
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2005

A JBI Information Object Engineering Environment Utilizing A JBI Information Object Engineering Environment Utilizing

Metadata Fragments for Refining Searches on Semantically-Metadata Fragments for Refining Searches on Semantically-

Related Object Types Related Object Types

Felicia N. Harlow

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Harlow, Felicia N., "A JBI Information Object Engineering Environment Utilizing Metadata Fragments for
Refining Searches on Semantically-Related Object Types" (2005). Theses and Dissertations. 3838.
https://scholar.afit.edu/etd/3838

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3838?utm_source=scholar.afit.edu%2Fetd%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

A JBI Information Object Engineering Environment

Utilizing Metadata Fragments for Refining Searches

on Semantically-Related Object Types

THESIS

Felicia N. Harlow, Captain, USAF

AFIT/GCE/ENG/05-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/05-03

A JBI Information Object Engineering Environment

Utilizing Metadata Fragments for Refining Searches

on Semantically-Related Object Types

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Felicia N. Harlow, B.S.

Captain, USAF

June 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/05-03

A JBI Information Object Engineering Environment

Utilizing Metadata Fragments for Refining Searches

on Semantically-Related Object Types

Felicia N. Harlow, B.S.

Captain, USAF

Approved:

/signed/ 2 June 2005

LtCol Michael L. Talbert (Chairman) date

/signed/ 2 June 2005

Maj Christopher B. Mayer (Member) date

/signed/ 2 June 2005

Dr. Kenneth M. Hopkinson (Member) date

Acknowledgements

First and foremost I would like to thank my thesis advisor, Lt. Col. Michael

L. Talbert, for his guidance, direction and feedback. His numerous constructive com-

ments and our lengthy discussions have greatly improved my work.

I also owe a debt of gratitude to my sponsor, AFRL Information Directorate,

and specifically Robert Hillman for the inspiration and financial support for my work.

I am also very appreciative of the assistance and professionalism of the entire JBI in-

house team, who provided periodic feedback for my work and answered my numerous

questions during this effort.

I’d also like to thank my readers, Maj Christopher B. Mayer and Dr. Kenneth

M. Hopkinson, for their thoughtful contributions and insights.

I am extremely grateful to my husband for his incredible support and under-

standing during this research endeavor.

Finally, I would like to thank the rest of my family, for their encouragement

throughout all of my academic pursuits and for always believing in me.

Felicia N. Harlow

iv

Table of Contents
Page

Acknowledgements . iv

List of Figures . ix

List of Tables . x

List of Abbreviations . xi

Abstract . xiii

I. Introduction . 1
1.1 Background . 2

1.2 Research Objectives . 3

1.3 Assumptions . 4

1.4 Approach . 5

1.5 Research Sponsor . 5

1.6 Summary . 5

II. Background . 7

2.1 Introduction . 7
2.2 JBI . 7

2.2.1 Key Concepts 7

2.2.2 Architecture of Reference Implementation . . . 10

2.2.3 Information Objects (IOs) 10

2.2.4 Common Application Programming Interface . . 18

2.2.5 Information Dissemination 18
2.2.6 Information Retrieval 18

2.3 XML . 19
2.3.1 XML Rules . 19
2.3.2 XML Schemas and DTDs 20
2.3.3 XML Namespaces 21

2.3.4 XPATH . 25
2.3.5 XML Inclusion Methods 26
2.3.6 XML Validators 27
2.3.7 Distributed Schema Design 27

2.4 DOD Metadata Registry 29

2.5 Summary . 30

v

Page

III. Methodology . 32

3.1 Introduction . 32
3.2 Problem Definition . 32
3.3 Primary Objective: Common IO Engineering Framework 33

3.4 Improvements . 35

3.4.1 Multi-Object Search 35

3.4.2 Better Schema Storage Method 36

3.4.3 Less Effort to Build, Subscribe, Query 36

3.4.4 Simpler Object Schema Revision Rules 37

3.4.5 Versioning and Coercion Methods 38

3.4.6 Less IO Type Knowledge Required by Clients . 39

3.4.7 Take Advantage of XML Namespaces 40

3.5 Solution Approach . 40

3.5.1 Introduce A Component-Based Schema Structure 41

3.5.2 Fragment Naming Conventions 41

3.5.3 Fragment Schema Elements 43

3.5.4 Central Namespace for Fragments 44

3.5.5 XML Inclusion to Build Schemas 45
3.5.6 Fragment Tables 45

3.5.7 Fragment Processing Techniques 48

3.5.8 Versioning Standards 49

3.5.9 Changes to Pub/Sub/Query 50

3.5.10 Coercion Techniques 52

3.5.11 Information Object Storage Modifications . . . 56

3.5.12 Common API Changes 57

3.6 Environmental Parameters 58
3.7 Evaluation . 59
3.8 Hypothesis and Interpretation of Results 59

3.9 Summary . 59

IV. Implementation . 61

4.1 Introduction . 61
4.2 Compromises . 61

4.3 Preliminary Operations 62

4.3.1 Fragment Library 62

4.3.2 Platform Limitations 64
4.3.3 Populating Database Tables 65

4.3.4 Permissions . 65
4.3.5 IOR Table Fields 65

vi

Page

4.3.6 Combination Generator 66
4.3.7 Creating Fragment Schemas and Instances . . . 67

4.3.8 Creating and Populating Files and Tables . . . 68

4.4 Test Application . 68

4.4.1 Evaluation Parameters 69
4.4.2 Current MSR Evaluation Modifications 70
4.4.3 Current MSR IO Type Search 71

4.4.4 XML Instance to Schema Validator 72
4.4.5 Proposed MSR IO Type Search 72

4.4.6 Application Interface 72

4.4.7 Evaluation Measurements 73
4.5 Summary . 76

V. Results and Evaluation . 77
5.1 Introduction . 77
5.2 Testing . 77

5.2.1 Testing Environment 77

5.2.2 Evaluation Approach and Assumptions 78

5.2.3 Retrieval Options 78

5.2.4 Limitations and Validity 79

5.2.5 Testing Procedure 80

5.2.6 Test Results . 81
5.3 Observations and Analysis 84

5.3.1 Search Time Improvement 85

5.3.2 Schema Revision Efficiency 87

5.3.3 Schema Storage Improvements 87

5.3.4 Reduced IO Type Knowledge Requirements . . 88

5.3.5 Versioning, Coercion and Namespaces 88

5.3.6 Integration Issues 89

5.3.7 Shortfalls and Compromises 91

5.4 Summary . 92

VI. Conclusion and Future Work . 93
6.1 Introduction . 93
6.2 Main Research Contributions 93
6.3 Future Work . 93

6.3.1 Common API Expansion 93

6.3.2 Fragment Library 94

6.3.3 Platform Recommendations 94
6.3.4 Additional Exploration 95

6.4 Summary of Research 96

vii

Page

Appendix A. Fragment Data . 97

Appendix B. Source Code . 98

B.1 Fragment Create Table Statements 98

B.2 Combination Generator 98
B.3 Current MSR IO Type Search 1 101

B.4 Current MSR IO Type Search 2 102

B.5 XPath Evaluator . 103
B.6 Proposed MSR IO Type Retrieval 104

Bibliography . 106

viii

List of Figures
Figure Page

2.1. JBI Concepts [16] . 8

2.2. Base Information Object Metadata Elements [2] 12

2.3. MSR Table . 13

2.4. MSR Schema Viewer . 14

2.5. Sample Schema Instance With Hash Map 15

2.6. IOR Table . 16

2.7. Inheritance Using Extension [2] 17

2.8. XML Basic Syntax . 20

2.9. Namespacing Methods [8] . 24

2.10. Restriction [12] . 28

2.11. Using xsd:any for Optional Schema Elements [12] 29

3.1. Fragment Schema Files . 42

3.2. Component Schema with includes 46

3.3. Fragment Tables . 47

3.4. Coercion Example (geospatial frag: version 1.0 to 2.0) 55

4.1. JBI Fragment Query Tester . 73

5.1. Info Object Type Search Time Comparison 84

5.2. Fragment Query Process . 90

A.1. Fragment Data . 97

ix

List of Tables
Table Page

2.1. Namespacing Methods . 22

3.1. New MSR Tables . 48

3.2. Coercion Table Structure . 53

3.3. Coercion Table Change Descriptions 56

4.1. Fragment Schema Distribution 64

4.2. Fragment Names . 66

4.3. Preprocessing Programs . 69

4.4. Cost Comparison of Methods 76

5.1. Number of Samples per Number of Fragments 82

5.2. SQL Execution Times (sec) . 83

5.3. Performance Improvement . 85

x

List of Abbreviations
Abbreviation Page

JBI Joint Battlespace Infosphere 1

SAB Scientific Advisory Board 1

AFRL Air Force Research Laboratory 1

COTS commercial-off-the-shelf 2

JBI Joint Battlespace Infosphere 7

IEIST Insertion of Embedded Infosphere Support Technologies . 9

GA Guardian Agent . 9

HA Host Agent . 9

RI Reference Implementation 10

J2EE Java 2 Enterprise Edition 10

RDBMS Relational Database Management System 10

IOR Information Object Repository 10

IOs Information Objects . 10

MSR Metadata Schema Repository 11

COI Community of Interest . 11

CAPI Common Application Programming Interface 18

IR Information Retrieval . 18

XML Extensible Markup Language 19

SGML Standard Generalized Markup Language 19

HTML Hypertext Markup Language 19

DTD Document Type Definition 20

W3C World Wide Web Consortium 21

URI Uniform Resource Identifier 21

DOD Department of Defense . 29

RDF Resource Description Framework 29

xi

Abbreviation Page

OWL Web Ontology Language 29

CMD Common Mission Definition 30

SQL Structured Query Language 57

xii

AFIT/GCE/ENG/05-03

Abstract

The concept of a Joint Battlespace Infosphere (JBI) was first introduced by the

Air Force Scientific Advisory Board (SAB) in 1998 to realize the vision of a shared

information space. The goal of the JBI concept is to interconnect a collection of

rigid, stove-piped C2 systems to a shared information space which will perform ag-

gregation, integration, fusion and dissemination of relevant (i.e., semantically related)

battlespace information which will enable the most effective and timely decision mak-

ing.

