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Notation

The following notation is used throughout this document. It is primarily influenced by [29]

as well as having minor influence from other authors listed in the bibliography.

Vectors lower case bold face letters such as x

Matrices upper case bold face letters such as P

Random Vectors lower case bold face san serif type such as x

Random Matrices upper case bold face san serif type such as P

Realizations of
Random Vectors and lower and upper case, respectively, bold face
Matrices roman type such as x and P

Arguments of
Densities, Integrals, etc. Greek letter dummy variables such as ξ

Superscript T transpose

Superscript −1 inverse

Superscript + quantity after measurement update in the Kalman filter

Superscript − quantity before measurement update in the Kalman filter

Raised “Hat” ( ̂ ) estimate

| · | Matrix determinant

Superscript ∗ Quantity or variable associated with generalized residual
(not the complex conjugate)
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Abstract

This dissertation develops a modification to the standard Multiple Model Adaptive

Estimator (MMAE) which allows the use of a new “generalized residual” in the hypothesis

conditional probability calculation. The generalized residual is a linear combination of tra-

ditional Kalman filter residuals and “post-fit” Kalman filter residuals which are calculated

after measurement incorporation. This modified MMAE is termed a Generalized Residual

Multiple Model Adaptive Estimator (GRMMAE). The dissertation provides a derivation

of the hypothesis conditional probability formula which the GRMMAE uses to calculate

probabilities that each elemental filter in the GRMMAE contains the correct parameter

value. Through appropriate choice of a single scalar GRMMAE design parameter, the

GRMMAE can be designed to be equivalent to a traditional MMAE, a post-fit residual

modified MMAE, or any number of yet unused MMAEs. The original GRMMAE design

goal was to choose the GRMMAE design parameter which caused the fastest GRMMAE

convergence to the correct hypothesis. However, this dissertation demonstrates that the

GRMMAE design parameter can lead to β-dominance, a negative performance effect in

the GRMMAE. This is a key contribution of this research as other researchers have previ-

ously suggested that the use of post-fit residuals may be advantageous in certain MMAE

applications. This dissertation directly addresses the use of post-fit residuals by those re-

searchers and demonstrates that, for their application, equivalent performance is achieved

using a traditional MMAE.
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Generalized Residual Multiple Model Adaptive Estimation

of Parameters and States

I. Introduction

1.1 Overview

It is often necessary to estimate both a system parameter and the system state. A

common example of this need is precise relative positioning using Global Positioning Sys-

tem (GPS) carrier-phase measurements. These precise GPS positions are routinely used

in surveying and are planned for the US Navy variant of the Joint Precision Approach

and Landing System (JPALS). The next chapter demonstrates that a constant parameter,

namely carrier-phase integer ambiguities, must be estimated in order to obtain carrier-

phase-based GPS positions. The parameter estimate is then used as part of the system

model to estimate the system state variables (typically including position, velocity, and

acceleration in a navigation system). Thus, there is a motivation to develop techniques for

estimating states in the presence of an unknown system parameter. In general, these tech-

niques use sensor measurements to estimate the system parameter. In turn, the parameter

estimate is used to calculate the state variable estimates. A generic block diagram of such

a system is shown in Figure 1.1 where z is the measurement vector, x̂ is the state vector

estimate, and â is the parameter vector estimate.

Parameter

Estimator

State and

â

x̂

z

Figure 1.1 Generic Parameter and State Estimator
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A second common application for the system in Figure 1.1 is failure detection and

isolation. For this application, the system parameter is an operating mode (i.e., fully

functional, type 1 failure, type 2 failure, etc.). The generic parameter and state estimator

uses sensor measurements to estimate the system mode and to produce an appropriate

state variable estimate.

By defining an appropriate system parameter, both of these common estimation ap-

plications can be addressed using the generic system of Figure 1.1. Since this research was

inspired by GPS carrier-phase integer ambiguity resolution, that application is discussed

in some detail. However, this research is sufficiently general to apply to the failure detec-

tion and isolation application as well as other appropriate applications where the system

state is estimated in the presence of an unknown system parameter. Chapters II and III

explicitly state all mathematical assumptions an application must meet for this research

to apply.

The Multiple Model Adaptive Estimator (MMAE) [26] of Figure 1.2 is a specific type

of parameter and state estimator. The MMAE consists of a bank of parallel Kalman filters,

termed “elemental filters.” Each elemental filter is based on a hypothesized parameter

vector, a1, a2, . . . or, aK , where aj is the constant (or slowly-varying with respect to

the states) parameter vector for the jth elemental filter, and there are K elemental filters

in the MMAE. The elemental filters act upon a measurement vector z to produce a state

estimate x̂j , a residual vector rj , and a residual covariance matrix, Aj . The MMAE is

derived in detail in Chapter II.

The primary motivation for using a multiple filter technique like the MMAE rather

than a single filter technique is responsiveness. In many cases, problems that are addressed

using the MMAE could also be addressed with a single filter estimation technique such as

a Kalman filter. However, by comparing measurement residuals, r, from several elemental

filters, the MMAE is generally able to determine the correct parameter value more quickly.

Additionally, the MMAE will generally respond to changes in the parameter, such as a sys-

tem failure, more quickly than a single filter solution [46]. The additional filters required

in the MMAE do increase the computational load when compared to a single filter solu-

tion. However, computational power continues to increase, and computationally efficient
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Kalman Filter
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Kalman Filter
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Kalman Filter
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Conditional

rrr
rrr

rr r
r r r

Figure 1.2 General MMAE Block Diagram

algorithms such as “moving-bank” and “filter spawning” MMAE’s have been developed to

address this disadvantage [10, 11, 12, 13, 14, 23, 24, 28, 41, 42, 46]. This research assumes

that sufficient computational power exists, so methods to increase computational efficiency

are not emphasized.

Recently, researchers have suggested modifying the MMAE to calculate hypothesis

conditional probabilities from “post-fit” residuals [17, 18]. The traditional MMAE uses a

nonlinear function of measurement residuals from each elemental filter to calculate prob-

abilities that the filter contains the correct hypothesis. These researchers have suggested

that better performance may be achieved by calculating hypothesis conditional probabil-

ities using a nonlinear function of residuals calculated after measurement update. Such

residuals are termed “post-fit” residuals. Additionally, [47] has suggested using post-fit

residuals from multiple Kalman filters for hypothesis testing. However, it is unclear from

[47] if a full MMAE was used or if post-fit residual monitoring was used. Regardless of
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what technique [47] used, the method is at least closely related to using post-fit residuals

in an MMAE.

This dissertation was inspired by [17, 18], which provided no formal derivation or

mathematical characterization of the effect that post-fit residual processing has on the

MMAE. A research contribution of this dissertation is to fill the gap left in [17, 18]. To do

this, a mathematical generalization to the MMAE is developed to allow the designer easily

to incorporate linear combinations of Kalman filter residuals (calculated before measure-

ment update) and post-fit residuals (calculated after measurement update). This linear

combination is termed a “generalized residual.” The MMAE acting upon this generalized

residual is introduced here as the “Generalized Residual Multiple Model Adaptive Estima-

tor” (GRMMAE). This research provides a derivation of the hypothesis conditional prob-

ability calculation based upon the generalized residual. Additionally, generalized residual

properties for both correct and incorrect hypotheses are derived. The effect of using the

generalized residual on MMAE performance is demonstrated. The fact that the general-

ized residual leads to the β-dominance effect [2, 3, 32], a negative performance attribute,

is demonstrated. Additionally, for the specific design and application used by [17, 18, 21],

this dissertation demonstrates that the β-dominance effect is cancelled and proves that the

suggestion in [17, 18] that post-fit residuals improve performance for GPS carrier-phase

integer ambiguity resolution is not true. These are all contributions of this research. Fur-

ther, this dissertation demonstrates that, in general, the proposed GRMMAE is susceptible

to the β-dominance effect and is therefore, not recommended for wide application. How-

ever, as the recommendation for future research suggests, with further development, the

GRMMAE may be useful to correct for β-dominance optimally.

1.2 Dissertation Summary

This dissertation consists of 5 chapters. This chapter provides an introduction to

the dissertation. Chapter II gives necessary background for the new research. Chapter III

derives the new theory for this dissertation, presenting a full derivation of the proposed

GRMMAE and properties of the generalized residuals. The primary research contribu-

tions of this dissertation are contained in Chapter III. Chapter IV presents simulation and
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analysis results for the GRMMAE, demonstrating that the modified MMAE from [17, 18]

(a specific example of the GRMMAE) provides equivalent performance to the traditional

MMAE. Additionally, it demonstrates that, in general, the proposed GRMMAE is sus-

ceptible to the β-dominance effect. Simulation results in Chapter IV validate theoretical

contributions presented in Chapter III. Chapter V gives conclusions and recommenda-

tions based on this research. Additionally, the research contributions of this dissertation

are enumerated in Chapter V.
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II. Background

2.1 Kalman Filter

The basic building block in the Multiple Model Adaptive Estimator (MMAE) is the

Kalman filter. Therefore, the Kalman filter is derived here. This section presents the linear

Kalman filter used for systems which can be described by linear dynamics and measurement

models. Section 2.2 describes the extended Kalman filter, which is used when a system

has nonlinearities in the dynamics and/or measurement model.

Consider a system which can be modeled by the linear stochastic difference equation

x (ti+1) = Φ (ti+1, ti) x (ti) + Bd (ti)u (ti) + wd (ti)

z (ti) = H (ti) x (ti) + v (ti) (2.1)

In the first line of Equation (2.1), x (ti) is the state vector, Φ (ti+1, ti) is the state transition

matrix from time ti to ti+1, Bd (ti) is the input matrix, u (ti) is the control vector, and

wd (ti) is the discrete-time dynamics driving noise vector. This represents the system

dynamics model. The second line of Equation (2.1) gives the system measurement model,

where z (ti) is the measurement vector, H (ti) is the measurement matrix, and v (ti) is the

measurement noise vector. Note that Equation (2.1) may be an equivalent discrete-time

description of a continuous-time system model [30]. The form of Equation (2.1) assumes

measurements z (ti) are available only at discrete-times.

Noise vectors wd (ti) and v (ti) are assumed independent, zero-mean, white, Gaussian

processes with covariance kernels

E
{
wd (ti)w

T
d (tj)

}
= Qd (ti) δij

E
{
v (ti) v

T (tj)
}
= R (ti) δij (2.2)

where the discrete-time dynamics driving noise covarianceQd (ti) is assumed positive semi-

definite for all time, the measurement noise covarianceR (ti) is assumed positive definite for
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all time, and δij is the Kronecker delta function. It is assumed the system of Equation (2.1)

starts from an initial state x (t0), which is a Gaussian random vector with mean and

covariance given by

E {x (t0)} = x̂0

E
{
[x (t0)− x̂0] [x (t0)− x̂0]

T
}
= P0 (2.3)

where x̂0 is the initial state vector estimate, x (t0) is assumed independent of wd (ti) and

v (ti) for all ti, and P0 is the initial state covariance matrix. P0 is, by definition, positive

semi-definite.

Two measurement times ti−1 and ti are used to derive a two-step process. The first

step propagates the optimal state estimate and state covariance from the time immediately

after measurement update at ti−1 to the time immediately before measurement update

at ti. The next step updates the propagated state and covariance estimates using the

measurement update at time ti. Notationally, t
−
i is used to denote a quantity at time ti

immediately before the measurement update is incorporated, while t+i denotes a quantity

immediately after the measurement update at time ti. The derived propagate and update

algorithm for the general times ti−1 and ti is used recursively to estimate the state vector

and state covariance, beginning at the initial conditions of Equation (2.3).

Suppose the measurement z (ti−1) has been incorporated. The desire is to define

the conditional probability density function (PDF) for the state vector conditioned on

the entire measurement history fx(ti−1)|Z(ti−1) (ξ|Z (ti−1) = Z i−1), and to propagate that

density forward until the next measurement is incorporated. Here, Z (ti−1) is a growing

length measurement history vector consisting of all measurement vectors from t0 through

ti−1, ξ and Z i−1 are dummy variables representing the state vector and the measurement

history, respectively. It is proven in [29] that fx(ti−1)|Z(ti−1) (ξ|Z (ti−1) = Z i−1) is Gaussian

under the previous assumptions concerning Equations (2.1) through (2.3). Therefore, the

mean and covariance fully define the density. For convenience, define
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x̂
(
t+i−1

) 4
= E

[
x (ti−1) | Z (ti−1) = Zi−1

]

P
(
t+i−1

) 4
= E

[[
x (ti−1) − x̂

(
t+i−1

)][
x (ti−1) − x̂

(
t+i−1

)]T | Z (ti−1) = Zi−1

]
(2.4)

where x̂
(
t+i−1

)
and P

(
t+i−1

)
are the conditional state mean and covariance estimates, con-

ditioned on the realized measurement history through time ti−1, Zi−1, immediately after

measurement incorporation at ti−1. For a Gaussian density, the conditional mean x̂
(
t+i−1

)

is the optimal state estimate following measurement update at time ti−1 for “essentially any

criterion of optimality” [29]. Not only is it the conditional mean, it is also the conditional

mode and the conditional median.

Next, the conditional mean and covariance need to be propagated to time t−i . To

simplify this discussion, assume there are no control inputs (i.e., u (ti−1) = 0). Control

inputs only have the effect of shifting the state conditional mean. They have no effect on

the conditional covariance. The effect of control inputs is added following this development.

The state conditional mean at ti, conditioned on the measurement history at ti−1 is

E
[
x (ti) | Z (ti−1) = Zi−1

]
= E

[
Φ (ti, ti−1) x (ti−1) + wd (ti−1) | Z (ti−1) = Zi−1

]

= Φ (ti, ti−1)E
[
x (ti−1) | Z (ti−1) = Zi−1

]

+ E
[
wd (ti−1)

]

E
[
x (ti) | Z (ti−1) = Zi−1

]
= Φ (ti, ti−1)E

[
x (ti−1) | Z (ti−1) = Zi−1

]
(2.5)

In the third line of Equation (2.5), the unconditional mean is used because wd (ti) is

independent of Z (ti−1). In the final line, the assumption that wd (ti) is zero-mean is

invoked.

Define
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x̂
(
t−i
) 4
= E

[
x (ti) | Z (ti−1) = Zi−1

]

P
(
t−i
) 4
= E

[[
x (ti) − x̂

(
t−i
)] [
x (ti) − x̂

(
t−i
)]T | Z (ti−1) = Zi−1

]
(2.6)

Using Equations (2.5) and (2.6), the propagated state conditional mean is

x̂
(
t−i
)
= Φ (ti, ti−1) x̂

(
t+i−1

)
(2.7)

The propagated state covariance estimate is

P
(
t−i
)
= E

[[
x (ti) − x̂

(
t−i
)] [
x (ti) − x̂

(
t−i
)]T | Z (ti−1) = Zi−1

]

= E
[[
Φ (ti, ti−1) x (ti−1) + wd (ti) − x̂

(
t−i
)]
[Φ (ti, ti−1) x (ti−1) + wd (ti)

− x̂
(
t−i
)]T | Z (ti−1) = Zi−1

]

= Φ (ti, ti−1)E
[
x (ti−1) x

T (ti−1) | Z (ti−1) = Zi−1

]
ΦT (ti, ti−1)

− x̂
(
t−i
)
E
[
x
T (ti−1) | Z (ti−1) = Zi−1

]
ΦT (ti, ti−1)

−Φ (ti, ti−1)E
[
x (ti−1) | Z (ti−1) = Zi−1

]
x̂T
(
t−i
)

+ x̂
(
t−i
)
x̂T
(
t−i
)
+ E

[
wd (ti)w

T
d (ti) | Z (ti−1) = Zi−1

]

= Φ (ti, ti−1)E
[
x (ti−1) x

T (ti−1) | Z (ti−1) = Zi−1

]
ΦT (ti, ti−1)

− x̂
(
t−i
)
x̂T
(
t+i−1

)
ΦT (ti, ti−1)−Φ (ti, ti−1) x̂

(
t+i−1

)
x̂T
(
t−i
)
+ x̂

(
t−i
)
x̂T
(
t−i
)

+ Qd (ti)

= Φ (ti, ti−1)E
[
x (ti−1) x

T (ti−1) | Z (ti−1) = Zi−1

]
ΦT (ti, ti−1)

−Φ (ti, ti−1) x̂
(
t+i−1

)
x̂T
(
t+i−1

)
ΦT (ti, ti−1)

−Φ (ti, ti−1) x̂
(
t+i−1

)
x̂T
(
t+i−1

)
ΦT (ti, ti−1)

+ Φ (ti, ti−1) x̂
(
t+i−1

)
x̂T
(
t+i−1

)
ΦT (ti, ti−1) + Qd (ti)
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P
(
t−i
)
= Φ (ti, ti−1)

{
E
[
x (ti−1) x

T (ti−1) |Z (ti−1) = Zi−1

]
− x̂

(
t+i−1

)
x̂T
(
t+i−1

)
}
ΦT (ti, ti−1)

+ Qd (ti)

P
(
t−i
)
= Φ (ti, ti−1)P

(
t+i−1

)
Φ (ti, ti−1) + Qd (ti) (2.8)

where the cross-terms involving x (ti) with wd (ti) were dropped because wd (ti) is assumed

to be independent of x (ti) and zero-mean. Similarly, the cross-terms with x̂
(
t+i−1

)
and

wd (ti) were dropped because wd (ti) is zero-mean.

If x̂
(
t−i
)
is used as the optimal propagated state estimate prior to measurement

update at ti, then the error associated with this estimate is
[
x (ti) − x̂

(
t−i
)]
. Since this

error is zero-mean [29], P
(
t−i
)
is the estimation error covariance as well as the propagated

state estimate covariance. Note also that the measurement vector z (ti) does not appear in

Equation (2.8). Therefore, given a covariance for the initial state estimate, the propagated

state estimate covariance (and state estimate error covariance) can be computed for all

time before any measurements are taken.

Now, consider updating the propagated state estimate with information from the

measurement taken at ti. Thus, the conditional density fx(ti)|Z(ti) (ξ|Z (ti) = Z i) is de-

sired. Repeated application of Baye’s rule and the definition of the measurement history

yield [29]

fx(ti)|Z(ti) (ξ|Z (ti) = Z i)

=
fz(ti)|x(ti),Z(ti−1) (ζi|x (ti) = ξ,Z (ti−1) = Z i−1) fx(ti)|Z(ti−1) (ξ|Z (ti−1) = Z i−1)

fz(ti)|Z(ti−1) (ζi|Z (ti−1) = Z i−1)

(2.9)

where ζi is the dummy variable associated with z (ti).

The form of Equation (2.9) is motivated by the fact that all three densities on the

right hand side are easily evaluated. The density fx(ti)|Z(ti−1) (ξ|Z (ti−1) = Z i−1) is the

density for the propagated state, developed earlier in this section. It is Gaussian [29], with

mean and covariance given by Equations (2.7) and (2.8):
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fx(ti)|Z(ti−1) (ξ|Z (ti−1) = Z i−1)

=
1

(2π)n/2 |P
(
t−i
)
|1/2

exp

{
−1
2

[
ξ − x̂

(
t−i
)]T

P−1
(
t−i
) [
ξ − x̂

(
t−i
)]}

(2.10)

where n is the dimension of the state vector and | · | is the matrix determinant.

Next, consider the first conditional density in the numerator of Equation (2.9),

fz(ti)|x(ti),Z(ti−1) (ζi|x (ti) = ξ,Z (ti−1) = Z i−1). Recall from Equation (2.1) that the mea-

surement model is

z (ti) = H (ti) x (ti) + v (ti)

Since this density is conditioned on the fact the state has taken a value, x (ti) = ξ,

then the random vector z (ti) is a linear function of the known state realization and the

zero-mean, white, Gaussian measurement noise with covariance R (ti). Therefore, this

conditional density is a Gaussian density, with mean H (ti) ξ and covariance R (ti):

fz(ti)|x(ti),Z(ti−1) (ζi|x (ti) = ξ, Z (ti−1) = Z i−1)

=
1

(2π)m/2 |R (ti) |1/2
exp

{
−1
2
[ζi − H (ti) ξ]

T R−1 (ti) [ζi − H (ti) ξ]

}
(2.11)

where m is the dimension of the measurement vector.

Finally, consider fz(ti)|Z(ti−1) (ζi|Z (ti−1) = Z i−1), from Equation (2.9), which is

Gaussian with mean H (ti) x̂
(
t−i
)
and covariance A

(
t−i
)
= H (ti)P

(
t−i
)
HT (ti) +R (ti),

calculated from the measurement model in Equation (2.1) [29]:

fz(ti)|Z(ti−1) (ζi|Z (ti−1) = Z i−1)

=
1

(2π)m/2 |A
(
t−i
)
|1/2

exp

{
−1
2

[
ζi − H (ti) x̂

(
t−i
)]T

A−1
(
t−i
) [
ζi − H (ti) x̂

(
t−i
)]}

(2.12)
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Substituting Equations (2.10) through (2.12) into Equation (2.9), and invoking the

matrix inversion lemma, yields the equivalent Gaussian density [29]

fx(ti)|Z(ti) (ξ|Z (ti) = Z i)

=
1

(2π)n/2 |P
(
t+i
)
|1/2

exp{−1
2

[
ξ − x̂

(
t+i
)]T

P−1
(
t+i
) [
ξ − x̂

(
t+i
)]
} (2.13)

where the updated state vector mean and covariance immediately after measurement in-

corporation are

x̂
(
t+i
)
= x̂

(
t−i
)
+ P

(
t−i
)
HT (ti)

[
H (ti)P

(
t−i
)
HT (ti) + R (ti)

]−1 [
zi − H (ti) x̂

(
t−i
)]

P
(
t+i
)
= P

(
t−i
)
− P

(
t−i
)
HT (ti)

[
H (ti)P

(
t−i
)
HT (ti) + R (ti)

]−1
H (ti)P

(
t−i
)

(2.14)

and zi is the realized measurement at time ti.

The Kalman filter propagate and update algorithm has now been developed assuming

no control inputs are present. To complete the development, the effect of control inputs

must be included. As mentioned previously, these deterministic inputs only affect the mean

of the propagated state estimate. When control inputs are included, the propagated state

vector estimate becomes [29]

x̂
(
t−i
)
= Φ (ti, ti−1) x̂

(
t+i−1

)
+ Bd (ti)u (ti) (2.15)

where the control input terms, from Equation (2.1), are the equivalent discrete-time control

model calculated from the continuous-time model using

Bd (ti)u (ti) =

ti∫

ti−1

Φ (ti, τ)B (τ)u (τ) dτ (2.16)
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The Kalman filter is summarized by the propagation and update algorithm shown in

Table 2.1. In Table 2.1, K (ti) is the Kalman filter gain. All other variables and equations

are previously defined in this section.

2.2 Extended Kalman Filter

Frequently, applications call for use of a Kalman filter on a nonlinear system. Such

a system may contain nonlinearities in the dynamics and/or the measurement model. One

example with a nonlinear measurement model is estimation of position using the GPS.

A common solution for these nonlinear problems is the extended Kalman filter. Like the

Kalman filter of Section 2.1, the extended Kalman filter can be a basic building block in the

MMAE. Therefore, the extended Kalman filter is derived here, paralleling the derivation in

[30]. It is important to note, however, that the MMAE based on extended Kalman filters

is an ad hoc form. Unlike the MMAE based on linear system models and linear Kalman

filters, it is not an optimal Bayesian form.

