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Abstract

The Air Force has placed a high priority on developing new and innovative ways to

use Unmanned Aerial Vehicles (UAVs). The Defense Advanced Research Projects Agency

(DARPA) currently funds many projects that deal with the advancement of UAV research.

The ultimate goal of the Air Force is to use UAVs in operations that are highly dangerous

to pilots, mainly the suppression of enemy air defenses (SEAD). With this goal in mind,

formation structuring of autonomous or semi-autonomous UAVs is of future importance.

This particular research investigates the optimization of heterogeneous UAV multi-

channel communications in formation. The problem maps to the multiobjective Quadratic

Assignment Problem (mQAP). Optimization of this problem is done through the use of a

Multiobjective Evolutionary Algorithm (MOEA) called the Multiobjective Messy Genetic

Algorithm - II (MOMGA-II). Experimentation validates the attainment of an acceptable

Pareto Front for a variety of mQAP benchmarks. It was observed that building block size

can affect the location vectors along the current Pareto Front. The competitive templates

used during testing perform best when they are randomized before each building block size

evaluation. This tuning of the MOMGA-II parameters creates a more effective algorithm

for the variety of mQAP benchmarks, when compared to the initial experiments. Thus

this algorithmic approach would be useful for Air Force decision makers in determining

the placement of UAVs in formations.

xx



OPTIMIZATION OF HETEROGENEOUS UAV COMMUNICATIONS USING

THE MULTIOBJECTIVE QUADRATIC ASSIGNMENT PROBLEM

1. Introduction

Unmanned Aerial Vehicles (UAVs) are quickly moving into the forefront of military avia-

tion. In fact, many of the current leaders, including the current Air Force Chief of Staff,

General Jumper, are expressing their desire for an increased role for UAVs [9]. Even

congress has weighed in on the matter, stating that one-third of the deep strike force

aircraft should be unmanned by 2010 [30]. Currently, UAV development is focusing on

more traditional aircraft and delivery mechanisms, but some research also includes minia-

ture UAVs and autonomous, cooperative control [83, 101]. This particular investigation

emphasizes optimization of abstract UAV communications.

1.1 Problem Statement

Currently, the primary roles for UAVs are reconnaissance and surveillance missions

over the battle field. But, by the year 2010, the Air Force hopes to perform suppression

of enemy air defense (SEAD) missions with the unmanned combat aerial vehicle (UCAV)

[30]. Further in the future, the Air Force wants UAVs, flying in large groups, to play a

bigger role over the field of battle. One viable scenario is having a heterogenous group of

UAVs flying jointly to meet an objective. There could be some in the group whose job is

reconnaissance and reporting the information to the UCAV. The UCAV’s goal is taking

out a target when it is located by one of the other UAVs. In addition, “fighter” UAVs may

be present, who defend the group of UAVs from enemy aircraft. Figures 1.1 and 1.2 show

examples heterogenous UAVs flying in formation.

While location in the formation for their particular part of the mission is important,

they also need to be in a position where they can communicate effectively with the UAVs

that they need. For example, the reconnaissance UAVs need to communicate coordinates

to the combat UCAVs, to enable them to find their target. The fighter UAVs need to
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Figure 1.1 An example of a heterogeneous UAV formation

communicate with all of the other UAVs when they sense approaching enemy aircraft, so

that the group can take evasive action. And the UCAVs need to communicate when they

have no more munitions left. All of these flows of communication can also dictate where

the best location in the group may be for each UAV.

Specifically stated, the problem analyzed in this research consists of a heterogeneous

mix of 10, 20, and 30 UAVs, all flying in a fixed formation with fixed communication rates

to the other UAVs. This problem is easily extended to include more UAVs, but 10 - 30

was chosen based on the test suite used.

1.2 Sponsors

This research is sponsored by the Information Directorate (IF) and the Air Vehicles

(VA) Directorate, Air Force Research Laboratory (AFRL), Wright Patterson Air Force

Base, Ohio. The mission statement of AFRL/IF is: ”The advancement and application

of Information Systems Science and Technology to meet Air Force unique requirements
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Figure 1.2 Another example of a heterogeneous UAV formation

for Information Dominance and its transition to air and space systems to meet warfighter

needs” [2]. The research presented here supports this mission through the development

of an effective algorithm that limits the total propagation time of communications in a

heterogenous mix of UAVs flying in a formation. Specific points of contact include Dr.

Robert L. Ewing (AFRL/IFTA) and Mr. Bruce T. Clough (AFRL/VACC).

1.3 Goals, Objectives, and Approach

The ultimate goal of this research is to find an algorithm that effectively and ef-

ficiently limits the aggregate amount of communication propagation time among a fixed

formation of 10 - 30 heterogeneous UAVs. This goal is decomposed into two objectives:

1. Develop an effective algorithm to solve the problem

2. Attempt to improve the algorithm’s efficiency while maintaining the effectiveness

1-3



1.3.1 Development of an Effective Search Algorithm. The first objective is to find

an algorithm that effectively solves the communication problem. But what is considered

effective, especially if there are no optimal solutions known for the problem? For this

research, an effective algorithm is one that finds better results than most of the other

published results. Several sub-objectives are required to validate this effectiveness:

1. Mapping of the UAV problem to a mathematical formulation and analysis of struc-

ture.

2. If feasible, use a deterministic algorithm to solve low dimensional problem optimally.

3. Find a good stochastic algorithm to solve problems of high UAV dimension.

4. Use optimal results, if available, to compare results of stochastic method.

5. Compare stochastic results with other results from literature

1.3.2 Efficiency Objectives. The second objective is to improve the efficiency

of the algorithm. In order to realize this objective, several steps are taken. These sub-

objectives are:

1. Use initial runs as a baseline for future runs and to test improvement.

2. Look for bottlenecks in the code and try to alleviate them when applicable.

3. Apply parallel processing in an attempt to speed up the algorithm.

1.4 Thesis Overview

Chapter 2 gives background information on the problem and on the mQAP. Chapter

3 supplies the background information for the MOEA. Chapter 4 describes the MOMGA-

II algorithm and its development. Chapter 5 goes into detail about the software design.

Chapter 6 describes the design of experiments. Chapter 7 discusses the results and presents

an analysis of the data. Chapter 8 presents the conclusions drawn from this research as

well as future work.
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2. Multiobjective Quadratic Assignment Problem

2.1 Introduction

Computers are powerful computational tools and researchers use them to solve many

complex problems. These problems are typically grouped into more generalized problem

classes. These include the the travelling salesmen problem (TSP), the graph coloring

problem, and the vehicle routing problem (VRP). Problems are also grouped into meta

classifications based on their complexity. They include polynomial (P), nondeterministic

polynomial (NP), and (NP-Complete) problems. Section 2.2 states the problem we are

trying to solve. Section 2.3 gives a description of the single objective QAP, its origins, and

its applications. Section 2.4 discusses the mQAP and how it is related to this research.

2.2 Problem Description

Currently, the Air Force uses UAVs for reconnaissance missions over the field of

battle. But they are looking to expand the UAV role in the near future. By the year

2010, the Air Force hopes to perform SEAD missions with the UCAV [30]. Further in

the future, the Air Force wants UAVs, flying in large groups, to play a bigger role in the

air. One viable scenario is having a heterogenous group of UAVs flying jointly to meet an

objective. There could be some in the group whose job is reconnaissance and reporting

the information to the UCAV. The UCAV’s goal is taking out a target when it is located

by one of the other UAVs. In addition, ”fighter” UAVs may be present, who defend the

group of UAVs from enemy aircraft.

In a large, heterogenous group, such as this one, a UAVs position, with respect to

the other UAVs is important. For example, it would be best to place fighter UAVs around

the outside of the group in order to protect the group as a whole from enemy aircraft.

It would also be advantageous to have the reconnaissance planes nearer to the ground in

order to allow them to have a full field of view that isn’t obstructed by other aircraft.

While location in the formation for their particular part of the mission is important,

they also need to be in a position where they can communicate effectively with the UAVs

that they need to. For example, the reconnaissance UAVs will need to communicate
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coordinates to the combat UCAVs, to enable them to find their target. The fighter UAVs

will need to communicate with all of the other UAVs when they sense approaching enemy

aircraft, so that the group can take evasive action. And the UCAVs need to communicate

when they have no more munitions left. All of these flows of communication can also

dictate where the best location in the group may be for each UAV.

The UAV communication and mission success problem is a natural extension of

the multiobjective Quadratic Assignment Problem (mQAP). The mQAP comes from the

quadratic assignment problem (QAP) and was introduced by Knowles and Corne [71]. The

following sections go into more detail about both the QAP and mQAP.

2.3 Quadratic Assignment Problem (QAP)

The QAP is a Combinatorial Optimization Problem (COP). The definition of a

general COP is as follows:

Definition 1 (General COP): Let B be a finite set called the ground set. The objective

of the combinatorial optimization problem is to find the minimum cost element in the set

of feasible solutions X ⊆ 2B, i.e.,

min{c(x) : x ∈ X}

where c : X → < denotes a cost mapping [77]. ¤

The QAP is a minimization problem. Section 2.3.1 gives a brief history of the QAP.

It also gives the definition of the QAP. Since its inception, many problems have been

mapped to the QAP. Section 2.3.2 mentions a few of these problems. Finally, Section 2.3.3

lists a few of the methods that have been used to solve the QAP.

2.3.1 History and Definition. Koopmans and Beckmann formulated the QAP

in 1957 [76]. They used it to model the cost of interplant transportation among several

industrial locations. They found that the linear assignment problem, which ignored the

cost of transportation between locations, was too constrained.
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2.3.1.1 Literal QAP Definition. A QAP consists of a finite number of

locations that have fixed distances between each location. In addition, there are an equal

number of facilities that need to be mapped to each location. Each facility has a fixed flow

to every other facility. To arrive at a solution, every facility is mapped to a location and

the flow to every facility is multiplied by the distance to every location. The cost is the

summation of all of these products. The best answer is the lowest cost generated.

Most researchers represent the QAP input as two matrices. Presented below is an

example of a five location, five facility QAP instance. Table 2.1 displays the matrix of

distances between locations. Table 2.2 shows a matrix of the facilities and their respective

flows. Notice how every location needs a distance between it and the other distances, but

the facilities can have no flow to another facility. Also note that by setting all the flows to

one, the QAP is simplified to the linear assignment problem

Table 2.1 Example of a QAP matrix relating 5 locations and their distances
apart

Location 1 2 3 4 5
1 0 10 15 10 5
2 10 0 10 12 15
3 15 10 0 10 20
4 10 12 10 0 7
5 5 15 20 7 0

Table 2.2 Example of a QAP matrix relating 5 facilities and their flows to
each other

Facility 1 2 3 4 5
1 0 2 5 0 2
2 2 0 0 4 5
3 5 0 0 4 0
4 0 4 4 0 0
5 2 5 0 0 0

A graphical representation of the QAP example is shown in figure 2.1.

2.3.1.2 Mathematical QAP Definition 2.1. One popular mathematical

definition of the QAP is as follows:
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Figure 2.1 Graphical example of a QAP representation for 5 locations and 5 facilities

minC(π) = min
π∈P (n)

n∑

i=1

n∑

j=1

aijbπiπj (2.1)

where n is the number of objects/locations, aij is the distance between location i and

location j, bij is the flow from object i to object j, and πi gives the location of object

i in permutation π ∈ P (n) where P (n) is the QAP search space, which is the set of all

permutations of {1, 2, . . . , n} [72].

This problem is not only NP-hard and NP-hard to approximate, but is almost in-

tractable [16]. It is generally considered to be impossible to solve optimally any QAP that

has 20 instances or more within a reasonable time frame [16, 95].

2.3.2 Applications. Many applications have been mapped to the QAP. The

facility location problem [76] has already been discussed. Other applications that have

been mapped to the QAP include:

• Interconnection networks [82]

• Backboard wiring problems [93]

• Network software switches supporting internet telephony [110]

2-4



• Digital signal processor (DSP) memory layout [124]

• Floor planning for Very Large System Integration (VLSI) design [125]

In addition, more applications are listed in [16]. These include applications in sports,

chemistry, and archeology to name a few.

Some in depth analysis of the QAP has been done by some researchers [11, 13, 16].

Others contribute to QAP knowledge by presenting a survey of techniques, applications,

and methods for the QAP [94, 95].

2.3.3 Methods of Solving. There are many approaches a researcher can try to

solve the QAP. But finding an optimal solution is difficult for large problem instances.

Usually, only problem instances of size 20 or less can be solved optimally. Moreover, Cela

[16] states that problem instances of size 15 are difficult.

In cases where the optimal solution can be found (usually less than size 15), branch

and bound methods are typically used [3, 10, 16, 52, 98]. [8] creates a queue based model

approach to solve the QAP. [62] uses a bilinear approach to simplify the QAP to a mixed

integer-continuous linear program.

Unfortunately, problems larger than size 20 are found in the real-world. These larger

problems require the use of stochastic methods to find a good solution in a reasonable

time. Below is a list of some of the stochastic methods and algorithms used to solve the

QAP.

• Ant Colony Optimization [44, 84, 106]

• Genetic Algorithm [1, 114]

• Evolution Strategies [36, 58, 91, 92]

• Scatter Search Algorithm [22]

• Tabu Search [43]

• Neural Network [61, 107]

• Greedy randomized adaptive search (GRASP) [81]
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• Hybrid Methods

– COSEARCH - Tabu Search & GA [5, 6]

– Tabu Search, local search & GA operators [37]

– Genetic algorithm & local search [87–89]

– Ant colony optimization & local search [111]

– Simulated annealing & genetic programming [116]

– GA & Tabu search [121]

– EA & simulated annealing [126]

The use of parallel methods is another way to gain efficiency and/or effectiveness

when solving the QAP. Some of the parallel methods are listed below.

• Branch-and-bound on a computational grid [3]

• Branch-and-bound in parallel using ZRAM [10]

• COSEARCH [5, 6]

• Evolution Strategy using a torus topology [36]

• Genetic Algorithm [55]

• Uses an r-dimensional grid [125]

• Guided Evolutionary Simulated Annealing (GESA) [126]

Many researchers, including most of the ones listed above, use the QAPLIB bench-

marks [14] to compare their results with others. Using these problems as benchmarks gives

researchers an idea if their method is fruitful or if other methods are better. New bench-

mark instances are proposed in [32]. These new instances are difficult for meta-heuristic

methods to solve.

2.4 Multiobjective Quadratic Assignment Problem (mQAP)

The mQAP is similar to the scalar QAP, with the exception that there are multiple

flow matrices – each needing to be minimized. This creates a multiobjective optimiza-

tion problem (MOP). Section 2.4.1 describes the problem’s brief history and defines it in
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mathematical terms. Section 2.4.2 discusses the applications that have been applied to the

mQAP. Section 2.4.3 looks at the few methods that have been used thus far to solve the

mQAP.

2.4.1 History and Definition. The formulation of the mQAP occurred in 2002

[71]. It expands the QAP to include more than one objective. This problem is more feasible

to real-world problems that have more than one focus. A factory layout, for example, often

has more than one product that needs to be assembled and/or packaged. While the QAP

is good for solving one the layout for one product in one location of the factory, the mQAP

can take into account all of the products and the entire factory layout. By bringing in

more problem knowledge, the researcher can improve the overall efficiency of the layout.

The next section lays out the mathematical mQAP definition.

2.4.1.1 Mathematical mQAP definition. Mathematical, the mQAP is de-

fined in equations 2.2 and 2.3

minimize{C(π)} = {C1(π), C2(π), . . . , Cm(π)} (2.2)

where

Ck(π) = min
π∈P (n)

n∑

i=1

n∑

j=1

aijb
k
πiπj

, k ∈ 1..m (2.3)

and where n is the number of objects/locations, aij is the distance between location i and

location j, bk
ij is the kth flow from object i to object j, πi gives the location of object i in

permutation π ∈ P (n), and ’minimize’ means to obtain the Pareto front [72].

In order to determine whether a solution is good or not, metrics are used. Knowles

and Corne [72] identified two metrics for use with the mQAP: diameter and entropy.

Diameter of the population is defined by Bachelet [4] and is shown in Equation 2.4:

dmm(P ) =

∑
π∈P

∑
µ∈P dist(π, µ)
|P |2 (2.4)
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where dist(π, µ) is a distance measurement that measures the smallest number of two-swaps

that need to be performed in order to transform one solution, π, into another solution, µ.

The distance measure has a range of [0, n− 1].

The metric entropy measures the dispersion of the solutions. It is shown in equation

2.5:

ent(P ) =
−1

nlogn

n∑

i=1

n∑

j=1

(
nij

|P | log
nij

|P |) (2.5)

where nij is a measure of the number of times object i is assigned to the j location in the

population.

2.4.2 Applications. Since the mQAP is new, few implementations have been

proposed. One proposal applies the mQAP to a group of heterogenous UAVs, where

location is the position in a flight formation and the flows are the multiple communication

channels between UAVs [25]. Another implementation models communication flow in a

constellation of satellites [66]. It has also been applied to the facility layout problem, where

there are flows of more than one type of agent [72]. The hospital layout problem is an

example of this. Where multiple flows include doctors, nurses, patients, visitors, etc.

2.4.3 Methods of Solving. There are currently three methods used in solving

the mQAP. An enumerated search can obtain the optimal solution when the number of

locations and facilities are small (around 15 or less) [25, 71, 72]. Larger instances [71, 72]

use local search. MOMGA-II, an MOEA based off of the fmGA, is used to solve both large

and small instances of the mQAP [25, 66].

2.5 Summary

The QAP is a valuable tool to researchers. Many different problems have been

modelled using the QAP. Because of the difficulty of the problem, researchers use innovative

methods and approaches in an attempt to find better ways of solving the QAP. But the

QAP is limited to only one flow per facility. The mQAP extends the QAP to allow multiple

2-8



flows. While this problem is in its infancy, there are many valuable real-world problems

that can be mapped to it. And knowing the successes of various algorithms used on the

QAP, the researchers can use that knowledge to create good algorithms for the mQAP.

The next chapter presents the background information on multiobjective Evolution-

ary Algorithms. These stochastic algorithms have been shown to be very effective at solving

NP-Complete problems.
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3. Multiobjective Evolutionary Algorithm Introduction

3.1 Introduction

Many real-world engineering design problems involve solving multiple objectives

simultaneously. A multiobjective optimization problem (MOP) differs from a single-

objective optimization problem because it contains several objectives that require opti-

mization versus one. When optimizing a single-objective problem, the best design solution

is the goal. But for multiobjective problems, with possibly conflicting objectives, there

is usually no single optimal solution. Therefore, the decision maker is required to select

a solution by making compromises. A suitable solution should provide for acceptable

performance for all objectives.

The operational research field developed many important MOP techniques over the

years [19]. Recently, researchers started to apply evolutionary algorithms and concepts in

this area. In fact, in the last twenty years, researchers have written more than 1480 papers

regarding this topic, many of them occurring in the last five years [17].

This chapter briefly outlines what a multiobjective optimization problem is in sec-

tion 3.2. Section 3.3.1 goes into more detail about multiobjective Evolutionary Algorithms

(MOEAs). The section discusses approaches, theories, metrics, applications, and paral-

lelization techniques.

3.2 Multiobjective Optimization Problems

A MOP consists of decision variables, two or more objective functions, and con-

straints. Standard MOP and MOEA definitions and nomenclature can be found in [20].

Sections 3.2.1 and 3.2.2 present a few of the more important definitions.

3.2.1 MOP Definitions. The process of finding the global maximum or minimum

of any function is referred to as Global Optimization. In general, this is presented in

Definition 2 as stated in Bäck [7]:
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Definition 2 (Global Minimum): Given a function f : Ω ⊆ Rn → R, Ω 6= ∅, for

~x ∈ Ω the value f∗ , f(~x∗) > −∞ is called a global minimum if and only if

∀~x ∈ Ω : f(~x∗) ≤ f(~x) . (3.1)

when, ~x∗ is the global minimum solution(s), f is the objective function, and the set Ω is

the feasible region. The problem of determining the global minimum solution(s) is called

the global optimization problem. ¤

This formulation requires some modification in order to reflect the nature of mul-

tiobjective problems where there may not be one unique solution but a set of solutions.

Multiobjective problems often force the decision maker to make a tradeoff of one solution

over another in the objective space.

Multiobjective problems have the task to optimize n objective functions simultane-

ously. This could include the maximization of all n functions, the minimization of all n

functions or a combination of maximization and minimization of these n functions. A

MOP and a MOP global minimum (or maximum) is formally defined by Van Veldhuizen

as [117]:

Definition 3 (General MOP): In general, a MOP minimizes (or maximizes) F (~x) =

(f1(~x), . . . , fk(~x)) subject to gi(~x) ≤ 0, i = 1, . . . , m, ~x ∈ Ω. A MOP solution minimizes

the components of a vector F (~x) where ~x is a n-dimensional decision variable vector (~x =

x1, . . . , xn) from some universe Ω. ¤

Definition 4 (MOP Global Minimum): Given a function F : Ω ⊆ Rn → Rk, Ω 6= ∅,
k ≥ 2, for ~x ∈ Ω the set PF∗ , F (~x∗i ) > (−∞, . . . ,−∞) is called the global minimum if

and only if

∀~x ∈ Ω : F (~x∗i ) ¹ F (~x) . (3.2)
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where, ~x∗i , i = 1, . . . , n is the global minimum solution set (i.e., P∗), F is the multiple

objective function, and the set Ω is the feasible region. The problem of determining the

global minimum solution set is called the MOP global optimization problem. ¤

This MOP consists of k objectives represented by the k objective functions, m con-

straints on the objective functions and n decision variables. The k objective functions are

either linear or nonlinear in nature. The evaluation function, F : Ω −→ Λ, is a mapping

from the decision variables (~x = x1, . . . , xn) to output vectors (~y = a1, . . . , ak) [117].

Some additional terminology is necessary in order to remain consistent with the

terminology used in the field. The ultimate goal of the MOP is called the objective and

the coordinate space where plots of vectors resulting from the MOP evaluation is called

the objective space [117].

