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Abstract

3-D laser imaging systems offer important advantages for battle field applications such as

night-time targeting and tactical reconnaissance. Recently developed technologies used by coherent

detection systems that collect temporally resolved images include arrays of Avalanche Photo-Diodes

(APD), Geiger mode APDs’, and photo-diodes. Frequently, LADAR systems produce waveforms

from each detector that characterize the convolution of the transmitted laser pulse with the target

surface. The pulse convolution generates uncertainty as to the precise location of a target surface

which can severely impact various weapons systems’ targeting capability.

This work analyzes two deconvolution techniques: Wiener filtering and an iterative process

derived from negative binomial statistics. Measured and simulated data are used for testing both

methods. 3-D imaging LADAR systems with rapid frame acquisition may lose range resolution due

to the transmitted pulse duration. Because of the tradeoff between the need for sufficient target

illumination and obtaining high range resolution, LADAR systems often forfeit range resolution

performance to improve the signal-to-noise ratio of the observed signal. This work also utilizes

these two deconvolution techniques on a sequence of LADAR return images gathered at a very high

sampling rate to improve the system’s range resolution. Deconvolving the data amplifies any noise

present in the data and decreases the signal-to-noise ratio of the reconstructed return pulse profiles.

Based on the presence of photon and speckle noise, the work explores the degree to which

range resolution can be improved for both measured and simulated data. Squared error and variance

calculations are used to evaluate the performance of both signal reconstruction algorithms. The work

shows that applying the iterative algorithm to measured and simulated data significantly improves

the data’s temporal resolution compared to the Wiener filter results.
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Deconvolution Analysis of Laser Pulse Profiles From 3-D LADAR

Temporal Returns

I. Introduction

T
he use of three-dimensional laser imaging systems in battlefield operations is one of the most

impelling and progressive areas of electro-optical research due to the field’s many difficult,

yet intriguing, problems. Today, many two-dimensional (2-D) and three-dimensional (3-D) laser

imaging systems used for military applications incorporate temporal averaging to enhance images.

Temporal averaging, low pass filtering, is the process of modifying a signal or sequence of

images given the presence of noise [1]. It is a form of filtering used to remove excess noise and

extraneous information from a signal. If a sequence of images are obtained of a stationary object,

the differences between the images are caused by image noise. Image noise is reduced by averaging

the images. One pitfall of temporal averaging is the loss of temporal resolution in the data, thereby

decreasing the information available to the user regarding range resolution and target position. In

addition, temporal averaging creates an added element in the form of motion blur in the system

response of the imaging system. Often, these blurring effects can be overcome through various

types of image reconstruction techniques. However, resolving 2-D data temporally is a difficult task

because little temporal information is available in 2-D data.

Ideally, keeping 3-D laser pulse return data intact gives a laser detection and ranging (LADAR)

operator the ability to perform image processing and target detection techniques on the temporal

information. Using temporal information will help an operator locate target edges and edges of other

objects in the image data.
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II. Literature Review

R
ecent applications of 3-D laser systems in military environments have provided significant

advantages in such areas as night targeting, partially obstructed targeting, and tactical recon-

naissance [7]. Detecting partially obstructed targets is one particularly difficult problem for targeting

systems in military environments. Typical target obstructions in a battlefield environment include

camouflage netting, smoke, fog, and foliage.

Emerging new technologies for gathering range resolved images used in coherent 3-D laser im-

age detection systems include Avalanche Photo-Diode (APD) arrays, Geiger mode APD arrays, and

photo-diode arrays. Such technologies can aid in the detection of partially obscured targets. The

detectors in many of these systems produce waveforms that represent the convolution of the trans-

mitted laser pulse with the target surface. However, the convolution of the pulse creates ambiguity as

to the precise location of the surface [2]. The ambiguity severely impacts a LADAR weapon system’s

precision in detecting targets. Three dimensional LADAR imaging systems capable of rapid frame

acquisition may suffer losses in range resolution resulting from the duration of the pulse transmit-

ted to the target. Tradeoffs exist between sufficiently illuminating the target and obtaining higher

range resolution, therefore LADAR systems may sacrifice range resolution in favor of improving the

signal-to-noise ratio of the detected signal.

2.1 Background

A current imaging processing problem is finding a deconvolution technique that obtains better

range resolved LADAR return images collected at very high speeds. Since LADAR data processing

must account for unwanted parameters that degrade information contained in the received signal

(i.e., temporal resolution), estimation theory can be used to find estimators that accurately represent

the original scene.

This thesis presents two deconvolution techniques to improve the temporal resolution of LADAR

pulse profile returns in the presence of photon and speckle noise. The first method uses an updating

(iterative) deconvolution algorithm that improves the temporal resolution of LADAR pulse profile

2



returns to locate target surfaces in the presence of photon and speckle noise. The second, common

image processing technique, considered uses Wiener filtering to suppress image degrading effects

caused by photon and speckle noise. The thesis research analyzes and compares the accuracy and

performance of image estimators generated by these two deconvolution techniques using both simu-

lated and real world LADAR data. The performance and accuracy of the estimators generated by

both techniques are quantified by comparing the squared error difference values between the true

image, the convolved image and the corresponding estimated image. The performance comparison

of the deconvolution techniques yield at least two important research contributions. First, previous

works in the laser image processing field discuss 3-D deconvolution techniques to improve temporal

resolution, but none of these works discuss the application of the iterative algorithm on measured

LADAR data and simulated data modeled after the measured data [2, 4, 7]. Second, none of these

works compare the performance of the LADAR iterative algorithm with methods typically used in

other image processing applications such as Wiener filtering.

2.2 Image Reconstruction Techniques

To solve the above problem, one must understand the process of deconvolving LADAR returns.

This section discusses the importance of using deconvolution on LADAR return data. The deriva-

tion of a common deconvolution technique, the Richardson-Lucy algorithm, is discussed. Since the

iterative algorithm uses premises taken from Richardson-Lucy, the last part of the section examines

the background behind his deconvolution technique.

2.2.1 Deconvolution. The primary function of LADAR range finders is producing spatially

resolved data measurements [4]. By measuring the time of flight of photons traveling in the LADAR

pulse, a relationship between space and time is used to calculate the distance between the system

and the target of interest. Accordingly, if the response function of the system is longer than the time

resolution of the detector array, the return signal measured by the system will smear. As a result,

the system’s range resolution capability decreases. By deconvolving the measured return signal with

3



the system response function, the system corrects the resolution loss. Unfortunately, noise effects are

always present in real world LADAR signals. Additive noise makes direct deconvolution impractical

due to the amplification of the noise component in the signal. Based on this presence of noise in

the LADAR signal, Harsdorf considers conventional deconvolution using pre-filtering and Fourier

transforms, as well as the Richardson-Lucy algorithm, to improve the range resolution of LADAR

systems.

For the conventional deconvolution analysis, Harsdorf considers a LADAR signal Pm(t) for a

single target overlayed with noise. The signal is described by the convolution equation

Pm(t) =

∫ ∞

−∞

R(t′ − t) ∗ Pδ(t
′)dt′ + N(t) = [R(t) ⊗ Pδ(t)] + N(t), (2.1)

where R(t) is the system response function, Pδ(t) is the impulse response function of the environment

in which the system operates, N(t) is a additive white Gaussian distributed noise signal, and ⊗

denotes the convolution. The LADAR signal Pm(t) equals the convolution of R(t) with the impulse

response function with noise added. The term convolution is defined as an integral that represents

the amount of overlap of one function over another [9]. Performing deconvolution on the convolved

signal, reverses this overlapping of the two functions. Since the LADAR signal has an added noise

component, performing a direct deconvolution of the signal is unrealizable [4].

