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According to the Lindeberg–Feller Central Limit Theorem [38],
∑
gn will be

asymptotically Gaussian as Ns → ∞ if and only if for all ε > 0 there exists N such

that, for all Ns > N ,

lim
Ns→∞

1

V 2
Ns

Ns−1∑

n=0

∫

|gn|≥εVNs

g2
ndFn (gn) = 0. (58)

Thus, to prove Gaussian convergence, one need only find this value of N that satisfies

Eqn. (58) for every ε > 0.

Using the fact that each symbol has a finite energy, there exists a limit, G, such

that |dn| < G with probability 1. Then, given this limit, the value of N that makes

Eqn. (58) hold is G
ε minn σn

. To see that this is true, consider that, whenever Ns > N ,

G = εN min
n
σn < εNs min

n
σn < εVNs

. (59)

Looking at the integral, we know that

∫

|gn|≥G

g2
ndFn (gn) = 0, (60)

since |gn| < G with probability one. Further, since εVNs
> G,

∫

|gn|≥εVNs

g2
ndFn (gn) ≤

∫

|gn|≥G

g2
ndFn (gn) (61)

= 0 (62)

Q.E .D.

While most digital communications systems meet the assumptions of this proof,

there is one important exception that needs to be mentioned here: BPSK systems.

That is, when D = {±1} or equivalently when D ( R, then any particular σ2
n can
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always be made to be zero by examining φ = π
2

+ ωn. A corollary to this theorem,

that D (ejω) is Gaussian when a limited portion of the σ2
n values are zero, can be

made to apply in these cases.

The problem remains when σ2
n is zero for all n, such as when φ = π

2
and

ω = ±nπ. In this particular case, the theorem and general method breaks down and

<
{
ejφD (1)

}
is only asymptotically Gaussian for φ 6= π

2
. This latter exception results

in a discontinuity in the probability distribution of D
(
ej2π(f−fc)Ts

)
as Ns → ∞ for

these signals. For this one exception, we shall approximate D
(
ej2π(f−fc)Ts

)
as a

Gaussian, and ignore the discontinuity as though it were non–existent. While this

is not quite accurate, applying this assumption leaves the probability distribution

simple to work with. Therefore this approximation shall be applied as necessary for

BPSK signals in this research.

Other than this one exception, this proof shows that d is asymptotically Gaus-

sian for large Ns. But what about small values of Ns, such as are appropriate in

burst communications? In this case, d may not be Gaussian at all. However, it shall

be approximated as a Gaussian. Sec. 4.1 will present some measures of how good this

approximation is. In particular, for a QPSK system, this approximation is shown to

be reasonable for bursts as short as Ns = 8 symbols.

Putting all of these probability distributions together, and given that d is

approximately a multivariate Gaussian random variable, having variance Rd and

mean 0, the probability density function of a received signal can be written as,4

f (x,d) =

(
1

2π

)mNf +Nf
2

det |Rn|−
1
2 det |Rd|−

1
2

× exp

{

−1

2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
d†R−1

d d

}

(63)

4The notation, x†, is used throughout to refer to the conjugate transpose of a vector or matrix
x.
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When x is either known or measured, this probability density function is referred

to as the likelihood function [7]. To the extent that this probability distribution, or

one similar, applies when a signal is present all of the algorithms presented in this

chapter will follow.

Before leaving this discussion, it remains to be shown that previous cyclosta-

tionary properties are consequences of this new model. Since all of these properties

are associated with the second moment signal, a look at that moment is provided

here. For any particular observation length, T , the second moments are,

Ex,d

{
xx†} = Ed

{(
A

2
RφΨd

)(
A

2
RφΨd

)†
}

+ En

{
nn†} (64)

=
A2

4
RφΨRdΨ

†R†
φ + Rn. (65)

Normalizing these moments by the observation length, T = NsTs, and assuming

uncorrelated symbols, Rd = NsI,

1

T
E
{
xx†} =

A2

4Ts

RφΨΨ†R†
φ +

1

T
Rn, (66)

produces the familiar moments of interest. Since the signal contribution does not

change as T increases towards infinity, taking the limit as T → ∞ is a trivial matter.

Looking at the terms following such a limit, the diagonal of the first term is the

power spectral density of the signal,

Ss (f) =
A2

4Ts

|Ψ (f − fc)|2 . (67)
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Likewise, the off–diagonals correspond to the spectral correlation functions for α =

1
Ts

,

S
1

Ts
s (f) = e−j2π τ

Ts
A2

4Ts

Ψ∗
(

f − 1

2Ts

− fc

)

Ψ

(

f +
1

2Ts

− fc

)

, (68)

and, for real signals, for α = 2fc,

S2fc

s (f) = ej2θ A
2

4Ts

|Ψ (f − fc)|2 . (69)

These are the properties that have been exploited previously to produce cyclostation-

ary algorithms. That they are identical to previous results can be seen from [16,21].

Preserving the first two moments of x is one of the key requirements of this

new model. All other moments are of no consequence, since all of the moments of a

Gaussian are completely specified by the first two. As an added benefit, these are the

same moments which drove the development of previous cyclostationary algorithms

cited in Chapt. II. By preserving these moments, it may be possible to gain some

insight into these previous algorithms, and perhaps even to improve upon them.

The best part, however, is that these known moments are now consequences of this

model, rather than the definition of it.

3.1.3 Consequences. The relevance of these subspace formulas lies in the

fact that the signal of interest resides within a smaller subspace than the time–

bandwidth product typically used [67, 43]. This means that, for a known Rφ, a

projection operator can be immediately created, P = RφΨ
(
Ψ†R−1

n Ψ
)−1

Ψ†R†
φR

−1
n ,

which will project the received waveform into the signal’s subspace [54]. Likewise,

an alternate projection operator, I − P, will project the received waveform onto a

noise only subspace.
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As applied to symbol estimation, a filter similar to this projection operator

will be shown to achieve the minimum mean square error among all other filters.

What’s new about this filter is that it can easily be applied to any modulation type

of interest, not just baseband or QPSK signals. Sec. 3.2, next, will develop this

filter, and then Sec. 4.2, in the next chapter, will present its capability through

several examples.

Next, the probability density function in Eqn. (63) allows the application of

classical statistical principles while designing maximum likelihood TDOA estimation

routines for burst communication signals. Previous attempts to do this have been

unsuccessful, as Gardner highlights,

Although classical statistical principles, such as maximum likelihood,
provide an alternative approach, we have not yet found such approaches
to be tractable for the non–Gaussian nonstationary models of inter-
est. [23, p. 1177]

Indeed, since only unbiased maximum likelihood estimators achieve the Cramér–Rao

bound in estimation error, one might anticipate that a maximum likelihood estimator

derived from this model would outperform all other estimators [53]. Sec. 3.3 derives

such an estimate, while Sec. 4.3 shows that it does indeed outperform all other

leading estimators.

Finally, when applied to the detection problem, this projection operator allows

the measurement of signal energy within one subspace, leaving all other received

energy in an orthogonal subspace. This was the one capability energy detection

lacked, which made it fail when the amount of background noise plus interference

changed. The relevance of this technique increases further with the prediction of

Sonnenschein and Fishman that,

In particular, if a measurement orthogonal to the signal can be used
to estimate the actual noise present during the detection interval, the
noise could be tracked through all of its fluctuations. The performance
of detectors, whether or not they are of the radiometric type, would be
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improved by this scheme since it would effectively remove the noise-level
uncertainty. [60, p. 367]

A detector using this scheme will be derived in Sec. 3.4, and likewise tested in Sec. 4.4

of the next chapter to illustrate its potential.

From these three applications alone, the power of the probability density func-

tion given by Eqn. (63) should be obvious.

3.2 Optimal Filters for Symbol Estimation

The first order of business in dealing with any probability model is to estimate

the unknown parameters. Chief among the unknown parameters in a communica-

tions problem is the data vector, d. While this may not necessarily be the first order

of business chronologically, optimal estimates of d are required to develop TDOA

estimation and presence detection algorithms. Therefore, all other application areas

are dependent upon this first one.

This section, therefore, examines several estimates for d. The first estimate is

a single sensor estimate, presented in Sec. 3.2.1. This estimate underlies the appro-

priate filter for demodulating a communications signal, and so it leads to optimal

demodulation filters. The communications symbol estimation problem is then ex-

amined in detail for BPSK signals, since the form of the filter differs from Berger

and Tufts’ work [2]. From this examination, Sec. 3.2.2 presents a new result showing

how to predict the consequences of either a poor receiving filter or poor carrier and

bit synchronization. After predicting performance, theoretical bounds for estimating

d are then derived in Sec. 3.2.3. Finally, Sec. 3.2.4 shows how to extend this single

sensor estimate for d to multi–sensor estimates.

3.2.1 Single Sensor MMSE Filters. There are two ways to derive estimates

for d, each having a different purpose in this work. The first is to derive a maximum

likelihood estimate. This is the estimate of d that maximizes the likelihood function,

59



or equivalently that maximizes the probability density function once the random

data, x, has been measured. This maximum likelihood estimate is later used in

TDOA estimation and presence detection to derive optimal algorithms based upon

maximum likelihood principles. The second method of deriving an estimate for d

is to derive a Minimum Mean Square Error (MMSE) estimate. This latter estimate

is provably optimal in a Mean Square Error (MSE) sense, and is therefore useful in

developing optimal filters. As this section will show, these two estimates are identical.

To derive the maximum likelihood estimate, let’s start with the logarithm of

the likelihood function, L, and consider everything but d to be known. Because the

logarithm function is monotonic, maximizing the likelihood is equivalent to maxi-

mizing its log, given by

L , ln f (x,d)

= −Nf +mNf

2
ln (2π) − 1

2
ln detRd −

1

2
ln detRn

−1

2

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

− 1

2
d†R−1

d d. (70)

Next, take the gradient of this likelihood function with respect to the conjugate of

the unknown vector d† as described in [64],5

∇d†L =
A

2
Ψ†R†

φR
−1
n x −

(
A2

4
Ψ†R†

φR
−1
n RφΨ + R−1

d

)

d. (71)

Using the fact that Rφ and Rn are diagonal, and that Rφ is unitary, the Rφ terms

inside the parentheses cancel each other out. Once simplified, we set the gradient to

5Since there has been some question as to the validity of the methods presented in [64], this
solution is validated in App. E via more conventional techniques.
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0 and solve for d,

d̂MLE =
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

︸ ︷︷ ︸

Equalizer

Matched Filter
︷ ︸︸ ︷

Ψ†R†
φR

−1
n x. (72)

This produces the maximum likelihood estimate of d, d̂MLE.

Before proceeding to the MMSE estimate, notice that this ML estimate can be

broken into two pieces. The first piece, Ψ†R†
φR

−1
n , maps the received data, x, onto

a vector space having Nf dimensions. As further investigation will show, this part is

equivalent to applying a matched filter for colored noise followed by a downconverter

and sampler. Using this portion of the estimator alone results in symbol estimates

corrupted by some amount of Intersymbol Interference (ISI). The second piece of this

estimate,
(

A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

, operates on a vector space the size of the signal.

Equivalently, it operates on the symbol estimates themselves—just as a Tapped

Delay Line (TDL) equalizer does. Indeed, this portion of the estimate will be shown

to produce a TDL equalizer, having one tap per symbol estimate. Following this

portion, the resulting symbol estimates would have as much ISI removed as the

signal strength allows.

Proceeding, the second estimator of interest is the minimum mean square error

estimate. That is we desire d̂MMSE such that

d̂ (x)
MMSE

, arg min
d̂(x)

E
{(

d̂ (x) − d
)† (

d̂ (x) − d
)}

(73)

The solution to this minimization problem is the conditional expectation, or

d̂ (x)
MMSE

= E {d|x}, which is known for minimizing the mean square error when

an a–priori probability distribution for d is known [53, p. 286]. Since d and x

are Gaussian, the conditional probability distribution of d given x is also Gaussian
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having mean,

E
{

d

∣
∣
∣
∣
x

}

=
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x, (74)

and variance,

E
{

dd†
∣
∣
∣
∣
x

}

=

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

. (75)

Therefore, the MMSE estimate of d is identical to the maximum likelihood estimate,

d̂ (x)
MMSE

=
A

2

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x. (76)

What may not be so obvious is that this minimum mean square error estimate

for d defines an optimal filter for recovering d. To see this, the operation of the

downconverter and sampler, which maps the mNf × 1 vector onto an Nf × 1 vector,

needs to be separated from the operation of the filter which applies a scale factor

to each input value. It is this latter operation that we are interested in. These

two operations may be separated by rewriting Eqn. (76) in terms of the individual

elements composing the data estimate, d̂ (x)
MMSE

.

For example, if {dn} is a complex valued sequence, then only the symbol rate

redundancy given in Eqn. (46) applies. From this redundancy, the matrices Rφ, Ψ

and Rn are defined. Using these matrices, then, we solve for D̂
(
ej2π(f−fc)Ts

)
in terms

of the operation applied to each individual input frequency component of XT (fi),

D̂
(
ej2π(fi−fc)Ts

)
= e−jθej2π(fi−fc)τ · H (fi)XT (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH

(

fi + 1
Ts

)

XT

(

fi + 1
Ts

)

.

(77)
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While the complex constants in Eqn. (77) refer to the downconversion and sampling

process, the operator, H (f), applied to the input waveform is the filter of interest.

Using Eqn. (76) to define H (f), and solving, we get the optimal filter for a complex

baseband signal,

H (f) =













1

1 +
A2

4Ts

bfTsc∑

n=−∞

∣
∣
∣Ψ
(

f − n
Ts

− fc

)∣
∣
∣

2

Sn

(

f − n
Ts

)













AΨ∗ (f − fc)

2TsSn (f)
. (78)

When the signal is bandlimited, this filter is equivalent to Berger and Tufts’ filter

in Eqn. (16). Since all practical signals are bandlimited, this filter is equivalent for

all practical purposes. However, this filter is only optimal for systems of complex

symbols, where there are no redundancies other than the symbol rate. It is not the

optimal filter for a BPSK system.

