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Abstract

This thesis provides the groundwork that will enable development of a lightweight,

inexpensive, aerodynamic, and broadband antenna. Whether for radar or communication,

an antenna with these properties would be a force multiplier for the smaller, limited payload

air vehicles the United States Air Force will pursue in the coming years.

Several microstrip antennas using the first higher order mode were simulated with

the Finite Difference Time Domain (FDTD) method. The propagation constant of each

antenna was extracted from the resulting field distribution for comparison with a trans-

verse resonance approximation, measured far-field patterns, and other simulated antennas.

Variations of the geometry were explored to investigate field propagation, improve the far-

field pattern, and improve bandwidth. A simplified fabrication method was demonstrated

that shorten production time and improved the far-field pattern.

xi



FINITE DIFFERENCE TIME DOMAIN (FDTD) ANALYSIS OF A

LEAKY TRAVELING WAVE MICROSTRIP ANTENNA

I. Introduction

The antenna, as defined in The Institute of Electrical and Electronic Engineers (IEEE)

Standard 145-1983, is a means of radiating and receiving electromagnetic waves. In

practice, an antenna is a component of a communication system that provides a connec-

tion between a remotely separated sender and receiver. Antennas allow the sharing of

information without sharing a wire.

The need for more information sharing between individuals is making our world

increasingly wireless. One need not look further than the incredible growth of cell phones,

pagers, and wireless internet connections. Sometimes the sender or receiver is not even

a person. Unmanned vehicles that operate in environments too expensive or too hostile

for humans can be remotely controlled using an antenna, even as far away as Neptune!

Many newer automobiles employ antennas to see behind them to alert the driver to an

obstruction.

Aviation, particularly military aviation, uses many systems whose effectiveness hinges

upon a properly functioning antenna. To avert mid-air collisions, aircraft must commu-

nicate in real-time with ground controllers as well as other aircraft. Landing, which is

arguably the most difficult task in aviation, is made relatively simple by an instrument

landing system (ILS) in which an antenna on the ground talks to an antenna on the air-

craft. The safety and enjoyment of flights are enhanced by weather radar systems that

allow flights to be diverted around storms. Navigation is greatly enhanced from systems

that use antennas to communicate with satellites or scan the ground with radar. Mission

effectiveness and aircraft survivability are increased by the radar warning receivers, which

alert a pilot to the invisible dangers of enemy aircraft and surface to air missiles.

Historically, antennas have been the most expensive component in most communica-

tion systems. The price is due to the high development cost of designing a new antenna.

1



The electromagnetic interactions involved in the operation of an antenna can be extremely

complicated. The ability to analytically characterize many new antennas is prohibitively

time intensive. Attention is paid, instead, to numerically approximating the structure,

although, an accurate model often requires much computing power. Adding to the price

tag, an antenna must be manufactured under strict tolerances to operate as designed.

In recent years, antenna design has become less expensive. Exponential advances

in computing resources together with more efficient algorithms have created a climate

where elaborate simulations have become commonplace. Improved materials and new

manufacturing techniques have made many types of antennas, such as microstrip, easy to

fabricate.

1.1 Problem Statement

The U. S. Air Force has a need for a conformal, broadband antenna that is lightweight

and inexpensive. A conformal antenna is more aerodynamic and tends to have a lower

radar cross section. The less the aircraft weights, the more payload that can be carried.

Likewise, the less the aircraft costs, the more aircraft that can be purchased, and in turn,

the more payload that can be delivered. A broadband antenna reduces the need for multiple

antennas, which further reduces the cost and weight of the aircraft. Microstrip inherently

satisfies all of these requirements except bandwidth. A microstrip antenna operating in a

leaky traveling wave configuration could provide the bandwidth needed.

A new antenna design proposed by Dr. Gary Thiele of Analytic Designs, Inc., is

seen in Figure 1.1. The design is based on work by Menzel [23], whose antenna can be

seen in Figure 1.2. Menzel’s antenna uses seven slots cut from the conductor along the

centerline to suppress the fundamental mode allowing leaky wave radiation via the first

higher order mode. Menzel’s antenna has been analyzed by a host of researchers over

the past 25 years [2, 9, 10, 21, 24–26, 28–30, 34, 40, 42] and its performance is known and

reproducible. Instead of transverse slots, Thiele’s antenna uses a metal wall down the

centerline of the antenna to block the fundamental mode. Symmetry along this metal wall

invites the application of image theory. One entire side of the antenna is now an image of

2



Figure 1.1: Thiele Half Width (THW) antenna.

Figure 1.2: Menzel’s original antenna [23].

the other side, making it redundant and unneeded. Thiele’s resulting antenna is half the

width of Menzel’s antenna.

This thesis modelled Thiele’s antenna with Finite Difference Time Domain (FDTD)

techniques. Different geometries, including variations of curvature of the conductor strip,

as well as thickness and composition of the substrate, were simulated. Different feeding

methods were empirically evaluated.

3



A possible application of this new antenna could include an inexpensive replacement

of the bulky cavity-backed spiral antennas used for the great majority of radar warning

receivers.

1.2 Scope

The objective of this research was to characterize the propagation constant of a leaky

mode traveling wave antenna. Understanding how the propagation constant is affected by

modifying the geometry of the structure is vital to improving the far-field pattern and

bandwidth of a traveling wave antenna. The Finite Difference Time Domain (FDTD)

method, which is a computational electromagnetic (CEM) technique, was used to simulate

different antenna geometries. The propagation constant was extracted from the field dis-

tribution resulting from the FDTD simulation. A design was fabricated and tested that

incorporated improvements from simulations.

1.3 Resources

Code was written in Matlab starting from a program written by Keely Willis and

Dr. Susan Hagness of the University of Wisconsin Computational Electromagnetics Labo-

ratory. Fabrication required computer-aided design (CAD) software, microstrip material,

coaxial feed materials, and milling equipment. Measurements required a network analyzer,

an antenna test range, and associated supplies.

1.4 Overview

This thesis presents theories related to leaky wave microstrip antennas, methods of

modelling such structures with Finite Difference Time Domain (FDTD), and both ex-

perimental and simulated results of several antennas based on Thiele’s proposed design.

Chapter II provides a literature review of work related to leaky wave microstrip antennas.

Chapter III is a discussion of the FDTD method. Chapter IV describes development of

the FDTD simulation. Chapter V presents results and analysis of tested antenna designs.

Finally, Chapter VI states conclusions and suggests recommendations for future research.

4



II. Background on Microstrip Leaky Traveling Wave Antennas

2.1 Traveling Waves

Much like the waves produced by dropping a stone into a pond, a traveling wave

is an electromagnetic disturbance that propagates with a constant phase. Since the wave

maintains a constant phase, the wave travels with a constant phase velocity, vp. Obeying

Maxwell’s equations dictates that this wave must also satisfy the Helmholtz wave equation.

For instance, the source-free vector wave equation of a magnetic field in a lossless medium

is:

(∇2 + k2)H = 0 (2.1)

The solution to Equation (2.1) for a complex magnetic field plane wave polarized in the

ŷ direction and traveling in the +x̂ direction is:

H = ŷHye
j(ωt−kx) (2.2)

ω is the angular frequency of the excitation source. The propagation constant, k, is com-

posed of a real portion, β, which is called the phase constant, and an imaginary component,

α, called the attenuation constant:

k = β − jα (2.3)

The phase velocity is given by:

vp =
ω

β
=

1√
εµ

(2.4)

where ε and µ are the constitutive parameters of the material in which the wave is propa-

gating.

5



2.2 Traveling Wave Antennas

Most antennas operate in a resonance configuration by supporting standing waves of

the currents, voltages, and fields along their length, which is analogous to the vibrations of

a violin string. Standing waves can be described as a superposition of two traveling waves

propagating in opposite directions. Dipoles and microstrip patches are common examples

of antennas in which two waves of equal amplitude that are 180o out of phase travel in

opposite directions along their length. The current distribution is a standing wave with

nulls at the ends, while the voltage distribution is a standing wave with maxima at the

ends. The standing waves result when energy is excited at one end, travels the length

of the antenna, reflects off of the opposite end, and returns toward the feed. A result of

standing waves is limited bandwidth due to the destructive interference of the waves [41].

A solution to this problem is an antenna that uses a single traveling wave. The

standing wave is prohibited by eliminating the wave in the return direction, which can be

accomplished by placing an impedance at the far end to dissipate any remaining energy.

Alternatively, the antenna can be made long enough so as to radiate nearly all of the

energy before the forward wave from the feed reaches the opposite end, however, this

requires the antenna to become unreasonably long. A general rule is to design the length,

L, to radiate 90% of the applied power, P , and dissipate the remaining 10% with a load,

as in Equation (2.5):

P (L)

P (0)
= e−2αL = 0.1 (2.5)

Equation (2.5) directly leads to Equation (2.6), which relates normalized α to normalized

length.

L

λ0
≈ −0.183

α
k0

(2.6)

λ0 is the excitation wavelength in free space and k0 is the wavenumber in free space.

The simplest example of a traveling wave antenna is a long wire supported a distance,

h, above the ground, also known as a Beverage antenna. Figure 2.1 shows a Beverage

6



Figure 2.1: A long wire antenna, or Beverage antenna, illustrating the effects of a
reflected traveling wave [4].

antenna excited by a forward current, If . Without a matched resistor, RL, a backward

current, Ib, is created by the reflection of If at the far end. A forward lobe is produced

by If and a backward lobe is produced by Ib. In Figure 2.1, when the impedance of RL

is matched to the end of the wire antenna, Ib is eliminated, which removes the backward

lobe associated with the returning traveling wave. Since an antenna that is designed to

operate with a traveling wave will have uniform patterns of current and voltage, it behaves

like a resistive circuit component. Matching the feed line to the antenna is simple since

the antenna has a purely real input impedance.

2.3 Antenna Characteristics

The current can be approximated as a finite line source that radiates as an outward

propagating spherical wave. The spherical wave can be approximated as a plane wave in

the far-field. Equation (2.7) determines the far-field source (or observation) point distance,

r, at which the phase varies by no more than λ0
16 over half of the length, L, as depicted in

Figure 2.2.
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Figure 2.2: The far-field begins at distance r from the antenna at which the spherical

wavefront varies by less than λ0
16 over half of the antenna’s longest dimension.

(

r +
λ0

16

)2
> r2 +

(L

2

)2

rλ0

8
+

λ2
0

256
>

L2

4

r >
2L2

λ0
(2.7)

The current distribution along the length of the traveling wave antenna is:

I = I0e
−jkz (2.8)

The vector potential, A(x,y,z), of an antenna with I is then:

A(x, y, z) = ẑAz = ẑ
µ

4π

∫ L

0

I(z′)e−jk0r′

r′
dz′ (2.9)
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After making the far-field approximation, Ar = 0, the spherical coordinate equivalent

vector potential is:

A(r, θ, φ) = θ̂Aθ = −θ̂Az sin θ = −θ̂ µI0e
−jk0r sin θ

4πr

∫ L

0
ej(k0 cos θ−k)z′dz′ (2.10)

The electric field, E, due to A follows:

E = −jωA = θ̂
jωµI0e

−jk0r sin θ

4πr

∫ L

0
ej(k0 cos θ−k)z′dz′ (2.11)

Solving the integral gives:

Eθ =
jωµI0e

−jk0r sin θ

4πr

[

ej(k0 cos θ−k)L − 1

j(k0 cos θ − k)

]

(2.12)

which can be separated into an element factor, E0, and a pattern factor as in Equa-

tion (2.13):

Eθ = E0
sinΩ

Ω
(2.13)

where the element factor is:

E0 =
jωµI0L sin θe−jk0r

4πr
ej

L
2
(k0 cos θ−k) (2.14)

and the pattern factor argument is:

Ω =
L

2
(k0 cos θ − k) (2.15)

The observation point is assumed in the x − z plane, where φ = 0. The pattern factor is

a maximum when its argument, Ω, equals zero. This forms the main lobe at θm, given by

Equation (2.16).
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Figure 2.3: The far-field electric field pattern of a traveling wave antenna with aperture
three wavelengths long.

Ω = 0 = k0 cos θm − k

θm = cos−1 β

k0
(2.16)

The magnetic field, H, is found by:

H =
1

η0
r̂ × E (2.17)

where η0 is the impedance of free space.

Equations (2.13)-(2.15) produce the pattern seen in Figure 2.3 for the Thiele Half

Width (THW) antenna of the dimensions in Figure 1.1, which is roughly three λβ long.

λβ is the wavelength of the traveling wave. Notice the main beam is not directed at

the angle predicted by Equation (2.16) of 44.9o. The length must be greater than five

wavelengths long and θm > 20o for Equation (2.16) to provide an approximation within

1o [41]. Figure 2.4 is a pattern of the same antenna lengthened to approximately 5 λβ long.
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Figure 2.4: The far-field electric field pattern of the same antenna in Figure 2.3 with
aperture increased to five wavelengths long.

The far-field pattern shown in Figures 2.3 and 2.4 only includes the forward traveling

wave. Of course, a finite length antenna will have a finite amount of energy reflecting from

the end, returning in the opposite direction, and producing a backward lobe. Figure 2.5

shows the effect of summing four traveling waves, using reflection coefficients of -1 at both

ends.

When transmitting, the structure of the antenna is constructed to radiate as much

energy as possible into free space for a given applied current. Gain is a typical measure

of the efficiency of an antenna to radiate in a desired direction. In Equation (2.18), gain,

G, is the dimensionless ratio of the radiation intensity at a given direction, U(θ, φ), to the

radiation intensity obtained if the input power, Pin, were radiated isotropically.

G =
4πU(θ, φ)

Pin
(2.18)

There are two basic means of describing bandwidth, which is the range of frequencies

of acceptable performance. The bandwidth of broadband antennas is often given by the

ratio of the highest frequency, fH , to the lowest frequency, fL. For example, an antenna

that operates on the band 2 - 20 GHz would have a 10:1 bandwidth. Narrowband antennas
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Figure 2.5: The far-field pattern generated by a traveling wave with three reflections at
6.7 GHz.

usually express their bandwidth as a percentage of the center frequency, fc. An antenna

that operates in the band 7 - 9 GHz would have the following bandwidth:

Bandwidth =
fH − fL

fc
=

9 − 7

8
= 25% (2.19)

A result of the Lorentz reciprocity theorem, which is derived from Maxwell’s equa-

tions, is that the gain pattern of an antenna is identical whether it is transmitting or

receiving, as long as it is surrounded by a linear, isotropic medium. Simulation of trans-

mission alone is all that is needed to fully characterize an antenna.

2.4 Propagation Modes

A mode is a particular configuration of the fields in a transmission line. A Transverse

Electric and Magnetic (TEM) mode is a field distribution at which both the electric, E,

and magnetic, H, field intensities are contained in an equiphase plane that is independent
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of time [3]. This can also be described as both E and H being transverse to the direction

of propagation. A higher order mode is a mode in which either E or H has a component

in the direction of propagation. For example, a TEn, or Transverse Electric mode, wave

traveling in the ẑ direction has a vector component of H in the ẑ direction while all vector

components of E are transverse to ẑ. The n signifies that there are an infinite number of

these modes that can be found using Maxwell’s equations. Likewise, TMn signifies the nth

higher order Transverse Magnetic mode. While many modes may be possible in a structure,

the majority of the energy tends to dominate the lowest mode that can propagate.

In a given transmission line at a given excitation frequency, the modes that can exist

are determined by each mode’s cutoff frequency. A mode’s cutoff frequency depends upon

the dimensions of the structure and the medium inside the structure [3]. The modes which

have a cutoff frequency equal to or smaller than the excitation frequency are supported

and all others will quickly decay.

2.5 Microstrip

2.5.1 Physical Characteristics. Microstrip was first proposed by Deschamps in

1953 at the 3rd Air Force Symposium on Antennas [18], and it remained an academic

novelty for nearly 20 years. Advances in materials and manufacturing processes in the

1970’s made its production feasible. Microstrip antenna technology has been the most

rapidly developing topic in antennas during the last twenty years [32]. Microstrip is an

open structure that consists of a very thin metallic strip of a width, w, separated from

a ground plate by a dielectric sheet called substrate (Figure 2.6). The thickness of the

conductor, t, is much less than a wavelength. The height of the substrate, h, is usually

very thin compared to the wavelength (.0003λ ≤ h ≤ 0.05λ) [31]. The substrate is designed

to have a known relative permittivity, εr, that is homogeneous within specified temperature

limits.

Figure 2.7 illustrates some of the many methods to feed a microstrip antenna. The

antenna can be excited directly by a microstrip line, by a coaxial cable, or a combination of

the two. The antenna can also be fed from a microstrip line without direct contact through

electromagnetic coupling. Feeding by electromagnetic coupling through an aperture in the
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Figure 2.6: Geometry of a microstrip transmission line.

ground plane tends to improve bandwidth. To maximize efficiency, the impedance of the

feed must be matched to the input impedance of the antenna. There are a variety of stubs,

shunts, and other devices used for matching.

2.5.2 Advantages and Disadvantages. The advantages of microstrip lie in its

physical characteristics. Circuits made with microstrip, especially antennas, can be essen-

tial to aircraft, spacecraft, satellite, and missile applications. Not only do these circuits

have an inherently aerodynamic profile, but they can also be conformable to a surface. Mi-

crostrip is lighter and smaller than parabolic dishes and waveguide arrays, and generally

cheaper and easier to manufacture and install [4,18]. Mass production printed circuit and

chemical etching technology have led to very low fabrication costs [18].

Compared to other microwave antennas, the major disadvantages of microstrip are

lower gain and very narrow bandwidth [18]. Microstrip characteristically has low efficiency

and low power handling ability [4,32]. In addition, antennas made with microstrip typically

have poor polarization purity and poor scan performance [18].

2.5.3 Hybrid Modes. Operating above the cutoff frequency, the field lines of

microstrip extend throughout the substrate as well as into the free space region above the

substrate, as seen in Figure 2.8. The phase velocity of the field in the free space surrounding
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Figure 2.7: Exploded view of microstrip feed techniques for a square patch: (a) Direct.
(b) Electromagnetic coupling. (c) Coupling through an aperture in the ground plane. (d)
Direct coaxial connection [18].

the structure is the speed of light, c, and the phase velocity of the field in the substrate is

given by Equation (2.20).

vp =
c√
εr

(2.20)

This difference in phase velocity at the interface between the substrate and free space makes

the TEM mode impossible. Instead, the fundamental mode for microstrip is a quasi-TEM

mode, usually annotated, EH0, in which both the electric and magnetic fields have a

component in the direction of propagation. Likewise, a higher order mode in microstrip is

not purely TE or TM, but a hybrid combination of the two. The nth higher order mode

is termed the EHn mode.

The fundamental mode of microstrip, as seen in Figure 2.8, does not radiate since

the fields produced do not decouple from the structure. If the fundamental mode is not

allowed to propagate, the next higher order mode will dominate. Figure 2.9 shows the
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Figure 2.8: Field pattern associated with the fundamental mode of microstrip, EH0.

Figure 2.9: Field pattern associated with the first higher order mode of microstrip, EH1.

fields due to the first higher order mode, EH1. A phase reversal, or null, appears along the

centerline, allowing the fields to decouple and radiate.

2.6 Propagation Mechanisms

Higher order modes on microstrip transmission lines can be described as exhibiting

three distinct propagation mechanisms above the cutoff frequency, fc: bound wave, surface

wave, and leaky wave. These mechanisms can be described by analyzing the general

dispersion relation of Equation (2.21):
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k2 = k2
x + k2

y + k2
z (2.21)

where the complex wavenumbers are composed of a phase constant, β, and an attenuation

constant, α:

kx = βx − jαx

ky = βy − jαy

kz = βz − jαz (2.22)

Following the orientation of Figure 2.6, kx is the wavenumber in the direction of

propagation. Figure 2.10 is a typical plot of kx over each of the propagation mechanism

regions. Below the cutoff frequency, αx is quite large causing the transmission line to

17



function as a reactive load. Unsurprisingly, this region is frequently called the reactive

region.

As the frequency is raised to fc, βx = αx resulting in the commonly used cutoff

frequency expression: k2
x = 0. The dispersion relation at this point is:

k2 = β2
y + β2

z

= ω2εµ (2.23)

which can be manipulated to find the cutoff frequency, fc:

fc =

√

β2
y + β2

z

4π2εµ
(2.24)

Directly above cutoff is the leaky region where energy begins to propagate down

the transmission line as βx grows larger than αx. Field losses due to αx are not ohmic.

Although surface waves are present, losses in the leaky wave region are mostly due to

the radiation of energy leaking from the microstrip [2]. A purely real kz allows power to

radiate, or couple per unit length from the structure into free space [13].

The leaking wave travels away from the antenna at an angle, θ, measured from the

endfire direction as seen in Figure 2.11. At the lower limit of the leaky transition region,

the beam is nearly broadside. θ decreases as the frequency increases. Simple geometry

shows the relation between frequency and θ in Equation (2.25), which is equivalent to

Equation (2.16). The main beam approaches endfire as the frequency approaches the

leaky region upper limit, at which point βx = k0.

θ = cos−1
[βx

k0

]

= cos−1
[βxc

ω

]

(2.25)

For any frequency in the leaky region, there is a curious property whereby the fields

due to the leaky wave actually increase moving away from the structure. The reason

for this is simply that less energy leaks per unit length as the wave travels down the
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Figure 2.11: The direction of the main beam radiation occurs at an angle created by βx

and k0.

