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Abstract 

 

 With the ever changing threat to the security of the United States and a 

perpetually shrinking budget to provide this security, the defense acquisition community 

finds itself in the position of having to do more with less.  For this reason, elected 

representatives, as well as higher ranking members of the Department of Defense (DoD) 

pay close attention to the cost performance of major defense acquisition programs.   

 We build on the previous research conducted by Captains Sipple, Bielecki, and 

Moore, who effectively demonstrate the use of a two-step logistic and multiple regression 

methodology to predict cost growth.  This research confirms the usefulness of this two-

step procedure for assessing cost growth in major DoD weapon systems. 

We compile programmatic data from the Selected Acquisition Reports (SARs) 

between 1990 and 2002 for programs covering all defense departments.  Our analysis 

concentrates on cost growth in the procurement appropriations of the Engineering and 

Manufacturing Development phase of acquisition.  We investigate the use of logistic 

regression in cost growth analysis to predict whether or not cost growth will occur in a 

program.  If applicable, the multiple regression step is implemented to predict how much 

cost growth will occur.  Our study focuses on the estimating and support SAR cost 

variance categories within the procurement appropriations.  We study each of these 

categories individually for significant cost growth characteristics and develop predictive 

models for each. 
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LOGISTIC AND MULTIPLE REGRESSION: 

A TWO-PRONGED APPROACH TO ACCURATELY ESTIMATE  

COST GROWTH IN MAJOR DoD WEAPON SYSTEMS 

 

I.  Introduction 

 

General Issue 

Defense spending has undergone great change in the last 20 years.  During the 

Reagan Administration of the 1980s, the Cold War saw high levels of defense spending.  

In 1985, the United States spent over $245 billion for national defense, a significant 

25.9% of the President’s Budget (OMB, 2004: 73, 78).  The arms race with the former 

Soviet Union kept funding for weapon system acquisition flowing with relative ease.   

As time passed, however, defense spending became heavily scrutinized as public 

perception of waste and excessive funding grew.  In the years following the Cold War, 

particularly under the Clinton Administration of the 1990s, the United States experienced 

record-setting reductions in defense spending.  By 2002, the budget for national defense 

hovered around $332 billion, a mere 16.5% of the President’s Budget (OMB, 2004: 75, 

80). 

Unfortunately, global threats to the security of the United States have not declined 

in the past 20 years, merely changed form.  This puts the defense acquisition community 

in the position of having to find ways to do more with less.  For this reason, elected 

representatives, as well as higher ranking members of the Department of Defense pay 

close attention to the cost performance of major defense acquisition programs (MDAPs).  



 

 2

With each new administration, a movement to reform the Department of Defense’s 

(DoD) major acquisitions programs and processes begins.  This movement has gained 

serious momentum over the past decade.  Major weapon systems being completed over 

budget and behind schedule is the motivation behind the current movement.   

 Cost growth in the procurement of major weapon systems can be attributed to 

poor program management or contractor inefficiencies, however, it mainly stems from 

risk and uncertainties about the program (Bielecki, 2003:2).  In a 1993 RAND study, 

Drezner and others sought to characterize cost growth (variance between initial and final 

contract baselines) against a wide variety of factors.  In general, they found that during 

the time period between McNamara’s reforms 1965 and 1990, cost growth hovered at 

around 20 percent, on average.   

In the last 15 years, the DoD has seen more reforms such as the Packard 

Commission of 1986, the Goldwater-Nichols Act of 1987, and the Acquisition Reform 

movement.  In spite of claims that these reforms would lead to cost reductions, Air Force 

cost overruns grew another 9.9 percent (Suddarth, 2002:7).  This 29.9 average cost 

growth is confirmed by the Assistant Secretary of the Air Force (Acquisition), Dr. 

Marvin Sambur, and the Deputy Chief of Staff for Air and Space Operations, Lieutenant 

General Ronald Keys, during their statement before the House Armed Services 

Committee on April 2, 2003 where they stated that for the Air Force, program execution 

problems had resulted in average cost growth of 30% for acquisition programs 

(Sambur/Keys, 2003). 

 In order for the DoD to retain its credibility with Congress and the American 

taxpayer, this cost growth must be slowed, contained, and reduced.  DoD program 
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managers must concern themselves with accurately identifying the cost risks associated 

with potential cost increases in their program cost estimates.  To control cost growth, 

managers must focus on accurately assigning dollar values to risks, so that the original 

estimate from which we calculate cost growth is more accurate (Bielecki, 2003:2) 

 
Specific Issue 

 The primary objective of weapon system cost estimating is to provide decision 

makers with an accurate estimate of the resources required to complete a project.  To this 

end, cost estimators have many methodologies at their disposal: analogy, engineering, 

actual, and parametric.  

The highly subjective analogy method compares a new system with an existing 

system for which there are accurate cost and technical data, and is most often used early 

in the program when little is known about the specific system being developed.  Later in 

the program, the engineering estimate, commonly referred to as the “bottom up” method, 

is used when the scope of work is well defined and a comprehensive Work Breakdown 

Structure (WBS) is in place.  Actual costs are used whenever they are available, but they 

are rarely available in the early stages of a program.   

The parametric (statistical) method is used to analyze our data during this 

research.  This method allows the cost estimator to objectively analyze large databases of 

historical data and make inferences about the relationship of the cost risk associated with 

one or more program parameters.  The parametric technique is used early in the program 

to estimate cost risks throughout the life cycle of a program using statistical regression 

techniques to develop cost estimating relationships (CER).   
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Using regression to predict whether or not a program experiences cost growth, 

and the magnitude of that growth (should it occur) are the key focuses of this research.  

This study builds upon the thesis work of Bielecki (2003), Moore (2003), and Sipple 

(2002) to provide the cost estimating community a model to accurately estimate cost risk 

of the estimating and support cost variance categories of the procurement appropriations 

during the engineering and manufacturing development (EMD) phase of defense 

acquisition programs. 

 
Scope and Limitations of the Study 

 Fundamental to any discussion of cost growth is the Selected Acquisition Report 

(SAR); “Since 1969, Congress has required DoD to submit SARs on its major acquisition 

programs” (Calcutt, 1993:3).  They are readily available and contain relatively reliable 

data on cost growth.  As SARs are historically the foundation from which cost growth is 

analyzed, they are also the source of data for this study.  The SAR contains the following 

three cost estimates useful for analyzing program cost growth: 

o Planning Estimate (PE): This is the DoD estimate normally made during 

the Concept Exploration and Definition  phase of the acquisition cycle 

(Calcutt, 1993:3). 

o Development Estimate (DE): This is the estimate established at Milestone 

II, which begins the Engineering and Manufacturing (EMD) phase of the 

acquisition cycle (Calcutt, 1993:3). 

o Current Estimate (CE): This is the most up-to-date estimate of what the 

program will cost at completion (Calcutt, 1993:3). 
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The SAR reports cost variances in base year and then year dollars (allowing for 

analysis between programs on a constant dollar basis) and classified into one of the 

following seven categories: 

1. Economic: changes in price levels due to the state of the national economy 

2. Quantity:  changes in the number of units produced 

3. Estimating:  changes due to refinement of estimates 

4. Engineering:  changes due to physical alteration 

5. Schedule:  changes due to program slip/acceleration 

6. Support:  changes associated with support equipment 

7. Other:  changes due to unforeseen events  

(Drezner, 1993:7) 

 The security classification of some of the programs will limit our research.  Any 

program with a confidential or higher classification will not be looked at in this study.  

Given that this type of information is not classified as confidential or higher on the vast 

majority of Major Defense Acquisition Programs (MDAPs), this limitation is viewed as 

having negligible impact on the utility of the model we build.  Other limitations exist 

within the SAR which are discussed further in Chapter 3. 

For the purposes of this research, cost growth is measured as a positive percentage 

increase from the DE to the latest CE as reported in the SAR.  Furthermore, this research 

excludes cost growth due to changes in the economy and adjustments to quantity (the first 

two categories of cost growth reported in the SAR) since these two categories are beyond 

the control of the cost estimator. 
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 Since we build upon the research previously fielded by Sipple, Bielecki, and 

Moore, we employ the same framework and methodologies initiated by Sipple and 

expanded by Bielecki and Moore.  The difference being that this study focuses on the 

estimating and support cost variance categories of the procurement appropriation during 

the EMD phase of defense acquisition programs.  In particular, this research builds 

logistic and multiple regression models with predictor variables from the EMD phase that 

predict whether or not a program experiences cost growth (logistic) and, if it exists, how 

much it experiences (multiple).  Additionally, we utilize the database developed by 

Sipple (2002), update it to contain the latest CE (2002 data) of each program, if 

applicable, and add any new programs that are at least three years into the EMD phase 

(mature program). 

 
Research Objectives 

 The purpose of this research is twofold.  First, logistic regression (yes or no 

response) will be used to ascertain if there are certain parameters within the program that 

are able to predict if a program will experience cost growth in the estimating and support 

cost variance categories of the procurement appropriation during the EMD phase of 

program development.  Second, if cost growth is present, multiple regression will be used 

to determine how much growth occurs.   

 
Chapter Summary 

 This research expands the cost estimating methodology originally developed by 

Sipple, and further developed by Bielecki and Moore.  Our specific goal provides the cost 

estimating community an effective model to estimate the cost risk associated with a 
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program early in its development, and the overall goal reduces the DoD cost growth rate 

from its current levels.  We continue with Sipple’s two step methodology — analyzing 

SAR historical data with logistical and multiple regression to successfully predict cost 

growth in the EMD phase of program development.  In the following chapter we present 

an overview of the acquisition process and its environment, examine cost risk and the 

effect it has on our study, and finally, investigate past research in cost growth. 
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II.  Literature Review 

 

Chapter Overview 

 This chapter establishes a historical framework from which to base our 

methodology and develop our models.  First, we discuss the acquisition process, past and 

present, and how that process affects our approach in this study.  Next, we look at the 

acquisition environment to familiarize ourselves with the increasing importance of these 

types of models.  Cost risk and its considerations are addressed after the environment has 

been established.  We conclude the chapter with a review of recent studies that have 

relevance to ours. 

 
The Acquisition Process 

 Being that this research focuses on a very specific portion of the overall 

acquisition process, we begin this chapter with a brief overview of how that process 

works and where our focus lies.  To this end, we start with Department of Defense 

Instruction (DoDI) 5000.2 Operation of the Defense Acquisition System, which  

 

 

 

 

 

Figure 2.1 – Old Acquisition Milestones and Phases (DoDI 5000.2, 2000:1) 
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“Establishes a simplified and flexible management framework for translating mission 

needs and technology opportunities, based on approved mission needs and requirements, 

into stable, affordable, and well-managed acquisition programs that include weapon 

systems and automated information systems.” (DoDI 5000.2, 2003:1). 

Figure 2.1 is a graphical representation of what the Defense Acquisition 

Management Framework looked like prior to a January 2001 change to DoDI 5000.2.  

We include this past business practice because the SAR data in our database is based on 

this format.  The process consists of four milestones (MS 0-MS III) and four phases 

(PHASE 0-PHASE III), described below.  This information was extracted from the DoD 

5000.2, prior to the Jan 2001 change. 

o Approval to conduct concept studies (MS 0)- The Milestone Decision 

Authority (MDA) approves short-term concept studies and the PHASE 0 

exit criteria. 

o Concept Exploration (PHASE 0)- Evaluate the feasibility of alternative 

concepts, determine the most promising concepts and solutions. 

o Approval to begin new acquisition program (MS I)- MDA approves the 

Acquisition Strategy, Cost as an Independent Variable (CAIV) objectives, 

initial Program Management Baseline (APB) and PHASE I exit criteria. 

o Program Definition and Risk Reduction (PHASE I)- Design the system, 

demonstrate critical processes and technologies, and develop prototypes. 

o Approval to enter Engineering and Manufacturing Development (EMD) 

(MS II)- Approval of Acquisition Strategy, CAIV objectives, updated 
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APB, Low-Rate Initial Production (LRIP) quantities, live-fire and Test 

and Evaluation (T&E) waiver (if applicable) and PHASE II exit criteria. 

o Engineering and Manufacturing Development (PHASE II)- Mature and 

finalize selected design, validate manufacturing and production processes 

and test and evaluate the system. 

o Production or fielding development approval (MS III)- Approval of 

Acquisition Strategy, production (weapon systems), deployment 

(information systems), updated APB and PHASE III exit criteria. 

o Production, Fielding or Deployment and Operational Support (PHASE 

III)- Produce system, field it, monitor mission performance, support 

fielded system, modify or upgrade as required. 

 
  

 

 

 

 

 

Figure 2.2 – New Acquisition Milestones and Phases (DoDI 5000.2, 2001:1) 

 

Figure 2.2 is a graphical representation of what the Defense Acquisition 

Management Framework looks like now, due to the aforementioned change to the DoDI 

5000.2 in January of 2001.  It replaces the traditional milestones with an ABC format and 

IOCBA

Technology 
Development

System Development
& Demonstration

Production & 
Deployment

Systems Acquisition

Operations & 
Support

C

User Needs &
Technology Opportunities

Sustainment

Process entry at Milestones A, B, or C
Entrance criteria met before entering phase
Evolutionary Acquisition or Single Step to Full 
Capability

FRP 
Decision
Review

FOC

LRIP/IOT&E
Design
Readiness 
Review

Pre-Systems Acquisition

(Program
Initiation)

Concept 
Refinement

Concept
Decision



 

 11

labels the phases by name (as opposed to numbering or lettering them).  The following is 

a brief overview of the new framework, taken from the current DoD 5000.2. 

o Concept Refinement Phase- Refine the initial concept and develop a 

Technology Development Strategy (TDS).  This phase cannot begin until 

the MDA makes a Concept Decision and does not mean that a new 

acquisition program has been initiated. 

o Milestone A- MDA approves the TDS. 

o Technology Development Phase- Reduce technology risk and determine 

the appropriate set of technologies that will be integrated into the full 

system.  This process is iterative in that it assesses the viability of 

available technologies and refines user requirements simultaneously. 

o Milestone B- The acquisition program has officially started.  For programs 

using Evolutionary Acquisition (which will be described in more detail 

later in this chapter), each increment will have its own Milestone B.  This 

is where the PM and MDA prepare and approve an Acquisition Strategy. 

o System Development and Demonstration- Develop full or increment of 

capability, reduce integration and manufacturing risk, ensure operational 

supportability, implement human systems integration, and design for 

producibility. 

o Milestone C- MDA commits the DoD to production and authorizes entry 

into LRIP, production and limited deployment for operational testing.                                       

o Production and Deployment Phase- Achieve operational capability that 

satisfies mission needs, either incrementally or fully. 
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o Operations and Support Phase- The two major components of this phase 

are sustainment and disposal.  The purpose being to ensure the system 

continues to perform its mission and is ultimately disposed of properly. 

As you can see, we did not go into as much detail on the new acquisition 

framework as we did on the old.  The reason for this is simple: our study is based on the 

old phases and milestones because all of our historical data (from the SARs) is based on 

the old process.  It is also important to note at what point we focus on in the acquisition 

process.  Figure 2.3 indicates the focus of our research. 

 

Figure 2.3 – Acquisition Timeline (Dameron, 2001:4) 
 

Later in this chapter, we review the thesis work on this subject of our 

predecessors (Sipple, Bielecki and Moore).  Sipple focuses on the engineering cost 

variance (CV) category and Bielecki on the estimating, schedule, support, and other 

categories of the RDT&E appropriation.  While these studies target specific CV 

categories, Moore targets the overall procurement appropriation in the EMD phase.  Our 

Planning 
Estimate (PE)

Production Estimate 
(PdE ) 

Development 
Estimate (DE)

ProcRDT&E ProcRDT&E Proc RDT&E

Acquisition Timeline: 

Phase: 

SAR: 

PDRR EMD Prod 

IIMilestone: I III

  

Predicted Cost Growth 
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research focuses on the individual CV categories of estimating and support.  We make 

the assumption that the cost estimator is more concerned with specific areas of cost 

growth. 

 
The Acquisition Environment 
 

The acquisition process is under great scrutiny as evidenced by the sweeping 

changes in the overall acquisition framework in January of 2001.  The changes, however, 

do not stop there.  The latest initiative to revamp the current acquisition process is traced 

back to September 2002 when the Secretary of Defense issued an unsigned memorandum 

stating that the current regulations were “overly prescriptive and do not constitute an 

acquisition policy environment that fosters efficiency, creativity and innovation.” As a 

result, said the memo, the 5000 series, which includes versions 5000.1 and 5000.2, would 

be “cancelled ... effective immediately.” (Erwin, 2002)   

On 12 May of this year (2003), DoD Directives 5000.1 and 5000.2, were signed 

by the Deputy Secretary of Defense and replaced the same directives previously dated 

October 23, 2000.  One of the policies instituted by this directive is that of cost and 

affordability: 

All participants in the acquisition system shall recognize the reality of 
fiscal constraints.  They shall view cost as an independent variable(CAIV), 
and the DoD Components shall plan programs based on realistic 
projections of the dollars and manpower likely to be available in future 
years (DoD Directive 5000.1, 2003:4). 
 
This policy indicates the importance of CAIV to program management and 

signifies the extent to which the OSD believes cost estimation should be used in 

budgeting.  Realistic projections become extremely important in that appropriated funds 

are scarce and under heavy supervision by multiple stakeholders.  In addition, when taken 
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into account the number of government civil servants, military officers and enlisted 

troops that it takes to make funding changes, it is fair to assume that administrative costs 

due to poor planning are high, and could be reduced with more accurate initial estimates.  

For these reasons, each program manager must strive to get their cost estimations right, 

more often than not, so they can maintain their programs’ credibility with DoD 

executives, Congress, and the American public. 

