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AFIT/GA/ENY/04-M02 

Abstract 

 
Complete characterization of the space environment in support of the United 

States’ goal of Space Situational Awareness is not currently achievable.  When 

confronted with recent increases in the deployment and miniaturization of microsatellites 

by numerous nations, the questions of foreign space capabilities are magnified.  This 

study sought to determine the feasibility of and experimentally demonstrate a 

microsatellite capability to autonomously loiter about and track a target satellite. 

Various methods of passive remote sensing were investigated to determine the 

best means of detecting and tracking a target in space.  Microbolometer-based infrared 

sensors were identified as the best sensor for several reasons, primarily due to their 

ability to track in the absence of light.  A representative system was constructed for 

demonstration in AFIT’s SIMSAT laboratory.  

Software modeling results identified open-loop instability, and therefore the 

requirement for closed- loop control.  A simple PD control algorithm served as the basis 

for control, and a pseudo-feed-forward term was added to improve the results.  The feed-

forward term was derived form orbital dynamics as the rate at which the chase satellite 

traverses around an ellipse formed in the target’s frame of reference.  Reduction in 

pointing errors of up to 67% were found in simulations.  Non-optimal yet successful 

tracking results were obtained in the laboratory with a hardware- in-the- loop model for 

both step and moving inputs.  With minor modification, this infrared tracking system 

could be implemented onboard a microsatellite. 
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DESIGN OF A SPACE-BORNE AUTONOMOUS INFRARED TRACKING SYSTEM 
 
 
 

I.  Introduction 

 

 In recent years, technological advances have paved the way for reduced size of 

spacecraft components.  Microsatellites and nanosatellites, defined as those satellites 

weighing less than 100 kg and 10 kg, respectively, are capable of handling many of the 

same tasks as their much larger counterparts from just a few years ago.  The new found 

technical capabilities of microsatellites have furthered the interest in many speculative 

satellite missions, including the ideas of satellite formation flying, inspecting satellites, 

and servicing satellites. 

Inspecting satellites are conceptualized as small satellites that linger around a 

primary satellite, autonomously examining it for operational flaws.  Servicing satellites 

would carry this mission one step further: repairing or replacing a vital component of 

another satellite in the event of degradation.  These types of satellites have become a 

topic of great interest, and their practicality grows stronger annually.  Indeed, recent tests 

have shown the viability of close-proximity orbiting microsatellites with simple 

autonomous capabilities.  Though the objectives of these designs are exploratory and 

non-aggressive in nature, it is entirely possible that the principles behind this technology 

could be used for alternative, non-cooperative means. 
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1.1  Space Control 

With the United States’ substantial dependence on its space assets, attention must 

be devoted to monitoring the space environment.  This monitoring is frequently referred 

to as Space Situational Awareness (SSA), and includes knowledge of the status, location, 

and capabilities of not only U.S. space assets, but also those of the U.S.’s allies and 

adversaries (19).  Sound SSA enables both offensive and defensive counterspace.  

Together the three compose the basic elements of Aerospace Control (6), which is one of 

the preeminent military doctrines of current national interest.   

Defensive counterspace is the concept of protecting one’s friendly assets, while 

offensive counterspace is the concept of negating an adversary’s assets.  Both are at the 

forefront of concern for national space policymakers; concern must be given not only to 

the capabilities and intentions of the United States, but also to those of any space-capable 

nation or organization.  In his report to the Commission to Assess United States National 

Security Space Management and Organization, Mr. Tom Wilson addresses the threat of 

foreign counterspace succinctly (29). 

“The U.S. reliance on space, coupled with the growing amount of 

information available about our space systems, increases the likelihood that 

our adversaries will employ counterspace weapons technologies.” 

 
Thus counterspace and Space Situational Awareness are both topics of great import.  In 

order to support them, characterization of the space environment and other information 

must either be collected from earth or by a space-borne payload itself. 
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 1.1.1  Ground-based Characterization 

Current capabilities for ground-based detection of resident space objects are 

inadequate.  Most technology employed is antiquated (3), and provides only limited 

resolution for objects in low-earth orbiting (LEO) altitudes.  According to Worden, 

microsatellite-sized objects are undetectable at geosynchronous range (30).  Furthermore, 

space object identification (SOI) is even more difficult with current resources.  Table 1 

details the required resolution for satellite payload assessment in LEO (24).  With no a 

priori information, the problem of non-cooperative SSA is magnified. 

 

Table 1. Image Resolution Requirements for Satellite Mission & Payload Assessment (24)  

Satellite Size Diameter (m) Resolution Requirement (cm) US capability 
Large >15 >50 Current 

Medium 15-5 16 Current 
Small 5-2.5 8 Limit 
Mini 2.5-0.6 2 Beyond 

 

1.1.2  Space-based Characterization 

Autonomous detection and identification of space objects is virtually non-existent.  

The current Air Force Space Surveillance Network (SSN) has only one space-borne 

sensor.  This sensor is called the space-based visible (SBV) sensor and was launched as 

an additional payload aboard the Midcourse Space Experiment (MSX) satellite (3).  It is 

reported to image objects well, though this is not its original design intent. 

An Air Force developmental program known as the rapid attack, identification, 

detection, and reporting system (RAIDRS) seeks to combine a suite of different sensors 

aboard a spacecraft.  It would give the ability to detect jamming, irradiation, or other 
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offensive activities (3).  A similar yet far less sophisticated subsystem dubbed the 

Compact Environmental Anomaly Sensor (CEASE) has been developed by AFRL (1).  A 

subsystem such as one of these could be the solution to space-based detection, though 

complete identification may still require even more information.  Furthermore, 

widespread usage of either of these systems is not in the near future. 

 

1.2  Current Efforts in Close-Proximity Orbiting and Rendezvous  

Within the past several years, several countries have demonstrated significant 

accomplishments in the areas of proximity orbiting and rendezvous.  

Japan launched its ETS-VII experiment in November 1997.  The experiment 

consisted of one target and one chaser satellite.  Successful demonstration of rendezvous 

of the two satellites was conducted from separations of both 2 m and 12 km (3).  

Additionally, a robotic arm attached to one of the spacecraft repeatedly performed 

simplistic “peg- in-hole” tests over a two year duration. 

 China and Great Britain have also demonstrated the ability to launch and fly in 

formation with microsatellites.  The Chinese Tsinghua 1 satellite was developed in 

conjunction with the Surrey Satellite Technology, Ltd., and was launched in June 2000 

alongside Britain’s SNAP-1 satellite (23).  Though SNAP-1 was the satellite that was 

reported to have successfully maneuvered around Tsinghua 1, a similar plan with the 

roles of each reversed seems to have been planned at one point (23). 

The United States entered the arena in 2003 with the short yet highly successful 

mission of the XSS-10 microsatellite.  Developed by the Air Force Research 

Laboratory’s (AFRL) Space Vehicles Directorate, the 30 kg satellite autonomously 
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orbited its Delta II second stage within 100 m.  Figure 1 is an image taken by XSS-10 of 

the second stage.  The satellite was then commanded into a dormant stage, and later 

awakened to full operational capability (2).  Figure 1 is an image taken by XSS-10 of the 

Delta II second stage that launched it.  The Air Force plans to launch a follow-on 

experiment in the form of XSS-11, a similar microsatellite with increased payload 

capabilities, in late 2004. 

 

Figure 1. Image of Delta II Second Stage Taken by XSS-10 (3) 

 

 The Defense Advanced Research Projects Agency (DARPA) is currently 

developing an experimental two-satellite system that will be used to demonstrate the 

capabilities of autonomous on-orbit servicing (27).  One satellite, designated the Next 

Genereation Serviceable Satellite (NextSat) will act as the receiver, and the other, dubbed 

the Autonomous Space Transport and Robotic Orbiter (ASTRO), will demonstrate 

rendezvous, docking, and fuel transfer techniques (27).  Though not yet operational, this 

concept may prove to be one of the enabling technologies for space-based laser and other 

conceptual programs.  Thus it is clearly at a high level of national interest 
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 Many commercial satellite companies also recognize the various potential 

applications for microsatellites.  One example is the AeroAstro company, who is in 

development of a microsatellite named the Escort.  Accordingly, the company’s brochure 

for the satellite mentions other applications such as “monitor space around a large 

satellite to detect attacks” and “stealthily attack to permanently or temporarily disable a 

large satellite” (10). 

 

1.3  Research Objectives 

The goal of this study is to develop a notional system that will allow surreptitious 

circumnavigation and tracking of one satellite about another.  Such a satellite could loiter 

about its target until some time at which it could institute any number of potentially 

detrimental actions to include jamming, interception, and possibly even rendezvous 

(though this paper will not address this last possibility).  The spirit of this study is to 

envision a “low-tech” approach to a satellite tracking system—one that could be 

employed by a rogue team with little money and expertise.  This main objective is broken 

into three subobjectives as follows: 

1.  Selection of a means of detection of the target satellite 

2.  Determination of the orbital motion for a chase vehicle 

3.  Determination of a control algorithm that will allow tracking of a target. 
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1.4  Thesis Outline  

 Chapter 1 has introduced the motivation for a study involving possibility of covert 

circumnavigation and tracking.  The determination of the feasibility of such a system is 

first approached with an investigation of measurement and detection systems in order to 

determine the most appropriate means of object detection.  Next, classical orbital 

dynamics will be exploited in order to investigate the relative motion between the chase 

and target vehicles.  Finally, elementary control theory will be considered and applied to 

both a simulation platform as well as experimental hardware. 
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II.  Background 

 

 In order to successfully navigate about a target space object, some nominal 

amount of data about the target must be obtained.  The acquisition of information about 

an object without being in direct physical contact with it is defined as remote sensing (9).  

The methods that are used to acquire the information about an object are generally 

classified as electromagnetic, acous tic, or potential (9).  Each of these manners of 

information acquisition will be discussed.  However, before these three areas are 

investigated, a prerequisite requirement for a passive sensor is explained, and several 

current efforts in the field are examined. 

 

2.1  Passive Sensing 

 As stated earlier in the assumptions of this paper, the preferred method of 

detection is a passive one.  This is due to the covert nature of the proposed mission.  

Radiating a satellite with radar, laser, or lidar could potentially trigger some type of status 

monitoring subsystem on the target satellite.  The CEASE module described in Chapter I 

has been developed and placed in orbit by the Space Vehicles Directorate of the Air 

Force Research Laboratory (1).  Though its intended mission is to monitor deep dielectric 

charging and other near-earth space environment effects on a satellite, modifications 

could potentially allow for the monitoring of other low-power irradiation.  As mentioned 

in Chapter I, a similar system known as RAIDRS is also under development.  RAIDRS 

would be able to detect “spy” satellites with a suite of various types of sensors.  Then for 

the purposes of this study, it is assumed that satellites of interest either have, or will have, 
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the capability of detecting when they are being interrogated by electromagnetic radiation.  

Therefore only passive detection will be considered herein. 

 

2.2  Similar Efforts 

Technologies to improve rendezvous have been researched to a limited degree.  