The JBI Reference Implementation (RI) developed by the Air Force Research

Laboratory (AFRL) in-house team is a suite of core web services, persistence, security

and client interface methods that is implementing the SAB vision incrementally by

adding new key services with each version release. While great improvement has been

realized with each successive release, the engineering of the the basic unit of data

within a JBI, the information object (IO) has only been minimally addressed.

This research proposes an IO engineering methodology that will introduce com-

ponentized IO type development. This enhancement will improve the ability of JBI

users to create and store IO type schemas, and query and subscribe to information

objects, which may be semantically related by their inclusion of common metadata

elements. Several parallel efforts are being explored to enable efficient storage and

retrieval of IOs. Utilizing relational database access methods, applying a component-

based IO type development concept, and exploiting XML inclusion mechanisms, this

research improves the means by which a JBI can deliver related IO types to subscribers

from a single query or subscription. The proposal of this new IO type architecture

also integrates IO type versioning, type coercion and namespacing standards into the

methodology. The combined proposed framework provides a better means by which

a JBI can deliver the right information to the right users at the right time.

xiii

A JBI Information Object Engineering Environment

Utilizing Metadata Fragments for Refining Searches

on Semantically-Related Object Types

I. Introduction

In recent years, technology improvements have led to a dramatic increase in

the amount of information available to military decision makers in the war-fighting

arena. Interoperability of the systems which deliver this information has not seen such

improvement, and consequently, the situational awareness for decision-making has not

improved. Insufficient information has been replaced with information overload. The

new challenge is the aggregation of all this data while delivering the appropriate

level of information to users at all levels. Getting the right information to the right

people at the right time will provide a rich “information landscape” that will ensure

information dominance in future engagements. The concept of a Joint Battlespace

Infosphere (JBI) was introduced by the Air Force Scientific Advisory Board (SAB)

in two technical reports: “Information Management to Support the Warrior” [1] and

“Building the Joint Battlespace Infosphere” [26]. A team was formed within the Air

Force Research Laboratory Information Directorate (AFRL) to realize the vision of

a shared information space. The ultimate goal of the JBI concept is to interconnect

a collection of rigid, stove-piped systems to a shared information space which will

perform aggregation, integration, fusion and dissemination of relevant battlespace

information which will enable the most effective decision making. Even though much

development has already been accomplished towards realizing the vision of the SAB,

the JBI concept is still a work in progress. As such, there are many issues that

have yet to be explored to develop the optimum solution to fulfilling this information

need. The complexity of integrating such a large volume of data requires that some

method of indexing, cataloging and/or referencing be employed to assist the end user

1

in locating their pertinent information. Those issues are what prompted this research.

The goal of this research is to explore the repository storage and object retrieval

mechanisms within the JBI to determine whether improvements can be made to the

services provided by a JBI.

1.1 Background

The JBI is a combat information management framework that provides indi-

vidual users with the specific information required for their functional responsibilities

during crisis or conflict. The JBI integrates data from a wide variety of sources,

aggregates this information, and distributes the information in the appropriate form

and level of detail to users at all echelons [26]. The previous two statements are a bit

misleading, because they speak of “the” JBI, when in fact the concept described is “a”

JBI instance. The JBI is not one central system that supports all operations. Rather,

a JBI is established when deemed necessary, based on the development of a crisis or

contingency. Of course, some ongoing operations will require a constant JBI. The JBI

concept provides a standards-based open system and extensible infrastructure upon

which legacy, evolving and future information systems will operate [19].

A JBI ”Platform” consists of the set of core services which allow clients to

store and retrieve information objects from a JBI data store. The platform contains

an application server, data storage technology and client interface methods. The

platform uses the subset of web services consisting of publish, subscribe and query to

allow clients to store and retrieve objects of interest.

The Air Force has made a significant investment in its own science and technol-

ogy sector while still taking advantage of the advancements made in the commercial

sector and with commercial-off-the-shelf (COTS) technologies. The involvement of the

Air Force science and technology community is required to ensure the many unique

requirements of military operations are addressed. To spur rapid advancement, there

have been several experimental JBI prototypes developed in past years. Each instance

took a differing technical approach to development with a focus one or more of three

2

main areas: user connections through middleware, integration of legacy C2 systems

and development of enabling science and technology.

1.2 Research Objectives

The objective of this research is to improve the quality of service provided by

the JBI. It should be anticipated that once fully deployed, a particular instance of a

JBI must be significantly scalable. It is easy to envision this need because today’s

typical military operation is a large scale operation of short duration. Therefore, a

JBI instance can range from a small day-to-day State-side operational information

exchange to supporting a large Air Operations Center coordinating a Joint Force

operation over an entire region of the world.

It may be difficult to quantitatively measure the improvement realized from a

system that is still in development and does not have a large scale deployed model

on which to make an evaluation. However, this research focused on modifying the

structure of the basic unit of measurement within a JBI, the Information Object (IO).

That, in turn, will directly impact how easily a JBI delivers the right information

to the right users because it introduces a new way to relate previously unrelated

but potentially equally relevant information. What can be measured is how much

relevant information is published that should be delivered to a user and how much

of that relevant information the user received for a defined information need. This

evaluation of the improvement achieved with the proposed solution must take into

account how much “effort” was expended to retrieve this information.

The current effort expended by a user to retrieve data from a JBI platform

through subscribe or query is finding the right information server and then finding and

subscribing to the particular data objects of interest. Objects within a platform are

of a specific object type as described by their metadata schemas. A single subscription

is for objects of any single object type. The current level of service required to

perform these operations requires that the user knows how to find and connect to the

particular platform on which these objects are stored and that each object type of

3

interest be subscribed to or queried individually. Simply stated, there are no current

semantic correlations between object types nor is there a method of discovery of JBI

platforms. Whereas the current JBI reference implementation only allows a search

by a single object type, this research introduces an object type correlation that will

instead allow users to do an expanded search to include multiple object types with

common components, thereby allowing the user to search across all object types with

these common components.

1.3 Assumptions

Several assumptions are required to allow a proposed improvement to be imple-

mented and evaluated. Most of these assumptions are required due to the fact that

the JBI implementation is still in development and undergoing significant changes

with each new release. As such, there is no typical user and no typical platform

parameters. It is in these areas that assumptions are made that may not accurately

reflect what will become the common platform or user. These assumptions are:

• There is only one JBI platform over which a subscription or query can be ex-

ecuted. This assumption is to aid in evaluation and because there is currently

no mechanism for platform discovery.

• The user modeled is not assumed to know the structure of every IO (this is

to model a large IO environment, with too many objects to manage by a user

with information needs). However, it is also assumed that there are certain

metadata conventions within the platform for common elements and these will

be available in a platform catalog to enable the user to build relevant queries.

• It will be assumed that there are a certain number of metadata component

sections (i.e., fragments) that are used within multiple object schemas and

that would be likely candidates to be reused (and useful for a standardization

methodology). For simplicity and to enable cost/benefit analysis, it is assumed

these usable metadata stubs will be less than 100.

4

1.4 Approach

The first step in proceeding with this research was to become familiar with the

JBI concepts, definitions and structure of the JBI Core Services Reference Imple-

mentation (currently Version 1.2). To explore the possibility of creating some type

of index or catalog of information objects, it was necessary to understand how they

are created and stored. Other previous attempts to model this type of domain were

studied.

After learning as much as possible about the problem context and similar areas,

a solution was hypothesized that focused on the methods for defining and creating

new object types and the storage and retrieval mechanisms of data objects. To im-

plement and test the proposed solution, a sample JBI platform was installed and

configured. The database storage system was copied and then modified to conform

to the proposal parameters. The storage modifications and other improvements are

discussed in Chapter 3. To evaluate the improvements, a test application was de-

veloped to compare the proposal to current available methods. This application and

preprocessing requirements are detailed in Chapter 4. Evaluation of the method and

implementation suggestions are in Chapter 5.

1.5 Research Sponsor

This research is a cooperative effort with its sponsor: AFRL Information Di-

rectorate, JBI Branch (AFRL/IFSE) whose mission statement includes “Conducts

and sponsors advanced research which directly impacts future joint C2ISR operations

by striving to achieve the Joint Battlespace Infosphere vision developed by the AF

Scientific Advisory Board” [4].

1.6 Summary

The objective of this research is to improve the quality of the services provided

by the JBI. An additional goal was to implement a solution that did not introduce a

5

great processing burden on the system that handles the storage and retrieval process

of published objects, but the focus was on reducing the burden on the users to have

a lot of foreknowledge of what they are looking for. This is where the current system

falls short—the current user must know what they are looking for and where they can

find it. The greater the volume of data that is stored in this framework for information

exchange, the more it needs to assist the users in locating the right data to fulfill their

information needs.

The remainder of this research is as follows: Chapter 2 contains more thorough

explanation of the JBI architecture and other background information. Chapter 3

discusses a performance-enhancing methodology and the approach to the problem

solution. Chapter 4 provides the results of the solution implementation. Chapter 5 is

an analysis and interpretation of the results. Finally, Chapter 6 provides a conclusion

and recommendations for future work.

6

II. Background

2.1 Introduction

In this chapter, background material is presented that pertains to this topic of

research. Definitions and emphasis are provided as necessary to provide understanding

of some of the key issues.

2.2 JBI

The Joint Battlespace Infosphere (JBI) concept is introduced in Chapter 1.

Much of the material here is provided to better illustrate its architecture and critical

components.

2.2.1 Key Concepts. A JBI is built on four key concepts [26]:

1. Information Exchange through “publish and subscribe”.

2. Incorporation of military units assigned to the battlespace via force templates.

3. Transforming data into knowledge via data fusion applications (i.e., fuselets).

4. Distributed collaboration through shared, updateable knowledge objects.

An illustrative view of these concepts is shown in (Figure 2.1).

