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AFIT/GAE/ENY/04-M08 

Abstract 
 
 

AFIT is in the process of designing a Space Shuttle experiment designated as the 

Rigidized Inflatable Get-Away-Special Experiment (RIGEX) to study the effects of 

microgravity on the deployment of rigidizable composite structures. Once in space, the 

experiment will inflate and rigidize three composite structures and perform a vibration 

analysis on each by exciting the tubes using piezoelectric patches and collecting data via 

an accelerometer.   

 This paper presents the structural and vibration analysis of the RIGEX assembly 

and inflatable composite tubes using ABAQUS Finite Element Analysis (FEA) software.  

Comparison of the analysis has been carried out with Eigenvalue/Eigenvector 

experimentation by means of ping testing.  This FEA analysis has been used to verify the 

natural frequency and structural integrity of the RIGEX support assemblies.  The 

ABAQUS FEA results correlated to within 20% of experimental values. 
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STRUCTURAL DESIGN AND ANALYSIS OF A RIGIDIZABLE SPACE SHUTTLE 

EXPERIMENT 
 
 
 

I: Introduction 
 

Background 
 
 
 In an effort to deploy larger and more complicated space assets, the DoD NASA 

and the commercial sector have begun research to develop a more practical, reliable and 

inexpensive method of inserting these assets into orbit.  Inflatable structures offer 

substantial weight savings over conventional mechanical structures, and would require 

approximately 1/10 of the payload volume of a traditional structure for antenna reflectors 

(11).  Substantial reductions in both volume and weight allows for smaller launch 

vehicles, which translates to marked savings in launch cost.   

 Inflatable technology has been neglected in the past.  Lack of funding and interest 

have kept the technology in its infancy; however, the enormous potential benefits in cost, 

weight and volume savings have renewed research in this area.  Inflatables also allow for 

optics on a scale not possible with traditional structures.  Rigidizable inflatable structures 

are not required to maintain internal pressure because they become rigid after inflation.  

As a result, inflatable rigidizables have an advantage over pure inflatables because if they 

are pierced by micro meteors or collide with orbiting debris, they will not deflate and thus 

can be considered a more robust structural member.  Figure 1 shows the deployment of 

the Inflatable Antenna Experiment (IAE) in space. 
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Figure 1. Inflatable Antenna Experiment 

 

 Inflatables can be used for many different applications in the space environment 

including: sunshades for space telescopes, precision booms, optical telescope mirrors, 

planetary rovers, and extreme ly light weight solar cells, to name a few.  Space-based 

platforms requiring large aperture sizes, such as those systems employed by the 

Intelligence Surveillance and Reconnaissance (ISR) community stand to benefit greatly 

from inflatable technology.  The performance of these systems has been limited by the 

substantial size and weight of their rigid mirrors and associated supporting structure, all 

of which must conform to the payload capabilities of the launch platform.   

 Rigidized Inflatable Get-Away-Special Experiment (RIGEX) is designed to 

develop a correlation between ground based testing of inflatable rigidizable structures 

with data collected on inflatables deployed under the temperature, pressure and micro-

gravity conditions of space.  While the effects of temperature and pressure can be studied 

on the ground, there is no means for effectively measuring the effects of micro gravity, 

not to mention the simultaneous combination of all three on deployment and rigidization 

of the tubes.  A better understanding of the effects these elements play on the deployment 
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of inflatable structures will provide valuable insight into the design of future inflatable 

rigidizable structures. 

Scope of Project 
 
 
 The goal of the RIGEX Inflatable Get-Away-Special (GAS) Experiment is to 

validate ground tests of the deployment, rigidization and vibration analysis of a 

collapsible inflatable tube in the space environment.  The RIGEX GAS Experiment will 

be mounted in a canister inside the space shuttle cargo bay.  When the shuttle is in orbit, 

the GAS Experiment will be exposed to the vacuum, temperature and micro gravity of 

space throughout the heating, deployment, rigidization and vibration analysis.   

 The goal of this thesis is to provide a structural analysis through the use of 

ABAQUS Finite Element Modeling for the design, manufacturing and testing of the 

RIGEX support assembly.  Furthermore, the analysis is compared to vibrational 

frequency structural response.  The RIGEX structural assembly will be modeled based on 

the preliminary design of John D. DiSebastian III (10) from August 2000 through March 

2001 and Thomas G. Single (26) from August 2001 through March 2002, with the goal of 

reducing the overall structural weight by 10 percent, maintaining NASA GAS structural 

safety requirements and providing for the accommodations of all necessary experimental 

components. 
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RIGEX Background 
 
 
 The groundwork for RIGEX began in 2001, with the preliminary design of a 

project capable of safely delivering an experiment into space aboard the shuttle (10).  

Once in orbit, it would collect data on the inflation, rigidization and modal analysis of 

compact composite tubes.  Follow-on work focused on ground testing of the composite 

tubes using beam theory to predict natural frequencies and mode shapes of the rigidized 

tubes (26).  This effort encountered difficulties due to limitations in simple beam theory.  

Figure 2 shows how RIGEX will be integrated on the space shuttle, and Figure 3 depicts 

the preliminary design of the RIGEX structure and experiment assemblies. 

 

 

Figure 2. RIGEX Shuttle Integration  

GET-AWAY-SPECIAL (GAS) 
Canisters mounted on truss which 
Will be mounted inside the shuttle 
Cargo bay. 

RIGEX EXPERIMENT - mounts inside a GAS canister 
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Figure 3. RIGEX Preliminary Design (10) 

 

 In 2002, research was done to improve the design of the ovens, which are used to 

heat the tubes before inflation.  The latest work done on RIGEX was performed in 2003 

by Thomas Philley (25), who conducted tests on the heating and inflation of the tubes in a 

scaled-down test structure.  Philley also conducted vibration tests on the rigidized tubes 

to characterize the ir first three natural frequencies and mode shapes with various types of 

boundary conditions applied to the tubes. 

Research Objectives 
 

 The overall mission objective of the RIGEX is: 

 To verify and validate ground testing of inflation and rigidization methods for 

inflatable space structures against a zero-gravity environment. 
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 The specific objective of this research effort is to produce an accurate Finite 

Element representation of the RIGEX support structure for the purpose of manufacturing 

and testing a flight-worthy article capable of housing the RIGEX experimental 

components.  The Finite Element model will be used to verify the natural frequency of 

the structure and to determine structural loading on the support assembly, representative 

of the loads to be encountered at shuttle lift-off and landing. 

 

Methodology 
 
 
 In order to build an accurate Finite Element Model (FEM) of the overall RIGEX 

support structure, we want to first construct a three dimensional deformable model of an 

inflated and rigidized tube assembly for which we have experimental vibration test results 

from a previous thesis (25 and 26).  The purpose of this model is two-fold, first it will 

provide a good training tool for modeling a simple structure and secondly the results 

should give an indication of how well ABAQUS frequency analysis results correlate with 

test results previously obtained and characterize the tubes material properties.  The 

second step in obtaining an accurate FEM of the RIGEX structure will be to construct an 

accurate ABAQUS model of the quarter structure which was manufactured for ground 

testing of a single tube inflation system.  Once modeled, a frequency analysis can be 

performed on the quarter model and the results compared to ping tests on the existing 

structure.  Finally the entire structure will be modeled in ABAQUS and both frequency 

and stress analysis simulations run to verify NASA structural safety requirements have 

been meet. 
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Assumptions  
 
 
 The primary design constraints for a GAS experiment are defined in the Shuttle 

Small Payloads Project Office (SSPPO) experimenter’s handbook (23).  These 

requirements must be met in order to allow for experiment integration into the NASA 

GAS canister.  Table 1 contains a list of the principal experiment constraints.   

Table 1. Principal GAS Constraints (10) 
Constraint Limit Imposed by:  

Weight 200 lbs NASA  

Size 19.75 inches (diameter) NASA  

 28.25 inches (height) NASA  

Payload Volume 5 cubic feet NASA  
 

 
 In addition to these overall limitations on experiment size and weight, 

experimenters are required to conduct additional structural verification of the experiment 

support structure in accordance with NASA requirements:   

 Structure materials used in the construction of the primary load bearing assembly, 

as well as structural fasteners, are of primary concern in regards to stress corrosion 

cracking; therefore, these materials must meet NASA requirements.  Materials listed in 

Table 1 of MSFC-SPEC-522 are in full compliance with NSTS 1700.7, Safety Policy and 

Requirements for Payloads Using the Space Transportation System.   

 The following assumptions will be used in the development of the structural 

design and modeling of the RIGEX structure: clamp constraint for back of Experiment 

Mounting Plate (EMP) to simulate experiment connection to GAS canister, experimental 

components modeled as rigid masses of approximate dimension, structural plates are tied 

at nodes to represent welds of aluminum plates, and composite material modeled as 
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isotropic for modeling purposes.  Fracture control will not be considered because we will 

not be employing a motorized door assembly equipped GAS canister. 

Summary of Thesis 
 
 
 In the subsequent chapters, the design and fabrication of the RIGEX support 

assembly as well as the Finite Element Modeling and testing is presented.  Chapter 2 

gives a brief outline of Finite element theory with respect to ABAQUS and outlines some 

of the analysis applications for which ABAQUS has been used.  Procedures for building 

the finite element models and testing the results are discussed in Chapter 3.  Chapter 4 

presents the results of the FE analysis and compares them to experimental test values.  

The first models will be made on the inflatable rigidizable tube and the quarter test 

structure to validate the ABAQUS model and assumptions followed by the analysis on 

the full support structure.  Finally, conclusions and recommendations for future work are 

presented in Chapter 5. 
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II: Literature review 
 

Overview 
 
 
 Inflatable structures are light, compact deployable structures that come in two 

varieties, rigidizable and purely inflatable.  The difference in the two is that the purely 

inflatable requires internal pressure to maintain the rigidity of the structures, where the 

inflatable rigidizable requires heat to change the material properties of the two to make 

the tube pliable for inflation, but once inflated and solidified it requires no external means 

to maintain its shape.   