The seriousness of this acquisition reform movement is echoed yet again in April 

2003 when Dr. Marvin Sambur, Assistant Secretary of the Air Force (Acquisition), and 

the Deputy Chief of Staff for Air and Space Operations, Lieutenant General Ronald 

Keys, state before the House Armed Services Committee: 

In the past, we have designed our programs with a 60-70% confidence 
level of meeting cost, schedule, and performance goals.  In order to be 
credible both to the warfighters and Congress, I have implemented a 90% 
confidence level in meeting our requirements.  By demanding 
collaboration between all the parties, we can ensure the right trade-offs are 
made throughout the acquisition process to meet the required goals.  It is 
imperative that, both the warfighting and acquisition communities work 
together to make tradeoffs of non-critical elements within programs to buy 
down risk, throughout the acquisition cycle.  Bottom line: credibility 
means delivering what we promise, on time and on budget (Sambur/Keys, 
2003). 

Clearly, a major concern in the acquisition community is that of credibility and 

fiscal responsibility, and it would be difficult to have one and not the other.  To obtain 

this credibility, the pressure is on the cost estimator to accurately predict the costs 

associated with the program at all phases of the system life cycle.  This is no easy 

challenge.  The methods available to the estimator range from subjective methods (quick 

and easy) to objective methods (time consuming and complex), both of which have their 

strengths and weaknesses, and both must address risk. 
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Cost Risk 
 
 “Risk: Minimizing the possibility that something goes wrong” (Cancian, 

1995:191).  Cancian’s definition may appear oversimplified, but it’s a great place to start.  

As cost estimators, much of the risk we encounter involves uncertainty.  Uncertainty 

about the countless variables we identify, and uncertainty about the variables we fail to 

identify.  These uncertainties have great potential to make “something go wrong” in our 

estimates.  This is especially true when attempting to estimate the cost of a system that 

has not yet been built, or is in the process of being built.   

 A cost estimator must first identify and consider all areas of uncertainty 

associated with a system and related future events.  Once identified and estimated, the 

cost risk is translated into a dollar figure which can then be used by decision makers.  The 

Air Force Materiel Command (AFMC) Financial Management Handbook confirms 

“program risk refers to the uncertainties and consequences of future events that may 

affect a program”, and goes on to say that “risk is the summation of probable effects of 

unknown elements in technical, schedule, or cost related activities within the program.”  

The latter of these three risk parameters asks the question: “can the program as presently 

structured technically and with respect to schedule, be completed for the budgeted 

amount of money?” (AFMC Financial Management Handbook, 1998:11-20). 

 In the case of the Air Force’s most expensive acquisition program, the Advanced 

Tactical Fighter (a.k.a. the F-22 Raptor), the answer to this question has historically been 

“no”.  This program is an excellent example of how uncertainty creates risk.  Although 

there are countless factors (especially in the EMD phase) that can be held responsible for 

F-22 program cost growth, a very interesting uncertainty is worth mentioning.  According 
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to a 1999 GAO report, “A factor the Air Force did not consider in its estimate of potential 

cost growth was the possibility that the F-22 program may have to absorb a higher share 

of the manufacturing plant’s overhead costs if the contractor does not sell enough C-130J 

aircraft, which are produced at the same plant as the F-22.” (GAO/NSIAD-99-55, 

1999:5).  Ironically, this is a factor that the Air Force would have easily been able to 

predict (since C-130J is also a DoD acquisition program) had they realized its potential 

impact on cost growth. 

 The F-22 program is also an excellent example of what could be argued is a 

program’s biggest risk of all: being cut.  Funding instability is a fact of life that the F-22 

has been dealing with for years.  This is because “as threats began to change, 

developmental challenges arose, and total ownership costs continued to mount, it was 

unlikely to be overlooked as a prime source of funding for other ‘must pay’ bills.” 

(Myers, 2002:322).  The truth of this statement is easily reflected in the Defense 

Subcomittee’s rationale behind their $1.8B cut in the 2000 Department of Defense 

Appropriations Bill: 

It is clear from a larger perspective, the F-22 is consuming resources that 
could be used to address other critical strategic concerns such as emerging 
threats from chemical/biological/nuclear terrorism, information warfare, 
and cruise missiles. (Defense Subcommittee, 2000) 
 

       The bottom line is that a cost analyst must deal with countless unforeseen events 

in order to protect their program’s funding, and thus, the program itself.  The AFMC 

Financial Management Handbook discusses three methods the analyst can use to 

approximate the likelihood of a certain event occurring: a posteriori, (after the fact), a 

priori (a prediction based upon theoretical probability distributions), or subjective 

judgment (AFMC Financial Management Handbook, 1998:11-21).  No matter which 
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method the estimator chooses, the end product will depend largely on the skill of the 

estimator, the level of accuracy required, the level of detail needed, and the time required 

(and available) to complete the estimate.  These are also the factors that will determine 

how well an analyst mitigates risk when applying their chosen methodology. 

 We mentioned in Chapter 1 that the cost estimating community has different cost 

estimating methodologies at their disposal including, but not limited to, analogy, 

engineering, actual, and parametric.  These methods are widely accepted and practiced in 

both the DoD and civilian sectors.  Figure 2.4 shows the techniques recognized by the 

Ballistic Missile Defense Organization (BMDO) cost estimating community.  These 

techniques are also widely accepted and practiced in most cost estimating communities.  

It is interesting to note that as the level of detail and difficulty of gathering the data 

increase, the techniques exhibit a diminishing level of precision.   

 
 

 

Figure 2.4 – Risk Assessment Techniques (Coleman, 2000:4-9) 
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In conclusion, risk needs to be addressed up front and early and the cost 

estimator’s role in this process is crucial.  This philosophy is made very clear by the Air 

Force Materiel Command (AFMC) Financial Management Handbook: 

Because resources are limited, considerable time and effort in planning for 
future acquisitions is necessary.  The central issue in such planning usually 
concerns resource allocation.  Cost analysis supports acquisition decisions 
required to allocate financial resources among alternative systems.  The 
acquisition process revolves around the cost estimate - budgets are based on 
estimates and future cost performance is measured against estimates.  Cost 
estimating must be accurate if the operation of the Planning, Programming, 
and Budgeting System (PPBS) is to be realistic, and effective decision 
making is to take place (AFMC Financial Management Handbook, 
1998:11-2) 

 

Past Research in Cost Growth 

 A benefit to doing continuing research on three comprehensive studies on cost 

growth is that the previous authors: Sipple, Bielecki, and Moore, provide us with an 

exhaustive review of the pertinent literature on cost growth from 1974 through 2001.  

Sipple’s review of the literature was thorough enough that the follow-on work performed 

by Bielecki and Moore provides us with no relevant studies outside of their own findings.  

The important thing to note here is that the unique two-step methodology adopted by 

Sipple to identify and then quantify cost growth is tangent to existing studies on 

predicting cost growth.   

Sipple provides us with twelve relevant studies on this matter, see Table 2.1.  For 

a complete review of the studies listed refer to Sipple (2002).  These studies influenced 

Sipple in his development and creation of the predictor variables used in both the 

logistical and ordinary least squares (OLS) models. 
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Author (Year)
IDA (1974)

Woodward (1983)
Obringer (1988)
Singleton (1991)
Wilson (1992)
RAND (1993)

Terry & Vanderburgh (1993)
BMDO (2000)

Christensen & Templin (2000)
Eskew (2000)

NAVAIR (2001)
RAND (2001)  

 
Table 2.1 – Sipple Thesis (Sipple, 2002:20-44) 

 
 
 

Sipple Thesis 
 
 Where Sipple’s methodology differs from previous studies is that Sipple looks at 

predicting cost growth in the EMD phase of the system life cycle instead of attempting to 

predict overall cost growth for an entire system life cycle.  This approach affords us the 

ability to break down the cycle into its different phases: PDRR, EMD, and Prod and 

further into the appropriations contained in each and study the effects that over 75 

predictor variables have on these appropriations given a particular phase.  Sipple is also 

unique in that he recognizes that the Y response variable (Engineering percent) exhibits a 

mixed distribution.  “About half of the distribution is continuous, while the other half is 

massed at one value, zero—indicating no cost growth.  This mixed distribution scenario 

generally calls for splitting the data into two sets” (Sipple, 2002:58).  We will utilize 

these same variables and two-step methodology in our approach to predict cost growth in 

the estimating and support cost variance categories of the procurement appropriations 

during the EMD phase of program development. 
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The goal of Sipple’s research is to predict cost growth in the EMD Phase as it 

relates to RDT&E appropriations in the SAR engineering cost variance category.  Sipple 

collects SAR data and builds a database of over 75 predictor variables using 115 major 

acquisition programs.  He then uses logistic regression to first identify if cost growth 

exists.  If it exists, OLS regression is implemented to indicate how much cost growth will 

occur.  “Sipple demonstrates through the use of four regression models (A, B, C, D) that 

the combination of logistic and multiple regression produce similar predictive results as a 

traditional single-step multiple regression cost estimating methodology.  However, the 

two-step methodology is preferred to the single-step methodology because of the stronger 

statistical foundation achieved with the two-step method” (Bielecki, 2003:21). 

We build four regression models that we briefly introduce in this 
paragraph.  We build one logistic model using 90 data points.  This model 
predicts whether a program will have engineering cost growth in RDT&E dollars.  
To simplify our analysis, we call this Model A.  We then build three multiple 
regression models.  We call Model B the model that we build from the 47 of the 
90 data points that do have cost growth.  We apply a log transformation to the 
response variable in this model to correct for heteroscedasticity in the residual 
plot.  We build Model C as an alternative to Model B.  Model C is the same as 
Model B except that we do not transform the response variable.  Model D 
represents what would happen if we skip logistic regression and use stepwise and 
multiple regression on all 90 data points (ignoring the problems of 
heteroscedasticity in the residuals, and ignoring the fact that we do not desire to 
predict negative cost growth) (Sipple, 2002:72). 

 
Upon validation of the four models using the 20 percent test set, Sipple found that 

both Models A and B accurately predicted the existence of cost growth and the amount of 

cost growth with about a 70 percent accuracy rate.  Model A utilizes seven out of 78 

possible predictor variables, while Model B uses three.  Model C does fairly well at 

predicting the validation data.  Using an 80 percent confidence bound, Model C contains 
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73 percent of the data, however, due to the violation of the OLS assumptions, it is 

unknown whether or not this confidence bound is a true 80 percent. 

Comparing Model D to Model B, Sipple found that “Model B produces higher R2 

values than Model D…Model B yields more predictive ability for the number of 

variables, and none of Model D’s versions can compare to the versions of Model B above 

two predictor variables” (Sipple, 2002:104). 

It would appear that the two-step methodology employing Models A and B is 

superior than using a one model approach.  The C and D Models seem to perform well, 

but their lack of conformity with underlying regression assumptions greatly reduces the 

ability of the user to accurately interpret their results (Sipple, 2002:113). 

 
Bielecki Thesis 

 Employing the same methodology and underlying philosophy, Bielecki carries 

Sipple’s work forward to research cost growth in the four remaining SAR cost variance 

categories: schedule, estimating, support, and other.  Bielecki employs logistic and 

multiple regression to build models aimed at identifying cost growth characteristics in 

each category as they relate to RDT&E appropriations in the EMD phase of the system 

life cycle. 

 Bielecki also finds that the distribution for each cost growth category are mixed 

— indicating the need for the two-step approach.  In addition, he observes that the other 

and support categories do not contain enough data to support a inferential statistical 

analysis.  Therefore, Bielecki limits his study to the remaining two categories: schedule 

and estimating. 
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 As Sipple does before him, Bielecki builds a family of logistic and multiple 

regression models for each category and picks the best one for each.  The best logistic 

regression model submitted for each category validates at 85.71 percent and 78.26 

percent for the schedule and estimating categories respectively.  Using an 80 percent 

prediction bound, the best multiple regression model submitted for each category 

validates at 80.00 percent and 100 percent for the schedule and estimating categories, 

respectively.  

 
Moore Thesis 

 Unlike Sipple and Bielecki, Moore’s research does not focus on a specific SAR 

cost variance category.  Instead, Moore focuses on the procurement appropriations and 

any cost growth associated with them in the EMD phase of the system life cycle as he 

states this is the “next logical level” (Moore, 2003:16). 

 When Moore performs a preliminary analysis of his data, he found that the 

distribution for procurement cost growth during the EMD phase exhibits identical 

characteristics to those found by Sipple (Moore, 2003:21).  Meaning that there is a mixed 

distribution and the two-step methodology will be used. 

 The logistic regression model Moore submits for validation accurately predicts 

four out of the four data points available for validation.  Of the 25 data points randomly 

selected for validation, only four of them contained the variable FUE-based Maturity.   

Upon further validation, the model was found to accurately predict 37 out of the 39 data 

points used to build the model.  Therefore, the variable, FUE-based Maturity,  turns out 

to be the ‘600-pound gorilla’ that predicts the presence of cost growth accurately about 

95% of the time.  The multiple regression model Moore submits for validation also 
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contains a ‘600-pound gorilla’, FUE-based Length of EMD, and accurately predicts 100 

percent of the predicted data points, using an 80 percent prediction interval (Moore, 

2003:47). 

 
OSD CAIG Study 

 In addition to the above three theses, we find one additional study by the Office of 

the Secretary of Defense Cost Analysis Improvement Group (OSD CAIG) to be relevant 

to our study and therefore include it in our literature review. 

 The study, Cost Growth of Major Defense Programs, is the culmination of 10 

years of research between the OSD CAIG, NAVSHIPSO and AT&T.  This study uses the 

SARs of 286 programs as its source of data.  When bumped up against the study criteria: 

unclassified, milestone II captured, three years of data past milestone II, and data 

complete; these 286 programs are reduced to 142 and are entered into the database. 

 They define cost growth as the “difference between today’s estimate and a 

baseline estimate caused by:” 

o Poor initial estimates 

- Ill defined programs 

o Different program than originally conceived 

- Different procurement quantities 

- Requirement changes 

o Inefficiencies 

- Too many people 

- Too much money 

- Lack of focus 
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o Other  

(Cost Growth of Major Defense Programs, 2003:6) 

The main objective of the study is to identify how much of cost growth is 

attributable to: 1) decisions: discretionary changes to the system relative to the 

description at milestone II , and 2) mistakes: changes not attributable to discretionary 

changes post milestone II. Also, a main objective is to establish a historical record for 

comparison between systems (Cost Growth of Major Defense Programs, 2003:10).   

The results of the study follow: 

o Cost growth appears to have a correlation with commodity 

o Cost estimating assumptions account for majority of mistakes cost growth 

o Under estimating engineering effort is major source of RDT&E growth 

o Nearly half of perceived cost growth is content change (i.e. decisions) 

o Procurement cost growth is primarily due to optimistic learning curves 

o Majority of systems do not have significant growth 

o Higher cost systems appear to have less growth 

(Cost Growth of Major Defense Programs, 2003:66). 

 Note that this study, like Sipple, Bielecki, and Moore’s, evaluate cost growth as of 

the EMD phase of the system life cycle.  Where this study differs is that the OSD and 

company do not focus on a single SAR cost variance category or a single appropriation.  

Instead, they seek to categorize cost growth into one of two categories: decisions or 

mistakes.  From the results of their study we take away their finding that cost estimating 

assumptions account for the majority of cost growth in the mistakes category.  This is 
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consistent with most of our research as it reemphasizes the importance of generating 

accurate cost estimates up front and early in the acquisition process. 

 
Chapter Summary 

 In this chapter, we discuss how the current acquisition process works as compared 

to how it used to work and explain why our study needs to analyze the old business 

practices.  We also explore why accurate cost estimating is critical in today’s acquisition 

environment, with heavy oversight, multiple stakeholders, scarce funding and numerous 

worldwide threats and ways to mitigate them.  Upon examining the current acquisition 

environment we point out how risk is inherent in cost estimating due to countless 

unknowns, and that it is crucial to discover and address these unknowns up front and 

early.  Finally we highlight the relevant findings of recent studies in this area in order that 

we may approach our own research with an arsenal of “lessons learned”. 
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III.  Methodology 
 
 

Chapter Overview 

This chapter presents the procedures used to perform our research.  We also 

discuss our database to include the data collection process, as well as list and explain the 

response and predictor candidate variables.  We provide and discuss the results of the 

exploratory data analysis on our response variables.  Lastly, we state our methodology for 

performing both the logistic and multiple regression models. 

 
Database 

 For this study we employ a slightly modified version of the database originally 

built by Sipple during his research.  These modifications affect some of the predictor 

variables and are discussed in detail later in this chapter.  The database is a culmination 

of information from the SARs and the 1996 RAND report, The Defense System Cost 

Performance Database: Cost Growth Analysis Using Selected Acquisition Reports.  For 

insight into the foundation of the database and a comprehensive look into the use of 

SARs as a historical source of data in analyzing cost growth, to include their limitations, 

see Sipple, 2002. 

 
Data Collection 

 This research utilizes the database originally composed by Sipple (2002).  We 

begin our data collection with a thorough review of Sipple’s database.  Sipple builds the 

database with individual program SAR reports beginning in the year 1990 and ending in 

2000.  Bielecki and Moore add to the database all programs fitting the entry criteria with 

a SAR date in 2001.  In order for a program to be entered into the database, it must be at 
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least three years into the EMD phase (mature program).  After combing through the most 

current SAR (2002) database, we find four programs that meet the entry criteria, and we 

add them to the database.  To keep the data consistent we omit any programs that meet 

the criteria, but use the A, B, and C milestone labeling scheme as opposed to the I, II, and 

III labeling scheme. 

Once all new programs are added we scrub each program listed in the database by 

validating each predictor variable against the information listed in each SAR and RAND 

report.  This involves printing off and indexing each program SAR and visually 

inspecting each data point for each program.  Also, the following information: prototype, 

prototype phase, modification, weapon type, whether or not the program had a MS I, and 

service is checked against the RAND report. 

The most obvious change to the database is the addition of the indexing or 

numbering system assigned to all of the programs and predictor variables.  We place a 

number in front of each program data point as well as each predictor variable.  By 

assigning a sequential numbering system to each program SAR and predictor variable, 

we are able to quickly look up all data pertaining to a given program without ‘thumbing’ 

through 135 SARs.  It also aids during our model building in that when we add and 

remove variables during the logistic model building series, we are easily alerted to any 

omitted predictor variables. 

