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AFIT/GCE/ENG/05-05 

Abstract 

Substantial performance improvement of a wide area video surveillance network 

can be obtained with addition of a Line-of-Sight sensor.  The research described in this 

thesis shows that while the Line-of-Sight sensor cannot monitor areas with the ubiquity 

of video cameras alone, the combined network produces substantially fewer false alarms 

and superior location precision for numerous moving people than video. 

Recent progress in fabrication of inexpensive, robust CMOS based video cameras 

have triggered a new approach to wide area surveillance of busy areas such as modeling 

an airport corridor as a distributed sensor network problem.  Wireless communication 

between these cameras and other sensors make it more practical to deploy them in an 

arbitrary spatial configuration to unobtrusively monitor cooperative and non-cooperative 

people.  The computation and communication to establish image registration between the 

cameras grows rapidly as the number cameras increases.  Computation is required to 

detect people in each image; establish a correspondence between people in two or more 

images; compute exact 3-D position from each corresponding-pair; temporally track 

targets in space-and-time, and, assimilate resultant data until thresholds have been 

reached to either cause an alarm or abandon further monitoring of that person.  

Substantial improvement can be obtained with addition of a Line-of-Sight sensor as a 

location detection system to decoupling the detection, localization, and identification 

subtasks.  That is, if the ‘where’ can be answered by a location detection system, the 

‘what’ can be addressed by the video most effectively. 
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A LINE-OF-SIGHT SENSOR NETWORK FOR WIDE AREA VIDEO 
SURVEILLANCE: SIMULATION AND EVALUATION 

 
 

I.  Introduction 

A.  Motivation for Research 

Video cameras have become increasingly powerful and less expensive, making 

them attractive for the monitoring and surveillance of large areas.  Images from numerous 

cameras can detect, locate, identify, and track people for a location aware system.  The 

task is to assimilate information in a concise manner and display it on a monitor for an 

observer, to facilitate an effective and timely response.  It is desirable for the system to 

determine automatically whether to continue monitoring a person, or when to raise an 

alarm.  In addition, it is desirable to be able to track nearly everyone until the person has 

been determined to be safe.  However, the computation and communication requirements 

of such a system increase with the number of cameras and image resolution of the 

cameras.  A difficulty in this type of system is to get the best possible identification 

image of people who are moving in the monitored area with a network of medium 

resolution video cameras. 

Figure 1 illustrates the relationship between the number of cameras involved in 

determination of the location of people in an area.  With few people in a small area, 

feature extraction can be used for location determination.  Detection is the dominant 

source of complexity for this task.  As the number of people and area for a location 

system increases, stereo image techniques become preferred.  Location dominates the 

complexity in this domain.  For numbers of people and areas become so large that they 



 

2 

cannot be effectively observed from a given vantage point, a video network becomes 

necessary.  Difficulty of registering images and consistent labeling cause tracking to be 

the dominant source of complexity. 

  

 

Figure 1.  Number of Cameras to Identify and Track versus Number of People 

 

A network of Line-of-Sight (LoS) sensors offers an efficient means of swiftly 

detecting and locating multiple moving people in a room or corridor.  A Line-of-Sight 

sensor, by design, is a collection of light rays between a small number of light sources 

and light sensors opposite of each other in a fixed geometry, as explained later.  Any 

object between the light sources and light sensors interrupts reception, enabling fast 

localization.  Thus, a Line-of-Sight sensor is responsible for several light rays between 

sources and sensors.  Because the network of Line-of-Sight sensors perform sensing of 

the environment in a distributed fashion, the location evidence the LoS sensor provides is 
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more concise than the location evidence derived by cameras.  The video sensor network 

can further refine the already concise evidence with image data and use the results to 

perform identification and tracking.  A further benefit of the LoS sensor may be obtained 

if the evidence from this sensor is used as a basis for registration communication between 

the cameras.  Typically, video images have been used to answer questions such as: ‘Is 

there something interesting?,’ ‘Where is it?,’ ‘What is it?’ and ‘What are its dynamics?’  

In principle, if LoS sensors can answer the first two questions, then, the video processing 

will be less demanding.  The amount performance would increase due to this task 

decoupling will determined herein.  From an implementation point of view, driven by 

enabling technologies, this approach seems promising.  A performance evaluation may 

affect the design of future systems, which have been in demand since the September 11th 

events.  

B.  Experimental Hypothesis  

The purpose of the multi sensor network is to locate all persons in the network’s 

region of interest.  The data from the sensor network determines the identification and 

track of each person detected.  The LoS sensor is expected to provide a faster location 

detection of a person than three networked cameras, and it is expected the LoS sensor 

fused with any number of cameras will have fewer false alarms than three networked 

cameras. 
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C.  Thesis Organization 

Chapter one presents the overall organization of the thesis as well as a summary 

of the motivation for research and the research hypothesis.   

Chapter two presents the background for this effort.  A description of the role of 

sensor networks in location aware computing is given, as well as reasons for the 

popularity of the camera in such networks.  A description of the LoS sensor is also given, 

including the algorithmic operation and complexity.  Incorporated in this description is 

the motivation for feature level fusion of the sensor with the camera network along with a 

discussion of system deployment and scaling issues.  Also included is a brief description 

of how the LoS sensor and camera systems contribute to each subtask of detecting, 

locating, identifying, and tracking people. 

Chapter three presents the methodology for this effort.  A simulation model of an 

airport corridor is created with eighteen sub-sections.  There are three different types of 

subsections: a terminal with a desk, a terminal without a desk, and a portion of a corridor.  

Each subsection is equipped with three cameras and a LoS sensor configuration for 

estimating the location of people moving within the airport.   

The measurements derived from the simulation include the hit rate, the false 

alarm rate, and the precision of the sensor network.  The hit rate is the number of people 

in the simulation for whom the sensor network has correctly generated a corresponding 

location estimate.  A false alarm is a location the sensor network has estimated a person 

is when no one occupies that area.  The false alarm rate is the number of false alarms per 
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area per simulation.  The precision corresponds to the number of pixels involved in the 

correct determination of a person’s location.  

The factors varied in the simulation include the number of people in the airport 

and the configuration of camera and LoS sensors.  

Chapter four presents the results of the simulation.  Because the purpose of the 

study is to evaluate the LoS sensor, the results are considered with respect to sensor 

network configurations that include this sensor and the configuration of three cameras 

networked without the LoS sensor.  Analysis of variance is performed on the data.  

Confidence intervals of mean values and distributions of effects from factors and 

interactions between factors that produce a statistically significant effect on the variance 

are presented. 

Chapter five contains the conclusions of the research and suggestions for future 

research.  The ability of the LoS sensor to correctly and precisely locate a person is 

compared to that of a three-camera system.  This chapter will show that the LoS sensor 

achieves better precision and produces fewer false alarms than the three-camera system, 

but has “blind spots” that prevent the LoS sensor from achieving the cameras detection 

ability.  Finally, suggestions for further research are presented. 
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II.  Literature Review 

A.  Introduction  

The purpose of this chapter is to present the background for wide area 

surveillance using distributed sensor networks, and in particular, a hybrid multi-sensor 

network made of video cameras and specially designed LoS sensors.  Important sub 

problems of location aware computing are introduced first to establish the context.  

Existing approaches are highlighted and the basic design of LoS sensor is presented.  The 

suitability of the new sensor for detecting, locating, and tracking multiple people within 

the sensor-field is briefly explained.  Our approach fuses video images obtained through a 

network of cameras, to the high-speed location sensing data through the line of sight 

sensors.  The limitation of video-only networks is presented at a higher level to justify the 

need for augmentation.  The scalability and performance of the combined approach is 

presented to form the basis for the proposed approach.  A practical consideration in 

deployment of new sensors, among others, is wiring.  Wiring is both expensive and 

intrusive of the existing infrastructure.  Most distributed sensor networks, therefore, are 

likely to use wireless communication.  Although wireless communication plays a vital 

role in the proposed framework, the scope of the analysis herein does not include these 

broader factors.  However, the LoS sensor based fusion does minimize the information 

interchange between any pair of cameras sharing a common field of view, -- a desired 

feature in wireless sensor networks. 

 “The widespread deployment of sensing technologies will make location-aware 

applications part of everyday life. [13]”  Context-aware computing, of which location 
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aware computing is a part, is the ability of an “information infrastructure” to respond to 

real-world context information such as a user’s identity, current and recent physical 

location, weather, time, or user’s dynamic state (sleeping, driving, walking, gestures) 

[22].  Location aware computing systems respond to past or present location information 

both spontaneously and on request.  Mobile computing, a form of location aware 

computing uses wireless devices such as PDAs or laptop computers, to discover nearby 

resources such as printers or Wi-Fi “hotspots.”  Location aware computing also includes 

tracking and predicting location of objects including system users.  Proposed uses of 

location aware computing include navigating unfamiliar spaces, locating office 

colleagues, tracking conference attendance, monitoring patients at medical facilities, and 

assisting the elderly or disabled [14][17].  Microsoft has announced that the soon to be 

released Longhorn operating system would include location-aware software components 

[13]. 

A fundamental problem for location-aware computing is determining physical 

location.  The Global Positioning System (GPS) is a frequent choice for outdoor areas 

where five to ten meter accuracy is sufficient.  However, GPS does not perform well 

indoors or in high-rise urban environments.  The Active Badge system [20] uses infrared 

sensors arranged within a room to intercept infrared identification signals emitted 

periodically from badges worn by room occupants [29].  More accurate positioning was 

later achieved using radio systems such as Wi-Fi and Bluetooth technology.  These 

systems provided location determination accuracy from tens of meters to within several 

meters.  Ultrawideband radio, ultrasonic and computer vision technology systems now 
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provide location information from one-meter accuracy to within a few centimeters.  

Ultrawideband radio and ultrasonic systems use triangulation of signals received by 

several sensors to determine the location of badges or tags emitting the signals.  The 

signals from such badges or tags typically contain identification information.   

Computer vision offers attractive alternatives for monitoring and tracking people, 

since the subjects are not required to wear special badges or tags.  However, simultaneous 

identification and concurrent tracking of numerous people in a dynamic environment is a 

significant challenge for a computer vision system [13].  This is especially problematic as 

the system must be efficient given the real-time operation of the system [18].  

Identification performance can be improved by requiring users to wear tags with 

barcodes; this reintroduces the badge/tag requirement while also requiring system 

cameras have high enough resolution to read the barcode at expected distances [13].   

Fusing image data from a camera in a computer vision system with other cameras 

or sensors at various fusion levels improves the systems ability to simultaneously identify 

and track numerous objects [12].  Table 1 compares the fusion of camera images at 

different levels.  A system fusing camera image data with data from a sensor of different 

modality has been demonstrated [12].  The system locates people in a room through 

pixel-level fusion of images from a single camera using the differences in sound wave 

time-of-arrival data between a pair of microphones.  This system is empirically 

demonstrated to locate two people speaking in a conference room, but performance 

metrics have not been determined [11].  
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Table 1. Comparison of Fusion Levels (from [12], [21]) 

Characteristics Signal Level Pixel Level Feature Level Symbol 
Level Behavior Level 

Type of sensory 
information 

single or multi-
dimensional 
signals 

multiple images features 
extracted from 
signals / images 

symbol 
representing 
decision 

motor action 

Representation 
level of 
information 

Low Low to 
medium 

Medium High Low 

Model of 
Sensory 
Information 

random variable 
corrupted by 
noise 

stochastic 
process on image 
or pixels with 
multidimensional 
attributes 

geometrical form, 
orientation, 
position, and 
temporal extent 
of features 

symbol with 
associated 
uncertainty 
measure 

reaction to 
stimuli in the 
form of motor 
signal/vector or 
motivational 
state 

Means of spatial 
registration 

sensor 
coalignment 

sensor 
coalignment, 
shared optics 

geometrical 
transformations 

spatial 
attributes of 
symbol, if 
necessary 

geometrical 
transformations, 
if necessary 

Degree of 
spatial 
registration 

High High Medium Low Medium 

Means of 
temporal 
registration 

synchronization or 
estimation 

synchronization Synchronization temporal 
attributes of 
symbol, if 
necessary 

synchronization 

Degree of 
temporal 
registration 

High Medium Medium Low High 

Fusion method signal detection 
and estimation 

image estimation 
or pixel attribute 
combination 

geometrical and 
temporal 
correspondence, 
feature attribute 
combination 

logical and 
statistical 
inference 

weighted 
summation, 
fuzzy rules, 
subsumption, 
artificial 
potential fields, 
or neural nets 

Improvement 
due to fusion 

reduction in 
expected 
variance, 
improved 
detection 

increase in 
performance of 
image processing 
tasks 

reduced 
processing, 
richer, more 
accurate feature 
data 

increase in 
truth or 
probability 
values 

increase 
competence in 
real-time 
reactions 
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B.  Line-of-Sight Sensors  

1)  Overview 

LoS sensor proposed by [27] is comprised of an array of light sources and an 

array of light sensors.  The light sources and sensors are assumed equal in number, 

equally spaced and placed along lines that are parallel to each other as shown in Figure 2.  

During one sensor cycle, the light sources are illuminated briefly and sequentially.  Each 

source and each sensor is suitable for wide-angle emission and reception respectively and 

are modeled as points.  The light sensors are synchronized with illumination from the 

light sources so every light sensor can detect the illumination of a light source when there 

is no obstruction between the light source-sensor pair.  If a light sensor detects the 

illumination of a light source, then it is assumed no obstruction exists along the segment 

connecting the light source and sensor.  If a light sensor does not detect illumination from 

a light source, this is evidence there is an obstruction between the light source and sensor.   

Multiple obstructions could occur in collinear fashion along one source-sensor 

line.  These can be detected and located, as explained later. 
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Figure 2. Diagram of LoS Sensor 

 

The area between the linear arrays of light-sources and sensors is partitioned into 

squares, forming a two-dimensional grid [26].  The LoS sensor maintains a pair of two-

dimensional data arrays with each element of the arrays map corresponding to a grid 

square.  The first array holds evidence threshold values for each grid cell; the second 

array holds accumulated evidence of one sensor cycle.  The evidence threshold value 

associated with a grid cell is the total number of light source-sensor segments passing 

through the grid cell.  The values in the evidence accumulation array are the number of 

blocked light source-sensor segments intersecting the array element’s corresponding grid 

square.  The values of each element in the two arrays are compared to determine the 

percent of light source-sensor segments intersecting a blocked grid square.  If the 
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percentage of blocked light source-sensor segments exceeds a given threshold, an 

obstruction is said to exist at the corresponding grid square.   

2)  Complexity 

For a single LoS sensor, the number of light source-sensor segments is 2S L= , 

where L is the number of light sources and the number of light sensors.  For each light 

source-sensor segment, the maximum number of increments made to the accumulation 

table is max( , )S H W× , where H is the height of accumulation array and W is the width 

of accumulation array.  After all accumulations are complete, H W× comparisons are 

made between the accumulator array and the evidence threshold array followed by post-

processing over a finite neighborhood.  The computational complexity for the LoS sensor 

is then ( )( )max ,O S H W HW× + , with the maximum calculation occurring when all 

light source-sensor segments are blocked.  The above complexity analysis assumes 

sequential computation, however, because 2L  lines are acquired in L clock pulses, 

speedup is obtained by concurrent computation.  Tracking, however, can be done in two 

ways.  When there is a limited number of moving people, using a list for each time 

interval facilitates nearest neighbor association.  Thus, K people within the field of view 

require 2K  comparisons at most.  However, if there are a large number of people present, 

with a maximum velocity Vmax, there are 2
maxH W V× ×  steps to establish corresponding 

persons in two consecutive sets of video images.  Conversely, given a pair of N N×  

video images, acquired from a pre-calibrated multi-camera system, 2( )O n  steps are 

required to locate the people, followed by ( )O Kn  to establish correspondence.  For each 
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correspondence, the depth computation takes a fixed amount of time, (1)O .  Given the 

active sensing and distributed computation of the LoS sensor, multiple LoS sensor cycles 

can occur between each photo of the video cameras.  Furthermore, if K hypothesis are 

generated by the LoS sensors, then the subsequent video-based validation/refinement 

requires processing over a finite area within each camera image, hence ( 1)O K ×  steps 

over a fixed number of cameras. 