Previous work has been done to model the rigidized inflatable tubes using 

classical beam theory and modal analysis.  Since the inflatable tubes are a composite 

structure composed of a carbon fiber tube with aluminum flanges inserted into each end, 

the tube cannot be considered homogeneous and is therefore more difficult to model.   

The Finite Element Method is used to determine the static and dynamic behavior 

of complex geometries and assemblies by breaking them down into small elements and 

employing computers to solve for variance in a field parameter across the element.  There 

are many different brands of Finite Element software currently on the market.  ABAQUS 

is a widely employed Finite Element software tool that combines the flexibility and 

power of Finite Element Analysis with the ease of modeling using a built- in job 

preprocessor.   
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Finite Element Method 
 
 

 In 1943, R. Courant wrote a paper on the torsional rigidity of a hollow 

shaft in which he broke it up into small triangles and interpolated the stress function 

across each triangle from net points (nodes) across the shaft (7,  p10).  Courant suggested 

that the method might be suited to solving a wide variety of problems.  Today, Finite 

Element Analysis is indeed employed in many fields from heat transfer and stress 

analysis to fluid dynamics and the study of electromagnetic fields, to mention a few.  

Why use Finite Element Analysis?  Classical stress and vibration analysis 

techniques can solve simple beam and plate structures quite handily.  As the geometries 

of structures become more complex, these methods are no longer sufficient for 

developing accurate models of their behavior.  Finite element analysis tackles these 

sophisticated parts and geometries by breaking them down into more manageable pieces, 

and then applying the processing power of a computer to grind out the solutions (6). 

The Finite Element Method (FEM) or Finite Element Analysis (FEA) is a 

numerical method for solving partial differential equations.  This method by which 

complex physical problems, whose field distribution such as deformation is characterized 

by differential or integral equations, are broken down into small finite elements and then 

solved numerically across the entity.  Finite elements are small pieces of the overall 

structure connected to each other at points called nodes.  The collections of finite 

elements throughout the part to be modeled are called a Finite Element Mesh.  An 

example of a Finite Element Method mesh is depicted below in Figure 4. 
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Figure 4. FEM Mesh 

 

Each finite element allows a simple distribution of the field variable across the 

element.  The distribution could be linear or quadratic, but will generally not be as 

complicated as the actual distribution in the region occupied by the particular finite 

element.  The field variable, such as deformation, is then approximated across the entire 

object to obtain a solution.  For this reason Finite Element Analysis (FEA) cannot be 

counted on to return an exact solution to the physical problem.  However, the Finite 

Element approximation can be made more and more accurate by reducing the size of each 

element and thus increasing the total number of elements in the model.  Although as the 

number of elements increases, so does the time it takes for the computer software to 

converge to an answer.   

FEA can be employed for solving both static problems such as beam bending, and 

dynamic problems like vibration in structures and crash analysis (12).  Before obtaining 

solutions to all of these problems, they must first be modeled correctly.  Software 

programs such as ABAQUS/CAE (Complete ABAQUS Environment) can be beneficial 
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in helping to input the parameters needed to fully specify the model.  First, the geometry 

of the part must be laid out; this is basically a three-dimensional representation of the 

object or objects to be examined.  Followed by inputting the material properties of the 

parts, the loads and boundary conditions acting on the structure are loaded into the model.  

Finally, the types of elements to be used in dividing up the structure can be called out and 

the parts meshed.  ABAQUS will take all of the information entered in the CAE module 

and construct the matrices that describe the behavior of each element.  The software then 

takes all of these element matrices and combines them to form the finite element matrix 

for the entire structure, and solves it for the requested field values.  The results are then 

graphically displayed in the visualization module.  

 

ABAQUS Software  
 
 
 The ABAQUS software suite is based on the Finite Element Method, and is 

composed of two main analysis modules: ABAQUS/Standard for solving linear and non-

linear static, dynamic and thermal problems, and ABAQUS/Explicit for solving short 

transient events and highly non- linear problems such as impact and blast dynamics (17).  

ABAQUS/CAE (Complete ABAQUS Environment) allows for preprocessing and post 

processing of the analysis problem, and is the interface with both ABAQUS/Standard and 

ABAQUS/Explicit.  The model of the problem to be solved is created in a (Computer 

Aided Design) CAD-like environment within CAE where individual modules are used to 

specify the geometry of parts and assemblies, material properties, analysis type, element 

types, boundary conditions, and applied loadings.  Once the model is built, 
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ABAQUS/CAE hands the model off to either ABAQUS/Standard or Explicit, which 

processes the job in the background.  All of this can be monitored in CAE, which also 

allows for the visualization of the results once the job is complete.   

 ABAQUS/Standard is the muscle behind the Finite Element Method (FEM) static 

and dynamic analysis.  For the study of dynamic problems, ABAQUS solves the 

following eigenvalue problem to determine the natural frequencies of the model structure: 

[[Κ] - ω2[Μ]]{φ}={0}                             (1) 

The eigenvalues and mode shapes describe the free vibration of the structure.  ABAQUS 

provides two eigensolvers for frequency extraction, Lanczos eigensolver and subspace 

iteration eigensolver.  Lanczos method is generally faster when determining a large 

number of eigenmodes in a system with many degrees of freedom.  Subspace iteration 

can be faster for systems with a small number of eigenmodes (i.e. less than twenty); 

however, it also requires more memory than the Lanczos method. 

 For static models, ABAQUS/Standard solves the total equilibrium equations at 

each node, where 

{P} – [K]{u} = 0                                                       (2) 

in which P is the externally applied forces, K represents the stiffness matrix, and u the 

nodal displacements.  ABAQUS solves this matrix equation iteratively using the Newton-

Raphson iteration method, and for static problems it requires one iteration and increment. 

 Some Finite Element software programs limit the user to triangle and tetrahedral 

elements for two and three-dimensional model Finite Element mesh creations.  While this 

does not impact the overall solution to the problem, it can significantly increase the 
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amount of time it takes the program to converge to that solution.  The ABAQUS/CAE 

(Complete ABAQUS Environment) software includes an extensive library of finite 

elements for use in a wide variety of applications in one, two and three dimensions.  

There are one-dimensional line type elements that include beam, truss and connector 

elements, two-dimensional quadrilateral and triangular type elements such as shell and 

membrane elements, and three-dimensional hexahedral, wedge and tetrahedral continuum 

elements.  All of these elements come with linear and quadratic interpolation schemes, 

and the continuum elements allow for either full or reduced integrations across the 

element.  These element types are available in the CAE module, which also color codes 

regions in the model to inform the user which elements are available for meshing in the 

designated regions.  This flexibility in element selection provides the user with the tools 

necessary to model a given problem in the most efficient manner possible. 

ABAQUS/CAE also provides a graphical means for establishing boundary 

conditions on the given model.  Boundary conditions can be established on the surface of 

the part or at nodes, by selection on-screen and then using the dialogue box to constrain 

the degrees of freedom necessary to achieve the condition you are trying to simulate.  

Another useful feature in ABAQUS/CAE is in its ability to join parts together to form 

complex assemblies.  Two parts can be joined at the shared nodes along their surfaces; 

this is called tying and is especially useful in creating a seamless union between parts.  

Tying lines up the nodes where the two parts come together and fixes them to one another 

so that forces and displacements can be transmitted from one part to the other, without 

having to go through the laborious process of manually trying to line up the meshes 

between the two parts.  ABAQUS/CAE also provides a simple method for dividing parts 
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up and defining the size of the elements that will comprise the meshes for the parts.  This 

procedure is called seeding and can be accomplished by either selecting the part and 

specifying an increment for the size of each element, or by selecting an edge of the part 

and inputting the number of elements desired along the edge.  Once the seeding is 

specified for the part, it can be meshed and ABAQUS will try to accommodate the 

seeding specified by the user.  Seeding makes refining a mesh a much easier prospect 

than having to re-specify the locations of every node for each part. 

ABAQUS/FEA software is both powerful and versatile, capable of handling 

linear and non- linear static and dynamic analysis problems involving complex geometries.  

ABAQUS/CAE provides the interface that allows the user to harness this power without 

spending excessive amounts of time building the model and preparing it for analysis. 

 

ABAQUS Applications  
 
 
 ABAQUS Finite Element Analysis (FEA) software is widely used in industry and 

research as a tool for modeling and simulation of the dynamic and static behavior of 

complex parts, geometries and assemblies.  The use of ABAQUS and other FEA software 

has begun to find its way into industry over the past decade. This transition was made 

possible by advances in personal computer processing capability and the introduction of a 

user friendly software interface to guide the user through the setup of the analysis to 

visualization of the results.  ABAQUS has found application in industry from the 

aerospace community and automotive industry to civil engineering and the analysis of 

railroad trusses, to biomedical manufacturing and the manufacture of prosthetic devices 
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to include breast implants.  Boeing aerospace used ABAQUS in the redesign of the pitch-

hinge assembly for its CH-47 Chinook helicopter.  Engineers at Boeing ran thermal-

friction testing of the redesigned bearing on ABAQUS to predict wear on the new design.  

The analysis allowed the engineers to spot flaws in the design before they reached 

prototype, and allowed for substantial cost saving brought about by reducing the amount 

of testing and redesign required (28).  Figure 5 depicts the pitch-hinge assembly that is 

used to mount the propeller blades to the CH-47. 