 
Response Variables 

 As mentioned in Chapter 1, the SAR reports cost variance in seven categories: 

economic, quantity, estimating, engineering, schedule, support, and other.  Our research 

focuses on predicting and quantifying cost growth in the estimating and support 
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categories of the procurement appropriation.  Since we are dealing with a mixed 

distribution, a distribution with both continuous and discreet data, we have two response 

variables for each cost variance category. 

 The logistic regression response variables: Estimating Cost Growth? Procurement 

and Support Cost Growth? Procurement are expressed as a binary variable where a value 

of ‘1’ indicates that we estimate a program will experience cost growth, while a ‘0’ 

indicates that we estimate it will not. 

 The multiple regression response variables: Cost Variance - Procurement % 

Estimating and Cost Variance - Procurement % Support are expressed as percentages, 

rather than dollar amounts.  The percentage-based variable is preferred since it eliminates 

the need to quantify between programs and it normalizes programs of different sizes for 

comparison purposes (Bielecki, 2003:35). 

 
Predictor Variables 

 The predictor variables that Sipple (2002) gathered are not exhaustive, but endow 

us with a plethora of proven predictors of cost growth.  Sipple groups the predictor 

variables into five categories: program size, physical type of program, management 

characteristics, schedule characteristics, and other characteristics.  We keep these same 

categories; however, we modify some of the subcategories by removing, changing, or 

adding variables. 

 The first major change we make to the list of predictor variables is to remove any 

variable that has 37 data points or less.  This is done because once we remove 20% of the 

data points for our validation subset, we are left with less that 30 data points to build our 

models.   
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The following variables are removed for the reason given: 

o Maturity from MSII in mos 
• For some programs in which the latest SAR date is after MSIII this 

variable artificially adds months into the EMD phase 
 

o Actual Length of EMD using FUE-MSII in mos/FUE-based Maturity of 
EMD% 

• FUE and IOC are interchangeable terms, therefore, we eliminate 
both variables containing FUE and use only variables containing 
IOC dates 

 
o MSIII Complete?   

• We are concerned only with the EMD phase of the life cycle.  This 
variable is removed because it will always be ‘0’ during this phase 

 
o RAND Concurrency Measurement Interval & RAND Concurrency 

Measurement Interval % 
• Both of these are removed because MS IIIA indicates that the 

program is in the procurement phase; as our model is focused on 
programs within EMD, this variable does not apply 

 
o Class at Least S 

• This variable appears to indicate whether a program has a security 
classification of secret or higher.  Since we are dealing with only 
secret or lower data, this variable does not apply 

 
o Terminated? 

• Removed because our research applies to a living program; if the 
program is terminated then the need for a prediction is not 
applicable 

 
o Qty in PE 

• Removed because it had only seven fields with data 
 

The names of many of the variables are changed for semantic reasons; however, 

the following variable is re-formulated for the reason given: 

o Maturity of EMD %  
• A new formula is developed to prevent programs from being more 

than 100% complete.  With the old formula an EMD phase could 
be more that 100% complete.  Now any EMD phase greater that 
100% is simply 100% 
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The following variables are added: 

o 6 ACAT – discrete variable to indicate the ACAT level 
o 7 ACAT 1? – binary variable: 1 for yes and 0 for no 
o 21 # of Svs = discrete variable to indicate the number of services  involved 

in the program 
o 28 Service = Marines Only – binary variable:  1 for yes and 0 for no 
o 60 LRIP Qty Planned – continuous variable to indicate the quantity in the 

baseline estimate 
o 61 LRIP Qty Current Estimate – continuous variable to indicate the 

quantity as currently estimated in the latest SAR 
o 77 LRIP Planned? – binary variable:  1 for yes and 0 for no; indicates if 

the program had LRIP planned 
o 78 % R&D of Total Program – continuous variable calculated by dividing 

52 Length of R&D in Funding Yrs by 48 Funding YR Total Program 
Length 

o 79 % Proc of Total Program – continuous variable calculated by dividing 
51 Length of Prod in Funding Yrs by 48 Funding YR Total Program 
Length 

o 80 Length of R&D Funding > 12 yrs? – binary variable which indicates if 
52 Length of R&D in Funding Yrs exceeds 12 years: 1 for yes 0 for no 

o 81 Length of Proc Funding > 11 yrs? – binary variable which indicates if 
51 Length of Prod in Funding Yrs exceeds 11 years: 1 for yes 0 for no 

o 82 R&D Funding Yr Maturity % > 75%? – binary variable which 
indicates if 53 R&D Funding Yr Maturity % exceeds 0.75: 1 for yes 0 for 
no 

o 83 Proc Funding Yr Maturity % > 40%? – binary variable which indicates 
if 54 Proc Funding Yr Maturity %  exceeds 0.4: 1 for yes 0 for no 

o 84 Funding Yrs of R&D Complete < 9? – binary variable which indicates 
if 49 Funding Yrs of R&D Completed is less that 9 years: 1 for yes 0 for 
no 

o 85 Funding Yrs of Proc Complete < 5? – binary variable which indicates 
if 50 Funding Yrs of Prod Completed is less that 5 years: 1 for yes 0 for no 

 
Listed below are the categories and subcategories of the all the predictor variables 

used for this research: 

Program Size Variables 
 

o 1 Total Cost CY $M 2002 – continuous variable which indicates the total cost of 
the program in CY $M 2002 

o 2 Total Quantity – continuous variable which indicates the total quantity of the 
program at the time of the SAR date;  if no quantity is specified, we assume a 
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quantity of one (or another appropriate number) unless the program was 
terminated 

o 3 Unit Cost – continuous variable that equals the quotient of the total cost and 
total quantity variables above 

o 4 Qty Planned for R&D – continuous variable which indicates the quantity in the 
baseline estimate 

o 5 Qty Currently Estimated for R&D  – continuous variable that indicates the 
quantity that was estimated in the Planning Estimate 

o 6 ACAT –continuous variable to indicate the ACAT level 
o 7 ACAT 1? –binary variable: 1 for yes and 0 for no 

Physical Type of Program 
o Domain of Operation Variables 
 

• 8 Air – binary variable:  1 for yes and 0 for no; includes programs that 
primarily operate in the air;  includes air-launched tactical missiles and 
strategic ground-launched or ship-launched missiles 

• 9 Land – binary variable:  1 for yes and 0 for no; includes tactical ground-
launched missiles; does not include strategic ground-launched missiles 

• 10 Space – binary variable:  1 for yes and 0 for no; includes satellite 
programs and launch vehicle programs 

• 11 Sea – binary variable:  1 for yes and 0 for no; includes ships and ship-
borne systems other than aircraft and strategic missiles 

 
o Function Variables 
 

• 12 Electronic – binary variable:  1 for yes and 0 for no; includes all 
computer programs, communication programs, electronic warfare 
programs that do not fit into the other categories 

• 13 Helo – binary variable:  1 for yes and 0 for no; helicopters; includes V-
22 Osprey 

• 14 Missile – binary variable:  1 for yes and 0 for no; includes all missiles 
• 15 Aircraft – binary variable:  1 for yes and 0 for no; does not include 

helicopters  
• 16 Munition – binary variable:  1 for yes and 0 for no 
• 17 Land Vehicle – binary variable:  1 for yes and 0 for no 
• 18 Space (Rand) –binary variable:  1 for yes and 0 for no 
• 19 Ship – binary variable:  1 for yes and 0 for no; includes all watercraft 
• 20 Other – binary variable:  1 for yes and 0 for no; any program that does 

not fit into one of the other function variables 

Management Characteristics 
 

o Military Service Management 
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• 21 # of Svs = continuous variable to indicate the number of services 
involved in the program 

• 22 Svs > 1 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

• 23 Svs > 2 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

• 24 Svs > 3 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

• 25 Service = Navy Only – binary variable:  1 for yes and 0 for no 
• 26 Service = Joint – binary variable:  1 for yes and 0 for no 
• 27 Service = Army Only – binary variable:  1 for yes and 0 for no 
• 28 Service = Marines Only – binary variable:  1 for yes and 0 for no 
• 29 Service = AF Only – binary variable:  1 for yes and 0 for no 
• 30 Lead Svc = Army – binary variable:  1 for yes and 0 for no 
• 31 Lead Svc = Navy – binary variable:  1 for yes and 0 for no 
• 32 Lead Svc = DoD – binary variable:  1 for yes and 0 for no 
• 33 Lead Svc = AF – binary variable:  1 for yes and 0 for no 
• 34 AF Involvement – binary variable:  1 for yes and 0 for no 
• 35 N Involvement – binary variable:  1 for yes and 0 for no 
• 36 MC Involvement – binary variable:  1 for yes and 0 for no 
• 37 AR Involvement – binary variable:  1 for yes and 0 for no 
 

• Contractor Characteristics 
 

• 38 Lockheed-Martin – binary variable:  1 for yes and 0 for no 
• 39 Northrup Grumman – binary variable:  1 for yes and 0 for no 
• 40 Boeing – binary variable:  1 for yes and 0 for no 
• 41 Raytheon – binary variable:  1 for yes and 0 for no 
• 42 Litton – binary variable:  1 for yes and 0 for no 
• 43 General Dynamics – binary variable:  1 for yes and 0 for no 
• 44 No Major Defense Contractor – binary variable:  1 for yes and 0 for 

no; a program that does not use one of the contractors mentioned 
immediately above = 1 

• 45 More than 1 Major Defense Contractor – binary variable:  1 for yes 
and 0 for no; a program that includes more than one of the contractors 
listed above = 1 

• 46 Fixed-Price EMD Contract – binary variable:  1 for yes and 0 for no 

Schedule Characteristics 
 

o RDT&E and Procurement Maturity Measures  
 

• 47 Maturity (Funding Yrs complete) – continuous variable which indicates 
the total number of years completed for which the program had RDT&E 
or procurement funding budgeted 
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• 48 Funding YR Total Program Length – continuous variable which 
indicates the total number of years for which the program has either 
RDT&E funding or procurement funding budgeted 

• 49 Funding Yrs of R&D Completed – continuous variable which indicates 
the number of years completed for which the program had RDT&E 
funding budgeted 

• 50 Funding Yrs of Prod Completed – continuous variable which indicates 
the number of years completed for which the program had procurement 
funding budgeted 

• 51 Length of Prod in Funding Yrs – continuous variable which indicates 
the number of years for which the program has procurement funding 
budgeted 

• 52 Length of R&D in Funding Yrs – continuous variable which indicates 
the number of years for which the program has RDT&E funding budgeted 

• 53 R&D Funding Yr Maturity % – continuous variable which equals 49 
Funding Yrs of R&D Completed divided by 52 Length of R&D in Funding 
Yrs  

• 54 Proc Funding Yr Maturity % – continuous variable which equals 50 
Funding Yrs of Prod Completed divided by 51 Length of Prod in Funding 
Yrs 

• 55 Total Funding Yr Maturity % – continuous variable which equals 
Maturity (47 Funding Yrs complete) divided by 48 Funding YR Total 
Program Length 

 
o EMD Maturity Measures  
 

• 56 Actual Length of EMD – continuous variable calculated by subtracting 
the earliest MS II date from the latest MS III date indicated 

• 57 Maturity of EMD % – continuous variable calculated by dividing 
Maturity from MS II (current calculation in months) by 56 Actual Length 
of EMD 

• 58 Time From MSII to IOC in months – continuous variable calculated by 
subtracting the earliest MS II date from the IOC date  

• 59 Maturity of EMD at IOC % – continuous variable calculated by 
dividing Maturity from MS II (current calculation in months) by 57 Time 
From MSII to IOC in months 

• 60 LRIP Qty Planned – continuous variable to indicate the quantity in the 
baseline estimate 

• 61 LRIP Qty Current Estimate – continuous variable to indicate the 
quantity as currently estimated in the latest SAR 

 
o Concurrency Indicators 
 

• 62 Proc Started based on Funding Yrs – binary variable:  1 for yes and 0 
for no; if procurement funding is budgeted in the year of the SAR or 
before, then = 1 
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• 63 Proc Funding before MS III – binary variable:  1 for yes and 0 for no 

Other Characteristics 
 

o 64 # Product Variants in this SAR – continuous variable which indicates the 
number of versions included in the EMD effort that the current SAR addresses  

o 65 Class – S – binary variable:  1 for yes and 0 for no; security classification 
Secret 

o 66 Class – C – binary variable:  1 for yes and 0 for no; security classification 
Confidential 

o 67 Class – U – binary variable:  1 for yes and 0 for no;  security classification 
Unclassified 

o 68 Risk Mitigation – binary variable:  1 for yes and 0 for no; indicates whether 
there was a version previous to SAR or significant pre-EMD activities 

o 69 Versions Previous to SAR – binary variable:  1 for yes and 0 for no; indicates 
whether there was a significant, relevant effort prior to the DE; a pre-EMD 
prototype or a previous version of the system would apply 

o 70 Modification – binary variable:  1 for yes and 0 for no; indicates whether the 
program is a modification of a previous program 

o 71 Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 
program had a prototyping effort 

o 72 Dem/Val Prototype – binary variable:  1 for yes and 0 for no; indicates whether 
the prototyping effort occurred in the PDRR phase 

o 73 EMD Prototype – binary variable:  1 for yes and 0 for no; indicates whether 
the prototyping effort occurred in the EMD phase 

o 74 PE? – binary variable:  1 for yes and 0 for no; indicates whether the program 
had a Planning Estimate 

o 75 Significant pre-EMD activity immediately prior to current version – binary 
variable:  1 for yes and 0 for no; indicates whether the program had activities in 
the schedule at least six months prior to MSII decision 

o 76 Program have a MS I? – binary variable:  1 for yes and 0 for no 
o 77 LRIP Planned? – binary variable:  1 for yes and 0 for no; indicates if the 

program had LRIP planned 
o 78 % R&D of Total Program – continuous variable calculated by dividing 52 

Length of R&D in Funding Yrs by 48 Funding YR Total Program Length 
o 79 % Proc of Total Program – continuous variable calculated by dividing 51 

Length of Prod in Funding Yrs by 48 Funding YR Total Program Length 
o 80 Length of R&D Funding > 12 yrs? – binary variable which indicates if 52 

Length of R&D in Funding Yrs exceeds 12 years: 1 for yes 0 for no 
o 81 Length of Proc Funding > 11 yrs? – binary variable which indicates if 51 

Length of Prod in Funding Yrs exceeds 11 years: 1 for yes 0 for no 
o 82 R&D Funding Yr Maturity % > 75%? – binary variable which indicates if 53 

R&D Funding Yr Maturity % exceeds .75: 1 for yes 0 for no 
o 83 Proc Funding Yr Maturity % > 40%? – binary variable which indicates if 54 

Proc Funding Yr Maturity %  exceeds .4: 1 for yes 0 for no 
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o 84 Funding Yrs of R&D Complete < 9? – binary variable which indicates if 49 
Funding Yrs of R&D Completed is less that 9 years: 1 for yes 0 for no 

o 85 Funding Yrs of Proc Complete < 5? – binary variable which indicates if 50 
Funding Yrs of Prod Completed is less that 5 years: 1 for yes 0 for no 

 
 
 Of the last eight variables that are added to the database, the final six are 

computed by ‘discretizing’ the continuous variables for which they represent.  By 

discretizing we mean to take a continuous variable and turn it in to a binary variable.  For 

example, this is done by first running a distribution of the variable 52 Length of R&D in 

Funding Yrs in JMP® and analyzing the quantiles for the median value (see Figure 3.1).   

 

 
 

Figure 3.1 – Histogram of variable 52 Length of R&D in Funding Yrs 
 
 

 The aim is to establish a logical cut-off point at which the binary responses of the 

new variable, 80 Length of R&D Funding > 12 yrs?, in this example, are approximately 

equal (see Figure 3.2).  The median is the best starting point to find the logical cut-off 

point.  From there, the cut-off point can be ‘tweaked’ in either direction until an 

approximately equal split is obtained.  In this example, the median value of 12 appears to 

do the trick. 
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Figure 3.2 – Histogram of variable 80 Length of R&D Funding > 12 yrs? 
 
 
Model Building 

 Now that the database is complete we begin to build our regression models.  The 

first step to building successful models is to set aside part of the database for validation.  

We choose 20% of the database for validation.  To ensure bias is not present in our 80% 

model building subset or the 20% model validation subset, we add a random number 

column to our database, sort on this column, then remove the last 20% of the data points.  

For this database, this gives us an 80% model database with 108 data points and a 20% 

validation database with 27 data points. 

 
Preliminary Data Analysis 

Once the database is partitioned the next step is to ensure that the response 

variables used in our multiple regression models have an underlying distribution that is 

reasonably continuous.  To confirm this distribution, we run a histogram of our Cost 

Variance - Procurement % Estimating and Cost Variance - Procurement % Support 

response variables in JMP® using the data from the 80% subset.  Looking at Figure 3.3 

we find mixed distributions.  These distributions are identical to those identified by 
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Sipple, Bielecki, and Moore during their research.  They exhibit the same characteristics 

— continuous with a discrete mass, or ‘spike’, around zero. 

 

 

Figure 3.3 – OLS Response Variable Histograms 

 

“This situation necessitates that we split the data into two separate sets to 

accurately model the individual effects of both the discrete and continuous data 

components.  As demonstrated by Sipple (2002), a two-step cost growth model produces 

statistically equivalent results as a single-step regression model however; the two-step 

model is statistically more reliable due to the validity of its underlying assumptions.  For 

these reasons, we adopt this two-step methodology (Bielecki, 2003:47).” 

The first part of the two step methodology, logistic regression, utilizes the entire 

data set by assigning a ‘1’ to any positive percentage and a ‘0’ to any zero or negative 

percentage.  The second step, OLS regression, uses only the positive percentages of the 

data set.   Only positive percentages are used because they represent the positive cost 

growth that cost estimators and program managers are concerned with.   

Now that we have established that our overall data mimics that of Sipple, 

Bielecki, and Moore, we confirm that the OLS data set (only the positive percentages) are 

reasonably continuous.  Note in Figure 3.4 that the variables are reasonably continuous 
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and maintain a log-normal distribution as indicated by the p-values exceeding our alpha 

level of 0.05 with 0.0821 and 0.15 for the Estimating and Support variables respectively.  

