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Abstract 

 Traditionally flight control systems have used linearized equations of motion 

solved around a single trim point.  This thesis proposes a nested-loop controller directly 

solved from the equations of motion. 

The control equations were developed as a solution to asymmetrically trimmed 

flight conditions.  A two-loop design was proposed for the controller.  The outer loop 

modeled the aircraft as a point mass and all forces were balanced to find the aircraft 

states.  The equations input the control variables and output the aircraft states.  The inner-

loop utilizes the six-degree of freedom model of the aircraft to solve the moment 

equations.  With the input states, the required control surface deflections are calculated. 

The control equations were investigated for typical flight conditions to find the 

predicted aircraft control settings.  The control equations were implemented using 

aeromodel data for a Learjet-25.  The aeromodel data was updated in flight test.  The 

predictions from the control equations were then compared to flight test results.  The 

model was able to predict the required elevator deflection for simple longitudinal cases in 

level and climbing flight to within tolerances.  The simple lateral-directional cases were 

not as accurate as the longitudinal investigations.  As complex maneuvers were 

investigated, the model predictions did not match the flight test results.  The complex 

maneuvers were not reproduced in flight test to match the flight parameters calculated 

with the model.  Also the lateral-directional stability derivatives and measurements had 

larger errors than the longitudinal variables. 
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OUTER-LOOP CONTROL IN ASYMMETRICAL TRIMMED FLIGHT CONDITIONS 

 
 
 
 

I.  Introduction 

 
 

Background 

Automatic flight control systems are a vital part of most aircraft designs.  The 

autopilot controls both the longitudinal and lateral-directional motion of the vehicle to 

perform the desired mission.  The control system decreases pilot workload, enhances 

flight safety, and increasingly is used to stabilize aircraft that otherwise would not be 

stable.  Also, with the increased use of Unmanned Aerial Vehicles (UAVs), the automatic 

flight control system is vital to achieve the required performance.  Traditionally, 

automatic flight control systems have used linearized equations of motion to simplify 

aircraft motion around an equilibrium point.  Linearization methods have been studied 

extensively and are implemented on most modern aircraft (1: Chapter 5).  It is proposed 

to solve the aircraft equations of motions to find the necessary control surface deflections 

to achieve a desired flight path and orientation.  The developed equations are applicable 

to most of the flight envelope and not fixed to the equilibrium point. 

From the time of the Wright brothers, aircraft stability and control has been a 

central concern of aircraft design.  To meet design performance requirements, a balance 

must be achieved between aircraft stability and maneuverability.  Increasingly, modern 
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aircraft are designed to be inherently unstable to meet increased operational demands.  

The F-16 fighter aircraft is unstable in the unaugmented airframe configuration, and 

requires an automatic flight control system to maintain steady flight (2: Class 2).  

Automatic flight control systems have been studied extensively, and many schemes have 

been designed (3: 367, 386). 

The traditional design method for flight control systems is to assume flight at a 

stable equilibrium point with small perturbations from that point.  The aircraft equations 

of motion are linearized, and small angle assumptions are normally made to simplify the 

equations.  This method is generally only valid for a small region and must be 

recalculated if flight conditions change from the equilibrium point.  This requires the 

automatic flight control system to be divided into small regions of applicability (gain 

scheduling).  Changing from one gain region to another may cause discontinuities in the 

equilibrium point and jumps in the commanded control inputs.  Therefore, it is desirable 

to design an automatic flight control system that is applicable for most of the flight 

envelope. 

Overview 

A design is envisioned to solve the required control surface deflection angles from 

the aircraft equations of motion for a desired flight condition.  A design was proposed 

utilizing a nested loop controller to solve the equations of motion (reference 4).  The 

outer-loop dynamics of the aircraft were modeled as a point mass, using nonlinear 

equations of motion.  The flight state variables (velocity (V), glide path angle (γ) and 

course angle (H) change rate) were nondimensionalized and used to describe the desired 

trimmed steady state flight trajectory.  The flight trajectory is defined as the path the 
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aircraft center of gravity travels through the atmosphere.  Additionally, to solve the 

equations either sideslip angle (β) or bank angle (φv) must be specified for the given 

flight condition.  Equations were developed to output angle of attack (α), thrust setting 

(T), sideslip angle, and bank angle from the state variable inputs. 

The remainder of the design was developed and implemented for verification on 

an actual aircraft.  The outer-loop outputs were dimensionalized for the aircraft model 

data.  The results of the outer-loop equations were in the wind axis, which were then 

transformed to the body axis to become the inputs into the inner-loop equations.  The 

inner-loop equations use the calculated α, T, β , φv and specified flight orientation to find 

the required aileron (δa), elevator (δe), and rudder (δr) surface deflection angles.  The 

flight orientation is defined as the aircraft rotation and angular acceleration about the 

center of gravity.  As long as the required deflections are smaller than the deflection 

limits, the desired trimmed flight path can be achieved by commanding the control 

surfaces.  The control laws were implemented using a Learjet-25 model to determine the 

validity of the approach.  Finally, the trim condition parameters were established in flight 

tests to verify the predicted results. 

The remainder of the paper is in the following format.  In Chapter 2, the three 

axes used for the equations of motions (wind axis, navigation axis, and body axis) are 

introduced.  The Learjet-25 aircraft model is also presented and all model parameters are 

listed in Table 1.  Next, the equations previously derived to calculate the outer-loop are 

reviewed and modified to match the defined axes.  The aircraft trim equations for the 

inner-loop dynamics are derived in Chapter 3.  In Chapter 4, selected flight trajectories 

are investigated for trimmed equilibrium flight conditions.  First, straight and level flight 
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is explored.  A wings level climb and wings level descent are then calculated.  Next, 

crabbing flight (sideslip angle not equal to zero) is determined.  Steady, level turn and 

corkscrew turn (climbing and descending) maneuvers are then investigated.  Next, a 

barrel roll maneuver (constantly changing roll angle) is reproduced.  Then the AC-130 

gunship level orbit, firing maneuver is examined.  Finally, a steady pitch-over maneuver 

is modeled.  In Chapter 5, the effect of errors in the stability derivatives are investigated 

by varying the known derivative values ±40% to determine the change in the control 

surface predictions.  Control surface deflection changes greater than 1.0 degree are 

considered to have a significant impact on the equation predictions.  In Chapter 6 the 

predictions from Chapter 4 were validated by flight test data.  Selected trim conditions 

were examined in the flight test program and compared to the theoretically calculated 

values.  Chapter 7 includes the conclusions and recommendations. 
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II.  Model Definition 

 
 

 
Overview 

In Chapter 2, the point mass model is developed to provide a basis for the control 

laws for the trajectory of the aircraft.  The outer-loop equations are found from the 

nonlinear equations of motion and applied to the actual Learjet-25 parameters.  The 

outer-loop model equations are reviewed to provide a basis for the rest of the study.  The 

equations were previously developed (reference 4), but are reviewed for clarity due to the 

need to redefine the reference axes.  The control equations are developed from balancing 

the forces and moments (trimmed flight).  In Chapter 3, the outer-loop equation outputs 

are used with the transformation matrices and the remainder of the equations of motion to 

find the control surface deflections required to achieve the desired flight trajectory and 

orientation.  In Chapter 4, the equations developed in the previous two chapters are used 

to simulate selected flight trajectories.  By choosing the correct input states, the required 

control surface deflections for the desired flight path are found.  The impacts of 

variations in the stability derivatives are investigated in Chapter 5 to determine which 

parameters require the most accuracy.  Finally, in Chapter 6 the theoretical values tested 

using the Learjet-25 in flight tests are compared to the theoretical calculations. 

Axes Definition 

Background information and the aircraft model are now presented.  First, the 

pertinent reference frames are introduced, including the coordinate transformations.  The 
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outer-loop equations are re-derived including the necessary changes for the redefined 

axes.  Finally, the Learjet-25 aerodynamic parameters are provided. 

Three reference frames are used in the development of the control equations: body 

axes, wind axes and the navigation frame.  The body axes are affixed to and move with 

the aircraft.  The body axes parameters are easiest to measure since they remain constant 

with respect to the aircraft.  The wind axes are fixed to the aircraft center of gravity (cg) 

and utilize the free-stream airflow as a reference.  Wind axes reference frames are used 

extensively in analyzing flight mechanics.  The navigation frame is attached to the earth 

and provides an approximate inertial reference frame.  The axes definition and 

relationships between reference frames follow. 

     Body Axes. 

The body axes frame is specified in relation to the structure of the aircraft.  The 

body x-axis (xb) points out of the nose of the aircraft.  The body y-axis (yb) is orthogonal 

to the xb-axis, passing out the right wing, and the body z-axis (zb) completes the right-

handed coordinate system, pointing in a downward direction.  The body axes system is 

defined relative to the North-East-Down (NED) navigation axes frame by specifying the 

3-2-1 Euler angles:  First, the heading angle (ψ) is the rotation about the navigation z-axis 

(zn) to establish the intermediate 1-axes.  Next, the pitch angle (θ) is the rotation about 

the y1-axis to find the intermediate 2-axes.  Finally, the roll angle (φ) is the rotation about 

the x2-axis to produce the body axes.  The rotations and angles are shown in Figure 1.  

The inner-loop calculations are performed in the navigation axes frame. 
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Figure 1.  Navigation-to-Body Axes Transformation 

 

     Navigation Axes. 

The navigation axes provide an approximate inertial reference frame and are used 

for most performance calculations.  In flight mechanics though, the wind axes frame is 

typically used.  The navigation axes are also related to the wind axes by a set of 3-2-1 

Euler angles.  First, the course angle (H) is defined as the rotation about the zn-axis to 

find the intermediate 3-axes.  Next, the flight path angle (γ) is defined as the rotation 

about the y3-axes to find the intermediate 4-axes.  Finally, φv is defined as the rotation 

about the x4-axis to produce the wind axes.  The Euler angles H, γ, and φv are shown in 

Figure 2. 

 

 

Figure 2.  Navigation-to-Wind Axes Transformation 

Y,-V 
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     Wind Axes. 

The outer-loop control model equations use the wind-axes system.  The wind axes 

are defined as the xw-axis pointing along the forward velocity vector of the free-stream 

airflow.  The zw-axis is defined negative along the aircraft lift vector, perpendicular to the 

xw-axis.  The yw-axis is orthogonal to both the xw- and zw-axis, pointing to the right.  The 

relationship between the wind axes and the body axes is found by first rotating the 

aircraft about the zw-axis by the sideslip angle to find the intermediate 5-axes.  The wind 

axes are then defined as the rotation of the angle of attack about the new y5-axis.  The 

rotations and angles are shown in Figure 3. 

 

 

Figure 3.  Wind-to- Body Axes Transformation 

 

Outer-Loop Model Development 

This is the definition of the aerodynamic angles used in this paper.  Unfortunately, 

there is no standard definition of the aerodynamic angles, α and β  (1:62), (5:36 and 88).  

Sideslip angle, β , is normally assumed to be small, so this is not normally a significant 

^'^ 
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issue.  For large angles the correct definition of α and β is important and a rotation order 

must be specified.  Sideslip is chosen as the first rotation angle because in a wind-tunnel, 

the model would normally be first rotated by β, and then α for each test condition.  When 

the aerodynamic angles are small, roll angle, φv, is approximately equal to φ.  The pitch 

angle, θ, is approximately equal to the sum of the angles α and γ.  The yaw angle, ψ, is 

approximately equal to the combined angle of Η and β .  The previous outer-loop study 

(reference 4) had different definitions for the axes, but with the above definitions of the 

axes, existing aircraft performance data could be used without modifications.  The 

previous aircraft equations of motion were altered to reflect the new axes definitions. 

     Background. 

The outer-loop equations were previously derived for a generic fighter aircraft.  

The derivation of the equations of motion is reviewed with the new definition of the 

coordinate axes.  Even though the yb- and zb- axes were rotated 180 degrees, the only 

difference in the equations is the definition of the flight path angle, γ, which is now 

negative with the new definitions.  The side-force (Fy) has the same sign, but now is 

defined as positive to the right.  The forces acting on the aircraft are shown on Figure 4. 
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     Point-Mass Model Definition. 

 

 

Figure 4.  Force Definitions 

 

The aerodynamic forces are 
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The aircraft equations of motion using wind axes are 
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The same assumptions and simplifications of the previous study (reference 4) to 

the equations were applied to find the control variables µ, α, β , and φv as functions of the 

state variables (V, γ and Η).  Details of the calculations are found in Appendix A.  With 

the equations of motion derived, specific trim conditions are then examined.  By 

describing the trimmed flight condition with respect to the state variables, control settings 

were obtained for the trim conditions. 

The stability derivative áDC  was used for the Learjet-25 model.  Often the drag is 

defined as a function of ( 2

áLC α2+ oDC ), but the available model used áDC .  The model 

will not be as accurate as the trim condition gets farther from flight condition where áDC  

was determined since áDC  does not account for the second-order effects of 2

áLC .  Using 

2

áLC  may increase the accuracy away from the point where the stability derivatives were 

calculated. 
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     Straight and Level Flight. 

For trimmed flight, the derivatives of the state variables (V&, ã&, and H&) are set 

equal to zero.  Details of the calculations are found in Appendix A.  Again, one of the 

control variables β  or φv must be chosen for the specified trim condition. 

The trim control law for a specified trim β  is 
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and the trim control law for a specified trim φv is 
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     Steady Turn Flight. 

For steady turning flight, V&and ã& are set equal to zero, but H& is a constant 

specified course change rate, Ψϖ .  Therefore, Η(t) is equal to Ψϖ t.  For a specified trim 

β, the control law is 
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     Steady Rolling Flight. 

For steady rolling flight, V&, H& and ã& are set equal to zero, but the velocity 

vector roll rate vφ& is a constant specified rate, φϖ .  Therefore, φv(t) is equal to φϖ t.  

Again, for a specified φϖ , the trim control law is 
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From equation (12) 
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     Learjet-25 Aeromodel. 

The aircraft model used is the Learjet-25 aircraft operated by Veridian for United 

States Air Force Test Pilot School (TPS).  The aircraft data is listed in Table 1 (reference 

7). 
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Table 1.  Learjet Aircraft Data 

AIRCRAFT PARAMETER VARIABLE VALUE UNITS 
Weight (Standard Fuel Load) W 13,500 lbs 
Wing Area Sw 231.8 ft2 

Wing Span b 39.5 ft 
Mean Aerodynamic Chord c  9 ft 
Vertical Tail Area St 76.5 ft2 

Aircraft Lift-Curve Slope 
áLC  4.967 rad-1 

Aircraft Zero-Lift Coefficient 
oLC  0.0105 ----- 

Lift Coefficient due to Elevator 
eäLC  0.3631 rad-1 

Lift Coefficient due to Pitch Rate 
qLC  37.357 s/rad 

Aircraft Drag Coefficient due to Lift 
DáC  0.1146 rad-1 

Aircraft Zero-Lift Drag Coefficient 
oDC  0.0235 ----- 

Drag Coefficient due to Pitch Rate 
qDC  4.927 s/rad 

Mass Moment of Inertia (xb-axis) Ixx 20,000 slug ft2 
Mass Moment of Inertia (yb-axis) Iyy 22,900 slug ft2 
Mass Moment of Inertia (zb-axis) Izz 40,000 slug ft2 
Product of Inertia (xb- and zb-axes) Ixz 1,980 slug ft2 
Side-Force Coefficient due to Sideslip 

âyC  -0.7620 rad-1 

Side-Force Coefficient due to Rudder 
räyC  0.1423 rad-1 

Side-Force Coefficient due to Aileron 
äayC  -0.0613 rad-1 

Side-Force Coeff. due to Roll Rate 
pyC  8.549 s/rad 

Side-Force Coeff. due to Yaw Rate 
ryC  47.423 s/rad 

Roll Moment Coeff. due to Sideslip 
âl

C  -0.0945 rad-1 

Roll Moment Coeff. due to Rudder 
rälC  0.0198 rad-1 

Roll Moment Coeff. due to Aileron 
äalC  -0.0791 rad-1 

Roll Moment Coeff. due to Roll Rate 
pl

C  -25.573 s/rad 

Roll Moment Coeff. due to Yaw Rate 
rl

C  22.221 s/rad 

Yaw Moment Coeff. due to Sideslip 
ânC  0.0830 rad-1 

Yaw Moment Coeff. due to Aileron 
äanC  -0.0011 rad-1 

Yaw Moment Coeff. due to Rudder 
ränC  -0.0516 rad-1 

Yaw Moment Coeff. due to Roll Rate 
pnC  -3.676 s/rad 

Yaw Moment Coeff. due to Yaw Rate 
rnC  -6.666 s/rad 

          (cont.) 



