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AFIT/GAE/ENY/04-M06 
Abstract 

 
 

 The Air Force Research Lab, Munitions Directorate, Eglin Air Force Base, 

Florida has designed a man-portable carbon-fiber Micro-Air-Vehicle (MAV) used for on-

the-spot surveillance by Special Operations Forces (SOF) for enemy reconnaissance as 

well as post-strike Battle Damage Assessment (BDA). 

 The main goals of this experiment are: 1) characterize the flow quality of the new 

AFIT 3’ x 3’ wind tunnel and 2) determine the aerodynamic performance characteristics 

of the 24″ span, 6″ chord flexible and rigid wing MAVs.  The freestream turbulence 

intensity of the wind tunnel was approximately 2%.  Both MAVs had an average lift 

slope within 3.5% of the theoretical value.  Flexible wings deformed in response to 

perturbations in local flow field conditions, promulgating the delay of wing stall by 

nearly double.  Aeroelastic effects begin to dominate low speed, laminar Reynolds 

number effects at tunnel velocities greater than 30 miles per hour.  The flexible wing 

MAV displayed static stability in all three principal control axes (Pitch, Roll, Yaw), while 

the rigid MAV was not definitively stable in any axis.  All flexible wing control surface 

configurations resulted in predictable and consistent performance between -10° and +10° 

elevon deflection.  Reponses declined steadily after ±10° showing dramatic direction 

changes. 
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EXPERIMENTAL INVESTIGATION INTO THE AERODYNAMIC PERFORMANCE 

OF BOTH RIGID AND FLEXIBLE WING STRUCTURED MICRO-AIR-VEHICLES 

 
 
 

I.  Introduction 
 
 
Background 

 
 The tremendous success of Unmanned Aerial Vehicles (UAVs) in both military 

and civilian applications has prompted academic institutions to pursue greater 

innovations in the arena of unmanned powered flight.  UAVs were initially designed as   

Intelligence, Surveillance, and Reconnaissance (ISR) gathering platforms, which carry an 

array of cameras, sensors, and communications equipment (fas.org).  The Global War on 

Terror presents a new facet of military warfare for the United States; reclusive enemies 

using unconventional tactics require leading edge combat capabilities.  As a result, the 

UAV’s mission is expanding to include direct combat missions with UAVs capable of 

autonomous target acquisition and attack as well as unit level deployables.  Military 

acquisition of UAVs began in 1964; of the 11 Department of Defense (DoD) UAV 

acquisition programs, three have been successfully funded through full production 

(fas.org).  The three successful UAV programs, Hunter, Predator, and Global Hawk, were 

designed to fulfill surveillance requirements at Close Range (50 km), Short Range (200 

km) and Endurance Loitering (beyond 200 km) (fas.org).  
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 As the payloads and capabilities evolve, so do the mission requirements.  Time 

sensitive, mission critical targets, require decisive action for American troops to maintain 

an asymmetric advantage over the fluidity of today’s dynamic battlefield.  National or 

regional assets like Global Hawk or Predator are not a viable means of intelligence 

gathering in these situations because of their prolonged response time from notification to 

execution.  Special Tactics Teams, Navy Seals, and Special Operating Forces need real-

time ISR at small distances (1 km – 5 km) of small areas (caves or concealed defilades).  

To meet this demand, the Defense Advanced Research Projects Agency (DARPA) 

defined a new category of UAVs, Micro-Air-Vehicles (MAVs), to explore the military 

relevance for future military operations, and to develop and demonstrate flight-enabling 

technologies for very small aircraft.  James McMichael, DARPA’s MAV Program 

Manager uniquely described the MAV concept as: 

 MAVs should be thought of as aerial robots, as six-degree-of-freedom machines 
 whose mobility can deploy a useful micro payload to a remote or otherwise 
 hazardous location where it may perform any of a variety of missions, including 
 reconnaissance and surveillance, targeting, tagging and bio-chemical sensing.  
 (McMichael and Francis, 1997) 
 

Lt Jeff Mustin, in an article about the future development, tactics, and applications of 

UAVs, stated, “The necessity of real-time BDA is far too hazardous for manned assets 

but perfect for UAVs.  The adventuresome undertaking of collecting SIGINT sic [Signals 

Intelligence] on surface-to-air missile (SAM) sites is also well suited for unmanned 

assets” (Mustin, 92). 

 The Air Force Research Lab, Munitions Directorate, Flight Vehicles Integration 

Branch (AFRL/MNAV) developed a carbon-fiber matrix MAV with a flexible, 
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rectangular reflexed wing, a 21″ span, and a 6″ chord called Combat-Camera 

(BATCAM), for Air Force Special Tactics Teams in Afghanistan.  Torres and Mueller 

succinctly surmised the purpose of these man-portable MAVs as “answering the 

question: ‘What’s over the next hill’? (Torres and Mueller, 2001:116).  BATCAM weighs 

400 grams, can be folded and carried in a troop ruck-sack, and remotely piloted using a 

hand-held navigational device.  AFRL/MNAV designed BATCAM and a number of 

variants without performing a thorough engineering analysis on the aerodynamic 

performance properties of the airfoil, control surfaces, or fully assembled aircraft before 

deployment to forward operating locations.  Limited flight-tests were conducted to tailor 

the autopilot features and fine-tune camera operation.  AFRL/MNAV requested AFIT 

perform an extensive wind tunnel engineering analysis of the aerodynamic performance 

characteristics on the first generation flexible wing MAV (tapered reflex wing, 24″ span, 

6″ chord) and compare it to a geometrically identical rigid wing prototype. Their 

objective is to answer how the flexible wing structure affects the fundamental 

aerodynamic physics of the wing. 

 
Scope of Experimental Effort 
 
 
 The primary objectives of this experimental study are to: 

• Measure and compare the aerodynamic forces and moments on the flexible and 
rigid wing MAVs. 

 
• Calculate the lift, drag, and side force coefficients, CL, CD, CY, on both MAVs at 

four different tunnel speeds: U∞ = 10, 20, 30, & 50 mph. 
 
• Calculate the pitch, roll, and yaw moment coefficients, Cm, Cl, Cn, on both MAVs 

at 30 mph for four different yaw angles: ψ = 0°, 4°, 8°, & 12°. 
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• Calculate the stability derivatives, Cm α, Cl β, Cn β, for the flexible wing MAV 
where four yaw angles, ψ = 0°, 4°, 8°, & 12°, are measured at each of four 
separate angles of attack, α = 0°, 2°, 4°, & 6°. 

 
• Calculate the aerodynamic force and moment coefficients on both MAVs at 30 

mph with various combinations of control surface (elevons) deflection settings. 
 

• Calculate the thrust and power coefficients, CT & CP, at various motor RPM 
settings for the flexible wing MAV where three Angles of Attack, α = 0°, 4°, & 
8°,  are measured at each of three separate tunnel speeds: U∞ = 10, 20, & 30 mph. 

 

 The Air Force Institute of Technology (AFIT) installed a 3’x 3’ low-speed, open 

circuit wind tunnel in early 2003.  As with all wind tunnels, its characteristics needed to 

be defined and measurement systems calibrated to ensure data collected from it has a 

high degree of accuracy.  The secondary objective of this experiment is to assess the 

tunnel flow quality and ensure consistent flow properties throughout the test section.   
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II. Literature Review 
 
 
 A new field of academic endeavor has emerged in the area of low Reynolds 

number, miniaturized UAVs.  These Micro-Air-Vehicles (MAVs), as they are known, 

have a typical Reynolds number (Rec) regime on order of 5.0×104 to 2.5×105 (Torres and 

Mueller, 2001:116; Mueller, 1999:1; Gad-el-Hak, 2001:419).  Vast improvements in the 

field of miniaturized electronics have successfully reduced the weight and volume of 

sensing equipment such that a full complement of video, IR, chemical and biological 

detection, and signals emission detection equipment are all possible platform payloads for 

the new generation of MAVs (Mueller, 1999:2).  This chapter reviews some of the 

contemporary work in the field of low Reynolds number aircraft design and its associated 

performance and difficulties.   

 
Low Reynolds Number Design 

 
 MAVs operational uses are generally limited by three factors resulting from their 

unusually small construction (Kellogg and Bowman, 2004:1): 

• Their size restricts their capabilities; robustness is incongruent with the goal of 
miniaturization. 

 
• Size and weight constraints restrict the on-board power generation capacity, 

usually provided by battery packs, which severely limit mission duration. 
 
• Compactness and portability motivate MAV designers, as such; their flight 

controls are incapable of mitigating the large crosswind gusts and updrafts 
generated by localized thermal variations.  These disturbances reduce wing lift at 
moderate angles of attack -- both of which result in a catastrophic loss of the 
MAV. 
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Because their physical size and motor/propeller combinations are indeed small, MAVs 

have a small chord length and travel at low velocities in the range of 10 – 50 mph, 

resulting in flight Reynolds numbers much smaller than typical manned aircraft (Kellogg 

and Bowman, 2004:1; Torres and Mueller, 2001:116).  The Reynolds number is the 

parameter of critical concern in the design of MAVs.  The Reynolds number is the ratio 

of inertial forces to viscous forces- a function of the relative velocity, medium density, 

viscosity, and characteristic dimension.   

 The airfoil cross-section and wing planform present a vexing design conundrum 

for MAV engineers (Mueller, 1999:3).   Portable, wispy, and undetectable are the 

milestones engineers use to benchmark cutting edge miniaturized flight vehicles, but 

aerodynamic efficiency, measured as the lift-to-drag ratio [CL, max / CD] becomes elusive 

as the Reynolds number decreases below 100,000 (Mueller, 1999:3).  The choice of wing 

size and shape determine the operating Reynolds number, which in turn affects mission 

parameters such as payload capacity, loiter time, operational radius, climb rates, etc 

(Mueller, 1999:3).  According to Michael Kellogg’s XFOIL calculations and wind tunnel 

verification on several low Reynolds number airfoils (Rec =  6.0×104 to 1.5×105), an 

increase in operating Reynolds number, where both laminar and turbulent boundary 

layers influence the flow, increased the aerodynamic efficiency of the lifting surface 

under consideration (Kellogg and Bowman, 2004:5).  Figure 1 illustrates the Reynolds 

number range for some common flight vehicles, including the operating region in this 

experiment (Jacob, 1998:4). 
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Figure 1.   Mach number vs Chord Reynolds Number (Rec) For Various Airfoils 

 

According to Thomas Mueller, the design methods used over the past several decades 

maximize aerodynamic efficiency for aircraft with chord Reynolds numbers greater than 

200,000, but are usually insufficient for vehicles operating at Reynolds numbers below 

that threshold (Mueller, 1999:4).  The aerodynamics of these low Reynolds number 

aircraft present unique flow field interactions uncommon to larger aircraft. 

 

Aerodynamic Considerations 

 
 The Reynolds number has a large effect on both the lift and drag forces generated 

over an airfoil.  The low Reynolds numbers associated with autonomous MAVs render 

their lifting surfaces extremely susceptible to flow separation from leading to trailing 

Area of Interest Area of Interest Area of Interest 

Thesis Range 
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edge resulting in diminished capacity (Gad-el-Hak, 2000:419).  This diminished capacity, 

the product of viscous effects, flow separation, and vortical structures on the wing tips 

combine to reduce the lift-to-drag ratio; and therefore, the efficiency (Gad-el-Hak, 

2000:419).   The Particle Image Velocimetry (PIV) image shown in Figure 2, taken from 

a conference paper by David Munday at the University of Kentucky, demonstrates the 

formation of a laminar separation bubble over an LNV109A airfoil stemming from flow 

separation at a Reynolds number of 2.5×104 and 0° angle of attack (Munday et al, 

2002:2).   

 
Figure 2. Laminar Separation Bubble at ReC = 2.5×104 

  

 The separation bubble shown above de-energizes the flow over the wing resulting 

in decreased lifting efficiency.  In the Reynolds number range of Rec < 104, the flow is 

completely laminar and can only maintain its streamlines in very small adverse pressure 

Wing Upper Surface 

Separated Region 

Bubble 
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gradients (Biber et al., 2004:7).  In this range, aerodynamic efficiency is very low and 

viscous forces produce higher drag in the shear layer.  These wings experience 

spontaneous separation of the laminar layer at the wing’s leading edge leading to stall at 

small angels of attack (Mueller, 1999:4).  Flow parameters also experience oscillations 

due to the presence of Von Karman vortex streets (Biber et al., 2004:1).  The problems of 

dynamic fluid behavior are condensed at intermediate Reynolds numbers, 104 < Rec < 

5.0×105, the phenomenon of fluid separation, bubble propagation, transition to 

turbulence, and subsequent boundary layer reattachment all occur over very small lengths 

-- substantially altering performance (Gad-el-Hal, 2000:420).  Transition to turbulence 

energizes the flow thereby enhancing momentum transfer and entraining fluid at the 

separation point, pulling the flow back towards the airfoil surface and creating the 

separation bubble (Gad-el-Hak, 2000:421).  An order of magnitude higher in Reynolds 

number, 5.5×105 < Rec < 106, presents more refined and well-behaved flow.  However, 

the boundary layer thickens producing a thick wake and a thinner surface free-shear 

layer, which further reduces the lift-to-drag ratio (Biber et al., 2004:1).  The optimal 

situation for MAV designers is to create a scenario where the size of the separation 

bubble decreases as the incident angle of attack increases through the stall angle, αstall, at 

which point the flow enters a turbulent transition state near the trailing edge (Biber et al, 

2004:7).  The lift-to-drag ratio is lower for longer bubbles (≈ 0.2-0.3*chord) because they 

alter the shape of the outer potential flow, significantly changing the pressure 

distribution; thereby, decreasing the lift slope (Gad-el-Hak, 2000:422). Figure 3 

pictorially represents the phenomenon of a separation bubble forming on the top surface 

of an airfoil operating at a low Reynolds number (Gad-el-Hak, 2000:421). 
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Figure 3. Development of a Laminar Separation Bubble Over a Wing 

  

 The flow over the planform of an aircraft with Rec > 106 transitions to turbulent 

flow ahead of the laminar separation point (Gad-el-Hak, 2000:420).  The increase in 

effective Reynolds number brings a corresponding decrease in the laminar boundary 

layer across a wing, which present both positive and negative benefits.  Because laminar 

boundary layers have a lower velocity gradient at their surface they have lower skin 

friction drag than turbulent boundary layers.  However, the downside of the lower drag 

associated with laminar boundary layers is a corresponding decrease in energy -- less 

energy leads to less inertia with which to negotiate surface irregularities and geometric 

discontinuities.  According to viscous flow theory, the shear at the wall τw(x) decreases as 

the square- root of the axial dimension “x”; therefore, the drag force due to friction per 

uunit span is (White, 1986:397): 
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The drag increases as the square root of the projected length (chord).  The 

nondimensional drag coefficient due to skin friction, CD(Skin Friction) is (White, 1986:397): 
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Note, CD is twice the value of the skin friction at the trailing edge -- or equivalent to the 

drag on one side of a flat plate.  This result matches equations (3) & (4), which give the 

contributions of skin friction drag over an entire wing for a given Reynolds number in 

both laminar and turbulent boundary layers (Barlow et al., 1999:303): 
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 The onset of turbulent flow is not necessarily a detriment to the MAV airfoil 

designer.  Drag does not alter the airworthiness of a MAV; however, it does increase the 

thrust required to maintain straight and level flight.  Resulting in higher engine output, 

increased battery consumption, and reduced mission endurance – detrimental to critical 

design objectives.  Turbulent boundary layer growth may cause the skin friction drag to 

increase, but turbulence also delays boundary layer separation at large angles of attack.  
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Flow separation over a wing equates to the loss of lift due to the presence of adverse 

pressure gradients across the top of the wing where favorable pressure gradients 

previously resided.  Adverse pressure gradients have a positive gradient such that the 

resulting pressure force is aligned in a direction that decelerates the flow.  The 

mechanism, which specifically helps prevent flow separation, is the exchange of 

momentum from the freestream through the boundary layer (Tennekes and Lumley, 

2001:2).  According to Barlow, the value of CD will continue to decrease with increasing 

Reynolds number in the laminar region until the minimum pressure point is reached 

(Barlow et al., 1999:305).  Any further increase in Reynolds number will not move the 

transition point any further toward the wing’s leading edge because it is already centered 

at the minimum pressure point for the particular airfoil.  Increasing the operating 

Reynolds number, usually accomplished by higher velocities, trips the flow into 

turbulence and increases drag, again reducing the lift-to-drag ratio.   

 

Flexible Wing MAVs 

 
 An innovative method to counteract the detrimental flow properties MAVs 

experience in the low Reynolds number regime is a wing structure that adapts to local 

flow conditions (Waszak and Jenkins: 2001:1).  The University of Florida is the 

frontrunner in designing successful MAVs with root chord lengths 6″ and smaller.  These 

MAVs have achieved critical success winning the ISSMO (International Society of 

Structural and Multidisciplinary Optimization) Micro Aerial Vehicle Competition three 

straight years (Waszak and Jenkins: 2001:1).  The wings are constructed of a carbon fiber 

matrix leading edge with carbon fiber ribs attached orthogonally to the leading edge 



 

 13

supporting a parachute-latex membrane, which composes the planar surface of the wing.  

Adaptive washout is the principle designers use to characterize the effect these pliable 

aeroelastic wings achieve in flight.  Sailboats use the adaptive washout technique to aid 

control of the sail through twist of the sail edge normal to the relative wind (Waszak and 

Jenkins: 2001:2).  Adaptive washout contorts and twists the wing surface in response to 

localized disturbances, spontaneous changes in the attitude and speed, which change the 

angle of attack along the span.  This ameliorates unsteadiness in the flight regime and 

insulates the MAV from flow field disturbances (Waszak and Jenkins: 2001:2).  Figure 4, 

reproduced from a University of Florida briefing on MAV flight control, demonstrates 

the flexible response to a typical disturbance – wind gust (Nechyba and Ifju, 2002:11). 

 

 
Figure 4. Flexible Wing Response to Localized Disturbance 
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 The concept presupposes that biological aircraft (bats, insects, birds) can out- 

maneuver and outperform any manmade miniature flight vehicle (Nechyba and Ifju, 

2002:10).  Small flying organisms experience extremely low Reynolds numbers, but do 

not experience the same drastic aerodynamic difficulties small, manmade, rigid wing 

structures suffer.  Wings found in nature typically have thin (less than 2% thick), slightly 

cambered, flexible wing structures that are extremely efficient (Nechyba and Ifju, 

2002:10).   

 Kellogg and Bowman experimented with varying thickness airfoils in low 

Reynolds number tests and concluded thinner airfoils are, on average, 15% more efficient 

than thicker airfoils over the range 6.0×104 < Rec < 1.5×105 (Kellogg and Bowman, 

2004:5).  Moments of inertia are very small in MAVs constructed of epoxy, latex 

membrane, and carbon fiber.  This physical characteristic severely limits the MAV’s 

resistance to unsteady flow effects developed from atmospheric gusts or vehicle 

maneuvers (McMichael and Francis, 1997).   

 Two of the MAVs developed at the University of Florida are 1) a 6″ span, 3.3″ 

mean chord MAV used in the ISSMO competition and 2) a 24″ span, 6″ root chord MAV 

used for government research.  Figure 5 is the 6″ span MAV (Nechyba and Ifju, 2002:3).   
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Figure 5.  University of Florida’s 6″ Span and 3.3″ Mean Chord MAV 

 

Note the wing comprises nearly the entire structure of the vehicle.  Figure 6 is the 24″ 

Span MAV (Nechyba and Ifju, 2002:3).  

  

 
Figure 6.  University of Florida’s 24″ Span and 6″ Root Chord MAV 

 

Vehicle Descriptions 

 
 The MAVs used in this experiment are similar to the University of Florida’s 24″ 

Span and 6″ Root Chord MAV.  AFRL/MNAV, in conjunction with the University of 

Florida, developed a separate MAV as the baseline for their combat camera MAV 

F24' 
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program.  The AFRL/MNAV MAV design has changed several times since this 

experiment -- the design has evolved from a 24″ span aircraft to an 11″ span aircraft, with 

a 21″ span aircraft called BATCAM currently deployed with Air Force Combat 

Controllers in Afghanistan.  The vital characteristics of the MAVs used in this 

experiment are: 

• Flex wing mass:  320 gr (0.705 lbm); Rigid wing mass:  360 gr (0.794 lbm) 

• Carbon fiber matrix body, tapered rectangular shaped fuselage 

• Thin, hollow boxed tail boom 

• High mounted, tapered reflexed wing 

• One wing is constructed of an approximate ¼ chord length carbon fiber leading 
edge with carbon fiber ribs spaced evenly from root-to-tip draped with a military 
parachute membrane material covering the planform area.  The other wing is a 
solid rigid wing constructed entirely of carbon fiber. 

 
• The control surfaces are elevons (combination of elevators and rudder) attached in 

a V-tail configuration at approximately 45° to the tail boom. 
 
Table 1 and  Table 2 summarize the salient geometric properties of the wing and tail 

surfaces. 

Table 1.  Wing Geometric Properties 

Area 93.5 in2 

Root Chord 6″ 

Mean Aerodynamic Chord (cbar) 4.2″ 

Span 24″ 

Carbon Fiber Leading Edge Thickness 0.025″ 

Parachute Planform Thickness 0.005″ 

Aspect Ratio 6.16 
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Table 2.  Tail Geometric Properties 

 
Area 14.8 in2 

 
Chord 2.35″ 

 
Span 6.3″ 

 
Thickness 0.03″ 

 
Aspect Ratio 2.7 

 

Figure 7 shows the two MAVs provided by AFRL/MNAV used in this experiment.  The 

rigid wing MAV is on the lower left and the flexible wing MAV in on the upper right of 

the picture.  Please refer to Appendix C for more pictures of the MAVs. 

 

 
Figure 7.  MAVs Provided by AFRL/MNAV used in this Experiment  
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III.  Methodology 
 
 

This chapter describes the equipment used in the hot-wire anemometry and the 

MAV wind tunnel experiments, followed by an explanation of the research methodology 

used to characterize the flow quality of the new AFIT 3’ x 3’ wind tunnel and the 

aerodynamic properties of the rigid and flexible wing MAVs.   

 
Hot-Wire Anemometry 

 
Equipment. 

 A motorized, fully automatic and programmable, 3-axis traversing system fixed 

with an x-wire measured flow quality in the tunnel.    The measurement collection 

equipment was a Dantec-Dynamics Streamline 90N10 Constant Temperature 

Anemometer (CTA) X-Probe, with a ±45o wire sensor offset with respect to the probe 

orientation in the tunnel flow (probe is normal to flow). Figure 8 shows the probe 

orientation in the test section. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8.   Orientation of X-probe in Flow 
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The angle between the U-velocity component and wire axis-1 is α1 and the angle between 

the U-velocity component and the wire axis-2 is α2.  To convert the wire-fixed axis 

measured values of [(U1, U2) and (V1, V2)] velocities to the system reference axis system 

velocities, [U, V], the following equations were used (Subramanian: 31) 

 

    
( ) ( )
( ) ( )2211

2211

sin*sin*
cos*cos*

αα
αα

UUV
UUU

−=
+=

    (7) 

 
   

The measurement probe collects data on two channels at a frequency of 512 Hz each, for 

a combined data collection rate of 1.0 kHz.  The probe has a maximum range of 500 mm 

in the horizontal and vertical directions (y & z-axis respectively) and the traversing 

mechanism has a maximum displacement in the longitudinal direction of 3 feet (x-axis).  

A commercial data acquisition software package developed by Dantec called 

Streamware®, was used for data collection, processing, and formatting.  Once the probe 

signal is collected, the signal passes through a gain amplifier conditioning unit.  This 

process conditions the response, boosts the intensity of the data signal, filters the signal 

with a low-pass filter to eliminate external noise and crossover interference, and finally 

converts the analog signal to a digital signal. 

 

Table 3.  Probe and Equipment Specifics 

Probe Type 
Sensor (wire) 

Resistance (R20) 

Lead 
Resistance 

(RL) 
Total Probe Operating 

Resistance (Rtot) 

55 P61 3.5 Ohms 0.5 Ohms R=Rtot +α20R20(Tsensor-To) 
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Experimental Procedure. 

 Velocity measurements were collected along two orthogonal axes at various 

vertical and horizontal positions with respect to the tunnel axis system.  The hot-wire 

system is located on top of the wind tunnel.  A removable Plexiglas plate with slotted 

grooves allows the probe access to the test section.  The plate has one slot oriented in the 

x-axis of the flow and six equally spaced slots oriented in the y-axis of the flow.  Figure 9 

shows the removable plate with the first slot open and the remaining five plugged. 

