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Abstract

Decisions are made based on available information. A decision support system endeavors

to provide information that is timely, accurate, and trustable. Information gathered from secure

web service transactions has attributes that can be used to assess a level of trustability. The trust

assessments enable a decision maker to determine a basis for confidence in the information pre-

sented from the web service. Existing trust assessment models do not provide a way to determine

from a particular trust assessment what information attributes contributed to its computation.

The present work creates trust values that retain and denote meaning, allowing a decision maker

to see specifically what factors influenced the information trust assessment. Also central to this

work is interpretation of the trust assessments. The interpretation model allows users to spec-

ify the amount of allowable tolerance for reduced trustability in the decision being made. This

"dial-a-trust" allows the interpretation to be scaled relative to the impact of the decision. The trust

assessment values, along with their interpretations, allow both human and machine-based deci-

sion makers to determine whether information is trustable enough for the needs of the decision

being made.
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A I T   SW S E

I. Introduction

The need for timely, accurate, and trusted information is a pervasive force that drives every

decision we make. Accordingly we must be able to ascertain the level with which a given set of

information can be trusted. If we consider the notion that trustability has tangible attributes, then

we suggest that a relative trustability value can be assessed for an information set =. If we restrict

our focus to the communications domain of secure web services, we submit that a relevant set of

indicators can be identified and used to approximate such a value. This research examines how

trustability can be assessed for = in a secure web services environment.

1.1 Background

The concept of ensuring high trustability of information is not a new one. It seems intu-

itive that any organization tasked with critical decision making would be interested exclusively in

information from trusted sources. Distributed computing and web services have enabled infor-

mation to be consolidated from multiple sources, allowing differences in protocols and standards

to be overcome. While this relative independence from specific protocols is a welcome change for

system engineers, a new problem is introduced as information retrieval experts work to ensure

that the picture presented from multiple sources is indeed a trustable one. As noted by others [14],

there are several definitions of trust that have been put forth in literature (see Section 2.2 for a brief

survey of several).

One of the leading definitions of trust has been labeled Information Integrity (I*I) by Martin

Bariff and Salimol Thomas of the Information Integrity Coalition (IIC). I*I is defined as "the

correctness of information, includ[ing] the accuracy, consistency, and reliability of information

domains (content, process, & system) of an enterprise" [13]. Certainly if we are determining

1



the trustability of some information, we must be able to ascertain the measure of its accuracy,

consistency, and reliability. Yet to say that these dimensions paint a complete picture of trustability

is premature. This work proposes additional indicators that give greater insight into how trustable

a particular set of information is.

Given a focus on secure web services, a security framework must be given with which to

provide an environment for trustability evaluation. Until recently, no such framework existed

among the various standards bodies contributing to the field of web services. However, in April

2004 the Organization for the Advancement of Structured Information Standards (OASIS) ratified

the Web Services Security (WS-Security) standard. WS-Security proposes "a standard set of SOAP

extensions that can be used when building secure Web services to implement message content

integrity and confidentiality" [9]. This progress was recognized by Gartner Inc. within days of its

ratification, recommending that enterprises should adopt WS-Security for all "across-the-wall Web

service deployments" [26].

1.2 Methodology

Along with defining I*I, Bariff and Thomas propose a framework within which to calculate

the integrity of a given set of information. Using their domains (content, process, and system)

and attributes (accuracy, consistency, and reliability), I*I is calculated by a series of multiplication

functions for each, resulting in a final value between 0 and 1. While providing an easy way

to calculate trustability, the framework does not provide a way to distinguish between two like

values. As demonstrated in Section 2.3.1, the same trust value can be generated from a wide range

of input. One cannot see the contributing factors in the final value, which we believe decreases its

usefulness to the decision making process.

Individual contributing factors should play a role in the decisions made. In order to make

the best decision, insight must be given into the composition of the trust value. If the accuracy

2



attribute is low, then the information probably should not be trusted, and decisions must be made

accordingly. However, if the consistency attribute is suddenly lowered, then a decision needs to

be made whether or not to trust the information; perhaps there are events transpiring that have

resulted in a valid change within the information space. In such a case, we can see that the low

consistency rating is very useful to decision makers because it allows them to focus on areas that

are affecting the trustability.

The notion of domains and attributes is a useful concept, and can be used to gather indicators

used to calculate trust for=. This work proposes a method by which a computed trustability value

carries with it meaningful semantics. Whereas the I*I framework multiplies the indicators to

compute a single composite value eliminating the individual factors, the present work retains

each individual trust indicator that contributes to the overall trust. All trustability indicators are

encoded into a representation in such a way that any value can be decomposed into a meaningful,

repeatable interpretation of how it was derived. In this way we can easily determine what set of

inputs yielded the received trust assessment.

This representation is implemented as an extension to WS-Security web services. As SOAP

services are accessed by a client, trustability indicators are evaluated, and the trust is computed

and stored in a database accessible only to the web service. When data is retrieved by information

consumers, the calculated trust values are retrieved, displayed, and interpreted for the consumer

to determine the basis for confidence in the presented data. Also available is a means with which

to express a level of acceptable tolerance of the computed trust.

1.3 Overview

Having laid a foundation, the remainder of this document presents supporting evidence.

Chapter II outlines the current state of secure web services. Several definitions of trust are presented

and the I*I framework is given in more detail. Chapter III is an expanded methodology, where in-

3



depth coverage is given to calculating, encoding, and interpreting trust values. Chapter IV details

results from a test implementation using a SOAP service secured with WS-Security. Chapter V

presents conclusions and conjectures on trustability as well as possibilities for future work.

4



II. Literature Review

This chapter lays some ground work for pursuing the goals stated in Chapter I. First, the cur-

rent state of secure web services is examined. Second, several definitions of trust are presented

and discussed. Finally, the I*I framework is given in greater detail, along with some example

computations.

2.1 The State of Web Services

The term "web services" is broad in scope, but is generally accepted to be a set of open

standards that enable software applications to be accessed over Internet protocols. There are three

standards that are commonly used: SOAP (formerly known as Simple Object Access Protocol), Web

Services Description Language (WSDL), and Universal Description, Discovery, and Integration

(UDDI). SOAP is the protocol that enables applications to communicate across different platforms.

WSDL is used to describe a particular service and its capabilities, and UDDI allows services to be

advertised and found on the Internet or local networks. The present work focuses exclusively on

SOAP; WSDL and UDDI do not play a role in the trustability assessment methodology presented

in Chapter III.

Since their introduction in 2000, SOAP-based web services have received much attention

across the industry. The lightweight nature of the protocol and openness of the standards used

have made them very appealing to organizations. A quick search of several leading news search

engines for "SOAP web services" in February, 2005 returned several hundred news articles from

each site [10] [11] - clearly web services is a topic that the industry is interested in.

In the February 2004 issue of Communications of the ACM, Conan C. Albrecht states that

"although it was initially designed by Microsoft, UserLand, and Developmentor as a protocol for

the BizTalk architecture, SOAP quickly gained momentum as IBM, Sun, Lotus, CommerceOne, and

other proponents took interest in its development" [12]. The involvement of these industry leaders

5



didn’t stop with the initial SOAP specification; IBM, Microsoft, and Sun are all listed as contributors

to the WS-Security specification [9]. The fact that there are many other organizations involved with

the SOAP and WS-Security specifications and that the specifications have been contributed to the

World Wide Web Consortium (W3C) are indicators that SOAP is a true emerging standard, not just

the work of a few isolated companies. In 2003 IEEE sponsored the first International Conference

on Web Services, another sign from the industry that web services have grown and continue to

grow in popularity.

As previously mentioned, when SOAP was initially proposed it stood for Simple Object

Access Protocol (the acronym has since been removed from the name). When compared to its

predecessors, it is indeed much simpler in both implementation and use. Unlike other distributed

system protocols, SOAP is not bound to any particular architecture or technology set. Jim Clune

and Dr. Adam Kolawa of Parasoft Corporation point to the Object Management Group’s Internet

Inter-Object Request Broker Protocol (IIOP) being the "underlying transport mechanism used by

the Common Object Resource Broker Architecture (CORBA)" [16]. While IIOP and CORBA may

provide valuable interoperability capabilities, they are tightly coupled, each requiring the other

for implementation and deployment. Freedom from protocol lock-in makes the use of SOAP web

services appealing to organizations that are considering deploying them.

Amit Sheth and John A. Miller from the University of Georgia agree with this idea [25].

From its beginnings CORBA was very complex, requiring experienced developers in order for

it to be useful. Most businesses who used CORBA relied on expensive object request brokers,

making it difficult to start new projects with it. In stark contrast is the web services model, where

the key standards are free. Due to the available choices, in most cases a web services project

can be "developed with essentially no initial technology cost" [25]. While they provide a simple

framework and low cost of entry, web services are also extensible, able to increase in complexity as
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needed to support enhanced functionality. This overall ease of use with a wide range of capabilities

are what has helped SOAP based web services gain industry acceptance as quickly as they have.

2.1.1 The Security Void in SOAP. Despite all the attention being received by web services,

an important aspect that is not addressed within the SOAP specification is security. In the interest

of simplicity and extensibility, features common to most distributed systems were omitted from the

specification. The W3C SOAP specification states that it "does not directly provide any mechanisms

for dealing with access control, confidentiality, integrity, and non-repudiation. Such mechanisms

can be provided as SOAP extensions using the SOAP extensibility model..." [8]. While this focus

on simplicity lends itself to easy development, it also increases the ease of potential compromises.

These potential compromises are highlighted by Clune and Kolawa in [16]. The access ports

that are so easily available for web services use are also potential access points for hackers and

viruses. "Depending on how your software is configured, a remote operator could access your

system and provide instructions to your server" [16]. Obviously this is a situation which should

be avoided at all costs. While it is beneficial to the development cycle to have an open and flexible

system, if not properly secured the ramifications could be detrimental to a web services-based

system.

2.1.2 The Need for SOAP Security. According to David Geer in the October 2003 issue

of Computer, mechanisms that have typically been used for securing web-based communications

do not scale sufficiently for SOAP web services. Secure Sockets Layer (SSL) has been the primary

means, using public and private key encryption combined with digital certificates to authenticate

users. Use of SSL has been supplanted by the newer Transport Layer Security (TLS). Geer states

that "TLS provides encryption-based connection security, and lets servers and clients authenticate

one another and determine the cryptographic algorithms and keys that can be used for data

transfer" [17]. While they have provided sufficient security thus far, due to the fact that they must
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decrypt data every time it arrives at an intermediary, and encrypt it before sending it on again,

they do not "scale well to complex, high-volume transactions" [17].

Satoshi Hada and Hiroshi Maruyama of IBM Research agree that layer level security mea-

sures are not sufficient for securing SOAP web services. As an alternative they propose several

arguments in favor of using message layer security [18]: end-to-end security, application indepen-

dence, transport independence, and security of stored messages.

1. End-to-end Security: Because SOAP is not bound to any particular transport protocol, it may

pass through a number of intermediaries between the originator and the destination (see

Figure 2.1). An intermediary must process any SOAP message header entries intended for it,

removing them before forwarding the message. New header entries for other intermediaries

may also be inserted before forwarding. Since the intermediaries have access to the message

for processing, the transmission security provided by SSL and TLS are not sufficient. An

untrusted intermediary could tamper with a message before forwarding it on. A secure

transmission line provides no benefit if untrusted third parties are maliciously handling

messages along the route.

Message Originator Intermediary 1 Intermediary 2 Message Destination
HTTP HTTP HTTP

Message Originator Intermediary 1 Intermediary 2 Message Destination
HTTP Private Line SMTP

Case 1: All connections via HTTP

Case 2: Not all connections via HTTP

Figure 2.1: SOAP transmission with intermediaries [18]

2. Application Independence: Hada and Maruyama claim that in order to achieve true end-

to-end security, it must be implemented at the application level. If there is any point where

messages are transmitted in plain text, it is subject to attack. Integrating cryptographic

functionality into applications is not something that is easily done without compromising

application security. While there are a number of viable cryptographic libraries available,
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their flexibility requires a high level of understanding in order to successfully ensure security.

The authors argue for a "standardized, application-independent security layer" [18] to ensure

adequate protection while removing the need for cryptographic expertise.

3. Transport Independence: Even if we consider all communication links secure, and trust

all intermediaries in Case 2 of Figure 2.1, it is still not adequate to ensure SOAP security.

As previously mentioned, and illustrated in Figure 2.1, intermediaries will often forward

messages using different protocols from that which the message was received on. When

changing protocols, any security information that exists (e.g., authenticity of the message

originator) must be translated to a format that the next protocol can understand. This

process can be tedious and complex, allowing a greater possibility for message tampering.

If the security is handled at the message layer then the number of protocols encountered is

irrelevant, and the need for TLS is isolated to what it is intended for - transmission security.

