they harness this technology into a war fighting capability. A major

problem is command and control’s (C2) ‘lack of interoperability’. In wartime, quick and

efficient flow of timely information is a decisive factor in victory. Communication has

been difficult in situations involving two or more services. Today when a military

conflict arises the US military must be able to act together in a coordinated effort to

accomplish military objectives. This is called joint operations.

Joint operations require a joint language. The Joint Battlespace Infosphere (JBI) is the

conceptual framework the military uses to consolidate information resources. JBI

provides a repository wherein a user can query and receive every piece of information

1

needed from a distributed collection of information resources instead of querying each

entity individually. While the JBI concept focuses on assisting the many systems of the

military with interaction in a common environment [1], the real problem is the integration

of these systems. Manual mapping database attributes is a solution but it is slow and

requires a human expert. This research uses agents to automatically map database

attributes making a distributed database system more robust: a system that recovers

quickly from or holds up well under exceptional circumstances. Automated mapping add

flexibility by removing the exact match restriction on the JBI.

Section 1.1 discusses the nature of the problem. Section 1.2 outlines the assumptions

and limitations of the research. Section 1.3 outlines background information discussing

C2 and Joint Vision 2020, and Section 1.4 provides an outline of the rest of the thesis.

1.1 Problem Statement

The objective of this research is to design, implement, and test an automated system

for querying multiple data stores in a distributed environment. The sample target

environment is the Joint Battlespace Infosphere (JBI).

Current distributed database technology manually integrates data and performs

manual conversions. System administrators must manually map database attributes or

even write scripts to facilitate interoperability, which takes a lot of time and effort. Thus,

changes in the database structure require the database administrator to modify the

database mapping in the best case and in the worst case to add additional values to

current mappings.

2

Currently human experts painstakingly create ontologies. The type of ontology

proposed herein is a domain ontology in which a human expert generates the domain

ontologies in agent classes for specific instances of the objects in the system. This

provides a communication language that allows the agents to communicate on the same

level. A domain ontology is a mapping between fields of similar content in different

databases. Reprogramming, re-instantiation, and retesting are required whenever the

domain ontology changes.

1.2 Research Methodology

Agents do not use external help to create the ontology, i.e., data dictionaries, previous

training, domain information, or thesauruses. Agents instead use a combination of a

string-matching algorithm that compares four aspects of the distributed environment to

create the ontology:

1. Attributes of each database in the environment

2. Samples of the data in each database field

3. Database column features

4. The format of the data

This system provides the user with a common interface to diverse database stores thus,

eliminating the need to query each data store individually. Moreover, the user requires

no information about how many databases exist or how the database stores the

information, making the entire system appear as one large database to the user.

In software development, agents must share a domain ontology to communicate. For

example, if creating agents to simulate driving a vehicle, many agents need to cooperate

3

to make the vehicle move forward. The agents controlling the steering must communicate

with the gas pedal agent, which must communicate with the engine agents. It is possible

that these agents cannot communicate with a poorly designed domain ontology; therefore,

the vehicle will not be able to move.

Every time a new application is developed, a new ontology and data interface is

needed for that application. A discussion of ontologies is in Chapter 2. To integrate the

many different systems, multiple manual mappings between these systems must take

place to enable data sharing and data communication between them. Every time a user

needs to have different data or every time the data environment changes, a manual update

of the mappings must occur. There is a risk of complicating the data environment by user

error or unnecessary duplication of mappings. Automating this process will save time and

labor allowing decision makers access to information without the aid of an expert.

Additionally, this would aide human experts in the creation of the ontology whenever a

new database comes on-line.

This research implements agents in a distributed system similar to the JBI. The

following goals measure the success of agent creation.

• Database wrapping: Provide the ability to wrap information contained in a

database into a common environment. The environment should provide

mechanisms to publish and serve the information of the database.

• Client subscription: Provide the ability to query and combine services within a

common environment without including domain knowledge of the underlying

environment structures.

4

• Agent Autonomy: Provide the capability for agents to act without the need of

other agents to complete the task.

• Limited Bandwidth Requirements: Provide the capability for agents to operate

in environments where communication is restrictive and still provide ontology

creation for the distributed environment.

• Metrics: The automated ontology creation is evaluated by a set of queries. The

total number of correct queries is divided by the total number of queries

submitted and the percentage is the percent of ontology creation accuracy.

Typically in a distributed database system, each data source stores information in its

own way. Database wrapping provides a mechanism to bring these differences together

in a format that is consistent with the distributed environment. Therefore, no matter the

organization of the data in each individual database, the data access occurs the same way,

providing a common environment in which to read and use the data. In this thesis, the

database wrapping uses the Java JDBC to ODBC Database Bridge. This bridge provides

the agent access to the metadata and data from the database that the agent wraps.

When making a query, the user has no knowledge of where the data originates. The

client subscribes to the JBI and queries for information contained within the distributed

environment. The query could activate any number of agents depending upon the

information each agent maintains in its database. If the agent has the data in question, that

agent will return its data to the querying agent. For example, if a client makes a query to

provide a list of all instructors and one agent has a column called ‘instructor’ and another

agent has a column called ‘professor’, both agents will return their data because the

5

domain ontology created by these agents identifies that ‘professor’ means the same as

‘instructor’.

Any agent in the CoABS environment is capable of creating the ontology. It does not

matter which agent enters the environment first. What does matter is that one agent must

emerge as a leader to conduct the communication and negotiation for ontology creation.

In this research, the agents are autonomous and seek a leader when necessary to facilitate

ontology creation.

There are locations around the world where networking bandwidth becomes an issue.

The ontology creation system will not be effective if it requires a lot of bandwidth to

negotiate and distribute the ontology. In fact, it could bring other resources down or

restrict some resources from starting. This research chose an algorithm that is small and

fast. The agents do not need external resources to negotiate the ontology and the agents

send a minimal amount of data for the ontology creation. This keeps communication

down and bandwidth available for other resources.

Agents in this research negotiate and formulate an ontology facilitating

communication in the environment by using the Jaro similarity metric, discussed in

Section 3.3.2. The higher the Jaro metric the more likely the two attributes in question are

similar. The agents support the JBI by eliminating the need for manual ontology creation

enabling accurate communication.

1.3 Assumptions/Limitations

This research assumes every column in a database table has data in it. Many

databases tested have column attributes without data. These columns are deleted for

6

testing. Wrapper agents are assumed to enter the environment before the query agents.

The query agents do not deal with ontology creation and leader negotiation, therefore,

query agents do not enter the environment until after all wrapper agents have entered and

negotiated the ontology.

A limitation of this research is that the databases used for each agent consists of only

one table. In addition, this research does not use schema matching or real time data

updating.

1.4 Significance

The following sections discuss the current state of C2 and the Chairman of the Joint

Chiefs of Staff (CJCS) view on interoperability.

1.4.1 Command and Control

Advancements in technology provide the ability to gather an enormous amount of

information to support military operations. Lack of interoperability limits the decision

maker’s use of this information [2].

Figure 1-1 shows the current state of information gathering in combat systems [2].

Notice all the arrows between the ground and air units go up and down, never horizontal.

The lack of horizontal arrows equates to the lack of interoperability between these

systems. For example, the Joint Surveillance, Target, and Attack Radar System

(JSTARS) must send its information to the ground GSM mobile wireless

communications unit to communicate with the Airborne Warning and Control System

(AWACS) aircraft. The GSM then sends the information to the CA aircraft, and finally

7

the CA aircraft can send the JSTARS information to AWACS. This process is awkward

and time consuming; time not available in a wartime environment.

Figure 1-1. Current State of C2 Systems. The arrows between the ground and air

units show the lack of interoperability between the air units [3]

The JBI, Figure 1-2, integrates these systems into one cohesive environment enabling

communications between any two nodes in the battlespace. In Figure 1-2, the Battlespace

Infosphere (BI) integrates planning, command, execution, combat support, and

information support into one environment. The BI will serve as an integration system

since each function will interact with or be part of the BI while maintaining its own

unique required actions [3]. The level of integration with the BI will depend on the

information needs of the client and how those needs can be met [3].

8

Figure 1-2. JBI information integration [3]

1.4.2 Joint Vision 2020

Joint Vision 2020 is a doctrine that the CJCS distributes throughout the DOD. It

envisions how the US military will function in the year 2020 and puts that vision into

doctrine.

“The joint force, because of its flexibility and responsiveness, will remain the key

to operational success in the future. The integration of core competencies

provided by the individual Services is essential to the joint team, and the

employment of the capabilities of the Total Force (active, reserve, guard, and

civilian members) increases the options for the commander and complicates the

choices for our opponents. To build the most effective force for 2020, we must be

fully joint: intellectually, operationally, organizationally, doctrinally, and

technically” [4].

9

This research explores interoperability and demonstrates innovative ideas to ensure

that interoperability becomes a reality well before 2020. The CJCS states, “the overall

goal is the creation of a force that is dominant across the full spectrum of military

operations – persuasive in peace, decisive in war, and preeminent in any form of conflict”

[4]. This concept is shown graphically in Figure 1-3.

Figure 1-3. Full Spectrum Dominance [4]

During military conflict, the DOD uses many systems to get information. Research is

now beginning to examine ways to sift through and organize this information. This will

enable decision makers to view data in an organized manner. Currently, a system

administrator must select information needed from a list of metadata tags. If the tag is

unavailable, there is no information retrieval. In JBI, if an agent registers in the JBI, that

10

agent communicates and coordinates with other agents in the system to retrieve the

information requested without any manual intervention.

1.5 Summary

There are many distributed systems used in the DOD today. These distributed

systems cannot communicate as one entity without an expert to map the information

stores. If the information store changes, experts must adjust the mapping to reflect the

change. The manual mapping is called domain ontology creation. The process of domain

ontology creation in a distributed environment compounds the force interoperability

issue. The JBI provides an environment that combines information stores under one

umbrella enabling users to retrieve information from one entity instead of trying to query

information from multiple entities. In order for the JBI to work, database administrators

must change their data stores to conform to the restrictions of the JBI. This research

automates the domain ontology creation by having agents communicate and negotiate the

mapping between information stores in a distributed environment. It also helps the JBI by

removing some of the restrictions allowing easier information retrieval from the system.

Chapter 2 provides information concerning the domain of the research and compares

the paradigms and technologies used in this research with other available paradigms and

technologies. Chapter 3 discusses the design and implementation details this research

proposes. Chapter 4 evaluates the implementation according to the requirements of

Chapter 3. Finally, Chapter 5 concludes the research and describes future work to expand

this research.

11

2. Background

Chapter 2 provides further explanation of the concepts and goals discussed in Chapter

1. Section 2.1.1 details the JBI and the systems used to simulate the environment. Section

2.2 provides information on agents and Sections 2.3 and 2.4 discuss the underlying

network used for the JBI. This underlying network consists of JiniTM and CoABS.

Section 2.5 covers the concept of ontology, the basis of this research. Section 2.6

discusses data mining and its usefulness in developing domain ontologies, and Section

2.7 covers related work on automated agent ontology creation.

Many approaches have been proposed in the areas of agent and ontology development

for application in the Joint Battlespace Infosphere (JBI); however, none of them address

the problem of automating domain ontology creation. This thesis expands on previous

research [1, 5] by incorporating artificial intelligence techniques into the agents so that

agents that register in distributed database environments will coordinate and develop a

domain ontology with minimal human intervention.

2.1 Department of Defense (DOD)

The DOD is looking for way to wage war effectively and efficiently with minimal

loss of life. To be effective and efficient the right information must be at the right place at

the right time. Computer systems and networking bring information to the war fighter.

The problem is that there are so many computer systems and so many networks,

throughout the DOD, that there is an over abundance of information. To complicate

matters, Air Force systems are not compatible with Army systems and information, Army

information is not compatible with Navy information, etc. This problem impedes force

interoperability.

12

The importance of force interoperability cannot be overstated.

“Future military operations will require close coordination and information

sharing among heterogeneous units, coalition forces, and other civil and

nongovernmental organizations” [6].

The 1990 Gulf War showed the United States’ military might and the success of precision

guided munitions. This war also demonstrated that the United States military found

electronic communication between sister services and coalition forces difficult;

interoperability was minimal or nonexistent. Today, the Department of Defense aims to

remedy interoperability issues, with the Joint Battlespace Infosphere (JBI). The JBI is the

vehicle implementing information sharing and making interoperability a reality, by

allowing anyone that registers and connects to be interoperable within the theater of

operations The following section discusses the JBI in more detail.

2.1.1 Joint Battlespace Infosphere (JBI)

Putting information in one location does not solve the interoperability issue; however,

it is the first step. There is a lot of information that needs to be examined efficiently to

make the information valuable. This could ultimately result in putting bombs on target

anywhere, anytime.

Two US Air Force Scientific Advisory Board (SAB) reports outline JBI’s conceptual

framework. Marmelstein [6] summarizes this framework with four key concepts:

- Information is exchanged through publish, subscribe, and query

- Data is transformed into knowledge via fuselets

- Distributed collaboration is achieved through shared, updateable knowledge

objects

13

- Assigned units are incorporated via force templates.

