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Abstract 

 

 Cost growth is a concern for all parties involved in the DoD acquisition process.  

These parties include cost analysts, program managers, senior DoD decision-makers, 

Congress, and even the American public.  All of these people have a vested interest in the 

cost of DoD programs and most would like to see those costs decrease; as such, Congress 

has enacted multiple laws and reforms over the past three decades in an attempt to curb 

cost growth within DoD acquisition.  

 Previous research creates the foundation for the use of a two-step methodology to 

help predict cost growth, which we follow closely.  First, utilizing logistic regression we 

analyze whether specific program characteristics predict cost growth within the 

Engineering and Manufacturing Development (EMD) phase for combined RDT&E and 

procurement budgets.  The second step uses this answer (i.e., a positive response) to find 

cost growth predictor variables.  Specifically, we perform a multiple regression analysis 

and determine the amount of cost growth incurred by these DoD programs.  Through 

these two steps, we seek to unearth any predictive relationships within the data in order to 

build a predictive cost growth model.  The final model predicts both whether a program 

will have cost growth and what the potential amount of the cost growth will be for the 

combined RDT&E and procurement budgets within the EMD phase of acquisition.   
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CREATING COST GROWTH MODELS FOR THE ENGINEERING AND 

MANUFACTURING DEVELOPMENT PHASE OF ACQUISITION USING 

LOGISTIC AND MULTIPLE REGRESSION 

 

I.  Introduction 

 

General Issue 

 Cost growth is a concern for all parties involved in the DoD acquisition process.  

These parties include cost analysts, program managers, senior DoD decision-makers, 

Congress, and even the American public.  All of these people have a vested interest in the 

cost of DoD programs and most would like to see those costs decrease; as such, Congress 

has enacted multiple laws and reforms over the past three decades in an attempt to curb 

cost growth within DoD acquisition.  Most of these efforts meet with little success and 

weapon systems continue to experience an average of approximately 20 percent cost 

growth (Drezner, 1993:  xiii-xiv).   

 Over the past 40 years, increases in federal entitlements, such as social security 

and welfare, have reduced the percentage of defense outlays from 52.2 percent to 16.3 

percent of total federal spending (Schick, 2000: 18).  Yet, even as the funding pool 

evaporates, both Congress and the public demand more oversight of DoD programs.  

Beginning in 1969 with the Packard Initiatives, the government created a launch pad for 

several revisions of the acquisition regulations (“the 5000 series”) and the eventual 

establishment of growth thresholds through the Nunn-McCurdy Act in 1982 

(Christensen, 1999: 253).  These thresholds serve as indicators for Congress to provide 
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additional oversight or to even certify that a program is necessary for national security 

when cost growth exceeds 15 and 25 percent respectively (Weinberger, 2002).  Even with 

these thresholds, cost growth remains a subject of continued regulation revisions and 

oversight commissions. 

 While there are many possible causes of cost growth, and almost each one is 

addressed by an act or commission of some sort, a cause of certain importance is program 

risk.  By identifying possible areas of risk within a program, program managers and cost 

analysts can assign dollar amounts to those risks and produce better cost estimates.  Since 

cost growth is measured as the growth a program experiences from its initial baseline 

estimate to the program’s current estimate, the building of a realistic and more accurate 

initial estimate should reduce the amount of cost growth a program encounters (Hough, 

1992:v).  By assigning the proper dollar amounts to a program’s identified risks, cost 

estimators can produce more accurate cost estimates and help program managers and 

other senior leaders avoid cost growth and additional oversight (Sipple, 2002: 2). 

Specific Issue 

 Multiple methods exist to conduct a cost analysis.  The current stage of program 

development drives the choice of which method a cost estimator should use.  The five 

most common cost estimating techniques include analogy, expert opinion, engineering, 

actual costs, and parametric. 

 Analysts primarily use analogy and expert opinion at the beginning of a 

program’s life cycle.  As many details about the project will still be unknown, estimators 

often attempt to compare (analogy) aspects of the current program with similar aspects 

from past programs whose costs are known.  Similarly, subject matter experts will 
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frequently be called upon to advise the cost estimator about certain portions of the project 

and provide their own estimates for potential cost.  Naturally, such subjective techniques 

may be relatively imprecise, but they can provide fast, inexpensive and easily modifiable 

estimates during initial periods of the program.   

 Estimators generally use the engineering and actual costs methods in the later 

stages of program development in order to produce more detailed cost estimates.  The 

engineering technique actually constructs the cost estimate beginning with the lowest 

element within the work breakdown schedule and works its way to the top.  As such, it 

consumes a lot of time and costs more than other techniques, leaving little opportunity for 

“what-if” drills, but produces quite objective and accurate estimates.  Likewise, the actual 

costs method extrapolates the data gathered over the course of the program to produce a 

cost estimate.  While this technique creates very objective and accurate reports, the 

findings may be of limited use because the program is in its later stages. 

 The fifth method, parametric, is also known as the statistical method.  When 

estimators use this technique, they employ one or more databases of comparable 

programs to formulate statistical inferences about the relationships between the programs.  

While it is important to note that the databases’ range of parameters limit the applicability 

of the findings, the findings do represent a relatively objective, inexpensive and 

modifiable method for creating cost estimates.  In fact, some cost estimators believe these 

advantages represent a superior technique to the other methods listed above and through 

their collective efforts these researchers provide a basis for further study. 

 Presented with these facts, we use parametric techniques to construct cost growth 

models.  Specifically, this work builds upon that of Sipple (2002), Bielecki (2003) and 
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Moore (2003) to create a predictive model for cost estimators.  By using statistical 

regression, both cost growth relationships and the amount of cost growth can be predicted 

(Sipple, 2002:2).  Moreover, by utilizing such a model early in the program’s life cycle, 

more accurate cost estimates can be produced and cost growth can be decreased. 

Scope and Limitations of the Study 

 To generate such a predictive model, an analyst needs access to a proper database.  

The Selected Acquisition Reports (SARs) represent an invaluable source of information 

to populate such a database.  Congress mandates the production of these annual reports 

by the individual weapon system program offices and also sets the formatting standards 

and funding thresholds— two key aspects that make the reports more useable for our 

purpose.  Part of this standardization requires certain information, which provides data 

for many of the possible predictor variables, to be reported as well.   

 Specifically, the SARs report values for the planning estimate (PE), development 

estimate (DE) and production estimate (PdE) (if available).  Also, the reports provide the 

current estimate (CE), which serves as the most recent estimate for the program.  The 

cost data further divides into sections for Research and Development, Test and 

Evaluation (RDT&E), procurement and military construction (Jarvaise, 1996:3).  While 

differing organizations use these three estimates in various ways to calculate cost 

variance, the method we use in this study calculates the difference between the CE and 

DE.  Therefore, in accordance with aforementioned preceding works, “we define cost 

variance as the difference between the Current Estimate to the Development Estimate and 

cost growth as positive cost variance” (Moore, 2003:4).   
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 The SARs further separate cost variance into seven categories based on program 

effects: Estimating (or Escalation), Quantity, Schedule, Engineering, Support, Economic 

and Other (Jarvaise, 1996:4).  These categories report both base-year and then-year 

dollars for the program and thus allow researchers to account for inflation.  Through 

these unique divisions, we compare cost variance throughout the database and search for 

possible predictor variables of cost growth.   

 For this research, we only analyze programs that use the DE as the baseline 

estimate and only include the current SAR for the program.  This study compiles the 

efforts of Sipple (2002), Bielecki (2003) and Moore (2003) by examining cost growth in 

both RDT&E and procurement within the Engineering and Manufacturing Development 

(EMD) phase of acquisition.  Like the preceding authors, we include only five of the 

seven cost variance categories and exclude both Economic and Quantity cost from the 

analysis as these categories are outside of the estimator’s realm of control (Bielecki, 

2003:4).  Therefore, this study only examines cost variance for Estimating, Engineering, 

Schedule, Support, and Other for both RDT&E and procurement funding within the EMD 

phase. 

 As previously mentioned, the database itself limits this research.  By using the 

SAR data, limits already exist due to security classification and unknown budgeting for 

risk (Sipple, 2002:4).  Thus, we cannot include some data in this study due to its security 

classification, while some estimates (i.e., DE) may include unknown dollar amounts by 

program managers in an attempt to budget, or hedge, for risk.  We address these issues in 

full in Chapter III. 
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 While this research differs from most prior DoD research by being inferential 

rather than descriptive, the precedent for its use and applicability has already been set by 

Sipple (2002), Bielecki (2003), and Moore (2003).  This research again utilizes the two-

step regression methodology Sipple developed; first, logistic regression analysis predicts 

which programs will have cost growth, and then multiple regression analysis predicts 

how much cost growth the program will incur.  Sipple (2002) provides the initial 

groundwork by testing the two-step process with only Engineering cost data within 

RDT&E.  Bielecki (2003) further validates the process by using the remaining cost 

categories within RDT&E.  Finally, Moore (2003) uses the same process, but performs 

his analysis on the procurement funding within the EMD phase.  This research only 

differs from the other three studies in that it combines each of these three areas and 

produces an overall model for the EMD acquisition phase. 