Investigation of current efforts in this topic turned up several studies, but all centered 

around the same few principles.  Junkins, et. al.,  introduced a method of facilitating 

rendezvous and docking by using a series of LED lights placed strategically on the target 

(15).  This method is not applicable in this study as its primary assumption is that the 

target is a cooperative target.  Other strategies to assist in the rendezvous of non-

cooperative targets are mainly centered around spatial and attitude information.  The field 

of autonomous machine vision continues to expand and has provided the foundation for 

many of these strategies. 

Efforts to extract spatial information about an object through optical remote 

sensing have been undertaken in several studies.  These studies generally employ feature 

recognition of a target from a database of images.  These methods, though still premature 

and not yet ready to be flown in space, merit some discussion in their applicability to the 

problem at hand.  

Feature recognition would allow a spacecraft to undertake precision maneuvers, 

as well as avoid potentially hazardous objects or situations.  One drawback to many of 

these methods is that a priori knowledge of the object is assumed.  However, if one is 

attempting to circumnavigate an unknown object, this presents a problem.  More often 
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than not, detailed knowledge that would allow a database of features to be built is not 

available for adversarial assets. 

A possible work-around to this a priori knowledge database would be to build a 

database in real-time.  A method of determining a satellite surface using various basic 

geometrical shapes has also been proposed (16).  Elementary shapes such as cones and 

cylinders delineate the primary features extracted from an image of a satellite’s surface.  

The entire catalog of basic shapes is combined to render a dimensional model of the 

object.  This method does have potential, but the technology is still primitive and not 

ready for implementation. 

Aside from feature extraction and target modeling, range information is a 

prerequisite for determining proximity to a target.  Though this paper will not undertake 

the task of determining an appropriate method of passive ranging, others have 

investigated the topic.  A useful method of passive ranging has been proposed by Reilly, 

et. al. (22).  The technique was developed as a method of ranging ships at sea.  It uses 

triangulation methods to determine the data it collects from optical sensors working in the 

near-infrared range.  The mechanism designed occupies a large space, as the optical 

sensors are placed approximately ten feet apart in order to range at distances of tens of  

kilometers.  Though as of yet unproven for space application, this method holds promise, 

and would likely be the method of choice to add to a system such as the one proposed in 

this paper.   

 Thus the current efforts to aid in the rendezvous and/or tracking of a non-

cooperative target show potential yet remain immature.  A commercially available and 

established technology is desired in order to improve the chances of successful tracking.   
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2.3  Methods of Detection 

 Acoustic methods for detection generally center around pressure-measuring 

devices (8).  Since there is essentially no medium with which to transport pressure waves 

outside of the earth’s atmosphere, this class of measurement devices is quickly dismissed. 

 Potential measuring devices typically measure either a difference in the 

gravitational or magnetic potential of an object (8).  Gravimeters and magnetometers can 

be well employed in space for attitude measurements with respect to the earth.  However, 

the comparatively weak and overshadowed fields from a target satellite at relatively long 

distances are not a good match for these types of measurement devices.  This class of 

device was thus dismissed. 

 Thus, the detector class of choice is electromagnetic.  Even within this broad 

class, there are many different types of detectors.  Detector selection inside this class 

must discriminate amongst imaging/non- imaging sensors, scanning/non-scanning 

sensors, as well as the trade-off between spatial, spectral, and intensity information.  

Certainly the portion of the EM spectrum that should be used is also of great importance. 

 

 

Figure 2.  The Electromagnetic Spectrum 
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2.3.1  Electromagnetic Radiation 

Perhaps the most apparent choice of EM energy to use is that of the visible 

spectrum.  Optical cameras that operate in space have been used for many years with 

great success.  Detection of a satellite could easily be measured by simply reading the 

output values from a camera’s focal plane array to sense the presence of the object in the 

field of view (FOV).  However, the immediate drawback to this is that the energy being 

absorbed is produced by the reflected light in the visible region of the EM spectrum.  

Once the light source is removed, reflection is also removed, and no image is available.  

This scenario is possib le in the event of an eclipse, which, in the case of low-earth 

orbiting (LEO) satellites, is a frequent occurrence.  Even in the case of geosynchronous 

(GEO) satellites, there are periods of eclipse which cannot be avoided.  Thus, the 

decision to use a traditional optical camera in the visible portion of the EM spectrum is 

opted against. 

 Radiation-measuring platforms throughout all parts of the EM spectrum have 

been used successfully, though many are used only in specific applications due to the 

presence or absence of atmospheric constituents.  The absorption characteristics of 

various constituents block the transmission of certain wavelengths.  Though all other 

spectral regions (X-ray, UV, microwave, infrared, etc.) are available for use, not all are 

desirable.  As outlined below, the majority of the radiation will be emitted in the infrared 

region, which makes it the more suitable choice for detection. 
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2.3.2  Infrared Radiation Characteristics 

Any object with a temperature above absolute zero will radiate energy in some 

portion of the EM spectrum (8).  The hotter an object is, the shorter the wavelength of its 

radiation becomes.  For a blackbody, the law governing its emission of radiation 

(exitance) is Planck’s Law 

)1(
2

),(
/5

2

−
=

kTche
hc

TM
λλ

π
λ  (1) 

where 

    M = exitance (W/cm2 µm) 

              λ  = wavelength (µm) 

    c = 3*108 (m/s) 

    h = 6.626*10-34 (Js) (Planck’s constant) 

    k = 1.38*10-23 (J/K) (Boltzmann constant) 

T = object temperature (K) 

 For the analysis that follows, a simplified average satellite temperature of 300 K 

is assumed.  Figure 3 shows a plot of the exitance versus wavelength for a body at 300 K.  

Integrating Equation 1 over all wavelengths, it can be shown that 90% of the total power 

emitted by a blackbody at 300 K lies in the wavelength region from approximately 7-45 

µm (8).  Thus it is desirable to focus on emission in the infrared portion of the EM 

spectrum. 
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Figure 3.  Radiant Exitance for a Blackbody at 300K (7) 

 

 Furthermore, Wien’s Displacement Law can be examined to determine the peak 

wavelength of emission.  Wien’s Law is written as 

T
Km ⋅

=
µ

λ
2897

max  (2) 

where maxλ represents the wavelength of maximum exitance.  For a body at 300 K, this 

value is approximately 9.66 µm.  Thus from the various spectral regions available for use 

as detecting mechanism, the best choice is the infrared region.  The infrared region is 

typically broken up into the near- infrared (~0.7 – 1.1 µm), the medium wave- infrared 

(MWIR) (~1.1 – 7 µm), and long wave- infrared (LWIR) (~7 µm – 1mm).  Thus, a LWIR 

camera is best suited for this task.   

  With the method of detection chosen, the method of measurement must be 

determined.  There are many possible options for the materials and mechanisms used in 

infrared detection, and several options will be explored. 
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2.4  Infrared Detector Selection 

Infrared detectors are generally broken into two main classes—photon and 

thermal (4).  The division between the two is inherent in the manner in which each class 

measures the radiation incident upon it.  Thermal detectors, which were the earliest to be 

invented, have their temperatures changed by the incident radiation, and some 

temperature-dependent property of the material is then measured (4).  A familiar example 

of a thermal detector is the common thermometer.  Other types of thermal detectors are 

bolometers, Golay cells, and pyroelectrics.  Thermal detectors have seen a resurgence in 

their popularity in recent years with the advent of materials with shorter thermal time 

constants which allow the use of two-dimensional focal plane arrays (4).  Common 

thermal detectors can provide a noise-equivalent temperature difference (NETD) as low 

as 40 mK with F/1 optics (4).  Thermal detectors are advantageous in that they can 

operate at room temperature (i.e. no thermoelectric or cryogenic coolers are required), but 

carry the unenviable properties of being slow to respond to changes in radiation, and 

relatively insensitive (4). 

The other class of infrared detectors was brought about by the desire to improve 

upon the disadvantages of the thermal detector.  Photon detectors use materials that 

directly absorb the incident radiation and alter the atomic association of the material.  The 

material may then change its inductance, voltage, or current in response to this, which is 

in turn measured by some attached meter.  Common photon detectors in the visible 

portion of the EM spectrum are primarily based on Silicon and its alloys.  In the infrared 

range, mercury cadmium telluride (MCT) is currently the most significant detector (4).  

Photon detectors are much more sensitive than thermal detectors, and can respond to 
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changes in infrared radiation much more quickly.  Unfortunately, these require cryogenic 

cooling in order to reduce the dark current, which is the key to achieving such sensitivity. 

 It is this last disadvantage of photon detectors that generates cause to eliminate 

them from this study.  Aboard a microsatellite, the addition of any extraneous device is 

costly both in terms of weight and power.  Therefore, the detector of choice in this study 

is a thermal detector.   

 Furthermore, the receiving camera should utilize a two-dimensional focal plane 

array, or “staring” configuration.  This configuration allows each individual detector that 

comprises the array to always be looking out in space.  Optional configurations would be 

a single detector which scans the entire field of view, or a linear array which scans the 

field of view line-by- line.  These latter configurations are disadvantageous in that they 

require extra mechanical parts in order to focus the detector at another portion of the field 

of view, as well as the fact that they require much faster response times.  Selection of a 

two-dimensional array supports the selection of a microbolometer in that the slow 

response time of the microbolometer is negated. 

 Though conventionally a standard property that is used in the selection of an 

infrared detector is the noise-equivalent temperature difference (NETD), this 

performance characteristic was not deemed necessary in this analysis.  Due to the “low-

tech” nature of the mission, a very low NETD was not considered important.  The 

reasoning should more become apparent in the experimental description.  According to 

Wood (4), a good-quality infrared image requires an NETD of 300 mK or less.   Most 

commercially available detectors should meet this restriction. 
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 The size of the focal plane array is important, but not a limiting factor.  Because 

the intent of the image received by the camera is simply for targeting/tracking purposes 

(and not identification), detailed imagery is not necessary.  For long-range viewing, a 

larger array is desirable for a finer distinction of the target.  Strides towards larger arrays 

(640 x 480) are being made quickly.  A size suitable for operational use today is 

approximately 240 x 240 (4), though larger arrays are certainly possible. 

The specific type of thermal detector to be used is not readily apparent.  

Pyroelectrics and bolometers both seem to offer their own advantages and disadvantages. 

Whatmore and Watton (4) suggest that a resistance bolometer offers better responsivity 

than pyroelectrics, but carries with it slightly higher noise.  For this analysis, a 

microbolometer-based system was chosen, simply because they were more familiar to the 

author.  Microbolometers are readily available in commercial-off- the-shelf (COTS) 

cameras. 

 

2.5  Infrared Modeling of Target Satellite 

 What follows is the mathematical justification for using an infrared camera to 

detect the presence of another satellite in space.  Several simplifying assumptions have 

been made.  The target spacecraft will be represented as a cube with a surface area of 1 

m2 exposed to the imager with a viewing angle of zero degrees.  The target will be 

assumed to have an average temperature of 300K (11).  The standoff distance used for 

calculations is a conservative 1000 m. 

It remains to be shown that the proposed method of detection is a viable one.  One 

manner in which to prove this is to calculate the maximum detectable range of a 



 18 

particular source, as outlined by Dereniak and Boreman (7).  This method assumes that 

the background noise is not the limiting factor in the detection, and hence a non-

background-limited infrared photodetector (non-BLIP) derivation is used.   