An explanation of these concepts follows (derived from [26]):

2.2.1.1 Information Exchange through Publish and Subscribe. Users

and client programs can publish information to a JBI where it is stored as an ob-

ject. Objects contain both their representative information (e.g., text, image) and its

metadata (describing the object). Subscriptions contain search predicates on meta-

data fields. When an object is published to a JBI, platform subscribers receive this

newly published object. The subscription server may deliver the object to a program

or a user. The form of the delivered object will depend on whether the subscriber is

a user or a program.

7

Figure 2.1: JBI Concepts [16]

2.2.1.2 Unit Incorporation via Force Templates. Force templates are

the standardized information exchange templates for publish and subscribe for a spe-

cific type of unit (i.e., one of the units of “force” in the battlespace). These templates

include standard descriptors which are required by every unit and then unit-specific

attributes unique to that specific unit (e.g., fighting or support).

2.2.1.3 Transforming Data into Knowledge via Fuselets. A program

that subscribes to data in the JBI is called a fuselet. A fuselet takes one or more

information objects and manipulates them to produce new information. In this re-

spect a fuselet is a scaled down version of an applet or servlet, with the specific task

of performing data fusion. Data fusion can exploit multiple individual data compo-

nents by creating a more useful information object through data integration. This

is especially useful for increasing the reliability of data through redundancy, pro-

cessing multi-sensor data for increased spatial or temporal coverage and integrating

complementary information to produce information gain [18, 20]. The transformed

information may be in the form of one or more new information objects that are sub-

8

sequently published to a JBI. Fuselets fall into different categories (Some are listed

below):

1. Fuselets can transform data through manipulations such as filtering, sorting, or

generalizing.

2. Fuselets can aggregate similar data (unify information objects of the same type).

3. Fuselets can integrate data (unify multiple different information objects into

some kind of single type).

4. Fuselets can mediate data (bring into equal membership diverse types and/or

formats of information).

2.2.1.4 Distributed Collaboration through Shared, Updateable Knowledge

Objects. Users interact with a JBI in many different ways. At a command center,

an entire model of the battlespace can be represented on a planning display, while out

in the field a soldier may have a personal digital assistant with which he can report

the presence of an enemy tank. After the soldier publishes the tank’s presence, the

command center display may be updated by manipulations of the data received in

response to a subscription.

An initiative to support disadvantaged (e.g., systems with limited ability to

process complex data) and legacy C2 nodes in their participation in the JBI net-

centric concept has been initiated. This effort, Insertion of Embedded Infosphere

Support Technologies (IEIST), is being explored by Air Force Research Laboratory

(AFRL) with support from The Boeing Company. IEIST allows the integration of

embedded tactical systems into a JBI through the support of a re-locatable off-board

software agent (called a Guardian Agent (GA)). A Host Agent (HA) will reside as

a “thin client” (i.e., a very small client supported by the bulk processing of a host

server) on the tactical platform to act as an interface between the legacy system and

the GA. IEIST Force Templates extend the JBI Force Template concept. However,

unlike force template definitions, the information needs and generation capabilities

9

of these communication systems will include the information the GA needs to assist

with the information exchange [24,25].

2.2.2 Architecture of Reference Implementation. The JBI Reference Im-

plementation (RI) is the Air Force Research Lab’s implementation of the JBI vision

detailed by the Scientific Advisory Board. The first release to offer object persistence

was Version 1.0 (March 2003), which had the following structure:

• Information Object Model Version 1.0

• Common API (CAPI) Version 1.0

• Information Dissemination Infrastructure (Publish/Subscribe/Query)

• MSR and IOR, in both MySQL and Oracle versions

• Security Infrastructure

• MSR and Security Administration

Subsequent releases have redesigned some architectural components and im-

proved capabilities. They have also added sample clients implemented using the

CAPI methods. The release used for this research was Version 1.2 (October 2004).

Version 1.2 is built on top of the Java 2 Enterprise Edition (J2EE) using the open

source JBoss Version 3.2.3. MySQL (4.0.20 or greater) is the underlying default Re-

lational Database Management System (RDBMS) (Oracle 9i/10G is also supported

as an option).

2.2.3 Information Objects (IOs). Items of data stored in a JBI Information

Object Repository (IOR) are in the form of Information Objects (IOs). Hereafter in

this document, an information object will be referred to as an IO or multiple objects as

IOs. IOs have a particular structure (e.g., text, image), content (termed its payload)

and a metadata representation (that is, data about the data).

There is an important distinguish between an IO and an IO type. An IO type

is the defined format for an IO. Analogous to object-oriented definitions, an IO type

10

is like the object class definition and an IO is an instance of a class. Each IO type

has a fixed metadata schema format. These schemas reside in a Metadata Schema

Repository (MSR). IOs can extend to other IOs in a parent-child tree structure. These

schemas currently have no predefined structure other than a core set of base metadata

for all objects (currently Version 1.0 Information Object Metadata Standard) and each

IO type has its own fixed schema across all objects of the same specific type. Since

there are no defined namespaces other than the base metadata, there is no catalogue or

index of metadata tags, and no prescribed correlation between object types. Metadata

schemas are defined in an extensible markup language (XML) format. IOs and their

metadata are stored in a relational database format wherein the relative paths within

the schema are used as row identifiers (hashed to a value based on each unique path)

and the value of the tag at that path is stored at that row location in the table.

Although this is an awkward format for XML document storage, it is a very common

method because relational databases are so prevalent and the stored documents do

not need to be parsed to perform searches. Of course, there still exists the effort

involved to parse and store the data.

All IO definitions start with the base IO structure. In this sense an implicit

hierarchy of IOs is in place. The goals of the object type hierarchy include [9]:

• Organizing the set of types to facilitate human and machine searching of the

related metadata elements

• Simplifying the expression of policies over the type hierarchy, and

• Providing a mechanism for obtaining all child subtypes by subscribing to a

parent type.

The other structural hierarchy for IOs is built into the MSR, in which IO schemas

are stored in a tree-like directory with one or more packages containing one or more

IO types per package. The segregation of object types by packages allows each Com-

munity of Interest (COI) to define shared IO types of interest for their organizational

11

unit, within a common JBI platform [9]. Essentially, these packages are just a file-like

directory structure.

Each IO type is composed of a set of metadata elements in an XML *.xsd

schema (See Section 2.3.2 for more on XML Schema). These metadata elements can

be any valid XML elements except the base object metadata format which is fixed

for every platform. The base IO metadata schema is shown in Figure 2.2. These

Figure 2.2: Base Information Object Metadata Elements [2]

elements represent the only required metadata in any schema. Any other object type

metadata elements are at the sole discretion of a JBI user who has permission to add

schemas to a JBI platform. This conformity is enforced by the platform at object

12

type creation time. Thus, the base object elements are the only IO type metadata

standardization across all JBI platform implementations.

2.2.3.1 Persistence. The platform maintains a client account and ac-

cess privileges store as well as a separate MSR and IOR using the underlying RDBMS.

IOs have separate storage for their metadata and payloads. The MSR stores a schema

using the table shown in Figure 2.3. One IO type is stored per row and the entire

XML representation of the schema is stored in the “schema” field. The JBI platform

interface for viewing schemas is shown in Figure 2.4. This platform interface con-

Figure 2.3: MSR Table

tains links to the full text for each schema in a tree structure by package. When the

MSR is populated with many schemas, this interface loads very slow. This is likely

due to a combination of factors: the large data type for the schema column in the

MSR database table limiting the number of rows that may be returned (larger row

sizes means less rows can fit in cache blocks), machine memory limitations, and the

potentially large size of individual schemas.

13

Figure 2.4: MSR Schema Viewer

The IOR storage process and structure is more complex. Each IO type has

its own table for storing the extent of IOs of that type. Within that table, each

relative path of a node in the XML metadata tree is hashed to a unique numerical

value using an XPath-to-SQL-92 conversion tool. Hash values are prepended with the

string “ior” and negatives are changed to underscores (because databases do not allow

negative signs in column names). This allows the entire object schema to be stored in

a “flattened” database format by node. The payload is stored as an untyped BLOB

(Binary Large OBject). To illustrate the mapping assignments, a sample schema

instance with its corresponding hash map (by node number) is shown in Figure 2.5.

A sample IOR table is shown in Figure 2.6.

The conversion tool also allows an XPath expression to be converted to a SQL

expression for searching on these stored values. This process has a drawback in that

repeated metadata paths within a metadata tree are not supported because they will

hash to the same value. Consequently, the IO will retain all the distinct values stored

at that repeated path, but only the last hashed/stored value will be available for

14

1

2

3

4

5

6

7

8

(a) Schema Instance

(b) Schema Instance Hash Map

Figure 2.5: Sample Schema Instance With Hash Map

15

predicate matching in the table. At the onset of this research, other tools were being

explored to alleviate this problem. For the purposes of having continuity within the

context of this problem study, only the current method was used in this research.

Figure 2.6: IOR Table

2.2.3.2 Information Object Versioning. IO type Versioning has been

envisioned since the introduction of the IO type in the Air Force Scientific Advisory

Board JBI reports. This capability will allow a client to request a specific IO type

version of which it has knowledge. Version elements have already been included in

the base object metadata. An optional element also envisioned and added to the

base object structure; Coercion, allows a translation (if allowed) from one version to

16

another to allow greater information interoperability. These capabilities are not yet

integrated into the JBI RI.

Since this research is focused on the IO type structure and storage mechanisms,

methods for versioning and coercion are critical components. As there are no stan-

dards or methods in place to address these functions, a proposal for their integration

is included in Chapter 3.

2.2.3.3 Information Object Inheritance. Inheritance to support the

objectives described in Section 2.2.3 is described in [2] as descending all IO types from

the base object type using extension capabilities of the XML Schema specification.

An example illustration in a JBI context is shown in Figure 2.7.

Figure 2.7: Inheritance Using Extension [2]

In this example, “Geospatial” is a new type created by extending from “BaseOb-

ject”. The additional elements added are the “GeospatialData” elements. This ex-

tensibility of XML is perfect for allowing structured data design. However, there are

many problems with this approach (which suggests spiraling inheritance from the base

object on downward), some of which have been detailed in [21]. These obstacles are

17

discussed further in Chapter 3, where an engineering methodology is proposed for the

IO structure.