For a bandlimited BPSK system the optimal filter is still given in Eqn. 76, only

the forms of Rφ and Ψ have changed. These matrices, Rn, Rφ, Ψ, and Rd are given

by Eqn. (48) earlier, and samples of them are provided in App. B. To calculate the

form of this filter, we again arrange Eqn. (76) in terms of the individual components

composing one data frequency estimate,

D̂
(
ej2π(fi−fc)Ts

)
= e−jθej2π(fi−fc)τ ·H (fi)XT (fi)

+ e−jθej2π(fi−fc)τ ·ej2π τ
TsH

(

fi + 1
Ts

)

XT

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ ·H∗ (2fc − fi)X
∗
T (2fc − fi)

+ ejθej2π(fi−fc)τ ·ej2π τ
TsH∗

(

2fc − fi − 1
Ts

)

X∗
T

(

2fc − fi − 1
Ts

)

.

(79)

63



x (t) -
⊗

6

cos (2πfct+ θ)

- LPF - HB (f)
t = nTs + τ

- d̂n

Figure 5. Baseband MMSE (Berger’s) System Diagram

Then, expanding Eqn. (76) to solve for H (f), we see that the minimum mean square

error filter for real digital modulations is

HMMSE (f) =

A
2

Ψ∗(f−fc)
TsSn(f)

1 + A2

4
|Ψ(f−fc)|2

TsSn(f)
+ A2

4

|Ψ(f+ 1
Ts

−fc)|2
TsSn(f+ 1

Ts
)

+ A2

4
|Ψ(fc−f)|2

TsSn(2fc−f)
+ A2

4

|Ψ(fc−f− 1
Ts

)|2
TsSn(2fc−f− 1

Ts
)

,

(80)

for f ∈
(

fc − 1
Ts
, fc

)

.

Both similarities and differences exist between this filter and Berger and Tufts’

MMSE filter in Eqn. (16). Both of these filters meet the structure required by an

optimal receiver filter—they each factor into a matched filter followed by an equalizer

that is periodic in frequency [12]. Each of the equalizers can be implemented by a

TDL. The matched filter in each case is identical to the one presented in Sec. 2.2.

The difference between these two filters lies in the equalizer. The MMSE filter for

BPSK signals has an equalizer that is symmetric about the carrier frequency. This

means it can be implemented with a real valued TDL equalizer, while Berger and

Tufts’ equalizer is not necessarily real valued.

The difference between these two filters can be seen in the design of a system

that would implement them. Fig. 5 shows a block diagram of a system imple-

menting Berger’s MMSE filter. In this diagram, the signal is first multiplied by a

cosine matching its carrier frequency and phase, followed by a low–pass filter (LPF).

Together, these two components downconvert the signal and remove its carrier fre-

quency. Following this downconverter, Berger’s filter is then applied prior to the
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x (t) - HMMSE (f) -
⊗

- LPF
t = nTs + τ

- d̂n
6

cos (2πfct+ θ)

Figure 6. Bandpass MMSE System Diagram

sampler. The alternative, shown in Fig. 6, applies the filter prior to downconvert-

ing the signal. As Sec. 4.2.1 will demonstrate, this arrangement allows the filter to

mitigate narrowband interference before the downconverter makes that interference

worse.

If the MMSE filter specified in Eqn. (80) truly has the minimum mean square

error property, it should be possible to compare its results to other filters that are

known to achieve the minimum mean square error, such as a true matched filter

followed by a linear, adaptive, decision–directed feedback system [25]. Such adaptive

equalizers are driven by the MSE performance criterion and have been shown to

achieve the minimum MSE [30]. If the MMSE filter derived above and described

in Eqn. (76) truly has the minimum mean square error then an adaptive algorithm

will converge to the TDL portion of Eqn. (76). In the next chapter, Sec. 4.2 will

demonstrate that the form of the filter above is identical to a matched filter followed

by a linear adaptive equalizer.

Berger and Tufts’ development did not stop when they specified the filter,

they continued their development by determining the mean square error that one

might measure at the output of the filter between the estimated symbol and the true

symbol. Since the variance in d̂MMSE is given by Eqn. (75), the inverse z–transform

of the variance of d yields the variance of dn [2, 57]. Thus, in the case of a BPSK
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signal, the mean square error at the output of the BPSK MMSE filter should be,

ξ2 , E
{∣
∣
∣dn − d̂n

∣
∣
∣

2
}

= 2Ts

∫ 1
2Ts

0

1





1 + A2

4
|Ψ(f)|2

TsSn(fc+f)
+ A2

4

|Ψ(f− 1
Ts

)|2
TsSn(fc+f− 1

Ts
)

+ A2

4
|Ψ(−f)|2

TsSn(fc−f)
+ A2

4

|Ψ(−f+ 1
Ts

)|2
TsSn(fc−f+ 1

Ts
)






df.

(81)

Again, it is worth pointing out the assumptions that have been used so far.

First, while the MMSE filter may be used for a number of signal types under a large

variety of conditions, assuming the redundancy for bandlimited BPSK signals given

in Eqn. (48), together with equiprobable independent bits, Rd = NsI, led us to the

conclusions in Eqn. (80) and Eqn. (81). Breaking either of these assumptions would

invalidate these two equations but not the equation for the general MMSE filter

given by Eqn. (76).

3.2.2 Predicting Demodulator Performance. The structure used in the

previous section provides insight into how a receiver operates when it determines the

underlying bit sequence. In particular we see from Eqn. (79) how each component of

the signal is used to determine the underlying bits. This section will take that same

equation one step further by using it to estimate the performance of an arbitrary

filter. This performance will first be estimated in terms of mean square error, and

then these estimates will be extended to bit error rates.

The approach that accomplishes this is straightforward: calculate the mean

square error between D̂
(
ej2π(f−fc)Ts

)
and D

(
ej2π(f−fc)Ts

)
as a function of frequency,

f , in terms of the filter, H (f), the pulse function, Ψ (f) and the synchronization

parameters τ and θ. Integrating this mean square error across frequency, together

with some appropriate normalizations, results in an estimate of the mean square

error between the input and output symbols.
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Before starting, a couple of new terms need to be introduced, together with

some simplifying assumptions. H (f) will be used to refer to the demodulation filter,

which will be allowed to be arbitrary. Next, we shall assume that the difference

between the estimated symbol epoch and the true symbol epoch, also known as

the synchronization error τδ , τ̂ − τ , is small in comparison to a symbol interval.

Likewise, the difference between the estimated carrier phase and the true carrier

phase, the carrier synchronization error θδ , θ̂ − θ, is also assumed to be small.

Finally, all parameters save the data symbols are assumed known for this analysis.

Starting at the top, the fundamental quantity in this section is the mean square

error. In particular, the mean square error as a function of frequency, ξ2
(
ej2π(f−fc)Ts

)
,

is defined to be,

ξ2
(
ej2π(f−fc)Ts

)
, E

{∣
∣
∣D̂
(
ej2π(f−fc)Ts

)
−D

(
ej2π(f−fc)Ts

)
∣
∣
∣

2
}

. (82)

This mean square error expression can be simplified by using the fact that the signal

and the noise are independent and zero mean. That means that this expression,

containing signal and noise contributions, can be broken into two components, cor-

responding to the mean square error due to the noise plus interference process, n (t),

which shall be denoted ξ2
n

(
ej2π(f−fc)Ts

)
, and the mean square error due to intersym-

bol interference and mis–synchronization ξ2
i

(
ej2π(f−fc)Ts

)
,

ξ2
(
ej2π(f−fc)Ts

)
= ξ2

n

(
ej2π(f−fc)Ts

)
+ ξ2

i

(
ej2π(f−fc)Ts

)
(83)

Having broken this expression into two components, each can be examined separately.

The first component, the error due to the noise, is given by plugging the expres-

sion for D̂
(
ej2π(f−fc)Ts

)
given by Eqn. (79) into Eqn. (82) and paying attention to the

terms containing Sn (f) only. Then, using the definition for Rn given in Eqn. (53),
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this expression becomes,

ξ2
n

(
ej2π(f−fc)Ts

)
= κ2 |H (f)|2 TSn (f)

+ κ2
∣
∣
∣H
(

f + 1
Ts

)∣
∣
∣

2

TSn

(

f + 1
Ts

)

+ κ2 |H (2fc − f)|2 TSn (2fc − f)

+ κ2
∣
∣
∣H
(

2fc − f − 1
Ts

)∣
∣
∣

2

TSn

(

2fc − f − 1
Ts

)

,

(84)

where κ has been introduced to represent an automatic gain adjustment in the

demodulator necessary to minimize the mean square error in case of a filter gain

mismatch. This requirement is driven by the fact that most filters, the matched

filter prominent among them, are specified in a gain independent fashion. Defining κ

makes it possible to compare filters with different gains by allowing the demodulator

to optimally adjust the gain following the filter.

The second component, the error due to intersymbol interference and mis–

synchronization is given similarly. As before, Eqn. (79) is placed into Eqn. (82),

only this time the signal terms are examined instead of the noise terms. In this case,

however, each of the four redundant frequencies is dependent upon the same data

value, D
(
ej2π(f−fc)Ts

)
. Thus, using the expression for Rd given by Eqn. (55), this

expression becomes,

ξ2
i

(
ej2π(f−fc)Ts

)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

κe−jθδej2π(f−fc)τδ · AH (f) Ψ (f)

+ κe−jθδej2π(f−fc)τδ · Aej2π
τδ
TsH

(

f + 1
Ts

)

Ψ
(

f + 1
Ts

)

+ κejθδej2π(f−fc)τδ · AH∗ (2fc − f) Ψ∗ (2fc − f)

+ κejθδej2π(f−fc)τδ · Aej2π
τδ
TsH∗

(

2fc − f − 1
Ts

)

Ψ∗
(

2fc − f − 1
Ts

)

− 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

× NsSd

(
ej2π(f−fc)Ts

)
. (85)
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In the case of random, uncorrelated, data of unit magnitude which we’ve been con-

sidering,

Sd

(
ej2π(f−fc)Ts

)
= 1.

What we wish to know is the mean square error in an arbitrary element, dn, of

the sequence being demodulated. Eqn. (83) gives the mean square error in all of the

elements as a function of frequency. Thus we divide it by the number of elements

that this error is spread over, or Ns, and then take the inverse Fourier transform.

The result,

ξ2 (κ) = 2Ts

∫ 1
2Ts

0

ξ2
(
ej2πfTs

)

Ns

df, (86)

is still a function of the unknown gain, κ.

The best performance that this filter can achieve is given by the gain, κ, that

gives the smallest mean square error. To find this value of κ, we note that both

Eqns. (84) and (85) are quadratic functions of κ. That means that there exist con-

stants, c1, c2, and c3, such that the mean square error can be written as a quadratic

function of κ using these constants,

ξ2 (κ) = c1κ
2 + c2κ+ c3. (87)

These constants can be found by first factoring the ξ2
(
ej2π(f−fc)Ts

)
term in Eqn. (86)

into a quadratic function of κ, and then by integrating the scalar, linear, and

quadratic coefficients that result separately. The minimum of this quadratic, cor-

responding to the optimal MSE, is found when κ = − c2
2c1

. At this point, the MSE
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is,

ξ2 = c3 −
c22
4c1

. (88)

While this is an interesting, and useful, performance measure—the bottom line

in any communication system is always the bit error rate (BER) at the output of the

receiver. When the mean square error is the result of a Gaussian, or approximately

Gaussian, disturbance this BER can be calculated. To get there, however, the mean

and variance of each symbol estimate need to be determined in order to describe this

disturbance.

The mean of the symbol estimate is equivalent to the gain throughout the

entire system. This system gain is defined by,

γ ,
E
{

d̂n

}

dn

, (89)

and calculated by taking the inverse Fourier transform of H (f) Ψ (f − fc), after

adjusting for phase and symbol synchronization errors,

γ = 2κTs

∫ fc+
1

Ts

fc− 1
Ts

<
{

e−jθδej2π(f−fc)τδH (f) Ψ (f − fc)

}

df. (90)

Since the system gain is not necessarily unity, the variance is not necessarily the

mean square error, ξ2. Instead this variance is given by,

E
{∣
∣
∣d̂n − E

{

d̂n

}∣
∣
∣

2
}

= E
{∣
∣
∣d̂n − γdn

∣
∣
∣

2
}

= ξ2 − (1 − γ)2
. (91)

These two values, the mean at the output of the filter, γdn, and the variance at

the output of the filter, ξ2 − (1 − γ)2, fully specify a Gaussian probability distribu-
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tion. If the additional assumption is then applied that the symbol estimates, d̂n,

are statistically independent, calculating the probability of bit error becomes quite

straightforward. This probability is given by [58],

BER = P
[

d̂n > 0
∣
∣ dn = −1

]

P [dn = −1] + P
[

d̂n < 0
∣
∣ dn = 1

]

P [dn = 1]

= Q

(√

γ2

ξ2 − (1 − γ)2

)

, (92)

and is valid as long as the mean square error is caused by a Gaussian disturbance.

In general, however, ISI is not Gaussian and the probability of a bit error in

ISI is much more difficult to calculate. Other techniques, such as those in [34], that

use more appropriate probability distribution functions for ISI give more accurate

estimates of the bit error rate under severe ISI conditions.