Figure 2-1. The Joint Battlespace Infosphere (JBI) [7].

Figure 2-1 illustrates the interconnections of the JBI with the first key concept being

the ability to publish, subscribe, and query, seen in the center controlling all aspects of

information gain and information retrieval. Having one system to integrate to enables the

military to communicate and exchange useful information with each other. The three core

services that the JBI provides are:

- Publish: A client registers itself with JBI and makes available its useful

information to any other client in the JBI.

- Subscribe: A client registers itself with the JBI to access information in JBI.

- Query: A client queries JBI for information and perhaps receives what is

asked for.

These JBI core services are the foundation for knowledge creation, knowledge

exchange, and knowledge retrieval. Additionally, JBI can filter information with fuselets.

14

Fuselets are compact subroutines designed for a specific purpose or function, such as a

searching or computation tool with result returned to the requesting client.

Distributed collaboration through shared, updateable knowledge objects is the third

key concept of the JBI. This concept incorporates object oriented programming to create

agents (programs) that are able to access, update, and share data with other agents.

Figure 2-2. Force Template Content [7].

The fourth key concept is unit incorporation via force templates. Force templates

allow access to and interaction with other JBI entities. Using force templates enables

modularity and the ability to handle content changes which in turn allows JBI to grow or

shrink based on the needs of the battlespace. Figure 2-2 depicts force template content.

Figure 2-2 also shows where domain ontologies fit in the force template construct.

This research specifically addresses the third key concept of distributed collaboration

through shared, updateable knowledge objects. Agents communicate and negotiate

formulating an automated domain ontology creating an information-sharing environment

from different distributed data sources.

15

The JBI is currently in its infancy and the Air Force Research Laboratory (AFRL) in

Rome, New York, has implemented a test JBI. Using the JBI core services, information

flows between clients by sending software objects from one client to another. JBI

information consists of two objects, a metadata object, and a published object. Metadata

describes the structure and meaning of an object’s information and uses for matching a

publisher with a subscriber [8].

Before a user publishes an object, a publisher must register it and provide metadata.

To retrieve published objects, the subscriber must also register. Publishers and

subscribers are matched using metadata attributes and values. A publisher receives

metadata attributes and values when it registers. These must match exactly with the

attributes and values a subscriber registered. If they do match, the system links them. If

they do not match exactly, no linking takes place.

After registering successfully, the client application can publish. The object published

can have attributes and values of any type. For example, an XML document, GIF, JPEG,

or an ASCII text file. When a publisher and subscriber are registered and matched, the

object is published and placed in the subscriber’s queue. To use the object, the subscriber

must request the object from the queue [8]. After receiving the object, the subscriber can

do anything needed with it.

This research focuses on the matching of metadata attributes and values from the

publisher with those from the subscriber. Currently the match must be exact. Therefore, if

the publisher has a metadata attribute “Windspeed” and the subscriber requested a

metadata attribute “windspeed”, a match would not occur even though the words are the

16

same and differ by a capital letter. JBI is too restrictive with the requirements to operate

in a contingency environment. The next section gives an overview of a program agent.

2.2 Agents

Russell and Norvig [9] define an agent to be “an encapsulated computer system that is

situated in some environment and is capable of flexible, autonomous action in that

environment, in order to meet its design objectives”. An agent is a program that performs

some information gathering or processing task to meet defined goals. Agents also provide

a mechanism for integrating multiple software systems.

There are two classifications of agents: weak and strong. Weak agents are

autonomous, social, reactive, and proactive. Autonomy means that agents can act on their

own. Social agents are able to interact with each other. Reactive agents respond to

stimulus and agent pro-activity means agents take initiative. Strong agents have all the

characteristics of weak agents but are also mobile, veracious, benevolent, and rational.

Mobile agents can move. Agents having veracity are agents that are truthful, benevolent

agents do what they are told. When agents are rational, the agents will perform

purposefully to achieve goals.

Agents are powerful programming entities useful in a wide variety of areas. Agents

are used to simulate two aspects of the JBI. The first agent is the database agent. The

database agent simulates the JBI data repository that holds all of the information

currently in the JBI. The second is the query agent and the query agent simulates a client

querying the JBI system to retrieve information.

The next two sections describe JiniTM and CoABS, two applications that handle agent

discovery and agent-to-agent communication.

17

2.3 JiniTM

Sun Microsystems released JiniTM technology in 1999 as a platform for building

applications with knowledge of the resources of their underlying network. The JiniTM

architecture provides an agent the ability to announce itself to the network, provide some

details about its capabilities, and immediately become accessible to other agents in the

network environment.

JiniTM provides a reliable network interface so services can join and leave a network.

A reliable network has the ability to continue operating in the event of a system failure

with little impact to the user. If a service crashes, the client locates another or waits for

the initial service to reappear. If a communications link is lost, the client and service

renegotiate another [2]. All of this happens without user intervention.

A JiniTM network is scalable and secure. It has no central control; allowing networks

to manage themselves [2]. Users can add and remove services without the need for a

central entity to coordinate. In addition, JiniTM maintains the integrity of network look-up

tables. Dynamic discovery of JiniTM services make this happen.

18

Figure 2-3. How JiniTM Technology Works [10].

Communication across a JiniTM network is a six-step process as shown in Figure 2-3.

The first two steps of JiniTM communication comprise the registration portion of JiniTM.

During the registration process, a service sends a service proxy to all lookup services

(LUS) on the network, or to a selected subset [10]. Services are the cornerstone of a

JiniTM network and use lookup services to advertise their capabilities.

Steps 3 and 4 comprise the discovery portion of JiniTM. Discovery occurs when a

requesting service locates a LUS and asks for a registered service. If the LUS does not

have the service, the service requester locates another LUS [2].

The fifth and sixth steps are the communication portion. If the LUS has the service

requested, it returns the proxy of that service to the requester [2]. From here on, the proxy

brokers all communication between the client and the service.

Service
Proxy

1
Discover

1 Network service discovers 2 LookupNetworkAvailable lookup services (LUS)
ServiceService Join

Network service sends 2
service proxy to LUS

5Discover
4Network client discovers 3

available LUS Service
6 Proxy Lookup

Network client sends a request 4
to LUS to find desired services

NetworkReceive
5 Client LUS sends registered service

3 proxy to network client

Use 6 Network client interacts directly with
network service via service proxy

19

JiniTM Network Technology provides a powerful infrastructure that allows services to

interact with little foreknowledge of location or underlying network. It offers a highly

scalable solution to the problems of network transport [7].

To make this networking and agent-to-agent communications complete, however,

some middleware services are required.

2.4 Control of Agent Based Systems (CoABS)

CoABS is a framework built on top of JiniTM [5]. CoABS supports the seamless

integration of agent-based systems. Like JiniTM, CoABS provides a scalable and flexible

environment for systems to participate in, Figure 2-4.

Figure 2-4. CoABS Grid [11].

The CoABS grid includes a method-based application programming interface to

register agents, advertise their capabilities, discover agents based on their capabilities,

and send messages between agents. The Grid also provides a logging service to log both

20

?HdS.rvic.M.Ur__J

:::T^^"

m CoABS Grid Core Services
Logging | Admin | Subscribe | Instrumentation
Events | Pubiish | Security i Visualization

message traffic and other information; a security service to provide authentication,

encryption, and secure communication; and event notification when agents register,

deregister, or change their advertised attributes [11].

Software agents use CoABS to register within a common distributed environment

gaining access to several services that help them communicate. One of these services is a

LUS, which provides agent discovery services [1]. Along with registration and the LUS,

CoABS features an agent messaging system. This messaging service provides a transport

mechanism to deliver messages between agents [1].

CoABS also has a Graphical User Interface (GUI) that allows an administrator to

manage and monitor the CoABS grid [11]. This grid is the front end to three daemons,

HTTP daemon, LUS daemon, and Remote Method Invocation (RMI) daemon. These

daemons provide the necessary services for agents to advertise their capabilities and

solicit capabilities from other agents [11]. Since CoABS is built upon the JiniTM Network

Technology, CoABS utilizes JiniTM’s six-step process to facilitate clients and services to

connect and communicate.

While the CoABS grid is up and running, JiniTM is working transparently in the

background. These two applications work in tandem, creating an ideal environment for

agent negotiation and automated ontology creation.

2.5 Ontology

The field of Ontology studies the nature of existence. Applying this definition to

agents: “an ontology is a description, like a formal specification of a program, of the

concepts and relationships that can exist for an agent or a community of agents” [12]. In

software development, an ontology implies agents that communicate, communicate on

21

the same level. Every agent in the system knows how to communicate and understand the

messages communicated.

During the initial design of a multiagent system, an ontology is user-defined. With an

ontology in place, agents in the system have a vehicle for communication and each agent

understands the language communicated. The programmer implements an ontology

within an agent so agents can perform and achieve their goal. Agents using ontologies

can increase the efficiency and effectiveness of current Internet services thereby reducing

human intervention [5]. If multiagent systems could effectively communicate with each

other via an ontology, human intervention could be largely eliminated. A user would

simply submit a query and obtain results.

One type of ontology is domain ontology. Domain ontologies define all concepts and

relationships in a specific domain [13]. Developing a complete domain ontology takes

time. In addition, reprogramming, re-instantiation, and retesting are required when an

ontology requires a change. Problems arise from manual domain ontologies because the

domain expert cannot define everything there is to know in a specific domain. Over time,

things change and evolve, and the multiagent system will only be as good as the expert. If

the expert does not know something about the domain, then the agents will not either. If

agents could create, modify, and apply their own ontology, a multiagent system could

adapt, grow, and shrink autonomously.

2.5.1 Multiagent Systems Engineering (MASE)

Tools for automating agent creation in multiagent systems are in development. These

tools make agent creation easier but the user must know the system well to take

advantage of the tools. Ontology creation is one-step of this process and is currently a

22

manual process. DiLeo [13] takes the reader through the process of manual ontology

creation from the software engineer’s point of view. The steps for manual ontology

creation are:

1. Define purpose and scope.

2. Collect and analyze data.

3. Construct the initial ontology.

4. Refine and validate the ontology.

 The next few paragraphs discuss these steps in detail.

A lot of time and thought must go into an effective ontology design. It is an

evolutionary software engineering process. DiLeo argues engineers developing software

systems using agents should allow equal design time to the agents and the ontology

because once you release the agents into the system, agents do what they are told and

adapt if the environment changes. If agents are to perform consistently and provide the

same expected output no matter how the environment changes, the agents need a domain

ontology. In addition, the domain ontology must be adaptable. With DiLeo’s process

every time something changes in the environment, a manual change to the domain

ontology must take place.

A designer must describe ontology requirements as well as the range of intended

users of the ontology [13]. For example, when designing a multiagent system to perform

course scheduling, the ontology must define abstract classes regarding courses, quarters,

instructors, and classrooms. The software requirements and the goal hierarchy help define

the ontology’s purpose. The purpose describes why the ontology exists, such as to list all

classes in the education domain required when scheduling courses. The scope defines to

23

what level of detail that an ontology describes the objects, such as defining only the

semantic ideas necessary to schedule courses in a distributed network environment [13].

After defining the scope, the designer can build the model. The designer creates a list

of possible terms or concepts that the ontology must describe. Designers form this list by

examining the goal hierarchy, use cases, and sequence diagrams from the previous MaSE

steps for candidate ontology terms [13]. Actions in a sequence diagram show which terms

could be part of the information passed in the system. The designer examines the system

requirements, goal hierarchy, and use case models in a similar manner to create the

candidate term list for the ontology [13].

To construct the initial ontology, the term list is organized into classes and attributes,

and an initial draft of the data model is produced. Before creating an entirely new

ontology, a designer must determine whether any existing ontologies can meet the system

needs. If no existing ontologies fully specify the information needed for the system, the

designer must build a new ontology [13].

At this point, a designer must refine and validate the ontology. A designer reviews

use cases and sequence diagrams to ensure the information specified in the ontology

accurately reflects system events. If not, the designer makes corrections until the

ontology accurately reflects system events.

This brief overview of the manual process of ontology creation illustrates the labor-

intensive nature of the process. This research differs from DiLeo’s in that it provides an

implementation of an agent created ontology system so that the ontology can change as

the environment changes without the human intervention. A system where if the

environment changes, the agent ontology also changes—keeping everything in lock step.

24

The previous sections discussed the importance of the JBI to the DOD, the JBI and

how it works, the underlying network of JiniTM and CoABS, and ontology creation in

multiagent systems. Before trying to program agents to negotiate ontologies, the focus

turns to data mining concepts. An application of data mining is extracting general

concepts from relational databases. The next section discusses data mining and how data

mining is used in this work

2.6 Data Mining

Data mining is the process of extracting knowledge from a large amount of data [14].

Several data mining approaches exist and, as with most design problems, the application

dictates the approach. There has been a wealth of research in databases making use of

data mining techniques to merge many databases into a single unit. This research makes

use of some data mining techniques, specifically, cluster analysis. We discuss cluster

analysis in detail in Section 2.6.2.