These distributions are indicative of the distributions first identified by Sipple, and later 

confirmed by Bielecki and Moore.  Note that represented in these histograms are 61 and 

53 data points for the Estimating and Support variables respectively.   
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Figure 3.4 – Log-normal histograms of OLS response variables 

 
 

 The histograms in Figure 3.5 show the same log-normal distribution as the prior 

research and suffice the OLS basic assumption of having to be reasonably continuous.  

Due to the fact that all three researchers before us corrected this log-normal distribution 

in order to satisfy constant variance in the residuals once their models are built, we will 

begin with the assumption that we must correct for constant variance by transforming our 

OLS response variables by applying a natural log. 
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Figure 3.5 – Normal histograms of OLS response variables 
 
 
 The histograms in Figure 3.5 reveal an approximately normal distribution as 

evidenced by the p-value exceeding our alpha level of 0.05 with 0.3056 and 0.5609 for 

the estimating and support variables respectively.   

 
Logistic Regression 
 

We use logistic regression to analyze whether some event will occur or not.  In 

our case we want to know if a program will experience cost growth in the estimating and 

support cost variance categories of procurement appropriations during the EMD phase of 

the system life cycle.  To this end, the binary responses are coded ‘1’ for any positive 

program cost growth percentages and ‘0’ for any zero or negative percentages. 

We use JMP® statistical software to build our logistic regression models.  Since 

JMP® version 4 does not contain an automated method such as stepwise to build logistic 

models, we follow the methodology established by Sipple (2002): 
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“..we manually compute thousands of individual regressions, recording 

our results on spreadsheets.  We start with one-predictor models of all possible 
variables.  Then we regress using all combinations of two-predictor models and 
record the results.  We continue this process, eventually whittling down the best 
combinations for use at the next level in order to cut down on the amount of 
regressions necessary.  We stop when we reach a model for which the gain of 
adding another variable does not warrant the additional complexity of the model 
that another variable adds.  We intend to find several candidate models for each 
number of predictors and then narrow down to the best one for each number of 
predictors and validate the model using about 20 percent of the data that we set 
aside for validation (Sipple, 2002:70).” 

 
 Our initial criterion for allowing a variable to enter a model is that each variable 

must have an individual p-value less than 0.04.  This is more of a guideline than a cold 

hard fact.  As the model progresses from one to two to three variables, etc., natural cut-

offs within the data are used to advance the ‘best’ models forward to the next level.  This 

is accomplished by analyzing the average of the sum of the individual p-values, the R 

squared (U), the number of observations, and the area under the receiver operating curve 

(ROC) simultaneously for each model.  For an in-depth description of each of these 

performance measures see Sipple (2002).  This natural cut-off approach is used to prevent 

us from blindly pick the ‘top 10’ or ‘top 8’ models where the last 3 or 4 of these ‘top’ 

models may have performance measure far from the top 5 or 6 models, see Table 3.1 for 

an illustration.  As seen in Table 3.1, all models are sorted by each performance measure 

then ranked using a consecutive number from 1 to n, where n is the number of total 

models built for that level, (i.e. all two variables, all three variables, etc.).  Table 3.1 is an 

excerpt of all two variable models.  Note the natural break in the results.  In this case the 

top six models are the ‘best’ models and are carried forward to begin building the three 

variable models.  The next four model scores are an average of 4.19 points above the 

sixth model. 
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Total
R Sq (U) Obs P-Value AUC R Sq (U) Obs P-Value AUC Score

7 77 0.1439 108 0.0067 0.7173 1 1 1 9 3
38 51 0.1283 101 0.017 0.74203 4 4 8 2 4.5
7 9 0.13 105 0.0135 0.71296 2 2 4 12 5 Natural Break
7 78 0.1272 108 0.0235 0.75131 5 1 14 1 5.25
9 51 0.119 105 0.0139 0.72889 9 2 6 4 5.25
38 81 0.1194 101 0.0107 0.7185 8 4 2 7 5.25
51 77 0.1101 108 0.0179 0.71747 14 1 9 8 8 Lower
7 38 0.1285 101 0.0236 0.71232 3 4 15 13 8.75 is
38 77 0.1194 101 0.0138 0.69657 7 4 5 25 10.25 better!
9 77 0.1057 105 0.0162 0.70167 16 2 7 18 10.75
48 77 0.1029 108 0.0202 0.70771 19 1 12 14 11.5
38 48 0.1039 101 0.0282 0.71651 18 4 18 10 12.5
77 13 0.1125 108 0.0332 0.70649 13 1 26 15 13.75
9 27 0.1043 103 0.0119 0.67644 17 3 3 38 15.25
7 46 0.1163 98 0.0377 0.70281 10 5 32 16 15.75
51 64 0.1005 108 0.0286 0.69759 20 1 19 23 15.75
77 47 0.0947 108 0.0287 0.7016 27 1 20 19 16.75
46 51 0.1146 98 0.0687 0.73639 11 5 49 3 17
48 44 0.0942 101 0.0387 0.72448 28 4 33 5 17.5
9 48 0.0948 105 0.0308 0.70093 26 2 22 20 17.5
7 24 0.123 108 0.039 0.69114 6 1 35 29 17.75
51 7 0.1137 108 0.0679 0.71346 12 1 48 11 18
9 15 0.0939 105 0.0197 0.67944 29 2 11 36 19.5
38 13 0.1076 101 0.0315 0.67544 15 4 24 39 20.5
77 50 0.0924 108 0.0342 0.69899 32 1 28 22 20.75
46 48 0.0949 98 0.0726 0.71854 25 5 50 6 21.5
81 44 0.0969 101 0.0338 0.6882 23 4 27 32 21.5
48 64 0.0882 108 0.0247 0.68748 39 1 16 33 22.25

Performance Measures
Variables

Estimating % Two-Variable Models

  

Table 3.1 – Example of model ranking (Two-Variable) 
 

The models that possess the best average sum of these performance measures are 

advanced to the next round of model building.  This ‘best’ model is our ‘kernel” model or 

our full model — meaning it possesses the core variables with the best predictive value.  

This full model represents our final candidate model.  The full model is then subjected to 

analysis.  We fine tune the kernel variables contained in the full model by mathematically 

combining the variables to include higher order terms, removing variables, seeing if there 

are any interactions between variables, and finally, retesting any excluded variables.  An 

example of fine tuning is to remove each predictor variable one at a time and rerun the 

model and note the effects.  Our end goal is to build one model for each cost variance 

category that is both parsimonious and robust.  This parsimonious model becomes our 
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final model.  We then submit this final model for validation using the 20% validation 

subset database we created from the master database.  

 
Multiple Regression 

 The second step of our research uses multiple regression to predict how much cost 

growth a program has once our logistic model predicts that growth will occur.  Again, we 

use JMP® to build our multiple regression models. 

Using the transformed response variables discussed in the preliminary data 

analysis section, we regress the candidate predictor variables using the same procedure 

outlined for building our logistic models.  Even though JMP® has a stepwise function to 

help build statistically significant models, we find this function unable to produce 

significant results with such a large amount of predictor variables.  Therefore, we pursue 

the same ‘Darwinist’ approach in selecting our candidate variable models as we did for 

our logistic models.  This methodology selects only the strongest, most statistically 

significant, models to be carried forward for each successive generation of model 

building, and culminates with only those combinations of variables (models) surviving 

which have the most value in predicting cost growth.  (Bielecki, 2003:52).   

We narrow our results to the best model for each number of predictors by adding 

or removing variables to the model until the number of variables equals approximately 

one tenth of the number of data points used in the model; this ensures we do not over-fit 

the model to the data (Bielecki, 2003:71).   

As in the logistic regression method, we fine tune the variables within the kernel 

model and note the effects on the measurement parameters.  With the same end goal in 
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mind, we submit this final model for validation using the 20% validation subset database 

we created from the master database. 

 
Chapter Summary 

 This chapter details the research methodology used during this study.  We 

examine our database, describe the data collection process, and chronicle the candidate 

response and predictor variables.  We discuss the preliminary data analysis on our OLS 

response variables and the need for the two step methodology using logistic and multiple 

regression.  Finally, we examine the process used to build both logistic and multiple 

regression models.  We introduce the results of our model building process in the next 

chapter. 
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IV.  Results and Discussion 
 
 

Chapter Overview 

 This chapter lays out the results of our logistic and multiple regression analysis.  

We begin with the logistic regression models followed by the multiple regression models 

for each cost variance category with the estimating response first and support response 

second.  We walk through the methodology laid out in Chapter 3 and evaluate the 

statistical significance and robustness of each model.  We discuss the final models 

submitted for validation, and finally validate each model to ensure each model is 

universal, accurate, and practical.  

 
Preliminary Findings 
 
 Upon initial building of our regression models we find some predictor variables 

exist that contribute no value to our models — see Appendix A.  The highlighted 

variables represent all predictor variables that, when regressed on their respective 

response variables, have either an individual p-value greater than 0.3 or sum to greater 

that 0.3 in all two variable models.  More importantly, they are present in more than 50% 

of the two variable models.  Therefore, all predictor variables that are present in more 

that 50% of all two variable models are removed from further model building.  Once we 

build our final model, each removed variable is put back into the model to ensure it adds 

no value to the model. 

 In addition to the variables in Appendix A that are removed, we discover that 

redundancy exists between some of the predictor variables.  After ranking our ‘best’ two 

variable models, we find that variables 6 ACAT? and 7 ACAT 1?are nearly identical.  
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Upon investigation we find variable 6 indicates what ACAT level the program is, 1, 2, or 

3, and 7 indicates whether or not the program is ACAT 1.  We see in the ranking that 

variable 7 consistently has a lower sum of p-values and R2 (U), (except for one instance 

with variable 7 where the sum of p-values for 6 are slightly better than that of 7 and 51), 

and the area under the curve is nearly identical.  Therefore, to reduce the number of 

models built, save time, and remove redundancy, we remove variable 6 from our already 

built models and preclude variable 6 from further model testing.  This discovery leads us 

to run a pairwise correlation (using JMP®) among all predictor variables to see if 

redundancy exists among other variables.  Table 4.1 depicts all variables with a 

correlation of greater than 0.9. 

 
Variable by Variable Correlation
7  ACAT 1? 6  ACAT -0.934
22  Svs>1 21  # of Svs 0.9083
49  Funding Yrs of R&D Completed 47  Maturity (Funding Yrs complete) 0.9312
23  Svs >2 21  # of Svs 0.9386
5  Qty currently estimated for R&D 4  Qty planned for R&D 0.9735
72  Dem/Val Prototype? 71  Prototype? 1  

 
Table 4.1 – Redundant Predictor Variables 

 
 

 Table 4.1 indicates that only two variables, 71 and 72, are identical—shown  by 

the correlation of 1; however, based on the behavior of variables 6 and 7, which have a 

correlation of -0.934, we remove and keep the following predictor variables from further 

model building: 
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Remove Keep
5  Qty currently estimated for R&D 4  Qty planned for R&D
6  ACAT 7  ACAT 1?
22  Svs>1 21  # of Svs
23  Svs >2 47  Maturity (Funding Yrs complete)
49  Funding Yrs of R&D Completed 71  Prototype?
72  Dem/Val Prototype?  

 
Table 4.2 – Predictor Variables Removed and Kept 

 
 

Unlike the variables listed in Appendix A, which are specific to each response 

variable, the variables found to be redundant in Table 4.2 are removed from building 

either model, and are not re-entered into our final models. 

In addition, we find the predictor variables represented in Table 4.3 to be common 

in all models built for each response variable.  We recommend that further studies in this 

area omit these predictor variables.  These variables provide no statistical significance in 

any of the models built during this analysis. 

 
Common Bad Variables
10 Space
28  Service = Marines only
31  Lead Svc = Navy
43  General Dynamics
45  More than 1 Major Defense Contracto
55  Total Funding Yr Maturity %
63  Proc Funding before MS III?
71  Prototype?
82  R&D Funding Yr Maturity % > 75%?  

 
Table 4.3 – Bad Predictor Variables Common to All Response Variables 

 
 
Logistic Regression Results — Estimating Response 

 We use the methodology described in Chapter 3 to build both of our logistic 

models.  In all, we build over 3,000 logistic regression models for the estimating and 

support response variables not including the models built when reducing the full model 



 

 47

for parsimonious purposes.  We find that as we proceed to build the best model by adding 

each predictor variable to the ‘best’ one-variable, two-variable, three-variable model, etc., 

there are some predictor variables that tend to show up in the best models at each level 

until, finally, there are no predictor variables left that dramatically improve the 

performance of the best model.  In essence we see the ‘best’ predictor variables ‘bubble’ 

to the top of each round of model building.   

We believe that the model weighting method we use based on the performance 

measures: R2 (U), Number of Observations, Sum of All individual P-Values, and Area 

Under the Receiver Operating Curve (AUC), afford us with the best opportunity to come 

up with this best model.  To illustrate this ‘bubbling’ phenomenon see Table 4.4 below. 

 
Total

1 2 3 4 5 6 7 8 9 10 R Sq (U) Obs P-Value AUC R Sq (U) Obs P-Value AUC Score
51 0.0625 108 0.004 0.66777 3 1 3 2 2.25
7 0.0884 108 0.0009 0.63987 1 1 1 6 2.25

77 0.0589 108 0.0041 0.64039 4 1 4 5 3.5
48 0.0472 108 0.0117 0.64597 8 1 7 3 4.75
9 0.0505 105 0.0083 0.62222 7 3 5 8 5.75

81 0.0418 108 0.0143 0.61999 10 1 8 9 7
46 0.0555 98 0.0086 0.61607 5 8 6 10 7.25
78 0.032 108 0.0359 0.62871 13 1 11 7 8
13 0.0548 108 0.0296 0.57953 6 1 10 19 9
38 0.0443 101 0.0208 0.60108 9 6 9 12 9
7 77 0.1439 108 0.0067 0.7173 1 1 1 9 3
38 51 0.1283 101 0.017 0.74203 4 4 8 2 4.5
7 9 0.13 105 0.0135 0.71296 2 2 4 12 5
7 78 0.1272 108 0.0235 0.75131 5 1 14 1 5.25
9 51 0.119 105 0.0139 0.72889 9 2 6 4 5.25
38 81 0.1194 101 0.0107 0.7185 8 4 2 7 5.25
9 51 15 0.177 105 0.0099 0.77611 8 2 1 6 4.25
7 77 38 0.1986 101 0.0177 0.77392 1 4 4 8 4.25
38 51 77 0.1874 101 0.0184 0.77671 2 4 6 5 4.25
9 51 15 38 0.2493 101 0.0137 0.82117 1 3 1 1 1.5
7 77 38 67 0.2389 101 0.0375 0.8112 2 3 2 3 2.5
9 51 15 38 7 0.2855 101 0.0561 0.83971 1 1 2 1 1.25
9 51 15 38 77 0.2847 101 0.0512 0.83373 2 1 1 2 1.5
7 77 38 67 9 0.2747 101 0.0722 0.82157 3 1 3 3 2.5
9 51 15 38 7 77 0.3249 101 0.0927 0.85805 1 1 2 1 1.25
7 77 38 67 9 15 0.3144 101 0.1079 0.8451 2 1 1 2 1.5
7 77 38 67 9 15 51 0.3493 101 0.1697 0.87002 2 1 2 2 1.75
7 77 38 67 9 15 51 44 0.3707 101 0.2376 0.88796 1 1 1 1 1
7 77 38 67 9 15 51 44 2 0.4081 100 0.2642 0.90228 1 1 1 1 1
7 77 38 67 9 15 51 44 2 39 0.4526 100 0.2304 0.91922 2 1 1 2 1.5
7 77 38 67 15 44 39 1/3 ln 51 0.6113 86 0.1478 0.95197 N/A

Weighted Performance MeasuresModel Value
Estimating % N-Variable Models

# of Variables in Model

 
 

Table 4.4 – Illustration of Predictor Variable ‘Bubbling’ 
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 Our best estimating model is depicted on the last line of Table 4.4.  This table 

shows the best models from each level, or generation, of the process.  The best one-

variable models are at the top followed by the best two-variable models, followed by the 

best three-variable models, etc., until we arrive at the best reduced model.  The bold lines 

indicate the natural cut-off point in the results of each successive generational round of 

model building.  All other models are not shown due to simplicity of illustrative 

purposes.  We can see in Table 4.4 that the highlighted variables that end up in our final 

reduced model surface in all rounds of model building beginning with the best one-

variable models, and their appearance increases at each round until all but one float to the 

top and enter the final model.  This ‘bubbling’ phenomenon is shown here as an example 

of what was common during all model building including ordinary least squares and will 

not be illustrated for each response variable. 

 The following table summarizes the best model at each round of our logistic 

model building process for the estimating response. 

 

# Variables R-Sq (U) Obs P-Value AUC
1 0.0884 108 0.0009 0.63987
2 0.1439 108 0.0067 0.7173
3 0.177 105 0.0099 0.77611
4 0.2493 101 0.0137 0.82117
5 0.2855 101 0.0561 0.83971
6 0.3249 101 0.0927 0.85805
7 0.3593 100 0.1162 0.87576
8 0.3707 101 0.2376 0.88796
9 0.4081 100 0.2642 0.90228

Full (10) 0.4526 100 0.2304 0.91922
Next Best (11) 0.4871 100 0.2549 0.92901
Reduced (9) 0.6113 86 0.1478 0.95197

Logistic (Estimating) Best Models

 

Table 4.5 – Best Logistic Estimating Models For Each Generation 
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 With the performance measures for each best model stated in Table 4.5, we 

decide to illustrate and discuss in the following graphs the relative changes of each 

performance measure as the number of variables increase.  We begin our discussion with 

the relative change in R2 (U), and continue with the data point to variable ratio, relative 

change in p-value, and relative change in AUC. 
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Figure 4.1 – Relative Change in R2 (U) - Estimating Models (Logistic) 
 
 

 We see in Figure 4.1 that R2 (U) changes sporadically as the number of variables 

per model increase.  With the exception of our eight variable model, we the changes in  

R2 (U) decrease from our one to five variable models, then, more or less, plateau from the 

five to eleven variable models.  The next best model improves to 0.4871 from 0.4526, or 

a change of 0.0345; however, when we look at all of the performance measure together, 

we do not feel that the 0.0345 increase warrants the complexity inherent with the addition 

of too many variables, thus we keep the ten variable model as our full model.  After fine 
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tuning the variables in the full model we arrive at our final reduced model with our 

highest R2 (U) value and largest relative change.   