3)  Fusing with Camera Systems 

Like computer vision systems, a Line-of-Sight (LoS) sensor is designed to 

determine location without requiring special badges or tags.  However, the LoS sensor 

cannot identify a person directly, but can determine the location of numerous people 

within a Region of Interest (ROI).  However, feature-level fusion of location data from 

the LoS sensor and image data greatly improves simultaneous tracking and identification 

of numerous people [11] [20].  A technique known as superresolution [28] has shown 

promise in extracting features from multiple images from a single camera provided the 

location of the object whose features are to be extracted is known.  This type of 

information cannot otherwise be obtained through normal approaches “where only a few 

cameras are used to image the corridor from a few strategically selected locations. [4]” 

Feature-level fusing camera images with the LoS sensor can be accomplished by 

using LoS collected evidence as a basis for the registration process.   With this method, 

the LoS sensor collects evidence and creates a hypothesis for the location of detected 

people.  The first camera in a round-robin ring of cameras compares this evidence, which 

maps to a global coordinate system, against cameras whose geometry within the focal 
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point of the camera could further refine the hypotheses.  This method prevents 

unnecessary processing of pixels which the LoS sensor has already hypothesized a person 

does not exist, and also enables depth information to be applied to each pixel without 

further computation or information from other cameras.  The refined hypotheses is then 

sent to the next camera in the round-robin ring until each camera observing the given 

region receives depth information and further refines the hypotheses.  After the 

hypotheses have been refined by the final camera, the hypotheses are sent to a Sensor 

Data Processing Task (SDPT).  By using real-time operating system methods [19], a LoS 

sensor can submit hypotheses that have not been refined by the cameras to the SDPT at 

significantly faster rates than the photo rates of the cameras.  The SDPT can use the 

higher sample rates of the LoS sensor to maintain consistent labeling of people that 

appear to cross between camera photos. 

To illustrate this method of fusion, Figure 3 on page 15 shows a computer 

graphics example of an image in which every pixel must be checked for detection, 

followed by registration of the pixels with other cameras to acquire depth information.  

Figure 4 on page 15 shows the same image with several of the pixels highlighted to pure 

black or white.  Pixels in a deployed system would not be altered like the ones shown in 

Figure 4, but these highlights are demonstrate which pixels correspond to a person 

location hypothesis of the LoS sensor.  The camera in Figure 4 only processes the 

highlighted pixels, with white highlights meaning the camera also detects a person, and 

black highlights meaning the camera does not detect a person at that pixel.  The LoS 

sensor data contains depth information for the white highlighted pixels. 
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Figure 3. Example of an Image from a Camera for which Every Pixel Need 

Processed 

 

Figure 4. Example of an Image from a Camera for which Only Select Pixels Need 

Processed 

 

For this type of fusion, the location hypotheses from the LoS sensor and the video 

cameras can be considered as a single logical sensor [19] from the perspective of higher 

processes.  Each of the individual sensors is also available to higher level processes so 

information can be requested directly from the LoS sensor or video streamed through the 

network from one or more chosen cameras.   

4)  Deployment  

Another significant challenge for a location aware system is deployment [14].  

Location aware systems should be ubiquitous, unobtrusive, and inexpensive [26].  

Distributing cameras over an area to locate people achieves the ubiquity and 
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unobtrusiveness desired.  In addition, since cameras have decreased significantly in price 

over the last decade while improving in performance they can be considered inexpensive.   

Location aware systems can cover wide areas containing a large number of 

people.  For such systems, high communications costs make centralized algorithms 

undesirable [8].  Distributed algorithms operating over a sensor network provides the 

communications scalability at the cost of increased complexity [8].  The sensors of a 

location aware system should report location information with minimal latency; sensors 

should collaborate on processing data and submitting concise information to location 

aware applications [7].  This minimizes delays due to message transmission time as well 

as contention for and collisions of shared network media [7].  The recent expansion of 

wireless technology such as Wi-Fi and Bluetooth has improved the ability to network 

distributed sensors.  However, inexpensive, high-bandwidth, low power, ubiquitous 

wireless coverage is still difficult to achieve [23].  For this reason, location aware 

computing systems using computer vision should perform data fusion and use location 

functions with distributed algorithms that minimize communications. 

5)  Scaling 

A large-scale location aware system architecture proposed by [20] partitions the 

location aware system in a manner resembling a tree data structure.  The location sensors 

of each service area are networked to a leaf server of the location aware system.  Non-

leaf servers direct leaf-to-leaf server communication and coordination, including hand-

over of a person from one service area to another.  Non-leaf servers distribute and direct 

user queries of the location system.  A similar architecture has been proposed for an 
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acoustic sensor network, except that ROI membership of the sensors and organization or 

the servers is determined dynamically [7]. 

C.  Line-of-Sight Sensor Operating with Camera System   

1)  Detection 

Before determining the location of a person, they must be detected.  Detection in 

computer vision is performed by comparing captured image data with expected image 

data and noting differences.  Expected image data can be derived in several ways.  One 

method uses an image of the scene known to contain no occupants.  This method is useful 

if such an image can be captured and the scene, including lighting, does not change.  A 

second method uses only the most recently captured image.  This method considers 

changes to a scene that occurs during the time intervals between image captures and can   

detect a moving person, but cannot detect a person who stops moving.  The person can 

again be detected if they resume moving.  This permits self-calibration of a camera 

system and prevents false alarms due to slow changes over time such as lighting.  

Another method averages values of several of the most recently captured images.  This 

method also detects people as they move, and continues to detect a person that stops until 

the stationary person appears in approximately as many images that were used to form 

the expected image.  The person is again be detected by the system if they resume 

movement.  This method also self-calibrates the camera system and preventing false 

alarms due to slow changes over time such as lighting.  Detection in a LoS sensor is 

conducted in the same manner as computer vision, except the captured and expected data 

reflect accumulator array values rather than image data.   
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Image data from a camera results from a light rays traveling from points in the 

background scene, or person to be detected, to the focal point of the camera lens.  The 

light rays measured by the camera are in the form of a cone whose tip is the focal point of 

the camera.  The camera needs no equipment at the origin of the light rays for detection 

to occur.  However, because the light rays all come to a single point, they are not well 

distributed in the area to be observed, and one person can conceal another person.  In 

addition, if the view of one person partially obstructs the view of another person from the 

perspective of the camera such that they appear to overlap in the resulting image, a 

computer vision system may incorrectly classify the two distinct people as a single larger 

person.  In a LoS sensor, the rays are segments with a light source on one end and a light 

sensor on the other.  Because either a light source or sensor is required on each end of the 

optical segment, the LoS sensor is most effective in areas with opposing walls or other 

structures where lights or sensors can be attached.  As the lights are both distributed and 

synchronized, the optical paths are more evenly dispersed over the area being monitored 

than they would be from a camera, making it more difficult for a person to be concealed 

by another person.  Furthermore, because there is no single perspective from which the 

scene is viewed by the LoS sensor, it is more robust against a pair of people being 

incorrectly classified as a single person. 

2)  Location 

Determining the location of a person using computer vision is a computationally 

complex task.  When a pixel in an image indicates detection of a person, a spatial ray 

corresponds to the pixel’s coverage area can be projected from the focal point of the 
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camera lens out to the scene [5].  The challenge is to determine the distance from the 

camera’s focal point to the ray’s termination point given every other pixel from the same 

image results in a similar ray also originating from the focal point [5].  Some systems this 

information assuming the bottom of a person is resting on the ground, and thus the 

distance to the person is estimated to be the intersection of the lowermost ray and the 

ground plane [2].  However, this technique is not effective if the bottom of a detected 

person is not resting on the ground, if the bottom of the person is not within the field of 

view of the camera, or if the view of the bottom of the person is obstructed.  Another 

method observes features of a person while small perturbations are applied to the camera 

[16] [17].  Distance from the camera is estimated by the amount of movement in the 

features relative to the amount of movement of the camera.  People further away appear 

to move less in the image than do people closer to the camera focal point.  It is assumed 

the people being observed are not themselves moving.  This will likely not be true in an 

area with a significant amount of pedestrian traffic.   

Knowledge about people being observed such as size or known locations of 

observable features points on a person can also be used to determine the location of a 

person from an image.  However, exploiting that knowledge requires identification of the 

person [5].  When people could be identified at points of entry to the observed area of the 

location aware system such as people scan identification tags upon entry to a controlled 

area. In this scenario, a computer vision system is provided identification and location 

hypotheses, which the system needs only verify, update, and maintain.  However, a 

means of acquiring knowledge about a person, such as the previously mentioned entry 
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control system, may either not be available or may be bypassed by a given person.  In 

addition, the track of a person within the observed area may be lost by the system.  In 

these cases, there is no initial hypothesis of identity and location to verify. 

Registration of multiple images containing correlated locations in the observed 

area from different positions improves the ability of a computer vision system to 

determine location and identity of observed people [5].  There are several techniques for 

registering information between two images, with the simplest being image rectification 

[5].  This technique can be applied when the area to be observed is flat and the geometry 

of the area is known [5].  Spatial rays can be projected from the focal point of the camera 

lens out into the scene, however the challenge is to determine the distance to the ray’s 

termination point [5].  Adding multiple cameras adds additional sets of spatial rays 

projected from different focal points.  For rectification of the multiple images, a plane is 

defined in the image space shared by the cameras.  The intersection of the projected rays 

from each camera with the plane is calculated and value between these intersections are 

interpolated [5].  All areas of the plane that the rectified cameras have in the path of the 

presence of a person are hypothesized to be occupied by a person [5].  This technique 

does not provide a volumetric location of people in the image space, but only a 

hypothesis along the given plane.   

In Figure 5, the white circles represent the location of two people in the scene to 

be located by a pair of cameras.  The rectification plane contains the focal points of both 

cameras.  The black circles of the figure indicate locations the rectification method would 

hypothesize contain people, even though these people do not exist in the scene.  The 
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cameras then resolve the misperceptions by feature comparison, or else they track non-

existent people. 

 

 

Figure 5. Two Camera Registration 

 

Figure 6. Three Camera Registration 

 

 

Figure 6, is a replication of the scenario of Figure 5, except that a third camera is 

added whose focal point also lies in the plane of intersection.  Information added by the 

third camera removes the two false hypotheses shown in Figure 5. 

Including data from an increasing number of cameras can result in a location of 

the intersection plane transitioning from a hypothesized detection to a hypothesized non-

detection.  However, this cannot result in a transition from a hypothesized non-detection 

to a hypothesized detection.  Increasing the number of cameras, then, can reduce the 

number of false detections.  However, if there are any camera pixels with data that does 

Correct Person 
Location 

Misperception 
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not differ from the background data, it would not indicate a detection and the 

corresponding region of the plane would be incorrectly assumed not to contain a person.   

Because the accumulators of the LoS sensor map to grid squares of the area 

monitored by the sensor, data obtained from the LoS sensor is already a planar hypothesis 

of the locations of people.  Consequently, no rectification of the data is required.  In 

addition, because the LoS sensor observes blocked or non-blocked light, the performance 

of the system is not diminished by people whose appearance is similar to any background 

scene.   

To register image data with LoS sensor data the image data can be rectified to the 

plane of the LoS sensor.  After rectification, people are hypothesized to be at each 

location which the LoS sensor and the rectified image data both detect a person.  An 

equivalent method of registering the LoS sensor data with image data is to register the 

LoS sensor data to the focal plane of the camera.  This is done by assuming a projected 

line between each grid square of the LoS sensor and the focal point of the camera.  The 

intersection of this line with the camera’s focal plane is the corresponding location of the 

grid square in the image data, and is a rectification of the LoS grid square data to the 

camera’s focal plane.  As with the image registration technique, people are hypothesized 

to be at each location in which the rectified LoS sensor data and the image data both 

detect a person. 

Rectifying the LoS sensor data to the focal plane of the camera offers several 

advantages over rectifying the image data to the LoS sensor.  One advantage is the 

geometry of the area monitored by the LoS sensor is specified by the placement of the 
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light sources and sensors, whereas the geometry of the area monitored by a camera 

allows the focal point to be specified, but not the range of camera’s detection.  

Consequently, the LoS sensor does not include data resulting from people outside of the 

ROI.  Likewise, the LoS sensor only captures information from the plane in which it is 

installed.  As a result, the LoS sensor does not include any information from people not 

part of the LoS sensor’s plane.  The absence of this extraneous information in the LoS 

sensor data results in less irrelevant information being sent through the network to the 

camera sensor, potentially reducing communication time. 

In addition, the data from the LoS sensor can be interpreted by the receiving 

camera as location data.  If there are no other cameras with which to coordinate data, the 

camera can do a pixel-level verification of the data from the LoS sensor to remove any 

points which the image data agrees can contain a person, without visiting every camera 

pixel in the process.  The camera system may the use the remaining data as people 

locations and perform identification functions without incurring further network traffic 

costs for the location effort [26].  In this manner, the task of locating and identifying each 

person in the monitored area partitioned with the LoS sensor performing the majority of 

the location task, while the camera system performs the identification task. 

3)  Identification 

For a camera system to identify a person, identifying features of a person must be 

detected [25].  Higher image resolutions result in more sampling of the image to facilitate 

identification of features [4].  Two means of improving resolution either replace the 
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camera with a higher resolution one, or combine multiple images of a person using a 

process known as superresolution.  

In a camera system that does not use a LoS sensor, increasing the resolution of the 

camera increases the communication and computation time of the location and 

identification process.  Extra communication time is incurred because data from each 

additional pixel must be transmitted to the other cameras [25].  Extra computation time is 

incurred because each additional pixel must be included in registration algorithm [25].  

On the other hand, a camera system that includes the LoS sensor mitigates this cost by 

verifying pixels indicated by the LoS sensor data; a fraction of the camera’s total pixels.  

By correcting LoS sensor data and using it as a basis for coordination and not sending 

additional pixel information between the cameras, the communication time between the 

cameras can be independent of the camera resolution.  This, then, removes the need to 

tradeoff camera resolution and location time.   

Video network systems have been built and tested to detect, identify, and track 

people [9].  These systems demonstrate the powerful capabilities of a video network 

system, but are still only capable of identifying an entity as being within a particular class 

of objects.  An example system properly classifies detected objects at 99.5% for humans, 

88.5% for groups of humans, 99.4% for vehicles and 64.5% for false alarms [9].   

Superresolution can extract the features of a person.  Superresolution operates by 

combining several images of a person in space and time, and aggregating the information 

into higher resolution images [27].  However, for superresolution to be successful, the 

location of the person must be known with respect to the camera for each image included 
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in the aggregation.  Early results of this technique were “encouraging [4].”  As with the 

higher resolution cameras, the camera system using superresolution can use the LoS 

sensor data to determine the location of people.  

4)  Tracking 

Besides detecting, locating, and identifying people in a location aware system, the 

people must also be tracked over time.  “The goal of practically all tracking algorithms is 

to obtain the probability density function (pdf) of the targets given all information,” 

where a pdf is a range of continuous target location estimates [12].  This is a very 

complex task for a multi-sensor system tracking multiple people in a cluttered 

environment [16].  The Bayesian algorithm is a common statistical method for obtaining 

a pdf from multi-sensor data with correlated coordinates and time-stamps [6].  The 

Bayesian algorithm combines new sensor data with prior sensor data to maintain a 

population of hypotheses and a probability associated with each hypothesis, where 

hypotheses are a set of discrete target location estimates [6].  The Bayesian algorithm “is 

valid for non-Gaussian and nonlinear system/measurement models [24].”  Each new 

sensor reading alters the probabilities of hypothesis and possibly adds new ones [6].  Use 

of the Bayesian algorithm is known as Multi-hypothesis tracking (MHT) and is 

considered a standard approach [22].   

Because the number of hypotheses grows exponentially, a filter is used to prune 

hypothesis growth [6].  Many sensor fusion methods have their underpinnings in the 

Bayesian algorithm [6], such as the Probabilistic Data Association Filter (PDAF) [13].  

The PDAF combines multiple hypotheses into a Gaussian mixture of allowable 
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associations [13], [24], thus reducing the number of individual hypothesis tracked [24].  

The Kalman filter method is also derivative of the Bayesian algorithm [25] that assumes 

Gaussian distributions and linear models [25].  The Extended Kalman filter (EKF) is a 

recursive version of the Kalman filter, and is a class of Maximum Likelihood (ML) 

estimator algorithms [11].  Two other techniques that have been simulated to outperform 

implementations of the MHT, PDAF, and/or ML algorithms under certain conditions are 

the neural network approach simulated in [22] and the maximum a posteriori (MAP) 

algorithm [16].  The neural network and MAP approaches do not use behavioral 

estimations (velocity and/or acceleration for example) of the people being tracked which 

is required for many MHT and PDAF algorithms [16], [22]. 

Because the LoS sensor does not rely on ambient light for detection, the sensor 

can sample the observed area in significantly shorter time intervals than the 15 to 30 

photos per second sample rate common in modern cameras.  If the LoS sensor sample at 

a faster rate than the cameras, LoS sensor information alone can be used to alter the 

hypothesis probabilities between camera photos, thereby improving the ability of the 

location aware system to maintain track of the multiple people [25].   