 

                            Figure 5. Pitch-Hinge Assembly (28) 
 
 

ABAQUS also allows parts created on other Computer Aided Design (CAD) 

programs to be imported into an assembly and then meshed individually. Once contact is 

established between the parts, the analysis is ready to be run.  This procedure allows 

Pitch-Hinge Assembly for Boeing CH-47 CHINOOK 
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meshing of large assemblies of parts without the time consuming process of lining up the 

nodes of the individual part meshes.  John Hopkins has used ABAQUS in the 

development of the primary mirror for the Far Ultraviolet Spectroscopic Explorer (FUSE) 

collimator.  ABAQUS was used to determine stress in the mirror mount and distortion in 

the mirror due to back supports.  Figure 6 depicts the FUSE collimator. 

 

 

 
                                      Figure 6. FUSE Collimator (13) 

 
 
 In a study sponsored by Rolls Royce jet engines, ABAQUS was used in a finite 

element torsional buckling analysis for jet engine drive shafts.  In an effort to produce 

torque transmitting shafts that are smaller and lighter in weight, thin-walled drive shafts 

are required to increase engine efficiency and performance; however, as the wall 

thickness decreases they become more susceptible to torsional collapse.  A method was 

desired to predict buckling in new shaft designs, which could be used for the certification 

of the shaft design without extensive and expensive testing.  Research to date was based 

on either analytical or semi-empirical formulation, but was limited in its ability to 

adequately model the complex features of modern shaft design such as the air and oil 
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distribution features within the real shaft.  The ABAQUS model produced results that 

were in good agreement with tests run against actual shafts.  The model has since been 

adopted by Rolls Royce for use in development of future jet engines and could show 

considerable cost savings over existing shaft certification testing (21).  

 

Previous Research on Inflatable Tube Vibration and Modal Testing 
 
 
 Single’s thesis (26) presented the first work on developing a model for analyzing 

the modal properties of the Rigidized Inflatable Get-Away-Special Experiment (RIGEX) 

rigidized inflatable tubes.  He began his analysis using a modified Euler Bernoulli Beam 

theory to determine the natural frequencies and damping ratios for the tubes.  He then 

compared these results to vibration testing performed on tubes using both shaker table 

and Piezoelectric Transducer (PZT) to excite the beams.  This study of the tube vibration 

characteristics was built upon by Philley (25) in 2003, when he performed testing on the 

RIGEX tubes using the logarithmic decrement and half power methods to determine the 

natural frequencies and damping ratios for the tubes.  Philley conducted several vibration 

tests on the tubes, actuating them with PZTs and collecting data with a laser vibrometer 

and again using an accelerometer mounted on the top flange.  During these tests, the 

boundary conditions were varied to determine what effect this might have on the 

frequency response of the tubes.  The result of the testing showed the first and second 

bending modes of the tube to be around 62 and 660 Hz respectively. 
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Dynamic Analysis of Beams 
 
 
 In producing the ABAQUS Finite Element Model of the 20- inch inflatable 

composite tube, dimensions and material properties for the individual components were 

drawn from Single’s thesis (26).  He notes that due to the proprietary nature of the 

material used in the construction of the beams, not all of the material properties are 

known.  One of the principal properties required for producing an accurate Finite Element 

Model in ABAQUS is Young’s Modulus.  The value for Young’s Modulus given in 

Table 2 was converted to psi (24511 psi) for use in the ABAQUS model.  This was found 

to be much too low to provide a reasonable value for the fundamental natural frequency 

of the rigidized tube assembly.  Unable to obtain the true material properties for the 

composite tube, Young’s Modulus was back-calculated using the fundamental frequency 

formula and experimental results for the fundamental bending mode of the tube (4). 

Table 2. Inflatable Tube Properties (26) 
Property Description Value Units  
Aluminum Base Flange 
Mass 74.02 grams  
Aluminum Tip Flange Mass 74.6 grams  
Beam Material Thickness 
(H) 0.015 inches  

Young’s Modulus (E) 9.5E(6) lbf/in*sec2  
  1.69E(8) N/m2  
Moment of Inertia (I) 8.275E(-9) m4  
Material Density (?) 8.64307E(2) kg/m3  

 
 
 The fundamental frequency formula will be used to back-calculate a more 

realistic value for Young’s Modulus of the composite tube, based on experimental results 

for the first natural frequency of the rigidized tube mounted to a table.  The natural 

frequency of a single degree-of- freedom system can be determined by considering the 
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total energy of the system in motion.  The kinetic energy of the body is given by 

21
2

KE mv=  where sinx A tω=  and cosv A tω ω=  represent the displacement and 

velocity of the body in simple harmonic motion. A and Aω represent the maximum 

displacement and velocities, respectively.  Thus, when the displacement x is zero the 

velocitiy v is at its maximum and so is the value of the kinetic energy 

2
max

1
( )

2
KE m Aω=                                                     (3) 

Considering the potential energy of the system, which is given by the relation  

21
2

PE kx=                                                           (4) 

where k is the linear spring constant.  PE obtains its maximum value when x = A and the 

velocity v = 0. 

2
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1
2

PE kA=                                                         (5) 

Since the energy of the system is conserved max maxKE PE= or  

2 21 1
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2 2
m A kAω =                                                      (6) 

k
m

ω =                                                             (7) 

where 2 fω π=                                                       (8) 

.159
k

f
m

=                                                          (9) 

where f is the fundamental natural frequency, k is the linear spring constant and m is the 

mass supported at the free end of the beam.  Spring constants for the beam can be 
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calculated from formulas based on boundary conditions and beam geometry, where k is 

highly dependant on the type of boundary condition applied at the fixed end of the beam.  

Several values of k are depicted in Figure 7. 

 

 
Figure 7. Linear Spring Constants (4) 

 

Now consider a uniform cantilever beam of mass, bm  with flexural rigidity EI and length 

L, with the same point mass attached at the free end.  Again, the vibrating structure will 

be modeled as a single degree of freedom system and will yield only the first or lowest 

natural frequency. The beam, or spring as it is being modeled in this case, can no longer 

be considered massless and must be accounted for in calculation.  The formula for the 

fundamental frequency can be obtained by using an approximate energy method and 

Linear Spring Constants (k) 

Cantilever: Lateral Load 

m 

Cantilever: Axial Load 

L 

m 
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considering a portion of the beams effective distributed mass to lumped in with that of 

the point mass attached to the end of the beam.  Under these conditions, the only force 

that acts to deflect the beam during vibration is the concentrated inertia force at the tip of 

the beam.  It is therefore assumed that the deflection curve of the vibrating beam is the 

same as the deflection curve of the statically loaded beam with the mass concentrated at 

the tip.  This approximation is known as Rayleigh’s energy method for estimating the 

fundamental frequency, and should lead to an approximation at least as high as the actual 

fundamental natural frequency (20:63). 

 

Figure 8. Cantilever Beam with Mass on Free End (4) 
 
 

From Figure 8 we see that the maximum displacement of the beam tip is A due to the 

application of the force F. The applied force F is equal to the linear spring constant from 

m 

F 
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Figure 7 (for an end loaded cantileve r beam in bending), 3

3EI
k

L
= times the displacement 

A.  The potential energy of the beam is equal to the amount of work done by the tip force 

to deflect the beam, where 
1 1
2 2

PE Fd FA= =  or 21
2

PE kA=  and the maximum PE of 

the beam is 

2
max

1
2

PE kA=
 
or 

2

max 3

3
2
EIA

PE
L

=                                          (10) 

The amplitude of displacement at an arbitrary location x along the beam measured from 

the clamped end is given by 

2 3 2 3

max 3

3
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F Lx x A Lx x
y
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                                  (11) 

The harmonic amplitude at x is given by max cosy y tω= and the velocity is  

2 3

max 3

3
sin sin

2
dy x L x

y t A t
dt L

ω ω ω ω
−

= ⋅ = ⋅                                   (12) 

The maximum kinetic energy due to the motion of the point mass and the distributed 

mass of the beam is  
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yielding  

1 332
max 2 140( ) ( )bKE A m mω= +                                                (14) 

Setting the maximum potential and kinetic energies equal to one another and solving for 

the frequency f, we obtain  
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3
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Rayleigh’s energy method can be used in a similar fashion to produce a fundamental 

frequency formula for a single degree of freedom system under axial loading.  The results 

are summed up in Table 3, which illustrates how the fundamental frequency for bending 

and axial are calculated. 

.159
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k
f

m mα
=

+
                                                        (16) 

Table 3. Fundamental Frequency Formulas (4) 

 κ  α   

Axial Vibration EA/L 1/3  

Lateral Vibration EI/L3 1/4  
    

where m = lumped mass  

 mb = beam mass  

 κ  = spring constant  
 α  = parameter  

 

NASA Get Away Special Experiments 
 
 
 In the mid-seventies, NASA commenced the Get-Away-Special (GAS) Program 

to provide the general scientific community with an inexpensive means in which they 

could access space with their experiments.  The GAS canisters come in two varie ties, one 

being small (2.5 cu ft) which can accommodate 60 to 100 lbs of customer payload, and 

the other being a 5 cu ft canister capable of accommodating an experiment up to 200 lbs.  

Figure 9 shows an exploded view of the GAS can. 
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Figure 9. GAS Experiment Configuration (23) 
 
 
GAS payload canisters are mounted in various locations within the payload of the space 

shuttle.  Up to twelve canisters can be mounted at a time on a bridge assembly, depicted 

earlier in Figure 2. 

 GAS canister experiments must be completely self-contained and autonomous.  