2.6.1 Database Record Matching

There are many techniques to implement record matching in databases. Record

matching or name matching has been explored in many fields; statistics, database, and

AI. In statistics, the problem is called probabilistic record linkage [15]. Probabilistic

record linkage allows the assembling of information from different data sources [16].

Record linkage is the process of finding a unified record from two or more records that

are in different files but belonging to the same entity. Probabilistic linkage takes into

account the uncertainty that exists in comparing variables used for comparison in both

files [16].

25

 Knowledge intensive approaches provide the basis for record matching in the

database community [15]. Finally, in AI, learning the parameters of string distance

metrics and combining the results of different distance functions uses supervised learning

[15]. Three types of distance functions used are:

1. Edit-distance like functions

2. Token-based distance functions

3. Hybrid distance functions.

All three distance functions listed above map a pair of strings s and t to a real number

r, where a smaller value of r indicates greater similarity between s and t [15]. The edit

distance functions represent distance as the cost of the best sequence of edit operations

that convert s to t. Edit operations include character insertion, deletion, and substitution,

and the function assigns each operation a cost. Token-based distance functions are those

that operate on groups of characters (tokens). Hybrid distance functions are those that use

pruning methods to reduce the set of string pair comparisons.

Since database agents will be working in a distributed environment, the sizes of the

databases are potentially unknown so the Jaro similarity metric was used. The Jaro

similarity metric is not an edit distance metric but it provides effective results with a

minimal amount of computation. Section 3.3.2 discusses the Jaro similarity metric in

detail.

The Boyer-Moore string-matching algorithm [17] was considered. Implementations

of text editors use this algorithm more frequently for search and inserts. Boyer-Moore is

more efficient as the search string gets longer. In this application, the string compares are

26

generally short, so the Boyer-Moore algorithm was not used. The Jaro similarity metric is

efficient and works best with short strings, and provides us with a numerical matching,

and the substrings for storage.

This thesis combines techniques from all three data-mining areas, statistics, to

measure the success of automatic agent ontology creation; databases, implement

clustering to analyze the data and group similar data objects; and AI, to determine the

degree of similarity between two data objects. These agents will accomplish this task

without the use of external word matching sources, like data dictionaries, previous

training, domain information, or thesauruses.

2.6.2 Cluster Analysis

Clustering is a method of grouping objects into classes by some metric of similarity

[14]. Clustering sifts through large data stores, grouping related objects together into a

cluster. Clustering uses statistical techniques like mean and variance, to manipulate the

clusters extracting information about the data so the data provides meaning to the user.

The difficulty in clustering is finding the right balance of technique and speed so that data

searches take a minimal amount of time.

The database agents are implemented as wrapper agents. Wrapper agents have access

to all of a database’s information. When clustering, two agents communicate and decide

whether they have matching fields. Agents calculate cluster information on their database

and then communicate these metrics to decide whether a match exists. Agents create a

logical link between the fields in the database.

27

Several authors have explored the intelligent database querying and ontology

creation. In the following section, we discuss their work and analyze how it relates to

this research.

2.7 Related Work

The benefit of the research described herein consists of relieving a programmer from

generating all metadata mappings from one database to another. Agents are able to set up

their own mapping and the programmer will only have to monitor the progress or adjust

mappings as needed.

Name matching research has been on going for years and is still relevant today.

Researchers have run experiments using applications such as WordNet, described below,

to improve name matching success rates. Section 2.7.2 discusses RETSINA. Sections

2.7.3 and 2.7.4 discuss two other projects that have implemented name matching,

DELTA and SemInt, respectively. Lastly, there is a discussion of different algorithms

showing correct name matching results.

2.7.1 WordNet

WordNet is an application to ease syntax learning in a given project. WordNet

organizes nouns, verbs, adjectives and adverbs into synonym sets, each representing an

underlying lexicographical concept [18]. Different relations link the synonym sets, and

provides a way to match words from one data source to other data sources. In

applications requiring a method to decide whether words are topically similar, WordNet

can make that distinction. WordNet requires a programmer to provide the ontology for

the application domain. In addition, since WordNet is a separate program, the application

28

must have a place in your distributed environment. Each time there is a call to WordNet

to check for a match, the communication required uses precious bandwidth. Depending

upon how many WordNet accesses there are, it could be a time intensive task and could

affect network performance.

JBI is a distributed environment that, depending on the contingency location, can

possibly be a restrictive, low bandwidth network with minimal services. Further, using an

application like WordNet may not be conducive to wartime operations. This research

uses agents combined with data mining techniques to negotiate an ontology in whatever

application the agents are running in. It eliminates the need for an external translation

service and it enhances the JBI for worldwide implementation.

2.7.2 Artificial Intelligence

There are two principle categories of learning in multi-agent systems: centralized and

decentralized. In centralized learning, a single agent executes the entire the learning

process and does not require any interaction with other agents [19]. Decentralized

learning has more than one agent engaged in the same learning process. Negotiation and

cooperation is mandatory for successful decentralized learning. Given the distributed

nature of the agents, centralized learning is not feasible, and this thesis focuses on

decentralized learning where multiple agents communicate and coordinate toward a

common goal.

The following are a few examples of decentralized learning of agent communication

in different environments. A discussion of Reusable Environment for Task-Structured

Intelligent Networked Agents (RETSINA) [20] and its significance is in the next section.

29

2.7.2.1 Reusable Environment for Task-Structured Intelligent Networked Agents

(RETSINA)

RETSINA is an open multi-agent system (MAS) that supports communities of

heterogeneous agents. The RETSINA system agents form a community of peers that

engage in peer-to-peer interactions. Any coordination structure in the community of

agents should emerge from the relations between agents, instead of the imposed

constraints of the infrastructure itself. In accordance with this premise, RETSINA does

not have a centralized control within the MAS; rather, it implements distributed

infrastructural services that facilitate the interactions between agents, as opposed to

managing them [21].

RETSINA most closely resembles the JBI concept. The JBI implements concepts

from RETSINA such as no centralized control within the MAS and it allows CoABS to

monitor the agent-to-agent communication.

The next sections discuss successful applications designed for name matching. These

applications are useful for agent ontology creation, but have positives and negatives

associated with them.

2.7.3 Data Element Tool-Based Analysis (DELTA)

DELTA is a tool that uses textual similarities between data element definitions to find

candidate attribute correspondences [22]. A commercial full-text information retrieval

tool (Personal Librarian) is used to search and find attribute matches. DELTA first gets

all available metadata for an attribute and saves that information as a text document. A

30

human, called the integrator, has to choose the attribute and the database to perform the

match.

Querying the Personal Librarian is a way to find attributes. The query returns

documents ranked using a weighted similarity of terms. The search for corresponding

attributes in the list is a manual search. The default search pattern is the full text of a

metadata document in one of the databases [22]. In addition, query searches are applied

to all the words in a document. This allows finding matches even where the attribute

names are very different but where there are similarities in the definition. For example,

searching for delivery address found the proper attribute from two different data

dictionaries and the attribute names were different [22].

Control over the order of tasks is manual [22]. This provides tool flexibility, but also

requires manpower to make DELTA useful. This research proposes intelligent agents

respond to a query on their own without a human controller. The agents query each other

to decide which attributes are the same freeing the analyst to examine the data from the

query.

The data used to test DELTA comes from three databases. The first, Advanced

Planning System (APS) is a relational database that has 884 attributes in 107 tables with a

dictionary with 739 elements. The second database, Computer Aided Force Management

System (CAFMS) is another relational database that consists of 1056 attributes in 162

tables with 637 data elements, and no data dictionary. The third database, Wing

Command and Control System (WCCS), has 2578 attributes in 294 tables with 1760 data

elements. Because no data dictionary was available for the CAFMS database, DELTA

31

was not tested with it. Identifying the correct attribute in the table involves a manual

search. The authors state that manual search takes approximately 15 minutes per attribute.

DELTA achieved a 40% match success rate. Without perfect knowledge and a perfect

data dictionary, DELTA is not a good choice for database attribute matching. The risk is

that people make mistakes, which cannot be tolerated during wartime.

SemInt is an extension to DELTA that differs in two ways. First, SemInt does not

need perfect knowledge to provide good results and second, SemInt uses a neural

network instead of the personal librarian.

2.7.4 SemInt

SemInt is an automated system for determining candidate attribute correspondences

[22]. SemInt differs from DELTA by providing good results when databases are not well

documented and a client does not have perfect domain knowledge.

SemInt generates 20 numeric properties from the metadata and population for each

attribute. It then determines which properties are most useful for discriminating among

attributes and produces a classifier function using a back-propagation neural network.

The metadata used includes data types, length, keys, foreign keys, range constraints, and

access restrictions. Population information used includes average, maximum, and

variance for numeric values. For the text field values, string length statistics are used. The

authors call these calculated items discriminators, and are used to determine attribute

matches. The network needs training before it can be useful, because SemInt uses a

neural network. For large databases, this training can take from a few hours up to days of

CPU time to complete. In a distributed wartime environment where execution time is

32

paramount, this is an unacceptable risk; as foreknowledge of data requirements needed is

required.

SemInt operates in a two-phase process. The first phase is the training of the network

on a database chosen as the reference database. The human integrator provides the

classification for the training of the network. SemInt computes the discriminator vector.

The second phase uses the neural network to map attributes of other databases onto

attributes of the first database effectively comparing attributes from the foreign database

with those in the reference database. Discriminator computations use the foreign

attributes and the classifier applies to a discriminator vector. The vector and each cluster

in the reference database returns a similarity. Once all attributes are processed, SemInt

returns a list of similarities. The high valued attributes for each cluster are the suggested

correspondences for that cluster [22].

A correspondence is the relationship between two attributes. Put another way, a

correspondence means ‘means the same’. The best average number of candidate

correspondences SemInt found for each attribute is 43% out of 50 correspondences

identified. The recall percentage is the number of correspondences found divided by the

total number of correspondences identified [22]. SemInt’s best recall percentage is 44%.

Thus, by itself, SemInt is not adequate. However, it does not require domain knowledge

or a database with a data dictionary to provide good results. On the other hand, the

authors claim that SemInt along with techniques from DELTA may provide results with

less human intervention to determine attribute matches.

33

This research is different from SemInt in many ways. Database agents learn the

domain ontology with string matching techniques and store that knowledge in a hash

table. This research does not require a neural network, which means no time spent

training a neural network (which for SemInt, could take days). Further, it then is not

restricted to the concepts capable of being learned by a neural network.

2.7.5 Other Related Works

Another system, Automatch uses Bayesian learning techniques. The system acquires

probabilistic knowledge from domain experts stored in an attribute dictionary [23].

Automatch uses the attribute dictionary to find optimal matching. Using cross validation,

Automatch achieved a match rate of 66%. In a separate experiment, and using random

guessing to generate the same attribute matching pairs, Automatch only achieved a match

rate of 10%.

COMA combines multiple matches in a flexible way. The match operation takes as

input two schemas and determines a mapping indicating which elements of the input

schemes logically correspond to each other. COMA can make use of results from

previous match operations. Without reuse, the single-matchers’ average precision is 50%

and the average recall is 81%. The average overall match rate is no more than 45% [24].

Cupid considers two types of matches, a thesaurus for linguistic matching, and a

structured matching based upon similarity of contexts or vicinities. Cupid does well using

the thesaurus and very poorly without the thesaurus in some instances. No measurable

results were provided [25].

34

Madhaven, et al. [26] introduces the concept of corpus based schema matching. They

save previous matchings in a component called the mapping knowledge base (MKB).

The MKB learns classifiers for each of the schema elements seen in the past. When the

classifier for an element e is applied to a new schema element e1, it predicts the degree of

similarity between e and e1 [26]. Coupled with the MKB, the authors use five different

base learners trained to recognize each type of element the MKB captured.

The authors compared their MKB matching with a basic matcher. The basic matcher

uses the five base learners, but the training is only on the matching attributes. The basic

matcher achieved between a 65% and 85% recall accuracy. The MKB achieved between

72% and 84% accuracy and the combination of the two achieved between 78% and 90%

recall accuracy.

Paolo Bouquet, et al. proposes a new algorithm to use for schema matching [27].

They address the problem of deducing relations between sets of logical formulae that

represent the meaning of concepts belonging to different classification. The matching

consists of three knowledge parts:

• Lexical: knowledge about the words used in the labels

• Domain: knowledge about the relation between the senses of labels in the real

world or in a specific domain

• Structural knowledge: knowledge derived from how labels are arranged in a

given hierarchical classification (HC) [27].

Lexical and domain knowledge is not used to improve the results of structural

matching. Instead, knowledge from all three levels is used to build a new representation

35

of the problem, where a logical formula represents the meaning of each node and relevant

domain knowledge and structural relations between nodes are added to nodes as sets of

axioms that capture background knowledge [27].

Once the meaning of each node, together with all relevant domain and structural

knowledge is encoded as a set of logical formulae, the problem of discovering the

semantic relation between two nodes becomes a simple problem of logical deduction

[27].