D. Chapter Summary 

This chapter presents background for wide area surveillance using video cameras 

and LoS sensors.  Important sub problems of location aware computing are introduced 

and existing approaches are described, along with the basic design of LoS sensor.  The 

limitation of video-only networks is presented and the suitability of the LoS sensor for 

enhanced detecting, locating, and tracking multiple people is briefly explained.   
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III.  Methodology 

A.  Chapter Overview 

This chapter presents the methodology used to evaluate the Line-of-Sight (LoS) 

sensor as a location detection system for a video sensor network.  First, the hypothesis 

and general approach to verify of the hypothesis is presented.  The boundaries of the 

system to be simulated and evaluated are defined, including the services provided by the 

simulated system.  Workloads submitted to the simulated sensor networks are explained 

and the levels of workload submitted to the system for this study is given, as well as the 

performance metrics used to evaluate the sensor configurations.  Parameters of the 

system to be simulated, and parameters of the workload submitted to the system are also 

explained.   

B.  Hypothesis of Study 

The purpose of the sensor network under consideration is to determine the 

location of all persons in the network’s region of interest.  The data from the sensor 

network is used to determine the identification and track of each person detected.  The 

Line-of-Sight sensor is expected to provide a greater contribution to the location 

detection of a person than three networked cameras, and the Line-of-Sight sensor fused 

with any number of cameras is expected to offer fewer false alarms than three networked 

cameras. 
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C.  Approach 

To achieve the system’s goals of locating individuals in a sensed area, a simulated 

layout is specified and divided into Regions of Interest (ROIs).  One LoS sensor and three 

cameras are assigned to each Region of Interest (ROI) as components of a distributed 

sensor network.  Each ROI is either a terminal with or without a desk, or a portion of a 

corridor that is part of an airport.  The sensor networks fuse information from each 

contributing sensor to detect and locate individuals within their assigned ROI.  Although 

a sensor may contain within its field of detection all or part of other ROIs, the data from a 

sensor is only used for detection in the ROI to which it is assigned.  The effectiveness of 

the LoS sensor and each of the three cameras is determined through a full factorial 

simulation, in which all sixteen combinations of each sensor’s data is either included or 

not included in a sensor fusion algorithm that determines the current location of people 

within each ROI.  The hit rate, false alarm rate, and precision each sensor configuration is 

calculated and compared. 

To meet the system goal of detecting the presence of people, models of people the 

sensors detect are also added to the simulation.  To test the hypothesis that the LoS sensor 

provides a greater contribution to the location detection of a person than three networked 

cameras, and the LoS sensor fused with any number of cameras will offer fewer false 

alarms than three networked cameras, experiments with varying workloads are performed 

for each combination of LoS sensor and camera data inclusion.  Performance metrics of 

each sensor configuration are compared. 
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D.  System Boundaries 

The system under test includes the cameras, LoS sensors, and the sensor fusion 

algorithm.  The system and component under test is shown in Figure 7.  The system 

includes the LoS sensor, networked video cameras, communication network, tracking 

algorithm, and system server.  The system under test does not include the location aware 

application, building architecture, or people being tracked.  The system under test also 

does not include the mechanism by which tracked people are initially identified.  Another 

system provides an initial identification and location for each person as they enter the 

area covered by the sensor network.  The system might be an entry control system using 

proximity badges and personal identification numbers.  Thus, a security system or 

location aware application is considered a client or subscriber of the system under test 

and not a part of it.   

 

Figure 7. System and Component Under Test 
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The component under test includes the configuration of the sensors implemented 

in the system under test.  Sixteen configurations are tested and compared.  The 

configurations include every possible combination of one LoS sensor and three cameras.   

E.  System Services 

The service provided by the system is the current location of each detected person 

within the system’s area of coverage which is presented as a binary black and white 

image.  Each pixel of the image corresponds to the center of a square.  The squares 

represent three-inch-by-three-inch two dimensional grid areas of a global coordinate 

system.  A white pixel in the image, or Boolean true, indicates the system hypothesizes 

the detection of a person at that grid location.  A black pixel in the image, or Boolean 

false, indicates the system does not hypothesize the detection of a person at the 

corresponding grid location.  This detection data provides the basis for the tracking 

algorithm which uses previous location detections to track individuals, as well as to 

access various static and dynamic characteristics from the camera images. 

The possible outcomes of the system services is summarized in Table 2 on page 

31.  If the grid square containing center of the actual location of a person detected as 

containing a person, the system is considered to have correctly located that person.  If the 

grid square containing center of the actual location of a person is detected as not 

containing a detected person, the system is considered to have not located that person.  If 

the center of the actual location of more than one-person maps to a single component in 

the image, the component is considered to represent the correct location of only one 
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person, and the other people are considered to have not been located.  Any components 

that do not contain the center of the actual location of a person constitutes a single false 

alarm of the system.  

Table 2. System Outcome for Given Events 

Event 
Name 

Description Outcome Correctness

Person 
Location 

One and only one 
person centroid 
maps to any of 
all pixels of a 
white component 

White component 
reflects location 
of a person 

Correct 

α 
Person centroid 
does not map to a 
white component 

Location of 
person not given  Incorrect 

Person 
Merging 

More than one 
person maps to 
any of all pixels 
of a white 
component 

White component 
only reflects 
location of one 
of the people 

Correct for 
one person, 
incorrect 
for others 

β 

A white component 
containing no 
pixels mapped to 
by any person 

White component 
reflects location 
of a person where 
no person is 
located 

Incorrect 

 

F.  Workload 

The workload submitted to the system under test is in the form of optical 

obstructions caused by people within the ROI, as well as clutter resulting from sensed 

people in adjacent ROIs.  To simplify the pedestrian traffic model, a script derived from 

several random variables is used to simulate airport pedestrian traffic.  The script gives 

the location of every person within the airport at 100 millisecond intervals for 100 
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seconds.  The total number of points generated by the script is then 1000.  Three types of 

people are simulated.  The first type of person begins at a given terminal and remains 

within that terminal.  The second type of person begins at a location within the corridor 

and travels along the corridor without entering any of the terminals.  The third type of 

person travels from one terminal to another terminal.  This person may begin or end 

either within a terminal or in the corridor en-route to a destination terminal.  

Three of each kind of person is included per terminal.  The number of terminals is 

twelve, so thirty-six of each type of person results in 108 people.  Although the presence 

of a terminal contributes to the number of people in the model, the people are not 

assigned to specific terminals.  Rather, the starting and ending location of a person is 

randomly distributed throughout the airport as is appropriate for the type of person.  For 

example, although the twelve terminals contributes three stationary people each, three 

stationary people are not necessarily assigned to each terminal.  Instead, each of the 

thirty-six stationary people are randomly assigned to the twelve terminals.  The other two 

types of people are added in a similar manner. 

To vary the workload submitted to the system, the number of people is set to 30, 

60, or 90 people.  For each test, the 30, 60, or 90 people are selected at random from the 

108 total people.  Each of the chosen people are randomly assigned a color from a list of 

67 predefined colors.   

G.  Performance Metrics 

The performance metrics measure the ability of the sixteen sensor configurations 

to locate people in terminals and corridors.  The metrics include the hit rate, the 
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percentage of people uniquely located; the false alarm rate, as well as the precision of 

correct detections.  The metrics for terminals with desks, terminals without desks, and 

corridors are computed separately.  The percentage of correct detections is calculated by 

summing the number of detected people found within every terminal type or corridor and 

dividing the result by the total number of people present in every terminal type or 

corridor for a given simulation.  The false alarm rate is the sum of all detections per 

simulation per area type that do not correspond to a person.  Precision is the area 

corresponding to the number of pixels involved in the correct determination of location.  

Precision is measured for each correct location of a person and is averaged for each ROI.  

These metrics are gathered for each simulation and Analysis of Variance (ANOVA) is 

performed. 

H.  Parameters 

1)  System 

The spatial diagram shown in Figure 8 is used for all simulations, reflecting a 

typical airport architecture.  This layout represents an open airport corridor with twelve 

terminals.  Figure 9 on page 34 shows the design of the corridor between terminals.  

Figure 10 on page 35 shows the layout of a terminal with a desk, while Figure 11 on page 

35 shows the layout of a terminal without a desk. 
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Figure 8. Spatial Configuration of Monitored Area used for Simulation 

 

 

Figure 9. Corridor 
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Figure 10. Terminal with Desk 

 

 

Figure 11. Terminal without Desk 
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Factors varied include the combination of cameras and LoS sensors used for 

detection.  Sixteen camera and LoS sensor placement configurations of three cameras and 

one LoS sensor are used.  Figure 12 on page 37 shows the placement of the cameras for 

the simulation.  Figure 13 on page 37 shows the location of the three cameras sensing a 

terminal ROI without a desk.  Figure 14 on page 38 shows the location of the three 

cameras sensing a terminal ROI with a desk.  Figure 15 on page 38 shows the location of 

the three cameras sensing any portion of the corridor except the rightmost corridor ROI.  

Figure 16 on page 39 shows the location of the three cameras sensing the rightmost ROI 

of the corridor.  Figure 17 on page 39 shows the placement of the LoS sensors.  Each 

polygon represents a grouping of light rays that travel between the light sources of one 

side of the polygon to the light sensor of the opposite side of the polygon.  In the corridor, 

the light sources and sensors are at the top and bottom of the polygons.  In the terminals, 

the light sources and sensors are on the sides of the polygons.  All cameras in both 

configurations are simulated to be placed 9.75 feet above the floor, whereas all LoS 

sensors are three feet above the floor.  Each person is modeled as two coaxial cylinders 

topped by a sphere.  The bottom cylinder represents the legs and is 0.9 feet in diameter, 

and the upper cylinder represents the body and is 1.155 feet in diameter.  The sphere is 

one foot in diameter.   
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Figure 12. Camera Locations for Simulation 

 

 

Figure 13. Camera Locations for Terminal ROI Without Desk 
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Figure 14. Camera Locations for Terminal ROI With Desk 

 

Figure 15. Camera Locations for Leftmost and Middle Corridor ROI 
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Figure 16. Camera Locations for Rightmost Corridor ROI 

 

 

 

Figure 17. Line-of-Sight Sensor Placement for Simulation 

2)  Workload 

The performance of the system is affected by the number of the people in the 

observed area.  As the number of people increase, the probability of more than one 

person being perceived as a single larger person increases.  This could lead to errors in 
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the location of one of the people.  Differences in how the sixteen sensor configurations 

observe a scene may affect how well the system is able to distinguish people.  A large 

number of people filling a scene may also increase the false alarm rate of a given sensor 

configuration. 

I.  Factors 

The factors varied are the number of people being located and configuration of 

the sensors.  Fifty simulations are run for three levels of people being located.  Each 

scenario is replicated using each of the sixteen sensor configurations.  The number of 

people in the area affect the performance of the system and can vary between the 

terminals and corridors.  Three levels of population densities are 30, 60, and 90 people. 

Table 3 shows the factors and levels used.   

Table 3. Factors and Levels for Simulation 

Factor Level 

LoS sensor Present Not Present  

Camera 1 Present Not Present  

Camera 2 Present Not Present  

Camera 3 Present Not Present  

Number of People present in airport 30 60 90 
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J.  Evaluation Technique 

This system is evaluated using simulation.  Because a prototype of the system has 

not been constructed, it cannot be measured.  Camera and LoS sensor models are 

validated by presenting each simulation model with people at known locations and 

evaluating the resulting data from the sensors.  Combinations of camera and LoS sensor 

models are validated in the same way.  Current and historical detection data for every 

possible camera and LoS sensor combination is also visualized for the entire airport.  

Data from the simulation is validated by comparison with the visualization. 

K.  Experimental Design 

Simulations are conducted with full factorial combinations of population levels 

using each sensor configuration, as shown in page 42, Table 4.  With each run of the 

experiment testing every combination of area type and sensor configuration, a single 

simulation run conducts the equivalent of 48 individual experiments.  The total number of 

runs to also vary the number of people is 3, which results in 144 experiments.  The 

expected differences in the mean of the performance metrics for the sensor configurations 

is expected to be at least 0.0500, with a variance of up to 0.2000.  If these assumptions 

are correct, at least forty-four replications are needed per experiment to distinguish 

statistically the performance of the sensor configurations at the 95% confidence level for 

a given scenario.  For ease of statistical analysis, fifty replications are used.   
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Table 4. Simulation Factor Levels 

LoS 
Sensor 
Present 

Camera A 
Present 

Camera B 
Present 

Camera C 
Present Area Type 

Number 
of 

People 
No No No No Corridor 30 

Yes Yes Yes Yes Terminal, 
no desk 60 

    Terminal, 
desk 90 

 

L.  Analysis and Interpretation 

The hit rate gathered per test of the experiment represents a Bernoulli trial of 

whether or not each person is correctly located.  The results of the Bernoulli trials are 

averaged as a mean probability representing the performance of the system for the hit 

rate.  In addition, the mean number of false alarms per simulation for each area type is 

measured.  Precision per simulation is found by averaging the area corresponding to the 

number of grid squares for each correctly located person.  An analysis of variance is used 

determine the effect of individual factors and interrelationships between factors on each 

performance metric.  For each relationship of factors whose ANOVA produces a p-factor 

less than 0.05, the mean and 95% confidence interval of the metric is determined, and a 

box-plot of the distribution is presented.   

M.  Summary 

The methodology presented illustrates how the performance differences between 

the sixteen sensors configurations is acquired.  The sensors are simulated as part of a 

distributed sensor network with given workloads.  Identical simulations are run using 
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each of the sixteen configurations, and the performance metrics for each are compared.  

An analysis of variance is also conducted on the metrics to determine the effect of factors 

and factor interrelations on system performance. 
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IV.  Simulation Results and Analysis 

A.  Chapter Overview 

The purpose of this chapter is to present and analyze the results of the simulation 

study.  First, the simulation model of the Line-of-Sight (LoS) sensor is described, 

followed by results of pilot studies used to determine parameters for the simulation 

model.  A description of the camera model is also presented, and the method used to fuse 

the one or more modeled cameras with the LoS sensor.  The results of the simulation are 

presented.   

Two primary configurations are presented and analyzed.  First, an Analysis of 

Variance (ANOVA) for all simulations the LoS sensor is used in is presented using hit 

rate, false alarm rate, and precision data gathered from the simulation.  The mean value, 

95% confidence interval, and box-plot graphs are presented for all factors for which the 

p-factor is less than 0.05.  Second, ANOVA for all three-camera simulations but no LoS 

sensor is presented using all hit rate, false alarm rate, and precision data from the 

simulations.  As with the configurations with the LoS, the mean value, 95% confidence 

interval and box-plot graphs are presented for all factors for which the p-factor is less 

than 0.05 

B.  Modeling the LoS Sensor 

The LoS sensor is comprised of light sources and light sensors mounted on two 

opposing vertical surfaces.  For this study, the light sources and sensors are assumed to 

be equal in number, equally spaced and placed along lines that are parallel to each other 
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at the same height.  During one sensor cycle, the light sources are illuminated briefly and 

sequentially.  The light sensors are synchronized with the illumination of the light sources 

so every light sensor can detect the illumination of a light source when there is no 

obstruction between the light source-sensor pair.  If a light sensor detects the illumination 

of a light source, it is assumed no obstruction exists along the segment connecting the 

light source and sensor.  If a light sensor does not detect the illumination of a light 

source, it is assumed that an obstruction does exist along the segment connecting the light 

source and sensor [27].  

The area that contains the first and last light source and light sensor is partitioned 

into squares, forming a two-dimensional grid.  The LoS sensor maintains a pair of two-

dimensional arrays such that each element of the arrays maps to a corresponding grid 

square.  The first array is called the comparison array, and the second array is called the 

accumulation array.  The element values in the comparison array is the total number of 

light source-sensor segments intersecting the array element’s corresponding grid square.  

The element values in the accumulation array is the number of light source-sensor 

segments that are blocked by an obstruction during a sensor cycle.  The corresponding 

values in each element in the two arrays are compared pair-wise to determine the 

percentage of blocked light source-sensor segments.  If the percentage of blocked light 

source-sensor segments exceeds a given threshold, an obstruction is hypothesized to exist 

at the corresponding grid square [26]. 

The simulation model of this system includes a segment array corresponding to 

the light source to sensor paths, the two-dimensional accumulation array, the two-
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dimensional comparison array, and a lookup table associating each segment to 

intersecting grid squares.  The LoS sensor simulation is based on the endpoints of two 

lines and the number of lights to be modeled.  One of the lines defines the linear path the 

light sources are placed on, and the other line defines the linear path of the light sensors.  

The simulation model assumes the number of sensors is equal to the number of lights.  

Therefore, the number of segments is equal to the number of lights squared.  The 

endpoints of the segments are equally spaced along and light source and light sensor 

lines, including the endpoints of the lines. 

After the segments are initialized, the lookup table is created.  The lookup table is 

generated by creating an array of squares whose geometry corresponds to the grid squares 

of the area.  Each of the segments is tested to determine intersects with any of the four 

edges of each grid square.  The results of the intersection tests are placed in the lookup 

table, which is maintained as a sparse matrix.  It is assumed no segment changes state 

(i.e. goes from unblocked to blocked or blocked to unblocked) during a sensing cycle. 