 

 
Figure 9.  Removable Plexiglas Tunnel Top 

 

To sample the flow quality of the complete test section, the probe was inserted through 

various slots and velocities were measured for several tunnel speeds in the test section.  

Table 4 details the various slot and velocity configurations tested. 

Open Slot (#1) Plugged Slots (#2 - #6) 
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Table 4.  Hot-Wire Test Configurations 

Slot Number 

Distance From Front of 

Test Section Tunnel Speeds Tested 

 
1 2 ¼ ″ 10, 30, 60, 90 mph 
 
4 17 ¾ ″ 10, 30, 60, 90 mph 
 
6 27 ¾ ″ 10, 30, 60, 90 mph 

  

Three separate y-z planes at the four tunnel speeds indicated above were measured in the 

test section.  The first plane was 2.25 ″ downstream of the start of the test section, the 

second plane is 15″ back from the first, and the third plane is 10″ back from the second.  

In each run, the probe is initially inserted 3.75″ into the test section through the Plexiglas 

plate and 12″ from the side of the test section walls.  The probe descends in the +z-

direction in 50 mm increments until it is 7.625″ from the bottom of the test section.  At 

the bottom of maximum descent, the probe travels 50 mm in the –y-direction and begins 

to ascend in 50 mm increments in the –z-direction until it reaches its maximum height 

below the top surface of the plate and the process begins again until the entire 

measurement survey is completed.  The entire grid is comprised of 121 velocity 

measurements taken in the y-z plane. Figure 10 illustrates a notional probe grid test 

pattern in the first plane. 
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Figure 10.  Nominal Probe Traversing Path 

 

Data Analysis. 

 The Dantec Streamware® software stored the data files from each run as a Comma 

Separated File (.csv).  Each file was manually assigned an index from 1-121 denoting the 

starting position of the probe through the finishing position of the probe.  The 

Streamware® software automatically calculated the mean velocity at each data point.  A 

Matlab® routine was written to read the .csv data file into an [11 x 11] matrix and create a 

contour plot of the mean velocities plotted against the vertical (z-axis) and horizontal (y-

axis) probe motion during each test.  This process was repeated four times for each tunnel 

speed in each of the three test planes. 
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Front View 

Z 

Y 

3.75 in 

12 in Section 1 

Section 2 

+X 

15 in 

Section 3 

10 in 

Datum Line: 
X = +72 mm 
Y = -250 mm 
Z = +200 mm

Nominal Probe Pattern 



 

 23

MAV Wind Tunnel Test 

 
Equipment. 

 
 The new AFIT 3’x3’ wind tunnel was used for this experiment.  New York 

Blower Company manufactured the tunnel and the ACF/PLR Class IV fan, Siemens 

manufactured the Adjustable Frequency Tunnel Controller, and Toshiba manufactured 

the Premium Efficiency (EQP III) fan motor.  The basic specifications of the motor are as 

follows: 

• 3 phase induction 
• 200 Brake Horse Power 
• Maximum theoretical speed is 150 mph 
• Maximum tested speed is 148 mph 
• 4 Poles 
• 1785 RPM Operating Speed 
• 230/460 Volts 
• 60 Hz 
• 444/222 Amps 

 

The controller specifications are as follows: 

• 460 Volts 
• 315 Amps 
• 250 max HP 

 

The tunnel is an open circuit configuration with a closed test section.  The flow follows a 

straight line from the entrance through the converging section to the test section through 

the diffuser and is then channeled 90o toward the ceiling where it is exhausted.  The fan is 

located at the end of the tunnel, sucking ambient air from the room through the test 

section.  The opening is 122″w x 111″h x 70″d.  Four, 20x20 steel mesh anti-turbulence 

screens and a ¼″ aluminum honeycomb flow-straightener, with a minimum aspect ratio 
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of 15, fills the front 70 inches of the opening, assuring well-defined laminar streamlines. 

Figure 11 shows a side view of the tunnel opening. 

 

 
Figure 11.  Side View of the Wind Tunnel Opening 

 

The converging section has a contraction ratio of 9.5:1.  The height of the tunnel after the 

last anti-turbulence screen is 111″ and the height just before the beginning of the test 

section is 31.5″. The length from the end of the last anti-turbulence screen to the 

beginning of the test section is 95.5″.   Figure 12 shows the contracting section of the 

wind tunnel. 
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Figure 12.  Wind Tunnel Converging Section 

 

The test section is octagonal in shape with gas-actuated Plexiglas doors on both sides and 

a removable Plexiglas top panel.  The Plexiglas doors enable easy access to the test 

article and internal balance, while the removable top Plexiglas panel can accommodate a 

hot-wire anemometry traversing system.  The test section is 31″h x 44″w x 72″l. The 

MAV span-to-tunnel width ratio is: 55.00545.
"44
"24

≈==
w
b , where the generally 

accepted  rule of thumb is 8.0≤
w
b  (Barlow et al., 1999:28).  See Figure 13 for a 

schematic of the tunnel. 

 

111″ 
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95.5″

9.5:1
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Figure 13.  General Wind Tunnel Schematic 

 

 The measurement system is a remotely controlled automatic sting, which can 

accommodate a variety of six-component internal strain gauge balances.  The sting enters 

the tunnel through a slot at the bottom of the test section.  The sting can measure angles 

of attack (α) from -20o to +20o, and sideslip angles (β) from -15o to +15o.  The force and 

moment data was collected with an Able Corporation, MKII 8-lbf, six-component internal 

strain gauge balance.  The balance is accurate to 0.25% of full capacity (≈ 0.0125 lbf).  

Table 5 lists the maximum loads on each of the MK II’s six strain gauge rosettes. 
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Table 5.  Maximum Sensor Loads 

N1 & N2 8 lbf 

S1 & S2 5 lbf 

A1 5 lbf 

l1 2 in-lbf 
 
 
The distance between the two normal force sensors, N1 & N2, is 2.10″, and the distance 

between the two side force sensors, S1 & S2, is 1.7″.  The MK II balance is featured in 

Figure 14 below. 

 

 
Figure 14.  MKII 8 lbf Balance 



 

 28

A 16-bit electronic data acquisition card and controller collected the balance force and 

moment data.  The controller converts the strain gauge analog output to a digital signal, 

amplifies and conditions the signal with a low pass filter, and stores the data in a PC. 

 

Experimental Procedure. 

 The tunnel technician, Mr. Dwight Gehring, calibrated the balance by attaching 

calibrated static weights to the balance and adjusting the calibration constants in the data 

collection software so the loads registered on the PC matched the weights attached to 

each sensor.   Linearity in the balance was checked by applying weights to each sensor 

and ensuring the output voltage corresponded linearly to the increases in load.  A roll 

angle offset between the MAV and the sting of 0.05o was measured with a digital 

inclinometer.  No roll angle offset corrections were applied because the MAV is mounted 

square on the balance and the roll is negligible.  The tunnel speed, angle of attack, and 

yaw angles were controlled by a computer loaded LabView Virtual Instrument interface 

program and checked with analog feedback boxes.  The analog feedback boxes use a 

pressure transducer and pitot-static tube to verify the tunnel speed, while the angle of 

attack and yaw angles were monitored with optical encoders mounted on the sting strut 

assembly. 

 The measured data from the balance is stored in the form of two normal force 

components (N1 & N2), two side force components (S1 & S2), an axial force component 

(A1), and a roll moment (l1).  Each sensor is a single axis, strain gage rosette.  Voltage is 

continuously applied to the rosette and the resistance measured across a wire filament.  

When a load is applied, strain is produced in the wire causing an elongation in the wire 
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and a corresponding increase in the resistance.  This change in resistance produces an 

output voltage, which is equated to strain and eventually to a force through a series of 

programmed calibration equations.  See Appendix F for more detail on strain gauge 

operation.   The coordinate axis system used in the tunnel is: +x is along the longitudinal 

axis (A1) pointing toward the tunnel opening, +y is along the wing axis (S1 & S2)  

pointing toward the control room, and +z is perpendicular to the wings (N1 & N2) 

pointing toward the ground.  Figure 15 illustrates the tunnel coordinate system, which is 

the convention used in wind tunnel model tests. 

 

                                             
Figure 15.  Positive Tunnel Coordinate System 

 

 The MAVs were attached to the sting/balance assembly with set-screws fixed to a 

polymer mounting block.  The mounting block was drawn in AutoCAD and fabricated in 

AFIT’s 3-D rapid prototyping machine.  The polymer block was attached flush to the 

bottom of the MAV, beneath the battery compartment, to minimize center of gravity 

+X 

+Z +Y 
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(CG) displacement, and sealed with epoxy resin.  Figure 16 shows the mounting block 

attached to the rigid wing MAV. 

 

 
Figure 16.  Polymer Mounting Block 

 
Four categories of tests were conducted on each MAV (See Appendix D for Test Matrix):  

• Alpha Sweeps (Propeller Removed) 
• Beta offset Alpha Sweeps (Propeller Removed) 
• Alpha offset Elevon Deflection Sweeps (Propeller Removed) 
• Alpha offset Motor Power Sweeps (Propeller On) 

 
Before each set of tests, data was collected on the MAV with no tunnel velocity.  

Determination of the effect of the MAVs static weight on the balance is necessary to 

remove the tare effects on the axial force sensor, which dramatically alters the drag 

coefficient.  Data was collected at a sample of alpha and beta angles without the wind for 

this purpose.   
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 For the alpha sweeps, the initial angle of attack was set to α = -4° for the flexible 

wing MAV and α = -10° for the rigid wing MAV.  The velocity was increased until the 

desired test speed was reached followed by the start of each test.  Data was collected for 

20 seconds at each data point, defined by one increment increase in the angle of attack.  

The α angle was increased by +2°, except near the suspected stall angle (αstall) where the 

increments were reduced to 0.5°, until α = +18°.  Table 6 lists the details for all of the 

alpha tests. 

Table 6.  Alpha Sweeps Test Matrix 

β = 0° 
 

10 mph 20 mph 30 mph 50 mph 

 
Flex 

 
-4°α to +18°α 

 
-4°α to +18°α 

 
-4°α to +18°α 

 
-10°α to +8°α 

 
Rigid 

 
-10°α to +18°α

 
-10°α to +18°α

 
-10°α to +18°α

 
-7°α to +6°α 

 

 For the beta sweeps, the sting was rotated to the desired starting yaw angle, then 

declined to α = -4°.  The tunnel speed was set to U∞ = 30 mph for each of the runs in the 

beta test sequence, then data was collected over a series of alpha angles, similar to the 

alpha sweeps test.  Table 7 lists the details for all of the beta tests. 

Table 7.  Beta Sweeps Test Matrix 

U∞ = 30 mph 
 

β = 0° β = -4° β = -8° β = -12° 

 
Flex -4°α to +18°α 

 
-4°α to +18°α 

 
-4°α to +18°α 

 
-4°α to +18°α 

 
Rigid 

 
-10°α to +18°α 

 
Not Tested 

 
-10°α to +18°α

 
Not Tested 
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 The elevon deflected runs were conducted at a tunnel speed of U∞ = 30 mph and 

an angle of attack of α = 0° for each test.  The elevon deflection angles were determined 

using a combination of the RC controller and a digital inclinometer.  The elevons were 

set to 0° deflection with the trim tabs and then their angle measured with the inclinometer 

for each stick/trim change in the controller.  Then a combination of controller stick clicks 

and trim offset changes were sampled until the desired elevon deflections were achieved.  

The precise combination of trim and elevon controller stick clicks were recorded for each 

of the test deflection angles.  Table 8 lists the elevon settings used in the flexible wing 

tests.  Three separate series of elevon deflection tests were conducted: 

• Single elevon deflection (δe, PORT = 0° & δe, STARBOARD = Varied) 

• Tandem elevon deflection (δe, PORT =  δe, STARBOARD) 

• Opposed elevon deflection (δe, PORT = -δe, STARBOARD) 

Table 8.  Flex Elevon Deflection Matrix 

FLEX δe, PORT δe, STARBOARD 

0° -20° 
0° -10° 
0° -5° 
0° 0° 
0° +5° 
0° +10° 

Single 

0° +20° 
+10° +10° 
+20° +20° 
-10° -10° Tandem 

-20° -20° 

-10° +10° Opposed 
-20° +10° 
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Table 9 lists the elevon deflection settings used in the rigid wing tests. 

 
Table 9.  Rigid Elevon Deflection Matrix 

RIGID δe, PORT δe, STARBOARD 

 
+10° +10° Tandem 

-10° -10° 
Opposed -10° +10° 

 
 
 Each powered run was conducted at a specific angle of attack and tunnel speed, 

which did not change throughout the duration of the specified run.  The throttle settings 

were determined similarly to the elevon deflection angles.  The number of stick clicks 

were counted from the bottom to the top of the controller range.  The number of clicks 

were divided by four to establish an approximate representation of ¼ throttle, ⅜ throttle, 

½ throttle, and ⅝ throttle -- 6 clicks on the controller ≈ ¼ increase in throttle.  

Luminescent tape was affixed to one blade of the 4.75″ propeller.  A General Radio 

Company  Strobotal Strobe light was used to “freeze” the propeller indicating the 

approximate RPMs at each throttle setting. Table 10 specifies the tunnel speed, angle of 

attack, and RPM settings for each powered test. 
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Table 10.  Powered Run Test Matrix 

 U∞ α Throttle RPM 

¼ 4300 
⅜ 7500 
½ 10,000 
⅝ 12,400 

Test #1 10 mph 4° 

¾ 13,200 
¼ 5000 
½ 8000 Test #2 20 mph 0° 

⅝ 10,000 
¼ 5000 
⅜ 8000 Test #3 20 mph 4° 

½ 10,400 
¼ 4700 
⅜ 7900 Test #4 20 mph 8° 

½ 10,300 
¼ 6000 
⅜ 8800 Test #5 30 mph 0° 

½ 10,600 
¼ 6100 
⅜ 8700 Test #6 30 mph 4° 

½ 10,600 
¼ 6100 
⅜ 8900 
½ 10,500 

Test #7 30 mph 8° 

⅝ 12,700 
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Data Analysis. 
 
 Data was collected for approximately 20 seconds per point.  The data is stored 

directly into the control computer as a tab-delimited text file.  Twenty seconds of data 

collection corresponds to approximately 30 lines of recorded tunnel data, which is 

Second
pointsdata  5.1 or a 1.5 Hz data-sampling rate.  Microsoft Excel® was used to view and 

process the data files from each run.  To process the data in preparation for reduction; 

spurious data, the data collected while the tunnel conditions were being initialized, and 

the transition data between test points were all deleted.  Next, a single composite line of 

data representing [U∞, α, β, N1, N2, S1, S2, A1, l ] for each test point was calculated by 

averaging the 30 lines of data collected at each test point.  Finally, the averaged test 

points for each run were copied to a text file and imported into MATLAB®.  A 

MATLAB® program was written to reduce all of the test files, calculate all of the 

aerodynamic properties, and export the results in tabular format.  The numeric results 

were imported to Excel and all of the aerodynamic properties were plotted according to 

standard aerodynamic practice.   

 The room temperature and pressure were recorded for each run and the ideal gas 

law was used to calculate the air density:  

     
TR

P
*

  =ρ       (8) 

 
The essential flight parameters were calculated next: the Reynolds number evaluated at 

the root chord, the dynamic pressure, and the Mach number were calculated for each 

wind speed.  The Reynolds number is given by: 
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Viscosity Fluid
 LengthChord Root C

Velocity TunnelU
density medium The
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c

    (9) 

The dynamic pressure is given by: 

    2**
2
1

∞=∞ Uq ρ      (10) 

The Mach number is given by: 

    

roomT*R*sound of speed γ==

∞
=

a
a

UM
   (11) 

 Next, the tare effects of the MAV’s static weight were removed by fitting a 4th 

order polynomial in the form of : 

    

 variable)(dependent forcesensor  individual
e)nt variabl(independealpha  tare

:Where

234

=
=

++++=

y
x

edxcxbxaxy

 (12) 

to the tare data for each individual sensor [N1, N2, S1, S2, A1, l ].  A matrix of 

polynomials was created from the six tare polynomials and the actual test alpha was 

substituted for the independent variable, “x”, yielding the tare forces at the actual test 

alpha.  The resulting test tare forces are used to calculate the unbiased sensor forces 

through the simple relation: 

    TARETESTU  Forces-  Forces Forces =    (13) 
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 Once the tare effects are removed, the balance interactions must be removed.  The 

sensors are not perfectly orthogonal; therefore, a component of force in each principal 

axis registers on the other “off-axis” sensors.  For a perfectly centered balance with all 

sensors orthogonal, the readings on the five unloaded sensors should not theoretically 

register any voltage.  Although designed to measure only directly applied loads, the close 

proximity of the rosettes to one another in the balance make it impossible to prevent 

some effect of loads from one sensor affecting another.  Furthermore, any slight angle in 

the rosette will further exacerbate the effect one sensor has on another.  These effects are 

captured in the manufacturer’s balance interaction sheets.  The balance manufacturer 

supplied a matrix of balance interactions resulting from applying 1 lbf to each sensor and 

recording the output on the other five sensors.  Each sensor was loaded twice with its 

maximum positive load and twice with its maximum negative load. Each sheet contains 

the registered voltage on the five unloaded sensors along with the particularly loaded 

sensor.  A six-component balance has 27 interactions.  This data is in volts; however, the 

balance output for [N1, N2, S1, S2, A1, l ] is in lbf.  Therefore, the interaction data must be 

converted from volts to pounds-force.  The voltage output for each loaded sensor was 

divided by its applied load to calculate the number of volts per 1 lbf applied at each 

sensor.  Next, the values in each sheet were divided by the applied load at that sensor.  

Finally, a row vector comprised of each sensor’s 
flb 1

V value was multiplied by each 

sheet.  The balance interactions are removed from the unbiased forces through the 

equation (Barlow et al., 1999:261): 
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[ ] [ ] [ ]

[ ] nsInteractio  Balanceof Matrix 
:Where

*   LoaMeasured
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  LoadActual
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= −
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dij

K

FKF

   (14) 

   
 Now, the tunnel corrections due to the MAV in the tunnel altering the flow 

dynamics have to be applied to the dynamic pressure and tunnel velocity.  The first set of 

corrections are collectively called the blockage correction.    The equations used to 

correct for the tunnel blockage are (Barlow et al., 1999:368-370): 

     

   

93.0

*
9.0factor  shapebody 

83125.0)
B
2b & Shape SectionTest (

*

)negligible as (taken blockage wake
blockage solid

3

23
13

,

1

1

23
11

,

,,

=

⎟
⎠
⎞

⎜
⎝
⎛=

==

=ℑ=

⎟
⎠
⎞

⎜
⎝
⎛=

+=
=
=

+=

κ

τκ
ε

κ

τ

τκ
ε

εεε

εεε

C
BodyVolume

C
WingVolume

wb
sb

bodysb

wingsb

bodysbwingsbsb

wbsbTotal

   (15) 

 
Next, the tunnel velocity and dynamic pressure have to be adjusted to account for 

alterations caused by the presence of the MAV in the tunnel (Barlow et al., 1999:414): 
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 Once all of the tunnel corrections are calculated and the dynamic pressure and 

tunnel velocity are adjusted appropriately, the aerodynamic forces in the MAV body axis 

system are calculated from the corrected sensor forces.  Once the loads were corrected to 

reflect the true loads at each sensor, the Axial, Side, and Normal forces, [ ]NYA , were 

calculated from [N1, N2, S1, S2, A1, l ].  The equations used to calculate [ ]NYA  are 

(Barlow et al., 1999:237): 

    

21

21
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      (17) 

 
The equations used to calculate the Roll, Pitch and Yaw moments, [ ]nml  are: 
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[ ]NYA  are forces measured with respect to the MAV’s body axis and must be 

converted to the wind (earth) reference axis system.  These forces in the wind axis are 

called Drag, Side Force, and Lift, [ ]LSD , and are the standard aeronautical 

engineering parameters used in the design and analysis of aircraft.  The equations used to 

calculate [ ]LSD  in the wind axis system are (Barlow el al., 1999:237): 
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Similarly, the moments are also with respect to the MAV’s body axis system and must be 

converted to a set of wind axes.  The equations used to calculate [ ]nml  in the wind 

axis, centered at the balance/mounting block interface (bc), are (Barlow el al., 1999:238): 
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Lastly, the moments must be moved from the balance center reference frame to the 

MAV’s body center located at the vehicle CG.  The movement of the CG away from the 

balance center to the body center was calculated using a system of scales placed side-by-

side with the MAV suspended in between by a long bar attached to the propeller shaft.  

The weight on each scale and the distance between each scale was recorded and a simple 

static analysis was applied to sum the moments about one end of the bar, solving for the 

only unknown in the equation, the CG distance. Figure 17 shows the basic methodology 

used to determine the location of the vehicle CG . 
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Figure 17.  Sample Rigid Wing (Prop Off) CG Determination Drawing 

 

The following equations illustrate how the final CG in the z-axis was calculated: 
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   (21) 

The CG was similarly calculated for both MAVs in the x & z-axes.  The y-axis balance 

center and the vehicle CG were coincident.   

Table 11 lists the distances from the balance center set-screw to the body center CG for 

the different MAV configurations. 
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Table 11.  CG Locations from Balance Center for Propeller Off & On the MAV 

Rigid Prop onRigid Prop offFlex Prop onFlex Prop off

-1.63 ″-1.63 ″-1.31 ″-1.31 ″zcg

0.0 ″0.0 ″0.0 ″0.0 ″ycg

1.78 ″1.78 ″2.03 ″1.95″xcg

Rigid Prop onRigid Prop offFlex Prop onFlex Prop off

-1.63 ″-1.63 ″-1.31 ″-1.31 ″zcg

0.0 ″0.0 ″0.0 ″0.0 ″ycg

1.78 ″1.78 ″2.03 ″1.95″xcg

 

 
With the CG locations determined and the moments calculated about the wind axis 

reference system, the following equations were used to transfer the moments to the body 

centered, wind axis frame (Barlow el al., 1999:238): 
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 Now that the aerodynamic properties are calculated in the appropriate coordinate 

reference system, their presentation is more effectively conveyed as nondimensional 

parameter coefficients.  The force and moment coefficients allow engineers to 

parametrically compare an assortment of otherwise dissimilar aircraft.   

The forces and moments are nondimensionalized through the following equations: 
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Some texts, notably Nelson’s Aircraft Stability and Control, use the wingspan to 

nondimensionalize the roll and yaw moments, but for consistency with the text used in 

this analysis, Low Speed Wind Tunnel Testing, the root chord was used for all three 

moments. 

 The angle of attack, drag coefficient, and pitching moment all require slight 

corrections due to test section geometry and flow field interference.  The first set of 

corrections is applied to the geometric angle of attack.  The indicated angle of attack in 

the control software changes under influence of the fluid streamlines being contained 

within the tunnel boundaries.  According to Helmholtz’s vortex theorem, in free flight, 

trailing vortices generated at the wing tips will extended indefinitely; however, in a 

closed tunnel, the walls become themselves a streamline of the flow where no fluid 

passes (Barlow et al., 1999:377).  These added streamlines reduce both the induced drag 

and induced angle of attack for a specified lift condition.  The induced drag corrections 

are (Barlow et al., 1999:416):  
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The angle of attack correction is (Barlow et al., 1999:416): 
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The final correction is the pitching moment correction.  This involves a series of 

estimations about the wing and tail lift slopes; which were not independently tested, so 

pseudo approximations were assumed based on vehicle geometry and the lifting surface 

aspect ratios.  The pitching moment correction procedure followed is (Barlow et al., 

1999:399-400 and Nelson, 1998:48): 
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 An analysis of the powered run data required a calculation of the thrust and power 

coefficients and an estimation of the vehicle’s endurance capabilities, which is the 

reciprocal of the power number.  The equations used to calculate the power coefficient, 

CP, are (Barlow et al., 1999:509): 
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The propeller power is not directly measured.  However, the definition of power is the 

product of torque and rotational speed.  The torque developed with the motor on is 

nothing more than the reaction put forth by the set-screws connecting the mounting block 

to the balance, preventing the MAV from freely rotating about the x-axis.  The rolling 

moment measured at 0 RPMs (motor off condition) is subtracted from the power 

calculated at each RPM setting to remove the aerodynamic artifices present in the balance 

generated by the flow field and angle of attack.  The equations used to calculate the thrust 

coefficient, CT, are (Barlow et al., 1999:509): 
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The power coefficients are plotted against a nondimensional parameter called the 

advance ratio, J, which is: 
d

VJ c

*η
=        (29) 

Various plots of the above parameters are presented as results in the next chapter. 
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IV. Results & Analysis 
 

 

 This chapter presents the data and results of the wind tunnel experiments 

performed on both the rigid and flexible wing MAVs.  Unless specified otherwise, plots 

containing data for both the flexible and rigid wing vehicles will be delineated by solid 

lines for the flexible wing MAV and dashed lines for the rigid wing MAV.  Table 12 

summarizes the relevant flight parameters for the tunnel conditions tested.  Refer to 

Appendix D for the data presented in tabular format. 