Figure 2.12: The intensity of fields radiating from a leaky wave antenna increase moving
away from the structure.

structure. In Figure 2.12, the strength of the leaking field is depicted by the thickness of

the line. The fields increase exponentially to a distance above the antenna, zmax, given by

Equation (2.26), and then quickly decay [29].

zmax(x) = x tan θ (2.26)

where x is the distance from the source feed in the x̂ direction. Rotating angle θ about

the x̂ axis of the antenna forms a bowl-shaped main lobe.
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Leaky waves are considered fast waves since the phase front travels faster than the

speed of light. A leaky wave is generally an efficient means to radiate energy, but it is

typically narrow-banded since it occurs only for frequencies in a transition region, as seen

in Figure 2.10.

Above the frequency at which βx = k0, αz increases causing the leaky wave to

attenuate. The surface wave, however, remains. Surface waves are unbounded losses

that are supported by a dielectric layer on a ground plate. The magnitude of a surface

wave decays exponentially as it travels away from the transmission line in the −ẑ direction

since kz has a large imaginary component, therefore, these waves are associated only with

the surface of a structure. Surface waves can emanate from discontinuities in the physical

structure that disrupt and decouple the bound waves from the surface. Discontinuities

can include ends, corners, feeding structures, and also curvature. Generally these surface

waves are classified as slow waves since their phase velocity is less than the speed of light.

Surface waves are the means by which desired coupling takes place in certain microwave

circuits such as coupled line filters, however, more often, they tend to complicate both

antenna and circuit design by introducing additional loss and unwanted coupling [6].

Just like leaky waves, surface waves travel outward from the microstrip at an angle, θ.

Referring to Figure 2.13, the wavenumber of the surface wave, ks, has a component in the

x̂ direction, βx, and a component in the ŷ direction, βy. The resulting dispersion relation,

Equation (2.27), shows that βx < k0
√
εr for surface waves to exist:

β2
y = k2

s − β2
x

βy =
√

k2
0εr − β2

x (2.27)

Above the frequency at which βx = ks, αy increases causing the surface wave to

attenuate. The field waves are then bound to the immediate vicinity of the structure. This

regime is typically the state at which most microwave circuits are designed to operate. The

operating frequency is generally chosen to be 20% above fc to ensure leaky and surface

wave losses are not present.

20



Figure 2.13: The surface wavenumber, ks, has an x̂ component, βx, and a ŷ component,
βy.

2.7 Menzel’s Original Antenna

Microstrip structures do not radiate for the fundamental mode, therefore, a higher

order mode must be excited. In 1979, Menzel, published the first account of a traveling

wave microstrip antenna that used a higher order mode to produce leaky waves [23]. This

method of producing radiation by exciting higher order modes in a transmission line has

been documented since the 1950’s [11]. By the 1970’s, rectangular waveguides, circular

waveguides, and coaxial cables were in use as leaky traveling wave antennas. However,

until Menzel, the jump to microstrip had not been made.

By looking at a cross section of microstrip excited in the fundamental mode, the

E field is strongest in the center and tapers off to zero at the sides, as depicted in Fig-

ure 2.8. If the electric field down the centerline is suppressed, the fundamental mode will

be prohibited, forcing the energy to propagate at the next higher mode, EH1. As seen in

Figure 2.9, EH1 mode causes E to be strongest at the edges. Menzel attempted to force

the EH1 mode using several means. Feeding two equal magnitude waves 180o out of phase

with a “T” or “Y” feed produced EH1 as desired, but did not fully eliminate the EH0

mode. Metal posts, known as vias, inserted down the centerline eliminated the fundamen-
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tal mode and produced the anticipated radiation. A drawback of using vias was difficulty

constructing an antenna that was no longer planer. Easier to produce and providing an

even better response was given using transverse slots down the centerline (Figure 1.2). The

multiple feeds were not necessary to produce the EH1 mode when the fundamental mode

was suppressed.

Menzel demonstrated that the beam angle can be predictively steered by input fre-

quency if the electrical length of the antenna is at least 3λ. If the length is less than 3λ,

too little of the incident wave is being radiated and a resonance standing wave pattern is

forcing the beam toward broadside.

Qualitative analysis shows that the beamwidth of Menzel’s antenna is not frequency

dependent, however, it is inversely related to length. The 3 dB beamwidth approaches 10o

for electrical length of over 6λ and approaches nearly 90o for fractions of a wavelength.

Menzel’s gain varied from 7 dB for l = 0.2λ to 14 dB for l = 4λ. 7 dB is comparable

to a similar sized resonant antenna. An antenna longer than l = 4λ would have an even

higher gain as the radiation aperture increases.

2.8 Analysis of Menzel’s Work

Lee notes that Menzel assumed that his antenna should radiate simply because the

phase constant due to his operating frequency was less than k0 [20]. If Menzel had con-

sidered the complex propagation constant, he would have realized that his antenna was

operating in a leaky regime. The length would need to be roughly 220 mm, or more than

twice as long as his design, to radiate at 90% efficiency. Radiation patterns in Menzel’s

paper clearly show the presence of a large backlobe due to the reflected traveling wave.

Ermert, who conducted a mode matching analysis of a similar microstrip structure,

did not investigate normalized phase constants below β = k0. Ermert specifically refused

to include leaky modes citing Marcuvitz, who declared these waves not part of the complete

set of eigenmodes [10, 22]. Marcuvitz rejected these modes since their magnitude appears

to increase indefinitely away from the antenna and, hence, do not satisfy the radiation

conditions at infinity. As mentioned earlier, Figure 2.12 shows that the field strength
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increases exponentially, but it’s maximum is at a finite distance given by Equation (2.26).

Bagby, Grimm, Nyquist et al showed that while leaky modes are indeed nonspectral, a

Steepest Descent Contour (SDC) integration can be used to demonstrate that these modes

approximate the continuous radiation spectrum [2,12].

Oliner used a transverse resonance formulation to also show that the leaky region

should not be neglected. The normalized phase constant in Figure 2.14 predicted by

Menzel’s calculations, which ignores the leaky region, is shown atop that predicted by

Oliner, which accounts for the leaky regime [23, 29]. Oliner demonstrated the reason for

the less than expected bandwidth experienced by Menzel was due to his neglecting of the

leaky region. Oliner’s Steepest Descent Plane analysis predicts that the useful bandwidth

of the higher order modes can be quite substantial.

Michalski and Zheng devised a rigorous Mixed Potential Electric Field Integral Equa-

tion (MPEFIE) solution that was applicable to an arbitrary cross section. For Men-

zel’s antenna, Michalski and Zheng’s MPEFIE dispersion curves are in agreement with

Oliner’s [26, 29].
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The four analytical methods mentioned, Steepest Descent, Transverse Resonance,

Mode Matching, and MPEFIE, all provide much needed insight into the physical nature

of the leaky wave phenomenon, however, they all have the very serious drawback that the

solution must be reformulated for each geometry. The formulation of these methods is

quite complicated and time-intensive.

Sheen et al introduced an S-parameter extraction technique to determine the com-

plex propagation constant through network analyzer measurements. The method has been

validated with the spectral domain approach of [2, 12]. Near-field probing measurements

conducted by Thiele show promise to directly measure kx. The problem with any mea-

surement is that the fields must necessarily be disturbed by the testing equipment.

In lieu of analytical methods and measurement methods, this work attempted to

develop a numerical simulation of a leaky microstrip antenna that would be easy to modify

for new geometries. The Finite Difference Time Domain approach was chosen since the

technique directly solves for the fields in the time domain using Maxwell’s equations.
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III. Finite Difference Time Domain

Finite Difference Time Domain (FDTD) is a computational electromagnetic (CEM)

technique that directly solves the differential form of Maxwell’s equations,the curl

equations, in the time domain using a discretized space-time grid. Compared to an integral

equation solution of Maxwell’s equations, such as Method of Moments (MoM), FDTD offers

the benefits of no linear algebra, well-understood error sources, impulse behavior that is

treated naturally, nonlinear behavior that is treated naturally, enhanced visualization of

the wave interactions, and a systematic approach that does not require reformulations of

integral equations for each new structure.

Yee first proposed using finite differencing for electromagnetic problems in 1966 [43].

Taflove conducted much of the initial research into Yee’s method in the 1970’s and coined

the term FDTD in 1981 [39]. Although there are other methods of gridding the computa-

tional space, the grid in this project follows the Yee Cell, as seen in Figure 3.1. The Yee

cell uses rectangular coordinates and places each of the components of the magnetic field

a half grid space apart from the orthogonally directed electric field components. The same

must necessarily be true for the electric field with respect to the magnetic field. Not only

are the E and H fields a half of a cell width apart, but they are also updated a half of

a time step apart. The Yee method involves a leap frog approach in which the E field is

updated, then the H field, then E, then H, and so on. One time step is counted after both

E and H have been updated once.

3.1 Formulation

Yee’s Finite Difference scheme uses central differencing that is second order accurate

in both space and time. Starting with Maxwell’s curl equations:

∂B

∂t
= −∇× E − M (3.1)

∂D

∂t
= ∇× H − J (3.2)
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Figure 3.1: The Yee Cell [39, 43].

Noting that:

J = Jsource + σE (3.3)

M = Msource + σ∗H (3.4)

Equations (3.1) and (3.2) can be manipulated into a more usable form that is applicable

for all linear, isotropic, nondispersive, lossy materials:

∂H

∂t
= − 1

µ
∇× E − 1

µ
(Msource + σ∗H) (3.5)

∂E

∂t
=

1

ε
∇× H − 1

ε
(Jsource + σE) (3.6)

Considering only the source-free case and separating Equations (3.5) and (3.6) into the

vector components yields:
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∂Hx

∂t
=

1

µ

[

∂Ey

∂z
− ∂Ez

∂y
− σ∗Hx

]

(3.7)

∂Hy

∂t
=

1

µ

[

∂Ez

∂x
− ∂Ex

∂z
− σ∗Hy

]

(3.8)

∂Hz

∂t
=

1

µ

[

∂Ex

∂y
− ∂Ey

∂x
− σ∗Hz

]

(3.9)

∂Ex

∂t
=

1

ε

[

∂Hz

∂y
− ∂Hy

∂z
− σEx

]

(3.10)

∂Ey

∂t
=

1

ε

[

∂Hx

∂z
− ∂Hz

∂x
− σEy

]

(3.11)

∂Ez

∂t
=

1

ε

[

∂Hy

∂x
− ∂Hx

∂y
− σEz

]

(3.12)

The finite difference implementation of Equation (3.7) is as follows:

Hx|n+1/2
i,j+1/2,k+1/2 −Hx|n−1/2

i,j+1/2,k+1/2

△t =
1

µi,j+1/2,k+1/2

·
[

Ey|ni,j+1,k+1/2 − Ey|ni,j,k+1/2

△z −
Ez|ni,j+1/2,k+1 − Ez|ni,j+1/2,k

△y

− σ∗i,j+1/2,k+1/2Hx|ni,j+1/2,k+1/2

]

(3.13)

The convention used here is to update the E fields on integer time steps, n+1, and update

the H fields during half time steps, n + 1
2 . Noting that the H field cannot be updated

twice in one time step, the last term of Equation (3.13) is approximated as:

Hx|ni,j+1/2,k+1/2 =
Hx|n+1/2

i,j+1/2,k+1/2 +Hx|n−1/2
i,j+1/2,k+1/2

2
(3.14)
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After incorporating Equation (3.14) into Equation (3.13) and combining terms:

Hx|n+1/2
i,j+1/2,k+1/2 = Da ·Hx|n−1/2

i,j+1/2,k+1/2

+Db·
[

Ey|ni,j+1,k+1/2 − Ey|ni,j,k+1/2

△z −
Ez|ni,j+1/2,k+1 − Ez|ni,j+1/2,k

△y

]

(3.15)

where the coefficients, Da and Db, are composed of the material parameters of the cell

being updated:

Da =
2µi,j,k − σ∗i,j,k∆t

2µi,j,k + σ∗i,j,k∆t
(3.16)

Db =
2∆t

2µi,j,k + σ∗i,j,k∆t
(3.17)

Analyzing Equation (3.15) in conjunction with Figure 3.1, it is clear that the value of

the Hx field component at a particular cell is based on the previous value of that cell’s Hx

field as well as the adjacent orthogonal E fields that were updated one half of a time step

ago. A similar corresponding analysis is true of the other five field components. Equations

for the other components follow in much the same manner:

Hy|n+1/2
i−1/2,j+1,k+1/2 = Da ·Hy|n−1/2

i−1/2,j+1,k+1/2

+Db·
[

Ex|ni−1/2,j+1,k+1 − Ex|ni−1/2,j+1,k

△z −
Ez|ni,j+1,k+1/2 − Ez|ni−1,j+1,k+1/2

△x

]

(3.18)
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Hz|n+1/2
i−1/2,j+1/2,k+1 = Da ·Hz|n−1/2

i−1/2,j+1/2,k+1

+Db·
[

Ey|ni,j+1/2,k+1 − Ey|ni−1,j+1/2,k+1

△x −
Ex|ni−1/2,j+1,k+1 − Ex|ni−1/2,j,k+1

△y

]

(3.19)

Ex|n+1
i−1/2,j+1,k+1 = Ca · Ex|ni−1/2,j+1,k+1

+Cb·
[

Hy|n+1/2
i−1/2,j+1,k+3/2 −Hy|n+1/2

i−1/2,j+1,k+1/2

△z

−
Hz|n+1/2

i−1/2,j+3/2,k+1 −Hz|n+1/2
i−1/2,j+1/2,k+1

△y

]

(3.20)

Ey|n+1
i,j+1/2,k+1 = Ca · Ey|ni,j+1/2,k+1

+Cb·
[

Hz|n+1/2
i+1/2,j+1/2,k+1 −Hz|n+1/2

i−1/2,j+1/2,k+1

△x

−
Hx|n+1/2

i,j+1/2,k+3/2 −Hx|n+1/2
i,j+1/2,k+1/2

△z

]

(3.21)
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Ez|n+1
i,j+1,k+1/2 = Ca · Ez|ni,j+1,k+1/2

+Cb·
[

Hx|n+1/2
i,j+3/2,k+1/2 −Hx|n+1/2

i,j+1/2,k+1/2

△y

−
Hy|n+1/2

i+1/2,j+1,k+1/2 −Hy|n+1/2
i−1/2,j+1,k+1/2

△x

]

(3.22)

where:

Ca =
2εi,j,k − σi,j,k∆t

2εi,j,k + σi,j,k∆t
(3.23)

Cb =
2∆t

2εi,j,k + σi,j,k∆t
(3.24)

3.2 Absorbing Boundary Condition (ABC)

Simulations seek to explore a model in known conditions. For this simulation, as

is commonly the case, the antenna was to be simulated in unbounded free space. Since

it is clearly not possible to simulate a model in an environment whose extent is infinite

in all directions, the antenna was enclosed in an Absorbing Boundary Condition (ABC).

An ABC seeks to absorb outward propagating waves before they can be reflected inward

toward the model.

In the early days of FDTD, ABC’s consisted of an expansion of the wave equation,

called a radiation operator [5]. Many radiation operators were developed in the 1970’s

and 1980’s. Commonly used, was the Bayliss-Turkel operator, in which a weighted sum

of the spatial derivative in the outgoing direction, the spatial derivative in the transverse

direction, and the time derivative were taken of neighboring fields [39]. This method

30



worked based on a diminishing remainder term. In 1981, Mur proposed a finite-difference

ABC based on the one-way approximation of the wave equation [5, 27]. This method was

used extensively for the next 15 years despite the drawback that Mur’s absorbtion was very

sensitive to frequency. Schemes for surrounding the computational domain with a lossy

medium whose impedance matches that of free space were attempted by several, however,

all had the result of no reflection only for plane waves at normal incidence [5]. Plane waves

at normal incidence can necessitate a rather large computational domain.

In 1994, Berenger made Mur’s ABC all but obsolete when he introduced an al-

ternative called Perfectly Matched Layer (PML) [33]. PML is composed of a layer cells

modelling a dissipative material surrounding the FDTD computational domain whose wave

impedance is perfectly matched to the space it surrounds. Berenger’s hypothetical material

was based on a mathematical model of an anisotropic medium in which each component

of magnetic field is split into two new components. For example, in the 2-D TE case,

Equation (3.25):

µ0
∂Hz

∂t
+ σmHz =

∂Ex

∂y
− ∂Ey

∂x
(3.25)

is replaced by Equations (3.26) and (3.27).

µ0
∂Hzx

∂t
+ σmxHzx = −∂Ey

∂x
(3.26)

µ0
∂Hzy

∂t
+ σmyHzy =

∂Ex

∂y
(3.27)

Berenger demonstrated that the effectiveness of this split-field PML was independent of

frequency and independent of incidence angles, providing the incidence angle is within 75o

from normal [5]. These results for a 2-D implementation were verified by [1]. Katz also

verified Berenger and was the first to extend PML to 3-D [16]. Kantartzis compiled a

comprehensive comparison of PML, Mur, higher order Mur, and higher-order radiation

operators, and concluded that PML was absolutely superior to all other ABC’s [14]. Also
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Figure 3.2: UPML covering a PEC wall normal to x̂.

in 1994, Chew and Weedon introduced a PML based on complex coordinate stretching

variables whose effect is much like Berenger’s [8, 33].

Sacks et al developed a diagonally anisotropic layer, later termed Uniaxial PML

(UPML) by Taflove, which results in equivalent performance to split-field and stretched

coordinate PML’s. UPML is easier to implement since it does not involve modifying

Maxwell’s equations and is able to match anisotropic media. UPML seeks to attenuate

the fields by creating an imaginary component of the permittivity in the direction normal

to a PEC boundary wall. Figure 3.2 illustrates UPML on a wall that is normal to the x̂

direction. Adding an imaginary component to εx will attenuate Ex, and in turn, the other

five field components. Permittivity in the PML in Figure 3.2 is chosen to be:

εx, pml = εx ·
(

1 − j
σx

ωε0

)

(3.28)

The reflection coefficient for a wave entering this UPML of a thickness, d, at an arbitrary

incident angle, θ, is given by:
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Γ(θ) = Re
{

e−j 2kxd
}

= Re
{

e
−j 2k0 cos θ

(

1−j σx
ωε0

)

d
}

= e−2σxη0d cos θ (3.29)

Reflection is least when the wave impacts at normal incidence and approaches total

reflection as incidence approaches grazing angle. Of course, UPML is intended to have

zero reflection. This appears to be possible by simply making σx very large, however, as

σx becomes large, the UPML ceases to be matched to the material it is surrounding and

creates reflection at the surface. Most PML’s, therefore, use a grading scheme to make

σx small at the material boundary gradually increasing to a larger value at the PEC. The

UPML used in this study is polynomial graded, using:

σx(x) =
(x

d

)m
σx,max (3.30)

where σx is zero at the material boundary and rises as an mth degree polynomial to a

maximum value of σx,max at the PEC wall. σx,max is not without bound. If the rise of loss

is too rapid, discretization error instabilities will dominate any effects of loss. Equation 3.29

can be updated with Equation 3.30 to become:

Γ(θ) = e−2 η0 cos θ
∫ d

0 σx(x) dx

= e
−2

m+1
σx,max η0d cos θ (3.31)

Taflove [39] states that much empirical evidence indicates that the optimum balance be-

tween absorbtion rate and stability occurs when σx,max is given by:

σx,max =
0.8(m+ 1)

η0 dx
(3.32)
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Using Equation (3.32) with Equation (3.31) results in nearly 140 dB reduction at normal

incidence for a ten-cell-thick PML:

Γ(0) = e
−2

m+1

(

0.8(m+1)
η0 dx

)

η0d cos(0)

= e−1.6 d
dx = e−16 = −139 dB (3.33)

The UPML derivations for the faces normal to the other five directions are analogous.

3.3 Materials specification

Each cell is a homogeneous material specified by it’s constitutive parameters: permit-

tivity, ε, permeability, µ, electrical conductance, σ, and magnetic conductance, σ∗. These

parameters can be complex.

The conductor can be specified using cells with the actual constitutive parameters

of the material, however, the conductor can instead be modelled as an infinitesimally

thin layer of PEC by simply setting the tangential electric fields to zero at the desired

cell boundaries. The boundary condition on the normal magnetic field, n̂ · H = 0, is

automatically satisfied by the finite difference equations if the tangential electric fields

have been zeroed, n̂× E = 0.

Figure 3.3 illustrates a simulated PEC strip 2 cells in the ŷ direction by 3 cells in the

x̂ direction. Sheen reported that this method can be used to quite accurately represent a

number of simple microstrip circuits and antennas [35].

In his dissertation, Sheen later discussed a slightly more accurate method of modelling

PEC, shown in Figure 3.4 [36]. The difference equations developed in this chapter relied on

a central difference approximation, in which case, PEC is equivalent to forcing the average

value of n̂× E to zero.
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Figure 3.3: PEC can be modelled by setting the appropriate boundary Electric field
components to zero [35].

(a) (b)

Figure 3.4: (a) PEC borders can be defined as the last tangential E components that
are zeroed. (b) A more accurate method defines the PEC borders 1

2 cell beyond the zeroed
components.
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3.4 Stability

The difference equations of (3.15), (3.18), (3.19), (3.20),(3.21), and (3.22) show that,

in this formulation, the fields are dependent on only the fields in the directly neighboring

cells. For a stable solution, a propagating wave, therefore, must not travel more than one

cell in any direction during one time step. The maximum time step that will prevent this

instability is given by the dispersion relation for a plane wave propagating in a FDTD grid.