Consider a system which can be modeled by the continuous-time dynamics and

discrete-time measurement models

ẋ (t) = f [x (t) , u (t) , t] + G (t)w (t)

z (ti) = h [x (ti) , ti] + v (ti) (2.17)

Table 2.1 Kalman Filter Algorithm Summary [29]

State Propagation

x̂
(
t−i
)

= Φ (ti, ti−1) x̂
(
t+i−1

)
+ Bd (ti)u (ti)

P
(
t−i
)

= Φ (ti, ti−1)P
(
t+i−1

)
Φ (ti, ti−1) + Qd (ti)

Measurement Update

K (ti) = P
(
t−i
)
HT (ti)

[
H (ti)P

(
t−i
)
HT (ti) + R (ti)

]−1

x̂
(
t+i
)

= x̂
(
t−i
)
+ K (ti)

[
zi − H (ti) x̂

(
t−i
)]

P
(
t+i
)

= P
(
t−i
)
− K (ti)H (ti)P

(
t−i
)
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where

ẋ (t) is the state vector derivative at time t

f [·, ·, ·] is the general, possibly nonlinear, dynamics model; a function of x, u

and t

h [·, ·] is the general, possibly nonlinear, measurement model; a function of x

and ti

For this derivation, it is assumed that f [x (t) , u (t) , t] is Lipschitz in x (t), continuous in

u (t), and piecewise continuous in t. Additionally, the control input u (t) is assumed to be

piecewise continuous in t.1

Assume w (t) and v (ti) are independent, zero-mean, white, Gaussian noise processes

with covariance kernels

E
{
w (t)wT (t + τ)

}
= Q (t) δ (τ)

E
{
v (ti) v

T (tj)
}
= R (ti) δij (2.18)

where Q (t) is the continuous-time dynamics driving noise strength and δ (τ) is the Dirac

delta function. Finally, the model is assumed to start from initial state x (t0), which is

a Gaussian random vector with mean x̂0 and covariance P0. Note that in the case of a

nonlinear dynamics model f [x (t) , u (t) , t], the state vector generally does not remain

Gaussian beyond the initial time.

As a stepping stone to deriving the extended Kalman filter, first consider the lin-

earized Kalman filter. The linearized Kalman filter assumes a nominal state trajectory

xn (t) is defined for all times of interest (defined as t ∈ T ). Linear perturbation theory

is then used to calculate state trajectory perturbations from the nominal trajectory. This

theory is derived first, then the extended Kalman filter is related to it.

Assume the nominal state trajectory, subject to the initial condition xn (t0) = xn0
,

can be generated such that it satisfies the deterministic differential equation:

1These assumptions are necessary to ensure that a solution exists to the deterministic differential equa-
tion ẋ (t) = f [x (t) , u (t) , t] subject to the initial condition x (t0) = x0. For more details, see [29]
Section 2.3.
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ẋn (t) = f [xn (t) , u (t) , t] (2.19)

To maintain the adequacy of linear perturbation techniques, perturbations of the control

vector u (t) from a nominal control vector un (t) are not considered here.

This nominal state process has a set of nominal noise-free measurements zn (ti) as-

sociated with it, given by

zn (ti) = h [xn (ti) , ti] (2.20)

In Equations (2.19) and (2.20), f [·, ·, ·] and h [·, ·] are the general dynamics and measure-
ment models, respectively, given in Equation (2.17).

Consider the state perturbation from the nominal state. Using Equations (2.17) and

(2.19), the state perturbation from the nominal state is given by

[ẋ (t) − ẋn (t)] = f [x (t) , u (t) , t] − f [xn (t) , u (t) , t] + G (t)w (t) (2.21)

Note in Equation (2.21) that ẋ (t) and x (t) are random vectors while ẋn (t) and xn (t) are

deterministic.

To develop the perturbation equation, the right hand side term in Equation (2.21) is

expanded using a Taylor series expansion about the nominal state vector xn (t), yielding

f [x (t) , u (t) , t] = f [xn (t) , u (t) , t] +
∂f [x, u (t) , t]

∂x

∣∣∣∣
x=xn

[x (t) − xn (t)] + h.o.t.

(2.22)

In Equation (2.22), h.o.t. represents higher order terms and the derivative is assumed to

exist. It is assumed that the state perturbations from nominal are sufficiently small to

allow h.o.t. to be neglected. Substituting Equation (2.22) into Equation (2.21) yields a

first-order linear approximation to the state perturbation from nominal
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δ̇x (t) = F [t;xn (t)] δx (t) + G (t)w (t) (2.23)

where δx (t) is a first-order approximation of [x (t) − xn (t)] and F [t;xn (t)] is a matrix

of partial derivatives of the dynamics model defined by

F [t;xn (t)]
4
=

∂f [x, u (t) , t]

∂x

∣∣∣∣
x=xn

(2.24)

Thus, a linear approximation for the perturbation of state vector from the nominal state

vector is defined. To calculate the total state vector estimate, the perturbation estimate

(to be derived) is added to the nominal state: x̂ (t) = δ̂x (t) + xn (t).

The same approach used to derive Equation (2.23) is used to derive the measurement

perturbation

δz (ti) = H [ti;xn (ti)] δx (ti) + v (ti) (2.25)

As before, δz (ti) is a first-order approximation to [z (ti) − zn (ti)] and H [ti;xn (ti)] is a

matrix of partial derivatives (assumed to exist) of the measurement model defined by

H [ti;xn (ti)]
4
=

∂h [x, ti]

∂x

∣∣∣∣
x=xn(ti)

(2.26)

Equations (2.23) and (2.25) yield a linear model (albeit an approximation) to which

linear filtering theory can be applied. This form of Kalman filter is called a linearized

Kalman filter or perturbation Kalman filter. The extended Kalman filter is directly related

to the linearized Kalman filter. The difference between the two lies in the fact that the

extended Kalman filter re-linearizes about the state estimate after each measurement up-

date, rather than linearizing about a pre-defined nominal state trajectory. The extended

Kalman filter has the advantage over the linearized Kalman filter of being more robust in
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the presence of large perturbations from the nominal state trajectory. For the extended

Kalman filter to operate properly, though, any perturbations between two consecutive

measurement updates must be small enough to allow h.o.t. from Equation (2.22) to be

neglected.

To derive the extended Kalman filter, assume a measurement update has taken place

at time ti, producing state estimate x̂
(
t+i
)
. Now, rather than maintaining the linearization

about the nominal state xn (ti), re-linearize about the new state estimate. Let xn (t/ti)

be the extended Kalman filter “nominal” state trajectory on the interval [ti, ti+1). Thus,

xn (t/ti) is the solution to Equation (2.19) subject to initial condition x̂
(
t+i
)
, solved on

the interval [ti, ti+1):

ẋn (t/ti) = f [xn (t/ti) ,u (ti) , t]

for

xn (ti/ti) = x̂
(
t+i
)

(2.27)

where f [·, ·, ·] is the dynamics model from Equation (2.17) and x̂
(
t+i
)
is the state estimate

after measurement update at time ti.

To propagate the state to the next measurement time ti+1, employ the re-linearized

F [t;xn (t/ti)] where F [· ; ·] is defined in Equation (2.24). Let δ̂x (t/ti) denote the estimate
of δx (t) based on measurements through time ti. Then, on the interval [ti, ti+1) , δ̂x (t/ti)

is the solution to

˙̂
δx (t/ti) = F [t;xn (t/ti)] δ̂x (t/ti) (2.28)

subject to the initial condition

δ̂x (ti/ti) = δ̂x
(
t+i
)
= 0 (2.29)

This initial condition comes from the fact that the best estimate of δx (ti) immediately

after measurement incorporation is 0 due to the re-linearization. Solving Equation (2.28)

subject to Equation (2.29) leads to δ̂x (t/ti) = 0 over the interval [ti, ti+1). Thus, the

propagated state perturbation estimate δ̂x
(
t−i+1

)
is 0.

2-12



Next, the filter is updated with a measurement as in Equation (2.25), with zn (ti+1)

replaced by

zn (ti+1/ti)
4
= h [xn (ti+1/ti) , ti+1] (2.30)

where zn (ti+1/ti) is the measurement prediction based on re-linearization about the most

recent state estimate. Given the measurements of (2.25) and (2.30), the measurement

update of the state perturbation estimate is

δ̂x
(
t+i+1

)
= δ̂x

(
t−i+1

)
+ K (ti+1)

[
{zi+1 − zn (ti+1/ti)} − H (ti+1) δ̂x

(
t−i+1

)]

= K (ti+1) {zi+1 − h [xn (ti+1/ti) , ti+1]}
(2.31)

where

δ̂x
(
t+i+1

)
is the updated state perturbation estimate

δ̂x
(
t−i+1

)
is the propagated state perturbation estimate (δ̂x

(
t−i+1

)
= 0 from the

explanation following Equation (2.29))

K (ti+1) is the Kalman filter gain matrix at time ti+1

zi+1 is the measurement realization at time ti+1

h [·, ·] is the general measurement model from Equation (2.17)

Note that K (ti+1) is computed from P
(
t−i+1

)
and H (ti+1) evaluated along xn (t/ti) on the

interval [ti, ti+1). A specific equation for K (ti+1) is given at the end of this subsection.

With the perturbation estimate updated, the next step is to update the whole state

estimate. As in the linearized Kalman filter, it is assumed that an adequate model for the

whole state is given by

x (t) = xn (t/ti) + δx (t) (2.32)

Using Equations (2.31) and (2.32), the optimal estimate of the whole state is defined by

x̂ (t/ti)
4
= xn (t/ti) + δ̂x (t/ti) (2.33)
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Next, the whole state estimate is propagated to the next measurement time. Since it

was previously shown that δ̂x (t/ti) = 0 over the entire interval between measurements,

the best state estimate between measurements is given by the solution to Equation (2.27)

with appropriate substitutions of state estimates

˙̂x (t/ti) = f [x̂ (t/ti) ,u (t) , t]

for

x̂ (ti/ti) = x̂
(
t+i
)

(2.34)

where

x̂ (t/ti) is the whole state estimate on the interval [ti, ti+1) after measurement

incorporation at time ti

f [·, ·, ·] is the general dynamics model

x̂
(
t+i
)

is the whole state estimate immediately following measurement incorporation

at time ti

Finally, the measurement update at time ti+1 is incorporated using

x̂
(
t+i+1

)
= x̂ (ti+1/ti) + δ̂x

(
t+i+1

)

= x̂ (ti+1/ti) + K (ti+1) {zi+1 − h [x̂ (ti+1/ti) , ti+1]}
(2.35)

where

x̂
(
t+i+1

)
is the updated whole state estimate after measurement incorporation at

time ti+1

x̂ (ti+1/ti) is the propagated whole state estimate from Equation (2.33)

h [·, ·] is the general measurement model

The extended Kalman filter is summarized by the update and propagation algorithm

shown in Table 2.2.
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Table 2.2 Extended Kalman Filter Summary [30]

Measurement Update
K (ti) = P

(
t−i
)
HT

[
ti; x̂

(
t−i
)]

{ H
[
ti; x̂

(
t−i
)]
P
(
t−i
)
HT

[
ti; x̂

(
t−i
)]
+R (ti) }−1

x̂
(
t+i
)
= x̂

(
t−i
)
+ K (ti)

{
zi − h

[
x̂
(
t−i
)
, ti
]}

P
(
t+i
)
= P

(
t−i
)
− K (ti)H

[
ti; x̂

(
t−i
)]
P
(
t−i
)

where

H
[
ti; x̂

(
t−i
)] 4

= ∂h[x,ti]
∂x

∣∣∣
x=x̂(t−i )

State Propagation

Integrate over ti ≤ t ≤ ti+1
˙̂x (t/ti) = f [x̂ (t/ti) ,u (t) , t]

Ṗ (t/ti) = F [t; x̂ (t/ti)]P (t/ti) + P (t/ti)F
T [t; x̂ (t/ti)]

+G (t)Q (t)GT (t)
subject to

x̂ (ti/ti) = x̂
(
t+i
)

P (ti/ti) = P
(
t+i
)

where

F [t; x̂ (t/ti)]
4
= ∂f [x, u(t),t]

∂x

∣∣∣
x=x̂(t/ti)

After Integration Define

x̂
(
t−i+1

) 4
= x̂ (ti+1/ti)

P
(
t−i+1

) 4
= P (ti+1/ti)

2.3 Multiple Model Adaptive Estimator

The topic of the Multiple Model Adaptive Estimator is introduced in this section.

The MMAE was initially proposed for GPS carrier-phase integer ambiguity resolution by

[21] with a modified version tested by [18]. The idea of using the MMAE (then termed a

Magill filter) for GPS carrier-phase integer ambiguity resolution was suggested by [21] and

simulations were performed showing the technique had potential for application in static

scenarios. The technique was later modified slightly by [18], and applied to kinematic GPS

data, further demonstrating the technique’s potential. This section provides background

on the traditional MMAE technique. A later section will describe more fully the approaches

of [18, 21].
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Multiple Model Adaptive Estimation was originally proposed in [26]. The technique

has since been described in a number of textbooks on Kalman filtering. The presentation

here is similar to that found in [30].

Consider that the model of Equation (2.1) contains an unknown parameter which

varies slowly, if at all, when compared to the states. Further, assume that the parameter can

take on values that are discrete members of a finite set {a1,a2, . . . ,aK}. To achieve the best
state estimation performance, the unknown parameter must be estimated. One approach

is to use the MMAE shown in Figure 1.2. The MMAE is a bank of K linear Kalman filters,

each built around a single member of the parameter set {a1,a2, . . . ,aK}. Each individual
filter is referred to as an elemental filter. The elemental filter outputs are combined in an

optimally weighted fashion to produce the state vector estimate. Additionally, the optimal

weights can be used to determine the best estimate of the correct parameter ak, where

k ∈ {1, 2, . . . ,K}. With this introduction in mind, the MMAE algorithm is derived.

Let a represent an uncertain parameter in the system model of Equation (2.1). In

general, a may affect any or all of the model matrices: Φ, Bd, H, Qd, or R. A goal of

the MMAE is to find the mean of the conditional PDF given on the left hand side of

fx(ti),a|Z(ti) (ξ,α|Z (ti) = Zi) = fx(ti)|a,Z(ti) (ξ|a = α,Z (ti) = Zi) fa|Z(ti) (α|Z (ti) = Zi)

(2.36)

where fx(ti),a|Z(ti) (ξ,α|Z (ti) = Zi) is the joint conditional PDF for the state vector and

parameter set, x (ti) and a, conditioned on the realized measurement history Zi.

Equation (2.36) is a statement of Baye’s rule for this conditional PDF. In defin-

ing the desired probability density, consider the first density on the right hand side of

Equation (2.36) fx(ti)|a,Z(ti) (ξ|a = α,Z (ti) = Zi). Since this density is conditioned on a

particular realization of a, it is analogous to the standard conditional density used in

Kalman filtering for state estimation. Therefore, under assumptions of Equations (2.1)

through (2.3), it is a Gaussian density with mean x̂k
(
t+i
)
and covariance Pk

(
t+i
)
as calcu-

lated by a standard Kalman filter for a given realization ak of the parameter a (where the

subscript k indicates the dependence upon the realized value of the parameter a).
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Next, consider the second density on the right hand side of Equation (2.36). Although

it has already been assumed that the elements of a take on discrete values, consider for a

moment the case in which a is a continuous (rather than discrete) random variable. Using

Baye’s rule, the second density on the right hand side of Equation (2.36) can be expressed

as

fa|Z(ti) (α|Z (ti) = Z i) =

fz(ti)|a,Z(ti−1) (ζ|a = α,Z (ti−1) = Z i−1) fa|Z(ti−1) (α|Z (ti−1) = Z i−1)∫
A

fz(ti)|a,Z(ti−1) (ζ|a = α,Z (ti−1) = Z i−1) fa|Z(ti−1) (α|Z (ti−1) = Z i−1)dα

(2.37)

From the system model and assumptions in Equations (2.1) to (2.3), the density

fz(ti)|a,Z(ti−1) (ζi|a = α,Z (ti−1) = Z i−1) is Gaussian [29]. Its mean is the measurement

prediction H (ti) x̂
(
t−i
)
, and its covariance is

[
H (ti)P

(
t−i
)
HT (ti) +R (ti)

]
, as computed

in a Kalman filter based on the parameter vector value α. Given an a priori density fa (α),

a state estimate is given by the conditional mean E {x (ti) |Z (ti) = Zi}.

Now, consider the case of a taking on discrete values. The a priori density for a can

be defined by

fa(t0) (α) =
K∑

k=1

pk (t0) δ (α − ak) (2.38)

In Equation (2.38), pk(t0) is the probability that a takes on discrete value ak at initial

time t0, and δ (α − ak) is the Dirac delta function. Thus, fa (α) is a summation of Dirac

delta functions weighted by appropriate probabilities, forming a discrete PDF. In order for

Equation (2.38) to be a valid PDF, it must meet the conditions

pk (t0) ≥ 0 ∀ k
K∑
k=1

pk (t0) = 1
(2.39)
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Note that the values of pk (t0) in Equation (2.39) represent the initial probabilities of each

element of the set {a1,a2, . . . ,aK}. In the absence of scientific knowledge or experimen-
tal data, the parameter hypotheses are initially assumed to be equally likely, leading to

pk (t0) =
1
K ∀ k.

Next, consider the measurement effects, and define the hypothesis conditional prob-

ability

pk (ti)
4
= prob {a = ak|Z (ti) = Zi} (2.40)

Thus, pk (ti) is the conditional probability that a = ak, given the realized measurement

history Zi.

Substituting Equations (2.38) and (2.40) into Equation (2.37), and using the sifting

property of the Dirac delta function, yields

pk (ti) =
fz(ti)|a,Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1) pk (ti−1)

K∑
j=1

fz(ti)|a,Z(ti−1) (zi|a = aj ,Z (ti−1) = Zi−1) pj (ti−1)

(2.41)

Recall from the definition of Equation (2.40) that pk (ti) is the conditional probability

for the parameter ak given the measurement history Zi. Thus, if desired, Equation (2.41)

is used to calculate the best estimate of the parameter. The formula for the optimal

parameter estimate will be shown later in Equation (2.48).

Now, consider state estimation. The optimal state estimate is derived as follows [30]

x̂
(
t+i
)
= E {x (ti) |Z (ti) = Zi}

=

∞∫

−∞

ξ



∫

A

fx(ti),a|Z(ti) (ξ,α|Z (ti) = Zi)dα


dξ

=

∞∫

−∞

ξ



∫

A

fx(ti)|a,Z(ti) (ξ|a = α,Z (ti) = Zi) fa|Z(ti) (α|Z (ti) = Zi)dα


dξ

=

∞∫

−∞

ξ



∫

A

fx(ti)|a,Z(ti) (ξ|a = α,Z (ti) = Zi)

K∑

k=1

pk (ti) δ (α − ak)dα


dξ
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x̂
(
t+i
)
=

∞∫

−∞

ξ

[
K∑

k=1

fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi) pk (ti)

]
dξ (2.42)

where Equation (2.36) was applied in the third line of Equation (2.42). In the fourth and

fifth lines of Equation (2.42), fa|Z(ti) (α|Z (ti) = Zi) is replaced by
∑K

k = 1 pk (ti) δ (α − ak)

by invoking the definition of pk (ti). Also, rather than writing a series of integrals over

each element of the vector ξ, the common engineering notation of writing a single integral

with boldface limits
( ∞∫
−∞

{·}dξ
)
was used. Assuming ξ is n-dimensional, this notation is

interpreted as

∞∫

−∞

{·}dξ =
∞∫

−∞

∞∫

−∞

. . .

∞∫

−∞

{·} dξ1dξ2 . . . dξn

Since the summation in Equation (2.42) is finite, the order of integration and sum-

mation can be interchanged [1] yielding

x̂
(
t+i
)
=

K∑
k=1

[
∞∫

−∞

ξfx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

]
pk (ti) (2.43)

The term inside the square bracket of Equation (2.43) is simply the optimal state estimate

conditioned upon a given parameter value ak and the realized measurement history Zi.

Define this quantity to be x̂k
(
t+i
)
. The updated state estimate then takes on its final form

given by

x̂
(
t+i
)
=

K∑

k=1

x̂k
(
t+i
)
pk (ti) (2.44)

Equation (2.44) shows that the final updated state estimate is the weighted sum of

the elemental filter state estimates, weighted by the probability that the parameter for

that particular elemental filter is the correct parameter (based on the measurements seen

to date). This is exactly the form that is shown in Figure 1.2.
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Next, consider the covariance update for the MMAE. From the definition, the co-

variance is

P
(
t+i
)
= E

{[
x (ti)− x̂

(
t+i
)] [
x (ti)− x̂

(
t+i
)]T |Z (ti) = Zi

}

=

∞∫

−∞

[
ξ − x̂

(
t+i
)] [

ξ − x̂
(
t+i
)]T

fx(ti)|Z(ti) (ξ|Z (ti) = Zi)dξ

=

∞∫

−∞

[
ξ − x̂

(
t+i
)] [

ξ − x̂
(
t+i
)]T

∫

A

fx(ti),a|Z(ti) (ξ,α|Z (ti) = Zi)dα dξ

=

∞∫

−∞

[
ξ − x̂

(
t+i
)] [

ξ − x̂
(
t+i
)]T

∫

A

fx(ti)|a,Z(ti) (ξ|a = α,Z (ti) = Zi) fa|Z(ti) (α|Z (ti) = Zi)dα dξ

P
(
t+i
)
=

∞∫

−∞

[
ξ − x̂

(
t+i
)] [

ξ − x̂
(
t+i
)]T K∑

k=1

fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi) pk (ti) dξ

(2.45)

Again, since the summation is finite, the order of integration and summation can be

interchanged. Additionally, fa|Z(ti) (α|Z (ti) = Zi) may be brought outside the integral in

the form pk (ti) using Equation (2.40). Equation (2.45) then becomes

P
(
t+i
)
=

K∑

k=1

pk (ti)





∞∫

−∞

[
ξ − x̂

(
t+i
)] [

ξ − x̂
(
t+i
)]T

fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ





=
K∑

k=1

pk (ti)





∞∫

−∞

ξξT fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

−
∞∫

−∞

x̂
(
t+i
)
ξT fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

−
∞∫

−∞

ξx̂T
(
t+i
)
fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

+

∞∫

−∞

x̂
(
t+i
)
x̂T
(
t+i
)
fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ




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P
(
t+i
)
=

K∑

k=1

pk (ti)





∞∫

−∞

ξξT fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

− x̂
(
t+i
) ∞∫

−∞

ξT fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ

−




∞∫

−∞

ξfx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ


 x̂T

(
t+i
)

+ x̂
(
t+i
)
x̂T
(
t+i
) ∞∫

−∞

fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ





=

K∑

k=1

pk (ti)





∞∫

−∞

ξξT fx(ti)|a,Z(ti) (ξ|a = ak,Z (ti) = Zi)dξ − x̂
(
t+i
)
x̂Tk
(
t+i
)

−x̂k
(
t+i
)
x̂T
(
t+i
)
+ x̂

(
t+i
)
x̂T
(
t+i
)
}

P
(
t+i
)
=

K∑

k=1

pk (ti)
{
Pk

(
t+i
)
+
[
x̂k
(
t+i
)
− x̂

(
t+i
)] [

x̂k
(
t+i
)
− x̂

(
t+i
)]T}

(2.46)

Thus, the state estimate error covariance of Equation (2.46) is dependent upon the

overall state estimate x̂
(
t+i
)
, the state estimate from each elemental filter x̂k

(
t+i
)
, the

error covariance from each elemental filter Pk

(
t+i
)
, and the probability pk (ti) that each

elemental filter contains the correct parameter value. The estimates x̂k
(
t+i
)
and Pk

(
t+i
)

are readily available from each elemental Kalman filter. If pk (ti) is available, then the filter

shown in Figure 1.2 is defined. Note that P
(
t+i
)
is not required for an online MMAE. As

a final step, consider the calculation of pk (ti).