 

Table 12.  Summary of Flight Conditions 

 
U∞ (mph) Mach # qc (lbf / ft2) Rec 

 
10 0.013 0.25 4.5×104 

 
20 0.025 0.90 8.55×104 

 
30 0.038 2.16 1.32×105 

 
50 0.065 6.15 2.23×105 

 
 

Alpha Sweeps 

 
  The following plots characterize flexible and rigid MAV lift and drag 

coefficient performance versus change in angle of attack.  Figure 18 depicts the lift and 

drag for both the flexible and rigid wing MAV over the entire range of tunnel speeds 

tested. 
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Figure 18.  Flexible and Rigid Wing MAV CL vs. α and CD vs. α 
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This plot readily demonstrates that the rigid wing lift slopes are nearly coincident with a 

slight increase in slope attributed to Reynolds number effects eclipsing the laminar 

separation bubble as the flow moves through the transition region.  The flexible wing lift 

slopes show considerable spread decreasing in slope due to the aeroelastic effects of the 

wing at higher Rec.  Near the zero lift line, αLO ≈ -6.5º, the rigid wing MAV exhibits 

higher drag at every airspeed than the flexible wing MAV. However, near the stall angle, 

αStall, the maximum drag values at each airspeed are nearly identical for the flexible and 

rigid wing MAVs.  Further, the rate of drag increase is also very similar for both MAVs. 

 Figure 19 presents the flexible wing lift and drag curves with more detail.  It is 

clear from Figure 19 that aeroelastic effects dominate the behavior of the lift slope over 

any Reynolds number effects in this vehicle as the tunnel speed increases.  The drag data 

at 20, 30, & 50 mph are nearly coincident, while the 10 mph data is considerably higher.  

The two possible explanations for this occurrence are: 1) the forces at 10 mph are on 

order of the balance precision or 2) the laminar separation bubble in this Reynolds 

number regime cause a substantial increase in skin friction drag.  Further investigation 

into the sources of error reveal the separation itself is not a consequence of error, but 

rather the aeroelastic deformation of the wings; however, the magnitude of the separation 

is due to balance error.  See Appendix E for the error analysis.  Furthermore, the laminar 

separation bubble manifests itself as the slight undulations seen in the 10 mph lift line, 

which represent the separation/reattachment of the boundary layer along the wing – 

causing degraded aerodynamic efficiency. 
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Figure 19.  Flexible Wing MAV CL vs. α and CD vs. α 
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According to the laminar and turbulent skin friction drag equations on page 11 (equations 

3 & 4)  as the flow proceeds from strictly laminar to transitional, the drag increases by a 

factor of three as the Reynolds number increases.  Therefore, the separation in the drag 

curves between the 10 mph data and the other three runs could strictly be attributable to 

the transitional machinations of undefinitized flow.  Table 13 lists the CD,Skin Friction values 

for the Reynolds numbers tested. 

 
Table 13.  CD (Skin Friction) for Laminar & Turbulent Boundary Layers 

10 mph 20 mph 30 mph 50 mph  

45,000 85,500 132,000 223,000 

 
LAMINAR 0.0123 0.0091 0.0073 0.0056 

 
TURBULENT 0.0173 0.0153 0.014 0.013 

 
%∆ 

 
39% 68% 92% 124% 

 

 Examination of the rigid wing lift and drag curves show that the wing’s lift slope 

is independent of Rec, in accordance with classical airfoil predictions.  Similar to the 

flexible wing MAV, the presence of slight undulations in the 10 mph lift is a result of 

unsteady aerodynamics resulting from rapid separation/reattachment of the boundary 

layer at low Reynolds numbers.  The drag is higher at 10 mph than in the other three runs 

and is mainly attributable to the fact the axial forces are on the order of the balance 

resolution. Figure 20 shows the rigid MAV curves. 
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Figure 20.  Rigid Wing MAV CL vs. α and CD vs. α 
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 The next series of plots show CL and CD vs. α on the same plot for the flexible and 

rigid MAV at individual tunnel speeds.  Figure 21 show the lift and drag coefficients vs. 

angle of attack for 10 and 20 mph respectively.   
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Figure 21.  Lift and Drag at 10 & 20 mph 

 

Figure 22 shows the same data for 30 and 50 mph respectively.   
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Figure 22.  Lift and Drag at 30 & 50 mph 

 

It is clear that at lower speeds, and therefore, lower Rec, the flexible wing MAV has a 

steeper lift slope, and as ReC increased, aeroelastic effects on the flexible wing MAV 

caused the lift slope to decrease.  The prevailing velocity and Reynolds number for this 

transition appear to be 30 mph and 1.32×105, respectively.  Another noteworthy trend is 

the separation in drag values between the flexible and rigid wing MAV increase with 
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increasing ReC.  Traditionally, as seen in the rigid wing MAV, as the velocity and 

Reynolds number increase, so does the drag; however, the flexible wing MAV appears to 

provide some resiliency against this increase in drag.   

 The 50 mph data is incomplete for both MAVs.  At α = 7.5°, the load on the N1 

sensor on the rigid wing MAV approached the 8 lbf limit.  At 6° ≤ α ≤ 7°, the wings on 

the flexible wing MAV started to bend excessively about the root chord to the point the 

tips nearly clapped together.  After the flexible wing 50 mph test, the wings delaminated 

at the root and required repair.  Fortunately, this was the last test run on the flexible wing 

MAV.  Figure 23 shows the flexible wing before and after the 50 mph run. 

 
 

  

 

 

 

 

Figure 23.  Flexible Wing Delamination 

  

 Table 14 summarizes the salient characteristics of the alpha sweeps tests.  Both 

MAVs show a decrease in CL, max with increasing Rec; however, the flexible MAV 

experienced a faster rate of decrease in CL, max than did the rigid wing MAV.  Another 

important trend is in the change of the stall angle for each MAV.  As expected, the rigid 

wing MAV’s stall angle decreased with increasing Rec, while the flexible wing MAV 

 

AFTER 

BEFORE
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showed the opposite trend, an increase in αstall with increasing Rec.  Aeroelastic wing 

deformation is the primary factor corresponding to the delay in αstall.  The wing deforms 

under load from the ¼ M.A.C to the trailing edge.  The trailing edge is deflected 

upwards, causing a net decrease in the wing incidence angle, resulting in a lower relative 

angle of attack. 

Table 14.  Summary of Maximum Lift and Stall Angles 

10 mph 20 mph 30 mph 50 mph  

CL,max αstall CL,max αstall CL,max αstall CL,max αstall 

 

Flex 1.82 8.7° 1.40 12.7° 1.34 14.8° 1.11 7.5° 
 

Rigid 1.67 12.8° 1.37 12.7° 1.33 8.5° 1.23 -- 
 

%∆ 
 

-8.2% 47.1% -2.2% 0.0% -0.7% -39% 10.8% -- 

 

  
 A plot of Lift over Drag ( D

L ) versus angle of attack is useful to illustrate the 

development of a vehicle’s most efficient operating range.  Figure 24 shows the D
L  vs. 

α plot for both the flexible and rigid wing MAV.  The rigid wing MAV’s max D
L  point 

decreased as the velocity increased except for the 50 mph data.  Where the flexible wing 

MAV demonstrated relatively consistent D
L  behavior at 20, 30, & 50 mph, again the 10 

mph run shows either extreme laminar separation bubble consequences or the forces 

generated at that speed are on the order of the balance resolution and therefore were 



 

 57

removed from this plot.  See Appendix E for the error analysis conducted on the 10 mph 

data as well as error bar plots of the 10 mph data against the 30 mph data for comparison 

of the error propagation when operating near the balance limits.   The rigid wing max 

D
L  point occurs at -5° < α < 0°, while the flex wing max D

L  point moves to the right 

in the region of 0° < α < 4°.  Comparing the more reliable 20 and 30 mph data, the 

flexible MAV has a maximum D
L of 10, while the rigid MAV had a value between 7 

and 8. 
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Figure 24.  Flexible and Rigid Wing L/D vs. α 

 

 Lastly, a comparison of the experimentally generated lift curve slope (m) to the 

theoretical slope (mo) is instructive to verify the change in lift as a function of angle of 

attack.  The lift curve slope is given by:  
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A sample calculation of the experimental lift curve slope in Figure 18, for the flexible 

wing MAV at U∞ = 30 mph is (Keuthe and Chow, 1998:179): 
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The lift curve slope for the theoretical elliptical circulation distribution is: 
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Table 15 summarizes the lift curve slopes for both the flexible and rigid wing MAVs. 

 
Table 15.  Flex and Rigid Lift Slopes Compared to Elliptical Lift Distribution 

  

10 mph 20 mph 30 mph 50 mph Average %∆ 
RHS 

 
Flex 5.317 5.338 4.77 4.19 4.907 3.45% 

 
Rigid 3.709 4.44 5.075 5.354 4.645 2.06% 

 

The difference between the experimental and predicted lift curve slopes is less than 5%. 

The slope of the CL vs. α curve in Figure 18 is nearly identical to the predicted value.  

The flexible wing shows a slightly greater departure from the predicted value, likely a 
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factor of the wing’s aeroelastic deformation under load.  Equation 25 assumes a solid 

wing structure. 

 

Beta Sweeps 

 
  The change in side force coefficient (CY) versus angle of attack for 

specific yaw angles is plotted for both MAVs.  For reference system consistency, the yaw 

angle (ψ) is equal in magnitude but opposite in sign to the sideslip angle (β):  ψ = -β.   

The flexible wing MAV’s side force shows consistent growth with increasing yaw angle.  

The side force coefficient increases to a maximum at α = +5° for each β angle, then 

decreases rapidly.  If the test angle of attack increased much past +20°, then all values of 

CY would become negative.  The rigid wing values of CY also increase with increasing 

yaw angle.  However, CY does not increase to a maximum value at α = +5° for each β 

angle like the flexible wing MAV, but rather falls sharply from the beginning of the test.  

A  tractable explanation for the differences is flexible wing bending may cause changes 

in wing incidence resulting in an increase in CY.  The values of CL over the range of β are 

similar to the CL values with no sideslip angle and therefore are not presented here.  

Figure 25 shows flexible and rigid wing CY vs. α plots for various β angles. 
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Figure 25.  Flexible (left) and Rigid (right) Wing CY vs. α for Various Angles of β 
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 Next, plots of the rolling and yawing moments versus angle of attack are shown.  

The rolling moment (Cl) at the CG  behaves consistently with increasing sideslip angle.  

Similar to the side force coefficient, the roll moment also increases with increasing yaw 

angle.  The flexible and rigid wing roll moment falls sharply with increasing angle of 

attack.  The rigid wing MAV shows more refined behavior than the flexible wing MAV 

over the entire range of alpha.  The magnitude of the rigid wing MAV’s roll moment is 

exceptionally higher than that of the flexible wing MAV.  At α = -4°, the rigid wing roll 

moment is 50% higher than the flexible wing roll moment.  At α = 8°, the rigid wing roll 

moment is 11 times greater than the flexible wing roll moment.  Note; however, at  

α = +10°, the  flexible roll moments cease to decrease monotonically rendering further 

comparisons useless.  The combination of tip flutter and wing stall at higher angles of 

attack probably caused the instabilities in the roll moment.  See Figure 26 for Cl vs. α for 

various β angles. 
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Figure 26.  Flexible and Rigid Wing Cl vs. α for Various Angles of β  
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 The dependence of the yaw moment (Cn) at the CG on the angle of attack for 

various yaw angles is shown in Figure 27.  The flexible wing MAV yaw moment 

responds predictably with increasing yaw angle.  The flexible wing yaw moment 

decreases with angle of attack until α = 12°, then begins to increase.  It appears the yaw 

moment displays some oscillatory behavior.  Although inconclusive, if the angle of attack 

was continually increased beyond α = 20°, the trend indicates the yaw moment would 

begin to decrease again.  The rigid wing yaw moment behavior is opposite that of the 

flexible wing MAV.  At this point, aeroelastic effects due to wing deformation do not 

appear as a reasonable explanation for this phenomenon.  The yaw moment is measured 

about the z-axis, and perturbations in wing shape should not effect the direction of the 

yaw moment.  However, the possibility of the CG shifting due to battery placement 

produces considerable error margin in the flexible and rigid wing Cn moment curves.  The 

flexible MAV xCG can shift by approximately ± 0.066″, while the rigid xCG can shift by ± 

0.058″.  The flexible MAV zCG can shift by approximately ± 0.033″, while the rigid zCG 

can shift by ± 0.029″.  See Appendix E for a complete CG error analysis. 
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Figure 27.  Flexible and Rigid Wing Cn vs. α for Various Angles of β  
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Static Stability and Control. 

 The three static stability derivatives are about the Roll, Pitch, and Yaw axes.  

Stability about the pitch axis is called longitudinal stability, defined as Cmα.  This is 

stability about the vehicle’s y-axis.  A vehicle is longitudinally stable if it returns to 

equilibrium when its flight path is perturbed with a disturbance in the angle of attack 

(±α).  Formally, longitudinal stability is defined as a negative pitching moment curve: 

0<∂
∂

α
mC  (Nelson, 1998:43).  Figure 28 shows the pitching moment versus angle of 

attack for both flexible and rigid wing MAVs.  It is clear that the flexible MAV is 

longitudinally stable while the rigid MAV is not longitudinally stable.  There is no 

apparent relationship between Cmα and changes in angle of attack for the rigid wing 

MAV.  Furthermore, another condition of flight control is the ability to maintain trim at a 

positive angle of attack.  Thus, not only does a vehicle have to have Cmα < 0, it must also 

have a positive intercept to trim at a positive angle of attack: Cm0 > 0 (Nelson, 1998:43).  

Again, the flexible MAV can maintain trim at a positive angle of attack at all air speeds 

because each curve has Cm0 > 0. 
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Figure 28.  Flexible and Rigid Wing Longitudinal Stability, Cmα 
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It appears the rigid wing MAV’s pitching moment ranges widely and quickly 

diverges out of control.  The heavier, solid wing construction coupled with the battery not 

being rigidly fixed inside the cargo compartment moved the location of the XCG rearward, 

reducing longitudinal stability. See Appendix E for the Cmα CG error bar plots.  However, 

a plot of the rigid MAV on the same scale as the flexible MAV reveals considerably less 

oscillation and a more statically neutral response. In this plot, Cmα = 0 for the rigid wing 

MAV.  Figure 29 shows a comparison of the flexible and rigid wing longitudinal stability 

at 20 and 30 mph. 
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Figure 29.  Comparison of Flexible and Rigid Wing Cmα  

 

 Stability about the yaw axis is called directional or weathercock stability, defined 

as Cnβ.  This is stability about the vehicle’s z-axis.  A vehicle is directionally stable if it 

returns to equilibrium when provided with a yaw angle (±ψ) disturbance.  Formally, 
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directional stability is defined as a positive yawing moment curve: 0>∂
∂

β
nC  (Nelson, 

1998:73).  Figure 30 shows the yawing moment versus sideslip angle for both flexible 

and rigid wing MAVs.  It is clear that the flexible wing MAV is directionally stable while 

the rigid wing MAV is not directionally stable.  The value of Cnβ decreases as the angle 

of attack increases. Within each run, Cnβ also decreases with decreasing sideslip angle.  A 

directionally stable vehicle will always, by default, point into the relative wind.  Again, 

wing weight or a slight CG shift may be the explanation for the differences between the 

rigid and flexible wing MAVs.  One notable caveat, the rigid wing MAV was only tested 

at two yaw angles, ψ = 0° & 8°. 
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Rigid wing weathercock
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Figure 30.  Flexible and Rigid Wing Directional Stability, Cnβ  

 

 Stability about the roll axis is called roll stability, defined as Clβ.  This is stability 

about the vehicle’s x-axis.  A vehicle is stable in roll if it returns to equilibrium when 

disturbed from wings level, which is in the form of ±φ.  Formally, roll stability is defined 

as a negative rolling moment curve: 0<∂
∂

β
lC  (Nelson, 1998:78).  Figure 31 shows the 

rolling moment versus sideslip angle for both flexible and rigid wing MAVs.  Both 

MAVs exhibit roll stability.  The flexible wing MAV shows clear roll stability, while the 

rigid wing MAV’s slope is only slightly negative and intimates at being neutrally stable 

in roll. The roll moment generated by vehicle sideslip depends on wing placement (high 

or low), dihedral, sweep, position on body, and tail geometry (Nelson, 1998:79).  Wing 



 

 70

dihedral angle, Γ, is the primary factor contributing to the direction of Clβ (Nelson, 

1998:79).  The MAV wings are high mounted, without  sweep or dihedral. 
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Figure 31.  Flexible and Rigid Wing Roll Stability, Clβ 
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Table 16 summarizes the stability and control section of this document by presenting the 

average slopes for each of the flexible wing stability derivatives.  Note, these are average 

values, which are strongly influenced by the particular α and β angles of each run. 

 

Table 16.  Slopes of the Stability Derivatives 

∂Cm/∂α -0.0466 

∂Cn/∂β +0.0044 

∂Cl/∂β -0.0066 
 

 

Elevon Deflected Runs 

  
 The elevon deflected lift and drag plots are presented in Appendix A.  The area of 

concern when referencing control surface deflections is the vehicle’s control response per 

increment of control surface movement.  These vehicles do not possess traditional flight 

control surfaces such as ailerons, flaps, elevators, and a rudder.  Instead, the MAVs use a 

pair of elevons oriented at 45° in a V-tail configuration to accomplish the functions of the 

aforementioned control surfaces.  For all plots, positive elevon deflections are toward the 

center of the MAV and negative elevon deflections are down and away from the MAV 

center.  See Appendix C for pictures of the MAV’s tail in various elevon deflection 

configurations.  The results are presented as the pitch, roll, and yaw moment responses to 

the various control surface input configurations. 
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Single Elevon Deflection 

 Minor angle of attack adjustments and slight direction changes are accomplished 

by deflecting a single elevon.  Although not the typical use of the elevon control surfaces, 

the small flight forces encountered enable considerable MAV orientation changes with 

only a single elevon.  Figure 32 presents the pitching moment versus the change in a 

single elevon (δe, STARBOARD) only.  The value of Cm increases as δe increases and shows 

consistent behavior throughout the entire range of elevon deflections.  However, there is 

≈ 7° of asymmetry in the Cm curves at α = 0°, 2°, & 4°.  This asymmetry, also present in 

the tandem elevon runs, is probably a result of unequal epoxy bonding of the wings to 

fuselage.  If one wing tip deflects slightly more than the other, the effect would manifest 

itself as a nonzero moment at δe = 0°.   Unlike the α = 6° run, Cm becomes positive at 

negative elevon deflection angles.  Repositioning of the battery pack could slightly  

change the CG so Cmo = 0 at δe = 0°.  A slight bump occurs after ±10° δe, but is rather 

minor and should not influence flight performance. 
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Figure 32.  Flex Wing MAV Cm vs. δElevon (Single) 

 

 Aside from altering the vehicle’s attitude, the horizontally projected plane portion 

of a single deflected elevon, serves as an aileron and can roll the vehicle about its 

longitudinal axis.  Figure 33 presents the roll moment versus the change in a single 

elevon.  The roll moment behavior is similar to the pitching moment behavior; however, 

the pitching moment is approximately 14 times greater than the roll moment.  Thus, it is 

readily apparent that Cl is less impacted by a singularly deflected elevon than Cm.  The Cl 

curves are slightly more symmetric than the Cm curves, displaying only ≈ 5° of 

asymmetry at α = 2°, 4°, & 6°.  Unlike the α = 0° run, Cl remains negative at positive 

elevon deflection angles up to δe = +5°.  Furthermore, a nearly equidistant spread 

between each alpha run strongly suggests a correlation between Cl and the angle of 
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attack.  Again, after δe  = ±10°, the same slight bump in Cm occurs in Cl, which should 

also not affect flight performance. 
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Figure 33.  Flex Wing MAV Cl vs. δElevon (Single) 

 

 
 The yawing moment is also affected by a single elevon deflection.  It is twice the 

magnitude of the rolling moment and five times smaller than the pitching moment.  

Figure 34  depicts the yaw moment versus the change in a single elevon.  The clustering 

of all of the alpha runs into a nearly coincident line implies no correlation between Cn and 

a change in alpha.  Excellent symmetry exists in all of the Cn curves.  Equivalent positive 

and negative deflections produce identical yaw to both the port and starboard sides of the 

MAV.  At δe  = ±10°, the bump in Cn becomes further pronounced and could potentially 

change the expected control response. 
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Figure 34.  Flex Wing MAV Cn vs. δElevon (Single) 

 

 
Table 17 provides a summary for some of the single elevon moment parameters 

discussed in the preceding section. 

 
Table 17.  Summary of Single Elevon Deflection Runs 

Single δe Cm Cl Cn 
Max Value 
δe = +20° α = 0° 0.25 α = 0° 0.018 α = 6° 0.06 

Min Value 
δe = -20° α = 6° -0.1 α = 6° -0.03 N/A -0.05 

Asymmetry ≈ 7° ≈ 5° ≈ 0° 
 

Max: Cm is 93% > Cl 

 
Max: Cm is 76% > Cn 

%∆ of 
Largest 

Largest 
 

Min:  Cm is 70% > Cl 

 
Min: Cm is 50% > Cn 
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Tandem Elevon Deflection 

 Elevons deflected in tandem are a more standard method of vehicle control than 

using only single elevon deflections.  Tandem elevon movement, also called symmetric 

elevon deflection, is primarily used for aircraft attitude and pitch control.  According to 

Martin Waszak’s N.A.S.A wind tunnel report on the UF 6″ MAV, tandem elevon 

deflections minimally affect the sideforce coefficient, rolling moment, and yawing 

moment (Waszak and Jenkins: 2001:5).  Figure 35 presents the pitching moment versus 

the change in tandem elevon deflection (δe, PORT = δe, STARBOARD).  This Cm curve exhibits 

the same trends as the single elevon pitching moment curves.  The asymmetry at  

α = 0°, 2°, & 4° is ≈ 3°,  a 42%  average reduction in the asymmetry over the single 

elevon Cm curves.  The magnitude of the tandem elevon Cm curve is 2.0 times greater at 

the minimum negative deflection (δe = -20°) and 1.3 times greater at the maximum 

positive deflection (δe = +20°) than the magnitude of the single elevon Cm curve. 
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Figure 35.  Flex Wing MAV Cm vs. δElevon (Tandem)  

  

 The small magnitudes in the roll moment are evidence of the minor influence 

tandem elevon deflections have on Cl.  Figure 36 depicts the roll moment versus the 

change in tandem elevon deflection.  The Cl  curves for the α = 2°, 4°, & 6° runs are 

negative through the range of elevon deflections.  Thus, any tandem elevon input at an 

angle of attack results in a negative rolling moment.  Similar to the single elevon Cl 

curves, the spread between runs suggests strong angle of attack dependence.  One 

immediate difference between the single elevon and the tandem elevon Cl curve is the 

flatness in the slopes as well as the sign reversal after δe = ±10 °.  Although their 

magnitudes are minor, these sign reversals implicate stability problems beyond δe = ±10°.  

From the Cl curves, a well-defined control regime is apparent in the elevon range of -10° 

≤ δe ≤ +10°.  The magnitude of the tandem elevon Cl curve is 1.2 times greater at the 
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minimum negative deflection (δe = -10°) and 3.6 times greater at the maximum positive 

deflection (δe = +10°) than the magnitude of the single elevon Cl curve. 
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Figure 36.  Flex Wing MAV Cl vs. δElevon (Tandem)  

 
 Lastly, the yaw moment is also small in comparison to the pitching moment.  