To derive the finite difference dispersion relation, first reduce the source-free Maxwell’s

Equations to the wave equations for free space:

∇2E =
1

c2
∂2E

∂t2
(3.34)

∇2H =
1

c2
∂2H

∂t2
(3.35)

which can be represented as:

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ =
1

c2
∂2ψ

∂t2
(3.36)

where ψ is any vector component of E or H. In general, the plane wave solution to Equa-

tion (3.36) is of the form:

ψ(x, y, z, t) = Re
{

ej(ωt−kxx−kyy−kzz)
}

(3.37)

where kx, ky, and kz are the wavenumber components in rectangular coordinates. Equa-

tion (3.37) can be discretized in space and time as:

ψ(nx, ny, nz, nt) = Re
{

ej(ωnt△t−kxnx△x−kyny△y−kznz△z)
}

(3.38)

where nx, ny, and nz are the number of cells in each of the rectangular directions and nt is

the number of time steps, △t. Each cell is uniform and has the dimensions ∆x ×∆y ×∆z.

Defining the central difference operator in the x̂ direction, δx, as:
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δxψ =
ψ(nx + 1

2 , ny, nz, nt) − ψ(nx − 1
2 , ny, nz, nt)

△x
(3.39)

and using Equation (3.38) with Equation (3.39) results in:

δxψ =
e−j kx

△x
2 − ej kx

△x
2

△x
ψ

=
−2j

△x
sin

(kx△x

2

)

ψ (3.40)

The second derivative operator is simply the square of the first derivative operator:

δ2xψ = (δxψ) · (δxψ) =
−4

△2
x

sin2
(kx△x

2

)

ψ (3.41)

Defining δ2y , δ
2
z , and δ2t analogously, the scalar wave equation of Equation (3.36) becomes:

(

δ2x + δ2y + δ2z

)

ψ =
1

c2
δ2tψ

sin2 kx△x

2

△2
x

+
sin2 ky△y

2

△2
y

+
sin2 kz△z

2

△2
z

=
1

c2
sin2 ω△t

2

△2
t

(3.42)

which is the dispersion relation for a plane wave propagating on the FDTD computational

grid. Solving for ω, which must be purely real for a stable solution, Equation (3.42)

becomes:

ω =
2

△t
sin−1(ξ) (3.43)

where
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ξ = c△t

√

√

√

√

sin2 kx△x

2

△2
x

+
sin2 ky△y

2

△2
y

+
sin2 kz△z

2

△2
z

(3.44)

The upper bound of ξ gives rise to the Courant condition for the 3D case of uniform cell

size free space [39]:

△t ≤
1

c
√

1
∆2

x
+ 1

∆2
y

+ 1
∆2

z

(3.45)

If no free space is used in the grid, c should be replaced in Equation (3.45) with vmax,

which is the maximum propagation velocity through any medium in the grid space.

The Courant condition of Equation 3.45, which is also known as the Courant-

Fredericks-Levy (CFL) criteria, only holds for the case of this central-difference formu-

lation. Higher order difference equations may depend on fields of more than one cell’s

distance, which allows a wave to travel more than one cell per time step in a stable solu-

tion. Fewer time steps is a great benefit of higher order FDTD formulations [19].

Instability can present itself in several ways depending on the output product of the

simulation. Figure 3.5 shows the effects of an instability that develops while a traveling

wave distribution is developing. Due to an unstable condition, the waveform develops small

spikes, which are barely visible near cell number 600 of Figure 3.5(a). The instability may

or may not originate in the vicinity of cell 600 since the spikes could have travelled many

cells before they were visible. The magnitude of the spikes increases as the spikes travel to

the right in Figure 3.5(b). Figure 3.5(c) shows the spikes impact the PML near cell 1200

and are partially attenuated. The reduced magnitude spikes reflect and begin traveling to

the left, as seen in Figure 3.5(d). The spikes again increase in magnitude (Figure 3.5(e))

until they overtake the waveform (Figure 3.5(f)). A video of the fields shows checkerboard

pattern of neighboring highs and lows spreading outward in all directions from the point

of instability, as seen in the stills of Figure 3.6. Notice that the checkerboard pattern

alternates each timestep.
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Figure 3.5: (a) An instability causes barely visible spikes near cell number 600. The
magnitude of the spikes increases as the spikes travel to the right in (b). (c) shows the
spikes impact the PML near cell 1200 and are partially attenuated. The reduced magnitude
spikes reflect and begin traveling to the left, as seen in (d). The spikes again increase in
magnitude (e) until they overtake the waveform (f).
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Figure 3.6: An instability quickly overtakes the entire computational space.
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3.5 Dispersion

The first step of applying an FDTD formulation to a structure is gridding the com-

putational space. The cell size chosen has implications for accuracy of the resulting data,

time required, and computing resources needed. As with nearly all areas of CEM, larger

discretizations bring less computations, but more error.

The most significant error in the case of FDTD is grid dispersion, which is a cumu-

lative phase error. Dispersion is a product of the discretization of space as well as time.

Since a wave travels a certain distance specified by Equation (3.45) each time step, a phase

front traveling along the direction diagonal to the grid will propagate faster than the same

wave traveling along a grid axis. Simplifying Equation (3.42) for a 2-D square grid with a

monochromatic traveling wave:

[

1

c△t
sin

(ω△t

2

)

]2

=

[

1

△ sin
(kx△

2

)

]2

+

[

1

△ sin
(ky△

2

)

]2

(3.46)

where △ is the length of a grid cell edge and △t is the period of a time step. To satisfy

the Courant condition of Equation (3.45), let:

△
c△t

= 2 (3.47)

Using the resolution, N , to equal the number of cells per wavelength, Equation (3.46) can

be rewritten as:

4 sin2
( π

2N

)

= sin2
(△k cos θ

2

)

+ sin2
(△k sin θ

2

)

(3.48)

Equation (3.48) is a transcendental equation that can be solved for k using Newton’s

method with the help of trigonometric identities [39]:
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Figure 3.7: The magnitude of phase velocity error, or dispersion [39].

km = km−1 −
sin2

(

km−1△ cos θ
2

)

+ sin2
(

km−1△ sin θ
2

)

− 4 sin2
(

π
2N

)

△ cos θ
2 sin(km−1△ cos θ) + △ sin θ

2 sin(km−1△ sin θ)
(3.49)

where m is simply the iteration number. The normalized phase velocity can be found using

km from the final iteration of Equation (3.49) as:

vp

c
=

2π

km
(3.50)

Figure 3.7 is a plot of
vp

c showing that the amount phase velocity error is proportional to

the resolution and the direction of travel. As expected, the phase velocity is fastest in the

diagonal direction, 45o, and is slowest along a grid axis. This anisotropy of phase velocity

is reduced as the number of cells per wavelength is increased. Similar to MoM, λ/10 is

a benchmark cell size that works acceptably in many situations. λ/20 or finer resolution

may be needed if the scattering from a complicated structure is desired. Some researchers

have found cells as large as λ/4 acceptable, particularly if the waves modelled have few

interactions [39].
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Figure 3.8: Rectangular gridding results in stair-step approximations of curves and
diagonal lines.

3.6 Geometric Distortion

It doesn’t take long to notice the staircase effect from the use of rectangular cells to

simulate a curve, as seen in Figure 3.8. The obvious solution is the use of finer gridding,

but this leads to longer run times and more computational resources. Curves are better

represented with cylindrical or spherical coordinates, however the difference equations,

particularly involving the PML, become cumbersome. Conformal grids have been used

to reduce distortion of complex shapes, particularly microstrip with curvature [15, 38].

Subgridding, or finer gridding in only certain regions, has been used by many researchers

beginning with Yee [38]. Attention must be paid to the boundaries between unlike cell

sizes to properly model the field coupling between fine and course grids. Updating the

fields on the boundary can be accomplished using interpolation of both space and time.

Kunz developed a method that requires two runs, the first to update the fields in the

course grid, the second to update the fields in the fine grid using the coarse-grid fields as a

boundary [19]. A common solution to geometric distortion is a hybrid technique employing

FDTD and MoM or FDTD and Geometrical Theory of Diffraction (GTD).

3.7 Source

There are two types of sources that can be used: a hard source or a soft source. For

a hard source, the field at one or more cells is forced to have a certain value regardless of

the neighboring fields. Waves cannot travel through these hard source cells and appear to

reflect off in the same manner as if the cell was a perfect electric conductor (PEC). For a

43



0 100 200 300 400 500 600 700 800
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time Step

E
Z
 (

V
/m

)
Figure 3.9: Cubic growth over the first few periods eliminates problematic high frequency
components of rapid transitions.

soft source, the introduced value is only added to the existing field of the cell or cells. Soft

sources are beneficial when you do not have prior knowledge of the fields in the vicinity

of the source as these cells allow waves to travel through. Hard sources have the ability of

being turned off more easily than soft sources.

The waveform of the source also must be considered. A sharp start or stop transition

in the source wave will create messy propagating waves. These discontinuities contain many

higher frequency components that can disturb the surrounding fields to such an extent that

a source may even enter runaway mode and fail to turn off. Taflove notes that FDTD has

an intrinsic low pass filter effect since computations are only based on neighboring cells

[39]. Theoretically, the high frequency components, if left long enough, would eventually

disappear. Typically, these discontinuities are eliminated by a gaussian pulse, which is a

sinusoidal function attenuated by an exponential, as seen in Equation (3.51).

sourcent = sin(ωnt△t) · e(−ζ2n2
t ) (3.51)

where ζ is an attenuation constant that is typically related to the resolution, or number

of cells per wavelength. For this study, I chose a constant source, so I was not concerned

with a stop transition. I decided to use a sinusoidal source with a cubic growth over the

first three periods, which is illustrated in Figure 3.9.
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IV. Simulation Development

This chapter presents the methodology by which an FDTD simulation was developed

to analyze antennas of different geometries.

4.1 Hagness-Willis Code

To save time, I obtained a working 3-D FDTD program with a UPML absorbing layer.

The UPML was a 10-cell-thick, 4th order polynomial graded, and PEC-backed on all six

faces. This “beta” version Matlab code was provided by Dr. Susan Hagness and one of her

Ph.D. students, Keely Willis, both of the University of Wisconsin Computational Electro-

magnetic Laboratory. The Hagness-Willis code will be featured in the upcoming edition of

Taflove and Hagness’s book Computational Electromagnetics: The Finite-Difference Time

Domain Method, 3rd Ed. The program was extensively modified for my purposes and, as

a result, I used little more than their UPML implementation.

The first design simulated was the 220 mm long full width Thiele antenna using a

solid wall down the centerline, as seen in Figures 4.1 and 4.2. Since the UPML of the

Hagness-Willis code was matched to free space, I surrounded the entire antenna with a

20-cell-thick layer of free space. Above the antenna, I included an additional 20 cells, for a

total of 40 cells of free space between the top UPML boundary and the top of the antenna.

The open substrate was extended outward one antenna-width in both ŷ directions. The

following paragraphs detail the procedure I used to pare away unnecessary cells revealing

only the minimum number of cells required to accurately model the structure.

4.2 Copper

I began modelling the copper as 1-cell-thick layer of ε0, µ0, σ = 5.8 × 107 S/m.

Designs were fabricated with Rogers Corporation 5870 RT/Duroid with 1 ounce copper

cladding, which is 35µm thick. If the FDTD cells were nearly cubic, the substrate would

need to be 22 cells thick and the entire computational space would require nearly 900 mil-

lion cells. From smaller trials that I have run, I estimate that this would call for upwards of

1 TB of memory for even the lossless case. I abandoned this method and instead approxi-
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Figure 4.1: The ŷ − ẑ cross-section slice of the Thiele Full Width (TFW) antenna
surrounded by free space (not to scale). The source cell is shown in gold. The x̂− ẑ slice
of Figure 4.2 is shaded in blue.

Figure 4.2: The x̂− ẑ longitudinal-section slice of the TFW antenna surrounded by free
space (not to scale). The source cell is shown in gold. The ŷ − ẑ slice of Figure 4.1 is
shaded in blue.
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mated the copper conductor as a perfect electric conductor (PEC) of zero thickness. This

approximation allowed for much larger cells, decreasing the total number. For example, by

making the substrate only 5 cells thick, the simulation is cut from 900 million cells down

to roughly 50 million cells, a 94 % decrease.

4.3 PML

The UPML of the Hagness-Willis code is matched to free space, therefore, my antenna

was first surrounded by a layer of free space, which was then surrounded by the UPML

cells. To extract the propagation constant of the forward traveling wave, I needed to

eliminate reflections from the free space boundaries at the ends of the substrate. This

was accomplished by extending the substrate directly into the UPML, and modifying

the affected UPML cells to match the substrate. The resulting grid space is seen in

Figures 4.3 and 4.4. Notice that the UPML layer under the ground plate has also been

removed since it is redundant. The UPML now absorbs all outward propagating waves in

the substrate allowing the forward traveling wave to develop exclusively. At this point, the

UPML is inhomogeneous in the ẑ direction. If the electric flux density, Dz, is discontinuous

between the two materials, Gauss’s Law states that a surface charge will develop at the

boundary. A charge building between two bordering cells is a source of instability for the

FDTD method. This problem was averted in the UPML development, since the imaginary

component of the UPML permittivity in Equation (3.28) was chosen to be normalized

to free space permittivity instead of the material’s permittivity. The number of cells to

simulate the antenna after the removal of the surrounding free space was reduced over 71%

to 14.2 million cells, which was still much too large.

4.4 Material Surrounding the Antenna

Since the PML absorbs nearly all of the outward propagating energy, the amount of

free space above and the amount of open substrate extending outward from the structure

has no effect on kx as long as the PML 1s at least two cells away from the structure. The

resulting grid space with only the required number of cells, a further reduction of almost

80 %, is seen in Figures 4.5 and 4.6.
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Figure 4.3: The cross-section of the TFW antenna extending into the UPML (not to
scale). The source cell is shown in gold. The x̂− ẑ slice of Figure 4.4 is shaded in blue.

Figure 4.4: The longitudinal-section of the TFW antenna extending into the UPML
(not to scale). The source cells are shown in gold. The ŷ − ẑ slice of Figure 4.3 is shaded
in blue.
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Figure 4.5: The ŷ− ẑ slice of the TFW antenna extending into the UPML with unneeded
material removed (not to scale). The source cells are shown in gold. The x̂ − ẑ slice of
Figure 4.6 is shaded in blue.

Figure 4.6: The x̂−ẑ slice of the TFW antenna extending into the UPML with unneeded
material removed (not to scale). The source cells are shown in gold. The ŷ − ẑ slice of
Figure 4.5 is shaded in blue.
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4.5 Resolution and Cell Size

I ran several trials to determine if the cell size could be changed. By keeping the

cross section square and elongating the cells in the x̂ direction, Figure 4.7(a) shows that at

the leaky band’s center frequency, 7 GHz, there is less than 1% error of βx if the cell size is

6:1:1 or less. The error is with respect to the transverse resonance solution. Figure 4.7(b)

is a plot of the error due to varying cell sizes while keeping the cells square in the x̂ and ŷ

directions. Cell size must be 1.5:1.5:1 or less to stay within 0.5% of transverse resonance.

Figure 4.7(c) shows that keeping the height of the substrate to at least 5 cells ensures

agreement with transverse resonance to within 0.5%. Using a cell size of 5:1:1 with a

five-cell-thick substrate, the grid of Figures 4.5 and 4.6 is only 572,000 cells.

The worst resolution will occur at areas with the shortest wavelength and largest cells.

All subsequent trials used five-cell-thick substrate and sizes of either 3:1:1 or 5:1:1. Since

the only substrate thickness used was 787 µm, the cells were 472.2 × 157.4 × 157.4 µm

or 787 × 157.4 × 157.4 µm, respectively. The shortest wavelength encountered in the

simulation was in the substrate outside of the antenna, given by:

λsubstrate =
λ0√
εr

(4.1)

Therefore, the worst resolution is given by Figure 4.8 for the largest dimension of each

of the two cell sizes. The resolution of the traveling wave inside the structure was in the

hundreds of cells per wavelength.

4.6 Source

Many source geometries and locations were tried to find the optimum. At least

one source cell must be more than two cells from the PML or too much energy will be

absorbed for the traveling wave to adequately develop. A source cell centered vertically

in the substrate allows a traveling wave of the largest magnitude to develop. A source

cell directly on the antenna’s open edge prevents establishment of the traveling wave by

allowing the source energy to propagate away from the antenna and not in the structure.

Following these findings, all contiguous geometries consisting of single cells, rows of cells
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Figure 4.7: (a) Plot of the error of βx as a function of elongating the x̂ direction of the
cells while keeping the other dimensions square. (b) Plot of the error of βx as a function of
cell size for cells square in the x̂ and ŷ directions. (c) Plot of the error of βx as a function
of the height of the substrate in cells. For all figures, the error is with respect to the
transverse resonance solution and the curve is a cubic least-squares fit of the data points.
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Figure 4.8: The worst resolution encountered in Thiele antenna simulations with 5-cell-
thick substrate for cell sizes of (a) 3:1:1 and (b) 5:1:1.

in each of the three rectangular directions, and walls of cells normal to each of the three

directions, performed identically. All subsequent trials used a single source cell midway

between the ground plate and the conductor strip, two cells inside from the open edge of

the antenna and five cells from the PML.

4.7 Loss

Simulating substrate with loss requires nearly twice the computer RAM compared

to the lossless case since each field component of each cell must have a real and imaginary

portion. Rogers Duroid 5870 high frequency laminate has a loss tangent of only 0.0012.

Neglecting this loss showed no noticeable effect on the extracted propagation constant, as

can be seen in Figure 4.9. All subsequent trials were treated as lossless freeing 50% of the

memory allowing a larger simulation.

4.8 Precision

Matlab defaults to double precision unless specified otherwise. Trials run in single

precision used roughly 40% less memory and the results were consistent with double pre-

cision, as seen in Figure 4.10. All subsequent trials remained double precision unless the

size of the simulation required more memory than was available.
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Figure 4.9: No noticeable error of the extracted propagation constant due to neglecting
loss for the Thiele Half Width (THW) antenna.
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Figure 4.10: Propagation constant extracted from the fields following a single precision
simulation does not differ significantly from the double precision results.
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Figure 4.11: The propagation constant data extracted from the THW antenna is indis-
tinguishable from the TFW antenna.

4.9 Full Width vs. Half Width

Figure 4.11 illustrates the agreement between the propagation constants of the Thiele

Half Width (THW) and Thiele Full Width antennas (TFW) to within 1% over the entire

leaky band. Simulation of the THW antenna uses approximately 45% less memory than

the TFW simulation.

4.10 Determination of Leakage Constant and Phase Constant

The objective of the antenna simulations was limited to providing the propagation

constant of the vertical component of the electric field, Ez, inside the substrate between the

top conductor and the bottom ground plate. The Ez data was retrieved from a single row of

cells stretching the length of the antenna, as depicted in green in Figure 4.12. As discussed

in Chapter 2, the attenuation constant, αx, and the phase constant, βx, components of

the propagation constant give an accurate means of comparing the bandwidth, leakage

rate, main beam direction, and approximate far-field pattern of different traveling wave

antennas.
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(a)

(b)

Figure 4.12: 4.12(a) is a vertical slice and 4.12(b) is a horizontal slice of the compu-
tational domain (not to scale). Ez was retrieved from the cells in green to be used to
determine the propagation constant. The source cell is shown in gold.
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Figure 4.13: The raw Ez data retrieved following simulation.

Typical raw data following a simulation is plotted in Figure 4.13. The source is seen as

the large spike at cell number 13. At cell 420, the PML begins to dampen the waveform. At

least two periods of the waveform of Figure 4.13, starting from the first absolute maximum

(cell 72), were normalized for analysis. A recursive, least-square procedure was used to

best fit a known exponential curve. The peak values were compared to find αx and the zero

crossing locations were compared to find βx. Figure 4.14 shows the best fit curve on top of

the FDTD data. The procedure was automated to process an entire set of simulation trials

and output the propagation constants to an excel spreadsheet. This procedure works well

for most frequencies, however, its use for the lowest 15% of a leaky band is problematic

for two reasons.

First, good agreement with a best fit method is not adequate with less than two

periods of data. The wavelength of the traveling wave at the lower end of the leaky band

is more than five times the wavelength at the highest frequency in the band, as seen in

Figure 4.15. Therefore, the computational domain must be five times longer, which requires

five times the memory. Even worse, the processing time will be increased by more than

56



50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5

E
z

X−direction cell number

FDTD
α/k

0
= 0.026,β/k

0
= 0.7857
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best-fit exponential curve.
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25 times, since each time step will take five times longer and the waveform will need five

times the steps to propagate the length of the antenna. A large simulation is difficult and

time-consuming, but possible.

The second problem was a bigger roadblock. For frequencies at which αx

k0
is greater

than 0.1, the waveform attenuates too rapidly to find sufficient peaks or zero crossings.

Instead, a much simpler method was developed from the logarithm of the normalized

“FDTD” waveform of Figure 4.14 using Equation (4.2):

Ez ∝ e(αx−jβx)x

lnEz ∝ ln e(αx−jβx)x = αxx− jβxx (4.2)

As shown in Figure 4.16, αx is simply the slope of the peaks of the lnEz waveform, shown

as a dotted line, and βx is found from the separation of nulls using:

βx =
2π

λβ
(4.3)

If the simulation has run long enough to ensure that the traveling wave distribution has a

constant wavelength, only
λβ

2 is needed for determination of the propagation constant. A

computational space that is just one-half wavelength long is a 5
6 reduction from the best-fit

method that required three wavelengths.