The strength of these formulas may not be immediately apparent, and so an il-

lustration will help. Many modern communications systems struggle with the effects

of both colored noise and multipath interference. While both can be compensated

for using a MMSE filter, compensation is only possible when their contribution is

known. The problem is that these contributions, multipath interference and colored

noise, are difficult to estimate. Multipath interference, especially, is a well known

but difficult problem in cellular communications. Further, all communications sys-

tems struggle with some amount of imperfect synchronization. What these formulas

allow a designer to do is to estimate the impact of using a non–optimal solution prior

to implementing and testing that solution with either expensive hardware or large

quantities of computer time.

As to the validity of these formulas, simulations in Sec. 4.2.2 will compare these

estimates to simulated filter performance. From those simulations, Eqn. (88) for the

resulting MSE will be demonstrated to be valid under all circumstances tested. This

again commends the validity of this technique.
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3.2.3 Cramér–Rao Bounds. Returning to the application of a new signal

model, it would be nice not only to determine how well a receiver does work, but also

how well it can work given that several variables need to be estimated. The quantity

used to express this theoretical limit is the Cramér–Rao bound. This bound is derived

mathematically, independent of any received data, and it forms a lower limit on the

mean square error achievable by any estimator [53, 7]. Demonstrating this bound

will help to further demonstrate the potential of this signal model when applied to

communications signals.

The Cramér–Rao bound is easily specified for a single variable, such as τ , where

it is [7, 53]

CRB (τ) =
1

Ex

{
−∂2L

∂τ2

} , (93)

where Ex {·} refers to an expected value taken over the random variable x and L is

the log of the likelihood function as before. This bound, however, is dependent upon

the message content, d. To remove this dependence, we follow D’Andrea’s lead and

switch to the Modified Cramér–Rao Bound (MCRB) [9]. The difference between

the MCRB and the CRB is a second expectation taken over the random message

variable, d, as well. Thus the modified bound, for τ is,

MCRB (τ) =
1

EdEx

{
−∂2L

∂τ2

} . (94)

D’Andrea et al. prove that this bound is lower than the true CRB, and so it remains

a valid lower bound on estimation error [9].

In the case where multiple parameters need to be estimated at the same time,

these equations change somewhat. In this case, the CRB is a matrix quantity given
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by the inverse of the matrix whose elements are,

(FIM)ij = E
{

− ∂2

∂ρi∂ρj

L
}

(95)

where ρi is the ith parameter of the likelihood function. Likewise if ρ is a vector

containing all of the parameters to the likelihood function, this matrix is given by,

(FIM) = E
{
−∇2

ρL
}
. (96)

This matrix is common to multi–sensor developments and is known as the Fisher In-

formation Matrix (FIM) [53]. The ith diagonal element in this inverse is the Cramér–

Rao bound of ρi. As before, taking the expectation over the random variable x

produces the true CRB, whereas taking it over both x and d produces the MCRB.

Before demonstrating this technique, it is convenient to define a new mNf ×
mNf matrix, Fδ, to make it easier to specify the derivative of Rφ with respect to τ .

Fδ ,
1

−j2π

(
∂

∂τ
Rφ

)

R†
φ (97)

=








(f1 − fc) 0 · · ·
0 (f2 − fc) · · ·
...

...
. . .








(98)

Using this matrix, ∂
∂τ

Rφ can be expressed as − 1
j2π

FδRφ.

Fδ makes it easy to express the diagonal terms of the FIM corresponding to

partials with respect to τ , A, and d. These diagonals are derived in App. J and
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shown here as,6

EdEx

{

−∂
2L
∂τ 2

}

= A2π2tr
{
ΨRdΨ

†R−1
n F2

δ

}
, (99)

EdEx

{

−∂
2L
∂A2

}

=
1

4
tr
{
ΨRdΨ

†R−1
n

}
(100)

and EdEx

{
−∇2

dL
}
, =

A2

4
Ψ†R−1

n Ψ + R−1
d . (101)

In addition, all of the cross terms, such as the partial with respect to A followed by

τ etc., go to zero (see App. J). That makes inverting this expression to determine

the Cramér–Rao bounds simple. The bounds are, therefore,

MCRB (τ) =
1

A22π2

1

tr {ΨRdΨ†R−1
n F2

δ}
, (102)

MCRB (A) =
4

tr {ΨRdΨ†R−1
n } , (103)

and MCRB (d) =

(
A2

4
Ψ†R−1

n Ψ + R−1
d

)−1

(104)

Of these three expressions, the last one is the most familiar. That expression

was presented earlier in Eqn. (81) to express the mean square error achieved by

the BPSK MMSE filter. That means that this MMSE filter, derived under the

assumption that the signal is Gaussian, achieves the theoretical limit in estimation

performance.

3.2.4 Dual Sensor MMSE Filters. The same principles that have been

used in the last two sections to derive optimal single sensor filters can be extended to

derive an optimal multi–sensor filter. In this subsection, we derive these multi–sensor

filters, demonstrating them through the design of a two sensor MMSE filter for BPSK

signals. This new development begins with adjusting the model so that it describes

6tr {·} is used here to represent the trace operator. This operator may be applied to a matrix,
and returns the sum of the diagonal entries of its argument.
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the multi–sensor reception problem, then the filter is derived from matrix equations

as before. Finally, the subsection ends by specifying the filter in a conventional

manner and stating the MSE achieved by this filter.

The first step, however, is to work with the model. Several minor changes are

required to the signal model presented in Eqn. 1 to accommodate multiple sensors.

The first, most obvious change, is that the signal may be present on each sensor.

It may have a time delay difference, τdi , τi − τ0 between sensors, a phase delay

between sensors, θdi, θi − θ0, and possibly a separate gain on each sensor, Ai.

xi = Ai<
{

Ns−1∑

n=0

dnψ (t− nTs − τ0 − τdi) e
j[2πfc(t−τdi)+θ0+θdi]

}

+ ni (t) . (105)

Assuming that all of these quantities are known, the Fourier transform of the signal

on the ith sensor may be written as,

Xi (f) =
Ai

2

(
ejθdie−j2πfτdi

) (
ejθe−j2π(f−fc)τ

)
Ψ (f − fc)D

(
ej2π(f−fc)Ts

)
+NT,i (f),

(106)

where θ and τ have been used instead of θ0 and τ0 respectively.

The redundancies in this model increase linearly with the number of sensors.

For a two sensor BPSK problem, for example, there are now eight received values that

might provide insight into D
(
ej2π(f−fc)Ts

)
instead of the four values we have been

using. Writing these values out, however, requires first introducing a new matrix,

Di. This matrix is very similar to Rφ in that it is complex, unitary, and diagonal.

The diagonal elements, however, are slightly different. For the four co–dependent
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frequencies of f , this matrix is,

Di (f) ,










ejθdie−j2πfτdi 0 0 0

0 ejθdie−j2π(f+ 1
Ts

)τdi 0 0

0 0 e−jθdie−j2π(2fc−f)τdi 0

0 0 0 e−jθdie−j2π(2fc−f− 1
Ts

)










.

(107)

As with Rφ and Rn, Di is formed by replicating the matrix in Eqn. (107) until it has

one row and one column for each of the mNf frequencies that the signal occupies.

Defining this matrix allows the received waveform to again be written in vector form.

Only this time the form reflects multiple sensors,




x0

x1





︸ ︷︷ ︸

x

=
1

2




Rφ 0

0 D1Rφ





︸ ︷︷ ︸

RΦ




A0Ψ

A1Ψ





︸ ︷︷ ︸

Ψm

d +




n0

n1





︸ ︷︷ ︸

n

. (108)

This equation is quite similar to Eqn. (52) (page 50). Writing it in the form of

Eqn. (52), however, requires four new definitions. First, define x and n to be the

vectors of multi–sensor inputs and noise respectively. Then define RΦ to be the

multi–sensor matrix containing all of the phase terms, including both Rφ and D1.

Finally, define Ψm to be a multi–sensor Ψ matrix, but this time one that includes

the gain terms A0 and A1. Once accomplished, a received vector can be created

describing the inputs from all of the sensors at once,

x =
1

2
RΦΨmd + n. (109)

A second change to the model is to admit cross correlations between the sensors.

These correlations, or cross spectral densities, were defined in Eqn. (5) on page 13.
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In order to use these densities, however, they need to be arranged in a matrix form

as in,

Rn ,




Rn,0 E

{

n0n
†
1

}

E
{

n1n
†
0

}

Rn,1



 , (110)

where the new off–diagonal elements are themselves diagonal matrices whose ele-

ments are given by

E
{

n0n
†
1

}

ii
= E

{
NT,0 (fi)N

∗
T,1 (fi)

}
≈ TS01 (fi) . (111)

This fundamentally changes the structure of Rn from a diagonal matrix to an M×M
block matrix with diagonal mNf ×mNf submatrices.

From this point the development is almost identical to the BPSK MMSE devel-

opment in Sec. 3.2.1. The MMSE data estimate is derived identically to the previous

development—only this time the R†
ΦR−1

n RΦ term cannot be simplified,

d̂MMSE =
1

2

(
1

4
Ψ†

mR†
ΦR−1

n RΦΨm + R−1
d

)−1

Ψ†
mR†

ΦR−1
n x. (112)

Looking at the dimensions of the components of this matrix equation, the same

structure is present that was found in the single sensor filter. This time, however,

the matched filter front end includes not only the downconverter and sampler, but

a signal combining operation as well. The TDL equalizer has the same number of

dimensions as before. This equation is factored, just like before (See Eqn. (79)), into
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a set of filters operating on the received data from each sensor,

D̂
(
ej2π(fi−fc)Ts

)

= e−jθej2π(fi−fc)τ · H0 (fi)x0 (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH0

(

fi + 1
Ts

)

x0

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ · H∗
0 (2fc − fi)x

∗
0 (2fc − fi)

+ ejθej2π(fi−fc)τ · ej2π τ
TsH∗

0

(

2fc − fi − 1
Ts

)

x∗0

(

2fc − fi − 1
Ts

)

+ e−jθej2π(fi−fc)τ · H1 (fi)x1 (fi)

+ e−jθej2π(fi−fc)τ · ej2π τ
TsH1

(

fi + 1
Ts

)

x1

(

fi + 1
Ts

)

+ ejθej2π(fi−fc)τ · H∗
1 (2fc − fi)x

∗
1 (2fc − fi)

+ ejθej2π(fi−fc)τ · ej2π τ
TsH∗

1

(

2fc − fi − 1
Ts

)

x∗1

(

2fc − fi − 1
Ts

)

,

(113)

for f ∈
(

fc − 1
Ts
, fc

)

.

All that remains is to specify the forms of these filters and their associated

equalizer. Multiplying out Eqn. (112), the optimal filters are,

H0 (f) =
1

2
HEQ (f)

A0Sn,1 (f) − A1e
−jθdej2πfτd1Sn,01 (f)

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
Ψ∗ (f) (114)

and

H1 (f) =
1

2
HEQ (f)

−A0S
∗
n,01 (f) + A1e

−jθdej2πfτd1Sn,0 (f)

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
Ψ∗ (f) . (115)
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x0 (t) - H0 (f)

?

x1 (t) - H1 (f)

6

⊕
-
⊗

- LPF
t = nTs + τ

- d̂n
6

cos (2πfct+ θ)

Figure 7. Dual Sensor MMSE System Diagram

The equalizer, however, is much more complicated than the single sensor equalizer.

In this case the equalizer, HEQ (f), is given by,

HEQ (f) =
1

1 + 1
4

∣
∣
∣Ψ (f − fc)

∣
∣
∣

2

a†R−1
n (f) a

+ 1
4

∣
∣
∣Ψ
(

f + 1
Ts

− fc

)∣
∣
∣

2

a†R−1
n

(

f + 1
Ts

)

a

+ 1
4

∣
∣
∣Ψ (fc − f)

∣
∣
∣

2

a†R−1
n (2fc − f) a

+ 1
4

∣
∣
∣Ψ
(

fc − f − 1
Ts

)∣
∣
∣

2

a†R−1
n

(

2fc − f − 1
Ts

)

a

(116)

where

a†R−1
n (f) a =

A2
0Sn,1 (f) + A2

1Sn,0 (f) − 2A0A1<
{
e−jθd1ej2πfτdiSn,01 (f)

}

Sn,0 (f)Sn,1 (f) − |Sn,01 (f)|2
.

(117)

As before, this equation only specifies the filter for frequencies from fc − 1
Ts

to fc.

For frequencies from fc to fc + 1
Ts

, the sign of the 1
Ts

terms needs to flip.

Implementing this filter in practice requires some small modifications to the

system appropriate for a single sensor. In particular, each sensor is filtered separately

and then the results are summed together. This sum is then down–converted and

sampled as shown in Fig. 7.

Calculating the MSE at the output of this filter is similar to calculating the

MSE at the output of the single sensor filter given in Eqn. (81). In this case the
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MSE is,

ξ2 = 2Ts

∫ fc

fc− 1
2Ts

HEQ (f) df. (118)

Likewise the MCRB on the vector d, according to this model,7 is

MCRB (d) =

(
1

4
Ψ†

mR†
ΦR−1

n RΦΨm + R−1
d

)−1

. (119)

This implies that further improvements in symbol estimation cannot be had without

a better way of representing the true discrete probability distribution of a signal.

Further development, not presented here, could easily take this one step farther

in order to specify what the MSE would be under arbitrary receiver conditions.

Such a development would be nearly identical to that in Sec. 3.2.2, save that minor

modifications would need to be made for the non–diagonal covariance matrix, Rn.

In conclusion, this subsection has shown how the signal model first presented

in Sec. 3.1 can be extended to derive multi–sensor filters for BPSK systems. Filters

created using this model will be tested in Sec. 4.2.3 under extreme interference con-

ditions. These simulations will demonstrate that the addition of even one additional

sensor improves performance in highly correlated noise environments over the single

sensor BPSK MMSE filter. Further, this gain holds even if the signal is only present

on one sensor!