4. Security of Stored Messages: Were SOAP security to be implemented exclusively at the

transport layer, there would be absolutely no security for messages that are stored after

transactions have completed. In the same way that TLS is irrelevant when an intermediary

dismantles messages for header information, when a message arrives at its final destination

TLS no longer plays a role in the security of the message. In a situation where data is never

stored at all this would not be an issue. However, in many situations messages are logged

for analysis and auditing. This area of concern is of particular interest to this work, as

it evaluates messages for their trustability. Message level security ensures the security of

messages regardless of their current state (in transit or stored).

In the January 2004 issue of BT Technology Journal, Kearney et al [20] also favor message level

security over transport layer security for securing SOAP messages. Consistent with other evalua-

tions of TLS, they agree that it provides good security during message transmission. "However, it

conveys nothing about any processing done at either end of the connection" [20]. Dispelling the
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idea that intermediaries won’t be used in practice, they point out that the "SOAP specifications

clearly envisage the possibility of SOAP networks rather than just point-to-point connections" [20].

According to the specification, a node involved in a SOAP transaction may be one of three things:

the sender, the receiver, or an intermediary. This allows the possibility for applications at either

end of an SSL connection to act as intermediaries, forwarding messages to unknown, non-secure

locations. Except in the simplest of situations, the authors recommend message level security to

combat these issues.

One of the purported benefits of SOAP is its ability to penetrate through and be accessed

from behind firewalls. Because it is text based and often accessed via HTTP, port 80 is commonly

used. Since web servers utilize port 80 for their traffic, developers can count on it being open on

any firewalls their SOAP traffic may encounter. While this ease of access is enticing, it is also a

potential trouble area. Most web traffic results in a human-readable page that is fairly harmless,

but as Kearney et al remind us, "a SOAP message is designed to trigger some activity in the system

receiving it, and this is open to abuse as well as legitimate use" [20].

This is a recurring theme throughout the literature that is perhaps most vehemently argued by

industry leading security expert Bruce Schneier. In the June 15, 2000 issue of his monthly Crypto-

Gram Newsletter, he laments the arrival of SOAP. Because there is no security standard built into

the SOAP spec, he states: "It’s a pretty simple bet that different people will bungle any embedded

security in different ways, leading to different holes on different implementations. SOAP is going

to open up a whole new avenue for security vulnerabilities" [24]. While it’s easy to see that firewall

holes don’t enhance security, Schneier seems a bit extreme with his final proclamation on the issue,

saying "protocols that sneak ... through [firewalls] are not what’s wanted" [24].

Albrecht takes a slightly different stance on this issue, merely raising the point that "as it

becomes more ubiquitous, SOAP may increasingly find itself in the sights of security personnel"

[12]. He encourages organizations to find their own balance between security and functionality.
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The most strenuous security plan allows minimal traffic into the organization, limiting overall

functionality. At the other end of the spectrum are firewalls that allow multiple port ranges and/or

protocols into the internal network to give expected functionality to applications. In his eyes,

SOAP is a possible solution to retaining security while allowing functionality. No additional ports

are required to be opened if the organization is using port 80 for their web servers already, and

SOAP applications are able to tunnel through firewalls as needed.

He cautions against blindly proceeding with this type of configuration though, warning that

soon "network security administrators may see it as an ’end run’ around security" [12]. Since

SOAP traffic has its own unique content type, Albrecht advises that firewalls can be configured to

monitor traffic for specific SOAP methods being invoked as well as other functionality. While not

commonly used in current SOAP applications, filtering is bound to become more common as the

number of SOAP applications increase. Albrecht believes firewall content filtering has the potential

to "undermine one of SOAP’s primary benefits" [12] of being able to pass through firewalls. He

concludes with no solid fix to the problem, in essence concurring with Geer, Hada and Maruyama,

and Kearney et al that something new is needed to realistically secure SOAP messages and allow

expected functionality.

2.1.3 Securing Web Services. With all the warnings about the lack of security in SOAP

web services, there is much work afoot within the industry to remedy the problem. According to

Kearney et al, "there are several standards bodies active in this space, notably W3C and OASIS"

[20]. They discuss five of the more significant initiatives: the WS-X series of specifications, W3C

activities, OASIS, the Liberty Alliance, and the Web Services Interoperability (WS-I) organization.

1. WS-X series of specifications: This is a family of specifications put forth by IBM, Microsoft,

and others in conjunction with the Global XML Web Services Architecture. There are seven

specifications proposed: WS-Security, WS-Trust, WS-Security Policy, WS-SecureConversation,

WS-Federation, WS-Privacy, and WS-Authorization. WS-Security is the foundational layer
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for the other specifications. Despite what the name may imply, it is not an attempt to secure

all aspects of web services. Rather, "it is a building block that is intended to be used in con-

junction with other Web Services and application-specific protocols to accommodate a wide

variety of security models" [20]. Figure 2.2 (from the IBM and Microsoft roadmap) gives

a pictorial representation of how the different specifications fit together and their progress

to-date. Although their scope is broad, Kearney et al are quick to point out that the WS-X

series are "still relatively immature, and it remains to be seen to what extent they are taken

up in practice" [20].

WS-
SecureConversation

WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation

Today

Figure 2.2: Web Services Security Specifications [19]

2. W3C activities: W3C has tended to serve as the focal point for fundamental web services

standards (e.g. SOAP and WSDL). Several key standards currently supported are XML En-

cryption, XML Signature, and XML Key Management. Under the WS-Security specification,

security metadata similar to what is found in XML Encryption and XML Signature are at-

tached to SOAP header messages [17]. Another key contribution of W3C is the Semantic

Web and Web Ontology Working Group. "Although defining and interpreting semantics

has received little attention in current Web Services applications, it will become vital as Web

Services networks become larger and more complex" [20].
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3. OASIS: There are several technical committees (TCs) of importance that have come out of

OASIS. Of particular interest to this work is the WS-Security TC which was established in

order to further develop and promote the WS-Security specification as an industry wide

standard.

4. Liberty Alliance: Formed in September 2001, the goal of the Liberty Alliance Project is

to "develop open standards for federated network identity management and identity-based

services" [20]. Its origins came as a response to Passport, the identity management technology

from Microsoft. There are many attractive features contained within the project. Additionally

there are areas of "overlap and ’competition’ between the WS-X security specifications" [20]

and the Liberty Project.

5. WS-I organization: Differing slightly from the other standards mentioned, the goal of WS-I

is to promote web service interoperability by defining profiles to illustrate how to apply web

service standards. WS-I Basic is the initial profile which covers XML Schema 1.0, SOAP

1.1, WSDL 1.1, and UDDI 2.0. It has recently formed a Basic Security group, examining

the "use of HTTPS, SOAP attachment security, and the OASIS WSSTC specifications (i.e.

WS-Security)" [20].

2.2 Definitions of Trust

Within the literature many definitions of trust are available, all with their own connotations of

what it means to trust some set of information. Generally speaking, there are two broad categories

of trust defined. There is the field of thought which aligns the definition with that from the field

of data quality. In other words, trust is a function of the quality of the data. The alternative field

of thought has its roots in cryptography, answering the question: "how sure can I be that this

data has not been tampered with"? Also presented here is a concept termed The Trust Management

Philosophy, an approach that blends quality-based trust with cryptographic-based trust.
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2.2.1 Quality-Based Trust. Definitions of quality based trust vary depending on which

body or organization is defining them. Despite the variances, there is a common ground among

them that we will focus on. Madhavan K. Nayar from the IIC, Peter Chen of Louisiana State

University, and Pipino et al provide several definitions that we examine here.

According to Nayar, while Information Integrity (I*I) is not explicitly data quality, it is

"directly concerned with the accuracy, consistency, and reliability of information with its supporting

processes and system" [22] (emphasis added). These attributes bring important contributions to

the trust determination process. Each can be applied in the domains of content, process, and system.

The I*I framework defines a methodology by which the attributes can be evaluated in an objective

manner. Using this methodology, the attributes and domains determine the "trustworthiness or

dependability of information" [22]. The I*I framework is given in more detail in Section 2.3.

In the April 2002 issue of Communications of the ACM, Pipino et al discuss a number of data

quality dimensions set in two categories, "... subjective perceptions of the individuals involved

with the data, and the objective measurements based on the data set in question" [23]. Perhaps the

most relevant to our discussion of trust is the dimension of believability, "the extent to which data

is regarded as true and credible" [23]. Incorporated in its measurement is individual assessments

of source credibility, comparison of data to accepted standards, and previous experiences. The

complete list of dimensions and their definitions is shown in Table 2.1.

Chen also has an important contribution to the definition of quality based trust. He terms

calculating trustability as an Information Validity Assessment, composed of three factors: reliability

of the database hardware and software, freshness of the data, and believability of the data [15].

Database reliability and data believability overlap in their definitions, both having to do with the

source of the data and its reliability and believability. The impact of data freshness is important;

data that has outlived its shelf life should be trusted less than data that is considered fresh and up

to date.
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Table 2.1: Data Quality Dimensions [23]
Dimensions Definitions

Accessibility the extent to which data is available, or easily and quickly
retrievable

Appropriate
Amount of Data

the extent to which the volume of data is appropriate for the
task at hand

Believability the extent to which data is regarded as true and credible
Completeness the extent to which data is not missing and is of sufficient

breadth and depth for the task at hand
Concise Represen-
tation

the extent to which data is compactly represented

Consistent Repre-
sentation

the extent to which data is presented in the same format

Ease of Manipula-
tion

the extent to which data is easy to manipulate and apply to
different tasks

Free-of-Error the extent to which data is correct and reliable
Interpretability the extent to which data is in appropriate languages, sym-

bols, and units, and the definitions are clear
Objectivity the extent to which data is unbiased, unprejudiced, and im-

partial
Relevancy the extent to which data is applicable and helpful for the task

at hand
Reputation the extent to which data is highly regarded in terms of its

source or content
Security the extent to which access to data is restricted appropriately

to maintain its security
Timeliness the extent to which the data is sufficiently up-to-date for the

task of hand
Understandability the extent to which data is easily comprehended
Value-Added the extent to which data is beneficial and provides advan-

tages from its use

2.2.2 Cryptographic-Based Trust. Cryptographic trust is seen in everyday browsing of

the World Wide Web (WWW), as secure browser traffic is encrypted and transmitted via SSL.

Technology is used to give users a reasonable assurance that data they have entered is safe from

prying eyes. SSL is also serves as a guarantee to the user that the site they are visiting is really the

site it purports to be. Kearney et al propose that cryptography serves three purposes: to maintain

confidentiality, to provide a means of authentication, and to provide a means of verifying integrity

for a piece of information [20].

Confidentiality prevents those without a private key from accessing the information, allowing

only intended recipients to view the information. Authentication also requires a private key to

gain access, and is combined with the integrity verification in a digital signature. The signature
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"provides a means of detecting whether the document has been altered" [20]. Vital to this concept

is that an information recipient must be able to reliably determine whether the signature certificate

key is correct. This assurance is provided by signing the key and can be done one of two ways.

Kearney et al state: "the certificate can be ’self-signed’, in which case it offers little assurance about

the ’true’ identity of its owner, but can still be useful in checking that one is still ’talking to the same

person as before’. Alternatively it can be signed by an ’authority’. In this case, the confidence in the

identity information given in the certificate depends on the trust that can be placed in the authority

and the processes that authority uses to validate information before issuing a certificate" [20].

2.2.3 The Trust Management Philosophy. In their article from the Summer 1997 issue of

World Wide Web Journal, Rohit Khare and Adam Rifkin present the idea that to focus exclusively

on cryptographic means of security is too narrow of a focus [21]. They present several scenarios

and demonstrate that there are several unknowns despite the cryptographic protections afforded

to users. Consider the situation where a customer connects to her banks’ website and initiates a

payment to her landlord. The bank then has to decide if they should indeed transfer the money

from the customer to the landlord. Even if we make the assumption that the transaction had

appropriate cryptographic protections enforced, there are many details that are still not known.

For example, "nothing in the online encryption handshake necessarily establishes [the customers]

identity, no recoverable signed document exists as a receipt for the transaction, [and] no verification

exists that the landlord toted up the rent correctly" [21]. The answers to these and other questions

cannot be found in the cryptographic realm; additional measures must be put in place to ensure

complete trustability.

There are three basic principles that drive the Trust Management philosophy: be specific, trust

no one but yourself, and be careful. While seemingly obvious, being specific equates to leaving no

detail untouched. In our banking example it is not enough for the customer and bank to agree to

trust each other; minute details are required. If a direct deposit is set up with a bank, there is an
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agreement that "specifies precisely the account into which the employer will forward funds, the

times payment will be made, and the expected bank recourse in cases of error" [21]. Once this

agreement is in place, both the customer and bank can safely agree to trust one another within the

bounds of the specified contract, but transactions outside the bounds of the agreement should not

be trusted.