Given an initial estimate pk (t0) subject to conditions of Equation (2.39), the proba-

bilities pk (ti) can be updated at each measurement epoch using Equation (2.41). The only

value still needed for the update is the density fz(ti)|a,Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1) for

k = 1, 2, . . . K, which is calculated as [30]
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fz(ti)|a,Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1)

=
1

(2π)
m
2 |Ak

(
t−i
)
| 12
exp

{
−1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

(2.47)

where Ak

(
t−i
)
= Hk (ti)Pk

(
t−i
)
HT
k (ti) + R (ti) is the covariance matrix of the mea-

surement residual vector rk
(
t−i
)
from elemental filter k. Both rk

(
t−i
)
and Ak

(
t−i
)
are

calculated from each of the K elemental filters, and rk
(
t−i
)
= zi − H (ti) x̂k

(
t−i
)
, where

zi is the realized measurement vector at ti.

If desired, the best parameter estimate can be derived as follows:

â (ti)
4
= E {a (ti) |Z (ti) = Zi}

=

∞∫

−∞

αfa|Z(ti) (α|Zi)dα

=

∞∫

−∞

α

[
K∑

k=1

pk (ti) δ (α − ak)
]
dα

â (ti) =
K∑

k=1

akpk (ti) (2.48)

As in previous derivations, the last line of Equation (2.48) is the result of interchanging

the order of integration and summation, and applying the sifting property of the Dirac

delta function.

Finally, the parameter estimate precision is given by the parameter conditional co-

variance

Pa (ti) = E
{
[a− â (ti)] [a− â (ti)]

T |Z (ti) = Zi

}

= E
[
aa

T |Z (ti) = Zi
]
− â (ti)E

[
a
T |Z (ti) = Zi

]

− E [a|Z (ti) = Zi] â
T (ti) + â (ti) â

T (ti)
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Pa (ti) =
K∑

k=1

aka
T
k pk (ti)− â (ti)

K∑

k=1

a
T
k pk (ti)

−
K∑

k=1

akpk (ti) â
T (ti) + â (ti) â

T (ti)
K∑

k=1

pk (ti)

=

K∑

k=1

[
aka

T
k − â (ti) a

T
k − akâT (ti) + â (ti) âT (ti)

]
pk (ti)

Pa (ti) =
K∑

k=1

[
ak − âT (ti)

] [
ak − âT (ti)

]T
pk (ti) (2.49)

Note that Equations (2.48) and (2.49) need not be calculated to estimate the state

x̂
(
t+i
)
. Also, care should be taken when tuning the MMAE [30]. Dynamics pseudonoise,

added to account for modeling inadequacies, has a tendency to make measurement residuals

from elemental filters have similar magnitudes. However, the MMAE relies on the weighted

sum of squared residuals (also called the likelihood quotient) rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
being

substantially different between the elemental filter based on the correct hypothesis and

any other elemental filter. Excessive amounts of dynamics pseudonoise being added can

incapacitate the adaptivity of the MMAE. So, “conservative” tuning (adding sufficient

pseudonoise to the model to preclude filter divergence) is to be avoided. Instead, “tight”

filter tuning without much (if any) added pseudonoise is preferred. Therefore, to prevent

the MMAE from overemphasizing incorrect elemental filters, care must be taken when

tuning the MMAE.

Finally, in this derivation, it was assumed that the correct parameter is a member

of a discrete set of parameters (i.e., a ∈ {a1,a2, . . . ,aK}). When this assumption is met,
the MMAE will converge to the correct parameter value ak. However, if this assumption

is not met, the MMAE will converge to the parameter value which is closest to the correct

value in the Baram distance measure sense [5, 6].

2.4 MMAE Performance Enhancements

Several modifications to the traditional MMAE have been proposed to enhance per-

formance. Most are ad hoc methods which are devised to address problems in specific
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applications. Good summaries of these enhancements are found in [31, 46]. Some of these

enhancements are listed and discussed next.

1. β Stripping

2. Probability Lower Bounding

3. Kalman Filter Tuning

4. Elemental Filter Gain Modulation

5. Scalar Penalty Increase

6. Probability Smoothing

7. Increased Residual Propagation

8. Interacting Multiple Model

2.4.1 β Stripping. While using the MMAE for sensor failure identification,

[32, 45] found that the MMAE was susceptible to false alarms when the likelihood quotients

from all the elemental filters had similar magnitudes over time. Under this condition,

the elemental filters are all equally adequate, and the MMAE should equally distribute

the hypothesis conditional probabilities among the filters. However, the MMAE instead

assigns more probability weight to the elemental filter with the smallest |Ak

(
t−i
)
|. This

is the so-called “β-dominance” effect [2, 3, 32] caused when

βk (ti) =
1

(2π)m/2|Ak

(
t−i
)
|1/2

dominates over

exp{−1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
}

in the hypothesis conditional probability calculation. Such behavior by the MMAE is

inappropriate and undesirable because the filter-computed residual covariance Ak

(
t−i
)
is

completely divorced from the actual sensor measurements. In fact, if linear Kalman filters

are used for the elemental filters, then Ak

(
t−i
)
is pre-computable before any measurements

are taken.
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To prevent the β-dominance effect, [32, 45] stripped the βk (ti) terms from all the

Gaussian densities in Equation (2.41). Thus,

1

(2π)
m
2 |Ak

(
t−i
)
| 12
exp

{
−1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

was replaced by

exp

{
−1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

in the Gaussian densities of Equation (2.41). While these stripped “densities” do not

integrate to 1, and therefore are not true probability densities, the modified hypothesis

conditional probability formula is still valid because the denominator still scales the prob-

abilities associated with each elemental filter such that they all sum to 1.

As mentioned at the beginning of this section, sensor failure identification is an appli-

cation in which β-dominance has been noted and β-stripping applied. In that application,

failed sensors are commonly modelled in the elemental filters by setting all elements in

the appropriate row of the measurement matrix Hj (ti) to zero. This has a tendency to

make the determinant of the filter-computed residual covariance matrix associated with

that filter, |Aj

(
t−i
)
|, smaller than the same quantity for the fully functional measurement

model. Thus, for this application, the MMAE tends to be pre-disposed to declare sensor

failures even if none exist, due solely to β-dominance. This effect was noted in an MMAE

used for flight control sensor failures [32].

Although β stripping is not used in this research, the concept of β-dominance is

discussed frequently. This research shows that the γ design parameter in the GRMMAE

derived in Chapter III causes the GRMMAE to be highly susceptible to β-dominance. This

fact is derived, explained, and illustrated in Chapters III and IV.

2.4.2 Probability Lower Bounding. Observe in Equation (2.41) that, if pk (ti)

goes to zero, it will remain zero for all t > ti. This causes elemental filter k to be removed

from the MMAE. To prevent this from happening, it is common practice to set a lower

bound ε on pk (ti) (typically 0.001 < ε < 0.01). If a calculated value of pk (ti) is less than

ε, then pk (ti) is set equal to ε, and all remaining probabilities are rescaled to maintain
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∑K
k=1 pk (ti) = 1. Probability lower bounding is implemented only in Section 4.2. Aside

from that example, probability lower bounding is not used in this research.

2.4.3 Kalman Filter Tuning. As mentioned in Section 2.3, the elemental filters

must be carefully tuned. Addition of too much process pseudonoise to account for modeling

inadequacies can have the effect of making the likelihood quotients from all elemental filters

appear similar over time. This degrades the MMAE’s ability to distinguish between models

and converge to the correct hypothesis. In the failure detection and isolation application,

this problem manifests itself as detection delays or missed detections. However, properly

tuning the elemental filters reduces false and missed alarms [8, 9, 16, 27, 30, 28]. Generally,

designers use ad hoc methods to determine appropriate elemental filter noise covariance

matrices based on physical insight into the system. Assuming elemental filter k is correct,

the goal in tuning the elemental filters is to choose the noise covariance matrices such

that rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
is on the order of the measurement dimension m, while the

likelihood quotients from the other elemental filters are larger than m [46]. Kalman filter

tuning is used in this research.

2.4.4 Elemental Filter Gain Modulation. Related to the previous issue of elemen-

tal filter tuning, [25] derived a method for modulating the Kalman gain in the elemental

filters to increase hypothesis distinguishability. Assume that the parameter of interest

affects the elemental filter dynamics model. Then, to increase the MMAE’s ability to dis-

tinguish differences between the elemental filters, one wants to adjust the Kalman gain in

the elemental filters to emphasize the dynamics model and de-emphasize the measurement

update. This is accomplished by setting the dynamics driving noise covariance matrix

Qd (ti) artificially low. However, this has the drawback of overemphasizing the dynamics

model during the state estimate measurement update, degrading state estimation perfor-

mance.

In this method, the Kullback Discrimination Index (KDI) (similar to a distance

metric, but not a true metric) is used after each measurement update to measure the

“distance” between elemental filters based on the likelihood quotients from the elemental

filters. Assuming that adequate state estimation performance is being achieved, if the
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elemental filters are deemed “too close” for good hypothesis distinguishability (i.e., the

likelihood quotients of two or more elemental filters are of similar magnitudes), then the

dynamics noise covariance matrices in the elemental filters are decreased for the next

measurement update. This has the effect of increasing the emphasis on the elemental filter

dynamics model during the measurement update. This increased model emphasis increases

the MMAE’s ability to distinguish between elemental models (hypotheses). At the next

measurement update, the KDI is calculated again and the process is repeated. During this

process of decreasing the dynamics pseudonoise, care must be taken to ensure that Qd (ti)

is not decreased to the point where adequate state estimation performance is no longer

achieved. Therefore, this method modulates the elemental filter Kalman gain at each

measurement to maximize hypothesis distinguishability while ensuring state estimation

performance is not degraded. Elemental filter gain modulation is not used in this research.

2.4.5 Scalar Penalty Increase. A method for speeding MMAE convergence, sug-

gested by [31], is scalar penalty increase. In this method, exp{− 12rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
}

in the Gaussian densities of Equation (2.41) is replaced by exp{ −αrTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
}

where α is some scalar larger than 1/2. Similar to the β-stripped “densities” in Section

2.4.1, these “densities” with increased scalar penalties are not proper probability densities

(i.e. do not integrate to 1). However, due to the normalization terms in the denominator

of Equation (2.41), the pk (ti) values will still sum to 1 in the MMAE.

Making α greater than 1/2 assigns higher penalties to large likelihood quotients,

compared with α = 1/2. While this speeds convergence to the correct hypothesis, it can

also cause large conditional probability fluctuations during convergence. If the MMAE is

used for failure detection, these fluctuations may be interpreted as momentary false alarms.

Thus, the α value (which is chosen through ad hoc methods) should be chosen carefully

to meet some desired performance specification. Scalar penalty increase is an alternative

to GRMMAE derived in this research. It can achieve faster convergence without the

susceptibility to β-dominance which plagues the GRMMAE. However, care must be taken

to avoid the false alarm problem induced by scalar penalty increase. An example of scalar

penalty increase is given in Section 4.5.
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2.4.6 Probability Smoothing. This method is used primarily for failure detection.

After a system changes operating modes, the hypothesis conditional probabilities for the

elemental filters will undergo transients. These transients may cause false alarms [15, 31,

33, 34, 43, 44]. To decrease these false alarms, the hypothesis conditional probabilities can

be smoothed using a moving window average. The window size is generally determined

empirically. As the window size increases (i.e., more samples are used to calculate the

average), the resistance to false alarms increases. However, this also causes slower response

to actual failures. This research does not use probability smoothing.

2.4.7 Increased Residual Propagation. Increased residual propagation [15, 31]

is similar to, yet less complex than, elemental filter gain modulation. In this method,

the elemental filter state estimates are propagated a few sample times without allowing

measurement updates. By doing this, the likelihood quotients from incorrect elemental

filters grow because the measurement updates are not correcting the state estimates toward

the measurements. However, the likelihood quotient from the correct elemental filter will

remain relatively small, because its hypothesized model matches the measurements. Thus,

hypothesis distinguishability is increased, leading to faster convergence. The number of

samples to propagate before measurement incorporation is determined empirically. The

drawback to this method is that it increases hypothesis conditional probability fluctuations,

which may lead to false alarms in failure detection applications [15, 31]. Additionally, state

estimation performance will decrease due to the increased time between measurement

updates. This research does not use increased residual propagation.

2.4.8 Interacting Multiple Model. The MMAE assumes that the unknown pa-

rameter a varies slowly, if at all, compared to the states. A similar estimator exists which

allows the parameter to vary under certain assumptions. This estimator is the Interacting

Multiple Model (IMM) [4].

The IMM is similar to the MMAE in the sense that it uses multiple parallel Kalman

filters each built around a potential parameter realization ak. Unlike the MMAE, however,

the IMM assumes that the hypothesis conditional probability vector (composed of the

probabilities associated with each elemental filter) propagates according to a Markovian
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model. The IMM recursively produces updated state and covariance estimates based on the

previous state and covariance estimates and the previous parameter estimate. However,

IMM is suboptimal, because it only produces estimates conditioned on the current and

most recent past moment in time, rather than the entire past (see [4] for an explanation).

This dissertation was inspired by the GPS carrier-phase integer ambiguity resolution

application. In that application, the parameter is the GPS carrier-phase integer ambiguity

vector which is constant. While the IMM allows added flexibility compared to the MMAE,

it is inappropriate for that application because the parameter is truly constant. Although

the GRMMAE is general enough to be applied to other applications, because it was inspired

by GPS carrier-phase integer ambiguity resolution, this research does not apply the IMM.

2.5 Global Positioning System

GPS is a direct sequence spread spectrum (DSSS) satellite navigation system con-

sisting of 24 or more medium earth orbiting satellites providing navigation information to

passive receivers. The system operates using the principle of trilateration. The satellite

embeds precise timing information within the transmitted signal. The receiver uses signal

propagation delay to calculate the satellite distance using the formula r = vp(tt − tr),

where r is the range from the receiver to the satellite, vp is the velocity of propagation

(usually assumed to be the speed of light in a vacuum), tt is the transmit time, and tr is

the reception time. In addition to transmitting precise timing information, each satellite

transmits ephemeris information which is used to calculate the satellite’s position. From

knowledge of the positions of at least four satellites and the range to each satellite, a

three-dimensional user position plus clock bias solution is estimated.

2.5.1 The Global Positioning System Signal. Before examining the GPS signal,

consider a general DSSS signal, represented by

s(t) =
√
2Pcos

[
ω0t+ θc(t) + θd(t)

]
(2.50)

where s(t) is the transmitted signal, P is the average carrier power, ω0 is the carrier

angular frequency, θc (t) is the spreading code waveform, and θd (t) is the data modulation.
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Table 2.3 GPS Spreading Code Characteristics [22]

Parameter C/A Code P Code

Data Rate 50 Hz 50 Hz

Chip Rate 1.023 Mchips/sec 10.23 Mchips/sec

Code Period 1023 Chips (1 ms) ≈ 6 × 1012 Chips (1 week)
Code Chip Length 293.25 m 29.325 m

Carrier Band Designation L1 L1, L2
and Wavelength 1575.42 MHz 1575.42, 1227.6 MHz

0.1904 m 0.1904, 0.2444 m
respectively

Assuming antipodal binary phase shift keying (BPSK) is used for the spreading and data

modulations, an equivalent form of Equation (2.50) is given by

s(t) =
√
2Pc(t)d(t)cos(ω0t)

c(t) = ± 1

d(t) = ± 1 (2.51)

where d(t) and c(t) are the data and spreading waveforms, respectively.

The GPS consists of satellites transmitting two separate DSSS signals of the form

of Equation (2.51). The first signal, called the Precision code (P-code), is generally en-

crypted2 and reserved for military users. The second, the Coarse/Acquistion (C/A) code,

is available to civilian users. The P-code is transmitted at two carrier frequencies, L1 and

L2, and C/A code is transmitted at L1. The GPS signal properties are summarized in

Table 2.3.

2.6 Precise GPS Positioning

GPS positions can be calculated using either the code phase or the carrier-phase for

timing. The code phase (or pseudorange3) measurement is used for general navigation,

2Encrypted P-code is called “Y-code”
3A GPS range measurement is termed a “pseudorange” measurement because it is the range to the

satellite incorporating the effect of a clock bias.
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Table 2.4 GPS Code Phase and Carrier-Phase Positioning Accuracy[18]

Standard Code Phase Carrier-Phase
Code Phase Differential GPS Differential GPS

GPS Fixed Ambiguities

Approximate
3-D Accuracy 6-10 m 1 m [36] 0.01-0.03 m

producing position estimates with errors on the order of meters. However, due to the rel-

atively short carrier wavelength, carrier-phase can be used to produce position estimates

with errors on the order of tens of centimeters. Note, though, that carrier-phase based

(or any other differential GPS based) positions are positions of one point relative to an-

other. Table 2.4 summarizes typical 3-D accuracies achieved using stand-alone code phase,

differential code phase, and differential carrier-phase positioning methods4. Differential

(code or carrier-phase) GPS is a process of using multiple receivers and/or satellites to

remove common errors. Single and double difference carrier-phase differential GPS will be

described shortly.

2.7 Integer Ambiguities

To gain an understanding of carrier-phase integer ambiguities, consider Figure 2.1

which shows a GPS signal propagating from satellite k to receiver A. The range to the GPS

satellite is measured by counting the number of carrier-phase cycles between the satellite

and the receiver, and multiplying by the carrier wavelength. It is assumed that the receiver

begins tracking the satellite signal at time t0 and continues to track until time t. Once

tracking is established at t0, the receiver counts the carrier cycles received from that point

forward in time. Additionally, the receiver is able to determine where in the partial cycle

it begins to track, depicted as φfrac (t0) in Figure 2.1. However, the receiver is unable to

determine the integer number of cycles N which have already propagated at time t0. This

integer number of cycles is the carrier-phase integer ambiguity which must be resolved to

4Table 2.4 assumes that the intentional degradation of Selective Availability (SA) is not present. SA
was turned off in 2000 and is not expected to be used again. However, the capability to use SA again does
exist, in which case standard C/A code phase position accuracies would be on the order of 100 m, while
the differential (code and carrier-phase) accuracies would remain the same.
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Figure 2.1 Carrier-Phase Measurement Example

determine range to the satellite. Once N is determined, it will remain constant as long as

continuous carrier tracking is maintained.

The carrier-phase is calculated in receiver A by integrating the Doppler shift present

in the received signal as described by Equation (2.52) [38],

φ (t) =

t∫

t0

∆fmeas (τ) dτ + φ (t0)

︸ ︷︷ ︸
φmeas(t)

+ N (2.52)

where φ (t) is the total carrier-phase cycle count at time t (corresponding to the range

between the satellite and the user), ∆fmeas (τ) is the received signal Doppler shift measured

by the receiver at time τ , φ (t0) is the carrier cycle count at t0, which may include both an

integer portion, φint (t0), and a partial cycle portion, φfrac (t0), and N is the ambiguous

integer carrier cycle count at the initial time. The quantity φmeas (t) =
∫ t
t0
∆fmeas (τ) dτ +

φ (t0) is the carrier-phase measurement available from receiver A. One application for the

GRMMAE is resolving the integer ambiguity N in Equation (2.52) and Figure 2.1.
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2.8 Differential Carrier-Phase GPS

For ambiguity resolution to work efficiently, GPS range errors must be removed

or reduced prior to determining the carrier-phase integer ambiguities. This is normally

accomplished through differential GPS procedures known as single and double differenc-

ing. Single differencing is described first, followed by a description of double differencing.

The concepts are presented for carrier-phase measurements; however, these techniques are

equally valid, and similarly derived, for code phase measurements.

2.8.1 Single Difference Carrier-Phase Differential GPS. Consider two GPS re-

ceivers tracking a signal from a common GPS satellite as shown in Figure 2.2. A single

difference is formed by subtracting the carrier-phase measurement of one receiver from the

other. Using notation of [35], Equation (2.53) shows the carrier-phase measurement from

receiver u to satellite k, in units of carrier cycles:

φ
(k)
u = λ−1

[
r
(k)
u −

(
I
f2

)(k)
u
+ T

(k)
u +m

(k)
φ,u

]
+ f

(
δtu − δt(k)

)
+N

(k)
u + v

(k)
φ,u (2.53)

where

k as a superscript, indicates the kth satellite being tracked

u as a subscript, indicates the uth receiver tracking the satellite (A or B)

mφ is the carrier-phase multipath tracking error for receiver u (m)

λ is the carrier wavelength (0.19 m for L1 or 0.24 m for L2)

r is the true range from the receiver to the satellite (m)

I is the ionospheric delay parameter, empirically determined to be

40.3 TEC (Hz2· m)[37]
T is the tropospheric error in the measurement (m)

f is the carrier frequency (Hz)

δtu is the receiver clock error (s)

δt(k) is the satellite clock error (s)
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Figure 2.2 Single Difference GPS Geometry

N is the carrier-phase integer ambiguity

vφ is the remaining carrier-phase measurement error (measurement noise plus

possible tracking loop errors under high dynamics) (cycles)

If receivers A and B are separated by a short baseline (generally on the order of

tens of kilometers), many of the errors in Equation (2.53) are highly correlated. Thus, by

subtracting the phase measurement of one receiver from that of another, correlated errors

can be essentially removed. Note that this difference measurement provides an indication

of the relative position of the two receivers, not the range to the satellite. Thus, when

differencing is used, the position of one receiver (termed a “rover”) is determined relative

to another receiver, which is typically at a known location (termed a “reference”). Letting

4 indicate a single difference between receivers, Equation (2.54) shows the single difference
measurement between receivers A and B:
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4φ(k)AB = φ
(k)
A − φ

(k)
B

4φ(k)AB =

{
λ−1

[
r
(k)
A −

(
I

f2

)(k)

A

+ T
(k)
A +m

(k)
A

]
+ f

(
δtA − δt(k)

)
+N

(k)
A + v

(k)
φ,A

}

−
{
λ−1

[
r
(k)
B −

(
I

f2

)(k)

B

+ T
(k)
B +m

(k)
B

]
+ f

(
δtB − δt(k)

)
+N

(k)
B + v

(k)
φ,B

}

4φ(k)AB = λ−1

[
4r(k)AB −4

(
I

f2

)(k)

AB

+4T (k)AB +4m
(k)
AB

]
+ f (δtA − δtB)

+ 4N (k)AB +4v
(k)
φ,AB (2.54)

In Equation (2.54), 4φ(k)AB is the single difference carrier-phase measurement between
receivers A and B, 4N (k)AB is the single difference phase integer ambiguity between receivers

A and B, 4v(k)φ,AB = v
(k)
φ,A − v

(k)
φ,B, and the 4 preceding the error terms indicates residual

errors after differencing (i.e., the single differenced errors). Theoretically, for two receivers

at the same location, these residual errors are zero5. As the baseline distance between the

receivers increases, the error correlation between the two receivers decreases and residual

errors grow. Finally, since 4N (k)AB is the result of differencing two integers, it remains an

integer quantity.