3.2.2 Pareto Terminology. The concept of Pareto Optimality is vital to the

theory and analysis of MOPs. It enables the researcher to determine if one solution is

“better” than another. In addition, these Pareto concepts allow for the determination of

a set of optimal solutions in MOPs. Some of the key Pareto concepts, for minimization

MOPs, are defined mathematically by Van Veldhuizen as [117]:

Definition 5 (Pareto Dominance): A vector ~u = (u1, . . . , uk) is said to dominate

another vector ~v = (v1, . . . , vk) (denoted by ~u ¹ ~v) if and only if u is partially less than v,

i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. ¤

Definition 6 (Pareto Optimality): A solution x ∈ Ω is said to be Pareto optimal

with respect to Ω if and only if there is no x′ ∈ Ω for which ~v = F (x′) = (f1(x′), . . . , fk(x′))

dominates ~u = F (x) = (f1(x), . . . , fk(x)). The phrase “Pareto optimal” is taken to mean

with respect to the entire decision variable space unless otherwise specified. ¤
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Definition 7 (Pareto Optimal Set): For a given MOP F (x), the Pareto optimal set

(P∗) is defined as:

P∗ := {x ∈ Ω | ¬∃ x′ ∈ Ω F (x′) ¹ F (x)}. (3.3)

¤

Definition 8 (Pareto Front): For a given MOP F (x) and Pareto optimal set P∗, the

Pareto front (PF∗) is defined as:

PF∗ := {~u = F (x) = (f1(x), . . . , fk(x)) | x ∈ P∗}. (3.4)

¤

The Pareto optimal solutions are ones within the search space whose corresponding

objective vector components cannot be improved simultaneously. These solutions are also

known as non-inferior, admissible, or efficient solutions, with the entire set represented by

P∗. Their corresponding vectors are known as nondominated; selecting a vector(s) from

this vector set (the Pareto Front set PF∗) implicitly indicates acceptable Pareto optimal

solutions (genotypes). These are the set of all solutions whose vectors are nondominated;

these solutions are classified based on their phenotypical expression. Their expression (the

nondominated vectors), when plotted in criterion (phenotype) space, is known as the

Pareto front [117, 135].

Armed with the basic MOP definitions, we are now ready to delve into the specifics

of MOEAs.

3.3 Multiobjective Evolutionary Algorithms

This section gives background information about MOEAs. For more in depth dis-

cussion on MOEAs, the book by Coello, et. al. [20] is an excellent source. Other good

sources for MOEA information include [18, 19, 28, 41, 127]
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3.3.1 MOEA Approaches. MOEA approaches are generally categorized into three

groups, based on the techniques that they use. These categories are as follows [20]:

• A priori Techniques

• Progressive Techniques

• A posteriori Techniques

A more in depth discussion of these three categories and the techniques they include

continues in the next few sections.

3.3.1.1 A priori Techniques. These techniques require the researcher to

weight the objectives before the search process begins. But knowing what value to weight

each objective is a difficult task. Bad weighting choices can prevent the researcher from

implementing a better solution.

There are three techniques that fit into this category. They include the following

[20]:

• Lexicographic

• Linear fitness combination

• Non-linear fitness combination

Lexicographic ordering. This technique requires the user to rank the objectives

in order of importance. The algorithm then minimizes the objective functions based on

the priority given by the user. This approach is seldom used, possibly due to the unequal

searching of the objective space.[20]

Linear fitness combination. This technique generally computes the fitness using

a form similar to equation :

fitness =
k∑

i=1

wifi(~x) (3.5)

where the weighting coefficients, wi ≥ 0, determine the relative importance of each objec-

tive. It is commonly assumed that the sum of all the weights is equal to one. This approach
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is popular, possibly due to its simplicity. But it turns out that if PFtrue is non-convex,

then the optima cannot be found in that region [20]. An example of this technique can be

seen in [120].

Non-linear fitness combination. This technique usually involves a multiplication

of the objective functions. This technique is rarely used, possibly due to the amount of

overhead required to come to a solution.

Since these techniques limit the exploration, they cannot find all Paretotrue values.

3.3.1.2 Progressive Techniques. These techniques require interaction be-

tween the researcher and the algorithm. This requires the researcher be involved with the

program while it is running to guide it toward better solutions. This also requires the

researcher to define goals in order to bias the search. As such, this method is rarely used

[20]. The MOGA is an example of this technique put into practice [39, 40]

3.3.1.3 A posteriori Techniques. These techniques are the most common in

literature. They explicitly seek Ptrue. There are five techniques that fit into this category.

They include the following [20]:

• Independent sampling

• Criterion selection

• Aggregation selection

• Pareto-based selection

• Hybrid selection

Independent sampling. This technique involves some fitness combination where

the weights of the objective are varied between a number of separate runs. This technique is

simple and efficient. But its usefulness is limited because the arbitrary weight combinations

possibly limit finding some Paretotrue values. [20]

Criterion selection. This technique divides each generation into subpopulations,

based on how many objective values require solving. Each of these subpopulations bases its
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selection of individuals for the next generation on one objective function. Once each sub-

population selects its new generation, all of the subpopulations are combined into one large

population, the same size as the original. The individuals are shuffled in the population and

the genetic operations are applied to each. The process repeats until the stopping criteria

is reached. A disadvantage of this technique is a problem called ”speciation”. Speciation

occurs because population members are selected based on one dimension of performance.

This type of selection favors individuals located on the outer edges of PFcurrent and leaves

individuals located in the center at a disadvantage for selection. One method to over-

come this problem requires a heuristic that gives selection preference to nondominated

individuals in each generation [20]. The Vector Evaluated Genetic Algorithm (VEGA) is

an example of this type of program [102–104].

Aggregation selection. These techniques involve weighting various aspects of the

problem and getting their aggregate values. The weights are applied in different ways

and to different aspects of the problem. Using weighted sums has the disadvantage that

some individuals on PFtrue may be missed [23]. The Multi-Objective Genetic Local Search

Algorithm is an example of this technique [60].

Pareto-based selection. These techniques use Pareto-based fitness assignments

to find nondominated members on PFcurrent. There are many versions of this approach.

Since this thesis uses a Pareto-based approach, the differing approaches are outlined in

section 3.3.1.4. The biggest disadvantage of using this type of approach is the lack of

an efficient algorithm to find the nondominated members. The conventional process for

finding the nondominated points in a generation has a complexity of O(kM2) where k is

the number of objectives and M is the size of the population [20]. The Thermodynamical

Genetic Algorithm is an example of this technique [65].

Hybrid selection. This technique uses multiple selection mechanisms instead of

just one. Generally, a hybrid selection method tries to combine the selection mechanism

from several good MOEAs and apply each selection method at some point during the

algorithms execution. This approach attempts to mitigate any shortcomings that one

selection method may have by combining it with a complimentary selection method. [20].
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3.3.1.4 Pareto-based Approaches. This section discusses some of the various

approaches researchers attempt when they use the Pareto-based approach. This section

on gives cursory look at these algorithms. For more information, an excellent description

of these is found in [20].

Goldberg’s Pareto Ranking Goldberg suggested moving the population toward

PFtrue by using Pareto nondominated points and selection [46]. To get the population

for the next generation, the nondominated Pareto Fronts are determined and are ranked

based on best solution set to the worst. Once the number of individuals ranked matches

the number of individuals needed for the next generation, the process is terminated.

Multi-objective Genetic Algorithm (MOGA) Fonseca uses a ranking approach

different from Goldberg. He ranks the points based on how many other points dominate

them. His first rank is identical to Goldberg’s first. But the rest of the ranks are dependent

upon how dense the population is in front of the point. MOGA uses a niche-formation

method in order to diversify the population [39]. Since MOGA niching is done in the

objective space, individuals that map to the same objective value will only have one member

kept in the population and all others removed. This is a disadvantage of the algorithm

[20].

Nondominated Sorting Genetic Algorithm (NSGA) This method, presented

in [109] ranks members based on the size of the population when they are nondominated.

This results in the better members getting the higher fitness scores. Selection is done using

stochastic remainder proportionate selection to ensure copies are distributed properly. An

offshoot of this approach, NSGA-II, is more efficient and uses elitism. This method tends to

perform worse than MOGA in tests, this may be due to the sharing factor being improperly

set [20].

Niched-Pareto Genetic Algorithm (NPGA) This method employs an interest-

ing form of tournament selection called Pareto domination tournaments. Two members

of the population are chosen at random and they are each compared to a subset of the

population. If one is nondominated and the other is not, then the nondominated one is
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selected. If there is a tie (both are either dominated or nondominated), then fitness sharing

decides the tourney results [56].

Strength Pareto Evolutionary Algorithm (SPEA) This method attempts to

integrate different MOEAs. First introduced in [132], the algorithm uses a strength variable

that is similar to the MOGA ranking system. Each member of the population is assigned

a fitness value according to the strengths of all nondominated solutions that dominate

it. Diversity is maintained through the use of a clustering technique called the “average

linkage method”.

A revision of this method, called SPEA2 [129], adjusts slightly the fitness strategy

and uses nearest neighbor techniques for clustering. In addition, archiving mechanism

enhancements allow for the preservation of boundary solutions that are missed with SPEA.

Multi-Objective Messy Genetic Algorithm (MOMGA) This method extends

the mGA [29] to solve multiobjective problems. The MOMGA [117] is an explicit building

block GA that produces all building blocks of a user specified size. The algorithm has three

phases: Initialization, Primordial, and Juxtapositional. For explicit details of how this

algorithm functions, see Section 4.3. A disadvantage of this algorithm is the exponential

growth of the population as the building block size grows.

Multiobjective Hierarchical Bayesian Optimization Algorithm (mhBOA)

This explicit building block method combines the multiobjective selection scheme of NSGA-

II with the hBOA [96]. The mhBOA [64] is a linkage learning algorithm that attempts to

define tight and loose linkages to building blocks in the chromosome. This method uses a

Bayesian network (a conditional probabilistic model) to guide the search toward a solution.

A disadvantage of this algorithm is the time it takes to generate results with just a small

number of linkages tested.

Pareto Archived Evolution Strategy (PAES) This method, formulated by

Knowles and Corne[69], uses a (1+1) evolution strategy, where each parent generates one

offspring. The method uses an archive of nondominated solutions to compare with indi-

viduals in the current population. For diversity, the algorithm generates a grid overlaid on
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the search space and counts the number of solutions in each grid. A disadvantage of this

method is its performance on disconected Pareto Fronts.

General Multi-Objective Program (GENMOP) This method is a parallel,

real-valued MOEA initially used for bioremediation research [67]. This method archives

all previous population members and ranks them. Archived individuals with the high-

est ranks are used as a mating pool to mate with the current generation. The method

uses equivalence class sharing for niching to allow for diversity in the mating pool. A

disadvantage of this algorithm is the Pareto ranking of the archived individuals at each

generation.

Pareto-based selection These are approaches that do not use niching, sharing,

or crowding. In order to maintain diversity, other methods need to be devised. Several

different approaches are described in [20].

Pareto deme-gased selection This approach applies Pareto ranking on many small

subpopulations. This approach fits nicely into the parallel processing paradigm. A new

method must be created in order to determine which nondominated subpopulation mem-

bers are also globally nondominated.

Pareto elitist-based selection These approaches take the best n individuals from

one generation and propagate them to the next. After that the rest of the population

is filled using some other method. Large selection pressure for this approach can cause

premature convergence [20].

3.3.2 Metrics. Metrics are important in any field. They allow the researcher

to gauge the performance of his algorithm. The MOEA field is no different. MOEA

metrics tend to focus on the phenotype or objective domain. This is contrary to what

most operations researchers do. They tend to use metrics in the genotype domain. But

since there is an explicit mapping between the two, it doesn’t matter in which domain you

obtain your metrics [20, 119].

MOEA metrics can be used to measure final performance or track the generational

performance of the algorithm. This is important because it allows the researcher to look

how the algorithm converges during execution. If he notices that the algorithm converges

3-10



prematurely, then he can adjust his parameter settings in order to slow down the conver-

gence and allow for more exploration. This section looks at some of metrics used in the

study of MOEAs.

Error Ratio (ER): This metric reports the number of vectors in PFknown that

are not members of PFtrue. This metric requires that the researcher knows PFtrue. The

mathematical representation of this metric is shown in equation 3.6:

ER
4
=

∑n
i=1 ei

n
(3.6)

where n is the number of vectors in PFknown and ei is a zero when the i vector is an

element of PFtrue or a 1 if i is not an element. [20]

So when ER = 0, the PFknown is the same as PFtrue; but when ER = 1, this

indicates that none of the points in PFknown are in PFtrue.

Two Set Coverage (CS): This metric is named in [20], but was originally defined in

[128]. This metric compares the coverage of two competing sets and outputs the percentage

of individuals in one set dominated by the individuals of the other set. This metric does

not require that the researcher have knowledge of PFtrue. The equation for this metric is

shown in equation 3.7:

CS(X ′, X ′′) 4=
|a′′ ∈ X ′′;∀a′ ∈ X ′ : a′ º a′′|

|X ′′| (3.7)

where X ′, X ′′ ⊆ X are two sets of phenotype decision vectors, and (X ′, X ′′) are mapped

to the interval [0, 1]. This means that CS = 1 when X ′ dominates or equals X ′′.

Zitzler uses this a metric in several publications [130–132].

Generational Distance (GD): This metric is defined in [20, 118]. It reports how

far, on average, PFknown is from PFtrue. This metric requires that the researcher knows

PFtrue. It is mathematically defined in equation

GD
4
=

(
∑n

i=1 dp
i )

1/p

n
(3.8)
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where n is the number of vectors in PFknown, p = 2, and Di is the Euclidean distance

between each member and the closest member of PFtrue, in the phenotype space. When

GD = 0, PFknown = PFtrue.

Hyperarea and Ratio (H,HR): These metrics, discussed in [20, 131], define the

area of coverage that PFknown has with respect to the objective space. This would equate

to the summation of all the areas of rectangles, bounded by the origin and (f1(~x), f2(~x)),

for a two-objective MOEA. Mathematically, this is described in equation 3.9:

H
4
=

{⋃

i

ai|vi ∈ PFknown

}
(3.9)

where vi is a nondominated vector in PFknown and ai is the area of the calculated between

the origin and vector vi. But if PFknown is not convex, the results can be misleading. It is

also assumed in this model that the origin is (0, 0)

The hyperarea ratio metric definition can be seen in equation 3.10:

HR
4
=

H1

H2
(3.10)

where H1 is the PFknown hyperarea and H2 is the hyperarea of PFtrue. This results in

HR ≥ 1 for minimization problems and HR ≤ 1 for maximization problems. For either

type of problem, PFknown = PFtrue when HR = 1. This metric requires that the researcher

knows PFtrue.

Spacing (S): This metric outputs the spread of the vectors in PFknown. Coello

describes this metric from [105] in his book [20]. This metric measures the distance variance

of neighboring vectors in PFknown. Equation 3.11 defines this metric.

S
4
=

√√√√ 1
n− 1

n∑

i=1

(d̄− di)2 (3.11)

and
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di = minj(|f i
1(~x)− f j

1 (~x)|+ |f i
2(~x)− f j

2 (~x)|) (3.12)

where i, j = 1 . . . , n, d̄ is the mean of all di, and n is the number of vectors in PFknown.

When S = 0, all members are spaced evenly apart. This metric does not require the

researcher to know PFtrue.

Overall Nondominated Vector Generation Ratio (ONVGR): This metric

measures the total number of nondominated vectors during MOEA execution and divides

it by the number of vectors found in PFtrue. Coello [20] defines this metric as shown in

equation 3.13:

ONV G
4
=

PFfalse

PFtrue
(3.13)

When ONV GR = 1 this states only that the same number of points have been

found in both PFtrue and PFknown. It does not infer that PFtrue = PFknown. This metric

requires that the researcher knows PFtrue.

Progress Measure RP: For single-objective EAs, Bäch [7] defines a metric that

measures convergence velocity. This single-objective metric is applied to multiobjective

MOEAs in [20], and is shown in equation 3.14:

RP
4
= ln

√
G1

GT
(3.14)

where G1 is the generational distance for the first generation and GT is the distance for

generation T . Recall that generational distance was defined in equation 3.8 and it measures

the average distance from PFtrue to PFknown. This metric requires that the researcher

knows PFtrue.

Generational Nondominated Vector Generation (GNVG): This is a simple

metric, defined in [20] that lists the number of nondominated vectors produced for each

generation. This is defined in equation 3.15
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GNV G
4
= |PFcurrent(t)| (3.15)

This metric does not require the researcher know PFtrue.

Nondominated Vector Addition (NVA): This metric, defined in [20], calculates

the number of nondominated vectors gained or lost from the previous PFknown generation.

Equation 3.16 defines this metric.

NV A
4
= |PFknown(t)| − |PFknown(t− 1)| (3.16)

But this metric can be misleading when a new vector dominates two or more vectors

from the previous generation. In addition, this metric may remain static over the course

of several generations while new points are added that dominate others from the previous

generation. This metric does not require the researcher know PFtrue.

Table 3.1 lists the various MOEA metrics and states whether they require PFtrue or

explicitly compare results from one generation to another.

Table 3.1 Summary of MOEA Metrics
Metric PFtrue Generational
Name required? Metric?

Error Ratio Yes No
Two Set
coverage No No

Generational
Distance Yes Yes

Hyperarea No No
Hyperarea

Ratio Yes No
Spacing No No
ONVGR Yes Yes
Progress
Measure Yes Yes
GNVG No Yes

Nondominated
Vector Addition No Yes
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3.3.3 MOEA Applications. MOEAs have been used on many real world applica-

tions. For a nearly exhaustive list of applications, see either the book by Coello [20] or his

website which lists nearly all of the MOEA research done in the field. The list below has

just a sampling of some of the recent research done in MOEAs.

• Base station transmitter placement for a cellular network [122]

• Wire antenna geometries [15, 120, 123]

• Protein Structure Prediction Problem [24, 26, 27]

• Groundwater pollution remediation [34, 56, 67]

• VLSI placement [99, 100]

• Network design [78, 112, 113]

• Offline Routing [73–75]

• Robot path planning [31]

3.4 Summary

This chapter provides an overview on MOPs. Discussion continues regarding MOEAs

and the many methods that have been undertaken. MOEA metrics are presented after

that. Several MOEA applications are presented in an effort to show the broad range of

real world problems that MOEAs are used to solve.

The next chapter discusses in more detail an MOEA called MOMGA-II. This algo-

rithm is the one selected to use on the problem.
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4. MOMGA-II

4.1 Introduction

This chapter describes the Multiobjective Messy Genetic Algorithm - II (MOMGA-

II) algorithm. The majority of the experiments in this research use this algorithm. The

MOMGA-II algorithm contains many modifiable parameters. It can be run in serial or

parallel mode. It can be run as a Messy Genetic Algorithm (mGA) or as a Fast Messy

Genetic Algorithm (fmGA). Many of the parameters can be set or turned off. Section

4.2 describes fmGA, which is one of the two algorithms that MOMGA-II is modelled

after. The fmGA inherited much of its structure from its predecessor, the mGA. For

more information on this algorithm, see Appendix C. Section 4.3 discusses the MOMGA

program, the predecessor of MOMGA-II. Section 4.4 discusses the MOMGA-II program.

4.2 Fast Messy Genetic Algorithms

The fmGA was designed in 1993 by Goldberg, Deb, Kargupta, and Harik [48]. It

was designed as an attempt to overcome some of the previously mentioned flaws in the

mGA. For further information on the mGA, see Appendix C. The fmGA replaced the PEI

portion of the mGA with probabilistically complete initialization (PCI). Appendix C.5.1

describes the PEI and other initialization features of the mGA. And the primordial phase

was also replaced by a building-block filtering phase. The next few sections briefly describe

PCI and building-block filtering and their advantages over the previous methods used in

the mGA.

4.2.1 Probabilistically Complete Initialization. One of the biggest problems of

the mGA was its PEI implementation. This method of generating building blocks proved

to be unmanageable for anything other then pedagogical examples. In order to create a

more effective algorithm, the fmGA implements a new initialization technique, PCI. PCI

differs from PEI in that it creates a controlled number of copies of building blocks of

a specified size, whereas the PEI generates all of the building blocks of a specified size.

According to Goldberg [48], there are two important factors in the initialization

process: initial string length and population size. For the fmGA to be effective, the
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initialization phase must be able to create a big enough population and a long enough

chromosome that can handle all possible genic and allelic combinations [68]. To determine

the proper initial string length and population size, PCI is used.

The premise behind PCI is that all of the 2k
(

l
k

)
equivalence classes can be defined

by using smaller amount of strings when the string length is much longer than k [63].

Basically, this means that one string can be used to define multiple classes.

To determine the proper sizing of the initial string and population, we first need to

set up the formula. First, let the initial string length be l′, let l be the number of genes,

and let k be the size of the gene combination. Also let l′ < l and l′ > k. The total number

of strings created of length l′ with l genes is
(

l
l′
)
. And the total number of ways a string of

size l′ contains gene combinations of size k is calculated by assigning k genes to the l′ sized

string and then choosing the ways that l′ − k genes can be created using l− k genes. This

gives the formula of
(

l−k
l′−k

)
[48]. Putting these two formulas together, gives us equation 4.1,

which is the probability of randomly selecting a k sized gene combination in a l′ length

string with a total of l genes to choose from.

p(l′, k, l) =

(
l−k
l′−k

)
(

l
l′
) (4.1)

The inverse of this equation can be found in equation 4.2. This equation suggests

that random ng string samples of length l′ will produce, on average, one string that will

have the desired gene combination of size k [48]. It can be shown that as the initial string

length l′ increases, the population size, ng decreases. Figure 4.1 depicts how ng varies with

respect to l′ and k. Note that when l′ ≈ l, the value for ng is constant and doesn’t depend

on l. It can also be shown that for large values of both l and l′, ng ≈ ( l
l′ )

k.

ng =

(
l
l′
)

(
l−k
l′−k

) (4.2)

In order to include all the allele combinations up to order k, the ng will have to be

multiplied to a factor that accounts for all 2k allele combinations and the noise involved in

building-block evaluations. The population sizing equation chosen by Goldberg [48] was
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Figure 4.1 The population size required to have one expected instance of a building
block of size k in strings of length l′ is plotted against l′. The problem size
is assumed to be l = 20 [48]

taken from earlier work he did on population sizing [47]. The na equation, equation 4.3

was developed for simple GAs and it was designed to account for the noise in building

block evaluation.

na = 2c(α)β2(m− 1)2k (4.3)

The population size is calculated in such a way that the selection error between

two building-blocks is no more than α. The parameter c(α) is the square of the ordinate

of a normal random deviate whose tail has an area (error probability) of α, the number

of subfunctions is denoted by m, and β2 is the maximum signal-to-noise ratio, which is

the ratio of the variance and the mean of the convolution of the distribution of the two

competing classes [47, 48, 63].