While it sounds exclusionary in nature, the principle of trust no one but yourself works in

the opposite manner. Its basic tenet is that "any trust decision should logically be derived from

the axioms you yourself believe" [21]. Considering the example of believing that your credit card

number is 1234, one works backwards until a chain of trust is established. What you really know,

is that 1234 is the credit card number that a credit company issued you, and you believe that they

are a valid credit company because your bank says so, and you trust your bank because its public

key is the same one they presented when you initially opened your account with them. At that

point it can safely be said that your credit card number is indeed 1234.

Despite the best intentions and with the best security mechanisms in place, one must always

remember to be careful. There is no scientific methodology associated with this principle, it is

merely a calling to verify and logically prove every decision made, taking time to fully study the

ramifications of a decision. One slip-up is all that is needed to defeat even the most rigorous

security methodology. System designs must be scrutinized at every step of the way, then checked

and rechecked to ensure that no trustability compromises have been introduced.

2.3 I*I Framework

As a reminder to the reader, I*I is defined as "the correctness of information, includ[ing] the

accuracy, consistency, and reliability of information domains (content, process, & system) of an

enterprise" [13]. To that end it defines three domains: content, system, and process. Each domain

contains three attributes: accuracy, consistency, and reliability. Together the domains and their
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attributes are used to calculate an overall value for the I*I of a particular set of information. The

content domain is the set of actual data provided to users for consumption. Content can come

in many forms including text, graphics, audio, or video. The process domain provides a set of

functions that transform an input into a specified output. Finally, the system domain is the set

of components (both physical and logical) that are configured for a certain purpose. Examples

of a system include computer applications as well as business organizational units. Figure 2.3

illustrates the domains with their attributes.

Content

C
on
si
st
en
cy

Accuracy

Process

Content

System R
eliability

Figure 2.3: Information Integrity Domains [22]

When considering the attributes, Nayar states that in general they "apply to each of the do-

mains ... and can be objectively evaluated and measured" [22]. Accuracy is assessed by comparing

data to an established standard and setting an allowable tolerance of deviations from the standard.

If information falls within that tolerance, then it is considered accurate. Consistency is evaluated

from repetitive instances of the same data occurring "in space, over time, and in relation to one

another at the same point in time" [22]. It is expected that the same inputs, assumptions, and

conditions will produce the same results time after time. When this does not happen, confidence
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in the information is lowered. Reliability is determined by comparing the completeness of infor-

mation "when compared to a given specification; by assessing its currency or relative newness;

and by establishing its verifiability" [22]. Each attribute with its respective elements is shown in

Table 2.2.

Table 2.2: The Attributes of I*I With Respective Elements [22]
Accuracy Consistency Reliability

Standards Spatial Completeness
Tolerance Temporal Currency

Relational Verifiability

With the domains and attributes defined, the I*I Framework proposes a set of formulae with

which to calculate the I*I for a given set of information. Each domain uses its own formula, and

the results from each domain are multiplied together for a final result. The input values for each

domain formula are between 0 and 1. Letting Ax represent the attribute accuracy for each domain

x, Cx represent the attribute consistency for each domain x, and Rx the attribute reliability for each

domain x, the individual formulae are shown in the following equations, with the final I*I formula

being given in Equation 2.4.

I*IContent = AC
× CC

× RC (2.1)

I*IProcess = AP
× CP

× RP (2.2)

I*ISystem = AS
× CS

× RS (2.3)

I*I= = I*IContent
× I*IProcess

× I*ISystem (2.4)

2.3.1 Example Computations. Using these equations, we can devise a multitude of ways

to arrive at the same value for I*I=, as demonstrated in Table 2.3. The shaded cells denote input

values that deviate from 1.00. This leaves one of two possibilities: either we accept the ambiguity

of the final value by itself and hope that it will be enough to guide our decision making process,
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or we can retain the complete set of inputs that generated the value. The I*I framework does not

provide an easy way to retain granular meaning for a particular trust value, nor does it provide

any way to reconstruct a value without the original set of inputs.

Table 2.3: I*I Framework Example Computations
Attributes Accuracy Consistency Reliability TOTAL

Domains:

Content 1.00 0.20 1.00 0.20

Process 1.00 1.00 0.70 0.70

System 1.00 1.00 1.00 1.00

TOTAL 1.00 0.20 0.70 0.14

Attributes Accuracy Consistency Reliability TOTAL

Domains:

Content 1.00 1.00 1.00 1.00

Process 0.45 1.00 0.40 0.18

System 0.80 1.00 1.00 0.80

TOTAL 0.36 1.00 0.40 0.14

Attributes Accuracy Consistency Reliability TOTAL

Domains:

Content 1.00 1.00 0.14 0.14

Process 1.00 1.00 1.00 1.00

System 1.00 1.00 1.00 1.00

TOTAL 1.00 1.00 0.14 0.14

Attributes Accuracy Consistency Reliability TOTAL

Domains:

Content 0.80 0.90 0.86 0.62

Process 0.43 0.97 0.96 0.40

System 0.89 0.67 0.95 0.57

TOTAL 0.31 0.58 0.78 0.14

2.4 Summary

This chapter has discussed the current state of SOAP web services, addressing the security

void as well as current proposals to implement security. Two types of trust: 1) data quality

trust, and 2) cryptographic trust were discussed, as well as the Trust Management Philosophy

which borrows concepts from both types of trust. Finally, the I*I Framework was described in

detail, culminating in the equations for determining I*I for a given set of information. Example

computations were given to demonstrate a potential weakness of the framework. All of this sets

the stage for the next chapter, where the proposed trustability assessment model is given in full

detail.
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III. Methodology

Many of the concepts outlined in Section 1.2 are given in detail within this chapter. Discussion

is first given on how trustability of information should be represented. Second, a realistic, useful

set of indicators are defined with which to determine trustability. Each indicator is comprised of a

set of attributes, which are laid out next. Once the trust has been calculated, it is encoded, giving

consideration to previous discussion on trustability representation. Key to the usefulness of trust

values is their interpretation, and discussion is given to this. Finally, everything is framed within a

web services context, setting the stage for an implementation using the WS-Security specification.

3.1 Overview

Figure 3.1 provides a birds-eye view of the methodology. Each transaction that occurs in

the web service results in calculating a trust assessment of the information from the transaction.

The trust assessments are stored in a transaction log as hexadecimal values for later interpretation.

The trust value of CFAE10 in the figure is an example of a calculated trust assessment. When the

decision maker requests information from the web service, the trust assessments are presented

along with the data. Each assessment is interpreted, or translated, to a decimal percentage and

displayed with color coding as explained in Section 3.2. Users are given the opportunity to adjust

the amount of tolerance for reduced trustability, allowing for the best interpretation for the decision

being made.

3.2 Representation Considerations

An overall goal of an information retrieval system should be to present relevant, useful data

to decision makers. Accordingly, it follows that any representation of trust for a given data set

should be presented in a relevant, useful manner that lends itself to the decision making process.

Intuitively this implies that a simple pass or fail model is not adequate. We are looking for degrees
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Figure 3.1: Information cycle in the secure web services environment

of trustability that a decision maker can combine with their human intelligence and personal

experiences to make the best decision. While a pass/fail model is not adequate, the proposed

model is still comprised of a discrete set of values, providing other systems the ability make

decisions based on the trustability of information.

Along with the actual representation of trust, it is important to discuss when in the informa-

tion flow process the trust data is presented to users. For the sake of this work, we will consider

our environment in two modes: a data generating mode and a data retrieving mode, which are

illustrated in Figure 3.1. The data generating mode operates in a continuous cycle, regardless of

any activity in the data retrieval mode. Trust values are calculated and stored in this mode as

services are accessed, with various indicators giving visibility into the trustability of information

available in this mode. Trust calculation involves harvesting each indicator value and building a

composite assessment value that is stored for later interpretation. Each assessment value is stored

in a cumulative transaction log that can be later mined for historical trends.
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The data retrieval mode is a read-only environment used as needed by the decision maker.

When information is requested, the previously calculated trust values are also retrieved and their

interpretations are displayed along side of the requested data. Trust interpretations are presented

as a roll-up of indicator trust values with the composite assessment being conveyed visually with

color coding. The color display is divided into three user defined categories from low to high

represented by red, yellow, and green respectively. Individual indicators are also presented with

this visual aid to alert users if any specific indicators have significantly affected the trust value.

Users are able to obtain detailed values for each indicator to see why a particular value was

assigned, allowing the best decision to be made for the situation at hand. Also presented is the

ability to make adjustments to the amount of tolerance allowed (see Section 3.5.1 for a detailed

discussion of allowable tolerance), resulting in altered interpretations specific to the decision being

made.

3.3 Indicator Definitions

For the purposes of this work, trustability indicators must be able to be readily gathered from

a secure web services environment. Recognizing that this represents but a subset of all possible

indicators that can be used to determine trustability, our focus is limited to that pertaining to

web services. Indicators are either directly gathered from the WS-Security framework, or are able

to be easily determined from the information system as a whole. Nebulous indicators requiring

subjective input have not been considered for this work. Six indicators have been identified

and are outlined and described in the following sections. They are WS-Security Authorization,

WS-Security Signature, WS-Signature Encryption, Data Consistency, Source Credibility, and Data

Currency.

3.3.1 WS-Security Authorization. This indicator is the first of three from the WS-Security

family. These are among the most pivotal indicators, as they deal with the security of the infor-
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mation system. Information retrieved from an unsecured system should not be trusted because

there are no assurances as to who or what has had access to the data. Vital to our determination

of trustability is a secure system, one where we know and trust anyone who has read or modified

any data. In addition, we need to know if they accessed the system in a manner that will not

compromise its security.

WS-Security Authorization measures whether or not users accessing the system are autho-

rized. In the event that an unauthorized user is able to gain access to the system, they could conduct

any one of a number of malicious actions. Data values could be altered or deleted, information

about non-existent entities could be entered, or they could simply access information intended

only for internal use. In any of these cases this indicator would lower the trust value. However,

access by authorized users is assumed to be trusted for the purposes of this indicator, and would

result in a higher trust value.

3.3.2 WS-Security Signature. Assuming a user is authorized to access the information

system, they must provide some guarantee that their identity is valid. Signature mechanisms

provide these assurances, and this indicator gauges the process and mechanisms used. If the

message was properly signed with authorized keys, then the indicator raises the trust value.

Conversely, an incorrectly signed or unsigned message lowers the trust value.

3.3.3 WS-Security Encryption. Given that a user is authorized, and has signed the message

asserting that they are really the ones accessing the service, the next item of concern is whether or

not anyone else is able to see the message traffic. Message level encryption provides an assurance

that the contents of the message are viewable only to the intended recipients. This indicator is a

measure of whether or not encryption was properly and securely applied to message traffic. A

message that has had encryption correctly applied raises the trust value, whereas one with missing

or incorrect encryption results in lowering the trust value.
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3.3.4 Data Consistency. Figure 3.1 illustrates an environment that exists with multiple

instances, all intended to provide the same information to different users at different locations. In

this case, it is useful to know whether data being retrieved from a particular instance exists within

other instances. Data consistency is the measure of data retrieved compared to similar data that

exists in alternate sources. Whether similar data exists in one, many, or no alternate sources is

reflected in the trust value. Obviously the more sources that contain similar data, the higher the

trust value, whereas fewer or no alternate sources result in a lower trust value.

3.3.5 Source Credibility. Consistent with the notion of multiple sources providing the data,

each source has a reputation associated with how accurate and trustable their information is. If a

particular source has a reputation for providing inaccurate information, then future transactions

will result in a lower trust value. However a source that is considered to be highly accurate and

consistent will result in a higher trust value.

3.3.6 Data Currency. Information often has a certain life expectancy, after which is

considered to be stale, or outdated. Decisions made based on stale data could have adverse effects

on the mission at hand. The goal of this indicator is not to eliminate stale data from entering

the system, but rather alert decision makers to its presence and lower the information trustability.

Data that is as current as or newer than the expected currency for its data type will raise the trust,

whereas data that is older will lower it.

3.4 Indicator Encoding and Calculation Scheme

In order to store these indicators a model must be devised in which granular meaning can be

retained. While the Information Integrity framework discussed in Chapter II stores trust as decimal

values, this model attempts to build and retain reconstructible trust values. We can conveniently

have each indicator attribute represented by one bit in a binary system, resulting in a four-bit

representation for each indicator trust value. To make manipulation of the values easier, we then
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convert each binary value into a hexadecimal value, leaving us with a single digit representing

trust for each indicator. With six indicators, the entire trust value is represented as a six digit

hexadecimal number. Given the same set of inputs, this number can be precisely reconstructed

over and over again. Similarly it can be reverse engineered every time to determine what set of

inputs resulted in its final value.

Figure 3.2 illustrates a trust value and how it is deconstructed and parsed. The entire

assessment is represented as DD7F63, one digit for each indicator. Each indicator value can be

parsed as a binary value, illustrated with the first digit of Dwhich is represented as 1101 in binary.