3.3 Estimating Time Difference of Arrival

Having developed several estimates of d, we now proceed to the second appli-

cation area of estimating the unknown Time Difference of Arrival (TDOA) between

7Modified Cramér–Rao bounds for the parameters τdi, and Ai will be presented in the TDOA
section, 3.3. As with the single sensor case, estimating these parameters does not reduce the
theoretical capability of the receiver in terms of MSE.
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two received signals. To estimate this TDOA, we again turn to “classical statistical

principles,” and in particular to the “maximum likelihood” estimation problem that

others have found so difficult to accomplish in the past [23, p. 1177], Streight’s

recent work excepted [61]. Using these principles, this section derives the maxi-

mum likelihood function for estimating TDOA and then presents several practical

approximations to that algorithm. Finally, this section concludes by examining the

Cramér–Rao bound for TDOA estimation.

The maximum likelihood TDOA estimator is derived from a modified version

of the model presented in Sec. 3.1 and in particular from Eqn. (52). In this modified

model, we assume the signal subspace method applies for some initial, reference,

sensor as before. All of the other sensors then have delayed versions of this signal

relative to the reference. Thus the signal received on the reference sensor, sensor 0,

can be written as

x0,SIGNAL =
A0

2
RφΨd, (120)

where the definitions of Rφ, Ψ, and d remain unchanged from the initial signal

model. The signal, as it arrives on the other sensors, differs from the reference

in two respects. The first difference is that the other sensors may experience a

different delay, τdi, with respect to the reference. The second difference is a potential

phase difference, defined as θdi , θi − θ0, where θi is the received phase on the ith

sensor. This dependence is captured by the matrix, Di, introduced in Eqn. (107)

on page 76, which contains both delay difference and phase terms and is defined so

that the received signal on the ith sensor may be written as,

xi =
Ai

2
DiRφΨd + ni, (121)
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where D0 = I and where xi is Gaussian distributed with mean, Ai

2
DiRφΨd, and

variance Rni,

xi ∼ N
(
Ai

2
DiRφΨd,Rni

)

. (122)

A similar comment needs to be made regarding the noise probability distribu-

tion on multiple sensors. The following discussion assumes that the noise contribu-

tions to each sensor, ni, are uncorrelated,

E
{

nin
†
j

}

i6=j
= 0. (123)

This simplifies the overall covariance matrix, from block diagonal to purely diagonal.

The log likelihood of receiving signals from M sensors, x0 through xM−1, then

separates into a sum,

L = − mNfM +Nf

2
ln (2π) − 1

2
ln det |Rd| −

1

2

M−1∑

i=0

ln det |Rni|

− 1

2

M−1∑

i=0

x
†
iR

−1
ni xi +

Ai

2
<
{

x
†
iR

−1
ni DiRφΨd

}

− A2
i

8
d†Ψ†R†

φD
†
iR

−1
ni DiRφΨd

− 1

2
d†R−1

d d.

(124)

Using the same method as before, the multi–sensor maximum likelihood estimate of

d can be derived:

d̂MML =

(
M−1∑

i=0

A2
i

4
Ψ†R−1

ni Ψ + R−1
d

)−1

Ψ†R†
φ

M−1∑

k=0

Ak

2
D†

kR
−1
nk xk. (125)
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If you plug this value into the log likelihood function, and drop all of the

constant terms, the result is a new equation to maximize:

τ̂d,ML = arg max
τd

(
M−1∑

i=0

Ai

2
x
†
iR

−1
ni Di

)

RφΨHEQΨ
†R†

φ

(
M−1∑

k=0

Ak

2
D†

kR
−1
nk xk

)

, (126)

where

HEQ ,

(
M−1∑

k=0

A2
k

4
Ψ†R−1

nkΨ + R−1
d

)−1

.

It is interesting to note that, in the case where no redundancy is present such that

Ψ reduces to an Nf × Nf diagonal matrix and Rφ is the identity, this equation

reduces to the optimal filter for stationary TDOA estimation presented in Eqn. (24)

of Sec. 2.3.1. This alone suggests that this estimator may have some optimality

properties associated with it.

Unfortunately, this equation depends upon the unknown received signal gains

inside a matrix inverse expression. Without simplifying this inverse in some manner,

solving this system will require some amount of numerical iteration to determine the

unknown gains, Ai. An alternate method, appropriate when the signal is weak on all

sensors, would be to approximate HEQ with Rd. If this approximation is accepted,

the low–SNR method for estimating the time–difference of arrival of a signal across

M sensors is,

τ̂d,LOW-SNR = arg max
τd

(
M−1∑

i=0

Aix
†
iR

−1
ni Di

)

RφΨRdΨ
†R†

φ

(
M−1∑

k=0

AkD
†
kR

−1
nk xk

)

.

(127)

At this point, rather than tackling this multi–variate optimization problem,

it is worth noting that this estimate alone is a new result. While it is similar to

Streight’s low–SNR approximation to the maximum likelihood two sensor TDOA

estimate given in Eqn. (29) [61], four differences separate the two estimators. The
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first difference is that Streight’s estimator was developed for white noise environ-

ments, where the covariance on the kth sensor, Rnk, was proportional to the identity

matrix, and then applied in colored noise environments, Rnk 6∝ I. It is reasonable to

assume that applying the overwhitener portion of this estimator, R−1
nk , under colored

noise conditions would provide a significant increase in performance. Second, while

Streight’s estimator expands into a sum of terms as well,
∑

i,j x
†
i · · ·xj, his estimator

does not include the term containing x0 twice. While this term does not contain

the “parameter of interest” [61, p. 75], τdi, it does contain the nuisance parame-

ters τ and θ that need to be estimated. Third, Streight assumes that the spectral

correlation functions are unknown, whereas this estimator specifies them explicitly.

The fourth difference is that this estimate can be compared with the optimal TDOA

estimator under all SNR conditions given in Eqn. (126). Given that there are so

many differences between the most similar two sensor cyclic TDOA estimator and

this one, it seems prudent to first outline and validate these differences on the sim-

pler, two–sensor problem and to reserve the multi–variate optimization problem for

future work.

The rest of this chapter, then, is divided into three subsections. The first sub-

section is devoted to a thorough solution of the two sensor TDOA estimation prob-

lem. The second subsection, following the single cycle reasoning presented in [23],

presents a single cycle approximation to this detector. Finally, the last subsection cal-

culates several Modified Cramér–Rao Bounds (MCRB) appropriate for cyclic TDOA

estimation.

3.3.1 Dual Sensor TDOA Estimation. This subsection describes a thor-

ough solution of the two sensor TDOA estimation problem, focusing in particular

on three parts that have not been addressed before. The first part is estimating

the nuisance parameters, θd1 and τ . Because the assumption has always been made

that the spectral correlation function was entirely known, these angles have always

been estimated as part of estimating the whole spectral correlation function. The
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assumption here, that this correlation function is known, necessitates estimating θd1

and τ for the first time. The second part of the two sensor problem is how to achieve

subsample TDOA resolution. This results in an interpolation problem that has not

been addressed before among cyclostationary TDOA estimators. Not interpolating,

however, has resulted in misleading results in both [24] and [61] as Sec. 4.3.1 will

demonstrate. The third part of the problem revolves around what to do with the

unknown gain terms. All of these three parts to the TDOA estimation problem can

be demonstrated with a QPSK signal alone, therefore this section will focus only on

the redundancies present in a QPSK signal.8

Determining the nuisance parameters can be done by simplifying Eqn. (127)

above. The first step is to eliminate the terms depending upon more than two

sensors,

(τ̂d)2D,LOW-SNR
= arg max

τd

max
θd,τ

A2
0x

†
0R

−1
n,0RφΨRdΨ

†R†
φR

−1
n,0x0

+ A2
1x

†
1R

−1
n,1D1RφΨRdΨ

†R†
φD

†
1R

−1
n,1x1

+ 2A0A1<
{

x
†
0R

−1
n,0RφΨRdΨ

†R†
φD

†
1R

−1
n,1x1

}

.

(128)

Then, plugging in the appropriate equations for a QPSK signal, and dropping the

power terms that contain no information regarding either the TDOA parameter of

8Application to BPSK signals will require estimating the additional reference angle θ. It also
includes 6 more cyclic spectral terms. Thus, considering QPSK only is a matter of simplification
as well.
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interest or the nuisance parameters, the maximization problem takes the form,

τ̂d = arg max
τd

max
τ,θd

A0A1

∑

fi

|Ψ (fi − fc)|2 <
{

e−jθd
X∗

0 (fi)X1 (fi) e
j2πfiτd

Sn0
(fi)Sn1

(fi)

}

+ A0A1

∑

fi

∣
∣
∣
∣
Ψ

(

fi +
1

Ts

− fc

)∣
∣
∣
∣

2

<






e−jθd

X∗
0

(

fi + 1
Ts

)

X1

(

fi + 1
Ts

)

ej2π(fi+
1

Ts
)τd

Sn0

(

fi + 1
Ts

)

Sn1

(

fi + 1
Ts

)







+ <







ej2π τ
Ts

∑

fi

Ψ (fi − fc) Ψ∗
(

fi +
1

Ts

− fc

)













A2
0

X∗
0 (fi)X0(fi+

1
Ts

)
Sn0

(fi)Sn0(fi+
1

Ts
)

+ A2
1

X∗
1 (fi)X1(fi+

1
Ts

)
Sn1

(fi)Sn1(fi+
1

Ts
)
ej2π

τd
Ts

+ A0A1e
−jθd

X∗
0 (fi)X1(fi+

1
Ts

)
Sn0

(fi)Sn1(fi+
1

Ts
)
ej2π(fi+

1
Ts

)τd

+ A0A1e
jθd

X∗
1 (fi)X0(fi+

1
Ts

)
Sn1

(fi)Sn0(fi+
1

Ts
)
e−j2πfiτd



















.

(129)

Several unknowns persist in this equation. These are the TDOA parameter,

τd, together with the nuisance parameters A0, A1, θd, and τ . In order to separate

the problem of solving for the TDOA, τd, from the related problem of solving for the

other parameters, we break this equation into parts corresponding to functions of τd

and functions of the nuisance parameters. This yields the expression,

τ̂d = arg max
τd

max
τ,θd

<







A0A1e
−jθdB0 [τd]

+ A0A1e
−jθdej2π τ

TsB1 [τd]

+ A0A1e
−jθde−j2π τ

TsB2 [τd]

+ A2
0e

j2π τ
TsB3

+ A2
1e

j2π τ
Ts ej2π

τd
TsB4







, (130)
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where the Bi terms are defined as,

B0 [τd] ,
∑

fi






|Ψ(fi−fc)|2
Sn,0(fi)Sn,1(fi)

X1 (fi)X
∗
0 (fi) e

j2πfiτd

+
|Ψ(fi+

1
Ts

−fc)|2
Sn,0(fi+

1
Ts

)Sn,1(fi+
1

Ts
)
X1

(

fi + 1
Ts

)

X∗
0

(

fi + 1
Ts

)

ej2π(fi+
1

Ts
)τd




 ,

(131)

B1 [τd] ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,0 (fi)Sn,1

(

fi + 1
Ts

) X∗
0 (fi)X1

(

fi +
1

Ts

)

ej2π(fi+
1

Ts
)τd , (132)

B2 [τd] ,
∑

fi

Ψ∗ (fi − fc) Ψ
(

fi + 1
Ts

− fc

)

Sn,0

(

fi + 1
Ts

)

Sn,1 (fi)
X∗

0

(

fi +
1

Ts

)

X1 (fi) e
j2πfiτd , (133)

B3 ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,0 (fi)Sn,0

(

fi + 1
Ts

) X∗
0 (fi)X0

(

fi +
1

Ts

)

, (134)

and B4 ,
∑

fi

Ψ (fi − fc) Ψ∗
(

fi + 1
Ts

− fc

)

Sn,1 (fi)Sn,1

(

fi + 1
Ts

) X∗
1 (fi)X1

(

fi +
1

Ts

)

. (135)

Of these new Bi parameters, the B0 parameter should be familiar: it corresponds

to TDOA estimation using the Eckart filter [37]. The other parameters are not as

familiar, as cyclostationary developments have generally assumed that Ψ (f) and

Sn (f) were unknown. Maximizing Eqn. (130) will provide the maximum likelihood

TDOA estimate. Even better, the Bi expressions can be calculated without knowing

the nuisance parameters.

In order to apply this formula in practice, the first step to calculating the

maximum of Eqn. (130) is to calculate the Bi functions. The first three of these,

B0, . . . , B2 are functions of τd and are calculated by three inverse Fast Fourier Trans-

forms (FFT) [48]. The last two, B3 and B4, can be calculated by simply applying

the sum in Eqns. (134) and (135).

Once these functions have been calculated, maximizing Eqn. (130) becomes a

problem of solving for the nuisance parameters at each value of τd. The first nuisance

87



parameter to estimate is θd. Noting that, in general,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣

will be much larger

than
∣
∣
∣e

j2π τ
TsB1 [τd] + e−j2π τ

TsB2 [τd]
∣
∣
∣, a simple estimate for ejθd can be calculated from

this parameter alone,

ζ [τd] , e−jθ̂d =
B∗

0 [τd]

|B0 [τd]|
. (136)

Using this estimate for ejθ̂d to simplify the optimization problem further,

τ̂d = arg max
τd

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣

(137)

+ max
τ

<
{

ej2π τ
Ts

[

ζ [τd]B1 [τd] + ζ∗ [τd]B
∗
2 [τd] +

A0

A1

B3 +
A1

A0

ej2π
τd
TsB4

]}

.

At this point, since the ej2π τ
Ts term can be factored out, the optimal estimate is

apparent,

τ̂d = arg max
τd

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
2 [τd] +

A0

A1

B3 +
A1

A0

ej2π
τd
TsB4

∣
∣
∣
∣
.

(138)

This solves for all of the unknown nuisance angles, yielding a very usable TDOA

estimator.