The algorithm used is CTXMatch, which takes two HCs and returns a set of

mappings between their nodes. WordNet provides both lexical and domain knowledge

[27]. Results show the percentages of accuracy and recall between the two search

domains of architecture and medicine with the Google and Yahoo! search engines. The

best equivalence achieved was 78% precision with a recall of only 13%. The architecture

search did a bit worse with 71% precision and 10% recall.

Authors Williams and Tsatsoulis research matching diverse ontologies using concept

cluster integration [28]. Each agent has their own ontology and tries to discover

relationships between themselves if one exists. For example, if one agent’s ontology was

‘NBA’ and the second agent’s ontology was ‘College Hoops’, the two agents should

discover their relationship ‘basketball’ [28]. The authors’ agents use supervised inductive

learning to learn their individual ontologies. Only 20% of the queries produced verified

concept cluster relations.

The final system discussed is the Learning Source Descriptions (LSD) system [29].

LSD employs and extends current machine learning techniques to find attribute matches,

36

semi-automatically. The user must provide semantic mappings for a small set of data

sources, ‘small’ being undefined. LSD uses these mappings together with the sources to

train a set of learners. After training the learners, LSD finds semantic mappings for a new

data source by applying the learners and combining their predictions using a meta-learner

[29]. The results are very good using this technique. LSD achieves high accuracy from

71% to 92%.

Do, Melnik, and Rahm suggest that to identify a solution for a particular match, it is

important to understand which of the proposed techniques performs best, i.e., effectively

reduce the amount of manual work required for the match task [30]. To show the

effectiveness of their system, they demonstrate its application to some real world

scenarios [30]. The system evaluations were done using diverse methodologies, metrics,

and data making it difficult to assess the effectiveness of each single system.

Furthermore, the systems are primarily not publicly available making it virtually

impossible to apply them to a common test problem or benchmark in order to obtain a

direct quantitative comparison [30].

Four different comparison criteria were used: input, output, quality measures, and

effort. Input considers schema languages, relational, XML, etc; number of schemas and

match tasks; schema information; schema similarity; and additional information used, i.e.

data dictionaries or thesaurus’ used to help facilitate the matching. The output considers

which elements correspond to each other. The quality measures used are the results

compared to a manual match. To assess the manual effort they consider both the pre-

match effort required before an automatic matcher can run as well as the post-match

37

effort to add the false negatives to and to remove the false positives from the final match

result [30]. They review the evaluations of eight different match prototypes, Autoplex,

Automatch, COMA, Cupid, LSD, GLUE, SemInt, and SF.

The results show that the best match quality range from under 20% to over 90%, but

the way the systems have been tested varies to a great extent from evaluation to

evaluation [30].

Yatskevich [31] completes another evaluation of different schema matching

algorithms between Similarity Flooding (SF), COMA, and Cupid. Yatskevich states that

there are five different classifications of attribute-matching approaches:

• Hybrid or composite. Hybrid matcher uses multiple criteria to obtain mapping.

A composite matcher combines results obtained by exploiting several

matching algorithms.

• Weak or strong semantics. Weak semantic techniques includes string, data

type and soundex analysis. Strong semantic techniques use precompiled

thesaurus and dictionaries.

• Instance based or schema based. Instance based matchers consider data

instances. Schema based matchers rely only on schema level information.

• Element or structure level. Element level matching is performed to individual

elements. Structure level matchers consider combinations of elements such as

complex schema structures.

38

• Language or constrained based. Language based matchers use a linguistic

approach like comparing names of element s. Constrained based matchers

exploit constraint information i.e., relations, keys.

Weak semantic schema based matchers represent both hybrid and composite

approaches for the evaluation. Various element and structure level techniques of analysis

language and constrained based information. Comparing all three matching algorithms,

SF, COMA, and Cupid, the best precision achieved was 84%. However, overall precision

was significantly worse at 30%.

All of the approaches described above are attempts at automating ontology creation.

Table 2-1 summaries these approaches and gives a picture of how each technique

performs, giving the best match percentage and what the technique uses in order to

achieve that best match percentage.

39

Table 2-1. Comparison of Different Approaches

Approach Technique Used
Level of user input
required

Outside
Sources

Amount of
Communication

Best match
percentage

DELTA

Manual
Searching for
corresponding
attributes

A human chooses the
attribute and the
database to perform
the match.

Personal
Librarian

Name/Information/
entire field
contents

40% match success
rate.

SemInt Back-propagation
neural network

User provides the
training data None Name/Information/

Statistics
43% match success
rate

Automatch Bayesian
Learning

Knowledge from
domain experts

Attribute
Dictionary Name

Using cross
validation: 66%,
otherwise only 10%

COMA Schema Matching
Provides match and
mismatch
information

Previous
Matches Name/Information

No reuse, Average
overall is no more
than 45% match rate

Cupid
Linguistic and
structural
matching

None Thesaurus Name/Statistics No Quantitative
Results

MKB
Matching

Learns classifiers
for each of the
schema elements
seen in the past

None
Previous
Schema
Matches

Name/Information/
Statistics/entire
field contents

84%-72% match
success rate

CTXMatch Hierarchical
Classifications None WordNet Name/Information 78% match success

rate

Concept
Cluster
Integration

Supervised
inductive learning None None

Name/Information/
Statistics/entire
field contents

20% match success
rate

LSD Machine
Learning

User provides
semantic mappings
for a small set of data
sources

None Name/Information/
Statistics

92%-71% match
success rate

This thesis’ best match result is a 79% agent response rate. As can be seen in the

comparison these results are competitive to the best systems while requiring much less

user input and prior training. For those systems that do not require these elements

(COMA, Cupid, etc) this research outperforms them significantly.

 The ‘Amount of Communication’ column identifies the particular technique used to

obtain the results. For example, in order for DELTA to achieve its 40% match success

rate, DELTA uses the attribute name, attribute information (data type, etc), and it

40

searches the entire column contents to determine its match. CTXMatch only needs the

attribute name and attribute information to achieve its 78% match success rate, but it uses

WordNet to help with its attribute matches.

2.8 Background Summary

The automatic generation of domain ontologies assists with the DOD’s interest in

creating an interoperable environment for information sharing. JiniTM and CoABS

provide the networking backbone that emulate the functionality of the JBI and make

agent communication easy, flexible, and secure. In this environment, agents facilitate

their own communication and as a group negotiate a domain ontology with minimal

human intervention.

Many of the implementations discussed in this chapter provide background into agent

ontology creation applicable in a distributed database environment. However, several

methods require overhead or manpower that in a JBI like distributed wartime

environment is not feasible. This research overcomes these limitations by eliminating

user and external information to create the corresponding ontology all while maintaining

match accuracy.

DELTA and SemInt are tools that attempt attribute matching across heterogeneous

databases. DELTA requires perfect knowledge and data dictionaries in order to be

successful. SemInt is an improvement over DELTA in that it does not need perfect

knowledge, and user interaction, and can attribute match with good results. SemInt uses a

neural network that requires training before it can be of any use. Depending on the

training set, this training can take hours or even days to complete. The advantage is that

41

computations are fast once training is complete for the network. The advantage to this

research is that like SemInt, there is no need for perfect knowledge or data dictionaries.

In addition, this research does not use a neural network because of the complexity and

overhead of using the technique.

As in the related work, this implementation seeks to provide a method of finding

matches between two database fields without comparing the entire set of records. Unlike

these approaches, this research attempts matches based only on the data and the data’s

attribute information, through substring statistics. Even so, incorporating the features

used in SemInt, and the other systems into this work could possibly produce more

accurate ontology mappings, as will be discussed in the results section, after discussing

the implementation details in the following chapter.

42

3. Design and Implementation

Many researchers have tried to solve the attribute matching problem using many

different techniques or combinations of techniques in order to obtain good results [15, 22,

23, 24, 25, 27, and 29] as discussed in the previous chapter. This chapter discusses how

the goals in Chapter 1 are met through database wrapping, client subscription, agent

autonomy, and limited bandwidth requirements.

In addition to these goals, this research considers two other goals. The first goal is

simulation of the JBI environment. The agent environment should provide the most

accurate test environment possible. This will ease porting this research agent code into

the current JBI.

The second goal is domain ontology creation with minimal communication. This goal

has agents create a specific ontology, one that depends upon the data inside the JBI,

allowing services within the environment to find and communicate with one another. The

number of successful query returns given a set number of queries made measures the

success of ontology creation.

This chapter outlines the procedure on how this research automates ontology creation.

This not only aids efforts in the JBI development, but also assists any organization

needing to merge data from different sources in a distributed environment without

manual data mappings.

This chapter is organized as follows. Section 3.1 discusses the requirements for the

research. Section 3.2 details the architecture of how the agents integrate into a distributed

environment. Section 3.3 discusses database wrapping and the agent implementation,

43

respectively. Section 3.4 defines the query process and Section 3.5 provides the summary

of the chapter.

3.1 Requirements

For agent-to-agent communication to take place, the agents must be in a distributed

environment. JiniTM and COABS provide the distributed environment where agents can

communicate quite easily. Once CoABS is successfully operational, the agents enter and

run in this environment.

Creation of the domain ontology begins by matching agents’ metadata. If the

metadata do not match, the agents examine a sample of the data in the database. Using

the Jaro similarity metric a determination of match is calculated. Once updates to the

domain ontology are complete with the metadata, the lead agent distributes the updated

domain ontology to all agents in the system.

3.2 Architecture

In the JBI, data sources vary as does the information contained therein. There is

aircraft information, weather, weapons, locations, targets, and so on. To publish to the

JBI, the client must conform to a rigid set of rules. This helps keep the JBI in a uniform,

consistent state. XML takes care of the matching, but one big restriction of XML is that

the match must be exact. If a client wishing to make a query does not know how or what

to query, or does not know the exact spelling of the query, it is likely the client will not

retrieve any information from JBI at all.

This research creates database wrapper agents that access the data contained within

the databases. These agents communicate, negotiate, and create a domain ontology

44

without any help from an outside human expert or application. The agents themselves

determine if ‘professor’ matches ‘instructor’. When a query comes in asking for

professor, both agents respond; the client does not have to make another query for

instructor.

Figure 3-1 shows how agents operate in the CoABS environment. Explanations of the

elements of the figure are below.

Database
Database agent

Agent Ontology

Database

Database Agent

Agent Ontology

Client querying agent

same

CoABS
Environment

Figure 3-1. Agents in CoABS Overview

3.2.1 Agents

As shown in Figure 3-1, there are two types of agents the database agents and the

query agents. Section 3.2.1.1 discusses the details of the database agents including how

they create the domain ontology. The domain ontology is created when the second agent

enters the system. This second agent transmits its database information to the lead agent

where the lead agent invokes the Jaro similarity metric method, updates the ontology, and

45

distributes the updated ontology to all agents in the environment. Section 3.2.1.2

discusses the details of the query agents including how they register in the CoABS

environment and how they query the wrapper agents to get the information they request.

3.2.1.1 Database Agent

When the database agent wraps itself around this repository, the agent has access to

and provides all of the data contained within if queried. The agent also knows all of the

metadata about the database, for example, data types, and field lengths. Upon wrapping,

the agent stores all of the repository attributes into a vector. It pulls random data from

each field, depending upon the size of the database, to develop keyword vectors for each

field. The keyword vector holds information on the commonality found within each

attribute column of the database. For example, suppose a column in the database was

‘instructor’. The agent looks at random data elements of ‘instructor’ and sees if there is

commonality in the data; the data may all start with ‘Dr.’ or ‘Prof’. The agent finds these

common elements and stores them in a keyword vector. Creating a keyword vector

eliminates the need to send all of the agent’s database data to the lead agent. This keeps

communication and data transmission to a minimum while still providing acceptable

results.

The keyword vector is created using part of the Jaro similarity metric method with

samples of the data contained inside the databases. The keyword vector generated holds

the attribute, the format of the data, the keyword, and the probability of the number of

times the agent found the keyword in the data. The lead agent uses both vectors to create

the ontology when a second wrapper agent registers in the distributed environment.

46

The agent also constructs a feature set vector on startup. The feature set vector saves

three statistics about the data contained in each column of the database. Specifically the

type name, the column size, and decimal digits. The type name stores the type of the data,

for example if the attribute name is day and the data is all numbers, the type saved would

be ‘integer’. If the data were city names, then the type saved would be ‘character’. The

column size statistic saves the maximum length of the column. For example if the type

name is ‘integer’, the default column size in Microsoft Access is 4 bytes. If the type were

‘character’, the column size would be the maximum number of characters Microsoft

(MS) Access allows, unless the user adjusted the value during the creation of the

database. The decimal digits statistic shows whether the data has any fractional digits in

its format.

3.2.1.2 Query Agent

The query agent broadcasts its query to the wrapper agent(s) in CoABS. If a wrapper

agent has the information the query agent is looking for, the wrapper agent will send the

query agent the data. If the wrapper agent does not have the information or does not

know if it has the information requested, the wrapper agent checks the ontology mapping

to see if the query matches an attribute in the map. If it does, the wrapper agent rebuilds

the query with the attribute it is most familiar with, and sends the requested information

to the query agent.