 16

Table 1. (cont.) 
AIRCRAFT PARAMETER VARIABLE VALUE UNITS 
Pitch Coeff. due to Angle of Attack 

ámC  -0.8921 rad-1 

Pitch Coefficient due Alpha Change  
ámC
&
 -5.615 s/rad 

Zero-Lift Pitch Coefficient 
omC  0.0529 ----- 

Pitch Coefficient due to Pitch Rate 
qmC  -864.347 rad-1 

Pitch Coefficient due to Elevator 
eämC  -0.8434 rad-1 

Maximum Thrust Right Engine 
max1T  5000 lbs 

Maximum Thrust Left Engine 
max2T  5000 lbs 

X-direction Distance c.g. to Thrust xT 0.1 ft 
Y-direction Distance c.g. to Thrust yT 3 ft 
Z-direction Distance c.g. to Thrust zT 0.1 ft 
Engine Thrust Angle 

Tá  0.0 rad 
Maximum Elevator Deflection Angle 

maxeä  0.2618 rad 

Minimum Elevator Deflection Angle 
mineä  -0.2618 rad 

Maximum Aileron Deflection Angle 
maxaä  0.5236 rad 

Minimum Aileron Deflection Angle 
minaä  -0.5236 rad 

Maximum Rudder Deflection Angle 
maxrä  0.6109 rad 

Minimum Rudder Deflection Angle 
minrä  -0.6109 rad 

Sea-level Air Density ρο 2.3769x10-3 slug/ft3 

Universal Gas Constant R  1718 ft lbs/slug Ro  
Sea-level Temperature To 518.69 Ro  
Gravitational Acceleration g 32.174 ft/sec2 

 

Summary 

In this chapter the aircraft model was first described.  New axes definitions were 

presented and the relationships between body, wind and navigation axes were detailed.  

The outer-loop equations of motion were then redefined, to produce new control laws.  

With the new control laws, state variable values were chosen to describe a desired flight 

trajectory, and the resulting control settings were determined.  Therefore, the outer loop 

model uses the state variables (V, γ, and Η) and a specified value for either β  or φv, and 
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outputs the necessary control variables (α, β , φv, and µ).  The inner-loop equations use 

the aircraft state values and the above control settings to determine the aircraft control 

surface deflections (δa, δe, and δr) in the next chapter.  Finally, the Learjet aircraft 

parameters necessary to calculate the inner- and outer-loops were provided. 
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III.  Inner-Loop Analysis 

 
 
 
Overview 

In Chapter 2, the point mass model was developed to provide a basis for the 

control laws for the trajectory of the aircraft.  The outer-loop equations were found from 

the nonlinear equations of motion and applied to the actual Learjet-25 parameters.  In 

Chapter 3, the outer-loop equation outputs are used with the transformation matrices and 

the remainder of the equations of motion to find the control surface deflections required 

to achieve the desired flight trajectory and orientation.  With the outer-loop equations 

developed in the last chapter, the inner-loop equations are established to provide aircraft 

control laws for the Learjet-25.  Selected trim conditions are then examined to determine 

the equations to predict the required control surface deflections.  In Chapter 4, the 

equations developed in the previous two chapters are used to simulate selected flight 

trajectories.  By choosing the correct input states, the required control surface deflections 

for the desired flight path are found.  The impacts of variations in the stability derivatives 

are investigated in Chapter 5 to determine which parameters require the most accuracy.  

Finally, in Chapter 6 the theoretical values tested using the Learjet-25 in flight tests are 

compared to the theoretical calculations. 

Inner-Loop Model Development 

 The inner-loop model uses the trim state variables and the trim control variables 

from Chapter 2 to determine the needed trimmed aircraft control surface deflections.  

First, the navigation axes Euler angles are calculated from the known wind axes using the 
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relevant transformation matrix.  With the Euler angles and the specified angular rotations 

for the desired flight trajectory and orientation, the aircraft’s angular rates resolved in the 

body axes are determined.  Next, with the six-degree-of-freedom aircraft equations of 

motion, a steady-state trim condition was chosen to find the required control surface 

deflections from the known aircraft parameters.  Finally, assumptions were made for the 

aircraft to simplify the control surface deflection equations for the specific trim 

conditions. 

 The body, wind and navigation axes were defined in Chapter 2, with the required 

rotation angles to translate between coordinate systems.  The angles (α, β , φv, γ, and Η) 

are used in the outer-loop.  The inner-loop equations use the Euler angles (ψ, θ, and φ).  

The relevant axes conversion matrix is used to determine the Euler angles. 

     Navigation Axes Rotation. 

First, the navigation-to-body axes conversion matrix was determined using Figure 

1.  The following three rotations define the axes rotations 
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The coordinate transformation matrix is given by 
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     Wind Axes Rotation. 

The wind-to-body axes rotations are shown in Figure 2.  The following two 

transformations define the axes rotations 

 

    














 −
=

100

0âcosâsin

0âsinâcos

Câ  

    
















−
=

ácos0ásin

010

ásin0ácos

Cá  

where the transformation matrix is 

áâ
w
b CCC ⋅=  

















−

−
=

ácos0ásin

ásinâsinâcosásinâcos
ácosâsinâsinácosâcos

  (19) 

 

 

 



 21

     Wind to Navigation Axes Rotation. 

The wind-to-navigation axes rotations are shown in Figure 3.  The following three 

transformations define the axes rotation 

 















 −
=

100

0HcosHsin

0HsinHcos

CH  

















−
=

ãcos0ãsin

010

ãsin0ãcos

Cã  
















−=

vv

vv

cossin0

sincos0

001

C
v

φφ
φφφ  

where the transformation matrix is 

v
CCCC ãH

n
w φ⋅⋅=  

















−
−+
+−

=
ãcoscosãcossinãsin

HcossinãsinHsincosHcoscosãsinHsinsinãsinHcos
HsinsinãcosHsincosHsincosãcosHsinsinãcosHcos

C

vv

vvvv

vvvv
n
w

φφ
φφφφ
φφφφ

 (24) 

 

     Combined Rotations. 

Now the combined wind and body axes rotation is given by 

 

w
b

n
w

n
b CCC ⋅=          (25) 
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
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




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





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Ψ−ΨΨ+ΨΨ
Ψ+ΨΨ−ΨΨ

ècoscosècossinèsin
cossinèsinsincoscoscosèsinsinsinèsincos
sinsinècossincossincosècossinsinècoscos

φφ
φφφφ
φφφφ

 =  

⋅
















−
−+
+−

=
ãcoscosãcossinãsin

HcossinãsinHsincosHcoscosãsinHsinsinãsinHcos
HsinsinãcosHsincosHsincosãcosHsinsinãcosHcos

vv

vvvv

vvvv

φφ
φφφφ
φφφφ

 =
















−

−

ácos0ásin
ásinâsinâcosásinâcos
ácosâsinâsinácosâcos

















333231

232221

131211
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where 

ásin)HsinsinHcosãsin(cos       

âsinácos)HsincosHcosãsin(sinâcosácosHcosãcosc

vv

vv11

φφ
φφ

+−
+−+=

âcos)HsincosHcosãsin(sinâsinHcosãcosc vv12 φφ −+−=

ácos)HsinsinHcosãsin(cos      

âsinásin)HsincosHcosãsin(sinâcosásinHcosãcosc

vv

vv13

φφ
φφ

++
+−+=

ásin)HcossinHsinãsin(cos       

âsinácos)HcoscosãsinHsin(sinâcosácosãsinHcosc

vv

vv21

φφ
φφ

−−
+++=

âcos)HcoscosãsinHsin(sinâsinãsinHcosc vv22 φφ ++−=

ácos)HcossinHsinãsin(cos       

âsinásin)HcoscosãsinHsin(sinâcosásinãsinHcosc

vv

vv23

φφ
φφ

−+
+++=

                                                       ásinãcoscosâsinácosãcossinâcosácosãsinc vv31 φφ −+−=
                                                                                                              âcosãcossinâsinãsinc v32 φ+=

ácosãcoscosâsinãsinácossinâcosásinãsinc vv33 φφ ++−=  

 

     Navigation Angle Determination. 

From the above matrix equations, the navigation axes angles were determined.  

Equations for both the sine and cosine of the angles were determined to resolve the 

quadrant of the angle.  For an angle between 0 and 
2
ð

 both sine and cosine values are 



 23

positive.  For positive sine values and negative cosine values, the angle is between 
2
ð

 and 

2
3ð

.   In the third quadrant (0 to -
2
ð

), sine values are negative and cosine values are 

positive.  For an angle between -
2
ð

 and -
2

3ð
 both sine and cosine values are negative.  

The navigation axes angles were found by solving the following equations.  Setting 

individual elements of the transformation matrix equal 

The first row, first column terms of both matrices are 

    11ccosècos =Ψ  

The second row, first column terms of both matrices are 

    21csinècos =Ψ  

Squaring both equations and adding them together 

2
21

2
11

2222 ccsinècoscosècos +=Ψ+Ψ  

which with 1sincos 22 =Ψ+Ψ  yields 

 

2
21

2
11 ccècos +=     (26) 

 

From the third row, the first column terms are 

 

31cèsin −=      (27) 
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From the first row, first column terms 

 

          
2

21
2

11

1111

cc

c
ècos

ccos
+

==Ψ    (28) 

 

From the second row, first column terms 

 

           
2

21
2

11

2121

cc

c
ècos

csin
+

==Ψ    (29) 

 

From the third row, third column terms 

 

             
2

21
2

11

3333

cc

c
ècos

ccos
+

==φ    (30) 

 

From the third row, second column terms 

 

2
21

2
11

3232

cc

c
ècos

csin
+

==φ    (31) 

 

Trim Condition Definitions 

Therefore, two expressions were found for each of the navigation axes angles, ψ, 

θ, and φ, as functions of the wind axes variables.  Specific trim conditions are then 
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examined, to determine simplified control laws.  The equations are not defined at θ = 90°, 

therefore the flight with the nose straight up is not allowed. 

Trim condition 1 corresponds to steady, straight and level flight.  A straight and 

steady climb is described by trim condition 2.  Trim condition 3, a straight and steady 

descent, is the opposite of trim condition 2.  In trim condition 4, level crabbing flight is 

examined.  Trim condition 5 is a steady level turn at a constant angular rate.  Next, a 

steady climbing turn is defined in trim condition 6.  Trim condition 7 is a steady 

descending turn, the opposite of trim condition 6.  Trim condition 8 corresponds to a 

barrel roll.  Next, trim condition 9 describes a steady turn orbit with a weapon pointing at 

a stationary target.  Finally, trim condition 10 defines a steady level pitch-over.  

Equations for each trim condition are now developed. 

     Trim Condition 1. 

Trim condition 1, steady, straight and level flight is defined as γ = φv = H = 0°.  

The pitch angle, θ, is therefore equal to the angle of attack, α.  The φv is zero and the 

heading angle, H, is equal to the sideslip angle, β .  Sideslip angle is assumed to be zero 

for trim condition 1, so H is also zero.  The Euler angles are therefore reduced to 

 

  θ = α 

 φ = 0°    (32) 

ψ = 0° 
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     Trim Condition 2. 

 

 

Figure 5.  Aircraft Climb Definition 

 

A straight and steady climb, trim condition 2, is obtained when φv = H = 0° and γ 

is specified greater than zero.  From equations (26) and (27) θ is a function of α, β  and γ, 

but β is assumed to be zero.  From equations (28), (29), (30) and (31) φv is zero since β  is 

zero and ψ is also zero.  The Euler angles then simplified to 

 

sin θ = sin γ cos α + cos γ sin α 

cos θ = cos γ cos α – sin γ sin α 

           φ = 0°    (33) 

        cos ψ = 1 

         sin ψ = 0 

          ψ = 0° 

 

     Trim Condition 3. 

Trim condition 3, a straight and steady descent, is φv = H = 0° and γ < 0°.  The 

equations are identical to trim condition 2, (Equations 33), but the quadrant check is 

necessary to find the correct θ angle. 
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     Trim Condition 4. 

 

 

Figure 6.  Aircraft Crabbing Flight Definition 

 

A non-zero sideslip angle, crabbing flight, is described in trim condition 4.  

Trimmed crabbing flight is defined by γ = H = 0° and β  ≠  0°.  The angle φv is 

determined from the outer loop equations for the specified β .  The Euler angles are found 

from equations (26) – (31) and are given by 

 

  sin θ = cos φv sin α  - sin φv cos α sin β  

 cos θ = 2
21

2
11 cc +  = ( ) ( )2

vv
2 ásinsinâsinácoscosâcosácos φφ ++  
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sin φ = 
è cos

c32  = 
ècos

â cossin vφ  

cos φ = 
è cos

c33  = 
ècos

ácoscosâsinásinsin vv φφ +   (34) 

    sin ψ = 
è cos

c21  = 
ècos

sin á sinâsiná coscos vv φφ +
 

cos ψ = 
è cos

c11  = 
ècos

âcosá cos
 

 

     Trim Condition 5. 

 

 

Figure 7.  Aircraft Steady Turn Definition 

 

Trim condition 5, a steady, level turn, is defined as γ = 0° and H(t) = Øϖ t.  Either 

β  or φv is specified for the required turn, and the unspecified angle is determined by the 

outer-loop equations.  The general equations for a turn are found first, and then 

simplifying assumptions are made.  The Euler angles are 

 

 sin θ = cos φv sin α  - sin φv cos α sin β  

  cos θ = 2
21

2
11 cc

ΨΨ
+  
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sin φ = 
è cos

c32  = 
ècos

â cossin vφ  

           cos φ = 
è cos

c33  = 
ècos

ácoscosâsinásinsin vv φφ +  (35) 

              sin ψ(t)  = 
è cos

c21Ψ   

         cos ψ(t)  = 
è cos

c11Ψ   

where the rotation matrix elements are given by 

( ) ( ) ( ) ásintsinsinâsinácostsincosâcosácostcosc vv11 ΨΨΨ −−=
Ψ

ϖφϖφϖ  

( ) ( ) ( ) ásintcossinâsinácostcoscosâcosácostsinc vv21 ΨΨΨ ++=
Ψ

ϖφϖφϖ  

 

If the aircraft is assumed to have no sideslip in the turn (β  = 0°), the equations 

simplify to the following 

 

      sin θ = cos φv sin α   

     cos θ = ásinsinácos 2
v

22 φ+  

sin φ = 
ècos

sin vφ  

     cos φ  = 
ècos

ácoscos vφ    (35a) 

        sin ψ(t)  = 
( ) ( )

ècos
ásintcossinácostsin v ΨΨ + ϖφϖ

 

  cos ψ(t)  = 
( ) ( )

ècos
ásintsinsinácostcos v ΨΨ − ϖφϖ
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If the aircraft is assumed to have no bank angle relative to the velocity in the turn 

(φv = 0°), the equations simplify to the following for the Euler angles 

 

θ = α 

  φ = 0°    (35b) 

               ψ(t) = ât +Ψϖ  

 

     Trim Condition 6. 

 

 

Figure 8.  Aircraft Climbing Turn Definition 

 

Trim condition 6, a steady climbing turn, is defined as γ > 0° and H(t) = Øϖ t.  

Either β  or φv is specified for the required turn, and the unspecified angle is determined 

by the outer-loop equations.  The general equations for a turn are found first, and then 

simplifying assumptions are made.  The Euler angles are 
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sin θ = ásinãcoscosâsinácosãcossin-âcosácosãsin vv φφ +  

     cos θ = 2
21

2
11 cc +   (where H(t) = Øϖ t) 

      sin φ = 
è cos

c32   (where H(t) = Øϖ t) 

     cos φ = 
è cos

c33   (where H(t) = Øϖ t)    (36) 

sin ψ(t)  = 
è cos

c21   (where H(t) = Øϖ t) 

      cos ψ(t)  = 
è cos

c11   (where H(t) = Øϖ t) 

 

If the aircraft is assumed to have no sideslip in the turn (β  = 0°), the equations 

simplify to the following 

 

     sin θ = ásinãcoscosácosãsin vφ+  

     sin φ = 
ècos

ãcossin vφ     (36a) 

 sin ψ(t)  = 
( ) ( ) ( )

ècos
ásin]tcossintãsinsin[cosácostsinãcos vØv ΨΨ −− ϖφϖφϖ

 

 

If the aircraft is assumed to have no bank angle relative to the velocity in the turn 

(φv = 0°), the equations simplify to the following 
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     sin θ = ásinãcosâ cos ácosãsin +  

     sin φ = 
ècos

ãsinâsin     (36b) 

 sin ψ(t)  =  

    
( ) ( ) ( )

ècos
ásintãsinsincosâcosácostcoscoscosâ ácostsinãcos ØvØv ϖφϖφϖ −+Ψ  

 

     Trim Condition 7. 

Trim condition 7, a steady descending turn, is defined as γ < 0° and H(t) = Øϖ t.  

The equations are identical to trim condition 6, (Equations 36), but a quadrant check is 

necessary to find the correct θ, φ and ψ(t) angles. 

     Trim Condition 8. 

 

 

Figure 9.  Aircraft Barrel Roll Definition 
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Trim condition 8, a steady barrel roll, is defined as β = Η = 0° and φv(t) = 
vφϖ t.  