As discussed in the following sections, attribute bits are paired together when the trust value is

parsed for meaning. For now it is enough to say that the first two bits of 11 represent an unflawed

attribute. The last two bits of 01 represent the assessment impact bounds discussed in Section 3.4.1,

interpreted as a medium-narrow impact bracket. Contribution of the attribute and impact bracket

values to the overall interpretation are discussed in Section 3.5.2. As is discussed in Section 3.4.1,

the Data Currency indicator is represented without bracket preferences. Parsing a Data Currency

indicator results in two attribute groups, the first representing the actual currency of data, and the

second representing the expected currency of data. This is discussed with more detail in Section

3.4.5.

D D 7 F 6 3Hexadecimal Trust Value:

1 1 0 1Binary Indicator Values:

Unflawed attributes Medium-narrow bracket

Figure 3.2: Example of indicator encoding

The fact that we have a reconstructible value is critical; it enables us to retain the complete

impact of the calculated trust . As an example, consider an indicator with a binary value of 1101,
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or D when converted to hexadecimal. Of its four attributes, the first two and last one are positive,

while the third attribute/bit is negative. Without knowing specifically what the attributes for this

indicator are, we can see that the third attribute is lowering the trust in some way. Personal

experience and intelligence of the decision maker comes into play here, they can make appropriate

decisions now knowing why the trust has been lowered. Due to the methodical nature of trust

calculation, the same situation will always result in this value, and likewise this value will always

correspond to the same situation.

3.4.1 Indicator Bracketing. For all indicators except Data Currency, an indicator bracket is

part of the trust value. The bracket is used when interpreting the trust; the wider the bracket the

broader the range of possible scores a given indicator can contribute to the overall interpretation.

Represented with two bits, the brackets range from low to high as shown in Table 3.1 and are

specified by the user. Assignment and representation of the brackets are straightforward, but

interpretation requires further discussion given in Section 3.5.2.1.

Table 3.1: Attribute bracketing scale
Bracket Meaning

00 Narrow range
01 Medium-narrow range
10 Medium-wide range
11 Wide range

3.4.2 WS-Security Indicators. The encoding for each of the three WS-Security indicators

(Authorization, Signature, and Encryption) is identical. These indicators capture whether the WS-

Security components were successfully applied or not. This obviously requires only one bit, but

in keeping with the four bit representation of other indicators, a leading zero is prepended to the

trust value. Thus each WS-Security indicator receives a two bit representation to denote whether

it was successfully applied or not. Incorporating the predefined two bit bracket scheme results in

a four bit representation.
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3.4.3 Data Consistency. When a web service transaction takes place, the transaction data

is compared to similar data in alternate web service sources. It is assumed that the identification

tags are unique for each element of data, and that each source stores a replicate of the data in the

same format with the same record fields. If a record exists for an aircraft with the ID equal to a3

with fields model and status, then any source that contains data about an aircraft a3 is referring

to the same aircraft data, with fields model and status. Each alternate source either contains a

record for aircraft a3 or it doesn’t. If it does, then the details of the record are compared to that

of the primary source. In the general case, a complete match between the primary and alternate

sources means that the data is consistent between the two and will yield a high trust value. An

incomplete match or non-existent record means that the data is not able to be verified as consistent,

which will lower the trust value. The present work examines two alternate sources, although the

methodology could be expanded to more sources as needed. Attribute values are set for both

sources as shown in Table 3.2.

Table 3.2: Data Consistency Scheme
Value Meaning
00 Both alternate sources are NOT consistent
01 First alternate source NOT consistent, Second alternate source IS consistent
10 First alternate source IS consistent, Second alternate source NOT consistent
11 Both alternate sources ARE consistent

When calculating the data consistency for a particular transaction, there are four types of

transactions that may occur: retrieval, addition, updating, or deletion. The basic computation for

each case is the same; we distinguish between them because the actual steps taken to compute

trust are different for each with the exception of addition and update methods. They are grouped

together, leaving us with three ways to calculate the data consistency value. The following

discussion assumes method invocation for an aircraft with id a3, although the methodology is the

same for any data type.
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1. Retrieval methods: The first alternate source is queried for existing aircraft with an id of a3.

Any results are checked field by field to see if the record completely matches. In the case

of aircraft a3, the model and status fields from each alternate source are compared to those

in the primary source. If both fields match, then the attribute bit representing the matching

source is set to 1. If either of the fields do not match, then the bit is set to 0. If no results are

returned, then the record obviously does not match, and the bit is set to 0.

2. Addition/update methods: This process differs from the retrieval methods in that alternate

sources are queried for data by all fields of an object. If the model field of aircraft a3 is set

to F-16, and the status field is set to ready, then each alternate source would be queried

for aircraft with an ID of a3, a model of F-16, and a status of ready. The returned results

are processed the same manner as the retrieval methods. Complete record matches yield an

attribute value of 1, and incomplete matches or empty result sets yield a value of 0.

It should be noted that the first time an object is added to the information space, it will

not exist in alternate sources, resulting in a Data Consistency value of 0 for each alternate

source. Despite this low consistency rating, the newly added data could be accurate. This

indicator is not a measure of accuracy, rather its only purpose is to measure whether the

data is consistent across multiple sources, regardless of accuracy. Answering the question of

accuracy requires a source that has been certified as being accurate. Such a consideration is

beyond the scope of this work, but is mentioned to clarify our intentions for this indicator.

3. Deletion methods: In this type of method the first alternate source is queried for existing

aircraft with an id of a3 as is done for the retrieval methods. If there are results returned

then the alternate source is not consistent since the aircraft a3 is in the process of being

deleted from the primary source. Accordingly the attribute bit is set to 0. An empty result

set indicates that the source is consistent and receives an attribute value of 1. Similar to
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the addition/update methods, this does not measure whether deleted data is accurate, only

whether it is consistent among other sources.

The last two attribute bits of the Data Consistency indicator are reserved for user bracketing

preferences as outlined in Table 3.1. The complete algorithm for determining attribute values as

described above is attached to this document in Algorithm A.2.

3.4.4 Source Credibility. In this model, sources are assigned a credibility rating on a

scale from one to four, represented in two digit binary, as shown in Table 3.3. These values are

assigned initially based upon the likelihood of accurate data coming from a particular source.

As the service is accessed by users, each source builds a historical transaction log allowing the

credibility ratings to be adjusted. Higher Data Consistency ratings over time will serve to raise

the source credibility, whereas a trend of lower consistency will lower the source credibility. Like

the previously mentioned indicators, the last two bits of this indicator are a bracket assignment,

as outlined in Table 3.1.

Table 3.3: Source Credibility Values
Rating Meaning

00 Low credibility
01 Medium-low credibility
10 Medium-high credibility
11 High credibility

3.4.5 Data Currency. In order to determine a value for Data Currency all data types

are assigned an expected currency, based on how often they should be updated (explained below).

When a message arrives for processing, the current time is captured and compared to the last time

that an update occurred for the data object being accessed. The scheme used for representing

currency values is shown in Table 3.4. The first two bits of the indicator value represent the actual

currency, and the last two represent the expected currency.
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Table 3.4: Currency bit representation
Bit Rep Meaning

00 Data is on the magnitude of minutes old
01 Data is on the magnitude of hours old
10 Data is on the magnitude of days old
11 Data is on the magnitude of weeks old

Data that remains fairly static will receive a longer expected currency than a data type that

is very dynamic. As an example, Air Force Major Commands (MAJCOM) usually have the same

commander for two years; the number of bases associated with a particular MAJCOM does not

change very often. Thus, a MAJCOM data type would have the longest expected currency value

assigned. At the opposite end of the spectrum is information about on-hand munitions inventories.

It is assumed that information is updated as munitions are used, so it follows that it would be

assigned a short expected currency value.

If a method is invoked for a MAJCOM object at timestamp 2005-01-22-1200, transaction logs

will be checked to see when that particular MAJCOM object was last updated. If the timestamp of

the last update is 2005-01-20-1200, then the currency of this message is on the magnitude of days

old (exactly two day to be precise), thus the current currency value would be 10. Combined with

the expected value of the MAJCOM type, the resulting trust value would be 1011, or B. Since the

actual currency is better than the expected currency, this will raise the trust value of this indicator.

3.5 Interpretation of Encoded Trust

Even with a repeatable method of building trust values, an interpretation of a particular value

must be given when information is requested in the Data Retrieval mode shown in Figure 3.1. Six

digit hexadecimal numbers convey little in terms of practical interpretation. Machines making

decisions based on these generated values can parse each whole value and easily determine why

it received the value that it did and act accordingly. Thus, this avenue of interpretation is meant

primarily for the human use and interpretation of the trust values, although the use of allowable
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tolerance is certainly an important consideration for machine based decisions as well. Before the

details of interpretation can be given, we must first discuss the notion of allowable tolerance in a

decision.

3.5.1 Allowable Tolerance. All decisions carry a certain level of impact with their outcome.

At a simplified level, consider the decision of which runway an aircraft should use when taking

off. Aside from local ground traffic management policies which may dictate the use of one runway

over another, this decision has no impact on the end result of the flight. Once the aircraft is airborne

the appropriate course will be set to wherever the destination is, regardless of which runway was

used for takeoff. Conversely, the decision of whether or not to refuel the aircraft has a significant

impact on the ability to reach the final destination; lack of fuel significantly reduces the range of

the aircraft. Similar impacts exist within decisions made on the battlefield, and a decision support

system such as the one proposed should have allowances for adjusting the importance of the

decision being made.

Expressing this adjustment as "dial-a-trust", each indicator is given an adjustable tolerance

dial that can be raised and lowered. A raised tolerance dial indicates a high tolerance, or a wide

range of tolerance in the decision at hand. The general effect of raising the tolerance dial will result

in a higher trust interpretation, giving the user more confidence in the data at hand. Naturally

it follows that a lowered tolerance dial narrows the range of tolerance, effectively lowering the

trust interpretation. This should bring a certain apprehension to the decision maker as certain

thresholds are crossed.

In the case where a particular trust value is strongly in the "green" zone of the display, adjust-

ments to the allowable tolerance would not likely be seen. However, considering the case where an

initial interpretation results in a value towards the bottom of the "green" zone, a lowered tolerance

could easily bump the interpretation down into the "yellow" zone. This case serves to alert the de-
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cision maker to the weakness of the initial interpretation. Similarly, if an interpretation is towards

the top of the "yellow" zone, a raised tolerance could easily translate to a green representation.

In our simplified example, when deciding which runway to use the tolerance dial could

be raised. This would in effect raise the trust interpretation of the data at hand, allowing a free

decision to be made from any available runway. When deciding whether or not to refuel, the

tolerance dial would be lowered, putting focus on the importance of refueling. Decision makers

would hopefully decide to refuel the aircraft to allow the destination to be safely reached.

The present work proposes five levels of tolerance: low, medium-low, normal, medium-high,

and high. The contribution of each level to the interpretation value us discussed in the following

section. In the general case, a low tolerance lowers the interpretation, while a high tolerance raises

the interpretation.

3.5.2 Interpretation Methodology. As mentioned earlier, interpretation of trust values is

primarily intended for human users. In this light it can be thought of as a translation of the

hexadecimal numbers to a decimal percentage. Each of the three WS-Security indicators are

interpreted in the same exact manner, while the other indicators are all interpreted uniquely.

Each indicator receives a value between 1 and 100 representing a percentage of how trustable the

information is thought to be.

3.5.2.1 WS-Security, Source Credibility, and Data Consistency Indicators. WS-Security,

Source Credibility, and Data Consistency indicators are grouped together for this discussion be-

cause the trust representation for each incorporates bracketing preferences. The first two bits of

the trust value are the actual attributes used to gauge trust, and the second two bits designate

the bracketing placed on that indicator. Each two-bit attribute group is given a high and low

percentage bound, within which the interpretation value must fall. The percentage bounds for

each indicator are shown in Table 3.5. The range between these bounds is divided into 20 values
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grouped into four brackets. Within each bracket are five values, each value representing the trust

interpretation according to the amount of allowable tolerance.

Table 3.5: High and Low Percentage Bounds
Indicator Attribute High Low

WS-Security 00 30 1
WS-Security 01 31 100

Source Credibility 00 30 1
Source Credibility 01 50 31
Source Credibility 10 70 51
Source Credibility 11 71 100

Data Consistency 00 40 1
Data Consistency 01 60 41
Data Consistency 10 60 41
Data Consistency 11 61 100

It should be noticed that the unflawed attributes (01 for WS-Security; 11 for Source Credibility

and Data Consistency) have reversed high and low percentage bounds. This is designed on

purpose so that the desired bracketing results in an accurate interpretation value. When attributes

are equal to anything other than 11, something took place to lower the trust of that indicator and

we will consider the indicators’ input to be flawed. Setting aside the indicator bracket, if a Data

Consistency indicator has an attribute value of 10, then according to Table 3.2 the second alternate

source did not have consistent data. In this case, the "perfect" scenario occurs when both sources

are consistent, but since only one of them was deemed consistent, the situational input is flawed.