2.8.2 Double Difference Carrier-Phase Differential GPS. Equation (2.54) con-

tains the receiver clock error δtA − δtB, which cannot be removed by single differencing

between receivers. To obtain the most accurate relative position, this error is normally

removed by forming a double difference, the difference between single difference measure-

ments using two satellites as shown in Figure 2.3. Letting∇4 represent a double difference,
Equation (2.55) gives a mathematical description of double differencing between receivers

A and B and satellites k and j.

∇4φ(kj)AB = 4φ(k)AB −4φ
(j)
AB

5For this to be completely correct, the two receivers would have to use the same antenna, so that the
multipath error would be identical in the two receivers.
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Figure 2.3 Double Difference GPS Geometry

∇4φ(kj)AB = λ−1

[
4r(k)AB −4

(
I

f2

)(k)

AB

+4T (k)AB +4m
(k)
AB

]
+ f (δtA − δtB) +4N (k)AB

+ 4v(k)φ,AB −
{
λ−1

[
4r(j)AB −4

(
I

f2

)(j)

AB

+4T (j)AB +4m
(j)
AB

]

+ f (δtA − δtB) +4N (j)AB +4v
(j)
φ,AB

}

∇4φ(kj)AB = λ−1

[
∇4r(kj)AB −∇4

(
I

f2

)(kj)

AB

+∇4T (kj)AB +∇4m(kj)AB

]

+ ∇4N (kj)AB +∇4v(kj)φ,AB (2.55)

In Equation (2.55), ∇4Φ(kj)AB is the double difference phase measurement between

receivers A and B and satellites k and j. Note that, as in the single difference case,

the double difference ambiguities, ∇4N (kj)AB , are again integers. Also, the ∇4 preceding

the error terms on the right hand side of Equation (2.55) represents residual errors after

double differencing. For baseline separation on the order of 10 km or less, double difference

residual errors are on the order of centimeters or less [37].
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2.8.3 Triple Difference Carrier-Phase Differential GPS. The previous differenc-

ing process could be extended to form triple differences. These triple differences take the

difference between ∇4Φ(kj)AB at time tm, and ∇4Φ(kj)AB at some later time tn. Assuming

continuous carrier tracking is maintained on the interval tm ≤ t ≤ tn, this triple difference

would eliminate the integer ambiguity altogether. However, the triple difference measure-

ment doesn’t carry much information and is not generally used to obtain a differential

carrier-phase positioning solution. (It is sometimes used for initialization in a static base-

line case.) Because triple differencing assumes continuous carrier tracking, it can be useful

for detecting breaks in carrier tracking, called “cycle slips” [35].

2.9 Modified Multiple Model Adaptive Estimator for GPS Carrier-Phase Integer Ambi-

guity Resolution

The technique of using multiple Kalman filters for GPS double difference carrier-

phase integer ambiguity resolution was introduced early in the GPS carrier-phase ambigu-

ity research history [21]. The concept involves building multiple extended Kalman filters,

each based on a given candidate integer ambiguity vector. Then, the measurement residual

vectors rj
(
t−i
)
and residual covariance matrices Aj

(
t−i
)
from each of the elemental filters

are used to determine which elemental filter is most likely to contain the correct ambiguity

vector. Two researchers [18, 19] have proposed this method for integer ambiguity reso-

lution. Their research is summarized next. Recall from Section 2.2 that using extended

Kalman filters in an MMAE is an ad hoc extension which is not an optimal Bayesian

estimator.

The first proposal for using multiple Kalman filters for GPS carrier-phase integer

ambiguity resolution was presented in 1983 [19], prior to GPS becoming fully operational.

It proposed the use of an MMAE6 to increase the speed of the carrier-phase ambiguity

resolution process in static survey applications. This research included a series of relatively

simple simulations. Each case simulated double difference measurements, with a maximum

of 4 GPS satellites, leading to a maximum of 3 carrier-phase ambiguities to be determined.

6[19] used the name “Magill Filter” after the inventor of the technique, D.T. Magill [26]

2-37



In the most demanding case, [19] demonstrated that the MMAE could be used to determine

GPS carrier-phase integer ambiguities in a fairly simple, yet realistic, three dimensional

GPS simulation. Since search region limiting techniques had not yet been developed, [19]

relied on a brute force search of all possible integer ambiguities within 5 integers of the

correct value (a total of 11 possible ambiguities per measurement), which was arbitrarily

set. All simulations utilized a short baseline between receivers, and ignored many common

errors including atmospheric effects and multipath. The results were encouraging, showing

a simulated ability to determine the integer ambiguities with tens of minutes of measure-

ment data, versus approximately an hour of data for batch processing techniques available

at that time. However, due to the brute force search method, [19] correctly concluded that

the search region in a realistic scenario would quickly grow too large. In an effort to reduce

the search region, [19] derived a position and floating point ambiguity estimating Kalman

filter 7 to provide an initial ambiguity estimate to the MMAE. The use of a floating point

filter front end is common practice today.

This initial research demonstrated the potential to use the MMAE for GPS carrier-

phase integer ambiguity resolution. However, due to computing power available at the

time and the fact that GPS was in its infancy, a great deal of work remained. It was

concerned only with static survey applications, and did not address the issue of kinematics.

Additionally, it used only fairly simple simulations to demonstrate the technique. The

technique was not demonstrated with any real GPS data.

More recently, [17, 18] proposed a modified MMAE for kinematic carrier-phase ambi-

guity resolution. In [17, 18] it was hypothesized that modeling inaccuracies would cause the

measurement residuals to be large for all the MMAE elemental filters8. More specifically,

recall Equation (2.41), repeated here for convenience:

pk (ti) =
fz(ti)|a,Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1) pk (ti−1)

K∑
j=1

fz(ti)|a,Z(ti−1) (zi|a = aj ,Z (ti−1) = Zi−1) pj (ti−1)

(2.41)

7The floating point ambiguity Kalman filter estimates the integer ambiguity values without constraining
the estimates to be integers. Therefore, the ambiguity estimates in a floating point filter are not typically
integer values.

8This problem is related to the caution mentioned in Section 2.3 about adding dynamics pseudonoise
during filter tuning.

2-38



Equation (2.41) is the conditional probability density function for the parameter ak, given

the measurement history Zi−1. Thus, pk (ti) is used to determine which carrier-phase

integer ambiguity vector ak (the ambiguity vector is the parameter in this application) is

correct. The conditional densities in Equation (2.41) are given by Equation (2.47), also

repeated here for convenience:

fz(ti)|a,Z(ti−1) (ζi|a = ak,Z (ti−1) = Zi−1)

=
1

(2π)
m
2 |Ak

(
t−i
)
| 12
exp

{
−1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

(2.47)

where Ak

(
t−i
)
= Hk (ti)Pk

(
t−i
)
HT
k (ti) +Rk (ti) is the covariance matrix of the residuals

rk
(
t−i
)
= zi − H (ti) x̂

(
t−i
)
, 9 from elemental filter k. The residual covariance Ak

(
t−i
)
is

calculated from each of the K elemental filters. Equations (2.41) and (2.47) demonstrate

that the MMAE relies upon the propagated state estimates x̂
(
t−i
)
to calculate measure-

ment residuals and determine which ambiguity vector ak is correct. However, the authors

in [17, 18] felt the state dynamics model didn’t have enough fidelity to enable the MMAE

to distinguish between residuals from the elemental filters. If the dynamics model was

poor, compared to the precise measurements, then the measurement residuals from all

elemental filters would be large, causing MMAE failure in determining the correct ambi-

guity set. To correct this potential problem, [17, 18] proposed using “post-fit” residuals in

the hypothesis test portion of Figure 1.2. These “post-fit” residuals are the measurement

residuals calculated after measurement incorporation in each of the elemental filters. This

modification appeared to fix the perceived modeling noise problem. Table 2.5 summarizes

the changes made to the traditional MMAE.

The modified MMAE of Table 2.5 was built and tested using kinematic (i.e., moving)

double difference carrier-phase measurements. These tests showed the modified MMAE

successfully resolved GPS carrier-phase integer ambiguities. The primary contribution of

this dissertation is to provide a mathematical foundation which characterizes and general-

9To be completely correct, [17, 18] implemented an extended Kalman filter with measurement residuals
given by rk

(
t−i

)
= zi − h

[
x̂
(
t−i

)
, ti

]
. The definition above is used to be consistent with the derivation

of the MMAE based on a linear Kalman filter, as presented in Section 2.3.

2-39



Table 2.5 MMAEModification for GPS Carrier-Phase Integer Ambiguity Resolution [18]
Traditional MMAE Modified MMAE

rk
(
t−i
)
= z (ti) − h

[
x̂k
(
t−i
)
, ti
]

rk
(
t+i
)
= z (ti) − h

[
x̂k
(
t+i
)
, ti
]

Ak

(
t−i
)
= Hk (ti)Pk

(
t−i
)
HT
k (ti) +R (ti) Ak

(
t+i
)
= Hk (ti)Pk

(
t+i
)
HT
k (ti) +R (ti)

izes the modified MMAE. While the modified MMAE was designed for GPS carrier-phase

integer ambiguity resolution, development of the GRMMAE is not restricted to any partic-

ular application. The modified MMAE of [17, 18] is one specific example of the GRMMAE

developed in Chapter III.

2.10 Chapter Summary

The background necessary to understand the GRMMAE derivation in Chapter III

was provided in this chapter. The Kalman filter was derived as the basic building block

for the Multiple Model Adaptive Estimator. The extended Kalman filter was developed

as it is frequently used in an ad hoc extension of the MMAE. The hypothesis conditional

probability formula for the MMAE was derived and several MMAE performance enhance-

ments were presented. Since this dissertation is inspired by the use of a modified MMAE

for GPS carrier-phase integer ambiguity resolution, an introduction to GPS was presented.

Carrier-phase integer ambiguities were described and single and double difference carrier-

phase differential GPS were discussed. The chapter concluded by describing the modified

MMAE for GPS carrier-phase integer ambiguity resolution. The contribution of this dis-

sertation is to provide a sound mathematical formulation which generalizes this modified

MMAE.
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III. Theory

In this chapter, the Generalized Residual Multiple Model Adaptive Estimator is de-

rived. A “generalized residual,” which is a linear combination of traditional and post-fit

residuals, is defined. Properties of the generalized residuals from elemental filters based on

both the correct and incorrect hypotheses are given for some common MMAE applications.

The generalized residuals and their properties are then used to re-derive an MMAE based

on the generalized residual, rather than the traditional residual. The newly derived MMAE

is called the Generalized Residual Multiple Model Adaptive Estimator (GRMMAE). The

GRMMAE has exactly the same form and purpose as the traditional MMAE. The only

functional difference between the two is the formula used for hypothesis conditional prob-

ability calculation. This derivation assumes the GRMMAE elemental filters are linear

Kalman filters. The effect of using an extended Kalman filter for the GPS carrier phase

integer ambiguity resolution application is discussed in Chapter IV.

Each section in this chapter provides details of a specific research contribution re-

sulting from this dissertation. The entirety of this chapter is the primary contribution of

providing a mathematical foundation and generalization for the modified MMAE. In addi-

tion to its application to the modified MMAE, the derivation provided is general enough

to apply to a traditional MMAE or any other MMAE using a generalized residual.

3.1 Generalized Residual

Begin by defining the generalized residual vector as a linear combination of traditional

and post-fit residuals

r
∗ (ti) = γr

(
t−i
)
+ (1 − γ) r

(
t+i
)

(3.1)

where r∗ (ti) is the generalized residual, r
(
t−i
)
is the traditional Kalman filter residual,

r
(
t+i
)
is the post-fit residual, both defined in Table 2.5, and γ is a real, scalar, user-defined

GRMMAE design parameter. Although γ is not constrained to be in the region from 0 to 1,
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inclusively, γ ∈ [0, 1] has the most physical meaning. It is anticipated that most engineering
applications will use γ ∈ [0, 1]. Finally, throughout this dissertation, a superscript ∗ denotes
variables based on the generalized residual. The ∗ notation does not denote the complex
conjugate anywhere in this dissertation.

A simple derivation yields a matrix transformation from the traditional to the gen-

eralized residual

r
∗ (ti) = z (ti) − γH (ti) x̂

(
t−i
)
− (1 − γ) H (ti) x̂

(
t+i
)

= z (ti) − γH (ti) x̂
(
t−i
)

− (1 − γ)H (ti)
[
x̂
(
t−i
)
+ K (ti)

[
z (ti) − H (ti) x̂

(
t−i
)]]

=
[
I − (1 − γ)H (ti)K (ti)

][
z (ti) − H (ti) x̂

(
t−i
)]

r
∗ (ti) = T (ti) r

(
t−i
)

(3.2)

where T (ti) =
[
I − (1 − γ)H (ti)K (ti)

]
is the transformation that interrelates r∗ (ti)

and r
(
t−i
)
. The transformation T (ti) and design parameter γ are discussed further in

Sections 3.4 and 3.7, respectively.

3.2 Generalized Residual Properties for the Correct Elemental Filter

Generalized residual vector properties are derived in this section, assuming that the

kth GRMMAE elemental filter contains the correct hypothesis. From Equation (3.2),

r
∗
k (ti) = Tk (ti) rk

(
t−i
)

where the subscript k indicates variables associated with the kth elemental filter. Since the

kth filter is assumed correct, rk
(
t−i
)
is Gaussian [29]. The generalized residual r∗k (ti) is a

linear function of rk
(
t−i
)
, and therefore, also Gaussian. Thus, r∗k (ti) is completely defined

by its mean and covariance. Given Equation (3.2), the conditional mean of the generalized

residual from the correct elemental filter is
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mr∗k(ti)
= E [r∗ (ti) | a = ak, Z (ti−1) = Zi−1]

= E
[
T (ti) r

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]

= Tk (ti)E
[
r
(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]

mr∗k(ti)
= 0 (3.3)

where the final line above comes from E
[
r
(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]
= 0 [29].

Notice that, similar to the development in Section 2.3, the measurement history at ti−1 is

used in Equation (3.3).

Since r∗k (ti) is zero-mean, the conditional covariance is given by

A∗
k (ti) = E

[
r
∗ (ti) r

∗T
(ti) | a = ak, Z (ti−1) = Zi−1

]

= E
[
T (ti) r

(
t−i
) (
T (ti) r

(
t−i
))T | a = ak, Z (ti−1) = Zi−1

]

= Tk (ti)E
[
r
(
t−i
)
r
T
(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]
TT
k (ti)

= Tk (ti)Ak

(
t−i
)
TT
k (ti)

A∗
k (ti) =

[
I − (1 − γ)Hk (ti)Kk (ti)

][
Hk (ti)Pk

(
t−i
)
HT
k (ti) + R (ti)

]

[
I − (1 − γ)Hk (ti)Kk (ti)

]T
(3.4)

where the substitution

E
[
r
(
t−i
)
r
T
(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]
=
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + R (ti)

]

is given in [30], and Tk (ti) is brought outside the expectation because it is not a random

matrix.

Consider the following specific cases for Equation (3.4)
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A∗
k (ti) =



Hk (ti)Pk

(
t−i
)
HT
k (ti) + R (ti) γ = 1

[I−Hk (ti)Kk (ti)]
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) +R (ti)

]
[I−Hk (ti)Kk (ti)]

T γ = 0

(3.5)

The γ = 1 case is the traditional MMAE and the result of Equation (3.5) exactly matches

the traditional filter-computed residual covariance [30]

Ak (ti) =
[
Hk (ti)Pk

(
t−i
)
HT (ti) + R (ti)

]

The γ = 0 case is a GRMMAE using post-fit residuals. This result is easily confirmed

using Equation (3.2).

3.3 Generalized Residual Properties for Incorrect Elemental Filters

Generalized residual properties for the correct GRMMAE elemental filter were de-

rived in the previous section. A similarly general derivation cannot be accomplished for

the incorrect elemental filters. However, for specific applications, generalized residual prop-

erties from the incorrect elemental filters can be derived. This is accomplished for four

different types of MMAE problems: 1) a measurement bias problem; 2) an unknown equiv-

alent discrete-time dynamics noise covariance problem; 3) an unknown dynamics matrix

problem; 4) an unknown measurement noise covariance problem. The procedures shown

in these examples can be applied in a similar manner to other types of problems as well.

3.3.1 Measurement Bias Parameter. When the parameter to be estimated is a

constant measurement bias vector, the residual properties for both the correct and incorrect

elemental filters can be derived. An example of such a parameter is the GPS carrier-

phase integer ambiguity vector (the problem originally motivating this research). Table

3.1 summarizes the relationship between the elemental filters for the key matrices and

vectors in the measurement bias scenario under the previous assumption that the elemental
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Table 3.1 Relationship Among Elemental Filter Matrices and Vectors for Unknown Mea-
surement Bias Application

Same in All Elemental Filters Different in Each Elemental Filter

z (ti) z̃ (ti)

Bd (ti) x̂
(
t−i
)
(after first measurement)

u (ti) x̂
(
t+i
)

Qd (ti) r∗ (ti)

H (ti)

R (ti)

K (ti)

P
(
t−i
)

P
(
t+i
)

A∗ (ti)

T (ti)

Φ (ti, ti−1)

filters are based on linear system models. Chapter IV discusses the impact of using a

nonlinear measurement model for GPS carrier-phase integer ambiguity resolution on the

(linear model) derivation presented here.

Assume the correct parameter is contained in the kth elemental filter. The sensor

measurement can be modeled by

z (ti) = zd (ti) + nk (3.6)

where z (ti) is the measurement output from the sensor, zd (ti) is the desired (unbiased)

measurement, and nk is the unknown, constant measurement bias vector (i.e., the param-

eter to be determined). Note that the desired measurement zd (ti) is a noise-corrupted

measurement. It is termed “desired” here because it is unbiased.

For ease of implementation, each elemental filter can be designed to operate on a

corrected measurement given by [18, 20]

z̃j (ti) = z (ti) − nj

z̃j (ti) = zd (ti) + nk − nj (3.7)

3-5



where nj is the constant measurement bias hypothesized in the j
th elemental filter and nk

is assumed to be the correct bias.

Using the corrected measurement of Equation (3.7) leads to all elemental filters hav-

ing the same structure but operating on different measurements. It is particularly impor-

tant to note that

Hk (ti) = Hj (ti) = H (ti)

and

Kk (ti) = Kj (ti) = K (ti) (3.8)

Equation (3.8) is valid because of the way the elemental filters were constructed for

this application. It implies that the transformation matrix T (ti) is the same in every

elemental filter.

Assuming the measurement history up to and including ti−1 is available, the residual

vector for any elemental filter, given Equation (3.7), is

r
∗
j (ti) = z̃j (ti) − γH (ti) x̂j

(
t−i
)
− (1 − γ)H (ti) x̂j

(
t+i
)

= zd (ti) + nk − nj − γH (ti) x̂j
(
t−i
)

− (1 − γ)H (ti)
{
x̂j
(
t−i
)
+ K (ti)

[
zd (ti) + nk − nj − H (ti) x̂j

(
t−i
)]}

r
∗
j (ti) = zd (ti) + ∆nkj − γH (ti) x̂j

(
t−i
)

− (1 − γ)H (ti)
{
x̂j
(
t−i
)
+ K (ti)

[
zd (ti) + ∆nkj − H (ti) x̂j

(
t−i
)]}

(3.9)

where ∆nkj = nk − nj is the difference between the hypothesized measurement bias in

elemental filter j and the correct measurement bias in elemental filter k. Equation (3.9)

can be simplified to
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r
∗
j (ti) =

[
I − (1 − γ)H (ti)K (ti)

][
zd (ti) − H (ti) x̂j

(
t−i
)
+ ∆nkj

]

= T (ti)
[
zd (ti)−H (ti) x̂k

(
t−i
)
+H (ti) x̂k

(
t−i
)
−H (ti) x̂j

(
t−i
)
+∆nkj

]

= T (ti)
[
rk

(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]

r
∗
j (ti) =





T (ti) rk
(
t−i
)

j = k

T (ti)
[
rk

(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]
∀j

(3.10)

In the third line of Equation (3.10), rk
(
t−i
)
is equated to zd (ti) − H (ti) x̂k

(
t−i
)
.

That relationship only holds for the kth (i.e., correct) elemental filter. In general, rj
(
t−i
)
=

z̃j (ti) − H (ti) x̂j
(
t−i
)
. In the special case when j = k, z̃j (ti) = zd (ti), as seen in Equation

3.7, which leads to rk
(
t−i
)
= zd (ti) − H (ti) x̂k

(
t−i
)
.

Given E
[
rk

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]
= 0 [29] and Equation (3.10), the

expected value of r∗j (ti) is

mr∗j
(ti) = E

[
r
∗
j (ti) | a = ak, Z (ti−1) = Zi−1

]

mr∗j
(ti) =





0 j = k

T (ti)
[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]
∀j

(3.11)

The covariance of r∗j (ti) is

A∗
j (ti) = E

[
r
∗
j (ti) r

∗T

j (ti) | a = ak, Z (ti−1) = Zi−1

]
− mr∗j

(ti)m
T
r∗j
(ti)

= T (ti)E
{[
rk

(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]

[
rk

(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]T | a = ak, Z (ti−1) = Zi−1

}
TT (ti)

− mr∗j
(ti)m

T
r∗j
(ti)
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A∗
j (ti) = T (ti)

{
E
[
rk

(
t−i
)
r
T
k

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]

+ E
[
rk

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

](
x̂k
(
t−i
)
− x̂j

(
t−i
))T

H (ti)
T

+ E
[
rk

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]
∆nTkj

+ H (ti)
(
x̂k
(
t−i
)
− x̂j

(
t−i
))
E
[
r
T
k

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]

+ H (ti)
(
x̂k
(
t−i
)
− x̂j

(
t−i
))(

x̂k
(
t−i
)
− x̂j

(
t−i
))T

H (ti)
T

+ H (ti)
(
x̂k
(
t−i
)
− x̂j

(
t−i
))
∆nTkj

+ ∆nkjE
[
r
T
k

(
t−i
)
| a = ak, Z (ti−1) = Zi−1

]

+ ∆nkj
(
x̂k
(
t−i
)
− x̂j

(
t−i
))T

H (ti)
T + ∆nkj∆n

T
kj

}
T (ti) − mr∗j

(ti)m
T
r∗j
(ti)

(3.12)

The mean and covariance of the traditional residual from the correct elemental filter

rk

(
t−i
)
are used to simplify Equation (3.12):

A∗
j (ti) = T (ti)

{
Ak

(
t−i
)
+
[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]

[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]T}
TT (ti) − mr∗j

mT
r∗j

= A∗
k (ti) + T (ti)

[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]

[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]T
TT (ti)

− T (ti)
[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]

[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+ ∆nkj

]T
TT (ti)

A∗
j (ti) = A∗

k (ti) = T (ti)Ak

(
t−i
)
TT (ti) (3.13)

Thus, the generalized residuals from all elemental filters will have the same filter-

computed covariance and differing means when the parameter of interest is a measurement

bias.