The angle, γ, must also be specified.  The Euler angles are 

 

 sin θ(t) = ( ) ásinãcostcosâcosácosãsin
vφϖ+  

cos θ(t) = 2
21

2
11 cc +  = 

         ( ) ( ) ( )[ ] ( )[ ]222 ásintsinãsinásintcosãsintcosácosãcos2ácosãcos
vvv φφφ ϖϖϖ ++−  

sin φ(t) = 
è cos

c32  = 
( )

ècos

ãcostsin
vφϖ

 

cos φ(t) = 
è cos

c33  = 
( )

ècos

ácosãcostcosásinãsin
vφϖ+

    (37) 

sin ψ(t)  = 
è cos

c21  = 
( )

ècos

ásintsin
vφϖ

 

cos ψ(t)  = 
è cos

c11  = 
ècos

ásinãsin)tcos(ácosãcos
vφϖ−
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     Trim Condition 9. 

 

 

Figure 10.  AC-130 Gunship Maneuver Definition 

 

Trim condition 9, a steady level turn with a gun pointed out the side of the aircraft 

at a stationary target, is defined by γ = 0° and H(t) = Ψϖ t.  The aircraft height (h) above 

the ground is a function of V, n (load factor), and ε (gun elevation angle).  Sideslip is 

assumed to be zero (β  = 0°), producing the same equations as a level turn, (Equations 

35a).  From Figure 10, the radius (rt) of the orbit is defined by the aircraft velocity and 

load factor.  The bank angle is a function of the load factor.  The aircraft height above the 

ground is a function of orbit radius, bank angle, and weapon depression angle. 

 

1ng

V
r

2

2

t
−

=  






=

n
1

arccosvφ  

     ( )εφ += vt tanrh  
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The three equations were solved together to form an expression for aircraft height 

(Equation 38).  Sample calculations are shown in Appendix A.  The equations combine to 

form 

      
g

V

tan1n1

tan
1n

1
1

h
2

2

2

ε

ε

−−
−

+
=    (38) 

 

Therefore, the required aircraft height above the target is only a function of 

airspeed, load factor, and weapon depression angle.  If the weapon depression angle is 

reduced to zero, the required aircraft height equation reduces to h = V2/g.  To increase the 

height above the ground, the weapon depression angle must be increased.  If ε is assumed 

to be a non-zero positive number, the maximum height is found by differentiating 

equation (38) and setting it equal to zero.  Simplifying the equation results in nhmax= 2 .  

Substituting the load factor for maximum height produces equations (39) for the 

maximum height above the target, maximum bank angle and radius. 

 

          
g

V
tan1
tan1

h
2

max ε
ε

−
+=  

       φ
maxv = 45°    (39) 

g
V

r
2

tmax
=  
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The hmax equation (39) is undefined at ε = 45°, therefore the maximum height 

above the target occurs as ε approaches 45° with a bank angle of 45° or essentially 

pointing straight down. 

     Trim Condition 10. 

 

 

Figure 11.  Aircraft Pitch-over Definition 

 

 Trim condition 10, a level flight pitch over, is a subset of trim condition 1 

( 0HãV === &&& °).  This maneuver is envisioned for use at pointing a fixed line-of-sight 

weapon from the bottom of the aircraft at a stationary target.  The pitch change rate, ωθ, 

is a function of aircraft velocity and rθ.  Therefore rθ = V/ωθ to point at a stationary target 

below the aircraft. 

Aircraft Rotation Rate Determination 

With the Euler angles in the navigation frame, the aircraft angular change rates 

resolved in the body axes are then determined.  Steady level flight ( 0HãV === &&& °), is a 
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subset of a steady turn ( 0H;0ãV ≠°== &&& °).  The inner-loop equations are solved for a 

steady turn.  From the Euler equation (1: Chapter 2). 
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For the aircraft in a steady level pitch over, the equations become 
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For the aircraft in a steady roll, the equations become 
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Control Surface Deflection Determination 

The six-degree-of-freedom equations of motion are used to find the aircraft 

control surface deflections from the equations previously determined.  Figure 12 shows 

the definition of moments and forces. 
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     Moment Model Definition. 

 

 

Figure 12.  Three Dimensional Aircraft Moments and Forces 

 

 The thrust term, T, from the outer loop model was divided into two terms, T1 and 

T2.  T1 is the thrust from the right side engine, while T2 is the thrust from the left side 

engine.  The three moment of inertia equations of motion are (1: Chapter 2) 

  

    NcLcP)QcR(cP 4321 +++=&    (43) 

    Mc)R(PcPRcQ 7
22

65 +−−=&    (44) 

    NcLcR)QcP(cR 9428 ++−=&    (45) 
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     Roll Moment Definition. 

The roll moment, L , is defined as all moments about the xn-axis.  L  is composed 

of the following terms 

 

  L P = bqPC
Pl

⋅  (Roll moment due to aircraft roll rate) 
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  L R = bqRC
rl

⋅  (Roll moment due to aircraft roll yaw) 

L β = bqâC
âl ⋅  (Roll moment due to aircraft sideslip angle) 

aäL = bqäC al aä
⋅  (Roll moment due to aircraft aileron deflection) 

räL = bqäC rl rä
⋅  (Roll moment due to aircraft rudder deflection) 

)T(TsináyL 12TTT −=  (Roll moment due to asymmetrical trust) 

 

     Pitch Moment Definition. 

The pitch moment, M, is defined as all moments about the yn-axis.  M is 

composed of the following terms 

 

Mo = cqC
om  (Equilibrium pitch moment) 

Mα = cqáC
ám ⋅  (Pitch moment due to aircraft angle of attack) 

áM& = cqáC
ám ⋅&
&

 (Pitch moment due to the change in aircraft angle of attack) 

MQ = cqQC
qm ⋅  (Pitch moment due to aircraft pitch rate) 

eäM  = cqäC em eä
⋅  (Pitch moment due to aircraft elevator deflection) 

)T)(Tsin áxcosá(zM 21TTTTT ++=  (Pitch moment due to thrust) 

 

     Yaw Moment Definition. 

The yaw moment, N, is defined as all moments about the zn-axis.  N is composed 

of the following terms 
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  NP = bqPC
Pn ⋅  (Yaw moment due to aircraft roll rate) 

  NR = bqRC
rn ⋅  (Yaw moment due to aircraft roll yaw) 

Nβ = bqâC
ân ⋅  (Yaw moment due to aircraft sideslip angle) 

aäN = bqäC an aä
⋅  (Yaw moment due to aircraft aileron deflection) 

räN = bqäC rn rä
⋅  (Yaw moment due to aircraft rudder deflection) 

)T(TcosáyN 12TTT −=  (Yaw moment due to asymmetrical trust) 

 

     Control Surface Deflection Equations. 

With moment equations of motion, aircraft trim conditions are determined.  In the 

most general trim condition, all three angular accelerations ( R and ,Q ,P &&& ) were set to 

zero.  With the appropriate variable substitutions, the equations of motion (43)-(45) are 
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(48) 
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Solving equations (46) and (48) for δa and δr results in the following matrix 
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where 
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which simplifies to 
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Solving equation (47) for δe 
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 If it is assumed that the thrust is the same from both engines (T1=T2), Equation 

(50) simplifies to the lateral-direction equations 
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where 
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The longitudinal equation (50) is not simplified by this assumption, since both engines 

thrust produce the same longitudinal moment. 

Summary 

In this chapter, inner-loop equations were developed to solve the control surface 

deflections, from a given set of control variables and state variables.  For a desired 

trajectory and orientation the state variables were determined and the outer-loop 

equations were used to solve the required control variables.  The equations developed in 

this chapter used the values from the outer-loop and the desired angular acceleration 

values in an inner-loop system to determine the required control surface deflections.  

Therefore, by choosing the variables oh , ã , 
oV

V , ( vφ  or â ), Η, èϖ , Øϖ , φϖ and T1 to 

describe the flight path, the required aircraft settings are found.  Now that the equations 

were developed, specific flight paths and orientations are examined and control surface 

deflections calculated in the next chapter. 
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IV.  Aircraft Flight Trajectories 

 
 
 
Overview 

In Chapter 2, the point mass model was developed to provide a basis for the 

control laws for the trajectory of the aircraft.  The outer-loop equations were found from 

the nonlinear equations of motion and applied to the actual Learjet-25 parameters.  In 

Chapter 3, the outer-loop equation outputs were used with the transformation matrices 

and the remainder of the equations of motion to find the control surface deflections 

required to achieve the desired flight trajectory and orientation.  In Chapter 4, the 

equations developed in the previous two chapters are used to simulate selected flight 

trajectories.  By choosing the correct input states, the required control surface deflections 

for the desired flight path are found.  Selected aircraft flight trajectories are examined 

using the control laws developed in the last two chapters.  By choosing the correct input 

states, the desired flight path and orientation for the Learjet-25 is determined.  The 

impacts of variations in the stability derivatives are investigated in Chapter 5 to 

determine which parameters require the most accuracy.  Finally, in Chapter 6 the 

theoretical values tested using the Learjet-25 in flight tests are compared to the 

theoretical calculations. 

 The control laws are developed to provide an automatic control system for the 

aircraft.  The goal was to provide simple inputs, to produce the necessary performance 

from the aircraft.  A Matlab® routine was developed, using the aircraft control laws, to 
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solve the equations from the state variable inputs.  The Matlab® commands are shown in 

the Appendix B. 

Trim Condition Investigation 

In this chapter, input state variable scenarios are examined to determine the 

predicted aircraft behavior.  The results are compared to the equations from Chapter 3.  

Each of the trim conditions is solved for the required control surface deflections.  The 

most basic case examined is trimmed steady, level flight on a straight trajectory, trim 

condition 1.  Next, trim conditions 2 and 3, climbs and descents, are explored by varying 

the aircraft flight path angle.  Aircraft crabbing (trim condition 4), flight with non-zero 

sideslip, is investigated by varying β  and the resulting φv.  Then the different definitions 

of a steady-level turn are examined by solving the variations of trim condition 5.  Next, 

trim conditions 6 and 7, trimmed climbing and descending turns, are examined.  The 

barrel roll, trim condition 8, is examined by setting the change in roll angle equal to a 

constant.  Next, the special case of the AC-130 gunship flight maneuver (trim condition 

9) is studied.  The flight trajectory is defined by a steady, level turn with the gun barrel 

pointing out the side of the aircraft pointing at a stationary target.  Trim condition 10, a 

constant rate pitch over, is the last trimmed flight maneuver evaluated.  Each trim 

condition maneuver are now detailed. 

     Trim Condition 1 Investigation. 

 The first flight condition examined was the most basic trimmed condition:  level 

flight with no turning.  All the input states, H and ,è ,  ,ã , â, vv
&&&φφ , are set equal to zero.  

First the validity of the equations over the operational envelope was investigated.  After 

finding the trimmed steady, level flight condition, the remaining flight input parameters 
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were varied to show the affect on the control surface deflection values.  The altitude was 

varied between 9,000 and 20,000 feet (ft), to determine the effect on the trimmed flight 

condition.  By changing the altitude, the standard atmosphere density and temperature 

changes, which affects the amount of elevator deflection (δe) and thrust (T) required from 

the engines.  Next, the influence of aircraft weight on T and δe was investigated by 

varying the aircraft gross weight.  The airspeed effects were then examined by varying 

the aircraft velocity from the equilibrium value.  Finally, asymmetrical thrust was 

analyzed by varying the amount of thrust from the right engine at the trimmed steady 

level-flight condition.  Asymmetrical thrust could be used as a control input to create 

yawing moments about the center of gravity. 

A center test point flight condition was chosen to standardize the flight 

parameters.  A standard aerospace atmosphere and constant gravitational acceleration 

were chosen to perform all the calculations since simplified models exist and are 

typically used to allow comparisons between test conditions.  The aircraft derivatives 

were assumed valid from 9,000 to 20,000 ft, the standard test altitude was chosen as 

15,000 ft.  Standard atmosphere equations were used to calculate the corresponding 

density and temperature for the selected altitude.  Also, the derivatives were assumed 

applicable for aircraft velocities between 237 knots indicated airspeed (KIAS) and 326 

KIAS.  Therefore 267 KIAS (approximately 450 feet per second) was chosen as the 

standard test velocity.  The center test point operating weight for the Learjet-25 was 

chosen to be 13,500 pounds (lbs). 

 The control law equations were solved at the center test point conditions.  The 

rudder, δr, and aileron deflections, δa, are zero, since the aircraft does not produce lateral-
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directional moments in steady level flight.  The required elevator deflection, δe, was -0.02 

radians (rad) or -1.17 degrees (deg), for level flight at the center test point condition.  It 

was found that the aircraft nose must point up slightly to maintain level flight, so the 

angle of attack, α, and the pitch angle, θ, were both 0.0782 rad (4.48°).  The angles α and 

θ are the same since all other aircraft angles are zero.  These values match the equations 

(32) found in Chapter 3.  For steady level flight at the standard test condition, the aircraft 

required 1,053 lbs of thrust.  The angular velocities ( R and Q, P, ,H ,è , ,á v
&&&&φ ) and 

accelerations ( R and ,Q ,P &&& ), and aircraft angles ( H and , ,ã â, vφ ) were all zero.  This 

flight condition is used as the baseline for comparison for the remainder of the flight 

scenarios examined.  The first flight parameter explored is the altitude effect. 

          Altitude Effect Investigation. 
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Figure 13.  Elevator Control Surface Deflection (δe) and Angle of Attack (α) 

verses Altitude (h) 
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 The control law equations were solved for various altitudes over the applicable 

envelope.  Changing the altitude affects the required thrust of the aircraft.  The higher the 

altitude, the lower the temperature and air density, which lowers the required thrust.  

Therefore, the only parameters that changed were α, θ, T, and the required δe.  θ was 

equal to α at all points.  Figure 13 shows the relationship between altitude and the 

required δe and the aircraft angle of attack, α.  The required elevator deflection varied up 

to 2.38° over the range of valid altitudes.  A nearly linear relationship was observed, with 

-0.22° of δe required for every 1,000 ft increase in altitude.  A similar relationship was 

observed for α, with a 0.21° increase in α, for every 1,000 ft increase in altitude.  The 

required thrust was also varied over the altitude envelope. 
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Figure 14.  Thrust (Τ) verses Altitude (h) 
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 The linear relationship between altitude and required thrust is shown in Figure14.  

Changing altitude had a moderate effect on the thrust, with a 350 lbs difference between 

the top and the bottom of the altitude envelope.  For each 1,000 ft increase in altitude, 

32.4 lbs less of thrust was required to maintain trimmed flight.  This result was expected 

since the lower density at a higher altitude reduces the drag, which reduces the required 

thrust. 

          Weight Effect Investigation. 
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Figure 15.  Elevator Control Surface Deflection (δe) and Angle of Attack (α) 

verses Aircraft Weight (W) 

 

After examining the effect of altitude on the trim condition, the aircraft gross 

weight was varied around the center weight of 13,500 lbs to find the impact on the 

control settings.  The aircraft weight range was chosen between 12,000 and 15,000 lbs.  

The results are shown in Figure 15.  Changing the aircraft weight changed the amount of 
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lift required, which was directly related to α.  The elevator angle was varied by changing 

α.  Therefore, the heavier the aircraft, the more negative δe and positive α  required for 

trimmed level flight.  The slope of the weight line was greater than for the altitude study: 

a 1,000 lbs increase in weight requires a 0.34° decrease in the elevator deflection angle.  

A similar relationship was found in the α, a 1,000 lbs increase in weight requires a 0.32° 

increase in angle of attack. 
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Figure 16.  Thrust (Τ) verses Aircraft Weight (W) 

 

Again a linear relationship was noted for thrust over the weight flight envelope 

(see Figure 16).  Weight changes have a limited impact on the required thrust of the 

Learjet-25.  A 1,000 lbs increase in weight results in only a 23.1 lbs increase in thrust.  

The variation was caused by the increased weight, which increased the required α to 
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produce more lift, which increased drag.  Now that the effect of changing the aircraft 

weight is known, changes in velocity are presented. 

 

          Velocity Effect Investigation. 
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Figure 17.  Elevator Control Surface Deflection (δe) and Angle of Attack (α) 

verses Aircraft Velocity (V) 

 

 The next steady level flight parameter examined was the affect of a change in 

velocity from the equilibrium velocity of 450 feet per second (ft/s).  The test points were 

chosen over the assumed valid range for the aircraft derivatives, from 237 KIAS (400 

ft/s) to 326 KIAS (550 ft/s).  To achieve the velocity change, while maintaining steady 

flight, the trimmed thrust setting was changed to vary velocity.  This resulted in a change 

in α, and the required δe.  The rest of the control variables were not affected.  The results 

are shown in Figure 17.  Second-order relationships with velocity were seen for both δe 
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and α.  As the velocity was changed from 400 ft/s to the upper limit of 550 ft/s, the 

required δe was increased 2.89° and α was decreased 2.73°.  Therefore, increasing the 

airspeed required a smaller negative δe to maintain trimmed level flight, with a 

corresponding decrease in α. 