2.2.4 Common Application Programming Interface. The Common Appli-

cation Programming Interface (CAPI) (draft version) provides client developers with

a single, common interface to any JBI platform implementation. This allows for the

development and deployment of several different platform implementations without

impact to JBI clients and the information objects they exchange [5].

2.2.5 Information Dissemination. Information exchange and IO persistence

are managed by the JBI platform. The platform maintains an MSR and IOR of meta-

data schemas and IOs (respectively). Before allowing a client to publish, subscribe or

query, permission is requested to verify the IO type and version details against the

user rights. If the user is granted access, a publisher sequence, subscriber sequence,

or query request is executed.

2.2.6 Information Retrieval. A useful Information Retrieval (IR) system

should address the efficiency with which it matches users to documents (or in this

case, IOs) based on their information needs. The development thus far of the JBI

core services has not yet adequately addressed some important aspects of IR. This

research will attempt to bridge these gaps.

IR efficiency can be viewed as a process of determining the degree to which

an information need is filled by an information request. In a JBI, the mechanisms

of information dissemination (publish/subscribe/query) are only part of the process.

Schemas have elements that can be matched using relative data paths, but the JBI

platform architecture does not lend itself to efficient searching using these predicates.

The one table per IO type structure of the IOR requires either:

1. a union of all IOR tables, or

2. an iterative IOR table search

18

to find every IO type with the same relative metadata path. Even if the platform

service subscription method did not restrict a subscription to a single IO type, this

type of searching is wholly inefficient.

The structure of the metadata representations of IOs are ideally suited to build

a framework for relating IOs in some topical or semantic way. An exploration of the

metalanguage used to describe IO types is the topic of the next section.

2.3 XML

Extensible Markup Language (XML) is a simplified form of the Standard Gener-

alized Markup Language (SGML) [13]. It is a meta-markup language that was created

to describe data. Unlike the Hypertext Markup Language (HTML), which was de-

signed to describe how content should be displayed on a web page (using predefined

tags), XML was designed to describe the data content itself.

2.3.1 XML Rules. XML rules of syntax are very strict and thus, very

simple to use. For this reason, parsing software has been very easy to create and use.

XML documents that adhere to these syntax rules are said to be well-formed (see

Figure 2.8). The basic rules are:

• The first line of an XML document describes the XML version and encoding.

• Tagged document items are called elements and elements can have attributes.

• The next line after the version and encoding must be the root element of the

document, and all elements must have a closing tag.

• All other elements must come between the root element opening and closing

tags and must be properly nested.

• XML element names are:

– case sensitive,

– can consist of letters, numbers, and other characters,

19

– cannot start with a number or punctuation character or the letters xml (in

any case), and

– cannot contain spaces

• Attributes of elements must always be quoted.

• White space is preserved (unlike in HTML.)

• Comments are written as shown.

• Elements can have mixed or empty content.

Figure 2.8: XML Basic Syntax

2.3.2 XML Schemas and DTDs. XML documents can be made to conform

to a specific structure through the use of a defined XML Schema format or Document

Type Definition (DTD) format. Each of these models can be used to validate an

instance XML document against a prescribed format, but the advantages of using

XML Schemas over DTDs make the choice of using XML Schema an easy one. Some

of these advantages are:

• XML Schema allows the use of more than 44 data types versus only 10 for

DTDs.

• XML Schema allows more constraints to be placed on data types to more strictly

define a specific format (e.g. users can be forced to represent a decimal number

20

to 2 fractional places for a currency element to pass validation constraints in an

instance document).

• The syntax is the same as for XML instance documents and thus, much easier

to read and understand.

• Types can be extended or restricted as in an object-oriented sense (critical to

applying inheritance to the IO structure).

• XML Schema allows elements to have null content (may be critical to allow JBI

cross platform conformity to standardize certain base schemas).

• XML Schema allows multiple same named elements, but with different content.

• XML Schema allows substitutable element names (this will allow a COI to

redefine an acceptable standardization to conform to their vernacular)

2.3.3 XML Namespaces. The World Wide Web Consortium (W3C) envi-

sioned reuse and modularity of XML schemas in software modules. For this reason,

the mechanism of XML namespaces was created to qualify attribute and element

names with a Uniform Resource Identifier (URI) [10]. Namespaces are useful for

avoiding collisions when there might be multiple commonly named elements in differ-

ent namespaces because these elements can be qualified with a namespace prefix and

colon before the element name (e.g., <my-namespace:element-name>). Furthermore,

schema file names which contain appended version numbers can be used to distinguish

between differing schema versions of the same IO type (e.g., myschema 1 0.xsd and

myschema 2 0.xsd to represent versions 1.0 and 2.0 of myschema).

2.3.3.1 Namespace Methods. The W3C specification only provides the

definition of and guidelines for declaring namespaces. Many of the W3C contributors,

as part of the xml-dev list group, have been developing a set of XML Schema best

practices to assist developers with choosing the best way to use namespaces in their

projects that will deal with multiple schemas. This type of guidance is rightly not

addressed in the namespace definition documents, but is needed for projects which will

21

Table 2.1: Namespacing Methods
Method Description
Heterogeneous Give each schema a different targetNamespace
Homogeneous Give all schemas the same targetNamespace
Chameleon Give the “main” schema a targetNames-

pace but no targetNamespace to “support-
ing” schemas (supporting schemas will take
on targetNamespace of main schema, like a
chameleon)

contain many schemas (like this research). One result of this collaborative effort has

resulted in the definition of three different namespacing approaches. A combination of

these approaches may be suitable for this research, although the issue of namespaces

has not yet been addressed in the JBI Reference Implementation (RI). Table 2.1 and

the example illustrations that follow are adapted from [8].

The project undertaken will dictate whether one of these methods or a combi-

nation of these methods will be used. Since the latest version of the JBI RI does not

support custom namespaces, this research includes suggestions for the incorporation

of namespace methods into a later release. To aid in the understanding OF the vari-

ous namespacing techniques, Figure 2.9 provides a simplified illustration of the three

methods.

Heterogeneous

• Use when there are multiple elements with the same name. (to avoid name

collision)

• Use when there is a need to visually identify in instance documents the orig-

in/lineage of each element/attribute. In this design the components come from

different namespaces, so you have the ability to identify in instance documents

that “element A comes from schema X”.

• Note in the heterogeneous example that namespaces “Q” and “R” both define

“Proxy” schemas which are used in the “Z” namespace schema. The multiple

22

namespaces allow both formats of this similar component to be declared and

used inside the same schema.

Homogeneous

• Use when all of the schemas are conceptually related

• Use when there is no need to visually identify in instance documents the origin/-

lineage of each element/attribute. In this design all components come from the

same namespace, so the ability to identify in instance documents that “element

A comes from schema X” is lost. In those situations where it is not required to

categorize elements/attributes differently, this design approach is well suited.

• In the homogeneous example, both component schemas and the integrated

schema with the “include” declarations are from the same “Library” names-

pace.

Chameleon

• Use with schemas which contain components that have no inherent semantics

by themselves,

• Use with schemas which contain components that have semantics only in the

context of an including schema,

• Use when it is not necessary to hardcode a namespace to a schema, rather the

goal is for including schemas to be able to provide their own application-specific

namespace to the schema.

• Note that there are no namespace declarations in the chameleon example “Q.xsd”

and “R.xsd” schemas, so any type definitions in these schemas are in a sense“coerced”

to the “Z” namespace.

As a rule of thumb, if a schema just contains type definitions (no element dec-

larations) then that schema is probably a good candidate for being a Chameleon

schema.

23

HOMOGENEOUS

HETEROGENEOUS

CHAMELEON

Figure 2.9: Namespacing Methods [8]

24

When using the chameleon approach with element declarations, there is always

a possibility of name collisions if the data type of any complex type within the inte-

grating schema is defined in more than one of the “included” or “imported” schemas.

In the provided chameleon example, assume Q.xsd and R.xsd each contain a unique

complex type definition named “PersonType”. If an element is then declared in the

Z.xsd schema which is of this data type, there will be a collision on this element.

If the JBI RI is to take advantage of namespaces, it should use heterogeneous

methods, as this allows the greatest flexibility for multiple platforms. Not only will

this allow clients to declare identically named data types within their own platforms,

but they will be able to use the commonly defined data types of a central JBI names-

pace. The benefit of central namespace definitions is that IOs from multiple platforms

will conform to a single type definition and there can be greater cross platform data

sharing and integration.

2.3.4 XPATH. XPath is a non-XML language used to identify particular

parts of XML documents [15]. An XML document is represented as a node tree and

the XPath language allows the selection of any node by element traversal. Seven

kinds of nodes are recognized [15]:

• The root node

• Element nodes

• Text nodes

• Attribute nodes

• Comment nodes

• Processing instruction nodes

• Namespace nodes

The basic syntax of XPath resembles file system addressing. The node-searching

expression in the XPath language is the location path. An absolute path (from the root

25

node) is represented as “/” and an all-descendants selection (relative and absolute) is

represented by “//”. As in file system addressing, a “..” represents the parent node

and a “.” represents the current node. Several wildcards are also available to build

these expressions.

XPath expressions are used to build predicates by using relational operators to

match element and attribute values at the location specified by the XPath expression.

The expression finds the matching node paths and the predicate tests the node (as

a filter) for a match. The process continues until the predicate is tested against all

matching nodes.

2.3.5 XML Inclusion Methods. There are two useful XML techniques for

building larger schema documents from smaller modular components. These methods

are considered in this research for their usefulness as it pertains to building IO types

from smaller schema segments.

The XML Inclusions (XInclude) Version 1.0 W3C Candidate Recommendation

defines a namespace associated with the URI http://www.w3.org/2001/XInclude (17

September 2002) [6]. The XInclude namespace contains two elements with the local

names include and fallback [22]. The syntax allows multiple inclusion references

to other XML documents. If the referenced inclusion element is not available, the

fallback element can specify default behavior. Essentially, using an XInclude reference

within an XML document is analogous to using a “#include” in the C programming

language. When the included item is fetched and processed, the section of the parent

document with the include is just replaced with the fetched document (or section of

document using another mechanism, XPointer). This recommendation is still under

development and there are limited parser tools available to handle the overhead of

processing the includes. Furthermore, many of the papers, example documents and

tutorials available on XInclude use XML document development and not schema

development. This may be due to the fact that XML Schema has its own mechanism

26

for inclusion. For these reasons, the XML Schema include and import methods are

preferable for this research problem.