 The equation which defines the maximum range at which a point source can be 

detected is (7)   
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fA
D

r enp
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×
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=
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     (3) 

where 

    r = range 

    SNR = signal to noise ratio (dimensionless) 

    I = source intensity (W/sr) 

    Aenp = area of entrance pupil of collector (cm2) 

    Ad = area of detector array (cm2) 

    f∆  = noise equivalent bandwidth (Hz) 

    D* = normalized detectivity (Hz1/2cm/W) 

 

D* represents a detector’s sensitivity normalized to a 1 cm2 area and 1 Hz noise-

equivalent bandwidth (7). 

 Assumed values were input into the equation, and a maximum detectable range of 

approximately 1480 m was computed (as detailed in Appendix A).  This is more than 

adequate under the initial assumption.  Thus, if a point source is detectable at such a 

range, an extended source will be visible form closer range.   
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A commercial-off-the-shelf (COTS) infrared camera that meets the above 

specifications is not difficult to find.  Several manufacturers make uncooled 

microbolometers with the range to accommodate the proposed dimensions.  One such 

company is Indigo Systems.  Indigo produces several lines of uncooled infrared cameras.  

One model suitable for application is the Merlin.  Its nominal range extends to 1000 

meters, is equipped with a 320x240 element detector array, and weighs in at just 3.5 

pounds (13).  If one could guarantee closer orbital flight of the target, the Omega model 

weighs only 120 grams (without a lens) and can image out to 300 m. 

   

Figure 4.  Indigo Systems’ Merlin (left) and Omega Bolometer Cameras 

 

Two obstacles remain in the unfettered detection of an object at in space at the 

proposed temperature—the degradation of the image by background radiation from both 

the Sun and the earth.  Neither will be in the background of the image at all times, but 

both will share a spot in the background at some point throughout the orbits.  Will either 

source prove to be a difficulty in the detection algorithm?  

Detailed models of the IR radiation of the earth are difficult to obtain.  The most 

comprehensive analysis to date has been the Earth Radiation Budget Experiment (ERBE) 

conducted by NASA.  The term Earth Radiation Budget (ERB) denotes the overall 
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balance of radiation retained and emitted by the earth.  An intensity map of earth’s 

emitted longwave radiation at the top of the atmosphere (6408 km) is shown in Figure 5. 

 

 

Figure 5.  Intensity Map of Top-of-Atmosphere Emitted Longwave Radiation 

  

Gilmore, et. al., (11) have compiled the data from the ERBE experiments which 

shows an average exitance of approximately 220 W/m2 = 0.022 W/cm2.   This average 

value must be qualified with the information that the longwave interval established for 

the purpose of ERBE extends from 5-50 µm.  The exitance of the notional satellite 

introduced above is calculated in Appendix A as 0.003504 W/cm2, where the wavelength 

interval of interest for the theoretical detection scenario (8-10 µm), constitutes only 

approximately 5% of the total wavelength interval from ERBE.  Furthermore, detection 

of the target is based upon total power received by the detector, which is a function of 

how much area is observed.  If the observed area of the background (earth’s atmosphere) 

is much larger than the satellite (a function of the range to target), more power will be let 
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in.  In such a case, the image could appear inverse-video, in which case a robust code 

would have to switch its averaging properties. 

At LEO, the earth fills the entire background of the image.  At GEO, the earth is 

seen approximately as a 17° disc.  An established capability such as an Earth sensor 

could be used to aid in the discrimination of image data should the need arise.  Though 

traditionally used for coarse navigation purposes, a sensor could be used as a flag to alert 

a GEO satellite of possible erroneous image data. 

The second, and less imposing, obstacle faced is the background radiation of the 

sun.  The radiation emitted by the Sun is much better characterized than that of the Earth.  

Several sources including Elachi (9) characterize the Sun as a blackbody at 

approximately 5800K.  Rees (21) provides a method of calculating the exitance in a 

specific spectral region as 
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and z is a generic variable of integration.  With λ1=8µm and λ2=10µm, f(x1)=0.00124 and 

f(x2)=0.00066.  Then 
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This figure is four orders of magnitude greater than the previously determined 

output for a satellite in the same spectral region.  However, workarounds are possible.  If 

the solid angle subtended by the satellite is not great enough (i.e. range too large) to 

negate the irradiance from the sun, a sun sensor could be employed to discriminate the 

signals.  Similar to an Earth sensor, a sun sensor could aid in the processing of the image 

data by filling a register indicating a certain percentage of the sun occupied the field of 

view.  The data could be temporarily invalidated and control would continue in its current 

state until the offending presence was no longer detected. 

The conclusion made is that an easily and commercially obtainable IR sensor 

could be employed for detection purposes even in the face of the aforementioned 

obstacles. 

 

2.6  Orbital Dynamics of Close Spacecraft Formations  

 When considering close proximity operations, the relative motion between the 

two spacecraft is all- important.  Hill studied the first development of the equations of 

relative motion in 1878 (28).  The equations were re-derived in the 1960s by Clohessey 

and Wiltshire for more specific application in rendezvous.  They are used to describe the 

linearized motion of a chase vehicle about its target.  The Clohessey-Wiltshire (CW) 

equations are valid when one of the spacecraft (generally the target) is in a circular (or 

very near circular) orbit, and the second is “relatively close” to the first in the same 

orbital plane.  Hill’s equations are used when considering proximity operations of 

satellites, circumnavigation of a target, and rendezvous. 
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 It should be noted that a method of arriving at the approximate relative distance is 

not covered in this paper.  It is assumed that the maneuvers to achieve proximity have 

already been performed.  For more on the close proximity arrival of the chase, see 

Tschirhart (26).   

 A brief overview of the concept of spacecraft relative motion is now given.  For a 

more detailed analysis, several texts are available, including Wiesel (28) and Chobotov 

(5). 

 The standard equation of motion for a two-body system is 

r
r

r
r&&v

3

µ
−=   (7) 

where  

  r
r

 = position vector from mass 1 to mass 2 

  r = magnitude of the position vector 

  µ = gravitational constant of Earth (398601 km/sec3)

The target satellite is assumed to be in a circular orbit, with radius (semi-major axis) 

equal to a.  The target’s mean motion is then n = (µ/a3)1/2.  A moving reference 

frame [ ]ˆ ˆ ˆrsw is centered on the circular orbit about the target where r̂  points radially 

outward from the target to the chase vehicle, ŝ  points along the direction of the reference 

frame’s velocity, and ŵ  is normal to the orbital plane (see Figure 6). 
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Figure 6.  Relative Frame of Target in Inertial Space 

 

 The chase vehicle is located at some distance from the center of the moving 

reference frame, nominally stated as wwssrr ˆˆˆ ++ .  Thus, in the relative frame, the overall 

displacement vector of the chase vehicle with respect to the target is 

  wwssrrar ˆˆˆ)( +++=r      (8) 

The velocity and acceleration vectors can be found to be (25) 
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Substituting this acceleration term in the two-body equation of motion, the Clohessey-

Wiltshire equations of motion can be found to be 
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The C-W equations can be parameterized in several manners.  One method is outlined by 

Irvin (14) which leads to the parameterized versions of the C-W equations as 
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As denoted by Irvin (14), c must equal zero, or else the second term in the equation for s 

would grow unbounded, and the model would quickly deteriorate.   

 Irvin further illustrates the relative orbit of the chase vehicle about the target by 

manipulating Equations (11).  Assuming that the chase vehicle is in the orbital plane of 

the target, the resulting path traced out by the chase vehicle around the target in one full 

orbit about the earth is a 2x1 ellipse (see Figure 7).  This case is referred to as the 

Centered In-Plane Ellipse (CIPE) case by Tragesser and Lovell (17). 
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Figure 7.  Chase Vehicle Motion in Target Relative Frame  

 

 In summary, Chapter II has shown that a commercially available infrared sensor 

is a viable means for the detection and tracking of a satellite in space.  It was also shown 

that the path traced by the chase vehicle in the relative frame of the target is an ellipse.  

This information is furthered in Chapter III with the setup of the experimentation portion 

of this study. 

  

  

 



 27 

 
III.  Experimental Setup 

 

In addition to the hardware used to conduct the physical experiment, two software 

models were created using Simulink® in order to validate the proposed methodology.  

One model was used to examine the effects on orbit (LEO/GEO case), and the second 

was modeled to represent the laboratory conditions.  This chapter describes the setup of 

both software models and the hardware used in the tests.  It begins with the development 

of the necessary equation and algorithm which underlie these models. 

 

3.1  Determination of Required Yaw Rate 

Since the objective of the chase vehicle’s orbit is to maintain it staring at the 

target at all times, it must rotate throughout its orbit to do so.  No rotation on the part of 

the chase satellite will only allow the target to be in its field of view for approximately 

half of its orbit.  It must rotate at a differential rate so that it is spinning faster when it is 

in the wider portions of it relative path about the target.  A central precept to note in the 

following derivation is that the chase vehicle is undergoing unforced motion. 

 The components of the chase vehicle’s path in the [ ]ˆ ˆ ˆrsw frame can be expressed as  
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The current angle β~ can then be measured as 
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Note the different angles β  and β~  in Equation 15 and Figure 7.  The former is the true 

angle on the auxiliary circle.  The latter is the angle within the ellipse.  The two angles 

are not the same, and distinction between the two must be made.  The rate that the chase 

vehicle must spin at is β&~  in order to remain pointing at the target. 

Taking the derivative of Equation 13 with respect to time yields the relative rate at 

which the chase progresses around the target.  Using elementary calculus and introducing 

intermediate functions h(u) and z(t) facilitates the derivation.  The arctangent and its 

components then take the form 
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By setting f(z) = sin(z) and g(z) = 2cos(z), the remaining functions can be related as 
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The time derivative of β~  can then be solved as 
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 Since β&~  expresses the rate at which the chase satellite is moving about its target 

in the target’s relative frame, it must also be the same rate at which the chase satellite 

must turn if it wishes to have the same orientation with respect to the target throughout 

their orbits. 

 

3.2  Determination of Image Plane Centering Algorithm 

In order to determine the actual angular offset present between the target and the 

center of the image plane, a simple algorithm based on the first moment of mass property 

was established.  The algorithm uses the unsigned eight-bit (uint8) integers output from 

the camera and searches for the area of the image with the highest average white (pixel 

value equal to 255) value.  A basis for this algorithm is found in Ginsberg (12).  The 
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usage of uint8 data in this derivation is for two reasons: 1) this is the format used by the 

equipment in the laboratory, and 2) this datatype is very easy to manipulate. 

 In a physical mass, the center of mass is found by summing the individual 

moments from each contributing element about some point, and then dividing by the total 

mass.  This process is repeated in each of three dimensions in order to locate the overall 

center of mass. 

In this algrorithm, the reference point is the (1,1) element in the top left pixel of 

the image.  The image plane consists of a 480x640 matrix of pixel values.   The x-

direction is considered to be in the horizontal direction; this equated to the column 

number of the pixel matrix.  The y-direction is in the vertical direction, and thus 

corresponds to the row number of the pixel matrix.  The “total mass” of the image is 

obtained by summing the individual pixel values over the entire image 
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The center of mass in the either direction can then be found by dividing the analogue 

moment arm by the total “mass” of the system 
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where Xij is the column number of each pixel and Yij is the row number of each pixel.  