Obstructions are modeled as circles, each defined by center and radius.  During 

simulation, all circles are compared with each segment of the LoS array for intersection.  

After all circle-to-segment intersection tests are complete, the segments that intersect 

with a circle are compared with the lookup table and the results placed in the 

accumulation array.   

C.  Pilot Studies 

A pilot study was conducted to evaluate the effect of various parameters of an 

early simulation model of the LoS sensor.  The object detection threshold for the LoS 
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sensor was 90%.  A later study found that a higher threshold, 97.5%, offers better LoS 

sensor performance.  The fitness criterion chosen for the study is the probability an object 

exists in a location when the sensor indicates that it does, or P(Object|Object Sensed), and 

the probability that an object does not exist in a location when the sensor indicates that it 

does not, P(No Object|No Object Sensed).  These probabilities are measured through 

many simulations of the LoS sensor simulation model detecting uniform random 

distributions and of random numbers of objects.  The simulations were performed with 

the number of lights in the sensor, the length to width ratio, and resolution of the sensor’s 

output varied.  Table 5 shows the levels for each of these factors. 

Table 5. Factors and Levels for LoS Sensor Pilot Study 

Factor Level 
Relative Resolution 1 4 8  

Height/Width Ratio of Sensed Area 0.5 1 2  
Number of Lights/Sensors 4 16 32 64 

 

Relative resolution refers to the size of a sensor grid square compared to a unit 

grid square.  For example, a relative resolution of one means that a LoS sensor grid 

square exactly corresponds to a unit square of the simulation.  A relative resolution of 

four means that the LoS sensor divides a unit square into 16 sensor grid squares in a grid, 

four high and four wide. 

The height/width ratio refers to the dimensions of the LoS sensor.  For this factor, 

the length of each line of light sources and sensors remained the same, but the distance 

between them was varied.  For example, a height/width ratio of 0.5 spaces the light 

sources equally along a ten-unit length line, and the sensors along a parallel line with the 
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two parallel lines spaced five units apart.  For the height/width ratio of 2, the two parallel 

lines of light sources and sensors would be placed 20 units apart. 

The number of light sources/sensors are the number of light sources that are 

evenly distributed along one parallel line.  An equal number of light sensors are evenly 

distributed along a parallel line. 

For each combination of factors, 30,000 simulations were conducted and 

evaluated for a total of 1,080,000 simulations.  The product of P(Object|Object Sensed) 

and P(No Object|No Object Sensed) is used to assign empirical performance values for 

each combination of factors.  The combination of factors that produced the best 

performance using this method was found to be a LoS sensor with relative resolution of 

1, a height/width ratio of 1, and 16 light sources and sensors.  Analysis of variance was 

not conducted for the pilot study.  Figure 18, Figure 19, and Figure 21 present partial 

results which summarize the effect of the parameters for this study.  

Figure 18 shows that increasing the resolution of the LoS sensor increases the 

probability that the sensor model will correctly identify an empty grid square, but 

decreases the probability it will correctly find an occupied one.  The reasons for these 

trends is likely because as the resolution increases, the number of grid squares between 

the lights also increases.  As the resolution increases to 4, 16 lights span a length of 40 

LoS sensor grid squares.  This may result in many grid squares with no light rays 

intersecting them, which is effectively observed by the LoS sensor.  As the resolution 

increases to 80 grid squares between the lights, P(Object|Object Sensed) becomes less 

than 0.50.  It is likely at this resolution many grid squares existed in the simulation with 
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only one LoS sensor light ray intersecting it.  For these grid squares, any object existing 

along the line of the light ray will result in the grid square hypothesizing it contains an 

object.  A large number of grid squares intersected by a single ray will result in an 

increased number of false alarms.   
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Figure 18. Pilot Study Results for Relative Resolution with Height/Width Ratio of 1 

and 16 Lights/Sensors

 

As the resolution of the LoS sensor approaches infinity, the sensor performance 

degenerates such that most grid squares will not be intersected by any light rays, and 
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most of the intersected grid squares will be intersected by only one light ray.  The sensor 

would perform as though the accumulator and comparison arrays were not present.  

Figure 19 shows that increasing the distance between a pair of parallel light and 

sensor lines increases the probability of correctly determining the grid square occupied, 

but decreases the probability of correctly determining a grid square is unoccupied.  The 

reason for this is shown in Figure 20.  Figure 20 shows a black circle detected by a LoS 

sensor.  The diagonal lines are tangent lines between the edge of the sensor and the 

detected object.  The gray areas are object areas that the light cannot pass through, even 

though the areas are not occupied by the detected object.  The result is the object appears 

to stretch towards the sensor lights and sensors.  Increasing the height to width ratio of 

the sensor increases this stretching effect.  The result of this stretching is an increase in 

area incorrectly showing occupation by an object, as was seen in Figure 19.  

Figure 21 shows that the probability of correctly identifying that a grid square 

contains an object increases as lights increase from four to sixteen, and declines as more 

lights are introduced.  Because the relative resolution is one, and the height to width ratio 

is also one, the LoS of Figure 21 is a ten by ten grid of squares.  It is likely the poor 

performance of the four light source/sensor level is due to having more than two grid 

squares between each light.  This results in several undetectable areas for the LoS sensor.  

It could also be the threshold for the LoS of this study was too low.  Since decreasing the 

threshold level of the LoS sensor increases the number of false alarms, it is possible that 

increasing the number of lights also increased the false alarms that were not properly 

removed by application of a threshold. 
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Figure 19. Pilot Study Results for Height to Width Ratio with Relative Resolution of 

1 and 16 Lights/Sensors 

The results of  this pilot study indicate the desired resolution of the grid squares 

be considered when deciding the number of lights and sensors.  The simulation designed 

for this project uses a height and width of a grid square was three inches.  This size grid 

square results in each region of interest of the simulation being represented by a 

120×240-pixel image.  The diameter of each person is 13.86 inches so using three-inch 

grid squares ensures at least four grid squares in diameter.  With a four grid square 

diameter, Gaussian-smoothing algorithms may be performed on a LoS sensor image 

without losing detection of the person. 
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Figure 20. Example of Los Sensor Detecting Object 

Two configurations of LoS sensor are used for this simulation.  Because the 

terminals offer two walls without obstructions such as an entryway, one sensor is placed 

on each of these two walls.  In addition, the pilot study indicated a better positive 

detection rate might be achieved by a separation of lights from sensors, while the area of 

each detected object may consequently increase.  The one sensor provides sensing 

capability for the majority of the terminal.  Figure 22 on page 54 shows the comparison 

array of a LoS sensor in a terminal without a desk.  The 45 light sources and sensors are 

placed eight inches apart on the left and right edges of the figure.  Each square of the 

image corresponds to a grid square observed by the LoS sensor, and the brightness of 

each square represents the number of light source to sensor segments intersecting it.  The 

square in the middle of Figure 22 is the brightest because it has the most segments 

intersecting it.  The top and bottom squares of Figure 22 are darker fewer segments 
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intersect them.  Figure 23 on page 54 is the same LoS sensor shown in Figure 22, except 

each square is white if any segment intersects it and black if no segment intersects it.  

This figure reflects the coverage area of the same LoS sensor shown in Figure 22.  Figure 

24 on page 55 shows a comparison array of a similar LoS sensor in a terminal with a 

desk, and  Figure 25 reflects the coverage area.  Although no detection can occur in 

sections along the left and right edges of the terminals, the area of theses sections is less 

than the area of the people to be detected. 
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Figure 21. Pilot Study Results for Number of Lights/Sensors with Relative 

Resolution of 1 and A Height/Width Ratio of 1
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Figure 22. Comparison Array in Terminal without Desk 

 

 

Figure 23. Coverage of LoS Sensor in Terminal Without Desk
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Figure 24. Comparison Array of LoS Sensor in Terminal With Desk 

 

 

Figure 25. Coverage of LoS Sensor in Terminal With Desk 
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The corridor does not provide a pair of opposing surfaces from which the entire 

corridor can be monitored.  Instead, two LoS sensors are used for each corridor ROI, one 

on either side of the opposing entryways.  To cover the area between the opposing 

entryways, the LoS sensors synchronize and observe each other’s light sources.  The LoS 

sensors in the corridor observe the light sources in the nearest LoS sensor of the adjacent 

corridor LoS.  The result of combining the sensing capabilities of the LoS sensors 

provides sensing capability for the majority of the corridor with the exception of areas 

directly in front of the entryways.  Figure 26 on page 58 shows the combined comparison 

arrays of the LoS sensors in the middle of the corridor.  There are two sets of 16 light 

sources and sensors placed eight inches apart on the top and bottom edges of the figure.  

As with the LoS sensors in the terminals, each square of the image corresponds to a grid 

square observed by the LoS sensor, and the brightness of each square represents the 

number of light source to sensor segments intersecting it.  Figure 27 on page 58 is the 

same LoS sensor as shown in Figure 26, except each square is white if any segment 

intersects it and black if no segment intersects it.  No detection can occur in the triangular 

areas between the sets of light sources and sensors. 

The leftmost LoS sensor does not have a corresponding sensor further to the left 

to form additional light source-sensor pairs.  Figure 28 on page 59 shows the comparison 

array of these LoS sensors.  Figure 29 on page 59 shows the corresponding coverage.  

Note that the coverage of the sensor declines at the leftmost extremity of the sensed area. 

The rightmost LoS sensor also does not have a corresponding sensor further to the 

right with which it can form additional light source-sensor pairs.  Figure 30 on page 60 
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shows the comparison array of these LoS sensors.  Figure 31 on page 60 shows the 

corresponding coverage.  Note that the coverage of the sensor declines at the rightmost 

extremity of the sensed area. 
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Figure 26. Comparison Array of LoS Sensor in Corridor 

 

 

Figure 27. Coverage of LoS Sensor in Corridor 
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Figure 28. Comparison Array of Leftmost Corridor LoS Sensor 

 

 

Figure 29. Coverage of Leftmost Corridor LoS Sensor 
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Figure 30. Comparison Array of Rightmost Corridor LoS Sensor 

 

 

Figure 31. Coverage of Rightmost Corridor LoS Sensor 
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D.  Modeling the Camera 

A computer graphics program POV-Ray (version 3.6.1) is used to model cameras, 

and produce video images for the simulation.  POV-Ray is a ray-tracing graphics 

program, that calculates values for each pixel individually which is desirable to determine 

pixel-level accuracy of simulated images.  A three-dimensional model of the airport to be 

monitored is defined in POV-Ray, including a model of each simulated person to be 

located.  The model of the airport is divided into 18 ROIs with three cameras each, 

totaling 54 cameras.  Each of the 54 corresponding images are made by setting the POV-

Ray’s camera variables to a particular perspective and having each camera record an 

image of the scene simultaneously. 

The airport has as six terminals on each side of a corridor.  The terminals on one 

side of the corridor contain a desk whereas the terminals on the opposite side of the 

corridor do not.  The corners of the desk are cylindrical such that the desk can be 

approximately modeled as circles for the LoS sensor.  The colors of the airport are 

limited to colors with equal red, green and blue (RGB) components such as white, black, 

and gray to distinguish it from the people limited to colors with non-equal RGB 

components. 

Each person is modeled with a cylinder representing both legs, one cylinder 

representing a body, and one sphere representing a head.  The cylindrical shape is used 

because the LoS sensor model’s obstructions as circles.  The center and radius of a body 

is equal to the corresponding obstruction circle center and radius of the LoS sensor to 

ensure correspondence between the two types of sensors.  Each person is also assigned a 
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single solid color.  The color of each person is chosen at random from 67 pre-defined 

colors provided by the POV-Ray software package.  The 67 colors used do not include 

colors with equal RGB components such as white, black, and gray.   

To initialize the cameras, an image without people is captured at each camera 

location.  This image is a background or static image of the scene observed by each 

camera.  Figure 32 on page 63 shows three camera background images for a terminal 

with a desk.  Figure 33 and Figure 34 show background images for a terminal without a 

desk and background images for a corridor respectively. 

During simulation, each image captured is compared to its corresponding 

background image.  Pixels equal in value to the background image are changed to black; 

pixels that differ from the background image are changed to white.  The resulting image 

is rectified to a plane in the camera’s corresponding ROI.  The plane is three feet above 

and parallel to the ground plane, and is confined by the region defining the ROI.  Each 

pixel of the rectified image corresponds to a grid square of the ROI.  A white pixel of this 

image indicates the camera detects an obstruction at that grid square; a black pixel 

indicates an obstruction is not detected at that grid square.  Figure 35 on page 64 shows 

three camera images for a terminal without a desk.  The top three images were generated 

by POV-Ray.  The next three images show the difference between the generated images 

and the background images.  The final image is the result of rectifying the image to the 

ROI plane.  Figure 36 on page 65 shows the same process for three camera images for a 

terminal with a desk, and Figure 37 on page 66 repeats the process for three images for 

the corridor. 
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Figure 32. Three Camera View of Terminal with Desk 

 

 

Figure 33. Three Camera View of Terminal without Desk 

 

 

Figure 34. Three Camera View of  Corridor 
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Figure 35. Processing of Three Camera Images for Terminal without Desk 
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Figure 36. Processing of Three Camera Images for Terminal with Desk 
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Figure 37. Processing of Three Camera Images for Corridor 
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E.  Fusing LoS Sensor and Cameras 

Fusion of the LoS and camera sensors is accomplished by a pixel-level AND 

operation of the rectified camera and LoS data.  In a deployed system, the LoS sensor 

data is rectified to the camera so that the camera does not need to process every pixel.  

For this study, camera data is rectified to the LoS sensor plane so location data produced 

by the different sensor combinations can be compared.  The AND operation is used 

because information from one sensor may invalidate detection hypotheses of another 

sensor.  The cameras and LoS sensor Figure 38 on page 68 shows all sixteen 

combinations of three cameras and LoS sensor fusion for a terminal without a desk.  

Figure 39 on page 69 shows all sixteen combinations of three cameras and LoS sensor 

fusion for a terminal with a desk.  Figure 40 on page 70 shows all sixteen combinations 

of three cameras and LoS sensor fusion for a portion of the corridor. 
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Figure 38. Camera Image Data Fusion with LoS Sensor Data for Terminal With 

Desk 
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Figure 39. Camera Image Data Fusion with LoS Sensor Data for Terminal Without 

Desk 
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Figure 40. Camera Image Data Fusion with LoS Sensor Data for Corridor 
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F.  Results from Simulation 

Each simulation is repeated 50 times with each of 48 factor combinations for a 

total of 2,400 simulations.  In addition, each simulation consists of three types of ROIs: a 

terminal with desk, a terminal without desk, and a portion of the corridor.  Three 

performance metrics are collected and include the Hit Rate, False Alarm Rate, and 

precision.   

G.  LoS Sensor Characteristics 

To characterize the hit rate of the LoS sensor with respect to the various factors  

Analysis of Variance (ANOVA) is used.  A similar analysis is conducted when all three 

cameras are used without the LoS sensor.  Finally, the results from the LoS study and the 

three cameras study are compared. 

The two primary areas the LoS sensor are used in are the corridor and the 

terminals.  The corridor is monitored by two LoS sensors cooperating with each other and 

LoS sensors in adjacent ROIs.  In the terminals, each LoS sensor works independently. 

Because of the differences in the deployment of the LoS sensor in the corridors 

and terminal, the two situations are examined together and separately with the presence 

or absence of the desk as a factor in the terminals. 

1)  LoS Sensor Hit Rate 

Table 6 shows ANOVA of the hit rate for simulation results in which the LoS 

sensor is included.  It can be seen from p-factor the number of people in the simulation, 

either considered alone or combined with other factors, is not statistically significant with 

respect to error.  Table 6 also shows that the type of area contributes more to the variation 

than statistical error.  Table 7 is an ANOVA of the hit rate for the LoS sensor that does 
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not include the number of people in the simulation as a factor so that an equation to 

estimate the mean HR can be derived of only significant factors. 