 

Straight and Level Velocity Effects

800

900

1000

1100

1200

1300

1400

400 450 500 550Velocity (ft./sec.)

T
h

ru
st

 (
lb

s.
)

Thrust (lbs.)

 

Figure 18.  Thrust (T) verses Aircraft Velocity (V) 

 

 Changing the velocity from the steady state value had a moderate impact on the 

required aircraft thrust, as shown in Figure 18.  The parameters have a linear relationship 

with a slope of 3.2 lbs of thrust per ft/s.  When increasing the airspeed from the lower 

limit of 400 ft/s to the upper limit of 550 ft/s, 478 lbs more thrust was required.  The 

result was expected, since higher velocity results in more drag requiring more thrust.  The 

first three parameters affected the longitudinal stability of the aircraft; next a lateral-

direction parameter will be presented. 
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          Asymmetrical Thrust Effect Investigation. 
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Figure 19.  Aileron Surface Deflection (δa) and Rudder Surface Deflection (δr) 

verses Percent of Right Engine Thrust 

 

 The Learjet has two engines, on each side of the center of gravity.  If the thrust 

from each engine is not the same, roll and yaw moments will be created about the center 

of gravity.  Asymmetrical thrust was examined by calculating the percentage of thrust out 

of the right engine.  An input of 100%, represents all the thrust was from the right engine, 

with 0% from the left engine.  For most calculations in this study it was assumed that 

50% of the trust was from each engine.  The pitch control variables (δe and α) were not 

changed with a thrust asymmetry since the longitudinal forces and moments remained 

constant.  To maintain steady level flight, with asymmetrical thrust, the aileron (δa) and 

rudder (δr) were deflected.  Figure 19 reproduces the relationship between asymmetrical 

thrust and the required lateral control surface deflections.  Linear relationships were 
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observed for both control surfaces.  For a one percent increase in thrust from the right 

engine over the left engine, a 0.01° decrease in δa and a 0.05° decrease in δr were 

required.  Thus, if 60% of the total thrust was from the right engine (a 10% increase), δa 

must be decreased 0.13° and δr decreased 0.53° from the symmetrical test condition.  

Now that steady level flight has been examined, some other simple trimmed flight 

maneuvers will be studied. 

     Trim Conditions 2 and 3 Investigation. 

 The next aircraft maneuvers examined were straight and steady trimmed climbs 

and descents.  The aircraft was assumed to remain in the same orientation, so the angular 

rotations and accelerations, H and ,è , ,R ,Q ,P R, Q, P, v
&&&&&& φ , were all still zero.  Initially the 

maneuver was limited to the longitudinal plane, so that H and , â, vφ were also zero.  A 

steady change in altitude was achieved by setting the flight path angle, γ, equal to a non-

zero value and solving the control law equations for trimmed flight. 
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Figure 20.  Elevator Surface Deflection (δe), Angle of Attack (α) and Pitch Angle 

(θ) verses Flight Path Angle (γ) 
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 From steady straight and level flight, the aircraft maneuver examined was a 

change in altitude by a trimmed climb or descent.  The input parameter, γ, was varied 

while the rest of the input parameters were unchanged.  The climb angle was varied until 

the upper and lower limits of the available thrust were found.  The required angle of 

attack and pitch angle were also calculated.  The maneuver was limited to the 

longitudinal plane; therefore δa and δr remained zero.  The graph of θ, δe and α are shown 

in Figure 20.  Angle of attack and elevator deflection remain nearly constant for all γ.  

The pitch angle was linearly related to γ with a 1.0° change in γ resulting in the same 

change in θ. 
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Figure 21.  Thrust (T) verses Flight Path Angle (γ) 

 

The rate of climb is directly related to the amount of required thrust.  Flight path 

angle and thrust are shown in Figure 21.  Gamma and thrust are a non-linear function of 

sine and cosine, which flatten out near γ=0°, and increase as γ increases.  Small changes 
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in flight path angle produce a large change in required thrust, especially the further from 

level flight.  The rate of climb, and associated flight path angle, require more thrust as γ 

increases.  Also for a trimmed descent, little to no thrust is required.  The lower limit of γ 

corresponds to zero thrust required to remain trimmed.  Next a lateral-directional trim 

condition was investigated, during crabbing flight. 

     Trim Condition 4 Investigation. 

 Level crabbing flight with a non-zero sideslip angle was examined in trim 

condition 4.  The aircraft was assumed to be in level flight, with a constant heading.  The 

forces and moments were balanced, therefore H and ,è , ,R ,Q ,P R, Q, P, v
&&&&&& φ  were all zero.  

The angles H and γ  were also set equal to zero.  The value of β  began at zero and was 

increased in magnitude in both the positive and negative directions until a limit was 

reached.  Since β  was specified, φv was determined from the outer-loop equations to 

balance the forces and moments.  The Learjet-25 had a ±10° β  limit, which was the 

limiting factor in the sideslip investigation.  The longitudinal parameters T, α, θ, and δe 

were essentially constant for the entire range of β  examined. 
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Sideslip Angle Effects
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Figure 22.  Aileron Surface Deflection (δa), Rudder Surface Deflection (δr) and 

Bank Angle (φ) verses Sideslip Angle (β) 

 

 In straight and level flight, β  was varied to the limits, while the rest of the input 

variables were held constant.  The lateral-directional parameters were calculated and 

plotted in Figure 22.  Aileron deflection was inversely proportional to the sideslip angle, 

with a 0.79° decrease in δa for every 1.0° increase in β .  Conversely, δr increased as β  

increased, with a 1.63° increase in δr for each 1.0° increase in sideslip angle.  Finally, 

bank angle was linearly related to β .  A 0.70° increase in φ corresponded to a 1.0° 

increase in β .  Next, another lateral-directional trim condition, a steady, level turn, was 

investigated. 

     Trim Condition 5 Investigation. 

 Level turns were investigated by varying bank angle and sideslip angle.  The 

aircraft was assumed to be in level flight with a constantly changing heading, H = Øϖ t, a 

function of time.  The φv and β  were determined by specifying one variable and 
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calculating the other by the outer-loop equations.  The control surface deflections are 

constant with respect to time.  In Figure 23, φv was specified.  For trim condition 5, γ was 

also set equal to zero.  The parameters T, α, θ and δe did not change significantly when φv 

was varied.  The limiting factor was the maximum δr.  The bank angle was varied both 

directions until the rudder limit was exceeded. 
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Figure 23.  Level Flight Aileron Surface Deflection (δa), Rudder Surface     

Deflection (δr) and Sideslip Angle (β) vs. Bank Angle (φv) 

 

 From Figure 23, there was a linear relationship between φv and δa, δr, and β .  

Aileron deflection was inversely proportional to φv, with a 1.0° increase in bank angle 

decreasing δa by 1.38°.  On the other hand, when φv was increased 1.0°, δr increased 

2.85°.  Finally, the slope of the β  per φv line was 1.75°/°.  Next the more general cases of 

steady turns were investigated, when the flight path angle was not zero. 
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     Trim Condition 6 Investigation. 

 For trim condition 6, a turn rate and climb angle were chosen to explore the effect 

of bank angle on a climbing turn.  As in trim condition 5, the heading angle was 

described by H = Øϖ t.  Additionally, γ was defined as a positive angle.  As before, φv 

was varied until an aircraft parameter limit was reached, and β  was calculated from the 

outer-loop equations.  The rudder deflection was still the limiting factor for this case.  

The pitch angle changed slightly over the φv range examined, so θ was also plotted. 
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Figure 24.  Climbing Flight Aileron Surface Deflection (δa), Rudder Surface 

Deflection (δr) and Sideslip Angle (β) vs. Bank Angle (φv) 

 

 The aircraft parameters for trim condition 6 were nearly identical to trim 

condition 5.  The data were plotted in Figure 24.  The slope of δa/φv and β/φv did not 

change.  The slope of δr/φv decreased from 2.85°/° to 2.84°/° for this case.  The pitch 

angle decreased slightly as the magnitude of φv increased.  The θ began at 7.84° and 
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decayed to 3.58° at φv =±11.46°.  Next a descending turn was investigated by restricting γ 

to negative values.  Thrust results were nearly identical to the flight path angle 

investigation, as expected. 

     Trim Condition 7 Investigation. 
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Figure 25.  Descending Flight Aileron Surface Deflection (δa), Rudder Surface 

Deflection (δr) and Sideslip Angle (β) vs. Bank Angle (φv) 

 

 The next aircraft maneuver investigated was trimmed descending turns.  The 

assumptions and limitations for trim condition 7 are identical to trim condition 6 with one 

exception:  γ was negative.  The results are shown in Figure 25.  The slopes of all three 

linear relationships were unchanged from trim condition 6.  The primary difference 

between this case and the previous trim condition was the effect of γ on θ.  Lowering the 
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γ, shifted the θ curve down and flattened the curve, making θ less of a function of γ.  The 

next trim condition examined was the rolling effects during a barrel roll. 

     Trim Condition 8 Investigation. 
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Figure 26.  Barrel Roll Aileron Surface Deflection (δa) and Rudder Surface       

Deflection (δr) vs. Bank Angle (φv) 

 

 A barrel roll, with constant roll rate about an axis above the xb-axis, was modeled 

in trim condition 8.  The barrel roll was defined as β = Η = 0° and φv(t) = 
vφϖ t.  The 

flight path angle was also set to a positive number.  By restricting β  to zero, the radius 

from the axis of rotation, rb, was zero.  Therefore trim condition 8 was the roll rate of the 

aircraft.  To increase rb, β  must be increased to a positive number.  The larger β , the 

larger rb.  Non-zero β  was not investigated.  The parameters α, θ, T, and δe remained 

constant.  The lateral-directional control surface deflections were linear functions of 
vφϖ  
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(see Figure 26).  The roll rate-limiting factor was the amount of δa available.  The 

influence of roll rate on δr was small; a 0.01 deg/s increase in 
vφϖ  created a 0.64° 

decrease in δr.  Meanwhile, a 0.01 deg/s increase in 
vφϖ  produced a 3.39° decrease in δa.  

The Learjet-25 cannot complete a roll.  This investigation only examined the trimmed 

condition to start the roll from wings level.  While a complete roll may be mathematically 

possible, the maneuver was not physically possible with this aircraft model.  In the next 

trim condition, an operationally representative AC-130 gunship orbit was studied. 

     Trim Condition 9 Investigation. 

 The first mission representative aircraft maneuver examined was the orbit of the 

AC-130 gunship.  The orbit trajectory was described by a trimmed level steady turn (trim 

condition 5).  The parameters δa, δr, and β  are all functions of φv.  Figure 23 also applies 

to trim condition 9.  For the AC-130 orbit, the aircraft height above the target, orbit 

radius and bank angle were varied as functions of load factor and weapon depression 

angle.  The velocity was held constant at 450 ft/s.  Figure 27 shows the effect on height 

above the target, and Figure 28 shows the relationship of rt and φv to n. 
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Figure 27.  AC-130 Gunship Weapon Depression Angle (ε) and Load Factor (n) 

verses Height (h) 

 

 The height of the gunship orbit above the target is a function of weapon 

depression angle and load factor (see Figure 27).  For the weapon depression angle curve, 

the load factor was fixed at 1.15, which resulted in an orbit radius of 11,083 ft and a bank 

angle of 30°.  As the weapon depression angle asymptotically approached 45° the height 

above the target approached infinity.  For the specified flight condition, the minimum 

height above the target was 6,294 ft.  For the load factor curve, the weapon depression 

angle was set at 20°, and n was varied from 1.0 to 1.4 (the maximum bank angle).  The 

height approached a minimum at 12,850 ft and increased slightly as n approached 1.4.  

As the load factor approached 1.0, the height above the target approached infinity.  

Utilizing the load factor curve, the weapon depression angle curve would move slightly 

right as load factor increased and dramatically right as n approached 1.0 since n=1.15 was 

near the minimum of the load factor curve. 
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Figure 28.  AC-130 Gunship Orbit Bank Angle (φv) and Radius (rt) verses   

Height (h) 

 

 The effect of load factor on orbit radius and bank angle is shown in Figure 28.  

The orbit radius curve asymptotically approached 5,000 ft as load factor approached the 

upper limit.  Also, as n approached 1.0, the orbit radius approached infinity (as expected 

since n=1.0 is level flight).  The bank angle curve approached 0.0° as n approached 1.0.  

Likewise, at the upper limit as n approached 1.4, φv approached 45°.  Both curves are 

independent of ε and apply to all trim condition 9 flight conditions. 
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     Trim Condition 10 Investigation. 
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Figure 29.  Pitch-Over Elevator Surface Deflection (δe) verses Pitch Rate (Q) 

 

 The final aircraft maneuver investigated was the trimmed pitch-over.  The 

purpose of trim condition 10 was to create a maneuver where a device mounted to the 

bottom of the aircraft was pointed at a fixed target below the aircraft.  By defining the 

correct V and èϖ , a radius, rθ, was defined for the trajectory arc.  The pitch rate dictates 

the amount of time the device points at the target.  A slower pitch rate produced a longer 

time on target.  The maneuver was defined as level with γ=0°.  Level flight with γ=0°, 

produced a constantly changing α.  For a slow pitch rate, level flight would not keep the 

device pointed at a stationary target.  The pitch angle varied continuously throughout the 

maneuver.  The maneuver was also limited to the longitudinal plane; therefore all lateral-

directional parameters were negligible.  The primary parameter of interest for trim 
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condition 10 was δe.  The data were plotted in Figure 29.  The pitch rate was varied from 

0.0 deg/s to the elevator deflection limit 15 deg/s.  The elevator control surface deflection 

was a linear function of the pitch rate.  A 0.01 deg/s increase in pitch rate resulted in a 

10.27° decrease in the required δe. 

Summary 

 Individual trim conditions were investigated in Chapter 4.  For straight and level 

flight, nearly linear relationship were found for δe and thrust for both altitude and weight 

changes.  For velocity changes, a linear relationship was found between velocity and the 

thrust setting.  Velocity changes produced a second order relationship with δe though.  

The asymmetric thrust investigation found linear functions for both δa and δr.  Climbs and 

descents were found to have a direct impact on thrust setting, while a negligible impact 

on δe.  δa and δr were linearly changed by changes in the sideslip angle.  For steady turns, 

a linear relationship was observed between δa and δr with changes in bank angle.  The 

same relationship was observed between δa and δr with bank angle as the flight path angle 

was varied.  For a barrel roll, linear relationships were found for both δa and δr as roll rate 

was varied.  The effects of load factor and weapon depression angle on height above the 

target were determined for a simulated AC-130 gunship orbit.  Also the impacts of bank 

angle and orbit radius on load factor were plotted.  Finally a linear relationship was 

observed between δe and pitch rate for the pitch-over maneuver. 
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V.  Stability Derivative Sensitivity Analysis 

 
 
 
Overview 

In Chapter 2, the point mass model was developed to provide a basis for the 

control laws for the trajectory of the aircraft.  The outer-loop equations were found from 

the nonlinear equations of motion and applied to the actual Learjet-25 parameters.  In 

Chapter 3, the outer-loop equation outputs were used with the transformation matrices 

and the remainder of the equations of motion to find the control surface deflections 

required to achieve the desired flight trajectory and orientation.  In Chapter 4, the 

equations developed in the previous two chapters were used to simulate selected flight 

trajectories.  By choosing the correct input states, the required control surface deflections 

for the desired flight path were found.  The impacts of variations in the stability 

derivatives are investigated in Chapter 5 to determine which parameters require the most 

accuracy.  Each stability derivative is varied ±40% to determine the change in predicted 

control surface deflection value.  Control surface deflection changes greater than 1.0° 

from the original value are deemed significant.  The sensitivity analysis was used to 

identify the most critical parameters and possible sources of error.  Finally, in Chapter 6 

the theoretical values tested using the Learjet-25 in flight tests are compared to the 

theoretical calculations. 

Sensitivity Analysis 

The stability derivatives were divided into two groups: longitudinal stability 

derivatives and lateral-directional stability derivatives.  The longitudinal stability 
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derivatives were:  oDC , αDC , qDC , oLC , αLC , qLC , 
äeLC , omC , αmC , qmC , and 

äemC .  

The longitudinal stability derivatives were investigated in two trimmed flight conditions 

(straight and level flight and climbing flight).  The lateral-directional stability derivatives 

were:  
âyC , 

pyC , 
ryC , 

äayC , 
äryC , 

âl
C , 

pl
C , 

rl
C , 

äalC , 
ärlC , 

ânC , 
pnC , 

rnC , 
äanC , and 

ärnC .  The lateral-directional stability derivatives were investigated in two trimmed flight 

conditions (crabbing flight and steady-turn flight).  Straight and level flight did not 

produce any forces in the lateral-directional axes, and no change in the control surface 

deflections. 

     Longitudinal Stability Derivative Sensitivity. 