The XC and YC coordinates then yield the pixel with the highest average intensity.  The 

camera’s field of view is then used along with an assumed range in order to determine the 

true angular offset.  This algorithm was chosen due to it simplicity and high reliance.   

 

3.3  Software Modeling of Test Cases 

 The software models were developed using Simulink.  Simulink was the software 

package of choice due to its ease of use and ability to integrate with the other software 

packages used in the laboratory (Matlab® and dSPACE® ControlDesk®).  In 

conjunction with the Real Time Workshop (RTW) package from the Mathworks, Inc., 

model compilation and implementation on hardware in-the- loop demonstrations is 

efficient. 

The two software models were very similar.  The theoretical case (space-borne) 

model calculates the difference in inertial positions of both satellites and converts them to 

an angular offset in the relative frame of the target.  (All Simulink models are given in 

Appendix E.)  The equations which model the motion are standard two-body equations of 

motion accounting for the J2 perturbation.   In the theoretical model, the chase vehicle 

was assumed to be in the orbital plane of the target, and at an initial distance of 100m in 

the direction of travel ( ŝ+ ).  The model for the theoretical case is shown in Figure 8.   

Due to laboratory limitations, full motion of a two-body system could not be 

undertaken.  Therefore, compromises in the modeling and experimental setup were made.  

The standoff distance and rotational period were changed in order to suit the lab 

environment.  As the lab distances were fairly restricted, the distance to target was only 7 
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feet (2.1 meters).  Additionally, in order to better view the motion of the satellite and 

target, a rotational period of the satellite of 800 seconds was chosen.  Furthermore, the 

feedback loop that differenced the predicted motion and current motion was removed and 

replaced with an input from the centroid algorithm.  The angular difference inputs were 

computed using a 17º field of view of the camera, and a seven foot range to target.  

Figure 9 shows the modified model for the laboratory. 

 

 

 
Figure 8.  Simulink Model Simulating On-Orbit Motion 
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Figure 9.  Simulink Model Simulating Laboratory Conditions 

 

 

 

3.4  The SIMSAT 

AFIT’s simulated satellite (SIMSAT) was the hardware on which all tests were 

run.  The SIMSAT was constructed in 1999 as a Master’s thesis by several AFIT Systems 

Engineering students.  The satellite weighs approximately 250 pounds, and has 

approximate dimensions of 6 feet (along the roll axis) by two feet by two feet (see Figure 

10).  SIMSAT uses three gyros for orientation sensing purposes, and both reaction wheels 

as well as a rudimentary CO2 thruster system for orientation control purposes.  It houses 

an onboard AutoBox® computer provided by dSPACE®.  The AutoBox is the bed for 

the proprietary configuration cards onto which various software programs are loaded, and 

thus acts as the central processing unit aboard SIMSAT. 
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Figure 10.  SIMSAT Atop Its Air Pedestal 

 

A standalone PC houses the software which guides the operation of the SIMSAT.  

The PC utilizes MATLAB, Simulink, and ControlDesk by dSPACE in order to interact 

with the SIMSAT.  ControlDesk is a hardware-on-the- loop control design program which 

can interface with most any test setup, and allows the user to create a custom graphical 

interface in which the pertinent design parameters can be monitored and manipulated.  

ControlDesk uses proprietary software to interact with Simulink. 

The general setup used in this connection begins with a Simulink model of 

SIMSAT.  It is processed and loaded to the AutoBox aboard SIMSAT via a wireless 

LAN connection.  The custom graphical user interface is loaded and the experiment 

commences.  Realtime commands and telemetry are shuffled between the standalone PC 

and the AutoBox aboard SIMSAT.  Telemetry can be monitored and recorded, and 

various other parameters (such as satellite roll, pitch, and yaw) can be manipulated at 

will. 
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3.4.1  New Equipment 

 The hardware introduced for this experiment consisted of a near- infrared camera, 

a miniature color CCD video camera, an A/B audio/video (AV) switch, a wireless AV 

transmitter and receiver set, a lens piece, a high-pass optical lens filter, and a frame 

grabber.  The new software introduced included the drivers for the framegrabber and the 

MATLAB Image Acquisition Toolbox.  A list of specifications for all new hardware and 

software is included in Appendix C.  Figure 11 depicts the satellite components attached 

to the +X-wing of SIMSAT. 

The near- infrared camera is a COHU 4915 model, gray-scale CCD based camera.  

Its spectral range runs from approximately 250 nm to 1100 nm.  A 2.5-cm lens was 

attached.  In order to restrict the camera to the near-IR region for the experiment, a long-

pass optical lens filter (750 nm and above) was appended to the standard lenspiece using 

rubber cement.  The rubber cement allows for future removal and replacement of the 

filter without damaging the lenspiece, and eliminates the need for a separate lens holder 

to keep the filter abutting the lens. 

 
Figure 11.  New Equipment Added for Experiment 
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 The miniature color camera was attached simply for aesthetic reasons.  A non-IR 

image may be desired in the future, and this will allow such functionality.  The A/B AV 

switch joins both cameras, and the user can easily choose between which video feed is 

desired. 

 A wireless AV transmitter received the output of the A/B switch and sends the 

signal to the receiver which is located on a bench next to the stand-alone computer.  The 

receiver sends its video signal into the framegrabber installed inside of the stand-alone 

computer. 

 MATLAB released its Image Acquisition Toolbox in May 2003.  It works 

cohesively with certain model framegrabbers.  The drivers for the framegrabber talk 

directly with the MATLAB, through which the user can control many different 

acquisition parameters, most notably the rate at which samples are taken in by MATLAB. 

 

3.4.2  Hardware Experimental Process 

 Ideally, the entire process of image acquisition, image processing, and control 

algorithm computation would take place on the SIMSAT.  Unfortunately, this was not 

possible due to several reasons.  As mentioned before, the hardware and software 

associated with the dSPACE equipment is for the most part proprietary.  The AutoBox 

computer aboard SIMSAT is not a PCI motherboard, and therefore will not accept typical 

framegrabbers.  Thus, the image acquisition process was required to go through the 

stand-alone PC.  A device was sought which might take the image straight from the 

camera and convert it to a grey-scale image data, thus feeding them directly into 

processor onboard SIMSAT.  But the author had no luck finding any such device.  The 
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process was then relegated to having the image acquisition and manipulation processes 

done on the stand-alone PC. 

 The process begins by invoking the Matlab code main.m.  This code sets the 

timing for the entire transfer of data, and can be found in Appendix D.  It initializes the 

framegrabber, prepares the video stream, and grabs the intermittent frames for evaluation.  

For each instance of an image grab, main.m calls a second file, write2simsat.m, 

which calculates the centroid of the image and writes the centroid pixel values to the 

ds1005 processor aboard the AutoBox. 

The video stream processed by the framegrabber is collected through the wireless 

AV receiver.  The individual snapshot frames from the Cohu camera are grey-scale image 

data (uint8 values).  It was initially desired to transmit the data to the processor aboard 

SIMSAT and have the control algorithm processed aboard SIMSAT, thus making it feel a 

bit more realistic.  After developing a custom MATLAB Executable (MEX) file in C 

language to perform this algorithm, it was discovered that the bit transfer rate of the 

RadioLAN system was not robust enough the required job.  The transmission of a 

480x640 matrix of integers would take too long via the wireless connection to facilitate 

any reasonable rate of control through image manipulation.  Therefore, the process was 

again relegated to having the centroid algorithm run on the stand-alone PC as well.   

The pixel value results from the centroid algorithm yield an angular offset from 

the view of the image plane.  However, in order for this to be interpreted as an angle for 

the SIMSAT to slew through, the angle must be converted via geometry to an angle from 

the center of the SIMSAT.  This angle is dependent on the location of the target, and is 

approximated in the Matlab code write2simsat.m.  This angle is then transferred via 
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wireless link to the SIMSAT, where the Simulink model aboard the AutoBox implements 

the control scheme.  Output telemetry is shipped over the wireless LAN and viewed using 

the ControlDesk software. 

Obviously, the physical methods used to implement this scheme in the laboratory 

are not suitable for real world operations.  On orbit, all calculations would have to be 

performed onboard the spacecraft.  However, the computational process used in the 

laboratory is representative of the necessary process that would take place on orbit, 

therefore validating the laboratory setup. 
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IV.  Experimental Results 

 

4.1  Theoretical Case Solutions  

 The theoretical case involved two separate studies—one of a hypothetical polar 

orbiting LEO satellite, and one with real world data from a United States’ asset.  The 

orbital data used in the calculations is shown in Table 4-1.  In both studies, the chase 

vehicle was assumed to be in the orbital plane of the target, and at an initial distance of 

100m in the along-track direction ( ŝ+ ).  The LEO case will be discussed first. 

Table 2.  Orbital Data Used in Theoretical Simulations (31) 
Orbital Parameter LEO Case GEO Case (DSCS III) 

 
Semi-major axis, a 7000 km 42187 km 

Eccentricity, e 0 0.0000399 

Inclination, i 97.9° 14.3222° 

Right Ascension, O 305.1º 351.98° 

Argument of Perigee, ?  N/A 268.4543° 

 

4.1.1  Uncontrolled Case 

 Due to perturbations throughout the orbit (J2 was the only one considered in this 

study) the path of the relative orbit “slips” some in the target’s reference frame.  An 

example can be seen in Figure 12.  It is this slipping that causes a difference between the 

actual angle between the chase and target vehicles ( β
~ ) and the modeled angle.  If no 

perturbations were present, the model would match exactly and a closed- loop control 
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system would not be required.  As it were, perturbations abound, and the problem must 

be solved by implementing some slightly more sophisticated type of control.  

 
Figure 12.  Depiction of Relative Path “Slip” Throughout 10-hour LEO Orbit 

 

In the software models, the two-satellite systems were allowed to propagate for 

various amounts of time, culminating in a test case of 12 hours.  In each case, the 

theoretical β
~  was differenced from the actual angular difference between the two 

satellites.  The results of these calculations are shown in Figures 13 and 14.  There is a 

significant difference between the LEO and GEO cases in total angular offset through the 

same period of time.  Over the same time duration, the angular difference is much lower 

in the geosynchronous orbit.  This is attributable to the greater effect that the J2 

perturbation has at lower orbital heights.  The same pattern of oscillating error is seen in 

the GEO case, but several days are needed for the magnitude of the error to increase to 

the same levels as those seen in the LEO plot.  The unbounded nature of the error in 

pointing angles necessitates the addition of closed- loop control. 
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Figure 13.  Angular Difference Between Modeled and J2–perturbed Orbit 

LEO Case 
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Figure 14.  Angular Difference Between Modeled and J2–Perturbed Orbit 

GEO Case 
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4.1.2  Controlled Case 

As a starting point for the closed- loop control, the nominalβ&~  was input to the 

system as a pseudo-feed-forward term.  Additionally, a simple proportional-plus-

derivative (PD) controller was developed to augment this foreknowledge.  The resulting 

angular rotations plotted over time can be seen in Figure 15 for both the LEO and GEO 

cases.  The plots of the perturbed motion and the controlled motion overlay each other 

very closely, making the traces indistinguishable at low resolution.  A more insightful 

representation of the information is shown in Figure 16.  These figures depict the 

differences in angles over time.  Very good agreement is seen with the implemented 

control.  Small angular differences between the “truth” (modeled J2 movement) and the 

controlled spin of the satellite indicate a high ability for sustained tracking.  When 

considering the angular offsets after only three hours, both the LEO and GEO cases have 

been improved by approximately 67%. 