Research Objectives 

 This study has two main objectives.  First, utilizing logistic regression we analyze 

whether specific program characteristics predict cost growth within the EMD phase for 

combined RDT&E and procurement budgets.  “Logistic regression differs from multiple 

regression in that it predicts a binary response.  In our case, the binary response is: Does 

a program experience cost growth, Yes or No (Sipple, 2002:5)?”  The second objective 

uses this answer (i.e., a positive response) to find cost growth predictor variables.  

Specifically, we run a multiple regression analysis and determine the amount of cost 

growth incurred by the significant program characteristics.  Through these two 

objectives, we seek to unearth any predictive relationships within the data in order to 

build a predictive model.  The final model predicts both whether a program will have cost 
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growth and what the potential range of the cost growth will be for the combined RDT&E 

and procurement budgets within the EMD phase of acquisition.   

Chapter Summary 

 This research builds directly off of the contributions made by Sipple (2002), 

Bielecki (2003) and Moore (2003).  The end result of this work is a predictive model cost 

estimators can use to help account for risk and reduce cost growth within a program.  By 

constructing a database from the SARs, we are able to utilize both logistic and multiple 

regression to build a model that both identifies programs that may encounter cost growth 

and predicts the amount of cost growth.  The result is a tool program managers and cost 

estimators can use to identify problems early on within a program, which may help 

control and reduce the amount of measured cost growth.  To do so, in the subsequent 

chapters we provide a review of pertinent cost estimating literature, a detailed synopsis of 

our methodology, an analysis of our findings and results, and our conclusions from this 

research. 
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II.  Literature Review 

 

Chapter Overview 

 This chapter reviews key factors and events that contribute to the field of cost 

estimating.  Specifically, the review discusses recent developments in the acquisition 

environment, assesses cost estimating and cost risk, and summarizes past research related 

to cost growth.  However, as Sipple (2002), Bielecki (2003) and Moore (2003) 

thoroughly reviewed this topic, we limit the scope of this chapter to a short review of key 

acquisition system points and a discussion of any pertinent research-related findings since 

January of 2003.  The information from these studies provides a basis for understanding 

cost factors and helps to build a regression model that may predict cost growth for the 

Engineering and Manufacturing Development (EMD) phase of acquisition. 

The Current Acquisition Setting 

 To best appreciate the complexities involved in estimating cost growth within 

DoD, the current acquisition environment must be understood.  Through this governing 

setting, we determine both where and how cost growth occurs, as well as how the DoD 

measures cost growth.  As with many governmental processes, the world of acquisition 

changes constantly, but the source of guidance remains constant: the Department of 

Defense Instruction (DoDI) 5000.2, Operation of Defense Acquisition System.  Though 

significantly revised over the past two years, this instruction still shapes acquisition 

structure, policy, and the processes for making war fighting requirements a reality.   

 Specifically, at the beginning of 2001, revisions to the DoDI 5000.2 reduced the 

required milestones from four to three; the four previous milestones known as MS 0, MS 
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I, MS II, and MS III are now labeled as A, B, and C (DoDI 5000.2).  These milestones, or 

major dividers within a program’s development, serve as decision points within the 

acquisition process, both for program review and fiscal purposes.  The milestone change 

uniquely impacts the latter purpose because the milestones determine the phase of the 

program, as well as impact the cost estimates.  The previous four phases follow: Phase 0 

– Concept Exploration, Phase I – Program Definition and Risk Reduction, Phase II – 

Engineering and Manufacturing Development, and Phase III – Production, 

Fielding/Deployment, and Operation Support (DoDI 5000.2).  The three classifications of 

activities are Pre-System Acquisition, System Acquisition, and Sustainment.  For further 

clarification of this taxonomy, a thesis entitled Correlation Analysis: Army Acquisition 

Program Cycle Time and Cost Variation by Howard Jaynes (1999: 11-13; Bielecki, 

2003: 8-9) provides the following concise summary of each milestone and phase. 

• Milestone 0: conduct concept studies.  Validation of the mission need and 

identification of possible alternatives.  Approval of MS 0 by the Defense 

Acquisition Board authorizes entry into Phase 0. 

• Phase 0: Concept Exploration.  The mission need and the alternatives are further 

defined in terms of cost, schedule, and performance objects.  Costs are 

incorporated in the Acquisition Program Baseline (APB).  Acquisition Strategies 

are developed and the Operation Requirements Document is prepared. 

• Milestone I: official approval to begin a new program. 

• Phase I: Program Definition and Risk Reduction.  The program is defined in terms 

of designs and technological approaches.  Prototyping and early operational 

assessments are used to reduce risk.  Identification of cost and schedule trade-offs. 
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• Milestone II: approval to enter Phase II.  The Milestone Decision Authority 

(MDA) evaluates the acquisition strategy and updated APB (development 

baseline) of the program before authorizing continuation.  Note: this is the 

estimate we use in our research to calculate cost growth. 

• Phase II: Engineering and Manufacturing Development.  The program is 

transformed into a cost-effective, stable design.  Developmental testing is 

conducted to ensure performance capabilities are satisfied and Low Rate Initial 

Production is authorized to further validate the new system. 

• Milestone III: approval to enter Phase III.  MDA reviews the acquisition strategy 

and updated APB (production baseline) program before approving entry into 

Phase III. 

• Phase III: Production, Fielding/Deployment and Operational Support.  The 

program enters full rate production and works to achieve Initial Operational 

Capability (IOC).  IOC is the first deployment of a weapons system to an 

operational unit.   

However, as mentioned earlier, beginning in 2001 the new classification took 

effect.  Unlike the previous studies by Sipple (2002), Bielecki (2003), and Moore (2003), 

our data includes the period from 1990 – 2002, or one more fiscal year, which indicates 

that our Selected Acquisition Report (SAR) data may be more affected by this change.  

However, we find that relatively few of the programs in the SAR are affected by the new 

milestone strategy and decide to focus only on programs that use the previous 

methodology.  As such, our data remains more consistent and less affected by the 

potential changes the new milestone strategy could initiate. 
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 Moreover, to help conceptualize these differing milestones, phases, and where our 

research lies within them, we also provide the chart, Figure 1, below.  As our definition 

of cost growth is based on the percentage price increase from the Development Estimate 

(DE) to the Current Estimate, we find it beneficial to illustrate where our small portion of 

research fits within the acquisition framework.    

 

Planning 
Estimate (PE)

Production Estimate 
(PdE)

Development 
Estimate (DE)

ProcRDT&E ProcRDT&E ProcRDT&E

Acquisition Timeline:

Phase:

SAR:

PDRR EMD Prod

IIMilestone: I III

 

Figure 1 – Acquisition Timeline (Dameron, 2001: 4) 

 
The Cost Estimating Process and Risk Assessment 

 As all three concepts are intertwined, any discussion concerning cost growth also 

requires knowledge about cost estimation and risk assessment.  In the first chapter of this 

study we define cost growth as “the growth a program experiences from its initial 

baseline estimate to the program’s current estimate,” which means that cost growth 

equals the actual amount of funds the program goes over budget.  Similarly, risk 

assessment establishes a monetary amount for cost risk, with cost risk being the predicted 
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dollar amount of cost growth likely to incur in a program (Coleman, 2000:3).  Since cost 

growth closely relates to cost risk, a review of risk assessment methods helps us to 

understand how experts measure the price of possible cost growth.  Figure 2 shows a 

chart of risk methods the analysts within the Ballistic Missile Defense Organization 

(BMDO) commonly utilize for their estimates (Coleman, 2000:4; Sipple, 2002:17).   

 

 

Figure 2 – Risk Assessment Techniques (Coleman, 2000: 4-9) 

 While not necessarily exhaustive, the chart does cover many of the major 

techniques risk estimators use and also serves as a good foundation for general discussion 

about measuring risk.  A succinct definition of each technique is provided by Bielecki 

(2003: 14-15), based on a cost analysis symposium (Coleman, 2000: 4-9, 12, 16), below: 
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• Add a Risk Factor/Percentage: is the least precise and easiest technique to use.  

Relies on technical expert judgment to assign a high-level, subjective risk factor 

for the estimate. 

• Bottom Line Monte Carlo / Bottom Line Range / Method of Moments: may use 

Monte Carlo Simulation, but on higher levels of the Work Breakdown Structure 

(WBS).  Other uses include a limited database, analogy methodology or expert 

opinion to determine risk estimates.   

• Detailed Monte Carlo Simulation: C/WBS is the Cost or Work Breakdown 

Structure.  Uses Monte Carlo Simulation, but relies on historical data to develop 

probability distributions of cost outcomes. 

• Expert-Opinion Based: relies on surveys of experts to determine the possible 

distributions of WBS item costs.  Uses Monte Carlo simulation to estimate a 

range of possible costs.  Assumes experts are accurate. 