Figure 37 presents the roll moment versus the change in tandem elevon deflection.  The 

yaw moment is nearly symmetrical and appears largely independent of the angle of 

attack, rendering smooth and predictable yaw reaction over the range of alpha.  However, 

at δe = ±10°, there is an even greater sign reversal in the tandem Cn curve than seen in the 

tandem Cl curve.  The same well-defined handling control regime occurs over the elevon 

range of -10° ≤ δe ≤ +10°.  Beyond δe = ±10°, handling qualities will rapidly change, 

requiring a considerable control input restoring effort.  The maximum magnitude of the 
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single elevon Cn curve is 2.9 times greater at the minimum negative deflection (δe = -10°) 

and 3.75 times greater at the maximum positive deflection (δe = +10°) than the maximum 

magnitude of the tandem elevon Cl curve. 
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Figure 37.  Flex Wing MAV Cn vs. δElevon (Tandem)  

 

Table 18 provides a summary for some of the tandem elevon moment parameters 

discussed in the preceding section. 
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Table 18.  Summary of Tandem Elevon Deflection Runs 

Tandem δe Cm Cl Cn 
Max Value 
δe = 10° α = 0° 0.32 α = 0° 0.005 α = 6° 0.016 

Min Value 
δe = -10° α = 6° -0.2 α = 6° -0.025 N/A -0.017 

Asymmetry ≈ 5° All angles (-) ≈ 0° 
 

Max: Cm is 98% > Cl 

 
Max: Cm is 95% > Cn 

%∆ of 
Largest 

Largest 
 

Min:  Cm is 88% > Cl 

 
Min: Cm is 92% > Cn 

 

 
Opposed Elevon Deflections 

 Opposed elevon deflection, sometimes called antisymmetric elevon deflection, is 

used to alter the MAV’s heading and direction by producing large changes in the rolling 

and yawing moments.  In an ideal environment, opposed elevons should produce a 

negligible pitching moment because each elevon generates an equal but opposite 

moment, effectively canceling one another.  Figure 38 presents the pitching moment 

versus the change in opposed elevon deflection (δe, PORT = -δe, STARBOARD).  This Cm curve 

is vastly different from the single and tandem elevon pitching moment curves.  The 

pitching moment experiences dramatic sign reversals for all angles of attack at δe = ±10°, 

which can cause unpredictable handling challenges.  The spread between each alpha run 

is inconsistent with the highest Cm values occurring at α = 0°.  Increasing the angle of 

attack exposed the control surfaces to lower dynamic pressures mitigating the response. 

The Cm value at α = 0° is about twice the value at α = 6°.  The maximum magnitude of 

the single elevon Cm curve is approximately 1.85 times greater at the maximum positive 
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deflection than the magnitude of the maximum moment of the opposed elevon Cm curve.  

The magnitude of the tandem elevon Cm curve is about 2.46 times greater at its maximum 

positive deflection than the magnitude of the maximum moment opposed elevon Cm 

curve. The maximum magnitude of the single elevon Cm curve is 10 times greater at the 

minimum positive deflection than the magnitude of the opposed elevon Cm curve, and the 

magnitude of the tandem elevon Cm curve is about 20 times greater than the magnitude of 

the opposed elevon Cm curve. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25

Delta Elevon (deg )

Pi
tc

hi
ng

 M
om

en
t (

C
m

 c
g)

0 deg alpha
2 deg alpha
4 deg alpha
6 deg alpha

δe(port) = -δe(starboard)  
Figure 38.  Flex Wing MAV Cm vs. δElevon (Opposed) 

  

 The rolling moment curve, as expected, is considerably more influenced by the 

elevons deflected in opposition than any other configuration. Figure 39 depicts the roll 

moment versus the change in opposed elevon deflection.  The Cl curves are nearly 
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equidistant from one run to the next, decreasing in Cl as the angle of attack increases.  

Notice, with δe = 0°, a small amount of Cl develops as the alpha increases. The opposed 

elevon deflection Cl curves do not exhibit any dramatic changes in the direction of the 

slope, although there is a slight elbow in all of the curves at δe = ±10°, which should 

result in benign handling characteristics. The maximum magnitude of the opposed elevon 

Cl curve is 2.1 times greater at the maximum positive deflection (δe = ±20°) than the 

magnitude of the maximum moment of the single elevon Cl curve, and 7.5 times greater 

than the magnitude of the maximum moment of the tandem elevon Cl curve.  MAV 

direction control should be predictable and well behaved using opposing elevon 

deflection. 
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 Figure 39.  Flex Wing MAV Cl vs. δElevon (Opposed) 
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 The last of the control surface analysis is the opposed elevon induced yawing 

moment.  Recall, since the MAV does not have ailerons, elevators, or a rudder, the 

elevons are responsible for executing all of their functions.  On a traditional aircraft with 

classic control surfaces, a well-coordinated turn is accomplished through a combination 

of aileron and rudder inputs – aerodynamically, it is a blending of both roll and yaw 

moments respectively.  This effect is accomplished simultaneously with the MAV’s 

elevons.  The second component of the direction and heading control is the yaw moment.  

Figure 40 depicts the roll moment versus the change in opposed elevon deflection.  All of 

the runs are coincident indicating the yawing moment is unaffected by changes in the 

angle of attack.  The slope is steep, implying a fast rate of response to antisymmetric 

deflection.  Comparing the Cl and Cn curves at each δe setting, it is apparent the rate of 

change of Cn with δe is higher than that of Cl; therefore, the MAV’s turns will resemble 

more of a pivot than a roll.  Similar to the Cl; curves, the Cn curves do not show any sign 

reversals.  Flight response should be crisp and predictable.  The maximum magnitude of 

the Cn curve is 3.6 times greater at the maximum negative deflection (δe = ±20°) than the 

magnitude of the maximum moment of the single elevon Cl curve, and 10.6 times greater 

than the magnitude of the maximum moment of the tandem elevon Cn curve.   
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Figure 40.  Flex Wing MAV Cn vs. δElevon (Opposed)  

 

Table 19 provides a summary for some of the opposed elevon moment parameters 

discussed in the preceding section. 

Table 19.  Summary of Opposed  Elevon Deflection Runs 

Opposed δe Cm Cl Cn 
Max Value 

 α = 0° 0.13 α = 0° 0.038 N/A 0.0 

Min Value 
 α = 6° 0.01 α = 6° 0.005 N/A -0.181

%∆ of 

Largest 
|Max|: Cn is 38% > Cm |Max|: Cn is 380% > Cl Largest 
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 Table 20 summarizes the elevon deflected runs section of this chapter by 

presenting the average slopes for all of the flexible wing elevon-deflected runs. 

 
Table 20.  Slopes of the Elevon Deflected Runs 

U∞ = 30 mph 
Single 

δe,P = 0 

Tandem 

δe,P = δe,S 

Opposed 

δe,P = -δe,S 

 
∂Cm /  ∂δe 

 
0.0087 0.0133 0.0020 

 
∂Cl/  ∂δe 

 
0.0012 0.0005 0.0021 

 
∂Cn /  ∂δe 

 
-0.0043 -0.0015 -0.0072 

 
 
Powered Runs 

 
 The power runs provide a rough glimpse of the motor/propeller combination’s 

performance over a range of RPM settings.  The power coefficient, CP, and the thrust 

coefficient, CT, are the parameters used to quantify this performance.  These coefficients 

are dependent on the advance ratio, the Reynolds number, and the Mach number.  Since 

the flow conditions are well below compressible Mach numbers, the advance ratio 

becomes the predominant nondimensional parameter.  Figure 41 presents CP and CT 

versus changes in the advance ratio at U∞ = 10 mph.  As the RPMs increase, J decreases, 

as does CP.  Recall from equation (28), that CP is a F(P / RPM3), so as the throttle is 

increased, the denominator has a larger influence on CP.  As the RPMs increase, so does 
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the thrust generated by the propeller, giving way for a corresponding increase in CT.  

From equation (29), CT is a F(T / RPM2), since the increases in RPM are squared not 

cubed, the thrust is not dominated by the motor speed.  At approximately ⅜ throttle (7500 

RPM) the MAV will overcome the 10 mph headwind. 
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Figure 41.  CP & CT for U∞ = 10 mph 
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 Figure 42 shows CP and CT versus J for U∞ = 20 mph.  The α = 8° CP data is 

somewhat skewed due to excessive windmilling of the propeller with motor off.  This 

problem was most prevalent at the highest alpha setting, probably due to a small 

tangential force developed by the blades at higher angles of attack.  The magnitude of CP 

is increasing with a corresponding increase in tunnel speed.  The CT curves demonstrate a 

well-defined, linear thrust development with increasing throttle.  The curves are nearly 

coincident implying little correlation between the angle of attack and the amount of thrust 

generated by the propeller.  At 0° alpha, the MAV will overcome the 20 mph headwind at 

approximately ⅜ throttle (10,300 RPM).  At alpha = 4° & 8°, the MAV will overcome 

the 20 mph headwind at approximately ½ throttle (8000 RPM). 
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Figure 42.  CP & CT for U∞ = 20 mph  

 

 Figure 43 shows CP and CT versus J for U∞ = 30 mph.  The magnitude of Cp 

continues to increase as the tunnel speed increases.  The 30 mph Cp curves show 

considerable spread from one run to the next.  On the surface, this indicates a correlation 

between the power coefficient and the angle of attack; however, the fidelity of the power 

coefficients are suspect because the line-to-line variation in the roll moment, l, is on the 

order of hundredths of in-lbf, which is near the balance sensitivity of 0.25%.  The CT 

curves are very consistent and well behaved.  At alpha = 0° & 4°, the MAV will 

overcome the 30 mph headwind at approximately ½ throttle (10,600 RPM).  At 8° alpha, 

the MAV will overcome the 30 mph headwind at approximately ⅝ throttle (12,700 

RPM).   
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Figure 43.  CP & CT  for U∞ = 30 mph  
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 The power runs showed considerable inconsistency in the motor RPM values at 

each throttle setting.  The battery did not supply consistent power to the motor, cutting-

out intermittently at different throttle settings, which caused widespread variability in the 

test conditions.  The power coefficients mostly exhibited similar trends, but due to the 

inability to achieve RPM repeatability at the test throttle conditions, CP values are 

inconsistent.  This is exacerbated by the dependence of CP on its cubic RPM relationship.  

Thrust values, a function of the axial force, tracked predictably with the RPM and throttle 

settings and showed no dependence on the angle of attack.  Table 21 summarizes the 

maximum and minimum power and thrust coefficient values. 

 

Table 21.  Summary of Powered Runs 

 CP CT 

Max %∆ of 
Max Min %∆ of 

Min Max %∆ of 
Max Min %∆ of 

Min U∞ = 10 

mph 
0.022 291% 0.007 16.7% 0.114 0.0 0.072 243% 

Max %∆ of 
Max Min %∆ of 

Min 
Max 

 
%∆ of 
Max 

Min 
 

%∆ of 
Min U∞ = 20 

mph 
0.079 8.9% 0.02 233% 0.093 22.6% 0.036 71% 

Max %∆ of 
Max 

Min 
 

%∆ of 
Min Max %∆ of 

Max Min %∆ of 
Min U∞ = 30 

mph  
0.086 

 
0.0 0.006 0.0 0.083 42.5% 0.021 0.0 

 

The data in graphical format was presented for each group of tests performed on the 

MAVs.  Please refer to Appendix D for the complete numerical data output for all of the 
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test runs.  The tabulated data is presented in the same order as the graphical data for ease 

of comparison. 

 

Hot-Wire Anemometry 

 
 The results of the hot-wire tests revealed the tunnel maintained uniform flow 

throughout each test run.  The open slots used to insert the hot-wire probe into the test 

section resulted in fluid entrainment, decreasing the flow quality and velocity near the top 

of the test section.  Figure 44 presents mean velocity (Umean) contour plots for the data 

collected at slot #1.  The average turbulent intensity for slot #1 is 2.0%.  The 

recommended operating turbulent intensity is less than 1% (Barlow et al, 1999:126).  The 

tunnel technician, Mr. Gehring, performed a Laser Doppler Velocimetry (LDV) test with 

theater smoke to verify the turbulent intensity of the tunnel with the solid Plexiglas top 

plate.  These tests reported a turbulent intensity ≈ 0.85%, a 58% reduction over the hot-

wire anemometry tests with an open exposure in the top panel.  LDV was not used in this 

test because the theater smoke created a fire code hazard and the local Fire Marshal 

prohibited further use until a sufficient ventilation system is installed.   
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Figure 44.  Slot #1 UMean Velocity Contour Plots 
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 Also note, in the 10 mph case, a distinctive wall-to-wall asymmetry in the 

velocity is present – a difference of 2.2%.  This effect is also present to varying degrees 

in the other runs as well.  Please refer to Appendix B for the contour plots for slots #4 & 

#6.  The cause of this phenomenon is most likely a result of the positioning of the wind 

tunnel within the lab walls.  There is considerable more space on the right side of the 

tunnel than on the left side of the tunnel.  Therefore, since the tunnel is an open circuit 

configuration, the fan sucks the room ambient air through the tunnel.  The off-center 

position of the tunnel creates a velocity gradient where the wind coming from the right 

side of the tunnel is moving slower than the wind originating from the left side of the 

tunnel.  Table 22 summarizes the percent turbulence for each hot-wire test run.  

 

Table 22.  Turbulence % For Each Slot and Velocity 

SLOT # U∞ = 10 

mph 

U∞ = 30 

mph 

U∞ = 60 

mph 

U∞ = 90 

mph 
Average 

One 
 

1.357% 
 

2.154% 
 

2.317% 
 

2.344% 
 

2.0% 

Four 
 

2.586% 
 

2.73% 
 

2.285% 
 

1.969% 
 

2.375% 

Six 
 

2.62% 
 

2.127% 
 

2.664% 
 

2.199% 
 

2.375% 
 

 

Limitations of Experimental Effort 

 
 The ABLE corporation balance used to collect raw force and moment data has a 

resolution of 0.25%.  The normal force sensors have a maximum load capacity of 8 lbf; 

therefore, they can accurately measure load variations as small as 0.02 lbf.  The axial and 
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side force sensors have a maximum load capacity of 5 lbf; therefore, they can accurately 

measure load variations as small as 0.0125 lbf.  In certain test runs, specifically at the 

lowest tunnel speeds, the raw data showed point-to-point variations on order of the 

balance precision; therefore, some of the data contains equipment induced determinate 

experimental error.  Quantization error of the 16-bit data acquisition card, the uncertainty 

due to the standard deviation of a given strain gauge mean voltage measurement, and the 

accuracy of the tare polynomials also represent sources of uncertainty leading to errors in 

the data output.  See Appendix E for a more definitive error analysis. 

 The placement of the battery inside the electronics bay of each MAV is not exact.  

There is no specific battery compartment; therefore, duplicating the placement on each 

subsequent removal and replacement of the battery cannot be ensured.   The battery 

comprises 26% of the flexible MAV’s mass and 23% of the rigid MAV’s mass.  A 

measurement of the possible range of battery movement inside the MAV revealed 

approximately ± ¼ ″ in the x-axis and approximately ± ⅛″ in the z-axis.  See Appendix E 

for the quantification of the errors associated with varying the battery placement inside 

each MAV. 

 At a tunnel speed of 50 mph, the registered normal force on sensor N1 approached 

its maximum load capacity of 8 lbf.  As the angle of attack was increased, the N1 sensor 

neared 8 lbf, limiting the 50 mph test to an angle of attack no greater than 7.5°.  

Inaccuracies in the measurement of right and left elevon deflections compounded by 

correlating them to actual radio controller click movements create a source of 

indeterminate experimental error and uncertainty in the control surface data runs.  

Determining the RPM speed of the motor propeller were limited by the strobe to an 
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accuracy of ± 100 RPM.  Inconsistent battery power delivered between each run caused 

hystereisis in the RPM settings.  The problems achieving repeatability in the motor power 

experiments were further exacerbated by trying to correlate controller stick clicks to a 

specific throttle setting.  Careful scrutiny of the raw data and removing spurious data 

points before processing mitigated some of the data uncertainty.  

 Variability in the production of the carbon fiber body and attachment of the 

parachute membrane to the wing introduce slight vehicle-to-vehicle variations in the 

aerodynamic response of the control surfaces and the aeroelastic effects of the flexible 

wings.  The mounting block used to attach the MAV to the measurement block was 

constructed to represent the surveillance camera pod.  The dimensions, geometry, and 

weight are not exactly replicated; therefore, the center of gravity and moments of inertia 

will differ slightly from the actual MAV, which will result in slight differences in 

aerodynamic properties from the tested model to the operational model. 
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V.  Conclusions and Recommendations 

 

Conclusions 

 
 The intended research goals for this thesis were successfully accomplished.  The 

two top-level goals setout at the beginning of this study were: 

• Characterize the flow quality of AFIT’s new nominal 3′ x 3′ wind tunnel. 
 
• Measure the performance characteristics of AFRL/MNAV’s  flexible wing Micro-

Air-Vehicle (MAV) and compare them to a geometrically identical rigid wing 
MAV. 

 
The wind tunnel parameters and flow quality have been measured, analyzed, and 

reported.  The presence of turbulence was used as an indicator of flow quality in the 

tunnel as a precursor to the MAV flight characterization.  The tunnel had an average 

turbulence intensity of 2.25%.  This result is higher than the desired standard; however, 

there is sufficient evidence suggesting this is inflated attributable to the slotted Plexiglas 

panel at the top of the tunnel entraining fluid, which was replaced by a solid plate during 

testing. 

 The primary benefit of the aeroelastic or deformable flexible wing is its 

flexibility, which allows the wing to change its shape along the span in reaction to 

instantaneous local flow perturbations.  As discussed in Chapter II, this category of small 

flight machines operate in a troublesome aerodynamic environment.  Flexible wing 

vehicles readily lend themselves to more stable and responsive flight.  The first set of 

tests on each MAV varied the angle of attack at various tunnel velocities to determine the 

vehicle’s lift and drag characteristics.  The primary findings are listed below: 
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• Flexible wings delay the onset of αstall.  They exhibit a higher stall angle than the 

rigid wing MAV.  At 30 mph, the flexible wing αstall is nearly two times higher 
than the rigid wing MAV. This is the same trend reported in the University of 
Florida’s (UF) findings on their 6″ MAV (Waszak and Jenkins, 2001:4). 

 
• The peak D

L  for the flexible wing MAV was higher than the rigid wing MAV at 

every tunnel velocity. 
 
• At 10 mph, the flex wing lift line is above the rigid wing lift line and decreases 

with increasing velocity.  At 30 mph, the trend reverses, and the rigid wing lift 
line is above the flex wing lift line.  Figure 45 is a notional plot from a UF 
briefing of the changes in lift against increasing velocity for geometrically similar 
flexible and rigid wing MAVs.  The plot portrays a general agreement with the 
results discussed above.  At the velocity where the flexible MAV’s lift line dips 
below the rigid wing lift line, aeroelastic effects dominate performance over 
Reynolds number effects.   

 

 
Figure 45.  Lift vs. U∞ for Flex and Rigid Wing MAVs (Nechyba & Ifju, 2002:11) 

 

• At low alpha angles, flex wings behave like rigid wings with similar values of CL. 

• The lift curve slope of the rigid wing is within 2% of the predicted value.  The 
flexible wing lift slope is within 3.5% of the predicted value; wing deformation 
causes the flexible wing MAV to vary slightly more.  The close proximity to the 
predicted value is a true indicator of the validity of the lift data. 

 



 

 99

• The zero lift angles are consistent for both MAVs, αLO ≈ 6.7°, which generally 
agrees with UF value for αLO (Waszak and Jenkins, 2001:4). 

 
• As the tunnel velocity increases, the rigid wing MAV has higher drag than the 

flexible wing MAV.  The ability of the flexible wing MAV to deform under load 
may lead to a decrease in the profile drag caused by the shape of the wing in the 
airflow. 

 
 The static stability in the pitch, roll, and yaw axes of each MAV was calculated 

from the sideslip test runs.  Longitudinal stability, Cmα, is defined as a negative pitching 

moment slope around the y-axis: 0<∂
∂

α
mC .  Directional stability, Cnβ, is defined as a 

positive yaw moment around the z-axis: 0>∂
∂

β
nC .  Finally, roll stability, Clβ, is 

defined as a negative roll moment about the x-axis: 0<∂
∂

β
lC .  There was considerable 

variation in the static stability properties of the two MAVs.  Their results are listed 

below: 

 
• The flexible wing MAV is statically stable in all three axes. 

• The flexible wing MAV can be trimmed at positive angles of attack. 

• The flexible wing MAV will always point into the relative wind. 

• In the flexible wing MAV, Cmα is about an order of magnitude higher than Clβ and 
Cnβ. 

 
• The rigid wing MAV is not longitudinally stable and exhibited oscillatory 

behavior.  This is potentially an affect of the CG shifting rearward. 
  
• The rigid wing MAV is not directionally stable. 

• The rigid wing MAV is marginally stable in roll. 

• A definitive relationship exists between the magnitude of the roll and yaw 
moment coefficients and the angle of attack. 
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The flexible wing stability derivatives showed good agreement with the stability 

derivatives from the UF study on their 6″ flexible wing MAV (Waszak and Jenkins, 

2001:5).  The combination of battery placement and the added weight of the solid carbon 

fiber wings over the leaner membrane wings could be the cause of stability derivative 

differences between the flexible and rigid wing MAVs. 

 The MAVs have only two control surfaces, a right and left elevon, angled |45°| 

when measured from a vertical plane cut through the center of the tail boom.  The 

elevons assume all control responsibility for the MAVs in each of the three orthogonal 

axes.  A single deflected elevon primarily resulted in changes to the vehicle’s pitch and to 

a lesser degree, the vehicle’s nose orientation.  The following summary categorizes the 

effect of a single elevon deflection: 

 
• A single deflected elevon resulted in much higher changes in the pitch moment 

than in the roll and yaw moments. 
 

o Cm is 86% greater than Cl with a single deflected elevon 
o Cm is 50% greater than Cn with a single deflected elevon 

• The pitch and roll moments showed dependency on the angle of attack and were 
slightly asymmetric in their distribution. 

 
• The single elevon roll moment slope is 2.4 times greater than the tandem elevon 

roll moment slope. 
 
• The single elevon yaw moment slope is 2.9 times greater than the tandem elevon 

yaw moment slope. 
 
• The yaw moment showed good symmetry and independence from the angle of 

attack. 
 
• All three moment plots displayed a slight bump after δElevon = ±10°. 
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Elevons deflected in tandem result in a large attitude displacement about the pitch axis.  

Tandem elevon deflections resulted in changes to the vehicle’s angle of attack as well as 

its altitude.  Ideally, tandem elevon deflections would only change the vehicle’s pitch, 

while the roll and yaw moments would show negligible affects.  The following summary 

categorizes the effect of tandem elevon deflections: 

 
• The tandem elevon pitching moment slope is 1.5 times greater than the single 

elevon pitching moment slope (or an increase of 52%) due to the doubling of the 
surface area deflected in the flow field. 

 
• The roll and yaw moments experienced sign reversals in their slope after δElevon = 

±10°.  This resulted in a well-defined control region at -10° ≤ δe ≤ +10°.  
AFRL/MNAV engineers also confirmed the presence of this behavior in autopilot 
flight tests at Eglin Air Force Base, Florida. 

 
• Tandem deflected elevons resulted in much higher changes in the pitch moment 

than in the roll and yaw moments. 
 

o Cm is 96% greater than Cl with tandem deflected elevons 
o Cm is 89% greater than Cn with tandem deflected elevons 

• The pitch and roll moments showed dependency on the angle of attack and were 
slightly asymmetric in their distribution. 

 
Elevons deflected in opposition serve as a combined aileron and rudder control surface 

input.  Opposed elevon deflection results in heading and direction changes, the primary 

method used to turn the MAV.  In perfectly constructed elevons, opposed deflection 

would only change the roll and yaw moments while the positive and negative pitching 

moments should ostensibly cancel one another.  The following summary categorizes the 

effect of opposing elevon deflections: 

 
• At δe = 10º, the opposed elevon pitching moment is 25% less than the single 

elevon pitching moment. 
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• The pitching moment experienced a sign reversal in its slope after δElevon = ±10°. 

• Opposed deflected elevons resulted in much higher changes in the yaw moment 
than in the pitch and roll moments. 

 
o Cn is 72% greater than Cm with opposed deflected elevons 
o Cn is 71% greater than Cl with opposed deflected elevons 

• The magnitude of the pitch and roll moments were dependent on the angle of 
attack, while the yaw moment was independent of the angle of attack. 

 
• The rate of change of the yaw moment was 73% greater than the rate of change of 

the roll moment (0.007 per °δe vs. 0.0019 per °δe) resulting in turns dominated by 
the yawing rate. 

 
• Opposed elevon roll moment slope is 1.75 times greater than the single elevon roll 

moment slope. 
 
• Opposed elevon yaw moment slope is 1.7 times greater than the single elevon 

yaw moment slope. 
 