Before we fine tune our full model we look for the R2 (U) to taper off or ‘plateau’ 

which indicates the amount of certainty explained by the model has more or less reached 

its peak.  We say more or less because we could, theoretically, keep adding variables to 

the model and R2 (U) would more than likely keep going up — increasing at a decreasing 

rate.  Unlike in OLS regression where there is an adjusted R2 wherein your model is 

‘penalized’ for including too many variables, logistic regression has no such performance 

measure, which is why the next performance measure we look at is the ratio of data 

points to variables per model.    
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Figure 4.2 – Relative Change in Number of Observations - Estimating Models 
(Logistic) 
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Figure 4.2 graphically displays the data point to variable ratio.  We are extremely 

suspect of any ratio less than 10:1, and we attempt to keep a 10:1 ratio if at all possible. 

The number of data points plays a particularly important role, because the higher 
the number of data points, the more of our population we capture in our sample.  
Thus, our sample becomes more representative of the population.  In addition, the 
larger the sample size, the more predictor variables we can add before the model 
becomes invalid statistically.  According to Neter et al., a model should have at 
least six to ten data points for every predictor used.  Thus, in this study, if a model 
falls below ten data points per predictor, then we carefully consider the additional 
benefits to the model gained by adding the variable (Neter, 1996:437) 
(Sipple, 2002:76). 

 
 As we see in Figure 4.2 the ratio of data points to variables per model sharply 

decreases as we add variables then plateaus at around ten to one.  When we reduce the 

full model we lose 14 data points (86 data points total); however, we also reduce the 

number of variables in the model to 9.  This gives us a 9.6:1, or an approximate 10:1 

ratio.  In effect, we have a parsimonious model with the most statistically significant 

predictor variables. 

Next we look at the p-values associated with each best model.  As we state in 

Chapter 3, we use the sum of all individual p-values in each model when we weight them 

against one another.  The reasoning for this is that the whole model chi-squared test does 

not assure us that every independent predictor variable is significant, only that the whole 

model has statistical significance as a predictive model.  When our models contain 

greater than three or four variables the whole model chi-squared p-value is < 0.0001 for 

all models.  Thus, the whole model p-value is an indiscriminant performance measure. 

 Figure 4.3 displays the change in the sum of individual p-values as we 

progressively build our model.  Our goal is to have the lowest p-values both individually 

and collectively for our model.  We see the change in p-value for each model from model 



 

 52

one to four as more or less unchanging.  The next three models begin with a slight 

increase then a gradual decrease.  From there, there is a relatively large increase from our 

seven to our eight variable model then a decreasing trend down to the reduced model.  

The increase from our full model to our next best model throws up a ‘red flag’ indicating 

that we are starting to over fit our data set, so we stop at our ten variable model and 

reduce from there. 
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Figure 4.3 – Relative Change in P-Value - Estimating Models (Logistic) 
 

 Lastly, we look at the area under the curve (AUC).  For a detailed explanation of 

this measure see Sipple (2002) and Bielecki (2003).  Generally, the higher the AUC the 

more accurate our model is at predicting cost growth.  
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Figure 4.4 – Relative Change in AUC - Estimating Models (Logistic) 
 

 In Figure 4.4 we see the change in AUC increase relatively substantially from our 

one to two variable models then sharply decline to the five variable model where the 

change then levels out to the full model.  When we add one more variable to our 10 

variable model, we see a decrease in AUC.  This decrease, together with the decrease in 

R2 (U), decrease in data point to variable ratio, and increase in p-values, indicate to us 

that the eleven variable model offers no performance over our ten variable model.  Thus, 

we reduce the ten variable model to find that all performance measures increase 

dramatically.   

See Appendix B for complete results and JMP® output of both full and reduced 

logistic — estimating models.  Below are the parameter estimates, Figure 4.5, of the 

reduced model and the ensuing probability formula, Figure 4.6 which we submit for 

validation.  Note that the numbers in parentheses in the formula of Figure 4.6 are actually 
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the numbers of the predictor variables themselves not constants.  In this formula ‘Pest’ is 

the probability of a zero or one.  JMP® uses a cut-off of 50 % to determine whether a 

program has cost growth.  Above 50% is coded a one and below 50% is coded a zero. 

 

Intercept
7  ACAT 1?
77  LRIP Planned?
38  Lockheed-Martin
67  Class - U
15  Aircraft
44  No Major Defense Contractor
39  Northrop Grumman
1 / Variable # 3
ln(Variable # 51)

Term
3.74251185
-4.3368579
-2.4954635
-2.8377295
3.15286508
4.38455975
4.15463156
5.14122691
0.58771192
-1.6495495

Estimate
1.9561775
1.3497976
1.1182264
1.2719104
1.2494315
1.5281374
 1.352822
1.9324404
0.2620326
0.8215535

Std Error
  3.66
 10.32
  4.98
  4.98
  6.37
  8.23
  9.43
  7.08
  5.03
  4.03

ChiSquare
0.0557
0.0013
0.0256
0.0257
0.0116
0.0041
0.0021
0.0078
0.0249
0.0447

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

 

Figure 4.5 – Parameter Estimates - Estimating Model (Logistic) 
 

Pest
e x( )−

1 e x( )−+
:=

Where:

x 3.7425 4.3369 V7( )⋅− 2.4955 V77( )⋅− 2.8377 V38( )⋅− 3.1529 V67( )⋅+ 4.3846 V15( )⋅+ 4.1546 V44( )⋅+ 5.1412 V39( )⋅+ 0.5877
1

V3
⎛⎜
⎝

⎞
⎠

⋅+ 1.6496 ln51( )⋅−:=

 

 Figure 4.6 – Probability Formula - Estimating Model (Logistic) 
 

Logistic Regression Results — Support Response 

 Now that our model building methodology and weighting criteria are fully 

understood we begin our discussion of our logistic regression — support response with a 

summary of the best models at each round of our logistic model building process. 
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# Variables R Sq (U) Obs P-Value AUC
1 0.0959 108 0.0007 0.67667
2 0.1463 108 0.0096 0.73431
3 0.2265 93 0.0333 0.81512
4 0.2889 93 0.0338 0.84372
5 0.3595 90 0.0709 0.87723
6 0.4028 90 0.1382 0.89038
7 0.4266 90 0.2519 0.90179
8 0.4566 90 0.3043 0.9127

Full (9) 0.4896 90 0.2318 0.93105
Next Best (10) 0.5121 90 0.353 0.93353
Reduced (9) 0.4896 90 0.2318 0.93105

Logistic (Support) Best Models

 

Table 4.6 – Best Logistic Support Models For Each Generation 
 

With the performance measures for each best model stated in Table 4.6, we 

illustrate and discuss in the following graphs the relative changes of each performance 

measure as the number of variables increase.  Note that our full and reduced models are 

the same model.  Again, we begin our discussion with the relative change in R2 (U), and 

continue with the data point to variable ratio, relative change in p-value, and AUC. 
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Figure 4.7 – Relative Change in R Sq (U) - Support Models (Logistic) 
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 In Figure 4.7 we see the relative change in R2 (U) expectedly increase at a 

decreasing rate with the addition of each new variable.  Note the sharp decrease from the 

next best model to the reduced model; however, keep in mind that the full and reduced 

models are one in the same.  The reasons for not selecting the next best model as our full 

model are apparent in the discussions of the following performance measures.   
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Figure 4.8 – Relative Change in Number of Observations - Support Models 
(Logistic) 

 
 

 As is the case in our logistic-estimating response, Figure 4.8 shows the ratio of 

data points to variables per model sharply decreases as we add variables then plateaus at 

around ten to one.  Even thought the ten variable model gives us a 9:1 ratio, which is 

within the acceptable range of 6 to 10 as defined by Neter (1996), we are suspect of any 

ratio that falls below ten to one, thus we lean towards our nine variable reduced model. 
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 The relative change of the next performance measure, sum of individual p-values, 

is displayed in Figure 4.9 below.  As we expect, the p-values increase as variables are 

added, then begin to decrease as each independent predictor variable adds predictive 

statistical significance to the whole model.   
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Figure 4.9 – Relative Change in P-Value - Support Models (Logistic) 
 

 When the tenth variable is added to the model the p-values increase by 0.1212 to 

0.3530.  This increase concerns us because the larger the sum of the p-values, the less 

predictive the model is.  This huge increase in p-value is the leading reason we choose 

not to accept the ten variable model.  We look at our last performance measure, the area 

under the curve to make our final determination. 

 In Figure 4.10, we see the AUC call to mind the law of diminishing returns.  The 

AUC increases only 0.0025 from the nine to ten variable models.  This is not a large 

enough increase for us to sacrifice what little parsimoniousness we attain with the nine 
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variable model, thus we abandon the ten variable model in favor of the nine variable 

model.  All attempts to reduce the nine variable model are unsuccessful.  Therefore, our 

full model and reduced model are the same.   
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Figure 4.10 – Relative Change in AUC - Support Models (Logistic) 
 

 See Appendix C for complete results and JMP® output of our logistic – support 

model.  Below are the parameter estimates, Figure 4.11, of the reduced model and the 

ensuing probability formula, Figure 4.12, which we submit for validation.  Note again 

that the numbers in parentheses in the formula of Figure 4.12 are actually the numbers of 

the predictor variables themselves not constants.  In this formula ‘Psup’ is the probability 

of a zero or one.  JMP® uses a cut-off of 50 % to determine whether a program has cost 

growth.  Above 50% is coded a one and below 50% is coded a zero. 
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Intercept
50  Funding Yrs of Proc Completed
76  Program have a MS I?
18  Space (RAND)
46  Fixed-Price EMD Contract?
66  Class - C
13  Helo
35  N involvement
62  Proc Started based on Funding Yrs?
21  # of Svs

Term
2.69155828
-0.2905103
2.63525559
6.58080015
2.30444445
-6.2703953
-3.2106087
  2.580247

-2.8842632
-0.8539183

Estimate
1.3671233
0.0886537
 0.956811
2.7361572
0.9818671
1.9867388
1.8037027
1.0233947
1.4347345
 0.448616

Std Error
  3.88
 10.74
  7.59
  5.78
  5.51
  9.96
  3.17
  6.36
  4.04
  3.62

ChiSquare
0.0490
0.0010
0.0059
0.0162
0.0189
0.0016
0.0751
0.0117
0.0444
0.0570

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

 

Figure 4.11 – Parameter Estimates - Support Model (Logistic) 
 
 

Psup
e x( )−

1 e x( )−+
:=

Where:

x 2.6916 0.2905 V50( )⋅− 2.6353 V76( )⋅+ 6.5808 V18( )⋅+ 2.3044 V46( )⋅+ 6.2704 V66( )⋅− 3.2106 V13( )⋅− 2.5802 V35( )⋅+ 2.8843 V62( )⋅− 0.8539 V21( )⋅−:=
 

 
Figure 4.12 – Probability Formula - Support Model (Logistic) 

 

Multiple Regression Results — Estimating Response 

Since we use the same methodology to build our ordinary least squares (OLS) 

models as we do our logistic models we do not discuss the step-by-step process as we do 

in our first logistic model above.  However, we do comment on the difference in 

performance measurements we use to weight the OLS models versus the logistic models.   

We still use the data point to variable ratio and sum of individual p-values as 

performance measures for the same reasons; however, instead of an R2 (U) and the area 

under the receiver-operating curve (AUC), we use R2 and adjusted R2.  As we mentioned 

earlier, the adjusted R2 penalizes the model for adding too many independent variables.  

By penalize we mean that the adjusted R2 weighs the model by the number of 
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independent variables and number of observations included in the model.  While R2 is a 

measure of the amount of variation explained by our model, adjusted R2 is not — instead, 

it is a value that allows us to compare our models to one another.   

In theory, using an infinite number of independent variables to explain the change 
in a dependent variable would result in an R2 of one.  In other words, the R2 value 
can be manipulated and should be suspect.  The adjusted R2 value is an attempt to 
correct this shortcoming by adjusting both the numerator and denominator by 
their respective degrees of freedom (see Figure 4.13 below).  Unlike the R2, the 
adjusted R2 can decline in value if the contribution to the explained deviation by 
the additional variable is less than the impact on the degrees of freedom.  This 
means that the adjusted R2 will react to alternative equations for the same 
dependent variable in a manner similar to the Standard Error of the Estimate 
(SEE); i.e., the equation with the smallest SEE will most likely also have the 
highest adjusted R2 (Jensen, 2003). 
 
 
 

 
 
 
 
 
 
 

Figure 4.13 – Formula for Calculating Adjusted R2 

 
 

We begin our discussion of our OLS regression model — estimating response 

with a summary of the best models at each round of our model building process (see 

Table 4.7).  With the performance measures for each best model stated in Table 4.7, we 

illustrate and discuss in the following graphs the relative changes of each performance 

measure as the number of variables increase.  We begin our discussion with the relative 

change in the difference between R2 and adjusted R2, and continue with data point to 

variable ratio, and relative change in p-value. 
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where:    n = number of observations 
k = number of independent variables 
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# Variables R Sq Adj R Sq Obs P-Value
1 0.168298 0.154201 61 0.001
2 0.281471 0.255342 58 0.0159
3 0.361658 0.320027 50 0.0235
4 0.407226 0.362488 58 0.0508

Full (5) 0.48983 0.431856 50 0.1029
Next Best (6) 0.517803 0.447238 48 0.1929
Reduced (4) 0.578606 0.538473 47 0.0242

OLS (Estimating) Best Models

 

Table 4.7 – Best OLS Estimating Models for Each Generation 
 
 

 The difference between R2 and adjusted R2 is shown in Figure 4.14.  We want an 

adjusted R2 as close to the R2 value as possible while also maximizing our other 

performance measures.  In Figure 4.14 we see the difference, or ‘gap’, between the R2 

and adjusted R2 steadily increase with the addition of each variable into the model up to 

our next best six variable model.  Note that the gap between the two measurements is 

better for the reduced model than for both the full and next best models.  This decreased 

difference or shorter gap is what we desire. 
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Figure 4.14 – Relative Change Between R2 and adjusted R2 - Estimating Models (OLS) 
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 Next we evaluate the ratio of data points to variables.  In Figure 4.15 we see the 

ratio drop as variable are added until we reach a ten to one ratio for the full model and an 

eight to one ratio for the next best.  The reduced model has 47 data points and four 

predictor variables which gives us a data point to variable ratio of 11.75:1.  This is a 

welcomed improvement over the full model ratio of 10:1. 
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Figure 4.15 – Ratios of Data Points to Variables - Estimating Models (OLS) 
 
 

 Finally, we observe the change in the sum of individual p-values.  Figure 4.16 

shows the p-values increase as we add variables to our model.  It also shows the dramatic 

decrease we achieve when we reduce our full model.  This large decrease in p-values 

indicates that the variables contained in our reduced model are very significant and 

highly predictive.   
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Figure 4.16 – Relative Change in P-Value - Estimating Models (OLS) 
 
 

Based on these performance measures, we are confident in the predictive 

capability and statistical soundness of our reduced model.  At this point, we must test the 

assumptions of the residuals of multiple regression model to see if they are satisfied by 

this reduced model.  We do not display the tests of assumptions for the full model; 

however, both full models are subjected to all of the following tests, except the Breush-

Pagan test for constant variance (a visual inspection of the residual plot is done instead), 

and meet the assumptions.   

The first assumption we must satisfy is that of independence.  Since we obtain 

and use only the most recent SAR as data for each program, we assume independence is 

met.  Next we perform a Shapiro-Wilk goodness-of-fit test for normality.  Using an alpha 

of 0.05, the output from JMP® in Figure 4.17 shows that our residuals do meet the 

assumption of normality with a p-value of 0.44 which is above our stated alpha of 0.05.   
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Figure 4.17 – Shapiro-Wilk Test for Normality – Estimating (Reduced) Model (OLS) 
 
 

Finally, we perform a Breusch-Pagan test for constant variance of the residuals.  

Using Microsoft Excel® we calculate a p-value of 0.841237. This high p-value, which is 

above our alpha of 0.05, indicates that our residuals indeed pass the Breusch-Pagan test 

for constant variance.  

In addition to the assumption tests, we also ensure that our model contains no 

influential data points.  For this we use JMP® to run an overlay plot of the Cook’s 

Distance values.   
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Figure 4.18 – Cook’s Distance Overlay Plot for Influential Data Points 
 – Estimating (Reduced) Model (OLS) 
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A Cook’s Distance greater than 0.5 indicates that an influential outlier exists 

(Neter, 1996:381).  Consequently, we would remove any outliers above 0.05 to see the 

effect on our model.  In some cases, removal of the influential outlier may cause other 

influential outliers to surface causing subsequent removal of these outliers.  Figure 4.18 

shows no data points above 0.25, thus our model does not contain any influential data 

points.  

Therefore, based on the successes of these tests and the overall performance 

measures above, we are confident in the predictive capability of our model and submit 

this four variable model for validation. 

See Appendix D for complete results and JMP® output of our OLS – estimating 

model.  Below are the parameter estimates, Figure 4.19, of the reduced model and the 

ensuing linear regression formula, Figure 4.20, which we submit for validation.  Also, the 

variance inflation factors (VIF) scores are displayed in Figure 4.19.  Variance inflation is 

the consequence of multicollinearity.  In a regression model we expect a high variance 

explained (R2).  The higher the variance explained is, the better the model is.  However, if 

collinearity exists among our predictor variables, then most likely the variance, standard 

error, and parameter estimates are all inflated.  In other words, the high R2 may not be the 

result of good independent predictors, but a result of a mis-specified model that carries 

mutually dependent and thus redundant predictors.  The VIF is common way for 

detecting multicollinearity.  The general rule of thumb is that the VIF should not exceed 

ten (Yu, 2004).  As we see in Figure 4.19, all of our VIF scores are well below ten.  