• Detailed Network & Risk Assessment: is the most precise and most difficult to 

apply.  It requires a very detailed schedule and task breakout.  It uses a beta or 

triangular distribution to schedule item durations and creates a stochastic model 

from which to estimate the risk of a schedule slip.  The estimator uses the Monte 

Carlo Simulation method to estimate the cost. 

Past Research in Cost Growth 

 The last portion of this literature review examines past research dealing with cost 

growth.  Due to congressional and DoD emphasis on accurate cost estimates and within-

budget acquisition programs, much research exists pertaining to cost growth.  However, 

as this research directly follows to the research of Sipple (2002), Bielecki (2003) and 
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Moore (2003), only a cursory review is provided; Sipple laid an exhaustive and solid 

foundation upon which both Bielecki and Moore built, to which we only either 

summarize or update with any recent (i.e., 2003-2004) findings. 

 This prior research assists us immensely in our cause as it provides credible 

explanations for the basic sources of cost growth.  Indeed, Sipple first establishes the 

copious list of predictor variables that later researchers use to build predictive regression 

models.  Table 1 below lists the many studies Sipple reviewed. 

Table 1 – Sipple Thesis (Sipple, 2002:20-44) 

Author (Year) 
IDA (1974) 

Woodward (1983) 
Obringer (1988) 
Singleton (1991) 
Wilson (1992) 
RAND (1993) 

Terry & Vanderburgh (1993) 
BMDO (2000) 

Christensen & Templin (2000) 
Eskew (2000) 

NAVAIR (2001) 
RAND (2001) 

 

 This list does not exhaust the studies previously examined.  In another thesis, 

Gordon (1996) provides a listing of studies on cost growth performed both by the RAND 

Corporation and the Air Force Institute of Technology.  Bielecki (2003) provides two 

tables summarizing both of these lists by Gordon.  See Tables 2 and 3 below. 
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Table 2 – RAND Reports (Gordon, 1996:2-2) 

Author (Year) Findings Sensitivity Factors 

Jarvaise, et al. 
(1996) 

Defense System Cost 
Performance Database 

Derived from SARs 

Drezner, et al. 
(1993) 

Cost Estimates biased 
toward underestimation by 
about 20% from PE and DE 

and 2% from PdE 

Program Size, Maturity 

Drezner (1992) No demonstrated 
relationship between 

prototyping and cost or 
schedule outcomes (67) 

No Program Phase, Not System 
Type 

Hough (1992) Selected Acquisition 
Reports can Delay, Mask or 

Exclude Significant Cost 
Growth 

Economic, Quantity, Schedule, 
Engineering, Estimating and 

Other Changes 

 
 While our review remains concise and only references the aforementioned works, 

one study does need to be mentioned in more detail.  The RAND study from 1993 utilizes 

SAR data for its tests.  Based on the conclusions of the study, RAND finds that inflation 

and quantity, two of the seven cost variances listed in Chapter I, have the largest impact 

on cost growth.  However, due to the nature of a cost estimate, which already includes 

and accounts for these factors, RAND establishes that the two factors can be excluded 

when analyzing for cost growth.  Thus, Sipple (2002) adopts this principle of exclusion 

and our research methodology also excludes inflation and quantity.   



1 

Table 3 – AFIT Theses (Gordon, 1996:2-3) 

Author (Year) Findings Sensitivity Factors 
Nystrom (1996) Complex non-linear EAC 

methods not superior to 
simpler index based EAC 

methods 

Stage of Completion, System 
Type, Program Phase, Contract 
Type, Service Component, and 

Inflation 
Buchfeller and Kehl 

(1994) 
No Significant Differences 
in Cost Variances between 

categories 

Not Service, Not Program Phase, 
Not Contract Type, Not Stage of 

Completion 
Elkinton and 

Gondeck (1994) 
BAC Adjustment Factors 
derived from Historical 
“Cost Growth” do not 

Improve EACs 

Not Contract Type, Not Stage of 
Completion 

Pletcher and Young 
(1994) 

Contracts which Improved 
Cost Performance over time 

differ from those which 
Worsen 

Performance Management 
Baseline Stability 

Terry and 
Vanderburgh (1993) 

SCI based EAC best 
predictor of CAC for all 

Stages of Contract 
Completion 

Contract Completion Stage, 
Program Phase, Contract Type, 

Service Component, System 
Type, Major Baseline Changes, 
but not Management Reserve 

Wandland (1993) Completed Contracts have 
more “Cost Growth” than 

Sole Source 

Not Contract Type, Not Absolute 
Price 

Wilson (1992) Cost Overruns at 
Completion are Worse than 

between 15 and 85% 
complete (� =.15) 

Service (except Navy), Contract 
Type, System Type, and Program 

Phase, but not relative time 

Singleton (1991) “Cost Growth” can be 
predicted based on three 

factors 

Schedule Risk, Technical Risk 
and Configuration Stability 

Obringer (1988) “Cost Growth” is not 
attributable to increased 

Industry Direct or Overhead 
to Total Cost Ratio 

Specific Contractors (8 of 16) 
showed growth between 1980 

and 1986 

Blacken (1986) “Cost Growth” varies with 
Characteristics of Contract 

Changes 

Scope, Number of Effected SOW 
Pages, Contract Type, Change 
Type, Time to Definitize, Time 

to Negotiate, Not to Exceed 
Estimate, Stage of Completion, 

Stage of Development, Schedule 
Changes, Length of ECP, Length 

of Period of Performance 
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 Finally, we would be remiss not to detail some of the findings from the 

forerunners of this research: Sipple (2002), Bielecki (2003) and Moore (2003).  Sipple’s 

research provides the basis for this research through the creation of a new framework and 

adopted methodology, as well as by creating the list of predictor variables (Chapter III 

contains the complete list).  Moreover, Sipple’s use of both logistic and multiple 

regression for predictive model building acts as a forerunner for the two-step 

methodology based on the findings of our research within the cost arena.  Narrow in 

focus due to the study’s groundbreaking approach, Sipple (2002) analyzes only RDT&E 

funding for the engineering category within the EMD phase of acquisition.  Using the 

same methodology, Bielecki (2003) studies the remaining four categories of RDT&E 

within EMD.  Moore (2003) again looks at EMD, but rather than RDT&E funding he 

examines procurement funding only.  As such, these three studies lay the foundation for 

our current research, the analysis of both RDT&E and procurement funding within the 

EMD stage of acquisition. 

Chapter Summary 

 In this chapter, we define how the current acquisition environment and cost 

estimating process relate to and affect this research.  Also, this chapter provides a brief 

outline of past research in cost growth by acknowledging the extensive literature review 

performed by Sipple (2002) that serves as the basis for future cost growth research.  

Using the predictor variables past studies identify, we continue the process of building a 

predictive model for cost growth within the EMD phase.  In so doing, we build the 

foundation for our research methodology set forth in the next chapter.   
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III.  Methodology 

 
 
Chapter Overview 
 
 This chapter clarifies the methodology by which we conduct this research.  We 

begin by examining the database we use in more detail to elucidate both its advantages 

and disadvantages.  We continue with a brief overview of two key procedural aspects: 

data collection and candidate variable compilation.  We conclude the chapter by 

reviewing exploratory data analysis and detailing the regression techniques we use. 

Database Characteristics 

 As mentioned in previous chapters, we use the Selected Acquisition Reports 

(SAR) to build our database for this study.  Each SAR contains a diverse array of data to 

include a narrative program summary, schedule and budget information, cost variances 

and performance to name a few.  The reports present this data in both base year and then 

year dollars, with base year dollars as our preferred choice.  We use base year (BY) 

dollars and adjust these amounts to a standard base year (BY 2002) so meaningful 

comparisons can be made amongst the data.  Furthermore, each report breaks the cost 

variance data into the seven different cost categories: 

• Economic: changes in price levels due to the state of the national 

• Quantity: changes in the number of units procured 

• Estimating: changes due to refinement of estimates 

• Engineering: changes due to physical alteration 

• Schedule: changes due to program slip/acceleration 

• Support: changes associated with support equipment 
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• Other: changes due to unforeseen events (Drezner, 1993:7) 

 This research uses the sum of these categories (excluding economic and quantity) 

for both the RDT&E and procurement funding amounts annotated in the cost variance 

summaries.  As such, it represents a logical growth from the three previous studies by 

Sipple (2002), Bielecki (2003), and Moore (2003), which looked at separate funding 

components within the EMD phase of acquisition.   

Specific Limitations of SAR Data 

 By using the SARs for our database, we immediately encounter one limitation; 

Congress only requires SARs for ACAT IC and D programs (Knoche, 2001:1), and 

therefore we construct our predictive models with these specific programs.  Designated 

by dollar thresholds, ACAT IC and D represent large programs, which limit our study by 

disregarding the multitude of smaller DoD programs.  While our database captures many 

key military programs, the database does not account for most programs. 

 Other problems occasionally occur due to the use of SAR data as well.  While 

laying the foundation for this research, Sipple (2002) discovers that SAR data contains 

some possible disadvantages.  While the list below by Hough (1992) only represents a 

summary of these potential difficulties, both Sipple (2002) and Bielecki (2003) provide a 

more exhaustive review of these problems and what effects they can wreak on a database. 