The only interface allowed between the experiments and the shuttle are three on-off 

controls, operated by the space shuttle crew.  It is the responsibility of each experimenter 

to provide heating, data handling and electrical power for their particular payload.   
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Payload Considerations  
 
 
 The RIGEX preliminary design called for a total of 196.2 lbs of support structure 

and experimental components, all of which had to be organized into the 19.75” diameter 

by 28.25” cylindrical area.  Table 4 illustrates the weight breakdown for the RIGEX 

preliminary design.  In addition, to accomplish the operational goals of the RIGEX 

experiment, the system must be able to survive the effects of take-off and have the 

components retain the capability of fulfilling their intended functions. 

Table 4. Preliminary Weight Analysis (10) 
Item Weight Quantity Total  

Structure 58.24 1 58.24  

Battery Cell 6.60 8 52.80  

Battery Box 18.60 1 18.60  

Computer 7.75 1 7.75  

Sensors 2.48 1 2.48  

Heaters 1.00 5 5.00  

Oven 4.25 3 12.75  

Inflatables 2.50 3 7.50  

Inflation System 5.25 3 15.75  

Video 0.75 3 2.25  

Wiring 10.00 1 10.00  

    TOTAL 193.12  
 

Design and Testing Requirements 
 
 
 The experiment structural assembly must be designed to mount to an Experiment 

Mounting Plate (EMP) that is provided by NASA.  Under structural verification, there are 

two basic requirements for GAS experiment support structures: 

1) The structure must withstand flight limit loads of 10 g’s in the X, Y, and Z 

axes with an ultimate factor of safety of 2.0 when verified by analysis only or 
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an ultimate factor of safety of 1.5 when verified by test to a yield factor of 

safety of 1.25.  The structure must also exhibit positive margins of safety 

under these loads.  The loads must be combined using the X, Y, and Z loads in 

the worst case loading conditions (this means combining compression, tension, 

bending, and shear stresses).  

2) The fundamental frequency of the experiment support structure about any axis 

must be greater than or equal to 35 Hz.  This can be verified by analysis or 

test.  (22, B1-3) 

These requirements are summarized in Table 5. 
 

Table 5. GAS Structural Verification Requirements (23) 

Structural Loads   Factors of Safety 
Structural design accelerations shall be +/-10.0 
G's 

Verification 
Method 

FS on 
Yield 

FS on 
ULT 

in each coordinate axis applied simultaneously. 
Analysis & Test 

* 1.25 1.5 

   Analysis Only 1.5 2 

* Test Factor = 1.25         
 
 

GAS experimenters are given the option of verifying structural integrity through 

analysis or testing.  However if testing is used for verification, then the testing must be 

supported by analysis.  The structural verification of the loading and frequency 

requirements above can be accomplished through classical techniques or through the use 

of Finite Element Analysis.  If the analysis only option is selected for structural analysis, 

the applied load analysis must consider margins of safety on yield and ultimate strength 

of 1.5 and 2.0, respectively. 

If testing is used to verify the structure, then the analysis must still be conducted 

but the factors of safety for yield and ultimate strength are reduced to 1.25 and 1.5 times 
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the flight limit loads.  The testing must then be conducted to verify that the structure can 

sustain the applied loads.  Test set-up and procedure must be documented, and results 

must verify that the structural flight requirements have been met.  Acceptable tests for 

structural verification are summed up in Table 6. 

Table 6. GAS Structural Verification Testing (22) 
Static Loads Test 

The static loads test is sometimes referred to as a "pull test" and consists of loading 
or pulling the structure to 1.25 times the fl ight limit loads.  The experimenter can  
monitor the experiment support structure response using strain gages or other methods. 
The static test results are then correlated to determine if the stress and strain match 
those predicted by analysis. 
  
Sine Burst Test 

The sine burst test is a low frequency(< 20 Hz) sine test for 5 cycles at 100% of the test 
loads.  The test load that should be applied is 17.7 g's in each of the three axes.  This test 
load includes the required factor of safety (1.5) for the test.  Again, the results should  
match the predicted values determined by analysis. 
  
Sine Sweep Test 

The sine sweep test is used to verify the experiment structure fundamental frequency.  A  
harmonic vibration can be created by a vibration table or other method, and the vibration  
should be forced at the 1/4 g, 1/2 g, or 1 g level.  A sine function vibration sweep from  
20 Hz to 200 Hz is applied and the associated test result plots are used to determine the  
resonant frequency. 
  
Random Vibration Test 

The random vibration test verifies workmanship and results are not acceptable for structural 
verification.  The GAS experimenter is not required to conduct a random vibration test but  
may desire to conduct such a test for confidence purposes.  Appropriate levels may be  
found in the GAS Experimenter Handbook. 

 
 

Summary 
 
 
 The Finite Element Method was developed to simplify the analysis of complex 

structures and geometries.  Recent advances in computer technology have allowed 

software such as ABAQUS to be employed on a much wider scale.  This software 
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presents users with a more tractable means of employing the Finite Element Method to 

model static and dynamic problems, which are beyond the scope of analytical methods.   

 Also discussed in this chapter were previous efforts to analyze the vibrational 

characteristics of RIGEX tubes and vibrational techniques for determining natural 

frequencies of beams.  These techniques will be used to verify the ABAQUS Finite 

Element Model of the RIGEX tubes and to help establish more reasonable values of its 

material properties. 

 Finally, RIGEX design considerations were reviewed, and criteria for the design 

and testing of the RIGEX structural assembly were presented.  The next chapter will 

address the structural frequency and stress modeling in ABAQUS/FEA. 
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III: Experiment Methodology 
 

Overview 
 
 
 Due to the fact that a GAS experiment hazard could potentially jeopardize the 

astronauts, space shuttle or ground facilities, NASA requires that all payloads conform to 

the requirements set forth in “Safety Policy and Requirements for Payloads Using the 

Space Transportation System (STS),” NHB 1700.7B (23).  The “GAS Experimenter’s 

Guide to the STS Safety Review Process and Data Package Preparation” (22) provides 

further details on specific structural test and analysis requirements for GAS experiment 

safety verification. 

Finite Element Analysis (FEA) was selected from the list of approved analytical 

structural verification methods, and can be used for both the structural and fundamental 

frequency verification requirements.  Due to the lack of a slip table for the shaker table, 

FEA alone will be used for structural verification of flight limit loads and determination 

of the structural fundamental frequency.  The structural design of the support structure 

will be accomplished through the use of PRO-Engineer for the design and fabrication of 

the structure, and then ABAQUS will then be used to perform frequency and stress 

analysis on a Finite Element model of the support structure imported from PRO-Engineer.   

 During the design of the full structure, ABAQUS models will be constructed from 

existing components, namely the inflated tube assembly and quarter test structure used in 

Philley’s thesis (25), to verify frequency analysis modeling in using ABAQUS/FEA.  
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Finally, ping testing and experimental results from previous thesis will be conducted to 

verify the results of ABAQUS frequency analysis. 

Structural Design Considerations  
 
 
 The RIGEX preliminary design was used as a baseline for the structure, owing to 

the fact that it was capable of accommodating all of the experimental components, 

allowed for the inflation of the tubes and was within weight and volume limitations 

imposed by the GAS payload program.  The integration of the RIGEX structure into the 

GAS canister was another consideration in the design.  NASA provides GAS 

experimenters with an Experiment Mounting Plate (EMP) which is the interface between 

the GAS can and the users experiment.  This EMP is a 5/8 inch thick, 22.678 inch 

diameter aluminum plate with 45 mounting holes arranged for experiments to be attached.  

The experimenter is responsible for designing their experiment to mate up with the EMP, 

while keeping at least one purge port on the EMP unobstructed.  NASA provided an EMP 

as depicted in Figure 10. 
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Figure 10. Experiment Mounting Plate (22) 
 
 

Before the RIGEX support structure design could be analyzed, a structural 

material acceptable to NASA had to be selected for its construction.  The structural 

material selection had to be balanced between the NASA requirements for providing 

protection against Stress Corrosion Cracking and those of material strength to support the 

flight loads imposed at take off and landing.  Structure manufacturing also plays a part in 

the material selection, where machinability and weldability must also be considered.   

Once a material is selected for the structure a Finite Element Analysis (FEA) model can 

be constructed in ABAQUS, and the analysis can begin to determine if the structure 

meets the requirements laid out in the “GAS Experimenters Guide to the STS Safety 

Review Process and Data Package Preparation”. 
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Bumpers are required to provide later support for the free end of the structure, so 

that if the structure deflects enough to contact the wall of the GAS canister it will not 

cause damage to the canister.  These are required unless the experimenter can prove 

through analysis that the structure will not contact the GAS canister. 

ABAQUS Vibration Modeling and Simulation 
 
 
 ABAQUS Vibration modeling and simulation will be conducted by modeling the 

rigidized tube assembly in ABAQUS/CAE and running a frequency extraction procedure 

in ABAQUS using the Lanczos solver to determine the eigenvalues and mode shapes of 

the tube.  The first and second bending mode will be determined in this fashion and 

compared to experimental values.  When an accurate tube model has been produced and 

verified, the more complicated quarter structure can be modeled and its natural frequency 

determined in a similar manner as the tube.  Since the quarter test structure has no 

supporting vibration test data, the structure will be modified for mounting on the 

Experiment Mounting Plate (EMP) and a ping test will be conducted to verify the 

fundamental frequency.  Finally, the full RIGEX structural assembly will be modeled in 

ABAQUS and a frequency analysis run to determine its vibration characteristics.  The 

structure will again be mounted to the EMP and ping tested to verify the results of the 

ABAQUS analysis. 