Again, the numbers in parentheses in the formula of Figure 4.20 are actually the numbers 
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of the predictor variables themselves not constants.  In this formula ‘Yest’ gives us the 

estimated percentage of cost growth for the estimating cost variance category. 

 

Intercept
62  Proc Started based on Funding Yrs?
(Variable #58 * Variable # 73)^2
81  Length of Proc Funding > 11 yrs?
2  Total Quantity

Term
-4.803647
2.1386646
0.0000926
1.1384232
0.0000186

Estimate
 0.46946
 0.45508
0.000026
0.356188
0.000008

Std Error
-10.23
  4.70
  3.62
  3.20
  2.40

t Ratio
<.0001
<.0001
0.0008
0.0026
0.0207

Prob>|t|
        .

1.0490251
1.0705798
1.0603576
1.0138227

VIF

Parameter Estimates

 
 

Figure 4.19 – Parameter Estimates – Estimating (Reduced) Model (OLS) 
 
 

 

 

Figure 4.20 – Linear Regression Equation – Estimating (Reduced) Model (OLS) 
 
 

Multiple Regression Results — Support Response 

 We begin our discussion of our OLS regression model — support response with a 

summary of the best models at each round of our logistic model building process (see 

Table 4.8). 

 

# Variables R Sq Adj R Sq Obs P-Value
1 0.176725 0.160583 53 0.0017
2 0.319518 0.290561 50 0.0037
3 0.400248 0.360264 49 0.0152

Full (4) 0.472743 0.42481 49 0.0364
Next Best (5) 0.512596 0.455921 49 0.0887
Reduced (4) 0.542253 0.492767 42 0.0179

Logistic (Support) Best Models

 

Table 4.8 – Best OLS Support Models For Each Generation 
 
 

Yest ex:=

Where:

x 4.8036− 2.1387 V62( )⋅+ 0.0001 V58 V73⋅( )2⋅+ 1.1384 V81( )⋅+ 0.00002 V2( )⋅+:=
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With the performance measures for each best model stated in Table 4.8, we 

illustrate and discuss in the following graphs the relative changes of each performance 

measure as the number of variables increase.  We begin our discussion with the relative 

change in the difference between R2 and adjusted R2, and continue with data point to 

variable ratio, and relative change in p-value. 
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Figure 4.21 – Relative Change Between R2 and adjusted R2 - Support Models (OLS) 
 
 
 The difference between R2 and adjusted R2 is shown in Figure 4.22.  Again, we 

want an adjusted R2 as close to the R2 value as possible while also maximizing our other 

performance measures.  Therefore, we look for this distance to be minimized.  In Figure 

4.21 we see the difference, or ‘gap’, between the R2 and adjusted R2 steadily increase 

with the addition of each variable into the model up to our next best five variable model.  

Upon reduction of the full model we see the gap between the two performance measures 

shorten.  Although the gap of our reduced model is slightly more than that of our next 
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best model, it is still smaller than that of our full model.  We look at the remaining two 

performance measures to make our final determination. 

Next we evaluate the data point to variable ratio in our models.  In Figure 4.22 we 

see the ratio drop as variable are added until we reach a 12.3:1 ratio for the full model 

and a 9.8:1 ratio for the next best.  The reduced model has 42 data points and four 

predictor variables which gives us a data point to variable ratio of 10.5 to 1.  This is 

above our ten to one cut-off so we move on to the final performance measure, p-value. 
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Figure 4.22 – Ratios of Data Points to Variables – Support Models (OLS) 
 
 

 Finally, we observe the relative change in the sum of individual p-values.  Figure 

4.23 shows the p-values increase as we add variables to our model.  It also shows the 

dramatic decrease we achieve when we reduce our full model.  This large decrease in p-

values indicates that the variables contained in our reduced model are more significant 

than both our full and next best models.   
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Figure 4.23 – Relative Change in P-Value – Support Models (OLS) 
 

Based on these performance measures, we are confident in the predictive 

capability and statistical soundness of our reduced model.  At this point, we must test the 

assumptions of the residuals of multiple regression model to see if they are satisfied by 

this reduced model.  Again we do not display the tests of assumptions for the full model; 

however, they are performed and are met.   

The assumption of independence is the same as that of the OLS – estimating 

model above.  Next we perform a Shapiro-Wilk goodness-of-fit test for normality.  Using 

an alpha of 0.05, the output from JMP® in Figure 4.24 shows that our residuals do meet 

the assumption of normality with a p-value of 0.45 which is above our stated alpha of 

0.45.   
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Figure 4.24 – Shapiro-Wilk Test for Normality – Support (Reduced) Model (OLS) 
 
 

Finally, we perform a Breusch-Pagan test for constant variance of the residuals.  

Using Microsoft Excel® we calculate a p-value of 0.890527. This high p-value, which is 

above our alpha of 0.05, indicates that our residuals indeed pass the Breusch-Pagan test 

for constant variance. 
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Figure 4.25 – Cook’s Distance Overlay Plot for Influential Data Points 
Support (Reduced) Model (OLS) 

 

In addition to the assumption tests, we also ensure that our model contains no 

influential data points.  For this we use JMP® to run an overlay plot of the Cook’s 
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Distance values.  Figure 4.25 shows no data points above 0.25, thus our model does not 

contain any influential data points.  Therefore, based on the successes of these tests and 

the overall performance measures above, we are confident in the predictive capability of 

our model and submit this four variable model for validation. 

See Appendix E for complete results and JMP® output of our OLS – support 

model.  Below are the parameter estimates, Figure 4.26, of the reduced model and the 

ensuing linear regression formula, Figure 4.27, which we submit for validation.  Note that 

the variance influence factors are well below ten which indicates little or no 

multicollinearity.  The numbers in parentheses in the formula of Figure 4.27 are actually 

the numbers of the predictor variables themselves not constants.  ‘Ysup’ gives us the 

estimated percentage of cost growth for the support cost variance category. 

 

Intercept
26  Service = Joint
19  Ship
12  Electronic
Variable # 58 * Variable # 80

Term
-3.064493
 -1.35354
-2.491327
 -1.37066

0.0148537

Estimate
0.284403
0.513573
0.777774
 0.42391
0.003674

Std Error
-10.78
 -2.64
 -3.20
 -3.23
  4.04

t Ratio
<.0001
0.0122
0.0028
0.0026
0.0003

Prob>|t|
        .

1.2030299
1.1868498
1.0848091
1.0709069

VIF

Parameter Estimates

 
 

Figure 4.26 – Parameter Estimates – Support (Reduced) Model (OLS) 
 

 
Ysup ex:=

Where:

x 3.0645− 1.3535 V26( )⋅− 2.4913 V19( )⋅− 1.3706 V12( )⋅− 0.0149 V58 V80⋅( )⋅+:=  

 
Figure 4.27 – Linear Regression Equation – Support (Reduced) Model (OLS) 
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Validation 
 
 
Logistic Regression Model – Estimating Response 
 
 For validation, we add back the 20% validation set we create prior to model 

building to the 80% model building set.  Once they are merged we run our model against 

the entire 135 data points and save the functionally predicted values (‘0’ or ‘1’) for each 

of the validation data points.  We then compare these predicted values to the actual 

values.  JMP® computes the predicted values by assessing the probability of having cost 

growth based upon the factors in the specific model, wherein a ‘1’ (yes, there is cost 

growth) is assigned to any point with a probability of 0.5 or greater and a ‘0’ (no cost 

growth exists) otherwise. 

Table 4.9 details the validation percentage of the logistic regression model – 

estimating response.  The model validates our 20% validation data set at 65.2%.  This is 

well below our expected validation percentage of 95.2% using the AUC as a guide. 

 Upon initial investigation of Figure 4.9 we see four programs did not validate due 

to missing data points within the program data.  This leaves us with 23 programs to 

validate.  Our model predicts 15 of these 23 programs correctly.  The nine programs 

predicted incorrectly are highlighted.  Of these nine, five of them predicted a ‘1’, or that 

the program would have cost growth, but the actual response was a ‘0’, or that the 

program did not have cost growth.  This is somewhat reassuring in that our model will 

trigger the program manager to budget for expected cost growth in the estimating cost 

variance category approximately 22% of the time, but will not experience cost growth 

due to estimating. 
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Program # Actual 
Response

Calculated 
Response

Validated 
Correctly? 1 0

132 0 . N/A N/A N/A
73 0 . N/A N/A N/A
4 0 1 n 0.97578342 0.02421658
98 1 1 y 0.90825811 0.09174189
71 1 0 n 0.35604297 0.64395703
89 1 1 y 0.52290843 0.47709157
36 0 0 y 0.00647761 0.99352239
29 1 1 y 0.96745085 0.03254915
70 1 1 y 0.8383921 0.1616079
87 0 0 y 0.47868218 0.52131782
85 1 1 y 0.96445291 0.03554709
16 1 1 y 0.99291854 0.00708146

117 0 1 n 0.99845821 0.00154179
13 1 . N/A N/A N/A
46 1 1 y 0.99967494 0.00032506
31 0 0 y 0.00152028 0.99847972
72 1 0 n 0.08563746 0.91436254

110 1 1 y 0.99773197 0.00226803
109 0 1 n 0.65689323 0.34310677
75 0 0 y 0.00378066 0.99621934

107 1 0 n 0.3627366 0.6372634
33 1 1 y 0.97029883 0.02970117
10 0 . N/A N/A N/A
48 1 1 y 0.72022701 0.27977299
39 0 1 n 0.87806222 0.12193778
56 1 1 y 0.99503405 0.00496595

124 0 1 n 0.94947478 0.05052522
Count 27 23

15
65.2%Validation Percentage

Logistic - Estimating Cost Growth (20%) Probability that response is a:

# Validated Correctly

 
 

Table 4.9 – Validation of Logistic Regression Model – Estimating Response 
 
 

 Due to the low validation percentage of 65.2% we perform a validation of our 

model on the 80% model building data set.  We do this because we want to see if our 

20% validation data set is representative of our entire database.  Upon validating our 

model on 100% of the data set we find that our model correctly predicts cost growth in 89 

out of 109 data points for a validation percentage of approximately 82%.  This is much 

closer to our expected AUC percentage of 95.2%.  Note that 4 out of the 89 that are 

predicted correctly are borderline probabilities, meaning they are within plus or minus .05 

of the 0.5 cut-off used by JMP® to categorize them as having cost growth. 
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 Because there is a difference between the two validations, we run distributions of 

each predictor variable in our reduced model from both the 20% and 80% data sets.  

Upon investigation of these distributions we find that one variable, 15 Aircraft, exhibits a 

large enough difference in their means that we conclude the validation set is non-

representative of the model building set (see Figure 4.28). 

 
Figure 4.28 – Variable Distribution Difference – Estimating Response 

 

 As we see in Figure 4.28, the mean of the variable in the 20% data set is 0.037 

which represents 1 out of 27 data points that is an aircraft, while the mean of the same 

variable in the 80% data set is 0.093 which represents 10 out of 108 data points.  This 

difference is large enough that we feel it explains the poor validation we observe with our 

20% data set.  Due to increase in validation we observe against our entire data set, we are 

confident that our logistic regression model – estimating response will correctly predict 

cost growth in the estimating cost variance category at least 82% of the time. 

 
Logistic Regression Model – Support Response 
 
 Table 4.10 details the validation percentage of the logistic regression model – 

support response.  The model validates our 20% validation data set at 58.3%.  This is 

well below our expected validation percentage of 93.1% using the AUC as a guide. 

-0.25 0 .25 .5 .75 1 1.25

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

 0.037037
0.1924501
 0.037037
0.1131678
-0.039094

       27

Moments
15  Aircraft

Distribution - 20% Validation Set

 
-0.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1

Mean
Std Dev
Std Err Mean
upper 95% Mean
lower 95% Mean
N

0.0925926
 0.291212
0.0280219
0.1481427
0.0370425

      108

Moments
15  Aircraft

Distribution - 80% Model Building Set
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Program # Actual 
Response

Calculated 
Response

Validated 
Correctly? 1 0

132 0 . N/A N/A N/A
73 0 0 y 0.00115578 0.99884422
4 1 0 n 0.29255221 0.70744779
98 0 1 n 0.90654619 0.09345381
71 1 0 n 0.41764394 0.58235606
89 1 0 n 0.00989476 0.99010524
36 0 . N/A N/A N/A
29 1 1 y 0.73359907 0.26640093
70 0 0 y 0.21017694 0.78982306
87 1 0 n 0.03605327 0.96394673
85 0 0 y 0.0072219 0.9927781
16 1 1 y 0.99806722 0.00193278
117 0 0 y 0.01124753 0.98875247
13 0 0 y 0.00143575 0.99856425
46 1 0 n 0.10695023 0.89304977
31 0 1 n 0.83893971 0.16106029
72 1 0 n 0.41764394 0.58235606
110 1 0 n 0.01421111 0.98578889
109 0 0 y 0.01491129 0.98508871
75 0 1 n 0.81835701 0.18164299
107 1 1 y 0.90454787 0.09545213
33 0 1 y * 0.5407222 0.4592778
10 0 0 y 0.01352457 0.98647543
48 1 1 y 0.81835701 0.18164299
39 0 0 y 0.10695023 0.89304977
56 1 0 y * 0.49351519 0.50648481
124 0 . N/A N/A N/A

Count 27 24

14

58.3%Validation Percentage

Logistic - Support Cost Growth (20%) Probability that response is a:

# Validated Correctly

 
 

Table 4.10 – Validation of Logistic Regression Model – Support Response 
 

Upon initial investigation of Table 4.11 we see three programs did not validate 

due to missing data points within the program data.  This leaves us with 24 programs to 

validate.  Our model predicts 14 of these 24 programs correctly.  Note that the two data 

points with a ‘y *’ are borderline probabilities and are included as predicted correctly.  

The ten programs predicted incorrectly are highlighted.  Unlike the estimating model 

above that predicts cost growth when there is none approximately 22% of the time, our 

support model predicts no cost growth when there is growth present approximately 29% 

of the time. 



 

 76

 Due to the low validation percentage of 58.3% we perform the same validation of 

our model on 100% of the data set and, also, run distributions of the predictor variables.  

Upon validating our model on 100% of the data set we find that our model correctly 

predicts cost growth in 90 out of 114 data points for a validation percentage of  

approximately 80%.  This is much closer to our expected AUC percentage of 93.1%.  

Note that 3 out of the 90 that are predicted correctly are borderline probabilities. 

When we compare the distributions of each predictor variable from both sets of 

data we find three of the predictor variables non-representative in the 20% validation set.  

Table 4.11 outlines the variable and the differences in their means for each data set. 

 
Log - Support

20% 80%
13 Helo 0.037 0.111
18 Space (RAND) 0.111 0.046
66 Class C 0.030 0.129

Difference in Mean

 

Table 4.11 – Variable Distribution Differences – Support Response 
 
 

 For the 13 Helo variable, only one program in the validation set is a ‘1’ while 13 

‘helos’ are represented in the 80% data set.  For the 18 Space (RAND) variable, 3 

programs in the validation set are a coded as ‘1’ while only 5 are represented in the 80% 

data set.  For the 66 Class C variable, one program is coded as a ‘1’ while 14 are 

represented in the 80% data set.  These differences are large enough to explain the poor 

validation we observe with our 20% data set.  Due to increase in validation we observe 

against our entire data set, we are confident that our logistic regression model – support 

response will correctly predict cost growth correctly in the support cost variance category 

at least 80% of the time. 
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Ordinary Least Squares Model – Estimating Response 

For multiple regression validation, we use the same 20% validation data 
set, which we used for logistic regression validation.  The OLS validation consists 
of combining the validation data set with our working data set, and saving the 
predicted values for each individual model to be validated.  JMP® computes the 
predicted value by fitting the specified model parameters with the values of the 
validation set.  We then calculate a 80 percent upper prediction bound, back-
transform the log normal Y response to a percentage, and assess the accuracy of 
the model’s prediction capability.  We gauge the accuracy by comparing the 
actual percentage cost growth (Y response un-transformed) to the upper prediction 
bound.  A success is recorded when the prediction bound contains the actual 
value, or stated another way, if the actual value is less than the prediction bound 
(Bielecki, 2002:70) 

 
Unlike Bielecki and Moore, who use an 80% prediction bound, we use a 90% 

prediction bound due to Dr. Sambur’s vision of institutionally implementing a 90% 

confidence level to meet cost requirements (see The Acquisition Environment, Chapter 2). 

 

Program # Actual 
Response

Upper 
Bound

Validated 
Correctly?

13 0.00027 . N/A
29 0.04790 1.49921 y
33 0.18153 0.30274 y
98 0.20895 0.92770 y
71 0.26153 0.30228 y
107 0.26682 0.30733 y
46 0.39296 0.92057 y
89 0.39598 2.11896 y
72 0.41449 14.94475 y
70 0.52910 0.30343 n
85 0.73965 0.92188 y
48 0.99298 0.92054 n
16 1.00096 1.22253 y
110 1.18442 . N/A
56 4.05634 0.92072 n

Count 15 13
10

76.9%Validation Percentage

OLS - Estimating  Cost Growth

# Validated Correctly

 

Table 4.12 – Validation of Multiple Regression Model – Estimating Response 
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Table 4.12 details the validation percentage of the multiple regression model – 

estimating response.  The model validates our validation data set at 76.9%.  Out of a 

possible 13 data points, 10 are below the prediction bound.  We consider this to be 

successful because we expect to see approximately 90% of the validation data points to 

fall below the prediction bound.  To further validate our model we validate the entire data 

set and find the validation percentage to be 91.7%, or 55 out of 60 possible data points 

fall below the prediction bound.  Thus, we are confident that this model will correctly 

predict the amount of cost growth for the estimating cost variance category. 

 
Ordinary Least Squares Model – Support Response 

Table 4.13 details the validation percentage of the multiple regression model – 

support response.  The model validates our validation data set at 72.7%.   