 

Table 6. ANOVA of LoS Sensor Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 34.5 50.03% 2 17.3 2785 0
Number Cameras 0.732 1.06% 3 0.244 39.4 0
Number People 0.00917 0.01% 2 0.00458 0.739 0.477
Type Area*Number Cameras 0.481 0.70% 6 0.0802 12.9 1.60E-14
Type Area*Number People 0.0408 0.06% 4 0.0102 1.64 0.160
Number Cameras*Number People 0.00170 0.00% 6 0.000284 0.0457 0.99961
Type Area*Number Cameras*Number People 0.00723 0.01% 12 0.000602 0.0971 0.99997
Error 22.0 31.85% 3546 0.00620
Total 69.0 3581  

 

Table 7. ANOVA of LoS Sensor Hit Rate Without Number of People Factor 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 34.5 50.04% 2 17.3 2795 0
Number Cameras 0.732 1.06% 3 0.244 39.5 0
Type Area*Number Cameras 0.481 0.70% 6 0.0801 13.0 1.48E-14
Error 22.1 31.96% 3570 0.00618
Total 69.0 3581  

 

Table 7 shows the mean hit rate of the LoS sensor is determined by both the type 

of area in which the sensor is used and the number of cameras it is used with.   

a)  LoS Hit Rate for Corridor 

ANOVA of the hit rate for the corridor deployed LoS sensor given a number of 

cameras is shown in Table 8, with the resulting coefficients shown in Table 9.   
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Table 8. ANOVA of Corridor LoS Sensor Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 1.11 15.33% 3 0.369 71.8 0
Error 6.11 84.67% 1190 0.00514
Total 7.22 1193  

 

Table 9. Number of Camera Coefficients for Corridor LoS Sensor Mean Hit Rate 

Number Cameras Coefficient
0 0.0634
1 0.00286
2 -0.0254
3 -0.0409  

 

The constant coefficient of the mean hit rate is 0.901.  The equation to estimate 

the mean hit rate for the corridor LoS sensor is then: 

 

Corridor LoS HR = 0.901                                 (1) 

+ Number Cameras Coefficient   

 

Table 10 and Figure 41 contain the mean and 95% confidence interval for the hit 

rate of the corridor LoS sensor given the number of cameras and Figure 42 shows a box 

plot of the distribution.  It can be seen that the confidence intervals of the levels for two 

and three cameras overlap, and are therefore not statistically different at the 95% 

confidence level.  However, the levels for zero and one are statistically different from 

each other and from the levels for two or three cameras. 
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Table 10. Confidence Interval of Corridor LoS Sensor Mean Hit Rate Given 

Number of Cameras 

Cameras Mean Error (95%) Confidence Interval
0 0.965 0.00361 [0.968, 0.961]
1 0.904 0.00327 [0.907, 0.901]
2 0.876 0.00366 [0.880, 0.872]
3 0.860 0.00678 [0.867, 0.854]  
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Figure 41. Confidence Interval of Corridor LoS Sensor Hit Rate 
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Figure 42. Distribution of Corridor LoS Sensor Hit Rate 

 

b)  LoS Hit Rate for Terminal 

ANOVA of the hit rate for the terminal deployed LoS sensor is shown in Table 

11.  It can be seen by the p-factor the number of cameras and the presence of the desk are 

statistically significant in determining the mean hit rate of the LoS sensor, but their 

combined effects are not statistically significant.   

 

Table 11. ANOVA of Terminal LoS Sensor Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 0.0990 0.16% 3 0.0330 4.93 0.00206
Desk 33.3 55.00% 1 33.3 4965 0
Number Cameras*Desk 0.00737 0.01% 3 0.00246 0.367 0.777
Error 16.0 26.36% 2380 0.00670
Total 60.5 2387  



 

76 

 

Table 12 is the one-way ANOVA of the hit rate for the terminal LoS sensor, and 

Table 13 and Table 14 are the resulting coefficients.  The constant coefficient of the mean 

hit rate is 0.855. 

 

Table 12. One-Way ANOVA of Terminal LoS Sensor Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 0.0990 0.16% 3 0.0330 4.93 0.00205
Desk 44.4 73.46% 1 44.4 6637 0
Error 16.0 26.37% 2383 0.00670
Total 60.5 2387  

 

Table 13. Number of Camera Coefficients for Terminal LoS Sensor Mean Hit Rate 

Number Cameras Coefficient
0 0.0114
1 0.00350
2 -0.00390
3 -0.0110  

 

Table 14. Desk Coefficients for Terminal LoS Sensor Mean Hit Rate 

Presence of Desk Coefficient
With Desk -0.136

Without Desk 0.136  

 



 

77 

 

The equation to estimate the mean hit rate for the terminal LoS sensor is then: 

 

Terminal LoS HR = 0.855                                 (2) 

+ Number Cameras Coefficient  

+ Presence of Desk Coefficient  

 

Table 15 and Figure 43 contain the mean and 95% confidence interval of the hit 

rate for the terminal LoS sensor given the number of cameras and Figure 44 shows a box 

plot of the distribution.  It can be seen that the confidence intervals of the levels for zero, 

one, two, and three cameras all overlap, and therefore are not statistically different at the 

95% confidence level. 

 

Table 15. Confidence Intervals of Terminal LoS Sensor Mean Hit Rate Given 

Number of Cameras 

Cameras Mean Error (95%) Confidence Interval
0 0.867 0.0175 [0.842, 0.849]
1 0.859 0.0104 [0.869, 0.848]
2 0.851 0.0105 [0.862, 0.841]
3 0.844 0.0186 [0.863, 0.826]  
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Figure 43. Confidence Interval of Terminal LoS Sensor Hit Rate Given Number of 

Cameras 

Table 16 and Figure 45 contain the mean and 95% confidence interval of the 

terminal LoS sensor given the presence or absence of the desk and Figure 46 shows a box 

plot of the distribution.  The confidence intervals of the levels do not overlap.  The hit 

rate of the LoS sensor in a terminal with a desk is statistically different than the hit rate of 

the LoS sensor in a terminal without a desk. 
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Figure 44. Distribution of Terminal LoS Sensor Hit Rate Given Number of Cameras 

 

Table 16. Confidence Intervals of Terminal LoS Sensor Mean Hit Rate given 

Presence of Desk 

Mean Error (95%) Confidence Interval
Without Desk 0.719 0.00640 [0.725, 0.712]
With Desk 0.992 0.00155 [0.993, 0.990]  
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Figure 45. Confidence Interval of Terminal LoS Sensor Hit Rate Given Presence of 

Desk 
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Figure 46. Distribution of Terminal LoS Sensor Hit Rate Given Presence of Desk 
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2)  LoS False Alarm Rate 

Table 17 shows the results of ANOVA of the false alarm rate for simulation 

results in which the LoS sensor is included.  It can be seen by the p-factor from the table 

that the effects of the area, number of cameras, and number of people are statistically 

significant independently and in combination.    

 

Table 17.  ANOVA of LoS Sensor False Alarm Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 1186 14.71% 2 593 392 0
Number Cameras 193 2.40% 3 64.4 42.5 0
Number People 327 4.06% 2 163 108 0
Type Area*Number Cameras 366 4.54% 6 61.0 40.3 0
Type Area*Number People 277 3.44% 4 69.3 45.7 0
Number Cameras*Number People 32.2 0.40% 6 5.37 3.55 0.00167
Type Area*Number Cameras            
*Number People 49.6 0.62% 12 4.14 2.73 0.00109
Error 5370 66.63% 3546 1.51
Total 8059 3581  

 

a)  LoS False Alarm Rate for Corridor 

The ANOVA of the false alarm rate for the corridor deployed LoS sensor given a 

number of cameras is shown in Table 18, with the resulting coefficients shown in Table 

19, Table 20, and Table 21.  The constant coefficient of the mean hit rate is 1.64. 

Table 18. ANOVA of Corridor LoS Sensor False Alarm Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 549 8.99% 3 183 45.4 0
Number People 573 9.38% 2 287 71.0 0
Number Cameras*Number People 75.6 1.24% 6 12.6 3.13 0.00482
Error 4768 78.06% 1182 4.03
Total 6108 1193  
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Table 19. Number of Camera Coefficients of Corridor LoS Sensor Mean False 

Alarm Rate 

Number of Cameras Coefficient
0 1.42
1 0.0504
2 -0.574
3 -0.894  

 

Table 20. Number of People Coefficients of Corridor LoS Sensor Mean False Alarm 

Rate 

Number People Coefficient
30 -0.942
60 -0.0723
90 1.01  

 

Table 21. Number of Camera Combined With Number of People Coefficients of 

Corridor LoS Sensor Mean False Alarm Rate  

Number People Number Cameras Coefficient
0 -0.618
1 0.0523
2 0.565
3 -0.0637
0 -0.0737
1 0.137
2 0.228
3 0.0178
0 -0.246
1 0.454
2 0.00358
3 -0.457

30

60

90
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The equation to estimate the mean false alarm rate for the corridor LoS sensor is: 

 

Corridor LoS FAR = 1.64                                 (3) 

+ Number Cameras Coefficient  

+ Number People Coefficient  

+ Number Cameras Combined With Number People 

Coefficient. 

  

Table 22 and Figure 47 contain the mean and 95% confidence interval of the 

terminal LoS sensor given the presence or absence of the desk and Figure 48 shows a box 

plot of the distribution. 

 

Table 22. Confidence Intervals of Terminal LoS Sensor Mean False Alarm Rate 

Number People Number Cameras Mean Error (95%) Confidence Interval
0 1.50 0.829 [2.33, 0.671]
1 0.687 0.278 [0.965, 0.409]
2 0.353 0.115 [0.469, 0.238]
3 0.260 0.160 [0.420, 0.100]
0 3.04 0.936 [3.98, 2.13]
1 1.55 0.296 [1.84, 1.25]
2 1.01 0.189 [1.20, 0.825]
3 0.680 0.272 [0.952, 0.408]
0 4.64 1.168 [5.81, 3.47]
1 2.84 0.448 [3.29, 2.40]
2 1.84 0.303 [2.14, 1.53]
3 1.31 0.372 [1.68, 0.934]

30

60

90
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Figure 47. Confidence Interval of Corridor LoS Sensor False Alarm Rate Given 

Number of Cameras and Number of People 
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Figure 48. Distribution of Corridor LoS Sensor False Alarm Rate Given Number of 

Cameras and Number of People 



 

85 

Figure 48 shows that for 30, 60 and 90 people, there is not a statistically 

significant difference at the 95% confidence level in the mean false alarm rate between 

the two and three camera levels.  For 30 people, there is not a statistically significant 

difference between zero and one cameras, or between one and two cameras.  However, 

there is a statistically significant difference between zero and two or more cameras and 

between one and three cameras.  For 60 and 90 people, there is a statistically significant 

difference between zero, one and two cameras.  There is also a statistically significant 

difference between zero, one and three cameras. 

Figure 48 also shows that for zero cameras, there is no statistically significant 

difference in the mean false alarm rate between 30 and 60 people, and between 60 and 90 

people.  However, there is a statistically significant difference between 30 and 90 people 

for zero cameras.  For one and two cameras, there is a statistically significant difference 

between 30, 60 and 90 people.  For three cameras, there is a statistically significant 

difference between 30 and 90 people, but not for between 30 and 60 people, or between 

60 or 90 people. 

b)  LoS False Alarm Rate for Terminal 

ANOVA of the false alarm rate for the terminal deployed LoS sensor given a 

number of cameras is shown in Table 23.  It can be seen by the p-factor that the number 

of cameras is not statistically significant when considered alone or combined with the 

number of cameras.  For Table 24, the number of cameras and number of cameras 

combined with the number of people effects are removed.  Table 25, Table 26, Table 27, 

Table 28, and Table 29 provide the coefficients for estimating the mean false alarm rate 
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for the terminal LoS sensor.  The constant coefficient for estimating the false alarm rate is 

0.247. 

Table 23. ANOVA of Terminal LoS Sensor False Alarm Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Desk 21.5 3.16% 1 21.5 84.3 0
Number Cameras 0.655 0.10% 3 0.218 0.857 0.463
Number People 27.5 4.05% 2 13.7 54.0 0
Desk*Number Cameras 9.72 1.43% 3 3.24 12.7 2.99E-08
Desk*Number People 3.33 0.49% 2 1.66 6.53 0.00148
Number Cameras*Number People 1.87 0.28% 6 0.312 1.23 0.289
Desk*Number Cameras*Number People 4.35 0.64% 6 0.725 2.84 0.00920
Error 602 88.71% 2364 0.255
Total 679 2387  

 

Table 24. ANOVA of Terminal LoS Sensor False Alarm Rate Without Number of 

Cameras 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Desk 21.6 3.18% 1 21.6 83.7 0
Number People 27.5 4.06% 2 13.8 53.4 0
Number Cameras*Desk 4.51 0.67% 3 1.50 5.84 0.000572
Desk*Number People 3.37 0.50% 2 1.69 6.53 0.00148
Number Cameras*Desk*Number People 2.20 0.32% 6 0.366 1.42 0.203
Error 612 90.17% 2373 0.258
Total 679 2387  

 

Table 25. Presence of Desk Coefficients of Terminal LoS Sensor Mean False Alarm 

Rate  

Desk Coefficient
With 0.110

Without -0.110  
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Table 26. Number of People Coefficients of Terminal LoS Sensor Mean False Alarm 

Rate  

Number People Coefficient
30 -0.133
60 -0.0324
90 0.166  

 

Table 27. Number of Cameras with Presence of Desk Coefficients of Terminal LoS 

Sensor Mean False Alarm Rate  

Number Cameras Desk Coefficient
With 0.0662

Without -0.0662
With -0.0320

Without 0.0320
With -0.0600

Without 0.0600
With 0.0258

Without -0.0258

0

1

2

3
 

 

Table 28. Number of People with Presence of Desk Coefficients of Terminal LoS 

Sensor Mean False Alarm Rate 

Number People Desk Coefficient
With -0.0597

Without 0.0178
With 0.0419

Without 0.0597
With -0.0178

Without -0.0419

30

60

90
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Table 29. Number of People, Number of Cameras and Presence of Desk Coefficients 

of Terminal LoS Sensor Mean False Alarm Rate 

Number People Number Cameras Desk Coefficient
With -0.0170

Without -0.0316
With 0.0487

Without 0.0170
With 0.0316

Without -0.0487
With 0.00785

Without 0.00993
With -0.0178

Without -0.00785
With -0.00993

Without 0.0178
With 0.0341

Without 0.0371
With -0.0712

Without -0.0341
With -0.0371

Without 0.0712
With -0.0249

Without -0.0154
With 0.0403

Without 0.0249
With 0.0154

Without -0.04033

3

0

1

2

30

90

60

0

1

2

3

0

1

2

 

 

The equation to estimate the mean false alarm rate for the terminal LoS sensor is: 

 

Terminal LoS FAR = 0.247                                (4) 

+ Presence of Desk Coefficient  

+ Number People Coefficient  

+ Number Cameras with Presence of Desk 

Coefficient  

+ Number People with Presence of Desk Coefficient  
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+ Number People, Number Cameras, and Presence of 

Desk Coefficient 

 

Table 30 and Figure 49 contain the mean and 95% confidence interval of the 

terminal LoS sensor given the presence or absence of the desk and Figure 50 shows a box 

plot of the distribution. 

 

Table 30. Confidence Intervals of Terminal LoS Sensor Mean Hit Rate Given 

Presence of Desk 

Number People Desk Number Cameras Mean Error (95%) Confidence Interval
0 0.260 0.138 [0.398, 0.122]
1 0.120 0.0618 [0.182, 0.0582]
2 0.133 0.0610 [0.194, 0.0723]
3 0.140 0.0996 [0.240, 0.0404]
0 0.00 0.00 [0.00, 0.00]
1 0.0667 0.0404 [0.107, 0.0263]
2 0.0867 0.0527 [0.139, 0.340]
3 0.100 0.0861 [0.186, 0.0139]
0 0.400 0.172 [0.572, 0.228]
1 0.327 0.0998 [0.426, 0.227]
2 0.300 0.0892 [0.389, 0.211]
3 0.340 0.158 [0.498, 0.182]
0 0.00 0.00 [0.00, 0.00]
1 0.100 0.0520 [0.152, 0.0480]
2 0.107 0.0565 [0.163, 0.0501]
3 0.140 0.0996 [0.240, 0.0404]
0 0.860 0.215 [1.07, 0.645]
1 0.561 0.137 [0.698, 0.424]
2 0.401 0.0985 [0.500, 0.303]
3 0.429 0.185 [0.614, 0.243]
0 0.00 0.00 [0.00, 0.00]
1 0.399 0.110 [0.509, 0.289]
2 0.320 0.0934 [0.413, 0.226]
3 0.327 0.159 [0.486, 0.167]

With

Without

With

Without

With

Without

90

30

60
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Figure 49. Confidence Interval of Terminal Deployed LoS Sensor False Alarm Rate 

Given Number of Cameras, Number of People, and Presence of Desk 
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Figure 50. Distribution of Terminal Deployed LoS Sensor False Alarm Rate Given 

Number of Cameras, Number of People, and Presence of Desk 
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Figure 50 shows that for 30, 60 and 90 people, no false alarms occurred when the 

LoS sensor is used alone in a terminal without a desk.  However, in the terminal with a 

desk, the false alarm rate for the LoS sensor used alone is statistically greater for 90 

people than for 30 people.  The LoS sensor used with one camera in a terminal with a 

desk is also statistically greater than with 90 people than with 30 people.   