 The motor-on power runs were the last tests performed in this experiment.  The 

motor generated consistent and predictable thrust.  The thrust increased commensurately 

with increasing RPM.  The power numbers are somewhat less reliable attributable to 

torque changes that were on order of the balance resolution and excessive windmilling of 

the prop, creating a component of torque, which did not result from the motor action. 

 
• At α = 4°, the MAV will overcome a 10 mph headwind at ⅜ throttle (7500 RPM). 

• At α = 0°, the MAV will overcome a 20 mph headwind at ⅜ throttle (8000 RPM). 

• At α = 4° & 8°, the MAV will overcome a 20 mph headwind at ½ throttle (10,500 
RPM). 

 
• At α = 0° & 4°, the MAV will overcome a 30 mph headwind at ½ throttle (10,500 

RPM). 
 
• At α = 8°, the MAV will overcome a 30 mph headwind at ⅝ throttle (12,700 

RPM). 
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Recommendations 

 
 A good first approach to the quantitative assessment of the flight performance of a 

flexible Micro-Air-Vehicle was accomplished using AFIT’s new low-speed wind tunnel.  

Although, not an exhaustive analysis, this study should provide future research 

candidates a comparative basis for what is certain to be expanded investigation into this 

highly visible and promising area of aerodynamic research.  Further research funded by 

AFRL/MNAV or AFRL/VA should keep the following recommendations in focus when 

defining future projects: 

 
• Explore the 10 mph flight region with an appropriately ranged balance. 

• Examine the aeroelastic phenomenon, flutter, and vibration of the flexible wings 
as a separate thesis. 

 
• With future MAVs using a preprogrammed auto-pilot function instead of an RC 

control device to navigate the MAV, more emphasis should be placed on flight 
stability and control as an area of separate research. 

 
• Experiments varying the thickness of the mesh material and the percent it 

comprises of the mean chord should be investigated to develop an optimal 
combination of endurance, loiter time, and max lifting weight. 

 
• Basic research into the phenomenon of flexible low Reynolds number airfoils 

should be dedicated to aid in understanding the laminar separation bubble 
encountered in the MAV’s operating regime. 

 
• A comprehensive full six degree-of-freedom dynamic Computational Fluid 

Dynamics (CFD) model should be developed to accompany any future wind 
tunnel testing of flexible wing MAVs. 
 

• Design a fixed battery compartment to prevent arbitrary movement of the CG. 
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Appendix A:  Additional CL and CD Data Plots 
 
 

Figure 46 is the flexible and rigid wing MAV polar plots (CL vs. CD). 

 

Flex Wing Polar Plot

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8

Drag Coefficient (CD)

Li
ft 

C
oe

ffi
ci

en
t

 ( C
L )

Flex 10 mph
Flex 20 mph
Flex 30 mph
Flex 50 mph

Rigid Wing Polar Plot

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8

Drag Coefficient (CD)
Li

ft
 C

oe
ff

ic
ie

nt
 (

C
L )

Rigid 10 mph
Rigid 20 mph
Rigid 30 mph
Rigid 50 mph

 
Figure 46.  Flexible and Rigid CL vs. CD 

 
 
Figure 47 presents the flexible wing single elevon deflection polar plot. 

 
Flex Wing Single Elevon Deflection

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Drag Coefficient (CD)

Li
ft 

C
oe

ffi
ci

en
t  (

C
L) -20 deg

-10 deg
 -5 deg
   0 deg
 +5 deg
+10 deg
+20 deg

δe(port) = 0° & δe(star) = varried

 
Figure 47.  Flexible Wing Single Elevon CL vs. CD 
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Figure 48 presents the flexible wing tandem elevon deflection polar plot. 
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Figure 48.  Flexible Wing Tandem Elevon CL vs. CD 

 
Figure 49 show both lift and drag versus angle of attack for both MAVs. 
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Figure 49.  Flexible and Rigid CL & CD vs. α 
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Appendix B:  Hot Wire Plots 
 

 
Figure 50 shows the velocity Contour plots for slot #4. 
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Figure 50.  Slot #4  UMean Velocity Contour Plot 
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Figure 51 shows the velocity Contour plots for slot #6. 
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Figure 51.  Slot #6  UMean Velocity Contour Plots  
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Appendix C:  MAV  Pictures 

 

Figure 52  and Figure 53 depict the rigid and flexible wing MAV in the tunnel with the 

propeller off. 

 

 
Figure 52.  Rigid and Flexible Wing MAV Mounted in the Tunnel 

 

 

 
Figure 53.  Rigid Wing MAV in Tunnel 
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Figure 54  shows close-ups of the MAV tail in and out of the tunnel. 

 

 
Figure 54.  Pictures of the MAV Tail 

 

Figure 55 shows a single elevon deflected in the negative direction. 

 

 
Figure 55.  Negative Single Elevon Deflection 

 



 

 112

Figure 56 presents both elevons deflected in the negative direction. 

 

 
Figure 56.  Negative Tandem Tail Deflection 

 

Figure 57  presents both elevons deflected in the positive direction. 
 

 
Figure 57.  Positive Tandem Tail Deflection 
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Finally, Figure 58  shows the elevons deflected in opposition. 
 
 

 
Figure 58.  Opposed Elevon Tail Deflection 
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Appendix D:  Data Tables 
 
Alpha Sweeps 

Table 23.  Flex Wing 10 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.013186 44854.000 0.24768 10.121 -3.8881 0.45005 0.020068 0.02185 22.426251 0.024943 0.090396 -0.0083552
0.013253 45082.000 0.2502 10.172 -2.0294 0.72087 0.036812 0.02577 19.582473 0.011037 0.081553 -0.0097429
0.013234 45017.000 0.24948 10.157 0.1953 1.0326 0.071617 0.034835 14.418364 -0.00052774 0.070502 -0.01172
0.01321 44938.000 0.2486 10.14 2.3947 1.2869 0.11315 0.041245 11.373398 -0.0020294 0.054156 -0.0098387

0.013254 45088.000 0.25026 10.173 4.4899 1.5024 0.16746 0.043683 8.9716947 -0.013051 0.005613 -0.011803
0.013254 45084.000 0.25023 10.173 6.6252 1.6118 0.22967 0.059486 7.0178952 0.044974 -0.073362 -0.0018047
0.013245 45054.000 0.24989 10.166 8.7189 1.8237 0.29363 0.045472 6.2108776 -0.0493 -0.060685 -0.0081839
0.013192 44876.000 0.24792 10.126 10.882 1.7988 0.38811 0.037944 4.6347685 -0.079048 -0.18416 -0.0079385
0.013214 44950.000 0.24874 10.142 11.313 1.789 0.41125 0.041364 4.350152 -0.068605 -0.2096 -0.0081718
0.013257 45095.000 0.25034 10.175 11.902 1.7473 0.42593 0.042166 4.1023173 -0.06524 -0.24275 -0.0045351
0.013256 45093.000 0.25032 10.175 12.325 1.7201 0.44676 0.046827 3.8501656 -0.036435 -0.27442 -0.012446
0.013272 45147.000 0.25092 10.187 12.841 1.7069 0.46297 0.048338 3.686848 -0.038575 -0.30936 -0.0095038
0.013229 45001.000 0.2493 10.154 13.338 1.6487 0.47525 0.036446 3.4691215 -0.093921 -0.40296 -0.00059823
0.013269 45138.000 0.25082 10.185 13.846 1.6192 0.48755 0.038417 3.3210953 -0.085282 -0.44813 -0.0037151
0.013241 45043.000 0.24977 10.163 14.884 1.6076 0.51552 0.039953 3.1184047 -0.07275 -0.52331 -0.0050168
0.013228 44998.000 0.24927 10.153 16.968 1.5992 0.58107 0.039732 2.7521641 -0.054031 -0.59949 -0.00040207
0.013236 45026.000 0.24958 10.16 19.06 1.6122 0.64882 0.040797 2.4848186 -0.057199 -0.62618 0.0094021  

Table 24.  Flex Wing 20 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.02517 85621.000 0.9025 19.319 -3.9639 0.27858 0.046059 0.012481 6.0483293 0.016999 0.082909 -0.0035152

0.025182 85663.000 0.90337 19.329 -2.1415 0.4673 0.050307 0.01564 9.2889658 0.010002 0.083635 -0.0035694
0.025188 85683.000 0.90379 19.333 0.13414 0.6973 0.066991 0.019606 10.408861 0.00254 0.074778 -0.0032097
0.025158 85580.000 0.90162 19.31 2.2271 0.90767 0.088037 0.024389 10.310097 -0.0012845 0.080861 -0.0034634
0.025139 85515.000 0.90025 19.295 4.403 1.1089 0.11613 0.025105 9.5487815 -0.0093073 0.070722 -0.0056396
0.025161 85590.000 0.90184 19.312 6.4825 1.2888 0.16287 0.024299 7.9130595 -0.019929 0.027098 -0.0065607
0.025148 85548.000 0.90094 19.303 8.6088 1.3777 0.22173 0.019911 6.2134127 -0.040651 -0.062561 -0.0085796
0.02512 85452.000 0.89894 19.281 9.6509 1.3758 0.25191 0.01782 5.4614743 -0.045526 -0.10827 -0.0071208

0.025128 85478.000 0.89947 19.287 10.085 1.3744 0.2708 0.018437 5.0753323 -0.041944 -0.13413 -0.0071213
0.025135 85503.000 0.90001 19.293 10.695 1.3748 0.29421 0.020315 4.6728527 -0.036039 -0.14935 -0.0091653
0.025139 85516.000 0.90028 19.295 11.131 1.3771 0.31441 0.022719 4.3799497 -0.028388 -0.16743 -0.0099616
0.025115 85435.000 0.89856 19.277 11.748 1.3995 0.34537 0.021796 4.0521759 -0.030434 -0.19454 -0.0086504
0.025142 85527.000 0.9005 19.298 12.183 1.3989 0.36556 0.020306 3.8267316 -0.039032 -0.21175 -0.0043749
0.025114 85429.000 0.89844 19.276 12.707 1.403 0.38634 0.021842 3.6315163 -0.026583 -0.23646 -0.0056351
0.025125 85469.000 0.89929 19.285 14.767 1.3411 0.43316 0.032758 3.0960846 0.017593 -0.33145 -0.012087
0.025094 85362.000 0.89705 19.261 16.832 1.2911 0.48684 0.030237 2.6520007 0.0048507 -0.44263 -0.0061224
0.025036 85165.000 0.8929 19.216 18.895 1.2381 0.53028 0.015627 2.3348043 -0.03768 -0.5107 0.013979  

 

Table 25.  Flex Wing 30 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038857 132180.000 2.15 29.824 -3.9774 0.24803 0.049396 0.0092787 5.0212568 0.0096253 0.076799 -0.0014086
0.038917 132380.000 2.16 29.871 -2.1648 0.41446 0.052706 0.011026 7.8636208 0.0031446 0.07947 -0.00045549
0.038923 132410.000 2.16 29.875 0.099515 0.61895 0.064917 0.01189 9.5344825 -0.0019842 0.07796 -0.00095429
0.038892 132300.000 2.15 29.851 2.1805 0.80218 0.083647 0.012652 9.590063 -0.0061773 0.06979 -0.00071625
0.038891 132290.000 2.15 29.85 4.3482 0.9848 0.11136 0.012884 8.8433908 -0.011658 0.049414 -0.0002956
0.038909 132360.000 2.16 29.864 6.5098 1.1537 0.15063 0.010411 7.6591648 -0.022023 0.0069824 0.0028559
0.038897 132320.000 2.16 29.855 8.556 1.2582 0.19957 0.0087488 6.3045548 -0.028793 -0.072012 0.0023365
0.038832 132090.000 2.15 29.805 9.8743 1.2905 0.25434 0.0050456 5.0739168 -0.036313 -0.15752 0.00016005
0.038916 132380.000 2.16 29.87 10.133 1.2862 0.25583 0.0041095 5.0275574 -0.039133 -0.1603 -0.00040937
0.038834 132100.000 2.15 29.807 10.661 1.2991 0.27251 0.0030575 4.7671645 -0.043714 -0.18488 0.001224
0.038898 132320.000 2.16 29.856 11.097 1.3006 0.2856 0.0036902 4.5539216 -0.041444 -0.19519 0.0060237
0.038884 132270.000 2.15 29.845 11.707 1.306 0.30825 0.0045063 4.2368208 -0.038117 -0.21013 0.0076439
0.038913 132370.000 2.16 29.867 12.148 1.3191 0.3303 0.0063363 3.9936421 -0.03104 -0.22254 0.0045032
0.038917 132380.000 2.16 29.871 12.674 1.3272 0.35291 0.0049621 3.7607322 -0.035422 -0.2472 0.0038298
0.038862 132200.000 2.15 29.829 14.765 1.3375 0.41704 -0.000799 3.2071264 -0.057166 -0.36961 0.010455
0.038867 132210.000 2.15 29.832 16.837 1.3034 0.4725 -0.001616 2.7585185 -0.053419 -0.46487 0.013424
0.038771 131890.000 2.14 29.758 18.919 1.2928 0.53096 0.0028985 2.434835 -0.030962 -0.50272 0.021821  
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Table 26.  Flex Wing 50 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.065724 223570.000 6.1534 50.446 -10.457 -0.24722 0.07692 0.0021465 -3.213989 0.012878 0.12299 0.0054658
0.065742 223630.000 6.1569 50.46 -9.385 -0.18329 0.069405 0.002835 -2.640876 0.01257 0.106 0.0043969
0.065699 223490.000 6.1489 50.427 -8.6715 -0.14147 0.065129 0.0030101 -2.172151 0.012436 0.095973 0.0039383
0.065692 223460.000 6.1475 50.422 -7.5974 -0.073416 0.059309 0.0024618 -1.237856 0.010625 0.080265 0.001964
0.065693 223470.000 6.1477 50.422 -6.4415 -0.000595 0.054618 0.0031117 -0.010899 0.010689 0.067473 0.0019468
0.065673 223400.000 6.1439 50.407 -4.2704 0.17553 0.048891 0.0068645 3.5902313 0.0071684 0.055586 0.002339
0.065676 223410.000 6.1445 50.409 -2.185 0.36875 0.048729 0.0086671 7.5673624 -4.92E-05 0.052215 0.0028503
0.065704 223500.000 6.1497 50.431 -0.010014 0.56797 0.055837 0.0088191 10.171929 -0.010209 0.049091 0.0027509
0.065656 223340.000 6.1408 50.394 1.0763 0.66366 0.062067 0.0082462 10.692639 -0.016101 0.044783 0.0027473
0.065661 223360.000 6.1418 50.398 2.1574 0.74985 0.070318 0.0077439 10.663699 -0.021172 0.037352 0.00286
0.065652 223330.000 6.1401 50.391 3.1517 0.83443 0.079618 0.0071312 10.480419 -0.026259 0.027445 0.0033958
0.065608 223180.000 6.1319 50.357 4.2375 0.93126 0.094858 0.023704 9.8174113 -0.0087961 0.016493 -0.0001745
0.065576 223070.000 6.1257 50.332 5.3632 1.0111 0.11154 0.030651 9.0649094 -0.010347 -0.0023326 -0.0010331
0.065598 223150.000 6.13 50.35 6.3895 1.0784 0.12841 0.035462 8.3980998 -0.016219 -0.0264 -0.0023856
0.0656 223150.000 6.1303 50.351 7.4492 1.1138 0.15665 0.069127 7.1101181 -0.024761 -0.053252 -0.020173

0.064938 220900.000 6.0072 49.843 7.6755 1.0376 0.15293 0.060999 6.7848035 -0.025498 -0.060099 -0.021706
0.065589 223110.000 6.1282 50.342 8.4863 1.1397 0.18459 0.068911 6.174224 -0.051986 -0.091324 -0.025161  

 

 
Table 27.  Rigid Wing 10 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.01344 45720.000 0.25731 10.315 -10.574 -0.51225 0.09186 0.063396 -5.576421 0.31301 -0.0012714 0.0037796

0.013516 45981.000 0.26026 10.374 -9.8356 -0.41553 0.082722 0.064491 -5.02321 0.28913 -0.0019374 0.0084231
0.013485 45874.000 0.25904 10.35 -8.7262 -0.2653 0.064774 0.057069 -4.095779 0.26085 -0.0010356 0.010317
0.013467 45813.000 0.25835 10.336 -7.6135 -0.10979 0.053989 0.055929 -2.033562 0.2365 0.0015399 0.011962
0.013492 45897.000 0.2593 10.355 -6.492 0.067939 0.042066 0.044444 1.6150573 0.21108 -0.00035287 0.018918
0.013489 45888.000 0.2592 10.353 -4.1762 0.38887 0.040174 0.029403 9.6796436 0.16703 -0.0034124 0.023914
0.013491 45896.000 0.25929 10.355 -2.0516 0.67084 0.058534 0.023788 11.46069 0.13786 -0.0047682 0.030932
0.013517 45981.000 0.26026 10.374 0.12899 0.88251 0.085038 0.030292 10.377831 0.08116 -0.008664 0.037581
0.013521 45996.000 0.26042 10.377 2.2685 1.0013 0.12408 0.035707 8.0697937 -0.045177 -0.010198 0.040027
0.013524 46007.000 0.26054 10.38 4.3438 1.1718 0.1728 0.037731 6.78125 -0.099266 -0.010813 0.042448
0.013479 45853.000 0.25881 10.345 6.4848 1.294 0.23147 0.018588 5.5903573 -0.18362 -0.010885 0.040991
0.013483 45867.000 0.25896 10.348 8.5187 1.3707 0.29046 -0.0077 4.7190663 -0.24967 -0.0093351 0.037888
0.013516 45979.000 0.26023 10.374 10.7 1.5843 0.3739 0.076987 4.2372292 -0.24334 -0.0065822 0.067356
0.013535 46046.000 0.26099 10.389 12.824 1.6682 0.43188 -0.043938 3.862647 -0.26194 0.0051183 0.042293
0.013567 46153.000 0.26221 10.413 14.89 1.62 0.48626 0.0054412 3.331551 -0.31913 -0.0074021 0.046816
0.0135 45925.000 0.25962 10.361 16.945 1.5484 0.57484 -0.022467 2.6936191 -0.57352 -0.00097986 0.031761

0.013508 45951.000 0.25992 10.367 19.028 1.5392 0.64856 -0.024313 2.3732577 -0.68159 0.010309 0.025469  

 

 
Table 28.  Rigid Wing 20 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.025202 85733.000 0.90476 19.343 -10.513 -0.37444 0.11108 0.043843 -3.370904 0.23022 0.00055723 -0.00098777
0.025222 85801.000 0.90619 19.358 -8.6959 -0.19658 0.085359 0.03435 -2.302979 0.19742 0.00067767 0.0039627
0.025268 85957.000 0.9095 19.393 -6.4387 0.044087 0.065638 0.025855 0.6716689 0.16512 0.00049842 0.01245
0.025203 85738.000 0.90488 19.344 -4.2237 0.28131 0.062373 0.01521 4.5101246 0.14067 -0.0013607 0.016523
0.025207 85752.000 0.90517 19.347 -2.121 0.51368 0.069044 0.011396 7.4398934 0.12905 -0.00073273 0.02377
0.025205 85745.000 0.90501 19.345 0.072313 0.75427 0.088182 0.0077198 8.5535597 1.09E-01 0.00095645 0.033437
0.025223 85806.000 0.9063 19.359 2.2392 0.93509 0.12143 0.028922 7.7006506 0.068263 0.0075594 0.044006
0.025231 85831.000 0.90683 19.365 4.2683 1.0795 0.16759 0.046722 6.4413151 -0.0064993 0.0091919 0.051132
0.025196 85715.000 0.90438 19.338 6.4244 1.1572 0.20736 0.11076 5.5806327 -0.058263 0.016575 0.063522
0.025173 85634.000 0.90267 19.32 8.4528 1.2215 0.25963 0.09173 4.7047722 -0.12602 0.0025753 0.064683
0.025181 85663.000 0.90328 19.327 10.578 1.3081 0.32093 0.025887 4.0759667 -0.17319 0.0028754 0.052659
0.02519 85693.000 0.90392 19.333 12.692 1.3702 0.36453 -0.052079 3.7588127 -0.17731 -0.0088841 0.02695

0.025218 85789.000 0.90594 19.355 14.757 1.3198 0.42482 -0.018429 3.1067276 -0.27745 0.00027263 0.032345
0.025189 85690.000 0.90386 19.333 16.81 1.2434 0.48477 -0.017416 2.5649277 -0.44449 -0.0014506 0.025635
0.025087 85343.000 0.89655 19.254 18.895 1.2373 0.54017 -0.026875 2.2905752 -0.55223 0.0096118 0.019662  
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Table 29.  Rigid Wing 30 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038907 132360.000 2.1564 29.861 -10.514 -0.37655 0.12221 0.03907 -3.081172 0.22946 0.002434 -0.0073901
0.038898 132330.000 2.1554 29.855 -10.333 -0.36085 0.1215 0.041726 -2.969959 0.2267 0.0029937 -0.0069664
0.038929 132430.000 2.1588 29.878 -9.7897 -0.31167 0.11611 0.041246 -2.684265 0.21517 0.0030739 -0.0060627
0.038929 132430.000 2.1588 29.878 -8.7021 -0.21076 0.10483 0.039594 -2.010493 0.19496 0.004417 -0.0018234
0.038917 132390.000 2.1575 29.869 -7.6105 -0.10291 0.095314 0.034656 -1.079694 0.17895 0.0046241 0.0014948
0.038912 132370.000 2.157 29.865 -6.5052 0.012283 0.08831 0.030739 0.1390896 0.16411 0.0047774 0.0049632
0.038903 132340.000 2.156 29.859 -4.2456 0.23182 0.081018 0.020841 2.8613395 0.14073 0.0026946 0.0090311
0.038907 132360.000 2.1564 29.861 -2.146 0.45718 0.083986 0.015774 5.4435263 0.13209 0.0025963 0.016534
0.03892 132400.000 2.1578 29.871 0.041012 0.68344 0.096003 0.0080474 7.1189442 0.12086 0.0019885 0.024467

0.038885 132280.000 2.1539 29.844 2.2223 0.89687 0.11908 0.002902 7.5316594 0.097724 0.00040008 0.031422
0.038868 132220.000 2.1521 29.832 4.3089 1.0927 0.15066 -0.001978 7.2527545 0.063352 -0.0029148 0.037556
0.03889 132300.000 2.1545 29.848 6.4665 1.2525 0.19093 -0.014748 6.5599958 0.012674 -0.011769 0.039928

0.038873 132240.000 2.1526 29.835 8.5026 1.3341 0.25069 -0.044807 5.3217121 -0.074516 -0.009917 0.013555
0.038864 132210.000 2.1517 29.829 10.585 1.3239 0.30613 -0.054151 4.3246333 -0.14248 0.00019668 0.013578
0.038894 132310.000 2.1549 29.851 12.663 1.3028 0.36162 -0.048238 3.6026768 -0.19611 -0.009901 0.015516
0.038866 132220.000 2.1519 29.83 14.741 1.2822 0.43358 -0.022345 2.9572397 -0.27828 -0.0044711 0.022531
0.038795 131980.000 2.144 29.776 16.801 1.2221 0.49531 -0.027441 2.4673437 -0.41716 -0.0012361 0.018321
0.038772 131900.000 2.1415 29.758 18.867 1.174 0.5358 -0.024135 2.1911161 -0.52929 0.0039708 0.015328  

 

Table 30.  Rigid Wing 50 mph Alpha Sweeps (β = 0°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY L/D Cl_cg_w Cm_cg_c_w Cn_cg_w
0.06569 223470.000 6.1471 50.417 -7.2489 -0.072213 0.080524 0.026355 -0.896789 0.15681 0.0029114 0.0052468

0.065702 223510.000 6.1493 50.426 -6.4354 -0.000858 0.075036 0.023693 -0.011437 0.14778 0.0028462 0.0058092
0.065713 223550.000 6.1514 50.435 -5.3415 0.112 0.068807 0.020333 1.6277414 0.13412 0.0022613 0.0069773
0.065705 223520.000 6.1499 50.429 -4.2492 0.22351 0.065712 0.019024 3.4013574 0.12437 0.0026418 0.0097869
0.065692 223480.000 6.1476 50.419 -3.1636 0.33123 0.064789 0.017232 5.1124419 0.11682 0.0022121 0.011655
0.065661 223370.000 6.1418 50.395 -2.1503 0.44727 0.065843 0.015527 6.7929772 0.10909 0.0022557 0.013743
0.065677 223420.000 6.1446 50.407 -0.96614 0.56767 0.070489 0.01111 8.0533133 0.10292 0.0021473 0.015519
0.06568 223430.000 6.1452 50.409 0.12751 0.6823 0.076396 0.0084474 8.9310959 0.091059 0.0010304 0.017758