This opens up the second part of this two–sensor problem: what happens when

τd is not an integer number of samples? The most obvious answer is to apply some

form of interpolation to the function in Eqn. (138) and to use that to determine

fractional delays. To do this, we define the function g [τd], to be the right hand side

of Eqn. (138) sampled at intervals of Tsamp,

g [τd] ,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
2 [τd] +

A0

A1

B3 +
A1

A0

ej2π
τd
TsB4

∣
∣
∣
∣
. (139)
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Maximizing g [τd] involves two steps. The first step is a search for the maxi-

mum over all sampled values of g [τd]. Once found, some form of local interpolation

near that maximum can be used to achieve subsample resolution. The form of the

optimal interpolator is easily given from the forms of B0, . . . , B2. Each of these

functions is defined as a continuous function of τd, not a discrete one. By increasing

the size of the inverse FFT used to calculate these functions, subsample resolution

may be obtained. However, this method is computationally intensive and could be

pursued ad infinitum. A second, non–optimal, option would be to use some form of

polynomial interpolation to achieve sub–sample resolution. In that case, the value

of τd that produced a maximum in g [τd1], call this ˆ̂τd, would then be applied to the

quadratic interpolation formula given in [5] to determine an optimal TDOA value,

τ̂d = ˆ̂τd +
1

2

g
[

ˆ̂τd + Tsamp

]

− g
[

ˆ̂τd − Tsamp

]

2g
[

ˆ̂τd

]

−
(

g
[

ˆ̂τd − Tsamp

]

+ g
[

ˆ̂τd + Tsamp

]) . (140)

Perhaps the best option, however, is a combination of a larger FFT size together

with quadratic interpolation. This combination method will be tested in Chapt. IV.

The final problem of TDOA MLE implementation is what to do about the A0

A1

term in Eqn. (139). This problem can be avoided by one assumption and two approx-

imations. First, assume that it is known that A0 � A1. In this case, A1

A0
B4e

j2π
τd
Ts is a

small term that may be dropped with little loss from Eqn. (139). The remaining term

dependent on A0

A1
is dealt with by applying a less than optimal scale. This creates

a lopsided approximation to the TDOA optimization function that is appropriate

when the signal scales are unequal,

g̃ [τd] ,

∣
∣
∣
∣
B0 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
ζ [τd]B1 [τd] + ζ∗ [τd]B

∗
2 [τd] +B3

∣
∣
∣
∣
. (141)
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In all other respects, such as interpolation, this lopsided function is optimized the

same as before.

In sum, this section has presented three new techniques to be used in TDOA es-

timation. The first new technique, presented in Eqn. (138), demonstrates a method

of dealing with the unknown nuisance parameters. Since this is the first work to

assume, in TDOA estimation, that these spectral correlation functions are known

save these nuisance parameters, this nuisance parameter estimation problem makes

a cyclic TDOA estimator practical. Further, it renders the problem of solving for the

spectral correlation functions unnecessary, thus simplifying the problem. The sec-

ond technique presented here, interpolating the likelihood function between sample

points, is necessary whenever the true TDOA is not necessarily an integer number of

samples. Since this includes all real world cases, applying this interpolation should

improve all practical results. Finally, a method for estimating TDOA when signal

scales were unknown was presented in Eqn. (141). Together, these methods cover

all of the problems associated with unknowns in the spectral correlation functions

making maximum likelihood cyclic TDOA estimation practical.

3.3.2 Single Cycle TDOA Estimators. Under the justification that co–

channel interference would corrupt the B0 [τd] from Eqn. (131), Gardner and Chen

focus on several single cycle TDOA estimators [23]. These estimators, they argue,

are immune to unknown interference after sufficient integration lengths because,

By exploiting the cyclostationary property of the signal of interest, as
reflected in the spectral correlation functions for the received data, the
effects of additive noise and interfering signals are ideally (for unlimited
data collection times) removed by these methods. [23, p. 1182]

Since all of these methods focus around a single α 6= 0 cycle frequency, this subsection

examines single–cycle TDOA estimators in light of the maximum likelihood TDOA

estimation function. Two particular single cycle estimators are presented here. The

first is a modified spectral coherence alignment method, M–SPECCOA, modified
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here to accommodate known colored noise environments. The second single cycle

estimator is developed in this section by dropping the B0 [τd] term from the ML

TDOA estimator. Both of these estimators, according to the philosophy in the

quote above, should be highly resistant to noise plus interference. Since the signal

of interest throughout this TDOA section has been a QPSK signal, only the symbol

rate cycle frequency, α = 1
Ts

, will be examined.

The first estimator of interest is SPECCOA. Under Gardner and Chen’s for-

mulation, this estimator is created from two estimated spectral correlation functions,

Ŝα
x0x1

(f) and Ŝα
x1x1

(f). If the pulse function is known, however, the second spectral

correlation function is known to within a complex constant. That is, for α = 1
Ts

,

S
1

Ts
x1x1 (f) = e−j2π

τ+τd
Ts

A2
0

4Ts

Ψ∗
(

f − 1

2Ts

− fc

)

Ψ

(

f +
1

2Ts

− fc

)

. (142)

Replacing the unknown, but estimated, value of S
1

Ts
x1x1 (f) with its true value results

in the single cycle estimator,

τ̂d1,NO-APPRX = arg max
τd

∣
∣
∣
∣
∣
∣
∣
∣
∣

e−j2π
τ+τd

Ts

∫ fc+
1

2Ts

fc− 1
2Ts

A2

4Ts
Ψ∗
(

f − 1
2Ts

− fc

)

Ψ
(

f + 1
2Ts

− fc

)

× X∗
1

(

f − 1
2Ts

)

X0

(

f + 1
2Ts

)

df

∣
∣
∣
∣
∣
∣
∣
∣
∣

= arg max
τd

∣
∣
∣
∣
B1 [τd]

∣
∣
∣
∣
, (143)

in white noise conditions. Yet SPECCOA uses more signal information than this

equation captures. In particular, the S
1

Ts
x0x0 (f) term formed from

X∗
0

(

f − 1
2Ts

)

X0

(

f + 1
2Ts

)

, contains information about e−j2π
τ+τd

Ts not captured in

this formula. Putting these two terms together results in a modified SPECCOA
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estimator,

τ̂d,M–SPECCOA , arg max
τd

<
{

ejθdB1 [τd]B
∗
3

}

, (144)

that captures most, if not all, of the information that the previous SPECCOA es-

timator captures. If the phase is unknown, the real operator, <{·} operator may

be replaced with the absolute value operator, |·|. Doing so, however, eliminates the

contribution of B3,

τ̂d,M2–SPECCOA , arg max
τd

∣
∣
∣
∣
ejθdB1 [τd]

∣
∣
∣
∣
, (145)

since |B3| is constant across all values of τd.

Two differences separate Eqn. (144) from the original definition of SPECCOA.

The first difference is that all of the terms in Eqn. (144) are well defined. Estimating

Sα
s (f) is not required, as Eqn. (144) assumes that it is known. The second difference

is found in colored noise environments. In such environments, B1 and B3 specify us-

ing an overwhitener prior to estimating τd. The importance of this overwhitener will

be demonstrated in Sec. 4.3.2, where overwhitened and non–overwhitened versions

of this estimator will be compared.

Realizing that this expression is just a subset of the maximization problem

presented in the last section in Eqn. (130), it becomes apparent that much more

single cycle information is present in the full maximum likelihood problem than

SPECCOA uses. Applying all of this information should yield better single cycle

TDOA estimators.

In an effort to use all of the terms B1, . . . , B4, two more single cycle TDOA

estimators are presented here. The first is an optimal single cycle method for use
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when θd is unknown,

τ̂d,SC-THETA , arg max
τd

{∣
∣
∣
∣
B1 [τd]

∣
∣
∣
∣
+

∣
∣
∣
∣
B2 [τd]

∣
∣
∣
∣

}

. (146)

The problem associated with not knowing θd means that the angles of these two

terms cannot be related to each other. Therefore, the absolute value sign allows the

TDOA estimator to maximize against both θd and τ in solving for τd. The second

single cycle estimator, shown below, is optimal when θd = 0. This estimator uses

only B1, . . . , B3 for the same reasons as the lopsided TDOA estimator above. In this

case,

τ̂d,SINGLE-CYCLE , arg max
τd

∣
∣
∣
∣
B1 [τd] +B∗

2 [τd] +B3

∣
∣
∣
∣

(147)

is a suboptimal single cycle TDOA estimator for use when A0 and A1 are unknown,

but A0 � A1.

Two of these single cycle TDOA estimators, the modified SPECCOA in

Eqn. (144) and the optimal single cycle method when A0 � A1 in Eqn. (147),

will be tested in Section 4.3 of the next chapter. This section will demonstrate that

their performance is much worse than the TDOA estimators presented in the pre-

vious subsection which incorporate the B0 [τd], or zero–cycle, term—even in severe

co–channel interference. This poor performance, demonstrated in Chapt. IV, leaves

little reason to discuss them further here.

3.3.3 Cramér–Rao Bounds. As a last step in discussing cyclic TDOA

estimation, we return to the modified Cramér–Rao bound discussed in Sec. 3.2.3.

Deriving this bound for the multi–sensor likelihood function that we’ve been using

is fairly straightforward but lengthy. A full presentation of this derivation can be

found in Appendix J. Instead, this section discusses the derivation in order to present
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results for three particular cases. The first two cases assume that τ , the reference

symbol epoch, is the only unknown nuisance parameter. These two cases present an

MCRB for τd1 when fc = 0 and then when fc � 0. The third case occurs when both

nuisance parameters, τ and θd are unknown and fc � 0. In all of these cases, as

with the previous TDOA algorithm development, a QPSK signal will be the basis

for the model.

The first step in any MCRB calculation involves calculating the expected values

of the second partial of the likelihood function. For the two sensor case, this second

partial involves taking partials of Di with respect to τd1. To simplify this process,

a new matrix, F∆, is introduced here. This matrix is similar to Fδ (Eqn. (98)),

introduced in Sec. 3.2.3 on page 73, only here it is applied to Di instead of Rφ. Its

definition shows that similarity,

F∆ ,
1

−j2π

(
∂

∂τdi

Di

)

D†
i =








f1 0 · · ·
0 f2 · · ·
...

...
. . .







. (148)

Moreover, when fc = 0, these two auxiliary matrices are identical, Fδ = F∆.

In order to deal with the first case, where τ is unknown and fc = 0, one minor

modification needs to be made to Eqn. (1). A baseband QPSK signal is complex,

not real. To put it another way,

xBB (t) = A0

Ns∑

n=0

dnψ (t− nTs − τ) ejθ + n (t) . (149)
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The biggest immediate consequence of this change is that there is no longer a factor

of two scaling in the vector equation, x = A
2
RφΨd + n. Instead, we have

xBB = ARφΨd + n, (150)

and xi,BB = AiDiRφΨd + ni. (151)

Once this change is made, the Fisher Information Matrix (FIM) is fairly easy

to derive. Three terms are of particular interest. These are,

E
{

−∂
2L
∂τ 2

}

=
M∑

k=0

4π2A2
ktr
{
ΨRdΨ

†R−1
nkF

2
δ

}
, (152)

E
{

−∂
2L
∂τ 2

di

}

= 4π2A2
i tr
{
ΨRdΨ

†R−1
ni F

2
δ

}
, (153)

and E
{

− ∂2L
∂τdi∂τ

}

= 4π2A2
i tr
{
ΨRdΨ

†R−1
ni F

2
δ

}
. (154)

From these three terms, the FIM is easily inverted for an arbitrary number of sensors.

This leads to the following Modified Cramér–Rao Bounds (MCRBs),

MCRB (τ) =
1

4π2A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

} , (155)

and MCRB (τdi) =
1

4π2A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

} +
1

4π2A2
i tr
{
ΨRdΨ†R−1

ni F
2
δ

} .

(156)

This bound is plotted in Sec. 4.3.1 together with the performance of several ML

estimators. (See Figs. 37 through 40.)

The second case, where fc � 0 and τ is the only unknown nuisance parameter,

is not quite so easy. This is primarily due to the fact that Fδ 6= F∆, and so the

multiple sensor MCRB is not as simply stated. Instead, this case will examine the

two sensor CRB for QPSK signals rather than the multi–sensor case in general.
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For two sensors, the relevant FIM terms are,

E
{

−∂
2L
∂τ 2

}

=
M∑

k=0

π2A2
ktr
{
ΨRdΨ

†R−1
nkF

2
δ

}
, (157)

E
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−∂
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di
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= π2A2
i tr
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ΨRdΨ
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2
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}
, (158)

and E
{

− ∂2L
∂τdi∂τ

}

= π2A2
i tr
{
ΨRdΨ

†R−1
ni FδF∆

}
. (159)

When the FIM is inverted, these terms result in the bounds,

MCRB (τ) =
1

π2

1

A2
0tr
{
ΨRdΨ†R−1

n0 F
2
δ

}
+ A2

1tr
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ΨRdΨ†R−1

n1 F
2
δ

}
− A2

1tr{ΨRdΨ
†R

−1
n1 FδF∆}2

tr{ΨRdΨ
†R

−1
n1 F2

∆}
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(160)

and MCRB (τd1) =
1

π2

1

A2
1tr
{
ΨRdΨ†R−1

n1 F
2
∆

}
− A4

1tr{ΨRdΨ
†R

−1
n1 FδF∆}2

A2
0tr{ΨRdΨ

†R
−1
n1 F2

δ}+A2
1tr{ΨRdΨ

†R
−1
n1 F2

δ}
(161)

This MCRB for TDOA estimation is plotted in Sec. 4.3.2 (Figs. 43 and 45) for two

colored noise test cases.

The final case, that where fc � 0 and where τ and θd1 must both be estimated,

is a little more tedious to present since it involves inverting an arbitrary 3×3 matrix.