Now that we have ng and na, we can multiply them together to get the overall

population size, n. This equation is shown in equation 4.4.
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n = ngna =

(
l
l′
)

(
l−k
l′−k

)2c(α)β2(m− 1)2k (4.4)

In order to find a good initial string length, l′, there is a trade-off that must be

decided upon. A large l′ will decrease the ng value, but it will increase the error probability,

because of noise introduced with the additional bits of the string length. Goldberg [48]

and Kargupta [63] both decided to use l′ = l − k. This equates to the overall population

sizing of O(l), which is a great improvement over the mGA initialization phase.

4.2.2 Building-block Filtering. In order for the fmGA to function properly,

the initial string length needs to be reduced to a size near the building-block length,

k. Building-block filtering is the process of doping the population with good building-

blocks and then randomly deleting genes from the strings. This section will describe the

building-block filtering process that was implemented by Goldberg [48]

To explain this concept, we first need to introduce some symbols. Start by con-

sidering a sequence of string lengths created by successive applications of gene deletion,

λ(0), λ(1), ...λ(i), ...λ(N), where λ(0) = l′ and λ(N) ≈ k. The ith length reduction can be

defined as ρi = λ(i)/λ(i−1). So at the ith stage, the number of genes randomly deleted

from each string is λ(i−1) − λ(i). Once the reduction is complete, selection is done for a

specified number of generations in order to increase the number of good building-blocks.

Then deletion occurs and the process continues until λ(N) is reached.

The rate of deletion needs to be selected in manner so that it is, on average, less

than rate of doping. To correctly choose a building-block of size k from strings of size

λ(i−1) by picking λ(i) genes at random, we need a building-block repetition factor γ =
(
λ(i−1)

λ(i)

)
/
(λ(i−1)−k

λ(i)−k

)
strings to have one expected copy remaining of the desired building-

block [48]. For large values of λ(i−1) and λ(i) compared to k, γ varies as (λ(i−1)/λ(i))k.

We may choose λ(i) so that γ is smaller than the number of duplicates generated by the

selection operator. One method of designing a gene deletion schedule is to set ρ to a

constant value much smaller than 2ts , where ts is the total number of selections repetitions

per length reduction. Goldberg did this because he expected binary tournament selection
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Initialize population with random strings of size l′

While (l′ > ζk)
{

Do successive selections with no evaluations
Choose l′′(< l′) genes in a random fashion
Set l′ = l′′

Evaluate the new strings
}

Figure 4.2 Pseudo-code depicting fmGA PCI and building-block filtering interaction

to approximately double the proportion of the best individuals during each invocation [48].

Using the asymptotic relation for γ = (λ(i−1)/λ(i))k = ρ−k
i , the assumed fixed γ roughly

implies a fixed length-reduction ratio ρ = ρi, for all i, which the total number of length

reductions required to reduce the string length to O(k). If it is assumed that the final

string length is equal to ζk, where ζ ≥ 1, the number of length reductions (tr) required is

shown in equation 4.5.

l′

ρtr
= ζk (4.5)

This simplifies to become equation 4.6.

tr =
log(l/ζk)

ρ
= ζk (4.6)

This equation shows that if the λ(i) values are chosen to make the deletion so that the

length-reduction factor ρ is a constant, then tr varies as O(logl). And with a population

size of O(l), combined with the fact that the evaluation of strings is performed only once

after each length reduction, the overall complexity of PCI and building-block filtering is

expected to be O(llogl). Figure 4.2 shows pseudo-code that depicts how PCI and building-

block filtering work.

According to Kargupta [63], cross-competition among the different building blocks

can lead to uneven growth. He recommends further modifications that should enhance the

performance of the fmGA, including an alternate approach to the building-block filtering
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described previously. These modifications won’t be discussed here, but the reader can read

about these more in depth in the paper written by Kargupta [63].

4.3 MOMGA

(MOMGA) stands for ”Multiobjective mGA”. It is a program written by David Van

Veldhuizen and discussed in his dissertation [117]. This program is briefly discussed here as

it is the starting point for the MOMGA-II code. This section looks at the implementation

of the algorithm and shows the baseline that the MOMGA-II started from.

4.3.1 Fitness Functions. MOMGA uses fitness functions that operate over the

entire l-bit string. It does not use subfunctions which operate on only a part of the string.

The reason for following this path is two-fold. It focuses only on the building-blocks used

in MOP solutions. It also helps to prevent problems in determining relationships (if any),

between subfunctions and a complete MOP. [117]

4.3.2 Solution Evaluations. When compared to the mGA, the MOMGA has

a similar population size. But the MOMGA’s algorithmic complexity is different than

the mGA due to the multiple function evaluations that must be run. Table 4.1 shows a

comparison of the two complexities.

Table 4.1 Comparison of MOMGA and mGA Complexity[117]
Algorithm Number of objectives Complexity

mGA Single objective O(2k
(

l
k

)
+ C)

MOMGA p objectives O(p2k
(

l
k

)
+ pC)

While the equation only shows a linear increase in the complexity, some real-world

fitness functions are rather time-consuming, so a linear increase adds a significant amount

of time to the process.

As far as storage requirements go, the MOMGA stores a vector that contains the

values corresponding to the number of functions being optimized. Whereas the mGA

stores only a single value, since it is not multi-objective. So while both increase in a linear

fashion, the MOMGA will tend to increase at a higher rate than the mGA.
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4.3.3 Evolutionary Operators.

4.3.3.1 Selection Operator. The MOMGA, as in mGA, uses a tournament

size of 2 in its selection process. This equates to a medium selection pressure [7]. The

MOMGA implements a modified, Pareto-based tournament selection operator based on the

one implemented in the NPGA algorithm [56]. This modified selection operator randomly

selects two individuals for the tournament, but in addition, a comparison set (tdom) of

individuals is also chosen. Then, using Pareto dominance, the two individuals are compared

with each individual in the comparison set. If one individual is found to be nondominated

and the other individual is not, then the nondominated individual is selected. But if neither

is dominated or if both are dominated, then sharing is implemented. The goal of sharing is

to distribute the population across the peaks of the search space so that each peak receives

a fraction of the population in proportion to its height [56]. The form of sharing used in

MOMGA is equivalence class sharing. This type of sharing is implemented when there is

no clear winner among the competing individuals. In this type of sharing, the individual

with the smallest niche count is the one that is chosen.

Horn implemented this selection process because he found that using binary selection

alone, he was getting poor domination pressure (selection pressure) which in turn created

poor representations of PFknown. The comparison set introduced was used to control the

domination pressure. Horn also reports what values he empirically found to be good values

for the dominance pressure in another paper [57].

4.3.3.2 Cut-and-Splice. The MOMGA uses the cut-and-splice operator in

the same manner as implemented in the mGA.

4.3.3.3 Mutation. The MOMGA uses the mutation operator in the same

manner as defined in the mGA.

4.3.4 Competitive Templates. The mGA uses a competitive template in the

primordial stage, where all the building-blocks are evaluated against it, and in the jux-

tapositional phase, where it evaluates the fitness of the newly created individuals. Each
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Figure 4.3 MOMGA operation [117]

partial string’s assigned fitness is a template fitness where unassigned values are filled with

ones from the template. The template is first generated randomly, and after each era, the

template is replaced with the most fit example that has been found. So the template is

locally optimal to the previous era.

Since the mGA is a single objective problem, only one competitive template is needed

to guide the search. But since MOMGA is a MOP, it has a set of solutions and using a

template for each solution is not feasible. So the MOMGA employs a different competitive

template during the primordial and juxtapositional phases. Each competitive template

is associated with each objective function being optimized. This is done by randomly

selecting one of the k templates. At the end of each era, the best solutions for each

objective are used to replace the previous template for the objective. Van Veldhuizen

notes that this approach may result in strong ”speciation” [42, 109], but notes that his

focus is on determining the use and role of building-blocks in forming MOP solutions [117]

4.3.5 MOMGA Operation. The MOMGA operation was graphically represented

by van Veldhuizen in Figure 4.3. In addition, the MOMGA pseudocode is shown in Figure

4.4.

At the end of each era, after the juxtapositional phase is run, the Pcurrent(t) is added

to Pknown(t − 1). When all eras complete and MOMGA terminates, all of the solutions
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For n = 1 to k

Perform Partially Enumerative Initialization
Evaluate Each Population Member’s Fitness (w.r.t k Templates)

// Primordial Phase
For i = 1 to Maximum Number of Primordial Generations

Perform Tournament Thresholding Selection
If (Appropriate Number of Generations Accomplished)

Then Reduce Population Size
End If

End Loop
// Juxtapositional Phase

For i = 1 to Maximum Number of Juxtapositional Generations
Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k template
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent(t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 4.4 MOMGA Pseudo-code [117]
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in Pknown are tested. Every vector that is dominated is removed from Pknown. Solution

culling is performed in order to avoid slowing down the execution of the algorithm [117].

4.4 MOMGA-II

The MOMGA-II algorithm was developed by Jesse Zydallis as part of his dissertation

[133]. It was developed as an attempt to expand the state of the art for explicit building-

block MOEAs. While there has been a lot of research done for single objective explicit

building-block EAs [24, 29, 48, 50, 68, 86, 90], there has been limited research of explicit

building-blocks in the MOEA realm [117, 133].

MOMGA-II used MOMGA as its foundation with respect to an explicit building-

block MOEA. But in order to improve efficiency, the MOMGA-II moves away from the

mGA approach and uses the fmGA approach. The SO fmGA [48] was the template for

the fmGA. By combining these two approaches, MOMGA-II takes advantage of the best

concepts of both and extends them further.

This section discusses the differences between the MOMGA and MOMGA-II algo-

rithms and many of the features and options written into MOMGA-II.

4.4.1 MOMGA-II vs. MOMGA. MOMGA was based upon the mGA while

MOMGA-II used the fmGA as its starting point. It is widely known that the mGA has

a bottleneck in the initialization phase because it enumerates every building-block, up to

the user specified size. This bottleneck makes any mGA based algorithm infeasible when

dealing with problems that have large bit string lengths. Since MOMGA-II uses the fmGA,

it avoids the large population sizes generated by the mGA. This make the MOMGA-II more

feasible for larger problems, as well as more efficient.

MOMGA-II uses PCI and building-block filtering, which have been described previ-

ously in the section on the fmGA. These techniques ensure that the fmGA has the same

effectiveness as the mGA, while improving the efficiency. In fact, Zydallis [133] found that

MOMGA-II could get similar effectiveness and better efficiency with a population size of

250 than the MOMGA could with a population size of 16,192 for identical MOPs.
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MOMGA-II is similar to MOMGA in the way it handles the competitive templates.

They are randomly created initially, they are updated at the end of an era, and they are

chosen at random when used to fill in bits for under-specified members.

Table 4.2 Comparison of MOMGA-II and MOMGA
MOMGA-II MOMGA

Algorithm used as baseline fmGA mGA
Initialization technique used PCI PEI

Initialization Initialization
Phases of algorithm Building-block Filtering Primordial

Juxtapostional Juxtapositional
Competitive template selection Random Random

MOMGA-II operates the same as MOMGA in the Juxtapositional phase and the

bookkeeping that occurs after the juxtapositional phase (i.e. building-block size is incre-

mented, competitive templates replaced if necessary, and PFknown is generated in the same

fashion). Table 4.2 show a comparison of some of the distinguishing features.

To better comprehend how the MOMGA-II program operates, the psuedo-code is

presented. Figure 4.5 shows the MOMGA-II pseudo-code.

Figure 4.6 shows the flow of the MOMGA-II program. The dashed boxes show what

functions belong to various parts of the program.

4.5 Parallelization of MOMGA-II

The MOMGA-II program has several parallel options. For our experiments, when

parallelization was used, we used the island model. See Figure 4.7 for a graphical depic-

tion of the island model. For more information on the island model and other parallel

techniques, see Appendix B. The island model was chosen because it runs with multiple

populations at a time while the diffusion and master-slave model run only one population

at a time. This speeds up the process, because the Pareto analysis is the slowest part of

the algorithm and if that can be done at the same time over multiple machines, it helps to

increase the efficiency.
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For n = 1 to o

Perform Partially Complete Initialization
Evaluate Each Population Member’s Fitness (w.r.t k Templates)

// Building Block Filtering Phase
For i = 1 to Maximum Number of Building Block Filtering Generations

If(Building Block Filtering Required Based Off of Input Schedule)
Then Perform Building Block Filtering

Else
Perform Tournament Thresholding Selection

End If
End Loop

// Juxtapositional Phase
For i = 1 to Maximum Number of Juxtapositional Generations

Cut-and-Splice
Evaluate Each Population Member’s Fitness (w.r.t. k template
Perform Tournament Thresholding Selection and Fitness Sharing
Pknown(t) = Pcurrent(t) ∪ Pknown(t− 1)

End Loop
Update k Competitive Templates (Using Best Value Known in Each Objective)
End Loop

Figure 4.5 MOMGA-II Pseudo-code [133]

Another reason for choosing the island model is the fact that it allows for migration

from one island to another. This intermingling can seed a population that is doing poorly

with good values. This results in populations that are equal to, or better than, the serial

results, and completed in less time.

4.6 Summary

This chapter describes how the MOMGA-II algorithm works. But to get a better

understanding of how MOMGA-II came to be, a discussion of the preceding algorithms

must occur. So the chapter opens with a discussion of the MOMGA algorithms. The

mGa algorithm, discussed in Appendix C, is the single-objective counterpart to the multi-

objective MOMGA. The biggest drawback of these algorithms is the PEI portion. While it

was effective, it was not efficient and limited the usefulness of the algorithms. The chapter

closed with the newest innovations, the fmGA and the MOMGA-II. These algorithms
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Figure 4.6 MOMGA-II Flow Diagram

address the bottleneck issue discovered in the two previous algorithms and create programs

usable on larger problems.
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Figure 4.7 Island Model

The next chapter discusses the design of the algorithm. This includes a discussion of

how the problem and algorithm domains map together.
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5. Software Design

5.1 Introduction

The previous chapters introduced the problem and algorithm domains. This chapter

maps the problem domain to the algorithm domain. Section 5.2 discusses the various

design options and explains why the options were chosen. Section 5.3 lists some of the

assumptions that are made and discusses why these assumptions were made. Section 5.4

states what program was selected and maps the problem to the program. Section 5.5

discusses the implementation language of MOMGA-II and the advantages of using it over

the other options. Section 5.6 lists the MOMGA-II parameters used in the experiments as

well as the process used to get data into its final format.

5.2 Mapping the problem domain to the algorithm domain

This section lists the design approach chosen as well as some of the other design

options that were rejected.

5.2.1 UAV communication mapping. The first objective is mapping the het-

erogenous UAV communication problem to a more generalized algorithm. Recall that the

problem consists of a formation of heterogeneous UAVs with with multiple communication

channels with a fixed communication rate on each channel to each of the other UAVs.

Why does the problem need to be mapped to a more generalized algorithm? If the re-

searcher blindly implements his algorithm without noticing it matches a more generalized

algorithm, he misses out on a pool of knowledge that can enable him to avoid the pitfalls

of previous researchers.

There are three general problems that have similarities to the problem at hand.

• Linear Assignment Problem

• Quadratic Assignment Problem

• Multiobjective Quadratic Assignment Problem
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5.2.1.1 Linear Assignment Problem. An assignment problem’s task is to

assign n items (UAVs) to n machines (locations). Symbolically, the linear assignment

problem (LAP) can be described as follows [12]:

Sn = Set of all possible assignments (permutations)

n∑

i=1

xij = 1 ∀ j = 1, . . . , n

n∑

j=1

xij = 1 ∀ i = 1, . . . , n (5.1)

xij ∈ {0, 1} ∀ i, j = 1, . . . , n

To map the UAV communication problem to the LAP, the LAP needs to be set as

a minimization problem. In addition, a matrix of values need specifying in order to define

the distance from one location to another. But this problem is limited because there is no

way to include the communication rates of each UAV. This problem can give you a good

approximation only if you have communication rates that are equal for each UAV. Since

this is not the case for our problem, the LAP doesn’t adequately map to the problem.

5.2.1.2 Quadratic Assignment Problem. The quadratic assignment problem

is an extension of the LAP, in that it has distances applied to the locations and flows

assigned each facility. Recall equation 2.1 which gives a mathematical description of the

QAP.

This problem maps well to the UAV problem. It takes into account both the distance

between the UAV locations in the formation and the bit rate associated with each UAV.

This problem would be perfect with a single communication channel. But since we are

using multiple communication channels, each flow is generated independently of the others.

Then, a comparison of the results is done in order to find a good solution. While this

approach would work, it’s not the best approach to take.
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5.2.1.3 Multiobjective Quadratic Assignment Problem. Mathematical, the

mQAP is defined in equations 2.2 and 2.3.

This problem maps well with the UAV problem. It takes into account the distances

between each UAV and the multiple flows. Since it is a multiobjective problem, the mQAP

allows the user to pick the result deemed best along the Pareto front. The mQAP was

picked because it most closely matched the UAV communication problem.

5.2.2 Simple Problem vs. Real-World Problem. The real-world problem is more

complicated. Table 5.1 lists some of the differences between the simple problem and the

real world problem. The list is not all inclusive.

Table 5.1 Comparison of Simple Problem and Real World
Simple Problem Real World

Constant distance Distances apart
fluctuate

Constant communication Communication
flow flow varies

Snapshot in time Formation constantly
changing wrt time

All communication Have communication
flows without error problems at times
Any UAV can fly Some locations are too
in any location restrictive for certain UAVs

In reality, the distance between aircraft in a formation fluctuates. But the formation

usually remains the same. Because the minor fluctuations in distance have no effect on the

problem, a constant, representative distance is used.

The average communication rate between UAVs is deemed more appropriate to model

than communication rates that vary depending on the location of the UAVs and their

mission. The decision maker decides what communication rate is the most appropriate

for the problem. For example, it may be best to use the overall communication rate for

one mission and then use the communication rate of a critical segment of a mission during

another. This gives the decision maker more options.
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This is an a priori process. The formations are determined based on the formation

picked for the mission. This problem only figures the best location for each UAV based

on one formation. To determine the best locations in multiple formations, the algorithm

must be run consecutive times with each new distance matrix as an input.

This problem assumes that the average communication rates are correct and that

no error occurs in communication, or the decision maker has accounted for the error rate

in the communication rates. This is done keep the algorithm as simple as possible. By

including communication specific processes, the algorithm becomes more limited. It is

assumed that the user has already used a communication algorithm to come up with the

input communication rates.

It is also assumed that any UAV can occupy any location in the formation. In reality

this may not be the case. This simplification was made to avoid checking for constraints.

This can easily be added later when actual formation data is used with actual constraints.

5.2.3 Input Data. For input data, a researcher usually has two choices: use

actual data or data taken from a test suite run by other researchers. The best approach is

to first run the program on a test suite and verify the program works well when compared

with other programs. If it doesn’t, the program can be either tuned for the problem to

improve the results, or the program can be scrapped and a different approach attempted.

Once the program seems to work well on the test suite, it should be used on actual data.

Since there is no actual data for the communication rates for heterogenous UAVs flying in

a group, a test suite is the only thing tested against.

Only one standardized test suite is currently available for the mQAP problem [71].

This suite was used as the input data and the results are compared to results obtained

from previous researchers. The test suite used for testing is seen in table E.1.

5.2.4 Data representation. The data representation can take on any number of

possibilities. Listed below are some of the them.

• Real numbers

• Integers
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• Binary numbers

• Permutations

• Parse Trees

The data representation of problem should be determined based on the problem cri-

teria [38]. Knowing this, parse trees and real numbers can be removed from the list. If

using integers, permutations would be a good choice. But before making any decision, the

researcher should look at the program he plans to use and see if any particular represen-

tation works better with it. Since MOMGA-II is based on the fmGA and it is based on

a binary representation, it appears that a binary representation is the best fit. (But this

doesn’t fit too well for the fitness values, so they need to be saved in either integer or real

format.) Since the data is all integer data, we conserve space by representing the fitness

functions as integers.

Therefore, the representation chosen is a binary representation with integers repre-

senting the fitness functions. It might be effective for the binary representation to include

encoding of some type, such as Gray encoding or representing a decimal number. The

problem with encoding the binary strings is that it creates some infeasible solutions when

the permutation is filled and when the competitive template is applied. That being said,

the decision was to have 10 binary digits represent each facility. But each bit is randomly

placed. In order to determine the permutation, the binary bits are decoded by having the

lowest binary number equal facility one and continue assigning values to each facility until

all facilities are accounted for. If two facilities have the same representation, the first one

in the list gets the lowest number.

5.3 Assumptions and constraints

Several assumptions are made in order to make the problem tractable. This sections

discusses some of the assumptions and why they were made. Section 5.3.1 details some

of the assumptions made with respect to the UAV formations. Section 5.3.2 discusses the

communication assumptions made.
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5.3.1 Formation Assumptions. Several assumptions regarding the flight forma-

tion of the UAVs were made. Section 5.3.1.1 discusses how the distance matrix is used

and some assumptions that were made. Section 5.3.1.2 discusses the assumptions made

regarding a static formation.