3.3.2 Residual Properties for Varying Qd (ti) Parameter. Similar to the previ-

ous subsection, residual properties can also be established in the more traditional MMAE

application of determining the correct equivalent discrete-time dynamics driving noise co-
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Table 3.2 Relationship Among Elemental Filter Matrices and Vectors for Unknown Qd

Application
Same in All Elemental Filters Different in Each Elemental Filter

Φ (ti, ti−1) x̂
(
t−i
)

Bd (ti) x̂
(
t+i
)

u (ti) P
(
t−i
)

H (ti) P
(
t+i
)

R (ti) K (ti)

z (ti) r∗ (ti)

A∗ (ti)

T (ti)

Qd (ti)

varianceQd (ti). In this problem, each elemental filter is built with a different hypothesized

Qd (ti) matrix. Table 3.2 summarizes the relationship among the key elemental filter ma-

trices and vectors for this scenario, assuming that the elemental filter models are linear.

Assume elemental filter k is based on the correct hypothesis. To calculate the mean

of r∗j (ti) first define r
∗
j (ti) in terms of rk

(
t−i
)

r
∗
j (ti) =

[
I − (1 − γ)Hj (ti)Kj (ti)

]
rj

(
t−i
)

= Tj (ti) rj
(
t−i
)

r
∗
j (ti) = Tj (ti)

[
rk

(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

(3.14)

Given Equation (3.14), the mean and covariance of r∗j (ti) are calculated from the

mean and covariance of rk
(
t−i
)
.

mr∗j
(ti) = E

[
r
∗
j (ti) | a = ak, Z (ti−1) = Zi−1

]

= E
[
Tj (ti)

[
rk

(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

| a = ak, Z (ti−1) = Zi−1

]

mr∗j
(ti) = Tj (ti)H (ti)

[
x̂k
(
t−i
)
− x̂j

(
t−i
)]

A∗
j (ti) = E

[
r
∗
j (ti) r

∗T

j (ti) | a = ak, Z (ti−1) = Zi−1

]
− mr∗j

(ti)m
T
r∗j
(ti)

A∗
j (ti) = Tj (ti)Ak

(
t−i
)
TT
j (ti) (3.15)
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As in the measurement bias application, the generalized residual vectors will have

differing means, dependent upon the elemental filter. However, unlike the measurement

bias application, the filter-computed residual covariance will also vary among the elemental

filters because the transformation matrix Tj (ti) varies among the elemental filters.

3.3.3 Residual Properties for Varying F (t) Parameter. The linear difference

equation for system dynamics in Equation (2.1) is calculated from the differential equation

[29]

ẋ (t) = F (t) x (t) + B (t)u (t) + G (t)w (t) (3.16)

where F (t) is the system dynamics matrix. The state transition matrix, Φ (ti, ti−1), in

Equation (2.1) is the matrix which satisfies the differential equation and initial condition:

d [Φ (t, t0)]

dt
= F (t)Φ (t, t0)

Φ (t0, t0) = I (3.17)

For a time invariant system (i.e., constant F (t)), the state transition matrix can be calcu-

lated using the matrix exponential

Φ (t, t0) = Φ (t− t0) = eF(t−t0) (3.18)

Thus, the system dynamics matrix F (t) is used to define the linear difference equation of

Equation (2.1). With this in mind, an example of a GRMMAE with an unknown F (t) is

presented next.

In this scenario, it is assumed that the matrix describing the system dynamics, F (t)

contains an unknown parameter. Such a case arises when the F (t) matrix contains a

time constant, and this approach useful for target identification. Different-valued time

constants are hypothesized for various targets, with an observed target being classified by
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Table 3.3 Relationship Among Elemental Filter Matrices and Vectors for Unknown F (ti)
Application

Same in All Elemental Filters Different in Each Elemental Filter

u (ti) Bd (ti)

H (ti) x̂
(
t−i
)

R (ti) Φ (ti, ti−1)

z (ti) P
(
t−i
)

Qd (ti)

K (ti)

x̂
(
t+i
)

P
(
t+i
)

T (ti)

r∗ (ti)

determining the most probable time constant. Since the state transition matrix Φ (ti, ti−1),

is calculated directly from F (t), this scenario is equivalent to an unknownΦ (ti, τ) scenario.

Additionally, since Qd (ti) is calculated from Φ (ti, τ) using

Qd (ti−1) =

ti∫

ti−1

Φ (ti, τ)G (τ)Q (τ)G
T (τ)ΦT (ti, τ) dτ (3.19)

this scenario is related to the unknown Qd (ti) scenario of Section 3.3.2. Table 3.3 lists the

relationship of the key elemental filter matrices and vectors for this scenario. Under the

conditions in Table 3.3, specifically each filter operating on the same measurement vector

and the transformation Tj (ti) varying between the elemental filters, the derivation of the

mean and covariance for r∗j (ti) is exactly the same as in Section 3.3.2. Thus, Equation

3.15 applies to this scenario.

3.3.4 Residual Properties for Varying R (ti) Parameter. A third parameter es-

timatable using an MMAE is the measurement noise covariance matrix R (ti). In this

problem, multiple measurement noise covariance matrices are hypothesized in the elemen-

tal filters. The MMAE determines which elemental filter contains the correctR (ti) matrix.

Such an application arises in failure detection if the noise in a sensor changes as the result

of a failure (or partial failure). This application also arises when hypothesizing differ-

3-11



Table 3.4 Relationship Among Elemental Filter Matrices and Vectors for Unknown
R (ti) Application

Same in All Elemental Filters Different in Each Elemental Filter

Φ (ti, ti−1) x̂
(
t−i
)

Bd (ti) x̂
(
t+i
)

u (ti) P
(
t−i
)

H (ti) P
(
t+i
)

Qd (ti) K (ti)

z (ti) r∗ (ti)

A∗ (ti)

T (ti)

R (ti)

ent levels of interference or jamming in GPS. Table 3.4 shows the relationship of the key

Kalman filter parameters among the elemental filters. Under the conditions in Table 3.4,

specifically each filter operating on the same measurement vector and the transformation

matrix Tj (ti) varying between the elemental filters, the derivation of the mean and co-

variance for r∗j (ti) is exactly the same as in Section 3.3.2 and Equation (3.15) applies to

this scenario as well.

3.4 Effect of T (ti) Transformation

The transformation T (ti) =
[
I − (1 − γ)H (ti)K (ti)

]
occurs frequently in

derivations using r∗ (ti). To understand the effect of T (ti) on the traditional residual

r
(
t−i
)
, define the difference ∆r (ti) as:

∆r (ti)
4
= r

(
t−i
)
− r∗ (ti) (3.20)

Using Equation (3.2), it can be shown that

∆r (ti) = (1 − γ)H (ti)K (ti) r
(
t−i
)

(3.21)
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Examination of the Kalman filter state update equation from Table 2.1, repeated

here for convenience,

x̂
(
t+i
)
= x̂

(
t−i
)
+ K (ti)

[
zi − H (ti) x̂

(
t−i
)]

reveals that the Kalman gain matrix K (ti) transforms measurement domain vectors into

the state space. It also shows that the measurement matrix H (ti) transforms state vec-

tors into the measurement domain. Thus, multiplication by H (ti)K (ti) transforms the

measurement domain residual vector into the state space, then back into the measurement

space. A two dimensional representation is shown in Figure 3.1. The scalar (1 − γ) is

thought of as a gain which determines how much the traditional residual vector is scaled.

After scaling by (1 − γ), the residual vector is rotated (and possibly scaled further) by the

H (ti)K (ti) multiplication. In the extreme case of γ = 1 (i.e., r∗ (ti) = r
(
t−i
)
), the scalar

gain is 0, and ∆r (ti) is 0. In general, T (ti) is a transformation, not a projection, since

T (ti) is not idempotent. This fact was confirmed using a simulation to calculate T (ti) in

a measurement bias application. Although a formal proof that T (ti) is never a projection

was not pursued, it is expected that T (ti) will not be a projection except possibly in very

unusual cases.

3.5 Hypothesis Conditional Probability Derivation Using Generalized Residuals

This section is similar to Section 2.3, deriving the probability that each GRMMAE

elemental filter is correct, based on a linear combination of the traditional Kalman filter

residual and the post-fit residual. To calculate the probability that a given elemental filter

contains the correct parameter a, consider the conditional probability density function

fa|r∗(ti), Z(ti−1) (α|r∗ (ti) = ρ∗i ,Z (ti−1) = Zi−1) (3.22)

This is equivalent in information content to fz(ti)|a,Z(ti−1) (ζi|a = α,Z (ti−1) = Zi−1) from

Equation (2.37). Equation (3.22) is used to derive a hypothesis conditional probability for-

mula similar to Equation (2.41), but acting upon the generalized residual, rather than the
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r
(
t−i

)

(1− γ)K (ti)

H (ti)

∆r (ti)

Measurement Space State Space

originorigin

Figure 3.1 2-D Representation of Difference Between Traditional and Generalized Resid-
ual Vectors

traditional residual. Similar to Section 2.3, assume a can take any value in the continuous

range A ⊂ Rp. Applying Baye’s rule to Equation (3.22) yields

fa|r∗(ti), Z(ti−1) (α|r∗ (ti) = ρ∗i ,Z (ti−1) = Z i−1) =

fr∗(ti)|a, Z(ti−1) (ρ
∗|a = α,Z (ti−1) = Zi−1) fa|Z(ti−1) (α|Z (ti−1) = Zi−1)∫

A

fr∗(ti)|a, Z(ti−1) (ρ
∗|a = α,Z (ti−1) = Zi−1) fa|Z(ti−1) (α|Z (ti−1) = Zi−1)dα

(3.23)

Next, for feasible implementation, assume the parameter vector is restricted to be

a member of the discrete set {a1, a2, . . . ,aK}. Additionally, assume that the correct
parameter value is an element of that discrete set. Then, define the hypothesis conditional

probability as

p∗k (ti) , prob {a = ak|r∗ (ti) = r∗k (ti) , Z (ti−1) = Zi−1} (3.24)
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Under these conditions, the conditional hypothesis probability can be calculated by

evaluating Equation (3.23) using the realization of the measurement history Zi−1.

p∗k (ti) =
fr∗(ti)|a, Z(ti−1) (r

∗
k (ti) |a = ak,Z (ti−1) = Zi−1) pak|Zi−1

∫
A

fr∗(ti)|a, Z(ti−1) (r
∗ (ti) |a = α,Z (ti−1) = Zi−1)

K∑
j = 1

pa|Zi−1
δ (α − aj)dα

=
fr∗(ti)|a, Z(ti−1) (r

∗
k (ti) |a = ak,Z (ti−1) = Zi−1) pak|Zi−1

K∑
j = 1

∫
A

fr∗(ti)|a, Z(ti−1) (r
∗ (ti) |a = α,Z (ti−1) = Zi−1) pa|Zi−1

δ (α − aj)dα

p∗k (ti) =
fr∗(ti)|a, Z(ti−1) (r

∗
k (ti) |a = ak,Z (ti−1) = Zi−1) pak|Zi−1

K∑
j = 1

fr∗(ti)|a, Z(ti−1)

(
r∗j (ti) |a = aj ,Z (ti−1) = Zi−1

)
paj |Zi−1

(3.25)

where pak|Zi−1
is the discrete probability mass associated with the parameter realization ak

given the measurement history realization Zi−1. To see that pak|Zi−1
= pk (ti−1), consider

pak|Zi−1
= pak|zi−1, Zi−2

= p
ak|zi−1−[I − (1 − γ)Hk(ti)Kk(ti)]rk(t−i−1), Zi−2

= pak|r
∗
k(ti−1), Zi−2

pak|Zi−1
= p∗k (ti−1) (3.26)

Substituting Equation (3.26) into Equation (3.25) yields the final recursive relation-

ship

p∗k (ti) =
fr∗(ti)|a, Z(ti−1) (r

∗
k (ti) |a = ak,Z (ti−1) = Zi−1) p

∗
k (ti−1)

K∑
j = 1

fr∗(ti)|a, Z(ti−1)

(
r∗j (ti) |a = aj ,Z (ti−1) = Zi−1

)
p∗j (ti−1)

(3.27)

In Equation (3.27), the density fr∗(ti)|a, Z(ti−1) (ρ
∗ (ti) |a = α, Z (ti−1) = Z i−1) is Gaus-

sian. To demonstrate this, consider fz(ti)|a, Z(ti−1) (ζi|a = α, Z (ti−1) = Z i−1). From Sec-

tion 2.3 and [30], this second density is Gaussian. As shown in Equation (3.2), the gen-
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eralized residual r∗ (ti) is a linear function of z (ti) and x̂
(
t−i
)
. When Equation (3.1) is

conditioned on Z (ti−1) = Zi−1, as in Equation (3.27), x̂
(
t−i
)
becomes the realization

x̂
(
t−i
)
. Under this condition, r∗ (ti) is a linear function of the random variable z (ti),

and the realization x̂
(
t−i
)
. Therefore, since fz(ti)|a, Z(ti−1) (ζi|a = α, Z (ti−1) = Z i−1) is

Gaussian [30], fr∗(ti)|a, Z(ti−1) (ρ
∗
k|a = α, Z (ti−1) = Z i−1) is also Gaussian. The mean and

covariance of r∗ (ti), derived in Section 3.1, completely specify this conditional density.

3.6 Relationship Between pk (ti) and p
∗
k (ti)

The traditional MMAE ( γ = 1 ) calculates elemental filter conditional probabilities

from Equation (2.41), repeated here for convenience:

pk (ti) =
fz(ti)|a, Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1) pk (ti−1)

K∑
j = 1

fz(ti)|a, Z(ti−1) (zi|a = aj ,Z (ti−1) = Zi−1) pj (ti−1)

(2.41)

Equation (3.27) and Equation (2.41) must evaluate to the same value when γ = 1

(i.e., the generalized residual becomes the traditional residual). Therefore, there is a

relationship between these two equations.

Section 3.2 shows that r∗k (ti) is Gaussian and zero-mean, with covariance given by

Equation (3.4) (assuming the kth elemental filter contains the correct parameter). Thus,

the conditional density is

fr∗k(ti)|a, Z(ti−1) (r
∗
k (ti) |a = ak,Z (ti−1) = Zi−1)

=
1

(2π)
m
2 |A∗

k (ti) |1/2
exp
{
−1
2
r∗

T

k (ti)A
∗−1
k (ti) r

∗
k (ti)

}

= β∗k (ti) exp
{
−1
2
r∗

T

k (ti)
[
Tk (ti)A

−1
k

(
t−i
)
TT
k (ti)

]−1
r∗k (ti)

}
(3.28)

In Equation (3.28), β∗k (ti), Ak

(
t−i
)
and Tk (ti) are given by
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β∗k (ti) =
1

(2π)
m
2 |Tk (ti)

[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
TT
k (ti) |

1
2

Ak

(
t−i
)
=
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]

Tk (ti) =
[
I − (1 − γ)Hk (ti)Kk (ti)

]
(3.29)

Consider the term inside the exponential first

−1
2
r∗

T

k (ti)A
∗−1
k (ti) r

∗
k (ti)

= − 1
2
r∗

T

k (ti)
[
Tk (ti)A

−1
k

(
t−i
)
TT
k (ti)

]−1
r∗k (ti)

= − 1
2
rTk
(
t−i
)
TT
k (ti)

[
Tk (ti)

[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
TT
k (ti)

]−1
Tk (ti) rk

(
t−i
)

= − 1
2
rTk
(
t−i
)
TT
k (ti)

[
TT
k (ti)

]−1[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]−1
T−1
k (ti)Tk (ti) rk

(
t−i
)

= − 1
2
rTk
(
t−i
) [
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]−1
rk
(
t−i
)

= − 1
2
rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)

(3.30)

Comparing Equation (3.30) to Equation (2.47) shows that the term inside the expo-

nential for fr∗k(ti)|a, Z(ti−1) (r
∗
k (ti) |a = ak,Z (ti−1) = Zi−1) is exactly the same as the term

inside the exponential for fz(ti)|a, Z(ti−1) (zi|a = ak,Z (ti−1) = Zi−1). This implies that the

GRMMAE design parameter γ has no effect on the likelihood quotients. Thus, regardless

of the value of γ, the likelihood quotient inside the Gaussian densities of Equation (3.27)

is −1/2rTk (ti)A−1
k (ti) rk (ti), the same as it is in the traditional MMAE.

Now, consider the β∗k (ti) term in front of the exponential in Equation (3.28). The

determinant |Tk (ti)
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + R (ti)

]
TT
k (ti) | can be broken into the 3

separate determinants in the first line of Equation (3.31).

β∗k (ti) =
1

(2π)
m
2

{
|Tk (ti) | |

[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
| |TT

k (ti) |
} 1

2
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β∗k (ti) =
1

(2π)
m
2

{
|Tk (ti) | |

[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
| |Tk (ti) |

} 1
2

=
1

(2π)
m
2 abs

(
|Tk (ti) |

){
|
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
|
} 1

2

β∗k (ti) = abs
(
|Tk (ti) |

)−1 1

(2π)
m
2

{
|
[
Hk (ti)Pk

(
t−i
)
HT
k (ti) + Rk (ti)

]
|
} 1

2

(3.31)

In Equation (3.31) the determinant |Tk (ti) | is squared inside the square root, then brought
outside the square root. When it is brought outside, the positive square root is used.

Therefore, the notation abs
(
|Tk (ti) |

)
is used to denote a positive square root.

Equation (3.31) equals the beta term from fz(ti)|a, Zi−1
(zi|a = ak,Z (ti−1) = Zi−1),

in Equation (2.47), multiplied by the scalar term abs
(
|Tk (ti) |−1

)
. Thus,

fr∗k(ti)|a, Z(ti−1) (r
∗
k (ti) |a = ak, Z (ti−1) = Zi−1)

= abs
(
|Tk (ti) |

)−1
fz(ti)|a, Z(ti−1) (z (ti) |a = ak, Z (ti−1) = Zi−1)

(3.32)

Under the condition γ = 1 (i.e., r∗k (ti) = rk
(
t−i
)
), Tk (ti) = I and

fr∗k(ti)|a,Z(ti−1) (r
∗
k (ti) |a = ak,Z (ti−1) = Zi−1)

= fz(ti)|a,Z(ti−1) (z (ti) |a = ak,Z (ti−1) = Zi−1) (3.33)

Thus, when γ = 1, the GRMMAE is equivalent to a traditional MMAE.

Equations (3.30) through (3.32) demonstrate that the GRMMAE design parameter

γ affects only the β∗ (ti) normalization term in front of the exponential in the Gaussian

densities of Equation (3.27). Thus, γ in the generalized residual has the effect of artificially

increasing or decreasing the β∗ (ti) term magnitude in these Gaussian densities. Chapter

IV demonstrates that this results in a susceptibility to the β-dominance effect.
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3.7 Optimization of p∗k (ti)

The objective of the γ parameter in the generalized residual is to improve the rate of

convergence to the correct elemental filter of the GRMMAE compared to the traditional

MMAE. Thus, under the assumption that the kth elemental filter is correct, the optimal

value of γ should maximize p∗k (ti) given in Equation (3.27). All GRMMAE applications

can be divided into 2 groups to accomplish this objective. The first group consists of ap-

plications in which the transformation matrix T (ti) is identical in all elemental filters. For

this scenario, any γ may be used with identical results achieved. This will be demonstrated

in Section 3.7.1. The second group consists of applications in which the transformation

matrix T (ti) varies among the elemental filters. In these applications, a specific γ value

will maximize p∗k (ti). The specific optimal value of γ will vary dependent upon the ap-

plication. However, these applications will be susceptible to β-dominance if γ 6= 1, as
demonstrated in Sections 3.7.2 and 4.3.

In both cases, the same general procedure is used to determine the optimal γ value:

1. Determine the generalized residual r∗j (ti) in terms of the traditional residual for the

correct elemental filter rk
(
t−i
)
.

2. Determine the covariance of the generalized residualA∗
j (ti) in terms of the covariance

of the traditional residual for the correct elemental filter Ak

(
t−i
)
.

3. Perform algebraic substitution and simplification to express the generalized hypoth-

esis conditional probability of Equation (3.27) in terms of rk
(
t−i
)
and Ak

(
t−i
)
.

4. Determine the γ value which maximizes p∗k (ti) (either in steady state or at each

measurement update).

Steps 1 and 2 have already been accomplished in Sections 3.2 and 3.3. Because of the

β-dominance effect, Step 4 will not be pursued. Rather, the designer is strongly cautioned

against using γ 6= 1 unless T (ti) is identical in all elemental filters. The reason for this
caution will be demonstrated in Sections 3.7.2 and 4.3.

3.7.1 Same T (ti) In All Elemental Filters. In this section, Equation (3.27) is

applied to applications with T (ti) identical in all elemental filters. Significantly general
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notation and equations applicable to all cases with identical T (ti) in all elemental filters

cannot be developed. Therefore, the specific example of estimating a constant measurement

bias, as detailed in Section 3.3.1, is shown. This will demonstrate the 4-step procedure

outlined in the previous section. Other applications with the same T (ti) in all elemental

filters can be similarly derived. Begin with Equation (3.27), substituting the residuals from

the elemental filters into the densities

p∗k (ti) =

1

(2π)m/2abs
(
|T(ti)|

)
|Ak(t−i )|1/2

exp
{
−12rTk

(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

p∗k (ti−1)

K∑
j=1

1

(2π)m/2|A∗
j (ti)|

1/2
exp

{
−12r∗

T

j (ti)A
∗−1

j (ti) r∗j (ti)
}
p∗j (ti−1)

(3.34)

where the numerator comes from Equation (3.32)

Next, use Equation (3.13) to substitute for A∗
j (ti)

p∗k (ti) =

1

(2π)m/2abs
(
|T(ti)|

)
|Ak(t−i )|1/2

exp
{
−12rTk

(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

p∗k (ti−1)

K∑
j=1

1

(2π)m/2abs
(
|T(ti)|

)
|Ak(t−i )|1/2

exp
{
−12r∗

T

j (ti)
[
T (ti)Ak

(
t−i
)
TT (ti)

]−1
r∗j (ti)

}
p∗j (ti−1)

(3.35)

Notice in Equation (3.35) that all densities in the both the numerator and denom-

inator are multiplied by 1/
[
(2π)m/2 abs

(
|T (ti) |

)
|Ak

(
t−i
)
|1/2
]
. Therefore, this term is

eliminated

p∗k (ti) =
exp

{
−12rTk

(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

p∗k (ti−1)
K∑
j=1
exp

{
q∗j

}
p∗j (ti−1)

(3.36)

where
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q∗j = − 1
2

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]T
TT (ti)A

∗−1

j (ti)T (ti)

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]

= − 1
2

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]T

TT (ti)
[
T (ti)Ak

(
t−i
)
TT (ti)

]−1
T (ti)

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]

q∗j = − 1
2

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]T
A−1
k

(
t−i
)

[
rk
(
t−i
)
+H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]
∀ j (3.37)

Note that T (ti) has been eliminated from Equation (3.37). Since T (ti) is the only

variable that depends upon the design parameter γ, p∗k (ti) is independent of γ. This

means that Equation (3.35) (or, equivalently, Equation (3.27)) will yield exactly the same

hypothesis conditional probability regardless of what generalized residual vector is used

in the GRMMAE for the measurement bias determination problem. The γ independence

can also be interpreted as meaning that β-stripping, described in Section 2.4.1, is always

performed for applications in which T (ti) does not vary among the elemental filters.