The longitudinal stability derivatives sensitivities were found for two cases.  Each 

stability derivative was varied ±40% from the original value to estimate the effect of 

errors in the stability derivatives on the predicted control surface deflections.  Stability 

derivatives calculated from wind tunnel data may have up to a 40% error (9: Class 2) 

from the actual aircraft value.  By finding the most critical stability derivatives, the 

required level of accuracy in the estimation of the stability derivatives was determined. 

          Straight and Level Flight. 

The first longitudinal trim condition investigated was straight and level flight.  

The Matlab® routine developed in Chapter 4 (see Appendix B) was used to determine the 

sensitivity of each output to derivative change.  Changes in control surface deflection 

greater than ±1.0° when the original value was varied ±40% were noted. 

The following stability derivatives: oDC , αDC , qDC , oLC , qLC , 
äeLC , omC , qmC , 

and 
äemC  had negligible effects on control surface deflection values when varied ±40%.  
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Increasing αLC  did not produce a change in δe larger than 1.0°, but decreasing αLC  

23.8% from the original value resulted in a 1.0° decrease in δe.  Varying αmC  by ±31% 

resulted in a change of 1.0° from the original value of δe.  Overall, in straight and level 

flight errors in the longitudinal stability derivatives did not produce a significant change 

in the control surface deflection values. 

          Climbing Flight. 

Next, the longitudinal stability derivative sensitivities were investigated in 

trimmed climbing flight.  The same stability derivatives were evaluated with the same 

criteria as straight and level longitudinal flight.  Changes in all the longitudinal stability 

derivatives except αmC  had a negligible effect on the required control surface deflections.  

As in straight and level flight, a ±31% error in αmC  produced a 1.0° change in δe. 

Overall, the errors in the longitudinal stability derivatives did not produce large 

errors in the control surface deflection values.  The accuracy of the longitudinal values 

was also well known (reference 10).  Therefore the longitudinal predictions were very 

accurate and should match the flight test results.  In Chapter 6 the accuracy of the 

longitudinal predictions compare very well to the measured flight test data.  

     Lateral-Directional Stability Derivative Sensitivity. 

The lateral-directional stability derivatives sensitivities were found for two cases, 

crabbing and steady turn flight.  Each stability derivative was varied ±40% from the 

original value to estimate the effect of errors in the stability derivatives on the predicted 

control surface deflections. 
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          Crabbing Flight. 

The first lateral-directional trim condition investigated was flight in a crabbing 

condition with a constant sideslip angle.  Each lateral-directional stability derivative was 

again varied ±40% from the original values.  Changes of ±40% in the following stability 

derivatives changed the control surface deflections less than one degree:  
âyC , 

pyC , 
ryC , 

äayC , 
äryC , 

pl
C , 

rl
C , 

pnC , 
rnC , and 

äanC . 

Small dihedral stability derivative, 
âl

C , errors produced large changes in the 

predicted control surface deflection values.  A change of 17.1% of 
âl

C  in either direction 

from the original value created a 1.0° change in δa, while a variation in 
âl

C  did not 

change δr.  Changes in the aileron control power derivative, 
äalC , produced an 

insignificant change in δr, but a 18.7% decrease from the original value of 
äalC  or a 30% 

increase in 
äalC  changed δa 1.0° from the original value.  Similarly, varying the roll 

coupling stability derivative, 
ärlC , had a negligible effect on the δr predictions.  However, 

changing 
ärlC  ±28.6% resulted in a 1.0° change in δa.  Small errors in the weathercock 

stability derivative, 
ânC , had large ramifications on the predicted lateral-directional 

control surface deflections.  A ±9.3% change in 
ânC  resulted in a 1.0° change in δr.  Also, 

a ±28.6% change in 
ânC  produced the same error in δa.  Finally, errors in the rudder 

control power derivative, 
ärnC , produced significant errors in the lateral-directional 

control surface deflection values.  While an increase in 
ärnC  did not effect δa, a 22.1% 
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decrease in 
ärnC  from the original value changed δa by 1.0°.  Rudder surface deflection 

was even more sensitive to changes in 
ärnC .  A 10.4% increase and an 8.6% decrease in 

ärnC  from the original value produced a 1.0° change in δr. 

Overall the lateral-directional stability derivatives were more sensitive to errors in 

crabbing flight than the longitudinal stability derivatives in any flight condition.  Errors in 

lateral-directional stability derivative values (reference 10), also contributed to the errors 

in the lateral-directional axes predictions.  Therefore the open-loop equations will not 

predict required control surface deflection for crabbing flight as accurately. 

          Steady Turn Flight. 

The other lateral-directional trim condition investigated was flight in a steady turn 

with a constant bank angle.  Each lateral-directional stability derivative was again varied 

±40% from the original values.  Changes of ±40% in the following stability derivatives 

had a negligible effect on the control surface deflection values:  
pyC , 

ryC , 
äayC , 

äryC , 

pl
C , 

rl
C , 

pnC , and 
rnC . 

As in the crabbing flight case, the same stability derivatives were most sensitive 

to errors in a steady turn.  A decrease of 11.0% in the original value of 
âyC  resulted in an 

increase in δa of 1.0°.  Likewise, only a 4.8% decrease or a 5.6% increase in 
âyC  

produced an unacceptable error in δr.  While errors in 
âl

C  did not effect δr, an error of 

±6.9% resulted in a 1.0° change in δa.  The predicted δr was not influenced by errors in 

either 
äalC  or 

ärlC .  Aileron deflection was significantly impacted by errors in the roll 

coefficient control surface derivatives though.  An 11.1% decrease or a 14.6% increase in 
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äalC  resulted in a significant change in δa.  Also, a ±15.6% change in 
ärlC  produced a 

similar error in δa.  Small weathercock stability derivative, 
ânC , errors produced large 

errors in the control surface deflection predictions.  A ±5.0% variation in 
ânC  changed δr 

by a degree, and if the error increased to ±15.4%, δa exceeded the error limit.  Finally, 

only a ±4.6% error in 
ärnC  resulted in a change of 1.0° in δr.  As the error in 

ärnC  was 

decreased to -13.2% or increased to 18.6% of the original value of 
ärnC , the same error 

was seen in δa. 

As seen in the crabbing flight case, in a steady turn errors in the stability 

derivatives produced unacceptably large errors in the lateral-directional control surface 

deflection predictions.  The higher uncertainty in the lateral-directional derivative values 

also compounded higher inaccuracy in the predictions when compared to the longitudinal 

cases.  The higher errors predicted for the lateral-directional cases was observed in flight 

test (see Chapter 6). 

Summary 

The stability derivatives were prioritized from the most to the least sensitive to 

change in control surface deflection values.  The results are listed in Table 2 below.  The 

percentage change that produced a 1.0° error in control surface deflection dictates the 

level of accuracy required.  The stability derivatives were estimated in the flight test 

program to improve the prediction accuracy (reference 10).  The derivatives in Table 2 

were the focus of the aeromodelling tests to attempt to achieve the required level of 

accuracy.  In flight test, all longitudinal stability derivatives were within acceptable 
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tolerances.  The accuracy of the new 
βlC  and 

äalC  estimates did not reach the accuracy 

required for the lateral-directional stability derivatives.  Therefore, the lateral-directional 

control surface deflection predictions cannot be guaranteed to be within ±1.0° of the 

actual value.  This discrepancy was observed in flight test (see Chapter 6). 

The prioritized sensitivities of the stability derivatives follow.  A “+” percentage 

is an increase from the original value, while a “-“ is a percent decrease.
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                              Table 2.  Stability Derivative Sensitivity Analysis 

STABILITY DERIVATIVE δδ e δδ a δδ r CONDITION 
Rudder Control Power (

ärnC ) >±40% -13.2% / 
+18.6% 

±4.6% Banked Flight 

Side-force Coefficient due to 
Sideslip (

âyC ) 
>±40% -11.0% -4.8% / 

+5.6% 
Banked Flight 

Weathercock Stability (
ânC ) >±40% ±15.4% ±5.0% Banked Flight 

Dihedral Stability (
âl

C ) >±40% ±6.9% >±40% Banked Flight 

Rudder Control Power (
ärnC ) >±40% -22.1% -8.6% / 

+10.4% 
Crabbing Flight 

Weathercock Stability (
ânC ) >±40% ±28.6% ±9.3% Crabbing Flight 

Aileron Control Power (
äalC ) >±40% -11.1% / 

+14.6% 
>±40% Banked Flight 

Roll Moment Coefficient due to 
Rudder Deflection (

ärlC ) 
>±40% ±15.6% >±40% Banked Flight 

Dihedral Stability (
âl

C ) >±40% ±17.1% >±40% Crabbing Flight 

Aileron Control Power (
äalC ) >±40% -18.7% / 

+30.0% 
>±40% Crabbing Flight 

Lift-Curve Slope ( áLC ) -23.8% >±40% >±40% Straight and Level 
Flight 

Roll Moment Coefficient due to 
Rudder Deflection (

ärlC ) 
>±40% ±28.6% >±40% Crabbing Flight 

Pitch Coefficient due to Angle 
of Attack ( ámC ) 

±31.0% >±40% >±40% Straight and Level / 
Climbing Flight 
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VI.  Flight Test Results 

 
 
 
Overview 

In Chapter 2, the point mass model was developed to provide a basis for the 

control laws for the trajectory of the aircraft.  The outer-loop equations were found from 

the nonlinear equations of motion and applied to the actual Learjet-25 parameters.  In 

Chapter 3, the outer-loop equation outputs were used with the transformation matrices 

and the remainder of the equations of motion to find the control surface deflections 

required to achieve the desired flight trajectory and orientation.  In Chapter 4, the 

equations developed in the previous two chapters were used to simulate selected flight 

trajectories.  By choosing the correct input states, the required control surface deflections 

for the desired flight path were found.  The impacts of variations in the stability 

derivatives were investigated in Chapter 5 to determine which parameters require the 

most accuracy.  Finally, in Chapter 6 the theoretical values tested using the Learjet-25 in 

flight tests are compared to the theoretical calculations.  The aeromodel for the Learjet-25 

was estimated from flight test to improve the stability derivatives.  Selected trajectories 

from the previous chapter were also selected for verification in flight test.  The results of 

the flight test were compared to the predicted results to determine the accuracy of the 

model. 

Aeromodel Data 

Veridian originally provided the aerodynamic model for the Learjet-25.  The 

original values were used in the Matlab® to calculate the estimated control surface 
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deflections.  The uncertainties in the provided stability derivatives could produce errors 

larger than 1.0° in the predictions.  Therefore, in the flight test program the aeromodel 

parameters were estimated to produce improved values for the stability derivatives 

(reference 10). 

After stable data were collected at each trim flight test point, control surface 

deflection doublets were entered into the aircraft.  Programmed test input was 

automatically input for each of äe, äa and är and the aircraft response recorded.  Using the 

response at each test point, the stability derivatives were estimated using Parameter 

Estimation software provided by TPS.  Average stability derivative values were found for 

both Regime 1 and Regime 2.  The effect of altitude, Mach number and cg location were 

also investigated for each stability derivative (reference 10).  In general, the changes in 

stability derivatives were negligible within each regime.  The improved stability 

derivatives were then re-inserted into the Matlab® routine and the control surface 

deflections re-calculated.  The improved stability derivative values were used throughout 

the study and are listed in Table 2.   The improved stability derivative predictions were 

compared to the flight test data in the remainder of this chapter. 

Flight Test Data 

Selected trim flight conditions examined in Chapter 4, were verified in flight on 

the Learjet-25 and compared to the theoretical predictions.  Trim conditions 1, 2, 3, 4, 5, 

and 10 were investigated in the flight test program.  Most of the longitudinal results (trim 

conditions 1, 2, and 3) matched the theory very closely, while lateral-directional flight 

conditions (trim conditions 1, 4, and 5) had more errors and did not match the predictions 

as well.  Each condition investigated during the flight test program is now examined. 
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The flight test envelope was divided into three flight regimes to study the 

differences between low, middle and high-speed results.  The three regimes were chosen 

to investigate the effects of atmospheric compressibility and the non-linear regions of the 

flight envelope.  The middle regime, Regime 1, was defined as 190 KIAS to 250 KIAS 

(approximately 400 to 550 ft/s).  Low speed, Regime 2, was defined as the stall speed 

(dependent on aircraft weight, but around 120 KIAS) to 190 KIAS.  The high-speed 

regime, Regime 3, was from 250 KIAS to the maximum aircraft airspeed (310 KIAS or 

about 650 ft/s).  Flight test in high-speed regime was not completed due to time 

constraints in the test program. 

The Learjet-25 had a variable stabilator (moving horizontal tail) that changed the 

flying characteristics of the airplane as the stabilator position was changed.  Stabilator 

position was a function of airspeed to maintain trimmed flight.  Within each regime, the 

stabilator position was held constant, but each regime had a different trimmed stabilator 

position.  Therefore, the trimmed aircraft variables and stability derivatives changed 

between regimes.  Exact comparisons between regimes are not valid. 

     Straight and Level Flight Test. 

The majority of the flight test program was used to examine trim condition 1, and 

all the associated flight effects in straight and level flight.  Four flight conditions were 

examined within trim condition 1: altitude effect, velocity effect, weight effect and 

asymmetrical thrust effect.  Each flight condition will now be detailed. 
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          Altitude Effects. 

First the effect of altitude change was investigated by selecting straight and level 

test points between 9,000 and 20,000 feet mean sea level (MSL).  The effect of weight 

and velocity were isolated to the greatest extent possible by flying each test point with the 

same aircraft configuration at each altitude in the test band.  The results are shown in 

Figure 30 through Figure 33. 

The altitude effect on the flight test parameters was compared to the predictions.  

The results were very scattered with little correlation.  Therefore the data were further 

separated into three aircraft velocity bands within each flight regime.  The flight test 

results in Regime 1 generally matched the predicted values, while the Regime 2 flight test 

data were biased from the predicted curves. 
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Figure 30.  Regime 1 Elevator Deflection (δe) vs. Altitude (h) Effect 
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Figure 30 shows the äe test data in Regime 1 with an overlay of the predicted äe 

for three true airspeed values.  The low speed region (V = 460 ft/s) described a much 

more shallow curve than theory predicted.  The middle speed region (V = 475 ft/s) 

matched the prediction with a +0.2° bias for all altitudes.  The high speed (V = 490 ft/s) 

test points matched the predicted curve, with about the same +0.2° bias, but was more 

scattered than the mid-speed data.  Overall the flight test data matched the predicted data 

with a small amount of variation. 
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Figure 31.  Regime 2 Elevator Deflection (δe) vs. Altitude (h) Effect 

 

In Regime 2 the flight test data differed from the predicted curve by almost +1.0° 

on average for all three velocity bands (see Figure 31).  The flight test data were also 

more scattered than in Regime 1.  Overall the data in Regime 2 shows the same general 

trend as the predicted curves, but the correlation was not strong.  The altitude effect on äe 

was very small, and was masked by other factors, especially small changes in airspeed. 
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The äa and är were predicted to be zero in trimmed flight.  Small values of äa and 

är were measured in flight.  These deviations result from the impossibility to be perfectly 

trimmed with no lateral-directional inputs during actual flight test.  There were no 

significant values of äa and är in any of the longitudinal axes investigations data points. 
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Figure 32.  Regime 1 Angle of Attack (α) and Pitch Angle (θ) vs. Altitude (h) 

Effect 

 

The altitude effect on α and θ was also not very strong.  Figure 32 show the plot 

of flight test data in Regime 1 for α and θ respectively, with the predictions shown for the 

same three true airspeed bands.  The data in all three bands were characterized by a lot of 

scatter in the flight test data.  All data were within 2° of the predicted curves.  The θ 

values were closer to the predicted curves and did not have as much scatter as α. 
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Regime 2 Altitude Effects
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Figure 33.  Regime 2 Angle of Attack (α) and Pitch Angle (θ) vs. Altitude (h) Effect 

 

In Regime 2, the data were again scattered, increasing in error as the altitude 

increased (see Figures 33).  The flight test data were also biased -2° to -3° from the 

predicted value curves.  Also the α values were more scattered than the θ values at each 

altitude. 

Overall, the altitude effect on the elevator surface deflections was very small.  

The data points were scattered by other flight parameter effects and the predicted trends 

were difficult to match to the model predictions.  The effect of altitude variations does 

not have a significant impact on the resultant errors. 
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Figure 34.  Thrust (T) vs. Altitude (h) Effect 

 

 In general, more thrust was measured compared to the predicted curve (see Figure 

34).  The flight test data follows the same general trend as the predicted curve.  The 

majority of the flight test data are within 100 lbs of the predicted curve.  The bias in the 

data is likely due to the simplified thrust model used to calculate the flight test thrust.  

The thrust was calculated from the engine pressure ratio and the known area of the 

nozzle.  A more robust aircraft thrust measurement should improve the results.  Also the 

open-loop equations assume the thrust is two point forces acting at the estimated center of 

the nozzle exit plane.  This simplification also likely increases the error in the thrust 

prediction. 

          Weight Effects. 