5.3.1.1 Actual formation distances vs. Test Suite data. For this research,

the distance between UAVs are not actual formation distances. The distances used are the

distances found in the test suite. While these are not accurate for our problem, they do

not adversely affect our results. Once accurate distances are determined, they be used in

a distance matrix. The results should be as effective as our previous results.

Another assumption is that one straight line distance is equal to another straight line

distance with respect to communication. But in reality, if one UAV is in the communication

path of two others, this may adversely affect communications. The distance listed would

then give a faulty result. There are two solutions to this, one, the researcher can increase

the distance in the matrix to produce a better result. But then the researcher won’t know

which distance values are actual and which values are adjusted. In addition, he won’t

know how much the values are adjusted by simply looking at the matrix. The second way

is a better way to adjust the distances is by using an additional matrix containing scalar

values. These scalar values adjust the distance values so they take into account different

types of interference. Then, these values are multiplied to the distance values before they

are multiplied with the flow values. This method gives the researcher more control and is

easier to adjust on the fly.

5.3.1.2 Static formations vs. dynamic formations. Formation distances are

never truly static. The aircraft may fly in formation while approaching their targets, but

they may separate, do their missions, and then reform after their missions are complete.

This research is interested in minimizing communication transmission times. Since the

aircraft are in formation the majority of the time, using these distances is a good approx-

imation of the distances for overall communication. Plus, since every mission has unique

aspects pertaining only to it, a general model is best suited to ignore the inconsistencies

between various missions.
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5.3.2 Communication Assumptions. Many assumptions and simplifications are

required in the realm of communications. Section 5.3.2.1 compares the differences in using

actual communication rates and test suite data. Section 5.3.2.2 explains why average

communication rates are used instead of varying rates. Section 5.3.2.3 discusses how the

researcher is able to weigh the importance of various communication channels and can pick

the best the solution that best fits the needs of the operation.

5.3.2.1 Actual communication rates vs. test suite data. Using the actual

communication rates between the UAVs is ideal. But in order to get an idea of the

communication rates, requires the researcher have access to sample communication data

based on the situations to be encountered in the mission. Since it is impossible to know

this data at this time, using test suite data is better than estimates. Primarily, because

test suite data can be compared to other researchers’ results. Then the algorithm can be

validated by comparing it to previous results. Using estimates doesn’t afford the luxury of

comparing previous results with your own.

5.3.2.2 Average communication rates vs. varying rates. Average commu-

nication rates are used in this research for several reasons. First, by having only one flow

rate matrix for the entire flight instead of having many over the course of the flight, the

problem is simplified. This simplification lowers the computation time of the algorithm.

Plus the information gained by having multiple matrices per flow does not warrant the

additional computational time and complexity.

Secondly, the communication rate can be adjusted so that it best fits the most crucial

point or points in the flight. The communication effectiveness is most critical at this

juncture.

5.3.2.3 Weighting of various communication flows. Since there is more

than one communication channel, there is the possibility that one channel has a higher

priority than the others. Choosing a solution that takes into account this weighting is

important. By using an MOEA to solve this problem, the researcher is able to look at a
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range of solutions that are found along the Pareto front. He can then pick a solution that

takes into account the priorities of the various channels.

5.4 Program selection

In order to run the mQAP, a multiobjective program either need be created or

modified. The decision was made to modify an existing algorithm.

There are several multiobjective algorithms capable of solving this problem. But it

was decided to pick an algorithm developed here at AFIT. This decision was an easy one

because any problems can be resolved fairly easily because many of the authors and their

advisors are available to answer questions regarding the program.

The next decision was to determine which algorithm to use. The MOMGA-II was

chosen over other viable option such as GENMOP. MOMGA-II is an explicit building-block

GA. This means that it attempts to link building blocks together in an effort to find the

best solution. GENMOP uses implicit building blocks, but the linkage of good building-

blocks is dependent on the two alleles positions on the chromosome. Crossover can prevent

these linkages from propagating effectively toward a solution, especially if elitism isn’t

used. The MOMGA-II, while being a more complicated algorithm, keeps good building

blocks because once they are linked, they cannot be separated via crossover. In addition,

MOMGA-II has been tested on classical problems and the 0/1 knapsack problem, an np-

complete problem.

Appendix D.1 maps the mQAP symbolically to the MOMGA-II algorithm.

5.5 Implementation Language

The implementation language for MOMGA-II is the C language. There are two

reasons for choosing this language. First, this program uses the concepts behind fmGA

and the MOMGA program. Since the MOMGA program was designed in C, extending its

capabilities is easier than starting from scratch. MOMGA was built as a multiobjective

version of the mGA [117]. The serial version of this code was written in C as well [29].
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Another reason for programming in C is the use of MPI to create parallel applications.

MPI gives the researcher a lot of freedom when it comes to designing a parallel architecture.

MOMGA-II used MPI to create three different types of parallel environments:

• Master - Slave Model

• Island Model

• Diffusion Model

The added flexibility of MPI allows the researcher to tweak the MPI parameters in

order to get a more robust parallel application.

5.6 MOMGA-II Properties

A big part of the success and failure of the MOMGA-II program are the input

parameters selected. Section 5.6.1 lists the parameters that provided the most success.

The data coming from MOMGA-II needs further processing in order to extract the

meaningful data. Section 5.6.2 describes the process used to get the data into its final form

for analysis.

5.6.1 Input parameters. The MOMGA-II code is very complicated. It consists of

13 .c files and 5 files that it pulls parameter values from. Tracking the flow of the program

can be confusing, and initially finding the parameter values difficult. Table 5.2 lists the

main parameter settings and where they are located. The parameters that vary are ones

that are either changed based on the problem size or depend on the method used to run

the program.

5.6.2 Process used for getting data results. The MOMGA-II program takes the

input matrices and outputs the results of its search into four files. Unfortunately, the

data is still raw and needs filtering to extract the meaningful data. Figure 5.1 shows the

dataflow diagram of the required process to get the final output data.

First, the MOMGA-II program is run and four output files generated. Then the

unique and the dat files are converted from binary to integers. Then one of those (depend-
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Table 5.2 MOMGA-II parameter settings
Parameter Parameter setting Found in

MGA MODE 0 (fmGA) mga.def
SCALED FITNESS 0 (off) mga.def

ELITISM 1 (on) mga.def
ELITISM MODE 1 (PFcurrent to next era) mga.def

FILE MODE 1 (Rec each gen) mga.def
Maximization 0 (Minimization) parameters
Problem size Varies parameters

Number of bits per facility 10 subfunc
Start era Varies parameters

Maximum era Varies parameters
Elitism percentage 0.25 parameters

Prob of cut 0.02 parameters
Prob of splice 1.0 parameters

Prob allelic mutation 0.0 parameters
Prob of genic mutation 0.0 parameters

Thresholding 0 (No) parameters
Tiebreaking 0 (No) parameters

n a Varies (For PCI) parameters
NUM FUNCS Varies mga.h

NUM TEMPLATES Varies mga.h
NUM DVS Varies mga.h

dvs len 10 (bits per item) mga.h
Total generations 100 era

Juxtapositional popsize 300 era

ing on the circumstance) is input into the pareto enum and the Pareto front is found. This

occurs for 30 different instances and then these are used to determine how well MOMGA-II

did in finding the Pareto front points.

5.7 Data structures used

The data structures used in the MOMGA-II program are very straight forward. This

section details the various data structures used.

5.7.1 Representation. Each allele in the chromosome consists of tuples. Figure

5.2 shows an example of how the chromosome is designed. As you can see, each allele has

two values associated with it. The first value is the binary value and the second value is
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Figure 5.1 MOMGA-II Data Flow Diagram

the chromosome location for the chromosome. This representation allows good building

blocks to be grouped together and avoid being divided by the cut and splice method. This

is why the fmGA and MOMGA-II are called explicit building block methods. The building

blocks are explicitly grouped together along the chromosome.

When these values are evaluated, they are placed on a chromosome template, so that

each value is in its proper location. If the chromosome produces a good output, it may

take the place of one of the competitive templates. The competitive template fills any

empty spaces for an underspecified chromosome. It is hoped that the template helps to

guide the search toward better solutions.
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Figure 5.2 Example of a chromosome in the MOMGA-II. Each allele is represented by
a tuple.

5.7.2 Input Data. The input data is read in as a matrix. The matrix data is then

put into a scalar array. For example, table 5.3 shows a 10× 10 input matrix. The columns

and rows are labelled 0 though 9. The row value is multiplied by a scalar representing the

total number of columns per row. For our example, the scalar value for the row is 10. So

if you want the first row and first column, you get the following results:

r = 0, c = 0

X[r ∗ 10 + c] = X[0 ∗ 10 + 0]

X[0] = 0

Now if you want the value from row 7, column 5, you get the following:
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Table 5.3 Example of an input matrix
0 10 8 15 11 18 12 4 5 17
10 0 28 7 16 22 14 9 23 9
8 28 0 11 22 15 9 17 15 11
15 7 11 0 16 11 10 18 19 14
11 16 22 16 0 19 22 14 12 27
18 22 15 11 19 0 18 9 7 22
12 14 9 10 22 18 0 11 18 7
4 9 17 18 14 9 11 0 10 17
5 23 15 19 12 7 18 10 0 18
17 9 11 14 27 22 7 17 18 0

r = 7, c = 5

X[r ∗ 10 + c] = X[7 ∗ 10 + 7]

X[75] = 9

5.7.3 Output Data. The output data structure is fairly straight forward. Each

row of the output file contains the integer representation of one chromosome. The row also

contains the objective function values calculated for that permutation.

5.8 Constraint Handling

The data representation was set-up in such a way that no constraint handling is

necessary. Since 10 binary digits represent each UAV, that gives a 1024 possible input

values. This makes the chance of having the same binary representations over 10 bits in

the chromosome a rare occurrence. Plus, if two similar sets are found, the first set in the

chromosome gets the lower number.

In addition, when applying the competitive template to the under-specified chromo-

somes, no constraint handling is needed. By avoiding the need to repair individuals, the

algorithm runs more efficiently since it doesn’t have to always check for error conditions

that need repair.
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5.9 Additional Programs

The MOMGA-II program creates the three data files discussed in section 5.7.3. But

most of the results are hard to decipher. Several programs are used to clean up the data

and to display it in a meaningful way. The next few sections briefly describe what each

program did to the MOMGA-II data and why they were useful.

5.9.1 Main Short.cc. This program is an exhaustive search program that finds

all possible solutions to the mQAP. The program starts by placing UAV one in formation

location one, UAV two in formation location two, etc., until all the locations are filled

with UAVs. The algorithm calculates the values for all the objectives, and then writes the

results to disk. These objective values are then stored as a baseline for other objective

values to compare their results. The algorithm swaps the UAVs in the last two locations

and then recalculates the objective values. These results are compared to the stored results.

If all objective values are worst than the stored results, they are not saved and another

permutation is calculated. If some of the results are better than the stored result, the

results are written to disk. If all results are better than the saved result, the data is

saved to disk and the results are saved for all future comparisons. This continues until all

permutations have been tried. Once the data file reaches a certain size, the main pareto

program is run to pull out the current Pareto Front. At the end of the algorithm, the final

Pareto Front is derived using the main pareto algorithm.

5.9.2 qapbin2int.c. This program takes the string of binary numbers that rep-

resented the UAV numbers and replaced them with their appropriate integer value. For

example a 10 location and 10 facility problem, with 2 flows, would have 102 values. The

first 100 values are the binary numbers. Every 10 digits represents one UAV. The last two

values are the total flow results. As the program runs, it calculates the integer value for the

first ten binary digits. It then sets those equal to the lowest number found. The next ten

digits are grabbed and compared to the lowest found. If the new value is lower, it replaces

the old value. At the end, the lowest number is found and a one is placed into a sorted

matrix at the location it was found in the input matrix. This value is then set to a high

value that is beyond the scope of the other numbers. The process is then repeated until all
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of the binary numbers are sorted and the new matrix displays the results in integer form.

Then the two flow totals are added to the end of the row to show the values obtained using

the permutation. If two UAVs have the same binary values for all 10 digits, then the first

one in the list is given the lower number.

5.9.3 SeparateBBSize.c. This program divides a run that uses more than one

building block size into separate files. Each file only contains the results of one particular

building block size. This program is only used when comparing runs with only one building

block size to runs with many building block sizes.

5.9.4 main pareto.c. This program cleans up the Pareto front generated via

MOMGA-II. MOMGA-II generates many duplicate results for its Pareto front analysis

because it only looks at the binary representation and not the integer representation.

Since more than one binary string can equal the same integer string, there are duplicates

generated. This program runs on the integer representation so all of the extemporaneous

data is removed.

In addition, this program combines results from the 30 individual runs and combines

the results of separate building block sizes.

5.9.5 MATLAB. MATLAB is used to graphically display the results of the

data runs. This program is very useful to aid the researcher in determining how one run

compares with another. In addition, it provides a great scientific visualization tool to

aid the researcher in determining if his results are on target. In this research, MATLAB

aided in the discovery of how the results propagated toward the true Pareto Front. This

visualization showed flaws in the original algorithm and gave clues about how to fix the

algorithm to overcome the problems.

5.10 Summary

Previous chapters discussed the program used in this research as well as the mQAP.

This chapter’s main goal is to link the two.
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This chapter discusses the design decisions taken for this research. The discussion

focusses on the options that have been chosen and the reasons why certain options are dis-

carded and others are implemented. Presented next is a description of the implementation

language, along with the reasons for its selection. Described next are the parameter values

used for MOMGA-II. These values give future researchers the ability to duplicate these

findings. The chapter also discusses the data representations associated with the problem.

Also mentioned are the other programs used to filter out the meaningful data from the

runs.

The next chapter describes the design of experiments used in this research.
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6. Design of Experiments

6.1 Introduction

The main goal of this research is the creation of an effective and efficient algorithm

that renders good solutions for minimizing the total propagation time delay for a formation

of UAVs. But to achieve that goal, several smaller goals need addressed. These goals can

be classified under two categories: effectiveness goals and efficiency goals. Section 6.2

lists the the effectiveness goals and the experimental design used to validate that these

goals are met. Section 6.2.3 lists the experimental design used to validate the efficiency

goals. Finally, section 6.4 states the computing environment that the experiments were

conducted.

6.2 Effectiveness Goals

Finding good solutions is the top priority for this research. Therefore we have to

validate that our algorithm does indeed find good solutions. Since the mQAP is a relatively

new construct, we only have limited data to compare our algorithm. But since the 10

location and 10 UAV test problems can be solved to optimality, we use this as a benchmark

to validate that our algorithm is effectively finding solutions along the true Pareto Front.

Once a baseline set of runs are completed and analyzed, algorithm parameters can

be tweaked to improve effectiveness. This section lays out how the experiments were

conducted in order to improve the effectiveness of the algorithm.

6.2.1 Find optimal results. Before we run MOMGA-II, we need something to

compare it with. Knowles and Corne state how many points they found on the True

Pareto Front using an optimal method [71, 72]. While this information is useful, it doesn’t

state enough information for our purposes. Therefore, an optimal algorithm was created

and run on the ten UAVs and ten location problems. This algorithm goes through every

permutation of UAVs and locations and finds the values for all the communication flows.

When completed, the results are input into a program that pulls out the Pareto Front.

These results are then used to compare to the MOMGA-II results.
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For the 20 and 30 location problems, a comparison must be done to Knowles and

Corne’s results. In addition, we apply some of the MOEA metrics mentioned in Section

3.3.2.

6.2.2 Initial MOMGA-II runs. The MOMGA-II was previously run on the

multiobjective knapsack problem. For it to work with our problem it has to be modified

to handle the mQAP. This required replacing the knapsack portion of the code with code

that calculates the values of the mQAP. Once the modifications are complete, the program

is run to get some baseline results. These results are then compared to the optimal values

found in the 10 location problems. In the 20 and 30 location problems, we compare the

results to the ones found by Knowles and Corne. If the results prove to be effective, then

we can avoid tweaking parameters. If the results are not effective, some parameter changes

need to be made in order to improve the effectiveness of the algorithm.

6.2.3 Validate the effects of the competitive templates and building-block sizes.

In addition to validating that this is an effective algorithm for our problem domain, we

also want to gain further insight into how the algorithm works. Since this is an explicit

building-block GA it is helpful to see if certain building-block sizes gravitate to certain

locations on the Pareto Front.

In order to do this and ensure that the competitive templates do not play a role in

the larger building block sizes, we need to redesign the way the algorithm works. Some

modifications were made to the code in order to enable it to run only one building-block

size at a time. We couldn’t just separate out the building-block sizes from the previous

runs in order to get these results for two reasons. First, since elitism was used, population

members were passed from one generation to the next. So at the very least we would have

to rerun the program with elitism off in order to avoid the propagation of individuals.

But even if we did that we still have a second problem. The competitive templates not

randomized between building block sizes. That means competitive templates from previous

building block sizes would be passed on to larger building-block sizes. Because of these

reasons, the code had to be rerun in a manner so that only one building-block size is run

at a time and the competitive template is randomized before each new building block size.
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Now that we have runs that have a competitive template that is passed on from

smaller building block sizes to larger ones, we can compare those results to our new results

to see if one method is better than the others.

Efficiency goals: While the effectiveness of our algorithm is our primary concern,

we don’t want to turn our back on efficiency. If our algorithm is very effective, but it takes

too long to run, then we may be better off finding another algorithm that can get us our

results in an expedient manner.

Initial runs: The timing data of the initial runs is recorded. This data is our

baseline data. In addition, the optimal program’s time is recorded. Since the optimal

program cycles through all possible results, it’s efficiency is poor. But it has been improved

in order to only record “good” results. This increases the efficiency for the Pareto Front

analysis. These two sets of time are used as our baseline time. Our goal is to attempt

improve the efficiency of our algorithm while we maintain or improve the effectiveness.

Look for time saving approaches Once the baseline time is derived, we need to

delve into the program to see if there are any bottlenecks. One bottleneck appears to occur

due to all the writing to the data file. By limiting the writes, we may be able to increase

our efficiency.

6.2.4 Parallel approach. The parallel approach should save time just because it

is running multiple instances at the same time. We want to get the timing data of these

runs and compare them to timing data of the serial runs. The efficiency and speedup are

charted and show if MOMGA-II is scalable or not.

6.3 Metrics Used

In order to quantify the effectiveness and efficiency of the experiments, metrics need

to be established and used. This section discusses the metrics implemented and why they

were chosen.

6.3.1 MOEA Metrics Used. Section 3.3.2 lists many of the MOEA metrics that

are currently used. For this research, when comparing to PFtrue, the error ratio was chosen
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as the metric. This metric best captures the effectiveness of the algorithm being tested.

Many of the other metrics can be deceiving. Metrics that just contain an aggregate of

the points can make one result appear to be superior because it has more non-dominated

points, when in reality, many of those points are dominated by the competing result. The

generational metrics are nice, but are not necessary.

For comparing two populations with no PFtrue, the two set coverage metric is used.

This metric states the percentage of points dominated in one population by another. This

metric best describes the effectiveness goals for this research.

6.3.2 Parallel Metrics Used. Appendix B lists some of the parallel metrics used

in the research field. Speedup and efficiency are the two metrics chosen for this research.

These metrics best capture the efficiency goals for parallel processing. Speedup can quan-

tify how much faster parallel processing completes a task when compared to serial process-

ing. Efficiency can quantify how well the processors are being utilized. All of the other

metrics state basically the same thing, but in different ways.

6.3.3 Building Block Metrics Used. For the building block portion of the experi-

ments, there are currently no metrics used in the literature. So, in order to quantify how

building block size affects the outer edges of the Pareto Front, a new metric is created.

For this metric, the range of each objective function value is halved. Then, each

Pareto Front member located in the upper segment of each objective function is counted.

Then the ratio of the total number of large building block members to the total number

of small building block members is calculated. This result is a number. If the results is

greater than one, there are more large building blocks on the outer edge of the Pareto

Front. If the number is between zero and one, then there are more smaller building blocks

located on the outer edge. Equation 6.1 shows the basic equation for this metric.

BBLocationMetric =
∑

BBSizelarge ∈ PFouter∑
BBSizesmall ∈ PFouter

(6.1)

where the outer edge of the Pareto Front is defined as the upper half of the possible values

for the objective function. For example, if an objective function ranges between values 2000
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and 6000, all population members located on the Pareto Front between 4000 and 6000 for

that objective function are counted. Note that for other types of Pareto Fronts, the lower

half of the objective function may be more appropriate, depending on the way the Pareto

Front is shaped. For this research building block sizes of one and two are considered small.

Building block sizes of nine and ten are considered large.

6.4 Computing Environment

The computing environment can be broken down into two segments the hardware

environment and the software environment. Section 6.4.1 lays out the hardware used.

Section 6.4.2 lists the important software used.

6.4.1 Hardware Properties. The hardware systems used for the testing can be

seen in table 6.1. While the backplanes are similar for both systems, the Polywells use

faster AMD processors than the ASPEN machines. They also have larger cache memories.

A disadvantage is their memory size is only one-fourth the size of the ASPEN machines.

In addition, the ASPEN system has more nodes, and they also have two processors per

node vs. one processor per node for the Polywells.

Table 6.1 System Hardware Configurations
Variable Cluster 1 Cluster 2

(ASPEN) (Polywells)
Processors Dual PentiumIII, 1GHz AMD Athlon, 1.4GHz

Cache(L1 I,D/L2) (16,16/256)KB (64,64/256)KB
Backplane Fast Ethernet Fast Ethernet

RAM 1 GByte 768 MByte
Switching Crossbar Switch Crossbar Switch
Diameter 1 1

Bisection Width p p

Arc Connectivity 1 1
Cost p2 p2

Disk I/O RAID 5 RAID 5
Memory type Distributed Localized
Node Specifics 48 nodes 16 nodes

2 CPUS/node 1 CPU/node
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In order to keep our timing consistent, all of our timed runs occur on the ASPEN

machines. We do this because ASPEN utilizes a scheduling system that reserves the

processors for you when you submit a job. This prevents other processes interfering with

your results. The Polywells don’t incorporate a scheduler, so at anytime during your run,

another process may step on yours and result in erroneous timing data.