47

3.3 Database Agent Implementation

This research uses Java’s JDBC::ODBC Bridge to connect agents to MS Access

databases. Once the agent connects to the database, the agent has access to a wealth of

information including database attributes, properties of those attributes, and the actual

data contained inside the database.

Each agent on start-up calculates metrics for the database it wraps. Each field in the

database has metrics generated, and includes an estimate of the field format, the substring

similarity vector, the substring frequency vector, and the feature vector. Section 3.3.2

discusses the metric calculations in detail.

Once an agent successfully registers in the environment, the agent can access

available information and advertise information contained in their database. As each

agent enters CoABS, the agent looks for other agents in the system. Agents carry out all

ontology negotiation in the system upon entering the environment. The agents first look

for the current ontology ‘leader’ who is responsible for maintaining the ontology as well

as negotiating any changes.

Upon entering an environment with no agents, the agent declares itself leader, sets up

an ontology containing only its information, and waits for other agents to enter. If one or

more agents are present, the agent that entered last initiates communication with the

leader agent, and transmits a subset of its keyword and metric information to the leader.

The new agent and the leader will negotiate and make modifications to the global

ontology as necessary. Once the lead agent updates the ontology, the lead agent sends the

updated ontology to all agents currently in the system. If the leader leaves the

48

environment, and a new agent enters, all the agents currently in the environment elect a

new leader. Since every agent has a carbon copy of the global ontology; the system does

not rely on any one agent or system maintaining the distributed environment. Figure 3-2

depicts the leader decision algorithm. Section 3.3.1 details the leader election process,

Section 3.3.2 discusses the Jaro method, and Section 3.3.3 details the ontology creation

process.

Agent1 is first in and
declares self as leader

Agent2 enters and asks who
the leader is

Agent3 enters and asks who
the leader is

Tells Agent2 I’m the leader
and assigns a priority
number

Receives priority number 2
from Agent1

Tells Agent3 I’m the leader
and assigns a priority
number

Responds back to Agent3
with I’m not the leader

Receives priority number 3
from Agent1

Agent1 leaves

Agent1 reenters and asks
who leader is. Priority
number is -1 and sends it to
all agents in system.

Agent2 sends its number to
all agents in the system.

Agent3 sends its number to
all agents in the system.

Compares numbers it Compares numbers it Compares numbers it
received with its own received with its own received with its own

Since its number is lowest
and not -1, Agent2
emerges as new leader and
sends new priority
numbers to the other
agents.

Receives new number Receives new number
from Agent2

from Agent2

Figure 3-2. Agent leader communication

49

3.3.1 Leader Election Procedure

Figure 3-2 shows how three agents, Agent1, Agent2, and Agent3, select a new leader.

For clarity, agent names are italicized when referenced. Agent1 enters CoABS first and

declares itself as leader (priority number 1) because no other agents are present. Agent2

then enters and searches for other agents. Agent2 finds Agent1 and initiates a dialog to

determine the leader. Agent1 responds to Agent2 and assigns Agent2 the priority number

2.

Agent3 enters the environment and executes the same transactions that Agent2

executed. Agent3 looks for the leader; Agent1 responds and assigns Agent3 the next

priority number in sequence (3).

Agent1 leaves and reenters CoABS. Agent1 proceeds to inquire Agent2 and Agent3 as

to the ID of the leader. Since neither is the leader, both Agent2 and Agent3 respond to

Agent1 stating that they are not the leader. Agent1 tracks the replies and when Agent1

receives all replies from all agents, and Agent1 does not find a leader, Agent1 initiates the

leader decision procedure.

All agents broadcast their priority numbers. Since Agent1 just entered the system,

Agent1’s priority number is -1 signifying that Agent1 does not have a number. Each agent

compares the priority numbers. The agent with the lowest priority number and the

number is not -1 becomes the new leader and broadcasts to all agents currently in the

environment. Finally, the new lead agent (Agent2) sends a message to each agent

assigning new priority numbers in the same order that each agent contacted the lead

agent.

50

The Jaro similarity metric is the string matching technique used to determine whether

two attributes match or not.

3.3.2 Metric Calculation

An estimate of the field format, the substring similarity vector and the substring

frequency vector provide the basis for the metrics used to calculate the ontology. Before

any agent-to-agent communication takes place, each agent invokes two methods. These

methods collect the attribute and sample data from the database that the agent wraps.

The first procedure stores the entire database attributes in a vector. In this research,

the database attributes are the column names of the database. For example, the vector

shown below in Figure 3-3 is from an educational institution database. The attributes of

that database are the contents of the vector. This vector is stored for as long as the agent

remains in the CoABS environment.

[Dept, CourseID, Course, HRS, Type, Professor, Day, Time, Bldg, Room, Status]

Figure 3-3. Attribute vector the agent stores

To create a domain ontology, the lead agent compares this vector along with other

agent vectors to determine whether an attribute match exists. If it does, the match is

stored in the ontology map providing agents with knowledge to answer client queries.

The second method takes samples from the database and stores these in a second

vector, the keyword vector. In the event that the lead agent cannot determine a match

with just the attribute vectors of the databases, this keyword vector is used to check the

actual data contained within the fields to determine if two attributes are similar. If the

lead agent determines that the data inside is similar, the lead agent concludes that the

attributes are similar and the ontology map is updated.

51

For this method to work, the method requires the calculation of the keyword vector.

This is done by first determining the number of rows (numRows) in the database; this is

used for two things. First, the agent uses it to calculate the number of samples taken from

a database. In this research, the number of rows used for calculating the sample size is

bound (α). The α bound used in most examples is 0.20, which makes use of 20% of the

samples. The agent randomly selects α * numRows from each field and uses this subset to

generate the substring vector.

The agent loops through this data subset, and for each two valid strings, the agent

compares the two strings to see how similar they are. This comparison uses the Jaro

Method [15], discussed in detail in the next section.

If after the Jaro Method the two strings are the same, the agent saves only one string

in a vector and a counter is incremented. The counter tracks the number of matches made

for each substring element. For example, if there is an attribute called ‘instructor’ and all

of the data inside begins with the string ‘Dr.’, the agent will process the string through the

Jaro similarity metric method and store ‘dr.jhn’ with the number of times it was found.

The agent converts this number into a probability. For example, if the agent found

‘dr.jhn’ 10 times and the agent pulled 20 pieces of data, the vector will hold ‘dr.jhn’ and

the probability ‘0.50’. The agent uses this probability when comparing two attributes

from different data sources to help determine if the attributes are similar.

After the agent has pulled the data from the first attribute and stored the data with its

probability, the agent moves to the next attribute and completes the same process until all

52

attributes are processed. The data structure used for this storage is a doubly linked list

with the internal list formatted as:

[attribute name, format, keyword, probability, keyword, probability, …].

The first index of this vector contains the attribute name of the column the agent is

working on. The second element of the vector contains the format of the string. The agent

uses this format string to help solidify the similarity results between two attributes. The

format string represents an expected format of the data, i.e., (###) ###-#### for a 10 digit

phone number. The format string calculation attempts to find a general format,

representing upper case letters with ‘U’, lower case letters with ‘L’, and non-alpha

characters with ‘$’. For example, if one keyword was ‘Dr. Doe’ the format string would

equal ‘UL$ULL’; where U is an uppercase letter, L is a lowercase letter, and $ represents

a special character; in this example, the $ represents ‘.’, spaces are ignored. When making

comparisons, the agent compares the format to determine if there is a format match. To

prevent erroneous matches, the format is used as an exact match. This prevents errors

such as ‘instructor’ matching to ‘course name’.

In trying to boost result percentages, modifications were made to the format string

calculation in the agents. Instead of storing the most general format every time, a process

holds the most specific format string. For example, if string1 is ‘Dr. John’ and string2 is

‘Dr. Doe’, the format string would save the most specific string1 and compare it with

string2. If the characters in the same positions match, the agent saves those characters. If

no characters match, one of the symbols U, L, or $ is saved in that characters place. The

result is the best format string possible that resembles the majority of the data contained

53

within the database. Back to the example, the format string saved would be ‘Dr. UoLL’.

Table 4-10 in Chapter 4 displays the results of this test. The formula for the calculation of

the format match is:

Ω
=∀
∑
Ω

=

),(
, 1

i
i

i yxchfeatureMat
yx β [3.1]

where β is the number of feature matches divided by the set of features, Ω. The

featureMatch(x, y) variable is a function that compares features and either two features

match or they do not. For example, if there is a total of 20 feature set matches possible,

and the agent only matched 10 features, then β is 10/20 = 0.5.

The third element of the vector is the Jaro processed keyword, with the fourth

element being the probability of the frequency of the keyword. Both the keyword and

probability values repeat until the agent processes all of the samples taken for each

attribute. As with the attribute vector, this keyword vector is also stored for as long as the

agent remains in the environment.

Once the agent leaves CoABS, all feature information is lost. If that same agent

comes back in, it must reinitialize to create its attribute and keyword vectors. This keeps

the feature setup up-to-date for any changes that occur in the database.

If Agent1 is the first agent to register in the CoABS environment, Agent1 invokes the

Jaro method to update the ontology map and distribute the map to all agents currently

registered in the system. When the second agent registers in CoABS, that agent, who

already has its attribute vector and keyword vector, looks for the lead agent. Upon finding

54

the lead agent, the second agent sends that agent its attribute vector and keyword vectors

so that the lead agent can update the ontology.

The Jaro method is a method similar to edit distance functions. Distance functions

map a pair of strings s and t to a real number r, where a smaller value of r indicates

greater similarity between s and t [15]. Similarity functions are the same except that

larger values indicate greater similarity [15]. The Jaro metric is not a distance function

but does obtain good results. The number and order of the common characters between

two strings provides the basis for the Jaro similarity metric [15]. Given two strings s and

t, the Jaro similarity metric is

Jaro (s,t) =)(* '
'''

3
1 ','

s
Ts

t
t

s
s ts−++ [3.2]

where

|s| = Length of string s,

|t| = Length of string t,

s’ = Characters in s which share the same position as they appear in t,

t’ = Characters in t which are common in s,

|s’| = Length of string s’,

|t’| = Length of string t’,

Transposition = Letters in s’ that do not equal and are not in the same position with

the letters in t’,

55

Ts’,t’ = Transposition / 2, and

H = 2
),min(ts

.

The Jaro similarity metric is used to compare the attributes and keywords resulting in

an automated ontology creation. The lead agent compares the first attribute in its attribute

vector with each attribute of the second agent. If the first two attributes match, move on

to the next attribute. If the attributes do not match, the agent sends those two attributes to

the Jaro method.

In step one of the Jaro method, the lengths of each attribute is stored in integer

variables. H is calculated using these lengths.

In the next step, character arrays store attribute strings so the agent can examine and

test the characters more easily. In addition, a conversion of the attributes to lowercase

letters takes place as they enter the character array.

In keeping with the notation in the formula, let s equal the lead agent’s attribute and

let t equal the second agent’s attribute. The next step is to determine the letters in s that

are common with t and the letters in t that are common with s. H is used to calculate a

‘moving’ window. A lower bound and an upper bound define this window. Upon

reaching the upper bound, the window moves. Once reaching the upper bound, the agent

calculates a new lower and upper bound, the agent makes character comparisons, and the

window moves again. This process continues until reaching the ends of the character

arrays. For example, let s = ‘Help’ and t = ‘HelpMe’. In the first step, the agent converts

both strings to lowercase letters and puts them into character arrays, Figure 3-4.

56

Figure 3-4. Example Character Arrays

The agent calculates the lower and upper bounds with a loop index and H. Referring

to Figure 3-4 and comparing s with t the following for loop applies:

for (int i=0; i < s.length; i++)
The lower bound ← i – H ← 0 – 2 ← -2, when i ← 0.
The upper bound ← i + H ← 0 + 2 ← 2, when i ← 0.

 Since the lower bound falls outside the dimensions of the array that bound is set to

zero if it was the lower bound or its set to the array length if the upper bound value went

outside the dimension of the array. For the first iteration described above, the window is

bounded from element zero to element 2, which correspond to the letters ‘h’, ‘e’, and ‘l’

in the t character array. This method takes the first letter of s and compares it to all letters

in the window. The first letter in array s is ‘h’. This matches the ‘h’ in the t window so

the character ‘h’ is saved in the string s’ and an ‘*’ replaces the ‘h’ in the window to

show that the element has been visited. Once ‘h’ is compared with the letters in the

window, the index is incremented, new lower and upper bounds are calculated, and the

string s’ is built. This same process is used to build the t’ string and the window moves

through the s character array instead of the t character array.

So far in the Jaro method, |s|, |t|, s’, and t’ are calculated. The next step is to calculate

the transposition. This is a straightforward computation and works as follows: the agent

compares s’ and t’ letter-by-letter. If the letters do not match, a counter is incremented.

s = h e l p t = h e l p m e

57

After comparing the two prime strings s’ and t’, the counter is divided by two and this

result is the transposition number.