 

 

Figure 15. β
~  vs. Time for GEO (left) and LEO (right) cases 
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Figures 16. β
~  Differences vs. Time for GEO (left) and LEO (right) Cases 

 

Because the trigonometric functions used return bounded values, the models were 

altered so that continuous values of total displacement were returned.  Without this 

alteration, the values of the total displacement in Figure 15 would return to zero after 

reaching 2p and obstruct their interpretation.  As such, the spikes in Figure 16 are a 

remnant of the momentary difference between the predicted and actual values.  They 

should be ignored, as they do not represent the actual magnitude of the angular difference 

at these times. 

Better overall agreement is seen in the GEO case.  This is most likely due to the fact 

that the LEO case is in a polar orbit, and its response to the effects of the J2 perturbation 

is much more prevalent. 
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4.2 Laboratory Results 

 

 The overall experiment consisted of three distinct portions.  The first was to 

command the SIMSAT to follow the predetermined β&~ as derived in Section 3.1.  Tests In 

both the positive and negative yaw direction were conducted to average any bias in one 

of the directions.  The second portion was to implement the tracking algorithm as 

developed in Section 3.2.  Lastly, the two would be combined to track a moving target in 

the laboratory. 

 

4.2.1 β&~ Commanding 

The orbital period of the satellite was replaced with a laboratory-friendly 800 

seconds.  Figure 17 shows the results of an initial test to command the SIMSAT to spin at 

the previously determined β&~ , along with the reported rate from the yaw gyro.  The steady 

departure from the modeled turning rate indicated the presence of an additional 

unaccounted force.  Previous SIMSAT enthusiasts had noted a similar disturbance.  

However, previous experiments did not have the same requirement for accurate angular 

reporting over such long time periods.  Thus, a characterization of the supplemental 

disturbance was required. 
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Figure 17. Initial Measurements of SIMSAT Body Yaw Rate with Forced β&~  

 

 Several theories on the origin of the disturbance have been proposed such as 

exhaust air from the on-board computer, exhaust air escaping from minute separations 

between the air bearing and rotation sphere, and air currents from the building’s 

ventilation system.  It is the author’s belief that the latter reasoning is the motive for the 

disturbance.   Figure 18 shows the average time history of the (magnitude) increasing 

yaw rate.  A first-order polynomial fit to the data was derived.  This is also seen in Figure 

18.  This new information was placed back into the β&~ model, and the same tests were 

executed.  Unfortunately, this modeling did not improve the behavior of the satellite.  

Only marginal improvement over the initial model was seen.  Figures 19 and 20 show the 

results of the model with the disturbance factored in, for both positive and negative 

commanded movement.  Both plots show (noisy) pre-filtered gyro data.  The use of pre-

filtered data had no effect on the system. 
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Figure 18.  SIMSAT Unforced Acceleration: Average with Trendline  

 

  

 

Figures 19.  SIMSAT Yaw Angle and Rate vs. Time (Positive Case) 
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Figures 19 illustrate the total angular displacement traversed by the SIMSAT for a 

commanded yaw in the positive (top) and negative (bottom) directions, along with the 

expected angle. 

 

Figures 20.  SIMSAT Yaw Angle and Rate vs. Time (Negative Case) 

 

Figures 20 represent the same information for commanded yaws in the negative direction.  

Better overall matching is seen in the negative case because the additional disturbance is 
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geared in that direction.  Lastly, Figure 21 illustrates the modeled yaw rate combined 

with the modeled disturbance as compared with the true rates for both positive (left) and 

negative (right) commanded yaws.  The negatively commanded case provided the most 

accurate results, and so this was the only case chosen when attempting to track the 

moving target in Section 4.2.3. 

 

Figure 21.  Modeled (with Known Disturbance) and Actual Yaw Rates 

 

4.2.2  Infrared Camera Tracking of a Heat Source 

 This portion of the experiment attempted to show satisfactory tracking by the 

system of a step input.  The step input was an initial offset of approximately negative five 

degrees from the center of the image plane (actual offset varied between three and eight 

degrees).  Figure 22 shows typical open- loop images of the heat source (a AA battery 

flashlight) monitored, as returned from the near-IR camera. 
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Figure 22.  Heat Source Moving Across the Image Plane over Time 

 

 A suitable controller was desired to handle the discrepancies noted in the previous 

section.  It was determined that in addition to the PD controller designed in the theoretical 

case, a PI controller was necessary to account for this disturbance (20).  Furthermore, the 

delay from the camera must now be taken into account. 

 The processing time for the pictures required about one second for each image.  

This included the time to perform the centroid algorithm as well as to write the 

subsequent data to the on-board computer.  This delay was accounted for in the software 

model by adding a “Zero-Order Hold.”  The Simulink model for this system is shown in 

Figure 23.  The results of the tracking tests are shown in Figure 24.  The Simulink tests 

were given a step input of five degrees.  As is seen, the Simulink model works very well, 

with minimal overshoot and acceptable settling time. 
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Figure 23.  Simulink Model of SIMSAT System 

  

 

 

 

 

Figure 24.  Closed-Loop Simulink Results for a 5º Step Input 
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 Figure 25 shows the resultant yaw movement from two test cases—one “large” 

initial displacement in the positive direction, and one “small” initial displacement in the 

positive direction.  

 

Figure 25.  SIMSAT Step Input Behavior 

 

 Figure 25 is a graph of the commanded SIMSAT yaw angle as calculated by the 

centroid algorithm.  This method of illustrating convergence is not the nominal method, 

but is the best alternative.  The nominal method would be to show a plot of the inertial 

orientation yaw angle.  Unfortunately, the gyro drift denigrates the true values, and shows 

non-convergence.  For this reason, these plots were omitted from the results. 

 Also of note from Figure 25 is the lack of matching with the software model from 

Figure 24.  The inconsistencies are overt, and attributed to a lack of sufficient 

understanding of the Animatics motors.  It was not determined until late in the research 

effort that the motors behaved in a non- linear fashion and were subject to a PID 
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controller of their own.  After discovering this, several attempts were made to tune this 

motor PID model to the application.  The non- linear behavior of the motors necessitates 

that their PID controllers be tuned dependent upon the type of movement desired.  In this 

particular effort, the acceleration constant in the Motor Initialization Routine of the 

Simulink model was set at 120 rad/sec2.  This allowed for acceptable (though non-

optimal) convergence for the step input at moderately large angular offsets (between ±3° 

and ±10º).  Smaller angular offsets (<±2º) can afford a larger value of the acceleration 

constant, and even larger slews can afford an even smaller acceleration constant. 

 

4.2.3  Tracking of a Moving Heat Source 

 The difficulties encountered when trying to establish the first two portions of the 

laboratory experiment did not lay the foundation for a successful demonstration of 

tracking a moving target.  Even so, the test was administered in order to glean 

information that might be helpful. 

 Figure 26 shows the Simulink model generated to model and predict the behavior 

of the hardware system before actual testing.  As in the case of the stationary heat source 

(step input), the model tracks very well (see Figure 27).  An intentional offset of five 

degrees was issue to the system to emulate unpredicted on-orbit disturbances.  After 

adjusting to the input, the maximum separation between the two was approximately 2.5 

degrees.  Figure 28 shows the angular differences over a period of 1.25 rotations.  The 

large spikes correspond with the addition and removal of the five degree offset. 
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Figure 26.  Simulink Model of SIMSAT System for Moving Heat Source 

 

 
Figure 27.  Closed-Loop Simulink Results for a Moving Heat Source 
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Figure 28.  Angular Position Difference Between Heat Source and SIMSAT 

 

 

 The heat source was mounted on a wheeled chassis, which sat upon a track 30 

inches in length.  The camera’s initial distance from the heat source was 84 inches.  As 

time progressed, the flashlight moved in a linear manner, while the SIMSAT turned to 

maintain a track.  The outboard positioning of the camera  on the SIMSAT’s +x wing 

required slightly different turning than what was predicted for.  Ideally, the camera would 

have been mounted at the center of rotation of the SIMSAT, but this is not physically 

possible.  A top view diagram of the hardware setup is shown in Fig 29.   
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Figure 29.  Top View of Hardware Experimental Setup 

 

Due to laboratory limitations, complete rotation of the target about SIMSAT 

could not be undertaken, so a fraction of the entire orbit was emulated.  The motion of the 

heat source in the nominal ellipse was modified to account for its linearly-restricted path 

on the track.  Considering Equation 12 in conjunction with Figure 7, displacement in 

the ŝ direction can be differentiated to yield the rate at which motion occurs in the cross-

track direction as 

)sin(2 0βρ +−= ntns&   (19) 
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The target was moved at the rate equal seen in Equation 19 for a period of 100 

seconds.  This replicates the movement of the target for only a portion of the full rotation, 

however it will yield enough information to allow justification of the model. 

The experimental results from the moving target test are shown below in Figures 

30 and 31.  Figure 30 depicts the actual angular movement of the target, with the stars 

representing the offset as determined by the imaging algorithm.  The difference between 

the two is the actual angular error and is shown in Figure 31.  

 

Figure 30.  Results of Tracking Test with Moving Target and Integrated β&~  
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Figure 31.  Angular Error Between Target and Image Calculation 
for Moving Target Test 

 

In summary, hardware results successfully demonstrated the ability to track a 

moving target using updated image data from an infrared sensor.  The controller values 

used were not optimized for the motor characteristics, and can afford further 

improvement.  Successful demonstration in the lab environment justifies the previously 

developed on-orbit models and validates the final objective of the study. 
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V.  Conclusions and Recommendations  

 

5.1  Conclusions  

The ability to completely characterize the surrounding environs of U.S. Space 

assets is not absolute.  A degree of uncertainty exists as to the Space capabilities of U.S. 

antagonists.  This study sought to determine some aspects of the possibility that an 

adversary might have a capability for autonomous loitering about and tracking of a target.  

A brief discriminatory study investigated the possible options for remote sensing 

of a target satellite in close proximity.  Different methods of detection were weighed and 

combined with information from previous and other on-going research in related fields. 

With a heavy prerequisite being passive detection, the choice of sensor was an infrared 

camera, a well-established and uncomplicated technology.  Several criteria for infrared 

cameras were detailed in order to choose the most appropriate type.  In the end, the most 

appropriate type of detector was found to be a microbolometer, as it offered the 

performance required with the benefit of not having to be cryogenically cooled.  Many 

manufacturers were found to provide such a camera commercially. 

Using a system outfitted with an IR sensor, a maximum detectable range of a 1 m2 

target satellite of approximately 1400 m was found.  Indeed many commercially available 

microbolometer-based IR cameras today can meet this requirement.   

The orbital equations of two close-orbiting bodies (Hill’s Equations) were then 

explored to determine the mechanics of motion relevant to this scenario.  It was found 

that for the in-plane, unperturbed case, the chase vehicle must rotate at a specified rate in 

order to maintain a stare at the target at all times.  This specified rate is a function of the 
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angle between the chase and target satellites in the plane of the target.  Introducing the J2 

perturbation caused the vehicles to depart from this specified angular relationship.  The 

degree to which the angular differences diverge is a function of both orbital height and 

time.  Thus a control scheme is required and was designed to reduce the error in the 

pointing vector. 