6.4.2 Software Properties. There is little difference between the two systems

as far as software is concerned, as Table 6.2 shows. The one difference in the operating

systems. The Polywells use Redhat version 7.1 while the ASPEN machines use a newer

version of Redhat, version 7.3. In all of the runs we have done with other software projects,

we have not noticed an instance where a program runs on one system but not on the other.

All the rest of the software is identical on both systems.

Table 6.2 System Software Configurations
Variable Cluster 1 Cluster 2

(ASPEN) (Polywells)
Operating System Redhat Redhat

Linux 7.3 Linux 7.1
MPI Compiler mpich-1.2.1 mpich-1.2.1
gcc Compiler Version 2.96 Version 2.96

g++ Compiler Version 2.96 Version 2.96

6.5 Summary

This chapter lays out the experimental design employed for this research. Specifically

discussed are the effectiveness and efficiency goals and the steps taken to achieve them.

A discussion of computing environment, both from the hardware and software side is

presented. The next chapter lists the results of the experiments and presents an analysis

of these results.
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7. Results and Analysis

7.1 Introduction

This chapter presents the results and the analysis of the data. Section 7.2 lists the

results of the first experiments run. These experiments are the baseline. Section 7.3 shows

the results of the parallel experiments. Section 7.4 contains the results and analysis of the

building block and competitive template experiments.

7.2 Baseline Experiments

This section lists the initial results and analysis. The test suite described in section

7.2.1 is used not only for the initial experiments, but for all the experiments.

7.2.1 Test Suite. Since the mQAP is a newly formulated problem, only one

standardized test suite is currently available, as previously stated [71]. This data was used

as the input data and the results were compared with actual results or the results obtained

from previous researchers. The test suite used for testing is seen in Table E.1.

7.2.2 Experiment parameters. The parameters used for these experiments include

those in Table 7.1 as well as those described in Section 5.6.1.

Table 7.1 Population sizes for N facilities and locations
Population by (N) # of Generations by (N)

Era (10) (20) (30) (10) (20) (30)
1 403 401 400 300 100 300
2 413 405 402 20 100 20
3 430 411 405 20 100 20
4 455 419 408 20 100 20
5 491 431 413 20 100 20
6 553 458 431 20 100 20
7 601 464 427 20 100 20
8 685 487 436 20 100 20
9 794 514 447 20 100 20
10 937 546 458 20 100 20
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7.2.3 Results. The MOMGA-II results are taken over 30 data runs. The hardware

configuration for the experiments can be found in table 6.1. Table 6.2 lists the software

configuration.

Some of the baseline results are shown in figures 7.1 - 7.4. Appendix F lists all the

baseline graphs created.
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Figure 7.1 Pareto front found for the KC10-2fl-1rl test instance

Table 7.2 shows how the MOMGA-II algorithm performed compared to the data

from Knowles [70]. The results are not good. The ten UAV instances are better than

the MOMGA-II because those are the PFtrue values, so those can be expected. But the

MOMGA-II missed many points. In addition, Knowles found many more nondominated

points than the MOMGA-II found for the harder instances.

Table 7.3 shows the results of MOMGA-II compares with the PFtrue. The MOMGA-

II performs poorly in five of the eight, it could not find more than 45% of the points on

PFtrue. The mean number of points found on the True Pareto Front is only 54%. These

results indicate that the MOMGA-II is not performing effectively, so changes must be made

either with the parameters or with the algorithm itself.
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Figure 7.3 Pareto front found for the KC30-3fl-2uni test instance

7.3 Parallel Experiments

These experiments compared the parallel results with the serial results and with

the results found using a deterministic algorithm. See Section 5.9.1 for a description
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Figure 7.4 Pareto front found for the KC30-3fl-3uni test instance

of the algorithm. The MOMGA-II results are taken over 30 data runs. The hardware

configuration for the experiments can be found in table 6.1. Table 6.2 lists the software

configuration. The parameters used for the baseline runs are maintained in order to get

accurate timing results.

The metrics used for the parallel experiments are speedup and efficiency. Speedup

is chosen for its commonality throughout the literature and its ability to show how much

faster or slower the parallel processing is compared to serial processing. Efficiency is used

to show the amount of time the processing element is used vs. its idle time. Table 7.4 lists

the results of the speedup and efficiency analysis. By using more processors, the speedup

is increased enabling the runs to be done in a more efficient manner. The efficiency for

each processor decreases as more processors are added. This means the processors are in

idle mode more often while waiting to do processing. This means there will be scalability

problems as more processors are added.

Figure 7.5 shows a graph of the mean time to finish an experiment with set population

sizes. This indicates that as more processors are added to search for solutions there is

almost a linear speedup when compared to running the same number of searches in serial.

7-4



Table 7.2 Comparison of MOMGA-II Results to Knowles Results
Knowles Results MOMGA-II Results

Test # ND Diameter Entropy # ND Diameter Entropy
Name pts pts

KC10-2fl-1uni 13 7 0.71 13 5 0.69
KC10-2fl-2uni 1 6 0.39 1 0 0
KC10-2fl-3uni 130 8 0.78 118 6 0.87
KC20-2fl-1uni 80 15 0.828 24 11 0.82
KC20-2fl-2uni 19 14 0.43 538 15 1.48
KC20-2fl-3uni 178 16 0.90 51 12 0.92
KC30-3fl-1uni 705 24 0.97 126 20 0.50
KC30-3fl-2uni 168 22 0.92 58 22 0.64
KC30-3fl-3uni 1257 24 0.96 155 20 0.56
KC10-2fl-1rl 58 8 0.68 44 5 0.61
KC10-2fl-2rl 15 7 0.49 10 5 0.56
KC10-2fl-3rl 55 8 0.62 36 6 0.71
KC10-2fl-4rl 53 8 0.58 34 4 0.53
KC10-2fl-5rl 49 8 0.63 45 6 0.69
KC20-2fl-1rl 541 15 0.63 17 12 0.73
KC20-2fl-2rl 842 14 0.6 12 11 0.76
KC20-2fl-3rl 1587 15 0.66 29 12 0.91
KC20-2fl-4rl 1217 15 0.51 25 10 0.18
KC20-2fl-5rl 966 15 0.56
KC30-3fl-1rl 1329 24 0.83 191 24 0.79
KC30-3fl-2rl 1924 24 0.86 183 24 0.77
KC30-3fl-3rl 1906 24 0.86

Table 7.3 Comparison of MOMGA-II Results to PFtrue

True Pareto Front Points
Test Name MOMGA-II Deterministic % Found

KC10-2fl-1uni 9 13 69
KC10-2fl-2uni 1 1 100
KC10-2fl-3uni 40 130 31
KC10-2fl-1rl 21 58 36
KC10-2fl-2rl 5 15 33
KC10-2fl-3rl 23 55 42
KC10-2fl-4rl 24 53 45
KC10-2fl-5rl 36 49 73

Mean 53.76
Std. Dev. 24.59
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Table 7.4 Speedup and Efficiency Results
Number of Processors Speedup Efficiency

2 Processors 1.842 0.9210
4 Processors 2.376 0.5941
8 Processors 3.431 0.4289

Island Model Results (Time to Process QAP2 Population)
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Figure 7.5 Speedup results from running MOMGA-II on data set KC10-2fl-1uni.

7.4 Building Block and Competitive Template Experiments

7.4.1 Effectiveness of New Method. Since the baseline method performs poorly,

a new method or parameter set is tried. It is decided to create a new method of running

MOMGA-II. This method runs only one building block size at a time. The former method

starts at a small building block sizes and finishes at a larger size. With each new building

block size, the competitive template is kept. This guides the search toward the best known

solutions. With the new method, the competitive template is randomized with each new

building block size. This allows for more exploration in the algorithm and helps to avoid

premature convergence.

Figures 7.6 - 7.11 show the results of the experiments. These results are also contained

in Table 7.5. The results show that the new method performs much better than the old
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Figure 7.6 Comparison of MOMGA-II methods to optimal results on KC10-2fl-1rl test
instance

method on all instances except one. The one time the old method performs better is when

there is only one data point as a solution. These results show that, with the exception of

one instance, the new method is more effective than the old method. See Section 7.4.3 for

further analysis on why the new method performs better than the old method.

7.4.2 Building Block Size Results. In order to analyze the building block sizes

and their proximity on the Pareto Front, we graphed each building block size individually.

This resulted in longer execution times for the algorithm but shorter overall execution time

because the Pareto Front analysis took much less time with smaller population sizes. The

Pareto Front analysis algorithm has a complexity of O(kM2) where k is the number of

objectives and M is the population size. So when the population size is divided into 10

smaller chunks, the Pareto Front analysis algorithm runs much faster due to the smaller

population sizes. Then we compared the two methods to the True Pareto Front. Table

7.6 shows how many building block sizes found the Pareto Front. It is interesting to note

that the randomized template appears to do better for smaller building block sizes while

the propagated templates do better on larger building block sizes. One possibility for
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Table 7.5 Comparison of MOMGA-II Methods to PFtrue

True Pareto Front Points
Test Name Deterministic Old Method % Found New Method % Found

KC10-2fl-1uni 13 9 69 11 85
KC10-2fl-2uni 1 1 100 0 0
KC10-2fl-3uni 130 40 31 122 94
KC10-2fl-1rl 58 21 36 56 97
KC10-2fl-2rl 15 5 33 11 73
KC10-2fl-3rl 55 23 42 50 91
KC10-2fl-4rl 53 24 45 47 89
KC10-2fl-5rl 49 36 73 49 100

Mean 53.76 78.49
Std. Dev. 24.59 32.75

Mean (w/o anamoly) 47.16 89.70
Std. Dev. (w/o anamoly) 17.28 8.82

this is that since there are more population members for larger building block sizes, more

exploration is done with the old method and it is able to locate more points on the Pareto
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Figure 7.8 Comparison of MOMGA-II methods to optimal results on KC10-2fl-2rl test
instance

Front. Plus, the old method has the advantage for finding the outside points of the Pareto

Front due to the competitive templates guiding them there.

Table 7.6 Number of Building Block Sizes Located on the True Pareto Front
Building Block Pareto Randomized Propagated

Size True Comp. Temp. Comp. Temp.
BBSize 1 13 4 4
BBSize 2 13 7 3
BBSize 3 13 6 4
BBSize 4 13 6 4
BBSize 5 13 2 3
BBSize 6 13 5 4
BBSize 7 13 5 4
BBSize 8 13 4 4
BBSize 9 13 3 4
BBSize 10 13 1 4

Table 7.7 shows how four of the test instances compared when the building block

location metric is used to gauge the number of building blocks on the outer edges of

the Pareto Front. On average, about twice as many large building blocks populate the
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Figure 7.9 Comparison of MOMGA-II methods to optimal results on KC10-2fl-2uni test
instance

outside of the Pareto Front than the smaller building block sizes do. This is due to more

bits being set in the genotype domain and allows for a better solution in the phenotype

domain. Another contributing factor is the larger population sizes that are generated for

the bigger building block sizes. These larger populations are generated because of the PCI

formula that attempts to set the population to a good statistical sample. Since there are

many more permutations of 10 building blocks than 1 building block, there has to be a

larger population. These two factors are the primary reason the larger building block sizes

are capable of reaching the outer edges of the Pareto Front and the smaller building block

sizes are not as capable.

Figures 7.12 through 7.20 show some of the results of the experiments. What is

interesting to note is how well the randomized template method found the inner points on

the True Pareto Front for building block sizes 4 and 5 but tended to drift from them as the

building block size increased. The diameter of the Pareto Front also appears to increase

with larger building block sizes. This supports the previous findings of Zydallis [134] and

Van Veldhuizen [117].
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Table 7.7 Comparison of Building Block Sizes and Location on Outer Edges
of Pareto Front

Test Name # Large BB Size # Small BB Size BB Location Metric
KC10-2fl-1rl 62 44 1.409

KC10-2fl-1uni 12 3 4.000
KC10-2fl-2rl 4 4 1.000
KC10-2fl-3rl 32 17 1.882

Mean 2.073
Std. Dev. 1.334

Two things can be done to help the larger building block sizes reach the True Pareto

Front. Adding one or more competitive templates on the interior of the Pareto Front could

bring more values toward the center. Another possible method would be to increase the

number of generations run for the larger building block sizes. This allows the population

more time to converge to the True Pareto Front.

7.4.3 Competitive Template Results. The randomized competitive template

method (new method) did better when compared to the propagated competitive tem-

plate (old method). These results suggest that by randomizing the competitive template,
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Figure 7.11 Comparison of MOMGA-II methods to optimal results on KC10-2fl-3uni
test instance

the algorithm is able to explore the objective space more effectively and yield better re-

sults. The better results appear to be due to the placement of the competitive templates

and the method for which they are chosen to be applied to underspecified chromosomes.

The algorithm randomly chooses a competitive template to apply to the underspecified

chromosome. This is similar to the criterion selection technique outlined in section 3.3.1.3.

A criterion selection divides its population into subpopulations and then selects the next

generation from each subpopulation based on one objective function. These members are

placed back into the main population and after the population is mixed and evolutionary

operations are applied to the members, the population is subdivided again. MOMGA-II

also has competitive templates located at the ends of the Pareto Front, creating a simi-

lar circumstance as seen in the criterion selection method. Therefore it is believed that

the MOMGA-II suffers from ”speciation” much in the same manner as criterion selection

methods do. This can be overcome by adding some competitive templates near the center

of the Pareto Front.
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Figure 7.12 Comparison of the effectiveness of using an inherited competitive template
BB size 2 vs. initially randomized templates

The results from Table 7.5 support these findings. Whenever there were many points

to find, the new method always found more than the old method. The reason why the

old method performed better than the new method when there was only one point to

find is due to the fact that both competitive templates are pointing at the same location.

This directs the search in the same direction as opposed to dividing the search into two

directions. Since the new method doesn’t have this directed search passed on to the larger

building block sizes, they start at a disadvantage when trying to find one or two points.

7.5 Summary

This chapter discusses the results of the experiments. The baseline experiments were

found to be not very effective. By adding parallelism to the algorithm, the speedup is

increased. This results in our algorithm completing sooner, thus it runs more efficiently. A

new method is presented and shows to be far more effective than the old method in most

instances. Experiments conducted on building block size and on the competitive template

show that building block size does play a small role in finding points along the Pareto
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Figure 7.13 Comparison of the effectiveness of using an inherited competitive template
BB size 3 vs. initially randomized templates

Front. The competitive template results show that a randomized template at the start of

each new building block works the best.

The next chapter discusses the conclusions made from the results.
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Figure 7.14 Comparison of the effectiveness of using an inherited competitive template
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Figure 7.16 Comparison of the effectiveness of using an inherited competitive template
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Figure 7.17 Comparison of the effectiveness of using an inherited competitive template
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Figure 7.18 Comparison of the effectiveness of using an inherited competitive template
BB size 8 vs. initially randomized templates
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Figure 7.19 Comparison of the effectiveness of using an inherited competitive template
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8. Conclusions and Recommendations

8.1 Introduction

This chapter discusses the conclusions derived from this research. The research goal

of creating an effective stochastic algorithm to solve the UAV communication propagation

is complete. Section 8.2 lists the conclusions that are based upon the results and analysis

in chapter 7. Section 8.3 discusses the future work that can be done to extend this research.

8.2 Conclusions

The conclusions can be decomposed into three main categories, effective algorithm

conclusions, building block size conclusions, and competitive template conclusions.

This work fits in well with the current work funded by DARPA. The Defense Depart-

ment and the Air Force view UAVs as a prominent fixture in future warfare. Some of the

current research is looking at multiple UAVs in formations. This research ties in well with

that research. Currently, no other research has been published that attempts to optimize a

UAV formation based on limiting communication propagation rates. This research is espe-

cially useful to the sponsors, the Air Vehicles Directorate and the Information Directorate

of AFRL. This research ties into their UAV and simulation research.

8.2.1 Effective Algorithm Conclusions. This investigation attempts to find an

effective algorithm to limit the propagation time delay for a formation of heterogeneous

UAVs flying in a formation. We found that the MOMGA-II algorithm can accomplish our

goal. When the competitive template is randomized between building block sizes, we are

able to produce “very good” results as shown in Section 7.4.1. These mean results are

nearly twice that of the baseline results, when comparing problems with more than one

point on the Pareto Front.

8.2.2 Building Block Size Conclusions. This investigation attempts to see if

building block size affects where the individual falls along the Pareto Front. The results

show that larger building block sizes tend to spread their search further out on the Pareto

Front. The Building Block Location Metric shows that for the instances tested, the larger
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building block sizes are twice as likely to populate the outer portions of the Pareto Front

than the smaller building block sizes. Section 7.4.2 contains the details and analysis of this

experiment.

8.2.3 Competitive Template Conclusions. The goal of these experiments is to

determine which method of running the MOMGA-II algorithm is most effective. The

research effort found that by randomizing the competitive template between building block

sizes, we are able to encounter much better results than if we propagated our competitive

template to future building block sizes. The results show that nearly twice as many points

are found on Pareto Fronts that consist of more than one point. This is due to the

competitive template pulling the search out toward the ends of the Pareto Front rather

than pulling it down toward the middle. Section 7.4.3 contains the analysis that support

these statements.

8.3 Future Work

While doing this research many new possibilities for future research were uncovered.

Sections 8.3.1 and 8.3.2 describe two of these research possibilities.

8.3.1 Chromosome length. In this research, each individual is a binary encoding

of 10 digits. In a 10 UAV problem, this equates 100 digits for the entire chromosome.

But the chromosome length can be reduced by using the binary representation of decimal

numbers, where the largest number would be 1010. By using this representation, the full

chromosome length would be reduced to 40 digits. This greatly reduces the search space

by 60%. But in doing so, many constraints must be undertaken. First, the researcher must

ensure that every binary number generated for the permutation is the binary equivalent

of a number between 1 to 10. Plus, he must also ensure that either the chromosome

contains no duplicates, or he must handle the case where there are duplicates and assign

new values to the duplicated members. This part of the problem is not too difficult.

The difficulties arise when trying to use the competitive template to fill in values for

underspecified chromosomes. If the competitive template’s values match some of the values

in the chromosome, a repair mechanism must be implemented in order to correct this
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situation. Several approaches are possible to accomplish this, some possibilities are listed

below:

• Have multiple competitive templates to choose from

• Replace duplicated UAV with one not currently listed

• Keep competitive template values and replace duplicated values found in the under-

specified chromosome.

Each one of these choices has ramifications that may affect the usefulness of the

competitive template or the ability of the algorithm to explore the entire search space.

8.3.2 Number of competitive templates. This research effort used one competitive

template for every objective. But by looking at the results of the propagating template,

this may hinder the algorithm from reaching the center points of the Pareto Front because

they are guiding the search toward the outside regions of the Front.

If more competitive templates were placed throughout the Pareto Front, it should

pull more values toward the center of the Pareto Front. The difficulty with this approach

is finding a good placement of the new templates in order to ensure good spacing along

the Pareto Front. Currently, the two competitive templates are based on the best values

found for each objective. Any other competitive templates that are added should include

a distance function to ensure enough spacing is between it and the other competitive

template values.

8.4 Summary

This chapter discusses the conclusions that are uncovered in this research using the

mQAP and MOMGA-II. It was found that the MOMGA-II is an effective algorithm for the

problem. It was also discovered that larger building block sizes more often populate the

outer edges of the Pareto Front. Another conclusion showed that a randomized competitive

template at the start of each building block size greatly enhances the search. This chapter

also mentions two items to investigate in the future. One looks at reducing the chromosome

length while the other increases the number of competitive templates.
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Appendix A. Unmanned Aerial Vehicle Introduction

A.1 The Current State of UAVs

UAVs are not new entities. The military has been experimenting with drones for some

time now. There have been 11 UAVs developed by the Department of Defense (DoD) since

1964, with 3 of them entering the production phase [97]. In the 1990’s, the DoD goal was

to have UAVs developed for three different tiers of missions: close range (0 - 50 km), short

range (51 - 200 km), and endurance (201+ km) [97]. Later, they combined close range and

short range to make the class called Tactical UAV, making only two classes of UAVs. The

rest of this section will briefly describe some of the features of the most popular UAVs.

A.1.1 Pioneer. The Pioneer is a short range UAV and a is member of the

Tactical UAV family. It was initially procured by the Navy in 1985 to be used for imagery

intelligence (IMINT) [97]. It was was used in over 300 missions in the Persian Gulf during

1990 and 1991, and it has been used in Bosnia, Haiti, and Somalia [97]. It flies at a cruise

speed of 52 knots and a max speed of 110 knots, can fly as high as 12,000 ft., and it has a

range of around 185 km [97]. It is made by Pioneer UAV, Inc., a joint U.S./Israeli venture,

and as of 1998 they were still a part of the Naval inventory [97].

A.1.2 Hunter. The Hunter is another short range UAV in the Tactical UAV

class. It was an Israeli made UAV that the Army decided to purchase. It flies at speeds of

70 knots (cruise) up to 110 knots (max), it could fly as 16,000 feet, and has a range of 125

km [97]. The program was cancelled in 1996 after cost overruns, schedule slippages, and

20 vehicle crashes [97].

A.1.3 Pointer. The Pointer is a hand-launched close range UAV in the Tactical

UAV class. It is easily assembled and only weighs 8.5 pounds. It’s range is around 5 to

7 km and can reach altitudes of 3000 feet [97]. The missions usually last one hour or less

and the UAVs posses no autonomous control [97]. This UAV is a Naval procurement that

has it’s limitations, due to its size and payload capacity, but in 1999 they were fitted with

infrared red cameras that now enable it to do night missions [97].
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Figure A.1 UAV Timeline
[97]
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Table A.1 Current UAV Particulars This table contains a partial listing of some
of the current UAVs and listing their stated endurance, payload weight, and
altitude limitations .