3.7.2 Varying T (ti) In Elemental Filters. As in the previous subsection, begin by

substituting the residuals from the elemental filters into the densities in Equation (3.27).

Assuming that each elemental filter operates on the same measurement, the residual charac-

teristics given in Equation (3.15) hold. Substituting these characteristics in Equation (3.27)

yields

p∗k (ti) =

1

(2π)m/2abs
(
|Tk(ti)|

)
|Ak(t−i )|1/2

exp
{
−12rTk

(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)}

p∗k (ti−1)

K∑
j=1

1

(2π)m/2abs
(
|Tj(ti)|

)
|Ak(t−i )|1/2

exp
{
q∗j (ti)

}
p∗j (ti−1)

(3.38)

where
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q∗j (ti) = − 1
2
r∗

T

j (ti)A
∗−1

j (ti) r
∗
j (ti)

= − 1
2

[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]T

TT
j (ti)A

∗−1

j (ti)Tj (ti)
[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

= − 1
2

[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]T

TT
j (ti)

[
Tj (ti)Ak

(
t−i
)
TT
j (ti)

]−1

Tj (ti)
[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

q∗j (ti) = − 1
2

[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]T

A−1
k

(
t−i
)

[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

∀ j (3.39)

Next, explicitly remove the component for the kth filter from the summation in the

denominator and factor out 1/
[
(2π)m/2 abs

(
|Tk (ti) |

)
|Ak

(
t−i
)
|1/2
]
and pk (ti−1) to yield

p∗k (ti) =
exp {qk (ti)}

exp {qk (ti)} +
K∑

j=1

j 6=k

abs
(
|Tk(ti)|
|Tj(ti)|

)
p∗j (ti−1)

p∗k(ti−1)
exp

{
q∗j (ti)

} (3.40)

Tk (ti) , Tj (ti), and the prior probabilities are the only terms in Equation (3.40)

that depend upon γ. In order to maximize p∗k (ti), γ must be chosen to minimize

abs

(
|Tk (ti) |
|Tj (ti) |

)
pj (ti−1)

pk (ti−1)
(3.41)

This minimizes the contribution of the incorrect elemental filters, and maximizes

p∗k (ti). However, setting γ 6= 1 has potential to cause β-dominance. If the correct filter, k,
is known a priori (in which case there is no problem to solve), an optimal γ to minimize

Equation (3.41) can be found. However, for a given problem, this optimal γ may change

if k changes, dependent upon the magnitude of the β∗
k (ti) and β

∗
j (ti) terms. Figures 3.2

and 3.3 demonstrate this concept. These figures show the β∗
j (ti) terms (including j = k)

and mean hypothesis conditional probabilities from 1000 Monte Carlo simulations of an

application with varying Tj (ti). (The specific models and parameters for the simulations

are not presented here because they would distract from the concept being illustrated.) In

Figure 3.2, the correct hypothesis is arbitrarily chosen to be the hypothesis with the largest
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steady state β∗j (ti) value for the GRMMAE γ = 0. For Figure 3.2, a measurement set was

generated and used in GRMMAEs with γ = 1 and γ = 0 (i.e., equivalent to traditional and

post-fit modified MMAEs, respectively). From Figure 3.2, both GRMMAEs converged to

the correct hypothesis. However, the GRMMAE with γ = 0 converged more quickly than

the one with γ = 1. Thus, based on this particular correct hypothesis (i.e., the elemental

filter with the largest steady state β∗
j (ti) when γ = 0), the optimal γ value is 0.

Now, consider Figure 3.3. The same application and system model was used for this

figure. However, the true parameter value was changed to the parameter associated with

the elemental filter having the smallest steady state β∗
j (ti) values when γ = 0. Again, a

measurement set was generated (associated with this new correct parameter value), and

GRMMAEs with γ = 1 and γ = 0 were used. From Figure 3.3, the GRMMAE with

γ = 1 (i.e., traditional MMAE equivalent) again converged to the correct hypothesis.

However, the GRMMAE with γ = 0 converged to an incorrect hypothesis. In fact, the

GRMMAE with γ = 0 converged to the same hypothesis as the GRMMAEs in Figure

3.2. This occurred because the pre-computable β∗
j (ti) term (which did not vary between

these runs) dominated the hypothesis conditional probability calculation in the GRMMAEs

with γ = 0. For the simulations in Figure 3.3, the optimal γ value is 1. Thus, inconsistent

optimal γ values are achieved, dependent upon the relative magnitude of the beta term

associated with the correct hypothesis, due to the β-dominance effect. The β-dominance

effect is discussed in depth in Section 4.3. However, this illustration demonstrates the

β-dominance problem as it relates to the choice of the optimal γ value. Specifically, in

some cases, the optimal γ artificially induces β-dominance which causes the GRMMAE

to converge to one hypothesis regardless of the realized measurements. Such behavior by

the GRMMAE is undesirable because it means that the GRMMAE is ignoring the real

world data and is relying entirely on its internal models. Therefore, determining the γ

that maximizes p∗k (ti) will not be pursued for applications where Tj (ti) varies among the

elemental filters.
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Figure 3.2 Beta Terms and Average Hypothesis Conditional Probabilities for GRM-
MAEs with γ = 1 and γ = 0 and Correct Hypothesis Having Largest Steady
State Beta Term for γ = 0
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Figure 3.3 Beta Terms and Average Hypothesis Conditional Probabilities for GRM-
MAEs with γ = 1 and γ = 0 and Correct Hypothesis Having Smallest Steady
State Beta Term for γ = 0
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3.8 Interpretation of β-stripping Using GRMMAE Derivation

As shown in Section 3.6, the GRMMAE design parameter, γ, affects only the β∗
j (ti)

normalization terms. When β-dominance exists, it is common to use β-stripping to com-

pensate for it, as described in Section 2.4.1. β-stripping is easily interpreted in the context

of the GRMMAE derived in this chapter. Specifically, let γ vary among the elemental fil-

ters and over time. Under this assumption, each elemental filter is assigned an individual

design parameter value γj (ti) at each measurement epoch ti. Next, choose γj (ti) such that

abs
(
|Tj (ti) |

)
= βj

(
t−i
)

(3.42)

Equation (3.31) can be used to show

β∗j (ti) = abs
(
|Tj (ti) |

)−1
βj
(
t−i
)

(3.43)

From Equation (3.43), if γj (ti) is chosen according to Equation (3.42), β
∗
j (ti) will

equal 1, and the β∗j (ti) terms will be stripped from the hypothesis conditional probability

calculation. Thus, in the context of the GRMMAE, the β-stripping method is interpreted

as choosing γj (ti) such that Equation (3.42) is satisfied. Since, for linear elemental fil-

ters, β∗j (ti) is pre-computable using the elemental filter models, calculating γj (ti) from

Equation (3.42) is also pre-computable.

3.9 Chapter Summary

This chapter defined the generalized residual vector. It gave a derivation of the prop-

erties for the generalized residual vector for both the correct and incorrect elemental filters.

It described the effect of the transformation matrix T (ti). Next, it provided a derivation

of the GRMMAE’s hypothesis conditional probability formula. Then, the relationship

between this generalized hypothesis conditional probability p∗k (ti) and the traditional hy-

pothesis conditional probability pk (ti) was derived. Most importantly, it demonstrated

that the effect of the γ design parameter is to increase or decrease the β∗ (ti) term mag-
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nitude artificially in the Gaussian densities used to calculate the hypothesis conditional

probability. Because of this, the GRMMAE is susceptible to the β-dominance effect. Fi-

nally, this chapter concluded with a derivation of the generalized hypothesis conditional

probability formula for applications in which the transformation matrix T (ti) varies and

does not vary among the elemental filters. In the case when T (ti) does not vary among

elemental filters, it demonstrated that the GRMMAE is equivalent to a traditional MMAE,

regardless of the γ value. In the case when T (ti) varies among the elemental filters, the

generalized residual hypothesis conditional probability formula remains dependent upon

γ making those applications susceptible to β-dominance if γ 6= 1. Since the GRMMAE
is equivalent to a traditional MMAE for non-varying T (ti) applications, and since the

GRMMAE is susceptible to β-dominance in all other applications, it is not recommended

for most applications. However, as derived in this chapter, the γ design parameter gives

an ability to exert some measure of control over the magnitude of the Gaussian density

β∗j (ti) terms. Therefore, the GRMMAE may be useful in applications where β-dominance

is expected. This is explored further in Sections 4.4 and 5.2. Finally, all sections in this

chapter are research contributions of this dissertation.
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IV. Simulations and Analysis

4.1 Residual Properties Verification

Sections 4.1.2 through 4.1.4 present examples to verify the generalized residual vector

and generalized residual covariance matrix equations derived in Chapter III. These exam-

ples are presented in the same order as the derivations in Sections 3.3.1 and 3.3.4 with

which they correspond. The examples all use a common truth model which is described

in Section 4.1.1. Since GPS carrier-phase integer ambiguity resolution is the application

that inspired the GRMMAE development, the truth model is designed to mimic that

application. However, in an effort to keep the GRMMAE demonstration general, GPS

carrier-phase integer ambiguity resolution is not specifically used in these sections. Ambi-

guity resolution will be used in Section 4.2 to demonstrate another GRMMAE property. In

each of these examples, a different parameter is assumed to be unknown, and a GRMMAE

is built to determine the correct parameter value given in the common truth model.

4.1.1 Truth Model. The truth model for the examples in Sections 4.1.2 through

4.1.4 is a simple 1-D system. It describes a vehicle moving along a line. The system

state vector consists of position, velocity, and acceleration states, all along the line. The

dynamics model is a first order Gauss-Markov acceleration (FOGMA) model given by

ẋ (t) = F (t) x (t) + w (t) (4.1)

where x (t) is the state vector consisting of the position, velocity, and acceleration states

x (t) =




p (t)

v (t)

a (t)


 (4.2)

and F (t) is the dynamics matrix given by
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F (t) =




0 1 0

0 0 1

0 0 −1/ta


 (4.3)

where ta is the acceleration time constant. Finally, in Equation (4.1), w (t) is the contin-

uous time dynamics noise given by

w (t) =




0

0

wa (t)


 (4.4)

where wa (t) is the zero-mean, white, Gaussian noise driving the acceleration state. The

covariance kernel of the noise vector is given by

E
[
w (t)wT (τ)

]
= Q (t) δ (t − τ) (4.5)

The FOGMA model is commonly used in navigation applications including GPS

carrier-phase integer ambiguity resolution. It assumes that the vehicle acceleration is well

described with a first-order lag driven by white, Gaussian noise. From Equations (4.1)

through (4.4), the model for the acceleration state is given by

d

dt
a (t) = − 1

ta
a (t) + wa (t)

where a (t) is the vehicle acceleration in 1-D and wa (t) is the continuous-time white, Gaus-

sian noise driving the model. Changing the acceleration time constant and/or the strength,

Q (t), of the driving noise changes the vehicle motion described by the truth model. A true

value of ta = 2 is arbitrarily chosen for these examples. The strength of wa (t) is used in

the calculation of the equivalent discrete-time noise covariance matrix Qd (ti), which will

be discussed shortly.
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Since the dynamics matrix in Equation (4.3) is time-invariant, the state transition

matrix is calculated using the matrix exponential [40]

Φ (ti, ti−1) = eF(t)∆t (4.6)

where ∆t = ti − ti−1.

Using ta = 2 and Equations (4.3) and (4.6), the true state dynamics model is

x (ti+1) =




1 1 0.426

0 1 0.787

0 0 0.607


 x (ti) + wd (ti) (4.7)

In Equation (4.7), wd (ti) is the equivalent discrete-time dynamics driving noise calculated

from the continuous-time noise w (t). The equivalent discrete-time noise is zero-mean,

white, Gaussian with covariance of Qd (ti) calculated from Q (t) [29]

Qd (ti) =

ti+1∫

ti

Φ (ti+1, τ)Q (τ)Φ
T (ti+1, τ) dτ (4.8)

Two independent measurement sensors are used for these examples. Each sensor

measures the 1-D position of the vehicle along a line. The measurement model is given by

z (ti) =


 1 0 0

1 0 0


 x (ti) + v (ti) (4.9)

where v (ti) is the measurement noise vector.

The equivalent discrete-time dynamics driving noise and measurement noise are in-

dependent, zero-mean, white, Gaussian noises with covariances of Qd (ti) and R (ti), re-

spectively. Two noise scenarios are used, a High Qd/Low R scenario (which is similar to

4-3



the GPS carrier-phase ambiguity resolution application) and a Low Qd/High R scenario.

These relative values are chosen to create scenarios in which the elemental filters emphasize

one model (dynamics or measurement) over the other. The noise covariance matrices for

these scenarios are

High Qd/Low R Scenario Low Qd/High R Scenario

Qd (ti) =




0.0454 0.0838 0.0646

0.0838 0.1548 0.1193

0.0646 0.1193 0.0920


 Qd (ti) =




0.0454 0.0838 0.0646

0.0838 0.1548 0.1193

0.0646 0.1193 0.0920


× 10

−4

R (ti) =


 0.0025 0

0 0.0025


 R (ti) =


 25 0

0 25


 (4.10)

The initial conditions for each scenario are

x0 =




0

1

0


 P0 =




25 0 0

0 100 0

0 0 10


 (4.11)

Finally, in each example that follows (including the measurement bias example) the

true measurements are unbiased. Thus, in the measurement bias example, the true bias is

given by

ntrue =


 0
0


 (4.12)

The truth model given in Equations (4.1) through (4.12) is used for the examples

in the next four sections. These examples demonstrate the generalized residual mean and

covariance equations derived in Sections 3.3.1 through 3.3.4. The examples are presented

in the same order as the derivations in Chapter III. The GRMMAEs applied to this truth

model vary according to the unknown parameter being estimated. The GRMMAE models

for each example are given in the corresponding section.
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4.1.2 Example: Unknown Measurement Bias Scenario. This example is used to

demonstrate the residual properties derived in Section 3.3.1. The truth model presented

in Section 4.1.1 is used for this example. The elemental filters in the GRMMAE are

identical but act upon corrected measurements given by Equation (3.7), repeated here for

convenience

z̃j (ti) = z (ti) − nj (3.7)

where z (ti) is the biased sensor measurement, and nj is the hypothesized bias for the j
th

elemental filter. Thus, the elemental filter model for this example is given by Equations

4.1 through 4.12. Three elemental filters are used, hypothesizing different measurement

biases, which is very similar to the carrier-phase integer ambiguity resolution approach in

[17, 18]. The hypothesized measurement biases are

n1 =


 0
0


 n2 =


 5

10


 n3 =


 0
5


 (4.13)

where nj is the hypothesized bias vector implemented in the j
th elemental filter (j = 1, 2, 3).

The true measurement bias is n1.

This system was simulated 1000 times, running each simulation for 100 measurement

epochs. Sample averages of the generalized residual vectors and the generalized residual

covariance matrices were calculated at each measurement epoch. Thus, the 1000 Monte

Carlo runs were used to yield a 100-step time history of 2-dimensional mean vectors (2

measurement sources, 100 measurement epochs) and 100 2 x 2 sample covariance matrices

(one for each epoch). Additionally, sample averages of the state vectors prior to mea-

surement incorporation were calculated for each elemental filter. Thus, 100 state vectors

(one for each epoch), x̂j
(
t−i
)
, were produced for each of the 3 elemental filters. Since the

H (ti) and K (ti) matrices do not vary from one Monte Carlo run to the next, it is not

necessary to calculate sample averages of H (ti) , K (ti) , or T (ti). Additionally, since the

hypothesized measurement biases do not change from one Monte Carlo run to the next, it

is not necessary to compute sample averages of the difference in the hypothesized biases
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∆nkj . This process was repeated a total of 4 times, once for each combination of the noise

covariance matrices in Equation (4.10) with γ equal to both 0 and 1. This is depicted

graphically by the “X” marks in Table 4.1

For each Monte Carlo simulation listed in Table 4.1, the sample averages were used

to calculate the mean of the generalized residual vector for the incorrect elemental filters (2

and 3) using Equation (3.11), a modified portion of which is repeated here for convenience

mr∗jtheory
(ti) = T (ti)

[
H (ti)

(
x̂kaver

(
t−i
)
− x̂javer

(
t−i
))
+∆nkj

]
(3.11)

where x̂kaver

(
t−i
)
, and x̂javer

(
t−i
)
are the sample averages taken from the 1000 Monte

Carlo runs, and the subscripts aver and theory denote sample averages and a residual

mean vector calculated using the theory from Chapter III, respectively. It was necessary

to calculate sample averages of the state vector estimates, x̂kaver

(
t−i
)
and x̂javer

(
t−i
)
,

because the true state varied in each Monte Carlo run due to the dynamics model noise.

The subscripts aver and theory were added here to distinguish between realized random

variable values in the 1000 Monte Carlo simulations (aver) and values calculated using the

equations in Chapter III (theory).

Figure 4.1 shows a plot of the theoretical generalized residuals, calculated using the

modified version of Equation (3.11), and the realized sample average residual vectors for

elemental filters 2 and 3 (the incorrect filters). In this figure, the Low Qd/High R noise

scenario was used. For that scenario, the elemental Kalman filters place increased emphasis

on the filter dynamics model and less emphasis on the measurements. Additionally, the

traditional residual (γ = 1) was used. Finally, in order to make the figure more clear, only

Table 4.1 Matrix of Monte Carlo Test Scenarios: Combinations of Noise Matrices and
γ Values

Generalized Residual Type
Traditional (γ = 1) Post-Fit (γ = 0)

Noise High Qd/Low R X X
Scenario Low Qd/High R X X
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Figure 4.1 Theoretical and Sample Average Generalized Residuals from 1000 Simula-
tions for Measurement Source 1 in Low Qd (ti)/High R Noise Scenario with
Traditional Residual (γ = 1) – Measurement Bias Example
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the residuals associated with measurement source 1 are shown. The plot for measurement

source 2 was similar. Figure 4.1 demonstrates that the sample mean generalized residuals

track the theoretical mean generalized residuals from Equation (3.11). Relative to the

generalized residual covariance, the realized sample mean closely matches the theoretical

mean. The simulations for the other combinations of noise covariance matrices and gamma

values in Table 4.1 produced results similar to Figure 4.1 and are not shown. Figure 4.1

demonstrates that Equation (3.11) correctly calculated the mean value for the generalized

residuals from the incorrect elemental filters, based on the traditional residual from the

correct elemental filter.

Next, the covariance of the generalized residuals from the incorrect elemental fil-

ters was confirmed. For the measurement bias application, this formula is given by

Equation (3.13), a modified version of which is repeated here for convenience

A∗
jtheory

(ti) = T (ti)Akfilt

(
t−i
)
TT (ti) (3.13)

where the subscript theory indicates a matrix calculated using the theory in Chapter III.

The new subscript filt indicates that the elemental filter-computed covariance was used.

The filter-computed residual covariance was given immediately after Equation (2.47) and

is

Akfilt

(
t−i
)
= H (ti)Pk

(
t−i
)
HT (ti) +R (ti) (4.14)

None of the matrices above vary from one Monte Carlo run to the next. Therefore, there

is no need to calculate a sample average value for the elemental filter-computed covariance

matrix.

Figure 4.2 shows a representative plot of the realized sample covariance matrix and

the theoretical covariance matrix calculated from Equation (3.13). Since there were two

measurement sources, the residual covariance matrices were 2 x 2. In Figure 4.2, the

line marked “Theoretical Variance for Sensors 1 and 2” is a plot of the variance values

from the diagonal of the covariance matrix. In this case, the two variance values are the
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Figure 4.2 Theoretical and Sample Average Generalized Residual Covariance Matrix
Elements from 1000 Simulations in Low Qd/High R Noise Scenario with
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same and only one line appears in the plot, representing both sensors. The line marked

“Theoretical Covariance for Sensors 1 and 2” is a plot of the off-diagonal elements of the

covariance matrix. Since covariance matrices are symmetric, there is only a need to plot

a single line for the covariance values. The plots of “Realized Variance” and “Realized

Covariance” are the values from the realized sample covariance matrices corresponding

to the theoretical values. Figure 4.2 shows the variance/covariance values for the Low

Qd/High R noise scenario using post-fit residuals (γ = 0). Figure 4.2 demonstrates that

the realized sample variance and covariance values track the corresponding theoretical

values with errors that are an order of magnitude smaller than the theoretical values. This

behavior was true for all combinations of noise covariance matrices and gamma values in

Table 4.1, and indicates that Equation (3.13) correctly calculated the generalized residual

covariance matrix. However, Figure 4.2 is shown because it demonstrates unexpected

behavior. Typically, the residual variance is large at first and settles down to a smaller

steady state value. In Figure 4.2, though, the residual variance values start smaller and

increase to their steady state value. This was caused by the transformation matrix T (ti).

This unexpected behavior will be discussed in Chapter V in relation to a recommendation

for future research into use of the GRMMAE for β-dominance compensation.

Finally, based on Equations (3.10) and (3.13), for this application, the generalized

residuals from the incorrect elemental filters equal the generalized residuals from the correct

elemental filter, offset by a bias. Figure 4.3 demonstrates this property. In this figure, the

generalized residual associated with measurement source 1 from all three elemental filters is

shown. Unlike previous figures, a single Monte Carlo run was used for this demonstration.

This ensures that a direct comparison can be made between the elemental filters. If a

sample average had been used, it is possible (though not likely) to have multiple runs which

individually exhibit incorrect behavior while still maintaining correct average behavior. By

using a single run, this possibility was avoided. Figure 4.3 shows the generalized residuals

for the High Qd/Low R noise covariance scenario with post-fit residuals (i.e., γ = 0). In

Figure 4.3, the generalized residuals from elemental filters 2 and 3 overlap due to the choice

of measurement bias hypotheses, and thus, only one line appears in the plot representing

both filters. A comparison of the residuals from elemental filter 1 (the correct hypothesis)

4-10



0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

3

Generalized Residual
from Elemental Filters 2 and 3 

Generalized Residual
from Elemental Filter 1 

PSfrag replacements

Generalized Residuals for Measurement Sensor 1

A
m
p
li
tu
d
e

Measurement Number

Figure 4.3 Single Run Generalized Residual for Measurement Sensor 1 in High Qd/Low
R Noise Scenario with Post-Fit Residuals (γ = 0)

with those from elemental filters 2 and 3 clearly shows that the residuals from the incorrect

elemental filters equal the residuals from the correct elemental filter, with an added bias.

4.1.3 Example: Unknown Qd Scenario. This example demonstrates an applica-

tion with an unknown equivalent discrete-time dynamics noise covariance matrix. Equa-

tions to calculate the generalized residuals for the incorrect elemental filters from the tra-

ditional residuals for the correct filter are given in Section 3.3.2. As with other examples,

the truth model presented in Section 4.1.1 was used for this example.

An example such as this might arise, for example, in a target tracking problem. In

this application, the FOGMA model in Equations (4.1) through (4.7) adequately describes

the dynamics of a vehicle. However, changes in target dynamics are described by varying

the strength of the continuous-time dynamics noise w (t). For instance, a target at rest

would be represented with a very small dynamics model noise strength. Various dynamic

operating modes (accelerating, constant velocity, etc.) would be represented with other

dynamics noise strengths. Those varying values of strength for w (t) lead to varying Qd (ti)
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for each operating mode. The GRMMAE is then used to determine which hypothesized

Qd (ti) best matches the motion of the vehicle, allowing vehicle tracking.