2.2.2 Richardson-Lucy Algorithm. The Richardson-Lucy algorithm is a repetitive process

developed by W.H Richardson and L.B. Lucy to improve image restoration performance assuming

a Poisson distribution [4]. The algorithm assumes the return signal is an image with dimension 1 x

N. Based on this assumption, the algorithm can be used to deconvolve signals. The equation for the

j-th repetition is

P j+1
δ (t) = P j

δ (t)RT (t) ⊗
Pm(t)

P j
m(t)

, (2.2)

where

P j
m(t) = R(t) ⊗ P j

δ (t), (2.3)

4



and RT (t) is the transpose of the system response function. Both the conventional deconvolution

and Richardson-Lucy algorithm provide range resolution improvements. Conventional deconvolution

requires a pre-filtering application to remove noise amplification at higher frequencies. Harsdorf

claims the Richardson-Lucy algorithm preforms better than the conventional method because the

signal output using Richardson-Lucy remains unchanged regardless of the pre-filter application.

Since noise is not amplified during the Richardson-Lucy algorithm, the output is independent of any

pre-filtering processing applied to the noisy signal.

2.2.3 LADAR Iterative Deconvolution Algorithm. The Richardson-Lucy algorithm is the

basis for the development of this iterative deconvolution method. A derivation of the a posteriori

probability density function, o(x, y, k2), given the observed waveform, is required to build the itera-

tive algorithm [2]. A Bayesian estimator is calculated by creating the likelihood function conditioned

on the data and then maximizing the result with respect to the noted parameters [8]. The likeli-

hood function is built as the conditional a posteriori density, or the conditional probability of the

parameters, given the recorded image [2].

The relationship between the a posteriori density and a priori density function via Bayes rule

is

fO|D(o|d) =
fD|O(d|o)

fD(d)
, (2.4)

where the a posteriori density fO|D(o|d) is the probability of scene o conditioned on the recorded

image d. The a priori distribution of the data given the scene is

fD|O(d|o) = P(D = d|O = o)

.

The parameter d represents a realization of the noisy data, and o is the scene, which is a

non-random parameter. The operator P represents the probability that the image data is equal to

a realization of that process conditioned on a scene O = o. For each point in the recorded data, this

5



density is

P[D(x,y,k) = d(x,y,k)|O(x,y,k2) = o(x,y,k2)] = (2.5)

[d(x, y, k) + Mt]!

[d(x, y, k) + 1]!Mt!
[1 + Mt/i(x, y, k)]−d(x,y,k)[1 + i(x, y, k)/Mt]

−Mt .

In the above equation, i(x, y, k) =
∑K

k2=1 h(k − k2)o(x, y, k2), h(n) represents the convolution

of the impulse response of the detector and the laser pulse, and Mt is the speckle parameter [3].

Assuming statistical independence between samples in time results in the probability that a set of

random variables D(x, y, k) = d(x, y, k) is

P[D(x,y,k) = d(x,y,k)|O(x,y,k2) = (2.6)

o(x, y, k2)∀(k, k2) ∈ (1, 2, ...,K)] =

K∏
k=1

[d(x, y, k) + Mt]!

[d(x, y, k) + 1]!Mt!
[1 +

Mt

i(x, y, k)
]−d(x,y,k)[1 +

i(x, y, k)

Mt

]−Mt .

The probability density function fD(d) in the above equation is the probability of the measured

image equaling a particular realization of that process unconditioned on any other event. fD(d) is

not a function of the parameters o(x, y, k2).

By maximizing the a posteriori density, or likelihood, an estimator for o(x, y, k2) is obtained.

To simplify the estimator’s form, the natural logarithm of the likelihood function is maximized,

L(o) = ln[fD|O(d|o)] − ln[fD(d)]. (2.7)

This function can be reduced to a function of terms that only depend on the image as given

6



by

L(o) = ln[fD|O(d|o)]. (2.8)

Using the expression for the conditional a priori density function from Eqn. 2.7, the log-

likelihood becomes

L(o) =

K∑
k=1

ln[
(d(x, y, k) + Mt)!

(d(x, y, k) + 1)!Mt

] − d(x, y, k) ln [1 +
Mt

i(x, y, k)
] − Mt ln [1 +

i(x, y, k)

Mt

]. (2.9)

The log-likelihood is differentiated with respect to o(x, y, k2) and set equal to zero to form a proper

estimation of the scene o(x, y, k2). Before differentiating, the function is simplified by only considering

those terms which are dependent on the parameters of interest. The function is simplified further

by factoring i(x, y, k) out of the denominator in the second term and Mt out of the denominator in

the third term. The resulting function is written as

L(o) =

K∑
k=1

−d(x, y, k) ln [
i(x, y, k) + Mt

i(x, y, k)
] − Mt ln [

Mt + i(x, y, k)

Mt

]. (2.10)

By factoring out the terms in the denominator of the natural logarithms as the negative of

their reciprocals and again only keeping terms that are dependent on the parameters of interest, the

log-likelihood is expressed as

L(o) =

K∑
k=1

d(x, y, k) ln [i(x, y, k)] − [d(x, y, k) + Mt] ln [i(x, y, k) + Mt]. (2.11)

Differentiating with respect to o(x, y, k2) and setting the result equal to zero yields

0 =
K∑

k=1

d(x, y, k)

i(x, y, k)

δi(x, y, k)

δo(x, y, k2)
−

(d(x, y, k) + Mt)

(i(x, y, k) + Mt)

δi(x, y, k)

δo(x, y, k2)
. (2.12)
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Using the relationship i(x, y, k) =
∑K

n=1 h(k − k2)o(x, y, k2) the derivative becomes

δi(x, y, k)

δo(x, y, k2)
= h(k − k2). (2.13)

Substituting the result into the differentiated log-likelihood yields a condition for a maximizer of

L(o) with respect to o(x, y, k2)

0 =

K∑
k=1

d(x, y, k)h(k − k2)

i(x, y, k)
−

(d(x, y, k) + Mt)h(k − k2)

(i(x, y, k) + Mt)
. (2.14)

As Mt becomes large, the second term minimizes to the point spread function, which is comparable

with results obtained using a Poisson density instead of a negative-binomial density [2,6]. Similar to

the derivation of the Richardson-Lucy algorithm, the negative term is brought over to the left side

and both sides are divided by the left side producing

1 =

∑K
k=1

d(x,y,k)h(k−k2)
i(x,y,m∑K

k=1
(d(x,y,k)+Mt)h(k−k2)

(i(x,y,k)+Mt)

. (2.15)

Multiplying both sides by o(x, y, k2) provides the iterative equation

onew(x, y, k2) = oold(x, y, k2)

∑K
k=1

d(x,y,k)h(k−k2)
iold(x,y,k∑K

k=1
(d(x,y,k)+Mt)h(k−k2)

(iold(x,y,k)+Mt)

. (2.16)

In Eqn. 2.16, terms relying on the image estimation from the previous calculation are labeled as old,

while the new estimate is on the left-hand side.