3)  LoS Sensor Precision 

ANOVA of the precision, measured in square feet, for the LoS sensor given a 

number of cameras is shown in Table 31.  The p-factor indicates the three-level 

interaction between the type of area, number of cameras, and number of people is not a 

statistically significant with respect to error.  On page 92, Table 32 is a two-way ANOVA 

of the precision for the LoS sensor.   

 

Table 31. ANOVA of LoS Sensor Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 55951 51.87% 2 27976 4120 0
Number Cameras 10509 9.74% 3 3503 516 0
Number People 552 0.51% 2 276 40.6 0
Type Area*Number Cameras 798 0.74% 6 133 19.6 0
Type Area*Number People 114 0.11% 4 28.6 4.21 0.00210
Number Cameras*Number People 110 0.10% 6 18.4 2.71 0.0126
Type Area*Number Cameras*Number People 84.7 0.08% 12 7.06 1.04 0.409
Error 24077 22.32% 3546 6.79
Total 107860 3581  
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Table 32. Two-Way ANOVA of LoS Sensor Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 55961 51.88% 2 27980 4120 0
Number Cameras 10509 9.74% 3 3503 516 0
Number People 552 0.51% 2 276 40.6 0
Type Area*Number Cameras 797 0.74% 6 133 19.6 0
Type Area*Number People 112 0.10% 4 28.1 4.14 0.00239
Number Cameras*Number People 110 0.10% 6 18.4 2.71 0.0126
Error 24162 22.40% 3558 6.79
Total 107860 3581  

 

a)  LoS Sensor Precision for Corridor 

The ANOVA of the precision for the corridor deployed LoS sensor given a 

number of cameras is shown in Table 33.  As can be seen by the p-factor, the two-way 

interaction of the effects of the number of cameras and the number of people is not 

statistically significant.  Therefore, the effects due to the number of cameras and the 

number of people are considered separately. 

 

Table 33. ANOVA of Corridor LoS Sensor Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 5.24 10.40% 3 1.75 46.6 0
Number People 0.555 1.10% 2 0.278 7.41 0.000633
Number Cameras*Number People 0.0698 0.14% 6 0.0116 0.310 0.932
Error 44.3 87.97% 1182 0.0375
Total 50.3 1193  

 

Table 34 is the one-way ANOVA of the precision for the corridor deployed LoS 

sensor for the number of people and the number of cameras.  Table 35 and Table 36 
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provide the coefficients for estimating the mean precision for the corridor LoS sensor.  

The constant coefficient for estimating the precision is 1.19 square feet. 

 

Table 34. One-Way ANOVA of Corridor LoS Sensor Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number Cameras 5.24 10.41% 3 1.75 46.8 0
Number People 0.739 1.47% 2 0.370 9.90 0.0000545
Error 44.4 88.11% 1188 0.0373
Total 50.3 1193  

 

Table 35. Number of Cameras Coefficients of Corridor LoS Sensor Mean Precision  

Number Cameras Coefficient
0 0.138
1 0.00391
2 -0.0598
3 -0.0822  

 

Table 36. Presence of Desk Coefficients of Corridor LoS Sensor Mean Precision  

Number People Coefficient
30 -0.0351
60 0.0188
90 0.0163  

 

The equation to estimate the mean precision for the terminal LoS sensor is: 

 

Corridor LoS Precision = 1.19                           (5) 

+ Number People Coefficient  

+ Number Cameras Coefficient 
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Table 37 and Figure 51 contain the mean and 95% confidence interval of the 

terminal LoS sensor given the presence or absence of the desk and Figure 52 shows a box 

plot of the distribution. 

 

Table 37. Confidence Intervals of Corridor LoS Sensor Precision Given Number of 

Cameras 

Number  Cameras Mean Error (95%) Confidence Interval
0 1.33 0.0527 [1.38, 1.27]
1 1.19 0.0197 [1.21, 1.17]
2 1.13 0.0118 [1.14, 1.12]
3 1.11 0.0176 [1.12, 1.09]  
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Figure 51. Confidence Interval of Corridor LoS Sensor Precision Given Number of 

Cameras 
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Figure 52. Distribution of Corridor LoS Sensor Precision Given Number of 

Cameras 

 

From Figure 54, shows the confidence intervals of the levels for two and three 

cameras overlap, and are therefore not statistically different.  However, levels for zero, 

one and two cameras do not overlap, and therefore are statistically different.   

Table 38 and Figure 53 contain the mean and 95% confidence interval of the 

terminal LoS sensor given the presence or absence of the desk and Figure 54 shows a box 

plot of the distribution.  
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Table 38. Confidence Intervals of Corridor LoS Sensor Precision given Number of 

People 

Number  People Mean Error (95%) Confidence Interval
30 1.14 0.0243 [1.16, 1.11]
60 1.19 0.0202 [1.21, 1.17]
90 1.19 0.0144 [1.21, 1.18]  
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Figure 53. Confidence Interval of Corridor LoS Sensor Precision Given Number of 

People 
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Figure 54. Distribution of Corridor Deployed LoS Sensor Precision Given Number 

of People 

 

From Figure 54, shows the confidence intervals as the number of people increases 

from 30 to 60 do not overlap, and the differences in the accuracies are therefore 

statistically different.  However, as the number of people is further increased from 60 to 

90 people, the confidence levels do overlap, indicating that the precision between these 

two levels is not statistically different.   

b)  LoS Sensor Precision for Terminal 

ANOVA of the precision for the terminal deployed LoS sensor given a number of 

cameras is shown in Table 39.  As can be seen by the p-factor, the three-way interaction 
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of the effects, and the interaction of the effects from the presence of the desk and the 

number of cameras, is not statistically different.   

 

Table 39. ANOVA of Terminal LoS Sensor Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Desk 10.7 10.02% 1 10.7 507 0
Number Cameras 38.9 36.47% 3 13.0 615 0
Number People 1.72 1.61% 2 0.86 40.8 0
Desk*Number Cameras 0.0651 0.06% 3 0.0217 1.03 0.378
Desk*Number People 0.328 0.31% 2 0.164 7.78 0.000427
Number Cameras*Number People 0.572 0.54% 6 0.0953 4.53 0.000143
Desk*Number Cameras*Number People 0.120 0.11% 6 0.0200 0.951 0.457
Error 49.8 46.71% 2364 0.0211
Total 107 2387  

 

Table 40 is an ANOVA of the precision for the terminal deployed LoS sensor 

with the effects that are not statistically different removed.  Table 41, Table 42, Table 43, 

Table 44 and Table 45 provide the coefficients for estimating the mean precision for the 

terminal LoS sensor.  The constant coefficient for estimating the precision is 1.78 square 

feet. 

 

Table 40. ANOVA of Terminal LoS Sensor Precision Without Three-Level 

Interaction 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Desk 15.0 14.11% 1 15.0 714 0
Number Cameras 38.9 36.47% 3 13.0 615 0
Number People 1.72 1.61% 2 0.86 40.9 0
Desk*Number People 0.338 0.32% 2 0.169 8.03 0.000335
Number Cameras*Number People 0.572 0.54% 6 0.0953 4.53 0.000142
Error 50.0 46.88% 2373 0.0211
Total 107 2387  
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Table 41. Presence of Desk Coefficients of Terminal LoS Sensor Mean Precision 

Desk Coefficient
With -0.0793

Without 0.0793  

 

Table 42. Number of Cameras Coefficients of Terminal LoS Sensor Mean Precision 

Number Cameras Coefficient
0 0.276
1 -0.00603
2 -0.104
3 -0.166  

 

Table 43. Number of People Coefficients of Terminal LoS Sensor Mean Precision 

Number People Coefficient
30 -0.0415
60 0.00870
90 0.0328  

 

Table 44. Number of People with Presence of Desk Coefficients of Terminal LoS 

Sensor Mean Precision 

Number People Desk Coefficient
With 0.00216

Without 0.0134
With -0.0156

Without -0.00216
With -0.0134

Without 0.0156

30

60

90
 

 



 

100 

Table 45. Number of People with Number of Cameras Coefficients of Terminal LoS 

Sensor Mean Precision 

Number People Number Cameras Coefficient
0 -0.0481
1 0.0234
2 0.0246
3 0.00384
0 -0.00367
1 -0.000174
2 0.0186
3 -0.009487
0 -0.009124
1 0.0256
2 -0.0103
3 -0.0153

30

90

60

 

The equation to estimate the mean precision for the terminal LoS sensor is: 

 

Terminal LoS Precision = 1.78                           (6) 

+ Presence of Desk Coefficient  

+ Number People Coefficient  

+ Number Cameras Coefficient 

+ Number People with Presence of Desk Coefficient  

+ Number People with Number Cameras Coefficient 

 

Table 46 and Figure 55 contain the mean and 95% confidence interval of 

the terminal LoS sensor given the presence or absence of the desk and Figure 56 

shows a box plot of the distribution. 
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Table 46. Confidence Intervals of Terminal LoS Sensor Mean Precision Given 

Presence of Desk 

Number People Desk Number Cameras Mean Error (95%) Confidence Interval
0 1.87 0.0901 [1.96, 1.78]
1 1.65 0.0219 [1.67, 1.63]
2 1.58 0.0196 [1.60, 1.56]
3 1.53 0.0315 [1.57, 1.50]
0 2.06 0.0735 [2.13, 1.99]
1 1.82 0.0225 [1.84, 1.79]
2 1.72 0.0148 [1.74, 1.71]
3 1.66 0.0191 [1.68, 1.64]
0 2.05 0.127 [2.17, 1.92]
1 1.70 0.0339 [1.74, 1.67]
2 1.60 0.0132 [1.62, 1.59]
3 1.55 0.0182 [1.57, 1.54]
0 2.13 0.0582 [2.18, 2.07]
1 1.85 0.0146 [1.86, 1.83]
2 1.74 0.0120 [1.76, 1.73]
3 1.67 0.0151 [1.68, 1.65]
0 2.01 0.0792 [2.09, 1.93]
1 1.70 0.0144 [1.72, 1.69]
2 1.61 0.0120 [1.62, 1.59]
3 1.55 0.0193 [1.56, 1.53]
0 2.21 0.0596 [2.27, 2.15]
1 1.91 0.0146 [1.92, 1.90]
2 1.79 0.0101 [1.80, 1.78]
3 1.71 0.0109 [1.72, 1.71]

With

Without

With

Without

90

30

60

With

Without
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Figure 55. Confidence Interval of Terminal LoS Sensor Precision Given Number of 

People, Number of Cameras and Presence of Desk 
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Figure 56. Distribution of Terminal LoS Sensor Precision Given Number of People, 

Number of Cameras and Presence of Desk 
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H.  Three-Camera System Characteristics 

The three-camera system is comprised of the three cameras used in the 

simulation, fused together.  The results and analysis of the three-camera system is 

provided here as a comparison to the LoS sensor results.  The two primary areas the 

three-camera sensor system is used are the corridor and the terminals.  The corridor is 

monitored by one camera placed within the corridor in an adjacent ROI, and two other 

cameras placed on opposite sides of the same terminal adjacent to the ROI.  The terminal 

is monitored by three cameras placed in the corridor.  All cameras placed such that the 

focal point is towards the center of the ROI being monitored.  The width of the camera 

angle ensures the entire ROI is within the field of view of the camera.  

Because of the differences in the deployment of the three-camera system in the 

corridors and terminal, the two situations are examined together and separately with the 

presence or absence of the desk as a factor in the terminals. 

1)  Three-Camera System Hit Rate 

Table 47 shows the results of ANOVA of the hit rate for simulation results for the 

three-camera system.  The p-factors show that alone, the numbers of people are not a 

statistically significant in terms of variance.   

 

Table 47. ANOVA of Three-Camera System Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 0.430 27.62% 2 0.215 87.2 0
Number People 0.00848 0.55% 2 0.00424 1.72 0.180
Type Area*Number People 0.0403 2.59% 4 0.0101 4.09 0.00290
Error 1.08 69.36% 438 0.00246
Total 1.56 446  
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a)  Three-Camera System Hit Rate for Corridor 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 48.  Table 49 and Figure 57 contain the mean and 

95% confidence interval for each level of people and Figure 58 shows as a box plot of the 

distribution. 

 

Table 48. ANOVA of Corridor Three-Camera System Hit Rate  

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 0.0324 4.99% 2 0.0162 3.837 0.0238
Error 0.616 95.01% 146 0.00422
Total 0.648 148  

 

Table 49. Confidence Intervals of Corridor Three-Camera System Mean Hit Rate 

Number Cameras Mean Error (95%) Confidence Interval
0 0.920 0.0225 [0.942, 0.898]
1 0.928 0.0162 [0.944, 0.912]
2 0.894 0.0160 [0.910, 0.878]  
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Figure 57. Confidence Interval of Corridor Three-Camera System Hit Rate 

 

30 60 90

0.7

0.75

0.8

0.85

0.9

0.95

1

H
it 

R
at

e

Number of People  

Figure 58. Distribution of Corridor Three-Camera System Hit Rate 
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b)  Three-Camera System Hit Rate for Terminal 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 50.  Table 51 and Figure 59 contain the mean and 

95% confidence interval for each level of people and presence of desk and Figure 60 

shows a box plot of the distribution. 

 

Table 50. ANOVA of Terminal Three-Camera System Hit Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 0.00269 0.55% 2 0.00135 0.849 0.429
Desk 0.0134 2.72% 1 0.0134 8.46 0.00392
Number People*Desk 0.0137 2.78% 2 0.00685 4.32 0.0142
Error 0.464 93.95% 292 0.00159
Total 0.493 297  

 

Table 51. Confidence Intervals of Terminal Three-Camera System Mean Hit Rate 

Desk Number People Mean Error (95%) Confidence Interval
30 0.981 0.0150 [0.996, 0.966]
60 0.990 0.00655 [0.997, 0.984]
90 0.985 0.00679 [0.992, 0.978]
30 0.982 0.0142 [0.997, 0.968]
60 0.959 0.0125 [0.971, 0.947]
90 0.975 0.00990 [0.984, 0.965]

Without

With
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Figure 59. Confidence Interval of Terminal Three-Camera System Hit Rate 
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Figure 60. Distribution of Terminal Three-Camera System Hit Rate 
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2)  Three-Camera System False Alarm Rate 

Table 52 shows the results of ANOVA of the False Alarm rate for simulation 

results for the three-camera system.  It can be seen from the p-factor that the contribution 

to the variance is statistically significant for all both factors considered independently or 

together. 

 

Table 52. ANOVA of Three-Camera System False Alarm Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Type Area 0.430 27.62% 2 0.215 87.2 0
Number People 0.00848 0.55% 2 0.00424 1.72 0.180
Type Area*Number People 0.0403 2.59% 4 0.0101 4.09 0.00290
Error 1.08 69.36% 438 0.00246
Total 1.56 446  

 

a)  Three-Camera False Alarm Rate for Corridor 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 53.  Table 54 and Figure 61 contain the mean and 

95% confidence interval for each level of people and Figure 62 shows box plot of the 

distribution. 

 

Table 53. ANOVA of Corridor Three-Camera System False Alarm Rate  

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 88718 86.38% 2 44359 463 0
Error 13988 13.62% 146 95.8
Total 102710 148  
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Table 54. Confidence Intervals of Corridor Three-Camera System Mean False 

Alarm Rate 

Number People Mean Error (95%) Confidence Interval
30 4.92 1.02 [5.94, 3.90]
60 29.2 2.46 [31.7, 26.7]
90 64.5 4.08 [68.6, 60.4]  
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Figure 61. Confidence Interval of Corridor Three-Camera System False Alarm Rate 
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Figure 62. Distribution of Corridor Three-Camera System False Alarm Rate 

 

b)  Three-Camera System False Alarm Rate for Terminal 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 55.  Table 56 and Figure 63 contain the mean and 

95% confidence interval for each level of people and presence of desk and Figure 64 

shows a box plot of the distribution. 

 

Table 55. ANOVA of Terminal Three-Camera System False Alarm Rate 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 10847 73.63% 2 5423 409 0
Desk 9.91 0.07% 1 9.91 0.748 0.388
Number People*Desk 5.12 0.03% 2 2.56 0.193 0.824
Error 3870 26.27% 292 13.3
Total 14731 297  
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Table 56. Confidence Intervals of Terminal Three-Camera System Mean False 

Alarm Rate 

Desk Number People Mean Error (95%) Confidence Interval
30 1.76 0.515 [2.28, 1.24]
60 7.08 1.12 [8.20, 5.96]
90 16.7 1.39 [18.1, 15.3]
30 1.68 0.435 [2.16, 1.24]
60 6.78 0.811 [7.59, 5.97]
90 16.0 1.50 [17.5, 14.5]

Without

With
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Figure 63. Confidence Interval of Terminal Three-Camera System  False Alarm 

Rate 
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Figure 64. Distribution of Terminal Three-Camera System False Alarm Rate 

 

3)  Three-Camera System Precision 

Table 57 shows the results of ANOVA of the Precision for simulation results for 

the three-camera system.  It can be seen from the p-factor that the contribution to the 

variance is statistically significant for all both factors considered independently or 

together. 