 

Program # Actual 
Response

Upper 
Bound

Validated 
Correctly?

48 0.00562 0.11615 y
46 0.01701 0.18432 y
72 0.02483 1.07941 y
29 0.03003 0.11383 y
107 0.05202 0.23089 y
71 0.05729 0.53772 y
89 0.06082 0.26458 y
110 0.15563 . N/A
16 0.26119 0.47181 y
4 0.31513 0.23089 n

87 0.36141 0.01749 n
56 0.61879 0.35615 n

Count 12 11

8

72.7%Validation Percentage

Logistic - Support  Cost Growth

# Validated Correctly

 

Table 4.13 – Validation of Multiple Regression Model – Support Response 
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 Out of a possible 11 data points, 8 are below the prediction bound.  We consider 

this to be successful because we expect to see approximately 90% of the validation data 

points to fall below the prediction bound.  To further validate our model we validate the 

entire data set and find the validation percentage to be 88.7%, or 47 out of 53 possible 

data points fall below the prediction bound.  Thus, we are confident that this model will 

correctly predict the amount of cost growth for the support cost variance category. 

 
Chapter Summary 

 This chapter reports the results of both logistic and multiple regression models for 

the estimating and support cost variance categories.  We identify some redundant 

predictor variables and other predictor variables that provide no statistical significance to 

each cost variance category.  As we detail the findings of our model building we discuss 

the performance measures and weighting process used to select the best models.  Finally, 

we validate each model to asses its accuracy and usefulness.  

 Our analysis shows that both logistic regression models contain predictor 

variables that are not fully represented in the validation data set; however, upon further 

validation of the model building data set, the models perform well at predicting cost 

growth in both categories.  We also show that both reduced OLS regression models are 

very accurate at predicting the amount of cost growth in each category.  In the next 

chapter we entertain a final discussion and application of all of the models presented in 

this chapter to include a comparison of our models to those developed by Moore (2003). 
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Conclusions 
 
 

Chapter Overview 

 This chapter reviews the pressures that exist in the DoD acquisition environment 

of major weapons systems procurement which underscore the necessity of this research 

(Bielecki, 2003:76).  We summarize the pressures placed on the cost estimating 

community, and discuss the limitations of extrapolating our research findings to other 

areas of cost research.  We look at our additions to the exhaustive literature review 

performed by Sipple (2002), and review the methodology used in this research.  We 

restate our findings and use the current F-22 program to further validate the accuracy of 

our models.  Finally, we explore recommendations of and possible follow-on theses to 

this research. 

 
Restatement of the Problem 

Defense spending has undergone great change in the last 20 years—large 

increases during the Reagan Administration of the 1980s, and record setting reductions 

under the Clinton Administration of the 1990s.  The threat to the security of the United 

States, however, has not declined; merely changed form.  This puts the defense 

acquisition community in the position of having to find ways to do more with less.  For 

this reason, elected representatives, as well as higher ranking members of the Department 

of Defense pay close attention to the cost performance of major defense acquisition 

programs.  This scrutiny is the cause behind Dr. Marvin Sambur’s new policy of meeting 

cost and performance goals with a 90% confidence level. 
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Our research gives the cost estimating community quantitative tools to aid the 

estimator in achieving these levels.  The models provided by our research will enable the 

cost estimator to estimate cost growth early in the Engineering and Manufacturing 

Development (EMD) phase of a program.  This ability allows the program manager to 

budget dwindling resources with greater confidence; thereby promoting greater 

credibility of the Department of Defense (DoD) acquisition community to the American 

public. 

 
Limitations 

 Through our research we aim to predict the presence and magnitude of cost 

growth in the procurement appropriations estimating and support categories during the 

EMD phase of a program life cycle. Our models are built from historical selected 

acquisitions reports (SAR)s of DoD programs from the years 1990 to 2002.  Only 

programs with a development estimate (DE) are entered into our database, and we focus 

exclusively on procurement appropriations.  Therefore, the use and application of our 

models are limited by these boundaries, and we caution the reader against extrapolating 

our resulting models beyond these bounds. 

 
Review of Literature 

 We add to the exhaustive literature review accomplished by Sipple (2002) with 

the review of Sipple (2002), Bielecki (2003), and Moore (2003).  That is to say, that this 

follow-on research is bench-marked against these three using Sipple’s predictor variables, 

procedures, and overall methodology.  In addition to the above three theses, we find and 
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add a study, Cost Growth of Major Defense Programs, by the Office of the Secretary of 

Defense Cost Analysis Improvement Group (OSD CAIG) to our literature review. 

 This study, like ours and that of our predecessors, evaluate cost growth as of the 

EMD phase of the system life cycle.  This study is different in that the OSD does not 

focus on a single SAR cost variance category or a single appropriation.  Instead, they 

seek to categorize cost growth into one of two categories: decisions or mistakes.  From 

their results we take away their finding that cost estimating assumptions account for the 

majority of cost growth in the mistakes category. 

 
Review of Methodology 

 We utilize the logistic and multiple regression two-step methodology introduced 

by Sipple (2002) to predict cost growth during our research.  This two-step process first 

uses logistic regression to establish whether or not a program will experience cost 

growth.  If it does experience such growth, then multiple regression is used to predict the 

percentage of cost growth for that program.  Our research focuses strictly on the 

estimating and support cost variance categories of procurement appropriations in the 

EMD phase of program development. 

We update and use the database originally created by Sipple (2002).  This 

database is comprised of major acquisitions programs from all service components, 

which use a DE baseline estimate.  The database contains both RDT&E and procurement 

dollar programs that have an EMD phase of development between 1990 and 2001, to 

which we add calendar year 2002 programmatic SAR data.  We convert all programmatic 

dollar amounts into a common base year (2002) and compute our response variables.   
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 Our database contains 135 potential data points of which 80% is used to develop 

our models and 20% is used to validate our models. 

 Before we develop our multiple regression models for both cost variance 

categories, we transform the Y response using a natural logarithm to ensure that the 

underlying assumption of heteroscedasticity (constant variance) in the residual plots is 

met.  From here we begin to build our models by regressing each predictor variable on 

each response variable one at a time until the following performance measures are 

maximized and the most parsimonious model is achieved:  

 
Model    Performance Measures 
 
Logistic Regression   Sum of the individual p-values 

R-Squared (U) 
Number of observations 
Area under the receiver operating curve (ROC) 

 
Multiple Regression  Sum of the individual p-values 
    R-Squared 
    Adjusted R-Squared 

Number of observations 
 
Each model is then validated using the 20% validation data set that is set aside before 

model development. 

 
Restatement of Results 

 Our research yields one logistic regression model and one multiple regression 

model for each (estimating and support) cost variance category.  The validation 

percentage or accuracy rate of each model is detailed in Table 5.1. 
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Model
Cost Variance 

Category
20% Validation 

Rate
100% Validation 

Rate
Logistic Estimating 65.2% 81.70%

Support 58.3% 78.90%

Multiple Estimating 76.9% 91.7%

Support 72.7% 88.7%

Accuracy Rate of Each Model

 
 

Table 5.1 – Validation Rate of Regression Models – All Responses 
 
 

 Upon investigation of the low validation rates among the logistic models we find 

one predictor variable contained in the validation set (V15) is non-representative of the 

80% database for the logistic estimating model, and three predictor variables contained in 

the validation dataset (V13, V18, V66) are non-representative of the 80% database for the 

logistic support model.  However, based on the validation rates of the 100% dataset, we 

are confident that both logistic regression models will correctly predict cost growth in 

both cost variance categories.  Since both multiple regression models validation rates 

encapsulate the 90% upper prediction bound, we are confident that both multiple 

regression models will correctly predict cost growth in both cost variance categories. 

 
F-22 Validation 

 To see how our models fare with an on going high profile program, we collect 

data on the F-22 Raptor program and put our models to the test.  We plug the necessary 

predictor variables into the formulas for the estimating response as outlined in Figures 

4.11 and 4.27 and find that our logistic model predicts that there is a 0.9943 probability, 

or 99.4% chance, that the F-22 program will experience cost growth in the estimating 

cost variance category.  Furthermore, our multiple regression model yields the amount of 

cost growth to be 70.1%.  Comparing these results to the actual results in our database, 
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we find that there is indeed cost growth for this category and the amount of that cost 

growth is 13.15%.  Our multiple regression model predicts the amount of cost growth in 

excess of what is computed by the database.  With a predicted amount of cost growth of 

70% we expect the cost estimator and program manager to be suspect of this predicted 

value and not rely these results.  At this point the cost estimator should find alternate 

methods of predicting cost growth. 

 We continue by plugging the necessary predictor variables into the formulas for 

the support response as outlined in Figures 4.18 and 4.33 and find that our logistic model 

predicts that there is a 0.395 probability, or 39.5% chance, that the F-22 program will 

experience cost growth in the estimating cost variance category.  Since 39.5% is below 

the 50% cut-off, this result is coded as a ‘0’, thus, our formula predicts that the    F-22 

program will not experience cost growth in the support category.  When compared to the 

actual results we find that this is indeed the case.  Our Excel® database computes a 

negative percentage for this category (-4.8%) and, therefore, the program does not 

experience cost growth in this category.  Since there is no cost growth for the support 

category, we do not use the multiple regression equation to predict the magnitude of cost 

growth.  Our results for this scenario leave us confident that our models can and will 

accurately predict the presence of cost growth for both categories. 

 
Prior Research Comparison 

 We would be negligent if we did not take this opportunity to discuss how our 

models compare to the models developed by Moore (2003) during his research in this 

area.  Moore developed one logistic and one multiple regression model for all 

procurement dollars in the engineering and manufacturing development (EMD) phase of 
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the acquisition program life cycle.  Both of his models include data from the quantity, 

schedule, engineering, estimating, support, and other cost variance categories.  In 

contrast, our models are built using the piecemeal approach started by Sipple (2002), and 

continued by Bielecki (2003) wherein each cost variance category has its own logistic 

and own multiple regression model. 

 By comparison, if we use Moore’s logistic model on our F-22 data we find that 

his model estimates a 99.1% probability that cost growth will be present somewhere in 

the procurement appropriations of the EMD phase.  We estimate that there will be cost 

growth in the estimating cost variance category, but not in the support category.  To 

continue, Moore estimates the percentage of cost growth in the overall procurement 

appropriations of the EMD phase to be 51%, whereas we estimate cost growth to be 7.1% 

in the estimating category only.   

 Looking at the percentage of cost growth data for all categories as computed by 

our MS Excel® database for the F-22, we find that including the quantity category there 

is -28% cost growth, or no cost growth.  If the quantity percentage is removed the overall 

cost growth for this program is approximately 9%. 

 Which is better?  The answer to this question is ultimately left up to the program 

manager.  We believe that using a logistic and multiple regression model for each cost 

variance category allows the cost estimator to be able to pinpoint cost growth down to a 

particular category.  By knowing which category contains cost growth the cost estimator 

and program manager can focus on finding and fixing the cause specific to that category.  

This opportunity is not available with the overall approach used by Moore. 
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Possible Follow-on Theses 
 
 The database used in this research is by no means complete.  We promote further 

additions to this database in both programmatic data and potential predictor variables.  

The larger the database, the more useful it will become in other cost related research.  

Some possible related areas of research include: 

• Allow data to build under the new A B C Acquisitions Milestone 
Phases, then expand the database and perform the same 
methodology. 

 
• Explore a way to convert the old I II III Milestone phased data into 

the new A B C phased data. 
 

• Take the quantity cost variance data out of Moore’s models and 
see if there is a change. 

 
• Identify programs that did not have significant overruns and 

evaluate their risk estimating methodology to see if there is a best 
methodology (Sipple, 2002:121). 

 
• Create a program utilizing the CERs developed from this and other 

analyses (Sipple, 2002:121). 
 

• Explore the applicability of our results to the Monte Carlo 
simulation technique of risk analysis (Sipple, 2002:121). 

 
• Compare individual and overall RDT&E cost growth with individual and 

overall procurement cost growth.  Identify trends, accuracy and root 
causes within each category (Bielecki, 2003:83). 

 
 
Recommendations 

 Our results further validate the ability of the two-step regression approach to 

accurately predict cost growth.  This is no more evident than in our F-22 validation 

example above.  Logistic regression saves us the trouble of having to gather the necessary 

data to predict cost growth for the support category.   
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This research continues to demonstrate the effectiveness of logistic regression and 

multiple regression to predict cost growth in large DoD programs.  We believe the ability 

of these models to correctly predict the presence and amount of cost growth warrant their 

implementation for use across the DoD in estimating major weapons system program 

costs.  We further submit that use of logistic regression has a wider place within the DoD 

community that is as yet unrecognized (Bielecki, 2003:82).   

We also recommend that separate models be used for each cost growth category 

as opposed to an overall model.  These category specific models will enable the cost 

estimator to keep his or her program manager better informed on the issue of cost growth 

by accurately detecting cost growth in each category. 
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Appendix A 

Predictor Variables Removed From (Logistic) % Estimating Models 

 

Individually 6 + 7+ 9 + 38 + 46 + 48 + 51 + 77 + 78 + 81 + Count %
1 1 1 1 1 5 45%

10 Space 10 10 10 10 10 10 10 10 10 10 91%
11  Sea 11 11 11 11 11 11 11 11 11 10 91%
14  Missile 14 14 14 14 14 6 55%
16  Munition 16 16 16 16 16 6 55%
17  Land Vehicle 17 17 17 17 17 6 55%
18  Space (RAND) 18 18 18 18 18 18 7 64%
19  Ship 19 19 19 19 19 19 19 19 9 82%
2  Total Quantity 2 2 2 2 5 45%

20 20 20 20 20 20 20 7 64%
21 1 9%

22  Svs>1 22 22 22 22 22 22 22 22 22 22 11 100%
23 23 2 18%

25  Service = Navy only 25 25 25 25 25 25 25 25 25 25 11 100%
26  Service = Joint 26 26 26 26 26 26 26 26 26 26 11 100%

27 27 27 3 27%
28  Service = Marines only 28 28 28 28 28 28 28 28 28 28 11 100%
29  Service = AF only 29 29 29 29 29 29 29 29 29 29 11 100%

3 3 3 3 4 36%
30  Lead Svc = Army 30 30 30 30 30 30 30 30 30 10 91%
31  Lead Svc = Navy 31 31 31 31 31 31 31 31 31 10 91%
32  Lead Svc = DoD 32 32 32 32 32 32 32 32 32 32 11 100%

34 34 34 3 27%
35  N involvement 35 35 35 35 35 35 35 35 35 10 91%
36  MC involvement 36 36 36 36 36 36 36 36 36 36 11 100%
37  AR involvement 37 37 37 37 37 37 37 37 37 10 91%

4 4 2 18%
40  Boeing 40 40 40 40 40 40 40 40 40 40 11 100%
41  Raytheon 41 41 41 41 41 41 41 41 41 41 11 100%
42  Litton 42 42 42 42 42 42 42 42 42 42 11 100%
43  General Dynamics 43 43 43 43 43 43 43 43 43 10 91%
45  More than 1 Major Defense Contracto 45 45 45 45 45 45 45 45 45 45 11 100%

47 47 47 47 47 5 45%
48 48 2 18%

49 49 49 49 49 5 45%
5 5 2 18%

50 50 50 50 50 5 45%
51 51 2 18%

52  Length of R&D in Funding Yrs 52 52 52 52 52 55 52 8 73%
53  R&D Funding Yr Maturity % 53 53 53 53 53 53 53 53 9 82%
54  Proc Funding Yr Maturity % 54 54 54 54 54 54 54 54 9 82%
55  Total Funding Yr Maturity % 55 55 55 55 55 55 55 55 55 10 91%
56  Actual Length of EMD 56 56 56 56 56 56 56 56 56 56 11 100%
57  Maturity of EMD % 57 57 57 57 57 57 57 8 73%

58 58 58 58 4 36%
59 59 59 59 4 36%

6 1 9%
60  LRIP Qty Planned 60 60 60 60 60 60 60 60 60 10 91%

61 61 61 61 4 36%
62 62 62 62 62 62 6 55%

63  Proc Funding before MS III? 63 63 63 63 63 63 63 8 73%
64 1 9%

66  Class - C 66 66 66 66 66 66 66 66 66 66 11 100%
68 1 9%

69  Versions Previous to SAR 69 69 69 69 69 69 69 8 73%
7 1 9%

70 70 70 70 70 5 45%
71  Prototype? 71 71 71 71 71 71 71 71 71 71 11 100%
72  Dem/Val Prototype? 72 72 72 72 72 72 72 72 72 72 11 100%
73  EMD Prototype? 73 73 73 73 73 73 73 73 73 73 11 100%

74 74 74 75 74 74 74 74 74 74 10 91%
75  Significant pre-EMD activity immedi 75 75 75 75 75 75 75 75 75 10 91%
76  Program have a MS I? 76 76 76 76 76 76 76 76 76 76 11 100%

79 79 2 18%
8 1 9%

80 80 80 80 80 5 45%
81 81 2 18%

82  R&D Funding Yr Maturity % > 75%? 82 82 82 82 82 82 82 8 73%
83  Proc Funding Yr Maturity % > 40%? 83 83 83 83 83 83 83 83 9 82%
84  Funding Yrs of R&D Complete < 9? 84 84 84 84 84 84 84 84 9 82%
85  Funding Yrs of Proc Complete < 5? 85 85 85 85 85 85 85 8 73%

Predictor Variables as Regressed on Cost Variance - Procurement % Estimating
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Appendix A (cont.) 