The control scheme was modeled using both a proportional-plus-derivative 

controller alone as well as in series with a proportional-plus- integral controller.  Over a 

flight duration of three hours, the PD controller reduced the magnitude of error by 67%. 

Lastly, attempts were made to accurately model the motion and tracking of the 

two-body system in AFIT’s SIMSAT laboratory.  Non-optimal yet successful tracking of 

both a stationary and a moving target was demonstrated.  Further tuning of the motor 

parameters is required to attain perfect software model-matching. 

Some sources of laboratory error that prevented better agreement with the model 

include a disturbance torque, as well as non- linear motors.  The motors are reasonably 

well-characterized, though some improvement could be made.  Their non- linear behavior 

makes modeling them difficult, but the end results would be more than justified.  The 

disturbance torque that is probably a result of the air currents in the room was also well-

modeled, but future SIMSAT operations could benefit from further study of this 

phenomenon.   

This work has shown that with few resources and no cutting-edge technology, a 

satellite subsystem can be designed tha t would allow a vehicle to passively orbit about 

and track a target satellite.  The assembly and integration of COTS sensors and 

processors would not be difficult for an organization with rudimentary skills and abilities.  
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The orbital mechanics of the problem are relatively easy to derive, and the control 

implemented could be designed and even improved by a person or team with modest 

knowledge.  With some further revision, the technique presented could be employed in a 

simple satellite system to solve one aspect of the problem of passive circumnavigation. 

 

5.2  Recommendations for Future Study 

Areas of study that are directly relevant to this work but were not investigated 

include the following: 

• Passive ranging in Space 

• Responses to detected target orbital maneuvers 

• Autonomous acquisition of the target 

Each of the above topics would shed great light on the capabilities of both friendly and 

hostile forces.   

Several items of interest arose during the course of experimentation which 

warrant further investigation.  They are as follows: 

• Further characterization of the Animatics® motors should be accomplished.  An 

acceptable model has been in place over the past three studies, but a more 

accurate model is definitely attainable.  Accurate software modeling is impossible 

without a rigorous characterization of the motors.   

• Investigate the possibility of using only the color CCD camera for image 

acquisition.  The CCD used in the color camera may have the same spectral 

sensitivity as that of the COHU.  If so, the COHU could be removed, freeing up 

space and removing a small amount of weight. 
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• Further characterization of the disturbance torque should be undertaken.  A 

controlled environment must be established and all variables accounted for. 

• Investigate new software options for the control and interface of the SIMSAT.  

The current software (dSPACE) may well be a powerful tool, but the learning 

curve, in combination with its propensity to spontaneously reject seemingly valid 

commands, make it difficult to exploit in the short time periods of study. 

• Further investigate the possibility of obtaining a specific card for the AutoBox 

that will convert the image data onboard the SIMSAT. 
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Appendix A: Calculation of Maximum Range for Detection 

 

The equation for detecting the maximum range at which a point source is visible in a non-

background-limited infrared photodetector scenario is given in Dereniak and Boreman as 
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     (A-1) 

where 

   r = range 

   SNR = signal to noise ratio (dimensionless) 

   I = source intensity (W/sr) 

   Aenp = area of entrance pupil of collector (cm2) 

   Ad = area of detector array (cm2) 

   f∆  = noise equivalent bandwidth (Hz) 

   D* = normalized detectivity (Hz1/2cm/W) 

D* represents a detector’s sensitivity normalized to a 1 cm2 area and 1 Hz noise-

equivalent bandwidth (7). 

  For this theoretical calculation, several values were assumed given a range of 

typical values also taken from Dereniak and Boreman.  The values chosen were (for a 

thermistor bolometer operating at 300 K) 

   D* = 5 x 108 (Hz1/2cm/W) 

   f∆  = 1/(2t) = 1/(2*0.005 sec) = 125 Hz 

   Ad = 0.01 cm2 
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A value of 2.5 was chosen for the SNR, as this was a common value amongst several 

examples throughout Dereniak and Boreman.  The area of the entrance pupil was taken as 

4p cm2. 

 The value of intensity was calculated by initially assuming an average 

temperature of the target satellite of 300 K.  The visible area of the source (target 

satellite) was taken to be 1 m2.  A conservative average emissivity (e) of the satellite is 

taken as 0.5, taking into account various values for the emissivity of Kapton insulation, 

GaAs or Si solar arrays, and painted surfaces of the target (website or Satellite Thermal 

Engineers Handbook).  The target is assumed to act as a graybody radiator. 

 Integrated values for blackbody exitance at 8 µm and 10 µm were taken from 

Appendix A of Dereniak and Boreman.  The values were then subtracted to yield the 

blackbody exitance (Mblack) between 8-10 µm as 0.006108 W/cm2.  The source exitance 

was found by including the emissivity of the source as 

22
003504.0006108.0*5.0

cm
W

cm
W

MM blacksource === ε   (A-2) 

Assuming a planar Lambertian emitter, the radiance, L, is related to the exitance by M = 

p*L (7).  Thus the radiance is found to be 
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Lastly, we calculate the intensity of the source through the relation 

θcosLAI = s where θ s is the viewing angle made from the source to the detector (see 

Figure A-1).  In this calculation, the angle is assumed to be zero.  Thus the intensity is 

seen to be 
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Inserting this into the range equation, the resulting maximum range for detection 

is 
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At this distance, the chase vehicle could just make out the target with its infrared camera.  

With the further assumption that the chase vehicle is already well within this range, the 

camera should be able to detect the target easily. 



 65 

 
Appendix B: Calculation of SIMSAT Moments of Inertia 

 

The moments of inertia of the SIMSAT must be correctly calculated in order for 

both accurate modeling in the Simulink portion of the experiment, as well as for accurate 

calculations when designing the controller.  With reconfiguration of the SIMSAT 

between major experiment topics comes the need to recalculate its moments of inertia. 

 A concise manner in which to perform this calculation has been created in the 

form of a ControlDesk experiment.  The experiment, titled, “MOI_test.cdx” must be 

initially loaded through the dSPACE ControlDesk software (the reader is assumed to 

have a basic knowledge of both ControlDesk and Matlab).  After the moi_test.ppc file has 

been loaded to the ds1005 platform aboard SIMSAT, the user need only activate the 

Animation mode and the experiment begins automatically. 

 The experiment is designed to actuate one reaction wheel during each run.  The 

reaction wheel, is accelerated to 250 rad/sec, and the resulting spacecraft inertial angles 

are recorded.  The test does need to be reconfigured in order to test all three reaction 

wheels.  Two steps are required to accomplish this: 1) in the Simulink model 

“MOI_test.mdl” the step input needs to be changed to the appropriate direction, and 2) 

the corresponding output variable in ControlDesk needs to be linked as the recorded 

variable.   

 After the completion of the data gathering, the data must be saved.  It is saved by 

default as a Matlab MAT-file.  After data from all directions has been gathered, the 

Matlab file  “moi_test.m” can be used to determine the MOI.  
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 The file must be opened and changed to load the appropriate data files that were 

saved.  A simple name change will accomplish this.  The data is manipulated in the 

following fashion. 

 A time vector is extracted from one of the data sets (they are all identical).  Each 

data set is then parsed to extract the recorded inertial angular movements in the 

appropriate direction.  The data is then stepped in 5% increments to determine the slope 

along the entire curve of angular displacement v. time.  The maximum slope is used as 

the slope of record.  If desired, the user can take data sets in both a positive and negative 

direction and average the two slope results.   

 The results of the slope are then used to solve the equation 

  Iii = (Irw|i∆ωi)/∆Ωi 

where ωI has been fixed to 250 rad/sec for this experiment, and Irw was established as 

0.01955 kg·m2 during the construction of SIMSAT.  If the user wishes to change this 

value, it can be changed in the Simulink model.   
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Appendix C.  New Equipment Specifications  

 

• Cohu camera 4915-2010/0000 

o Near-IR capabilities (approximately 280-1200 nm spectral sensitivity) 

o Contact Mr. David Lane (858) 277-6700 x393 (www.cohu.com) 

• Color Video Camera (wired) 

o Model MC-3300 

o Polaris Industries, Inc. (www.polarisusa.com) 

• Lens 

o Comiscar/Pentax 6mm F/1.4 lens (part #C60622) 

o Purchased through Cohu (part #AO-06) 

• Lens filter 

o CVI Laser Part # LPF-750-1.00 

o This is a circular, one- inch diameter, long pass filter (750 nm and above) 

o (www.cvilaser.com) (800) 296-9541 

• Matrox framegrabber 

o Matrox Meteor II (Standard) 

o MIL-Lite enabling software drivers 

o Purchased through distributor EQS Systems (www.eqssystems.com) (800) 

729-8084. 

• MATLAB Image Acquisition Toolbox 

o Compatibility with major framegrabber manufacturers, including Matrox 
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o Interfaces directly with the MIL-Lite drivers, eliminating the need to 

program the camera in a separate language 

o The Mathworks, Inc. (www.mathworks.com) 

• Video Switcher 

o Two inputs/one output 

o Item #15-1952 

o Radio Shack (www.radioshack.com) 

• Wireless video transmitters 

o Radio Shack Part # 150-2572 
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Appendix D.  Matlab Program Code  

 

The following code constitutes the two main Matlab programs used during laboratory 

testing.  The first file, main.m, initializes the framegrabber, prepares the video stream, 

and grabs the intermittent frames for evaluation.  For each instance of an image grab, it 

calls the second file, write2simsat.m, which calculates the centroid of the image and 

writes the centroid pixel values to the ds1005 processor aboard the AutoBox. 

 Additionally, the code for the two files used to generate the data for the space 

simulations (main_leo.m, formation_leo.m) is included at the end of this 

appendix.   