 

Table 57. ANOVA of Three-Camera System Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 166 21.93% 2 83.0 136 0
Desk 316 41.76% 2 158 260 0
Number People*Desk 7.47 0.99% 4 1.87 3.06 0.0165
Error 267 35.24% 438 0.609
Total 757 446  
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a)  Three-Camera System Precision for Corridor 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 58.   

Table 59 presents the mean and confidence interval for each level of people, and 

Figure 66 shows a comparison of the 95% confidence interval as well as a box plot of the 

distribution of the hit rate given the number of people. 

 

Table 58. ANOVA of Corridor Three-Camera System Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 84.2 62.49% 2 42.1 122 0
Error 50.5 37.51% 146 0.346
Total 135 148  

 

Table 59. Confidence Intervals of Corridor Three-Camera System Mean Precision 

Number People Mean Error (95%) Confidence Interval
30 4.40 0.121 [4.52, 4.28]
60 4.99 0.158 [5.15, 4.83]
90 6.21 0.213 [6.42, 6.00]  
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Figure 65. Confidence Interval of Corridor Three-Camera System Precision 
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Figure 66. Distribution of Corridor Three-Camera System Precision 
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b)  Three-Camera System Precision for Terminal 

ANOVA of the precision for the corridor deployed three-camera system given a 

number of cameras is shown in Table 60.  Table 61 and Figure 67 contain the mean and 

95% confidence interval for each level of people and presence of desk and Figure 68 

shows a box plot of the distribution. 

 

Table 60. ANOVA of Terminal Three-Camera System Precision 

Source Sum Sq. % Var d.f. Mean Sq. F Prob>F
Number People 86.5 26.73% 2 43.2 58.4 0
Desk 18.0 5.55% 1 18.0 24.3 0.00000141
Number People*Desk 2.84 0.88% 2 1.42 1.91 0.149
Error 216 66.87% 292 0.741
Total 323 297  

 

Table 61. Confidence Intervals of Terminal Three-Camera System Mean Precision 

Desk Number People Mean Error (95%) Confidence Interval
30 6.59 0.227 [6.82, 6.37]
60 6.94 0.211 [7.15, 6.73]
90 8.00 0.376 [8.37, 7.62]
30 6.07 0.193 [6.26, 5.88]
60 6.70 0.236 [6.94, 6.47]
90 7.28 0.182 [7.47, 7.10]

Without

With
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Figure 67. Confidence Interval of Terminal Three-Camera System Precision 
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Figure 68. Distribution of Terminal Three-Camera System Precision 
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I.  Summary 

This chapter presented the results of the simulation for the configurations using 

the LoS sensor and configurations using three cameras without the LoS sensor.  ANOVA 

is shown for the results, and results for which factors and interactions of factors are 

shown to contribute to the variance are examined for mean value, confidence interval, 

and variance. 
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V.  Conclusions and Recommendations 

A.  Chapter Overview 

The purpose of this chapter is to present the conclusion of the research based on 

the simulation results.  The effect of each factor on hit rate, false alarm rate, and precision 

are presented in concise form and the reason for the effects is explained.  In addition, a 

description of configurations using the LoS sensor and the configuration of three cameras 

are compared for robustness as factor values change.  Finally, opportunities for further 

research of the LoS sensor and fusion of the LoS sensor with video networks are offered. 

B.  Conclusions of Research 

1)  Hit Rate 

The primary reasons a LoS sensor does not detect a person is that the person is so 

small that not enough lines are blocked at a grid square, the person is in a location the 

LoS is not positioned to detect, or other people cause an undetectable area to develop.  

Each person is represented as a circle with a diameter four times greater than the width of 

a grid square so people occupy an entire grid square.  However, limitations on sensor 

placement and obstructions caused by the terminal desk and other people contribute to 

the miss rate for the LoS sensor.  

A camera does not detect a person when they resemble the background.  All 

background colors are rendered in shades of gray, and all people are rendered in colors 

other than gray.  However, some colors are so similar to background colors they cannot 

be distinguished by the differencing technique.  Figure 69 is an example of two people 

detected by the camera.   The person on the right is partially detected, the person on the 
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left is detected completely.  The images are simplistic, noise-free background and 

foreground objects compared to real-world images.  Figure 70 shows a camera image 

from the simulation and a real-world camera image.  The simulation image is a Portable 

Network Graphics (PNG) image, the real image is a Portable Gray Map (PGM) image.  

Both are of pedestrian traffic, but the real image is noticeably more noisy and complex 

though it contains fewer people. 

 

 

Figure 69. Example of Camera Image with Partial Detection 
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Figure 70. Example of Simulated Camera Image with Real-World Camera Image of 

Pedestrian Traffic 

 

Another reason some people may not be detected by either a camera or the LoS 

sensor is they appear to be merged with a nearby person.  The algorithm that counts the 

number of hits per scenario associates each connected component of the detected image 

with at most one person.  If two people are so close together that they appear as a single 

larger person, the algorithm detects a single person.   

The results of a corridor simulation in Figure 71 and Figure 72 show a LoS sensor 

without any cameras.  This configuration provides a higher mean hit rate than a three-

camera system.  Figure 73 and Figure 75 show the mean LoS sensor hit rate for a 

terminal.  It is less than that of the three-camera system.  The reason for the higher 

performance of the LoS sensor operating independently in the corridor is due to 

interference of the cameras by activity in adjacent ROIs.  A camera is placed in one ROI 
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to observe another ROI, but also observes a ROI beyond that.  Therefore, people moving 

immediately in front of or behind the ROI the camera is observing may result in added 

person location hypotheses.  These extra hypotheses may induce people to merge in the 

camera sensor.  This phenomenon is occurs more often in a corridor than in a terminal, as 

a corridor is open on all sides while a terminal is open on only one side.  Indeed, the 

mean hit rate for the camera operating in the terminal is statistically higher than the 

corridor for most scenarios.  The LoS sensor operating in a corridor ROI is also affected 

by activity in an adjacent corridor ROI, as sensors in one corridor ROI can operate with 

the lights of an adjacent LoS sensor in a neighboring corridor ROI.  However, 

distribution of the LoS sensor light rays prevents the interference from a neighboring ROI 

from causing as many false hypotheses that would normally result in people within the 

ROI merging. 

Figure 71 shows that the hit rate decreases as more cameras are fused with the 

LoS sensor.  The decline in LoS hit rate performance as cameras are added is due to the 

AND fusing algorithm.  If one sensor hypothesizes a person exists at a given location, 

data from another sensor may either confirm or eliminate that hypothesis.  However, if 

one sensor does not hypothesize that a person exists at a given location, then data fused 

from another sensor using an AND algorithm cannot create a hypothesis of a person 

existing at that location.  Therefore, increasing the number of fused sensors using an 

AND algorithm either decrease or leave unchanged the number of hits for a given 

scenario, but cannot increase the number of hits for the same scenario. 
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Figure 71. LoS Sensor Corridor Hit Rate 
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Figure 72. Three-Camera System Corridor Hit Rate 
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Figure 73. LoS Sensor Terminal Hit Rate Given Number of Cameras 
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Figure 74. LoS Sensor Terminal Hit Rate Given Presence of Desk 
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Figure 75. Three-Camera System Terminal Hit Rate 

 

Analysis of Variance (ANOVA) showed the number of people in the simulation 

does not result in a statistically significant difference in the LoS sensor hit rate at the 95% 

confidence interval for the 50 replications performed.  The same is true for the three-

camera system observing the terminal, but the not for the three-camera system observing 

the corridor.  Again, this is due to the higher susceptibility of the camera system to 

interference from adjacent ROIs in the corridor than the terminal.  In the terminal, the 

camera system shows a statistically significant decrease with 60 people in the simulation 

when a desk is present.   

The decrease in camera performance with the desk is because to the additional 

image complexity produced by the desk results in a higher likelihood of partial person 

detection.  The LoS sensor shows a more dramatic decrease in mean hit rate due to the 
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desk.  This can be attributed to the light rays blocked by the desk.  A camera is able to 

detect people in front of the desk, but for the LoS sensor, any background obstruction 

along the length of the light ray renders that light ray unusable.  This loss of light rays 

results in “dead” areas, such as the sides of the desk.  It is noteworthy that the desk and 

people both block LoS sensor light rays, but only the desk results in a statistically 

significant difference in the mean hit rate.  The difference is the desk obstructs a 

contiguous grouping of light rays, whereas adding people obstructs randomly distributed 

light rays.   

For mean hit rate, the three-camera system is more robust with large obstructions 

and has fewer undetectable areas than the LoS sensor.  The mean hit rate for the LoS 

sensor appears more robust to changes in the number of people monitored and is less 

affected by events occurring in adjacent areas. 

2)  False Alarm Rate 

A false alarm occurs in the LoS if the percentage of blocked lights that cross a 

grid square is equal to the threshold value, even though no person occupies the grid 

square.  This occurs when light rays intersecting a grid square are actually blocked by 

people existing elsewhere in the ROI.  This phenomenon is more likely to occur in grid 

squares with fewer light rays intersecting it, such as the terminal entrances.  A camera 

produces false alarms for a similar reason as the LoS sensor, except detection is due to 

the light rays hitting a non-background person rather than being blocked or unblocked. 

Figures 75 through 78 shows the mean false alarm rate is lower for the LoS sensor 

than for the three-camera system for any given combination of factor levels.  Increasing 

the number of people results in an increase in the false alarm rate for both the LoS sensor 
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and three-camera system.  However, with 60 or 90 people in the simulation, the mean 

false alarm rate of the three-camera system is an order of magnitude greater than the LoS 

sensor system for both corridor and terminals.   

One cause of the reduced false alarm rate of the LoS sensor is that the light rays 

used to remove hypotheses are more widely distributed than are the light rays observed 

by the cameras.  Another reason for the higher performance of the LoS sensor is due to 

interference of the cameras by activity in adjacent ROIs.  A camera placed to observe one 

ROI, also observes a ROI beyond that.  Therefore, people moving immediately in front of 

or behind the ROI the camera is observing may result in false hypotheses of people 

location.  This phenomenon is expected to occur more often in a corridor than in a 

terminal, as a corridor is open on all sides and a terminal is open on only one side.  

Indeed, the mean false alarm rate for the camera operating in the terminal is statistically 

higher than the corridor.  The LoS sensor operating in a corridor ROI is also affected by 

activity in an adjacent corridor ROI, as sensor in one corridor ROI operates with the 

lights of an adjacent LoS sensor in a neighboring corridor ROI.  However, distribution of 

the LoS sensor light rays prevents the interference from a neighboring ROI from causing 

as many false hypotheses. 
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Figure 76. Corridor LoS Sensor False Alarm Rate 
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Figure 77. Corridor Three-Camera System False Alarm Rate 
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Figure 78. Terminal LoS Sensor False Alarm Rate 
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Figure 79. Terminal Three-Camera System False Alarm Rate 
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It is noteworthy that in terminals without desks and no cameras, the mean false 

alarm rate is very near zero but increases when cameras are added.  One reason for the 

increase is the cameras remove portions of correct hypotheses about the location of a 

person without removing every portion of a correct hypothesis.  An example would be an 

area that the LoS hypothesizes contains a person, whereas the true location of the person 

is on the left side but within the indicated area.  This is a hit.  However, the fusion of this 

hypothetical data with other sensor data removes only the left side of the hypothesized 

area.  The remaining area no longer contains the person, and is now determined to be a 

false alarm rather than a hit.   

Another possibility, similar to the above example, is the camera data splits a 

hypothesized region into two components.  In the previous example instead of removing 

the entire left side of the hypothesized region, only the middle portion is removed leaving 

a left and right side.  The left side of the hypothesized region still contains the person and 

is determined to be a hit.  However, the remaining disconnected right side does not 

contain the person and is now determined to be a false alarm. 

The mean false alarm rate for the LoS sensor is lower than the three-camera 

system for any given combination of factor levels, often by an order of magnitude.  The 

false alarm rate is lowered further by fusing the LoS with an increasing number of 

cameras.  Increasing the number of people in the scenario increases the mean false alarm 

rate for both LoS sensor and the three-camera system.  The presence of large obstacles 

statistically increases the mean false alarm rate of the LoS sensor when used alone, but 

does not statistically increase the mean false alarm rate when fused with three cameras. 
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3)  Precision 

Precision is the area corresponding to the number of grid squares involved in the 

correct determination of location.  Because the radius of each person is 0.557 feet, the 

ideal precision for the simulation would be the area of the circle defining a person, 0.975 

square feet.  All sensor data is rectified to three-inch-by-three-inch grid squares within 

the ROIs.  The minimum precision resolution for any sensor in this simulation is then 

0.0625 square feet. 

The precision of the LoS sensor can deteriorate when there are not enough light 

rays to remove false hypotheses which occurs for example when a person approaches the 

extremity of the corridor.  In these areas, many vertical light rays determine the 

horizontal hypotheses of people locations, but there are few diagonal light rays to remove 

hypotheses in the vertical direction.  This results in a loss of precision for the LoS sensor, 

primarily in the vertical direction. 

The precision of the three-camera system deteriorates when lower resolution 

cameras are used.  As the camera resolution increases, more pixels are available to more 

accurately define the outer edges of the detected person.  For example, Figure 81 shows 

two cameras detecting the location of people.  The precision of the camera as the 

resolution increases is limited to a four-sided polygon containing the detected person.   
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Figure 80 

Figure 81. Example of Two Cameras Detecting Objects 

Figure 82 shows a similar system with three cameras detecting the location of 

people.  The precision of the three-camera system improves upon the two-camera system.  

As the resolution increases, the precision for the three-camera system is limited by a six-

sided polygon containing the detected person. 
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Figure 82. Example of Three Cameras Detecting Objects 

 

In Figure 84, the black circle is the person detected by the LoS sensor, represented 

by black bars.  Black lines show tangents drawn from the extremities of the LoS sensor to 

the outer edge of the detected person.  The dark gray areas in Figure 84 contain no LoS 

sensor light-rays, but the dark gray areas are also not occupied by the person.  Figure 84 

shows an detected person appears that elongated towards the LoS sensor light sources 

and sensors, with limits defined by tangents drawn from the extremities of the LoS sensor 

to the outer edges of the person.   
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Figure 83 

Figure 84. Example of LoS Sensor Detecting Object 

 

Figures 84 thru 88 shows that the LoS sensor provides consistently better 

precision than the three-camera system at all factor levels.  Figure 85 and Figure 86 show 

that in the corridor, both the LoS sensor and the thee-camera system lose precision as the 

number of people increases from 30 to 60.  However, as the number of people continues 

to increase from 60 to 90, the three-camera system continues to lose precision while the 

LoS sensor’s precision is not statistically different.  Figure 87 indicates that although the 

LoS sensor’s precision is superior to that of the camera system, it is further improved by 

the addition of one or two cameras.  However, there is not a statistical difference between 

the mean precision of the LoS sensor with two or three cameras.  In the terminal, the 

three-camera system loses precision just as the terminal three-camera system does, but 

the LoS sensor for the terminal shows no statistical difference in the mean of the 

precision as the number of people increases. 
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In the terminal, it can be seen that the presence of a desk results in a loss of 

precision for both the three-camera system and LoS sensor.  The cameras loss of 

precision is due to the additional image complexity of the desk.  For the LoS sensor, the 

loss of precision is due to the reduction in available light-rays to remove false 

hypotheses. 

 

30 60 90
1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

Number of People

M
ea

n 
Pr

ec
is

io
n 

(s
qu

ar
e 

fe
et

)

 

Figure 85. Corridor LoS Sensor Precision Given Number of People 
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Figure 86. Corridor Three-Camera System Precision 
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Figure 87. Corridor LoS Sensor Precision Given Number of Cameras 
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Figure 88. Terminal LoS Sensor Precision 
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Figure 89. Terminal Three-Camera System Precision 
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C.  Summary 

On average, the simulated camera system achieves a higher hit rate than the LoS 

sensor, but the LoS sensor offers a better false alarm rate and precision.  The higher mean 

hit rate of the three-camera system is because the simulation images are not as complex 

as are images from a real system.  In addition, the LoS sensor cannot detect portions of an 

area being observed.  The increased mean false alarm rate of the three-camera system 

over the LoS sensor is due to the distribution of LoS sensors.  This accounts for part of 

the improved precision of the LoS sensor.  However, the LoS images are smoothed 

before threshold application by a Gaussian filter whereas the camera images are not.  

This smoothing reduces the area occupied by detected people.  In addition, the area 

people detected by cameras decrease as the image resolution increases.  Loss of precision 

attributable to Gaussian smoothing and camera resolution does not alter the trends of the 

LoS sensor or three-camera system as the factor levels change. 

Increasing the number of people resulted in little effect on the hit rate for the LoS 

sensor system and the three-camera system.  The increase from 60 to 90 people does 

result in a statistically significant decrease in the mean hit rate of the LoS sensor.  