0.065663 223380.000 6.1421 50.397 0.31651 0.71624 0.073542 0.0081076 9.7391966 0.087757 0.0010471 1.89E-02
0.065647 223320.000 6.1391 50.385 1.2194 0.79057 0.085955 0.0072658 9.1974871 0.075705 0.0008215 0.019677
0.065587 223120.000 6.1279 50.339 2.22 0.89161 0.096621 0.0062082 9.2279111 0.061106 -3.27E-05 0.020711
0.065572 223070.000 6.125 50.327 3.3082 0.99168 0.11018 0.0048938 9.0005446 0.042509 -0.0015821 0.022234
0.065522 222900.000 6.1157 50.288 4.3963 1.0937 0.12673 0.0035055 8.6301586 0.021666 -0.0035988 0.023776
0.065533 222930.000 6.1177 50.297 5.4828 1.1898 0.14569 0.0007916 8.1666552 -0.0029498 -0.006595 0.024876
0.065493 222800.000 6.1102 50.266 6.4767 1.2756 0.16746 -0.004525 7.6173415 -0.035126 -0.0087778 0.025198  

 

Beta Sweeps 

 
Table 31.  Flex Wing 30 mph Alpha Sweeps (β = -4°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038871 132230.000 2.1524 29.835 -3.9733 0.2572 0.060076 0.035001 0.040435 0.082164 -0.0021626
0.03888 132260.000 2.1535 29.842 -2.1628 0.41915 0.06405 0.039121 0.029643 0.084517 0.00016717

0.038848 132150.000 2.1499 29.818 0.009708 0.6126 0.076598 0.043086 0.020457 0.082218 0.00012128
0.038847 132140.000 2.1497 29.817 2.1794 0.79974 0.096834 0.045814 0.01161 0.071946 -0.00058707
0.038807 132010.000 2.1454 29.786 4.2569 0.9751 0.12482 0.04677 0.003079 0.046974 -0.0022273
0.038845 132140.000 2.1495 29.815 6.4138 1.1332 0.16326 0.041279 -0.012326 -0.0011468 -0.0034155
0.038874 132240.000 2.1527 29.837 8.4574 1.232 0.21493 0.0321 -0.032429 -0.087321 -0.010908
0.038919 132390.000 2.1577 29.872 10.657 1.2908 0.28258 0.032752 -0.020276 -0.15554 -0.026775
0.038912 132370.000 2.157 29.867 11.095 1.2971 0.30211 0.030741 -0.021168 -0.18343 -0.028251
0.038904 132340.000 2.1561 29.861 11.615 1.2934 0.32238 0.02704 -0.025376 -0.22719 -0.028056
0.038874 132240.000 2.1527 29.837 12.141 1.3041 0.3419 0.026258 -0.023313 -0.25215 -0.028057
0.03886 132190.000 2.1511 29.826 12.662 1.3012 0.35952 0.02332 -0.024932 -0.29078 -0.026171

0.038839 132120.000 2.1489 29.811 13.185 1.3023 0.377 0.022043 -0.024262 -0.3229 -0.025825
0.038853 132170.000 2.1505 29.822 13.705 1.3011 0.39314 0.020611 -0.020307 -0.35125 -0.024692
0.038859 132190.000 2.1511 29.826 14.751 1.3049 0.42607 0.012835 -0.035201 -0.39873 -0.01577
0.038847 132140.000 2.1497 29.816 16.834 1.2958 0.48568 0.0056417 -0.036617 -0.45848 0.0018506
0.038776 131900.000 2.1419 29.762 18.905 1.2606 0.53647 -0.0030634 -0.056623 -0.49721 0.012862  
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Table 32.  Flex Wing 30 mph Alpha Sweeps (β = -8°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038735 131760.000 2.1373 29.731 -3.9704 0.2638 0.058903 0.06585 0.075108 0.092289 -0.012585
0.03878 131920.000 2.1423 29.765 -2.1599 0.42574 0.063547 0.071673 0.05824 0.092435 -0.010106

0.038789 131950.000 2.1434 29.773 0.012511 0.61894 0.075884 0.077585 0.043604 0.087881 -0.0088448
0.038774 131900.000 2.1416 29.761 2.1802 0.80146 0.09442 0.080934 0.031516 0.074403 -0.011216
0.038794 131960.000 2.1438 29.776 4.2567 0.97465 0.12125 0.082055 0.016827 0.045816 -0.013471
0.038838 132110.000 2.1487 29.81 6.4032 1.1093 0.16045 0.077978 -0.0031028 -0.013288 -0.018208
0.038789 131950.000 2.1433 29.772 8.4529 1.2218 0.21855 0.072014 -0.017046 -0.085422 -0.032821
0.038778 131910.000 2.1421 29.764 10.651 1.2838 0.28966 0.061817 -0.024628 -0.20044 -0.051705
0.038787 131940.000 2.1432 29.771 11.091 1.2874 0.30375 0.057153 -0.029382 -0.2295 -0.053765
0.038762 131860.000 2.1404 29.752 11.663 1.2912 0.32064 0.053228 -0.032975 -0.26699 -0.054815
0.038738 131770.000 2.1377 29.733 12.14 1.3004 0.33595 0.052848 -0.026706 -0.28823 -0.055923
0.038738 131770.000 2.1377 29.733 12.665 1.3086 0.35207 0.051549 -0.024788 -0.31359 -0.055584
0.038775 131900.000 2.1418 29.762 13.188 1.3103 0.36749 0.050843 -0.017547 -0.33305 -0.054602
0.038718 131710.000 2.1355 29.718 13.712 1.3169 0.38359 0.050806 -0.011316 -0.35115 -0.053911
0.03872 131710.000 2.1357 29.719 14.757 1.319 0.41198 0.046288 -0.011609 -0.38891 -0.048754

0.038702 131650.000 2.1337 29.705 16.837 1.3027 0.46517 0.034391 -0.015195 -0.44026 -0.029556
0.038636 131430.000 2.1264 29.655 18.898 1.2453 0.50162 0.012302 -0.068574 -0.47905 0.00050466  

 
 

Table 33.  Flex Wing 30 mph Alpha Sweeps (β = -12°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038645 131460.000 2.1275 29.662 -3.9707 0.26321 0.070189 0.099736 0.11216 0.11273 -0.033958
0.03866 131510.000 2.1291 29.673 -2.1627 0.41931 0.075031 0.10641 0.091315 0.11136 -0.031541

0.038655 131490.000 2.1286 29.67 0.006059 0.60434 0.086609 0.11279 0.071183 0.1061 -0.031754
0.038675 131560.000 2.1307 29.685 2.1723 0.78365 0.10535 0.11707 0.055778 0.091029 -0.034819
0.038673 131550.000 2.1305 29.683 4.2437 0.94513 0.13282 0.1171 0.038239 0.055482 -0.038415
0.038678 131570.000 2.1311 29.687 6.3888 1.0767 0.17424 0.11163 0.018123 -0.0020979 -0.045202
0.03865 131480.000 2.128 29.666 8.499 1.1767 0.23961 0.10465 0.010311 -0.095006 -0.066151

0.038665 131530.000 2.1296 29.677 10.629 1.2407 0.30071 0.092485 -0.0047582 -0.20908 -0.087356
0.038634 131420.000 2.1262 29.653 11.079 1.2614 0.31593 0.090729 -0.0039196 -0.2261 -0.090276
0.038634 131420.000 2.1263 29.654 11.656 1.2694 0.33193 0.087106 -0.0070036 -0.2552 -0.092249
0.038643 131450.000 2.1273 29.66 12.13 1.2777 0.34522 0.084959 -0.005854 -0.27515 -0.093457
0.038647 131470.000 2.1277 29.664 12.657 1.2902 0.36044 0.083355 -0.0013922 -0.29513 -0.093557
0.038645 131460.000 2.1275 29.662 13.185 1.3037 0.37664 0.081951 0.0042161 -0.31293 -0.092885
0.03865 131480.000 2.1281 29.666 13.707 1.3061 0.39055 0.080268 0.01141 -0.33105 -0.092434

0.038655 131490.000 2.1286 29.67 14.231 1.3098 0.40557 0.077511 0.012488 -0.3475 -0.089973
0.038626 131390.000 2.1253 29.647 14.754 1.312 0.41907 0.074922 0.012913 -0.36205 -0.087996
0.038585 131250.000 2.1208 29.616 15.794 1.3053 0.44534 0.068228 0.014618 -0.39699 -0.08019
0.038559 131170.000 2.118 29.596 16.815 1.2529 0.45316 0.051539 -0.02769 -0.42651 -0.058543
0.038523 131040.000 2.1141 29.568 18.895 1.2375 0.49955 0.034849 -0.042009 -0.45754 -0.035997  

 

Table 34.  Rigid Wing 30 mph Alpha Sweeps (β = -8°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct CY Cl_cg_w Cm_cg_c_w Cn_cg_w
0.038735 131770.000 2.1373 29.729 -10.492 -0.32611 0.12026 0.15531 0.23772 -0.004103 0.030533
0.03876 131860.000 2.1402 29.749 -8.6838 -0.16926 0.097698 0.1315 0.20586 -0.0076655 0.040897

0.038731 131760.000 2.137 29.726 -6.5009 0.047844 0.082047 0.10428 0.18419 -0.0093564 0.053719
0.038758 131850.000 2.1399 29.747 -4.2251 0.27801 0.075778 0.07849 0.16997 -0.0085046 0.066108
0.038797 131980.000 2.1442 29.777 -2.1291 0.49543 0.080618 0.053237 0.15984 -0.0056536 0.078366
0.0388 131990.000 2.1446 29.779 0.052532 0.7095 0.093002 0.025377 0.14572 -0.0051018 0.086729

0.038791 131960.000 2.1436 29.772 2.2302 0.91473 0.11347 0.0090338 0.12447 -0.010083 0.09143
0.038746 131810.000 2.1386 29.738 4.3164 1.1097 0.1457 -0.0064948 0.085406 -0.01372 0.094396
0.038695 131640.000 2.133 29.699 6.468 1.2559 0.19446 -0.035244 0.016696 -0.024643 0.087116
0.038749 131820.000 2.1389 29.74 8.4943 1.3155 0.25849 -0.03103 -0.10604 -0.040683 0.077444
0.038761 131860.000 2.1403 29.749 10.592 1.3396 0.32288 -0.039053 -0.20509 -0.052014 0.066379
0.038784 131940.000 2.1428 29.767 12.683 1.3476 0.39032 -0.046775 -0.27034 -0.056697 0.053403
0.038764 131870.000 2.1406 29.752 13.202 1.3409 0.40846 -0.041261 -0.29275 -0.055969 0.050133
0.038724 131730.000 2.1362 29.721 13.721 1.3365 0.4259 -0.032811 -0.32418 -0.059542 0.049447
0.038689 131620.000 2.1323 29.694 14.231 1.3097 0.44529 0.00026122 -0.37091 -0.064864 0.052375
0.038715 131700.000 2.1351 29.714 14.746 1.2953 0.45365 -0.0053833 -0.39745 -0.065219 0.049199
0.038704 131670.000 2.134 29.706 16.803 1.2266 0.49231 0.0030983 -0.47982 -0.058555 0.042347
0.038651 131490.000 2.1282 29.665 18.887 1.2208 0.54472 0.018939 -0.53423 -0.05649 0.038768  
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Elevon Deflected Runs 

 
Table 35.  Single Elevon (δe,PORT = 0 ° & δe,STAR = -20 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039425 134110.00 2.21 30.26 -3.9661 0.27366 0.04981 -0.0092348 -0.026453 0.043283
0.039516 134420.00 2.22 30.33 -2.153 0.44138 0.053823 -0.014439 -0.026829 0.047785
0.039542 134510.00 2.23 30.35 0.022837 0.6423 0.069649 -0.018164 -0.029546 0.050432
0.039503 134380.00 2.22 30.32 2.1933 0.83122 0.090214 -0.021811 -0.040212 0.053526
0.039347 133850.00 2.21 30.2 4.2754 1.0171 0.11908 -0.025802 -0.061143 0.055392
0.039373 133930.00 2.21 30.22 6.4372 1.1863 0.1603 -0.031585 -0.10156 0.05823
0.039347 133850.00 2.21 30.2 8.4823 1.2884 0.21145 -0.036509 -0.17784 0.056295
0.039334 133800.00 2.20 30.19 10.586 1.3252 0.27127 -0.04491 -0.27575 0.055309
0.039347 133850.00 2.21 30.2 12.69 1.3568 0.3571 -0.0301 -0.34695 0.054351
0.039242 133490.00 2.19 30.12 14.771 1.3589 0.43245 -0.044213 -0.46092 0.05997
0.039151 133180.00 2.18 30.05 16.845 1.324 0.48872 -0.038305 -0.54922 0.068067
0.039125 133090.00 2.18 30.03 18.921 1.2913 0.54193 -0.034211 -0.58097 0.077204
0.039021 132740.00 2.17 29.95 21.051 1.2024 0.56974 -0.024777 -0.59703 0.082499  

 

Table 36.  Single Elevon (δe,PORT = 0 ° & δe,STAR = +20 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039086 132960.00 2.18 30 -3.9943 0.20988 0.052021 0.032916 0.20024 -0.05174
0.039073 132910.00 2.17 29.99 -2.1826 0.37438 0.053685 0.025873 0.20383 -0.051783
0.039086 132960.00 2.18 30 -0.004466 0.58052 0.063214 0.018032 0.20174 -0.052597
0.03906 132870.00 2.17 29.98 2.0806 0.77302 0.081394 0.010772 0.19356 -0.053009
0.039021 132740.00 2.17 29.95 4.2499 0.95925 0.10703 0.0015578 0.17377 -0.053979
0.039034 132780.00 2.17 29.96 6.4121 1.1293 0.1444 -0.0081514 0.13213 -0.053067
0.039021 132740.00 2.17 29.95 8.4565 1.23 0.19254 -0.017848 0.047332 -0.054405
0.039008 132690.00 2.17 29.94 10.562 1.2725 0.25 -0.030355 -0.056552 -0.05402
0.038982 132600.00 2.16 29.92 12.67 1.3117 0.33617 -0.017559 -0.12769 -0.054066
0.038982 132600.00 2.16 29.92 14.749 1.311 0.4047 -0.043628 -0.26096 -0.04308
0.038942 132470.00 2.16 29.89 16.825 1.2785 0.45737 -0.033342 -0.37424 -0.038041
0.038929 132430.00 2.16 29.88 18.901 1.2458 0.5054 -0.025899 -0.39208 -0.038422
0.038916 132380.00 2.16 29.87 20.955 1.1655 0.53326 -0.05312 -0.42033 -0.031648  

 

Table 37.  Single Elevon (δe,PORT = 0 ° & δe,STAR = +10 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039065 132890.00 2.17 29.984 -3.9889 0.22205 0.047081 0.026941 0.1629 -0.040845
0.039098 133000.00 2.18 30.01 -2.1777 0.38534 0.048655 0.021104 0.16867 -0.042613
0.03906 132870.00 2.17 29.98 0.002255 0.59573 0.059131 0.01387 0.16951 -0.044447

0.039034 132780.00 2.17 29.96 2.0872 0.78797 0.077112 0.0068929 0.16214 -0.044793
0.039008 132690.00 2.17 29.94 4.2542 0.96903 0.10288 -0.0011544 0.14449 -0.046415
0.039034 132780.00 2.17 29.96 6.4174 1.1415 0.14078 -0.010998 0.10369 -0.045905
0.039047 132830.00 2.17 29.97 8.4622 1.2428 0.18878 -0.02002 0.019032 -0.046449
0.039008 132690.00 2.17 29.94 10.568 1.2843 0.24709 -0.033335 -0.08274 -0.047048
0.038982 132600.00 2.16 29.92 12.673 1.3202 0.33219 -0.020565 -0.15625 -0.048113
0.038956 132510.00 2.16 29.9 14.753 1.3185 0.40221 -0.04196 -0.28385 -0.041097
0.038916 132380.00 2.16 29.87 16.823 1.2733 0.45035 -0.044193 -0.37769 -0.036053
0.03889 132290.00 2.15 29.85 18.906 1.2579 0.5063 -0.017169 -0.41944 -0.035681

0.038851 132160.00 2.15 29.82 21.032 1.1806 0.53263 -0.036827 -0.44735 -0.015591  
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Table 38.  Single Elevon (δe,PORT = 0 ° & δe,STAR = -10 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039438 134160.00 2.22 30.27 -3.9678 0.2697 0.047056 -0.0054287 -0.0015641 0.032586
0.039451 134200.00 2.22 30.28 -2.1561 0.43428 0.050657 -0.0095021 -0.0008959 0.035875
0.03949 134330.00 2.22 30.31 0.019889 0.63563 0.063256 -0.014388 -0.0013678 0.037322
0.039555 134550.00 2.23 30.36 2.1894 0.82231 0.083778 -0.019071 -0.010727 0.039848
0.039555 134550.00 2.23 30.36 4.2673 0.99855 0.11049 -0.023408 -0.030648 0.039901
0.039516 134420.00 2.22 30.33 6.4292 1.1682 0.15052 -0.030051 -0.068539 0.042475
0.039516 134420.00 2.22 30.33 8.4734 1.2682 0.20003 -0.034721 -0.14632 0.040093
0.03949 134330.00 2.22 30.31 10.578 1.3073 0.25874 -0.044238 -0.24309 0.039931
0.039425 134110.00 2.21 30.26 12.683 1.3422 0.34516 -0.03243 -0.31505 0.038687
0.039438 134160.00 2.22 30.27 14.762 1.3408 0.41574 -0.038596 -0.4214 0.042132
0.039399 134020.00 2.21 30.24 16.834 1.2978 0.4679 -0.030459 -0.51941 0.047234
0.03936 133890.00 2.21 30.21 18.909 1.2652 0.51677 -0.012096 -0.53922 0.05243
0.039294 133670.00 2.20 30.16 21.046 1.1894 0.54771 -0.030154 -0.56106 0.069637  

 

Table 39.  Single Elevon (δe,PORT = 0 ° & δe,STAR = -5 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039338 133820.00 2.20 30.194 -3.9727 0.25868 0.041306 0.0024674 0.037558 0.0133
0.039386 133980.00 2.21 30.231 -2.1615 0.42208 0.044344 -0.0028985 0.03915 0.015305
0.039417 134080.00 2.21 30.254 0.016456 0.62787 0.056372 -0.0082484 0.039533 0.015619
0.039349 133860.00 2.21 30.202 2.1883 0.81985 0.076124 -0.013612 0.031067 0.01697
0.039398 134020.00 2.21 30.24 4.2657 0.99506 0.10192 -0.018677 0.010577 0.017476
0.039465 134250.00 2.22 30.292 6.4252 1.159 0.14003 -0.026054 -0.027902 0.019696
0.03943 134130.00 2.21 30.264 8.4711 1.2631 0.18962 -0.031803 -0.10777 0.018709

0.039438 134160.00 2.22 30.27 10.575 1.3002 0.24771 -0.043498 -0.20509 0.019287
0.039452 134210.00 2.22 30.282 12.676 1.333 0.33245 -0.034757 -0.27599 0.018906
0.039394 134010.00 2.21 30.236 14.764 1.3344 0.40281 -0.045355 -0.39731 0.024644
0.039288 133650.00 2.20 30.155 16.837 1.3041 0.45748 -0.051826 -0.4887 0.033775
0.03929 133650.00 2.20 30.157 18.91 1.2721 0.50578 -0.014424 -0.51069 0.035381

0.039296 133670.00 2.20 30.161 21.05 1.1938 0.53637 -0.037071 -0.53901 0.05233  

 

Table 40.  Single Elevon (δe,PORT = 0 ° & δe,STAR = +5 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039712 135090.00 2.25 30.48 -3.986 0.22866 0.042881 0.018235 0.11009 -0.020835
0.039699 135040.00 2.25 30.47 -2.174 0.39383 0.045693 0.011829 0.1136 -0.020827
0.039581 134640.00 2.23 30.38 0.002507 0.5963 0.055729 0.0051665 0.11517 -0.022263
0.039529 134470.00 2.23 30.34 2.0842 0.78109 0.07383 -0.0006119 0.10827 -0.02152
0.039568 134600.00 2.23 30.37 4.2509 0.96143 0.099601 -0.0078313 0.087912 -0.021588
0.039516 134420.00 2.22 30.33 6.4118 1.1287 0.13652 -0.016795 0.049647 -0.020334
0.039555 134550.00 2.23 30.36 8.456 1.2287 0.18465 -0.02468 -0.032179 -0.020875
0.039503 134380.00 2.22 30.32 10.56 1.2678 0.24184 -0.037102 -0.13155 -0.022225
0.039464 134240.00 2.22 30.29 12.668 1.3073 0.32547 -0.028632 -0.1988 -0.020996
0.039464 134240.00 2.22 30.29 14.744 1.2995 0.39382 -0.043676 -0.3294 -0.015403
0.039464 134240.00 2.22 30.29 16.819 1.2659 0.44369 -0.041196 -0.41924 -0.010261
0.039451 134200.00 2.22 30.28 18.897 1.2375 0.49334 -0.0086981 -0.44174 -0.0075337
0.039399 134020.00 2.21 30.24 21.033 1.1614 0.52186 -0.039113 -0.4774 0.015501  
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Table 41.  Tandem Elevon (δe = -20°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039112 133050.00 2.18 30.02 -3.952 0.30554 0.047639 0.010048 -0.11249 -0.0083389
0.039164 133220.00 2.19 30.06 -2.1376 0.47617 0.052868 0.0045736 -0.11783 -0.0060005
0.039177 133270.00 2.19 30.07 0.039385 0.67975 0.067348 -0.0014567 -0.12291 -0.0047449
0.039177 133270.00 2.19 30.07 2.2136 0.87717 0.089227 -0.0067759 -0.1351 -0.0047798
0.039164 133220.00 2.19 30.06 4.2942 1.0596 0.11819 -0.012572 -0.15921 -0.0063376
0.039177 133270.00 2.19 30.07 6.4581 1.2335 0.15941 -0.020858 -0.19859 -0.0026588
0.03919 133310.00 2.19 30.08 8.5016 1.3321 0.21095 -0.027469 -0.27706 -0.0052623
0.039138 133140.00 2.18 30.04 10.607 1.3728 0.27247 -0.038664 -0.3756 -0.0069302
0.039099 133000.00 2.18 30.01 12.71 1.4038 0.35976 -0.020978 -0.43976 -0.0089234
0.039034 132780.00 2.17 29.96 14.79 1.4031 0.43436 -0.048038 -0.56061 -0.0005011
0.038982 132600.00 2.16 29.92 16.859 1.3544 0.48581 -0.033819 -0.63349 0.00012654
0.038942 132470.00 2.16 29.89 18.935 1.3245 0.53824 -0.024063 -0.65525 0.01804
0.038877 132250.00 2.15 29.84 21.064 1.2306 0.56617 -0.048116 -0.65621 0.045208  

 

Table 42.  Tandem Elevon (δe = +20°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039168 133240.00 2.19 30.063 -4.0108 0.17233 0.06138 0.010237 0.31512 -0.0053255
0.039165 133230.00 2.19 30.061 -2.1972 0.34125 0.063602 0.0055051 0.31997 -0.0054939
0.039109 133040.00 2.18 30.018 -0.022303 0.54016 0.07434 0.0013539 0.32304 -0.0044004
0.039124 133090.00 2.18 30.029 2.0615 0.72974 0.091788 -0.0049077 0.31481 -0.0032047
0.039112 133050.00 2.18 30.021 4.2295 0.91314 0.11679 -0.012805 0.29264 -0.0028407
0.039081 132940.00 2.18 29.997 6.3916 1.083 0.15347 -0.019539 0.25012 -0.0023861
0.039058 132860.00 2.17 29.979 8.4384 1.1889 0.20125 -0.027853 0.16214 -0.0040419
0.039028 132760.00 2.17 29.956 10.544 1.2321 0.2588 -0.039738 0.057041 -0.0049756
0.039044 132820.00 2.17 29.968 12.645 1.2627 0.34073 -0.024515 -0.02305 -0.0050177
0.039064 132880.00 2.17 29.984 14.731 1.2609 0.41015 -0.042611 -0.15961 0.0062623
0.039055 132850.00 2.17 29.976 16.807 1.2345 0.46176 -0.040687 -0.28636 0.01331
0.039047 132830.00 2.17 29.97 18.884 1.2132 0.51314 -0.020771 -0.31411 0.0038825
0.039017 132730.00 2.17 29.948 20.936 1.1347 0.5401 -0.042929 -0.32176 0.03356  