 
 

main.m 
 
function main 
%  --------------------------------------------------------------------
---- 
% This function will eventually have the following characteristics: 
%   - Take a snapshot of input video at incremental time steps 
%   - Send the data to a buffer in ds1005 board resident on the SIMSAT 
%       -- it will do this via use of the command 
%           mlib('Write',destination,'Data',pic_info) 
%% --------------------------------------------------------------------
----- 
 
%Initialize dSPACE MLIB 
% mlib('SelectBoard','ds1005'); 
%  
%  ************************************************************ 
%  This section checks to see if my Simulink application is running. 
%  Currently, I have it named hnpds3, but if I change this, make sure 
to 
%  change it in the DemoApplName line below. 
%  ************************************************************ 
 
% ************************************************************** 
%   Image Acquisition Toolbox Portion 
%       - this section will take the snapshots and save them to  
%       the local hard disk (and memory). 
% 
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% NOTES:  If memory is getting too full and I have to remove frames, 
this is 
% done with the 'getdata' of 'flushdata' commands.  See page 4-22, -30. 
% If I want to increase the memory capacity, see page 4-29. 
% 
%   I can create a memory monitoring function by example on page 6-16. 
% 
% ************************************************************** 
n = 1;      % Actually the value of FramesPerTrigger 
hwinfo = imaqhwinfo; 
vid = videoinput('matrox'); 
preview(vid) 
pause 
closepreview(vid) 
vid.LoggingMode = 'memory'; 
vid.FramesPerTrigger = n; 
vid.FrameGrabInterval = 330; 
vid.FramesAcquiredFcn = @write2simsat; 
vid.FramesAcquiredFcnCount = 1; 
vid.TriggerFrameDelay = 90;    % wait 3 seconds after I hit the trigger 
triggerconfig(vid,'manual'); 
start(vid) 
disp('video started') 
 
% ************************************************************** 
%   Initiate Trigger (start the acquisition of desired number of 
frames). 
%   Prior to this point, the video stream has started, but it is not 
%   logging the specific frames that I want.  I will issue the pause 
%   command, and then, when I am ready (and ControlDesk is ready) to 
%   proceed, just hit any key in the Matlab workspace.  The function 
will 
%   begin running again, and the first command it encounters will be 
the 
%   trigger to get things going. 
% *************************************************************** 
 
pause 
trigger(vid) 
 
%   WORKING ITS MAGIC HERE -- calls to other m-files 
 
%if(exist(IRpics)==2) 
%    disp('AVI file created.') 
%end 
%aviobj = close(vid.DiskLogger); 
%vid.FramesAcquired     % This is called in @write2simsat 
wait(vid); 
stop(vid); 
disp('video stopped') 
%vid.FramesAcquired 
frames = getdata(vid,n); 
imaqmontage(frames); 
delete(vid); 
clear vid 
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write2simsat.m 

 
function write2simsat(vid,FramesAcquiredFcn) 
 
type = 'unit8';             % I think this is correct, may have to 
change (or remove altogether) 
newest_pic = getdata(vid,1); 
imaqmontage(newest_pic)     % I can do away with this line if I want 
to. 
%framesacquired = vid.FramesAcquired 
%frameswritten  = vid.DiskLoggerFrameCount 
 
% Get descriptors for the state space matrices  
matrix = {'Model Root/Spring-Mass-Damper System/Spring-Mass-Damper 
System/A'}; 
 
[IR_pic_matrix_desc] = mlib('GetTrcVar',matrix); 
%[Amatrix_desc, Cmatrix_desc] = mlib('GetTrcVar',matrices); 
 
mlib('Write',IR_pic_matrix_desc,'Data', newest_pic); 
sprintf ('Image Written to ds1005.\n'); 
 
% Input times when parameters are updated 
update_time = input(' Update interval               [1 sec]  ?  '); 
if isempty(update_time), update_time=1; end; 
fprintf (' ---------------------------------------------\n'); 
 
% Start MATLAB stopwatch timer (min. timer resolution 54 ms) 
tic; T=0; 
for damp=damp_values, 
  % Compute transfer function parameters of spring-mass-damper system 
  amatrix = [ -2*damp*OMEGA -OMEGA*OMEGA ];   % [ -a1 -a0 ] 
 
  % Write new transfer function parameters to real-time processor 
  mlib('Write',Amatrix_desc,'Data', amatrix); 
  fprintf ('T=%5.2f sec. Damping factor is now %5.2f,...\n', T, damp); 
 
  % Let background processes become active while waiting 
  T = T + update_time; 
  while (toc < T), end; 
end 
fprintf (' ---------------------------------------------\n'); 

 
 

main_leo.m 
 

%*********************************************** 
%        
% 
%   ******************************************** 
%   ******************************************** 
% 
%   This program is designed to calculate the INITIAL position and 



 72 

%   velocity vectors of a reference orbit as well as a second orbit     
%   situated nearby.  The code is broken into three parts.  The          
%   objective of each part is discussed in its header.   
%      
%   Several outside programs were provided in order to propagate the 
%   orbit(s) forward and visualize them.  These are not called from 
%   this program, rather, the outputs of this program are entered into 
%   the file formation.m (courtesy Dr. Steven Tragesser, AFIT.) 
% 
%       Accompanying notes scattered throughout the project should 
%       alleviate any confusion on parameters. 
% 
%*********************************************** 
 
%*********************************************** 
%        
%  PART I 
% 
%  In this section, a reference orbit is defined.  The reference orbit 
%  is output in the J2000 frame with IJK coordinates.  The launch time 
%  and initial reference orbital elements are obtained (a,e,i,Om,u). 
%  Lastly, the orbit is plotted for thirty days after the launch using 
%  the file 'orbitJ2.m.' 
% 
%*********************************************** 
global mu 
disp(blanks(1)') 
r = 7000;                       % km, given 
a = 7000;                       % km, given 
e = 0;                          % given 
lat = 34.7;                     % deg, given 
lat_rad = 34.7*pi/180;           
Om_dot = (360/365.25)*pi/180;   % rad/day, Tropical Year assumed 
Om_dot = Om_dot/86400;          % rad/sec 
r_earth = 6378.145;             % km 
J2 = 0.001082;                  % obtained from BMW 
n = sqrt(398601/(7000^3));      % rad/sec 
cosi = (-1)*(Om_dot*2*(a^2)*((1 - e^2)^2))/(3*n*J2*(r_earth^2)); 
i_rad = acos(cosi); 
i = i_rad*180/pi;               % deg 
Az_rad = asin((cos(i_rad)/cos(lat_rad))); 
Az = Az_rad*180/pi; 
Az = 180 + abs(Az);     % NOTE: This equation is not universally valid; 
it is specific to a retrograde orbit, launching into descending node. 
                         
n_earth = (360/365.25)*pi/180;       % rad/day, Earth's mean motion 
about the sun 
days = 25 + (1/24); 
mean_sun_angle = n_earth*days*180/pi; 
more_deg = 0; 
more_time = 1.5; 
old_launch_time = 0; 
while more_time > 1  
    Om = 360-mean_sun_angle-30 - more_deg; 
    delta_rad = asin(tan(lat_rad)*cot(i_rad)); 
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    delta = delta_rad*180/pi; 
w_earth = 360/86164;             
alpha_g = (36831/86164)*360;     
lambda_e = 360-120.5;            
to = 0;                          

    launch_time = to + (Om + 180 - delta - alpha_g - lambda_e)/w_earth;  
    more_deg = (launch_time-old_launch_time)*n_earth*180/pi/86400;  
    more_time = more_deg/w_earth; 
    old_launch_time = launch_time; 
end 
Om; 
launch_time = sec2hr(launch_time); 
launch_time = hr2hms(launch_time); 
launch_time = hms2mat(launch_time); 
 
%   Finding u -- argument of latitude; taken from spherical trig 
Lecture Notes 10.3 
 
theta = Az - 180; 
theta_rad = theta*pi/180; 
i1 = 180-i; 
i1_rad = i1*pi/180; 
i2 = 90;    %cos i2 = 0 
u1 = acos((cos(i1_rad)*cos(theta_rad))/(sin(i1_rad)*sin(theta_rad))); 
u1 = u1*180/pi; 
u = 180- u1; 
elements = [a; e; i; Om; u;] 
 
% Find r and v vectors in J2000 frame 
 
mu = 398601;    % km^3/sec^2 
nu1 = u*pi/180; 
format long g 
p = (a*(1 - e^2)); 
r_pqw = (a*(1 - e^2))/(1 + e*cos(nu1)); 
r_sat_pqw = [cos(nu1); sin(nu1); 0]*r_pqw;  
v_pqw = sqrt(mu/p); 
v_sat_pqw = v_pqw*[-sin(nu1); (e + cos(nu1)); 0];  
 
%*************************************************** 
% Now the PQW vector must be rotated to the ECI (or J2000) frane. 
w = 0; 
format long g 
Om_rad = (Om*pi)/180; 
w_rad = (w*pi)/180; 
R = [(cos(Om_rad)*cos(w_rad) - sin(Om_rad)*sin(w_rad)*cos(i_rad)) (-
cos(Om_rad)*sin(w_rad) - sin(Om_rad)*cos(w_rad)*cos(i_rad)) 
(sin(Om_rad)*sin(i_rad)); (sin(Om_rad)*cos(w_rad) + 
cos(Om_rad)*sin(w_rad)*cos(i_rad)) (-sin(Om_rad)*sin(w_rad) + 
cos(Om_rad)*cos(w_rad)*cos(i_rad)) (-cos(Om_rad)*sin(i_rad)); 
(sin(w_rad)*sin(i_rad)) (cos(w_rad)*sin(i_rad)) cos(i_rad)]; 
r_ref_J2000 = R*r_sat_pqw     %previously known as r_sat_eci 
v_ref_J2000 = R*v_sat_pqw     %previously known as v_sat_eci 
 
%*********************************************************** 
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%   PART II   
%        
%   We now seek to find the position and velocity vectors of the three 
%   satellites with respect to an XYZ orbit which moves relative to 
%   IJK.   
% 
%   The equations used here are derived from the constraints required                              
%   for a centered in-plane ellipse.  The constraints are taken from    
%   Lovell & Tragesser, Paper AAS 03-139. 
% 
%       For the chief to be centered, yo = (2/n)*xo_dot 
% 
%*********************************************************** 
 
% Sat 1 
xo = 0;         % kilometers 
yo = .100; 
zo = 0;         % km 
 
xd = 0;yd = 0; 
yr = -1.5*n*xd; 
beta = pi/2; %corresponds to starting at right edge of ellipse 
xo_dot = yo*n/2; 
yo_dot = (xd - (4*xo))*n/2; 
zo_dot = 0; 
 
Sat1_Pos_XYZ = [xo;yo;zo] 
 
Sat1_Vel_XYZ = [xo_dot;yo_dot;zo_dot] 
 
%******************************************************** 
%   PART III 
% 
%   We now rotate the XYZ frame to the IJK frame to obtain the 
%   position and velocity vectors for each of the three satellites in 
%   the IJK frame.  Afterwards, the results will be input to propagate 
%   forward for ten hours to see the interactions of the satellites 
%   while on orbit. 
% 
%******************************************************** 
 
u_rad = u*pi/180; 
Rxyz2ijk = [(cos(Om_rad)*cos(u_rad) - 
sin(Om_rad)*sin(u_rad)*cos(i_rad)) (-cos(Om_rad)*sin(u_rad) - 
sin(Om_rad)*cos(u_rad)*cos(i_rad)) (sin(Om_rad)*sin(i_rad)); 
    (sin(Om_rad)*cos(u_rad) + cos(Om_rad)*sin(u_rad)*cos(i_rad)) (-
sin(Om_rad)*sin(u_rad) + cos(Om_rad)*cos(u_rad)*cos(i_rad)) (-
cos(Om_rad)*sin(i_rad)); 
    (sin(u_rad)*sin(i_rad)) (cos(u_rad)*sin(i_rad)) cos(i_rad)]; 
 
Sat1_Pos_J2000 = Rxyz2ijk*Sat1_Pos_XYZ; 
 
Sat1_I_Pos_Final = Sat1_Pos_J2000(1,1) + r_ref_J2000(1,1); 
Sat1_J_Pos_Final = Sat1_Pos_J2000(2,1) + r_ref_J2000(2,1); 
Sat1_K_Pos_Final = Sat1_Pos_J2000(3,1) + r_ref_J2000(3,1); 
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Sat1_Final_Pos = [Sat1_I_Pos_Final;Sat1_J_Pos_Final;Sat1_K_Pos_Final] 
 
%****************************************** 
%% Find velocity vectors 
%****************************************** 
 