Each interpretation value is calculated using a multiplier value. Table 3.6 lists the multiplier

values for each bracket and tolerance pair for flawed attribute groups (00 for WS-Security; 00, 01,

and 10 for Source Credibility and Data Consistency). When the attribute value is not flawed (01

for WS-Security; 11 for Source Credibility and Data Consistency), the multiplier is determined

differently since the percentage bounds are reversed. For example in the case of a WS-Security

indicator with attribute value 01 the "high" value is 31 and the "low" value is 100 (from Table 3.5).

The multiplier values for this case are shown in Table 3.7. The multiplier values ensure that the

interpretation values increase within each bracket, yet the overall interpretation values decrease
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for flawed attributes and increase for flawless attributes. In this way a flawless attribute has greater

potential to increase the interpretation, while a flawed attribute has greater potential to decrease the

interpretation.

Table 3.6: Multiplier Values for Flawed Attribute Groups
Bracket Tolerance Multiplier

00 Low 15
00 Medium-low 16
00 Normal 17
00 Medium-high 18
00 High 19

01 Low 10
01 Medium-low 11
01 Normal 12
01 Medium-high 13
01 High 14

10 Low 5
10 Medium-low 6
10 Normal 7
10 Medium-high 8
10 High 9

11 Low 0
11 Medium-low 1
11 Normal 2
11 Medium-high 3
11 High 4

With the high and low percentage bounds from Table 3.5 designated as percentHi and

percentLo respectively, and a multiplier from Tables 3.6 and 3.7, the formula used in the general

case for calculating the interpretation is shown below in Equation 3.1. Figures 3.3 - 3.5 illustrate

the possible interpretations for each indicator type using this formula.

(percentHi - percentLo
19

×multiplier
)
+ percentLo (3.1)

Interpretation for each of the indicators types discussed here is calculated using the same

formula. The difference lies in the percentage bounds specified in Table 3.5, and the number of

attribute groups. WS-Security only uses one bit to indicate its attributes, which when prepended

with a leading zero only leaves two attribute groups. Source Credibility uses both attribute bits
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WS-Security Interpretation
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Figure 3.3: WS-Security Indicator Interpretation Chart

Source Credibility Interpretation
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Figure 3.4: Source Credibility Indicator Interpretation Chart
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Table 3.7: Multiplier Values for Flawless Attribute Groups
Bracket Tolerance Multiplier

00 Low 19
00 Medium-low 18
00 Normal 17
00 Medium-high 16
00 High 15

01 Low 14
01 Medium-low 13
01 Normal 12
01 Medium-high 11
01 High 10

10 Low 9
10 Medium-low 8
10 Normal 7
10 Medium-high 6
10 High 5

11 Low 4
11 Medium-low 3
11 Normal 2
11 Medium-high 1
11 High 0

to represent its trust value, and so has four attribute groups. Data Consistency also uses both

attribute bits, but its nature requires a unique approach. Since the attributes 01 and 10 represent

one of two alternate sources being consistent, there is no distinction in the contribution to trust

value that either source brings. Thus, they receive the same set of interpretation values using the

same percentage bounds.

As an example, consider a WS-Security indicator with the value 0010, and a normal tolerance.

From Table 3.5 we set percentHi equal to 30, and percentLo equal to 1. Looking up the appropriate

multiplier from Table 3.6, we set the multiplier equal to 7. The resulting trust interpretation for

that indicator is 11.684%, as shown in Equation 3.2.

(30.000 − 1.000
19

× 7
)
+ 1 = 11.684 (3.2)

Alternatively, if we have a Data Consistency indicator with value 1101, and a high tolerance,

we must use a multiplier for the case when all attributes are not flawed. We set percentHi equal to
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Data Consistency Interpretation
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Figure 3.5: Data Consistency Indicator Interpretation Chart

61, percentLo equal to 100, and set our multiplier equal to 10 from Table 3.7. Our trust interpretation

is calculated as 79.474% as shown in Equation 3.3.

(61.000 − 100.000
19

× 10
)
+ 100.000 = 79.474 (3.3)

3.5.2.2 Data Currency Indicator. Calculating the interpretation for Data Currency is

much simpler, as there is no tolerance to account for. The general case is that if the actual currency

is equal to or newer than the expected currency, then the interpretation will be 100%. Accordingly,

an actual currency of 00 automatically receives a 100%. The older the actual currency is when

compared to the expected currency the lower the interpretation becomes as shown in Table 3.8.

The algorithm for determining this is shown in Algorithm A.1.

3.5.2.3 Interpretation of All Indicators. As one of our stated goals is to provide

insight into the overall trustability of the message, we must move beyond interpreting individual
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Table 3.8: Data Currency Indicator Interpretation Table

Actual 00 01 10 11

00 100.000 100.000 100.000 100.000

01 66.667 100.000 100.000 100.000

10 33.333 66.667 100.000 100.000

11 0.000 33.333 66.667 100.000

Expected

indicators. Interpretation of each indicator results in a percentage, allowing us to easily average

the six indicator interpretations to obtain an overall interpretation. Due to the reconstructible

trust values the average value does not weaken the trust assessment. It is merely an attempt to

provide an intuitive understanding at a glance of the trust assessment. The full trust value, as well

as individual indicator interpretations are available and shown to the user alongside the overall

average.

3.5.3 Web Services Context. As mentioned earlier, the focus of this work is in a secure

web services environment, although the concepts discussed thus far could easily take place in any

distributed computing environment. Using SOAP-based web services allows us to easily compute

the trust for each transaction in the system. As is demonstrated in Chapter IV, there are checkpoints

that all incoming and outgoing SOAP messages must pass through. This centralization provides

assurance that all transactions are able to be accounted for when determining trust. In other

words, there are not any back doors into the system with which one could bypass implemented

trust mechanisms. This assumes that direct access to the database is secured appropriately and

unauthorized database access is not a factor.

3.6 Summary

This chapter presents a methodology for assessing information trustability in a secure web

services environment. Each of the six trustability indicators with their respective attributes are

defined. Algorithms are defined with which to calculate a repeatable trust assessment value for
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each indicator. Finally, a means of interpreting the derived trust values is given. The presented

algorithms and methodologies are implemented in Chapter IV.
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IV. Implementation

An example web service has been built to illustrate the use of the trust determination algorithms

presented in this work. The service is called AssetTracker, and although the concepts and tech-

niques presented are broadly applicable, we have chosen the application domain of tracking

battlefield assets. Sun Microsystems JavaTM [4] programming language was chosen for this task,

since its cross-platform capabilities make any future enhancements to this work easily accommo-

dated. Additionally, extensive support for web service technologies exist on the Java platform, to

include SOAP, WSDL, and XML.

4.1 AssetTracker Overview

The AssetTracker system was designed with several goals in mind. First and foremost, it had

to be a web service with methods accessible via SOAP calls. Second, it needed to be a secure web

service application, specifically using the WS-Security specification requiring user authorization,

as well as message level signature and encryption. These first two requirements were driven by

the main goal of this work to assess information trustability in a secure web services environment.

Thirdly, it needed to simulate information flows and data that may be tracked in a battlefield

situation in order to provide some real world applicability. Finally, it needed to easily allow for

trust values to be calculated as messages came into the system because of our overarching goal of

assessing information trustability.

AssetTracker contains information about combat assets and their locations. At the highest

level are location objects consisting of MAJCOM’s, which are in turn composed of bases. Each

base has a group of assets that are assigned to it. For the purposes of this experiment, assets

are limited to aircraft, munitions, and personnel. Individual assets are not associated with each

other in any way other than belonging to the same base. The objects and their associations are

depicted in Figure 4.1. It is recognized that the real world value of this system falls far below
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actual requirements for tracking battlefield assets, however our focus is not the actual application,

but rather insight that can be gained into the trustability of its information.

Asset
id:String
status:String
base:String

Personnel
title:String

Aircraft
model:String

Munitions
name:String

Majcom Base
majcom:String

Location
id:String
name:String

1 * 1

*

Figure 4.1: UML Diagram for AssetTracker Objects

All AssetTracker objects are stored persistently in a relational database, with appropriate

relationships such that it mimics an object oriented programming methodology. This approach

was chosen over creating an object hierarchy for reasons of implementation simplicity. Again the

goal of this work is to examine information trustability. A partial database schema is shown in

Figure 4.2, and a full SQL DDL description is listed in Appendix B. It should be noted that there

are additional database tables shown in Figure 4.5 that deal with assessing information trustability.

The tables shown here in Figure 4.2 deal exclusively with the AssetTracker objects.

Location and asset objects each have four types of methods: addition, retrieval, update, and

deletion. Addition methods can also be thought of as creation methods; it is with these methods

that new objects are put into the database. An addition method takes all attributes of the object to

add as input parameters. The retrieval methods, using Javabean terminology, are "getter" methods

and require only the id of the desired object as an input parameter. A comma delimited string of

object attributes is returned by the method. Update methods are analogous to "setter" methods,
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base
VARCHAR(10)
VARCHAR(10)
VARCHAR(25)

base_id (PRIMARY KEY)
majcom_id (FOREIGN KEY)
base_name

majcom
VARCHAR(10)
VARCHAR(40)

majcom_id (PRIMARY KEY)
majcom_name

munition
VARCHAR(10)
VARCHAR(10)
VARCHAR(20)
VARCHAR(20)

munition_id (PRIMARY KEY)
base_id (FOREIGN KEY)
name
status

aircraft
VARCHAR(10)
VARCHAR(10)
VARCHAR(20)
VARCHAR(20)

aircraft_id (PRIMARY KEY)
base_id (FOREIGN KEY)
model
status

personnel
VARCHAR(10)
VARCHAR(10)
VARCHAR(20)
VARCHAR(20)

personnel_id (PRIMARY KEY)
base_id (FOREIGN KEY)
title
status

Figure 4.2: AssetTracker Objects: Database Schema

and take as input parameters the id of the object to update, along with the complete list of object

attributes with their new values.

Deletion methods accept the object id as an input parameter, but they require some checking

before deleting the specified object. Asset objects may be freely deleted since they have no child

objects. Location objects however must not have any instantiated child objects in order for them to

be deleted. For example, a MAJCOM cannot be deleted unless there are no bases associated with

it. As well, a base cannot be deleted unless there are no assets associated with it. These restrictions

address standard relational database referential integrity concerns.

The entire AssetTracker system (to include the web service environment) is encapsulated in

a set of Java packages organized by functionality. Table 4.1 outlines the various packages and their

purpose.

4.2 Web Service Environment

The AssetTracker system is written as a Java class and converted to a SOAP-based web

service courtesy of utilities provided with Systinet WASP Server for Java [7]. The AssetTracker
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Table 4.1: AssetTracker Java Packages
Package Name Purpose

edu.afit.assetTracker Web Service code for all three instances
edu.afit.assetTracker.client.forward Client code for the ForwardWS instance
edu.afit.assetTracker.client.forward.iface Interface code for the ForwardWS instance client;

generated by WASP utilities
edu.afit.assetTracker.client.home Client code for the HomeWS instance
edu.afit.assetTracker.client.home.iface Interface code for the HomeWS instance client;

generated by WASP utilities
edu.afit.assetTracker.client.rear Client code for the RearWS instance
edu.afit.assetTracker.client.rear.iface Interface code for the RearWS instance client;

generated by WASP utilities
edu.afit.assetTracker.persistence Manages all database connectivity
edu.afit.assetTracker.ui Main user interface used to generate all sample

output
edu.afit.assetTracker.util Interceptor, Handler, and IncomingValidator code
edu.afit.assetTracker.trust Trust interpretation

class is extended to three separate classes which in turn are converted to individual web services.

Each one is identical in operation, differing only in the content and battlefield-related location that

they represent. This lends itself to a more realistic simulation of battlefield asset tracking, and

allows for data consistency checks. The three web services are deployed as ForwardWS, RearWS,

and HomeWS.

The ForwardWS represents assets of a forward deployed unit, closest to the action on the

battlefield. RearWS represents a rear supporting unit, slightly distanced from the action, yet still

in the battle theater. HomeWS represents support from the CONUS, very much removed from the

action and theater. Each web service instance has a respective client that represents users of each

service. Figure 4.3 shows how each instance interacts with its client.

Each service instance has inherent attributes due to the location it represents. The ForwardWS

is considered the most current source, being at the center of the battlefield means that it generates

information first. The accuracy is assumed to be slightly lower; due to the fast paced nature of its

location there is no time to double check information as it is entered into the system. Since RearWS

is located farther from the battlefield center, it takes longer to receive information updates, lowering

its currency. However, that extra time allows for information to be verified thus improving its
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AssetTracker SOAP Web Services

atForward

/ForwardWS

atRear

/RearWS

atHome

/HomeWS

SecureForwardClient SecureRearClient SecureHomeClient

Legend

read
write

read
only

Figure 4.3: Service Instance and Client Layout

accuracy. HomeWS is the furthest location, so its currency is the lowest of the three instances. Its

distance from the battlefield is so great that its accuracy is considered lower than that of ForwardWS;

errors caught and fixed at RearWS could be re-introduced by the time the information flows back

to CONUS.