Rather than presenting the bounds in this case, only the entries in the FIM will be

shown here. From these entries, the bounds are easily calculated numerically. These

entries are identical to the last case, with the exception that one more row needs to
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be added to the matrix. This row is composed of the terms,

E
{

− ∂2L
∂θ2

d1

}

=
A2

1

4
tr
{
ΨRdΨ

†R−1
n1

}
, (162)

E
{

− ∂2L
∂θd1∂τ

}

= −A
2
1π

2
tr
{
ΨRdΨ

†R−1
n1 Fδ

}
, (163)

and E
{

− ∂2L
∂θd1∂τd1

}

= −A
2
1π

2
tr
{
ΨRdΨ

†R−1
n1 F∆

}
. (164)

Unlike the previous two cases, plots of this latter bound are not shown in the next

chapter at all.

Further cases could be presented here for numerical solution. In particular, the

MCRBs for an arbitrary number of sensors are easily calculated from a single matrix

inverse. However, since these bounds are tedious to show analytically, they have not

been included here. An interested reader can find the FIM entries in Appendix J

and numerically invert them as desired.

3.4 Presence Detection

The same subspace framework that was used to create first optimal filters,

and then TDOA estimators, can also be used to develop detection algorithms. Two

hypotheses will be examined in this section to test for the presence of a signal. The

first hypothesis test is the standard noise alone versus signal present test. This will

lead to the well known multicycle detector. The second hypothesis tests whether or

not the signal is present when the noise has an unknown scale. This test will result

in a new cyclic ratio detector. Approximations to this latter detector will result in a

signal selective detection capability that is much more resistant to interference than

classical cyclostationary detection methods.

Making this problem more difficult than the optimal filtering problem is the

fact that several of the values used to determine d̂MLE are unknown. Chief among

these unknowns is the signal scale parameter, A. Thus, rather than starting with
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the likelihood ratio test, which is the most powerful test under known conditions, we

derive only the locally most powerful test for low SNR conditions and approximations

to that test. This test uses a detection statistic defined as,

yLO (x) =
∂

∂A2
L
∣
∣
∣
∣
A2=0

. (165)

This is the most powerful test for detecting a weak signal, such as one where A2 ≈ 0

[13].

3.4.1 Optimal Cyclostationary Signal Detection. The first test of interest

is whether or not the signal is present when the noise covariance is known. An

appropriate test can be derived from the hypotheses,

H0 : X ∼ N (0,Rn) (166)

versus H1 : X ∼ N
(
A

2
RφΨd,Rn

)

and d ∼ N (0,Rd) . (167)

Calculating the locally most powerful low SNR detector for this signal, using

Eqns. (165) and (70), yields the detection statistic,

yMCYC (x) = max
φ

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x. (168)

This detection statistic reduces to the multicycle detector presented by Gardner [17]

and modified for colored noise by Rostaing [51] (see Eqn. (38) on page 38). This

should come as no surprise, since this detector was derived under identical conditions

to those under which the multicycle detector was derived [17,15].

3.4.2 Cyclic Ratio Detection. The second test of interest revolves around

determining whether or not the signal is present in burst interference. As men-

tioned in the background subsection on detection (sec. 2.4.1 on page 33), the biggest
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drawback to energy detection methods is that they will indiscriminately detect all

burst signals. Overcoming this difficulty requires deriving a signal detector that is

somehow immune to burst interference. Using the signal model presented earlier in

this chapter, together with an appropriately framed hypothesis test, it is possible

to derive a detector that will be resistant to burst interference. This subsection

presents the highlights of such a derivation. An interested reader may wish to refer

to Appendix G for a more detailed proof.

The first step is to appropriately frame the test. We are interested in testing

whether or not the signal is present in a background where the noise covariance could

change suddenly. The difficult part in deriving such a test is that the noise covariance

could change in any manner, yet in order to derive a test some manner of change

needs to be specified. While one might be able to derive a test which is invariant to

a particular type of burst interferer, such a test would need to be redesigned when

the burst interferer changed. Instead, we choose here to be as general as possible by

allowing the noise scale to change suddenly. Then, in Sec. 4.4, this result is shown

to apply even when the shape of the noise PSD changes. Therefore, we let σ refer

to this unknown and changing scale, and frame the hypothesis test as

H0 : X ∼ N
(
0, σ2Rn

)
(169)

versus H1 : X ∼ N
(
A

2
RφΨd, σ2Rn

)

, A > 0, and d ∼ N (0,Rd) . (170)

From the previous section on filtering, Sec. 3.2.1, the maximum likelihood

estimate for d is,

d̂MLE =
A

2σ2

(
A2

4σ2
Ψ†R−1

n Ψ + R−1
d

)−1

Ψ†R†
φR

−1
n x. (171)
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Similarly, the maximum likelihood estimate for σ, given that d is known, is also easy

to derive,

σ̂2
MLE

=
1

mNf

(

x − A

2
RφΨd

)†
R−1

n

(

x − A

2
RφΨd

)

. (172)

A proof of this may be found in [53]. The next step is to place these estimates

into the likelihood function to remove them as unknowns. Yet the problem with

these estimates is that they are mutually dependent. That is, the estimate for σ̂MLE

depends upon the estimate for d̂MLE, and likewise d̂MLE depends upon σ̂MLE. They

cannot be analytically separated.

To resolve this difficulty, we define a relative signal scale factor, Ao, such that

Ao , A
2σ

. This makes it possible to sufficiently decouple the estimates,

d̂MLE =
Ao

σ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x, (173)

and σ̂2
MLE

=
1

mNf








x†R−1
n x

− 2A2
ox

†R−1
n RφΨ

(
A2

oΨ
†R−1

n Ψ + R−1
d

)−1
Ψ†R†

φR
−1
n x

+ A4
o · · ·







.

(174)

While σ does remain in the expression for d̂MLE, this dependence is dropped when

d̂MLE is placed into the likelihood function.

Having estimated the unknown parameters in the likelihood function, these

parameters can now be plugged in and the log of the likelihood function, L, can

be evaluated. If all the terms that are independent of the data are lumped into a

constant, C, then the expression for L becomes,

L = −mNf

2
ln σ̂2

MLE
− mNf σ̂

2
MLE

2σ̂2
MLE

− d̂
†
MLER

−1
d d̂MLE

2
+ C. (175)
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Finally, using this likelihood, we develop a detector via the formula for locally

optimal detection as shown in Eqn. (165) above. This detector is,

yRATIO (x) , max
τ,θ

x†R−1
n RφΨRdΨ

†R†
φR

−1
n x

x†R−1
n x

. (176)

Because of its form, the term Cyclic Ratio Detector is applied here to describe this

detector. In particular, the term multicycle ratio detector seems appropriate since

the numerator is still the optimal multicycle detector.

Before leaving this topic, two single cycle approximations are presented to this

detector, creating single cycle ratio detectors. These detectors result when all but

one of the terms is dropped from the numerator. Two important single cycle ratio

detectors will be evaluated through simulation in Sec. 4.4. These are the symbol

rate ratio detector,

ySRD (x) ,

∣
∣
∣
∣
∣
∣

∑

fi

X∗
(

fi − 1
2Ts

)

Sn

(

fi − 1
2Ts

)

X
(

fi + 1
2Ts

)

Sn

(

fi + 1
2Ts

)S
1

Ts
s (fi)

∗

∣
∣
∣
∣
∣
∣

∑

fi

|X (fi)|2
Sn (fi)

+

∣
∣
∣X
(

fi + 1
Ts

)∣
∣
∣

2

Sn

(

fi + 1
Ts

)

(177)

and the carrier ratio detector,

yCRD (x) ,

∣
∣
∣
∣
∣

∑

fi

X∗ (fi − fc)

Sn (fi − fc)

X (fi + fc)

Sn (fi + fc)
S2fc

s (fi)
∗

∣
∣
∣
∣
∣

∑

fi

|X (fi)|2
Sn (fi)

+

∣
∣
∣X
(

fi + 1
Ts

)∣
∣
∣

2

Sn

(

fi + 1
Ts

)

. (178)
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Each of these ratio detectors possess a property not found in other detectors:

they have a constant false alarm rate (CFAR) against changes in noise scale. The

proof of this is very short, and is included here for completeness.

Theorem 2 (Cyclic Ratio Detectors are CFAR Detectors) Each of the ratio

detectors, shown in Eqns. (176), (177) and (178), have a constant false alarm rate

(CFAR) against noise of a changing scale.

Proof: Since the proof for each of the three ratio detectors is essentially identical,

only the first will be presented. To show that yRATIO (x) is CFAR, we examine the H0

case when x = n. Under this case, let η be a detection test threshold chosen based

upon the true probability distribution of yRATIO (n) such that

P [yRATIO (n) > η] = PFA. (179)

Now, suppose the noise scale changes suddenly and σn is received instead of n.

Examining yRATIO (σn) shows that this statistic is invariant to this scale change,

yRATIO (σn) = max
τ,θ

σn†R−1
n RφΨRdΨ

†R†
φR

−1
n σn

σn†R−1
n σn

= max
τ,θ

n†R−1
n RφΨRdΨ

†R†
φR

−1
n n

n†R−1
n n

= yRATIO (n) (180)

Given that yRATIO (n) = yRATIO (σn), the false alarm rate is given by,

P [yRATIO (σn) > η] = P [yRATIO (n) > η] = PFA. (181)

Thus, the false alarm rate remains constant across a changing noise scale, as re-

quired. Q.E .D.
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Looking at these two new detectors, both the multicycle ratio and the single

cycle ratio detectors, each of them uses a measurement “orthogonal to the signal,”

which is included in the total energy measurement in the denominator. This allows

them to track changes in the background noise and detect only signals of interest.

Two examples will help to illustrate this.

First, suppose a broadband signal of no interest was present during the obser-

vation interval but not during the training interval under which Rn was estimated.

This broadband signal would raise the value in the numerator of both the single cycle

and multicycle ratio detectors. Unlike the radiometric or cyclic feature detectors,

however, the denominator would also increase, eliminating the effect of the rise in

the numerator. This should render the detector immune to changes in broadband

noise.

Consider, as a second example, an interferer having a nearly identical power

spectral density to the signal of interest. In this case, the α = 0 term of the multicycle

detector would respond favorably to this signal, suggesting a signal of interest is

present. This one increase could be large enough to create an alarm in any detector

that used the α = 0 term either by itself, or as one of several in a linear combination

of terms. This is the common justification for throwing out the α = 0 term while

creating a signal selective detector. With a little foresight, one might recognize that

the other cyclic terms, such as the α = 1
Ts

or α = 2fc terms, would also measure a

corresponding increase in their variance. This increase, coupled with the necessity

of solving for τ and possibly θ, would cause detectors built from these terms, such

as all common cyclostationary detectors, to alarm as well. The response of the

cyclic ratio detector, however, would be tempered by a corresponding increase in

the denominator, preventing such false alarms. This would provide the cyclic ratio

detector a certain amount of immunity to burst interference.

Tests in the next chapter will focus on each of these scenarios in turn. As

the foregoing discussion suggests, the cyclic ratio detectors will be shown to achieve
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a signal selectivity that no other detector possesses. This fulfills Sonnenschein’s

prediction that, “the performance of detectors . . . would be improved by this scheme

since it would effectively remove the noise–level uncertainty” [60, p. 367].

This cyclic ratio detector is a fundamentally new type of detector. By its design

it is much more resistant to burst interference than either energy detectors or other

cyclostationary detectors. This exceptional resistance is demonstrated in Sec. 4.4.

3.5 Conclusions

This chapter introduced a new approach to burst signal processing based upon

a new representation of digital communications signals in frequency. This new rep-

resentation differed from other cyclostationary models in four respects. First, it ac-

counted for the underlying redundancies within a communications signal’s spectra,

allowing the communications signal to be represented as a subspace of the received

waveform. Second, by assuming that the data was Gaussian, a reasonable probabil-

ity density function was applied to represent the data. This made it possible, later

on, to apply classical statistical principles to the application areas of interest. Third,

this model allows for the easy description of noise plus interference, making noise

removal part of every initial algorithm development, rather than an afterthought.

Finally, unlike previous models for cyclostationary signals, this model is quite ap-

propriate for burst signals. Together, these differences make this model ideal for

creating signal processing algorithms applicable to burst signals in colored noise.

This new approach was then applied to three separate application areas, result-

ing first in the development of well–known algorithms when the assumptions used

were identical to those of the previous derivations. For example, Berger and Tufts’

MMSE filter was shown to be a consequence of having a complex baseband. Then,

when applied to TDOA estimation, this approach lead to the optimal stationary

TDOA estimation filter. Likewise the optimal, locally most powerful, detector for

detecting a cyclostationary signal in colored noise was shown to be the multicycle
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detector presented by Gardner and Rostaing [17,51]. By arriving at these known so-

lutions, each of these examples supports the contention that this is a valid approach

for deriving new cyclostationary signal processing algorithms.

New algorithms were then developed, through the application of classical sta-

tistical principles, but this time under new assumptions. First among these were

optimal single and multichannel demodulation filters. If truly optimal, as the next

chapter will demonstrate, these filters demonstrate the validity of the estimate of

the signal derived from this model. Not only were optimal filters derived, but by

measuring the mean square error in an estimate, the mean square error at the output

of a demodulator can be calculated under arbitrary noise and channel conditions.

Second, when applied to TDOA estimation, the full form of a maximum likelihood

TDOA estimator in colored noise was derived. Then, using this model, the first ever

Cramér–Rao bounds were derived for cyclostationary TDOA estimation. Finally,

when this model was applied to detection, new interference resistant detection al-

gorithms emerged. All of these new results, from filtering algorithms to new signal

selective detectors, are simple consequences of applying classical statistical principles

to this fundamentally new model for cyclostationary signals.