Rigidized Tube Model 
 
 
 The RIGEX rigidized tube assembly is composed of three components, a 

composite rigidized tube and two aluminum end flanges.  For the model, the composite 
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tube will be modeled as an isotropic material.  The material properties for the composite 

tube, specifically Young’s Modulus (E), will have to be estimated for reasons mentioned 

in the Introduction.  This can be accomplished by using experimental results for the tubes 

natural frequency in bending and the Fundamental Frequency Equation to back-solve for 

Young’s Modulus.  Once the material properties are available, two models of the tube 

will be constructed to compare the results of using beam and continuum elements.  Beam 

elements will be used to get a rough idea regarding the validity of the continuum element 

model once it is produced, and should match closely to ana lytic beam theory results. The 

beam element model should also be easier to set up, and since it’s a one-dimensional 

representation it should require much less computational time to solve. 

Since the composite tube closely resembles a pipe, that is the beam element that 

will be used to produce the model.  The Pipe element represents a thin wall cross-section, 

which provides good results as long as the wall thickness is less than 1/10th the cross-

section dimension of the beam.  In the case of the composite tube, the ratio is 1/100th 

(where the wall thickness is 0.015 inches and the cross-sectional diameter is 1.5 inches) 

and definitely falls into the realm of where acceptable results should be obtained.  Figure 

11 shows a representation of the actual composite tube. 

 



 35 

 

Figure 11. Inflatable Tubes 
 

Following the beam element analysis, a tube model will be constructed using 

continuum hexahedral elements (linear and quadratic).  Continuum elements are more 

general type elements used for modeling general three-dimensional parts and assemblies.  

Continuum elements come in three basic types: hexahedral (hex), wedge or tetrahedron 

(tets).  They are assigned based on the particular geometry of the assembly being meshed, 

and applicable meshing schemes are available due to the user created partitioning.  It is 

generally preferable to use a structured meshing technique with hex elements because 

they are more computationally efficient than the tets or wedges, but in some cases part 

geometries do not lend themselves to a structured mesh and free or swept meshing must 

be used with wedges and tets, respectively.  The final descriptor of the element will be 

whether it uses a linear or quadratic interpolation to determine the variance in the 

displacements between the nodes.  Comparison will be made between the performance of 
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the lineal hex elements (C3D8R) and the quadratic hex elements (C3D20R), both of 

which are six Degree of Freedom (DOF) elements (three translation and three rotation).  

Figure 12 depicts the elements used in the construction of the continuum element tube.  

 

 

 
Figure 12. ABAQUS Tube Construction 

Bottom Flange - Quadratic Hexahedrons (C3D20R) 
Mesh- 1,168 elements 

Top Flange - Quadratic Hexahedrons (C3D20R) 
Mesh- 1,512 elements 

Tube: Quadratic Hexahedrons (C3D20R) 
Coarse Mesh - 9,016 elements 
Fine Mesh - 28,080 elements (3 thru the thickness) 
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Figure 13. ABAQUS Continuum Elements (16) 
 

 
The results will also be compared to the previous test results obtained for the 

composite tube assembly and by ping testing with a modified boundary condition. Figure 

13 shows the boundary conditions used for previous vibration testing. This setup more 

closely resembles a simply constrained cantilever beam than a clamped beam, due to the 

fact that the base is only attached to the table with two bolts instead of four along the 

perimeter of the bottom flange. This was a result of the base flange holes not matching up 

with the holes on the table top.  To examine the difference the boundary conditions had 

on the frequency analysis, an aluminum plate was constructed that provided four 

mounting holes for the bottom flange and eight holes for mounting the plate to the table.  

This can be seen in Figure 14 and Figure 15. 

 

ABAQUS CoDtinaiim Elements 

linear Hex^Kdron 
(C3D8) 

Quadratic Hexahedron 
(C3D20) 

linear Tetrahedron 
(C3D4) 

Quadratit; Tetrahedron 
(C3D10) 
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Figure 14. Tube with Simply Supported Boundary Condition 

 
 

 

Figure 15. Tube with Clamped Boundary Condition 
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 The Ping test was carried out by attaching an accelerometer to the top flange and 

the hammer was used to strike the base of the tube near the bottom flange.  The data was 

collected and saved for processing in MATLAB. 

Quarter Structure Model 
 
 
 Having the quarter structure test model on-hand provides the ability to test the 

frequency analysis capabilities of ABAQUS on a more complicated assembly.  The 

quarter structure will be modeled using continuum hex elements.  In this model, the 

quarter structure will be modeled as a single aluminum part and attached to a modeled 

Experiment Mounting Plate (EMP).  The quarter structure is actually an assembly of four 

plates, two long narrow plates forming an L shape are capped on each end by quarter 

circle-end plates, all are screwed together along their edges.  Figure 16 depicts the quarter 

structure and the ABAQUS representation of the quarter structure. 

 

Figure 16. Quarter Structure Model and Actual Quarter Structure 
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This should produce a model that is slightly stiffer than the actual structure.  Additionally, 

the oven and inflation system will have to be modeled and attached to the assembly.  

Material properties of these subsystems will be based on the weight assigned to them in 

the weight breakdown sheet of Disebastian’s thesis (10).  In essence, the experimental 

components will act as point masses for frequency determination of the structure.  The 

connection between the structure and the EMP will be modeled by tying the nodes of the 

two surfaces together.  This should provide for a reasonable boundary condition, 

considering the bolting scheme for attaching the two parts together. The bolting pattern 

for connecting the quarter structure to the EMP is detailed in Figure 17. 

 

 
 

Figure 17. Quarter Structure Mounting Configuration to EMP 

 
 
A frequency analysis was run on the quarter structure model in ABAQUS, and the first 

bending modes were examined.  These values were then used to determine the locations 
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on the structure, where maximum displacements could be expected.  These locations 

were used in the ping testing as accelerometer locations.  The EMP was then fastened to 

the shaker head mount and the quarter structure bolted down onto the EMP. 

 
Figure 18. ABAQUS Bending Mode 1 for Quarter Structure 

 

Quarter Structure modeled in ABAQUS 
using continuum Quadratic Hexahedron 
elements 
Mesh contains 24,194 elements 
Elements are 6 DOF 
(3 translation and 3 rotation) 

Accelerometer locations 

I ■ m ^ fff fffl ■ i 1 i 1 ̂ ^H 
\ . 1 ■ ■■ 1 ■ ■ ■ 

r ■ 

_ _ \ ,„ H     _■ -   .^   > -/.„ ̂  _ _ _ .- _ _ 
1 - - ---- _     ^_     _ ... 1- - - - L _ - - -ri - ■ 

- - h 1 _ , 
_ j ^ 

^ \\\ 1         1 4-L _ _ , ■V - _ i_ _ 1 

Eha\n'l'tiOiJ.*4 «id tha h«bt*r ben 

Hammer Points 



 42 

 

Figure 19. Accelerometer Tip Location on Quarter Structure 

 

 

Figure 20. Accelerometer mid span location on quarter structure 
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In carrying out the ping test, the accelerometer was attached at the locations depicted in 

Figure 18 and the structure was struck in the locations marked as hammer points.  The 

data was collected and transferred to MATLAB for processing.  Figure 19 and Figure 20 

elaborate on the accelerometer placement. 

Full Structure Model 
 
 
 The full scale ABAQUS structural model was first constructed of two-

dimensional linear shell elements.  As this model would be the most complex to date, it 

was decided to start off with a simple representation for three reasons: first a two-

dimensional model would not require as much time to construct as a three-dimensional 

representation, second the time it would take for the software to converge to a solution 

would also be reduced as compared to a three-dimensional model, and lastly the structure 

design had not yet been finalized.  This first attempt at analysis was intended to give a 

rough estimate on the natural frequency of the structure, to see if the design was even 

close to meeting the frequency requirement of 35 Hz for its fundamental frequency. Since 

the plate thickness (0.25 inch) is less than 1/15 the characteristic length of the plate (more 

on the order of 1/100), two-dimensional thin wall elements should be adequate for 

modeling the plates of the structure.  

 The entire structure will be modeled as one piece, as will the EMP.  The two will 

then be joined by tying the nodes along a cylindrical section representing the bolt ring 

between the two parts.  This will constitute the chief assumption in this model, as it is not 

yet practical to model each individual bolt connecting the EMP to the structure. 
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For the final ABAQUS model of the RIGEX structure, the actual three-

dimensional part geometries used in the design and manufacturing of the structure were 

imported from PRO-Engineer as IGES files.  This allowed the connection between the 

structure and the EMP to be modeled more realistically.  On the down side, this model is 

three-dimensional and much more complicated geometry wise, thus the components had 

to be meshed using a variety of elements and meshing techniques. 

 

 

Figure 21. RIGEX Structure 
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Figure 22. ABAQUS representation of RIGEX Structure 

 
For the full structure, ping testing was accomplished by first attaching the structure to the 

EMP, using 24 stainless steel #10-32 screws.  The laser vibrometer was then used to 

create a grid on the face of the 13 inch plate that runs across the computer access hole.  A 

grid was also created on the overhang of the opposing 13 inch plate, as depicted in Figure 

23.  The ping hammer was used to strike the structure in the location indicated in Figure 

24.  The laser vibrometer would then measure the velocity of the plate at the current grid 

point location. This procedure was repeated until data was collected on all mapped grid 

points.  
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Figure 23. Laser Vibrometer and Meshed Plates 

 
 



 47 

             
 

Figure 24. Ping Test Hammer Location 

 
 

 
 

Figure 25. Ping Test Hammer 

Hammer Location 
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Dynamic Stress Analysis on Full Model 
 
 
 The stress analysis was only conducted on the full scale model, and is intended to 

satisfy the NASA requirement for validating the structural integrity of the RIGEX 

structure under simulated flight limit loadings.  To accomplish this, the two-dimensional 

shell model was modified to perform a dynamic stress analysis simulating a 15 G multi-

axis body force on the structure.  As NASA requires testing of worst-case scenarios for 

the application of the loading, the model was run with several different X,Y,Z axis 

loadings.  These simulations were also used to help determine high stress areas that 

needed further investigation in the three-dimensional model to be built.  They were also 

used to find a suitable material for construction of the final structure. 