The XML Schema Part 0: Primer Second Edition W3C Recommendation (28

October 2004) has two elements specifically available for including schemas within

other schemas [7]. The include element allows the reference to another schema within

the same target namespace as the main schema. The import element allows inclusions

of schemas from other namespaces. As with XInclude, it is the responsibility of the

schema processor to insert the included and/or imported schemas before attempting

instance validation. But unlike the XInclude method, there are many processors

available that recognize the XML Schema syntax of include and import (such as

Xerces) and will perform the preprocessing as part of the validation.

2.3.6 XML Validators. A valid XML instance document is one that con-

forms to the target schema declared (if any) in that document. An example of this

declaration is xsi:schemaLocation=“http://www.myjbinamespace.mil”. If schema val-

idation is enforced in an application, instance documents (*.xml) are compared to the

referenced schema document (*.xsd). When a document does not conform, the ap-

plication can reject the instance outright or correct it. Validation checks are made to

both form (the proper number and ordering of elements and attributes) and content

(valid element data type values). In addition to Xerces, there are many other free

XML Schema parsers and validators.

2.3.7 Distributed Schema Design. XML Schema has several methods for

mimicking inheritance through extensible schema design. Leveraging these tools al-

lows for distributed schema design, unlimited element and attribute vocabularies, and

aggregation of data for semantically related topics. Distributed schema design allows

multiple users (or teams of users) to work independently to develop and control the

evolution of smaller modular schema components or user-defined data types. Users

who find a need for a small schema component with or without some minor modifica-

27

tions can reuse these pre-defined data types (or derived data types using restriction

or extension) on included or imported schema elements.

Using a restriction base, a new type can be declared that either eliminates some

elements from the base type, or restricts the range of values or number of instances of

an element allowed in an instance document. Extension allows the use of the base type

with additional elements added to the new type. Extension most closely resembles

object inheritance in the classic sense. Figure 2.10 provides a simple illustration of

restriction. In this example a “Publication” type was initially designed to allow multi-

ple authors. A restrictive type was extended from this to “SingleAuthorPublication”

which removed the unbounded value of the maxOccurs attribute from “Author” (the

unbounded property allows multiple instances of an element in an instance document,

the default is one instance). The ”ZeroAuthorPublication” restriction also extends

from the ”Publication” type and eliminates the “Author” element completely. Ex-

tension was first illustrated in Figure 2.7.

Figure 2.10: Restriction [12]

Another tool that allows great flexibility in schema development is the use of

the xsd:any element. Adding this element at the end of a schema allows an in-

28

stance document to include any unnamed element to an instance document and still

pass validation. There is also a similar mechanism for allowing additional attributes.

Figure 2.11 shows this element added to a book schema. Setting minOccurs = “0”

designates that adding an element is optional.

Figure 2.11: Using xsd:any for Optional Schema Elements [12]

2.4 DOD Metadata Registry

The Department of Defense (DOD)has established a registry [3] to promote

standardization of metadata across all branches of the military. The registry has

been made easily accessible to users at all levels to facilitate shared data exchanges

by conformity to the XML formats. There is representation from many areas such as

contracting, logistics, aircraft, etc.

Although is a useful tool, perusal of a small sample of schemas in the registry

immediately showed that each community was using a different representation stan-

dard. For example, one schema used a combination of Resource Description Frame-

work (RDF) and Web Ontology Language (OWL), which are standards for describing

resources on the web. Other schemas were in DTD format and still more were using

29

XML Schema. Since each format must be processed differently, it is not so simple

to integrate such a disparate collection of schemas into a platform that has been de-

signed to process data in a single format (in this case, XML Schema). Because the

registry proposes no single format for its nearly 60,000 elements and greater than

2,300 schemas, the information will not be easily exported to other domains. There

is a downloadable Microsoft Access database that contains many (but not all) of the

elements. An application can be designed to export these elements into a standard

format (such as XML schema) where they would then be more useful to the JBI

community, as a starting point for defining a basis library of schemas.

The DODMDR is not the only place where common metadata definitions have

been explored. There is a working group with members of more than a dozen Air

Battle Planning organizations, who have a working draft of a Common Mission Def-

inition (CMD) Information Model for their community and namespace [17]. In their

latest draft, they have defined 88 XML metadata complex types related to Air Bat-

tle Planning. This information model is also a useful place from which to extract a

common metadata library.

2.5 Summary

This chapter contains an examination of applicable background information

that was explored to achieve the goals of this research. Specifically, it covers the

JBI components, architecture and information exchange mechanisms. Then there

is an exploration of the XML metalanguage and some of its components, standards

and restrictions. Using what can be learned from this relevant information, specific

methods are used in this research proposal or are included in the implementation

recommendations.

The remainder of this document contains the methodology proposal (Chapter

3) and the implementation (Chapter 4) of the recommendations used to alleviate

the problems addressed by this research endeavor. Chapter 5 provides an analysis

30

of the tests used to evaluate this proposal. Finally, the conclusion and future work

recommendations are contained in Chapter 6.

31

III. Methodology

3.1 Introduction

The goal of this research is to improve the quality of service delivered by a

JBI by introducing a new information engineering framework for Information Object

(IO) schemas and thereby improve IO retrieval within a JBI. In Chapter 1, the IO is

introduced as the basic unit of data within the JBI. There are limitations associated

with the basic construct of an IO schema, as it is currently defined. The impact

of these limitations imposes a great burden on clients (who create schemas for the

objects, publish objects, subscribe to objects and/or query for objects) and on the

JBI core services (which handle the overhead of storing the published objects and re-

turning the stored objects to clients based on subscription and/or query parameters).

This chapter expands on the ramifications of these limitations as it pertains to the

quality of information retrieval. It then proposes a solution that will alleviate the

burden imposed by the current IO schema structure. After the problem is defined

and the solution approach is outlined, there is a discussion of evaluation techniques

and predicted outcomes.

3.2 Problem Definition

The primary problem addressed is that there is no common methodology, frame-

work or standardization for structuring and defining new IO types. In addition to

defining an approach to remedy this shortfall, several other significant improvements

are realized. These are:

1. A technique for searching across related objects,

2. More effective use of database storage space in the Metadata Schema Repository

(MSR),

3. Reduction in the time needed to build schemas, and subscribe to and/or query

for objects,

4. Elimination of overhead associated with introducing revisions to object schemas,

32

5. Definition of standards and methods for versioning and coercion,

6. Reduced IO type knowledge required by users to do a more thorough search of

available objects, and

7. Promotion of the use of namespaces to allow standardization and reuse of base

schema components across multiple platforms.

3.3 Primary Objective: Common IO Engineering Framework

IO structures are defined and registered in the MSR. The actual IO comprises

both the metadata and the payload. Subscriptions and queries are matched against

the metadata fields of the IOs. Section 2.2.3 discusses the goals of the IO hierarchical

structure. The implementation thus far has not taken advantage of the extensibility

capabilities of XML schema design. The primary benefit of the package structure

as implemented (i.e. IO type schemas grouped by packages) is that it is used for

imposing policy for access rights, but it is not ideally suited to perform the additional

duty of relating objects semantically.

A significant problem with the existing hierarchical structure is that it is difficult

to construct a hierarchy of IO types using single inheritance. XML schemas are not

structured to support inheritance. A complex type within a schema can be extended

(which is similar to object oriented inheritance), but this does nothing to support

inheriting from full schemas which may be composed of multiple complex types. There

also may be no clearly defined parent in a schema composed of multiple types, so it

is difficult to say which type should be the parent.

For example, assume there are two complex types within an IO type schema:

one containing geospatial data and the other containing intelligence report data. The

hierarchical structure states that one will be defined first and extend from the base

object (as defined in Section 2.2.3.3). Then the next type will extend from this new

type, etc. Which of these components should be the parent? Will this be easier

to define for a given context? If the context is multiple reports by a stationary

33

intelligence unit, the report data may be the parent type (because the geospatial unit

is unchanging and may be just an attribute in this context), but if the report contains

satellite imagery from a U-2 spy plane, perhaps the geospatial data is more critical

and should be the parent. In either case, individual communities of interest (COIs)

may define this in either way and it immediately becomes impossible to retrieve

this possibly related data with a single query or subscription. Furthermore, neither

community may be aware of the other’s IO type definitions.

Multiple inheritance is also a problem. How is any JBI platform to relate com-

mon IO types which may inherit from more than one IO type? The package structure

of IO type schemas is insufficient because there may be an IO type that requires

some form of multiple inheritance from different components. Which package should

it reside in and who will make this decision? Even if a COI has an appointed infor-

mation manager who makes and enforces standards within that platform, how will

other platforms be able to find and subscribe to similar IO types on this platform?

These questions illustrate that it is more likely that these geospatial and report

components should be “included” elements in an IO type, instead of either one being

a parent to the other.

The solution to the problems implied by these questions first involved redefin-

ing the structure for IO type schema definitions to allow for component based schema

development. Thus, a framework is introduced by which IO type schemas are con-

structed from XML schema components.

For this work, the basic unit of information is called a fragment, and object

schemas are composed of multiple fragments. For example, all object schemas are to

consist of a base object fragment (the first defined fragment). Other fragments with

a likelihood of reuse (e.g., geospatial data) will be defined.

34

3.4 Improvements

Evaluating the improvement of the introduction of a common OI engineering

methodology can best be achieved by measuring the improvement in the other areas

impacted in the supporting objectives. Specific improvement areas are elaborated

below.

3.4.1 Multi-Object Search. Even though an obvious advantage of the IO

metadata structure would be for queries and subscriptions to search across multiple

object types (with some related metadata elements), this capability is not built into

the platform or defined in the Common Application Programming Interface (CAPI).