• Failure of some programs to use a consistent baseline cost estimate 

• Exclusion of some significant elements of cost 

• Exclusion of certain classes of major programs (e.g., special access programs) 

• Constantly changing preparation guidelines 

• Inconsistent interpretation of preparation guidelines across programs 
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• Unknown and variable funding levels for program risk 

• Cost sharing in joint programs 

• Reporting of effects of cost changes rather than their root causes (Hough, 1992:v) 

Data Collection 

 We inherit our database from Sipple (2002), Bielecki (2003), and Moore (2003).  

Sipple’s original database includes fields for both RDT&E and procurement funding, and 

consists of all available SARs from 1990 to 2000 that use the development estimate (DE) 

as the baseline estimate.  Bielecki and Moore update the database in 2003 to include data 

through December 2001.  Our database benefits from the passage of time even more so 

and adds an additional year—2002.   

 However, we do not only add information for 2002, but additionally complete a 

thorough review of the entire database by comparing the latest SAR using an EMD-based 

DE with the information already in the database.  By “scrubbing” the database, we reduce 

the possibility of human input error and also attain a better understanding of the complex 

task at hand.  Finally, like our predecessors, we include joint service programs and 

exclude program information that has a security classification other than “unclassified.”   

Exploratory Data Analysis 

 Before building any models, the data must be understood so that we employ the 

proper procedures.  Our tests reveal the same mixed distribution Sipple (2002) encounters 

when he plots the response variable.  Specifically, two types of data comprise our 

response data: continuous and discrete.  As in previous cases, the discrete data centers at 

zero, while the continuous data is sporadically spaced throughout the continuum.  Since 

probability theory requires that the chance of obtaining a specific value within a 
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continuous distribution is zero, and the discrete mass centered at zero nullifies that 

probability, the normal solution entails splitting the data into two sets.  To accomplish 

this task however, we use the two-step methodology by Sipple (2002).  We find that 

Moore (2003:22) provides an excellent summation of Sipple’s two-step method: 

We first split the data into discrete and continuous distributions.  We then 
utilize logistic regression to analyze the discrete distribution and multiple 
regression to analyze the continuous distribution.  Thus, we develop two 
models:  a logistic regression model that analyzes the full data set to 
predict whether or not a program will have procurement cost growth, and 
a multiple regression model that analyzes only programs containing 
procurement cost growth to predict the amount of cost growth we expect.  
For the logistic regression portion of our analysis, we convert all negative 
cost growth to zero cost growth.  Furthermore, to ensure that we construct 
a robust model, we set approximately 20 percent of our data aside for 
validation before we begin any regression analysis (Sipple, 2002: 59). 

 
We then randomly select 20 percent of the data and set it aside until needed for model 

validation.  However, before actually doing logistic or multiple regression we must create 

both the response and candidate predictor variables. 

Response Variables 

 Our research aims to build both a logistic and a multiple regression model to 

predict cost growth for the EMD phase of acquisition, which consists of both RDT&E 

and procurement funding.  While previous studies have not combined the cost variance 

categories of RDT&E and procurement, our research follows the same basic approach 

and likewise requires two different response variables.  The first variable, EMD Cost 

Growth?, indicates whether or not cost growth occurs within a given program.  As the 

response only answers yes or no, we choose to use a binary variable where ‘1’ indicates 

that a program experiences cost growth and ‘0’ indicates that the program does incur cost 

growth.   
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 The other variable, EMD %, takes the form of a percentage rather than the actual 

dollar amount so that the cost growth remains relative to the program.  Again, using a 

percentage readily allows for comparison amongst the programs, removing our need to 

modify the results before an equal comparison can be made.  This response variable 

represents the percentage of cost growth within the EMD phase by both RDT&E and 

procurement funding. 

Predictor Variables 

 Our research utilizes the same basic pool of candidate variables established by 

Sipple (2002).  Through Sipple’s in-depth research, these contenders prove themselves to 

be capable predictors.  As such, they provide a solid pool of variables from which to 

select for model building. 

 These variables readily divide into five categories: program size, physical type of 

program, management characteristics, schedule characteristics, and other characteristics.  

As some of these categories are general in nature, Sipple also develops sub-categories 

where needed.  The list below categorizes these candidates and provides a concise 

description for better comprehension (Sipple, 2002:61). 

Program Size Variables 
• Total Cost CY $M 2003 – continuous variable which indicates the total cost of 

the program in CY $M 2003 
• Total Quantity – continuous variable which indicates the total quantity of the 

program at the time of the SAR date;  if no quantity is specified, we assume a 
quantity of one (or another appropriate number) unless the program was 
terminated 

• Prog Acq Unit Cost – continuous variable that equals the quotient of the total 
cost and total quantity variables above 

• Qty during PE – continuous variable that indicates the quantity that was 
estimated in the Planning Estimate 

• Qty planned for R&D$ – continuous variable which indicates the quantity in 
the baseline estimate 
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Physical Type of Program 
• Domain of Operation Variables 

o Air – binary variable:  1 for yes and 0 for no; includes programs that 
primarily operate in the air;  includes air-launched tactical missiles and 
strategic ground-launched or ship-launched missiles 

o Land – binary variable:  1 for yes and 0 for no; includes tactical 
ground-launched missiles; does not include strategic ground-launched 
missiles 

o Space – binary variable:  1 for yes and 0 for no; includes satellite 
programs and launch vehicle programs 

o Sea – binary variable:  1 for yes and 0 for no; includes ships and ship-
borne systems other than aircraft and strategic missiles 

• Function Variables 
o Electronic – binary variable:  1 for yes and 0 for no; includes all 

computer programs, communication programs, electronic warfare 
programs that do not fit into the other categories 

o Helo – binary variable:  1 for yes and 0 for no; helicopters; includes V-
22 Osprey 

o Missile – binary variable:  1 for yes and 0 for no; includes all missiles 
o Aircraft – binary variable:  1 for yes and 0 for no; does not include 

helicopters  
o Munition – binary variable:  1 for yes and 0 for no 
o Land Vehicle – binary variable:  1 for yes and 0 for no 
o Ship – binary variable:  1 for yes and 0 for no; includes all watercraft 
o Other – binary variable:  1 for yes and 0 for no; any program that does 

not fit into one of the other function variables 

Management Characteristics 
• Military Service Management 

o Svs > 1 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Svs > 2 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Svs > 3 – binary variable:  1 for yes and 0 for no; number of services 
involved at the date of the SAR 

o Service = Navy Only – binary variable:  1 for yes and 0 for no 
o Service = Joint – binary variable:  1 for yes and 0 for no 
o Service = Army Only – binary variable:  1 for yes and 0 for no 
o Service = AF Only – binary variable:  1 for yes and 0 for no 
o Lead Svc = Army – binary variable:  1 for yes and 0 for no 
o Lead Svc = Navy – binary variable:  1 for yes and 0 for no 
o Lead Svc = DoD – binary variable:  1 for yes and 0 for no 
o Lead Svc = AF – binary variable:  1 for yes and 0 for no 
o AF Involvement – binary variable:  1 for yes and 0 for no 
o N Involvement – binary variable:  1 for yes and 0 for no 
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o MC Involvement – binary variable:  1 for yes and 0 for no 
o AR Involvement – binary variable:  1 for yes and 0 for no 

• Contractor Characteristics 
o Lockheed-Martin – binary variable:  1 for yes and 0 for no 
o Northrop Grumman – binary variable:  1 for yes and 0 for no 
o Boeing – binary variable:  1 for yes and 0 for no 
o Raytheon – binary variable:  1 for yes and 0 for no 
o Litton – binary variable:  1 for yes and 0 for no 
o General Dynamics – binary variable:  1 for yes and 0 for no 
o No Major Defense KTR – binary variable:  1 for yes and 0 for no; a 

program that does not use one of the contractors mentioned 
immediately above = 1 

o More than 1 Major Defense KTR – binary variable:  1 for yes and 0 for 
no; a program that includes more than one of the contractors listed 
above = 1 

o Fixed-Price EMD Contract – binary variable:  1 for yes and 0 for no 

Schedule Characteristics 
• RDT&E and Procurement Maturity Measures  

o Maturity (Funding Yrs complete) – continuous variable which 
indicates the total number of years completed for which the program 
had RDT&E or procurement funding budgeted 

o Funding YR Total Program Length – continuous variable which 
indicates the total number of years for which the program has either 
RDT&E funding or procurement funding budgeted 

o Funding Yrs of R&D Completed – continuous variable which indicates 
the number of years completed for which the program had RDT&E 
funding budgeted 

o Funding Yrs of Prod Completed – continuous variable which indicates 
the number of years completed for which the program had 
procurement funding budgeted 

o Length of Prod in Funding Yrs – continuous variable which indicates 
the number of years for which the program has procurement funding 
budgeted 

o Length of R&D in Funding Yrs – continuous variable which indicates 
the number of years for which the program has RDT&E funding 
budgeted 

o R&D Funding Yr Maturity % – continuous variable which equals 
Funding Yrs of R&D Completed divided by Length of R&D in 
Funding Yrs 

o Proc Funding Yr Maturity % – continuous variable which equals 
Funding Yrs of R&D Completed divided by Length of Prod in Funding 
Yrs 
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o Total Funding Yr Maturity % – continuous variable which equals 
Maturity (Funding Yrs complete) divided by Funding YR Total 
Program Length 