Functionality of the service clients is straightforward. They each establish a connection to

their respective web service, authenticating as the user known to that service. Once connected

they are able to invoke available methods, however they provide no user interface as imple-

mented. For illustrative purposes, a user interface to the ForwardWS client is provided in the

edu.afit.assetTracker.ui.AssetTrackerUI class; no interfaces for the other clients are pro-

vided. A variety of methods are invoked in the provided client classes in order to demonstrate a

wide range of trust values and outcomes. Actual output from client execution is shown in Section

4.6.
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WASP provides several mechanisms for securing message traffic; we are using its WS-

Security implementation. All of the methods for each data type are specified to use full WS-Security,

i.e. user authorization, signature, and encryption are required for all message transactions. Any

message that does not meet these requirements is automatically rejected by the WASP server. The

security requirements are specified in a deployment descriptor file, where methods are listed with

their required security parameters. Methods that are not listed in this file do not have any required

security; the effect of unsecured messages on trust calculations is discussed in Section 4.3.

When the specified security requirements are met, the message travels through a series of

checkpoints before reaching the actual method being invoked. Similar checks are applied on

the way back to the client. A graphical representation of this flow is shown in Figure 4.4. The

checkpoints are extendible classes provided by the Systinet WASP server and are used to calculate

the trust assessment values; we discuss them briefly here and in more detail in Section 4.3.

Client invokes web 
service method

ServerInterceptor intercepts 
clients message

IncomingValidator validates 
security of message

Web Service 
processes method, 

accepts any input and 
generates any output

Results of method 
invocation returned

ServerHandler processes 
incoming SOAP message

ServerHandler processes 
outgoing SOAP message

NoValid 
Security?

Yes

No results returned; 
transaction ended

Web Service Client

Web Service Server

Input 
parameters 

captured

Transaction record 
initiated; body-Id 
captured; Data 

Currency, Source 
Credibility calculated 

and recorded Input parameters 
recorded; Output 

captured and 
recorded; Data 
Consistency,  

calculated and 
recorded.

WSS-* Indicators 
captured and 

recorded

Figure 4.4: SOAP Message Flow
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The first checkpoint the message passes through is called a ServerInterceptor. The ServerIn-

terceptor class has access to the raw data in the message; it sees the plain-text XML document. If

message-level encryption has successfully been applied, then no data will be able to accessed at

this stage. Despite this, certain attributes of an encrypted message are left in clear-text and are able

to be gathered at this point. However, an unencrypted message is able to be read in its entirety,

attributes and data.

The message next moves from the ServerInterceptor to the IncomingValidator class, which

validates the security of the message. Checks are performed to ensure that the user is authorized,

and that both signature and encryption were correctly applied to the message. If there is any check

out of order or missing from the WS-Security header of the message it will be rejected and the

transaction will end.

Once the message is successfully validated it moves to the ServerHandler class, which has

access to the SOAP message and can access individual parts of the message directly. This is different

from the raw XML access that is seen in the ServerInterceptor. Within the WASP environment the

SOAP message is represented as a Document Object Model (DOM) object with methods that can

access and manipulate the data within. Even if a message has been sent with encryption, it has

been decrypted by the WASP server at this point, so we are able to gather data from the fields of

the SOAP message (e.g. input parameters on request and output message on return).

After passing through the ServerHandler process, the message arrives at the actual web

service where the method invocation is processed. For the return trip back to the client, the

message passes back through the ServerHandler process and straight back to the client. It should

be pointed out that these checkpoints are all contained within and belong to each service instance,

they are not part of the general server environment.

Each web service instance has connections to three databases. The first is considered the

primary source, this is the database that the service uses for storing its asset information. Access to
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this database is read/write, enabling the service instance to access and update its own databases.

The second two connections are considered alternate sources, corresponding to the other two

service instances. Access to these databases is read only, controlled by user rights in the database

server. From the perspective of a given user these alternate sources are used exclusively for

calculating Data Consistency. Considering the ForwardWS instance, its primary connection is to

its own database, and its alternate sources connect to the RearWS and HomeWS databases. These

connections are illustrated in the previously listed Figure 4.3.

4.3 Trust Calculation

The aforementioned checkpoints are where trust is calculated as each message is processed.

Each checkpoint calculates a subset of trustability indicators and stores them in a transaction log.

The ServerInterceptor initiates a transaction entry in the log, and computes the Data Currency

as well as Source Credibility factors. The IncomingValidator verifies and computes trust for the

WS-Security indicators. The ServerHandler (incoming) captures the input parameters for the

method being invoked; these are used for determining Data Consistency. On the outgoing side,

the ServerHandler captures output generated by the method request and calculates trust for the

Data Consistency Indicator. A summary of the checkpoints and their purpose is shown below in

Table 4.2, as well as in the previous shown Figure 4.4.

Table 4.2: Role of Checkpoints in Trust Calculation
Checkpoint Purpose

ServerInterceptor Initiates transaction; calculates Data Currency,
Source Credibility

IncomingValidator Calculates WS-Security indicators
ServerHandler Calculates Data Consistency

As mentioned in Section 4.1, additional tables are required in the database. Their function is

to assist in the computation of information trustability. The first is a transaction log which records

details about each method invocation (name of method, input parameters, and output returned),

as well as the calculated trust for every transaction. The second stores the expected currency
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values for each data type. The final table stores client preferences for indicator bracketing, as well

as the source credibility rating. For illustrative purposes three scenarios are provided in the client

interface so that a range of trust values can be assessed, but the values can be easily updated to

reflect a clients true bracketing preferences. These additional tables are shown in Figure 4.5, with

the full SQL DDL description listed in Appendix B.

txLog
VARCHAR(10)
VARCHAR(15)
VARCHAR(45)
VARCHAR(20)
VARCHAR(255)
TEXT
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)

tx_id (PRIMARY KEY)
timestamp
srvBodyID
methodName
inputStr
outputStr
t_wssSig
t_wssEnc
t_wssAuth
t_dataCons
t_srcCred
t_dataCurr

expectedCurrency
VARCHAR(10)
VARCHAR(20)
VARCHAR(2)

cr_id (PRIMARY KEY)
dataType
expCurr

clientProfile
VARCHAR(10)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)
VARCHAR(2)

client_id (PRIMARY KEY)
w_wssSig
w_wssEnc
w_wssAuth
w_dataCons
w_srcCred
w_dataCurr
actSrcCred

Figure 4.5: Additional Database Tables

4.3.1 Detailed Role of ServerInterceptor. As briefly mentioned earlier, the ServerInterceptor

is what initiates the transaction entry. Each message has a unique identification number. This

number is extracted from the raw XML data using the second group from the following regular

expression: (<e:Body.*wsu:Id="Body-Id-)([-a-fA-F0-9]*)(">). An input string of <e:Body

wsu:Id="Body-Id-0212d130-722e-11d9-b8d7-f300a1e0b8d7"> to this expression would yield

an extracted ID of 0212d130-722e-11d9-b8d7-f300a1e0b8d7. This ID is stored in the transaction

log so that the IncomingValidator and ServerHandler can update the log for the same message.

A timestamp at message receipt is also taken, and compared to the timestamp of the last update.

The difference between the two is combined with expected currency for the object type and stored
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as the Data Currency value. Source Credibility is also calculated here by examining the specified

credibility for the source and retrieving the clients preferred bracketing from the clientProfile table.

Initial values are assigned for the remaining indicators (WS-Security Authorization, WS-

Security Signature, WS-Security Encryption, and Data Consistency). The values are the lowest

possible for that indicator, (00 + bracket). In the event that the transaction ends prematurely or

something other than the desired outcome results, the trust values will remain at that low value.

In the event that a method is not listed in the deployment descriptor file, it will be unsecure and

there will be no body-id in the message. If this happens the body-id field in the transaction log

is set to "unsecure", and all of the initial low trust values will remain. Regardless of whether a

secure or unsecure message generated low trust values, this should serve as an indicator to users

of the system that trustability is legitimately degraded. For example, either the data has been

incorrectly input, unsecured methods have been invoked, or a malicious user has bypassed the

security mechanisms in place.

4.3.2 Detailed Role of IncomingValidator. The body-id number that was recorded by the

ServerInterceptor is extracted from the message by the IncomingValidator so it can update the

correct record in the transaction log. The message security configuration is parsed into individual

components and checked to ensure that each one (authorization, signature, and encryption) was

correctly applied. Each component is examined independently; if any component was correctly

implemented, then the trust value is increased, otherwise it is decreased. As mentioned previously,

a message that has not been properly secured will be rejected by the WASP server, meaning that

it wouldn’t make it to this point. In that case, the initial values set by the ServerInterceptor of the

lowest trust possible would stand in the transaction log, interpreted later as a caution flag to users.

Even though the service has been configured to require maximum security, we still require

and enforce these security checks. If high security is required and expected, then a sudden lapse in

security can mean one of two things: a security hole has been unintentionally left in the system (e.g.
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methods not specified in the deployment descriptor), or a security breach has been intentionally

created by a malicious user. In either case, the trustability of the information within the system

should be lowered. Again the values set initially by the ServerInterceptor provide that safety net.

4.3.3 Detailed Role of ServerHandler. The ServerHandler is composed of (among other

things) a method that handles SOAP requests (handleRequest()), and a method that handles the

response (handleResponse()). The state of the method invocation request is maintained between

these two methods, such that the session is not complete until the response has been sent. This

affords the opportunity for the body-id of the message to be extracted from the request, and held

until the response, allowing the transaction log to be updated for the correct record. The single

state also decreases the number of database transactions that must be made; data is gathered from

the request method and held until all necessary data has been gathered from the response method.

At that point the transaction log is updated once for that message recording the calculated Data

Consistency value.

The main contribution of the ServerHandler is the calculation of the Data Consistency indi-

cator. It is done at this point because the input to and output from the method can be seen here.

Using the aforementioned alternate database connections, a query is built based on the type of

object being accessed, the input supplied, and any output that was returned. Both of the alternate

sources are queried for similar data, returning a SQL result set that is parsed to determine if there

were any matches. As described in Section 3.4.3 and using Algorithm A.2, if a match is found,

then the consistency bit for that source is set to 1, otherwise it is set to 0.

4.4 Trust Interpretation

As noted in Table 4.1, the edu.afit.assetTracker.trust package handles all of the trust

interpretation. It contains an overall class (edu.afit.assetTracker.trust.Trust), and five ex-

tension classes for each type of indicator. There is no interface code in this package, it is purely an
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interpretation engine that accepts trust values and outputs interpretations. The user interface is

part of edu.afit.AssetTracker.ui as demonstrated in Section 4.6.

The main trust class accepts a hexadecimal trust value string as a constructor parameter.

Upon instantiation of a trust object, the provided trust value is parsed into individual indicator

values. Then a TreeMap is built holding appropriate trust objects (WS-Security, Source Credibility,

Data Consistency, or Data Currency) with the indicator name as the key. The trust value must have

indicators in the following order: WS-Security Authorization, WS-Security Signature, WS-Security

Encryption, Data Consistency, Source Credibility, and Data Currency. This ordering is ensured

by programatically building the trust value from the records in the transaction log table and by

denying users the opportunity to manually enter trust values.

As each trust object is created, its interpretation value is automatically calculated and stored

in the object. A getter method is available for retrieving and displaying the value as needed.

The initial value is calculated with a normal tolerance value (010), but users can easily adjust the

amount of desired tolerance in the provided interface. If tolerances are changed, then users can

request a new calculation of the trust interpretation, and the new value is calculated as before.

Because the Data Currency indicator does not have tolerance to account for due to the way it is

represented, the Data Currency trust interpretation class does not have a mechanism for adjusting

it, although an empty method is in place for future capabilities of re-calculating the interpretation.

4.5 Build Environment

The web services runtime environment used is Systinet WASP Server for Java. Since all

developed code is compliant with Java 1.4.2_05, it ought to be able to be run on any platform for

which there is a Java Virtual Machine and MySQL database available. Despite the promises of

cross platform compatibility, it would come as no surprise if some unanticipated errors occur if
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this code is executed on a different platform configuration. To establish a common baseline, the

tools and versions listed in Table 4.3 should be used to guarantee the advertised performance.