4.11 Validating FDTD Code

4.11.1 Transverse Resonance. The FDTD simulation was validated by com-

parison of the extracted αx and βx with the propagation constant given by a transverse

resonance solution, which was verified by a comparison with the Steepest Descent Contour

(SDC) method by Lee and Oliner [20, 30]. Figure 4.17 shows a transmission line model

that is applicable to the cross section of the Menzel, TFW, and THW antennas. Each

structure can be modelled as a dielectric-filled parallel plate waveguide of admittance, Y0ε,

terminated at one end by a short circuit and the other end by admittance Yt. The E null
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Figure 4.16: The natural logarithm of the simulation data can be used to determine the
propagation constant.

generated in the EH1 mode by a vertical wall or transverse slots is represented by a short

circuit. Yt is an approximation of the admittance of an open edge of microstrip developed

by Chang and Kuester [7, 17] using the Weiner-Hopf technique to analyze a TEM wave

that is completely reflected.

Chang and Kuester state applicability to only thin substrates in which:

h≪ 1

ω
√
εµ

(4.4)

For a substrate thickness, h, of 787µm, Equation (4.4) requires frequencies ≪ 40 GHz,

which is five times higher than the highest frequency of this leaky band. At 6.7 GHz,

Figure 4.18 shows that FDTD and transverse resonance begin to disagree as the height

of the substrate increases past the thin criteria, near h= 1.1 mm. By Equation 4.4, the

frequency should be much less than approximately 28.4 GHz at this point. This suggests

that, for the THW antenna (εr = 2.33 and w= 7.5 mm), Equation (4.4) is more precisely:

h <
28.4

2π6.7
√
εµ0

<
4.2

ω
√
εµ0

(4.5)
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(a) (b)

Figure 4.17: (a) is a transmission line circuit that approximates the cross section of each
of the three structures in (b) operating in mode EH1. The cross sections in (b) represent
Menzel (top), TFW (center), and THW (bottom).
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Figure 4.18: The effect of the height of the substrate on the propagation constant at
6.7 GHz for the THW antenna (εr = 2.33; w = 7.5 mm.) The dashed line is a quadratic
least square of the FDTD data points.
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The transverse resonance relation, Equation (4.6), must hold for all points in the

transverse direction, ŷ.

Γright(y) · Γleft(y) = 1 (4.6)

The reflection coefficient from the admittance of the end of the microstrip, Yt, is

unity with a phase shift, χ [7, 17]. At a point y = ya just to the right of Yt,

Γright(ya) = −e−j2k w
2 (4.7)

Γleft(ya) = ejχ (4.8)

where k is the wavenumber in the substrate and w is the width of the structure. Equa-

tion (4.6) becomes:

−e−j2k w
2 · ejχ = 1

χ− kw = ±nπ n = 1, 3, 5, ... (4.9)

For the EH1 mode, n=1.

The approximation can be modified to meet changes in h, w, and εr, providing that

Equation (4.4) is still valid. It cannot, however, be applied to curves or tapers since

the Yt approximation is no longer valid. Figure 4.19 shows that the transverse resonance

approximation is in agreement within 1% of the FDTD-derived βx data over the entire

leaky band.

4.11.2 Measurements. Validation was also shown by comparison with existing

measurements. The Thiele Half Width antenna was fabricated at the Radiation and Scat-

tering Compact Antenna Laboratory (RASCAL) by Dr. Thiele using vias spaced λ/10 to
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Figure 4.19: The FDTD simulation of the THW is in agreement with the transverse
resonance approximation.

form the wall. Both far-field pattern measurements as well as near-field probing measure-

ments were conducted.

The near field measurements produced the data seen in Figure 4.20, from which the

propagation constant was extracted in much the same manner as with the FDTD data.

Figure 4.21 shows that the data is not very smooth, but βx corresponding to the peaks

does agree to within 3% of both FDTD and transverse resonance.

Far-field H-plane measurements were taken at RASCAL’s compact range. The set-

up is depicted in Figure 4.22. Figure 4.23 shows the normalized far-field H-plane E field

pattern of the THW antenna made with vias by Dr. Thiele. For comparison, the data is

plotted along with the line source pattern of the corresponding data from both the FDTD

simulation and the transverse resonance approximation. The magnitude of the backward

lobe is higher for the measured THW antenna demonstrating a lower attenuation constant,

αx. The location of the measured main lobe is closer to endfire, which indicates a higher

βx than the numerical solutions.
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Figure 4.20: The raw data resulting from probing the near field of the Thiele half width
antenna at 6.7 GHz.
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(a)

(b)

Figure 4.22: Far-field H-plane measurements of the E field taken in RASCAL’s compact
range. (a)Horizontal view and (b) View from above showing placement of antenna under
test and the probe of the receive horn (left).

The estimated propagation constant of the Thiele antenna can be determined by a

best fit with the line source. Figure 4.24 shows the line source pattern matched to that of

the THW antenna. As discussed in Chapter 2, the main beam position is only within 1o if

the antenna is over 5 λβ long. The length of all antennas fabricated was limited to 19 cm

due to material availability. This length is less than 3 λβ at 6.7 GHz and less than 4 λβ

at 7.2 GHz. To extract the propagation constant, 5% was added to the line source αx and

βx to accurately match the main beam location within 1%. The propagation constants of

the THW antenna determined from Figure 4.24 are summarized in Table 4.1.

Table 4.1: Line source best fit of the Thiele antenna made with vias.
6.7 GHz 7.2 GHz

Measured kx/k0 0.715 - j0.019 0.85 - j0.0135

FDTD kx/k0 0.677 - j0.040 0.816 - j0.0252

βx Relative error 5.7 % 4.2 %
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Figure 4.23: Far-field radiation pattern of the THW fabricated with vias compared to
the line source pattern generated with FDTD and Transverse Resonance data (a) at 6.7
GHz and (b) at 7.2 GHz.

65



020406080100120140160180
−30

−25

−20

−15

−10

−5

0

5

6.7 GHz

 Angle from endfire (degrees)

 N
or

m
al

iz
ed

  |
 E

φ | 
(d

B
)

Line Source
Measured (vias)

(a)

020406080100120140160180
−30

−25

−20

−15

−10

−5

0

5

7.2 GHz

 Angle from endfire (degrees)

 N
or

m
al

iz
ed

  |
 E

φ | 
(d

B
)

Line Source
Measured (vias)

(b)

Figure 4.24: Measured data with a best fit line source to estimate the propagation
constant (a) at 6.7 GHz and (b) at 7.2 GHz.

4.12 Curvature

The effect of curvature on the propagation constant was tested by constructing a

180o bend of the THW design. Figure 4.25 illustrates the view from above the curved

computational domain, looking in the +ẑ direction. The substrate is shown as cyan, the

PML is maroon, and the top conducting strip is colored green. For viewing, the wall has

been colored blue and the cells from which Ez were recorded are colored orange. The

source is the single dark cell near (20,140). The antenna was bent with the wall on the

inside (Figure 4.25(a)) as well as with the wall on the outside (Figure 4.25(b)).

Geometrical distortion was expected to pose a problem. Figure 4.26 is a blown-up

view of the cells at a curve. A cell size of 1.5:1.5:1 was used to keep the cells square in the

plane of curvature to minimize distortion.

The most difficult task involved in simulating curvature in a rectangular coordinate

system is accurately processing the data. As seen in Figure 4.26, the cells from which the

field data is taken are not on a precise curve. Worse, the cell data is not stored in the

order the traveling wave propagates. These matters were solved by storing the angle to

each field cell with respect to the lower PML boundary as seen by the cell at the center

of the semi-circle, cell (138,141). The output data from this simulation was, therefore, a
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Figure 4.25: The computational space of the THW antenna curved 180o in Matlab. (a)
shows the wall (in blue) on the inside while (b) shows the wall on the outside
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Figure 4.26: The curved THW antenna is approximated by rectangular cells.

vector called EZDATA, which contained the Ez component field data from the orange cells

in Figure 4.4.25, and a vector of EZDATA’s corresponding angles, named ANGLES.

Figure 4.27 depicts the processing using the angle information. Figure 4.27(a) shows

the ANGLES data following simulation. The phase is unwrapped in Figure 4.27(b). Next,

both EZDATA and ANGLES are re-ordered based on the ANGLES data to put the data

in the order encountered by the traveling wave propagating in the antenna, as seen in

Figure 4.27(c). Finally, the vertical axis of Figure 4.27(d) shows the ANGLES have been

translated into arc distances from the source cell to allow computation of the propagation

constant from the EZDATA. The propagation constant can then be extracted in the same

manner as the straight antennas.
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Figure 4.27: Following the curved THW simulation, processing of the (a) raw angle data
involved (b) unwrapping the phase, (c) ordering, and (d) converting the angle to an arc
distance from the source.
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V. Results

Analysis of the Thiele Half Width (THW) antenna began by a examining the field dis-

tribution of its predecessors, the Menzel antenna and the Thiele Full Width (TFW)

antenna. One of the primary uses of determining the propagation constant of a traveling

wave antenna is bandwidth prediction. Antennas were simulated with varying geometrical

parameters and the resulting effects on the propagation constants were analyzed to find

means of increasing the bandwidth. A preliminary look into the effects of an array of

THW elements determined the required spacing to prevent mutual interaction of multiple

elements. The current method of fabricating the THW antenna is an imprecise, tedious

process of drilling holes and soldering vias. An improved fabrication technique replacing

the vias with conducting copper tape is documented.

5.1 Reduction of Memory for Simulation

The simulation development steps taken in the previous section allowed the trials to

be accurately run on personal computers with only 1 GB of RAM. Table 5.1 summarizes

means that can be used to eliminate unnecessary cells and the corresponding decrease in

memory use observed. These steps reduced the initial simulation of 900 million cells over

99.9% to only 572,000. Unless otherwise annotated, all trials modelled the THW antenna

as a five-cell-thick lossless substrate with uniform cells of size 3:1:1 using double precision.

These approximations enable simulations of up to 1 million cells.

Table 5.1: Ways the size of the simulation was reduced.
Assumption Memory Reduction

Modelling copper as zero thickness over 94 %

Extraction of kx using log over 80 %

Cell size 5:1:1 (3:1:1) 80 % (60 %)

Elimination of unneeded substrate nearly 80 %

5-cell-thick substrate nearly 80 %

No free space surrounding structure over 70 %

Lossless substrate 50 %

Remove non-excited side of TFW approx 45 %

Single precision approx 40 %

Total over 99.9 %
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5.2 Menzel antenna

The wall of the Thiele design is clearly superior to transverse slots at suppression of

the fundamental mode. The transverse slots of the Menzel design created field distributions

that made FDTD extraction of the propagation constant difficult for higher frequencies

and virtually impossible for the lower half of the leaky band, as shown in Figure 5.1. The

patterns of Figures 5.1(b) and 5.1(c) suggest destructive interference from the presence

of the EH0 mode in addition to EH1. The right half of the pattern enclosed in a dotted

box of Figures 5.1(d) and 5.1(e) is a waveform useable for propagation constant extraction

and yields data within 5% of both the transverse resonance approximation and the THW

simulation. An attempt to improve the waveform by enlarging the transverse slots is seen

in Figure 5.2. The lower frequencies are still unusable, but the usable portion of the higher

frequencies has been increased slightly.

5.3 Thiele Full Width (TFW) antenna

Figure 5.3 illustrates an investigation into the fields inside the TFW antenna. The

source cell seen in the upper left corner of Figure 5.3(a) has an Ez component with a

negative (red) value that induces positive (blue) fields in the immediately surrounding

cells on the excited (top) side. As the positive (blue) fields fill the excited side, negative

(red) fields are induced into the non-excited side (bottom) past the vertical PEC wall.

Figures 5.3(b)-5.3(e) show that these induced fields form a traveling wave in the non-

excited side that travels in the same +x̂ direction and has roughly the same wavelength,

λβ, as the excited side. Since the energy propagated along a longer path, the non-excited

side is not 180o out of phase but less than 90o. Like those of the excited side, the fields

of the non-excited side attenuate as they travel. This attenuation indicates that radiation

is also occurring on the non-excited side. Due to the less than 90o phase difference with

respect to the excited side, the radiation from the non-excited side is likely decreasing the

ability of the structure to radiate. Extracting kx from simulations does not support any

difference between the THW and the TFW. However, Dr. Thiele reports that previous

measurements comparing the far-field pattern of both antennas indicate that the THW

does in fact radiate with higher gain than the TFW.
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Figure 5.1: (a) The original Menzel antenna as simulated in Matlab at 6.7 GHz. The
PML appears maroon, PEC green, and substrate blue. The antenna yielded the following
traveling wave distributions: (b) at 6.2 GHz, (c) at 6.7 GHz, (d) at 7.2 GHz, and (e) at
7.7 GHz. The only useable data is surrounded by a dotted line.
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Figure 5.2: (a) The Menzel antenna with larger transverse slots as simulated in Matlab
at 6.7 GHz. The PML appears maroon, PEC green, and substrate blue. This antenna
yielded the following traveling wave distributions: (b) at 6.2 GHz, (c) at 6.7 GHz, (d) at
7.2 GHz, and (e) at 7.7 GHz. The only useable data is surrounded by a dotted line.
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(a)

(b)

(c)

(d)

(e)

Figure 5.3: The excited side (top of each figure) of the TFW antenna induces a traveling
wave on the non-excited side (bottom) that also travels to the right (+x̂) and attenuates
as it radiates. The source cell can be seen in the upper left corner of (a), (c), and (d).
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Figure 5.4: The propagation constant’s dependence on dielectric constant at 6.7 GHz
for the THW antenna (h = 0.787 mm; w = 7.5 mm.)

5.4 Modifying dimensions to meet bandwidth specifications

A bandwidth centered around a desired center frequency, fc, can be achieved by

scaling the width of the conducting strip, the height (or thickness) of the substrate, and/or

the permittivity of the substrate. The bandwidth can be increased, to a limited extent, by

the selection of the substrate material. As a fraction of the center frequency, the bandwidth

will be unaffected by altering the height and width, although fc can be shifted readily.

The choice of substrate material and thickness is usually dictated by cost or availability of

material, therefore, the width is the easiest of the three to manipulate.

5.4.1 Varying Dielectric Constant. Figure 5.4 illustrates the relationship between

the relative permittivity of the substrate and the propagation constant. Figure 5.5 shows

the bandwidth as a function of substrate permittivity overlayed with common substrates.

Bandwidth increases rapidly as the substrate dielectric constant nears that of free space.

The drawback of lower dielectric constant is a very low αx across most of the leaky band,

as seen in Figure 5.6. Low αx results in little energy radiating per unit length.
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Figure 5.7: The effect of the width of the conductor on the propagation constant at
6.7 GHz for the THW antenna (εr = 2.33; h = 0.787 mm.)

5.4.2 Varying Height. Figure 4.18 illustrates the relationship between the height,

or thickness, of the substrate and the propagation constant. Like permittivity, the height

of the substrate is usually dictated by the material available. All antennas simulated and

fabricated for this work used material that was 0.787 mm thick. As mentioned in the

previous section, the transverse resonance solution includes an approximation that limits

its applicability to thin substrates. The difference in βx between FDTD and transverse

resonance becomes noticeable for heights greater than approximately 1.1 mm.

5.4.3 Varying Width. Figure 5.7 shows that the propagation constant is very

sensitive to the width of the conductor strip. As little as 0.1 mm difference in width

will cause as much as 10% error in βx. This sensitivity to width questions the ability to

fabricate the wall with vias, since placement to even as little as 0.1 mm is difficult.

5.4.4 Frequency Scaling. The leaky frequency band can be scaled up or down

by scaling the width and height inversely while using the same permittivity. For example,

Table 5.2 shows the effect on frequency by halving the height and width. While the
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Figure 5.8: The center frequency has been scaled up by a factor of four by using a
quarter of the height and a quarter of the width.

bandwidth appears to double, the effective bandwidth remains the same percentage of the

center frequency, fc.

Table 5.2: Scaling the frequency by a factor of two.
Bandwidth 2.4 GHz 4.8 GHz

fc 7.08 GHz 14.16 GHz

w 15 mm 7.5 mm

h 787 µm 393.5 µm

εr 2.33 2.33

Figure 5.8 shows the effect of using one-fourth the width and one-fourth the height of

the THW. The center frequency has quadrupled to 28.32 GHz. Frequency scaling does

not prove useful for reduction of the FDTD simulation since cross section ratio of height

to width is unchanged. However, this property could be useful to shrink the antenna to

meet measurement facility size constraints. Conversely, fabrication may be made easier by

increasing the size of the antenna.
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Figure 5.9: The THW antenna curved 90o with a radius of approximately 93 mm.

5.5 Curvature

Constant curvature with the open end on the outward side was simulated at radii

of 3.36, 4.23, 5.32, and 9.3 cm. Only 900 was possible to simulate for the largest radius,

while 1800 was used for all others. The size of the computational domain necessitated only

single precision. Not enough information is available to extract kx for frequencies whose

λβ is greater than twice the length of the arc. Figure 4.15 shows the relation between

frequency and the wavelength of βx. The curvature trials are summarized in Table 5.3.

Figure 5.9 shows that curvature increases bandwidth by flattening βx, predominantly for

the lower frequencies, while keeping αx relatively unaffected. Figures 5.10 through 5.12

indicate that as curvature decreases, the bandwidth decreases.

Table 5.3: Summary of curvature trials.
1800 1800 1800 900

Radius(cm) 3.36 4.23 5.32 9.3

Arc length (cm) 10.6 13.3 16.7 14.6

Largest λβ possible (cm) 21.2 26.6 33.4 18.6

Lowest f possible 6.2 GHz 6.1 GHz 6.0 GHz 6.1 GHz

Approx Bandwidth 2.8 GHz 2.7 GHz 2.6 GHz 2.5 GHz
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Figure 5.10: The THW antenna curved 180o with a radius of approximately 53 mm.
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Figure 5.11: The THW antenna curved 180o with a radius of approximately 42 mm.
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Figure 5.12: The THW antenna curved 180o with a radius of approximately 34 mm.

Curvature with the wall on the outside appears to hamper the ability of the antenna

to set-up the EH1 mode. As seen in Figure 5.13, which is data from a 1800 arc of radius

4.23 cm, destructive interference indicates the presence of the EH0 mode.

5.6 Multiple Elements

From Equation (2.16) it is clear that the main beam is steerable in the longitudinal

direction from near endfire to near broadside. A linear array of these elements should,

therefore, be able to scan in two dimensions. A first step to developing such an array

is to determine the required spacing between neighboring elements. Two elements were

simulated next to each other at 7.2 GHz using double precision. The results were nearly

identical regardless of whether the second element was excited or not. The effect on

propagation constant by a neighboring element is shown in Figure 5.14. There appears to

be little interaction between elements if they are separated by at least 0.25λs and virtually

no interaction if the spacing is over 0.4λs, where:

λs =
λ0√
εr

(5.1)
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Figure 5.13: Curvature with the wall on the outside produces field distributions, seen
here at (a)6.4 GHz and (b) 7.4 GHz, that suggest the presence of multiple modes.
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Figure 5.14: (a) Actual error of |αx| and (b) relative error of βx from placing another
element a fraction of a wavelength from the open end of the antenna. For both figures, the
error is with respect to the propagation constant of a single element.
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Figure 5.15: The propagation constant from FDTD simulations is unaffected by the
removal of substrate outside of the wall.

5.7 Simplified Fabrication

Fabricating the THW antenna using vias soldered to the conducting strip and ground

plate is time consuming and inaccurate. Precise placement of a 0.52 mm thick wire is

quite difficult. As previously mentioned, Figure 5.7 shows that an error in width of as

little as 0.1 mm can affect the propagation constant by as much as 10%. The spacing

of the vias may also create a reactive component to the wall which could further alter

the propagation constant. Replacing the vias with conductive copper tape was quick and

simple. Figure 5.15 does not support the need for the substrate outside the wall, therefore,

the wall could be created by cutting the substrate and ground plate away up to the location

of the wall, applying copper tape to form the wall, and then soldering a replacement ground

plate. The resulting antenna is pictured in Figure 5.16.

Figures 5.17 and 5.18 are comparisons of far-field patterns among the two THW

antennas and the line source pattern from the FDTD-produced propagation constant.

The magnitude of the backward lobes indicates that attenuation constant, αx, of the

THW antenna made with conductive tape more closely matches the FDTD data than does
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Figure 5.16: THW antenna fabricated without vias.

the antenna utilizing vias. Position of the main lobe of each antenna indicates that βx is

nearly identical for each.

Table 5.4 summarizes the estimated error of the propagation constant of the THW

antenna fabricated with conducting copper tape. Propagation constant was estimated with

a line source pattern best fit match of the main and backward lobes. At 6.7 GHz, βx has

slightly more error than the antenna made with vias. Fabrication error making the width

of the conducting strip slightly wider than designed is attributed. The width of the strip

is more crucial and leads to more error for lower frequencies than higher frequencies.

Table 5.4: The THW antenna made with copper tape.
6.7 GHz 7.2 GHz

Measured kx/k0 0.732 - j0.034 0.86 - j0.023

FDTD kx/k0 0.677 - j0.040 0.816 - j0.0252

βx/k0 Relative error 8.2 % 5.4 %
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Figure 5.17: Comparison at 6.7 GHz of THW using vias, THW using conductive tape,
and the line source - FDTD pattern estimate.
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Figure 5.18: Comparison at 7.2 GHz of THW using vias, THW using conductive tape,
and the line source - FDTD pattern estimate.
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VI. Conclusions

This thesis provides the groundwork that will enable development of a lightweight,

inexpensive, aerodynamic, and broadband antenna. Whether for radar or communi-

cation, an antenna with these properties would be a force multiplier for the smaller, limited

payload air vehicles the United States Air Force will pursue in the coming years.