In this example, three elemental filters were used, hypothesizing three values for

the equivalent discrete-time noise covariance. The hypothesized values for Qd (ti) were

arbitrarily chosen to be

Qd (ti) 2.5Qd (ti) 6.7Qd (ti)

where Qd (ti) is the value given in Equation (4.10). Two noise scenarios and two values of

γ were used as shown in Table 4.1, for a total of four sets of Monte Carlo simulations. Each

scenario defined in Table 4.1 was simulated 1000 times with 100 measurement epochs used

in each Monte Carlo simulation. As in the measurement bias example, sample averages of

the variables necessary to confirm the Equations in Section 3.3.2 were calculated. Since

the H (ti) and Kj (ti) matrices do not vary from one Monte Carlo run to the next, it was

not necessary to calculate sample averages of H (ti) , Kj (ti) , or Tj (ti). Notice, however,

that unlike the previous example, Kj (ti) and Tj (ti) do vary among the elemental filters.

For each Monte Carlo simulation listed in Table 4.1, the sample averages were used

to calculate the mean of the generalized residual vector for the incorrect elemental filters (2

and 3) using Equation (3.15), a modified portion of which is repeated here for convenience

mr∗jtheory
(ti) = Tj (ti)H (ti)

[
x̂kaver

(
t−i
)
− x̂javer

(
t−i
)]

(3.15)

where x̂kaver

(
t−i
)
, and x̂javer

(
t−i
)
are the sample averages taken from the 1000 Monte

Carlo runs, and the subscripts aver and theory denote sample averages and a residual

mean vector calculated from the theory in Chapter III, respectively.

Figure 4.4 shows a plot of the theoretical generalized residuals, calculated using the

modified version of Equation (3.15), and the realized sample average residual vectors for

elemental filters 2 and 3 (the incorrect filters). In this figure, the Low Qd/High R noise

scenario was used. For that scenario, the elemental Kalman filters place increased empha-

sis on the filter dynamics model and less emphasis on the measurements. Additionally,
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Figure 4.4 Theoretical and Sample Average Generalized Residuals from 1000 Simula-
tions for Measurement Source 1 in Low Qd/High R Noise Scenario with
Post-Fit Residual (γ = 0) – Unknown Qd Example
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the post-fit residual (γ = 0) was used. Finally, in order to make the figure more clear,

only the residuals associated with measurement source 1 are shown. Figure 4.4 shows that,

relative to the generalized residual standard deviation, the realized sample mean gener-

alized residual exhibited a good match to the theoretical mean. This demonstrates that

Equation (3.15) correctly calculated the mean generalized residual vector for the incorrect

elemental filters based on the traditional residual vector from the correct elemental filter.

Next, the covariance of the generalized residuals from the incorrect elemental fil-

ters was confirmed. For the unknown Qd application, this formula is also given by

Equation (3.15), a modified version of which is repeated here for convenience

A∗
jtheory

(ti) = Tj (ti)Akfilt

(
t−i
)
TT
j (ti) (3.15)

where the subscripts theory and filt indicate a covariance matrix calculated from the

theory in Chapter III and the elemental filter-computed covariance matrix, respectively.

As before, the filter-computed covariance matrix does not change from one run to the next.

Therefore, there is no need to calculate a sample average value for it.

Figure 4.5 shows a representative plot of the realized sample covariance matrix and

the covariance matrix calculated from Equation (3.15). In Figure 4.5, the line marked

“Theoretical Variance for Sensors 1 and 2” is a plot of the variance values from the diagonal

of the covariance matrix. In this case, the two variance values were the same and only 1 line

appears in the plot, representing both sensors. The line marked “Theoretical Covariance

for Sensors 1 and 2” is a plot of the off-diagonal elements of the covariance matrix. The

plots of “Realized Variance” and “Realized Covariance” are the values from the realized

sample covariance matrices corresponding to the theoretical values. Figure 4.5 shows

the variance/covariance values for the Low Qd/High R noise scenario using traditional

residuals (γ = 1). Figure 4.5 demonstrates that the realized sample variance and covariance

values track the corresponding theoretical values with errors that are an order of magnitude

smaller than the theoretical values. This behavior was true for all combinations of noise

covariance matrices and gamma values in Table 4.1, and indicates that Equation (3.15)

correctly calculated the generalized residual covariance matrix.
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Figure 4.5 Theoretical and Sample Generalized Residual Covariance Matrix Elements
from 1000 Simulations in Low Qd/High R Noise Scenario with Traditional
Residuals (γ = 1) – Unknown Qd Example
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4.1.4 Example: Unknown F (t) Scenario. This example confirms the equations

for the generalized residual vector and covariance matrix, derived in Section 3.3.3, for

an application in which the matrix F (t) describing the homogeneous system dynamics

is subject to uncertainty. This application could arise in a target identification problem.

In that application, various targets would be described by the general FOGMA model

given in Equation (4.3). Each hypothesized target would have a different acceleration time

constant ta, which in turn leads to each hypothesis having a different F (t) matrix. A

target being tracked would then be identified by matching the observed motion to the best

hypothesis for F (t).

In this example, three elemental filters were used, hypothesizing three values for the

acceleration time constant ta. The hypothesized values for ta were arbitrarily chosen to be

2, 4, and 8. Substitution of these acceleration constants into Equation (4.3), yields the

three hypotheses for F (t)

F1 (t) =




0 1 0

0 0 1

0 0 −0.5


 F2 (t) =




0 1 0

0 0 1

0 0 −0.25


 F3 (t) =




0 1 0

0 0 1

0 0 −0.125




(4.15)

From Section 4.1.1, F1 (t) was the true value of the homogeneous dynamics matrix.

The analysis steps for the 1000 Monte Carlo simulations in Section 4.1.3 were re-

peated for this application, with similar results and conclusions. Figures 4.6 and 4.7

demonstrate that Equation (3.15) correctly calculated the mean vectors and covariance

matrices of the generalized residuals from the incorrect elemental filters. Each figure is

labelled according to the noise covariance scenario and type of generalized residual used.

4.1.5 Example: Unknown R Scenario. This example demonstrates an application

with an unknown measurement noise covariance matrix. The equations for the generalized

residual and its covariance for such an application are discussed in Section 3.3.4. This
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Figure 4.6 Theoretical and Sample Average Generalized Residuals from 1000 Simula-
tions for Measurement Source 1 in High Qd/Low R Noise Scenario with
Post-Fit Residual (γ = 0) – Unknown F (t) Example
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Figure 4.7 Theoretical and Sample Generalized Residual Covariance Matrix Elements
from 1000 Simulations in HighQd/LowR Noise Scenario with Post-Fit Resid-
uals (γ = 0) – Uknown F (t) Example
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section presents results to confirm the validity of those equations. As with other examples,

the truth model presented in Section 4.1.1 was used for this example.

An example of such an application from the navigation field is navigation using a

GPS aided Inertial Navigation System (INS) in a GPS jamming environment. As jamming

strength increases, the accuracy of the GPS receiver decreases. This is modelled by in-

creasing the measurement noise covariance R (ti). If the jamming becomes strong enough,

GPS signal tracking is lost altogether, and the INS must run without GPS updates, which

is modelled by another measurement noise covariance level. A GRMMAE that can de-

termine the appropriate measurement noise covariance matrix would allow the navigation

system to continue operation through a degradation and eventual loss of the GPS sensor.

Additionally, it would automatically account for the re-introduction of GPS as the system

left the jamming field.

In this example, three elemental filters were used, hypothesizing three values for the

measurement noise covariance matrix. The hypothesized values for R were arbitrarily

chosen to be

R (ti) 2.5R (ti) 6.7R (ti)

where R (ti) is the value given in Equation (4.10).

The analysis steps for the 1000 Monte Carlo simulations in Section 4.1.3 were re-

peated for this application, with similar results and conclusions. Figures 4.8 and 4.9

demonstrate that Equation (3.15) correctly calculated the mean vectors and covariance

matrices of the generalized residuals from the incorrect elemental filters. Each figure is

labelled according to the noise covariance scenario and type of generalized residual used.

4.1.6 Measurement Bias Parameter with γ = 0.5. In the previous four examples,

the GRMMAE design parameter γ was always set to 0 or 1 (post-fit or traditional residuals,

respectively). This was done arbitrarily because these two values make the most physical

sense. However, at no point in the GRMMAE derivation was γ constrained to be 0 or 1.

In fact, γ is allowed to be any real, scalar value. Therefore, the measurement bias example

was repeated for the High Qd/Low R noise scenario of Equation (4.10) with γ = 0.5

4-19



0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Theoretical Mean + 1σ 

Theoretical Mean − 1σ 

Theoretical Mean
Generalized Residual (Solid Line) 

Sample Mean
Generalized Residual (Dashed Line) 

PSfrag replacements

Theoretical and Sample Average Generalized Residuals

Theoretical and Sample Average Generalized Residuals

A
m
p
li
tu
d
e

Measurement Number
Amplitude

Measurement Number

(a) Elemental Filter 2

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Theoretical Mean + 1σ 

Theoretical Mean − 1σ 

Theoretical Mean 
Generalized Residual (Solid Line) 

Sample Mean
Generalized Residual (Dashed Line) 

PSfrag replacements

Theoretical and Sample Average Generalized Residuals

Theoretical and Sample Average Generalized Residuals

Amplitude

Measurement Number

A
m
p
li
tu
d
e

Measurement Number

(b) Elemental Filter 3

Figure 4.8 Theoretical and Sample Average Generalized Residuals from 1000 Simula-
tions for Measurement Source 1 in High Qd/Low R Noise Scenario with
Traditional Residual (γ = 1) – Unknown R Example
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Figure 4.9 Theoretical and Sample Generalized Residual Covariance Matrix Elements
from 1000 Simulations in Low Qd/High R Noise Scenario with Traditional
Residuals (γ = 1) – Unknown R Example

4-21



(i.e., a linear combination of the post-fit and traditional residuals). The results of these

1000 Monte Carlo runs, shown in Figures 4.10 and 4.11, were similar to those in previous

sections, demonstrating that Equations (3.11) and (3.13) for the mean and covariance of

r∗j (ti) hold for γ = 0.5, as expected.

4.2 GRMMAE for GPS Carrier-Phase Integer Ambiguity Resolution

Carrier-phase integer ambiguity resolution is an example of a GRMMAE application

with a constant measurement bias parameter. This general class of problems is presented

in Sections 3.3.1 and 3.7.1. Previous research demonstrated that a GRMMAE with γ = 0

(i.e., using post-fit residuals) will successfully resolve GPS carrier-phase integer ambiguities

[17, 18]. A research contribution of this dissertation is the derivation in Section 3.7.1

which shows that the hypothesis conditional probabilities calculated for this application

are independent of the choice of γ. Thus, while the use of post-fit residuals is valid for

this application, the use of traditional residuals is equally valid. This section will use GPS

carrier-phase measurement data to demonstrate that GRMMAE’s with γ = 0 and γ = 1

produce equivalent results when the parameter of interest is an unknown measurement

bias.

Before proceeding, it is important to recognize that the GRMMAE for GPS carrier-

phase integer ambiguity resolution does not meet the linearity assumption in Sections 3.3.1

and 3.7.1. In those sections, it is assumed that the GRMMAE elemental filters are linear

Kalman filters. However, the measurement model for GPS is a nonlinear model, leading to

the use of extended Kalman filters in the GRMMAE (recall that use of extended Kalman

filters is a non-optimal, ad hoc extension to the MMAE and GRMMAE). Therefore, the

measurement matrices Hj (ti) in the elemental filters are first-order approximations as

given in Equation (2.26) and Table 2.2. Because the measurement matrices are linearized

around the current state estimate, and each elemental filter produces a unique position

estimate, the measurement matrices in the elemental filters will not be equal in all elemental

filters as assumed in Section 3.7.1. This, in turn, leads directly to the transformation

matrices Tj (ti) varying in the elemental filters, which violates the key assumption that
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Figure 4.10 Theoretical and Sample Average Generalized Residuals from 1000 Simula-
tions for Measurement Source 1 in High Qd/Low R Noise Scenario with
γ = 0.5 – Measurement Bias Example
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Figure 4.11 Theoretical and Sample Generalized Residual Covariance Matrix Elements
from 1000 Simulations in High Qd/Low R Noise Scenario with γ = 0.5 –
Measurement Bias Example
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Tj (ti) = Tk (ti) for all j and k. However, because of measurement geometry, this effect

is not significant for the GPS carrier-phase integer ambiguity resolution application.

When performing GPS carrier-phase integer ambiguity resolution, the measurement

matrices are composed of unit line of sight vectors pointing from the estimated user po-

sition toward the satellites [39]. However, the user position estimates (produced using

the hypothesized ambiguity vectors) will be separated by short distances on the order of

centimeters. Since the GPS satellites are tens of millions of meters away from the user

and the hypothesized user positions are separated by centimeters, the differences in the

unit line of site vectors (and, hence the measurement matrices) are so small that they can

be neglected. Thus, while the measurement matrices are not mathematically equal in all

elemental filters, the differences are negligible and the results of Sections 3.3.1 and 3.7.1

apply to this application. While Section 3.7.1 shows that the transformation matrix Tj (ti)

can be eliminated from the hypothesis conditional probability calculation, it will be used

in the results presented in this section. Thus, the effect of neglecting the differences in

Tj (ti) will be seen. The analysis could have been repeated implementing the assumption

that Tj (ti) does not vary among the elemental filters and removing it from hypothesis con-

ditional probability calculation. However, the same result (in the next paragraph) would

have been achieved. Therefore, Tj (ti) for all elemental filters was used in the analysis that

follows.

To demonstrate that any γ value results in equivalent hypothesis conditional proba-

bilities, a test was performed. GPS double difference widelane carrier-phase measurements

were used in GRMMAEs, with γ = 0 and γ = 1 (i.e., using post-fit and traditional residu-

als, respectively). The double difference measurements were taken over a 69 km baseline.

In both cases, 100 elemental filters were built upon 100 hypothesized ambiguity vectors

generated using the Fast Ambiguity Search Filter (FASF) routine [7]. The hypothesis con-

ditional probability for each elemental filter was calculated in each of the GRMMAEs. A

difference in probabilities was then calculated by subtracting the hypothesis conditional

probabilities calculated in the traditional MMAE (GRMMAE with γ = 1) from those in

the post-fit modified MMAE (GRMMAE with γ = 0). The probability difference between

the two GRMMAEs was on the order of 10−12 and was likely due to machine precision,
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rounding errors, and the slight differences in measurement matrices previously mentioned.

Since the probability for the correct hypothesis is on the order of 1, a difference of 10−12 is

essentially zero. Thus, this demonstrates that the GRMMAE with γ = 1 is equivalent to

the GRMMAE with γ = 0 for this application, as predicted by the theory in Section 3.7.1.

4.3 Beta Dominance

This dissertation repeatedly states that the GRMMAE is susceptible to β-dominance,

described in Section 2.4.1, when the transformation matrix Tj (ti) varies among the ele-

mental filters. Derivation of this fact in Section 3.6 is one of the contributions of this

research. This section will demonstrate that fact by showing an example in which the

GRMMAE with γ = 1 (i.e., a traditional MMAE) functions properly while a GRMMAE

with γ = 0 (i.e., a post-fit modified MMAE) experiences β-dominance.

Recall from Section 3.6 that the multivariate Gaussian density function used to cal-

culate the hypothesis conditional probabilities in the GRMMAE is given by

1

(2π)
m
2 abs

(
|Tj (ti) |

)
|Aj

(
t−i
)
| 12
exp

{
−1
2
rTj
(
t−i
)
A−1
j

(
t−i
)
rj
(
t−i
)}

(4.16)

This density is composed of a “beta term” and an “exponential term,” respectively, given

by

β∗j (ti) =
1

(2π)
m
2 abs

(
|Tj (ti) |

)
|Aj

(
t−i
)
| 12

and

exp

{
−1
2
rTj
(
t−i
)
A−1
j

(
t−i
)
rj
(
t−i
)}

(4.17)

In Equation (4.17), assuming linear system models are used, only the exponential term

depends upon the measurements. The beta term is based solely on the system models. As

such, it is completely pre-computable before any measurements are taken. Therefore, to

ensure the GRMMAE converges to the correct elemental filter, the hypothesis conditional

4-26



probability calculation must be driven by the exponential term and not the beta term. In

some applications, the system models are such that the beta terms have a wide separation

between them, and the residuals are similar enough to cause the exponential terms to

have similar magnitudes. When this happens, the beta terms dominate the hypothesis

conditional probability calculation, and incorrect results may be achieved.

An example of β-dominance is created here to illustrate the GRMMAE’s susceptibil-

ity to this phenomenon and to explain β-dominance further. The truth model of Equations

(4.3) through (4.12) was used with a slight change to Equation (4.10). For this example,

the true noise covariance matrices were

Qd (ti) = 2.5 ×




0.0454 0.0838 0.0646

0.0838 0.1548 0.1193

0.0646 0.1193 0.0920


 R (ti) =


 0.0025 0

0 0.0025




(4.18)

The measurement noise covariance in Equation (4.18) was the same as that in HighQd/Low

R scenario of Equation (4.10), while the equivalent discrete-time noise covariance was 2.5

times that in the HighQd/LowR scenario of Equation (4.10). The change to the equivalent

discrete-time noise covariance was made to facilitate creation of β-dominance.

The application used for this example is the unknown Qd application, similar to

Section 4.1.3. Three elemental filters were built based upon three hypotheses for the

equivalent discrete-time noise

2Qd (ti) 2.5Qd (ti) 3Qd (ti)

where Qd is the matrix given in the High Qd/Low R scenario of Equation (4.10). Since

there is only a small change between these three hypotheses, it is expected that the GR-

MMAE will converge to the correct solution relatively slowly. It is also expected that, if

there is a large separation between the beta terms in the elemental filters, then the GR-

MMAE will experience β-dominance. Here, “a large separation” is most easily explained
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graphically. A GRMMAE was simulated 100 times with γ = 1 (i.e., a traditional MMAE),

and each simulation consisted of 500 measurement epochs. Figure 4.12 is a plot of the

sample averages of the exponential terms and the beta terms for these simulations, and

Figure 4.13 gives an expanded plot of the exponential terms. Since the beta terms do not

depend upon the measurements, they are the same in all 100 simulations.

In Figure 4.12 the exponential terms all have similar magnitudes. Recall from Section

2.4.3, that it is desirable for rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
to be on the order of the measure-

ment dimension (2 in this example) [46]. Thus, the exponential term for the correct filter

should be on the order of exp (−1) = 0.368, which it is in this example. However, the
exponential terms from the other elemental filters are on that same order. As a result, the

GRMMAE with γ = 1 converges rather slowly to the correct hypothesis (as will be shown

in Figure 4.17). Also note that the beta terms in Figure 4.12 are relatively small and closely

spaced. Thus, it is expected that this GRMMAE (with γ = 1) will not be susceptible to

β-dominance. To continue with this illustration, Figure 4.14 shows a plot of the product of

the beta terms and the sample average exponential terms at each measurement epoch. In

Figure 4.14, part (a) shows the full plot while part (b) expands on the early portion of the

run to show more detail. From Figure 4.14, the products of the beta and sample average

exponential terms have similar magnitudes for all three elemental filters. Therefore, the

GRMMAE hypothesis conditional probability calculation is not dominated by the beta

terms. Rather, the GRMMAE is able to use both residuals (i.e., the exponential terms)

and the prior probabilities in the hypothesis conditional probability calculation.

In contrast, the same 100 measurement sets were used to repeat this example for a

GRMMAE with γ = 0 (i.e., a post-fit modified MMAE). In addition to using the same

measurements, the same GRMMAE was used with the exception that the γ design pa-

rameter was changed from 1 to 0. Thus, a direct comparison between GRMMAEs with

γ = 1 and γ = 0 was made. Figure 4.15 shows a plot of the beta and the sample average

exponential terms for the GRMMAE with γ = 0. Comparing Figures 4.12 and 4.15 shows

that the sample average exponential terms were unchanged by the γ design parameter,

as derived in Section 3.6. This confirms that the only dependence of the GRMMAE hy-

pothesis conditional probability calculation on the γ design parameter is caused by the
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Figure 4.12 Beta and Sample Average Exponential Terms for GRMMAE with γ = 1
(Traditional MMAE)
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Figure 4.13 Sample Average Exponential Terms (expanded) for GRMMAE with γ = 1
(Traditional MMAE)

beta terms, demonstrating one of the key contributions of this dissertation. Notice that,

in this example, the beta terms for the GRMMAE with γ = 0 are two orders of magni-

tude larger than the beta terms for the GRMMAE with γ = 1. This was caused by the

determinant of the transformation matrix in the denominator of the beta term. When

γ = 1, |Tj (ti) | = 1 ∀j and it has no effect on the beta term. However, when γ 6= 1, the
determinant has an effect on the beta terms. In this example, γ = 0 causes abs

(
|Tj (ti) |

)

to increase greatly the magnitude of the beta terms1.

In addition to increasing the magnitude of the beta terms, the separation between

the beta terms was also increased when γ = 0. In this example, the increase in separation

was enough to cause β-dominance. Figure 4.16, a plot of the product of the beta and

sample average exponential terms, demonstrates this β-dominance. Unlike in Figure 4.14,

the product of the beta and the sample average exponential terms shown in Figure 4.16

has sufficient separation between the hypotheses to cause the beta terms to dominate over

1It is not correct to say that abs
(
|T (ti) |

)
amplifies the beta terms because the shape of the beta plots

is changed in addition to the magnitude.
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Figure 4.14 Product of Beta and Sample Average Exponential Terms for GRMMAE
with γ = 1 (Traditional MMAE)
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Figure 4.15 Beta and Sample Average Exponential Terms for GRMMAE with γ = 0
(Traditional MMAE)

the exponential terms. At every measurement epoch in Figure 4.16 (b), the product of the

beta and sample average exponential terms for elemental filter 3 was larger than the same

product for the other filters. This was caused by the dominant influence of the beta term

for elemental filter 3. The root cause of this was the separation between the beta terms

created by abs
(
|Tj (ti) |

)
.

As final evidence that the GRMMAE with γ = 0 suffered from β-dominance while

the one with γ = 1 did not, the sample mean hypothesis conditional probabilities from

the 100 Monte Carlo runs are shown in Figure 4.17. Part (a) of the figure shows the

sample average hypothesis conditional probabilities for the GRMMAE with γ = 1 (i.e., a

traditional MMAE). In this figure, the probability for the correct elemental filter slowly

converged toward 1. It is reasonable to assume that this probability would have converged

to 1 if the simulation had been allowed to continue longer. Part (b) of the figure, on

the other hand, shows the hypothesis conditional probabilities for the GRMMAE with

γ = 0 (i.e., a post-fit modified MMAE). In that figure, the probability for elemental

filter 3, an incorrect hypothesis, very quickly converged to 1, while the probability for the

correct hypothesis converged to 0. This occurred because the products of the beta and

sample average exponential terms, shown in Figure 4.16, for the hypotheses were separated
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Figure 4.16 Product of Beta and Sample Average Exponential Terms for GRMMAE
with γ = 0 (Post-Fit Modified MMAE)
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Figure 4.17 Hypothesis Conditional Probability Comparison for GRMMAEs with γ = 1
and γ = 0
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sufficiently to allow the beta terms to dominate the hypothesis conditional probability

calculation. In this example, with γ = 0, elemental filter 3 had the largest beta term, as

shown in Figure 4.12. Therefore, the β-dominance caused the GRMMAE with γ = 0 to

converge to elemental filter 3, despite the fact that this was an incorrect hypothesis.