Table 4.3: Development Environment Baseline
Product Version Purpose

JavaTM 1.4.2_05 Main development language
Systinet WASP Server for Java 5.0 Web services runtime environment
MySQL [5] 4.1.7 Relational database engine
Eclipse [3] 3.0.1 Java IDE used for all development except

GUI building
Apache Ant [1] 1.6.1 Java build tool
NetBeans [6] 3.6 Java IDE used for GUI building
Mac OS X [2] 10.3.7 Operating system

In addition to the package hierarchy outlined in Table 4.1, there are several files used for

compiling, deploying, and running the code. All files are listed from the project root. Since Ant is

used as the build tool, \build.xml and \build.properties are used to invoke any actions. The

\dd folder contains the previously mentioned deployment descriptors that tell the WASP server

how to configure the service instance and set security parameters. The \wsdl folder is where

WSDL files are stored when they are generated. If the entire project is opened and used within

Eclipse, the build file can be executed using its integrated Ant tools. If the project is run from a

command line interface, then the \runant.sh or \runant.bat (depending on the users operating

sytem) files must be executed in place of the regular Ant command to setup necessary CLASSPATH

and environment variables.

The Ant build file provided contains all necessary targets to compile, deploy, and run the

service instances and clients "out of the box". All targets assume that the WASP server is already

running at the address and port specified in the \build.properties file. The pertinent targets are

listed and defined below in Table 4.4 where atDBNAME is equal to atForward, atRear, or atHome.

A series of SQL files are provided to create all necessary databases, tables, and initial data.

The entire database environment can be reset to a clean initial condition by executing master.sql
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Table 4.4: Key Ant Targets
Target Purpose

create_identities Creates the necessary identities and certificates for both the server and
client. Must be run once before any of the example code will work prop-
erly.

make_*_service Three targets exist, * indicates forward, rear, or home. Compiles the ser-
vice, generates necessary WSDL files, and builds a JAR file for deployment
to the server

deploy_*_service Three targets exist, * indicates forward, rear, or home. Deploys the service
to the specified service instance

undeploy_*_service Three targets exist, * indicates forward, rear, or home. Undeploys the spec-
ified service instance

make_*_client Three targets, * indicates forward, rear, or home. Compiles the client, re-
trieves the WSDL files from the deployed services, and builds a JAR file for
execution

run_gui Launches the interface for testing the code for this work

from a MySQL command prompt. The files and their respective functionality are listed below in

Table 4.5.

Table 4.5: Database Initialization SQL Files
File Purpose Called By

master.sql Calls all files, resets the database to a
fresh initial state

N/A

createTables.sql Creates the required tables for each
database

atDBNAME/setupDBNAME.sql

databaseCreate.sql Creates each database (atForward,
atRear, and atHome)

master.sql

dataClientProfile.sql Loads data for the client bracketing
preferences

atDBNAME/setupDBNAME.sql

dataCurrency.sql Loads default expected currency val-
ues for each data type

atDBNAME/setupDBNAME.sql

atDBNAME/setupForward.sql Creates tables, loads expected cur-
rency, bracketing preferences, and
sample data for each data type

master.sql

atDBNAME/dataAircraft.sql Loads sample data for Aircraft objects atDBNAME/setupDBNAME.sql

atDBNAME/dataLocation.sql Loads sample data for MAJCOM and
Bases objects

atDBNAME/setupDBNAME.sql

atDBNAME/dataMunition.sql Loads sample data for Munition ob-
jects

atDBNAME/setupDBNAME.sql

atDBNAME/dataPersonnel.sql Loads sample data for Personnel ob-
jects

atDBNAME/setupDBNAME.sql

4.6 Sample Output

As listed in Table 4.4, the create_identities must have been run before any code can be

successfully executed. Assuming that it is has been run, and that the services are deployed to their
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respective locations, we can begin executing the client code. The main AssetTracker interface is

launched by executing the run_gui target and is shown in Figure 4.6.

Figure 4.6: Initial Application Screen

In order to generate a range of trust values, three scenarios are available within the Asset-

Tracker interface. Each scenario sets client bracket preferences and source credibility rating for the

ForwardWS as shown in Table 4.6. As a reminder, bracket preferences range from narrow to wide,

represented in binary from 00 to 11 and are listed in Table 3.1; source credibility ratings range from

low to high, represented in binary from 00 to 11 and are listed in Table 3.3. Once a scenario has been

selected, the user can execute a set of sample transactions. This invokes a sequence of methods

for each object type in the following order: MAJCOM, Base, Aircraft, Munition, Personnel. Each

object has a variety of get, delete, add, and update methods invoked in no particular order.
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Table 4.6: Scenario Configurations
Scenario w_wssAuth w_wssSig w_wssEnc w_dataCons w_srcCred w_dataCurr actSrcCred

1 11 11 11 01 10 00 01
2 11 11 11 00 10 11 11
3 10 10 10 11 01 10 00

Each scenario has an inherent influence on the trust values that are generated. Scenario

Two(high) generates the highest values, given its total bracket preferences are higher than Scenarios

One(medium) or Three(low), and its source credibility is the highest. Similarly Scenario Three(low)

generates the lowest values since it has the narrowest bracket preferences. Scenario One(medium)

is the default scenario, and generates trust values in between Scenarios Two(high) and Three(low).

Once the sample data transactions have been executed, the resulting transaction log can be

viewed for analysis. This presents a table showing transaction ID, method name, input string,

output string, and trust value from the transaction log as well as a calculated trust interpretation.

This screen is shown in Figure 4.7.

Figure 4.7: Trust Value Table
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The interpretation values are calculated using a normal tolerance and color coded as de-

scribed in Section 3.2. There is no room for tolerance adjustment on this screen, this is merely

a high level view of the overall trustability assessment for each transaction. In order to adjust

tolerance for a particular transaction, users can drill down for more information on the selected

table row. Considering transaction tx6 as shown in Figure 4.7, the resulting detailed view of the

trust interpretation is shown in Figure 4.8.

Figure 4.8: Detailed Trust Interpretation Display

In the detailed view, interpretation of individual indicators are color coded, as well as the

interpretation for the entire transaction. These values and their color coding change as tolerance

levels are adjusted and the interpretations are updated by the user. Continuing with transaction

tx6, lowering all tolerance levels to the lowest setting results in the transaction interpretation

changing from the initial interpretation of 73.640% to the lower 68.991% as shown in Figure 4.9.

It should be noted that the color coding changed with the new interpretation since the value fell

below the 70% boundary.
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Figure 4.9: Detailed Trust Interpretation Display With Lowered Tolerance

4.7 Summary

This chapter has discussed the implementation that demonstrates the trustability assessment

model proposed in Chapter III. AssetTracker meets all of the specifications, it repeatably calculates

trust values, and provides interpretation values that can be adjusted for the amount of allowable

tolerance. Three scenarios are utilized to generate a range of trust values. The results of the

scenarios are discussed and analyzed in Chapter V.
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V. Conclusions and Future Work

Chapter IV discusses and demonstrates the AssetTracker system as a representative example of

how to create and utilize trust values in web services based data exchange. This chapter builds

upon that and discusses the trust values generated by the three different scenarios and conjectures

on their meaning. The success of the implementation to include its usefulness in a decision

making environment is discussed. Finally, several areas for future enhancements to this work are

presented.

5.1 Conclusions

Quality of information plays an increasingly important role in decision making environ-

ments. With this increased reliance comes the need to discriminate between trustable and

untrustable information. The model proposed in this work provides this capability. In order

to maintain a reasonable scope, focus has been limited to the secure communications domain of

web services. When considering the overall effectiveness of the implementation, there are several

areas that must be discussed. First, we examine whether or not the trust values are constructed in a

repeatable way as described in Section 3.4. Second, the usefulness of the trustability assessment in

a decision making environment is analyzed. Finally, the role that the three scenarios from Section

4.6 play in determining the overall utility of the system is discussed.

5.1.1 Repeatable Representation. As depicted in Figure 5.1 our trust values have been

constructed in a repeatable manner. Each of the three scenarios has the same pattern, but different

ranges of interpretation values. This is not a graph representative of the overall system trustability

over time, rather it is a graph showing the individual trustability interpretations for a set of

transactions. All interpretation values are calculated using a normal tolerance; adjustments made

to individual indicator tolerance levels would change the actual plots for each scenario.
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Scenario Overlay
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Figure 5.1: Scenario Trust Interpretations Overlaid

Each scenario makes the same method calls (retrieval, addition, update, deletion), on the

same initial state of the database. Repeated execution on the same initial state generates the same

set of trust values every time. It follows that the trust values are the same for each scenario aside

from the differing brackets and source credibility. The bracket and source credibility variations are

what account for each scenario raising or lowering the trust values according to the configuration

as described in Section 4.6.

5.1.2 Usefulness in Decision-Making Environment. The goal of this work is not to prevent

untrustable information from entering the system, but rather to alert decision makers to the

presence of any. Knowledge of the presence of untrustable information allows them to react

appropriately to the decision at hand. Unsecured methods are accessed several times during each

scenario. As seen from the low points in Figure 5.1, the trustability is severely degraded when
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they are accessed, alerting users to the fact that something has legitimately lowered the trust.

A detailed examination of the transaction log will reveal that an unsecure method was invoked.

Further investigation can be made to determine if the unsecured method was intentionally allowed,

if it was mistakenly allowed, or if a malicious user was able to gain unauthorized access to it.

Although the impact of trust assessment values is conveyed visually here, there is a clear

foundation for a machine-based decision making system to process and act upon the values. Due

to the pre-defined format of trust values, each value can be parsed to determine what set of inputs

resulted in its value. Using transaction tx7 from Figure 4.7, we can parse its trust value of 777D60.

Table 5.1 shows how the value is parsed.

Table 5.1: Trust Value Parsing - 777D60
Indicator Value Binary Value Meaning

7 0111 WS-Security Authorization was successfully applied; wide
bracket

7 0111 WS-Security Signature was successfully applied; wide bracket
7 0111 WS-Security Encryption was successfully applied; wide bracket
D 1101 Data was consistent with both alternate sources; medium-narrow

bracket
6 0110 Source credibility is medium-low; medium-wide bracket
0 0000 Actual currency is very current; expected currency is very current

All trust assessment values are parsed the same way. There is a finite set of possible ways that

any given trust value can have been constructed. From this we can see how it is easy to construct

an algorithm that can react appropriately to any trust value. There is nothing that prohibits a dual

approach, where an automated system uses the trust assessments to aid its decision making, and

a human user interface exists alongside allowing views into the trustability of information.

5.1.3 Impact of Bracket Selection and Source Credibility. Scenario Three (see Table 4.6)

has very narrow brackets for the WS-Security indicators, as well as a very low source credibility

rating. The overall trust value interpretations are lower than the other scenarios as expected. The

narrowing of brackets has the effect of decreasing the overall trustability for the service instance.

Scenario Two reverses that trend by using very wide brackets, and a high source credibility rating.
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Figure 5.2 shows trust interpretations from each scenario in consecutive order (Scenario One,

Scenario Two, Scenario Three). Since the methods executed are the same, and occur in the same

order for each scenario, we can see that the transaction trust assessments are increased or decreased

in proportion to the value of the brackets and source credibility. As expected, Scenario One (having

medium brackets and source credibility values) generated interpretations greater than Scenario

Three, but less than Scenario Two.

Figure 5.2: Scenario Trust Interpretations Consecutively

5.2 Future Work

As shown in Chapter II, there is significant interest throughout the literature and industry in

assessing trustability of information. As discussed in the previous section, the model and method-

ology proposed in this work attempts to provide improvements over existing trust assessment

models. Despite the progress of the present work, there are additional features that could further
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enhance the value provided in a decision making environment. These potential enhancements are

outlined and reviewed here.

5.2.1 Multiple Clients. As detailed in Chapter IV, the trust values generated in this work

use a single client instance with differing bracket and source credibility scenarios. While this

provides a broad range of trust values, an enhanced implementation could use multiple client

instances. In addition to providing the same insight as the approach of this work, multiple clients

allow for the notion of seeing how other service instances rate each others trustability. Of particular

interest when assessing Data Consistency and Source Credibility, it would be interesting to see

how each instance rates the consistency and credibility of other sources, in effect building up

a default trust bias. For example, if ForwardWS generates a Data Consistency value indicating

the data is consistent among all sources for a transaction involving aircraft a3, will RearWS and

HomeWS generate the same value? Implications of these differences on the decision maker could

be explored.

5.2.2 Database Replication. The initial data used for this implementation is similar across

all service instances with the exception of some minor differences introduced to obtain a range of

trustability assessments. Data is not explicitly replicated from one database to another. If multiple

clients are used, unless they are configured to initiate similar transactions (i.e. exact replications)

for each service instance, the databases will only increase in their differences. This guarantees that

Data Consistency values will decrease as transactions continue to occur. Data replication would

solve this problem, increasing the usefulness of the trust assessments.

5.2.3 Distributed System Integration. The AssetTracker system was built specifically to

demonstrate the model proposed in Chapter III. While it serves that purpose well, the true test

of the present works’ trust assessment methodology is how well it would function in a real world

system. Much in the same way that AssetTracker is able to calculate trustability assessments, any
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SOAP web service environment should be able to accommodate a set of trustability extensions.

Real world data and a sizable transaction load would provide insight into the effectiveness of

this work. The Joint Battle Infosphere from the Air Force Research Laboratory would be a good

platform to investigate for this integration as they are in the process of moving to a web services

based platform.