6.1 Summary of Results

A three dimensional Finite Difference Time Domain (FDTD) simulation was con-

structed to simulate various leaky wave microstrip antennas. FDTD was shown to be able

to extract the propagation constant, which is useful in predicting antenna performance

measures such as bandwidth and main bean direction. The antenna geometry was easily

manipulated in FDTD to meet various testing requirements of different structures. Sev-

eral means were found to decrease the number of cells required to accurately simulate the

antennas allowing elaborate simulations with only a standard desktop PC with 1 GB of

memory. The availability of high performance computing, which is typically required for

such modelling, was shown to be not necessary for most geometries.

The FDTD simulation provided results within 1% of a transverse resonance approxi-

mation of the same structure. The transverse resonance model has been validated by other

researchers with the Steepest Descent Contour [20, 30]. Measurements were also used for

validation. A best fit line source far field pattern was matched to the measured pattern

to estimate the propagation constant for comparison with the simulations. The ability to

quantitively compare simulated antenna propagation constants with propagation constants

of measured antennas was previously not available.

The Thiele Half Width (THW) antenna was shown to be an improvement over both

the Thiele Full Width (TFW) antenna as well as the Menzel antenna. The propagation

constant of the THW antenna behaved equivalently to the TFW antenna as anticipated

by image theory. In addition, the non-excited side of the TFW antenna was shown to

degrade the phase difference across the structure’s width preventing effective radiation.
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The vertical wall of the THW antenna was found to be more capable of blocking the

fundamental mode than the antenna developed by Menzel [23].

Two THW antenna elements were excited in close proximity to test mutual inter-

action. No effect to the propagation constant of elements was observed if the spacing

distance was greater than 0.4λ. This minimum spacing will allow multiple THW elements

to adequately radiate as an array.

Bandwidth improvements were found to be inversely related to curvature of the THW

antenna. Geometrical distortion may be a large source of error for the curved antennas

simulated. Therefore, these findings need confirmation with measured or analytical results.

The far-field line source pattern used is only valid for a straight antenna. A curved antenna

can be fabricated and measured, however, the propagation constant cannot be estimated

with the line source developed. A curved line source would be needed for comparison of

the propagation constant with simulated data.

The bandwidth of the THW antenna can also be increased by using a lower permit-

tivity dielectric constant; however, a commercially available substrate could not be found

lower than 2.2. Lowering the dielectric constant has the drawback of a very low αx across

much of the leaky band, which hinders an effective radiator. Varying the width of the

conducting strip or the height of the substrate were found to move the center frequency,

but did not change the bandwidth as a percentage of center frequency. The width and

height can be varied together to scale the center frequency. Frequency scaling can be used

to decrease the length of the antenna to meet measurement facility size constraints or to

increase the size of the antenna for ease of fabrication.

6.2 Follow-on Work

Knowledge gained from this thesis about the nature of the propagation constant

as a function of curvature and element spacing is critical for future efforts to produce a

spiral design. The Thiele antenna shows promise, but more work needs to be done before

an effective, broadband, broad pattern antenna can be made. Further research of the

THW would be aided by a faster simulation using more memory and a transformation of
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the simulated fields to the far-field. Areas of analysis that could next be tackled include

continuation of the curved geometry investigations and exploration of a full THW array.

An important topic not addressed in this work is the feed.

6.2.1 FDTD Simulation. A larger simulation is advantageous for a host of

reasons. Of course, more cells mean higher resolution and less geometrical distortion. A

limitation of the FDTD method was that the propagation constant was not able to be

determined when the length of the antenna was less than half of λβ . Simulations were

limited to 900,000 cells for double precision and 1,600,000 cells for single precision for

1 GB of computer memory. More memory would not prohibit extraction of the long λβ

propagation constants of low frequencies. Instead of terminating the structure into PML,

a larger simulation would allow the antenna to instead be surrounded by free space, which

would model the fields and currents of the actual antenna in addition to propagation

constant extraction. The loss tangent of certain substrates may be large enough to require

a lossy model, necessitating much more memory.

Computer memory is the factor limiting the simulation size. The solution is to create

a parallel version of the code to allow several computers working the simulation simulta-

neously. The E field components of each cell are determined from that cell’s previous time

step as well as the directly adjacent H fields. The H field components update analogously.

The E fields are not updated at the same time as the H fields, and vice versa. Therefore,

breaking up the computational space allowing multiple processing of separate portions of

the computational space simultaneously is possible. Many methods of parallelizing Matlab

have been developed, including MatlabMPI, which is available in Wright-Patterson AFB’s

High Performance Computing facility.

The length of time needed to run the simulation was not a problem due to the

large number of PC’s that were available for this research. If time is an issue, as would

likely be the case if the simulations were larger, Matlab should be abandoned for the field

update loop of the current FDTD program. Fortran would provide a vast improvement in

computational speed.
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A curved line source approximation is needed to evaluate the curved simulation

against a pattern measurement of a fabricated curved design. However, the line source

approximation gives an indication of only the main lobes of the far-field pattern. Since

the fields immediately above the simulated antenna are known, a near-field to far-field

transformation would provide a more exact simulated pattern for comparison.

6.2.2 THW antenna. The best bandwidth improvements involve increasing αx

while not lowering βx. This was shown to be the effect of curvature. Since the bandwidth of

the THW antenna is increased by curvature, the natural next step is a spiral. Taper would

likely further increase bandwidth and this could be investigated with the FDTD simulation.

A substrate with a graded dielectric constant, although quite difficult to construct, could

provide the benefits of increased bandwidth and a decreased backward lobe.

Since the main beam is frequency steerable, a linear array of THW antennas could

allow a two dimensional scanning capability. Limited investigation shows that mutual

coupling does not appear to be a factor in the leaky region if elements are separated by

0.4λ. Simulation of an array would require much more computation than even the curved

trials. Parallel processing and a near-field to far-field transformation would enhance this

investigation.

6.2.3 Feed. A proper impedance match with the source is vital to efficient power

use by an antenna. Gain of the antenna would also be enhanced. The simulated fields inside

the THW antenna should provide the information needed to characterize the impedance of

the structure. An optimum feed could then be realized using the required matching stubs,

although this match may only be effective for a narrow frequency band. Since the goal is a

broadband antenna, a balun might be necessary to provide the desired insertion loss over

the entire leaky band.

6.2.4 S-Parameter Measurements. Sheen developed an S-parameter extraction

technique to de-embed alpha and beta from network analyzer measurements [37]. This

method could be useful for geometries that are difficult to simulate. The drawback to this

method is the high cost of building multiple designs.
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Appendix A. Matlab Code

TH.m

function TH(f,steps,sing)

% 3-D FDTD code with UPML absorbing boundary conditions

% Date of this version: 21 Jan 2005

%***********************************************************************

% PATTERNED AFTER CODE WRITTEN BY:

% Keely J. Willis, Ph.D. Student

% UW Computational Electromagnetics Laboratory

% Director: Prof. Susan C. Hagness

%***********************************************************************

%

% INPUTS: ‘f’ IS THE EXCITATION FREQUENCY IN (Hz)

% ‘steps’ BEGINS TIME STEPPING IF ‘1’, SKIPS TIME STEPPING TO ONLY DISPLAY

% SIMULATION PARAMETERS IF ‘0’

% ‘sing’ SELECTS SINGLE PRECISION IF ‘1’, DOUBLE PRECISION IF ‘0’

%

%***********************************************************************

%

% SIMULATION ‘name’ of the form ‘THexample67’ where:

%

% ‘TH’ IS A THIELE HALF WIDTH (THW) ANTENNA

% or ‘TF’ IS A THIELE FULL WIDTH (TFW) ANTENNA

% or ‘MENZEL’ IS THE MENZEL ANTENNA

% or ‘THCURVEOUT’ IS A CURVED THW WITH THE WALL OUTSIDE

% or ‘THCURVEIN’ IS A CURVED THW WITH THE WALL INSIDE

% ‘example’ IS THE SPECIFIC CONFIGURATION, SUCH AS:

% ‘loss’ WHICH INCLUDES LOSS

% ‘sing’ WHICH IS SINGULAR PRECISION

% ‘norm’ WHICH IS LOSSLESS DOUBLE PRECISION 3:1:1

% ‘smaller’ WHICH IS A THINNER ‘norm’

% ‘exxx’ WHICH IS ‘norm’ WITH ANOTHER DIELECTRIC

% ‘hxxx’ WHICH IS ‘norm’ WITH ANOTHER SUBSTRATE THICKNESS

% ‘rxx’ WHICH IS THE RADIUS OF CURVATURE (cm)

% ‘67’ IS THE EXCITATION FREQUENCY OF 6.7 GHz
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%

%***********************************************************************

%

% EXAMPLE OF THE SIMULATION MATLAB DISPLAY:

% ---------------------------------*

% THexample67 began at 13-Feb-2005 12:04:53.

% Computational grid is 158790 cells.

% Resolution is: 62.24 cells/wavelength.

% Structure size: 66.9 X 7.50 X 0.787 (mm)

% Cell size ratio: 2.99 : 1.00 : 1.00

% Time steps: 13020 (dt= 0.3437 pS)

%

% FDTD3D preprocessing took 1.55 seconds.

%

% Period 1 of 30 took 9.14 minutes.

% (13-Jan-2005 12:14:07)

% "

% "

% < DISPLAY FOR EACH PERIOD OF SOURCE >

% "

% "

% Period 30 of 30 took 9.18 minutes.

% (13-Jan-2005 17:01:02)

%

% End at 13-Feb-2005 17:01:35.

%***********************************************************************

%

% OUTPUTS:

% ‘THexample67.mat’: A FILE CONTAINING ALL OF THE SIMULATION DATA THAT WILL BE

% USED TO EXTRACT THE PROPAGATION CONSTANT.

%

% ‘THexample67QUART.mat’: A FILES SAVED AFTER A FOURTH OF THE SIMULATION IS

% COMPLETE. VERY USEFUL TO ESTIMATE THE REMAINING SIMULATION TIME.

%

% ‘MTHexample67.mat’: AN OPTIONAL FILE CONTAINING FRAMES OF THE FIELDS.

% (WARNING: THIS FILE CAN GET HUGE ~200 MB)

%
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% ‘THexample67.avi’: AN OPTIONAL FILE OF MOVIE IN COMPRESSED FORMAT

%

%***********************************************************************

%***********************************************************************

tic

Begin= datestr(now); % STORE BEGINING TIME OF SIMULATION

fprintf(’\n\n---------------------------------*’);

name= [mfilename,’example’,num2str(f/1e8)];

% CREATE A SIMULATION NAME

fprintf(’\n%s began at %s.’,name,Begin);

curve= 0; % ’1’ TO UPDATE PEC FOR CURVE

mov= 0; % ’1’ TO SAVE A MOVIE OF THE FIELDS

av= 0; % ’1’ TO SAVE .avi MOVIE (ONLY IF mov= ’1’)

if av % CREATE A .avi FILE TO BE WRITTEN TO

aviobj = avifile([name,’.avi’],’fps’,12,’quality’,100);

end;

%***********************************************************************

% FREQUENCY

%***********************************************************************

if sing c= single(299792458); % speed of light (m/s)

else c= 299792458; end

omega= 2*pi*f; % angular frequency (rad/s)

lambda= c/f; % wavelength (m)

k= 2*pi/lambda; % wavenumber (1/m)

%***********************************************************************

% MATERIAL PARAMETERS : m=1: free space m=2: Substrate

%***********************************************************************

u0= pi*4e-7; % permeability of free space (H/m)

e0= c^-2/u0; % permittivity of free space (F/m)

lossTan= 0.00; % lossless case

% lossTan= 0.0012; % for RT/Duroid 5870
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er=[1 2.33+j*lossTan*2.33]; % relative permitivity

e= e0*er;

sig= [zeros(1,length(er)) ];% electrical conductance

ur= [ones(1,length(er)) ]; % relative permeability

u= ur*u0;

for m= 1:length(er) % CREATE COEFFICIENTS SPECIFYING MATERIAL FOR EACH CELL

C.c1(m)= (2*e(m)-sig(m)*dt)/(2*e(m)+sig(m)*dt);

C.c2(m)= 2*e(m)*dt/(2*e(m)+sig(m)*dt);

C.c3(m)= C.c1(m);

C.c4(m)= 1/(2*e(m).^2+e(m)*sig(m)*dt);

C.c5(m)= (2*e(m)+sig(m)*dt);

C.c6(m)= (2*e(m)-sig(m)*dt);

D.d1(m)= 1;

D.d2(m)= dt;

D.d3(m)= 1;

D.d4(m)= 1/(2*e(m)*u0);

D.d5(m)= 2*e(m);

D.d6(m)= 2*e(m);

end

%***********************************************************************

% GRID PARAMETERS

%***********************************************************************

load Compare

pABx=round(pABx*100)/100;

B= pB(find(pABx==f/1e9));

L= c/B/f; % wavelength predicted by Transverse Resonance

X= 2*L; % length (m) (for approx 2 wavelengths)

Y= (7.42e-3); % width of strip (m) GUESS: HALF CELL SHORTER

Zs= 787e-6; % thickness of substrate (m)

dz= Zs/5; % 5 cell thick substrate

if curve % 1.5:1.5:1 cell ratio
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dx= X/round(X/(1.5*dz));% size of <x> cell edge (m)

dy= Y/round(Y/(1.5*dz));% size of <y> cell edge (m)

r= 2/pi*X; % RADIUS OF CURVATURE

jstruct= round((r+Y-r/sqrt(2))/dy) +4;

istruct= round(sqrt(2)*r/dx);

if mod(istruct,2)

istruct= round(sqrt(2)*r/dx)+1;

end

kstruct= Zs/dz;

else % 3:1:1 cell ratio

istruct= round(X/3/dz); % size of structure (#cells) in <x>

jstruct= round(Y/1/dz)+4;% size of structure (#cells) in <y>

kstruct= Zs/dz; % size of structure (#cells) in <z>

dx= X/istruct; % size of <x> cell edge (m)

dy= .0075/(jstruct-3.5);% size of <y> cell edge (m)

% HALF-CELL CORRECTION MADE TO WIDTH OF CONDUCTING STRIP

end

if f/1e9 > 6.9 pml= 6; % thickness of PML region (# cells)

elseif f/1e9 > 6.6 pml= 8;

else pml= 12; end;

buffer= 2; % free space buffer above structure

pb= pml+buffer;

it= istruct+2*pml; % size of total sim (#cells) in <x>

jt= jstruct+2*pml; % size of total sim (#cells) in <x>

kt= kstruct+pb; % size of total sim (#cells) in <x>

numcells= (it*jt*kt; % TOTAL NUMBER OF CELLS

fprintf(’\nComputational grid is %.0f cells.’,numcells);

%***********************************************************************

% CELL SIZE / TIME STEP

%***********************************************************************

DX= 1/dx; DY= 1/dy; DZ= 1/dz;% MULTIPLICATION IS SLIGHTLY FASTER THAN DIVISION
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res= lambda/sqrt(2.33)/max([dx dy dz]); % THE COARSEST RESOLUTION IN THE GRID

fprintf(’\nResolution is: %.2f cells/wavelength.’, res);

fprintf(’\nStructure size: %.1f X %.2f X %.3f (mm)’,...

istruct*dx*1000, (jstruct-3.5)*dy*1000, kstruct*dz*1000);

cellx= dx/min([dx dy dz]);

celly= dy/min([dx dy dz]);

cellz= dz/min([dx dy dz]);

fprintf(’\nCell size ratio: %.2f : %.2f : %.2f ’, cellx, celly , cellz );

dt= .9/(c*sqrt(DX^2 + DY^2 + DZ^2));

% ENSURE dt IS LESS THAN COURANT CRITERIA

periods= 30; % # periods of source (more for lower freqs)

TimeSteps= round(periods*round(1/(f*dt))); % TOTAL NUMBER OF TIME STEPS

fprintf(’\nTime steps: %.0f (dt= %.4f pS)’,TimeSteps,dt*1e12);

%***********************************************************************

% SOURCE

%***********************************************************************

s0= 100; % SOURCE MAGNITUDE

n= 3; % number of periods of ramp

numramp= n*round(1/(f*dt));

ramp= ones(1,TimeSteps);

ramp(1:numramp)= ((1:numramp)/numramp).^3; % CUBIC RAMP OVER FIRST THREE PERIODS

ramp= ramp(1:TimeSteps);

S0= s0*ramp;

source= S0.*sin(omega*((1:TimeSteps))*dt); % CONSTANT FREQUENCY SOURCE

clear ramp s0 S0;

%***********************************************************************

% INITIALIZE COMPUTATIONAL SPACE

%***********************************************************************

m=1;

if ~sing field= InitializeFields(it,jt,kt); % SET-UP A CHUNK OF MEMORY

else field= InitializeFieldsSingle(it,jt,kt); end
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[C,D]= InitializeMainGrid(C,D,it,jt,kt,m); % MAKE ALL CELLS FREE SPACE

Is= 1:it;

Js= 1:jt;

Ks= pb+1:kt;

m= 2;

[C,D]= GetMaterial(C,D,Is,Js,Ks,m); % MAKE THE CELLS (Is,Js,Ks) SUBSTRATE

m= 1;

[C,D]= FillPML(C,D,dx,dy,dz,pml,pb,c,e,e0,u,dt,it,jt,kt,m);

% MAKE ALL OF THE PML MATCHED TO FREE SPACE

m= 2;

[C,D]= changePML(C,D,dx,dy,dz,pml,pb,c,e,e0,u,dt,it,jt,kt,m,Ks(1));

% MAKE Ks PML MATCHED TO SUBSTRATE

if curve % SPECIFY SOURCE POINT AND DISPLAY VECTOR

ks= pb+round(kstruct/2);

kd= ks;

[field,is,js,id,jd,ANGLES]= InitializePEC(field,it,jt,kt,pb,pml,r,dx,dy,dz,Y,ks);

% [field,is,js,id,jd,ANGLES]= InitializePEC90(field,it,jt,kt,pb,pml,r,dx,dy,dz,Y,ks);

else

% Location of current source

is= pml+5;

js= pml+5;

ks= pb+3;

% vector to display

jd= js+1;

kd= ks;

end

fprintf(’\n\nFDTD3D preprocessing took %.2f seconds.\n’,toc);

% END OF PRE-PROCESSING--ONLY DO THE ABOVE ONCE

%***********************************************************************
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if steps % BEGIN TIME STEPPING LOOP

last= toc;

flag= 1;

for t=1:TimeSteps

if flag

if t > TimeSteps/4 % SEND A MESSAGE WHEN 1/4 DONE

quartertime= toc-last;

save([cd,’\Data\’,name,’quart’], ’quartertime’);

flag= 0;

end;

end;

if mod(t,round(1/(f*dt)))==0 % SAVE DATA ONCE A PERIOD

fprintf(’\nPeriod %.0f of %.0f took %.2f minutes. \n\t(%s)\n’,...

t/round(1/(f*dt)),periods,(toc-last)/60,datestr(now));

last= toc;

if curve

for nn= 1:length(id)

EZDATA(nn)= field.Ez(id(nn),jd(nn),kd);

end;

else EZDATA(t/round(1/(f*dt)),:)= field.Ez(:,jd,kd); end;

end

field= UpdateE(field,C,D,it,jt,kt,DX,DY,DZ); % UPDATE E FIELDS

field.Ez(is,js,ks)= source(t); %HARD SOURCE

if curve % ZERO THE E FIELDS THIS WAY TO REPRESENT PEC

field.Ex= field.Ex .*field.pecEx;

field.Ey= field.Ey .*field.pecEy;

field.Ez= field.Ez .*field.pecEz;

else % ZERO THE E FIELDS THIS WAY

field= addPECTH(field, it, jt, kt, pb, pml);

% field= addPECTF(field, it, jt, kt, pb, pml);

% field= addPECMENZ(field, it, jt, kt, pb, pml);

end
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field= UpdateH(field,C,D,it,jt,kt,DX,DY,DZ); % UPDATE H FIELDS

if mov % SAVE A FRAME OF FIELD DATA

frame= 20; % SAVE EVERY frameTH TIME STEP

figure(2);

if mod(t,frame)==0;

timestep=int2str(t);

tview=squeeze( field.Ez(:,:,kd) );

subplot(’position’,[0.15 0.57 0.7 0.35])

imagesc(tview’);

caxis([-0.1 0.1]);

colorbar;

axis image;

title([’Ez: View from above (+z); time step =’,timestep]);

xlabel(’i coordinate’);

ylabel(’j coordinate’);

sview=squeeze( field.Ez(:,jd,:) );

subplot(’position’,[0.15 0.08 0.7 0.35])

imagesc(sview’);

caxis([-0.1 0.1]);

colorbar;

axis image;

title([’Ez: Cross-section (-y); time step = ’,timestep]);

xlabel(’i coordinate’);

ylabel(’k coordinate’);

tt= t/frame;

M(tt)= getframe(gcf); % SAVE A FRAME FOR MOVIE

if av % SAVE A FRAME FOR .avi MOVIE

aviobj = addframe(aviobj,M(tt));

end

end;

end;

end

98



if mov

movie(gcf,M,0,20); % Matlab movie

if av aviobj = close(aviobj); end % .avi MOVIE IS NOW IN CURRENT DIRECTORY

save([cd,’\Data\M’,name],’M’);

clear M;

end

clear field % DON’T SAVE ALL OF THE FIELDS OR THE .mat FILE IS HUGE

clear C D source;