 The three-dimensional model used for the stress analysis was again built from the 

PRO-Engineer solid modeling program, used to provide the manufacturing drawings used 

for the structures construction. All loading was applied in a similar fashion as with the 

two-dimensional model.  The batteries, ovens, and inflation systems were all attached to 

the model to simulate the mass of these components on the structure.  One major 

modification to the previous model was that stainless steel nubs were modeled in the 

place of bolts on the surface of the EMP.  These nubs were then tied to the holes in the 

top plate of the RIGEX structure to simulate the fasteners.  This would give a more 

accurate representation of the stress concentrations in these areas.  
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Design and Manufacturing 
 
 
 The preliminary design called for a structure made from quarter inch aluminum 

plates welded together in a box-like fashion and capped at the bottom and top with half 

and quarter inch thick aluminum plates, respectively.  An estimate for the weight of this 

structure put it around 58 pounds, which is slightly over a quarter of the weight allowance 

for the entire experiment.  So, one of the first considerations was how to trim some 

weight from the structure, and yet have it maintain enough strength and rigidity to meet 

NASA standards for structural integrity.  Having a preliminary design allowed for the 

creation of a stress analysis model in ABAQUS as mentioned above.  This analysis gave 

locations of the maximum stress values for the preliminary design structure under NASA 

specified load conditions.  The maximum stress encountered on the structure was on the 

top plate near where it intersected with the corner of a 13 inch vertical plate.  The value 

of the stress in this location was determined to be around 36 Ksi tension.  This value was 

considered high, due to stress concentrations where the sharp corners of the vertical 

plates mated to the top plate. It was assumed that welding of the plates would create a 

fillet in these areas, thus reducing the stress concentrations.  With this value, a search for 

an appropriate structural material began. Two wrought aluminum alloys were considered 

for the structure, AL 2024-T4 and AL 6061-T6.  Both materials possessed adequate yield 

and ultimate strength values of 47/68 Ksi for AL 2024-T4 and 40/45 Ksi for AL 6061-T6 

based on values from the Metals handbook (3).  AL 2024-T4 is difficult to weld and has 

poor Stress Corrosion Cracking (SCC) resistance, the latter places it in Table II of 

MSFC-SPEC-522B which requires special approval from NASA to use.  AL 6061-T6 has 
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excellent weldability and SCC resistance, and thus was selected for use in the 

construction of the RIGEX structure. 

As power requirements for the experiment increased, so did the need for more 

battery cells and battery cell volume within the structure.  As the battery weight climbed 

from 53 to 70 lbs, the experiment exceeded the GAS weight limitation.  In order to 

correct this, weight would have to be trimmed in other areas of the RIGEX project.  With 

this in mind, the structural design was examined for areas of potential weight savings, 

and several design changes were made to incorporate the new battery cell while cutting 

structure weight.  The first of the changes was to reduce the thickness of the bottom plate 

from half to quarter inch aluminum.  This was done resulting in a ten pound weight 

savings.  The second modification extended the battery box area through the bottom plate, 

effectively lengthening the battery compartment by two inches with no additional 

structure weight.   

PRO-Engineer was used to create all the structural components and allow the 

parts to be fitted together as a three-dimensional assembly and to fit-check the entire 

structure as it was being pieced together.  The parts and assemblies created in Pro-

Engineer could also be turned into shop drawings for manufacturing, with a few clicks of 

the mouse.  Pro-Engineer also assisted in the construction of ABAQUS models.  Parts 

and assemblies created in Pro-Engineer were converted to IGES files and exported into 

ABAQUS where they were meshed out and used for stress and frequency analysis. 

Another consideration in the construction of the structure was to use screws to 

fasten the structure together until all the subsystems and experimental components could 

be attached.  This would allow the structure to be disassembled and modified for 
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component additions.  When modifications are complete, the screws will provide a means 

for stabilizing the structure while it is being welded together. 

 Finally, bumpers for lateral stability of the cantilevered end of the structure must 

be manufactured.  At least three are required and are to be equally spaced around the 

outside edge of the bottom plate.  Each bumper is composed of four main parts: the Viton 

rubber facing, aluminum face plate, thread all (for adjusting the bumper) and mounting 

bracket.  The bumper assembly is depicted in Figure 26. 

 

 

Figure 26. Bumper Assembly 

 

RIGEX - Bumper Assembly 

Viton rubber facing 
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IV: Results and Discussion 
 

Overview 
 
 
 The results of the frequency analysis for the inflatable tube, quarter structure and 

full structure are presented in this chapter as well as the stress analysis for the full 

structure.  The ABAQUS frequency model for the tube is developed first using Young’s 

Modulus developed from the Fundamental Frequency Formula presented in the Literature 

Review.  In the second section, an ABAQUS tube model is further developed by 

constructing it as a three-dimensional entity.  Section three presents the frequency 

analysis results of the quarter structure modeled in ABAQUS.  Finally, the frequency and 

stress analysis results for the full RIGEX support assembly are presented.  

 

ABAQUS Vibration Results 
 
 
 Frequency ana lysis using ABAQUS/FEA proceeds from a simple one-

dimensional beam model through to the modeling of the entire RIGEX structure.  Each 

successive model presented entailed an increasing degree of complexity regarding 

element type, component modeling and assembly techniques.  As each successive model 

was constructed, the frequency results produced for the individual models were compared 

to results obtained from ping testing the actual assembly that had been modeled.   

In all cases, the ABAQUS model provided good correlation with the results 

obtained from testing.  This allowed for frequency validation of the entire RIGEX 
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structure before all components could actually be manufactured and assembled, with 

reasonable certainty that the results would compare favorably with those obtained once 

the structure was actually completed. 

Rigidized Tube Model Results 
 
 
 The frequency analysis of the RIGEX inflated and rigidized tube proceeded by 

developing ABAQUS models of the tube based on two and three-dimensional 

representations of the tube.  The first considered was the two-dimensional beam or pipe 

model, which was modeled using the length between the flanges as the length of the tube 

and a point mass on the free end to simulate the top flange.  The beam model was run 

using the ABAQUS Lanczos eigensolver which produced the plots in Figures (27 - 31).  

The bending modes produced from the ABAQUS model were compared with the 

experimental values determined in Philley’s thesis (25), and were found to be in good 

agreement with the results presented for the inflated tube mounted to the table.  The 2-D 

tube model incorporated the clamped end boundary condition from Figure 15. 
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Figure 27. ABAQUS Beam Model 

 

Figure 27 depicts the centerline of a tube whose cross-sectional properties were defined 

in ABAQUS using the inside and outside radius of the composite tube.  The section was 

then broken down into elements using a 0.15 inch seeding along the length of the tube. 
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Figure 28. 1st Bending Mode of the Beam Model 
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Figure 29. 1st Bending Mode of the Beam Model about Axis 2 
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Figure 30. 2nd  Bending Mode of the Beam Model about Axis 2 
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Figure 31. 2nd  Bending Mode of the Beam Model about Axis 3 
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A second and more accurate three-dimensional representation of the tube was constructed 

using the actual dimensions for each component of the tube. This model was intended to 

verify the ability of ABAQUS to produce accurate results using three-dimensional 

continuum elements and assembled components to produce a representative model of the 

geometry to be analyzed.  Again, the model was run using ABAQUS Lanczos natural 

frequency, and the results were compared to those obtained with the one-dimensional 

beam model and experimental values. The values produced by the three-dimensional 

model were also found to be in good agreement with those of the ABAQUS beam model 

and experimental values for the table mounted beam.  In addition, for the three-

dimensional model a mesh convergence study was conducted where the mesh density of 

the tube was reduced until the frequency results converged to within ten percent.  Mesh 

reduction beyond this point was considered impractical due to the increase in the amount 

of time required for the model to produce a solution.  Results for the first two bending 

modes and first torsional mode of the coarse and refined tube model are presented in 

Figures 32-35.  The ping test frequency response plots for the tube can be found in 

Appendix C.1. 
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Figure 32. Coarse and Fine Mesh for 1st Bending Mode of Tube Model 
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Figure 33. Coarse and Fine Mesh for 1st Bending Mode of Tube Model about Axis 1 

-S.EIDV-G3 

Tube Mode 2 (1*^ Bending) 
Frequency: 58.142 Hz 
Axis: 1 

Clamped end Constraint 

t«  li)  #Mfl aw^  >«>-m^ iiVdq ■■[ 
11   19i4]i34   (rr JUQi 

-L .i^»oa 
S.DEHv-QII 

,710*-01 

;3:;s; 

Tube Mode 2 (P^ Bending) 
Frequency: 58.448 Hz 
Axis: 1 
Fine Mesh 

L 
Clamped end Constraint 

»Bi   <.id>a_]>_guj.k_^uy_lJM.oifc 4BJ«a<IUBdud t.t-i Ttaj  r«b OS  li>1l<41  irr  1H« 



 62 

 
Figure 34. Coarse and Fine Mesh for 2nd Bending Mode of Tube Model about Axis 2 
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Figure 35. Coarse and Fine Mesh for 2nd Bending Mode of Tube Model about Axis 1 
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Results of the beam and three-dimensional tube model are depicted in Table 7.  The 

figures for the simply supported and tube with 15 gram RIGEX experiment accelerometer 

can be found in Appendix C.1 and C.2.  The simply supported model was constructed to 

determine the effect of using two bolts, instead of four, to secure the bottom flange to the 

table.  This type of restraint represented more of a simply supported boundary condition 

along the axis were the bolts were removed. The effects on the frequency response of the 

tube can also be seen in Table 7. 