• EMD Maturity Measures  
o Maturity from MS II  in mos – continuous variable calculated by 

subtracting the earliest MS II date indicated from the date of the SAR 
o Actual Length of EMD (MS III-MS II in mos) – continuous variable 

calculated by subtracting the earliest MS II date from the latest MS III 
date indicated 

o MS III-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD (MS 
III-MS II in mos) 

o Actual Length of EMD using IOC-MS II in mos – continuous variable 
calculated by subtracting the earliest MS II date from the IOC date  

o IOC-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD using 
IOC-MS II in mos 

o Actual Length of EMD using FUE-MS II in mos – continuous variable 
calculated by subtracting the earliest MS II date from the FUE date  

o FUE-based Maturity of EMD % – continuous variable calculated by 
dividing Maturity from MS II in mos by Actual Length of EMD using 
FUE-MS II in mos 

• Concurrency Indicators 
o MS III Complete – binary variable:  1 for yes and 0 for no 
o Proc Started based on Funding Yrs – binary variable:  1 for yes and 0 

for no; if procurement funding is budgeted in the year of the SAR or 
before, then = 1 

o Proc Funding before MS III – binary variable:  1 for yes and 0 for no 
o Concurrency Measure Interval – continuous variable which measures 

the amount of testing still occurring during the production phase in 
months; actual IOT&E completion minus MS IIIA (Jarvaise, 1996:26) 

o New Concurrency Measure % – continuous variable which measures 
the percent of testing still occurring during the production phase; (MS 
IIIA minus actual IOT&E completion in moths) divided by (actual 
minus planned IOT&E dates) (Jarvaise, 1996:26) 

Other Characteristics 
• # Product Variants in this SAR – continuous variable which indicates the 

number of versions included in the EMD effort that the current SAR addresses  
• Class – S – binary variable:  1 for yes and 0 for no; security classification 

Secret 
• Class – C – binary variable:  1 for yes and 0 for no; security classification 

Confidential 
• Class – U – binary variable:  1 for yes and 0 for no;  security classification 

Unclassified 
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• Class at Least S – binary variable:  1 for yes and 0 for no; security 
classification is Secret or higher 

• Risk Mitigation – binary variable:  1 for yes and 0 for no; indicates whether 
there was a version previous to SAR or significant pre-EMD activities 

• Versions Previous to SAR – binary variable:  1 for yes and 0 for no; indicates 
whether there was a significant, relevant effort prior to the DE; a pre-EMD 
prototype or a previous version of the system would apply 

• Modification – binary variable:  1 for yes and 0 for no; indicates whether the 
program is a modification of a previous program 

• Prototype – binary variable:  1 for yes and 0 for no; indicates whether the 
program had a prototyping effort 

• Dem/Val Prototype – binary variable:  1 for yes and 0 for no; indicates 
whether the prototyping effort occurred in the PDRR phase 

• EMD Prototype – binary variable:  1 for yes and 0 for no; indicates whether 
the prototyping effort occurred in the EMD phase 

• Did it have a PE – binary variable:  1 for yes and 0 for no; indicates whether 
the program had a Planning Estimate 

• Significant pre-EMD activity immediately prior to current version – binary 
variable:  1 for yes and 0 for no; indicates whether the program had activities 
in the schedule at least six months prior to MSII decision 

• Did it have a MS I – binary variable:  1 for yes and 0 for no 
• Terminated – binary variable:  1 for yes and 0 for no; indicates if the program 

was terminated 
 

 However, we choose to revise the list somewhat through the modification, 

deletion, and addition of differing variables.  We make these changes in an attempt to 

improve both the nomenclature of certain variables as well as increase the predictive 

capability of our models through the new variables’ inclusion.  The following list 

documents these changes: 

• Delete Domain of Operation – Air/Sea/Land/Space binary variables make this 
redundant 

• Delete Proc Cost Growth because it includes all seven categories of cost growth; 
only five are needed 

• Delete Class S-R – all of the SARs are classified secret or lower, and the variable 
duplicates Class S 

• Delete Is MSIII Complete? – always zero since MSIII cannot be complete for our 
programs 

• Delete RAND Concurrency Measurement Interval and RAND Concurrency 
Measurement Interval % - does not apply to programs in the EMD phase 
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• Delete Terminated? – our research applies to a living program; the variable is not 
applicable if the program is terminated and the variable cannot be used if the 
program still operates 

• We delete the following group of variables for lack of data points (less than 30 
would remain after we remove the 20 percent validation set): 

o FOT&E End Planned 
o FOT&E End Current Estimate 
o MSIIIa Planned & Current Estimate 
o MSIIIb Planned & Current Estimate 
o FUE Planned 
o FUE Current Estimate 
o Maturity from MSII (current calculation in months) 
o Qty in PE 

• Add LRIP Planned? – binary with 1 for yes and 0 for no to indicate whether the 
program has Low Rate Initial Production 

• Add Space (RAND) – missing from the original database, but needed for full 
accountability of the included programs 

• Change of variable name: 
o Qty Planned for R&D$ to Qty Planned for R&D 
o Earliest Actual MSII Date to Current Actual MSII Date 
o Earliest Actual MSIII Date to Current Actual MSIII Date 
o Actual Length of EMD using (E-B) to Time from MSII to IOC in months 
o Program Acquisition Unit Cost to Unit Cost 
o Maturity of EMD using IOC to Maturity of EMD at IOC (also corrected 

the formula so that if IOC occurs after MSIII, the percentage cannot go 
over 100%) 

Logistic Regression 

 Since we first want to predict whether or not cost growth occurs, which is a ‘yes’ 

or ‘no’ (1 or 0) question, we choose to use logistic regression.  Logistic regression by 

design primarily predicts a binary outcome, which suits our goal perfectly.  To utilize 

logistic regression, we code all of the programs that have either no cost growth or 

negative cost growth as a ‘0’.  We code programs with negative cost growth the same as 

programs with no cost growth because we are not interested in predicting negative cost 

growth.  We then code the remaining programs, which all have positive cost growth, as a 

‘1’.  As we now have a distribution, we characterize this variable, EMD (overall) Cost 
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Growth?, as a Bernoulli random variable with probability p of success (success = 1) 

(Neter, 1996:568).   

 We base our research procedure on that of Sipple (2002), but we do make some 

changes.  Like our predecessors, we use JMP® 4.0.4 and 5.0.1 (SAS Institute, 2001 and 

2003) to compute thousands of regressions and record the results on spreadsheets.  

Specifically, we document the p-values, receiver operating characteristics, and R-square 

U values that JMP® provides.  We begin with one-predictor models of all variables and 

select those with a p-value less than .05.  We then run this selection against all of the 

predictor variables, and choose the top ten models as identified by having the lowest 

cumulative p-value.  We then take the top ten and run them against all of the predictor 

variables.  At this point, we look to decrease our variable pool by identifying any 

variables that do not seem to contribute to the model building process in a statistically 

significant way (i.e., produce a cumulative p-value model less than .1).  We continue this 

process until the addition of another variable makes the top ten models exceed the 

cumulative p-value cutoff of .1.  Next, we run our final models against all of the predictor 

variables to ensure we do not miss a statistically relevant combination.   Afterwards, we 

try to improve our models through the use of higher order terms (e.g., squaring, cubing, 

natural log, inverse).  Finally, we analyze the resulting candidate models to find our 

‘best’ model, which we validate using the validation data we set aside before running the 

regressions. 
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Multiple Regression 

 To predict the percentage amount of cost growth, we use multiple regression to 

build our models.  As with logistic regression, we use JMP® to compute our models.  

Moreover, we use the same process for building our multiple regression models as for our 

logistic regression models.  However, we build this model using only the programs that 

incur cost growth (i.e., coded as a ‘1’), unlike the logistic model which uses all of the 

available programs.  Finally, before we actually build the models, we apply a log 

transformation to our dependent, or response, variable to correct for heteroskedasticity in 

the residual plot (Sipple, 2002: 72).  We explain the reasons for making this 

transformation in the next chapter. 

Chapter Summary 

 In this chapter we explain the procedures we use to build our regression models.  

Through a thorough analysis of our predictor variables, we obtain a list of variables to use 

during both logistic and multiple regression.  Using the two-step methodology by Sipple 

(2002), we build thousands of individual regression models and select the ‘best’ one for 

each type of regression.  The results of these procedures are discussed in Chapter IV. 
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IV.  Results and Discussion 

 

Chapter Overview 

 This chapter details the results of both our logistic and multiple regression 

models.  We examine how we choose our given models and how we analyze them for 

statistical validity and user applicability.  We begin with the logistic regression analysis 

before proceeding to the results of our multiple regression analysis. 