Next the effect of changing the aircraft weight and cg was compared to the 

predictions.  Since cg was a linear function of the Learjet-25 weight for all test points, the 
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control surface deflections were plotted as a function of weight.  Figure 35 shows the 

combined results for Regime 1 and Regime 2. 
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Figure 35.  Elevator Deflection (δe) vs. Weight (W) Effect 

 

For Regime 1 the flight test results were almost all within ±0.5º of the theoretical 

prediction.  However, the flight test results did not show a significant relationship 

between äe and variations in weight; actual äe was essentially constant.  According to 

theory, a 3,000-pound increase in weight would produce a 1.0° decrease in äe in Regime 

1, but this was not observed during flight test. 

In Regime 2 the data were more scattered and also did not match the predicted 

trend.  The Regime 2 flight test results were on average about 1.0° higher than the 

predicted value.  Again the flight test äe were nearly constant for all weights in the test 

envelope.  Theoretically, a 1,500-pound increase in weight would produce a 1.0° decrease 
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in äe in Regime 2.  Overall, the impact of aircraft weight did not have a measurable effect 

on the äe value from flight test data.  Theoretically the impact was expected to be small, 

but not as small as the actual test data indicated.  The significant difference between 

Regime 1 and Regime 2 äe were the result of a change in trimmed stabilator position. 
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Figure 36.  Angle of Attack (α) and Pitch Angle (θ) vs. Weight (W) Effect 

 

The plot of α and θ verses weight is shown in Figure 36.  Both Regime 1 and 

Regime 2 are shown on the plot.  For Regime 1, the flight test data are scattered within 2° 

of the predicted curve, with all the θ data points within 1° of the expected values.  The α 

values were directly affected by the airspeed at which the test point was flown.  A 10 ft/s 

change in true airspeed resulted in an average 0.5° to 1.5° change in α.  The α and θ 

values were more constant than the predicted curve.  The accuracy of the in-flight α and 

θ measurements contributed to the scatter in the data.  The α measurement varied ±1.0° 
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to 2°, and the θ measurement varied up to ±1.0°.  Therefore, the weight effect on these 

flight parameters was not as large as expected.  The accuracy of the α measurement may 

also have been less than for θ.  In the aeromodeling investigation a lag was found in the α 

and β  measurements (reference 10). 

In Regime 1 the flight test data were consistently 1° to 2° lower than the predicted 

values.  The flight test data showed the same scatter in Regime 2 as in Regime 1, with θ 

nearly linear around the average value and α scattered more about the average value.  

The larger discrepancy for α and θ in Regime 2 may be due to the fact that the equations 

were developed for Regime 1, and small aerodynamic non-linearities and the changed 

position of the stabilator could cause an error in the predictions. 

The method weight was measured is another source of error in the weight flight 

test data.  The aircraft weight was displayed in the cockpit, but was not directly input into 

the data bus messages recorded for the flight.  Veridian developed a routine that set the 

aircraft weight at the start of the flight and decremented the weight at a set rate according 

to time in flight.  It was assumed that the fuel burn rate was constant, which may not have 

been an accurate assumption.  Periodically the weight was updated from the cockpit 

display to improve the recorded weight value.  The first few flights the decrement rate 

was varied to try to match the aircraft display in the cockpit.  The weight measurement 

error would increase the scatter in the flight test data. 
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Figure 37.  Thrust (T) vs. Weight (W) Effect 

 

The weight verses thrust plot (see Figure 37) has even more scatter than the 

previous thrust plot (Figures 34).  The increased scatter was likely due to the method 

weight was measured (discussed above), and the same errors used to calculate thrust.  

The data has the same upward trend as weight increased, and the predicted values are 

lower than the measured data as previously observed.  Next the effect of varying the 

velocity was investigated. 

          Velocity Effects. 

The effect of changing the aircraft velocity in flight test is compared to the 

theoretical prediction.  The results for both Regime 1 and Regime 2 are plotted in Figure 

38.  The flight test data followed the same trend predicted by the outer-loop equations, 

with a small bias.  The data bias was more pronounced in Regime 2. 
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Figure 38.  Elevator Deflection (δe) vs. Velocity (V) Effect 

 

In Regime 1, the flight test äe was consistently higher than the theoretical 

prediction by approximately 0.25°.  All flight test data were within 0.0° to 0.5° of the 

model prediction.  The effect of velocity was not affected by small changes in the aircraft 

weight and test point altitude.  Therefore, the effect of velocity on äe had the greatest 

impact on the straight and level flight results.  In Regime 2 the flight test äe was 

consistently 0.75° higher than the predicted curve.  The flight test data were tightly 

grouped around the average trend-line and showed the strong effect that a change in 

velocity created in the äe value.  The larger difference between predicted and flight test 

data in Regime 2 was similar to the results as discussed above for the altitude effect. 
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Figure 39.  Angle of Attack (α) and Pitch Angle (θ) vs. Velocity (V) Effect 

 

The α and θ results for both regimes are plotted in Figure 39.  The flight test 

results matched the theoretical predictions within ±1.0°, except at the slowest airspeeds in 

Regime 2.  The data were in a nearly continuous curve across both regimes.  There was a 

slight jump in the theoretical curve between Regime 1 and Regime 2 of less than 0.2°.  

Again there was more scatter in the α flight test results than in the θ values.  The α and θ 

flight test data matched the model very closely.  The velocity effect dominated and the 

data were scattered by the other factors. 

Overall, there was a strong correlation between changes in true airspeed and äe.  

The correlation was also seen in α and θ with velocity changes.  Velocity measurement 

accuracy was one of the key indicators of äe prediction accuracy. 
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Figure 40.  Thrust (T) vs. Velocity (V) Effect 

 

The thrust measurements as a function of velocity are shown in Figure 40.  The 

flight test data had the same general trend as the predicted curve, but again results were 

biased up about 100 lbs.  The same problems experienced in the altitude investigation 

apply to the velocity effect on thrust. 

          Longitudinal Maneuvers, Straight and Level Flight Summary. 

Overall, the effect of α produced a larger change in the measured äe than the 

change in aircraft weight (and corresponding cg).  The weight effect was masked by the 

changes in α from the predicted values.  Airspeed also had a large effect on äe 

measurements in flight.  The scatter in the data, especially in Regime 2, could be 

explained by the variances in the α and V at each test point from the ideal condition used 

for the model calculation.  When the identical flight condition parameters were used in 

the model the predicted values closely matched the flight test data. 
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The test point set-up had a major impact on variations between the flight test data 

and the theoretical predictions.  The flight test velocity had the largest impact on changes 

in the äe values.  Small variations in test point velocity produced a large change in äe 

values.  The effect of weight variations was less significant, and the effect of changing 

altitude was very small.  The test set-up variations in β  and flight path angle from the 

specified test conditions were generally less than ±1.0° for all test points and did not 

significantly impact the results.  The bank angle varied up to ±8.0° from the specified test 

conditions.  Often there was a small roll rate (±0.5°/sec) that was not observed in flight, 

but impacted the flight test data.  The φ measurement also had the largest oscillations 

about the steady-state value, up to a ±1.0°.  The combined errors in φ values had a 

significant impact on the lateral-directional results.  Combining variations resulted in a 

composite change in the control surface deflection value, which accounts for some of the 

scatter seen in the flight test data.  The thrust flight data has the same general trends as 

predicted by the model.  There was a consistent upward bias in the flight test data from 

the expected curve though. 

 

          Asymmetrical Thrust Effects. 

The final trim condition 1 flight condition examined was asymmetric thrust.  

Thrust from one of the two engines was progressively reduced and thrust on the other 

engine was progressively increased while keeping the wings level and the airspeed within 

the required tolerance. Data were collected at each asymmetric thrust setting.  The data 

were plotted as the percentage of total thrust from the right engine. 



 92

Asymmetric Thrust Effect
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Figure 41.  Aileron (δa) and Rudder (δr) Surface Deflection vs. Asymmetric Thrust (T) 

Effect 

 

Limited data were collected, especially in Regime 2.  The data were very 

scattered, and did not match the predicted values very closely for lateral-directional 

control surface deflection values.  Figure 41 shows the är and äa values from flight test 

compared to the predicted theoretical values for both regimes.  The theory predicted a 

larger asymmetric thrust influence on är (slope -0.5° per 10% change in asymmetric 

thrust, verses less than 0.1° per 10% for the averaged values of the flight test data in 

Regime 1).  The är results were about the same in Regime 2.  The äa results showed the 

opposite trend result.  The theory predicted about a -0.1° change per 10% change in 

asymmetric thrust, while the averaged flight test data had a slope of about -0.5° per 10% 

change in asymmetric thrust.  The data had a lot of noise and stable points were difficult 

to achieve in asymmetrical conditions.  The φ measurements also had a lot of noise and 
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were accurate to within only a degree or two of the averaged value at most test points.  

These errors may account for the inaccuracies between the flight test results and the 

theoretical predictions. 

The äe values were compared to the theoretical predictions.  Theoretically the äe 

was constant for all asymmetric thrust test points.  In Regime 1, all äe values were within 

±0.3° of the theoretical value.  If the four data points with large changes in φ were 

discarded, the average flight test data äe was -0.03° from the theoretical äe and all flight 

test points were within ±1.0° of the predicted value.  In Regime 2 the flight data äe value 

was biased -1.0° with very little scatter in the data. 
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Figure 42.  Sideslip (β) and Bank Angle (φ) vs. Asymmetric Thrust (T) Effect 

 

The lateral-directional control surface deflection errors also were increased 

because the test points were not in perfect trim condition in most cases.  Figure 42 shows 
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the plot of â and φ, respectively, for each test point.  The theoretical values for the φ were 

expected to be 0.0° because the maneuver was designed for wings level flight.  Flight test 

points were not perfectly trimmed to wings level, straight flight, so this plot is a measure 

of the error due to non-ideal flight test conditions.  The errors in φ were all less than 

±4.0°.  The offsets from trim would also contribute to the errors in lateral-directional 

control surface deflections.  The φ errors were largest for the points around 50% 

asymmetric T, which correspond to the largest errors on the control surface deflection 

plots (Figure 42).  Also the φ errors tended to be more negative as asymmetric thrust 

approached 0%, and more positive as asymmetric thrust approached 100%.  This was 

also observed in the äa and är values at the extreme asymmetrical thrust conditions. 

          Lateral-Directional Maneuvers, Straight and Level Flight Summary. 

The lateral-directional stability derivatives had a much larger uncertainty than the 

longitudinal stability derivatives.  This lateral-directional stability derivative uncertainty 

contributed to variations in model control surface deflections as indicated by the 

sensitivity analysis.  The most critical stability derivatives (
rnC

δ
, 

βyC , 
βnC , and 

βlC ) 

created a large error for a small variation.  Finally, a bias was observed in both the äa and 

är values.  For instance, in Flight 10 a constant +1.6° bias in är was observed in all 

straight and level test cases.  The äa also had a small bias of about 0.3° for Flight 10.  The 

äa and är were manually trimmed, and the small error could not be detected from the 

cockpit.  The trim error contributed directly to an error in the control surface deflection 

results. 
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Overall the asymmetric thrust flight test data did not match the theoretical 

predictions.  The correct trend was seen in the data, but the flight test results had large 

differences from the expected values.  The difficulty in establishing trimmed flight in an 

asymmetrical flight condition and the inaccuracy in the bank angle measurement 

aggravated the errors.  Next trim conditions 2 and 3 were investigated jointly in the flight 

test program. 

     Climbing and Descending Flight Test. 
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Figure 43.  Elevator Deflection (δe) vs. Flight Path Angle (γ) Effect 

 

The effect of flight path angle changes was investigated for both climbing (trim 

condition 2) and descending (trim condition 3) flight.  The γ effect on äe is shown in 

Figure 43 for both regimes.  The γ effect on äe was predicted to be very small, and the 

flight test data matched the predictions.  In Regime 1, all the flight test data were within 
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±0.25° of the theoretical curve.  In Regime 2 the flight test äe was biased +0.7° from the 

predicted value.  The flight test data were also more scattered about the average value in 

Regime 2 than in Regime 1.  Overall, the predicted γ correlation to äe matched flight test 

results, but the impact of γ on äe was very small. 
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Figure 44.  Angle of Attack (α) and Pitch Angle (θ) vs. Flight Path Angle (γ) Effect 

 

Figure 44 shows the comparison of flight test γ effect on α and θ respectively to 

the theoretically predicted relationship.  In Regime 1, all flight test data for both α and θ 

were within ±1.0° of the model prediction for all γ values.  In Regime 2 the flight test 

data were within ±2.0° of the predicted value, with a slight bias of about -1.0°.  As seen 

for other longitudinal investigations, the scatter in the α data points was larger than the 

scatter in the θ values.  Overall, the flight test data correlated with the predicted values 

for all γ.  The impact of γ was not significant, but was predicted properly by theory. 
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Figure 45.  Thrust (T) vs. Flight Path Angle (γ) Effect 

 

The flight path angle had a significant impact on the thrust required to maintain 

trimmed flight.  Figure 45 shows the thrust data collected as flight path angle was varied.  

The flight test roughly had the same trend as the predicted curve, but as data was taken 

further from the center test condition, the difference between the measured and predicted 

data grew large.  The flight test data followed a nearly linear trend, while a trigonometric 

function was predicted from the model.  The increased error at the extremes of the thrust 

envelope was likely due to errors in the calculated thrust from flight test and the model. 

     Crabbing Flight Test. 

Next a lateral-directional trim condition was investigated, the effect of a non-zero 

sideslip angle in level flight.  With β  specified, the φ required to maintain γ = Η = 0° was 

determined.  The test was limited to ±10°, due to aircraft safety concerns. 
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Sideslip Angle Effect
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Figure 46.  Aileron (δa) and Rudder (δr) Surface Deflections vs. Sideslip Angle (β) Effect 

 

Regime 1 and Regime 2, äa and är were compared to the äa and är predicted by the 

model.  The är and äa are shown in Figure 46.  The flight test data for äa and är were 

linear, as was predicted by the model.  In addition, the slopes of the flight test data had 

similar slopes to that predicted by the model.  When the slopes did vary from the model 

predictions, the slope of the flight test data was higher, but only by approximately 0.1° of 

ä per degree of β .  It was also noted that at β = 0°, äa was negative and är was positive.  

The deflection at β = 0° had much more effect on moving the data away from the 

prediction than the slopes of the data.  The rudder showed zero deflection at 

approximately β = −2°, and the ailerons showed no deflection at approximately â = -0.5°.  

It is unknown if this was an instrumentation issue, a slightly bent aircraft, non-zeroed 

trim, or a combination of each factor. 
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Figure 47.  Bank Angle (φ) vs. Sideslip Angle (β) Effect 

 

The φ flight test data were also graphed for the steady-heading sideslips, as seen 

in Figure 47.  For Regime 1 and Regime 2, the slope from the flight test data was 

approximately 2.5 times greater than the predicted slope. 

Overall, the data quality from flight test was good and showed a linear 

relationship between control surface deflection and β , and φ to β .  The slopes of the 

control surface deflection to â closely matched model prediction, while the slope of φ to â 

differed from the model by a factor of 2.5. 

     Level, Steady Turn Flight Test. 

The flight test results for trim condition 5, did not match the predictions.  The 

open-loop equations predict a certain path with either a specified bank angle or sideslip 

angle.  When φv was specified, the predicted bank angle was over the aircraft limits, 

which required a much larger äa and är than measured in flight test.  The aircraft was 
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flown with nearly zero sideslip, but when β=0° was specified the open-loop equations 

predicted very large control surface deflection to command the turn, which limited the 

maximum φv.  In flight, bank angle is used to command a turn, which requires little 

control surface deflection.  The flights should be repeated attempting to recreate the exact 

flight conditions.  The flight trajectory flown, did not match the mathematically predicted 

trajectory.  Also turn rate had a major impact on the predicted control surface deflection 

values.  The turn rate was not specified for the flight tests, and was not measured.  The 

predicted turn rate should be compared to the actual flight test turn rate to make a valid 

comparison. 

     Pitch-Over Flight Test. 

Trim condition 10 flight trajectory also did not match the predicted results.  The 

predicted trajectory was for straight and level flight, with a pitch angle rotation about the 

yb-axis created by deflecting äe only in 1g flight.  To achieve the same pitch rotation rate 

in flight test, the maneuver was entered in a climb with a pitch-over, and less than 1g 

flight.  The lower the load factor, the higher the pitch rate.  Post-flight, load factor and 

pitch rate were varied to attempt to re-create the flight trajectory.  The equations did not 

predict the same trajectory flown, so the required äe’s did not match. 

Summary 

The longitudinal flight test data provided a good validation of all the model 

predictions, except trim condition 10.  In straight and level flight, velocity was the 

dominant input parameter for determining the required äe.  Weight had a small effect and 

altitude an even smaller impact.  The flight path angle had a minimal impact on the äe.  

Thrust setting had the greatest impact on the flight path angle.  äe was not significantly 
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changed by changes in γ.  Trim condition 10 could not be reproduced as a trim condition 

using the open-loop model. 