2.2.4 Wiener Filtering. An alternate filtering technique, Wiener filtering, uses prior sta-

tistical knowledge of the noise to minimize noise effects on the signal [1]. Wiener filtering in the

temporal direction is another deconvolution technique used to improve the range resolution of pulse

profiles. A Wiener filter is a linear filter constructed to minimize the mean square error (MSE)
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between the image on the detector array and some desired image. The filter, in this case, is designed

to minimize the MSE between the original convolved pulse profile and the desired pulse profile [1].

A common pre-processing technique performed on the non-zero mean data before filtering is

subtracting the mean value from the data set [5]. This aids in removing any bias from the data

before filtering. After the data is filtered, the data’s mean value is added to the data set. Previous

research efforts show that applying the Wiener filter on convolved return pulses reduces noise effects

observed in the pre-filtered pulses [4]. The Wiener filter equation is

H∗(u, v)

|H(u, v)|2 + Pn(u,v)
Ps(u,v)

,

where H(u, v) is the Fourier transform of the point spread function, Pn(u, v) is the power spectrum of

signal, and Pn(u, v) is the power spectrum of the signal noise. Pn/Ps is constant and for all u, v and

can be viewed as the reciprocal of the signal-to-noise ratio [5]. Wiener filters are similar to inverse

filters except Wiener filters have an additional noise-to-signal ratio constant that compensates for

noise amplification. Varying the value of this constant significantly impacts the deconvolved Wiener

filter pulse profile.
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III. Solution Methodology

T
he thesis research focuses on applying the iterative deconvolution and Wiener filtering meth-

ods on both simulated and measured LADAR temporal returns. Application of both tech-

niques on different data sets will generate estimators of the true scene. Comparing the squared

error difference between the estimator and the true scene for both methods quantifies which method

performs better in resolving LADAR temporal returns.

3.1 Scope

The research goal is to apply the iterative deconvolution algorithm and Wiener filtering on

different temporal vectors within the noisy data sets. Both techniques generate an estimated vector

corresponding to the true scene. Analysis of both methods on the measured data and simulated

data includes setting the speckle noise parameter value, Mt, to two different values. The two values

used for this research are Mt equal to one and 100, respectively. Since measured data was limited

and AFRL has the flexibilty to change the speckle parameter, using these two Mt value extremes

on simulated show how the amount of speckle in a LADAR image will effect the performance of the

two deconvolution methods. The speckle parameter represents the degree of speckle averaging in the

signal due to the coherence of the laser compared to the length of the illumination pulse [2]. Mt equal

to 100 represents a LADAR system that has a sampling time much greater than the coherence time

of the laser which translates to temporal data that is partially coherent. In addition, the temporal

data has a relatively high signal to noise ratio (SNR). The lowest possible value for the speckle

parameter Mt equal to one is the most challenging noise environment possible for LADAR data.

Another parameter of interest in researching the two deconvolution methods is the amount of

energy in the return data collected by the LADAR system. One way of measuring the light level of

the data returns is by counting the number of photons collected by the detector array of LADAR

system. Since the LADAR system uses a particular light level to collect the measured data sets, the

light level parameter for these data sets is fixed. However, the light level parameter can be adjusted

when analyzing the simulated data. Therefore, simulated data analysis includes looking at data
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returns with high and low light levels. High light level data will be defined as return data vectors

containing approximately 10,000 photons. Low light level data will be defined as return data vectors

containing approximately 1,000 photons.

3.2 Assumptions

The research makes several assumptions when determining the form of the estimated image

derived from the iterative deconvolution algorithm. These assumptions are also important for eval-

uating the algorithm’s accuracy and performance in estimating the true image.

First, the combined statistics of the speckle and photon noise are assumed to be a negative

binomial distribution. Second, the research does not use a definitive detector noise model because

this type of noise is dependent upon the specific type of detector used by the LADAR system.

3.3 Metrics

Calculating the squared error difference and the variance between the true scene, the convolved

scene, and the estimated scene for the real and simulated data, respectively, will be the primary

primary metric used for this research. The squared error and mean squared error calculations are

used to compare and contrast the research results of both deconvolution techniques.

3.4 Data

In early October, 2004, AFRL/SNJM recorded LADAR data to be used for researching meth-

ods for improving data temporal resolution. An improvement in temporal resolution would help in

detected target surfaces and their locations within the given data set. The LADAR system’s target

of interest for the experiment was a hollow rectangular shaped box with front and back surfaces

constructed with plywood. Approximately two dozen square and rectangular shaped holes were cut

out of the front surface allowing light to illuminate the inside of the back surface of the target. These

cut outs on the front surface made the target symmetrically identical from top to bottom. The target
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was positioned such that the front and back surfaces formed a right angle with the LADAR system.

Unfortunately, AFRL could not provide the original schematics for the target. Since knowing the

target’s dimensions were necessary for modeling the simulated data, the researcher coordinated with

AFRL/SNJM to measure the target’s dimensions.

The parameters for LADAR system and the environment in which the data was measured are

listed in Table 3.1. Some parameters (Mt, pulse width, pulse shape) listed in Table 1 are unknown.

As a result, these parameters have been estimated based on observations of the measured data in

Matlab
R©.

3.5 Measured Data

Measured data for the research was recorded, formatted, and provided by the offices of AFRL/SNJM.

AFRL recorded both 8-bit and 16-bit signed data, but only the higher resolution 16-bit data was

used for the temporal deconvolution analysis. Eleven 16-bit data sets were provided by AFRL for

the research effort. AFRL pre-processed the raw data for proper formatting before deconvolution

analysis. The last data formatting procedure converted the data into .MAT format since Matlab
R©

was used for data analysis. Each set of the processed measured data used for the research is 128

pixels square with 21 separate frames (images) profiling the target in the temporal direction.

After visually inspecting each of the 11 data sets, frame-by-frame, only one data set was deemed

acceptable for temporal deconvolution analysis. Ideally, each data set should show a gradual transi-

tion, frame by frame, from illumination of the target’s front surface to illumination of only the cut

out sections. The other data sets were unacceptable because the LADAR system’s detector aperture

closed before receiving the entire return pulse from the target. For example, the one data set labeled

showed a transition, frame by frame, from illumination of the target’s front surface to illumination

of both surfaces. The data set did not contain frames showing illumination of the cut out sections

only. As a result, this particular data set cannot be temporally resolved because the LADAR system

did not receive the complete pulse return from the target. Unfortunately, with only one measured
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data set available an extensive deconvolution analysis of the measured data is limited.

However, the good data set does require additional pre-processing before deconvolution to bet-

ter resolve the temporal information. Frames 1, 17, and 18 of the data set were corrupted. These

frames were removed from the data before deconvolution to avoid additional biasing that would effect

the temporally resolved data. In addition, all zero valued pixels are replaced with near zero equiva-

lent positive values to avoid dividing by zero during deconvolution. Removing bad data frames from

the data set avoids some biasing, but unknown biases due to the atmosphere, the LADAR system,

etc., still may be present in the data. This bias is reduced by taking the data vector of interest

and subtracting off the minimum number of photons present in the given data vector. With bias

effects reduced due to the data pre-processing, the data set is ready for deconvolution. A relatively

large amount of speckle averaging occurs in the return pulse captured by the detector array of the

LADAR system, therefore, the speckle averaging parameter for the measured data is assumed to be

Mt = 100. Figure 3.1 and Figure 3.2 show the data set frame by frame of the measured data set used

in the deconvolution analysis. Based on the system sample rate and distance between the target’s

front and back surfaces, the frame seperation distance of the target’s surfaces in the data set are 3

or 4 frames. The front and back surfaces of the target in the measured data set are assumed to be

located in the the 6th and 10th frames, respectively.