Logistic Regression Results 

 As we mention before in Chapter III, building logistic regression models 

consumes a lot of time.  Therefore, we establish a methodology for model building that 

complements the goal of building a robust model in an efficient manner.  Bielecki (2003) 

calls his approach Darwinist as it replicates the procedure of ‘survival of the fittest.’  We 

too use this methodology, though we modify it somewhat.  We begin by using JMP® to 

compute all possible one-variable models.  From this initial run, we take forward all one-

variable models with a p-value less than 0.2; we now have 15 one-variable models.  

Using these models, we regress each one against the remaining candidate predictor 

variables to attain better models.  At the end of this round, we select the top 10 models as 

delineated by the lowest cumulative p-value.  We then test the selected models against 

the remaining predictor variables until the addition of another variable is no longer 

significant.  Finally, to speed the process and reduce the likelihood of developing weaker 

models, we remove at the end of each stage any variable that does not produce a model 

with a cumulative p-value of less than 0.20.  This step significantly reduces the amount of 

regressions we run to form our models.  However, to safeguard against the exclusion of a 
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significant variable, we run our final model against all of the predictor variables 

previously excluded. 

 In addition to cumulative p-values, we also collect information on the R2 (U), data 

point to variable ratio, and the area under the receiver operating characteristic (ROC) 

curve.  While we ensure that our individual p-values remain below 0.05 and the 

cumulative model p-value below 0.10, the three measures above represent the statistical 

measures we use to select our model.  We summarize these measures in Table 4 below. 

Table 4 – Evaluation Measures 

Measure 
R2 (U) 
Number of Data Points / Ratio 
Area Under ROC 

 

 We use R2 (U) as our first level of comparison.  As the theory behind logistic 

regression differs from that of multiple regression, so do the measures.  In logistic 

regression, R2 (U) represents the proportion of variance explained by the dependent 

variable, whereas in linear regression it represents the proportion of variance explained 

by the regression line (Garson, 2003:9).  As Bielecki (2003) states quite well, “we 

consider R2 (U) as a measure of the amount of certainty explained by our model, and 

recognize that higher R2 (U) indicates a better prediction model (55).”  For more 

information on this measure, Sipple (2002) provides further detail. 

 While we find R2 (U) to be highly valuable, we need additional measures to find 

the best overall model.  Therefore, we use the data point to variable ratio to ensure that 

our model, based on a sample of the population, remains representative of the population 

as a whole.  We must watch this ratio because the addition of a variable can do more than 
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reduce the ratio; the addition of a variable can also remove available data points (as we 

see below).  Neter (1996) states that for every variable present, the model should contain 

six to ten data points.  Based on this recommendation, we follow the precedents of our 

predecessors and pay close attention to any model that drops below 10:1 and exclude any 

model that goes below 6:1.  By taking this measure, we help ensure that we do not over 

fit our model to the sample data. 

 Finally, we evaluate the receiver operating characteristic (ROC) curve as our final 

measure.  Sipple (2002) and Bielecki (2003) examine the ROC curve in technical detail, 

but for our purpose, we focus on how we implement the information it provides.  

Specifically, the ROC curve graphs the probability of our model predicting the presence 

of cost growth when cost growth does indeed exist.  As such, the higher the ROC score, 

the better the likelihood that our model correctly predicts cost growth.  Now that we 

know our evaluation measures, we move to the construction of our logistic model. 

 Before going on too far though, we note the following quote by Dr. George Box, 

“All models are wrong, but some are useful.”  Similarly, model building remains an art as 

much as a science.  While we outline a relatively straightforward process above, which 

does work for building many thousands of models, our selection of a ‘best’ model 

remains subjective and not easily standardized.  Indeed, we find that while our process 

creates valid models to the point of five eight-variable models, we choose as our ‘best’ 

model one that began as a hunch while building our five-variable models.   

While building our five-variable models, we see that our thirteenth best model (as 

measured by cumulative p-value) actually produces the highest R2 (U) by over 0.05 

points.  While our methodology states that we only carry the top 10 models forward, we 
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decide to be somewhat subjective (allowing intuition to help guide the process) and carry 

this model forward under the term ‘Dark Horse.’  Again, at the six-variable point, the 

Dark Horse remains outside of the top ten, but we believe the additional work to be worth 

the risk and send it to round seven.  In this round, Dark Horse moves into tenth position.  

After round eight, Dark Horse and only four other models remain; they all meet the p-

value cutoffs, have the same data point to variable ratio, and are only separated by ROC 

curves and R2 (U).  Based on these criteria, we choose Dark Horse as our logistic 

regression model.  As a final step, we also test the Dark Horse model for possible 

improvement via interaction, higher order terms, and discretizing the continuous 

variables.  The only significant improvement comes as a result of squaring variable #52, 

Length of R&D in Funding Yrs.  Tables 5 and 6 below detail the incremental 

development of the model and Appendix A provides a printout of the model from JMP®. 

Table 5 – Logistic Model Performance Measures (Dark Horse) 
 
Measure

1 2 3 4 5 6 7 8 * 8 *
R2 (U) 0.2164 0.3207 0.3810 0.4461 0.4906 0.5241 0.5551 0.6070 0.6168
ROC 0.8030 0.8615 0.8861 0.9111 0.9263 0.9314 0.9415 0.9541 0.9548
Incremental R2 

(U) 0.2164 0.1043 0.0603 0.0651 0.0445 0.0335 0.0310 0.0519 0.0098
Incremental 
ROC 0.8030 0.0586 0.0246 0.0250 0.0152 0.0051 0.0100 0.0126 0.0007
Data Points 108.0 108.0 108.0 108.0 108.0 108.0 108.0 105.0 105.0
Data:Variable 
Ratio 108.0 54.0 36.0 27.0 21.6 18.0 15.4 13.1 13.1

Number of Variables

(Note: * 8 * reflects the result of discretizing variable #52 )
 

 

 



 

 34

Table 6 – Logistic Model P-Values (Dark Horse) 
 
Variable # 
and Name

1 2 3 4 5 6 7 8 * 8 *

(52) Length 
of R&D 
Funding Yrs 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 ***
(77) LRIP 
Planned? 0.0009 0.0011 0.0032 0.0015 0.0015 0.0016 0.0047 0.0070
(64) # 
Product 
Variants in 
SAR 0.0070 0.0062 0.0074 0.0033 0.0038 0.0032 0.0019
(24) Svs>3 0.0081 0.0025 0.0050 0.0026 0.0026 0.0047
(14) Missle 0.0270 0.0128 0.0094 0.0072 0.0113

(62) Proc 
Started 
based on 
Funding Yrs 0.0441 0.0333 0.0224 0.0198
(15) 
Aircraft 0.0336 0.0131 0.0049

(31) Lead 
Svc = Navy 0.0371 0.0360
(52)2 0.0003
Cumulative 
P-Value 0.0000 0.0009 0.0081 0.0175 0.0384 0.0667 0.0843 0.0905 0.0859

(Note: * 8 * reflects the result of discretizing variable #52 )

Number of Variables

 

 

 Using these two tables we determine that all of the measurement increases remain 

positive and significant at least until squaring variable #52.  At this point, the increase 

appears minor, but we believe it beneficial when combined with the decreased 
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cumulative p-value.  Aside from using a squared term, which adds relatively little 

complexity to the model, we find no negative aspect of the term’s inclusion. 

 To validate our model, we use the 27 randomly selected programs that we 

extracted before building our model.  These 27 data points represent 20 percent of the 

original 135 point data set.  Using the entire data set, JMP® predicts either a ‘0’ or ‘1’ (no 

cost growth, yes cost growth) from our model for the remaining 27 data points.  Of note, 

JMP® predicts a ‘1’ for any prediction with a value of 0.5 or greater, while those 

predictions less than 0.5 receive a ‘0’ (Sipple, 2002).  Using this process, we find that 

JMP® can only predict 25 of our 27 remaining points due to missing data.  Nevertheless, 

our model correctly predicts 19 of the 25 remaining data points for a success rate of 76 

percent.  While this is not as high as hoped for based off of our performance measures, 

we assume the model has predictive capability and, due to only losing two data points, 

has broad applicability to the EMD stage.  Table 7 summarizes our validation and 

Appendix C lists the validation of individual programs. 

Table 7 – Logistic Model Validation Results 

Available 25 of 27 92.6%
Predicted 19 of 25 76.0%

Validation 

 
 

Multiple Regression Results 

 Now that we possess a logistic regression model, we continue on with Sipple’s 

(2002) two-step methodology by constructing our multiple regression model.  Unlike the 

logistic model which predicts whether or not a program incurs cost growth, the multiple 

regression model attempts to predict how much cost growth there will be in a program we 
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envisage to experience cost growth.  As we are only concerned with programs that 

encounter cost growth, our data points reduce from 109 to 78 for model building.  For 

this effort, we again use the predictor variables we use for logistic regression, but we do 

change our response variable to EMD Cost Growth %, which serves as a measurement of 

the percent increase of procurement cost growth from the Development Estimate. 