What remains to be shown in the next chapter is the performance improvement

that can be expected from using these algorithms and, equivalently, the performance

loss from using suboptimal approximations. The performance improvements, in par-

ticular, will validate that these algorithms do indeed meet or exceed the performance

of other stationary and cyclostationary algorithms when tested under conditions sim-

ilar to those they were derived under. This will be demonstrated in the next chapter.
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IV. Analysis by Simulation

Having developed a new approach to generating signal processing algorithms

for digital communications in the last chapter, this chapter takes that development

one step farther by validating the new methods derived from this framework in a

simulated environment. Given that this new approach was founded on the assump-

tion that the underlying signal had a Gaussian probability distribution in frequency,

this assumption is first examined in detail before proceeding to the new algorithms.

Once validated, the maximum likelihood estimates created from this probability dis-

tribution are then compared to other similar estimates, since these estimates will

eventually be used in any detection algorithm. Thus the second and third section

of this simulation chapter will examine the capability of the MMSE filters for gener-

ating an estimate of the data and then the two–sensor maximum likelihood TDOA

estimator. Once these estimates have been shown to outperform all others tested,

the final section examines the new detection algorithms derived under this model.

Together, these simulations will demonstrate that the linear subspace approach to

communications signal processing yields either complementary or superior results to

those methods presented in Chapt. II.

4.1 Signal Model

Before looking at any of these new algorithms, however, we first validate the

Gaussian assumption underlying all them. In particular, the fundamental assump-

tion in Chapt. III was that D
(
ej2π(f−fc)Ts

)
could be modeled as a multivariate Gaus-

sian vector in frequency. Although this assumption was justified for large numbers of

symbols by the Central Limit Theorem, it remains to be seen how well it applies to

shorter signals. As this section will show, the assumption is reasonable in essentially

all cases.
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To show how well this assumption applies, we shall compare the true probabil-

ity distribution of a very short QPSK signal in frequency compared to a Gaussian.

While one might desire to compare probability density functions, these functions do

not exist for discrete probability distributions such as those used in digital communi-

cation. Therefore, we instead compare the Cumulative Distribution Function (CDF)

of <
{
D
(
ej2π(f−fc)Ts

)}
and its moments.

Prior to examining the CDF, however, some parameters need to be chosen.

A extremely short signal, Ns = 8, was chosen to show how quickly this probability

distribution converges to a Gaussian. Second, for simplicity, only the real portion of

D
(
ej2π(f−fc)Ts

)
will be examined. This makes sense since, for a QPSK signal, both

real and imaginary portions have identical probability distributions. This leaves

open the question of what frequency values to use in this comparison.

To resolve this issue, Fig. 8 shows the CDF of <
{
D
(
ej2π(f−fc)Ts

)}
as a function

of radian frequency, ω = 2π (f − fc)Ts, and symbols, x. The radian frequency is

shown from ω = 0 to ω = π
4

only since the rest of the radian frequency band

is symmetric—repeating this same pattern. The second axis shows the range of

<
{
D
(
ej2π(f−fc)Ts

)}
in symbols. Vertically, this plot shows the probability that

<
{
D
(
ej2π(f−fc)Ts

)}
is less than x symbols at some radian frequency ω. From Fig. 8,

we see that this CDF converges quickly to a smooth function for most frequencies.

Only the middle, ω = π
8
, and edge, ω = 0 and ω = π

4
, frequencies do not to converge

as quickly to this smooth function. Of these two, convergence is worst at the edge.

What is not necessarily obvious from Fig. 8 is that this smooth function de-

scribes a Gaussian probability distribution. To see this, consider a slice of this the

CDF of <
{
D
(
ej2π(f−fc)Ts

)}
taken from somewhere in the middle, say ω = π

10
, and

compare it to the CDF of a true Gaussian having the same mean and variance

(Fig. 9). From this vantage point, the two CDFs are nearly on top of each other.

This shows that the smooth function, which the overall CDF appeared to converge

to, is indeed a Gaussian CDF.

107



−10 −8 −6 −4 −2 0 2 4 6 8
0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

P
[
<
{
D
(
ej

2
π
(f

−
f

c
)T

s
)
}
<
x
]

(P
ro

b
ab

il
it
y
)

x (Symbols)

ω (Radians)

Figure 8. Cumulative Distribution Function

PSfrag replacements

True Gaussian
<
{
D
(
ej2π(f−fc)Ts

)}

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

Standard Deviations

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
−4

−3 −2 −1 0 1 2 3

4
5
6
7
8
9

10
11
12
13
14

Figure 9. CDF of D
(
ej2π(f−fc)Ts

)
when Ns = 8 and f = fc + 1

20Ts

108



PSfrag replacements

True Gaussian
<
{
D
(
ej2π(f−fc)Ts

)}

C
u
m

u
la

ti
ve

P
ro

b
ab

il
it
y

Standard Deviations

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
−4

−3 −2 −1 0 1 2 3

4
5
6
7
8
9

10
11
12
13
14

Figure 10. CDF of D
(
ej2π(f−fc)Ts

)
when Ns = 8 and f = fc.

Yet this example only shows the best case convergence. To examine a worst

case convergence, we compare a Gaussian CDF with the CDF for <
{
D
(
ej2π(f−fc)Ts

)}

at the edge (ω = 0) in Fig. 10. In this case, the true CDF approximates a Gaussian

with step functions. While this step function behavior holds for all values of Ns,

the steps do get shorter as Ns increases. This is illustrated by Fig. 11, which shows

the same two CDF functions, only this time for a signal having Ns = 256 symbols

instead of Ns = 8.

From these three figures, we conclude that the true probability distribution of

<
{
D
(
ej2π(f−fc)Ts

)}
is roughly Gaussian for even short bursts. When the approxi-

mation is poor, such as in Fig. 10, it is at least as good as a step function converging

to a Gaussian CDF. When the approximation is good, such as in Fig. 9, it appears

to match very well. In all of these cases the approximation is quite reasonable.

The final way of demonstrating that true probability distribution is approxi-

mately Gaussian is to consider the moments or <
{
D
(
ej2π(f−fc)Ts

)}
. If this approx-
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Figure 11. CDF of D
(
ej2π(f−fc)Ts

)
when Ns = 256 and f = fc.

imation is valid, one would expect the moments to resemble those of a Gaussian

distribution. Therefore, Fig. 12 examines the relative error between the fourth and

sixth moments of <
{
D
(
ej2π(f−fc)Ts

)}
for ω = 0 and the fourth and sixth moments

of a true Gaussian. As one might expect from the central limit theorem, the actual

moments of <
{
D
(
ej2π(f−fc)Ts

)}
converge to those of a Gaussian as Ns increases. In

addition, the fact that the slope of this convergence is −1 shows that this convergence

is linear as the number of symbols increases.

These two examples demonstrate that approximating the probability distribu-

tion of <
{
D
(
ej2π(f−fc)Ts

)}
as a Gaussian, while not perfect, is at least reasonable.

From Sec. 3.1.2, we expected this approximation to be valid as Ns grew large. Here,

we saw that it did in fact converge as Ns grew arbitrarily large. What was not neces-

sarily expected from Sec. 3.1.2 was that, for really short bursts, the true probability

distribution still appeared to be roughly Gaussian. Even in the worst case, when

ω = 0, the true probability distribution corresponds to the well–known binomial dis-
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tribution, which is commonly approximated by a Gaussian [7]. For all other values of

ω, the approximation is much better. This justifies the assumption, used throughout

this research, that the probability distribution of D
(
ej2π(f−fc)Ts

)
is a Gaussian.

4.2 BPSK Filtering

Having demonstrated the validity of the Gaussian approximation for even the

shortest burst signals, the next step is to look at the results of the subspace approach,

all of which were founded upon this assumption, and to evaluate them through simu-

lation. As before, the first application area needs to be filtering because appropriate

filters become the estimators used in every subsequent application area. That is to

say, if the MMSE filters developed in Sec. 3.2 fail to perform well in simulation,

then there is no reason to expect good performance from any other algorithm de-

rived from this linear subspace approach. Instead of failure, however, this section

will demonstrate that the new filters for BPSK signals outperform every other filter

tested here, from matched filters to Berger and Tufts MMSE filter.
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One by one, each of the three new demodulation related algorithms derived in

Sec. 3.2 will be demonstrated in this section. First, the single sensor BPSK MMSE

filter will be shown to outperform every other filter it is tested against in a severe

interference environment. Next, the performance prediction methods will be applied

to those same filters. The versatility of this method is demonstrated in both the

severe interference environment from the first test as well as a strong multipath

environment. In each case, this method correctly predicts the MSE degradation

resulting from not compensating properly for the environment. Finally, the multi–

sensor filters will be demonstrated on a two sensor example with both wideband and

narrowband interference. As with the single sensor results, this last subsection will

demonstrate that the optimal two sensor filter outperforms all single sensor filters.

Together, all three of these tests validate both the form of the optimal data estimator

as well as the predicted loss associated from less than optimal estimation.

4.2.1 BPSK Minimum Mean Square Error (MMSE) Filters. The devel-

opment of the single sensor BPSK MMSE filter introduced the hypothesis that this

new filter will outperform all other linear filters, in terms of MSE, when demodu-

lating BPSK signals. Demonstrating this optimality, however, requires generating

a signal in a colored noise environment, and demodulating it with several poten-

tial filters of interest. Once demodulated, comparing the resulting symbol estimates

with the original symbols yields either a mean square error metric, for which this

method should be optimal, or a bit error rate metric, which will tell more of the

capability of this method. This section, therefore, starts off with a description of

the approach used to estimate these two parameters. Then, since all tests of this

type are highly dependent upon both the signal and the interference environment,

the next step will be to describe the parameters chosen for the signal followed by

the background noise and interference. Once these have been described, simulation

results can be presented that demonstrate the capability of this filter. As a last test,

the hypothesis that an adaptive linear equalizer converges to the the equalizer in
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Eqn. (80) is tested. Such equalizers are well known and proofs of their convergence

to the MMSE solution are readily available [30]. This last comparison will do more

than validate this filter, it will in fact prove that it truly does outperform all other

BPSK demodulation filters in this environment.

Since the goal will be eventually to compare theoretical results with results

achieved via simulation, a well–calibrated simulation will be required to run these

tests. Such a simulation, outlined in Fig. 13, may be created digitally by constructing

a simulated signal, As (t), from a random symbol sequence, dn, and then by adding

the result to a simulated noise sequence. This sequence will then model what a digital

receiver might measure coming off of its antenna. The next step is to run the received

signal through the system under test, whether it be the baseband demodulator shown

in Fig. 5 on page 64 for Berger and Tufts’ filter, or the bandpass demodulator shown

in Fig. 6 on page 65. The estimated symbols at the output of this system, d̂n,

will then be compared with the original symbols which were used to generate the

signal. From this comparison, an estimate may be generated for the MSE in the

demodulator,

MSE ≈ 1

Ns

Ns−1∑

n=0

(

d̂n − dn

)2

, (182)
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and similarly for the BER at the output of the demodulator,

BER ≈ 1

Ns

Ns−1∑

n=0







0 d̂ndn ≥ 0

1 d̂ndn < 0.
(183)

This process is then repeated for multiple values of the signal gain, A. All that

remains is to describe how the noise and signal sequences are created and placed

into this test sequence.

The first step in this process, creating the signal, follows the process shown in

Fig. 13 quite literally. This process involved first generating a random data sequence,

dn ∈ {±1}, and then upsampling this data sequence by Ts, which was chosen to be

10 samples thus yielding a symbol rate of 0.1 cycles per sample (CPS). The resulting

impulses were then smoothed by the pulse shaping filter, Ψ (f), which was chosen

to be the Nyquist pulse defined in App. A, with the exception that it was tapered

to 32 symbols in length via a Hanning window [47]. Further, to simplify energy

measurement, this Nyquist pulse was normalized so that the energy transmitted per

bit was simply Eb = A2. The signal was then multiplied by an adjustable gain, A,

and a carrier, cos (2πfct+ θ). The carrier frequency for these simulations was chosen

to be 0.2 CPS. Together, these choices were made to place the signal in the center of

the normalized frequency band and to minimize any aliasing effects from sidelobes.

Finally, τ and θ were allowed to be known exactly rather than estimated, following

the assumptions in Chapt. III. These parameters are summarized in Table 3.

The noise, on the other hand, was chosen to be a combination of both a white

noise background and a colored noise spike, as shown in Fig. 14. Although other noise

environments, such as the two–sensor environment that will be used in Sec. 4.2.3, will

result in better performance of this filter over the others tested here, this environment

was chosen because it clearly illustrates the operation of the filter. The noise spike

itself was obtained by passing a second white noise sequence through a simple two
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Table 3. Signal Parameters for the Single Channel Filter Test

Signal Parameter Parameter Value

Modulation Type BPSK

Carrier Frequency, fc 0.2 CPS

Symbol Rate, 1
Ts

0.1 CPS

Pulse Shape, ψ (t) Nyquist

Carrier Phase, θ Known

Symbol Epoch, τ Known

pole, real, IIR filter. The filter was designed to place the spike just to the right of the

carrier of the BPSK signal, creating an asymmetric noise profile. The reason for this

asymmetry should be clear: had a symmetric noise profile been chosen then the true

MMSE filter would have been no different from Berger and Tufts’ filter. Finally, the

height of the spike was chosen to dwarf everything else in the environment. As the

following discussion will demonstrate, this noise spike makes it easy to see and follow

the differences between the BPSK MMSE filter and the other filters of interest.

Adding the signal into this noise environment results in a received power spec-

tral density such as the one shown in Fig. 14. This figure clearly shows that the noise

spike, for small to moderate signal energies, totally dominates the signal as desired.