End= datestr(now);

fprintf(’\nEnd = %s.\n\n’,End);

time= toc;

save([cd,’\Data\’,name]);

end
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InitializeFields.m

function field= InitializeFields(it,jt,kt)

% FUNCTION:

% 1. SET-UP MEMORY FOR NUMBER OF CELLS: (it,jt,kt) OF SIZE double

% 2. CREATE STRUCT ’field’ THAT CONTAINS ALL OF THE FIELD COMPONENTS

field.Ex= zeros(it,jt+1,kt+1);

field.Ey= zeros(it+1,jt,kt+1);

field.Ez= zeros(it+1,jt+1,kt);

field.Dx = zeros(it,jt+1,kt+1);

field.Dy = zeros(it+1,jt,kt+1);

field.Dz = zeros(it+1,jt+1,kt);

field.Dxn= zeros(it,jt+1,kt+1);

field.Dyn= zeros(it+1,jt,kt+1);

field.Dzn= zeros(it+1,jt+1,kt);

field.Hx= zeros(it+1,jt,kt);

field.Hy= zeros(it,jt+1,kt);

field.Hz= zeros(it,jt,kt+1);

field.Bx = zeros(it+1,jt,kt);

field.By = zeros(it,jt+1,kt);

field.Bz = zeros(it,jt,kt+1);

field.Bxn= zeros(it+1,jt,kt);

field.Byn= zeros(it,jt+1,kt);

field.Bzn= zeros(it,jt,kt+1);
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InitializeFieldsSingle.m

function field= InitializeFields(it,jt,kt)

% FUNCTION:

% 1. SET-UP MEMORY FOR NUMBER OF CELLS: (it,jt,kt) OF SIZE single

% 2. CREATE STRUCT ’field’ THAT CONTAINS ALL OF THE FIELD COMPONENTS

field.Ex= single(zeros(it,jt+1,kt+1));

field.Ey= single(zeros(it+1,jt,kt+1));

field.Ez= single(zeros(it+1,jt+1,kt));

field.Dx = single(zeros(it,jt+1,kt+1));

field.Dy = single(zeros(it+1,jt,kt+1));

field.Dz = single(zeros(it+1,jt+1,kt));

field.Dxn= single(zeros(it,jt+1,kt+1));

field.Dyn= single(zeros(it+1,jt,kt+1));

field.Dzn= single(zeros(it+1,jt+1,kt));

field.Hx= single(zeros(it+1,jt,kt));

field.Hy= single(zeros(it,jt+1,kt));

field.Hz= single(zeros(it,jt,kt+1));

field.Bx = single(zeros(it+1,jt,kt));

field.By = single(zeros(it,jt+1,kt));

field.Bz = single(zeros(it,jt,kt+1));

field.Bxn= single(zeros(it+1,jt,kt));

field.Byn= single(zeros(it,jt+1,kt));

field.Bzn= single(zeros(it,jt,kt+1));
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InitializeMainGrid.m

function [C,D]= InitializeMainGrid(C,D,it,jt,kt,m)

% FUNCTION:

% 1. SET-UP ALL CELLS TO CONTAIN MATERIAL ’m’

Ex= zeros(it,jt+1,kt+1);

Ey= zeros(it+1,jt,kt+1);

Ez= zeros(it+1,jt+1,kt);

Hx= zeros(it+1,jt,kt);

Hy= zeros(it,jt+1,kt);

Hz= zeros(it,jt,kt+1);

C.c1Ex= ones(size(Ex)).*C.c1(m);

C.c2Ex= ones(size(Ex)).*C.c2(m);

C.c3Ex= ones(size(Ex)).*C.c3(m);

C.c4Ex= ones(size(Ex)).*C.c4(m);

C.c5Ex= ones(size(Ex)).*C.c5(m);

C.c6Ex= ones(size(Ex)).*C.c6(m);

C.c1Ey= ones(size(Ey)).*C.c1(m);

C.c2Ey= ones(size(Ey)).*C.c2(m);

C.c3Ey= ones(size(Ey)).*C.c3(m);

C.c4Ey= ones(size(Ey)).*C.c4(m);

C.c5Ey= ones(size(Ey)).*C.c5(m);

C.c6Ey= ones(size(Ey)).*C.c6(m);

C.c1Ez= ones(size(Ez)).*C.c1(m);

C.c2Ez= ones(size(Ez)).*C.c2(m);

C.c3Ez= ones(size(Ez)).*C.c3(m);

C.c4Ez= ones(size(Ez)).*C.c4(m);

C.c5Ez= ones(size(Ez)).*C.c5(m);

C.c6Ez= ones(size(Ez)).*C.c6(m);

D.d1Hx= ones(size(Hx)).*D.d1(m);

D.d2Hx= ones(size(Hx)).*D.d2(m);

D.d3Hx= ones(size(Hx)).*D.d3(m);
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D.d4Hx= ones(size(Hx)).*D.d4(m);

D.d5Hx= ones(size(Hx)).*D.d5(m);

D.d6Hx= ones(size(Hx)).*D.d6(m);

D.d1Hy= ones(size(Hy)).*D.d1(m);

D.d2Hy= ones(size(Hy)).*D.d2(m);

D.d3Hy= ones(size(Hy)).*D.d3(m);

D.d4Hy= ones(size(Hy)).*D.d4(m);

D.d5Hy= ones(size(Hy)).*D.d5(m);

D.d6Hy= ones(size(Hy)).*D.d6(m);

D.d1Hz= ones(size(Hz)).*D.d1(m);

D.d2Hz= ones(size(Hz)).*D.d2(m);

D.d3Hz= ones(size(Hz)).*D.d3(m);

D.d4Hz= ones(size(Hz)).*D.d4(m);

D.d5Hz= ones(size(Hz)).*D.d5(m);

D.d6Hz= ones(size(Hz)).*D.d6(m);
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GetMaterial.m

function [C,D]= GetMaterial(C,D,I,J,K,mat)

% FUNCTION:

% 1. UPDATE ’C’ AND ’D’ TO CHANGE THE MATERIAL IN CELLS (I,J,K) TO ’mat’

C.c1Ex(I,[J max(J)+1],[K max(K)+1])= C.c1(mat);

C.c2Ex(I,[J max(J)+1],[K max(K)+1])= C.c2(mat);

C.c3Ex(I,[J max(J)+1],[K max(K)+1])= C.c3(mat);

C.c4Ex(I,[J max(J)+1],[K max(K)+1])= C.c4(mat);

C.c5Ex(I,[J max(J)+1],[K max(K)+1])= C.c5(mat);

C.c6Ex(I,[J max(J)+1],[K max(K)+1])= C.c6(mat);

C.c1Ey([I max(I)+1],J,[K max(K)+1])= C.c1(mat);

C.c2Ey([I max(I)+1],J,[K max(K)+1])= C.c2(mat);

C.c3Ey([I max(I)+1],J,[K max(K)+1])= C.c3(mat);

C.c4Ey([I max(I)+1],J,[K max(K)+1])= C.c4(mat);

C.c5Ey([I max(I)+1],J,[K max(K)+1])= C.c5(mat);

C.c6Ey([I max(I)+1],J,[K max(K)+1])= C.c6(mat);

C.c1Ez([I max(I)+1],[J max(J)+1],K)= C.c1(mat);

C.c2Ez([I max(I)+1],[J max(J)+1],K)= C.c2(mat);

C.c3Ez([I max(I)+1],[J max(J)+1],K)= C.c3(mat);

C.c4Ez([I max(I)+1],[J max(J)+1],K)= C.c4(mat);

C.c5Ez([I max(I)+1],[J max(J)+1],K)= C.c5(mat);

C.c6Ez([I max(I)+1],[J max(J)+1],K)= C.c6(mat);

D.d1Hx([I max(I)+1],J,K)= D.d1(mat);

D.d2Hx([I max(I)+1],J,K)= D.d2(mat);

D.d3Hx([I max(I)+1],J,K)= D.d3(mat);

D.d4Hx([I max(I)+1],J,K)= D.d4(mat);

D.d5Hx([I max(I)+1],J,K)= D.d5(mat);

D.d6Hx([I max(I)+1],J,K)= D.d6(mat);

D.d1Hy(I,[J max(J)+1],K)= D.d1(mat);

D.d2Hy(I,[J max(J)+1],K)= D.d2(mat);

D.d3Hy(I,[J max(J)+1],K)= D.d3(mat);
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D.d4Hy(I,[J max(J)+1],K)= D.d4(mat);

D.d5Hy(I,[J max(J)+1],K)= D.d5(mat);

D.d6Hy(I,[J max(J)+1],K)= D.d6(mat);

D.d1Hz(I,J,[K max(K)+1])= D.d1(mat);

D.d2Hz(I,J,[K max(K)+1])= D.d2(mat);

D.d3Hz(I,J,[K max(K)+1])= D.d3(mat);

D.d4Hz(I,J,[K max(K)+1])= D.d4(mat);

D.d5Hz(I,J,[K max(K)+1])= D.d5(mat);

D.d6Hz(I,J,[K max(K)+1])= D.d6(mat);

105



FillPML.m

function [C,D]= FillPML(C,D,dx,dy,dz,pml,pb,c,e,e0,u,dt,it,jt,kt,m)

%***********************************************************************

% Program author: Keely J. Willis, Ph.D. Student

% UW Computational Electromagnetics Laboratory

% Director: Prof. Susan C. Hagness

%***********************************************************************

% FUNCTION:

% 1. FILL THE OUTSIDE ’pml’ NUMBER OF CELLS AS A POLYNOMIAL GRADED UNIAXIAL

% PERFECTLY MATCHED LAYER (UPML) MATCHED TO FREE SPACE BY UPDATING ’C’ AND ’D’

%

%***********************************************************************

rmax= exp(-16); % MAX DESIRED NORMAL REFLECTION

order= 4; % ORDER OF GRADING

% xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-varying material properties

d= pml*dx; % <x> THICKNESS OF PML (m)

sigmaMax= -(order+1)*log(rmax)*e0*c*.5/d; % MAX <x> CONDUCTIVITY

sigfactor=sigmaMax/(dx*(d^order)*(order+1));

for i=1:pml

x1=(pml-i+1)*dx;

x2=(pml-i)*dx;

sigma=sigfactor*(x1^(order+1)-x2^(order+1));

facm=(2*e(m)-sigma*dt);

facp=(2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS IN THE CENTER OF THE UPML

C.c5Ex(i,:,:)=facp;

C.c5Ex(it-i+1,:,:)=facp;

C.c6Ex(i,:,:)=facm;

C.c6Ex(it-i+1,:,:)=facm;

D.d1Hz(i,:,:)=facm/facp;

D.d1Hz(it-i+1,:,:)=facm/facp;

D.d2Hz(i,:,:)=2*e(m)*dt/facp;

D.d2Hz(it-i+1,:,:)=2*e(m)*dt/facp;
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D.d3Hy(i,:,:)=facm/facp;

D.d3Hy(it-i+1,:,:)=facm/facp;

D.d4Hy(i,:,:)=1/facp/u(m);

D.d4Hy(it-i+1,:,:)=1/facp/u(m);

x1=(pml-i+1.5)*dx;

x2=(pml-i+0.5)*dx;

sigma=sigfactor*(x1^(order+1)-x2^(order+1));

facm=(2*e(m)-sigma*dt);

facp=(2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS ON THE UPML BOUNDARY

C.c1Ez(i,:,:)=facm/facp;

C.c1Ez(it+1-i+1,:,:)=facm/facp;

C.c2Ez(i,:,:)=2*e(m)*dt/facp;

C.c2Ez(it+1-i+1,:,:)=2*e(m)*dt/facp;

C.c3Ey(i,:,:)=facm/facp;

C.c3Ey(it+1-i+1,:,:)=facm/facp;

C.c4Ey(i,:,:)=1/facp/e(m);

C.c4Ey(it+1-i+1,:,:)=1/facp/e(m);

D.d5Hx(i,:,:)=facp;

D.d5Hx(it+1-i+1,:,:)=facp;

D.d6Hx(i,:,:)=facm;

D.d6Hx(it+1-i+1,:,:)=facm;

end

% yyyyyyyyyyyyyyyyyyyyyyyyyyyyy-varying material properties

d= pml*dy; % <y> THICKNESS OF PML (m)

sigmaMax= -(order+1)*log(rmax)*e0*c*.5/d; % MAX <y> CONDUCTIVITY

sigfactor= sigmaMax/(dy*(d^order)*(order+1));

for j=1:pml

y1= (pml-j+1)*dy;

y2= (pml-j)*dy;

sigma= sigfactor*(y1^(order+1)-y2^(order+1));

facm= (2*e(m)-sigma*dt);
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facp= (2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS IN THE CENTER OF THE UPML

C.c5Ey(:,j,:)=facp;

C.c5Ey(:,jt-j+1,:)=facp;

C.c6Ey(:,j,:)=facm;

C.c6Ey(:,jt-j+1,:)=facm;

D.d1Hx(:,j,:)=facm/facp;

D.d1Hx(:,jt-j+1,:)=facm/facp;

D.d2Hx(:,j,:)=2*e(m)*dt/facp;

D.d2Hx(:,jt-j+1,:)=2*e(m)*dt/facp;

D.d3Hz(:,j,:)=facm/facp;

D.d3Hz(:,jt-j+1,:)=facm/facp;

D.d4Hz(:,j,:)=1/facp/u(m);

D.d4Hz(:,jt-j+1,:)=1/facp/u(m);

y1= (pml-j+1.5)*dy;

y2= (pml-j+0.5)*dy;

sigma= sigfactor*(y1^(order+1)-y2^(order+1));

facm= (2*e(m)-sigma*dt);

facp= (2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS ON THE UPML BOUNDARY

C.c1Ex(:,j,:)=facm/facp;

C.c1Ex(:,jt+1-j+1,:)=facm/facp;

C.c2Ex(:,j,:)=2*e(m)*dt/facp;

C.c2Ex(:,jt+1-j+1,:)=2*e(m)*dt/facp;

C.c3Ez(:,j,:)=facm/facp;

C.c3Ez(:,jt+1-j+1,:)=facm/facp;

C.c4Ez(:,j,:)=1/facp/e(m);

C.c4Ez(:,jt+1-j+1,:)=1/facp/e(m);

D.d5Hy(:,j,:)=facp;

D.d5Hy(:,jt+1-j+1,:)=facp;

D.d6Hy(:,j,:)=facm;

D.d6Hy(:,jt+1-j+1,:)=facm;

end
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% zzzzzzzzzzzzzzzzzzzzz-varying material properties

d= pml*dz; % <z> THICKNESS OF PML (m)

sigmaMax= -(order+1)*log(rmax)*e0*c*.5/d; % MAX <z> CONDUCTIVITY

sigfactor= sigmaMax/(dy*(d^order)*(order+1));

for k=1:pml

z1=(pml-k+1)*dz;

z2=(pml-k)*dz;

sigma=sigfactor*(z1^(order+1)-z2^(order+1));

facm=(2*e(m)-sigma*dt);

facp=(2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS IN THE CENTER OF THE UPML

C.c5Ez(:,:,k)=facp;

C.c6Ez(:,:,k)=facm;

D.d1Hy(:,:,k)=facm/facp;

D.d2Hy(:,:,k)=2*e(m)*dt/facp;

D.d3Hx(:,:,k)=facm/facp;

D.d4Hx(:,:,k)=1/facp/u(m);

z1=(pml-k+1.5)*dz;

z2=(pml-k+0.5)*dz;

sigma=sigfactor*(z1^(order+1)-z2^(order+1));

facm=(2*e(m)-sigma*dt);

facp=(2*e(m)+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS ON THE UPML BOUNDARY

C.c1Ey(:,:,k)=facm/facp;

C.c2Ey(:,:,k)=2*e(m)*dt/facp;

C.c3Ex(:,:,k)=facm/facp;

C.c4Ex(:,:,k)=1/facp/e(m);

D.d5Hz(:,:,k)=facp;

D.d6Hz(:,:,k)=facm;

end
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% <x> NORMAL PEC WALLS

C.c1Ez(1,:,:)=-1.0;

C.c1Ez(it+1,:,:)=-1.0;

C.c2Ez(1,:,:)=0.0;

C.c2Ez(it+1,:,:)=0.0;

C.c3Ey(1,:,:)=-1.0;

C.c3Ey(it+1,:,:)=-1.0;

C.c4Ey(1,:,:)=0.0;

C.c4Ey(it+1,:,:)=0.0;

% <y> NORMAL PEC WALLS

C.c1Ex(:,1,:)=-1;

C.c1Ex(:,jt+1,:)=-1;

C.c2Ex(:,1,:)=0;

C.c2Ex(:,jt+1,:)=0;

C.c3Ez(:,1,:)=-1;

C.c3Ez(:,jt+1,:)=-1;

C.c4Ez(:,1,:)=0;

C.c4Ez(:,jt+1,:)=0;

% <z> NORMAL PEC WALLS

C.c1Ey(:,:,1)=-1;

C.c2Ey(:,:,1)=0;

C.c3Ex(:,:,1)=-1;

C.c4Ex(:,:,1)=0;
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ChangePML.m

function [C,D]= changePML(C,D,dx,dy,dz,pml,pb,c,e,e0,u,dt,it,jt,kt,m,K)

%***********************************************************************

% Program author: Keely J. Willis, Ph.D. Student

% UW Computational Electromagnetics Laboratory

% Director: Prof. Susan C. Hagness

%***********************************************************************

% FUNCTION:

% 1. CHANGE PML OF OUTSIDE CELLS OF LAYERS (K:kt) TO BE MATCHED TO MATERIAL

% ’m’ BY UPDATING ’C’ AND ’D’

%

%***********************************************************************

rmax= exp(-16); % MAX DESIRED NORMAL REFLECTION

order= 4; % ORDER OF GRADING

% xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-varying material properties

d= pml*dx; % <x> THICKNESS OF PML (m)

sigmaMax= -(order+1)*log(rmax)*e0*c*.5/d; % MAX <x> CONDUCTIVITY

sigfactor=sigmaMax/(dx*(d^order)*(order+1));

for i=1:pml

x1= (pml-i+1)*dx;

x2= (pml-i)*dx;

sigma= sigfactor*(x1^(order+1)-x2^(order+1));

facm= (2*e0-sigma*dt);

facp= (2*e0+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS IN THE CENTER OF THE UPML

C.c5Ex(i,:,K:end)=facp;

C.c5Ex(it-i+1,:,K:end)=facp;

C.c6Ex(i,:,K:end)=facm;

C.c6Ex(it-i+1,:,K:end)=facm;

D.d1Hz(i,:,K:end)=facm/facp;

D.d1Hz(it-i+1,:,K:end)=facm/facp;

D.d2Hz(i,:,K:end)=2*e(m)*dt/facp;

D.d2Hz(it-i+1,:,K:end)=2*e(m)*dt/facp;
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D.d3Hy(i,:,K:end)=facm/facp;

D.d3Hy(it-i+1,:,K:end)=facm/facp;

D.d4Hy(i,:,K:end)=1/facp/u(m);

D.d4Hy(it-i+1,:,K:end)=1/facp/u(m);

x1= (pml-i+1.5)*dx;

x2= (pml-i+0.5)*dx;

sigma= sigfactor*(x1^(order+1)-x2^(order+1));

facm= (2*e0-sigma*dt);

facp= (2*e0+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS ON THE UPML BOUNDARY

C.c1Ez(i,:,K:end)= facm/facp;

C.c1Ez(it+1-i+1,:,K:end)= facm/facp;

C.c2Ez(i,:,K:end)= 2*e(m)*dt/facp;

C.c2Ez(it+1-i+1,:,K:end)= 2*e(m)*dt/facp;

C.c3Ey(i,:,K:end)= facm/facp;

C.c3Ey(it+1-i+1,:,K:end)= facm/facp;

C.c4Ey(i,:,K:end)= 1/facp/e(m);

C.c4Ey(it+1-i+1,:,K:end)= 1/facp/e(m);

D.d5Hx(i,:,K:end)= facp;

D.d5Hx(it+1-i+1,:,K:end)= facp;

D.d6Hx(i,:,K:end)= facm;

D.d6Hx(it+1-i+1,:,K:end)= facm;

end

% yyyyyyyyyyyyyyyyyyyyyyyyyyyyy-varying material properties

d= pml*dy; % <y> THICKNESS OF PML (m)

sigmaMax= -(order+1)*log(rmax)*e0*c*.5/d; % MAX <y> CONDUCTIVITY

sigfactor= sigmaMax/(dy*(d^order)*(order+1));

for j=1:pml

y1= (pml-j+1)*dy;

y2= (pml-j)*dy;

sigma= sigfactor*(y1^(order+1)-y2^(order+1));

facm= (2*e0-sigma*dt);
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facp= (2*e0+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS IN THE CENTER OF THE UPML

C.c5Ey(:,j,K:end)= facp;

C.c5Ey(:,jt-j+1,K:end)= facp;

C.c6Ey(:,j,K:end)= facm;

C.c6Ey(:,jt-j+1,K:end)= facm;

D.d1Hx(:,j,K:end)= facm/facp;

D.d1Hx(:,jt-j+1,K:end)= facm/facp;

D.d2Hx(:,j,K:end)= 2*e(m)*dt/facp;

D.d2Hx(:,jt-j+1,K:end)= 2*e(m)*dt/facp;

D.d3Hz(:,j,K:end)= facm/facp;

D.d3Hz(:,jt-j+1,K:end)= facm/facp;

D.d4Hz(:,j,K:end)= 1/facp/u(m);