The agent compares both s’ and t’ against its keyword vector. If the agent finds either

of these words in its vector, that keyword’s number quantity is incremented. If the agent

does not find either s’ or t’ in its keyword vector, the agent adds these words to the

keyword vector with a number quantity of 1 for each, because it was the first time the

agent found these words. The agent does not calculate the Jaro number for the substring

vector because the calculated number is not used here.

Finally, the s’ and t’ string lengths are found and the Jaro similarity metric is

computed for these two attributes. Once the Jaro number is calculated the Jaro number, s,

and t are sent to the method updateOntology() to build and update the ontology.

3.3.3 Building the Ontology

When a new agent enters the environment and transmits its metrics to the leader, the

first thing the leader does is compare each field in its field vector with the fields of the

newly entered agent. If the field names of two attributes match, move on to the next

attribute. If the attributes do not match, the similarity of the two fields is calculated.

For calculating two fields’ similarity, the agent sends each keyword through the Jaro

method to obtain a Jaro number. Remember, along with the keyword the probability

number and the format match is stored. For the set of best substring keyword matches,

the agent multiplies the substring probabilities together with the Jaro number, and then

sum over all matches. Once all of the keywords for these attributes are processed, the

agent analyzes the summation of the probabilities and Jaro numbers. If the summation is

58

above confidence threshold (τ) and the format match is the same, the field match is

confirmed and the ontology is updated. Otherwise, the agent discards the two attributes

and two new attributes are processed. The formula for the calculation of an attribute

match is [3.3] ∑
2,1

**)2Pr(*)1Pr(
keywordkeyword

jaroNumkeywordkeyword β

where the confidence threshold (τ) determines how similar a match is based upon the

metric comparison information and the feature match value. For all testing in this

research, τ is set to 0.80, meaning that the agent is 80% confident the two words its

comparing are similar. The higher the metric comparison, the more confidence there is a

match. If the confidence threshold is set low, some of the results will likely be erroneous.

There is a delicate balance in setting the threshold as high as possible while still obtaining

all of the attribute matches the agents should find. Table 3-1 shows a sample-negotiated

ontology.

Table 3-1. Negotiated Ontology between agents in CoABS

Automated Agent Ontology

ACFT_QTY Aircraft_QTY

WPN_QTY WPN_Quantity

ACFT_TYPE ACFT_TYPE

WPN_Quantity WEAPoN_QTY

Aircraft_QTY Aircraft_QTY

WPN_Name WPN_Name

PROB_DAMAGE

WEAPoN_QTY WPN_QTY

PROB_DAMAGE_
TOTAL

DAMAGE

PROB_DAMAGEDAMAGE

PROB_DAMAGE_
TOTAL

59

Table 3-1 is the ontology created that every agent in the environment stores. One can

see which attributes the agents matched. For example, agents concluded that WPN_QTY

is the same or similar to WPN_Quantity. When a client queries for WPN_QTY, the agent

first looks at its attribute vector. If the agent has WPN_QTY as one of its attributes, the

agent returns the information. If the agent does not have WPN_QTY as one of its

attributes, the agent will look to this table and see if there is a match with its attributes. If

a match exists, the agent will rebuild the query with the new value and return the

information to the querying client. The last step is to query the wrapper agents with a

querying agent to test the accuracy of the ontology.

3.4 Query Process

A query agent makes queries to other agents in the CoABS system. It must register

with the environment just like the database agents. After the query agent successfully

registers, the query agent searches for wrapper agents in the environment. The query

agent targets this search either to specific agents or to all agents, depending upon what

the client needs information on. For example, if the query agent wants to query Agent1

for course names, instead of getting a list of all course names from all the agents in the

system, the query agent will send a message specifically to Agent1. When the query agent

finds the agent or agents it is looking for, the query agent sends a SQL query statement to

those agents in CoABS.

After the query agent sends the message, the receiving agents process the message.

The wrapper agents compare the SQL string with their individual attribute vectors. If the

words are in the wrapper agent’s attribute vector, the agent retrieves the requested

60

information and sends it back to the querying agent. If the wrapper agent does not

recognize an attribute in the query, the agent will check the ontology map for the word. If

the agent finds the word in the ontology map, the agent rebuilds the query with the new

word, and the agent retrieves the information and sends it back to the querying agent. If

the agent does not find the word in the ontology map, the wrapper agent does not reply to

the query because it does not have the requested information.

For example, if the query received is SELECT ACFT_QTY FROM Weapon, Agent1

will process each word of the query. The first word SELECT is a SQL keyword, so

Agent1 ignores this word and grabs the next word, ‘ACFT_QTY’. If ‘ACFT_QTY’ is not

in Agent1’s attribute vector, Agent1 checks its ontology map. If Agent1 finds

‘ACFT_QTY’, the map returns its equivalent. In this example, the equivalent to

‘ACFT_QTY’ is ‘Aircraft_QTY’, Table 3-1. Agent1 replaces the word ‘ACFT_QTY’

with ‘Aircraft_QTY’ and finishes processing the SQL string which now looks like

SELECT Aircraft_QTY FROM Weapon. Agent1 has ‘Aircraft_QTY’ in its attribute

vector; therefore, Agent1 retrieves the information and sends it back to the querying

agent.

3.5 Summary

This chapter discusses the goals and requirements for successfully automating

ontology creation in the JBI. It also summarizes the approach used to satisfy the

requirements. This chapter also discusses the implementation details of this research.

This system, as detailed in this chapter, provides the initial concept for automated

ontology creation on large databases within the JBI. Although not perfect, this system

61

provides the ability to relax some formatting restrictions in the JBI environment. For

example, clients will no longer have to provide exact spelling on attributes. The syntax

can be close, and the agents will recognize that “windspeed” is the same as “Windspeed”.

Chapter 4 discusses the testing environment and the results of those tests.

62

4. Analysis and Results

This chapter discusses the evaluation of the domain ontology generating agents

wrapped around similar databases and their performance when creating an ontology as

defined in Chapter 3. This chapter also measures the effectiveness of leader negotiation

as implemented from Chapter 3. The testing used thirteen queries to measure agent

ontology mapping accuracy. To achieve 100% accuracy, all agents must return correct

responses to the queries. With the exception of the five agent test, each set of queries is

run on each different combination of the order the agents enter the CoABS environment.

The combination queries run under two conditions, before and after a leader negotiation.

 All agents exist independently. Each agent can function and process queries without

other agents in the system. Communication during leader negotiation satisfies the agent

autonomy requirement by providing agent communication and the means to negotiate

who is in charge. When the lead agent leaves the environment and another agent enters,

leader negotiation takes place. Only one agent will emerge as the new leader, and

ontology negotiation will commence thereafter. Section 4.2 shows the result of both agent

ontology creation and the leader negotiation.

4.1 System Evaluation

The entire agent architecture allows a user to interact with it as if it were one large

database. When query agents register in CoABS to make standard SQL queries to access

data from the distributed environment, the client does not need to know which database

or which wrapper agent to query. The client simply makes the query and the wrapper

63

agents return the information whether it is from one agent or from all of the agents

currently registered in the environment.

4.1.1 Ontology Creation

As each agent enters the CoABS environment, the agent assesses its surroundings

and determines how to proceed next in creating the ontology. If it is the only agent in the

environment, there is no agent negotiation for an ontology. When the second agent enters

the environment, this second agent recognizes the first agent as the lead agent and

proceeds to initiate communication and negotiation. The result is an agent created

ontology that is used by the agents when query agents access the system.

During a query, the wrapper agents look at their data. If they do not have the

requested attribute name, the wrapper agent will look to the ontology map for a

translation. If there is a translation in the mapping that references one of its attributes, the

wrapper agent translates the query and sends the requested information back to the

querying agent. If there is no translation in the ontology, the wrapper agent simply does

not reply to the query. Using this technique prevents unnecessary communication

between agents.

4.2 Three Agent Results

For the 3 agent results, three wrapper agents wrap databases that contain data split

from a simulated JBI information resource. The databases contain data pertaining to

aircraft mission sorties, including targeting information and the attributes as follows:

Aircraft quantity (ACFT_QTY), Aircraft Type (ACFT_TYPE), Date and time created

(DATETIME_CREATED), Date and time last changed (DATETIME_LAST_CHG),

64

Probable damage total (PROB_DAMAGE_TOTAL), Weapon name (WPN_NAME), and

Weapon quantity (WPN_QTY). Changes made to each database attribute simulate

different columns that contain similar data. Appendix A shows each agent with its

corresponding database attributes and how they compare.

To simulate erroneous data entry, incomplete data, and statistically different data,

modifications are made to the data in each database. Data is modified: sometimes a field

is deleted, a number changed, or the data for the particular field made completely

unrecognizable. These results show two aspects of this research. The first is the success

rate of the automated ontology creation, the second is how well the wrapper agents

decide who the next leader is, and the impact that has on the ontology.

This section compares the agent created ontology and an expert created ontology to

evaluate how well the agents created the ontology. Table 4-1 shows the expert ontology

mapping.

Table 4-1. Human Expert Ontology

ACFT_QTY ACFT_Quantity
Aircraft_QTY ACFT_QTY

ACFT_Quantity Aircraft_QTY
ACFT_TYPE Aircraft_TYPE

DATETIME_CREATED DATETIME_CREATED
DATETIME_LAST_CHG DATETIME_LAST_CHG

PROB_DAMAGE_TOTAL DAMAGE
PROB_DAMAGE PROB_DAMAGE_TOTAL

DAMAGE PROB_DAMAGE
WPN_NAME Weapon_NAME

WeaPoN_NAME WPN_NAME
Weapon_NAME WeaPoN_NAME

WPN_QTY WPN_Quantity

65

Table 4-2 shows the agent ontology mapping, which performed the best, before

leader negotiation. This mapping produced a 62% agent response with Agent3, Agent2,

then Agent1 entering the system in that order, and with each agent generating substring

statistics (α) for 80% of the records, but only transmitting the best 20, with the threshold

(τ) set at 80%.

Table 4-2. Agent Ontology Matching Before Leader Negotiation

Weapon_NAME WPN_NAME
ACFT_QTY DATETIME_CREATED

DATETIME_LAST_CHG DATETIME_LAST_CHG
ACFT_TYPE ACFT_TYPE
WPN_NAME WeaPoN_NAME

PROB_DAMAGE_TOTAL PROB_DAMAGE
DATETIME_CREATED DATETIME_CREATED

 As can be seen when comparing Table 4-1 with Table 4-2, the agent generated

ontology matched the string based fields properly, ACFT_TYPE and WPN_NAME.

However, the numeric fields, the ontology tended to mismatch, ACFT_QTY,

DATETIME_LAST_CHG. This is due to the matching method being predominantly

string based. With the numerical methods, combining the substring match with the

information used by SemInt better results should be possible.

Periodically, after the agents renegotiate a new leader, the ontology created contains

duplicate and erroneous mappings. The reason is agent ontology creation is dynamic. The

lead agent updates and distributes a new ontology every time a new agent enters the

environment. After a leader negotiation, the agent that requested a leader sends its

database vectors to the new leader making an ontology creation start again. Table 4-3

shows the best mapping created by the agents that obtained a 79% agent response rate to

66

the 13 queries used in testing, with an ontology very similar to the expert generated

version in Table 4-1.

Table 4-3. Agent Ontology Matching After Leader Negotiation

Weapon_NAME WPN_NAME
ACFT_QTY ACFT_QTY
WPN_QTY WPN_QTY

DATETIME_LAST_CHG DATETIME_LAST_CHG
ACFT_TYPE ACFT_TYPE
Aircraft_QTY Aircraft_QTY

WeaPoN_NAME WPN_NAME
WPN_NAME WPN_NAME

PROB_DAMAGE PROB_DAMAGE_TOTAL
PROB_DAMAGE_TOTAL PROB_DAMAGE_TOTAL

DATETIME_CREATED DATETIME_CREATED
DAMAGE PROB_DAMAGE_TOTAL

Figures 4-1, 4-2, 4-3, 4-4, and 4-5 below show how the agents responded to queries

after negotiating the ontology using varying amounts of the database to build the

substring vector. The bound (α) is the value of the sample size taken from the database.

The α bound used for creating the sample sizes in generating the substring vectors were

20%, 40%, 60%, 80%, and 100%, respectively, with only the best 20 substrings being

transmitted and used for ontology creation. The 100% data sample only uses each piece

of data and is not an exhaustive n*(n-1) matching of data items. The confidence threshold

(τ) is set at 0.80. The graphs show how the agents responded correctly to a query over the

13 queries in six different runs. The results in Figures 4-1 and 4-2 shows that the agents

responded correctly over 50% of the time and that the more data used for substring

creation, the better the generated ontology.

67

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

0

0.1
0.2

0.3
0.4
0.5

0.6
0.7

0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-1. 20% Query results before (left) and after (right) leader negotiation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-2. 40% Query results before (left) and after (right) leader negotiation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-3. 60% Query results before (left) and after (right) leader negotiation

68

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-4. 80% Query results before (left) and after (right) leader negotiation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-5. 100% Query results before (left) and after (right) leader negotiation

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

20% 40% 60% 80% 100%
0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62
0.64

20% 40% 60% 80% 100%

Figure 4-6. Summary query results before (left) and after (right) leader negotiation

Figure 4-6 displays the average summary results before and after the leader

negotiation. The percentages along the x-axis of the graphs are the α bound percentages

pulled from the databases. These percentages map to the percentages in the tables in

69

Figures 4-1 through 4-5. All results show that the agents responded correctly at least 51%

of the time. These two tables also show that after the leader negotiation, the generated

ontology is better. The reason for this is that instead of being a statistical combination of

all of the agents’ information, agents build the ontology using a comparison between the

leader and the new agent.