Therefore, any client wishing to subscribe to or query for objects with some correlation

between them would need foreknowledge of each object’s existence and structure.

Two different object types may even have tags with the exact same meaning in an

informational sense (e.g., tags named “latitude” versus “lat” and “longitude” versus

“long”), but because of naming conventions or metadata tag nesting order, they would

be totally separate with respect to a search or query. Of course, even if the metadata

were identically named and ordered, the capability to search across multiple objects

is not built into the architecture of the current version of the platform. The user

is required to build one query or subscription for each object type. This, in effect,

requires a “smart” client, which is to say, a client who knows exactly what type of

information is available for matching his information needs, as well as its structure.

The metadata schema is an opportunity to address the issue of relating IO types,

beyond the package structure, by correlating object types by subsets of the metadata

they may have in common. Even if IO types are not descendants of the same parent

type in the traditional hierarchical sense, they may express or represent semantically

related concepts. This relationship should be exploited on to the maximum extent

possible while still allowing platforms the least restrictive requirements for IO schema

formats.

35

3.4.2 Better Schema Storage Method. The Metadata Schema Repository

(MSR) stores the IO schema for each IO type within a JBI platform. The MSR table

contains a column to store the full text representation of each schema. If component

development is introduced that takes advantage of a way in which IO type schemas

may reference similar metadata stub segments, references to these similar components

(instead of repeatedly introducing the same segments into different object schemas

in the MSR) will require less space within the MSR. The present method of storing

the full schema will still be employed, but the schema will be a compact reference of

fragment file includes and the element names assigned to their corresponding types.

These schemas in the MSR will consist of one or more included components that will

be defined and searchable in another table. See Figure 3.2 for an example of this type

of schema. The corresponding non-fragment schema (with full fragment definitions),

contains 108 lines compared to the new schema which only has 16. This may also

result in a time savings when the platform fetches many IO type schemas from the

database because the result set size will be smaller and require less memory.

3.4.3 Less Effort to Build, Subscribe, Query. Each time a JBI is stood up,

it could potentially require excessive time and effort to define, build and populate

an MSR with IO type schemas. Component schema development (using fragments)

facilitates many of the MSR population tasks. Object data management develop-

ment often requires the ability to define objects which contain references to other

objects [11]. Similarly, there are likely common elements that need to be included in

different IO types. After components are defined and used to compose these multiple

schemas, a subsequent change to a component (by the addition, deletion or data-type

change of its metadata elements) does not need to be propagated through all the IO

types in which this component resides. Without component development, there would

have to be some mechanism of cataloging these similar stubs and cascading changes

to all schemas which specifically include them, as opposed to including only a refer-

ence. Component development will allow a library of common stubs to be re-used by

36

multiple users within a platform (for locally defined components) or across platforms

(for generic components from a central datastore).

Subscriptions and query mechanisms also benefit. The current architecture

requires a subscriber to know the name and structure of each IO type he wishes to

subscribe to. The platform also requires a separate subscription for each of these

types. The proposed component method introduces a method of relating similar IO

types by their common inclusion of an identical component and a method to include

multiple IO types in a subscription or query by selecting a component for the search

(rather than the IO type).

The bottom line is that this improvement provides a way of semantically relating

IO types that have common components. Although these relations are not a hierar-

chical taxonomy, it is a useful framework for object type categorization. Relating

objects semantically in this manner can allow applications to discover the relation-

ships between objects from seemingly dissimilar packages. For example, suppose that

there is a schema for representing a particular battlefield target (including location)

and a schema for describing the allocation of friendly troops (including current loca-

tion). Published objects of these types may only have geographical data in common,

but a search for all components with geographical data within a rectangular coordi-

nate system could return both of these objects (without having knowledge of their

schema types). This demonstrates the ability to obtain all IO types containing com-

monly defined geographical metadata components (i.e., latitude and longitude). The

application described in Chapter 4 demonstrates this retrieval method by fragment

specification.

3.4.4 Simpler Object Schema Revision Rules. Another problem was high-

lighted with the release of JBI Reference Implementation (RI) V1.2. With this release

there was a modification to the base object definition from V1.1. JBI platform con-

figurations have an option for enforcing schema validation. If objects created from

the old version are validated with respect to this new base object schema, the vali-

37

dation will fail. Some method of propagation is needed to update changed metadata

schemas to allow validation. If the base object schema was merely referenced in all

of the object schemas which inherit from it, this would no longer be a problem, since

only the fragment schemas referenced would be updated.

The current JBI architecture does not include standards for versioning IO types,

including what constitutes a major schema version change versus a minor change.

At the time of this research endeavor, the XML community has no standards for

versioning because of the complexity of schemas with respect to the data exchange

between producers and consumers of XML content. The focus of many suggested

rule sets is on whether a change will allow compatibility for existing producers and

consumers of data. For a JBI subscribers, a compatible version change would be one

in which current subscribers could continue to receive and process newer versions of

object types with no change to their applications. For JBI publishers, compatibility

would allow their published objects to pass validation even if their content is of an

older type than the latest version.

Object oriented database developers address this issue by grouping object ver-

sions into a particular configuration. A configuration is the version of the entire

database at a particular point in time. This is sometimes done automatically by the

Object Database Management System [11]. The JBI architecture must consider that

users will still have applications configured to deal with older schema versions after

IO types have been updated.

3.4.5 Versioning and Coercion Methods. Standards and techniques for ver-

sioning and coercion have not yet been implemented or suggested in the latest JBI

Reference Implementation (RI). Newer versions of IO types are necessary when there

are element or attribute changes, additions or deletions to an IO type. Adding frag-

ments to the mix introduces a complexity that also needs to be addressed. Coer-

cion rules are needed to facilitate the translation of IOs to earlier or later versions.

Coercion is a defined translation, per schema element, to convert objects from one

38

version to another. With an emphasis on application compatibility, this research pro-

posal includes definitions for major or minor version changes and suggests coercion

techniques. This will allow IO type schemas to evolve without negatively impacting

existing subscribers. Since fragment schemas will be the building blocks of IO type

schemas, coercion and versioning will be driven by the changes to fragments, and IO

type changes will be regulated by these fragment changes. Since the current method

of IO storage is relational databases, mechanisms are proposed that utilize the tools

available in that access method. Since fragments introduce some IO type standard-

ization, these rules will be much easier to define. These rules will be discussed in

Section 3.5.8

3.4.6 Less IO Type Knowledge Required by Clients. In Chapter 1, the notion

of how information overload has placed a new burden on the military decision-maker

is discussed. A JBI should be able to deliver all the needed information with only the

minimum schema knowledge required by the user. Using the geographical location

example from Section 3.4.3, if a decision maker wanted to know as much as possible

about a particular location grid, and there was a known geographical component

used in several schemas with location data, he would simply build a subscription or

query using only that component. In the current system, he would need to know

the existence and format of every single IO type which contains geographical data.

Furthermore, he would need to know how each IO type presented its geographical

data, because there is no standardization across platforms (although there may be

some standardization within a community of interest, which is unknown to other

platforms).

If this example was extended to account for the possibility of cross platform

compatibility, the advantages would be even more pronounced. Standard components

could be deployed with the JBI RI, and platform developers could be encouraged to

use the standardized components. If platform discovery is implemented, users could

39

easily search for information across platforms without developing platform-specific

search predicates for each platform.

3.4.7 Take Advantage of XML Namespaces. A particular JBI community of

interest (COI) may require that their users follow naming conventions defined within

their domain. However, this may not facilitate searching other platforms for similar

data (when that capability is eventually introduced). To allow maximum flexibility

for information structure implementation, IO type development has been thus far

loosely defined and limited to the base object structure.

It may be difficult to enforce conformity to a specific naming or formatting con-

vention for IO type schemas. However, as discussed in Section 2.4, there is a working

group drafting the Common Mission Definition (CMD) Information Model for the

Air Battle Planning arena and there are many communities participating in the DOD

Metadata Registry service. As these efforts illustrate, there is motivation for some

standardization. Therefore, it would be beneficial to these communities to prescribe

some of their basic metadata structures in common namespaces. These structures

could then be reused by the JBI communities that have common information needs.

The CMD effort signals a desire to maintain the greatest flexibility for sharing their

critical information with other platforms. The CMD working draft already contains

many useful XML complex types that would make suitable fragments. Since there

are a large number of participating organizations, these fragments could be stored in

a central JBI namespace which would allow ease of conformity.

3.5 Solution Approach

The approach to resolving the IO structure shortcoming was to introduce the

new IO engineering framework previously described as the primary objective. Then

the new methodology was integrated into a sample JBI. In the following sections, this

process is outlined and illustrated.

40

3.5.1 Introduce A Component-Based Schema Structure. In Section 3.3 the

fragment schema concept was introduced. The current structure of the MSR can store

fragment schemas but the fragments have to be placed in separate database tables to

allow separation of fragment types from IO types. Fragments are simply small schemas

composed of a single complex type definition (such as a “geospatial fragment). IO

type schemas are then composed of one or more frgaments. Several sample fragment

schemas have been added to the fragment table, and new sample IO type schemas

have been added to the MSR that are composed of these fragments. The new fragment

tables have been manually populated with fragment names, fragment schemas and IO

type pairs based on the sample object types published (with the assumption that this

function will be introduced into the platform upon implementation of this technique).

These tables are explained in more detail in Section 3.5.6. The sample fragment

schemas are simple and compact and are used for illustrative and testing purposes

only. They are not put forth to represent any real world recommendations. The

sample fragment schema files geospatial frag.xsd and target frag.xsd are shown in

Figure 3.1.

The full list of sample fragments used is covered in Chapter 4. Note that these

files have XML complex type definitions which are used to build sample schemas.

Thus, the fragment files are essentially a library of types. Schemas built from these

fragments include named elements which are declared to be elements of these types.