3.6 Simulated Data

The simulated LADAR data is modeled in the form and characteristics of the real world

LADAR data. To accurately model the simulated data, the target’s dimensions were measured. A

simple ratio using the focal length, pixel pitch, and target distance yields the target length per pixel

in the data set. Each pixel in a given image frame of measured data corresponds to 6.92 cm of length

in the real world. With this length to pixel conversion, the simulated target was constructed using

Matlab
R© and positioned in each simulated data set at the same location coordinates as the target

in the measured data. Similar to the measured data, each simulated data set has a frame size of

13



128 pixels squared with 18 separate frames (images) profiling the target in the temporal direction.

Figure 3.3 and Figure 3.4 show the front and back target surfaces, including dimensions. The white

areas in the figures represent the surfaces of the target as seen from the LADAR system. These

surfaces were used to generate the target in the simulated data sets. The front and back surfaces of

the target were placed in the 6th and 10th frames of the simulated data set, respectively.

Two parameters of interest in the simulated data research include varying light levels and

varying the speckle noise parameter, Mt. These parameters will affect the performance of the

iterative and Wiener filter deconvolution methods. The light level and Mt for the measured data

are assumed to be fixed, but the exact values are unknown. By varying the light level and Mt, four

different scenarios can be analyzed. The four scenarios include high light level and high Mt, low

light level and high Mt, high light level and low Mt, and low light level and low Mt. High light level

simulated data, based on the number of photons observed in measured data target vectors (between

9000-13000 photons/vector), will have data vectors containing approximately 10000 photons each.

Low light level simulated data will have data vectors containing 1000 photons each. As previously

discussed, the low Mt value is 1 and the high Mt value is 100.

In order to accurately model the simulated data after the measured data, several convolutions

are performed on the pristine simulated data. Also, noise effects must be added. The simulated

LADAR pulse must be convolved with the data to simulate the transmitted pulse reflecting off the

target. In addition, a combined optical transfer function (OTF), based on the physical properties of

the system and the atmosphere, is convolved with the data to simulate the optical and atmospheric

effects of the system on the transmitted pulse. Simulated noise effects (photon and speckle) are

added to the convolved simulated data. Since photon and speckle noise has a negative binomial

distribution, many statistically independent simulated data sets can be generated. As a result, a

statistical analysis (variance calculations) of both deconvolution methods can be done [2]. Creating

the simulated noise and applying it to the entire data set are extremely time intensive in MATLAB R©.
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Since the target occupies a significantly smaller area than the entire data set, a section of the data

set containing the target was cropped for analyzing the two deconvolution methods.

Table 3.1: Measured and Simulated LADAR Data Parameters.

Variable Value(s)

Mt (measured data) 100 (estimated from detector pixel size)
Mt (simulated data) 1 and 100
Pulse shape Gaussian (estimated)
λLaser (wavelength) 1.55e-6 m
Pixel pitch 1.00e-4 m
Number of photons in high light environment (simulated) 10000 photons
Number of photons in low light environment (simulated) 1000 photons
Frame sample rate 2.38e-9 s
Number of uncorrupted frames 18 frames/data set
Number of detectors (square array) 128
Iteration number (iterative algorithm) 10000
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Figure 3.1: First nine frames of the measured data set used for the
research.

Figure 3.2: Last nine frames of the measured data set used for the re-
search. The simulated data was modeled after all 18 frames of this specific
measured data set.
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Figure 3.3: The front surface of the target used in the simulated data.

Figure 3.4: The back surface of the target used in the simulated data.
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IV. Results for Measured and Simulated Data

T
he results and discussion of the research are divided into several different categories based on

the two data types tested, measured, and simulated. Test results using measured data include

deconvolution profiles of the target’s front surface and back surface based on the parameters listed in

Table 1. Counting the number of photons in data containing the target’s front and back surfaces show

total photon quantities ranging between 9000 and 13000 photons. Based on these photon quantities,

the light level for the measured data is assumed high. The simulated data results include the same

deconvolved front and back surface profiles of the target. However, the simulated deconvolution

results consider variations in speckle noise parameter values. The simulated data results also show

the effect of the LADAR system operating in high and low light level environments.

4.1 Measured Data Results

The measured data test results demonstrate the iterative deconvolution algorithm does a better

job temporally resolving the target than the Wiener filter deconvolution. Figure 4.1 represents the

convolution of the pulse with the front surface of the target. The convolved data was pre-processed

as described in Chapter III. The signal to noise ratio (SNR) of the data appears to be high, based

on the shape of the convolved profile. One could make an educated guess as to the location of the

target surface based on the peak value of the number of photons. The peak photon quantity will not

necessarily correspond to the surface location because the convolution operation most likely causes

a left or right shift of the target’s true surface location.

The Wiener filtered deconvolution of the target’s front surface is shown in Figure 4.2. Accord-

ing to the results in Figure 4.2, the Wiener filtered deconvolved solution has negative photon values.

The negative photon values are based on the shape of the convolved data and the functionality

of the Wiener filter. Wiener filters are unable to reconstruct features that have been degraded by

noise. They can only suppress the noise. Also, Wiener filters are unable to restore components for

which the point spread function (PSF) equals zero. The PSF for the purposes of this research is the

Fourier Transform of the Gaussian-shaped LADAR pulse. This means Wiener filters are unable to
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undo blurring caused by bandlimiting of the PSF. This type of bandlimiting occurs in any real-world

imaging system. The Wiener filter is a linear filter, so applying the filter to the convolved data will

smooth any sharpness present in the data.

Since the convolved data has a sinusoidal shape, wiener filtering the data will enhance the

separation of the the highest and lowest values present. Therefore, straight deconvolution with a

Wiener filter may change the lowest values of the data set into negative results. Replacing all nega-

tive values in the deconvolved data with zeros and properly scaling the data yields a more accurate

representation. After removing the negative values in the filtered data, scaling the data was accom-

plished by keeping the total number of photons consistent between the convolved and deconvolved

data. Figure 4.3 displays the non-negative, properly scaled, Wiener filter deconvolved solution for

the target’s front surface location. Based on the location of the maximum number of photons in

Figure 4.3, the target’s front surface is located in the 6th frame of the data set.

The final iteration of the deconvolved data is plotted in Figure 4.4. The iterative algorithm

equation begins with o(x, y, k2) = 1 and is found to converge after at least one thousand iterations.

For the purposes of this research, the iteration number is 10000 for all iterative algorithm test results.

These additional iterations add robustness to the final iterative solution. All 10000 iterations of the

deconvolved data are shown in Figure 4.5. Based on the iterative algorithm results, the target’s front

surface location is in 6th frame of the data set.

Both deconvolution methods yield the same target surface location, frame six, in the data set.

However, the squared error difference between the deconvolved profiles from both methods and the

true location of the surface show that the iterative algorithm generates a much better estimation of

the target’s front surface. Figure 4.6 shows that the squared error values for the deconvolved profile

from the Wiener filter and the convolved profile are very similar. The three squared error (SE)

values are calculated using the different pulse profiles and target’s front surface location in the true

scene. The maximum squared error values for the three different pulse profiles illustrate how well

the iterative algorithm performs over the Wiener filter. The Wiener filter’s maximum squared error

19



value is approximately 29.3 times larger than the maximum squared error of the iterative algorithm.