 

Table 43.  Tandem Elevon (δe = +10°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039191 133320.00 2.19 30.081 -3.9993 0.19837 0.049774 0.015712 0.22326 -0.014566
0.039168 133240.00 2.19 30.063 -2.1871 0.36418 0.051673 0.010274 0.23108 -0.015523
0.039169 133240.00 2.19 30.064 -0.010004 0.56799 0.061275 0.0048386 0.2311 -0.016702
0.039164 133220.00 2.18 30.06 2.163 0.76251 0.079484 -0.0017484 0.22321 -0.0167
0.039118 133070.00 2.18 30.025 4.2437 0.94529 0.10456 -0.0083923 0.20457 -0.016563
0.039116 133060.00 2.18 30.023 6.4047 1.1126 0.14107 -0.017281 0.16399 -0.016015
0.039094 132980.00 2.18 30.006 8.4531 1.2223 0.18935 -0.025695 0.067007 -0.012713
0.03908 132940.00 2.18 29.996 10.556 1.2589 0.24641 -0.037237 -0.026133 -0.017727
0.039057 132860.00 2.17 29.978 12.659 1.2943 0.33063 -0.027366 -0.09686 -0.018208
0.039068 132900.00 2.17 29.987 14.747 1.2973 0.4007 -0.045846 -0.22147 -0.010677
0.039033 132780.00 2.17 29.96 16.821 1.2668 0.45349 -0.045756 -0.33205 -0.0041566
0.039015 132720.00 2.17 29.946 18.898 1.2438 0.50511 -0.018267 -0.36656 -0.006489
0.039009 132700.00 2.17 29.941 21.008 1.1635 0.53057 -0.040861 -0.40238 0.014411  
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Table 44.  Tandem Elevon (δe = -10°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039167 133230.00 2.19 30.062 -3.9625 0.2818 0.044458 0.0023756 -0.045117 0.0099693
0.039178 133270.00 2.19 30.071 -2.1495 0.4493 0.04859 -0.0021213 -0.046252 0.012082
0.039166 133230.00 2.19 30.062 0.03162 0.66218 0.0621 -0.0068638 -0.048039 0.012331
0.039171 133250.00 2.19 30.066 2.2032 0.85352 0.083335 -0.0112 -0.05868 0.013829
0.039138 133140.00 2.18 30.04 4.2842 1.0369 0.11152 -0.016962 -0.079058 0.013024
0.039142 133150.00 2.18 30.044 6.448 1.2106 0.15236 -0.025881 -0.11894 0.016032
0.039202 133350.00 2.19 30.09 8.4901 1.3058 0.2024 -0.031002 -0.19468 0.013934
0.039142 133150.00 2.18 30.043 10.595 1.3471 0.26304 -0.046516 -0.29185 0.013611
0.039129 133110.00 2.18 30.033 12.695 1.3768 0.34933 -0.035509 -0.36527 0.013687
0.039068 132900.00 2.17 29.986 14.781 1.3747 0.42329 -0.049317 -0.48755 0.018434
0.039026 132760.00 2.17 29.955 16.859 1.3527 0.48168 0.00053032 -0.54784 0.020454
0.039016 132720.00 2.17 29.947 18.925 1.3065 0.52893 -0.021188 -0.58995 0.034563
0.038932 132440.00 2.16 29.882 21.059 1.2152 0.55561 -0.033422 -0.60183 0.050006  

 

Table 45.  Opposed Elevon (δe,PORT = -10 ° & δe,STAR = +10 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039164 133220.00 2.19 30.06 -3.9867 0.22703 0.051473 0.036995 0.1235 -0.064843
0.039164 133220.00 2.19 30.06 -2.1728 0.39652 0.054648 0.031375 0.12944 -0.067692
0.039203 133360.00 2.19 30.09 0.002966 0.59734 0.065674 0.023841 0.12891 -0.070051
0.039203 133360.00 2.19 30.09 2.1756 0.79103 0.08478 0.01521 0.11995 -0.071721
0.039138 133140.00 2.18 30.04 4.2569 0.97509 0.11147 0.0070247 0.099982 -0.073356
0.039112 133050.00 2.18 30.02 6.4198 1.1469 0.15051 -0.0036667 0.059668 -0.072981
0.039112 133050.00 2.18 30.02 8.4649 1.249 0.19949 -0.01347 -0.023532 -0.074823
0.039086 132960.00 2.18 30 10.568 1.2856 0.25639 -0.029726 -0.12812 -0.076534
0.039073 132910.00 2.17 29.99 12.677 1.3284 0.34337 -0.02717 -0.19505 -0.073337
0.039086 132960.00 2.18 30 14.753 1.3199 0.41281 -0.042646 -0.32301 -0.067254
0.039008 132690.00 2.17 29.94 16.823 1.2749 0.46167 -0.037681 -0.41528 -0.064063
0.039021 132740.00 2.17 29.95 18.909 1.2639 0.51731 -0.018697 -0.45023 -0.058621
0.038956 132510.00 2.16 29.9 21.039 1.1743 0.542 -0.038817 -0.4813 -0.038032  

 

Table 46.  Opposed Elevon (δe,PORT = -20 ° & δe,STAR = +20 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039133 133120.00 2.18 30.037 -3.9838 0.23357 0.054866 0.056431 0.10256 -0.10935
0.039139 133140.00 2.18 30.041 -2.1718 0.39866 0.057901 0.047718 0.10404 -0.11104
0.039146 133160.00 2.18 30.046 0.006466 0.60526 0.068534 0.03695 0.10184 -0.11262
0.039152 133180.00 2.18 30.051 2.1777 0.79578 0.087135 0.027974 0.091337 -0.11415
0.039163 133220.00 2.18 30.06 4.2602 0.98247 0.11353 0.017729 0.069003 -0.11724
0.039112 133050.00 2.18 30.02 6.4247 1.158 0.1519 0.0055972 0.026075 -0.11699
0.039099 133000.00 2.18 30.01 8.4704 1.2613 0.20074 -0.0057998 -0.056982 -0.12017
0.039078 132930.00 2.18 29.994 10.575 1.3012 0.25886 -0.02254 -0.16628 -0.12079
0.039093 132980.00 2.18 30.006 12.68 1.3425 0.3441 -0.016978 -0.23129 -0.11887
0.039069 132900.00 2.17 29.987 14.763 1.332 0.41319 -0.041175 -0.37001 -0.10841
0.039015 132720.00 2.17 29.946 16.835 1.2978 0.46562 -0.039819 -0.45364 -0.10336
0.038973 132570.00 2.16 29.913 18.914 1.2804 0.52087 -0.030953 -0.48597 -0.10906
0.038963 132540.00 2.16 29.906 21.059 1.2163 0.55592 -0.03962 -0.51381 -0.11065  
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Table 47.  RIGID Tandem Elevon (δe = -10°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.03909 132980.00 2.18 30.002 -3.9379 0.33742 0.015239 0.0017691 -0.045612 -0.027586

0.039111 133050.00 2.18 30.018 -2.1163 0.52442 0.03477 0.0019867 -0.06888 -0.016658
0.039144 133160.00 2.18 30.043 0.072251 0.75413 0.069284 0.001668 -0.092689 -0.0037423
0.039155 133200.00 2.18 30.052 2.2531 0.96641 0.11353 0.0062266 -0.11847 0.0077249
0.039178 133280.00 2.19 30.07 4.3384 1.1596 0.16561 0.01064 -0.15746 0.016882
0.039184 133300.00 2.19 30.074 6.4903 1.3065 0.22659 0.012152 -0.16928 -0.0011883
0.039153 133190.00 2.18 30.05 8.5229 1.3802 0.30569 -0.0098123 -0.25894 0.013674
0.039146 133170.00 2.18 30.045 10.602 1.3616 0.38164 -0.015236 -0.33248 0.037403
0.039111 133050.00 2.18 30.018 12.679 1.3388 0.46095 0.00080541 -0.40069 0.044142
0.039091 132980.00 2.18 30.003 14.762 1.3305 0.55749 0.020165 -0.47259 0.063169
0.039029 132770.00 2.17 29.955 16.814 1.2519 0.63995 0.036027 -0.59231 0.082845
0.038954 132520.00 2.16 29.898 18.865 1.1708 0.70004 0.058368 -0.69841 0.10447  

 

Table 48.  RIGID Tandem Elevon (δe = +10°) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.040441 137580.00 2.33 31.039 -3.9983 0.20074 0.028806 0.00878 0.35426 -0.038468
0.039765 135270.00 2.25 30.52 -2.1771 0.38671 0.045578 0.0097923 0.36242 -0.030258
0.039311 133730.00 2.20 30.171 0.011447 0.61653 0.076685 0.0091236 0.36128 -0.02071
0.039125 133100.00 2.18 30.029 2.1925 0.82941 0.11638 0.013237 0.33633 -0.010263
0.039068 132900.00 2.17 29.985 4.2817 1.0313 0.16449 0.016403 0.2918 0.001243
0.039085 132960.00 2.18 29.998 6.4404 1.1936 0.22358 0.012478 0.22455 0.0054809
0.039148 133180.00 2.18 30.047 8.4705 1.2616 0.29767 -0.0094309 0.11669 0.021928
0.039092 132990.00 2.18 30.003 10.554 1.2528 0.37197 -0.018316 0.038685 0.046047
0.039071 132920.00 2.17 29.987 12.63 1.2283 0.4443 0.0019845 -0.015544 0.049169
0.039135 133130.00 2.18 30.036 14.713 1.2189 0.53789 0.023556 -0.11342 0.071809
0.039099 133010.00 2.18 30.008 16.772 1.1559 0.61836 0.026102 -0.26163 0.09636
0.039097 133000.00 2.18 30.007 18.827 1.0839 0.66887 0.056809 -0.40633 0.11015  

 

Table 49.  RIGID Opposed Elevon (δe,PORT = -10 ° & δe,STAR = +10 °) 

Mach # Rex qcorrected U∞ αcorrected CL CD_correct Cl_cg_w Cm_cg_c_w Cn_cg_w
0.039463 134250.00 2.22 30.288 -3.9713 0.26181 0.024119 0.04706 0.19284 -0.12377
0.039498 134370.00 2.22 30.315 -2.1522 0.44306 0.040644 0.045246 0.17584 -0.11915
0.039464 134250.00 2.22 30.289 0.034111 0.66782 0.072489 0.041435 0.15546 -0.1119
0.039319 133760.00 2.20 30.178 2.2154 0.88128 0.11312 0.04105 0.12891 -0.10294
0.039218 133420.00 2.19 30.1 4.3032 1.0799 0.1628 0.041151 0.086828 -0.09447
0.039326 133780.00 2.20 30.183 6.4591 1.2359 0.22212 0.033182 0.026921 -0.088436
0.039094 132990.00 2.18 30.005 8.4966 1.3206 0.30153 0.0063778 -0.073535 -0.073229
0.039018 132730.00 2.17 29.946 10.58 1.3122 0.37652 -0.0069944 -0.1497 -0.048252
0.039025 132760.00 2.17 29.952 12.656 1.2868 0.45133 0.012216 -0.2069 -0.047051
0.039009 132700.00 2.17 29.939 14.735 1.2698 0.544 0.033313 -0.29659 -0.024048
0.039019 132740.00 2.17 29.947 16.798 1.2144 0.62954 0.032244 -0.43332 0.0047885
0.038995 132650.00 2.17 29.929 18.849 1.1335 0.68168 0.05384 -0.56633 0.027626  
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Lift and Drag Error Tables 

Table 50.  Flexible 10 mph Drag with Errors 

(+) Drag (-) Drag
Drag (lbf) Error (lbf) Error (lbf)

0.003227336 0.017774607 -0.011319936
0.005980339 0.020527611 -0.008566932
0.011601148 0.02614842 -0.002946123
0.018264374 0.032811646 0.003717103
0.027211448 0.041758719 0.012664176
0.037315801 0.051863072 0.022768529
0.047642925 0.062190197 0.033095654
0.062476331 0.077023602 0.047929059
0.066420274 0.080967545 0.051873002
0.069233709 0.08378098 0.054686437
0.072613764 0.087161036 0.058066493
0.075428809 0.08997608 0.060881537
0.076929609 0.09147688 0.062382337
0.079401817 0.093949089 0.064854546
0.083605512 0.098152783 0.069058241
0.094047572 0.108594843 0.0795003
0.105143669 0.11969094 0.090596398  

 
Table 51.  Flexible 30 mph Drag with Errors 

(+) Drag (-) Drag
Drag (lbf) Error (lbf) Error (lbf)

0.068986025 0.083533296 0.054438754
0.073834609 0.088381881 0.059287338
0.090970221 0.105517492 0.076422949
0.117027061 0.131574333 0.10247979
0.155791944 0.170339215 0.141244673
0.210926038 0.22547331 0.196378767
0.27928789 0.293835161 0.264740619
0.354730118 0.369277389 0.340182846
0.358369684 0.372916956 0.343822413
0.380125051 0.394672322 0.365577779
0.399682424 0.414229695 0.385135153
0.431079705 0.445626976 0.416532433
0.462602353 0.477149624 0.448055082
0.494383409 0.50893068 0.479836138
0.582596916 0.597144187 0.568049644
0.660226875 0.674774146 0.645679604
0.738224476 0.752771748 0.723677205  
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Table 52.  Flexible 10 mph Lift with Errors 

(+) Lift (-) Lift
Lift (lbf) Error (lbf) Error (lbf)

0.072377041 0.091915286 0.052838796
0.117109837 0.136648082 0.097571592
0.167269583 0.186807828 0.147731338
0.207728002 0.227266247 0.188189757
0.244132801 0.263671046 0.224594556
0.26187838 0.281416625 0.242340135
0.29590438 0.315442625 0.276366135
0.289563329 0.309101574 0.270025084
0.288938284 0.308476529 0.269400039
0.28401864 0.303556885 0.264480395
0.27957502 0.299113265 0.260036775
0.278094549 0.297632794 0.258556304
0.26687816 0.286416405 0.247339915
0.263701 0.283239246 0.244162755

0.260715823 0.280254069 0.241177578
0.258834351 0.278372597 0.239296106
0.261262944 0.280801189 0.241724699  

 
Table 53.  Flexible 30 mph Lift with Errors 

(+) Lift (-) Lift
Lift (lbf) Error (lbf) Error (lbf)

0.346396545 0.36593479 0.3268583
0.580607372 0.600145617 0.561069127
0.867353977 0.886892222 0.847815732
1.122296892 1.141835138 1.102758647
1.377729045 1.39726729 1.3581908
1.615517297 1.635055542 1.595979052
1.760785806 1.780324051 1.74124756
1.799871104 1.819409349 1.780332859
1.801724144 1.821262389 1.782185899
1.81211865 1.831656895 1.792580405
1.820122412 1.839660657 1.800584167
1.826407443 1.845945688 1.806869198
1.847468253 1.867006498 1.827930008
1.859243604 1.878781849 1.839705359
1.868461957 1.888000203 1.848923712
1.821248061 1.840786306 1.801709816
1.797454804 1.81699305 1.777916559  

 
 



 

 125

Table 54.  Rigid 10 mph Drag with Errors 

(+) Drag (-) Drag
Drag (lbf) Error (lbf) Error (lbf)

0.015347309 0.02989458 0.000800037
0.013979047 0.028526318 -0.000568224
0.010894735 0.025442006 -0.003652536
0.009056552 0.023603823 -0.00549072
0.007082439 0.02162971 -0.007464832
0.006761284 0.021308555 -0.007785987
0.009854693 0.024401964 -0.004692579
0.014370424 0.028917695 -0.000176847
0.020980954 0.035528226 0.006433683
0.029232588 0.043779859 0.014685317
0.038897786 0.053445057 0.024350515
0.048839155 0.063386426 0.034291883
0.063177429 0.0777247 0.048630157
0.07318736 0.087734631 0.058640088
0.082787909 0.097335181 0.068240638
0.096902336 0.111449607 0.082355064
0.10945585 0.124003121 0.094908579  

 

Table 55.  Rigid 30 mph Drag with Errors 

(+) Drag (-) Drag
Drag (lbf) Error (lbf) Error (lbf)

0.171113859 0.18566113 0.156566588
0.170040853 0.184588124 0.155493582
0.162753806 0.177301077 0.148206535
0.146942395 0.161489666 0.132395124
0.133523165 0.148070437 0.118975894
0.123682754 0.138230026 0.109135483
0.113417323 0.127964595 0.098870052
0.117594048 0.132141319 0.103046776
0.13450707 0.149054341 0.119959799
0.166538052 0.181085324 0.151990781
0.210527837 0.225075109 0.195980566
0.267097479 0.281644751 0.252550208
0.350388194 0.364935466 0.335840923
0.427697518 0.442244789 0.413150247
0.50597456 0.520521832 0.491427289
0.60581559 0.620362861 0.591268319
0.689526554 0.704073826 0.674979283
0.745023389 0.75957066 0.730476117  
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Table 56.  Rigid 10 mph Lift with Errors 

(+) Lift (-) Lift
Lift (lbf) Error (lbf) Error (lbf)

-0.085583048 -0.066044803 -0.105121293
-0.070219693 -0.050681448 -0.089757938
-0.044622428 -0.025084183 -0.064160673
-0.018417063 0.001121182 -0.037955308
0.011438545 0.03097679 -0.0080997
0.065446821 0.084985066 0.045908576
0.112941574 0.132479819 0.093403329
0.149133833 0.168672078 0.129595588
0.169311973 0.188850218 0.149773727
0.198233487 0.217771733 0.178695242
0.217452521 0.236990767 0.197914276
0.230475209 0.250013454 0.210936964
0.267697246 0.287235491 0.248159
0.282696937 0.302235182 0.263158692
0.275812144 0.295350389 0.256273899
0.261017982 0.280556227 0.241479736
0.259766936 0.279305181 0.240228691  

 

Table 57.  Rigid 30 mph Lift with Errors 

(+) Lift (-) Lift
Lift (lbf) Error (lbf) Error (lbf)

-0.527231189 -0.507692944 -0.546769435
-0.505014336 -0.485476091 -0.524552581
-0.436874332 -0.417336087 -0.456412577
-0.295426683 -0.275888438 -0.314964928
-0.144164225 -0.12462598 -0.16370247
0.017202981 0.036741226 -0.002335264
0.324525462 0.344063707 0.304987217
0.640126292 0.659664537 0.620588047
0.957548325 0.97708657 0.93801008
1.254307885 1.27384613 1.23476964
1.52690673 1.546444975 1.507368485
1.752158346 1.771696592 1.732620101
1.864665085 1.88420333 1.84512684
1.84963494 1.869173185 1.830096695
1.822862832 1.842401077 1.803324587
1.791541929 1.811080175 1.772003684
1.701298989 1.720837234 1.681760744
1.632432733 1.651970978 1.612894487  
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Moment Error Tables 

 
Table 58.  Flexible 10 mph Moment Error Data 

l_cg + l_cg Error - l_cg Error m_cg + m_cg Error - m_cg Error n_cg + n_cg Error - n_cg Error
0.0166 0.01767159 0.015622155 0.06032998 0.063090488 0.057569472 -0.005576232 -0.00425331 -0.006899156
0.0074 0.008255237 0.006626766 0.054981967 0.062140974 0.047822961 -0.006568536 -0.00499732 -0.008139752
-4E-04 0.000401981 -0.001111524 0.047394746 0.059861907 0.034927586 -0.007878733 -0.0058249 -0.009932562
-0.001 -0.000497475 -0.002221416 0.036277783 0.053502235 0.01905333 -0.006590705 -0.00434504 -0.008836374
-0.009 -0.008123128 -0.00947872 0.003785119 0.027051305 -0.019481068 -0.007959337 -0.00550385 -0.010414821
0.0303 0.032635635 0.028013403 -0.04946563 -0.020257179 -0.078674087 -0.001216851 0.00149519 -0.003928892
-0.033 -0.033111657 -0.033280812 -0.04086234 -0.00867027 -0.073054415 -0.005510642 -0.00313966 -0.007881627
-0.053 -0.051906478 -0.053708491 -0.12302685 -0.084638546 -0.161415151 -0.005303261 -0.00329176 -0.007314766
-0.046 -0.045383593 -0.046581798 -0.14048499 -0.100658476 -0.180311513 -0.005477172 -0.00329832 -0.007656021
-0.044 -0.043497844 -0.04451929 -0.16375046 -0.122503941 -0.204996969 -0.003059216 -0.00099184 -0.005126593
-0.025 -0.024345783 -0.024805782 -0.18509911 -0.142493271 -0.227704957 -0.008394955 -0.00577125 -0.011018659
-0.026 -0.025865005 -0.026298197 -0.20916666 -0.164767433 -0.253565893 -0.006425776 -0.00385929 -0.008992265
-0.063 -0.061825666 -0.064359415 -0.27069314 -0.222692527 -0.318693748 -0.000401868 0.001231203 -0.00203494
-0.058 -0.056599181 -0.058677792 -0.30287206 -0.252647031 -0.35309709 -0.002510879 -0.00064219 -0.00437957
-0.049 -0.048238526 -0.049687087 -0.35220242 -0.298371873 -0.406032969 -0.003376448 -0.00139025 -0.005362651
-0.036 -0.035976451 -0.036606738 -0.40266602 -0.344665217 -0.460666831 -0.000270063 0.001499009 -0.002039135
-0.038 -0.038105317 -0.038829201 -0.42111625 -0.360865196 -0.481367308 0.006323065 0.007708644 0.004937487  

 

 

 

 
Table 59.  Flexible 30 mph Moment Error Data 

l_cg + l_cg Error - l_cg Error m_cg + m_cg Error - m_cg Error n_cg + n_cg Error - n_cg Error
0.0558 0.058042001 0.053530591 0.445111499 0.450434873 0.439788125 -0.008163961 -0.00677777 -0.009550156
0.0183 0.019388137 0.017174646 0.462005395 0.486141806 0.437868983 -0.002648029 -0.00146048 -0.003835581
-0.012 -0.011370923 -0.011707182 0.453373935 0.504760867 0.401987002 -0.005549644 -0.00409194 -0.007007348
-0.036 -0.035269642 -0.03646163 0.405203361 0.484272375 0.326134348 -0.004158574 -0.00272397 -0.005593175
-0.068 -0.066054253 -0.069313036 0.286886225 0.399325597 0.174446853 -0.001716185 -0.0004206 -0.003011766
-0.128 -0.124258208 -0.131700025 0.040575825 0.194869137 -0.113717488 0.016596084 0.01672839 0.016463779
-0.167 -0.162134648 -0.172304934 -0.4182208 -0.21418077 -0.622260836 0.013569584 0.013656576 0.013482593
-0.21 -0.20351348 -0.216844631 -0.91172321 -0.664225412 -1.159221003 0.000926367 0.001327423 0.000525311

-0.227 -0.220216684 -0.234768068 -0.93187407 -0.68254027 -1.181207865 -0.002379796 -0.00184582 -0.002913773
-0.253 -0.244887968 -0.261214554 -1.0702319 -0.808664474 -1.331799319 0.007085482 0.007270563 0.006900401
-0.241 -0.232964169 -0.248420682 -1.13359605 -0.865592186 -1.401599906 0.034983567 0.036940437 0.033026698
-0.221 -0.214164433 -0.228268157 -1.21951308 -0.942896482 -1.496129677 0.044362233 0.04685991 0.041864557
-0.18 -0.174783224 -0.186040332 -1.2934548 -1.007753868 -1.579155741 0.026173657 0.027308888 0.025038426

-0.206 -0.199399783 -0.21245765 -1.43711757 -1.138020082 -1.736215066 0.022264858 0.023269784 0.021259932
-0.331 -0.320503838 -0.342326199 -2.14278251 -1.7859555 -2.499609518 0.060611972 0.064662884 0.056561061
-0.31 -0.299525868 -0.320002284 -2.69567057 -2.297746836 -3.093594298 0.077842583 0.083099151 0.072586015

-0.179 -0.172918908 -0.184378239 -2.90065922 -2.484965304 -3.316353143 0.125905643 0.133903719 0.117907567  
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Table 60..Rigid 10 mph Moment Error Data 
l_cg + l_cg Error - l_cg Error m_cg + m_cg Error - m_cg Error n_cg + n_cg Error - n_cg Error