3.5.2 Fragment Naming Conventions. Some standard fragment naming

rules have been used. Let “sample” be a fragment that is to be created. XML

namespace rules require that schemas be stored in a file with a unique name within

a namespace to support validation. Therefore, to eliminate any confusion, the major

and minor fragment version will be incorporated into the fragment file name. Thus,

the naming conventions are:

41

(a) geospatial fragType complexType

(b) target fragType complexType

Figure 3.1: Fragment Schema Files

42

• Fragment versions: As in IO type schema versioning, major and minor version

changes should be tracked for fragments (e.g., Version 1.0 denotes Major version

1, Minor version 0).

• Fragment file name: sample frag majorVersion minorVersion.xsd. Ex-

ample: geospatial frag 1 0.xsd

• Complex type name defined in fragment file: sample fragType

• IO type and IO type schema file name: IO type schema names require that the

major and minor version be appended to the file name.

IO type and IO type schema file names should be meaningful to a platform community

but will not be used for fragment searching. As with the current method of searching

by IO type name, this proposal provides methods for searching by fragment names

without knowing IO types.

These naming conventions make fragments very flexible because individual COIs

can control naming their fragment and IO type schema elements while still following

a standard that allows other COIs to subscribe to and query for the known fragment

structures. Since thoughtful consideration has already been given to the battlespace

elements in the DOD Metadata Registry and the Common Mission Definition pro-

posals, these should be used to create the critical base fragment elements.

3.5.3 Fragment Schema Elements. It is desirable that changes to the base

elements of these fragments are minimal and infrequent. When changes are needed,

they should be made through the additions of optional elements whenever possible

(to allow backward compatibility).

Another option considered in this research was to require that initial fragment

schemas allow the use of a catch-all element for every fragment (which would allow

any IO publisher to add an unnamed element to an instance document). Section

2.3.7 explained the use of for this purpose. However, xsd:any is not proposed here

because it introduces additional complications in the storage of the objects when

43

using a relational database, which is the current storage method used. The primary

problem in arises because there is no column created for an unplanned element at

table creation time. As such, this catch-all element would be of limited use because

it could not be made searchable because no column exists for this element in the IO

table. That means the optional element can be made part of the (non-searchable)

object payload. Subscribers could still receive and view it, but it is not a useful

schema element if it cannot be searched with a predicate.

Optional elements have enough flexibility for many COIs to be able to use these

fragments and still have enough freedom to modify imported fragments within their

platforms. Versioning and coercion methods will handle the more complex changes.

3.5.4 Central Namespace for Fragments. As previously stated, a common

object engineering methodology would be especially useful for JBI communities that

want to conform to a standard to allow maximum visibility of their published objects.

For this research, all fragments have been defined in a single namespace (using XML

Schema include references). However, it is recommended that a central namespace

for fragments be created that can be utilized by multiple platforms (using XML

Schema import references). In Section 2.3.3, several hybrid approaches for using

namespaces for different types of projects were discussed. Since the variety and scope

of JBI platforms cannot be considered at this early stage of development, no single

approach is recommended. However, the very notion of standardization suggests that

very basic fragments can be defined in a central namespace, with great flexibility

for extension and restriction of the base elements when the fragments are inherited.

XML namespaces allow validation of a schema when there is a unique filename at

a specified location. Due to this restriction, a schema or fragment filename must be

unique within a location, so it is proposed that file names for fragment schemas append

the version as part of the file name (as proposed in fragment naming conventions:

fragname frag majorVersion minorVersion.xsd)

44

For this research, it is assumed that base fragments will have been imported

from a central location into a fragment table within the MSR.

3.5.5 XML Inclusion to Build Schemas. After several fragments are defined,

the next step was to build new IO schemas from these fragments. This requires

an inclusion mechanism within the IO type schemas. Inclusion mechanisms allow

included components to change, without having to change the format of the top level

schema. The two different standards developed by the W3C Working group that could

each handle the inclusion are discussed in Section 2.3.5. The selection of the XML

Schema method (using include and import statements) was based on the evaluation

of each option’s benefits, ease of use, and flexibility. The biggest factors promoting

the use of the XML Schema methods of include and import are that they are fully

supported by most validators, specifically created for component schema development

and require no preprocessing before validation.

Figure 3.2 shows a schema which uses the geospatial fragType and the tar-

get fragType as well as the base object fragment. It should be noted that the

schema must both “include” (or “import”) the applicable schema and then declare

the elements which are to be of the complex types defined in the fragment schema

file. “Include” is used in this example since all the schemas belong to the ficti-

tious http://www.myjbinamespace.com. If the JBI platform is using validation, the

namespace declaration should point to the actual location of these schemas. For this

research, validation is assumed to have happened before publishing new IOs.

3.5.6 Fragment Tables. Two tables are needed for the management of

fragment overhead, which have been added to the MSR as described in Table 3.1.

These tables are being used both for fragment management (creating and storing new

fragments with their associated schemas and updating existing fragment schemas)

and to serve as an index for searching for all IO types containing a fragment. The

sample fragment schemas and some fragment-IO type pairings for geospatial frag and

45

Fragment
Library Files

Fragment
Declarations

Figure 3.2: Component Schema with includes

target frag are shown in the new fragment tables in Figure 3.3. The create table

statements needed to add the fragment tables to the new MSR are in Section B.1.

After new fragments are added to the MSR, they are added to the fragment

table. When new IO type schemas (composed of fragments) are added to the MSR,

a row is added to the fragment io table for each fragment type-IO type pairing in the

new schema. The primary use of the fragment table is fragment management only.

An ID field is used as a primary key to uniquely identify specific fragments in this

table. The ID field is also a foreign key and part of the primary key in the fragment io

table. The fragment io table has a primary key composed of three fields, since it takes

all of these (ID, io type, io type version) to uniquely identify a row in that table.

The use of the ID column as an index in the fragment io table speeds searching

because the physical ordering of the records impacts how many hits are in cache as

46

(a) fragment Table

(b) fragment io Table

Figure 3.3: Fragment Tables

47

Table 3.1: New MSR Tables
Table Name Description Field types
fragment fragment file

names
Primary Key ID field (int), varchar fields
for fragment name and version, and text
field for full fragment schema

fragment io fragment-IO
type pair-
ings for new
schemas

ID field (foreign key from fragment ta-
ble), varchar fields for concatenated frag-
ment name and version, IO type name
and IO type version

a result of a SQL query (due to the clustering of the fragment types and the smaller

storage requirements of an int data type versus a varchar). Since a fragment schema

file name must be unique within a namespace (to prevent name collisions on differ-

ing versions of fragments), a fragment name/version field, fragmentName version, is

used to represent the filename in the fragment io table. This also enables searches

on a single column when querying by fragment (fragmentName version rather than

fragment name and fragment version.

The fragment io table is updated as each new IO type schema is added to the

MSR. Each referenced fragment schema in the IO type schema requires a separate

entry in this table. An XML preprocessor can handle this overhead by searching for

includes and imports (see next section). The base object fragment should automati-

cally be stored in the fragment table when a new JBI is stood up, and every new IO

type schema added to the MSR should have a row added for the IO type-base object

pairing in the fragment io table (in addition to all the other pairings added for this

IO type).

3.5.7 Fragment Processing Techniques. Now that the MSR has two addi-

tional tables, there is additional preprocessing required to maintain the new fragment

tables. The following are the types of processing actions that need to be performed

and the actions that trigger them (some of these actions have been manually accom-

plished for this research, but are suggested as platform integration recommendations):

48

• Adding new fragment schemas: A new row is added to the fragment table

to store the fragment name and its entire schema. The version number will

be appended to the name. Additional checks are needed to prevent duplicate

fragments.

• Adding new IO type schemas: A new row is added for each IO type-

fragment type pairing for each fragment included in the new schema. Pairings

will include version types as shown in the fragment io table in Figure 3.3.

• Updates or version changes to fragment schemas: When a fragment

schema version change is made, a new fragment entry is added to the fragment

table. If the update does not warrant a version number change as defined in

Section 3.5.8, only the schema is updated. In this research, all of the sample

fragments are of the same version number.

• Updates or version changes to IO type schemas: When an IO type

schema version change is made, new rows must be added to the fragment io

table with the new fragment-IO type pairings.

3.5.8 Versioning Standards. Since this research proposes to have all schemas

composed of one or more fragments, IO type schema version changes should be war-

ranted for either (or both) of only two reasons:

• Changes to fragments: There may be changes to one or more fragment

schemas that are already present in an IO type schema. These should be classi-

fied and implemented as either a major or minor fragment schema change and

should prompt the same change type to all of the IO type schemas which contain

this fragment schema.

• Adding/Deleting entire fragments: A new fragment schema may need to

be included in an existing IO type schema. While this is not a change to any

fragment schema, it warrants a change to the IO type schema.

49

Fragment schema version changes will be classified based on an evaluation of whether

they allow forward and backward compatibility. A schema change allows compatibility

if a schema instance would pass validation checks against both an old and new version.

Platform actions to enable publish and subscribe to continue seamlessly after version

updates are addressed in the next section. Given this reasoning, the following are the

proposed rules for fragment schema versioning:

• Minor change: Example: Version 1.0 to Version 1.1. A fragment schema

change shall be classified as minor if there is an addition or deletion of any

optional XML metadata element or attribute anywhere in the schema. This

is the only valid minor change because instances of both old and new schema

versions will pass validation on either the old or new schemas. As previously

stated, a minor version fragment schema change will promote a minor version

IO type schema change of all the IO types containing that fragment.

• Major change: Example: Version 1.0 to Version 2.0. A change shall be

classified as major if it cannot be classified as minor. These kinds of changes

will include data type changes, element and attribute name changes, addition

(extension) or deletion (restriction) of non-optional attributes and elements, and

cardinality changes (including changing an optional element to mandatory, since

this is a change to the “minOccurs” attribute). As previously stated, a major

version fragment schema change will prompt a major version IO type schema

change of all the IO types containing that fragment. It was also noted that an

IO type schema can undergo a change if a fragment was added, and this change

to the IO type will also be major.