Based on the before leader negotiation Figures 4-1 through 4-5, the ontology creation

accuracy falls between 50% and 61% on average. It is easy to see that no matter what

order the agents enter CoABS the average results are statistically the same. The median

values before leader negotiation in Figure 4-6 shows that the mean falls between 53% and

55%. Just as with the agent order, no matter how much data is sampled from the database

the ontology creation accuracy is statistically the same. This is significant because if

communication bandwidth requirements are an issue, the agents only need to transfer

20% of the data to negotiate an ontology and achieve these results. There is no need to

sample the entire database when the result is going to be the same.

Analyzing the after leader negotiation results in Figures 4-1 through 4-5, the results

are similar but the percentages are a little higher. The accuracy falls between 51% and

71%. The results are better because when agents negotiate a leader, first, the agents

already have an ontology from the first negotiation, and second, the agents have a second

chance of correcting and making correct mappings adding to the already created

ontology. Therefore, the results are slightly higher and the mean values in Figure 4-6 also

support this conclusion.

70

One reason for the errors in the agent created ontology resulting in the query errors is

when agents build their keyword vectors, the agent uses sample percentages of the data in

the database to build the keyword vectors. With the exception of the 100% test, since the

sample percentage is stochastic, every time an agent negotiation takes place, the results

are slightly different from the previous run. This is why on certain runs

PROB_DAMAGE mapped to WPN_NAME. It is possible that on a subsequent run of the

agent negotiation, the agents will not produce the PROB_DAMAGE to WPN_NAME

mapping.

The addition of a feature set vector and a new format match method improves the

algorithm by achieving slightly better results. Chapter 3 explains these improvements in

detail. The improved code ran the experiment set up that produced the best result from

the original code Figure 4-7 shows that the improved code performed no less than 56%

and no higher than 72%, whereas the unimproved code peaked low at 51% and high at

79%. As before, the numbers along the x-axis show the order in which the agents enter

the environment.

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1,3,2 No FM 1,3,2 FM

Figure 4-7. 80% Query Result without Feature Match Improvement (left) and with Feature

Match Improvement (right)

To see how ontology creation and leader negotiation performs with more than three

agents, two more agents with different databases where added to the environment. The

database attributes for Agent4 and Agent5 are in Appendix A.

Table 4-4 shows the proper mapping that should take place between all five agents.

After 10 runs, using an α of 0.80 sample size, Tables 4-5 and 4-6 show the best ontology

created between the five agents.

72

Table 4-4. Human Expert Ontology Matching with five Agents

ACFT_QTY ACFT_Quantity
Aircraft_QTY ACFT_QTY

ACFT_Quantity Aircraft_QTY
ACFT_TYPE Aircraft_TYPE

DATETIME_CREATED DATETIME_CREATED
DATETIME_LAST_CHG DATETIME_LAST_CHG

PROB_DAMAGE_TOTAL DAMAGE
PROB_DAMAGE PROB_DAMAGE_TOTAL

DAMAGE PROB_DAMAGE
WPN_NAME Weapon_NAME

WeaPoN_NAME WPN_NAME
Weapon_NAME WeaPoN_NAME

WPN_QTY WPN_Quantity
CATEGORY CAT
COORD_LT COORD_LAT

COORD_LONG COORD_L
COORD_L_ORD COORD_LONG_ORD

DATETIME_CREATED DATE_CREATED
DATETIME_LAST_CHG TIME_LAST_CHG

Table 4-5. Best Agent Ontology Creation with Five Agents 1

COORD_LONG PROB_DAMAGE
WPN_QTY WPN_Quantity
COORD_L PROB_DAMAGE

Aircraft_TYPE PROB_DAMAGE
WPN_NAME PROB_DAMAGE

WeaPoN_NAME Weapon_NAME
ACFT_TYPE WPN_Quantity
Aircraft_QTY DMPI_ID

CAT PROB_DAMAGE
ACFT_Quantity WPN_Quantity

DATE_CREATED Aircraft_QTY
TIME_LAST_CHG Aircraft_QTY

ACFT_QTY Aircraft_QTY
PROB_DAMAGE_TOTAL PROB_DAMAGE

DMPI_ID Aircraft_QTY
DAMAGE PROB_DAMAGE

73

Table 4-6. Best Agent Ontology Creation with Five Agents 2

DATETIME_LAST_CHG DATETIME_LAST_CHG
FAC_NAME FAC_NAME
NO_STRIKE NO_STRIKE

COLLATERAL_DAMAGE COLLATERAL_DAMAGE
FUNCT_PRIMARY FUNCT_PRIMARY

COORD_LT COORD_LT
COORD_LONG_ORD COORD_LONG_ORD

WPN_Quantity WPN_Quantity
TGT_OBJ_NAME TGT_OBJ_NAME
OPER_STATUS OPER_STATUS
COORD_L_ORD COORD_L_ORD

EVAL EVAL
MSN_TYPE MSN_TYPE

PROB_DAMAGE PROB_DAMAGE
DATETIME_CREATED DATETIME_CREATED

CONDITION CONDITION
CC CC

TGT_DTL_NAME TGT_DTL_NAME
COORD_DERIV COORD_DERIV

COORD_LAT COORD_LAT
COORD_ROA COORD_ROA

COORD_LAT_ORD COORD_LAT_ORD
REMARK REMARK

4.3 Five Agent Results

Using the same settings as the three agent results, negotiation is tested with five

agents. This test determines if an increase in the number of agents would have an effect

on the applicability of the generated domain ontology.

Table 4-5 shows an ontology result with agents entering the environment in 1, 2, 3, 4,

5 order, pulling 80% of their database data, α = 0.80. The agents only correctly matched

29% of the possible attribute matches. Table 4-6 lists the mappings that are common in

two or more databases. Table 4-4 shows the mappings the five agents should have

74

negotiated, 17 in all. Figure 4-8 shows the ontology creation results with five agents. The

data was taken from 10 runs of the five different α bounds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20% 40% 60% 80% 100%

Figure 4-8. Five Agent Ontology Results

Figure 4-8 shows agents created the best ontology when α is 0.20. Both the 0.80

bound and the 1.0 bound data resulted in ontology creation where none of the 17 required

matches matched. This indicates that as more agents enter the system, the more difficult

the ontology generation becomes. A way to alleviate this is to cooperatively create the

ontology by eliminating the sole leader. Essentially, each agent has the ability to create,

modify, and finalize an ontology. However, this alternative is more memory and

communication intensive because each agent must maintain a representation of other

agents’ data.

75

4.4 Large Dataset Results

Testing was accomplished with the sample size (α) set at the five different settings

0.20, 0.40, 0.60, 0.80, and 1.00, the confidence threshold (τ) is set at 0.80, and only the

best 20 substrings are transmitted to the lead agent for ontology negotiation.

This database is larger than the previous with 6 attributes and over 4700 rows of

information. Appendix B shows the agents used and their attribute values. Appendix B

also shows the proper mappings that should take place for a successful agent ontology

negotiation. Figures 4-9 through 4-13 show the results of those tests. Figure 4-14 shows

the summary results of all percentage queries before and after leader negotiation using

the same α bounds as in the previous tests.

0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-9. 20% Oracle data query results before (left) and after (right) leader negotiation

0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-10. 40% Oracle data query results before (left) and after (right) leader negotiation

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-11. 60% Oracle data query results before (left) and after (right) leader negotiation

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-12. 80% Oracle data query results before (left) and after (right) leader negotiation

0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-13. 100% Oracle data query results before (left) and after (right) leader negotiation

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

20% 40% 60% 80% 100%
0

0.1

0.2

0.3

0.4

0.5

0.6

20% 40% 60% 80% 100%

Figure 4-14. Oracle summary query results before (left) and after (right) leader negotiation

77

This set of tests ran 13 queries against three agents. As in the previous tests, there are

a possible 39 responses and the best result achieved 64% match success rate, with an α of

0.60 before leader negotiation, and the agents entering the environment in Agent2,

Agent1, and Agent3 order. Figure 4-11 shows this result. This ontology creation was more

difficult for the agents that the previous. Two of the six attribute fields are number fields

and the agents have a difficult time determining whether the attribute match exists or not.

These fields are mapped based upon the keyword data making the resulting queries

incorrect.

The box and whisker plots in Figures 4-9 through 4-13 are comparable to the smaller

dataset results above. The before leader negotiation results support the conclusion that

even with a large dataset, no matter how the agents enter CoABS, the accuracy of the

ontology created is statistically the same. The results fall between 41% and 50%. After

leader negotiation, results show less variance with the large dataset because just as with

the small dataset results, the agents have a second chance to correct mappings in the

ontology making the results slightly better. The results fall between 42% and 52%. The

median summaries in Figure 4-14 also support this conclusion.

4.5 String Only Results

This result shows how this research technique performs when the databases contain

only strings, no numbers. For this test, three agents were used and the databases contain 7

attributes and 306 rows of information. Appendix C lists the attribute values for the three

agents used. The agent settings are the same as in the previous tests, the sample size (α)

78

is set at 0.80, the confidence threshold (τ) is set at 0.80, and only the best 20 substrings

are transmitted to the lead agent for ontology negotiation. Figure 4-15 shows this result.

0

0.1

0.2

0.3

0.4

0.5

0.6

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1,2,3 2,3,1 3,1,2 1,3,2 2,1,3 3,2,1

Figure 4-15. 80% String only query results before (left) and after (right) leader

negotiation

The string only best result was 64% match success rate after leader negotiation with

the agents entering in Agent1, Agent3, and Agent2 order. These results are comparable to

the previous testing, but more testing is required to see if there is more improvement

when dealing strictly with strings, or if it makes no difference what kind of data is being

processed.

One last test was accomplished to test the theory that if all databases in the test were

the same, except for the attributes, then the Jaro similarity metric should perform better

than the string only case. This test pulled 20% sample data and ran 13 queries. There is a

possible 39 correct responses as in the previous tests. The match accuracy result was only

36%. This leads to one of two conclusions. Either 79% is the best that the Jaro Similarity

Metric can do with mixed data or due to the sampling of the data that generates the

keyword vector, the process is stochastic not deterministic. The result is that this method

will most likely not achieve a true 100% match without additional information. However,

79

a 79% match by making a comparison with the best 20 keywords from a 20% sampling

of the data is very good.

4.6 Research Benefits

The benefits of this research are two-fold. It provides a feasible way to automate

agent ontology creation and each agent involved is autonomous.

Results show that an automated ontology creation is possible relieving the human

expert from manual mapping the data. Other research experienced comparable results,

but with some using external techniques in the matching. For example, the best matching

SemInt achieved was 44% for 2578 attributes in 293 tables, with 1760 data elements [22].

Using string matching algorithms and techniques without external data dictionaries or

thesauruses, the agents in the environment compare words and come up with a similarity

metric. Depending on the value of the metric, the agents decide whether the words are

similar and the results are stored for all agents to use. Since each agent has a copy of the

ontology data retrieval is quick. If another agent entering CoABS updates the ontology,

the agent sends the new ontology map out to all agents again ensuring global consistency

throughout the environment.

This research also keeps all agents autonomous. Every wrapper agent has the same

code as every other agent. This means that if the lead agent leaves the environment all

other agents can still function and process queries. Only upon a new agent entering

CoABS does ontology negotiation take place. In this case, the agents decide amongst

themselves which agent will emerge as leader and provide the ontology negotiation

facilities to the new agent updating the ontology as needed.

80

4.7 Summary

These results show that automated agent ontology creation is feasible. The three agent

experiments produced results no less than 51% correctness while other research efforts

produced results anywhere from less than 20% to over 98% correctness. The five agent

and string only experiments produced results no less than 39%. In order for these other

research efforts to achieve such high correctness percentages, they use data dictionaries,

thesauruses, neural networks, and some used combinations of techniques together. This

research uses no outside help and works solely on the attributes, data, and metadata

information. Implementing the two code enhancements, specific to general format

matching and feature set vector, improved the results slightly. Chapter 5 discusses the

conclusion and suggests ways to expand this research.

81

5. Conclusions and Recommendations

This research provides a multi-agent methodology and implementation that provides

services for accessing multiple information sources, each of which make use of different

data and message formats. Currently an expert integrates these data sources by hand. The

implementation of this research proposes automatic mapping of the relationships using

intelligent agents. These intelligent agents communicate and negotiate an ontology

thereby eliminating the need for an expert to develop the ontology by hand. The ontology

created is as dynamic as the agents themselves are. When a new agent enters the

distributed environment, the lead agent negotiates and distributes a new ontology to all

agents in the environment.