 Since our response variable changes, we perform an analysis on it to ensure that it 

maintains a continuous nature.  Similar to our three predecessors, our response variable 

exhibits a lognormal distribution and fails to have constant variance via an analysis of the 

residuals, as well as the Breusch-Pagan test (see Figure 3 below).  As a result, we follow 

the footsteps of our predecessors and transform the response variable using the natural 

log function.  A visual inspection of the distribution indicates it appears reasonably 

normal, which ensures that our residuals meet the assumption of constant variance by 

passing the Breusch-Pagan test (see Figure 4 below).  
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Figure 3 – Preliminary Data Analysis 
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Figure 4 – Transformed Response Variable Results 
 
 

 Similar to the logistic regression process, we build our multiple regression model 

using the Darwinist approach.  We first regress all 77 candidate variables individually 

and establish our top ten one-variable models.  We use these top ten and regress against 

all remaining variables.  We follow this process until our cumulative model p-value no 

longer remains below 0.10 or our data point to variable ratio drops below 6:1.  Using 

these criteria, we build up to a six-variable model.  However, the six-variable model lacks 

one of our main selection criteria – a high Adjusted R2 (AR2), which we use for multiple 

regression to measure performance rather than the ROC curve and R2 (U) we use in 

logistic regression.  Indeed, we find that some of our five-variable models contain 

significantly stronger AR2, while staying below the cumulative model p-value cutoff and 

meeting the data point to variable ratio.  However, we realize that our most predictive 
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models contain variable 60, LRIP Qty Planned, and the use of this variable reduces our 

available data points to between 37 and 40 (depending on the given model).  As a result, 

we possess models that may have predictive capability, but also have data point to 

variable ratios of 8:1 or less.  As this could indicate model over fit, we use Cook’s 

Distance on the top couple of models and find that we have multiple data points over 

0.50.  As a result, we remove them from the model and further reduce our data point to 

variable ratio.  At this point, we believe that our ratio needs to remain much higher to 

ensure we build a robust model and decide to review our four-variable models for 

predictive capability.  In fact, we find that most of the five-variable models with higher 

AR2 originate from one four-model in particular.  We show the individual variables of 

this model and their contributions below in Table 8. 

Table 8 – Base Multiple Regression Model 

Variable # and Name
1 2 3 4

(48) Funding YR Total Program Length 0.0027 0.0049 0.0043 0.0002

(60) LRIP Qty Planned 0.0046 0.0006 0.0034
(59) Mat of EMD at IOC 0.0414 0.0280
(5) Qty Currently Estimated for R&D 0.0013
Cumulative P-Value 0.0027 0.0095 0.0463 0.0329

Number of Variables

 

 

 We use this model as a point for further testing due to the high AR2, relatively 

low cumulative p-value total, and improved 10:1 variable ratio.  We test this model as 

well for positive benefit via interactions and higher order terms, but find nothing 

significant.  We also discretize our continuous variables in hopes of improving our model 

and find that for variable 59, Mat of EMD at IOC, we improve our model by setting a 

discrete cutoff point.  We use the cutoff point to change this continuous variable into a 
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binary variable that we code as ‘1’ if above a certain value or ‘0’ when below the value.  

We determine the cutoff value to be 0.90 for variable 59 by analyzing the histogram of 

the variable and then making minute adjustments to possibly realize further improvement 

(see Figure 5 below). 
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Figure 5 - Variable 59 Histogram 

 
 Using this new discretized variable, we select our final multiple regression model.  

As a final test, we test the model variables for multicollinearity (linear redundancy 

amongst independent variables) and find that our Variance Inflation Factor scores (all 

less than 1.2) remain far below the maximum of 10.  Tables 9 and 10 below summarize 

the model and show the development of the model.  Appendix B provides the JMP® 

printout for the model. 
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Table 9 – Multiple Model Performance Measures 

Measure Number of Variables 

  1 2 3 4 * 4 * 

Adj-R2 (U) 0.1008 0.2176 0.3283 0.4916 0.5228 

Incremental Adj-R2 
(U) 0.1008 0.1168 0.1107 0.1633 0.0313 

Data Points 78.0 50.0 41.0 40.0 40.0 

Data:Variable Ratio 78.0 25.0 13.7 10.0 10.0 

(Note: * 4 * reflects the result of discretizing variable #59) 

 

Table 10 – Multiple Model P-Values 

Variable # and Name
1 2 3 4 * 4 *

(48) Funding YR Total Program Length 0.0027 0.0049 0.0043 0.0002 0.0000

(60) LRIP Qty Planned 0.0046 0.0006 0.0034 0.0040
(59) Mat of EMD at IOC 0.0414 0.0280 NA
(5) Qty Currently Estimated for R&D 0.0013 0.0003
(59) Discrete 0.0081
Cumulative P-Value 0.0027 0.0095 0.0463 0.0329 0.0124

(Note: * 4 * reflects the result of discretizing variable #59)

Number of Variables

 

 
 For validation we use the same 20 percent of the data that we use for logistic 

regression.  While the set contains 27 data points, we find only 6 contain all of the 

necessary data for our model to use; this leaves only 6 data points for us to use during 

validation.  Using the process of our predecessors, we construct an 80 percent upper 

prediction bound as we concern ourselves only with positive cost growth.  By using an 80 

percent upper prediction bound, we validate 5 of the 6 remaining data points correctly for 

an accuracy rate of 83 percent.  We provide Table 11 to summarize our validation and 

Appendix D lists the validation of individual programs. 
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Table 11 – Validation for Multiple Regression Model 

Available 6 of 16 37.5%
Predicted 5 of 6 83.3%

Validation 

 
 

Chapter Summary 

 In this chapter we build both logistic and multiple regression models in hopes of 

finding the predictors of cost growth.  We select one model for each category that we 

validate using the data we removed for later validation.  Both models contain predictive 

capability and we believe them to be relatively accurate predictors of cost growth and the 

total amount of cost growth.  We discuss the importance of these findings in Chapter V. 
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V.  Discussion and Conclusions 

 

Chapter Overview 

 In this chapter, we first compare the results of our study with those of previous 

and current studies.  Then, we summarize our problem statement, study limitations, 

literature review, and methodology.  Finally, we restate our results and provide 

recommendations concerning future cost growth studies. 

Comparison of Predecessor Results 

 While we primarily focus this research on constructing models that predict the 

presence and amount of cost growth, other facets remain important.  We believe a 

comparison of our models to those of our predecessors’ models one such facet.  

Specifically, we compare both the logistic and multiple regression models built by Sipple 

(2002), Bielecki (2003), Moore (2003), and Genest (2004) with our own models in order 

to determine whether micro or macro models best predict cost growth.  Each of the four 

researchers focuses on different elements within the EMD stage, whereas this study 

views EMD as a whole.  Figure 6 below graphically depicts these differing approaches. 
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Figure 6 – Prior Approaches to Cost Growth within EMD 

 While a comparison between these approaches contains limitations, we find the 

following benefits.  First, all five studies use the same database to construct and validate 

the models, varying only in the total years the database contains (Sipple – 10, Bielecki & 

Moore – 11, Genest & this study – 12) due to the addition of current data.  Secondly, all 

five studies use the basic methodology Sipple (2002) uses to construct logistic and 

multiple regression models.  Finally, all five studies validate the models with the same 

process and parameters.  Again, the type of funding remains the only change in scope.  

Tables 12 and 13 document the differences in the ten selected models. 

Planning 
Estimate (PE)

Production Estimate 
(PdE)

Development 
Estimate (DE)

ProcRDT&E ProcRDT&E ProcRDT&E

Phase:

SAR:

PDRR EMD Prod

IIMilestone: I III

Dameron, “NAVAIR Cost Growth:  Overview of Analysis.” Briefing at the Aeronautical Systems Center Industry Cost and Schedule Workshop, 24 April 2001.

Lucas – solid circle 

Sipple, Bielecki, & Genest – dotted circle

Moore – dashed circle
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Table 12 – Logistic Regression Model Comparison 

Study
R2 (U) ROC Ratio % Data Available % Validated

Sipple 0.60120 0.94810 8.70 52% 69%
Bielecki (Est) 0.41840 0.89813 12.60 92% 78%
Bielecki (Sch 2) 0.48080 0.92000 8.75 28% 80%
Moore 0.83070 0.99301 11.60 16% 100%
Genest 0.53570 0.93435 13.70 78% 71%
Lucas 0.61680 0.95478 13.13 93% 76%

Performance Measures

 
  

Table 13 – Multiple Regression Model Comparison 

Study
Adj - R2 Ratio % Data Available % Validated

Sipple 0.42221 14.0 93% 69%

Bielecki (Est) 0.52250 8.8 87% 100%
Bielecki (Sch 2) 0.61900 9.0 91% 80%
Moore 0.52267 8.5 24% 100%
Genest 0.36205 10.0 69% 91%
Lucas 0.52283 10.0 38% 83%

Performance Measures

 

 Based on this information, we find no model to be a clear winner.  Of the logistic 

regression models, Moore’s model attains the highest performance measure scores and 

validation percentage, but suffers from the problem of missing data points.  One cannot 

help but question what would happen to the model if those missing data points were 

available.  The next two highest models as rated by their performance measures, Sipple 

and the logistic model from this study, rank in the bottom half of validation percentage, 

which further complicates finding a superior model.  For cost estimators searching for 

more macro models, we suggest using the procurement model by Moore if the data can 

support the model.  If not, the overall EMD model from this study may be used in 
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conjunction with the RDT&E model by Genest; the results should help cost estimators 

project where cost growth could arise. 