The lateral-directional flight test data provided limited validation of the model 

predictions.  The äa and är curves had the same general trends for both the asymmetrical 

thrust and sideslip investigations.  The data was biased by errors in the lateral-directional 

stability derivatives and biases in the lateral-directional measurements on the aircraft.  

The lateral-directional data could not be guaranteed to be accurate to within 1.0°.  The 

trim condition 5 flight trajectory could not be reproduced using the model predicted 

trajectory. 
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VII. Conclusions and Recommendations  

 
 

 
Conclusions 

     Model Development. 

Outer-loop equations were developed to produce control laws for an aircraft.  

Nested loop equations were developed for the model.  In the outer-loop controller, the 

aircraft was modeled as a point mass.  All aircraft forces were balanced to create 

equations to solve the control variables.  For specified state variables and either bank 

angle or sideslip angle to define the flight trajectory the control variables were 

determined. 

The inner-loop uses the control variables from the outer-loop to calculate the 

required control surface deflections.  In the inner-loop, the six-degree of freedom model 

was used to balance the moments on the aircraft.  With the control variables determined 

from the flight trajectory in the outer-loop, the inner-loop calculates the required δa, δe, 

and δr to achieve the desired aircraft orientation. 

     Trim Conditions. 

Ten trim conditions were then defined to allow simplifying assumptions to the 

model equations.  Trim condition 1, is straight and level flight.  Trim condition 2 is 

defined as a straight and level climb.  A straight and level descent describes trim 

condition 3.  A non-zero sideslip angle in level flight is trim condition 4.  Trim condition 

5 is a steady, level turn.  By adding a positive flight path angle, trim condition 6 describes 

a steady climbing turn.  Similarly, trim condition 7 is a descending turn.  Trim condition 
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8 is a barrel roll.  Next, for trim condition 9, an AC-130 gunship orbit is developed.  

Finally, in trim condition 10, a steady pitch-over maneuver is described.  Model 

equations were developed for each trim condition. 

     Model Implementation. 

The equations were then implemented using a Learjet-25 aircraft aeromodel in a 

Matlab® routine.  Each trim condition was plotted to determine the relationships between 

the relevant input variables and the outputs.  The impact of each input variable on the 

output for the Learjet-25 was determined.  The trim condition graphs were used to 

determine which input variables were focused on during the flight test investigation. 

     Predicted Results. 

Velocity had the largest influence on trim condition 1 results with weight and 

altitude having small impacts on control variables and δe.  For asymmetrical thrust, there 

were linear relationships for both δa and δr as the difference in thrust between engines 

was increased.  For trim condition 2 and 3, thrust was the most important parameter.  The 

flight path angle was limited by the thrust for both climbing and descending flight.  In 

trim condition 4, a linear relationship was again found for both δa and δr as the sideslip 

angle was increased.  For trim condition 5, the steady turn was defined as a constant turn 

rate with a load factor of 1.0 to allow a valid comparison.  To simulate an actual turn, the 

load factor should be varied with bank angle, and β  should be held to 0.0°.  Again a linear 

relationship was observed for both δa and δr as the bank angle was increased.  For trim 

conditions 6 and 7 δa and δr had relationships nearly identical to trim condition 5.  The 

only difference between the two trim conditions was the required thrust was dependent 
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on the flight path angle similar to trim condition 2 and 3.  For the barrel roll, a constant 

roll rate was chosen, and β  was assumed to be zero.  This flight condition describes an 

aileron roll.  To offset from the roll axis, the sideslip angle must be increased.  For trim 

condition 8, δa was the limiting factor.  Trim condition 9 was a subset of trim condition 5.  

Formulas were found relating height above the target, weapon depression angle, and orbit 

radius.  Finally a pitch-over maneuver was examined.  The pitch rate was set, and load 

factor varied from 1.0 to 0.4 g’s.  The pitch-over was limited by the maximum elevator 

deflection. 

     Predicted Derivative Sensitivity. 

The equation predictions are very sensitive to errors in the stability derivatives.  

The most sensitive stability derivatives are 
ärnC , 

âyC , 
ânC , and 

âl
C .  An error greater 

than seven percent in any of these stability derivatives creates a 1.0° difference in the 

predicted control surface value.  To get the desired accuracy in the equation predictions, 

the stability derivatives must be known to great certainty.  The stability derivatives 

originally provided by Veridian had as large as 40% errors from the values found in flight 

test.  The longitudinal stability derivatives had been determined in previous studies and 

were much more accurate than the lateral-directional stability derivatives (reference 10).  

Unfortunately the lateral-directional stability derivatives required the most accuracy 

according to the sensitivity analysis.  
βlC  and 

äalC were not determined to within the 

required accuracy.  Therefore the lateral-directional predictions cannot be guaranteed to 

be within 1.0° of the flight test results. 
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     Flight Test Results. 

The equation predictions were partially verified by the flight test program.  The 

longitudinal test results matched the predictions for trim conditions 1, 2 and 3.  The 

lateral-directional test results had errors from the predictions for trim conditions 1 and 4, 

but were within acceptable limits.  Trim conditions 5 and 10 test predictions did not 

match the predictions.  The errors were probably due to not flying these maneuvers at 1g 

and errors in the stability derivatives.  Also the last two trim conditions could not be 

exactly reproduced by the same flight trajectory using the control equations. 

The thrust predictions had large errors and were not very accurate.  The thrust 

predictions had two major sources of error.  First, the aircraft measurement and model for 

thrust introduced an error.  Thrust was calculated by measuring the engine pressure ratio 

and the pressure at the compressor face.  The pressure at the nozzle was calculated and 

multiplied by the nozzle area to estimate the force.  The thrust estimate was not very 

accurate.  From flight test, the engines were balanced from all readings in the cockpit, but 

post-flight up to a 200 lbs difference between engines was noted at some test points.  

Also, test points flown at nearly identical test conditions on different flights had up to 100 

lbs difference.  The second source of error was that the thrust modeled as a point force 

acting at the estimated center of the nozzle.  The model simplifications may have also 

introduced an error. 

     Error Sources. 

The equations were able to accurately predict non-aggressive level flight 

maneuvers, which would be the majority of flight for a UAV.  The complex maneuvers 

were not validated in the flight test program.  The steady turns predicted by the equations 
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were also not reproduced in flight.  Steady turns are a balance of turn rate, bank angle and 

sideslip angle.  The equations predict a different combination of these three parameters 

than were flown.  The predicted steady turn may be a valid solution to the turn, but it was 

not verified in flight test.  The control surface deflections are smaller than predicted due 

to the use of bank angle to balance the forces.  The pitch-over maneuver also was not 

validated in flight.  Pointing the bottom of the aircraft at a stationary target on the ground 

was predicted by the equations, but may not be possible on an actual aircraft.  Further 

tests and research is needed. 

The model was accurate near the center test point condition, but the errors grew 

larger, the farther from the equilibrium test point.  The errors have three primary sources. 

          Stability Derivative Variability. 

First, the stability derivatives were a function of multiple variables.  From flight 

test, as Mach number, altitude and dynamic pressure changed the stability derivative 

values changed.  Temperature and air density also had a small impact on the predictions.  

To predict the required control surface deflection with great accuracy, the stability 

derivatives would need to be mapped for the entire flight envelope to the desired 

accuracy determined in the sensitivity analysis. 

          Instrumentation Errors. 

Second, the aircraft measurement instrumentation needs to be improved.  Small 

errors in the measured angle of attack, sideslip, bank angle and airspeed directly impacted 

the accuracy of the flight test results.  It was also noted that altitude measurement 

changed when maneuvers other than straight and level flight were flown.  The altitude 

error was probably due to no correction in the static pressure measurement when flow 
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over the static port was disrupted in other than straight and level flight.  A Pitot static 

calibration should be performed.  The accelerations and angular rotation measurements 

were also very noisy, which resulted in an averaged value with occasional large 

uncertainties.  To achieve the accuracy needed for the model equations, very accurate 

measurements are required.  Finally there was no direct method to record aircraft weight.  

The data was displayed in the cockpit, but the data recorded from the data bus was an 

estimate provided by Veridian. 

          Non-linear Effects. 

Finally, at the edges of the flight envelope non-linear flight effects become 

evident.  As stall is approached, the lift curve slope becomes non-linear.  Also at higher 

Mach numbers, compressibility effects must be considered.  At higher dynamic pressures 

the assumption of a rigid body may not be valid.  Another concern not addressed is the 

movement of the center of gravity as fuel was burned.  These effects are not included in 

the model and therefore would introduce an error.  The model accuracy would decrease 

the further from the center test condition the maneuver was flown.  Finally thrust was 

assumed to be invariant as altitude, velocity and temperature changed.  This simplifying 

assumption likely introduced an increasing error as test data was collected away from the 

center test condition. 

Recommendations 

The open-loop equations provide a good prediction of the required control 

settings for some of the specified trim conditions.  With additional work the model could 

be implemented on a UAV application.  This section will address shortcomings identified 

during research and additional issues that need to be addressed. 
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     Validate Turn Predictions. 

The steady turn predictions need to be validated.  Post-flight test, the effect of 

load factor was added to the equations to predict a loaded turn.  The equations still 

predicted much higher control surface deflections than were seen in flight.  Pilot’s 

typically use more bank angle than control surface deflection to turn the aircraft.  The 

equations predict a small bank angle and large control surface deflection trajectory.  The 

predicted trajectory and control surface deflections should be flight tested to validate the 

predicted solution.  The predicted trimmed turn may be a valid turn solution, just not the 

ones found in flight test. 

     Improve Thrust Model. 

The thrust model must be improved.  The model provided for flight test did not 

provide the accuracy to totally validate the model thrust predictions.  Near the center test 

conditions the results were good, but at the upper end of the thrust envelope the flight test 

measurements differed significantly from the predicted results.  The thrust model had 

many simplifying assumptions, which may need to be readdressed to accurately predict 

the proper engine settings. 

     Include Wind Effect in Model. 

The uncertainties in the atmosphere need to be included in the model.  Wind gusts 

and other variations in wind should be included to better model the actual flight 

conditions.  A wind gust would add a force and moment to the system, which is currently 

not included in the force and moment summations.  The wind variations would disrupt 

the assumption of zero net forces and moments, and the aircraft would no longer be in a 

trimmed flight condition. 
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     Investigate Transitions between Trim Conditions. 

The model assumes stable, trimmed flight conditions.  No control input is 

provided to get to the trimmed condition.  Typically large inputs are commanded to move 

the aircraft to a new flight condition.  To transition from one trimmed condition to the 

next, additional control commands must be input.  If the trim condition control 

commands are the only inputs into the aircraft, the aircraft may slowly approach the trim 

condition, but may never reach the desired trimmed condition.  The transition between 

trimmed conditions was not addressed in the open-loop model.  Control surface limits 

may also be exceeded during transitions between trim conditions. 

     Determine Stability Derivatives Accurately. 

The stability derivatives require very accurate estimates to make valid predictions.  

Wind tunnel estimates of stability derivatives do not produce the required stability 

derivative accuracy.  An extensive flight test program is required to provide an accurate 

aeromodel of the aircraft. 

To implement the control loop equations on a UAV, very accurate flight condition 

measurements would be required.  The test aircraft had some of the best measurement 

instrumentation economically available.  The measurements were still near the acceptable 

accuracy limits and exceeded error limits in some cases.  Extremely accurate angle, 

velocity and acceleration measurements would be needed to implement the open-loop 

control model on an aircraft. 

     Measure Weight Accurately. 

The weight measurement was estimated since the flight data was not available on 

the data bus.  The weight was only available as a display in the cockpit.  A constant fuel 
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burn rate was assumed and aircraft weight was decremented as a function of flight time.  

The decrement rate was varied the first few flights to find the most accurate weight 

estimate.  Also the weight was periodically reset to the cockpit display to increase 

accuracy.  The weight value occasionally drifted from the actual value though.  The 

weight of the aircraft should be accurately measured to provide the accuracy needed to 

validate the weight related model predictions. 

     Automate Matlab® Routine. 

The Matlab® routine could be automated to accept flight condition inputs and 

output the required control settings.  Shell programs could be developed to take inputs 

directly from the air data computer for air density, temperature, current velocity, and 

aircraft weight.  The shell program could be designed to prompt for the velocity, flight 

path angle, and either bank angle or sideslip angle for the desired trajectory.  Additionally 

rotational rates and angular accelerations could be input for the three axes.  The output 

control surface deflections and engine setting could be sent directly to the aircraft bus 

controller.  Also the angle of attack, sideslip, and bank angle could be compared to the 

aircraft measurements to monitor the aircraft trajectory. 
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APPENDIX A:  SAMPLE CALCULATIONS 

 
 
 

Introduction 

 This appendix includes sample calculations to support the equations developed in 

the inner- and outer-loop equations.  The numbers in parenthesis correspond to the 

equation number in the main text of the document. 

 

 

Figure 48.  Force Definitions 

 

Outer-Loop Calculations 

 The outer-loop equations were redefined in Chapter 2.  The derivations for the 

equations follow.  First the forces from Figure 48 were summed in all three axes 

=∑
wxF  T - D - n m g sin γ = m ax = m V& 

 ⇒ ãsinng
m

DT
V −−=&       (Eqn. 5) 

=∑
wzF -L cos φv – Fy sin φv + n m g cos γ = m az = m (-V ã&) 

^  ^ 
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 ⇒ ãcos
V
ng

mV

sinFLcos
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+
=

φφ
&      (Eqn. 6) 

=∑
wyF  Fy cos φv - L sin φv = m ay = m (V cos γ H&) 
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mVcosã

cosFsinL-
H vyv φφ +

=&       (Eqn. 7) 

The following forces were defined in Chapter 2 

L= q 2
o

2

V
V

áLC  (α+
Loá )   (Eqn. 1) 

D= q 2
o

2

V
V

( áDC α+ oDC )   (Eqn. 2) 

Fy=q 2
o

2

V
V

w

t

S
S

âyC β    (Eqn. 3) 

T=mgµ   (Eqn. 4) 

The defined forces were substituted into equations (5) through (7) 
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Simplifying assumptions were then made for each trim condition. 
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     Trim Conditions 1, 2, 3, and 4. 

Trim condition:  0HVã === &&& ° (β  independent) 
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Substitute cosφv into µ 
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( Eqn. 11) 

Trim condition 1:  0HVã === &&& ° (φv independent) (from Equation 8) 
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From previous equations 
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     Trim Conditions 5, 6, 7, and 9. 

Trim condition:  0Vã == && ° and H& = Ψϖ  (or Η(t) = Ψϖ t) 
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From the second and third equations 
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Substitute α into cos φv 
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which simplifies to 
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   (Eqn. 15) 

Substitute α into sin φv 
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Solving the V&equation 

( ) ãsinngCC
mgV

Vq
oDD2

o

2

++= αµ
α

 

 ⇒

( ) ( )[ ] ãsinngCCC
S
S

Vngãcosm
Vq
V

C

C

mgV
Vq

oL DoD

2

y
W

t22

2

2

2
o

L

D

2
o

2

+













+−





−+








= Ψ αβϖµ

αβ

α

α  

   (Eqn. 18) 

 

     Trim Condition 9. 

Inner-loop equations were defined above.  The parameters weapon depression angle, 

height above the target and orbit radius were defined in Figure 10 in Chapter 3.  The 

equations describing the orbit parameters follow 
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which combine to produce an equation for the height. 
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To find the maximum height, Equation 34 was differentiated with respect to n since ε was 

constant 
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APPENDIX B:  MATLAB® ROUTINE 
 
 
 

 This appendix includes a copy of the Matlab® routine used for the 

implementation of the open-loop model.  The control surface deflections and engine 

settings were determined by varying the input parameters. 