Coupled with this approach all the agents are autonomous and can negotiate, update,

and distribute the ontology. When the agents enter the environment, a leader is decided

and that leader is the one that commands all ontology negotiations until that agent leaves

the system.

This solution, automated agent ontology creation, meets the criteria for a successful

implementation to automated ontology creation. The wrapper agents enter the CoABS

environment, transmit vectors to the lead agent, and the lead agent invokes the Jaro

similarity metric method. The lead agent updates and distributes the newly created

ontology to all agents in the environment. In comparison to related work, this solution

proved to be more simplistic and require little or no human expert for manually mapping

an ontology to integrate distributed database systems. In satisfying the criteria for a

successful implementation, this research lays the groundwork for a solution to automate

agent ontology creation.

82

This solution is feasible for the DOD to implement. Tackling the interoperability

problem, this research enables a JBI implementation that does not need the XML exact

match implementation. In addition, experts need not fully scrub and correct data in their

databases before publishing their information to the JBI.

5.1 Recommendations for Future Research

This research is a step toward automating ontology creation. Using this method in the

JBI will enable some JBI restrictions to relax and make it a more viable solution to

implement. This research requires more work to ensure that the ontology creation process

is less volatile and more consistent. The following improvements suggest ways to

accomplish these goals.

The ontology should maintain all of the metric information from the other agents in

the environment. This will ensure that any ontology updating that takes place, matches

with all of the agents, not just the leader.

If agents could recognize that two fields in one database represent one combined field

in another, the ontology created would be more accurate and more automated. There is no

need for a human expert to go in and correct this relationship. The ontology would look

something like, ‘time’ → ‘day_time’ and ‘day’ → ‘day_time’.

SemInt, discussed in Section 2.7.4, uses numerical methods that operate on more

metadata features than was done in this research. Combining the substring match with the

information used by SemInt should produce better results than those found in Chapter 4.

Instead of leaving the ontology negotiation up to one agent, allow agents to

cooperatively create the ontology eliminating the sole leader. Although this will result in

83

more communication and memory requirements, this technique could also produce better

results than those in Chapter 4.

In addition, exploring different distance similarity metrics could produce better

results that are more consistent. The Jaro metric provided a way to see how feasible

automated agent ontology creation was for string-based fields. There are other distance

metrics, which could prove to be better and more accurate than the Jaro similarity metric

method for numeric or number related fields.

84

Appendix A

Agent Attribute Values

Agent1 Agent2 Agent3
ACFT_QTY ACFT_Quantity Aircraft_QTY
ACFT_TYPE Aircraft_TYPE ACFT_TYPE

DATETIME_CREATED DATETIME_CREATED DATETIME_CREATED
DATETIME_LAST_CHG DATETIME_LAST_CHG DATETIME_LAST_CHG

PROB_DAMAGE_TOTAL DAMAGE PROB_DAMAGE
WPN_NAME Weapon_NAME WeaPoN_NAME
WPN_QTY WPN_QTY WPN_Quantity

Agent4 Agent5
CATEGORY CAT
CONDITION CC

COORD_DATUM COLLATERAL_DAMAGE
COORD_DERIV CONDITION

COORD_LT COORD_LAT
COORD_LAT_ORD COORD_LAT_ORD

COORD_LONG COORD_L
COORD_L_ORD COORD_LONG_ORD

COORD_ROA DATE_CREATED
DATETIME_CREATED TIME_LAST_CHANGED

DATETIME_LAST_CHG FAC_NAME
DMPI_ID FUNCT_PRIMARY

EVAL NO_STRIKE
MSN_TYPE OPER_STATUS

OPER_STATUS REMARK
TGT_DTL_NAME
TGT_OBJ_NAME

85

Appendix B

Oracle Data Agent Attribute Values

Agent1 Agent2 Agent3
MSN_WW_ID Mission MissionID

AIR_MSN_EVNT_ID MISSION_EVENT EVENT_ID
ABP_WW_ID ABP_WW_ID WW_ID
ABP_REQ_ID REQ_ID ABP_ID

AMO_ID AMO_ID AMO_ID
AIR_MSN_EVNT_ACTUAL_DTTM ACTUAL_DTTM DATETIME

86

Appendix C

String Only Agent Attribute Values

Agent1 Agent2 Agent3
CC BB AA

COLLATERAL_DAMAGE XTRA_DAMAGE OTHER_DMG
CONDITION COND STATE
FAC_NAME FACILITY NAME_OF_FACILITY

FUNCT_PRIMARY PRIMARY_FUNCTION TARGET_TYPE
OPER_STATUS O_STAT OPERATOR

REMARK COMMENTS ADD_INFO

87

Bibliography

1. Kowalchuk, A., Implementing an Information Retrieval and Visualization
Framework for Heterogeneous Data Types. Masters Thesis. Department of
Computer Systems, Air Force Institute of Technology, Wright Patterson Air
Force Base OH, 2003.

2. Roell, R., A Data Framework for Integrating Heterogeneous Systems Using Agents,
XML, and CoABS. Masters Thesis. Department of Computer Systems, Air Force
Institute of Technology, Wright Patterson Air Force Base OH, 2003.

3. United States Air Force Scientific Advisory Board. Information Management to

Support the Warrior. Report SAB-TR-98-02, December 1998.

4. Department of Defense. Joint Vision 2020. Chairman Joint Chief of Staff.

20 September 2001.

5. Hendler, J., Agents and the Semantic Web. University of Maryland, 2001.

6. Marmelstein, R., Force Templates: A Blueprint for Coalition Interaction within an

Infosphere. Air Force Research Laboratory, Rome, NY, May/June 2002.

7. Milligan, J., and J. Hendler. JBI Fuselet Definition Document. Air Force Research

Laboratory, Rome, NY, Draft – May 2003.

8. Kindler, C., Jini-Based Publish and Subscribe for JBI Clients. ITT Industries,

Advanced Engineering and Sciences, 2002.

9. Kavi, K., , M. Aborizka, , and D. Kung, A Framework For Designing, Modeling and

Analyzing Agent Based Software Systems. 2002.

10. Sun Microsystems. Jini Network Technology. 2001 Palo Alto, CA,

http://wwws.sun.com/software/jini/whitepapers/jini-datasheet0601.pdf.

11. Kahn, M., and C. Cicalese. DARPA CoABS Grid Users Manual.

http://coabs.globalinfotek.com/public/downloads/Grid/documents/GridUsersManual.
v4- draft.doc. October 2002.

12. Gruber, T., A translation approach to portable ontologies. Knowledge Acquisition,

5(2):199-220, 1993.

13. DiLeo, J., Ontological Engineering and Mapping in Multiagent Systems

Development. Masters Thesis. Department of Computer systems, Air Force
Institute of Technology, Wright Patterson Air Force Base OH, 2002.

88

14. Han, J., and M. Kamber, Data Mining Concepts and Techniques. Academic Press,
San Diego, CA, 2001.

15. Cohen, W., P. Ravikumar, and S. Fienberg. A Comparison of String Distance Metrics

for Name-Matching Tasks. Center for Automated Learning and Discovery,
School of Computer Science, Carnegie Mellon University, 2003.

16. Machado, C., and K. Hill, Probabilistic Record Linkage and an Automated Procedure

to Minimize the Undecided-Matched Pair Problem. The Bloomberg School of
Public Health, Johns Hopkins University, 2003.

17. Charras, C. and T. Lecroq, Boyer-Moore Algorithm. http://www-igm.univ-

mlv.fr/~lecroq/string/node14.html, 1997.

18. Miller, G., C. Fellbaum, R. Tengi, S. Wolff, P. Wakefield, H. Langone, and B.

Haskell, WordNet. Cognitive Science Laboratory, Princeton University,
http://www.cogsci.princeton.edu/~wn/index.shtml, 2003.

19. Weiss, G., Multi-Agent Systems. MIT Press, Cambridge MA, 1999.

20. Arai, S., K. Sycara, and T. Payne, Multi-Agent Reinforcement Learning for Planning

and Scheduling Multiple Goals. 1-2, 1999.

21. Sycara, K. and A. Ankolekar. Retsina. The Intelligent Software Agents Lab – The

Robotics Institute, Carnegie Mellon University, http://www-
2.cs.cmu.edu/~softagents/retsina.html, 2001.

22. Clifton, C., E. Housman, and A. Rosenthal, Experience with a Combined Approach to

Attribute-Matching Across Heterogeneous Databases. Chapman and Hall Press,
1997.

23. Berlin, J. and A. Motro, Database Schema Matching Using Machine Learning with

Feature Selection. Information and Software Engineering Department, George
Mason University, 2002.

24. Do, H. and E. Rahm, COMA – A System for Flexible Combination of Schema

Matching Approaches. University of Leipzig, 2002.

25. Madhavan, J., P. Bernstein, and E. Rahm, Generic Schema Matching with Cupid.

Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

26. Madhavan, J., P. Bernstein, K. Chen, A. Halevy, and P. Shenoy. Corpus-based

Schema Matching. University of Washington, 2003.

89

27. Bouquet, P., L. Serafini, and S. Zanobini. Semantic Coordination: A New Approach
and an Application, Department of Information and Communication Technology,
University of Trento, 2003.

28. Williams, A., and C. Tsatsoulis. An Instance-based Approach for Identifying

Candidate Ontology Relations within a Multi-Agent System. Department of
Electrical and Computer Engineering, University of Iowa, 2001.

29. Doan, A., P. Domingos, and A. Halevy. Reconciling Schemas of Disparate Data

Sources: A Machine Learning Approach. Department of Computer Science and
Engineering, University of Washington, Seattle, WA, 2001.

30. Do, H., S. Melnik, and E. Rahm, Comparison of Schema Matching Evaluations.

University of Leipzig, Germany, 2003.

31. Yatskevich, M., Preliminary Evaluation of Schema Matching Systems. Department of

Information and Communication Technology, University of Trento, Italy, 2003.

90

Vita

First Lieutenant Austin A. Bartolo graduated from Aquinas High School in

Southgate, Michigan. He entered undergraduate studies at Chapman University in

Tucson, Arizona where he graduated with a Bachelor of Science degree in Computer

Science in May 1997. He was commissioned through OTS at Maxwell AFB, Alabama.

Before earning his commission, Austin spent 13 years enlisted in the Air Force. His

first assignment was at Malmstrom AFB, Montana where he worked as an air cargo

specialist in March 1987. In November 1989, he was assigned to the 616th Aerial Port

Squadron, Galena APT, Alaska where he served as an air cargo specialist. From 1990 to

1995, Austin Bartolo worked in the Traffic Management Office at Davis-Monthan AFB,

Arizona. In February 1995 he became a member of the 630th Air Mobility Support

Squadron at Yokota AB, Japan and spent four years as a passenger service representative.

In February 1999 he was stationed at the 60th Aerial Port Squadron at Travis AFB,

California where he served as the squadron network NCOIC. In April 2000, Austin

served as the officer in charge of the Information Systems Office in the Network Control

Center at Scott AFB, Illinois. In August 2002, he entered the Graduate School of

Engineering and Management, Air Force Institute of Technology. Upon graduation, he

will be assigned to the Standard Systems Group, Maxwell Gunter Annex, Alabama.

91

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

March 2003 – March 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

AUTOMATED AGENT ONTOLOGY CREATION FOR
DISTRIBUTED DATABASES 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Bartolo Austin A., First Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-01

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Rome Labs Information Directorate/IFTC
Attn: Mr. Douglas Holzhauer Air Force Material Command(AFMC)
26 Electronics Parkway DSN: 587-4920
Rome, NY 13441-4514 e-mail: Douglas.holzhauer@rl.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 In distributed database environments, the combination of resources from multiple sources requiring different interfaces is a universal problem.
The current solution requires an expert to generate an ontology, or mapping, which contains all interconnections between the various fields in the
databases. This research proposes the application of software agents in automating the ontology creation for distributed database environments
with minimal communication. The automatic creation of a domain ontology alleviates the need for experts to manually map one database to other
databases in the environment. Using several combined comparison methods, these agents communicate and negotiate similarities between
information sources and retain these similarities for client agent queries without the manual mapping of different data sources achieving an
average accuracy of 57% before leader negotiation and an average accuracy of 61% after leader negotiation. The best matching accuracy achieved
in a single test is 79%.
 This is directly applicable to the Department of Defense (DOD) that possesses many systems which share information that enables the military
to achieve their objectives. The DOD created an environment called the Joint Battlespace Infosphere (JBI) to solve this integration problem. This
research improves upon the JBI’s use of exact matching of field names for integrating the information within the environment. It simulates this
type of interaction by demonstrating agents wrapped around different databases negotiating and generating an ontology. An agent-generated
ontology is compared with an expert generated ontology and testing uses a set of queries run against the ontologies show that this technique can
be useful in a distributed information environment.
15. SUBJECT TERMS
 Distributed Databases, Agents, Ontology

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Peterson, Gilbert L., PhD

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

106

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281
(emailname@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Automated Agent Ontology Creation for Distributed Databases
	Recommended Citation

	Microsoft Word - AFIT-GCS-ENG-04-01.doc