UAV Endurance Payload Altitude
Name (hrs) (lbs) (ft)

DarkStar 8 1000 45,000
Eagle Eye 8 300 20,000
Exdrone 2.5 25 10,000
Firebee 1.25 470 60,000

Guardian 6.25 220 18,000
Global Hawk 42 1960 65,000

Gnat 750 48 140 25,000
Hunter 12. 200 43,000

Model 324 2.5 200 43,000
Model 410 12 300 30,000
Outrider 4 160 15,000
Pioneer 5.5 75 12,000
Pointer 1 2 3,000

Predator 29 700 +40,000

[97]

Figure A.2 The Pioneer UAV
[97]
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Figure A.3 Hunter
[97]
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Figure A.4 Predator
[97]

A.1.4 Predator. The Predator is a Medium Altitude Endurance (MAE) UAV and

a member of the Endurance class of UAVs. This UAV has become well known recently

because of the CIA arming one with a Hellfire missile and using it to kill six al-Qaida

members [97]. The Air Force is the lead service of the Predator, but the CIA uses it in

their operations as well. The Predator needs a 5000 x 125 foot runway and requires line-of-

sight with its ground control station but unlimited with satellite usage [97]. The Predator

is capable of speeds of 90 knots (cruise) to 120 knots (Max), has an unlimited range (via

satellite), and can fly as high as 26,000 feet [97]. It was used extensively Bosnia, Kosovo,

and Afghanistan, flying over 600 missions for NATO, UN, and US forces [97]. Figure 12

shows a diagram of the predator’s usage in the combat arena, showing its communication

links and its sensor footprint.

A.1.5 Guardian. The Guardian is a vertical takeoff and landing (VTOL) UAV

that is a member of the Tactical UAV group. It is manufactured by Canadair for the Navy

[97]. Its maximum speed is 85 knots, can fly as high as 18,000 feet, and has a range of 200

km [97]. The Guardian benefits from the lessons learned from its precursor, the Sentinel,

which was developed over the course of 10 years [97]. This UAV is well suited for use off

of ships and in rough terrain, where runways are impractical [97].
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Figure A.5 The Predator’s SAR Image
[97]
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Figure A.6 Guardian
[97]
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Figure A.7 Global Hawk
[97]

A.1.6 Global Hawk. The Global Hawk is a High Altitude Endurance (HAE)

UAV and is a member of the Endurance class of UAVs. Northrop Grumman was awarded

a contract in 2000 to provide two prototype vehicles before March 31, 2002. But the

Air Force called them into service earlier than planned, due to the terrorist attacks on

September 11, 2001, and on June 15, 2002, the system reached 1000 combat flying hours

[108]. The Global Hawk can fly at a cruise speed of 343 knots, can fly at 65,000 feet, and

has a range of 3000 nautical miles [97] [33]. It is capable of covering 40,000 square nautical

miles in a day with a resolution of three feet (one foot spot resolution when needed) [33].

A.1.7 Outrider. The Outrider UAV is a short range UAV and a member of the

Tactical UAV group. Alliant Techsystems was awarded the contract to deliver the UAV

to the Army, Navy, and Marines [97]. It is being developed to replace the Pioneer UAV

[97]. The Outrider is capable of a cruise speed of 90 knots with a maximum speed of 110

knots, it can attain altitudes of 15,000 feet, and has a range of 200 km [97].

A.1.8 Darkstar. The Darkstar UAV is in the Endurance class of UAVs. It was a

stealthy designed by Lockheed Martin and Boeing. It was supposed to have a cruise speed

of 300 knots, an altitude of 50,000 feet, and a range similar to that of the Predator [97].

Unfortunately, the Darkstar met its demise in 1999. It was determined that it was no where

close to being used as an operational system and the Air Force deemed the redesign costs

were too much, so the program was cancelled [97]. It is included in this paper because
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Figure A.8 Outrider
[97]

it represents a unique design that may be revisited in the future because of its stealth

characteristics.

A.2 The future of UAVs

A.2.1 Micro Aerial Vehicles (MAV). Micro Aerial Vehicles were introduced by

DARPA in a 1992 meeting. The idea was met with some scepticism, but began to pick up

steam in 1994, and in 1997 DARPA initiated a $35 million dollar development program

[97]. DARPA wants a microdrone with the characteristics outlined in table 2. The goal

is to use these UAVs for battle damage assessment, artillery spotting, sensor dispersal,

communications relay, detecting mines and hazardous materials, and radar jamming [97].

MAVs capable of vertical flight could be used to scout buildings, counter-terrorism oper-

ations, and could be supplied with pilots so if they are downed, the pilots could launch

the MAVs to do surveillance or relay communications to search and rescue parties [97].

Several MAVs have been developed through the DARPA effort [97], and these efforts are

being investigated by other countries.

A.2.2 The X-45A. Currently, Boeing is working on an aircraft called the X-45A

[115] [97]. This aircraft is being designed explicitly for the purpose the suppression of
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Figure A.9 DarkStar
[97]

Table A.2 Desired MAV Characteristics
Characteristic DARPA Goal

Size 6 inches
Weight 4 ounces

Endurance 2 hours
Range 6 miles
Control Autonomous

Max Winds 30 MPH
Sensor Day/Night Camera
Cost less than $1000

[97]
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Figure A.10 The Helios Solar Powered Wing
[97]
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enemy air defenses (SEAD), but some studies are looking into their use for peace-keeping

patrols [115][97]. The SEAD task involves flying around a combat area looking for missile

launchers to switch on their radar. When a radar is detected, the aircraft fires a homing

missile to take out the radar and the missile site [115]. For this dangerous task, it would

be very beneficial to use unmanned aircraft. This is considered the second most difficult

task to do, behind aerial dog fighting [115]. Boeing’s goal is to have these UCAVs enter

the service inventory by 2010 [115]. Boeing wants to reduce the data traffic between the

operator and the aircraft, so they are looking for ways to make the aircraft more self-reliant

[115]. Embedding swarm characteristics into each aircraft would help to make the aircraft

more autonomous.
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Figure A.11 X-45A
[97]
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Appendix B. Parallel Programming

B.1 Parallel MOEAs

There are some very hard real-world problems that can take a GA a very long time

to converge to an answer. In order to speed up the process, a parallel implementation of

the GA may be used. GAs are naturally parallelizable because they maintain a population

of solutions [35]. There are three main ways that GAs can be parallelized. These include

asynchronous, course-grained, and fine-grained.

In a course-grained PGA the population is structured as a stepping stone population

model. The parallelism is obtained by the parallel execution of a number of GAs operating

on one of the subpopulations. Communication occurs occasionally so that the processors

can exchange migrating individuals. These are most efficiently implemented on MIMD

systems [54].

Parallelism is limited due to the fact that each step operates on a subpopulation.

The scalability is good and it is a straightforward way to parallelize a GA.

For the fine-grained model the population is structured in an isolation-by-distance

model. The population is mapped onto a grid and a neighborhood structure is defined

for all of the grid points. Selection and crossover are restricted to the neighborhood.

Parallelism occurs when you assign a process to each individual. Communications is only

necessary during selection and crossover.

This model is best suited for SIMD systems because each process operates on only

one individual and communication can be synchronized easily. These also offer a maximum

amount of parallelism. Each individual can be evaluated and mutated in parallel. And the

scalability is also very high [54]

B.2 General Parallelization Concepts of the Problem

B.2.1 Why its Interesting. Parallelizing this problem can increase the efficiency

and/or effectiveness. By parallelizing the problem, more processing power works on the

same problem. And if communication time is limited, the faster the program arrives at its

B-1



solution, the better. This is one measurement of efficiency. Another measure of efficiency

is the amount of processing power that is in use. If there is poor load balancing, the

efficiency of the total processing power is less than if an effective load balancing scheme is

used and each processor is kept busy.

Effectiveness is a measure of how ”good” a solution is. For example, a deterministic

algorithm is very effective, but may not be very efficient. Likewise, a stochastic algorithm

can be very efficient but not very effective. The goal is to get a balance of between efficiency

and effectiveness.

There are three major parallel paradigms that need to be looked at in order to

determine which one is best for this problem. These paradigms are:

• Master-Slave Model

• Island Model

• Diffusion Model

B.2.1.1 Master-Slave Model. The Master-Slave model is implemented in

an MOEA by having the objective functions distributed among several slave processors

and the master processors takes care of all of the other operations and overhead. Figure

B.1 shows a diagram of how the Master-Slave model is implemented. For this model the

number of processors in use is independent of the solutions are evaluated. [21] The master

processor’s main job is to control the parallelization of the objective function evaluations.

Communication will occur between the master and slave processors at the end of each gen-

eration, so cost is generally derived from the number of slaves and the hardware platform.

[21] This implies that the Master-Slave model is generally more efficient as the objective

evaluations become more expensive, provided the computational loads are spread evenly

among the slaves. This method’s main usefulness is in increasing the efficiency of the

problem [133]. For the application in this project, the objective functions are not very

expensive, so this model might not be as efficient for this application versus other applica-

tions. This model should provide near linear speedup [53, 79]. Normally, the Island model

is used on coarse grained or MIMD architectures [85].
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Figure B.1 Master-Slave Model

B.2.1.2 Island Model. The Island model is used in an MOEA to develop

subpopulations in parallel and then occasionally migrate some of the population members

from one island to another. Figure B.2 shows a diagram of the model. The evolution of

subpopulations allows for exploration of the search space, while the migration of population

members aids in the exploitation of the search space. The amount of exploitation varies

based on the migration policy defined. For example, migration occurring at the end of

each generation causes divergence toward a solution much faster than migrating after every

ten generations. Another important factor is the number and type of individuals being

migrated between the islands. This implementation is also known as a course-grained

implementation because each island contains a number of individuals [21]. This method is

used to improve effectiveness or efficiency.

Figure B.2 Island Model

B.2.1.3 Diffusion Model. The diffusion model deals with one population,

where each processor holds a small number of individuals. Since only one population is

involved, this is sometimes referred to as a fine-grained implementation. Figure B.3 shows
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a graphical depiction of the diffusion model. This model parallelizes the EA itself, so the

communication cost can be very high. This is why this implementation is most often used

with shared memory processors (SMP). Because of the high communication rate needed

for this method, it was decided not to go with this one since communication costs can be

rather high.

Figure B.3 Diffusion Model

B.2.2 Data Structure Decomposition. One of the key things to decide when

solving a problem in parallel is how to break-up the computations. This is called decom-

posing the problem. This section describes briefly some of the more common approaches

to problem decomposition.

B.2.2.1 Recursive Decomposition. ”Recursive decomposition is a method

for inducing concurrency in problems that can be solved using the divide and conquer

strategy” [51]. Basically, this approach keeps dividing the data into smaller sections until

the smallest possible representation of the problem. Then it returns the answers back up

the chain. The approach is a rather simple approach and below is an algorithm that shows

the basic structure of its implementation:

Step 1) Is the problem at the lowest possible representation?

If yes, return result.

B-4



If no, go to step 2.

Step 2) Divide data in half.

Step 3) Send both sets of data back to step 1.

As the results are returned back to the caller, the function calculates its the results

of its calculation and returns it up the chain until the answer is output. An example of

this method in use is the quicksort algorithm

B.2.2.2 Data Decomposition. Data decomposition is a good method to use

when deriving concurrency in algorithms that operate on large data structures [51]. The

decomposition is done in two steps, as seen below:

Step 1) Partition the data on which the computations are to be performed.

Step 2) Partition the computations into tasks.

This partitioning can be done in many ways. The user need to look at the data

and decide the best way to decompose the data in a natural and efficient computational

decomposition [51]. An example of this type of decomposition is matrix-multiplication. In

fact, most matrix operations can be formulated using data decomposition.

B.2.2.3 Exploratory Decomposition. Exploratory decomposition is best for

decomposing problems that the computations are used to search a solution space. For this

decomposition, the search space is partitioned into smaller parts and the search is done

concurrently in each one of these smaller spaces until the desired solution is found.

This is different than data decomposition because this method will terminate early

if a solution is found, while data decomposition runs all tasks to completion. This means

that the work performed in the parallel implementation can be very different from the

serial implementation.
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B.2.2.4 Speculative Decomposition. Speculative decomposition is a method

used when a program has the choice of taking one of many computationally significant

branches depending on the output of other computations that precede it [51]. What

happens is that while one task is performing the computation to determine the next com-

putation, the other tasks are concurrently starting the computations for that next stage.

Then when the first task finishes its calculations and the next stage is determined, the only

results used are from the task that performed the calculations for the chosen next stage.

All other run tasks are discarded. While this seems like wasted computation, it actually

speeds up the process. Because if these were done in serial to begin with, all of the other

processes would be idle, waiting to be used. But this allows them to do some work that

in the end is useful because it does the calculations for the next stage ahead of time and

does it in parallel with the previous stage, rather than serially.

B.2.2.5 Hybrid Decomposition. A hybrid decomposition is simply a tech-

nique that combines two or more decomposition techniques. This is especially useful when

different types of decomposition are needed in different stages of the computation.

B.2.2.6 Speedup. The goal of parallelizing an application is to improve its

wall clock time. But how much better does the parallel program do when compared to the

best known serial implementation? The speedup equation captures the benefit of solving

a problem in parallel vs. serially. The formal definition of speedup, S, is the ratio of the

serial runtime of the best sequential algorithm to the time taken by the parallel algorithm

to the same problem on p processing elements. Equation B.1 is the equation for speedup

Speedup =
Ts

Tp
(B.1)

where Ts is the fastest known time to solve the problem in a serial manner and Tp

is the time it takes to solve the problem in a parallel manner. The reason why the best

serial implementation is chosen is because there are some serial algorithms that cannot be

parallelized, so to not include them would give skewed results toward parallelization [51].

B-6



B.2.2.7 Efficiency. Speedup can only show the relative improvement of an

application based on time. It cannot tell you what percentage of the processing element

are being used by the application. Efficiency is the measurement that can do that. By

definition efficiency is the amount of the time that the processing element is gainfully

employed, which is calculated by using the ratio of the speedup value and the number of

processing elements, as shown in equation B.2.

E =
S

p
(B.2)

where E is the efficiency, S is the speedup, and p is the number of processors used.

This can be broken down into the function in equation B.3.

E =
TS

pTP
(B.3)

It can also be written based on the overhead time, as shown in equation B.4.

E =
1

1 + To
TS

(B.4)

where the overhead function is defined as B.5:

To = pTP − TS (B.5)

B.2.2.8 Work. Work is defined as the product of the parallel runtime and

the number of processors used, as shown in equation B.6.

W = pTp (B.6)

This is also known as the cost of a system. A parallel system is said to be cost-optimal

if the cost of solving a problem on a parallel system has the same asymptotic growth of

the fastest known sequential algorithm, which means W = pTP = TS . Cost optimality is
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a very important practical concept, because even small differences in cost optimality can

have a huge effect on the scaling of the application [51].

B.2.2.9 Scalability. Isoefficiency The isoefficiency determines the ease

with which a parallel system maintains a constant efficiency. This means that it achieves

speedups that increase in proportion to the number of processors. A small isoefficiency

function is good. This means that small increments in the problem size are sufficient

for the efficient utilization of an increasing number of processors. Basically this implies

that the parallel system is highly scalable. Likewise a large isoefficiency value indicates a

poorly scalable system. The equation for isoefficiency is generally written as equation B.7

or equation B.8.

W = fracE1−ETo(W,p) (B.7)

W = KTo(W,p) (B.8)

where K = E/(1−E).

Amdahl’s Law But the metrics described earlier can be used to analyze and predict

the scalability of various parallel combinations. One such performance model is Amdahl’s

law. This performance model is based on a fixed problem size. Equation B.9 shows

Amdahl’s Law as defined in [59]

Sn =
W

αW + (1− α)(W/n)
=

n

1 + (n− 1)α
→ 1

α
(B.9)

as n →∞

where W is the workload, α is the percentage of the workload that must be executed

simultaneously, and n is the number of nodes. This is one of the most fundamental laws

when studying parallel systems. Some of the implications of the law include [59]:

1) The sequentially executed part of the code is a bottleneck,
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2) In order to get good speedup, the sequential bottleneck, α needs to be as small as

possible,

3) The common case should be optimized.

When incorporated with the inherent parallel overhead, the speedup equation is

changed to

Sn =
W

αW + (1− α)(W/n) + To
(B.10)

=
n

1 + (n− 1)α + nTo
W

→ 1
α + To

W

as n →∞

This equation shows that in addition to reducing the sequential bottleneck, the av-

erage granularity must increase in order to reduce the bad impact that that overhead has

to the performance of the code [59]. This is considered a conservative approach.

Gustafson’s Law Another performance model is Gustafson’s Law. It alleviates the

the sequential bottleneck by using a fixed-time concept instead of a fixed problem size.

The fixed-time method scales the problem size with the increase in machine size, thus

keeping the time it takes to finish the problem fixed. The formula for Gustafson’s Law is

in equation B.11.

S′n =
Sequential time for scaled− upworkload

Parallel timed for scaled− upworkload
(B.11)

=
αW + (1− α)nW

W

= α + (1− α)n
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This states that the fixed-time speedup is a linear function of n, if the workload is

scaled up to maintain a fixed execution time [59]. Equation B.12 shows Gustafson’s law

with the overhead added in.

S′n =
αW + (1− α)nW

W + To
(B.12)

=
α + (1− α)n
1 + To/W

(B.13)

Sun and Ni’s Law Another performance measure is one that is a memory bounded

speed-up model. This model generalizes Amdahl’s and Gustafson’s Law in order to maxi-

mize the use of the CPU and memory capacity [59].

S∗n =
Sequential time for scaled workload

Parallel timed for scaled workload
(B.14)

=
αW + (1− α)G(n)W

αW + (1− α)G(n)W/n

=
α + (1− α)G(n)

α + (1− α)G(n)/n

With overhead included the equation is as follows:

S∗n =
αW + (1− α)G(n)W

αW + (1− α)G(n)W/n + To
(B.15)

=
α + (1− α)G(n)

α + (1− α)G(n)/n + To/W

This equation has three special cases [59]:

1) When G(n) = 1, the equation becomes Ahmdahl’s equation.

2) When G(n) = n, the equation becomes Gustafson’s equation.

3) When G(n) > n, the equation is Sun and Ni’s memory-bound equation.
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Appendix C. Messy Genetic Algorithms

C.1 Problems with GAs

Genetic algorithms have been successfully applied in many applications - commerce,

search, optimization, and engineering to name a few. While GAs are a valuable tool for

researchers, there are some problems with this algorithm. Some of the problems include

the following [50, 63]:

• The relation, class, and sample spaces are combined. So decision making in each

space affects the other two. Therefore the overall decision making process is noisy

and susceptible to error.

• No precise mechanism for implicit parallelism occurs.

• Only a poor search for relations can occur. Since only a small sample of the total

number of relations can be defined, crossover and mutation are used to search for

other relations. A problem exists when there are two bit values that are that are

tightly linked and they are on opposite ends of the gene. These are likely to be

disrupted through crossover. This is defined as a linkage problem.

Another problem for GAs is known as the deception problem. This problem occurs

when a GA is used to solve a hard multimodal optimization problem [50, 68]. This occurs

when a number of deceptive subfunctions mislead the GA to cause it to converge to a

locally optimal point instead of a global optimal. An example of this occurs when two

schema with high fitness values (11xxx and xxx00) are combined (11x00) to give a lower

fitness value of its complement (00x11).

C.2 mGA Differences

Messy GAs attempt to overcome some of these problems by changing some of the

coding rules and the operators. The key differences between the mGA and the standard

GA are outlined in table C.1 [29].
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Table C.1 Main differences between a standard GA and a mGA
Standard GA Messy GA

String length Fixed length Variable length
Overspecification allowed? No Yes
Underspecification allowed? No Yes
Competitive Template used? No Yes

Main Operator Used Crossover Cut and Splice
Phases in evolutionary process 1 2

C.3 Messy encoding

A GA uses fixed sting lengths for a gene and each allele in the gene has a defined

characteristic it represents. But a mGA uses an ordered pair encoding system that includes

both the value of an allele and its location in the gene. This type of encoding overcomes

the linkage problem described earlier.

Kargupta [63] has formally denoted the mGA representation in equation C.1:

Im : χ → Sl × Λl (C.1)

where Im is the mGA individual, l is the length of the chromosome and Sl is the

set of all possible permutations of the chromosome locations. Also note that χ can be

represented by l! different possibilities. This allows related genes to be clustered together

during a search and limit the disruption that operators can have on good building blocks.

Since the messy encoding includes the location of each allele, it allows for overspeci-

fication and underspecification of the gene. This means that there can be multiple values

represented for a location (overspecification) or there can be no values listed for a location

(underspecification). Because of this implementation, there must be defined a way to as-

sign one value to every location. With overspecification a user could pick the first value

listed, the last value listed, a random value, or some other sort of method [29, 48, 50, 63].

The most common method is to pick the first value listed. For underspecification, a com-

petitive template is used to fill in any missing variables. The competitive template is a

fixed length representation of the gene with values filled in for every location. The values
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are usually assigned to the template based on the fitness value of a gene from a previous

generation.

C.4 mGA Operators

The mGA generally utilizes three basic operators, a selection operator, a version of

the crossover operator called cut and slice, and an allelic mutation operator.

C.4.1 Selection Operator. The selection operator is one of the key operators used

in evolutionary algorithms. The goal is to use a selection operator that promotes better

population members. It’s purpose is to select the better population members and reject

the population members that are not as good. While any number of selection operators

can be used, there have been two selection operators that have been predominately used

with the mGA, tournament selection and thresholding selection.

Tournament selection is a method in which a group of q individuals are chosen from

the population and the one with the highest fitness value is selected. This process is re-

peated until the allotted number of individuals has been chosen for the new population.