Om_dot = 0; %This is due to the fact that the Clohessey-Wiltshire eq.s 
were not developed with the J2 parameter taken into account.  So we set 
it equal to zero in this matrix. 
R_dot_xyz2ijk = [(Om_dot*cos(u_rad)*(-sin(Om_rad)) + cos(Om_rad)*(-
sin(u_rad))*n - cos(Om_rad)*sin(u_rad)*cos(i_rad)*Om_dot - 
cos(i_rad)*cos(u_rad)*sin(Om_rad)*n), (sin(Om_rad)*sin(u_rad)*Om_dot - 
cos(Om_rad)*cos(u_rad)*n - cos(Om_rad)*cos(u_rad)*cos(i_rad)*Om_dot + 
sin(u_rad)*sin(Om_rad)*cos(i_rad)*n) , (cos(Om_rad)*sin(i_rad)*Om_dot)  
; 
    (cos(Om_rad)*cos(u_rad)*Om_dot - sin(u_rad)*sin(Om_rad)*n - 
sin(Om_rad)*sin(u_rad)*cos(i_rad)*Om_dot + 
cos(u_rad)*cos(Om_rad)*cos(i_rad)*n), (-cos(Om_rad)*sin(u_rad)*Om_dot - 
sin(Om_rad)*cos(u_rad)*n - sin(Om_rad)*cos(u_rad)*cos(i_rad)*Om_dot - 
sin(u_rad)*cos(Om_rad)*cos(i_rad)*n), (sin(Om_rad)*sin(i_rad)*Om_dot); 
    (cos(u_rad)*sin(i_rad)*n), (-sin(u_rad)*sin(i_rad)*n), 0]; 
 
Sat1_Final_Vel = v_ref_J2000 + R_dot_xyz2ijk*Sat1_Pos_XYZ + 
Rxyz2ijk*Sat1_Vel_XYZ 
[next,tspan,zref,norm_vec] = 
formation_leo(r_ref_J2000,v_ref_J2000,Sat1_Final_Pos,Sat1_Final_Vel); 

 
 

formation_leo.m 
 
NOTE: Credit is given to Dr. Steven Tragesser (AFIT) for the foundation of this code. 
 
function [next,tspan,zref,norm_vec] = 
formation_leo(r_ref,v_ref,r_ref1,v_ref1) 
 
global mu 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Inputs: r and v in J2000 coordinates (km and km/s) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
sim_time=12*3600;    %in seconds 
J2_flag=1;           %0=spherical Earth   1=oblate Earth 
 
Simulation parameters 
Tspan = [0:sim_time/200:sim_time]; 
if J2_flag==0 
    eoms = 'twobodyeoms3d'; 
else 
    eoms = 'twobodyeoms3dj2'; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Set up and plot reference orbit 
 
z0=[r_ref' v_ref']; 
options=odeset('RelTol',1e-10,'AbsTol',1e-8*ones(6,1)); 
options2 = odeset('RelTol',1e-10,'AbsTol',1e-8); 
[tref,zref]=ode45(eoms,tspan,z0,options); 
zref; 
 
 
 
        r_ref=r_ref1; 
        v_ref=v_ref1; 
        symbol='r.'; 
      
% Simulation of EOMS of deputy 
% Set initial condition of deputy 
z0=[r_ref' v_ref']; 
% Call integrator 
options=odeset('RelTol',1e-10,'AbsTol',1e-8*ones(6,1)); 
[tref,z]=ode45(eoms,tspan,z0,options); 
[tref2,theta] = ode45(@ode_leo_thetadot,tspan,0,options2); 
num_pts=size(tspan,2); 
% Set up box 
    rhat=zref(1,1:3)'/norm(zref(1,1:3)); 
    vhat=zref(1,4:6)';  
    hhat=cross(rhat,vhat)/norm(cross(rhat,vhat)); 
    thhat=cross(hhat,rhat)/norm(cross(hhat,rhat)); 
    Ri2o=[rhat'; thhat'; hhat']; 
    rorb(1,1:3)=(Ri2o*z(1,1:3)')'; 
    rmag(1)=norm(zref(1,1:3)); 
    r = rorb(1,1)-rmag'; 
    s = rorb(1,2); 
    w = rorb(1,3); 
    a = [(r-.005) (s-.005) (w-.005); (r+.005) (s-.005) (w-.005); 
(r+.005) (s+.005) (w-.005);... 
        (r-.005) (s+.005) (w-.005); (r-.005) (s-.005) (w+.005); 
(r+.005) (s-.005) (w+.005);... 
        (r+.005) (s+.005) (w+.005); (r-.005) (s+.005) (w+.005)]; 
    b = [1 2 6 5; 2 3 7 6; 3 4 8 7; 4 1 5 8; 1 2 3 4; 5 6 7 8]; 
    %box = 
patch('Vertices',a,'Faces',b,'FaceVertexCData',hsv(6),'FaceColor','flat
'); 
    theta_last = 0;%axis([-.2 .2 -.2 .2 -.2 .2]); axis square;break 
    
% Motion     
for ii=1:num_pts 
   %transform position from inertial to orbit frame 
   rhat=zref(ii,1:3)'/norm(zref(ii,1:3));  
   vhat=zref(ii,4:6)';  
   hhat=cross(rhat,vhat)/norm(cross(rhat,vhat)); 
   thhat=cross(hhat,rhat)/norm(cross(hhat,rhat)); 
   Ri2o=[rhat'; thhat'; hhat'];     % transforms from inertial to RSW 
frame 
   rorb(ii,1:3)=(Ri2o*z(ii,1:3)')'; 
   rchief(ii,1:3) = (Ri2o*zref(ii,1:3)')'; 



 77 

   rmag(ii)=norm(zref(ii,1:3)); 
   r = rorb(:,1)-rmag'; 
   s = rorb(:,2); 
   w = rorb(:,3); 
   r_now(ii) = rorb(ii,1)-rmag(ii); 
   s_now(ii) = rorb(ii,2); 
   w_now(ii) = rorb(ii,3); 
   r_chief_now(ii) = rchief(ii,1)-rmag(ii); 
   s_chief_now(ii) = rchief(ii,2); 
   w_chief_now(ii) = rchief(ii,3); 
   line(r,s,w);hold on 
   plot3(r_chief_now,s_chief_now,w_chief_now,'r.'); 
   %new_vertices = [(r_now(ii)-.005) (s_now(ii)-.005) (w_now(ii)-.005); 
(r_now(ii)+.005) (s_now(ii)-.005) (w_now(ii)-.005); (r_now(ii)+.005) 
(s_now(ii)+.005) (w_now(ii)-.005);... 
        %(r_now(ii)-.005) (s_now(ii)+.005) (w_now(ii)-.005); 
(r_now(ii)-.005) (s_now(ii)-.005) (w_now(ii)+.005); (r_now(ii)+.005) 
(s_now(ii)-.005) (w_now(ii)+.005);... 
        %(r_now(ii)+.005) (s_now(ii)+.005) (w_now(ii)+.005); 
(r_now(ii)-.005) (s_now(ii)+.005) (w_now(ii)+.005)]; 
   %set(box,'Vertices',new_vertices,'Faces',b); 
   theta_inc = theta(ii) - theta_last; 
   theta_deg_inc = theta_inc*180/pi; 
   %origin = [r_now(ii) s_now(ii) w_now(ii)]; 
   %rotate(box,[0 0 1],(-180/pi)*theta(ii),origin); 
   %axis([-.2 .2 -.2 .2 -.2 .2]); axis square; 
   %M(ii) = getframe; 
   offset(ii,1) = (r_now(ii) - r_chief_now(ii)); 
   offset(ii,2) = (s_now(ii) - s_chief_now(ii)); 
   offset(ii,3) = (w_now(ii) - w_chief_now(ii)); 
   norm_vec(ii) = sqrt((offset(ii,1)^2) + (offset(ii,2)^2) + 
(offset(ii,3)^2)); 
   phi(ii) = atan2(offset(ii,1),offset(ii,2));      %phi is "true" 
angular offset 
   theta_last = theta(ii); 
end 
 
xlabel('x (km)') 
ylabel('y (km)') 
zlabel('z (km)') 
if J2_flag == 0 
    title('Deputy Motion in Orbital Reference Frame -- Unperturbed') 
else 
    title('Deputy Motion in Orbital Reference Frame -- J2 Perturbed')     
end 
 
next = [(-1)*((phi')),(-1)*(mod(theta,(2*pi)))]; 
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Appendix E.  Characterization of Yaw Gyro Drift 

 
 

Gyro drift has previously been identified as a problem encountered with SIMSAT.  

Though the pitch gyro is the most sensitive, all three gyros are subject to the drift 

phenomenon.  A study of the drift for the yaw gyro was undertaken to better characterize 

it for the purposes of this study. 

Previous users had claimed an improvement in gyro performance after a long 

period of warm-up time.  Thus, the gyro drift was investigated after different amounts of 

usage.  The SIMSAT was fixed in its stand so that no actual movement could take place.  

Whatever movement then reported back by the gyros was obviously in error. 

Figure E-1 shows the gyro drift rates taken after increasing amounts of warm-up 

time.  10-minute samples were taken immediately after gyro turn-on (“zero” minutes), 

after 20 minutes of usage, 50 minutes of usage, and 60 minutes of usage.  Under normal 

circumstances, the batteries will not last much longer than an hour, so the tests were 

halted at this point.   

 
Figure E-1.  Yaw Gyro Drift Angles after Various Amounts of Warm-up Time 
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As is evident, there is a distinct difference in the behavior of the gyro as it is 

allowed to warm up.  Immediately upon start-up, the yaw gyro exhibits a linear decay in 

reported angle.  As time goes on, it appears to come to a limit; the 50 minute and 60 

minute plots lie almost on top of one another. 

For the purposes of this paper, the four results were averaged over only the first 

200 seconds of reported data.  A second order polynomial was fit to this data.  This 

polynomial was then used in the satellite model to offset the reported orientation angle.  

Figure E-2 shows the averaged gyro drift four all four cases over the fist 200-second 

interval, as well as the second-order polynomial fit line. 

 

 
Figure E-2.  Average Yaw Gyro Drift and a Polynomial Approximation
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Appendix F.  Simulation Model Library 

 

 The following Simulink diagrams represent those used in the testing of the 

laboratory experiment.  Figures F1 through F6 are those used in the software modeling of 

the laboratory equipment.  Figures F7 through F10 are those used in the actual hardware-

in-the- loop experiments. 

 
 

 
Figure F1.  Top-Level System Diagram of Software Model 
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Figure F2.  SIMSAT Model Sublevel Diagram 

 
 

 
 
 

Figure F3.  Modeled Rotation Rate Sub-sublevel Diagram 
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Figure F4.  Sat Dynamics Sub-sublevel Diagram 

 
 

 
Figure F5.  PI_PD Controller Sublevel Diagram 
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Figure F6.  PI_(PD_)Controller Sub-sublevel Diagram 

 
 
 
 
 
 
 

Figure F8.  System-level Diagram of Software Model 
 
 

Figure F9.  System-level Diagram of Software Model 
 
 

Figure F10.  System-level Diagram of Software Model 
 

 
Figure F11.  System-level Diagram of Software Model 
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Figure F7.  System-level Diagram of Software Model 
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