Similar deconvolution results were found with containing the target’s back surface. Figure 4.7

represents the convolution of the pulse with the back surface of the target. The true Wiener filter

deconvolved profile as discussed above is given in Figure 4.8. Based on the Wiener filter results, the

target’s back surface location is approximately the 11th frame of the data set.

The 10000th iteration of the data for find the target’s back surface is plotted in Figure 4.9.

Similar to the results for finding the front surface, the iterative algorithm is found to converge after at

least one thousand iterations. All 10000 iterations of the deconvolved data are shown in Figure 4.10.

Based on the iterative algorithm results, the target’s back surface is in the 10th frame of the data

set.

Both deconvolution methods provide approximately the same estimation for the target’s back

surface. However, the square error difference between the deconvolved profiles from both methods

and the true location of the surface shows that the iterative algorithm generates a much better esti-

mation of the target’s back surface. The squared error calculations for both deconvolution methods

are given in Figure 4.11. The maximum squared error values for both methods illustrate how much

better the iterative algorithm performs over the Wiener filter. The Wiener filtered profile shows

virtually no improvement in temporal resolution compared to the convolved profile. The Wiener

filter’s maximum squared error value is approximately 8.4 times larger than the maximum squared

error of the iterative algorithm. The discrepancy between the different frame locations given by the

two methods is solved by examining the squared error results. Since the iterative algorithm solution

has a smaller squared error, the target’s back surface is located in the 10th frame of the data set.

4.2 Simulated Data Results

The simulated data including the target was modeled after the data used in the measured data

tests. Based on the deconvolved measured data, the target’s front and back surfaces were placed

in the 6th and 10th frames, respectively, of each simulated data set. Changing the level light and
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Mt values do effect the performance of both methods but the iterative method always outperforms

the Wiener filter. The tests using simulated data define data containing more than 10000 photons

as high light level data. Low light level data include data containing 1000 photons or less. Two

different Mt values are used to analyze the simulated data, Mt = 1 and Mt = 100. A Mt = 1

value represents the greatest amount of speckle noise possible in real world LADAR data. Mt = 100

represents data with a high SNR which corresponds to a small amount of speckle noise in the data.

Multiple statistically independent data sets are generated allowing variance calculations to be per-

formed between the iterative and Wiener filter deconvolution methods. Each method deconvolves an

average of 50 statistically independent convolved data sets. The variance is calculated by taking the

averaged squared difference between the deconvolved data sets and the true target surface location

and dividing by the size of the deconvolved data.

Figure 4.12 shows the convolution of the pulse with the front surface of the target for a high

light level environment and Mt = 100. The location of the target surface appears to be between the

5th and 9th frame based on the location of the peak value of photons. The peak photon quantity will

not necessarily correspond to a target surface because the convolution operation most likely causes

a data shift from the target’s true surface location.

Figure 4.13 displays the non-negative, properly scaled, Wiener filter deconvolved solution for

the target’s front surface. According to the location of the maximum number of photons from the

Wiener filter data, the target’s front surface is located in the 6th frame of the data set. The average

of the 10000th deconvolved iteration for 50 independent data sets containing the front surface is

plotted in Figure 4.14. Based on the average of the final iteration deconvolved data, the target’s

front surface location is in the 6th frame of the data set.

Both deconvolution methods using simulated data with high light levels and high Mt provide

approximately the same estimate for the target’s front surface. However, the mean square error

difference between the deconvolved profiles from both methods and the true location of the surface

show that the iterative algorithm generates a better estimation of the target’s front surface. The
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mean squared error calculations for both deconvolution methods are illustrated in Figure 4.15. The

Wiener filter’s maximum variance is approximately 1.8 times larger than the maximum variance of

the iterative algorithm. The temporal resolution improvement of the profile due to the Wiener filter

is almost negligible.

Comparable results are found when testing high light level, high Mt convolved data containing

the target’s back surface. Figure 4.16 displays the convolution of the pulse with the back surface

of the target. The peak photon value occurs in the 12th frame of the data, but the location of the

target surface cannot be determined from observations of the convolved data.

Figure 4.17 contains the Wiener filter deconvolved solution for the target’s back surface. Ac-

cording to the Wiener filter data, the target’s back surface is located in the 8th frame of the data

set. The average of the 10000th deconvolved iteration for 50 independent data sets containing the

front surface is shown in Figure 4.18. Based on the average of the final iteration deconvolved data,

the target’s back surface location is in the 10th frame of the data set.

Both deconvolution methods provide approximately the same estimate for the target’s front

surface. However, the two methods have a two frame difference for the location of the target’s back

surface. The mean square error difference between the deconvolved profiles from both methods and

the true location of the surface show that the iterative algorithm generates a better estimation of

the target’s back surface. The variance calculations for both deconvolution methods are illustrated

in Figure 4.19. The Wiener filter’s maximum variance is approximately 1.5 times larger than the

maximum variance of the iterative algorithm. Again, the Wiener filter does a poor job improving

the range resolution of the data.

The performance of both methods suffer when testing low light level data with Mt = 100.

Both methods seem to degrade linearly in low light environments, but the iterative method still

deconvolves the data better than the Wiener filter. Figure 4.20 displays the convolution of the pulse

with the front surface of the target in a low light level environment. Based on the convolved data

profile, the surface appears to be in the 6th or 7th data frame.
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The Wiener filter deconvolved data is plotted in Figure 4.21. Based on the Wiener filter results,

the target’s front surface is located in the 6th frame of the data set. Figure 4.22 shows the average of

the 10000th deconvolved iteration for 50 independent data sets containing the front surface. Based

on the average of the final iteration deconvolved data, the target’s front surface location is in the 6th

frame of the data set. The width of the peak of the low light level deconvolved data is much wider

than the width of high light level data. Increasing the number of iterations from 10000 to 20000

does not cause the estimated surface location to converge any further.

Both methods provide approximately the same estimate for the target’s front surface. As

observed with the data above, the variance between the deconvolved profiles from both methods

and the true location of the surface show that the iterative algorithm generates a better estimation

of the target’s front surface. The variance calculations for both deconvolution methods are illus-

trated in Figure 4.23. The Wiener filter’s maximum variance is approximately 1.5 times larger than

the maximum variance of the iterative algorithm. Similar to the results given in Figure 4.15 and

Figure 4.19, the Wiener filtered profile’s temporal resolution is not much better than the original

convolved profile.

Similar results to the front surface data are found when testing low light level, high Mt con-

volved data containing the target’s back surface. Figure 4.24 displays the convolution of the pulse

with the back surface of the target. The location of the target’s back surface is completely masked

in the convolved data. The Wiener filter deconvolved back surface data for the low light, Mt = 100

case is presented in Figure 4.25. Based on these results, the target’s back surface is located in the

8th frame of the data set. The average of the 10000th deconvolved iteration for 50 independent data

sets containing the target’s back surface is shown in Figure 4.26 Based on the average of the final

iteration deconvolved data, the target’s back surface is located in the 10th frame of the data set.

Both deconvolution methods provide approximately the same estimate for the target’s back

surface. However, the two methods have a two frame difference for the location of the target’s back

surface. This two frame difference is consistent with the analysis performed using the high light
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level, Mt = 100, data containing the target’s back surface. The variance between the deconvolved

profiles from both methods and the true location of the surface show that the iterative algorithm

generates a better estimation of the target’s back surface. The iterative algorithm’s lower variance

suggests the true back surface of the target is located in the 10th frame of the data set. Based on the

variance calculations for both deconvolution methods and the convolved profile in Figure 4.27, the

Wiener filter has relatively no effect on the convolved data. The Wiener filter’s maximum variance

value is approximately 1.76 times larger than the maximum variance of the iterative algorithm for

this case.