The members of the tournament can be chosen with or without replacement from the

population. While a tournament size of q = 2 is quite common, any number of q individ-

uals can be chosen from the population. As the tournament size increases, the selection

intensity and loss of diversity increases, while the takeover time decreases. A researcher

can experiment with the tournament size in order to get the right balance of exploration

and exploitation to meet his needs.

Thresholding selection is used to ”ensure that only classes that belong to a particular

equivalence relation are compared to one another” [63]. An example of this can be shown

with three strings: ((0 1)(1 0)), ((1 0)(0 0)), and ((2 0)(1 1)). The building blocks defined

in the three strings are 10#, 00#, and #10 respectively. Comparing the fitness values of

the first two strings is good because they are from the same relation, while the third string

has a different relation associated with it and is restricted from competing with the other

two strings. Thresholding selection allows strings to compete only if their θ is larger than
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Figure C.1 Example of Cut and Splice operation

a defined threshold value of θ. θ is defined as θ = l1∗l2
l , where l1 and l2 are the length of

the two strings and l is the problem length.

C.4.2 Cut and Splice Operator. Since the mGA allows strings of variable lengths,

the simple crossover operator does not work. To overcome this, the cut and splice operator

was conceived. This operator simply cuts two strings and then concatenates the end

portion of one string to the front portion of the other string. See figure C.1 for an example

of how the cut and splice operator would work.

Goldberg calculates the overall cut probability, pc, as pc = pκ(λ − 1) where pκ is a

bitwise cut probability, λ is the current string length, and pc must meet the limitation of

pc ≤ 1 [50]. This means that small strings have a lower probability of getting cut than

the larger strings. If pκ is set low, then the smaller strings have a much less probability of

getting cut than if pκ is set high.
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The splice operation also has a probability of ps assigned to it. So by adjusting the pκ

and the ps, a researcher can increase or decrease the amount of time that the mGA takes

to explore the search space. Goldberg [50] refers to the cut and splice operations as two

separate operations, where I refer to them as one operation. I do this only to show they

have a close relationship to each other, unlike mutation or the selection operator which

can be changed without regard to the two operations.

Overall, the cut and splice operator have two limiting types of behavior. Since strings

are short at the beginning of the run, the pc is small so the chances of cuts occurring is low,

while the splice operation is a constant. This results in more splice operations occurring

early in the run. As the run continues, the string lengths get longer due to more splice

operations. This causes the pc to increase. Eventually this creates an operation very

similar to one-point crossover [48].

C.4.3 Mutation Operator. The mutation operator is used to randomly change the

allele values of the chromosome. The probability of mutation, pm, is set by the researcher

to allow for a diverse pool of allele values. This operator is often considered a background

operator [35] and is very beneficial in increasing the exploration of the algorithm.

C.5 mGA Phases

The mGA has two loops, the outer and inner loop. The outer loop is the number

of eras that the algorithm runs the inner loop. The outer loop terminates when the user

defined stopping criteria are met. The inner loop has three phases: the initialization,

primordial, and the juxtapositional phase. The next few sections briefly describe the three

phases.

C.5.1 Initialization Phase. For the initialization phase, the mGA uses a technique

called partially enumerative initialization (PEI), which provides at least one copy of all

possible building blocks that are a specified length. The specified length of the building

blocks should be chosen in order to include the highest order of deceptive nonlinearity

that can be expected in the problem [45, 50]. By doing this, it can be expected that good
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building blocks are combined and create good solutions. But there is a huge downside

to having all of these building blocks because each one needs to be evaluated in order to

determine the fitness values of each of the building blocks. This results in a population

size of n = 2k
(

l
k

)
where n is the population size, l is the problem size, and k is the order

of deceptive nonlinearities. This creates a total of
(

l
k

)
gene combinations that are size k

and 2k different allele combinations for for each gene combination[48].

C.5.2 Primordial Phase. The primordial phase follows the initialization phase.

This phase is responsible for selecting the good building blocks and nothing else. The goal

is to weed out some of the bad building blocks and decrease the population size before the

juxtapositional phase. By doing the selection process at this point in the algorithm, the

population contains fewer and better building blocks for the genetic operations that occur

in the next phase. The selection operators commonly used in this phase are tournament

selection [50] and thresholding selection [63].

C.5.3 Juxtapositional Phase. The juxtapositional phase occurs after the primor-

dial phase. The juxtapositional phase operates much like the processing of a simple GA

does. First, selection is used to determine which individuals are chosen to be mated using

the cut and splice operator. After the cut and splice operation is implemented, a mutation

operator can be used, if desired. According to Goldberg [48], several mutation operators

have been defined, but mGA tests never use them. The reason for this is to test the algo-

rithm as stringently as possible and show that it has the capability to exploit the initial

population diversity.

C.6 The disadvantages of the mGA algorithm

There are three disadvantages of the mGA [63]:

• Search space decomposition is not sufficient.

• One local search template.

• Implicit parallelism is lacking.

These disadvantages are briefly described in the following sections.
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C.6.1 Decomposition. While the mGA does take steps toward decomposing

the sample space from the relation space and class space, through the use of the messy

representation, it may not be decomposed enough. This is evident when doing comparisons

of building blocks that belong to different relations. This creates competition among classes

of good relations, which should be avoided. [63]

C.6.2 Local search template. The competitive template of the mGA is originally

chosen at random. This can bias the algorithm in such a way that it can make a class of

problems either easier or more difficult based on the competitive template that is randomly

generated. [63]

C.6.3 Implicit parallelism. The biggest drawback of the mGA algorithm is the

lack of implicit parallelism. This results in longer serial running times. The serial time

complexity of the mGA was analyzed by Goldberg [49] and table C.2 shows the serial time

complexity of the mGA.

Table C.2 Complexity Estimates for the mGA[49]
Phase Serial Complexity Estimate

Initialization O(lk)
Primordial O

Juxtapositional O(l log l)
mGA Total O(lk)

The complexity analysis illustrates that the Initialization phase is by far the longest

running portion of the algorithm. This is the phase that creates the initial population

using PEI.
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Appendix D. Symbolic Mapping of MOMGA-II to the mQAP

D.1 Problem Domain Requirements Specification

This section converts the mQAP into a symbolic specification. We use a graph model

to depict the mQAP. First, the definition of the graph model is formulated.

The input domain is set-up. Basically, the input for this problem are vertices and

edges, which represent the locations and distances between the locations, respectively.

Mapped onto the locations, are the facilities which have flows going from each facility to

the other facilities. There can be more than one category of flow mapped to the facilities,

since we are dealing with a mQAP.

The output domain is simply the sequence of the facilities mapped to locations that

produces the best known result.

Graph model: Graph, G(V,E), where V is the set of vertices and E is the set of

edges.

Domains:

Input Domain: Di includes the following:

V, a set of vertices

E, a set of edges

L, a set of locations

Fa, a set of facilities

D, a set of distances

Fl*, multiple sets of flows

Output Domain: Do, Sequence of facilities/locations in best known solution

Size of search space:

For QAP: nn where n is the number of facilities/locations.

For mQAP: nfn where n is the number of facilities/locations and f is the number

of different flows coming from the facilities.
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Size of solution space:

For QAP: n! where n is the number of facilities/locations.

For mQAP: (fn)! where n is the number of facilities/locations and f is the

number of different flows coming from the facilities.

Input Conditions:

V, E, L, Fa, D, and Fl are all non-negative values

|L| = |Fa|

Output Conditions:

∀ l ∃ fa 3 (number of fa = 1) ∧ ∀ fa ∃l 3 (number of l = 1)

0/1 Formulation:

For the 0/1 formulation, it is best handled by having a facility = zero when

it has not been assigned a location and a one when it has been assigned. Then, as the

algorithm goes through and fills the locations with facilities, it will be able to tell which

ones have already been taken and which ones are available to be used.

D.2 Algorithm Domain Selection in Symbolic Framework with Design Variation

D.2.0.1 Stochastic Search - MOMGA-II. This section discusses the map-

ping of the algorithm domain to symbolic notation for the MOMGA-II program.

Algorithm Domain Requirements Specification Form:

For this part of the specification, the general genetic algorithm requirement is spec-

ified. This is the high level specification of the algorithm.

Name:

Stochastic-Search Fast Messy Genetic Algorithm

Domains:

Ds is a set of solutions, referred to as a population

The population size n is the cardinality of Ds
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Operations:

I(x): x ∈ Ds ∧ x ∈ S where S is the set of solutions.

O(x, z): x ∈ Ds ∧ z ∈ Ds ∧ z ∈ S where S is the set of solutions.

Algorithm Domain Requirements Design Specification Form:

For the design specification form, the genetic algorithm is defined in more detail. This

specification includes more information about the operators and data types that are needed

for the genetic algorithm [80].

Name:

Stochastic-Search-FMGA (Ds)

Domains:

Di is a set of algorithm-internal solutions

Ds is a set satisfying solutions

Imports:

ADT set

list

integer

Initialization of Feasible Solutions → Ds

Di = ∅

Operations:

I(x): x ∈ Ds ∧ x ∈ S where S is the set of satisfying solutions.

O(x, z): x ∈ Ds ∧ z ∈ Ds ∧ z ∈ S where S is the set of satisfying solutions.

Next Solution Generator → x for x ∈ Ds ∧Ds ∈ Di

Recombination (Cut & Splice) x → y with cut & splice probability

Mutation x → y with mutation probability

Feasibility (y) → boolean [if true ∨(y,Di)] ”genotype”
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Fitness/objective function mapping f(x) of each x ∈ Di ”phenotype”

Selection Di → Ds using f(x) as criteria, x ∈ Di

Algorithm Domain Function Specification Form:

For the function specification form, the genetic algorithm is defined in a high level, pseu-

docode format. This specification includes more information about the function of the

genetic algorithm [80].

Function:

Stochastic-Search-FMGA (Ds)

Initial Condition:

Generate feasible Dinitial → Ds

Di = ∅

Probability of cut & splice pc

Probability of mutation pm

Body:

While (not time/generation termination) do ss-fmga loop:

next-state-solution/population Ds, Ds → Di; Do for each x ∈ Ds, size n

Recombination(x) = y with pc

Mutation(x) = y with pm

if Feasibility(y) then ∨(y, Di) → Di

Fitness calculation f(x) for each x ∈ Di

Selection(Di) → Ds based upon f(x), x ∈ Di

end ss-fmga while loop

Find optimal z ∈ Ds

END Function
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D.3 Algorithm Domain Pseudo Code to Implementation in chosen Language

D.3.0.2 MOMGA-II Pseudocode. In this section, the MOMGA-II pseu-

docode is laid out as presented by the author of the code [133].

For n = 1 to o

Perform Probabilistically Complete Initialization

Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

// Building Block Filtering Phase

For i = 1 to Maximum Number of Building Block Filtering Generations

If (Building Block Filtering Required Based off of Input Schedule)

Then Perform Building Block Filtering

Else

Perform Tournament Threshold Selection

Endif

End Loop

Juxtapositional Phase

For i = 1 to Maximum Number of Juxtapositional Generations

Cut-and-Splice

Evaluate Each Population Member’s Fitness (w.r.t. k Templates)

Perform Tournament Threshold Selection and Fitness Sharing

Pknown(t) = Pcurrent(t) ∪ Pknown(t− 1)

End Loop

Update k Competitive Templates (Using Best Value Known in Each Objective)

End Loop
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Appendix E. Test Suite

This appendix lists the test suite used in the experiments for this research.

Table E.1 Test Suite used - Knowles and Corne
Instance # of # of

Test Name Category locations flows
KC10-2fl-1uni Uniform 10 2
KC10-2fl-2uni Uniform 10 2
KC10-2fl-3uni Uniform 10 2
KC20-2fl-1uni Uniform 20 2
KC20-2fl-2uni Uniform 20 2
KC20-2fl-3uni Uniform 20 2
KC30-3fl-1uni Uniform 30 3
KC30-3fl-2uni Uniform 30 3
KC30-3fl-3uni Uniform 30 3
KC10-2fl-1rl Real-like 10 2
KC10-2fl-2rl Real-like 10 2
KC10-2fl-3rl Real-like 10 2
KC10-2fl-4rl Real-like 10 2
KC10-2fl-5rl Real-like 10 2
KC20-2fl-1rl Real-like 20 2
KC20-2fl-2rl Real-like 20 2
KC20-2fl-3rl Real-like 20 2
KC20-2fl-4rl Real-like 20 2
KC20-2fl-5rl Real-like 20 2
KC30-3fl-1rl Real-like 30 3
KC30-3fl-2rl Real-like 30 3
KC30-3fl-3rl Real-like 30 3
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Appendix F. Baseline Result Figures

This appendix contains many of the figures generated to show the results of the initial

MOMGA-II runs.
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Figure F.1 Pareto front found for the KC10-2fl-1rl test instance using MOMGA-II initial
settings

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

x 10
5

Objective 1

O
bj

ec
tiv

e 
2

KC10−2fl−1uni    diameter =5.4167    entropy = 0.66047

Total Pareto Front point found = 12
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Figure F.5 Pareto front found for the KC10-2fl-3rl test instance using MOMGA-II initial
settings
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Figure F.7 Pareto front found for the KC10-2fl-4rl test instance using MOMGA-II initial
settings
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Figure F.9 Pareto front found for the KC20-2fl-1rl test instance using MOMGA-II initial
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Figure F.15 Pareto front found for the KC30-3fl-1rl test instance using MOMGA-II ini-
tial settings
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Figure F.16 Pareto front found for the KC30-3fl-1uni test instance using MOMGA-II
initial settings
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Figure F.17 Pareto front found for the KC30-3fl-2rl test instance using MOMGA-II ini-
tial settings

2

2.05

2.1

2.15

x 10
6

2

2.05

2.1

x 10
6

1.98

2

2.02

2.04

2.06

2.08

2.1

x 10
6

Objective 1

KC10−3fl−2uni    diameter =22.333    entropy = 0.63951

Objective 2

O
bj

ec
tiv

e 
3 Total Pareto Front point found = 57

Figure F.18 Pareto front found for the KC30-3fl-2uni test instance using MOMGA-II
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Appendix G. Graphs Comparing Two Methods of Running MOMGA-II

This appendix contains many of the figures generated to show the comparison of the

results of the MOMGA-II using a randomized Competitive Template and a propagated

Competitive Template.
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Figure G.1 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
2fl-1rl test instance
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Figure G.2 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
2fl-1uni test instance
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Figure G.3 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
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Figure G.4 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
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Figure G.5 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
2fl-3rl test instance
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Figure G.6 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
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Figure G.7 Comparison of two MOMGA-II methods and PFtrue found for the KC10-
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Appendix H. Graphs Comparing Large and Small Building Block Sizes

This appendix contains many of the figures generated to illustrate how large and small

building blocks populate the Pareto Front.
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Figure H.1 Comparison of large and small building block sizes for the KC10-2fl-1rl test
instance
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Figure H.3 Comparison of large and small building block sizes for the KC10-2fl-2rl test
instance
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Appendix I. Optimal Results

This appendix lists the optimal values found for all the 10 location and 10 facility instances

in the test suite. All of the tables are sorted with respect to their first objective value.

This is done so the reader can easily correlate the numbers to the graphs.

I.1 QAP1

Table I.1 lists the 58 True Pareto Front members found for the instance KC10-2fl-

1rl. This instance has ten locations (formation locations) and ten facilities (UAVs). It also

consists of two flows (communication channels). This ”real-like” instance consists of input

matrices with structured entries.

Table I.1: KC10-2fl-1rl Optimal Results

KC10-2fl-1rl Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

6 2 4 5 1 7 3 9 8 10 1665490 5884156

6 1 4 5 2 7 3 9 8 10 1666856 5848128

4 2 6 5 1 7 3 9 8 10 1738338 5705362

4 1 6 5 2 7 3 9 8 10 1746720 5673390

4 2 6 5 1 7 3 8 9 10 1843432 5629660

4 1 6 5 2 7 3 8 9 10 1851614 5593954

6 2 7 4 1 3 9 10 8 5 1869616 4670952

6 1 7 4 2 3 9 10 8 5 1874454 4641012

6 2 4 3 1 7 8 10 9 5 2007808 4640018

6 1 4 3 2 7 8 10 9 5 2008988 4593588

6 2 4 7 1 3 9 10 8 5 2013520 4514312

6 1 4 7 2 3 9 10 8 5 2014886 4478284

4 2 6 7 1 3 9 10 8 5 2063048 4406976
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Table I.1: continued...

KC10-2fl-1rl Optimal Results

4 1 6 7 2 3 9 10 8 5 2071430 4375004

4 2 6 10 1 7 3 8 9 5 2183516 4301002

4 1 6 10 2 7 3 8 9 5 2191698 4265296

6 1 4 7 2 10 3 8 9 5 2274450 4254938

4 2 7 10 1 6 3 9 8 5 2288108 4229954

4 1 7 10 2 6 3 9 8 5 2295602 4204590

7 1 4 10 2 6 3 8 9 5 2350502 4190934

2 6 4 1 7 3 9 10 8 5 2390824 4181772

4 2 7 10 1 6 3 8 9 5 2391980 4087524

4 1 7 10 2 6 3 8 9 5 2399274 4058426

8 1 4 10 2 6 3 9 7 5 2471790 4008888

9 1 4 10 2 6 3 8 7 5 2500050 3830416

9 1 6 10 2 4 3 8 7 5 2587326 3791090

10 1 4 9 2 6 3 8 7 5 2638066 3668026

10 1 6 9 2 4 3 8 7 5 2713418 3594886

4 2 8 10 1 3 6 7 9 5 2965758 3549496

4 1 8 10 2 3 6 7 9 5 2977726 3534946

10 1 4 9 2 6 7 3 8 5 2979534 3516426

10 1 6 9 2 4 7 3 8 5 3001846 3483476

1 10 4 2 9 6 3 8 7 5 3111126 3451522

2 3 4 1 8 6 9 10 7 5 3122502 3364968

1 3 4 2 8 6 9 10 7 5 3148768 3322918

10 1 7 9 2 4 6 3 8 5 3222934 3314430

2 3 6 1 8 4 9 10 7 5 3228518 3166346

1 3 6 2 8 4 9 10 7 5 3253700 3121222

10 1 8 9 2 4 6 7 3 5 3484066 3026876

10 2 3 9 1 7 6 4 8 5 3489014 3003094
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Table I.1: continued...

KC10-2fl-1rl Optimal Results

10 1 3 9 2 7 6 4 8 5 3489050 2991410

10 1 3 9 2 4 6 7 8 5 3654466 2825750

8 4 10 9 6 7 1 2 3 5 3853632 2803788

8 4 10 9 6 7 2 1 3 5 3855644 2793660

9 4 10 8 6 7 1 2 3 5 3875598 2780242

9 4 10 8 6 7 2 1 3 5 3876464 2770116

10 4 8 9 6 7 1 2 3 5 3914472 2643796

10 4 8 9 6 7 2 1 3 5 3915342 2633674

10 7 8 9 6 4 1 2 3 5 4013702 2580854

10 7 8 9 6 4 2 1 3 5 4015088 2572208

10 4 3 9 6 7 2 1 8 5 4254472 2494600

10 7 3 9 6 4 2 1 8 5 4308066 2412590

1 3 7 2 8 5 9 10 6 4 5125520 2399260

1 4 6 2 10 5 9 8 7 3 5434522 2383876

2 3 7 1 10 5 9 8 6 4 5611252 2376806

1 3 7 2 10 5 9 8 6 4 5634982 2342680

2 4 7 1 10 5 9 8 6 3 5900254 2320190

1 4 7 2 10 5 9 8 6 3 5925064 2282788

I.2 QAP2

Table I.2 lists the 13 True Pareto Front members found for the instance KC10-2fl-

1uni. This instance has ten locations (formation locations) and ten facilities (UAVs). It

also consists of two flows (communication channels). This ”uniformly random” instance

consists of randomly generated input matrices.
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Table I.2: KC10-2fl-1uni Optimal Results

KC10-2fl-1uni Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

3 8 0 9 2 4 1 5 6 7 187646 235662

4 0 8 6 7 3 5 1 9 2 188150 222904

2 0 8 5 3 7 6 9 1 4 188568 213468

2 3 8 5 0 9 6 7 1 4 191232 210608

2 3 5 8 9 0 4 1 6 7 192584 209184

2 3 5 6 9 0 8 1 4 7 195552 201754

2 0 5 6 7 3 8 1 4 9 202824 199956

8 0 5 6 3 7 2 9 4 1 205332 198298

8 0 5 4 3 7 6 9 2 1 206716 197990

8 0 5 4 3 7 2 9 6 1 207094 195000

6 0 8 4 3 7 5 9 2 1 219958 193646

1 2 7 9 6 5 0 4 3 8 228322 193446

7 4 5 0 6 8 2 3 1 9 229986 193024

I.3 QAP3

Table I.3 lists the 15 True Pareto Front members found for the instance KC10-2fl-

2rl. This instance has ten locations (formation locations) and ten facilities (UAVs). It also

consists of two flows (communication channels). This ”real-like” instance consists of input

matrices with structured entries.
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Table I.3: KC10-2fl-2rl Optimal Results

KC10-2fl-2rl Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

1 6 4 2 10 9 3 7 5 8 2913670 2157762

3 10 4 7 8 6 5 9 2 1 2957598 1972302

3 7 2 4 8 9 5 6 10 1 3003812 1945206

2 4 10 1 7 6 5 8 3 9 3011006 1763676

2 4 10 1 9 6 5 8 3 7 3016380 1655122

3 7 2 10 6 9 5 4 1 8 3161774 1632768

7 4 10 1 9 6 5 8 3 2 3227068 1601818

8 4 10 2 7 6 1 9 5 3 3239972 1581630

7 4 10 3 9 6 1 8 5 2 3337864 1580278

8 4 10 2 6 9 1 7 5 3 3406874 1580046

8 4 10 2 9 6 1 7 5 3 3427484 1513460

8 7 2 10 6 9 1 4 5 3 3492962 1472730

8 7 2 4 6 9 1 10 5 3 3636620 1468960

6 2 5 10 9 7 1 4 8 3 4587008 1443068

4 2 5 10 9 7 1 6 8 3 4656190 1440264

I.4 QAP4

Table I.4 lists the one True Pareto Front members found for the instance KC10-2fl-

2uni. This instance has ten locations (formation locations) and ten facilities (UAVs). It

also consists of two flows (communication channels). This ”uniformly random” instance

consists of randomly generated input matrices.
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Table I.4: KC10-2fl-2uni Optimal Results

KC10-2fl-2uni Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

3 1 7 4 6 5 2 8 10 9 199872 208562

I.5 QAP5

Table I.5 lists the 55 True Pareto Front members found for the instance KC10-2fl-

3rl. This instance has ten locations (formation locations) and ten facilities (UAVs). It also

consists of two flows (communication channels). This ”real-like” instance consists of input

matrices with structured entries.