Predictor Variables Removed From (Logistic) % Support Models 

 

Individually 50 + 79 + 51 + 54 + 47 + 85 + 35 + 70 + 81 + Count %
1  Total Cost CY $M 2002 1 1 1 1 1 1 1 1 1 10 100%
10 Space 10 10 10 10 10 10 10 10 10 10 100%
11  Sea 11 11 11 11 11 11 11 8 80%
12  Electronic 12 12 12 12 12 12 12 12 12 10 100%

14 14 14 14 4 40%
15  Aircraft 15 15 15 15 15 15 15 15 15 10 100%
16  Munition 16 16 16 16 16 16 16 16 16 10 100%
17  Land Vehicle 17 17 17 17 17 17 17 17 17 10 100%

18 19 2 20%
19  Ship 19 19 19 19 19 19 19 8 80%
2  Total Quantity 2 2 2 2 2 2 2 2 2 10 100%
20  Other 20 20 20 20 20 20 20 20 20 10 100%

21 21 21 3 30%
24  Svs>3 24 24 24 24 24 24 24 24 24 10 100%
25  Service = Navy only 25 25 25 25 25 25 25 25 9 90%

26 26 26 3 30%
27 27 2 20%

28  Service = Marines only 28 28 28 28 28 28 28 28 28 10 100%
29  Service = AF only 29 29 29 29 29 29 29 29 29 10 100%
30  Lead Svc = Army 30 30 30 30 30 30 30 30 9 90%
31  Lead Svc = Navy 31 31 31 31 31 6 60%
32  Lead Svc = DoD 32 32 32 32 32 32 32 32 32 10 100%
33  Lead Svc = AF 33 33 33 33 33 33 33 33 33 10 100%
34  AF involvement 34 34 34 34 34 34 34 34 34 10 100%
36  MC involvement 36 36 36 36 36 36 36 36 36 10 100%
37  AR involvement 37 37 37 37 37 37 37 37 37 10 100%
38  Lockheed-Martin 38 38 38 38 38 38 38 38 38 10 100%
39  Northrop Grumman 39 39 39 39 39 39 39 39 39 10 100%
4  Qty planned for R&D 4 4 4 4 4 4 4 8 80%
40  Boeing 40 40 40 40 40 40 40 40 40 10 100%

41 1 10%
42  Litton 42 42 42 42 42 42 42 42 42 10 100%
43  General Dynamics 43 43 43 43 43 43 43 43 43 10 100%
44  No Major Defense Contractor 44 44 44 44 44 44 44 44 9 90%
45  More than 1 Major Defense Contracto 45 45 45 45 45 6 60%

47 47 47 47 4 40%
48 48 48 48 48 5 50%

5  Qty currently estimated for R&D 1 10%
50 50 50 50 50 5 50%

51 51 51 3 30%
52 52 52 52 52 52 6 60%

53  R&D Funding Yr Maturity % 53 53 53 53 53 53 53 53 9 90%
54 54 54 3 30%

55  Total Funding Yr Maturity % 55 55 55 55 55 6 60%
56 56 56 56 4 40%

57  Maturity of EMD % 57 57 57 57 57 57 7 70%
58  Time from MSII to IOC (in months) 58 58 58 58 58 58 58 58 9 90%
59  Maturity of EMD at IOC% 59 59 59 59 59 59 59 59 59 10 100%
60  LRIP Qty Planned 60 60 60 60 60 60 60 60 60 10 100%
61  LRIP Qty Current Estimate 61 61 61 61 61 61 61 61 61 10 100%

62 62 62 62 62 5 50%
63  Proc Funding before MS III? 63 63 63 63 63 63 63 63 9 90%
64  # Product variants in this SAR 64 64 64 64 64 64 64 64 9 90%

66 66 66 3 30%
67  Class - U 67 67 67 67 67 67 67 67 9 90%

68 1 10%
69 69 69 3 30%

7 7 7 7 7 5 50%
71  Prototype? 71 71 71 71 71 71 71 71 71 10 100%
72  Dem/Val Prototype? 1 10%

73 73 2 20%
74 74 2 20%

75  Significant pre-EMD activity immedi 75 75 75 75 75 75 75 75 9 90%
76 1 10%

77 1 10%
78 78 2 20%

79 79 2 20%
8  Air 8 8 8 8 5 50%

80 80 80 80 80 80 6 60%
81 81 81 81 4 40%

82  R&D Funding Yr Maturity % > 75%? 82 82 82 82 82 82 82 9 90%
83 83 2 20%

Predictor Variables as Regressed on Cost Variance - Procurement % Support
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Appendix A (cont.) 

Predictor Variables Removed From (Multiple) % Estimating Models 

 

Individually 62 + 85 + 51 + 81 + 60 + 57 + Count %

1 1 1 1 1 1 6 86%
3 3 3 3 3 3 6 86%
4 4 4 4 4 5 71%
5 1 14%
6 1 14%

7 7 7 7 7 5 71%
8 8 8 8 8 8 8 7 100%
9 9 9 9 9 9 6 86%
10 10 10 10 10 10 10 7 100%

11 11 2 29%
12 12 12 12 12 12 12 7 100%

13 13 13 3 43%
14 14 14 14 14 14 14 7 100%

15 15 15 3 43%
16 1 14%

17 17 17 17 17 17 17 7 100%
18 18 18 18 18 18 18 7 100%
19 19 19 19 19 5 71%
20 20 20 20 21 20 6 86%
21 21 21 21 21 21 6 86%
22 24 24 24 24 24 24 7 100%
23 1 14%
24 1 14%
25 25 25 25 25 25 6 86%
26 26 26 26 26 26 26 7 100%

27 27 2 29%
28 28 28 28 28 5 71%

29 29 2 29%
30 30 2 29%

31 31 31 31 31 31 6 86%
33 33 33 3 43%
34 34 34 34 4 57%

35 35 35 35 4 57%
36 36 36 36 36 36 36 7 100%
38 38 38 38 38 5 71%
39 39 39 39 39 5 71%
40 40 40 40 40 40 6 86%
41 41 41 41 41 41 41 7 100%
42 42 42 42 42 42 42 7 100%

43 43 43 43 4 57%
44 44 44 44 44 44 44 7 100%
45 45 45 45 45 45 6 86%

46 46 46 3 43%
47 47 47 47 47 47 47 7 100%

48 48 48 3 43%
49 1 14%

50 50 50 50 50 50 6 86%
51 1 14%

52 52 52 52 52 52 52 7 100%
53 53 53 3 43%

54 54 54 54 4 57%
55 55 55 55 55 55 6 86%

56 1 14%
57 57 57 3 43%

58 58 58 3 43%
59 59 59 59 4 57%

60 1 14%
61 61 61 3 43%

62 1 14%
63 63 63 63 4 57%
64 64 64 64 64 5 71%

65 65 65 65 65 65 65 7 100%
66 66 66 66 66 5 71%
67 67 67 67 67 67 67 7 100%

68 1 14%
69 69 69 69 69 69 6 86%
70 70 70 70 70 70 70 7 100%
71 71 71 71 71 71 71 7 100%
72 1 14%

73 1 14%
74 74 74 74 4 57%

Predictor Variables as Regressed on Ln CV - Proc %  Estim ating
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Appendix A (cont.) 

Predictor Variables Removed From (Multiple) % Support Models 

 

Individually 19 + 11 + 26 + 42 + 64 + 17 + Count %

1 1 1 1 1 1 6 86%
2 2 2 2 2 5 71%
3 3 3 3 3 3 3 7 100%
4 4 4 4 4 5 71%
7 7 7 7 4 57%

8 8 8 8 4 57%
9 9 9 9 9 9 9 7 100%

10 10 10 10 10 10 10 7 100%
11 1 14%

12 1 14%
13 13 13 13 13 13 13 7 100%
14 14 14 14 14 14 14 7 100%

15 1 14%
16 16 16 16 16 16 16 7 100%
18 18 18 18 18 18 18 7 100%

19 1 14%
20 1 14%

24 24 2 29%
25 25 25 3 43%
27 27 27 27 27 27 6 86%
28 28 28 28 28 28 28 7 100%
29 29 29 29 29 29 6 86%

30 30 30 30 30 5 71%
31 31 31 31 31 31 31 7 100%
32 1 14%
33 33 33 33 4 57%
34 34 34 34 34 5 71%

35 35 35 35 4 57%
36 1 14%

37 37 37 37 37 37 37 7 100%
38 38 38 38 38 38 38 7 100%
39 39 39 39 39 39 39 7 100%
40 40 40 40 40 40 40 7 100%
41 41 41 41 41 41 41 7 100%

42 42 2 29%
43 43 43 43 4 57%
44 44 44 44 44 44 44 7 100%
45 45 45 45 45 45 45 7 100%
46 46 46 46 46 46 46 7 100%

47 1 14%
48 1 14%
50 1 14%
51 51 2 29%
52 1 14%

53 53 53 53 4 57%
54 54 54 3 43%

55 55 55 55 4 57%
56 56 56 56 56 56 6 86%
58 58 58 58 58 5 71%
59 59 59 59 59 59 59 7 100%
60 60 60 60 60 60 60 7 100%
61 61 61 61 61 61 61 7 100%

62 1 14%
63 63 66 63 63 63 63 7 100%

65 65 2 29%
66 66 66 66 66 5 71%
67 67 67 67 4 57%
68 68 68 68 68 68 68 7 100%
69 69 69 69 69 69 6 86%
70 70 70 70 70 70 6 86%
71 71 71 71 71 71 71 7 100%
73 73 73 73 73 73 6 86%
74 74 74 74 74 74 74 7 100%

75 75 75 75 4 57%
76 76 76 76 76 5 71%
77 77 77 77 77 5 71%
78 78 78 78 78 78 6 86%
79 79 79 79 79 79 6 86%

80 1 14%
81 81 2 29%

82 82 82 82 82 5 71%

Predictor Variables as Regressed on Ln CV - Proc % Support
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Appendix B 
 

Logistic Regression – Full Model – Estimating Response 
 

Difference
Full
Reduced

Model
 30.925806
 37.405685
 68.331491

-LogLikelihood
      10

DF
61.85161

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.4526
    100

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     89
     99
     10

DF
 37.405685
  0.000000

 37.405685

-LogLikelihood
74.81137

ChiSquare

0.8589
Prob>ChiSq

Lack Of Fit

Intercept
7  ACAT 1?
77  LRIP Planned?
38  Lockheed-Martin
67  Class - U
9  Land
15  Aircraft
51  Length of Proc in Funding Yrs
44  No Major Defense Contractor
2  Total Quantity
39  Northrop Grumman

Term
1.66953814
-2.0385841
-1.8962074
-1.9469863
1.54974656
1.22320931
3.01262894
-0.1413412
1.93784885
0.00003553
2.77113551

Estimate
0.8953001
0.8208517
0.6954414
0.8269847
0.7168706
0.6802552
1.0899479
0.0557439
0.8055776
0.0000169
1.2057433

Std Error
  3.48
  6.17
  7.43
  5.54
  4.67
  3.23
  7.64
  6.43
  5.79
  4.44
  5.28

ChiSquare
0.0622
0.0130
0.0064
0.0186
0.0306
0.0722
0.0057
0.0112
0.0161
0.0351
0.0215

Prob>ChiSq

For log odds of 0/1

Parameter Estimates
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Appendix B (cont.) 
 

Logistic Regression – Reduced Model – Estimating Response 
 

Difference
Full
Reduced

Model
 35.003898
 22.259748
 57.263647

-LogLikelihood
       9

DF
 70.0078

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.6113
     86

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     76
     85
      9

DF
 22.259748
  0.000000

 22.259748

-LogLikelihood
 44.5195

ChiSquare

0.9985
Prob>ChiSq

Lack Of Fit

Intercept
7  ACAT 1?
77  LRIP Planned?
38  Lockheed-Martin
67  Class - U
15  Aircraft
44  No Major Defense Contractor
39  Northrop Grumman
1 / Variable # 3
ln(Variable # 51)

Term
3.74251185
-4.3368579
-2.4954635
-2.8377295
3.15286508
4.38455975
4.15463156
5.14122691
0.58771192
-1.6495495

Estimate
1.9561775
1.3497976
1.1182264
1.2719104
1.2494315
1.5281374
 1.352822

1.9324404
0.2620326
0.8215535

Std Error
  3.66

 10.32
  4.98
  4.98
  6.37
  8.23
  9.43
  7.08
  5.03
  4.03

ChiSquare
0.0557
0.0013
0.0256
0.0257
0.0116
0.0041
0.0021
0.0078
0.0249
0.0447

Prob>ChiSq

For log odds of 0/1

Parameter Estimates
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Appendix C 
 

Logistic Regression – Full and Reduced Model – Support Response 
 

Difference
Full
Reduced

Model
 30.443590
 31.739508
 62.183098

-LogLikelihood
       9

DF
60.88718

ChiSquare
  <.0001

Prob>ChiSq

RSquare (U)
Observations (or Sum Wgts)

 0.4896
     90

Converged by Gradient

Whole Model Test

Lack Of Fit
Saturated
Fitted

Source
     69
     78
      9

DF
 27.920423
  3.819085

 31.739508

-LogLikelihood
55.84085

ChiSquare

0.8734
Prob>ChiSq

Lack Of Fit

Intercept
50  Funding Yrs of Proc Completed
76  Program have a MS I?
18  Space (RAND)
46  Fixed-Price EMD Contract?
66  Class - C
13  Helo
35  N involvement
62  Proc Started based on Funding Yrs?
21  # of Svs

Term
2.69155828
-0.2905103
2.63525559
6.58080015
2.30444445
-6.2703953
-3.2106087
  2.580247

-2.8842632
-0.8539183

Estimate
1.3671233
0.0886537
 0.956811

2.7361572
0.9818671
1.9867388
1.8037027
1.0233947
1.4347345
 0.448616

Std Error
  3.88

 10.74
  7.59
  5.78
  5.51
  9.96
  3.17
  6.36
  4.04
  3.62

ChiSquare
0.0490
0.0010
0.0059
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Appendix D 
 

Ordinary Least Squares Regression – Full Model – Estimating Response 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

 0.48983
0.431856
1.216127
 -1.8356

      50

Summary of Fit

Model
Error
C. Total

Source
    5
   44
   49

DF
  62.48005
  65.07442
 127.55447

Sum of Squares
 12.4960
  1.4790

Mean Square
  8.4492
F Ratio

  <.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
   43
    1
   44

DF
 64.968942
  0.105483
 65.074424

Sum of Squares
 1.51091
 0.10548

Mean Square
 14.3237

F Ratio

  0.2071
Prob > F

0.9992
Max RSq

Lack Of Fit

Intercept
62  Proc Started based on Funding Yrs?
58  Time from MSII to IOC (in months)
77  LRIP Planned?
37  AR involvement
81  Length of Proc Funding > 11 yrs?

Term
-6.186931
2.0620946
0.0123957
0.8359001
0.7832285
0.9420611

Estimate
0.780911
0.509358
0.005496
0.356835
0.349319
0.390057

Std Error
 -7.92
  4.05
  2.26
  2.34
  2.24
  2.42

t Ratio
<.0001
0.0002
0.0291
0.0237
0.0300
0.0199

Prob>|t|
        .

1.0560508
1.0890115
1.0486372
1.0049238
1.0801587

VIF
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Appendix D (cont.) 
 

Ordinary Least Squares Regression – Reduced Model – Estimating Response 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.578606
0.538473
1.084489
 -1.7421

      47

Summary of Fit

Model
Error
C. Total

Source
    4
   42
   46

DF
  67.82556
  49.39689
 117.22245

Sum of Squares
 16.9564
  1.1761

Mean Square
 14.4173

F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
62  Proc Started based on Funding Yrs?
(Variable #58 * Variable # 73)^2
81  Length of Proc Funding > 11 yrs?
2  Total Quantity

Term
-4.803647
2.1386646
0.0000926
1.1384232
0.0000186

Estimate
 0.46946
 0.45508
0.000026
0.356188
0.000008

Std Error
-10.23
  4.70
  3.62
  3.20
  2.40

t Ratio
<.0001
<.0001
0.0008
0.0026
0.0207

Prob>|t|
        .

1.0490251
1.0705798
1.0603576
1.0138227

VIF

Parameter Estimates
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Appendix E 
 

Ordinary Least Squares Regression – Full Model – Support Response 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.472743
 0.42481

1.289852
-3.16676

      49

Summary of Fit

Model
Error
C. Total

Source
    4

   44
   48

DF
  65.63480
  73.20355

 138.83835

Sum of Squares
 16.4087
  1.6637

Mean Square
  9.8627

F Ratio

  <.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
    7

   37
   44

DF
  5.226751

 67.976797
 73.203548

Sum of Squares
 0.74668
 1.83721

Mean Square
  0.4064

F Ratio

  0.8922
Prob > F

0.5104
Max RSq

Lack Of Fit

Intercept
26  Service = Joint
19  Ship
12  Electronic
80  Length of R&D Funding > 12 yrs?

Term
-3.132919
-1.228773
-2.472786
 -1.04533

1.2928744

Estimate
 0.31017
 0.48973

0.714491
0.424996
0.378091

Std Error
-10.10
 -2.51
 -3.46
 -2.46
  3.42

t Ratio
<.0001
0.0159
0.0012
0.0179
0.0014

Prob>|t|
        .

1.1473671
1.1271722
1.1299646
1.0310846

VIF

Parameter Estimates
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Appendix E (cont.) 
 

Ordinary Least Squares Regression – Reduced Model – Support Response 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.542253
0.492767
1.191581
-3.11065

      42

Summary of Fit

Model
Error
C. Total

Source
    4
   37
   41

DF
  62.23369
  52.53503
 114.76872

Sum of Squares
 15.5584
  1.4199

Mean Square
 10.9577

F Ratio

  <.0001
Prob > F

Analysis of Variance

Lack Of Fit
Pure Error
Total Error

Source
   24
   13
   37

DF
 36.650887
 15.884148
 52.535035

Sum of Squares
 1.52712
 1.22186

Mean Square
  1.2498
F Ratio

  0.3455
Prob > F

0.8616
Max RSq

Lack Of Fit

Intercept
26  Service = Joint
19  Ship
12  Electronic
Variable # 58 * Variable # 80

Term
-3.064493
 -1.35354
-2.491327
 -1.37066

0.0148537

Estimate
0.284403
0.513573
0.777774
 0.42391
0.003674

Std Error
-10.78
 -2.64
 -3.20
 -3.23
  4.04

t Ratio
<.0001
0.0122
0.0028
0.0026
0.0003

Prob>|t|
        .

1.2030299
1.1868498
1.0848091
1.0709069

VIF

Parameter Estimates
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