D.d4Hz(:,jt-j+1,K:end)= 1/facp/u(m);

y1= (pml-j+1.5)*dy;

y2= (pml-j+0.5)*dy;

sigma= sigfactor*(y1^(order+1)-y2^(order+1));

facm= (2*e0-sigma*dt);

facp= (2*e0+sigma*dt);

% MATERIAL COEFFICIENTS FOR CELLS ON THE UPML BOUNDARY

C.c1Ex(:,j,K:end)= facm/facp;

C.c1Ex(:,jt+1-j+1,K:end)= facm/facp;

C.c2Ex(:,j,K:end)= 2*e(m)*dt/facp;

C.c2Ex(:,jt+1-j+1,K:end)= 2*e(m)*dt/facp;

C.c3Ez(:,j,K:end)= facm/facp;

C.c3Ez(:,jt+1-j+1,K:end)= facm/facp;

C.c4Ez(:,j,K:end)= 1/facp/e(m);

C.c4Ez(:,jt+1-j+1,K:end)= 1/facp/e(m);

D.d5Hy(:,j,K:end)= facp;

D.d5Hy(:,jt+1-j+1,K:end)= facp;

D.d6Hy(:,j,K:end)= facm;

D.d6Hy(:,jt+1-j+1,K:end)= facm;

end
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InitializePEC.m

function [field,is,js,id,jd,ANGLES]=

InitializePEC(field,it,jt,kt,pb,pml,r,dx,dy,dz,Y,ks)

%***********************************************************************

% FUNCTION:

% 1. ASSIGN LOCATION OF PEC FOR 180 DEGREE CURVE BY ZEROING TANGENTIAL E FIELDS

% 2. SPECIFY THE SOURCE CELL

% 3. SPECIFY CELLS TO BE RECORDED FOR PROPAGATION CONSTATNT EXTRACTION

%

% OUTPUTS:

% ‘field.pecEx’,‘field.pecEy’,‘field.pecEz’: SPECIFY CELLS OF E FIELDS TO BE

% ZEROED TO MODEL PEC

%

% ‘ANGLES’: A VECTOR OF ANGLES TO EACH (id,jd) CELL FROM CENTER OF CIRCLE

%

% ‘id’ AND ‘jd’: SPECIFY THE FIELD DATA TO BE SAVED

%

% ‘is’ AND ‘js’: SPECIFY THE SOURCE CELL(S)

%

%***********************************************************************

PEC= 0;

% CREATE MEMORY LOCATIONS FOR PEC

field.pecEx= single(ones(it,jt+1,kt+1));

field.pecEy= single(ones(it+1,jt,kt+1));

field.pecEz= single(ones(it+1,jt+1,kt));

% Put ground plate on entire floor of computational space

Igx= 1:it;

Igy= 1:(it+1);

Jgx= 1:(jt+1);

Jgy= 1:jt;

Kg= (kt+1);

field.pecEx(Igx,Jgx,Kg)= PEC;

field.pecEy(Igy,Jgy,Kg)= PEC;
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Kc= pb+1; % vertical location of strip

Kw= Kc:kt; % vertical location of wall

INSIDE= 1; % select inside or outside wall

% (dist0X,dist0Y) are the coordinates (m) of the center of the "circle"

dist0Y= r/sqrt(2) +jt*dy -dy*(2+pml);

dist0X= round(it/2)*dx;

id= 0; jd= 0; ANGLES= 0;

for x= 1:it

for y= 1:jt

% (distX,distY) are the coordinates (m) of the current cell at ’x’ and ’y’

distX= (x-1)*dx;

distY= (y-1)*dy;

% DIST is the distance from center of the "circle" to (distX,distY)

DIST= sqrt((dist0X-distX)^2 +(dist0Y-distY)^2);

if (DIST > r) & (DIST < (r+Y))

field.pecEx(x,y,Kc)= PEC; %Concucting strip

field.pecEy(x,y,Kc)= PEC; %Concucting strip

end;

if INSIDE % PUT WALL ON INSIDE CURVE

if abs(DIST-r) < (dy/2)

field.pecEx(x,y,Kw)= PEC;

field.pecEz(x,y,Kw)= PEC;

end;

else % PUT WALL ON OUTSIDE CURVE

if abs(r+Y-DIST) < (dy/2)

field.pecEx(x,y,Kw)= PEC;

field.pecEz(x,y,Kw)= PEC;

end;

end

if INSIDE % PUT SOURCE CELL AND DISPLAY VECTOR NEAR OUTSIDE EDGE
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is= pml+4;

js= jt-pml-4;

if abs(DIST-(r+Y-2*dy)) < (dy/2)

ANGLES= [ANGLES atan2(dist0Y-distY,dist0X-distX)*180/pi];

id= [id x];

jd= [jd y];

end;

else % PUT SOURCE CELL AND DISPLAY VECTOR NEAR INSIDE EDGE

is= pml+Y-2;

js= jt-pml-4;

if abs(DIST-(r+2*dy)) < (dy/2)

ANGLES= [ANGLES atan2(dist0Y-distY,dist0X-distX)*180/pi];

id= [id x];

jd= [jd y];

end;

end

end;

end;

id(1)=[]; jd(1)=[]; ANGLES(1)=[];

if id==[] | jd==[] error(’YOU WON’’T GET DATA, DUMMY’); end;
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InitializePEC90.m

function [field,is,js,id,jd,ANGLES]= ...

InitializePEC90(field,it,jt,kt,pb,pml,r,dx,dy,dz,Y,ks)

%***********************************************************************

% FUNCTION:

% 1. ASSIGN LOCATION OF PEC FOR 90 DEGREE CURVE BY ZEROING TANGENTIAL E FIELDS

% 2. SPECIFY THE SOURCE CELL

% 3. SPECIFY CELLS TO BE RECORDED FOR PROPAGATION CONSTATNT EXTRACTION

%

% OUTPUTS:

% ‘field.pecEx’,‘field.pecEy’,‘field.pecEz’: SPECIFY CELLS OF E FIELDS TO BE

% ZEROED TO MODEL PEC

%

% ‘ANGLES’: A VECTOR OF ANGLES TO EACH (id,jd) CELL FROM CENTER OF CIRCLE

%

% ‘id’ AND ‘jd’: SPECIFY THE FIELD DATA TO BE SAVED

%

% ‘is’ AND ‘js’: SPECIFY THE SOURCE CELL(S)

%

%***********************************************************************

PEC= 0;

% CREATE MEMORY LOCATIONS FOR PEC

field.pecEx= ones(it,jt+1,kt+1);

field.pecEy= ones(it+1,jt,kt+1);

field.pecEz= ones(it+1,jt+1,kt);

% Put ground plate on entire floor of computational space

Igx= 1:it;

Igy= 1:(it+1);

Jgx= 1:(jt+1);

Jgy= 1:jt;

Kg= (kt+1);

field.pecEx(Igx,Jgx,Kg)= PEC;

field.pecEy(Igy,Jgy,Kg)= PEC;
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Kc= pb+1; % vertical location of strip

Kw= Kc:kt; % vertical location of wall

INSIDE= 1; % select inside or outside wall

% (dist0X,dist0Y) are the coordinates (m) of the center of the "circle"

dist0Y= r/sqrt(2) +jt*dy -dy*(2+pml);

dist0X= round(it/2)*dx;

id= 0; jd= 0; ANGLES= 0;

for x= 1:it

for y= 1:jt+1

% (distX,distY) are the coordinates (m) of the current cell at ’x’ and ’y’

distX= (x-1)*dx;

distY= (y-1)*dy;

% DIST is the distance from center of the "circle" to (distX,distY)

DIST= sqrt((dist0X-distX)^2 +(dist0Y-distY)^2);

if (DIST > r) & (DIST < (r+Y))

field.pecEx(x,y,Kc)= PEC; %Concucting strip

field.pecEy(x,y,Kc)= PEC; %Concucting strip

end;

if INSIDE % PUT WALL ON INSIDE CURVE

if abs(DIST-r) < (dy/2)

field.pecEx(x,y,Kw)= PEC;

field.pecEz(x,y,Kw)= PEC;

end;

else % PUT WALL ON OUTSIDE CURVE

if abs(r+Y-DIST) < (dy/2)

field.pecEx(x,y,Kw)= PEC;

field.pecEz(x,y,Kw)= PEC;

end;

end

if INSIDE % PUT SOURCE CELL AND DISPLAY VECTOR NEAR OUTSIDE EDGE

if x==(pml+5)
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if abs(DIST-(r+Y-2*dy)) < (dy/2)

is= x;

js= y;

end;

end;

if abs(DIST-(r+Y-2*dy)) < (dy/2)

ANGLES= [ANGLES atan2(dist0Y-distY,dist0X-distX)*180/pi];

id= [id x];

jd= [jd y];

end;

else % PUT SOURCE CELL AND DISPLAY VECTOR NEAR INSIDE EDGE

if x==(pml+5)

if abs(DIST-(r+Y-2*dy)) < (dy/2)

is= x;

js= y;

end;

end;

if abs(DIST-(r+2*dy)) < (dy/2)

ANGLES= [ANGLES atan2(dist0Y-distY,dist0X-distX)*180/pi];

id= [id x];

jd= [jd y];

end;

end

end;

end;

id(1)=[]; jd(1)=[]; ANGLES(1)=[];

if id==[] | jd==[] error(’YOU WON’’T GET DATA, DUMMY’); end;
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UpdateE.m

function field= UpdateE(field,C,D,it,jt,kt,DX,DY,DZ)

%

% FUNCTION:

% 1. UPDATE E FIELD COMPONENT OF ALL CELLS FOR ONE TIME STEP BASED ON EXAMPLE OF

% EQ. 7.74 OF COMPUTAIONAL ELECTRODYNAMICS BY TAFLOVE/HAGNESS 2ND ED.

%

field.Dxn(:,2:jt,2:kt)= C.c1Ex(:,2:jt,2:kt).*field.Dx(:,2:jt,2:kt)...

+C.c2Ex(:,2:jt,2:kt).*( (field.Hz(:,2:jt,2:kt)-field.Hz(:,1:jt-1,2:kt))*DY ...

-(field.Hy(:,2:jt,2:kt)-field.Hy(:,2:jt,1:kt-1))*DZ );

field.Dyn(2:it,:,2:kt)= C.c1Ey(2:it,:,2:kt).*field.Dy(2:it,:,2:kt)...

+ C.c2Ey(2:it,:,2:kt).*( (field.Hx(2:it,:,2:kt)-field.Hx(2:it,:,1:kt-1))*DZ ...

-(field.Hz(2:it,:,2:kt)-field.Hz(1:it-1,:,2:kt))*DX );

field.Dzn(2:it,2:jt,:)= C.c1Ez(2:it,2:jt,:).*field.Dz(2:it,2:jt,:)...

+ C.c2Ez(2:it,2:jt,:).*( (field.Hy(2:it,2:jt,:)-field.Hy(1:it-1,2:jt,:))*DX ...

-(field.Hx(2:it,2:jt,:)-field.Hx(2:it,1:jt-1,:))*DY );

field.Ex(:,2:jt,2:kt)= C.c3Ex(:,2:jt,2:kt).*field.Ex(:,2:jt,2:kt)...

+ C.c4Ex(:,2:jt,2:kt).*( C.c5Ex(:,2:jt,2:kt).*field.Dxn(:,2:jt,2:kt)...

-C.c6Ex(:,2:jt,2:kt).*field.Dx(:,2:jt,2:kt) );

field.Ey(2:it,:,2:kt)= C.c3Ey(2:it,:,2:kt).*field.Ey(2:it,:,2:kt)...

+ C.c4Ey(2:it,:,2:kt).*( C.c5Ey(2:it,:,2:kt).*field.Dyn(2:it,:,2:kt)...

-C.c6Ey(2:it,:,2:kt).*field.Dy(2:it,:,2:kt) );

field.Ez(2:it,2:jt,:)= C.c3Ez(2:it,2:jt,:).*field.Ez(2:it,2:jt,:)...

+ C.c4Ez(2:it,2:jt,:).*( C.c5Ez(2:it,2:jt,:).*field.Dzn(2:it,2:jt,:)...

-C.c6Ez(2:it,2:jt,:).*field.Dz(2:it,2:jt,:) );

field.Dx=field.Dxn;

field.Dy=field.Dyn;

field.Dz=field.Dzn;
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UpdateH.m

function field= UpdateH(field,C,D,it,jt,kt,DX,DY,DZ)

%

% FUNCTION:

% 1. UPDATE H FIELD COMPONENT OF ALL CELLS FOR ONE TIME STEP BASED ON EXAMPLE OF

% EQ. 7.74 OF COMPUTAIONAL ELECTRODYNAMICS BY TAFLOVE/HAGNESS 2ND ED.

%

field.Bxn(2:it,:,:)= D.d1Hx(2:it,:,:).*field.Bx(2:it,:,:)...

- D.d2Hx(2:it,:,:).*( (field.Ez(2:it,2:jt+1,:)-field.Ez(2:it,1:jt,:))*DY ...

-(field.Ey(2:it,:,2:kt+1)-field.Ey(2:it,:,1:kt))*DZ );

field.Byn(:,2:jt,:)= D.d1Hy(:,2:jt,:).* field.By(:,2:jt,:)...

- D.d2Hy(:,2:jt,:).*( (field.Ex(:,2:jt,2:kt+1)-field.Ex(:,2:jt,1:kt))*DZ ...

-(field.Ez(2:it+1,2:jt,:)-field.Ez(1:it,2:jt,:))*DX );

field.Bzn(:,:,2:kt)= D.d1Hz(:,:,2:kt).* field.Bz(:,:,2:kt)...

- D.d2Hz(:,:,2:kt).*( (field.Ey(2:it+1,:,2:kt)-field.Ey(1:it,:,2:kt))*DX ...

-(field.Ex(:,2:jt+1,2:kt)-field.Ex(:,1:jt,2:kt))*DY );

field.Hx(2:it,:,:)= D.d3Hx(2:it,:,:).*field.Hx(2:it,:,:)+ D.d4Hx(2:it,:,:)...

.*(D.d5Hx(2:it,:,:).*field.Bxn(2:it,:,:) - D.d6Hx(2:it,:,:).*field.Bx(2:it,:,:));

field.Hy(:,2:jt,:)= D.d3Hy(:,2:jt,:).*field.Hy(:,2:jt,:)+ D.d4Hy(:,2:jt,:)...

.*(D.d5Hy(:,2:jt,:).*field.Byn(:,2:jt,:) - D.d6Hy(:,2:jt,:).*field.By(:,2:jt,:));

field.Hz(:,:,2:kt)= D.d3Hz(:,:,2:kt).*field.Hz(:,:,2:kt)+ D.d4Hz(:,:,2:kt)...

.*(D.d5Hz(:,:,2:kt).*field.Bzn(:,:,2:kt) - D.d6Hz(:,:,2:kt).*field.Bz(:,:,2:kt));

field.Bx=field.Bxn;

field.By=field.Byn;

field.Bz=field.Bzn;
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AddPECTH.m

function field= addPECTH(field, it, jt, kt, pb, pml)

%

% FUNCTION:

% 1. ASSIGN ZERO THICKNESS PEC FOR A THW ANTENNA TO BY ZEROING

% TANGENTIAL E FIELDS CORRESPONDING TO CONDUCTOR LOCATIONS

%

Icx= 1:it;

Icy= 1:(it+1);

Jcx= pml+3:(jt+1)-pml-2;

Jcy= pml+3:jt-pml-2;

Kc= pb+1;

field.Ex(Icx,Jcx,Kc)= 0; %Concucting strip

field.Ey(Icy,Jcy,Kc)= 0; %Concucting strip

Igx= 1:it;

Igy= 1:(it+1);

Jgx= 1:(jt+1);

Jgy= 1:jt;

Kg= (kt+1);

field.Ex(Igx,Jgx,Kg)= 0; %Ground Plate

field.Ey(Igy,Jgy,Kg)= 0; %Ground Plate

% wall is no longer on the pml

Iwx= 1:it;

Iwz= 1:(it+1);

Jw= (jt+1)-pml-2;

Kwx= pb+1:(kt+1);

Kwz= pb+1:kt;

field.Ex(Iwx,Jw,Kwx)= 0; %Concucting wall

field.Ez(Iwz,Jw,Kwz)= 0; %Concucting wall
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AddPECTF.m

function field= addPECTF(field, it, jt, kt, pb, pml)

%

% FUNCTION:

% 1. ASSIGN ZERO THICKNESS PEC FOR A TFW ANTENNA TO BY ZEROING

% TANGENTIAL E FIELDS CORRESPONDING TO CONDUCTOR LOCATIONS

%

Icx= 1:it;

Icy= 1:(it+1);

Jcx= pml+3:(jt+1)-pml-2;

Jcy= pml+3:jt-pml-2;

Kc= pb+1;

field.Ex(Icx,Jcx,Kc)= 0; %Concucting strip

field.Ey(Icy,Jcy,Kc)= 0; %Concucting strip

Igx= 1:it;

Igy= 1:(it+1);

Jgx= 1:(jt+1);

Jgy= 1:jt;

Kg= (kt+1);

field.Ex(Igx,Jgx,Kg)= 0; %Ground Plate

field.Ey(Igy,Jgy,Kg)= 0; %Ground Plate

Iwx= 1:it;

Iwz= 1:(it+1);

Jw= round(jt/2)+1;

Kwx= pb+1:(kt+1);

Kwz= pb+1:kt;

field.Ex(Iwx,Jw,Kwx)= 0; %Concucting wall

field.Ez(Iwz,Jw,Kwz)= 0; %Concucting wall
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AddPECMENZ.m

function field= addPECMENZ(field, it, jt, kt, pb, pml, dx)

%

% FUNCTION:

% 1. ASSIGN ZERO THICKNESS PEC FOR A MENZEL ANTENNA TO BY ZEROING

% TANGENTIAL E FIELDS CORRESPONDING TO CONDUCTOR LOCATIONS

%

width= jt-2*pml-4; % WIDTH OF STRUCTURE (CELLS)

sloty= round(width/4); % PEC ON BOTH <y> SIDES OF EACH SLOT

slotx= round(sloty/2); % PEC BETWEEN SLOTS IN <x>

pecx= round(slotx/1); % SLOT <x>

Icx= 1:it;

Icy= 1:(it+1);

Jcx= pml+3:pml+3+sloty;

Jcy= pml+3:pml+2+sloty;

Kc= pb+1;

field.Ex(Icx,Jcx,Kc)= 0;

field.Ey(Icy,Jcy,Kc)= 0; %Top long

Icx= 1:it;

Icy= 1:(it+1);

Jcx= (jt+1)-pml-2-sloty:(jt+1)-pml-2;

Jcy= jt-pml-1-sloty:jt-pml-2;

field.Ex(Icx,Jcx,Kc)= 0

field.Ey(Icy,Jcy,Kc)= 0; %Bottom long

Icx= 1:pml+2*pecx;

Icy= 1:pml+2*pecx+1;

Jcx= pml+3+sloty+1:(jt+1)-pml-sloty-3;

Jcy= pml+2+sloty+1:jt-pml-sloty-2;

field.Ex(Icx,Jcx,Kc)= 0;

field.Ey(Icy,Jcy,Kc)= 0; %First

Icx= pml+slotx+2*pecx+1:pml+slotx+3*pecx;

Icy= pml+slotx+2*pecx+1:pml+slotx+3*pecx+1;
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field.Ex(Icx,Jcx,Kc)= 0;

field.Ey(Icy,Jcy,Kc)= 0; %Second

for n= 1:5

Icx= Icx+slotx+pecx;

Icy= Icy+slotx+pecx;

field.Ex(Icx,Jcx,Kc)= 0;

field.Ey(Icy,Jcy,Kc)= 0; %Third - Seventh

end;

Icx= Icx(1)+slotx+pecx:it;

Icy= Icy(1)+slotx+pecx:it+1;

field.Ex(Icx,Jcx,Kc)= 0;

field.Ey(Icy,Jcy,Kc)= 0; %Eighth

Igx= 1:it;

Igy= 1:(it+1);

Jgx= 1:(jt+1);

Jgy= 1:jt;

Kg= (kt+1);

field.Ex(Igx,Jgx,Kg)= 0; %Ground Plate

field.Ey(Igy,Jgy,Kg)= 0; %Ground Plate
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ViewData.m

% function [A,B]= ViewData(view)

%

% FUNCTION:

% 1. READ DATA FROM THW, TFW, OR MENZEL SIMULATION

% 2. PROCESS DATA

% 3. COMPUTE \alpha AND \beta

% 4. PLOT \alpha AND \beta

% 5. SAVE \alpha AND \beta TO EXCEL SPREADSHEET

%

clear all

close all

clc

% ALLOW USER TO CHOOSE TRIAL TO EVALUATE

[view, pathname]= uigetfile;

load([pathname,view]);

% DISPALY THE RAW DATA

for n= 1:floor(periods)

figure

EZ= EZDATA(n,:);

plot(1:length(EZ),EZ,’linewidth’,2)

ylabel(’ E_z ’);

xlabel(’ Cell Number (x-direction) ’);

title([’ Period #: ’,num2str(n)]);

grid on

end

% Ez: GET ABOUT TWO GOOD WAVES. IT MAY NOT BE POSSIBLE TO GET TWO WAVELENGTHS.