Each of the four filters, shown in Fig. 15, were tested and compared in this

environment. These filters are the matched filters (MF) for white and for colored

noise, Berger and Tufts’ baseband filter, and the BPSK MMSE filter developed in

Sec. 3.2.1. Starting with the simplest, the transfer function of the matched filter

for white noise has an identical shape as the underlying pulse shape in frequency.1

Unlike all of the other filters tested, the matched filter for white noise does nothing

to compensate for the interference spike. The matched filter for colored noise, on

1Normally, the frequency response for this filter would be the conjugate of the pulse shape, but
since the Nyquist pulse defined in Appendix A is symmetric in time about zero, the corresponding
matched filter frequency response is entirely real.
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Figure 16. Unfiltered Baseband PSD

the other hand, notches out the interference as one might expect, but does nothing

to compensate for any distortion that might be introduced by such a notch. Finally,

the BPSK MMSE filter not only notches out the interference, but also boosts the

signal strength at the three other frequency locations corresponding to the same

underlying data information as the notch.

Berger and Tufts’ filter, however, needs a little more description. Since this is

a baseband filter, it has no response to the frequencies between 0.1 and 0.3 CPS like

the other filters in Fig. 15. Instead, this filter is not applied until after the signal has

been downconverted.2 As a result, its response in Fig. 15 lies between 0 and 0.1 CPS.3

This process, however, also downconverts the noise spike, placing it at ±0.015 CPS

and creating the PSD shown in Fig. 16. This downconversion merges the high SNR

2The system diagram for this filter is shown in Fig. 5 on page 64 for reference.
3Since Berger and Tufts’ filter is a real, as opposed to complex, filter, its response for negative

frequencies is the complex conjugate of its response for positive frequencies. In this case, it is just
symmetric about the zero frequency.
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signal, shown in Fig. 14, at 0.185 CPS with the poor signal at 0.215 CPS prior to

removing the noise. Only after these two components are merged, creating the PSD

shown in Fig. 16, is the noise spike notched out. Then, compensating for this notch

requires boosting the weakest redundant component of the signal at ±0.085 CPS (the

tallest spike in Fig. 15). This whole process prevents the effective application of the

strong signal component initially found at 0.185 CPS. As a result, one might expect

Berger and Tufts’ filter to perform worse than the matched filter for colored noise

which notches out this spike prior to downconversion, but better than a matched

filter for white noise which does nothing to remove this interference.

To measure the performance of these filters, we first measure the MSE in

a simulation environment since the BPSK MMSE filter was designed to minimize

MSE, just like Berger and Tufts’ filter. The MSE produced by each of the four filters

from Fig. 15 is shown in Fig. 17 as a function of the energy per bit, Eb = A2. From

this figure, it is certainly plain that the optimal filter for low SNR conditions is the

118



matched filter for colored noise. The MMSE filter matches this filter in performance

simply because it converges to the matched filter as the signal strength, A, goes to

zero. Then, as predicted, Berger and Tufts’ baseband filter did not perform as well.

What may have been unexpected is the performance of the matched filter for colored

noise as the signal strength increased. This matched filter asymptotically approaches

a lower bound in performance that the other filters are not subject to.

The reason for this poor performance is actually quite straight forward. All of

the mean square error, when no noise is present, must be due to Intersymbol Interfer-

ence (ISI). Why? Consider, the Matched Filter (MF) for white noise does not suffer

from ISI since the Nyquist pulse was designed to have no ISI following a matched

filter for white noise. Therefore, as signal strength increases, the MSE decreases

for this filter. Berger and Tufts’ MMSE filter, together with the BPSK MMSE fil-

ter, each include an equalizer to remove any ISI induced by the overwhitener. The

matched filter for colored noise, however, has no such compensation for ISI. Where

did the ISI come from? It must have been from the overwhitener—the only difference

between the matched filter for white noise and the matched filter for colored noise.

To confirm the hypothesis that the poor performance of the matched filter for

colored noise was due to ISI, the ISI was calculated for each of the matched filters

and for the BPSK MMSE filter when Eb = 30 dB. Fig. 18 shows the log of the

absolute value of the contributions, from other symbols, to the current symbol of

interest. As expected, the matched filter for white noise has a minimal amount of

intersymbol interference associated with it. As hypothesized, the matched filter for

colored noise has the highest intersymbol interference. Further, if you calculate the

MSE expected from this ISI interference alone,4

ξ2
ISI

= min
κ

2Ts

Ns

∫ 1
2Ts

0

ξ2
i

(
ej2πfTs

)
df (184)

4This formula follows from Eqn. 86, save that the MSE due to noise and other interference has
been removed.
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you get 0.039 Units2. Looking at the 0.039 Units2 line in Fig. 17 confirms that this

is indeed the source of the poor performance found in the matched filter for colored

noise.

A much more meaningful metric, however, is the Bit Error Rate (BER). Unlike

MSE, the BPSK MMSE is not guaranteed to achieve a minimum BER among all

other filters. Yet, looking at the BER performance shown in Fig. 19, we see that the

BER performance of these filters is very similar to their MSE performance. The only

notable exception is the matched filter for colored noise again. This filter doesn’t

quite perform as poorly compared to the other filters in terms of BER as it did in

terms of MSE. This is an artifact of the non–Gaussian nature of ISI which will be

discussed in more detail in Sec. 4.2.2 on performance prediction.
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The final test of this filter is to compare it against a decision–directed adaptive

linear equalizer.5 The reason for this is to prove that this filter truly does achieve

the minimum MSE among all other filters–including those not tested here. Here’s

why: According to [12], the optimal filter is always a matched filter for colored noise

followed by an equalizer. Then, according to [30], adaptive equalizers are known

to achieve the minimum MSE solution. Therefore, we test a demodulator formed

by a matched filter for colored noise followed by an adaptive equalizer, shown in

Fig. 20. The actual structure and implementation of this equalizer is described

in [30], in the sections on “Channel Equalization” and then on the “Least–Mean–

Square Algorithm,” which was used to provide the adaptation. Finally, after this

equalizer has been given a chance to converge, if the resulting equalizer is identical

5This equalizer is not to be confused with a non–linear decision–feedback equalizer. Such equal-
izers were not tested in this research.
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to the predicted equalizer derived in Sec. 3.2.1,

HEQ (f) =
1

1 + A2

4
|Ψ(f−fc)|2

TsSn(f)
+ A2

4

|Ψ(fc−f− 1
Ts

)|2
TsSn(2fc−f− 1

Ts
)

+ A2

4
|Ψ(fc−f)|2

TsSn(2fc−f)
+ A2

4

|Ψ(f+ 1
Ts

−fc)|2
TsSn(f+ 1

Ts
)

,

(185)

then we say that the BPSK MMSE filter truly achieves the minimum MSE among

all other filters in this environment.

After applying this filter to a BPSK signal of 6.4 million symbols, the filter

had converged enough to plot Fig. 21. This figure shows two lines for the adaptive

equalizer’s response. The first is an upper error bar and the second is a lower error

bar. The actual response, given complete convergence from an infinite length signal,

would lie somewhere between these two error bars. What is important to notice

from this figure, however, is that the predicted equalizer response lies right between

the error bars of the adaptive equalizer’s response. This supports the conclusion

that the BPSK MMSE filter does indeed predict the necessary equalizer to achieve

MMSE performance.

This proof, together with the first simulation, demonstrates that the BPSK

MMSE filter truly achieves MMSE performance. The second test demonstrated that,

although MSE is not equivalent to BER, the MMSE filter also had the minimum

BER among all of the filters tested here. None of the other filters tested, whether

they were matched filters or Berger and Tufts’ baseband MMSE filter, performed

better than the BPSK MMSE filter. This means that, at least for one sensor, the
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Figure 21. Predicted verses Estimated Equalizer Response. The predicted response
function goes right through the center of the estimated response function.

MMSE filter outperformed all of the other filters tested. This validates the proof in

Sec. 3.2.1 that this filter has the lowest MSE among all filters, and lends credence to

every other result following this section, all of which are founded upon this estimate.

4.2.2 Predicting BPSK Demodulator Performance. Having shown that a

MMSE filter could be applied to achieve a lower MSE than all other linear filters, this

section continues the MSE examination to demonstrate how the MSE at the output

of an arbitrary filter can be calculated. Two tests are presented to demonstrate

this concept. The first test demonstrates how the previous results could have been

predicted using the MSE performance prediction methods developed in Sec. 3.2.2.

The second test demonstrates the versatility of this method by examining the same

prediction capability in a multipath environment.

For the first test, the conditions were chosen to be identical to the filter per-

formance tests in the previous section. A large noise spike was present, and the
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Figure 22. Predicted Mean Square Error. The lines are the predictions, the points
are arrived at via simulation.

demodulator was perfectly synchronized to the signal. Likewise the filters applied to

the signal are identical save that Berger and Tufts’ filter was not tested.6

As developed, these performance prediction formulas should predict the MSE

in any BPSK demodulator exactly. To test this hypothesis, Fig. 22 shows the MSE

measured at the output of the demodulator. Lines shown in this figure result from

predictions made using Eqn. 88, while the points are the result of simulations. In

every case, the prediction matches the simulation. This confirms that the prediction

methods do in fact predict MSE as designed.

A more important metric is the BER. No claim was made regarding the pre-

diction capability of these formulas for predicting BER, save that they would be

accurate when the error disturbance was Gaussian. Since this is a more practical

6While nothing prevented Berger and Tufts’ filter from being tested, doing so would have tested
a baseband performance prediction formula that was slightly different from the formula derived in
Sec. 3.2.2. Performance for Berger and Tufts’ filter can still be predicted according to the Eqn. (24)
within [2].
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Figure 23. Predicted Bit Error Rate. The lines are the predictions, the points are
arrived at via simulation.

metric in system design, we perform a test of the BER here. Thus Fig. 23 shows the

BER resulting from the prediction method presented in Sec. 3.2.2, and in particular

in Eqn. (92) on page 71, compared to the BER measured in practice. As with the

previous figure, the lines on this figure plot the predicted performance while the

points demonstrate simulated performance. This figure shows that, when the BER

was the result of a (primarily) Gaussian disturbance, such as for the BPSK MMSE

filter and the matched filter for white noise, the prediction matches. When the BER

was primarily the result of an ISI type of disturbance, as opposed to a Gaussian one,

the BER prediction was somewhat off. This highlights the assumption underlying

this BER prediction method, that it is only valid for Gaussian disturbances. Other

methods, such as those discussed in [34], are necessary for calculating the BER in

severe ISI.

Next, in order to demonstrate the utility of this method, the experiment was re-

peated under severe multipath conditions. Since the performance prediction method
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Figure 24. Distortion Caused by Multipath

should work regardless of the multipath conditions, a simple yet severe environment

was created to distort the signal. In particular, the receiver picks up two copies of

the transmitted signal,

s (t) = sTX (t) + 0.8sTX (t− 2.5Ts) , (186)

where the second copy is arbitrarily delayed from the first by 2.5 symbols. For

simplicity, all other parameters regarding the signal were kept the same. The effect

this distortion has on the PSD of the signal can be seen in Fig. 24. This figure shows

that the multipath interference both constructively, and destructively, interferes with

the signal of interest. In the worst case, that of destructive interference, this figure

shows that sections of the signal are almost completely wiped out.

The good news is that all of the formulas developed in Sec. 3.2 apply even in

severe multipath conditions. The only thing that needs to be discussed is ψ (t). This
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multipath environment is equivalent to receiving a signal that had been constructed

with the pulse shape,

ψ (t) = ψTX (t) + 0.8ψTX (t− 2.5Ts) . (187)

The problem is that the receiver may not know what ψ (t) is. What filter

should be used in this case? If ψ (t) is unknown, there are two options. Either it can

be estimated or a filter can be generated based upon some assumed value of ψ (t).

Each method incurs a cost, the first in computational complexity and the second in

performance. What the following experiment demonstrates is the ability to predict

the performance loss associated with a non–optimal filter choice.

Four filters were tested in order to show this loss. The first two filters, called

mismatched filters here, were formed under the (incorrect) assumption that the pulse

shape had not changed since transmission. That is, they were designed under the

assumption that there was no multipath interference. These filters are the matched

filter for colored noise and the BPSK MMSE filter both shown in Fig. 15 on page 116.

A second pair of filters, called true filters here, were created from the distorted pulse

shape assuming perfect knowledge of the channel. The magnitudes of the transfer

functions for these filters are shown in Fig. 25. The performance difference between

these two pairs should highlight the importance of knowing the multipath channel.

To show this difference, we first examine the MSE at the output of the demod-

ulator for each of the four filters. Given that the prediction methods are designed to

predict MSE, this prediction should be exact. Comparing simulated results to pre-

dictions in Fig. 26, we see that the points, arrived at via simulation, do indeed match

the lines showing the performance prediction. A second conclusion from Fig. 26 is

that compensating for the multipath distortion is required in order to achieve a low

MSE. This compensation needs to include not only the matched filter and over-

whitener combination found in the True MF, but also the equalizer found in the
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Figure 27. Predicted Bit Error Rates in Multipath Interference. The lines are the
predictions, the points are arrived at via simulation.

True MMSE. Without this equalizer, increases in signal strength do not necessarily

decrease the error.

A more appropriate metric in system design, however, is the BER. Thus, even

though the BER prediction formula given in Sec. 3.2.2 is only valid when the de-

modulator error is Gaussian, the BER was also calculated at the output of each de-

modulator and compared against the predicted BER. This result is shown in Fig. 27

where, as before, the points are the result of simulation and the lines are the result of

the prediction formulas. Unlike the MSE predictions, however, the BER predictions

are no longer accurate in every case. The one case where they are accurate, that of

the True MMSE filter, corresponds to the one case where the disturbance is primar-

ily Gaussian for small and large signal strengths. In the other cases, it appears as

though the performance prediction is accurate for weaker signals and only departs

as the signal gets strong.
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