Table I.5: KC10-2fl-3rl Optimal Results

KC10-2fl-3rl Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

3 6 9 7 5 1 8 10 2 4 1861090 4987620

1 2 10 4 5 3 8 9 6 7 1912342 4965330

3 6 9 7 2 1 8 10 5 4 1935968 4847916

3 6 9 7 5 1 4 10 2 8 1976046 4533340

3 6 9 7 2 1 4 10 5 8 2050904 4419672

3 10 9 7 5 1 4 6 2 8 2080766 4333574

3 4 9 7 5 1 6 10 2 8 2141324 4137342

3 10 9 7 5 1 6 4 2 8 2193494 4125534

3 4 9 7 2 1 6 10 5 8 2224832 4036688

3 6 7 9 5 1 4 10 2 8 2228838 3895882
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Table I.5: continued...

KC10-2fl-3rl Optimal Results

3 6 7 9 2 1 4 10 5 8 2322304 3790678

3 10 7 9 5 1 4 6 2 8 2333598 3688222

1 4 2 9 10 7 5 8 6 3 2347974 3488402

1 4 9 2 10 7 5 8 6 3 2362542 3345178

3 4 9 2 10 7 5 8 6 1 2405640 3313804

1 10 9 2 4 7 5 8 6 3 2459958 3300406

3 10 9 2 4 7 5 8 6 1 2502954 3269422

3 7 4 10 9 1 5 6 2 8 2618988 3264690

1 6 4 10 9 7 5 8 2 3 2640708 3183608

3 5 2 9 4 7 6 8 10 1 2694504 3175232

3 5 9 2 4 7 6 8 10 1 2700618 3077120

3 9 2 5 4 7 6 8 10 1 2799480 3048276

3 2 9 5 4 7 6 8 10 1 2905616 3026346

1 2 6 10 7 4 5 8 9 3 2960312 2957294

1 9 4 10 6 7 2 8 5 3 3018452 2938190

1 5 6 10 7 4 2 8 9 3 3024406 2915598

1 2 10 6 7 4 5 8 9 3 3079520 2872532

7 5 3 8 10 1 6 2 4 9 3110142 2844300

7 5 3 8 4 1 6 2 10 9 3110508 2767638

3 4 2 5 9 7 10 8 6 1 3188326 2767330

9 5 3 8 4 1 6 2 10 7 3196556 2697522

9 5 1 8 4 3 6 2 10 7 3387908 2697270

4 7 1 8 2 3 9 6 5 10 3395488 2471486

10 7 1 8 2 3 9 6 5 4 3426534 2449164

4 7 1 8 9 3 5 6 2 10 3430910 2411174

10 7 1 8 9 3 5 6 2 4 3456724 2388660

4 7 1 8 9 3 2 6 5 10 3526598 2386348
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Table I.5: continued...

KC10-2fl-3rl Optimal Results

4 7 1 8 5 3 9 6 2 10 3531472 2358148

10 7 1 8 5 3 9 6 2 4 3562518 2335826

4 2 1 8 7 3 5 6 9 10 3724928 2286944

4 9 1 8 7 3 5 6 2 10 3734182 2245668

10 9 1 8 7 3 5 6 2 4 3759996 2223154

10 9 1 8 7 3 2 6 5 4 3894492 2216840

7 4 3 5 8 1 10 2 6 9 4766708 2212576

9 4 1 5 8 3 10 2 6 7 4817046 2199526

7 6 3 5 8 1 10 2 4 9 4828998 2194122

9 4 3 5 8 1 10 2 6 7 4855160 2143022

9 6 3 5 8 1 10 2 4 7 4917628 2124232

4 5 7 8 1 3 2 6 9 10 5257502 2095212

4 9 7 8 1 3 5 6 2 10 5265382 2081946

4 9 7 8 1 3 2 6 5 10 5267876 2061436

10 9 7 8 1 3 5 6 2 4 5291194 2059458

10 9 7 8 1 3 2 6 5 4 5293688 2038948

9 4 3 5 1 8 10 2 6 7 6578114 2027476

9 6 3 5 1 8 10 2 4 7 6651336 2008658

I.6 QAP6

Table I.6 lists the 130 True Pareto Front members found for the instance KC10-2fl-

3uni. This instance has ten locations (formation locations) and ten facilities (UAVs). It

also consists of two flows (communication channels). This ”uniformly random” instance

consists of randomly generated input matrices.
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Table I.6: KC10-2fl-3uni Optimal Results

KC10-2fl-3uni Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

2 10 1 8 7 9 4 6 5 3 195648 272444

2 10 1 8 9 6 5 7 4 3 196836 270330

2 10 1 8 7 6 5 9 4 3 198774 268520

10 2 1 8 4 6 5 7 9 3 199760 268230

2 10 4 8 1 6 5 7 9 3 200226 267400

2 3 1 8 7 9 4 6 5 10 200448 267222

2 10 1 8 4 9 5 6 7 3 200522 267142

2 10 1 8 4 6 5 7 9 3 201066 266338

2 10 1 8 7 4 5 9 6 3 201320 265690

1 10 6 8 4 3 5 9 7 2 201446 263994

2 3 1 8 9 6 5 7 4 10 201574 263732

2 10 1 8 4 6 5 9 7 3 201686 263010

2 10 9 8 1 6 5 7 4 3 202528 262676

6 5 3 7 4 10 2 1 8 9 202754 261974

2 10 4 8 1 6 5 9 7 3 202826 260772

2 10 1 8 4 9 7 6 5 3 204196 259658

2 10 6 8 1 4 5 9 7 3 204868 257528

10 9 2 8 4 6 5 7 1 3 205460 256622

2 3 1 8 4 6 5 9 7 10 206842 256338

2 9 10 8 4 6 5 7 1 3 207276 254754

3 9 2 8 4 6 5 7 1 10 208094 253606

2 10 8 1 9 5 6 4 7 3 209412 253482

6 5 3 7 1 10 2 4 8 9 209538 252872

3 9 7 8 4 10 1 6 5 2 209714 250508
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Table I.6: continued...

KC10-2fl-3uni Optimal Results

3 9 6 8 4 10 1 7 5 2 210608 248988

3 9 6 8 4 2 1 7 5 10 211160 248788

1 10 8 2 7 4 5 9 6 3 212116 248398

2 3 6 8 4 1 5 9 7 10 212238 248006

10 3 6 8 1 4 5 9 7 2 213038 247990

6 5 8 7 1 4 2 3 10 9 213232 247104

6 9 8 7 4 1 10 3 2 5 213486 246290

9 6 4 7 8 1 10 3 2 5 214352 246120

7 9 4 6 8 1 10 3 2 5 214378 246030

6 9 4 7 8 1 10 3 2 5 214578 243784

2 10 8 1 4 5 6 9 7 3 215902 243740

9 5 6 4 7 2 10 1 8 3 215982 242134

1 3 8 2 7 4 5 9 6 10 216282 241874

2 3 8 1 4 5 6 9 7 10 216578 241562

9 5 7 4 6 2 10 1 8 3 217230 240562

7 9 8 6 4 1 10 3 2 5 217976 239856

8 3 1 10 7 4 5 9 6 2 219958 238702

9 10 2 4 8 5 6 1 7 3 220110 238142

8 3 4 2 6 1 5 9 7 10 220514 237046

1 3 8 10 7 4 5 9 6 2 220738 237008

7 9 4 5 8 1 10 3 2 6 221110 236156

9 5 1 7 4 8 10 3 2 6 221558 235712

8 3 4 2 7 1 5 9 6 10 221686 235236

8 3 4 2 9 1 5 7 6 10 223122 235190

9 2 8 4 1 5 6 10 7 3 223132 234628

7 5 9 4 6 2 10 1 8 3 223266 234534

2 10 5 4 8 9 6 1 7 3 223582 233742
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Table I.6: continued...

KC10-2fl-3uni Optimal Results

3 10 6 8 9 4 5 1 7 2 223768 233500

9 5 8 7 4 1 10 3 2 6 223812 231972

2 10 5 4 8 9 7 1 6 3 225548 231346

6 9 4 5 8 1 10 3 2 7 225716 230644

5 9 8 7 4 1 10 3 2 6 225976 229540

1 5 9 4 7 2 10 6 8 3 228160 228566

9 10 8 2 7 4 5 1 6 3 228584 228564

9 5 8 6 4 1 10 3 2 7 229294 226430

2 10 9 4 1 5 6 8 7 3 229746 226230

4 3 8 2 7 1 5 9 6 10 230776 225706

5 9 8 6 4 1 10 3 2 7 231362 223614

9 5 8 7 3 1 10 4 2 6 231478 223392

9 5 1 7 3 8 10 4 2 6 233040 221938

5 9 8 7 3 1 10 4 2 6 233700 221888

9 10 2 8 4 7 6 1 5 3 235224 220800

3 6 9 4 8 1 10 7 2 5 235696 220674

6 9 4 5 8 1 10 7 2 3 236238 220532

3 6 4 5 8 1 10 7 2 9 236464 220010

9 3 1 10 7 4 5 8 6 2 236742 219982

8 5 9 7 3 1 10 4 2 6 236900 218874

9 5 8 6 3 1 10 4 2 7 237128 217922

7 3 4 5 8 1 10 9 2 6 238748 217194

3 10 2 4 8 6 5 1 7 9 238820 217136

9 5 1 6 3 8 10 4 2 7 239170 216348

5 9 8 6 3 1 10 4 2 7 239254 216034

8 5 9 6 3 1 10 4 2 7 240694 215772

10 2 7 9 8 4 5 1 6 3 240970 215596
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Table I.6: continued...

KC10-2fl-3uni Optimal Results

3 7 4 5 8 1 10 9 2 6 240972 215582

3 6 4 5 8 1 10 9 2 7 241106 214264

6 3 4 5 8 1 10 9 2 7 242418 212924

3 10 6 9 8 4 5 1 7 2 242702 212626

3 10 2 4 8 7 5 1 6 9 243676 211910

3 10 7 9 8 4 5 1 6 2 244626 209590

8 2 4 9 1 7 6 10 5 3 247530 209380

3 10 6 5 8 4 9 1 7 2 247556 208884

9 5 8 3 4 1 10 6 2 7 248522 208348

10 3 6 7 2 4 5 8 1 9 248780 207046

9 5 8 3 7 1 10 4 2 6 249460 206614

1 6 4 2 7 8 3 5 9 10 249838 205424

7 10 8 3 9 4 5 1 6 2 252008 205316

7 10 3 9 8 4 5 1 6 2 252076 204566

5 10 8 3 6 4 9 1 7 2 252900 203026

2 9 5 6 3 8 10 4 1 7 254068 202840

3 10 4 5 8 7 9 2 6 1 254894 202372

3 10 4 5 8 7 6 2 9 1 255162 202286

7 9 4 2 6 8 10 5 1 3 255430 202276

6 9 4 2 5 8 10 7 1 3 255798 201790

10 3 4 9 1 7 6 8 5 2 255878 201750

7 5 1 2 6 8 3 4 9 10 255886 201418

10 3 7 6 2 4 5 8 1 9 255934 200030

3 10 7 6 2 4 5 8 1 9 257192 199806

1 6 4 2 7 8 10 5 9 3 257512 199630

10 5 7 9 1 8 3 4 2 6 257882 198682

4 6 1 2 7 8 3 5 9 10 258396 197742
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Table I.6: continued...

KC10-2fl-3uni Optimal Results

9 5 1 10 7 8 3 4 2 6 259298 197656

10 3 7 6 2 1 5 8 4 9 260524 197462

4 6 8 10 5 1 2 7 3 9 260530 197448

4 6 1 2 7 8 10 5 9 3 260870 196836

5 9 8 2 6 1 10 4 7 3 261518 196774

9 5 1 2 7 8 10 4 6 3 261582 196048

1 6 4 9 10 8 3 5 2 7 262570 194924

5 9 8 3 7 1 2 4 10 6 263148 194790

6 3 4 2 7 8 10 5 1 9 263950 194370

9 5 8 10 7 1 2 4 3 6 264224 193118

4 6 1 10 5 8 2 7 3 9 265940 192660

7 3 4 2 9 8 10 5 1 6 267498 192630

5 9 8 3 6 1 2 4 10 7 267766 190996

4 6 1 10 7 8 2 5 3 9 267804 190408

5 9 8 10 7 1 2 4 3 6 269182 188932

9 5 1 10 7 8 2 4 3 6 270560 186534

4 6 1 2 9 8 10 5 3 7 274264 186130

5 9 8 10 6 1 2 4 3 7 275024 184598

9 5 1 10 6 8 2 4 3 7 275210 184008

4 6 1 10 9 8 2 5 3 7 277322 182262

4 7 1 10 9 8 2 5 3 6 278326 182186

6 4 1 10 9 8 2 5 3 7 282902 181888

4 1 6 10 9 8 2 5 3 7 288074 181254

6 4 3 2 9 8 1 5 10 7 290038 180748

4 1 7 3 9 8 2 5 10 6 291658 177448
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I.7 QAP7

Table I.7 lists the 53 True Pareto Front members found for the instance KC10-2fl-

4rl. This instance has ten locations (formation locations) and ten facilities (UAVs). It also

consists of two flows (communication channels). This ”real-like” instance consists of input

matrices with structured entries.

Table I.7: KC10-2fl-4rl Optimal Results

KC10-2fl-4rl Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

7 3 5 6 1 9 4 8 10 2 1163544 2985428

7 3 2 6 1 9 4 8 10 5 1163548 2975626

7 8 5 6 1 9 4 3 10 2 1212004 2797828

7 8 2 6 1 9 4 3 10 5 1212008 2788026

3 7 5 6 1 9 4 8 10 2 1249698 2685612

7 5 8 6 1 4 9 2 10 3 1266590 2641918

7 5 3 6 1 4 9 2 10 8 1293446 2607974

3 7 5 6 1 4 9 8 10 2 1345974 2558124

3 5 8 6 1 4 9 2 10 7 1360770 2529958

8 7 5 6 1 4 9 3 10 2 1510552 2497896

7 8 2 1 6 9 4 3 10 5 1536566 2445606

7 8 2 10 6 9 4 3 1 5 1555434 2438810

3 7 5 1 6 9 4 8 10 2 1574684 2342416

7 5 8 1 6 4 9 2 10 3 1582720 2282558

7 5 8 10 6 4 9 2 1 3 1601190 2281932

7 5 3 1 6 4 9 2 10 8 1609310 2248614

7 5 3 10 6 4 9 2 1 8 1627780 2247988

3 7 5 1 6 4 9 8 10 2 1659690 2198968

3 5 8 1 6 4 9 2 10 7 1676494 2170598
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Table I.7: continued...

KC10-2fl-4rl Optimal Results

3 5 8 10 6 4 9 2 1 7 1694908 2169972

8 7 5 1 6 4 9 3 10 2 1824074 2138764

8 7 5 10 6 4 9 3 1 2 1842584 2136910

8 5 3 1 6 4 9 2 10 7 1920376 2110854

8 5 3 10 6 4 9 2 1 7 1938790 2110228

4 7 3 10 6 2 9 5 1 8 2055214 2107578

9 2 3 1 6 4 8 5 10 7 2135854 2105738

4 8 2 1 6 5 9 3 10 7 2139458 2100530

4 8 5 1 6 2 9 3 10 7 2140372 2082328

5 7 3 1 6 2 9 4 10 8 2151396 1936234

5 7 3 10 6 2 9 4 1 8 2169696 1932274

3 2 8 1 6 4 9 7 10 5 2290372 1903536

3 5 8 1 6 4 9 7 10 2 2302386 1897212

8 2 3 1 6 4 9 7 10 5 2320502 1866500

8 5 3 1 6 4 9 7 10 2 2332516 1860176

8 5 3 10 6 4 9 7 1 2 2350926 1859290

9 2 3 1 6 4 8 7 10 5 2499664 1852696

7 2 8 1 6 4 9 3 10 5 2563938 1834194

7 2 3 1 6 4 9 8 10 5 2566828 1821718

7 5 3 1 6 4 9 8 10 2 2570670 1815758

7 5 3 10 6 4 9 8 1 2 2589134 1814742

3 2 7 1 6 8 4 9 10 5 2612988 1807272

8 5 9 1 6 4 3 7 10 2 2696748 1794676

8 5 9 10 6 4 3 7 1 2 2716230 1794094

3 5 9 1 6 4 8 7 10 2 2722318 1746396

3 5 9 10 6 4 8 7 1 2 2741800 1745814

3 5 9 1 6 8 4 7 10 2 2755568 1678694
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Table I.7: continued...

KC10-2fl-4rl Optimal Results

3 5 9 10 6 8 4 7 1 2 2775078 1677656

8 2 3 1 9 4 6 7 10 5 3636188 1647116

8 5 3 1 9 4 6 7 10 2 3648202 1640792

8 5 3 10 9 4 6 7 1 2 3666612 1639906

7 2 3 1 9 4 6 8 10 5 3868214 1603914

7 5 3 1 9 4 6 8 10 2 3872056 1597954

7 5 3 10 9 4 6 8 1 2 3890520 1596938

I.8 QAP8

Table I.8 lists the 49 True Pareto Front members found for the instance KC10-2fl-

5rl. This instance has ten locations (formation locations) and ten facilities (UAVs). It also

consists of two flows (communication channels). This ”real-like” instance consists of input

matrices with structured entries.

Table I.8: KC10-2fl-5rl Optimal Results

KC10-2fl-5rl Optimal Results

Loc Loc Loc Loc Loc Loc Loc Loc Loc Loc Obj Obj

1 2 3 4 5 6 7 8 9 10 1 2

10 3 1 7 2 5 4 9 6 8 2328942 18642252

10 3 1 7 2 5 6 9 4 8 2330402 18094754

10 3 1 7 2 5 9 4 6 8 2359984 17839446

10 7 1 3 2 5 6 9 4 8 2369348 17808138

10 7 1 3 2 5 9 4 6 8 2398982 17552796

10 3 1 7 6 5 2 9 4 8 2428796 17027890
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Table I.8: continued...

KC10-2fl-5rl Optimal Results

10 3 1 7 9 5 2 4 6 8 2449122 17012570

10 7 1 3 6 5 2 9 4 8 2466980 16741298

8 3 1 7 2 5 9 4 6 10 2482346 15789686

8 7 1 3 2 5 9 4 6 10 2521342 15358350

8 3 1 7 9 5 2 4 6 10 2571668 14970754

8 7 1 3 9 5 2 4 6 10 2613712 14539322

9 3 1 7 2 5 4 10 6 8 2669980 12094682

9 3 1 7 2 5 6 10 4 8 2671740 11517034

9 7 1 3 2 5 4 10 6 8 2708848 11374202

9 7 1 3 2 5 6 10 4 8 2710608 10796588

9 3 1 7 6 5 2 10 4 8 2769594 10509192

9 7 1 3 6 5 2 10 4 8 2807700 9788770

9 7 1 3 6 5 2 8 10 4 2872928 9786840

9 7 1 3 4 5 2 10 6 8 2893498 9769524

9 1 3 7 2 5 4 10 6 8 2930040 9610948

9 1 3 7 2 5 6 10 4 8 2931800 9033356

9 1 3 7 2 5 6 8 10 4 2997880 9031936

9 1 7 3 2 5 6 10 4 8 3004136 9030198

9 1 3 7 6 5 2 10 4 8 3029654 8025666

9 1 3 7 6 5 2 8 10 4 3094848 8023446

9 1 7 3 6 5 2 10 4 8 3101228 8022508

1 7 6 3 4 9 8 2 10 5 3109740 3943170

1 7 6 3 8 9 4 2 10 5 3149268 3567154

1 7 6 3 8 4 9 2 10 5 3266428 3534550

1 7 6 3 9 8 10 2 4 5 3293530 3231608

1 7 6 3 4 10 8 2 9 5 3402756 3220954

1 7 6 3 9 10 8 2 4 5 3407714 3215066
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Table I.8: continued...

KC10-2fl-5rl Optimal Results

1 7 6 3 4 10 8 9 2 5 3843816 3207366

3 7 6 1 8 9 4 2 10 5 3956508 2926878

3 7 9 1 4 8 10 2 6 5 4051608 2574304

3 7 9 1 4 10 8 2 6 5 4146592 2557762

3 7 5 1 9 8 10 2 4 6 4398266 2507500

3 7 5 1 4 10 8 2 9 6 4507746 2496996

3 7 5 1 9 10 8 2 4 6 4512450 2491132

7 3 5 1 2 10 8 4 6 9 4641292 2478828

7 3 5 1 4 10 8 2 6 9 5271006 2475908

7 3 5 1 2 10 8 9 6 4 5333146 2472814

7 3 2 5 4 8 10 9 6 1 5387394 2440766

7 3 2 5 4 10 8 9 6 1 5477662 2421724

3 7 4 9 2 10 8 5 6 1 6598854 2417386

7 3 4 9 2 10 8 5 6 1 6949694 2411920

7 3 9 4 2 10 8 5 6 1 8882256 2410430

7 3 9 4 5 10 8 1 6 2 10923682 2410292
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