Table 7. Results of the Beam and Three-Dimensional Tube Model 
Model Mesh 

Density 
Frequency 1st 
Bending (Hz) 

Frequency 
2nd Bending 

(Hz) 

Percent 
Difference 
1st Bending 

Percent 
Difference 

2nd 
Bending 

Test Results 
Philley’s 

Thesis (25) 
Table Mount 

- 59.688 660 - - 

ABAQUS 2-D 
Beam 

0.15 inch 56.835 602.81 4.78 8.94 

ABAQUS 3-D 
Tube 

Quadratic Hex 

0.2 inch 58.12 
58.142 

644.54 
644.75 

2.62 
2.59 

2.34 
2.31 

ABAQUS 3-D 
Tube 

Quadratic Hex 

0.1 inch 
 

58.441 
58.448 

651.9 
652.0 

2.09 
2.08 

1.21 
1.21 

ABAQUS 3-D 
Tube 

Quadratic Hex 
Simply 

Supported 

0.1 inch 57.056 
50.919 

562.21 
629.60 

4.41 
14.69 

4.61 
14.81 

ABAQUS 3-D 
Tube 

Quadratic Hex 
Accelerometer 

0.1 inch 50.667 
50.683 

622.27 
625.88 

- - 
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Quarter Structure Model Results 
 
 
 To develop a more representative model of the RIGEX structure for verifying the 

ABAQUS frequency analysis technique, the quarter test structure was modeled and a 

frequency run performed.  This model was constructed using techniques and elements to 

be used in the construction of the RIGEX full scale model, and could be done while the 

flight article was being manufactured.  The quarter model provided a convenient test bed, 

as it was on hand and ping testing could be conducted to provide immediate verification 

of the results obtained though the ABAQUS frequency analysis of the model.  The model 

was constructed using quadratic hexahedron elements and tied to a model of the EMP.  

Masses representing the oven and inflation system were tied to the structure and a 

frequency analysis run performed in ABAQUS.  The first three mode shapes and 

frequencies were obtained for a coarse and fine meshed model of the structure. The fine 

mesh was again based on a ten percent mesh convergence criteria.  The results for the 

first three modes of the quarter structure are depicted in Figures 36-38.  The coarse mesh 

of 0.4 represents a 0.4 inch edge seeding, and the fine mesh of 0.2 represents a 0.2 inch 

edge seeding. 
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Figure 36. Coarse and Fine Mesh for Mode 1 of Quarter Structure 
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Figure 37. Coarse and Fine Mesh for Mode 2 of Quarter Structure 
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Figure 38. Coarse and Fine Mesh for Mode 3 of Quarter Structure 
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Table 8. Results of the Quarter Structure Frequency Ana lysis 
Frequency 

analysis method 
Mode 1 (Hz) Mode 2 (Hz) Mode 1 Percent 

difference form 
Ping testing 

Mode 2 Percent 
difference form 

Ping testing 
ABAQUS 

linear model 
coarse Mesh 0.4 

inch seeding 
w/o masses 

38.38 131.26 62.63 38.45 

ABAQUS 
linear model 

coarse Mesh 0.4 
inch seeding 

(massed) 

23.179 96.08 1.78 1.35 

ABAQUS 
model - Coarse 
Mesh 0.4 inch 

seed 

20.289 95.068 14.03 0.28 

ABAQUS 
model - Fine 
Mesh 0.2 inch 

seed 

18.696 85.182 20.78 10.15 

Ping Testing 23.6 Hz 94.8 Hz   
 

 
Comparison of the ping test results to those obtained from the ABAQUS 

frequency analysis show that the results from the linear model were the most accurate.  

This result can be attributed to the manner in which the side inflation masses were 

modeled to the quarter structure.  The theoretically less accurate model modeled with 

linear elements happened to produce better results because the side inflation masses were 

modeled as a lumped mass lower on the structure than they should have been.  As it 

happened, the mass placement produced very good results on the first frequency analysis 

of the linear model, and was therefore considered an acceptable baseline for further 

model refinement.  The assumption that an accurate model of the quarter structure had 

been obtained, led to subsequent refinements in the model that led to results that diverged 
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from the actual modes of the structure instead of converging.  However, the lumped mass 

locations were not modeled too far from their actual locations, as the model tended to 

settle within 20% of the expected value for the first natural frequency and 10% of the 

second.  Ping test frequency response plots for the quarter structure are located in 

Appendix D.2 

Full Structure Model Results 
 
 
 Having completed the frequency analysis on the tube and quarter structure the 

structural verification of the full RIGEX assembly could begin.  It was decided to start 

with the frequency analysis portion of the analysis, as these results would be verifiable 

through ping testing.  After obtaining acceptable results for the frequency analysis, the 

stress analysis could be performed using a modified version of the ABAQUS model used 

in the frequency analysis.  With this methodology, parts modeled in Pro-Engineer for 

manufacturing the structure were imported into ABAQUS, assigned material properties 

based on MIL-HBK-5 and assembled as a structure.  Due to time constraints and progress 

on assembling experimental components onto the structure, ping testing was conducted 

on the empty structure.  These results were compared to the values obtained from the 

frequency analysis run on the structure modeled without experimental components.  Once 

satisfied with the results for the empty model, the component masses were added and 

another frequency run was performed to determine if the entire structure met the NASA 

requirement that the RIGEX experiments first natural frequency be above 35 Hz.  Once 

the frequency verification was complete, the final segment of the RIGEX structural 

verification was undertaken.  The ABAQUS model from the frequency analysis was 
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modified to perform a stress analysis on the structure and to ensure that the stresses 

resulting from the application of 15 and 20 G loads would not exceed the yield strength 

for the 15 G case or the ultimate strength of the structural material for the 20 G case.  

Figure 39 depicts the type and number elements used to mesh out the three-dimensional 

ABAQUS model of the empty RIGEX structure. 

 

 
Figure 39. Three-Dimensional ABAQUS Full Structure Model 

 

The first model constructed for the frequency analysis of the full structure used 

linear plate elements and a band of elements partitioned in the region of the bolt ring to 

approximate the boundary condition between the EMP and the structure.  Subsequent 

changes in structure design called for several model iterations to incorporate the changes.  
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The two-dimensional model was also run with quadratic plate elements to further refine 

the model.  The refined plate model frequency results are shown for the first two modes 

in Figures 40 and 41.  The results for the quadratic three-dimensional model are 

presented in Figures 42-45. 
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Figure 40. Mode 1 for the Two-Dimensional Model of the RIGEX Structure 
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Figure 41. Mode 2 for the Two-Dimensional Model of the RIGEX Structure 
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Figure 42. Mode 1 for the Three-Dimensional Model of the RIGEX Structure 
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Figure 43. Mode 2 for the Three-Dimensional Model of the RIGEX Structure 
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Figure 44. Mode 1 for the Massed Three-Dimensional Model of the RIGEX Structure 
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Figure 45. Mode 2 for the Massed Three-Dimensional Model of the RIGEX Structure 
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 Results of the frequency analysis on the plate and three-dimensional model are 

presented with ping test results for the full structure in Table 9.  See Appendix D-2 for 

frequency response function curves from ping testing. 

Table 9. Results of the Full Structure Frequency Analysis 
Frequency 

analysis method 
Mode 1 (Hz) Mode 1 Percent 

difference form 
Ping testing 

ABAQUS 
linear Plate 

model coarse 
Mesh 0.4 inch 
seeding (un - 

massed)s 

178 89.4 

ABAQUS 
quadratic Plate 
model coarse 
Mesh 0.4 inch 
seeding (un - 

massed) 

148.17 58.2 

ABAQUS 3-D 
quadratic model 
- Coarse Mesh 
0.2 inch seed 
(un-massed) 

113.84 21.11 

ABAQUS 3-D 
quadratic model 
- Fine Mesh 0.2 

inch seed 
(massed) 

54.35 N/A 

Ping Testing 
Empty structure 

only 

94 Hz  

 

The results of the frequency analysis of the RIGEX structure progressed as 

expected with the linear two-dimensional elements performing the least satisfactorily.  

The results obtained from the two-dimensional model cannot entirely be attributed to the 

element selection.  Changing the elements in the two-dimensional model from linear to 
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quadratic did improve the results, but not sufficiently to claim element selection as the 

major contributor to the discrepancy between model results and those obtained from ping 

testing.  In ping testing the full structure for the first time, several screws attaching the 

structure to the EMP were found loose; this had a significant impact on the ping test 

results.  With the screws loose, the structures first natural frequency was found to be 

around 57 Hz.  After all of the screws were tightened down, that frequency moved up to 

94 Hz.  This is significant in regards to the two-dimensional model because of how the 

connection between the EMP and structure top plate were modeled.  The screw holes are 

spaced approximately 2.5 inches apart on the actual structure, but were modeled as a 

continuous ring of tie nodes in the model.  This would make the two-dimensional model 

stiffer than the structure it was intended to represent.  The three-dimensional model 

provided for a more realistic representation in this area, which should explain the large 

discrepancy in results between the two-dimensional and three-dimensional models. 

 

Dynamic Stress Analysis of the Full Structure  
 
 The stress analysis of the RIGEX structure was undertaken in a similar fashion to 

the full structure frequency analysis.  The two-dimensional linear model was 

reconfigured to perform the stress analysis by adding 15 G loads in all three axes, and in 

different combinations to determine which case would produce the maximum stress on 

the structure.  The worst case loading was determined by changing the loading 

configurations and running a stress analysis for each case.  This worst case was used in 

subsequent models to produce the worst case stress predictions for the three-dimensional 

model.  The same assumption was made for the connection of the EMP to the top plate of 
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the structure.  A ring was partitioned in the area where the bolt ring exists, and the nodes 

in this region on both the top plate and the EMP were tied together.  The result of the 

worst case loading is depicted in Figure 46.  This model was produced before some of the 

design modifications were made, and so it has the entire inflation system modeled on the 

lower side of the bottom plate.   