0.217 0.225587458 0.208460685 -0.00088152 0.006424674 -0.008187713 0.002620569 0.005333162 -9.20251E-05
0.2028 0.210902542 0.194628036 -0.00135869 0.004564438 -0.007281814 0.005907074 0.008487456 0.003326692
0.1821 0.189356574 0.174793748 -0.00072286 0.003012035 -0.004457748 0.00720134 0.009342895 0.005059784
0.1646 0.171318736 0.157959204 0.001071998 0.002663459 -0.000519462 0.008327321 0.01033594 0.006318701
0.1475 0.153341459 0.141624995 -0.00024655 0.001219804 -0.00171291 0.013218153 0.014388589 0.012047717
0.1167 0.121161898 0.11215839 -0.00238335 0.004072694 -0.008839396 0.016702453 0.016954041 0.016450864
0.0963 0.100025988 0.092614277 -0.00333145 0.007670568 -0.014333468 0.021611594 0.021939153 0.021284035
0.0569 0.059481712 0.054352417 -0.00607602 0.008633666 -0.020785698 0.02635535 0.026690808 0.026019892
-0.032 -0.03148381 -0.031919911 -0.0071562 0.009781365 -0.024093762 0.028087973 0.028286913 0.027889034
-0.07 -0.068272079 -0.071107117 -0.00759126 0.012409286 -0.027591798 0.029800577 0.030017898 0.029583255

-0.128 -0.124277839 -0.131830701 -0.00759106 0.014637725 -0.029819848 0.028586606 0.029611903 0.027561309
-0.174 -0.168324812 -0.180110428 -0.00651395 0.017330139 -0.030358047 0.026437927 0.0285255 0.024350353
-0.171 -0.166805796 -0.174460887 -0.00461553 0.023209344 -0.032440401 0.04723095 0.047674141 0.046787759
-0.184 -0.17715397 -0.191270711 0.003599504 0.032718494 -0.025519486 0.029743042 0.033722736 0.025763349
-0.225 -0.218208531 -0.232753427 -0.00522995 0.024459054 -0.034918946 0.033077798 0.034996234 0.031159361
-0.401 -0.387536717 -0.414898052 -0.00068548 0.028192483 -0.029563444 0.022219043 0.024708611 0.019729474
-0.477 -0.461148423 -0.49359337 0.007220201 0.036181815 -0.021741414 0.017837937 0.020126034 0.01554984  

 

 

 

 

Table 61.  Rigid 30 mph Moment Error Data 

l_cg + l_cg Error - l_cg Error m_cg + m_cg Error - m_cg Error n_cg + n_cg Error - n_cg Error
1.3333 1.371888517 1.294720465 0.014143045 0.05031592 -0.02202983 -0.042941051 -0.0410399 -0.044842203
1.3167 1.354772237 1.278540403 0.017387181 0.052150157 -0.017375795 -0.04046032 -0.038669 -0.042251642
1.2517 1.287919126 1.215405401 0.017881139 0.047934881 -0.012172604 -0.035267244 -0.03370584 -0.036828647
1.1341 1.167100415 1.10109752 0.025694066 0.046614417 0.004773715 -0.010606873 -0.01013727 -0.011076475
1.0403 1.070743181 1.009937967 0.026882586 0.039344911 0.014420262 0.008690143 0.00907489 0.008305396
0.9538 0.981867563 0.92582425 0.027767372 0.039454586 0.016080158 0.028847285 0.030124467 0.027570104
0.8176 0.841789995 0.793363283 0.015654388 0.04728664 -0.015977864 0.052466541 0.054789449 0.050143634
0.7675 0.790584663 0.744464498 0.015086108 0.071046829 -0.040874612 0.096072764 0.100326232 0.091819296
0.7027 0.724222176 0.681232367 0.011561916 0.09332582 -0.070201988 0.1422607 0.148559039 0.13596236
0.5672 0.58500206 0.549355048 0.002322017 0.109650867 -0.105006833 0.182369577 0.190443707 0.174295446
0.3674 0.379625534 0.355134969 -0.01690302 0.115515589 -0.149321624 0.217788432 0.227430756 0.208146107
0.0736 0.077353917 0.069803863 -0.06832491 0.088414321 -0.225064148 0.23180195 0.24206476 0.221539139
-0.432 -0.420167898 -0.444274173 -0.05752236 0.112599112 -0.227643828 0.078624136 0.082105104 0.075143169
-0.826 -0.802552729 -0.849632182 0.001140342 0.171502058 -0.169221375 0.078724617 0.082210103 0.07523913
-1.139 -1.106149921 -1.171305506 -0.05749091 0.120125851 -0.235107678 0.090094841 0.09408367 0.086106011
-1.614 -1.567461975 -1.659747125 -0.02592564 0.154516111 -0.206367392 0.130645839 0.136430008 0.124861671
-2.41 -2.340474723 -2.479563309 -0.0071412 0.171677632 -0.18596004 0.105844181 0.110530248 0.101158113

-3.054 -2.965795915 -3.142707102 0.022913378 0.199037079 -0.153210323 0.088449748 0.092365718 0.084533778  
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Appendix E: Error Analysis 
 

 The limitations section presented an overview of the sources of error in this 

experiment.  This appendix will quantify some of those errors in the 10 mph data runs as 

well as represent the lift, drag and D
L  versus angle of attack plots with the quantified 

errors indicated as error bars on the data lines.  The same analysis was also performed on 

the 30 mph data and results presented to provide a parametric comparison of the relative 

magnitudes of the errors in both sets of data.  Lastly, an analysis on the impact of variable 

battery placement within the electronics bay of the MAV was quantified as changes in the 

CG and the associated effects on the moment coefficients plotted as error bars. 

 
Sources of Error 

 The accuracy of the balance is the largest contributor to the error accumulation in 

each measurement.  The ABLE Company’s specification sheets state the accuracy of the 

MK II 8 lbf balance is 0.25% of full scale.  Table 62 shows the smallest point-to-point 

difference each of the six sensors can accurately discern. 
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Table 62.  Balance Sensor Accuracies 

Sensor Accuracy 

 
N1 8 lbf * (0.25/100) = 0.020 lbf 

 
N2 8 lbf * (0.25/100) = 0.020 lbf 

 
S1 5 lbf * (0.25/100) = 0.01250 lbf 
 

S2 5 lbf * (0.25/100) = 0.01250 lbf 
 

A1 5 lbf * (0.25/100) = 0.01250 lbf 
 
ℓ 2 in-lbf * (0.25/100) = 0.0050 in-lbf 

 

Recall from equation (17), the sensor forces resolve into axial, side and normal forces as 

follows: 
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In addition, recall equation (19), which is used to calculate the lift and drag on the MAV: 
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The yaw angle, ψ, was zero during the alpha sweep tests; therefore, the equations used to 

calculate the lift and drag on the MAV reduce to: 
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    (33) 

 
The axial force dominates the drag data, while the normal force dominates the lift data.  

Doing a simple ratio comparison, the drag is comprised of approximately 80% axial force 

and 20% normal force, and the lift is comprised of about 80% normal force and 20% 

axial force. Table 63 shows an excerpt of the data taken from the flex wing MAV 10 mph 

alpha sweeps run.  It is clear from the drag data at the lower angles of attack the 

measured forces are smaller than the axial force sensor is qualified to measure.  Further, 

the lift data is not much higher than the accuracy of the normal force sensor. 

Table 63.  Sample 10 mph Drag and Lift Data 

αcorrected Drag (lbf) Lift (lbf)
-3.8881 0.003227336 0.072377041
-2.0294 0.005980339 0.117109837
0.1953 0.011601148 0.167269583
2.3947 0.018264374 0.207728002
4.4899 0.027211448 0.244132801
6.6252 0.037315801 0.26187838
8.7189 0.047642925 0.29590438
10.882 0.062476331 0.289563329  

 
 The next source of error is the quantization of the analog to digital converter 16-

bit data acquisition card.  The error in the A/D card conversion is 10 Volts / 216 = 

0.000152588.  Another source of error is in the calculation of the test tare forces, which 

were calculated from substituting the test angles of attack into the polynomials generated 
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for each sensor by curve fitting a 4th degree polynomial to the tare alpha data.  Table 64 

shows the reduced normal and axial force tare data used in the alpha sweeps test runs. 

 
Table 64.  Normal and Axial Force Reduced Tare Data 

AOA (α) Yaw (Ψ) U∞ N1 N2 A1
-4.087 0 0 -0.03117 0.03256 -0.04889
-2.348 0 0 -0.0212 0.02233 -0.0304
-0.174 0 0 -0.004 0.00569 -0.004
1.826 0 0 0.01225 -0.01006 0.02075
3.913 0 0 0.03013 -0.026 0.047

6 0 0 0.04906 -0.04156 0.07475
8 0 0 0.06833 -0.05713 0.09993

10.087 0 0 0.09147 -0.07527 0.12707
12.087 0 0 0.11213 -0.08931 0.15281
14.174 0 0 0.13713 -0.10807 0.179
16.261 0 0 0.162 -0.12331 0.20525
18.348 0 0 0.1885 -0.141 0.23194
20.522 0 0 0.21615 -0.15731 0.25896  

 
From this data, the following 4th degree polynomials were fit to the above values: 

N1,Test = -0.18020417148281α4  - 0.08562090871270 α3 + 0.52592827703285 α2  + 
 0.44279016874778 α  - 0.00284270657035 
 

N2,Test  = -0.40955714464562 α4 +  0.52851701372319 α3 - 0.21682779198017 α2  -
 0.42318781268620 α  + 0.00428940386610  
 
 
A1,Test  =  2.21383848813841 α4  - 1.78777036601298 α3 +  0.43684931967164 α2 +  
 0.70040167218878 α  - 0.00208421033696 
 

Substituting the test angle of attack into each of these polynomials generates the actual 

test tare forces, which are subtracted from the test forces yielding the unbiased sensor 

forces.   
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Table 65 shows the result of substituting the angle of attack used in the tare run into the 

normal and axial force tare polynomials. 

Table 65.  Tare Forces Evaluated with Tare Polynomials 

AOA (α) N1 N2 A1
-4.087 -0.03173 0.03317 -0.04912
-2.348 -0.0201 0.02123 -0.02992
-0.174 -0.00418 0.005573 -0.00421
1.826 0.0118 -0.0094 0.020626
3.913 0.029819 -0.02546 0.047266

6 0.049174 -0.04185 0.074265
8 0.068934 -0.05774 0.100202

10.087 0.090771 -0.07444 0.127134
12.087 0.112812 -0.09048 0.152713
14.174 0.136911 -0.1072 0.179143
16.261 0.16206 -0.12385 0.205377
18.348 0.18818 -0.14042 0.231578
20.522 0.216326 -0.15756 0.259114   

 

The measured normal and axial force tare values in Table 64 were subtracted from the 

calculated normal and axial force tare values in Table 65  to determine the relative error 

at each angle of attack.  The sum of those errors were divided by the number of 

measurements to calculate the absolute error in the normal and axial force tare 

polynomials.  Table 66 lists the absolute error for the normal and axial force tare 

polynomials. 
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Table 66.  Normal and Axial Sensor Tare Polynomial Error 

Sensor Absolute Error 

 
N1 

 
4.209266569098509e-004 

 
N2 

 
6.283885674453657e-004 

 
A1 

 
2.310254453234565e-004 

 

The major contributors to the experimental error have been computed.  The net effect of 

these errors on both the lift and drag were calculated using a weighted sum based on the 

allocated weighting of axial to normal force sensor influences. Table 67 shows the 

flexible wing MAV’s lift and drag experimental error. 

 
Table 67.  Net Weighted Drag and Lift Errors 

 Drag Lift 

 
10 mph 

 
1.45E-02 

 

 
1.95E-02 

 
 

30 mph 
 

1.45E-02 
 

 
1.95E-02 

 
 

With the lift and drag errors calculated, the error propagation in the 10 mph and 30 mph 

data was calculated using the standard uncertainty equation (Hosni, Coleman, Steele, 

1998): 
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Therefore, the uncertainty equation for the drag coefficient follows as: 
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The uncertainty in the freestream velocity is ±0.4 mph and the uncertainty in the pressure 

transducer used to calculate the air density is 0.5%.  The uncertainty in the lift coefficient 

was also calculated using equation (38), and is: 
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Table 68 lists the propagated errors in the flexible wing MAV 10 mph drag coefficient 
data.  

Table 68.  Flex Wing 10 mph Drag Coefficient Errors 

[∂CD/∂D]^2 [∂CD/∂U∞]^2 [∂CD/∂ρ)]^2 ∆CD error
0.008182442 2.51618E-06 1.00681E-08 0.09047082
0.008018446 8.38197E-06 3.38781E-08 0.08959276
0.008064796 3.18186E-05 1.28225E-07 0.0899819
0.008121993 7.96917E-05 3.20073E-07 0.09056492
0.008014602 0.000173422 7.01071E-07 0.09049157
0.008016524 0.000326205 1.31871E-06 0.09134576
0.008038353 0.000533925 2.15546E-06 0.09259824
0.008166608 0.000940186 3.76573E-06 0.09544925
0.008112852 0.001052312 4.22816E-06 0.09575695
0.00800948 0.00112147 4.53541E-06 0.09557973
0.00801076 0.001233842 4.98986E-06 0.0961748

0.007972495 0.001321883 5.35853E-06 0.09643514
0.008076446 0.001402006 5.64656E-06 0.09738634
0.007978854 0.001466548 5.94263E-06 0.09721802
0.008046079 0.001646748 6.64402E-06 0.09848589
0.00807839 0.002096274 8.44106E-06 0.10091137

0.008058334 0.002610003 1.05242E-05 0.10333858  

 
Table 69 lists the propagated errors in the flexible wing MAV 10 mph lift coefficient 
data. 

Table 69.  Flex Wing 10 mph Lift Coefficient Errors 

[∂CL/∂L)]^2 [∂CL/∂U∞]^2 [∂CL/∂ρ]^2 ∆CL error
0.014760158 0.001265478 5.06363E-06 0.1266124
0.014464328 0.003214261 1.29913E-05 0.1330097
0.014547937 0.006614748 2.66566E-05 0.14556559
0.014651113 0.010308457 4.14028E-05 0.15811696
0.014457393 0.013958959 5.64301E-05 0.1687388
0.01446086 0.016065868 6.49475E-05 0.17490476
0.014500238 0.020596174 8.3147E-05 0.18756215
0.014731594 0.02019621 8.0892E-05 0.18710611
0.014634625 0.019913768 8.0013E-05 0.18608709
0.014448154 0.018873224 7.63264E-05 0.18275039
0.014450463 0.018290203 7.39686E-05 0.1811481
0.014381438 0.017968156 7.28377E-05 0.1800623
0.014568952 0.016872869 6.79553E-05 0.17750993
0.014392908 0.016175544 6.55452E-05 0.1750257
0.014514174 0.016013716 6.46094E-05 0.17490712
0.014572459 0.015878035 6.3936E-05 0.1746838
0.014536281 0.016115003 6.49797E-05 0.17526056  
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 The propagated lift and drag errors are plotted as error bars on the lift and drag 

plots of the 10 mph and 30 mph data respectively. Figure 59 presents the 10 mph and 30 

mph flexible wing MAV drag error bars.  The plot reveals the discrepancies in the drag 

lines are much smaller when the magnitude of the 10 mph errors are taken under 

consideration.  

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-10 -5 0 5 10 15 20 25

Angle of Attack (deg)

D
ra

g 
C

oe
ffi

ci
en

t

Flex 10 mph
Flex 30 mph

F

 
Figure 59.  Flex Wing 10 & 30 mph Drag Error Bars  

 

Figure 60 shows the flexible wing MAV 10 mph and 30 mph lift lines plotted with their 

associated error bars.  This plot reveals the differences in the lift lines are not attributable 

to the propagation of experimental error, but rather are genuinely a result of the 

aeroelasticity of the flexible wings altering the lift slopes.   
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Figure 60.  Flex Wing 10 & 30 mph Lift Error Bars  

 

Figure 61 presents the rigid wing MAV 10 mph and 30 mph drag error bars.  With the 

addition of the error bars, the differences in the drag plots nearly vanish after α = 0°, 

while the differences below α = 0° are in the region where the axial and normal forces are 

smaller than the balance accuracy at those angles. 
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Figure 61.  Rigid Wing 10 & 30 mph Drag Error Bars  

 

Figure 62  shows the rigid wing MAV 10 mph and 30 mph lift error bars.  Unlike the 

flexible wing MAV lift error bar plot, the presence of the error bars on the rigid wing 

MAV lift plot essentially eliminates any discernable differences between the 10 mph and 

30 mph lift data.  As expected, when comparing the flexible and rigid wing MAVs lift 

lines, the rigid lift lines are potentially coincident, while the flexible lift lines still show 

considerable spread resulting from wing deformation under load. 
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Figure 62.  Rigid Wing 10 & 30 mph Lift Error Bars  

 
 Lastly, Figure 63 shows a plot of the lift-to-drag ratio without the presence of 

error bars.  It is obvious from the plot that the 10 mph data is increasing without bounds.  

However, Figure 64 presents the flex 10 mph and 30 mph D
L  with error bars and shows 

the error bars confine the limits of the 10 mph D
L  line.  The maximum 10 mph D

L
 
is 

22.4 and occurs at α = -4°; the maximum D
L  with the absolute error included is 22.4 ± 

101.3.  The maximum 30 mph D
L

 
is 9.6 and occurs at α = -2°; the maximum D

L  with 

the absolute error included is 9.6 ± 1.58. 
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Figure 63.  L/D Without Error Bars 
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Figure 64.  10 mph and 30 mph L/D with Error Bars  
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Battery Placement and the Effects on the CG 

 As stated in the Limitations section, the battery is not fixed inside of the 

electronics bay.  I assume AFRL/MNAV did not create a specific battery compartment 

because they did not assess the effect of the battery location on the CG and subsequent 

aerodynamic performance consequences.  This section will address the amount of 

potential battery movement, quantify the subsequent CG displacement, and calculate the 

respective moment coefficient error bars associated with the potential battery 

displacement. 

 The mass of the battery is 84 gr.  The mass of the flexible wing MAV is 320 gr; 

therefore, the battery comprises 26.25% of the flexible MAV’s mass.  The mass of the 

rigid wing MAV is 360 gr; therefore, the battery comprises 23.33% of the rigid MAV’s 

mass.  The battery was placed inside the electronics compartment and the maximum 

potential displacement was measured in the x-axis from front-to-back and repeated in the 

z-axis from top-to-bottom.  Movement in the y-axis from side-to-side was determined to 

be negligible.  Table 70 summarizes the amount of potential battery displacement and 

associated CG relocation in the x and z-axes. 

 
Table 70.  Battery Displacement and CG Movement 

 x-axis 
Battery 

xCG 
Movement 

z-axis 
Battery 

zCG 
Movement 

 
Flexible 

 
± ¼″ ± 0.0656″ ± ⅛″ ± 0.033″ 

 
Rigid 

 
± ¼″ ± 0.0583″ ± ⅛″ ± 0.029″ 
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Once the potential amount of CG displacement was quantified, the errors in the moment 

coefficients associated with shifting the CG were calculated using equation (34). 

Recall from equation (22), the moments in the wind axes, located at the CG, were 

calculated from: 
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Therefore, applying equation (34) to each of the three moments individually, the 

uncertainties due to the displacement of the CG are readily calculated by: 
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  (37) 

 

 Figure 65 shows the pitching moment versus angle of attack, Cmα, for the flexible 

wing MAV at 10 and 30 mph .  As the velocity increases, the effect of moving the CG 

becomes considerably more pronounced, especially as the angle of attack is increase past 

8°.  At that point, the MAV is angled such that the pitching moment is highly sensitive to 

the location of the CG.  Moment is the product of force and distance.  As the freestream 
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velocity increases, the lifting force increases, causing an increase in the moments.  The 

CG terms in equation (22), which is used to transfer the moments from the mounting 

block/set-screws to the MAV CG, are multiplied by the higher forces rendering larger 

errors than seen at lesser velocities. Figure 66 shows the rigid wing MAV Cmα CG error 

bar plot.  Again, the vehicle is showing much higher sensitivity to a change in the CG at 

30 mph than 10 mph.  In addition, the errors grow increasingly as the angle of attack 

increases.  An interesting aspect of this plot is the effect of the CG on Cmα beyond the 

zero lift line, αLO ≈ 6.5°, begins to increase similar to the much higher angles of attack. 
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Figure 65.  Flexible Wing MAV Cmα with CG Error Bars 
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Figure 66.  Rigid Wing MAV Cmα with CG Error Bars 

 
 The next plot, Figure 67, shows the change in rolling moment with angle of 

attack, Clα, for different sideslip angles.  The magnitude of the errors increase as β 

increases.  In addition, the effect of moving the CG is greater at the lowest angle of attack 

and decrease as α increases.  As the side of the MAV is turned into the flow, changes in 

xCG appear to most heavily influence the errors.  Figure 68 presents the rigid wing Clα 

plot for the one sideslip angle tested.  At the lowest angles of attack, the rigid wing 

MAV’s rolling moment errors are not as large as the flexible wing MAV; however, they 

also do not taper off as much either.  The effect of moving the rigid wing CG on Clα 

appears to be more consistent than in the flexible wing MAV. 
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Figure 67.  Flexible Wing MAV Clα with CG Error Bars 
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Figure 68.  Rigid Wing MAV Clα with CG Error Bars 
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 Figure 69 shows the change in yawing moment with angle of attack, Cnα, for 

different sideslip angles.  Obviously, the placement of the CG has a large impact on the 

magnitude of Cnα.  The errors increase in size as the sideslip angle increases.  

Furthermore, the errors in each curve are exceptionally large in the trough where αstall 

occurs.  The change in the sideslip angle is in the same plane as the yawing moment is 

measured; thereby, increasing the susceptibility to changes in CG location.  Figure 70  

presents the rigid wing Cnα plot for the single sideslip angle tested.  Not only is the shape 

of this curve materially different than the flexible wing MAV, but the location of the 

largest errors associated with a change in CG on the plot differ as well. The largest errors 

are from α = 0° - 8°, and decrease appreciably near αstall.   
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Figure 69.  Flexible Wing MAV Cnα with CG Error Bars 
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Figure 70.  Rigid Wing MAV Cnα with CG Error Bars 
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Appendix F: Strain Gauge Sensors 

 
 
 Metal foil wire strain gauges are a series of thin wire filaments (≈ 0.008″ long) 

wound in a serpentine fashion attached to an epoxy bonded material.  The wire material is 

selected based on the intended application i.e. high heat, long duration, high maximum 

loads, cyclic loading etc.  These wire gauges are attached such that their longitudinal axis 

is in the same direction as the applied load.  The purpose of looping the wires is to 

increase the effective length of wire under load, increasing the resistance.  Figure 71 

shows a standard wire strain gauge with 6 loops (12 wire lengths) and alignment 

placement tabs. 

 

 
Figure 71.  Typical Wire Foil Strain Gauge 
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The resistance of these wires is dependent on the material itself and is calculated by: 
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   (38) 

 

The strain gauge is placed in a Wheatstone Bridge configured similarly to Figure 72.  The 

bridge is comprised of resistors with a fixed resisivity place at 45° to one another.  In 

Figure 72, resistor R3 is actually the strain gauge, which has a variable resistance.  

Voltage is supplied continuously across the bridge, denoted by VS, and the resulting 

output voltage, VO, is measured across the middle legs of the bridge. 

 

 
Figure 72.  Strain Gauge / Wheatstone Bridge Set-Up 

 

The output voltage is calculated by Ohm’s law as follows: 
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When no load is applied to the strain gauge, the resistance across each of the four sensors 

is equal, and the bridge is determined to be balanced, thus VO = 0.  However, when a load 

is applied to the object containing the stain gauge, the wire filaments elongate (↑∆L), 

causing a decrease in the cross sectional area (↓∆A), and an increase in the resistance 

across sensor R3 by the amount ∆R3.  Taking the partial derivative of R with respect to L 

& A: 
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The strain gauge factor, SF, is given by:   
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Substitutiing the above results into Ohm’s law results in: 
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Rearranging the definition for the strain gauge factor and solving for ∆R3: 

 

     33 ** RSFR ε=∆     (43) 

 

Substituting the above result into the equation for Ohm’s law and solving for the strain: 

 

    ( )
SFV

V
RR
RR

SFV
V

S

O

S

O 141

32

2
32 =

+
=ε    (44) 

 

The strain factor and input voltage are known constants supplied by the manufacturer, the 

output voltage is measured with the lab collection device; therefore, the strain is easily 

calculated.  Once the strain is determined, Hooke’s law can be used to calculate the 

stress, σ, in the material by: 

 

    

y Elasticitof  ModulusMaterial
:

*

=

=

E
where

E εσ

   (45) 

 
The force can be calculated from the stress in the material by the relation, F = σ*A.  This 

force is the result output by the tunnel’s LabView module for each strain gauge rosette. 
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