Now that both high and low light level deconvolved data when Mt = 100 has been analyzed,

high and low light level data when Mt = 1 is considered. Figure 4.28 shows the convolution of the

pulse with the front surface of the target for a high light level environment when Mt = 1. Fig-

ure 4.29 illustrates the Wiener filter deconvolved profile for the target’s front surface. According to

the Wiener filter data, the target’s front surface is approximately located in the 6th frame of the

data set.

The average of the 10000th iteration for 50 independent data sets containing the front surface

is provided in Figure 4.30. Based on the average of the final iteration deconvolved data, the target’s

front surface appears to be located in the 6th frame of the data set. The low speckle noise parame-

ter value increases the width of the deconvolved profile compared to the iterative deconvolved data

shown in Figure 4.14 when Mt = 100.

The high light deconvolved data when Mt = 1 is similar to high light deconvolved data when

Mt = 100. Both deconvolution methods provide approximately the same estimate for the target’s

front surface. The variance of the deconvolved profiles from both methods and the true location

of the surface show that the iterative algorithm generates a better estimation of the target’s front

surface. In fact the variance calculations for both deconvolution methods are illustrated in Fig-

ure 4.31 show that the Wiener filter actually decreases the temporal resolution of convolved profile.

For this case, applying a Wiener filter is detrimental to improving the range resolution of the data.
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The Wiener filter’s maximum variance value is approximately 2.78 times larger than the maximum

variance of the iterative algorithm.

Figure 4.32 displays the convolution of the pulse with the back surface of the target for a high

light level environment when Mt = 1. The Wiener filter deconvolved profile for the target’s back

surface is provided in Figure 4.33. The target’s back surface is approximately located in the 8th

frame of the data set based on the deconvolved profile.

The average of the 10000th iteration for 50 independent data sets containing the front sur-

face is provided in Figure 4.34. Based on the average of the final iteration deconvolved data, the

target’s back surface appears to be approximately located in the 9th frame of the data set. Again,

the iterative deconvolved profiles resulting from low Mt values have an increased width compared to

corresponding iterative deconvolved data with high Mt values as shown in Figure 4.18.

The variance between the deconvolved profiles from both methods and the true location of the

surface again show that the iterative algorithm generates a superior estimation of the target’s back

surface. The variance calculations for both deconvolution methods are illustrated in Figure 4.35.

The results in Figure 4.35 mirror the results shown in Figure 4.31. The Wiener filter lessens the

range resolution of the convolved pulse profile. The Wiener filter’s maximum variance value is ap-

proximately 1.78 times larger than the maximum variance of the iterative algorithm.

Figure 4.36 shows the convolved data containing the target’s front surface for a low light level

environment when Mt = 1. This data set represents one of the the most challenging noise environ-

ments possible to test the deconvolution methods. The Wiener filter deconvolved data is displayed in

Figure 4.37. Based on the Wiener filter results, the target’s front surface is approximately located in

the 6th frame of the data set. The average of the 10000th deconvolved iteration for 50 independent

data sets containing the front surface is illustrated in Figure 4.38. Based on the average of the final

iteration deconvolved data, the target’s front surface is located in the 6th frame of the data set. The

width of the peak of the low light level deconvolved data when Mt = 1 is much wider compared to

the deconvolved profiles of high light level data when Mt = 100.
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The variance between the deconvolved profiles from both methods and the true location of the

surface for this data show that the iterative algorithm generates a better estimate of the target’s front

surface. The variance calculations for both deconvolution methods are provided in Figure 4.39. The

Wiener filter’s maximum variance is approximately 1.36 times larger than the maximum variance of

the iterative algorithm.

The last data set analyzed is low light level data containing the target’s back surface when

Mt = 1. Figure 4.40 plots the convolution of the pulse with the back surface. Figure 4.41 shows the

Wiener filter deconvolved profile for the target’s back surface. The target’s back surface is approxi-

mately located in the 8th frame of the data set based on the deconvolved profile. The average of the

10000th iteration for 50 independent data sets containing the front surface is plotted in Figure 4.42.

Based on the average of the final iteration deconvolved data, the target’s back surface is located in

the 10th frame of the data set.

The variance between the deconvolved profiles from both methods and the true location of

the surface again show that the iterative algorithm generates better estimation of the target’s back

surface. The variance values for both deconvolution methods and the convolved pulse profile are

illustrated in Figure 4.43. The results for this case show that the Wiener filter negatively impacts

the range resolution of the data. The Wiener filter’s maximum variance is approximately 2.0 times

larger than the maximum variance of the iterative algorithm. A summary of the measured and

simulated data deconvolution results are provided in Table 4.1 and Table 4.2.
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Figure 4.1: Convolved measured data containing the front surface of the
target after pre-processing has been performed. The signal to noise ratio of
data appears to be relatively high so the target surface could be estimated
from the convolved profile. However, effects due to the convolution opera-
tion on the data adds some uncertainty as to the exact frame of the target
surface location.
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Figure 4.2: The Wiener filter deconvolved target data. This deconvolved
profile contains negative values due to the nature of the Wiener filter and
the shape of the convolved data. In order to properly show the true Wiener
filtered solution, the negative values are set to zero, and the entire decon-
volved profile is scaled appropriately to show a conservation of photons
between the convolved and deconvolved target surfaces.

Figure 4.3: The true Wiener filter deconvolved target data after remov-
ing negative values and properly scaling the data. The data was scaled
based on conserving the total number of photons between the convolved
and deconvolved data sets.
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Figure 4.4: Final iterative solution (10000th iteration) for the data con-
taining the front surface of the target. The surface is located in the 6th
frame of the data set.

Figure 4.5: All 10000 iterations of the iterative algorithm deconvolved
data. The iterations show the solution converging on the frame location
containing the target’s front surface.
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Figure 4.6: Squared error calculations between both deconvolved pro-
files, the convolved profile, and the target’s front surface in the true scene.
The iterative algorithm outperforms the Wiener filter significantly. The
Wiener filter’s maximum SE value is approximately 29.3 times larger than
the maximum SE of the iterative algorithm.
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Figure 4.7: Convolved measured data containing the back surface of the
target after pre-processing has been performed. Again, the signal to noise
ratio of the data appears to be relatively high, so the target surface could
be estimated from the convolved profile. However, effects resulting from the
convolution operation on the data adds some uncertainty as to the exact
frame of the target surface location.
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Figure 4.8: The true Wiener filter deconvolved target data after remov-
ing negative values and properly scaling the data. The data was scaled
based on conserving the total number of photons between the convolved
and deconvolved data sets. The target’s back surface approximate location
is in the 11th frame of the data set.

Figure 4.9: Final iterative solution(10000th iteration) for the data con-
taining the back surface of the target. The surface is located in the 10th
frame of the data set.
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Figure 4.10: All 10000 solutions of the iterative algorithm data. The
iterations show the solution converging on the frame location containing
the target’s back surface.
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Figure 4.11: Squared error calculations between both deconvolved pro-
files, the convolved profiles, and the target’s back surface in the true scene.
The iterative algorithm substantially outperforms the Wiener filter. The
Wiener filter’s maximum SE value is approximately 8.4 times larger than
the maximum SE of the iterative algorithm.
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Figure 4.12: Mt = 100. High light level convolved data containing the
front surface of the target after pre-processing has been performed. Based
on the peak of the data the so the target surface appears to be located
somewhere between the 5th and 9th frame in the data set. The convolution
operation on the data adds uncertainty as to the exact frame of the target
surface location.