 

% Open-Loop Control Laws for AFIT Thesis 
%   Capt Gary Miller 
%   AFIT 2004 
clear allclc 
format compact 
% 
%   EQUILIBRIUM CONSTANTS 
%   Determined by specific flight conditions 
%W= 12712;                         %A/C weight at equilibrium [lbs] 
W= 13500;                          %A/C weight at equilibrium [lbs] 
S_w=231.8;                         %A/C wing area [ft^2] 
b=39.5;                            %Wing span of the A/C [ft.] 
c_bar=9;            %estimate%     %Wing mean chord [ft.] 
S_t=76.5;                          %Vertical Tail surface area [ft^2] 
rho0=0.0023769;                    %S-L standard density [slug/ft^3] 
g=32.174;                          %Force of gravity [ft/s^2] 
R=1718;                            %Universal gas const.[ft.lbs/slug*R] 
m=W/g;                             %Mass of A/C at equilibrium [slugs] 
% 
%   OUTER LOOP CALCULATIONS 
%       Specify V/Vo, gamma and omega0 from flight conditions. 
%       Beta or phi_v must also be specified. 
%h0= 13879;         %specified%    %Equilibrium Height [ft] h0= 13879; 
h0= 15000;          %specified%    %Equilibrium Height [ft] 
T0=518.69-0.00356616*h0;           %S-L standard temperature [deg. R] 
%V=475;             %specified%    %Wind axes velocity [ft/s] 
%Vo=475;            %specified%    %Wind axes equil. velocity [ft/s] 
V=450;              %specified%    %Wind axes velocity [ft/s] 
Vo=450;             %specified%    %Wind axes equil. velocity [ft/s] 
psi_dot0=0.0;       %specified%    %Equilibrium turn rate [rad/s] 
phi_dot0=0.0;       %specified%    %Equil. roll angle change [rad/s] 
theta_dot0=0.0;     %specified%    %Equil. pitch angle change [rad/s] 
rho=rho0*exp(-g*h0/(R*T0));        %Density, altitude corr. [slug/ft^3] 
gamma=0.0;          %specified%    %Normallized flight path angle [rad] 
                                       %(defined up as positive) 
q_bar=rho*(Vo^2)*S_w/2;            %Dynamic pressure [lbs.] 
C_y_beta=-0.0133*180/pi;           %Side-Force Coeff.- sideslip [1/rad] 
C_L_alpha=0.086694*180/pi;         %Lift coeff.-angle of attack [1/rad] 
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C_L_o=0.010544;                    %Zero-lift lift coefficient [none] 
C_Do=0.02350;                      %Zero-lift drag coefficient [none] 
C_D_alpha=0.00200*180/pi;          %Drag coeff.-angle of attack [1/rad] 
flag0=1;                           %Flag0=1, beta specified; else phi 
%   Beta specified equations 
if flag0==1; beta=-0.0;            %Outer loop eqns. w/ beta specified 
    phi=asin(q_bar*((V/Vo)^2)*(C_y_beta*beta*S_t*g/S_w-
psi_dot0*V*sqrt(... 
      ((g^2+(psi_dot0*V)^2)*(m*((Vo/V)^2)*cos(gamma)/q_bar)^2)-... 
      (C_y_beta*beta*S_t/S_w)^2))/(m*cos(gamma)*(g^2+(psi_dot0*V)^2))); 
                                   %Roll angle point mass eqn. [rad] 
alpha=(sqrt((g^2+(psi_dot0*V)^2)*(((Vo/V)^2)*m*cos(gamma)/q_bar)^2-... 
      (C_y_beta*S_t*beta/S_w)^2)-C_L_o)/C_L_alpha;               
                                   %Angle of attack pt. mass eqn. [rad] 
mu=q_bar*((V/Vo)^2)*(C_Do+C_D_alpha*(sqrt((g^2+(psi_dot0*V)^2)*(m*... 
      ((Vo/V)^2)*cos(gamma)/q_bar)^2-(C_y_beta*beta*S_t/S_w)^2)-... 
      C_L_o)/C_L_alpha)/W+sin(gamma);       %Engine throttle setting 
%   Phi specified equations 
else phi=0.0;                      %Outer loop eqns. w/ phi specified 
beta=-(Vo^2)*W*S_w*cos(gamma)*sin(phi)/(C_y_beta*S_t*q_bar*(V^2)); 
                                   %Sideslip angle pt. mass eqn. [rad] 
alpha=(((Vo/V)^2)*W*cos(gamma)*cos(phi)/q_bar-C_L_o)/C_L_alpha; 
                                   %Angle of attack pt. mass eqn. [rad] 
mu=q_bar*((V/Vo)^2)*(C_Do-C_D_alpha*C_L_o/C_L_alpha)/W+... 
      C_D_alpha*cos(gamma)*cos(phi)/C_L_alpha+sin(gamma);  
                                   %Engine throttle setting 
end; 
if alpha>0.35; display('Angle of Attack limit exceeded'); end; 
if mu<0;  
display('Minumum Throttle setting exceeded, cannot maintain 
equilibrium'); 
end 
if mu>1; display('Maximum Throttle setting exceeded'); end; 
% 
%   CONVERT A/C wind axis angles to body axis angles 
psi=0.0;            %specified%    %A/C wind heading angle [rad] 
c_11=cos(gamma)*cos(psi)*cos(alpha)*cos(beta)+(sin(phi)*sin(gamma)*... 
    cos(psi)-cos(phi)*sin(psi))*cos(alpha)*sin(beta)-(cos(phi)*... 
    sin(gamma)*cos(psi)+sin(phi)*sin(psi))*sin(alpha);      
                                   %1st row, 1st column term matrix 
c_21=cos(gamma)*sin(psi)*cos(alpha)*cos(beta)+(sin(phi)*sin(gamma)*... 
    sin(psi)+cos(phi)*cos(psi))*cos(alpha)*sin(beta)-(cos(phi)*... 
    sin(gamma)*sin(psi)-sin(phi)*cos(psi))*sin(alpha);      
                                   %2nd row, 1st column term matrix 
c_31= 
-sin(gamma)*cos(alpha)*cos(beta)+sin(phi)*cos(gamma)*cos(alpha)*... 
    sin(beta)-cos(phi)*cos(gamma)*sin(alpha);     
                                   %3rd row, 1st column term matrix 
c_32=sin(gamma)*sin(beta)+sin(phi)*cos(gamma)*cos(beta); 
                                   %3rd row, 2nd column term matrix 
c_33= 
-sin(gamma)*sin(alpha)*cos(beta)+sin(phi)*cos(gamma)*sin(alpha)*... 
    sin(beta)+cos(phi)*cos(gamma)*cos(alpha);     
                                   %3rd row, 3rd column term matrix 
if abs(-c_31)<pi/2; theta=asin(-c_31); 
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elseif (abs(sqrt(c_11^2+c_21^2))<pi) &  
(abs(sqrt(c_11^2+c_21^2))>pi/2); 
theta=pi-acos(sqrt(c_11^2+c_21^2));%A/C pitch angle <nav. axes> [rad] 
end; 
if abs(c_21/sqrt(c_11^2+c_21^2))<pi/2; 
psi1=asin(c_21/sqrt(c_11^2+c_21^2)); 
elseif (abs(c_11/sqrt(c_11^2+c_21^2))<pi) &  (abs(c_11/sqrt(c_11^2+... 
      c_21^2))>pi/2); 
psi1=pi-acos(c_11/sqrt(c_11^2+c_21^2)); 
if psi1>pi; psi1=psi1-pi; end;     %Quadrant check 
end;                               %A/C heading angle <nav. axes> [rad] 
if abs(c_32/sqrt(c_11^2+c_21^2))<pi/2; 
phi1=asin(c_32/sqrt(c_11^2+c_21^2));  
elseif (abs(c_33/sqrt(c_11^2+c_21^2))<pi) &  (abs(c_33/sqrt(c_11^2+... 
      c_21^2))>pi/2); 
phi1=pi-acos(c_33/sqrt(c_11^2+c_21^2)); 
if phi1>pi; phi1=phi1-pi; end;     %Quadrant check 
end;                               %A/C roll angle <nav. axes> [rad] 
% 
flag1=1;                           %Define Rotation Axis 
if flag1==1;                       %=1>Yaw; =2>Pitch; =3>Roll 
%   CALCULATE ROTATION RATES FROM EULER ANGLES (STEADY TURN) 
P=-psi_dot0*sin(theta);            %Equilibrium Roll Rate [rad/s] 
Q=psi_dot0*sin(phi1)*cos(theta);   %Equilibrium Pitch Rate [rad/s] 
R=psi_dot0*cos(phi1)*cos(theta);   %Equilibrium Roll Rate [rad/s] 
elseif flag1==2; 
%   CALCULATE ROTATION RATES FROM EULER ANGLES (PITCH-OVER) 
P=0;                               %Equilibrium Roll Rate [rad/s] 
Q=theta_dot0*cos(phi1);            %Equilibrium Pitch Rate [rad/s] 
R=-theta_dot0*sin(phi1);           %Equilibrium Roll Rate [rad/s] 
else 
%   CALCULATE ROTATION RATES FROM EULER ANGLES (STEADY ROLL) 
P=phi_dot0;                        %Equilibrium Roll Rate [rad/s] 
Q=0;                               %Equilibrium Pitch Rate [rad/s] 
R=0;                               %Equilibrium Roll Rate [rad/s] 
end; 
%   EQUILIBRIUM CONSTANTS 
%    AIRCRAFT MOMENTS OF INERTIA 
I_xx= 20000;                       %Mom. of Inertia x-axes [slug*ft.^2] 
I_yy= 22900;                       %Mom. of Inertia y-axes [slug*ft.^2] 
I_zz= 40000;                       %Mom. of Inertia z-axes [slug*ft.^2] 
I_xz= 1980;                        %Prod. of Inertia x/z [slug*ft.^2] 
%    AIRCRAFT STABILITY DERIVATIVES 
C_y_delr= 0.002483*180/pi;         %Side-Force Coeff.-rud. def. [1/rad] 
C_y_dela= -0.00107*180/pi;         %Side-Force Coeff.-ail. def. [1/rad]  
C_l_beta= -0.00165*180/pi;         %Roll Mom. Coeff.- sideslip [1/rad] 
C_l_dela= -0.00138*180/pi;         %Roll Mom. Coeff.- ail. def. [1/rad] 
C_l_delr= 0.000346*180/pi;         %Roll Mom. Coeff.- rud. def. [1/rad] 
C_l_p= -0.44634*180/pi;            %Roll Mom. Coeff.- Roll Rate [s/rad] 
C_l_r= 0.387836*180/pi;            %Roll Mom. Coeff.- Yaw Rate [s/rad] 
C_n_beta= 0.001449*180/pi;         %Yaw Mom. Coeff.- sideslip [1/rad] 
C_n_dela= -0.00002*180/pi;         %Yaw Mom. Coeff.- ail. def. [1/rad] 
C_n_delr= -0.0009*180/pi;          %Yaw Mom. Coeff.- rud. def. [1/rad] 
C_n_p= -0.06415*180/pi;            %Yaw Mom. Coeff.- Roll Rate [s/rad] 
C_n_r= -0.11635*180/pi;            %Yaw Mom. Coeff.- Yaw Rate [s/rad] 



 124

C_y_p= 0.149213*180/pi;            %Side-Force Coeff.-Roll Rate [s/rad] 
C_y_r= 0.827684*180/pi;            %Side-Force Coeff.-Yaw Rate [s/rad] 
C_l_pq= (I_xz*(I_zz+I_xx-I_yy)/(I_xx*I_zz-I_xz^2));    
                                   %Roll Moment Coeff. due Pitch/Roll 
C_l_qr= (I_zz*(I_yy-I_zz)-I_xx^2)/(I_xx*I_zz-I_xz^2);  
                                   %Roll Moment Coeff. due Pitch/Yaw 
C_n_pq= (I_xx^2-I_xx*I_yy+I_xz^2)/(I_xx*I_zz-I_xz^2);  
                                   %Yaw Moment Coeff. due Pitch/Roll 
C_n_qr= (I_xz*(I_yy-I_xx-I_zz))/(I_xx*I_zz-I_xz^2);    
                                   %Yaw Moment Coeff. due Pitch/Yaw 
C_mo= 0.052925;                    %Equil. Pitch Moment Coeff. [none] 
C_m_dele= -0.01472*180/pi;         %Pitch Mom. Coeff.-elev. def.[1/rad] 
C_m_q= -15.0857*180/pi;            %Pitch Mom. Coeff. due Pitch [s/rad] 
C_L_q  =  0.65200*180/pi;          %Lift Coeff. due Pitch[s/rad] 
C_L_de =  0.006337*180/pi;         %Lift Coeff. due elev. Def. [1/rad] 
C_m_alpha  = -0.01557*180/pi;      %Pitch Mom. Coeff. due alpha [1/rad] 
C_m_alpha_dot = -0.09800*180/pi;   %Pitch Mom. Coeff.-alpha_dot [s/rad] 
C_d_q  =  0.08600*180/pi;          %Drag Coeff. due Pitch Rate [s/rad] 
C_m_p2r2= I_xz/I_yy;               %Pitch Mom. Coeff.-Roll Rate [s/rad] 
C_m_pr= (I_zz-I_xx)/I_yy;          %Pitch Mom. Coeff.- Roll/Yaw [s/rad] 
c_3=I_zz/(I_xx*I_zz-I_xz^2);       %Roll acc. eqn. const. [1/slug*ft^2] 
c_4=I_xz/(I_xx*I_zz-I_xz^2);       %Roll/yaw eqns. const. [1/slug*ft^2] 
c_7=1/I_yy;                        %Pitch acc. eqn. const.[1/slug*ft^2] 
c_8=((I_xx-I_yy)*I_xx+I_xz^2)/(I_xx*I_zz-I_xz^2);      
                                   %Yaw acc. eqn. const. [1/slug*ft^2] 
c_9=I_xx/(I_xx*I_zz-I_xz^2);       %Yaw acc. eqn. const. [1/slug*ft^2] 
%   THRUST CHARACTERISTICS 
x_T=0.1;            %estimate%     %x-axis distance c.g. to thrust [ft] 
y_T=3;              %estimate%     %y-axis distance c.g. to thrust [ft] 
z_T=0.1;            %estimate%     %z-axis distance c.g. to thrust [ft] 
T_max=5000;         %estimate%     %Maximum combined thrust [lbs.] 
alpha_T=0.0;        %estimate%     %Engine thrust angle [rad] 
T=mu*W;                            %Total engine trust [lbs.] 
if T>T_max; display('Maximum thrust limit exceeded'); end; 
per=0.5;         %specified%    %Percentage of right engine thrust  
T_1=per*T;                         %Thrust from right engine [lbs.] 
T_2=T-T_1;                         %Thrust from left engine [lbs.] 
%   CONTROL SURFACE DEFLECTION LIMITS 
dele_min= -0.2618;                 %Negative Elevator Def.Limit [rad] 
dele_max= 0.2618;                  %Positive Elevator Def. Limit [rad] 
dela_min= -0.5236;                 %Negative Aileron Def. Limit [rad] 
dela_max= 0.5236;                  %Positive Aileron Def. Limit [rad] 
delr_min= -0.6109;                 %Negative Rudder Def. Limit [rad] 
delr_max= 0.6109;                  %Positive Rudder Def. Limit [rad] 
% TRIM EQUATIONS 
P_dot=0.0;          %specified%    %Roll acceleration rate [rad/s^2] 
Q_dot=0.0;          %specified%    %Pitch acceleration rate [rad/s^2] 
R_dot=0.0;          %specified%    %Yaw acceleration rate [rad/s^2] 
alpha_dot=0.0;      %specified%    %Change in angle of attack [rad/s] 
                                        %<related to theta_dot>%  
c_p=-P_dot+C_l_pq*P*Q+C_l_qr*Q*R+c_3*y_T*sin(alpha_T)*(T_2-
T_1)+c_4*y_T*... 
    cos(alpha_T)*(T_2-
T_1)+q_bar*b*(c_3*(C_l_p*P+C_l_r*R+C_l_beta*beta)+... 
    c_4*(C_n_p*P+C_n_r*R+C_n_beta*beta)); 
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                                   %Roll acceleration equation constant 
c_r=-R_dot+C_n_pq*P*Q-C_n_qr*Q*R+c_9*y_T*cos(alpha_T)*(T_2-
T_1)+c_4*y_T*... 
    sin(alpha_T)*(T_2-
T_1)+q_bar*b*(c_9*(C_n_p*P+C_n_r*R+C_n_beta*beta)+... 
    c_4*(C_l_p*P+C_l_r*R+C_l_beta*beta)); 
                                   %Roll acceleration equation constant 
den_lat=q_bar*b*((c_3*C_l_dela+c_4*C_n_dela)*(c_9*C_n_delr+c_4*C_l_delr
)... 
    -(c_3*C_l_delr+c_4*C_n_delr)*(c_9*C_n_dela+c_4*C_l_dela));    
                                   %Denomenator lateral control eqns. 
dela=(c_r*(c_3*C_l_delr+c_4*C_n_delr)-
c_p*(c_9*C_n_delr+c_4*C_l_delr))/... 
    den_lat;                       %Aileron deflection equation [rad] 
delr=(c_p*(c_9*C_n_dela+c_4*C_l_dela)-
c_r*(c_3*C_l_dela+c_4*C_n_dela))/... 
    den_lat;                       %Rudder deflection equation [rad] 
dele=(c_7*(z_T*cos(alpha_T)+x_T*sin(alpha_T))*(T)-C_m_pr*P*R-
C_m_p2r2*... 
    (R^2-P^2)-Q_dot)/(C_m_dele*c_7*q_bar*c_bar)-
(C_mo+C_m_alpha*alpha+... 
    C_m_alpha_dot*alpha_dot+C_m_q*Q)/C_m_dele; 
                                   %Elevator deflection equation [rad] 
if dela<dela_min; display('Aileron lower limit exceeded'); end; 
if dela>dela_max; display('Aileron upper limit exceeded'); end; 
if delr<delr_min; display('Rudder lower limit exceeded'); end; 
if delr>delr_max; display('Rudder upper limit exceeded'); end; 
if dele<dele_min; display('Elevator lower limit exceeded'); end; 
if dele>dele_max; display('Elevator upper limit exceeded'); end; 
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