4.4 Effect of γ on Beta Terms

The previous section demonstrated that the design parameter γ changes the magni-

tude and the shape of the β∗j (ti) plots. A mathematical derivation of the effects of γ on

β∗j (ti) does not support the primary goal of this research and, therefore, is not pursued.

However, certain properties were observed and are demonstrated here. These observations

are given without derivation or proof in support of a recommendation for future research

given in Chapter V.

First, it was noted in the previous section that γ changes the shape of the β∗
j (ti)

plots. This occurs only in the transient portion of the curve before the elemental filters

reach steady state. For most γ values, β∗
j (ti) increases to a steady state value during the

transient portion of the curve. This behavior is seen in Figure 4.12 (a). This shape makes

sense because the residual covariance Aj

(
t−i
)
, which appears in the denominator of β∗

j (ti),

typically decreases as the elemental filter reaches steady state. However, at some point

as γ approaches zero, the curve flips such that β∗
j (ti) decreases to a steady state value

during the transient portion of the curve, as seen in Figure 4.15 (a). This flip appears to

occur when abs
(
|Tj (ti) |

)
begins to dominate over |Aj

(
t−i
)
|1/2 in the denominator of the

beta terms. Analogous to β-dominance, this effect could be termed “T-dominance.” This

T-dominance effect appears to occur when γ is decreased below a threshold value which

causes abs
(
|Tj (ti) |

)
to become small enough to dominate over |Aj

(
t−i
)
|1/2 in the beta

term. Confirmation of this observation and theoretical determination of the threshold γ are

not pursued here, since they do not support the primary goal of this research. However, if a

theoretical threshold for γ is determined, it may be possible to use the GRMMAE to correct

for β-dominance rather than using the traditional method of β stripping. Alternately, this

flip in the β∗j (ti) curve may be related to the unexpected shape of Figure 4.2, in which

the generalized residual covariance increased to a steady state value when γ = 0 (i.e.,
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post-fit residual) was used. Again, there may be a threshold γ which caused that behavior.

Finding this γ threshold would support development of a method to use γ to correct for

β-dominance.

Secondly, it was observed that, as γ becomes large in absolute value, the beta terms

generally become small. To demonstrate one example of this, the analysis from the previous

section was re-run for γ equal 100, 10, -10, and -100, and the beta terms were plotted in

Figure 4.18. Since the beta terms do not vary from one Monte Carlo run to the next,

there was no need to run multiple simulations for this example. The first observation from

Figure 4.18 is that the beta plots were so similar that they appear the same for numbers of

equal magnitude but opposite signs (i.e., 100 and -100 produce nearly identical plots). The

second and more important observation is that larger (magnitude) γ values led to smaller

β∗j (ti) values. This inverse relationship is also demonstrated in Figure 4.18.

From Figure 4.18, it appears that increasing γ by an order of magnitude causes the

beta terms to decrease by an order of magnitude. This observation is further supported

by comparing Figures 4.18 and 4.12. However, Figure 4.15 clearly shows that relationship

does not hold for all γ. From Figures 4.12 and 4.15, decreasing γ from 1 to 0 caused the

beta terms to increase by 2 orders of magnitude. Thus, some type of singular behavior

is observed as γ → 0. Again, this observation does not support the primary goal of this

research. Therefore, a mathematical description of this behavior is not pursued in this

dissertation. However, a mathematical description of the relationship between γ and the

beta terms is probably the key to using the GRMMAE, with an appropriate γ, to correct

β-dominance, rather than using the ad hoc β stripping.

4.5 Scalar Penalty Increase

Section 2.4.5 mentioned scalar penalty increase as an alternative to the GRMMAE

to cause faster MMAE convergence to the best parameter [31]. Although scalar penalty

increase is not a research contribution of this dissertation, an example is presented here,

since it is an alternative to the GRMMAE. Monte Carlo simulations of a system with an

unknown measurement bias were used to demonstrate scalar penalty increase. With the
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Figure 4.18 Beta Terms for GRMMAEs with γ = ±100 and γ = ±10
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exception of the noise covariance matrices, the truth model from Section 4.1.1 was used

for these simulations. The noise covariance matrices for these simulations were

Qd (ti) =




0.0454 0.0838 0.0646

0.0838 0.1548 0.1193

0.0646 0.1193 0.0920


× 10

−4 R (ti) =


 1.5625 0

0 1.5625




(4.19)

As before, three elemental filters were used. The three hypotheses for the measure-

ment bias were

n1 =


 0
0


 n2 =


 −1
0


 n3 =


 1
0


 (4.20)

The true bias was n1. These hypotheses were changed from those in Section 4.1.2 to create

a more challenging scenario for the MMAE. By making them very similar, the residuals

from the three elemental filters will also be similar. This causes the MMAE to converge

to the correct hypothesis more slowly, allowing a better opportunity to demonstrate the

effect of scalar penalty increase.

The system was simulated 1000 times each for a traditional MMAE (i.e., GRMMAE

with γ = 1) with and without scalar penalty increase. Figure 4.19 (a) shows the sample

average hypothesis conditional probabilities calculated for the traditional MMAE without

scalar penalty increase. Figure 4.19 (b) shows the hypothesis conditional probability for

the traditional MMAE with scalar penalty increase. In the MMAE with scalar penalty

increase, the exponential term in the Gaussian probability densities of Equation (2.41) was

changed from exp{ − 12rTk
(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
} to exp{ −2rTk

(
t−i
)
A−1
k

(
t−i
)
rk
(
t−i
)
}.

Figure 4.19 demonstrates that the MMAE converged to the correct measurement

bias vector regardless of whether scalar penalty increase was used or not. However, the

MMAE with scalar penalty increase converged more quickly than the MMAE without

scalar penalty increase. This simple example demonstrates that scalar penalty increase

is useful to cause faster convergence, the goal the GRMMAE was originally proposed to
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Figure 4.19 Hypothesis Conditional Probability for a Traditional MMAE With and
Without Scalar Penalty Increase
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accomplish. The drawback to scalar penalty increase, however, is that it can lead to false

alarms, as discussed in Section 2.4.5. Additionally, the “increased scalar” value must be

chosen in an ad hoc manner. There is no method for choosing an optimal scalar value.

4.6 Chapter Summary

This chapter provided simulations to verify the theory derived in Chapter III. First,

the generalized residual vector and covariance matrix equations from Section 3.2 were ver-

ified using a series of simple simulations. Next, since GPS carrier-phase integer ambiguity

resolution is the application for which the GRMMAE was originally designed, double dif-

ference carrier-phase measurements were used to demonstrate that the GRMMAE, when

applied to a measurement bias problem (same T (ti) in all elemental filters), is independent

of the γ design parameter. Then, the unknown Qd application (differing Tj (ti) in elemen-

tal filters) was used to demonstrate that the MMAE is susceptible to the β-dominance

effect. This example demonstrated how the γ parameter created the β-dominance effect.

Next, observations concerning the effect of γ on the β∗
j (ti) terms were described. These

observations are likely to serve as the base point for recommended future research into use

of γ to correct for β-dominance. Finally, scalar penalty increase was demonstrated as an

alternative to the GRMMAE. With the exception of Sections 4.4 and 4.5, all sections in

this chapter demonstrate scientific contributions of this dissertation.
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V. Conclusions and Recommendations

This dissertation has developed the mathematical foundation for using generalized resid-

uals to calculate hypothesis conditional probabilities in a Multiple Model Adaptive Es-

timator (MMAE). The developed estimator is termed a Generalized Residual Multiple

Model Adaptive Estimator (GRMMAE). This GRMMAE was inspired by the use of post-

fit residuals in a modified MMAE for GPS carrier-phase integer ambiguity resolution.

Previous research demonstrated that the modified MMAE can successfully resolve GPS

carrier-phase integer ambiguities [17, 18]. However, that research did not provide a math-

ematical derivation of the modified MMAE or the effects of the post-fit residuals on the

MMAE’s performance. Thus, in an effort to expand post-fit residual use in MMAE ap-

plications, this research provided a derivation of the GRMMAE. Through this derivation,

the effect of post-fit residuals on the GRMMAE’s performance has been determined. This

final chapter provides a chapter-by-chapter summary of the dissertation. Section 5.1 lists

the research contributions made in this dissertation. Then, the chapter concludes with a

recommendation for future research.

Chapter I of this dissertation presented an introduction to the problem of estimating

system states in the presence of an unknown system parameter. It discussed common prob-

lems in which system parameters must be estimated in addition to estimating the system

state, and gave the motivation for using the MMAE for parameter and state estimation.

Finally, it discussed the modified MMAE, which uses post-fit residuals, as the motivation

for this research.

Chapter II presented the background theory necessary to derive the GRMMAE.

It presented derivations of both the linear and nonlinear (extended) Kalman filters. It

gave a derivation of the traditional MMAE and described several common performance

enhancements to the MMAE. Since this dissertation was motivated by a GPS application,

it also presented a brief introduction to the GPS. It discussed precise GPS and the need

to resolve carrier-phase integer ambiguities in order to estimate precise relative positions

with GPS. Chapter II concluded by describing the modified MMAE for GPS carrier-phase

integer ambiguity resolution. The modified MMAE is the technique which motivated this

dissertation.
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Chapter III presented the research contributions of this dissertation. This chapter

provided the mathematical derivation of the GRMMAE. This GRMMAE is a new Multiple

Model Adaptive Estimator designed such that, by varying a single, scalar design parame-

ter, the GRMMAE can be equivalent to a traditional MMAE, a modified MMAE, or any

other MMAE based on a linear combination of traditional and post-fit Kalman filter resid-

uals. Chapter III began with the definition of the new generalized residual. Next, it gave a

derivation of the properties of the generalized residual vector from the elemental Kalman

filter based on the correct system parameter. After that, the properties for the generalized

residual vectors from incorrect elemental filters were derived for several common MMAE

applications. Chapter III showed that the generalized Kalman filter residual is related to

the traditional Kalman filter residual through a simple transformation matrix T (ti). The

effect of this transformation matrix was described in Chapter III, and it gave a derivation of

the GRMMAE hypothesis conditional probability formula based on the generalized resid-

ual. The relationship between the traditional MMAE hypothesis conditional probability

formula and the GRMMAE hypothesis conditional probability formula was presented. This

relationship demonstrated that the GRMMAE design parameter γ effects only the β∗
j (ti)

term in the GRMMAE hypothesis conditional probability calculation. This finding is the

most significant finding in this dissertation, since it means that the GRMMAE is artificially

susceptible to β-dominance. Chapter III concluded by further developing the generalized

hypothesis conditional probability formula under two conditions: 1) the transformation

matrix T (ti) is the same in all elemental filters; 2) the transformation matrix T (ti) is not

the same in all elemental filters. It showed that, under condition 1), the design parameter

γ is cancelled from the hypothesis conditional probability calculation. Thus, under con-

dition 1), the GRMMAE produces results equivalent to a traditional MMAE regardless

of the value of γ. In that case, the GRMMAE is not susceptible to β-dominance. Under

condition 2), on the other hand, the effect of γ on the hypothesis conditional probability

calculation does not cancel. In that case, the GRMMAE is susceptible to β-dominance.

Chapter IV presented simulation results to demonstrate the theory derived in Chap-

ter III. It began with a series of simulations to verify the equations for calculating the

generalized residual vector and its covariance matrix from the traditional residual vector.
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Next, the GRMMAE was used to demonstrate that applications with the same T (ti) in

all elemental filters are independent of γ. Since the GRMMAE derivation was motivated

by the modified MMAE for GPS carrier-phase integer ambiguity resolution, GPS carrier-

phase measurements were used for this example. Next, the susceptibility of the GRMMAE

to β-dominance was demonstrated. Then, the effect of γ on the β∗
j (ti) terms was discussed.

The observations about this effect represent a starting point for the recommended future

research presented later in this chapter.

5.1 Research Contributions

The development of the Generalized Residual Multiple Model Adaptive Estimator is

the primary contribution of this dissertation. The heart of this development is the deriva-

tion of the hypothesis conditional probability calculation based on generalized residuals.

This development provides a simple, general design in which a single, scalar design parame-

ter γ is used to specify a traditional MMAE, a modified MMAE, or any other MMAE using

a linear combination of traditional and post-fit residuals. Several supporting contributions

are developed in this dissertation as part of the GRMMAE foundation. These support-

ing contributions are derived in Chapter III and verified in Chapter IV. The supporting

contributions are:

• Derived generalized residual properties

• Derived and described transformation T (ti) from traditional to generalized residual

• Derived hypothesis conditional probability formula using generalized residual

• Derived relationship between traditional and generalized hypothesis conditional prob-
ability formulas

• Derived and demonstrated equivalence between MMAE and GRMMAE when ele-
mental filters have same T (ti)

• Derived formula demonstrating GRMMAE susceptibility to β-dominance

• Demonstrated how γ 6= 1 causes β-dominance

Each of these contributions are summarized in the sections that follow.
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5.1.1 Derived Generalized Residual Properties. Generalized residual properties

were derived in Sections 3.2 and 3.3. Section 3.2 demonstrated that the generalized residu-

als from the correct elemental filter are a linear function of traditional residuals from that

same elemental filter. Since the traditional residuals are white, Gaussian, and zero-mean

[29], the generalized residuals from the correct filter are also white, Gaussian, and zero-

mean. Additionally, given that Ak

(
t−i
)
is the covariance of the traditional residuals from

the correct elemental filter [29, 30], the covariance of the generalized residuals from the

correct elemental filter is given in Equation (3.4), repeated here for convenience

A∗
k (ti) = Tk (ti)Ak

(
t−i
)
TT
k (ti) (3.4)

where Tk (ti) =
[
I − (1 − γ)Hk (ti)Kk (ti)

]
is the linear relationship between the tra-

ditional and generalized residuals and γ is defined in Equation (3.1).

In Section 3.3, the residual vector mean and covariance for an elemental filter with

an unknown measurement bias were shown to be

mr∗j
(ti) = T (ti)

[
H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))
+∆nkj

]
(3.11)

A∗
j (ti) = T (ti)Ak

(
t−i
)
TT (ti) (3.13)

In this case, it was demonstrated thatH (ti) andK (ti) were the same in all elemental filters.

Thus, T (ti) was the same in all elemental filters and the subscript identifying the elemental

filter was removed. Equations (3.11) and (3.13) were shown to apply to any application in

which the transformation matrix T (ti) does not vary among the elemental filters. For an

unknown Qd (ti), F (t) (and thus Φ (ti+1, ti)), R (ti), or any other application for which the

transformation matrix T (ti) varies among the elemental filters, the generalized residual

mean and covariance for an incorrect filter were shown to be

mr∗j
(ti) = Tj (ti)H (ti)

[
x̂k
(
t−i
)
− x̂j

(
t−i
)]

(3.15)

A∗
j (ti) = Tj (ti)Ak

(
t−i
)
TT
j (ti)
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These residual properties support the main contribution of providing a mathematical foun-

dation for the use of generalized residuals in an MMAE. Similar derivations of traditional

residual properties for a traditional MMAE are found in [16].

5.1.2 Derived and Described Transformation From Traditional to Generalized Resid-

ual T (ti). The transformation from traditional to generalized residuals is given in

Equation (3.2). It is

r
∗ (ti) = T (ti) r

(
t−i
)

(3.2)

Section 3.4 demonstrates that the effect of this transformation is to scale and rotate the

residual vector in the measurement space. Additionally, it was stated that, in general,

the matrix T (ti) is not idempotent, so it is a transformation and not a projection. These

contributions support the primary contribution by deriving and characterizing the effect

of generalized residuals on the GRMMAE hypothesis conditional probability calculation.

5.1.3 Derived Hypothesis Conditional Probability Formula Using Generalized Resid-

ual. The derivation of the hypothesis conditional probability formula using generalized

residuals is given in Section 3.5. This derivation is the heart of this dissertation. Previous

research implemented the MMAE with post-fit residuals [17, 18]. However, that research

did not mathematically derive the hypothesis conditional probability formula, nor did it

mathematically characterize the effect of using non-traditional residuals in the MMAE.

In Section 3.5, this dissertation provided a mathematical derivation of the GRMMAE hy-

pothesis conditional probability calculation. It was shown that, by setting γ = 0, the

GRMMAE is equivalent to the modified MMAE using post-fit residuals. However, the

GRMMAE is more general than the modified MMAE. By setting γ = 1, the GRMMAE is

equivalent to a traditional MMAE. Additionally, by setting γ equal to any other real, scalar

number, the GRMMAE implements an infinite number of new MMAE’s not encountered

in scientific literature to date. Thus, the GRMMAE derivation provides a mathematical

foundation for the modified (i.e., post-fit residual) MMAE which also applies to a more

general class of MMAE’s. This mathematical foundation is not found in scientific literature

to date and is the primary contribution of this dissertation.
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5.1.4 Derived Relationship Between Traditional and Generalized Hypothesis Condi-

tional Probability Formulas. Using the GRMMAEmathematical foundation, the effect of

generalized residuals in the MMAE is derived in Section 3.6. This derivation demonstrates

that using γ 6= 1 affects only the β∗j (ti) terms in the GRMMAE hypothesis conditional
probability calculation. The specific choice of γ will increase or decrease the magnitudes of

the β∗j (ti) terms. Thus, γ is similar to a tuning parameter. It is used to “tune” the relative

weight of the β∗j (ti) terms compared to the exp
{
−1/2rTj

(
t−i
)
A−1
j

(
t−i
)
rj
(
t−i
)}
terms in

the hypothesis conditional probability calculation. However, unlike the exponential terms,

the β∗j (ti) terms are based solely on the elemental filter models and are unaffected by the

real-world measurements (assuming the elemental filter models are linear). Therefore, us-

ing γ to artificially increase the β∗
j (ti) terms is ill-advised, as it may lead to β-dominance

and incorrect results in the GRMMAE. This finding is a key contribution, as it points out

a potentially fatal flaw if other researchers attempt to use post-fit residuals (or other gen-

eralized residuals) in the MMAE. Specifically, as emphasized throughout this dissertation,

any generalized residual except the traditional residual (i.e., γ = 1) should not be used in

the GRMMAE except in the rare case when the transformation matrix Tj (ti) is the same

in all elemental filters, or potentially to compensate for β-dominance encountered using a

traditional MMAE.

5.1.5 Derived Equivalence Between MMAE and GRMMAE When Elemental Filter

Have Same T (ti). The previous subsection mentioned the case when all elemental filters

have the same transformation matrix T (ti). This special case applies to the GPS carrier-

phase integer ambiguity resolution application as well as other applications in which an

unknown measurement bias is estimated. Section 3.7.1 describes this special case, demon-

strating that the hypothesis conditional probability for these applications is independent of

the γ design parameter. Specifically, this explains why the modified (i.e., post-fit residual)

MMAE successfully resolved GPS carrier-phase integer ambiguities, as described in [17, 18],

without being susceptible to β-dominance. This contribution furthers the understanding

of the effect of generalized residuals on the GRMMAE.
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5.1.6 Derived Formula Demonstrating GRMMAE Susceptibility to β-dominance.

Using the GRMMAEmathematical foundation, the hypothesis conditional probability

formula, when the transformation matrix Tj (ti) varies among the elemental filters, was

derived. This formula is given in Equation (3.40), repeated here for convenience

p∗k (ti) =
exp {q∗k (ti)}

exp
{
q∗k (ti)

}
+

K∑
j=1

j 6=k

abs

(
|Tk(ti)|
|Tj(ti)|

)
p∗j (ti−1)

p∗k(ti−1)
exp

{
q∗j (ti)

} (3.40)

where

q∗j (ti) = − 1
2

[
rk
(
t−i
)
+ H (ti)

(
x̂k
(
t−i
)
− x̂j

(
t−i
))]T

A−1
k

(
t−i
) [
rk
(
t−i
)

+ H (ti)
(
x̂k
(
t−i
)
− x̂j

(
t−i
))]

∀ j

Equation (3.40) implicitly shows that the γ design parameter, which is part of the trans-

formation matrices Tk (ti) and Tj (ti), affects the β
∗
j (ti) terms, but not the exponential

terms. This is a direct cause of the GRMMAE’s increased vulnerability to β-dominance if

γ = 1 (i.e., the traditional residual vector) is not used. As described in Section 5.1.4, this

conclusion is an important contribution of this dissertation.

5.1.7 Demonstrated How γ 6= 1 Causes β-dominance. Section 4.3 demonstrated

in detail how using γ 6= 1 causes the GRMMAE to be susceptible to β-dominance. It
demonstrated that an improper choice for the γ parameter causes the β∗

j (ti) terms to

become large and increases the Euclidean distance between β∗
j (ti) and β

∗
k (ti) for j 6= k.

The conclusion from this section is that, in general, γ 6= 1 should not be used in the

GRMMAE as it is currently implemented. The exception to this conclusion occurs when

the transformation matrix T (ti) does not vary among the elemental filter. This is a key

finding of this dissertation, as it demonstrates that the practice of using post-fit residuals

as in [17, 18] is not generally sound.
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5.2 Recommendation for Future Research

Due to the GRMMAE’s susceptibility to β-dominance, the GRMMAE is not rec-

ommended for widespread application. However, there are certain applications in which

β-dominance occurs with a traditional MMAE. Most notably, β-dominance has been ob-

served and documented in the failure detection application [32, 45]. The standard method

to address this problem is to use β stripping as described in Section 2.4.1.

While β stripping is an effective method to overcome β-dominance, it is ad hoc.

There is no claim or guarantee that β stripping is optimal. However, the GRMMAE

provides a mathematical formulation in which an appropriate optimality criterion can be

defined, and a γ value chosen to achieve optimal performance. Therefore, a research effort

into using the GRMMAE in place of β stripping to address β-dominance is recommended

as a follow-on to this dissertation. This follow-on research would use the design parameter

γ to tune the β∗j (ti) terms to be in consonance with the exponential terms. Such a study

is envisioned as follows:

• Mathematically define the precise meaning for the β∗
j (ti) terms “to be in consonance

with” the exponential terms. This definition will likely quantify the relationship

between the magnitudes of the scalar β∗
j (ti) and exponential terms in the hypothesis

conditional probability calculation. It will then probably set a threshold on the

relative magnitudes such that the GRMMAE hypothesis conditional probabilities

are not dominated by the β∗j (ti) terms.

• Define an optimality condition, with γ as the optimization variable, to drive the

β∗j (ti) terms into consonance with the exponential terms.

• Derive an expression to solve for the optimal γ value. The optimal γ could be calcu-
lated at each measurement update, or one steady state value could be determined.

• Finally, the performance of the GRMMAE for β-dominance compensation should be
compared with the performance of the traditional MMAE implementing β stripping

to determine the performance gain attained using the optimal method.

Since the γ design parameter affects only the β∗
j (ti) term, there is potential it can be

used to compensate for β-dominance. However, it is not clear that the use of γ will
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enable full “controllability” of the β-terms on all elementals filters. Thus, implementing

the suggested procedure is not a trivial effort. However, the suggested procedure is likely

at least to provide an alternative to β stripping. Additionally, there is potential that it

could provide improved performance and replace an ad hoc technique with an optimal one.
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