5.2.4 Transaction Log Data Mining. We have limited our use of the transaction log to

merely gather trust assessment values and calculate interpretations. Despite this self imposed

restriction, there is a wealth of information that can be gleaned. Logs can be searched for unusual

patterns in method access, e.g. an extraordinarily large amount of invocations for a particular

object. These (and other) anomalies could be correlated to the resulting trust values. The effect

that certain method invocations have on trust values could be determined from the logs, perhaps

giving additional insight into the overall information trustability.

5.3 Summary

This work addresses the issues that exist in assessing information trustability. The proposed

solution is framed in a secure web services environment, and uses a series of indicators and

attributes to derive trust values for information from web service transactions. The values are

constructed in a repeatable manner such that the value can be parsed by humans or machines to

determine its meaning. Assessment values are translated to a percentage-based interpretation that

enhances the the ability of the decision maker to determine the basis for confidence in presented

information.
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Appendix A. Key Algorithms

This appendix contains the full algorithms in pseudo-code for calculating Data Currency and Data

Consistency indicators. Algorithm A.1 contains the Data Currency algorithm, and is discussed in

Section 3.4.5. Algorithm A.2 contains the Data Consistency algorithm and is discussed in Section

3.4.3.

Algorithm A.1 Determining Data Currency
1: if actualCurrency == "00" then
2: interpretation = 100
3: else if actualCurrency == "01" then
4: if expectedCurrency == "00" then
5: interpretation = (100/3) * 2 = 66.66
6: else
7: interpretation = 100
8: end if
9: else if actualCurrency == "10" then
10: if expectedCurrency == "00" then
11: interpretation = (100/3) = 33.33
12: else if expectedCurrency == "01" then
13: interpretation = (100/3) * 2 = 66.66
14: else
15: interpretation = 100
16: end if
17: else if actualCurrency == "11" then
18: if expectedCurrency == "00" then
19: interpretation = 0
20: else if expectedCurrency == "01" then
21: interpretation = (100/3) = 33.33
22: else if expectedCurrency == "10" then
23: interpretation = (100/3) * 2 = 66.66
24: else
25: interpretation = 100
26: end if
27: end if
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Algorithm A.2 Determining Data Consistency
1: if message reaches Handler then
2: get methodName being invoked /* from transaction log */
3: get method input /* from transaction log */
4: if methodName starts with "get" then
5: for all datatypes do
6: SELECT * FROM alternateSource1 WHERE id = inputID
7: for all query results do
8: if all attributes match then
9: Consistency += "1"
10: else
11: Consistency += "0"
12: end if
13: SELECT * FROM alternateSource2 WHERE id = inputID
14: if all attributes match then
15: Consistency += "1"
16: else
17: Consistency += "0"
18: end if
19: end for
20: end for
21: else if methodName starts with "add" or "update" then
22: for all datatypes do
23: SELECT * FROM alternateSource1 WHERE allAttributes = allInputAttributes
24: if all attributes match then
25: Consistency += "1"
26: else
27: Consistency += "0"
28: end if
29: SELECT * FROM alternateSource2 WHERE allAttributes = allInputAttributes
30: if all attributes match then
31: Consistency += "1"
32: else
33: Consistency += "0"
34: end if
35: end for
36: else if methodName starts with "delete" then
37: for all datatypes do
38: SELECT * FROM alternateSource1 WHERE id = inputID
39: if there are no results then /* deleted data does not exist */
40: Consistency += "1"
41: else
42: Consistency += "0"
43: end if
44: SELECT * FROM alternateSource2 WHERE id = inputID
45: if there are no results then /* deleted data does not exist */
46: Consistency += "1"
47: else
48: Consistency += "0"
49: end if
50: end for
51: end if
52: end if
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Appendix B. SQL DDL Descriptions

This contains the SQL DDL descriptions for each AssetTracker database table.

Table B.1: MAJCOM SQL DDL Description
Fieldname SQL Type Description

majcom_id (primary key) VARCHAR(10) ID for the MAJCOM
majcom_name VARCHAR(40) Name of the MAJCOM

Table B.2: Base SQL DDL Description
Fieldname SQL Type Description

base_id (primary key) VARCHAR(10) ID for the base
majcom_id (foreign key) VARCHAR(10) ID of the parent MAJCOM
base_name VARCHAR(25) Name of the base

Table B.3: Aircraft SQL DDL Description
Fieldname SQL Type Description

aircraft_id (primary key) VARCHAR(10) ID of the aircraft
base_id (foreign key) VARCHAR(10) ID of the parent base
model VARCHAR(20) Model of the aircraft (e.g. F-16)
status VARCHAR(20) Status of the aircraft

Table B.4: Munition SQL DDL Description
Fieldname SQL Type Description

munition_id (primary key) VARCHAR(10) ID of the munition
base_id (foreign key) VARCHAR(10) ID of the parent base
name VARCHAR(20) Name of the type of munition
status VARCHAR(20) Status of the munition

Table B.5: Personnel SQL DDL Description
Fieldname SQL Type Description

personnel_id (primary key) VARCHAR(10) ID of the personnel
base_id (foreign key) VARCHAR(10) ID of the parent base
title VARCHAR(20) Title of the personnel
status VARCHAR(20) Status of the personnel

Table B.6: clientProfile SQL DDL Description
Fieldname SQL Type Description

client_id (primary key) VARCHAR(10) ID tag for the client (e.g. Forward)
w_wssSig VARCHAR(2) Bracket for WS-Security Signature
w_wssEnc VARCHAR(2) Bracket for WS-Security Encryption
w_wssAuth VARCHAR(2) Bracket for WS-Security Authorization
w_dataCons VARCHAR(2) Bracket for Data Consistency
w_srcCred VARCHAR(2) Bracket for Source Credibility
w_dataCurr VARCHAR(2) Bracket for Data Currency
w_actSrcCred VARCHAR(2) Source Credibility rating for the source
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Table B.7: expectedCurrency SQL DDL Description
Fieldname SQL Type Description

cr_id (primary key) VARCHAR(10) Currency table ID
dataType VARCHAR(20) Data type for currency value
expCurr VARCHAR(2) Expected currency for data type

Table B.8: txLog SQL DDL Description
Fieldname SQL Type Description

tx_id (primary key) VARCHAR(10) Transaction ID
timestamp VARCHAR(15) Timestamp of the message
srvBodyID VARCHAR(45) Body ID of the message being logged
methodName VARCHAR(20) Name of method invoked
inputStr VARCHAR(255) Comma delimited list of method input parameters
outputStr TEXT Output returned by the invoked method
t_wssSig VARCHAR(2) Trust value for WS-Security Signature
t_wssEnc VARCHAR(2) Trust value for WS-Security Encryption
t_wssAuth VARCHAR(2) Trust value for WS-Security Authorization
t_dataCons VARCHAR(2) Trust value for Data Consistency
t_srcCred VARCHAR(2) Trust value for Source Credibility
t_dataCurr VARCHAR(2) Trust value for Data Currency

68



Bibliography

1. “The Apache Ant Project”. URL http://ant.apache.org.

2. “Apple Mac OS X”. URL http://www.apple.com/macosx.

3. “Eclipse Foundation”. URL http://www.eclipse.org.

4. “Java Programming Language”. URL http://www.java.com.

5. “MySQL Relational Database”. URL http://www.mysql.com.

6. “NetBeans IDE”. URL http://www.netbeans.org.

7. “Systinet WASP Server for Java”. URL http://www.systinet.com/products/ssj/overview.

8. SOAP Version 1.2 Part 1: Messaging Framework. Technical report, W3C, June 2003.

9. Web Services Security: SOAP Message Security 1.0 (WS-Security 2004), 2004. URL
www.oasis-open.org.

10. “Google News”, 2005. URL http://news.google.com/news?q=soap+web+services.

11. “Yahoo News”, 2005. URLhttp://search.news.yahoo.com/search/news?c=&p=soap+web+services.

12. Albrecht, Conan C. “How Clean is the Future of SOAP?” Communications of the ACM, 47(2):66–
68, February 2004.

13. Bariff, Martin and Salimol Thomas. “An Operational Framework for Information Integrity”.
Feb 2003. URL www.informationintegrity.org.

14. Bhatti, Rafae, Elisa Bertino, and Arif Ghafoor. “A Trust-based Context-Aware Access Control
Model for Web-Services”. Web Services, 2004. Proceedings. IEEE International Conference on,
184–191. 6-9 July 2004 2004.

15. Chen, Peter P. Information Validity Assessment and Meta Data Modeling in Integrating Heteroge-
neous Data Sources. Technical report, Louisiana State University, 2001.

16. Clune, Jim and Adam Kolawa. “Security Issues with SOAP”.
CrossTalk: The Journal of Defense Software Engineering, July 2002. URL
http://www.stsc.hill.af.mil/crosstalk/2002/07/clune.html.

17. Geer, David. “Taking Steps to Secure Web Services”. Computer, 36(10):14–16, October 2003.

18. Hada, Satoshi and Hiroshi Maruyama. SOAP Security Extensions. Tech-
nical report, Tokyo Research Laboratory, IBM Research, 2000. URL
http://www.trl.ibm.com/projects/xml/soap/wp/wp.html.

19. IBM and Microsoft. Security in a Web Services World: A Proposed Architcture and Roadmap.
Technical report, IBM Corporation and Microsoft Corporation, 2002.

20. Kearney, P, J Chapman, N Edwards, M Gifford, and L He. “An Overview of Web Services
Security”. BT Technology Journal, 22(1):24–42, Jan 2004.

21. Khare, Rohit and Adam Rifkin. “Weaving a Web of Trust”. World Wide Web Journal, 2(3):77–112,
1997.

22. Nayar, Madhavan K. “Information Integrity: the Next Quality Frontier”. Total Quality Man-
agement & Business Excellence, 15(5,6):743–751, Jul/Aug 2004.

69



23. Pipino, Leo L, Yang W Lee, and Richard Y Wang. “Data Quality Assessment”. Communications
of the ACM, 45(4ve):211–218, April 2002.

24. Schneier, Bruce. “Crypto-Gram Newsletter - SOAP”. Crypto-gram, June 2000. URL
http://www.schneier.com/crypto-gram-0006.html#SOAP.

25. Staab, Steffen, W van der Aalst, V.R. Benjamins, A Sheth, J.A. Miller, C Bussler, A Maedche,
D Fensel, and D Gannon. “Web Services: Been There, Done That?” IEEE Intelligent Systems,
18(1):72–85, January/February 2003.

26. Wagner, Ray. “Web Services Security Advances with Approval of Key Standard”, 13 April
2004 2004. URL http://www3.gartner.com/DisplayDocument?ref=g_search&id=430318.

70



REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
03-21-2005

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
25 Aug 2004 – 21 Mar 2005

5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

4.  TITLE AND SUBTITLE

Assessing Information Trustability in a Secure Web Services Environment

5c.  PROGRAM ELEMENT NUMBER

5d.  PROJECT NUMBER

5e.  TASK NUMBER

6.  AUTHOR(S)

Penner, Charles, G., Captain, USAF

5f.  WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
     Air Force Institute of Technology
    Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way
     WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
    REPORT NUMBER

     AFIT/GCS/ENG/05-14

10. SPONSOR/MONITOR’S
ACRONYM(S)

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/IFSE

     Attn:  Mr. Richard Metzger
     Bldg 3, 525 Brooks Rd
     Rome, NY 13441-4505                        DSN: 587-7652

11.  SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Decisions are made based on available information. A decision support system endeavors to provide information that is timely, accurate, and trustable.
Information gathered from secure web service transactions has attributes that can be used to assess a level of trustability. The trust assessments enable a
decision maker to determine a basis for confidence in the information presented from the web service. Existing trust assessment models do not provide a
way to determine from a particular trust assessment what information attributes contributed to its computation. The present work creates trust values that
retain and denote meaning, allowing a decision maker to see specifically what factors influenced the information trust assessment. Also central to this work
is interpretation of the trust assessments. The interpretation model allows users to specify the amount of allowable tolerance for reduced trustability in the
decision being made. This "dial-a-trust" allows the interpretation to be scaled relative to the impact of the decision. The trust assessment values, along with
their interpretations, allow both human and machine-based decision makers to determine whether information is trustable enough for the needs of the
decision being made.

15. SUBJECT TERMS
Decision aids; decision support systems; information processing; information retrieval; information trustability; trust assessment; trust interpretation.

16. SECURITY CLASSIFICATION
OF:

19a.  NAME OF RESPONSIBLE PERSON
Michael L. Talbert, Lt Col, USAF (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
     ABSTRACT

UU

18. NUMBER
      OF
      PAGES
82 19b.  TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4613; e-mail:  michael.talbert@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18


	Assessing Information Trustability in a Secure Web Services Environment
	Recommended Citation

	tmp.1600114179.pdf.uObWz