 Amongst the multiple regression models, Moore’s model again validates well, but 

still suffers from the lack of needed data points.  Bielecki’s (Est) validates well and 

attains relatively high performance measures, but the limited scope of his model does not 

help to predict cost growth on a larger scale.  In sum, almost every model built suffers 

either from a lack of data points, a limited scope, or lower validation percentage.  

Nevertheless, both of the models by Moore and Genest represent good alternatives as 

they validate very well.  Moreover, the results from these two models may give the 

estimator more insight than by using the overall EMD model we build as part of this 

study.  However, since all validate above 50 percent, each model may represent a 

beneficial tool for a cost estimator who can use the model for the given stage of his or her 

program. 

Background of the Problem 

 Despite numerous reform efforts and constant oversight, cost growth remains a 

pervasive issue throughout the DoD.  When combined with declining budgets, DoD faces 

the difficult task of selecting between multiple programs that may all be needed.  In light 

of these fiscal woes, cost estimators attempt to predict whether cost growth may occur 

and how much that growth could be.  Most often, cost estimators rely on either expert 

opinion or historical data to form these estimates, but we provide with this study another 

lane in an ever-widening avenue.  We utilize statistical methods to build predictive 
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models for cost estimators and thereby provide an objective tool for cost growth 

measurement. 

Limitations 

 Like most research efforts, our study limits its applicability through the 

techniques and methodology we choose to use.  Specifically, and perhaps the most 

important limitation, we use a broad range of programs from the SAR and therefore build 

models that reflect DoD as a whole.  Moreover, we differ from prior related research in 

that we take a more macro view of the database and account for the entire EMD stage of 

acquisition by combining both RDT&E and procurement funding.  As a result, our 

models may produce errors when used with a program comprised of only one type of 

funding.  However, when used within these parameters, we believe our models predict 

cost growth with statistical reliability. 

Literature Review 

 To ensure that our study captures the latest developments within the cost field, we 

perform a literature review of relevant sources.  We find Sipple (2002) the most 

informative and beneficial, but the contributions of Bielecki (2003) and Moore (2003) 

provide even more explanation about the issue.  As such, we focus our efforts on these 

three studies and pattern our research after them, paying special attention to their 

methodologies. 

Methodology  

 Our methodology directly springs from that of Sipple (2002).  Specifically, Sipple 

develops the first known two-step methodology to predict cost growth within DoD.  

Based on his research, we develop both a logistic regression model and a multiple 
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regression model.  The former model predicts ‘if’ a program will have cost growth and if 

so, the latter estimates the amount of cost growth to occur.   

 To build these models, we first update Sipple’s original database (which already 

included the year 2001 data from Bielecki and Moore) to include all relevant data from 

the 2002 SARs.  We only include the latest SAR for each program to ensure independent 

data points and also convert the data to base year 2002 dollars to account for inflation.  In 

the end, we create a database containing 135 programs, 27 (20 percent) of which we 

randomly set aside for model validation. 

 During our preliminary analysis, we discover the same mixed distribution as our 

predecessors, which further validates our usage of the two-step process.  By dividing this 

mixed distribution through the two-step methodology, we reduce the noise that 

commonly interferes with the construction of multiple regression models.  However, 

continued data analysis reveals more problems. 

 Specifically, before we build our multiple regression model, we notice that our 

response variable forms a lognormal distribution.  We follow the procedures Sipple 

develops and transform the response variable using the natural log function.  By 

transforming the distribution, we achieve an approximately normal distribution with 

constant variance and construct our multiple regression model.   

Results 

 Our efforts result in two models, one logistic and one multiple.  We find our 

logistic model able to predict ‘if’ a program will have cost growth 76 percent of the time 

utilizing 25 of the 27 programs.  We find our multiple model to be more predictive, 

accurately predicting the amount of cost growth 83 percent of the time, but with using 
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only 6 of the 16 programs due to the missing data variable 59, Mat of EMD at IOC, 

requires.  Therefore, we believe the first model to be more universal, but less predictive 

than the second model.  However, we believe that more data for variables 59 and 60, Mat 

of EMD at IOC and LRIP Qty Planned, could possibly improve the applicability of the 

multiple regression model. 

Recommendations 

 The research stream for this stage of acquisition possesses very little water in the 

reservoir, but reform is like rain – it occurs quite often.  Indeed, the milestone category 

change creates another opportunity for cost growth research.  Already, interested parties 

question how the milestone change from I, II, and III to A, B, and C affects our current 

predictive models and whether we need new models.  In fact, while researching the 2003 

SAR database we find multiple examples of the milestone change.  Though we do not use 

these programs in our database because they remain beyond the scope of this study, we 

believe that once the SARs contain enough new data based on the modified milestones, 

researchers will again be able to paddle the cost growth rapids and construct models 

based on the modified acquisition phases. 
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Appendix A – Logistic Regression Cost Growth Model 

 

Difference
Full
Reduced

Model
 37.557442
 23.333651
 60.891093
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DF
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ChiSquare
  <.0001
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1.0000
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64  # Product variants in this SAR
24  Svs>3
14  Missile
62  Proc Started based on Funding Yrs?
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52 SQ (Length of R&D in Funding Yrs)
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Appendix B – Multiple Regression Cost Growth Model 
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Summary of Fit

Model
Error
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Source
    4
   35
   39

DF
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 37.301499
 87.106520

Sum of Squares
 12.4513
  1.0658

Mean Square
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F Ratio

  <.0001
Prob > F

Analysis of Variance

Intercept
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48  Funding YR Total Program Length
60  LRIP Qty Planned
#59 Discrete, Mat of EMD at IOC
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-2.386329
-0.021389
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-0.000588
-1.045019

Estimate
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Std Error
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  4.78
 -3.08
 -2.81

t Ratio
<.0001
0.0003
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Appendix C – Logistic Regression Model Validation Results  

 

Program Actual Predicted Valid
CMU 1 1 1
AHIP Kiowa Warrior 1 0 0
CG 47 Aegis Cruiser 0 0 1
ATARS 0 0 1
Land Warrior 1 1 1
JDAM 0 1 0
JSIPS TIS 0 0 1
THAAD 0 1 0
Laser Hellfire 1 1 1
Small Missile 0 0 1
RAH-66 1 1 1
BFVS A3 Upgrade 1 1 1
JPATS 1 0 0
AFATDS 0 1 0
DSP 1 1 1
Uh-60M Upgrade 1 1 1
F/A-18E/F 0 0 1
FDS 0 0 1
F-22 1 1 1
MK 50 Torpedo 1 1 1
C-5 RERP 1 0 0
MCS I, II, III 1 NA NA
E-2C Computer Upgrade 0 0 1
USMC H-1 Upgrades 1 1 1
SBIRS High 1 1 1
FAAD NLOS Fiber Optic Guided-Missile 0 0 1
UH-60A/L Black Hawk 1 NA NA  

Available 25 of 27 92.6%
Predicted 19 of 25 76.0%

Validation 
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Appendix D – Multiple Regression Model Validation Results 

 

Program Actual Predicted Valid
CMU 0.1082 -1.094373 1
AHIP Kiowa Warrior 0.3952 NA NA
CG 47 Aegis Cruiser 0 NA NA
ATARS 0 NA NA
Land Warrior 0.06523 NA NA
JDAM 0 NA NA
JSIPS TIS 0 NA NA
THAAD 0 NA NA
Laser Hellfire 0.68382 NA NA
Small Missile 0 NA NA
RAH-66 0.086 0.42754997 1
BFVS A3 Upgrade 0.41026 -2.185556 1
JPATS 0.39207 -0.966771 1
AFATDS 0 NA NA
DSP 0.21626 NA NA
Uh-60M Upgrade 0.05758 NA NA
F/A-18E/F 0 NA NA
FDS 0 NA NA
F-22 0.24439 -0.097001 1
MK 50 Torpedo 0.0706 NA NA
C-5 RERP 0.02658 NA NA
MCS I, II, III 0.21553 NA NA
E-2C Computer Upgrade 0 NA NA
USMC H-1 Upgrades 0.99746 -1.6048351 0
SBIRS High 0.94854 NA NA
FAAD NLOS Fiber Optic Guided-Missile 0 NA NA
UH-60A/L Black Hawk 2.42601 NA NA  

Available 6 of 16 37.5%
Predicted 5 of 6 83.3%

Validation 
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