Figure 4.13: Mt = 100. High light level Wiener filter deconvolved target
data after removing negative values and properly scaling the data. The data
was scaled based on conservation of the total number of photons between
the convolved and deconvolved data sets.
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Figure 4.14: Mt = 100, high light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
surface is located in the 6th frame of the data set.
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Figure 4.15: Mt = 100, high light level data. Variance calculations
for both deconvolution methods and the convolved profile. The iterative
algorithm outperforms the Wiener filter considerably. The Wiener filter’s
maximum variance is approximately 1.8 times larger than the maximum
variance of the iterative algorithm for this case.
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Figure 4.16: Mt = 100. High light level convolved data containing the
back surface of the target. Finding the target surface is difficult from
observing only the convolved data.

Figure 4.17: High light level Wiener filter deconvolved target data. The
target’s back surface based on the Wiener filter solution is in the 8th frame
of the data.
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Figure 4.18: Mt = 100, high light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
surface is located in the 10th frame of the data set.
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Figure 4.19: Mt = 100, high light level data. Variance for both de-
convolution methods and the convolved pulse profile. The Wiener filtered
profile’s MSE is nearly identical to the convolved profile’s MSE. The Wiener
filter’s maximum variance is approximately 1.5 times larger than the iter-
ative algorithm’s maximum variance.
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Figure 4.20: Mt = 100. Low light level convolved data containing the
front surface of the target. The target surface appears to be located in the
6th or 7th data frame.

Figure 4.21: Mt = 100. Low light level, Wiener filter deconvolved target
data after removing negative values and proper scaling. The front surface
of the target is approximately located in the 6th frame of the data set.
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Figure 4.22: Mt = 100, low light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
surface is located in the 6th frame of the data set.
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Figure 4.23: Mt = 100, high light level data. Variance for both decon-
volution methods and the convolved profile. The iterative algorithm does a
very good job improving the temporal resolution of the data compared to
the Wiener filter. The Wiener filter’s maximum variance is approximately
1.5 times larger than the maximum variance of the iterative algorithm for
this case.
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Figure 4.24: Mt = 100. Low light level convolved data containing the
back surface of the target. The surface location is completely imperceptible
in the convolved data.

Figure 4.25: Mt = 100. Low light level, Wiener filter deconvolved target
data after removing negative values and proper scaling. The back surface
of the target is approximately located in the 8th frame of the data set.
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Figure 4.26: Mt = 100, low light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
surface is located in the 10th frame of the data set.
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Figure 4.27: Mt = 100, low light level data. Variance for the convolved
pulse profile and both deconvolution methods. The iterative algorithm
temporally resolves the data better than the Wiener filter. The Wiener
filtered profile’s maximum variance is approximately 1.76 times larger than
the maximum variance of the iterative algorithm profile for this case.
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Figure 4.28: Mt = 1. High light level convolved data containing the front
surface of the target after pre-processing has been performed. Even in a
high light level environment, locating the target’s surface in the convolved
data is difficult if the Mt value is small.

Figure 4.29: Mt = 1. High light level Wiener filter deconvolved target
data. Based on the results, the target’s front surface is located in the 6th
frame of the data set.
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Figure 4.30: Mt = 1, high light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
target’s front surface is located in the 6th frame of the data set. The low
speckle noise parameter value increases the width of the deconvolved pro-
file compared to the iterative deconvolved data shown in Figure 4.14 when
Mt = 100.
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Figure 4.31: Mt = 1, high light level data. Variance for both decon-
volution methods. Applying the Wiener filter to the pulse profile actually
decreases the profile’s temporal resolution. The Wiener filter’s maximum
variance is approximately 2.78 times larger than the maximum variance of
the iterative algorithm for this case.
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Figure 4.32: Mt = 1. High light level convolved data containing the back
surface of the target after pre-processing has been performed. Based on the
highest peak in the convolved data, the surface appears to be located in
the 9th frame of the data set.

Figure 4.33: Mt = 1. High light level Wiener filter deconvolved target
data. Based on the results, the target’s back surface is located in the 8th
frame of the data set.
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Figure 4.34: Mt = 1, high light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
target’s back surface is located in the 9th frame of the data set. The low
speckle noise parameter value increases the width of the deconvolved pro-
file compared to the iterative deconvolved data shown in Figure 4.18 when
Mt = 100.
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Figure 4.35: Mt = 1, high light level data. Variance for both deconvolu-
tion methods and the convolved profile. The Wiener causes further range
resolution degradation of the pulse profile. The Wiener filter’s maximum
variance is approximately 1.78 times larger than the maximum variance of
the iterative algorithm for this case.

Figure 4.36: Mt = 1. Low light level convolved data containing the front
surface of the target. The target surface location is indistinguishable in the
convolved data.
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Figure 4.37: Mt = 1. Low light level, Wiener filter deconvolved target
data after removing negative values and applying the proper scaling. The
front surface of the target is approximately located in the 6th frame of the
data set.

Figure 4.38: Mt = 1, low light level data. The averaged final deconvolved
iteration (10000th iteration) for 50 independent data sets. The surface is
located in the 6th frame of the data set.
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Figure 4.39: Mt = 1, low light level data. Variance for both deconvolu-
tion methods and the convolved pulse. The Wiener filtered profile shows a
slight improvement in temporal resolution compared to the convolved data.
The iterative method yields a more favorable estimation of the target’s sur-
face location. The Wiener filter’s maximum variance is approximately 1.36
times larger than the maximum variance of the iterative algorithm for this
case.
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Figure 4.40: Mt = 1. Low light level convolved data containing the back
surface of the target. Based on the highest peak in the convolved data, the
surface appears to be located in the 8th frame of the data set.

Figure 4.41: Mt = 1 low light level Wiener filter deconvolved target
data. Based on the results, the target’s back surface is located in the 8th
frame of the data set.

51



Figure 4.42: Mt = 1, low light level data. Average of the final de-
convolved iteration (10000th iteration) for 50 independent data sets. The
target’s back surface is located in the 10th frame of the data set.
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Figure 4.43: Mt = 1, low light level data. Variance for both decon-
volution methods and the convolved pulse profile. The Wiener worsens
the range resolution of the convolved pulse. The Wiener filter’s maximum
variance is approximately 2.0 times larger than the iterative algorithm’s
maximum variance for this case.
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Table 4.1: Target Surface Locations for Deconvolved Data (W-Wiener filter, I-
Iterative algorithm).