 

Figure 46. 15G Loading on Two-Dimensional Model 
 

 Following the finalization of the structural design modifications, the full structure 

was modeled as a three-dimensional assembly, as in the case of the frequency analysis 

model and the same worst case loading applied.  In addition, the three-dimensional 

Worst case 15G loading (1, -2, -3, axes) 

38 ksi at plate corner 
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structure was loaded with a 20G configuration to meet NASA requirement s on ultimate 

strength verification.  Both the 15 and 20G loads are meant to represent a 10G loading on 

the structure with a 1.5 and 2.0 factor of safety for yield and ultimate strength built into 

the simulation.  Once built, the simulations were run producing the plot depicted in 

Figures 47-54. 

 

 

Figure 47. Deformed Structure under 15G Load 
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Figure 48. Worst Case Loading for 15G Load 
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Figure 49. Detail 1 of Worst Case Loading for 15G Load 
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Figure 50. Detail 2 of Worst Case Loading for 15G Load 
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Figure 51. Worst Case Loading for 20G Load 

 
 

Figure 52. Detail 1 of Worst Case Loading for 20G Load 
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Figure 53. Detail 2 of Worst Case Loading for 20G Load 
 

 
 

Figure 54. Detail 3 of Worst Case Loading for 20G Load 
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The results of the stress analysis run are summed up in Table 10. 
 

Table 10. Stress Analysis Results 
Model  Max Stress for 15 G 

worst case loading 
(Yield Strength) 

Max Stress for 20 G 
worst case loading 
(Ultimate strength) 

Yield/Ultimate 
strength for 
AL-6061 T-6 
Metals Hand 
Book 

Yield/Ultimate 
strength for 
AL-6061 T-6 
MIL-HDBK-5 

2-D linear 
plate 

36 ksi N/A 40/45 ksi 36/42 ksi 

3-D 
quadratic 

38.5 ksi 50 ksi 40/45 ksi 36/42 ksi 

 

The results of the stress analysis run show that the stresses encountered in the 15G worst 

case loading exceed the yield strength of the structural material Al-6061 T-6 as presented 

in MIL-HDBK-5 (8).  One of the decisions early on in the design of the structure was 

material selection.  Al 6061 T-6 was chosen based on information out of the metals 

handbook (3), it wasn’t discovered until later in the design that values for material 

properties used in the structural analysis must come from MIL-HDBK-5.  The values for 

the yield strength of Al-6061 T-6 vary by 4 ksi from the metals handbook to MIL-

HDBK-5.  Instead of having 4 ksi of leeway, the analysis was begun at the limit of the 

materials yield strength.   

Early assumptions as to the NASA test requirements and ambiguity in the GAS 

handbook led to discounting the 2.0G loading case in the early stages of the analysis.  

The case was considered again after its mention in the structural verification section in 

the GAS Experimenter’s Guide to the STS Safety Review Process and Data Package 

Preparation (22).  In any event, the ultimate strength of the structural material was also 

exceeded for the worst case 20G loading. 
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V: Conclusions and Recommendations  
 

ABAQUS Frequency Evaluation 
 
 The modeling and simulation of the RIGEX rigidized tube assembly, quarter 

structure and full structure proceeded as expected and provided good correlation with test 

results.  The use of the fundamental frequency for determining the material properties of 

the inflatable tube proved successful.  Young’s modulus was back-calculated from the 

fundamental frequency formula developed in the literature review and using the 

experimental value for the first bending mode of the tube mounted on the table.  The tube 

model was then run using this value for Young’s modulus and the second bending mode 

was compare to the experimental value.  The tube model using the calculated material 

properties was found to be within 2-3 percent of the experimental value for the second 

bending mode.  The results of the beam and tube analysis showed that ABAQUS could 

accurately model the thin shell of composite material that makes up the inflatable tube.  

The difference in boundary conditions was also explored for the tube model, simulating 

clamped and simply supported conditions.  The result of this study showed significant 

difference in the response of the tube along the axis where the bolts were removed for the 

simply supported case.  The fist bending mode of the simply supported case lost 6 db on 

the axis were the bolts were removed and 32 db from the second bending mode.  The true 

condition is somewhere between these two. 

The frequency results obtained from the ABAQUS models for the quarter and full 

structure tended to be a little on the high side, but this can be attributed to the 
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assumptions made in modeling of these structures.  As was seen in modeling the tube, 

boundary conditions play an important role in the frequency analysis of an assembly 

modeled in ABAQUS.  Thus as the sophistication of the model increases the difficulty in 

accurately modeling the proper boundary condition will also increase.  This difference 

between the ping test results and the ABAQUS frequency analysis results for the full 

structure can in large part be attributed to this difficulty in modeling the proper boundary 

conditions.  However, the end goal of verifying the natural frequency of the full RIGEX 

structure was accomplished, and the results show that the NASA requirement for keeping 

the fundamental frequency above 35 Hz for the structure with experimental components 

has been met. 

 

ABAQUS Stress Evaluation 
 
 
 The stress analysis of the RIGEX support structure did not provide results to back 

validation of the NASA requirements for structural verification, based on worst case 

loadings of 15 and 20G loadings.  The stresses developed in the structure exceeded the 

Yield strength of the aluminum for the 15G loading and the Ultimate strength for the 20G 

loading.  These failures can be attributed to several factors in the ABAQUS model.  First, 

there are large stress concentrations present, due to the way in which the model was 

constructed.  The plates were assembled in ABAQUS using the tie command to secure 

the parts together; this left sharp edges where the plates were joined.  These areas are 

where the stress concentrations/discontinuities were encountered and would not be as 

prevalent in the actual structure where the plates are welded together, which creates a 
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fillet between the joined plates.  The second, was a design issue where a structural 

material was chosen based on information obtained early in the design and before all the 

actual test to documentation had been acquired.  Finally, an assumption was made early 

on to test to the 10G load with margin of safety of 1.5 on Yield strength only.  When it 

was determined that there was a need for a second case, testing to 10Gs with a margin of 

safety of 2.0 on Ultimate strength, that case was run but could not hope to meet the 

requirement with the chosen structural material and structure design.  The good news is 

that the structure was designed to be screwed together before welding and that all of the 

stress hot spots are located on the top plate of the structure.  This means that the top plate 

can be removed and its design can be modified without having to rebuild the entire 

structure. 

Recommendations  
 
 
 In order to resolve stress concentration issues encountered in the top plate of the 

RIGEX structure, several design modifications can be incorporated.  The first would be 

the removal of the computer access port machined out of the top plate.  This will increase 

the overall weight of the structure, but not significantly.  Deformations seen in the 

structure were largely due to the gap created between the top plate and one of the vertical 

side plates by this feature.  Removal of this feature, in conjunction with a change to the 

mounting of the bolts connecting the computer, will still allow access to the computer 

box after assembly while increasing the overall stiffness of the support structure.  The 

increased rigidity of the structure should redistribute some of the stresses encountered at 

the plate tips to the inner wall of the structure and eliminate some of the stress 
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concentrations at the aforementioned locations.  The second modification would be to 

add a second row of restraining bolts to the top plate that mate up with holes provided in 

the EMP.  This too would draw some of the load away from the outer bolt ring and 

reduce the stress concentrations present in the current configuration.  This was not done 

in the original design because the second bolt ring would cut across the computer access 

hole in the top plate.  Another modification, which could be used to reduce the amount of 

stress at critical locations on the top plate, would be to increase the overall thickness of 

the top plate from quarter-inch to half- inch aluminum, in conjunction with the addition of 

the second bolt ring and removal of the computer access hole.  This is not as attractive as 

the two previously mentioned modifications because of the increase in weight that it 

would cause, but might become a viable alternative if the stress cannot be brought down 

by other design modifications.  Least attractive of all the design modification options 

would be to remanufacture the structure with a material that has a higher Yield and 

Ultimate strength such as Al 2024.  This however will lead to more problems in joining 

the pieces together (2024 is difficult to weld) and NASA would have to sign-off on the 

Stress Corrosion Cracking issues involved with this material. 
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Appendix A. Fundamental Frequency Calculations  
 
 
 To construct a model in ABAQUS that would provide an accurate frequency 

analysis tool, the correct material properties for the tube had to be determined and used in 

the system model.  The Fundamental Frequency Formula was used in determination of 

Young’s Modulus for the composite material, using the spring constant for the lateral 

vibration and 62 Hz (obtained for testing) as the first natural frequency in bending. 
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Appendix B. RIGEX Structural Drawings 
 

B.1 Eleven-Inch Plate 
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B.2 Thirteen-Inch Plate 
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B.3 Bottom Plate 
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B.4 Top Plate 
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B.5 Top Plate (Camera Mount Hole Detail) 
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B.6 Battery Plate 
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Appendix C. Additional Tube Models 
 

C.1 Tube with two bolt boundary condition 
 
 
 The Tubes presented here are based on the fine mesh (0.2 inch edge seeding) 

quadratic hexahedral tubes.  The only change from the tubes presented in chapter four 

was the boundary condition.  The tubes in chapter four were run with a clamped end 

constrain (see Figure 15), while the tubes presented here are simply supported (see figure 

14).  The results from the simply supported tube are compared to the clamped tube in 

Table 7. 
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C.2 Tube with 35 gram accelerometer 
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Appendix D. Ping Test Results 
 

D.1 Ping Test Results for Rigidized Tube 
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D.2 Ping Test Results for Quarter Structure 
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D.3 Ping Test Results for Full Structure (Empty) 
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