However, the mean hit rate of the LoS sensor for 30 people is not statistically different 

from the mean hit rate for 60 or 90 people.  The mean hit rate of the three-camera system 

is not statistically different for any of the three people levels.   

Increasing the number of people in the simulation increases the false alarm rate 

for the LoS sensor and the three-camera system.  However, the false alarm rate does not 

increase as dramatically with the number of people as does the three-camera system.   
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Increasing the number of people also increases the area each target is 

hypothesized to occupy for the LoS sensor and the three-camera system.  For the LoS 

sensor, increasing the number of people from 60 to 90 results in no significant change in 

precision, whereas an increase from 30 people to 60 people does.  Whereas for the three-

camera system, the change in the mean precision as the number of people increases from 

60 to 90 is greater than the change in the mean precision as the number of people is 

increases from 30 to 60.  This suggests that a larger number of people in a given area 

does not affect the precision of the Los sensor significantly. 

For the terminal areas, Figure 74, Figure 75, Figure 78, and Figure 79 show that 

the mean hit-rate and mean false alarm rate of the LoS sensor is more affected by the 

presence of a desk than is the mean hit rate and mean false alarm rate for the three-

camera system.  However, no people ever travel behind the desk from the perspective of 

a camera.  Thus, inclusion or removal of the desk only changes the background image for 

the three-camera system, and never the source of foreground occlusion of a person.  

Because sensing for the LoS sensor is more distributed than the camera system, 

foreground and background do not as readily apply.  For the LoS sensor, adding the desk 

results in loss of light source-sensor pairs participating in the sensing activity.  Figure 90 

and Figure 91 show the differences in the number of LoS sensor light rays passing 

through each grid square.  Each square of these figures corresponds to a grid square 

observed by the LoS sensor, and the brightness of the square represents the number of 

light source to sensor segments intersecting it.  Figure 90 is a LoS sensor without a desk, 

and Figure 91 is a LoS sensor with a desk.  An image of the desk is added to Figure 91 

for reference.  The effect of the desk is to reduce the number of light rays for each grid 
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square below tangent lines from extremities of the LoS sensor to the outer edges of the 

desk, as shown with the darkening of the lower part of  Figure 91. 

The presence of the desk adversely affects the precision of the LoS sensor system 

and three-camera system for most scenarios.  The decline in precision for the LoS is 

again due to the reduction in light source-sensor pairs available for detection.  The 

decrease in precision for the camera system is due to the added complexity of the 

background image.  However, because the desk is always in the background, the people 

are still detected. 

 

 

Figure 90. Comparison Array of LoS Sensor in Terminal without Desk 
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Figure 91. Comparison Array of LoS Sensor in Terminal with Desk Superimposed 

On Image 

 

The LoS sensor was tested fused with zero to three cameras.  As the number of 

cameras increases the mean hit rate declines.  This is expected because the results are 

ANDed together. Any person detected by a LoS sensor that is not also detected by a 

camera is not present in the fused data.  Therefore, as more cameras are available to 

remove people from the final data product, the likelihood the person will be removed 

increases.  The mean false alarm rate also declines as the cameras increase for the 

corridor LoS sensor.  This is also a result of the ANDing of camera.  Little change is 

evident in the mean false alarm rate with a change in the number of cameras when a desk 

is present, unless there are a large number of people.  However, a large increase in the 

false alarm rate occurs when any camera is added to the terminal without a desk.  The 
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mean precision for the LoS sensor improves as cameras are added.  This is also expected 

as fusion with additional cameras trims the location hypotheses of people. 

D.  Recommendations for Future Research 

1)  Further Characterization of LoS Sensor 

Further  characterization of the LoS sensor performance is needed.  Receiver 

Operating Characteristic curves for each parameter of the sensor would help to optimize 

design criteria.  In addition, the optical design and requirements of the LoS sensor should 

be studied to optimize performance while determining practical distance, angle, and 

operating speed limitations of the sensor.   

Micro-Electro Mechanical Systems (MEMS) might be used to focus and direct 

light at both the light source and sensor.  MEMS may also be used at the light source to 

focus the direction the light beam is transmitted, and alter that direction to maximize light 

transmission towards the light sensor that is synchronized to sense it.  MEMS in a  light 

sensor could focus the direction from which the sensor is observes light, and alter that 

direction such that maximum observation occurs with the light source it is synchronized 

to sense.  If sufficient focus is achieved at the light source and/or sensor, multiple light 

beams may sweep the light sensors concurrently.   

A prototype of the LoS sensor should be built [25].  A small-scale LoS sensor 

could be used to test its ability to observe toy figures moving within the sensed region.  

Another possibility is to build a larger prototype in a location with corridors and test its 

ability to observe actual people and objects.  Algorithms used for location determination 

by the LoS sensor should also be implemented in a Field Programmable Gate Array 
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(FPGA) [25].  Measurements from either system could improve the simulation model of 

the LoS sensor.   

The sensor network system in which the LoS is integrated should also be 

evaluated.  Image processing algorithms should be exploit the information derived from 

the LoS sensor data.  These algorithms could also be implemented in an FPGA and 

evaluated with a prototype LoS sensor.  Because the LoS sensor may also be used 

independently of a camera system, data structures and communication methods should be 

designed for the LoS sensor such that it may be fused with non-camera sensors.  Tracking 

algorithms may be designed, modified or evaluated for use with LoS sensor data.   

2)  Improve performance of LoS Sensor 

One way to optimize the LoS sensor is to determine an optimal placement of light 

sources and sensor for different applications.  For example, the simulation used in this 

research uses equally spaced lights along a line that are co-planar to and on an opposing 

surface of an equal number of equally spaced sensors, also along a line.  Other 

distributions of lights and sensors may exist that improve the performance of the LoS 

sensor at locating objects without significant loss of coverage area.  In addition, 

computational complexity and/or operating speed may be improved by using a different 

number of light sensors than light sources.  Light sensors and sources may also be placed 

at other locations within the region to be monitored, such as on building support columns 

or trash receptacles, which may improve the performance of the sensor and increase 

sensor coverage.   

The computer network performance of the LoS sensor should also be evaluated.  

For example, performance analysis of a wireless sensor network with multiple cameras 
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should be compared to a similar system design that uses the LoS sensor.  A method for 

the LoS sensor components, such as a bank of lights or sensors, to automatically 

discover, test, and synchronize can also be examined.  A scheduling algorithm may also 

be developed that seeks to optimize the efficiency of multiple LoS sensors operating 

concurrently in the same region.  In addition, methods of automatic alignment of the LoS 

sensors should also be explored.   

Another area of improvement for the LoS sensor is performance of the simulation 

model.  Many “brute force” techniques are used in the simulation to ensure correctness of 

the results at the expense of efficiency.  Efficient techniques can now be included, the 

results of which can be verified by comparison to the current, less efficient model [30].  

Areas of the simulation model that can be improved include an optimal method of 

populating the look-up tables, or designing a computationally efficient method of 

determining the location of objects without the look-up tables.   
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VI. Final Thoughts 

At the completion of this research, an edition of the IEEE Signal Processing 

Magazine was published that featured surveillance networks [10].  This shows that this is 

a very active area of research.  Given the recent and continuing growth of location aware 

systems and the increasing desire for more cameras in video networks, there is a need for 

an efficient method of determining location information.  For many conditions, 

incorporating a network of Line-of-Sight (LoS) sensors is a means of obtaining that 

efficiency. 

The LoS sensor can be used for location determination in a video-free network, 

but the video network benefits greatly by making the image processing tasks of multi-

camera identification and tracking more efficient. 

For areas in which there is little pedestrian traffic and few cameras, the LoS 

sensor may not be appropriate, as the false alarm rate of the sensor may exceed that of a 

video only system.  However, as the number of people grows large, the false alarm rate of 

the camera system increases significantly.  In such cases, the LoS sensor is robust against 

further increases in the number of people than is a video only system. 

The LoS sensor is best applied to areas in which the light sources and light 

sensors may be placed opposite each other, such as a corridor.  As the overall 

performance of the LoS sensor declines in the presence of large objects that may block 

many contiguous light rays, results from the sensor may need to be either augmented or 

ignored in those specific area. 



 

 

Bibliography 

1. Al-Muhtadi, J., A. Ranganathan, R. Campbell and M. D. Mickunas.  “Cerberus: a 
context-aware security scheme for smart spaces,”  Proceedings of the First IEEE 
International Conference on Pervasive Computing and Communications, p. 489-
496, 2003.  

2. Azarbayejani, A. and A. Pentland.  “Real-time self-calibrating stereo person 
tracking using 3-D shape estimation from blob features,” Proceedings of the 13th 
International Conference on Pattern Recognition, vol. 3, p. 627-632, 1996. 

3. Brooks, R.R., P. Ramanathan, and A. M. Sayeed, “Distributed target classification 
and tracking in sensor networks,” Proceedings of the IEEE, vol. 91, iss. 8, p. 
1163-1171,  2003. 

4. Brooks, R. R., S. S. Iyengar, Gunasekaran S. Seetharaman, R. Kannan, Jamie R. 
Morrison.  “Next Generation Distributed Sensor Networks,” 6th Annual ONR 
Workshop on Collaborative Decision-Support Systems, Quantico Marine Corps 
Base VA: Office of Naval Research, (September 2004). 

5. Brown, L.G.  “A survey of image registration techniques,” ACM Compute. 
Survey, vol. 24, iss. 4, p. 325-376, 1992. 

6. Challa, S., R.J. Evans, and D. Musicki.  “Target tracking - a Bayesian 
perspective,” 14th International Conference on Digital Signal Processing.  vol. 1, 
p. 437-440, 2002. 

7. Chen, W.-P., J.C. Hou, and L. Sha.  “Dynamic clustering for acoustic target 
tracking in wireless sensor networks,” 11th IEEE International Conference on 
Network Protocols, p. 284-294, 2003. 

8. Chong, C.-Y. and S.P. Kumar,  “Sensor networks: evolution, opportunities, and 
challenges,” Proceedings of the IEEE, vol. 91, iss. 8, p. 1247-1256, 2003. 

9. Collins, R.T., Alan  J. Lipton, Takeo Kanade, Hironobu Fujiyoshi, David 
Duggins, Yanghai Tsin, David Tolliver, Nobuyoshi Enomoto, Osamu Hasegawa, 
Peter Burt and Lamber Wixson.  A System for Video Surveillance and Monitoring,  
Pittsburg PA: Carnegie Mellon University, 2000. (CMU-RI-TR-00-12). 

10. Liu, K. J. Ray.  IEEE Signal Processing Magazine, vol. 22, num. 2, (March 
2005). 

11. Gerbino, P. and M. Ali.  “A novel local likelihood approach to data fusion in 
passive target tracking,” IEE Colloquium on Target Tracking: Algorithms and 
Applications, p. 2/1 – 2/4, 1999. 



 

 

12. Goodridge, Steven George.  “Multimedia Sensor Fusion for Intelligent Camera 
Control and Human-Computer Interaction,”  Raleigh NC: North Carolina State 
University, 1997. 

13. Gordon, N. and D. J. Salmond.  “Aspects of target tracking: problems and 
techniques,” IEE Colloquium on Target Tracking and Data Fusion, p. 282, 1998. 

14. Hazas, M., J. Scott, and J. Krumm.  “Location-aware computing comes of age,” 
Computer, vol. 37, iss. 2, p. 95-97, 2004. 

15. Hills, Rob.  “Sensing for Danger,” Science and Technology Review, p. 11-17,  
(July/August 2001). 

16. Jeong, H. and Jeong-Ho Park,  “Multiple target tracking using constrained MAP 
data association,” Electronics Letters, vol. 35, iss. 1, p. 25-26, 1999. 

17. Katsman, I., A. Bruckstein, R. J. Holt, E. Rivlin.  “Judging distance by motion-
based visually mediated odometry,” IEEE/RSJ International Conference 
Proceedings on Intelligent Robots and Systems, vol. 2, p. 1357-1362, 2003. 

18. Katsman, I. and E. Rivlin.  “The mantis head camera (why the praying mantis is 
so good at catching its prey),” 12th International Conference Proceedings on 
Image Analysis and Processing, p. 612-617, 2003. 

19. Kejun, Zhang, Su Jianbo.  “General Software Architecture for Multi-sensor 
Information Fusion System,” Proceedings of the 5th World Congress on 
Intelligent Control and Automation, p. 4640-4644, (June 2004). 

20. Leonhardi, A. and K. Rothermel. “Architecture of a large-scale location service,” 
Proceedings of 22nd International Conference on Distributed Computing 
Systems, p. 465-466, 2002. 

21. Lou, R. C. and M. G. Kay,  “Data Fusion and Sensor Integration: State-of-the-Art 
1990's,” Data Fusion in Robotics and Machine Intelligence, p. 7-135, 1992. 

22. Mort, N. and P. Prajitno.  “A multisensor data fusion-based target tracking 
system,” IEEE International Conference on Industrial Technology, vol. 1, p. 427-
432, 2002. 

23. Patterson, C.A., R.R. Muntz, and C.M. Pancake.  “Challenges in location-aware 
computing,” IEEE Pervasive Computing, vol. 2, iss. 2, p. 80-89,  2003. 

24. Salmond, D.J.  “Mixture reduction algorithms for target tracking,” IEE 
Colloquium on State Estimation in Aerospace and Tracking Applications, p. 7/1 – 
7/4, 1989. 



 

 

25. Salmond, D.J.  “Target tracking: introduction and Kalman tracking filters,” IEE 
Workshop on Target Tracking: Algorithms and Applications, vol. 2, p. 1/1-1/6,  
2001. 

26. Seetharaman, Gunasekaran S.  Personal Communication, Dayton OH: Air Force 
Institute of Technology, (February 2005). 

27. Seetharaman, Gunasekaran S., Ha V. Le, S. S. Iyengar and H. Legananthraj.  
“SmartSAM: A Multisensor Network Based Framework for Video Surveillance 
and Monitoring,” Lafayette LA: University of Louisiana Center for Advanced 
Computer Studies, 2004. 

28. Seetharaman, Gunasekaran S., Ha V. Le, S. S. Iyengar, and H. Legananthraj.  “A 
Motion compensated super resolution imaging technique,”  Third International 
Workshop on Digital and Computational Video, p. 35-42, 2002. 

29. Want, R. and A. Hopper,  “Active badges and personal interactive computing 
objects,” IEEE Transactions on Consumer Electronics, vol. 38, iss. 1, p. 10-20, 
1992. 

30. Wood, Christopher.  Personal Communication, Dayton OH: Air Force Institute of 
Technology, (February 2005). 



 

 

 



 

 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
21-03-2005 

2. REPORT TYPE  
Master’s Thesis     

3. DATES COVERED (From – To) 
March 2004 – March 2005 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
     A Line-Of-Sight Sensor Network for Wide Area Video Surveillance: Simulation and Evaluation 
 
   
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Morrison, Jamie R., First Lieutenant, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
     Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
    Building 641 
 2950 Hobson Way 
     WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCE/ENG/05-05 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/HECV 
Attn: Dr. Paul Havig   (email: Paul.Havig@wpafb.mil) 
2255 H. Street 
WPAFB OH 45433-7022 

11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
   Substantial performance improvement of a wide area video surveillance network can be obtained with addition of a Line-of-Sight sensor.  The research 
described in this thesis shows that while the Line-of-Sight sensor cannot monitor areas with the ubiquity of video cameras alone, the combined network 
produces substantially fewer false alarms and superior location precision for numerous moving people than video. 
   Recent progress in fabrication of inexpensive video cameras have triggered a new approach to wide area surveillance of busy areas such as modeling an 
airport corridor as a distributed sensor network problem.  The computation and communication to establish image registration between the cameras grows 
rapidly as the number cameras increases.  Computation is required to detect people in each image; establish a correspondence between people in two or more 
images; compute exact 3-D position from each corresponding-pair; and temporally track targets in space-and-time.  Substantial improvement can be obtained 
with addition of a Line-of-Sight sensor as a location detection system to decoupling the detection, localization, and identification subtasks.  That is, if the 
‘where’ can be answered by a location detection system, the ‘what’ can be addressed by the video most effectively. 
 
15. SUBJECT TERMS 
       VIDEO NETWORKS, VISUAL SURVEILLANCE, SENSOR FUSION,  OPTICAL TRACKING,  AUTOMATIC TRACKING, IMAGE PROCESSING 

16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Guna Seetharaman 

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF  
     ABSTRACT 
 

UU 

18. NUMBER  
      OF 
      PAGES 

168 19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4612; e-mail:  Guna.Seetharaman@afit.edu 

 


	A Line-Of-Slight Sensor Network for Wide Area Video Surveillance: Simulation and Evaluation
	Recommended Citation

	Microsoft Word - AFIT-GCE-ENG-05-05.doc