Type of data Front surface (W) Back Surface (W) Front Surface (I) Back Surface (I)

Measured data 6th frame 11th frame 6th frame 10th frame
Simulated data
High light, Mt = 100 6th frame 8th frame 6th frame 10th frame
High light, Mt = 1 6th frame 8th frame 6th frame 9th frame
Low light, Mt = 100 6th frame 8th frame 6th frame 10th frame
Low light, Mt = 1 6th frame 8th frame 6th frame 10th frame

Table 4.2: Weiner Filter to Iterative Algorithm Peak SE and Variance Ratios

Type of Data Peak SE/Variance Ratios(Front Surface) Peak SE/Variance Ratios(Back Surface)

Measured data (SE) 29.40 8.40
Simulated data (Variance)
High light, Mt = 100 1.80 1.50
High light, Mt = 1 2.78 1.78
Low light, Mt = 100 1.50 1.76
Low light, Mt = 1 1.36 2.00
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V. Conclusions and Additional Research

5.1 Conclusions

C
omparing the results of the two deconvolution methods summarized in Table 4.1 and Table 4.2

validate the performance of the iterative algorithm over the Wiener filter. For the simulated

data, the iterative algorithm reconstructs the target’s front and back surfaces in approximately the

same frame locations as those in the original scene. The Wiener filter’s reconstruction shortens the

distance between the target surfaces compared to the true image. The iterative algorithm also yields

a better deconvolved profile for the measured data. The algorithm reconstructs the target surfaces

in the same location as the assumed target surface location of the measured data’s true scene. In

contrast, the Wiener filter reconstruction yields an increase in relative distance between the target’s

front and back surfaces compared to the assumed target location in the original measured data

scene. In addition, measuring the squared error or mean squared error of both methods shows a

vast improvement of the iterative method over the Wiener filter based on the optimal location of the

front and back target surfaces (6th and 10th frames respectively). Based on these reconstruction

results, the iterative algorithm is more adequately designed to improve the data’s temporal range

resolution than the Wiener because it can remove ambiguities in the convolved pulse profiles. The

pulse profiles recovered via the iterative algorithm are significantly improved in terms of identifying

the surface from which the return pulse reflects. The ability to remove the ambiguity introduced by

the width of the pulse on the range estimate suggests additional improvement in range resolution

of the LADAR system. Improvement in resolution could potentially exceed the bounds dictated by

the actual pulse width of the system.

Deconvolution performance using a Wiener filter varies depending on the value of the noise to

signal ratio constant. The optimal Wiener filter was found by varying the constant from values of

1 to 100 and applying the filter to the data. The constant value that provides the sharpest decon-

volved profiles is 1/18, the reciprocal number of frames in each data set. The Wiener filter is a poor

choice for temporally deconvolving data. Optimal filters providing the sharpest results tend to drive
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the maximum and minimum amplitudes further apart and potentially lose total positivity of the

data. The smoothing operation performed by the Wiener filter can in some instances degrade data

further from the intended result as seen in Figure 4.31, Figure 4.35, and Figure 4.43. This degra-

dation is seen in some of the Wiener filter deconvolved results in Chapter IV. Some of the Wiener

filtered pulse profiles experience a decrease in range resolution compared to the convolved data. As

a result of the data smoothing, the minimum deconvolved data values may become negative. Data

processing can remove the negative values and scale the remaining data to resolve the negativity

issue. Another solution to avoid negative values in the deconvolved Wiener filter data is to change

the value of the NSR constant. Setting the constant to a value that causes less sharpening in the

data can insure positivity of the data. However, this solution decreases the temporal resolution of

the resulting deconvolved data. Based on these considerations, the iterative algorithm, again, is the

preferred method for temporally deconvolving the data. The iterative algorithm does not contain

any parameters that require optimization for improving the temporal resolution of the deconvolved

data.

The Wiener filter method does have one advantage over the iterative algorithm. The Wiener

filter can deconvolve data much faster than the iterative method. Deconvolving the data sets dis-

cussed above with the Wiener filter takes 3.4 seconds. Deconvolving one voxel of data with the

iterative algorithm for 10000 iterations takes 20.7 seconds. For 1000 iterations, one voxel for the

iterative case takes .24 seconds. Processing each data set (128x128 voxels) using the iterative al-

gorithm for 1000 iterations takes approximately 70 minutes. The Wiener filter is faster but does a

poor job deconvolving the target’s surface compared to the iterative method. Based on the imaging

application, trade offs between algorithm speed and performance for both methods exist and should

be considered.

Since the iterative algorithm is derived from the Richardson-Lucy algorithm, analysis of these

two algorithms’ deconvolution performance seems logical. One reason the Richardson-Lucy algo-

rithm is not included in research testing is the algorithm was derived from data assuming a Poisson
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distribution. Real world LADAR data has a negative binomial distribution due to the presence of

photon and speckle noise. Therefore, a deconvolution method (Wiener filter) that does not rely on

the statistical distribution of the data was chosen for comparison with the iterative algorithm.

5.2 Additional Research

The results from the thesis analysis bring to light several areas of research that should be

further examined. More measured data should be taken so a more thorough statistical analysis can

be accomplished with the iterative algorithm. With more measured data available, the Cramer-

Rao low error bound can be calculated. Cramer-Rao bounds measure an estimator’s accuracy. The

mean-squared error for any estimate of a non-random parameter has a lower bound, the Cramer-Rao

bound, which defines the accuracy of any estimation procedure. Comparisons between the theoret-

ical performance bounds and the actual performance of the measured data sets can be analyzed.

A mathematical derivation of the Cramer-Rao bound for the iterative algorithm is attached in Ap-

pendix A.

Since the pulse shape and width of the imaging system is unknown, further research could

include a blind deconvolution analysis of the measured data using various deconvolution methods

including the iterative algorithm. Additional testing would include experimenting with various pulse

shapes and widths for each deconvolution method.

One final research area is establishing a decision threshold criteria for detecting and estimating

target surfaces to reconstruct a fully deconvolved data set. One possible threshold criteria is the

number of photons in a frame of deconvolved data. The decision criteria would allow the researcher

to decide if a surface was located in a given frame of data based on the number of photons in the

frame.
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Appendix A. Derivation of Cramer-Rao Bounds for the Iterative Estimator

A
ssuming that the estimators for the original non-random profiles are unbiased, the Cramer-

Rao bound, or lower bound on the profile estimation error, is determined by calculating the

Fisher information matrix. The Fisher information matrix is found by taking the expected value

of the second derivative of the log-likelihood function. The derivatives are taken with respect to

o(x, y, k2). Therefore the Fisher matrix can be expressed as

Jij = −E[
δ ln[fD|O(d|o)]

δo(x, y, k2)δo(x, y, k3)
]. (A.1)

Taking the inverse of this matrix and extracting the diagonal terms yield the Cramer-Rao

bounds for the pulse profile estimators. All variance calculations between the profile estimators and

the actual profile values should be greater than or equal to the Cramer-Rao bound values. Deriving

the Cramer-Rao bound for the profile estimators begins with knowing the log-likelihood function for

our parameters of interest. The simplified form of log-likelihood function as mentioned previously is

L(o) =

K∑
k=1

d(x, y, k) ln (i(x, y, k)) − (d(x, y, k) + Mt) ln (i(x, y, k) + Mt). (A.2)

Differentiating L(o) with respect to o(x, y, k2) and o(x, y, k3) yields

δL(o)

δo(x, y, k2)δo(x, y, k3)
=

K∑
k=1

d(x, y, k)h(k − k2)h(k − k3)

i(x, y, k)
−

(d(x, y, k) + Mt)h(k − k2)h(k − k3)

(i(x, y, k) + Mt)
.

(A.3)

The expected value of d(x, y, k) is related to the parameters of interest, o(x, y, k2), via

E[d(x, y, k)] = i(x, y, k), (A.4)
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therefore the Cramer-Rao bound J−1
ij simplifies to the following expression

J−1
ij =

K∑
k=1

h(k − k2)h(k − k3)Mt

i(x, y, k)(i(x, y, k) + Mt)
. (A.5)
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