% ADJUST ’start’ AND ’stop’ TO GET AS MUCH DATA AS POSSIBLE. AT LEAST A HALF

% WAVELENGTH IS REQUIRED TO CONTINUE.

if f/1e9 < 6.1 start= is+40;

elseif f/1e9 < 7.1 start= is+10;

else start= is+3; end;

if f/1e9 < 6.3 stop= 500;
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elseif f/1e9 < 6.6 stop= 300;

elseif f/1e9 < 7.0 stop= 150;

else stop= 100; end;

% NORMALIZE

Max= find(abs(Ez(start:start+stop))==max(abs(Ez(start:start+stop))));

Ez= Ez((start+Max):stop+start+Max)/Ez((start+Max));

% Es: INTERPOLATE MORE POINTS IF NECCESSARY

points= 1;

x= (1:length(Ez))+start+Max-1;

xs= (1:(1/points):length(Ez))+start+Max-1;

Es = spline(x,Ez,xs);

dxs= dx/points;

% USE LOG(Es) TO DETERMINE ’A’ AND ’B’

logEs= real(log(Es));

figure

plot(xs*dxs,logEs,’b’,’linewidth’,3);

grid on

xlabel(’Distnace from source (m)’);

ylabel(’ln { E_z } (dB) ’);

% FIND NULL LOCATIONS: ’nullEz’, PEAK LOCATIONS: ’slopeX’, AND PEAK VALUES: ’slopeY’

slopeX= 1; slopeY= 0; nullEs= 0; down= 1;

for nn= 4:length(logEs)

if down & logEs(nn)>logEs(nn-1) & logEs(nn-1)>logEs(nn-2)

down= 0;

nullEs= [nullEs (nn-2)*dxs];

elseif ~down & logEs(nn)<logEs(nn-1) & logEs(nn-1)<logEs(nn-2)

down= 1;

slopeX= [slopeX (nn-2)];

slopeY= [slopeY logEs(nn-2)];

end;

end

Lbeta= nullEs(4)-nullEs(2);

B= 2*pi/Lbeta;
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peak1= 1;

peak2= 3;

A= ( slopeY(peak1)-slopeY(peak2) )/( (slopeX(peak2)-slopeX(peak1))*dxs );

% NORMALIZED EXPONENTIAL CURVE FITTING ’A’ AND ’B’

EsMatch= exp(-A*xs*dxs-j*B*xs*dxs)/max(exp(-A*xs*dxs-j*B*xs*dxs));

% COMPARE DATA TO MATCHED CURVE

figure

hold on

plot(x,log(Es),’r’,’linewidth’,4);

plot(x,log(EsMatch),’k’,’linewidth’,2);

hold off

ylabel(’Ez’);

xlabel(’X-direction cell number’);

title(view);

legend(’FDTD’,[’\alpha/k_0= ’,num2str(round(A/k*100)/100),’\beta/k_0= ’,num2str(B/k)])

grid on

% COMPARE LOG DATA TO LOG MATCHED CURVE

figure

hold on

plot(x,(Es),’r’,’linewidth’,4);

plot(x,(EsMatch),’k’,’linewidth’,2);

hold off

ylabel(’Ez’);

xlabel(’X-direction cell number’);

title(view);

legend(’FDTD’,[’\alpha/k_0= ’,num2str(round(A/k*100)/100),’\beta/k_0= ’,num2str(B/k)])

grid on

% SAVE DATA TO EXCEL SPREADSHEET TO BE RECORDED

format long

data= [ f/1e9 A/k B/k ];

N = xlsread(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,name);

N= [N; data];

xlswrite(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,N,name,’A2’);
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ViewDataCurve.m

% function [A,B]= ViewDataCurve(view)

%

% FUNCTION:

% 1. READ DATA FROM CURVE SIMULATION

% 2. PROCESS DATA

% 3. COMPUTE \alpha AND \beta

% 4. PLOT \alpha AND \beta

% 5. SAVE \alpha AND \beta TO EXCEL SPREADSHEET

%

clear all

close all

clc

% ALLOW USER TO CHOOSE TRIAL TO EVALUATE

[view, pathname]= uigetfile;

load([pathname,view]);

% DISPALY THE RAW DATA

for n= 1:floor(periods)

figure

EZ= EZDATA(n,:);

plot(1:length(EZ),EZ,’linewidth’,2)

ylabel(’ E_z ’);

xlabel(’ Cell Number (x-direction) ’);

title([’ Period #: ’,num2str(n)]);

grid on

end

% figure

% plot(1:length(angles),angles,’b’,’linewidth’,2)

% title(’raw angles’)

% grid on

% xlabel(’cell number’);

% ylabel(’Angle (degrees) ’);

% UNWRAP THE ANGLE
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R= r+Y-2*dy; % radius of "circle"

P= 2*pi*R; % perimeter of "circle"

E= Ez(floor(periods),:);

clear Ez

angles= unwrap(angles);

% figure

% plot(1:length(angles),angles,’b’,’linewidth’,2)

% title(’unwrapped angles’)

% grid on

% xlabel(’cell number’);

% ylabel(’Angle (degrees) ’);

% ORDER THE ANGLES

A=0; Ez=0;

for aa= 1:length(angles)

for a= 1:length(A)

if angles(aa)< A(a)

A= [A(1:(a-1)) angles(aa) A(a:end)];

Ez= [Ez(1:(a-1)) E(aa) Ez(a:end)];

break;

elseif a==length(A)

A= [A angles(aa)];

Ez= [Ez E(aa)];

end

end

end

A(1)=[]; Ez(1)=[];

% figure

% plot(1:length(A),A,’b’,’linewidth’,2)

% title(’ordered angles’)

% grid on

% xlabel(’cell number’);

% ylabel(’Angle (degrees) ’);

% CHANGE ANGLE TO POSITION

dist= (A)/360*P; % vector of positions of each point along antenna "arc"

% figure
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% plot(1:length(dist),dist,’b’,’linewidth’,2)

% title(’angles turned to distances’)

% grid on

% xlabel(’cell number’);

% ylabel(’Arc distance to source (m) ’);

% RAW LOG DATA TO BE ANALYZED

figure

plot(dist,log(Ez),’b’,’linewidth’,2)

title(’raw’)

grid on

xlabel(’cell number’);

ylabel(’| E_z | ’);

% FIND SOURCE

is= find(log(Ez)==max(log(Ez)));

% Ez: GET ABOUT TWO GOOD WAVES. IT MAY NOT BE POSSIBLE TO

% GET TWO WAVELENGTHS. ADJUST ’start’ AND ’stop’ TO GET AS MUCH DATA AS

% POSSIBLE. AT LEAST A HALF WAVELENGTH IS REQUIRED TO CONTINUE.

if f/1e9 < 6.1 start= is+50;

elseif f/1e9 < 7.1 start= is+50;

else start= is+30; end;

if f/1e9 < 6.3 stop= 300;

elseif f/1e9 < 6.6 stop= 300;

elseif f/1e9 < 7.0 stop= 150;

else stop= 200; end;

% NORMALIZE

Max= find(abs(Ez(start:start+stop))==max(abs(Ez(start:start+stop))));

Ez= Ez((start+Max):stop+start+Max)/Ez((start+Max));

dist= dist(start+Max:stop+start+Max);

% figure

% plot(1:length(Ez),Ez,’b’,’linewidth’,2)

% title(’short and normal’)

% grid on
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% xlabel(’cell number’);

% ylabel(’| E_z | ’);

% USE LOG(Es) TO DETERMINE ’A’ AND ’B’

logEz= real(log(Ez));

figure

plot(dist,logEz,’b’,’linewidth’,2)

title(’log’)

grid on

xlabel(’cell number’);

ylabel(’ln | E_z | (dB) ’);

% FIND NULL LOCATIONS ’nullEz’, PEAK LOCATIONS ’slopeX’, AND, PEAK VALUES

% ’slopeY’

slopeX= dist(1); slopeY= 0; nullEz= dist(1); down= 1;

for nn= 4:length(logEz)

if down & logEz(nn)>logEz(nn-1) & logEz(nn-1)>logEz(nn-2)

down= 0;

nullEz= [nullEz dist(nn-2)];

elseif ~down & logEz(nn)<logEz(nn-1) & logEz(nn-1)<logEz(nn-2)

down= 1;

slopeX= [slopeX dist(nn-2)];

slopeY= [slopeY logEz(nn-2)];

end;

end

Lbeta= (nullEz(4)-nullEz(2));

B= 2*pi/Lbeta;

A= ( slopeY(1)-slopeY(3) )/( (slopeX(3)-slopeX(1)) );

% NORMALIZED EXPONENTIAL CURVE FITTING ’A’ AND ’B’

EzMatch= exp(-A*dist-j*B*dist)/max(exp(-A*dist-j*B*dist));

% COMPARE DATA TO MATCHED CURVE

figure

hold on

plot(dist,Ez,’r’,’linewidth’,4);
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plot(dist,real(EzMatch),’k’,’linewidth’,2);

hold off

ylim([-1 1.5]);

ylabel(’Ez’);

xlabel(’X-direction cell number’);

title(view);

legend(’FDTD’,[’\alpha/k_0= ’,num2str(round(A/k*100)/100),’\beta/k_0= ’,num2str(B/k)])

grid on

% COMPARE LOG DATA TO LOG MATCHED CURVE

figure

hold on

plot(dist,log(Ez),’r’,’linewidth’,4);

plot(dist,log(real(EzMatch)),’k’,’linewidth’,2);

hold off

ylabel(’Ez’);

xlabel(’X-direction cell number’);

title(view);

legend(’FDTD’,[’\alpha/k_0= ’,num2str(round(A/k*100)/100),’\beta/k_0= ’,num2str(B/k)])

grid on

% SAVE DATA TO EXCEL SPREADSHEET TO BE RECORDED

data= [ f/1e9 A/k B/k time];

N = xlsread(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,name);

N= [N; data];

xlswrite(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,N,name,’A2’);
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LineSource.m

function LineSource(th1,th2,f)

%

% OUTPUT: PLOTS SHOWING LINE SOURCE APPROXIMATION OF THE FAR-FIELD

% PATTERN OF THIELE HALF WIDTH ANTENNA GENERATED FROM ALPHA AND BETA

%

% INPUTS:

% \alpha AND \beta FROM MEASUREMENTS, SIMULATION, AND/OR TRANS RES APPROX

% ’th1’ IS THE REFLECTION ANGLE FROM THE FAR END

% ’th2’ IS THE REFLECTION ANGLE FROMTHE NEAR (SOURCE) END

% ’f’ IS THE EXCITATION FREQUENCY

%

%

c= 299792458; % speed of light (m/s)

omega= 2*pi*f; % angular frequency (rad/s)

lambda= c/f; % wavelength (m)

k0= 2*pi/lambda; % wavenumber (1/m)

u0= pi*4e-7; % permeability of free space (H/m)

e0= c^-2/u0; % permittivity of free space (F/m)

load TRh787w15e233 % GET TRANSVERSE RESONANCE DATA FOR ’f’

alphaT= round(AA(find(round(freqs*100)/100==f/1e9))*1000)/1000;

betaT= round(BB(find(round(freqs*100)/100==f/1e9))*100)/100;

if f== 6.7e9

load F67 % MEASURED DATA

az= F67(:,1)-90;

mag= fliplr(F67(:,2)’)’;

ph= F67(:,3);

alphaF= 0.0404245257377625; %PUT FDTD DATA HERE

betaF= 0.676644325256347; %PUT FDTD DATA HERE

load gmz67 % MEASURED DATA

GMZaz= gmz67(:,1)-90;

GMZmag= (gmz67(:,2)’)’;

GMZph= gmz67(:,3);
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elseif f== 7.2e9

load F72 % MEASURED DATA

az= F72(:,1)-90;

mag= fliplr(F72(:,2)’)’;

ph= F72(:,3);

alphaF= 0.0251624081283808; %PUT FDTD DATA HERE

betaF= 0.816086113452911; %PUT FDTD DATA HERE

load gmz72 % MEASURED DATA

GMZaz= gmz72(:,1)-90;

GMZmag= (gmz72(:,2)’)’;

GMZph= gmz72(:,3);

else

error(’NO DATA FOR THAT FREQUENY’);

end;

phi= (0:.1:180)*pi/180;

percent= 4/100; % ADD 4% TO gamma TO ACCOUNT FOR "LINE SOURCE/ANTENNA LENGTH ISSUE"

r= 100; % distance to far field -- 2.0 (m) is adequate)

L= .19; % length of antenna (m)

% TRANSVERSE RESONANCE FORWARD WAVE

gammaT= (betaT*(1+percent))*k0-j*(alphaT*(1+percent))*k0;

OmT= L/2*(k0*cos(phi)-gammaT);

ET= (sin(phi).*sin(OmT)./OmT); % NORMALIZED

maxEtr= phi(find(abs(ET)==max(abs(ET)))); % LOCATION OF MAIN BEAM

ErT= exp(-alphaT*k0*L)*abs(ET)*exp(-j*th1); % RETURN WAVE

Er2T= exp(-alphaT*k0*L)*ErT*exp(-j*th2); % RETURN-RETURN WAVE

Er3T= exp(-alphaT*k0*L)*Er2T*exp(-j*th1); % RETURN-RETURN-RETURN WAVE

EtotalT= abs(ET) +fliplr(ErT) +Er2T +fliplr(Er3T); % ALL TRANSVERSE RESONANCE WAVES

% FDTD FORWARD WAVE

gammaF= (betaF*(1+percent))*k0-j*(alphaF*(1+percent))*k0;

OmF= L/2*(k0*cos(phi)-gammaF);
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EF= (sin(phi).*sin(OmF)./OmF); % NORMALIZED

maxEfdtd= phi(find(abs(EF)==max(abs(EF)))); % LOCATION OF MAIN BEAM

ErF= exp(-alphaF*k0*L)*abs(EF)*exp(-j*th1); % RETURN WAVE

Er2F= exp(-alphaF*k0*L)*ErF*exp(-j*th2); % RETURN-RETURN WAVE

Er3F= exp(-alphaF*k0*L)*Er2F*exp(-j*th1); % RETURN-RETURN-RETURN WAVE

EtotalF= abs(EF) +fliplr(ErF) +Er2F +fliplr(Er3F); % ALL FDTD WAVES

% DISPLAY MEASURED DATA AND FDTD/TR LINE SOURCE APPROXIMATIONS

figure

hold on;

plot((phi*180/pi)+.5, 20*log10(EtotalF/max(EtotalF)), ’r--’,’linewidth’, 4);

plot(az,mag-max(mag),’k’,’linewidth’,3);

plot(GMZaz+2.5,GMZmag-max(GMZmag),’b’,’linewidth’,3);

hold off;

grid on;

set(gcf,’Color’,[1;1;1]);

set(gca,’XDir’,’reverse’)

axis([0 180 -30 7]);

title([num2str(f/1e9),’ GHz’]);

legend(’FDTD / Line Source’,’Measured (vias)’,’Measured (tape)’);

% legend(’Line Source’,’Measured (tape)’);

xlabel([’ Angle from endfire (degrees)’]);

ylabel(’ Normalized | E_{H-pol} | (dB)’);

% DISPLAY BOTH POLAR AND RECTANGULAR

figure

subplot(2,1,1)

hold on;

plot((phi*180/pi), 20*log10(EtotalF/max(EtotalF)), ’b’,’linewidth’, 3);

plot(maxEfdtd*ones(20,1),linspace(-30,0,20),’r’,’linewidth’, 3);

hold off;

grid on;

set(gcf,’Color’,[1;1;1]);

set(gca,’XDir’,’reverse’)

axis([0 180 -30 10]);

title([num2str(f/1e9),’ GHz’,’ \alpha /k_0= ’,num2str(alphaF),...
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’ \beta /k_0= ’,num2str(betaF)]);

% legend(’FDTD / Line Source’,’Measured’);

xlabel([’ Angle from endfire (degrees)’]);

ylabel(’ Normalized | E_{\theta} | (dB)’);

text(130,5,[’ Main Beam: ’,num2str(maxEfdtd),’^o ’],’FontSize’,14,...

’BackgroundColor’,’w’,’EdgeColor’,’r’,’Linewidth’,3);

subplot(2,1,2)

p= find(abs(real(20*log10(Etotalf)+30)) <.05);

polar(phi(p(1):p(2)), 20*log10(EtotalF(p(1):p(2))/max(EtotalF))+30);

ylim([0 45])

ylabel(’Normalized | E_\theta | (dB)’);

% APPROX MAIN BEAM

MAINtr= acos(betaT)*180/pi

MAINfdtd= acos(betaF)*180/pi

% MAIN BEAM DATA

maxEtr=maxEtr*180/pi

maxEfdtd=maxEfdtd*180/pi
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TransRes.m

function [A,B]=TransRes(f,h,w,er)

% WRITTEN BY: Dr. Gary Thiele

% MODIFIED BY: Greg Zelinski

% LAST MODIFIED: 21NOV2004

%

% INPUT: ‘f’ is frequency (Hz)

% ‘h’ is the substrate height (m)

% ‘w’ is the conductor width (m)

% ‘er’ is the relative permittivity of the substrate

%

% OUTPUTS: ‘A’ is the attenuation constant normalized with free space wavenumber

% ‘B’ is the phase constant normalized with free space wavenumber

%

% SOURCE: K. S. Lee, ‘‘Microstrip Line Leaky Antenna’’, Ph.D. diss.,

% Polytechnic Institute 1986

c= 299792458; % speed of light

u0= pi*4e-7; % free space permeability

e0= c^-2/u0; % free space permittivity

k0= 2*pi*f/c; % free space wavenumber

k= k0*sqrt(er); % wavenumber in medium

m= 1:50; % summation truncation

delta= (er-1)/(er+1);

Q= sum( (-delta).^m.*log(m) );

syms kxe % symbolic variable

kz= sqrt(k^2 - kxe^2);

alpha = kz/k0;

kx= sqrt(1-alpha^2)*k0;

gamma = 0.5772-1;

fe = -2*kxe*h/pi*( ( log(j*kx*h) +gamma )/er +2*Q -log(2*pi) );

del = kz*h/pi*( (1-er)/er*( log(j*kx*h) +gamma ) + 2*Q );
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chi = 2*atan( kz/kxe*tanh(del) ) - fe;

trans= chi -kxe*w +pi; % TRANSVERSE RESONANCE EQUATION FOR EH_1

solkxe= solve(trans); % solution of symbolic variable kxe

prop= sqrt(k^2 - solkxe^2);

B = real(prop/k0);

A = abs(imag(prop/k0));
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MakeTransResFile.m

% MakeTransResFile.m

%

% OUTPUT:

% 1. SAVES .mat FILE TO THE CURRECT DIRECTORY.

% ‘freqs’ IS A VECTOR OF THE FREQUENCIES (Hz)

% ‘AA’ IS A VECTOR OF \alpha/k0

% ‘BB’ IS A VECTOR OF \beta/k0

% 2. PLOT OF DATA

%

% NAMING CONVENTION:

% ‘TRh787w150e233.mat’ IS FOR AN ANTENNA OF

% HEIGHT 787e-6 (m); HALF WIDTH 7.5 (mm); AND DIELECTRIC CONSTANT 2.33

%

%***********************************************************************

clear all

close all

clc

format compact

tic

getData = 0; % use "1" to get data or "0" to just plot

if getData

range= (6:.1:8.2)*1e9; % FREQUENCIES

%for MENZEL’S antenna:

h= .787*1e-3;

w= 15e-3;

er = 2.33;

for r= 1:length(range)

last= toc;

[A(r),B(r)]=TransRes(range(r),h,w,er);

fprintf(’\nFrequency %.0f of %.0f took %.1f s.’,r,length(range),toc-last);

end

% interpolate Transverse Resonance data to 1 MHz increments
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freqs= range(1):1e6:range(end);

AA = pchip(range,A,freqs); % pchip or spline

BB = pchip(range,B,freqs);

file= [’TRh’,num2str(round(w*1e6)),’w’,num2str(round(w*1e4)),...

’e’,num2str(round(er*100))];

save(file);

else

file= ’TRh787w150e233’;

load(file);

end

figure

plot(freqs,AA,’c’,freqs,BB,’r’,’linewidth’,3);

xlabel (’Frequency (GHz))’)

legend(’\alpha/k_0 ’,’\beta/k_0 ’)

title ([file,’’])

grid on

set(gcf,’Color’,[1;1;1]);

time= toc/60;

fprintf(’\n\n\tTransRes took %.2f minutes.\n\n’, time);
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DataReader.m

% DataReader.m

%

% PLOTS A COMPARISON BETWEEN TRANSVERSE RESONANCE AND ONE OR MORE DATA SETS

%

clear all

close all

clc

load Compare; % GET TRANSVERSE RESONANCE DATA

name= ’180curveS’; % ENTER A DATA SET TO DISPLAY

N = xlsread(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,name);

f= N(:,1); a= N(:,3); b= N(:,6);

name2= ’Single’; % ENTER ANOTHER DATA SET TO DISPLAY

N2 = xlsread(’C:\Documents and Settings\Ashley\Desktop\NewSimData’,name);

f2= N2(:,1); a2= N2(:,2); b2= N2(:,6);

figure

hold on

plot(freqs,AA,’r’,’linewidth’,4);

plot(f2,a2,’k’,’linewidth’,2);

plot(f,a,’b.’,’MarkerSize’,20);

plot(freqs,BB,’r’,’linewidth’,4);

plot(f2,b2,’k’,’linewidth’,2);

plot(f,b,’b.’,’MarkerSize’,20);

hold off

axis([5.6 8.2 0 1.1]);

set(gcf,’Color’,[1;1;1]);

xlabel(’Frequency (GHz)’);

text(6.7,.85,’\beta /k_0’,’BackgroundColor’,’w’,’FontSize’,16);

text(7,.15,’\alpha /k_0’,’BackgroundColor’,’w’,’FontSize’,16);

legend(’Transverse Resonance’,’Straight (single)’,...

’180^o Curve (single)’,’Location’,’East’);

grid on
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