3.5.9 Changes to Pub/Sub/Query. Major version changes will mandate

changes to publish, subscribe and query actions. These changes must be made by the

platform (through coercion instructions as proposed in Section 3.5.10) and also by

clients (by changing applications which publish, subscribe or query for information

objects). To prevent unanticipated disruption of critical services, version changes

50

should only be done on a scheduled basis. A configuration management table can

manage change submissions until the update is processed. Notification should be

made to subscribing and publishing clients of the fragments and/or IO type changes.

This should be done both prior to and after the changes have been made to ensure

action will be prompted by clients. The platform broker which manages subscriptions

and publications should make this notification to all clients in its registry. Any new

clients should only be permitted to establish subscriptions and publications using the

new types.

When a version change has been made to an IO type, a new table will be created

in the Information Object Repository (IOR) to store IOs of the new type. New fields

will be added or deleted, as appropriate, and a new field for version reference will

be added. This field will keep track of the actual version number of that particular

object, as published. When subscriptions are filled, coercion translation will ensure

subscribers receive the versions they subscribe to, as the published type will be trans-

lated to the subscribed type (if allowed). Elements of published IOs of the old version

will be translated to conform to the new version. The previous version number will

be stored in the version reference field. Subscriptions and queries of this object will

be able to retrieve IOs of old and new versions from the single table, because coercion

will perform the necessary translations, as described in the next section.

By allowing old publications and subscriptions to continue, there will be less

disruption to subscriber applications than if subscriptions were abruptly upgraded

when new IO type versions are available. Client applications may not be able to

process new IOs when there are IO type changes and it may be costly in terms of

time, effort and/or system disruption to require these subscribers to immediately

conform to new IO types. Clients should be encouraged to migrate their applications,

but can then do so on their own timeline. The coercion mechanism is critical to

allowing updates to process seamlessly from the client’s point of view.

51

3.5.10 Coercion Techniques. A coercion table will become part of the MSR.

This table will record platform or client actions required to translate IO types to older

versions to fulfill active subscription of these older IO types. For each of the element

and attribute changes made to an IO type schema, there will be one instruction. Only

one coercion entry should be necessary per element or attribute change (as opposed

to one for the fragment types and one for the IO types).

There will be no instance of fragment coercion that takes place outside the

context of an IO type coercion. For example, a fragment schema may have a version

change before it has ever been used in an IO type schema. No coercion is needed in

this case because there are no IO types to coerce and clients should be forced to only

use the new fragment schema version in new IO type schemas.

The coercion table will have one row for each type of change to a fragment

within an IO type. The table will provide a map for the platform to convert old

objects versions to newer versions and to enable backward compatibility to deliver

objects to subscribers of old IO type versions. The proposed structure of this table is

shown in Table 3.2.

Most column descriptions in this table are sufficient to describe the contents.

Others require some elaboration. Coercion rules with the same “From Version” and

“To Version” IO type values should be numbered incrementally and processed in the

same sequence so as to preserve the order of element node mappings and possible

multiple changes to the same element.

Element Node refers to the node that this coercion rule applies to in the IO

type schema. This is based on a tree node mapping of the old version of the IO type

schema. This reference is to the applicable fragment in the IO type schema after all

previous coercion rules have been processed. For example, refer to Figure 1(a). In the

geospatial fragType shown, there are 10 parallel elements. The “humidity” element

is the 10th parallel node within this complex type. Thus, this element node num-

ber in the component schema would be 10. If this schema had contained any nested

52

Table 3.2: Coercion Table Structure

Field Name Description
IO Type Name of IO type changed
From Version Old IO type version
To Version New IO type version
Fragment Name Name of fragment changed
Frag From Version Old fragment version
Frag To Version New fragment version
Type change This change type (e.g., add element, delete element)
Element Node Metadata node address at which to add, delete, or make

change
Change From From value (if applicable)
Change To To value (if applicable)
Data Type New data type (if an element change or addition, re-

striction, or extension)
Restriction Base Base data type (if adding or removing restriction to an

element)
Restriction Name Restriction Attribute name (if adding or removing re-

striction to an element)
Extension Base Base data type (if extending or removing extension of

an element)
Extension Name Extension Attribute name (if extending or removing ex-

tension of an element)
Default Value Default value for new/changed field, restriction, or ex-

tension (if non-null and value needed)
Coercion Rule Platform instruction to handle conversion to the new

version

element sequences within an element, they would be represented as ParentNodeNum-

ber.ChildNodeNumber.ChildNodeNumber, etc. For example, 2.3.7 represents the 7th

element of the 3rd element of the 2nd element. When a coercion rule calls for a node

deletion, it refers to the node location in the old version. When a coercion rule calls

for a node addition, it refers to adding the node after the referenced node (thus, giving

the added element that node number + 1).

The Change From and Change To can have different meanings depending on

the type of change. Table 3.3 provides the descriptions of the field contents for these

columns for the corresponding type of change. Many columns will only contain data

53

if it pertains to that type of change. For example, Restriction Name will only contain

data if this change will be adding or removing restriction to an element.

Coercion Rule will contain any additional programming instructions that may

be needed for the platform to process the translation for this element.

Client-side coercion should also be offered by platforms. In this case, clients are

provided the coercion table instructions for IO types to which they subscribe. This

may be more desirable in cases where the overhead for platform coercion is too costly

and/or not needed. For example, a client has evaluated the coercion instructions for

IO type “A” version 1.0 to 2.0. They have determined that the object processing

application for this subscription does not evaluate or process any of the metadata

fields which require coercion. Furthermore, they are processing critical battlefield

statistics for which the speed of receiving and processing the objects is paramount. In

this case, coercion is not warranted and potentially detrimental in terms of execution

time. Thus, coercion options should be available to clients to either accept or refuse

on queries and subscriptions.

A coercion example is provided in Figure 3.4. In this example, geospatial frag re-

quires coercion from version 1.0 to 2.0 in IO type A. The Coercion Table (Figure 4(b))

shows 4 changes as highlighted in Figure 4(a), which have sequence numbers from 1

through 4. As previously stated, coercion must follow the sequence order. The ele-

ment regionID must first be added after node 10 as a string data type. This element

is optional and thus requires an enumeration attribute of minOccurs=“0” at node

11, which is now the number of the inserted node. This illustrates why changes must

follow the proper sequence. The final two changes are data type changes on two el-

ements from integers to decimals. Although the new element is optional and would

have only necessitated a minor version change, the data type changes require a major

change according to the prescribed rules. As is required, the fragment version change

triggered the same grade of schema version change to IO type A.

54

3
4

3
4

1 2

(a) Fragment Files

(b) Coercion Table

Figure 3.4: Coercion Example (geospatial frag: version 1.0 to 2.0)

55

Table 3.3: Coercion Table Change Descriptions

Type change Change From Change To
Element Addition null New element name
Element Deletion Old element name null
Element Data Type null New data type of added or

changed element
Attribute Addition null New attribute name
Attribute Deletion Old attribute name null
Attribute Data Type null New data type of added or

changed attribute
Element Enumeration Enumeration con-

straint
New constraint value or null
for constraint removal

Element Add Restriction null New restriction value
Element Remove Restriction Old restriction value null
Element Change Restriction Old restriction value New restriction value
Element Add Extension null New extension value
Element Remove Extension Old extension value null
Element Change Extension Old extension value New extension value

3.5.11 Information Object Storage Modifications. Each IO type has its own

relational database table within the IOR. IOs are stored in a table by hashing each

relative metadata tag path within the XML document to a unique ID that is then

stored in its own row with the value of that tag in the same row. As discussed in

Section 2.2.3.1, this method of storage has several drawbacks, the most significant of

which is that this hash technique does not allow repeated metadata elements (each

path must be unique). The repeated element values are not “lost” from the informa-

tion object (that is to say, they will be returned on a query of subscription with the

rest of the IO). However, only the last element of a repeated list will be “visible” for

predicate matching.

Another drawback of this hash technique is that it does not allow XML attribute

matching. Only XML elements can be used to build predicates in the current JBI RI.

This may not be particularly detrimental because most attributes can also be repre-

sented as elements. The AFRL JBI branch was exploring the use of the open source

database dbXML (Native XML Database) and other solutions to solve the repeated

56

namespace problem. However, no IO storage modifications have been required for this

research. This proposal should have merit regardless of which storage mechanism is

used. The benefits of fragment inclusion is related to the MSR (not the IOR) through

the implementation of fragment indexing and suggested CAPI modifications.

3.5.12 Common API Changes. Several CAPI methods are required to

allow manipulation of fragments within the platform. The list of methods and the

Structured Query Language (SQL) queries used to implement these methods are

shown below. This list is not all inclusive, but includes the critical methods for

adding and retrieving information from the fragment tables.

Add Fragment to fragment Table:

METHOD:

boolean addFragment (String name, String version, String schema)

SQL STATEMENT:

INSERT INTO fragment (fragment name, version, fragment schema)

VALUES (‘fragName frag’, ‘1.0’, FULL SCHEMA(Note 1))

Add Fragment-IO type pair to fragment io Table:

METHOD:

boolean addFragmentIOType (String ioType, String IOTypeVersion, String

fragmentName, String fragmentVersion)

SQL STATEMENTS:

1) SELECT ID as fragmentID FROM fragment WHERE

fragment name = fragmentName and fragment version = fragmentVersion

2) INSERT INTO fragment io (ID, fragment name version, io type, io type version)

VALUES (fragmentID, fragmentName, IOType, IOTypeVersion)

Get an array of IO Types for a given set of fragments:

METHOD:

57

Vector getInfoObjectVectorByFragment (String[] fragmentArray)

SQL STATEMENT(Note 2):

SELECT io type, io type version, count(*)

FROM fragment io WHERE fragment name version = ‘frag1 1 0’ OR

fragment name version = ‘frag2 1 0’ OR fragment name version = ‘frag3 1 0’

GROUP BY io type, io type version HAVING COUNT(*) = fragmentArray.length

Get an array of fragments for a given set of IO Types:

METHOD:

Vector getFragmentVectorByInfoObject (String[] IOTypes)

SQL STATEMENT(Note 3):

SELECT DISTINCT fragment name version

FROM fragment io WHERE

io type = ‘IOtype1’ OR io type = ‘IOtype2’ OR io type = ‘IOtype3’

(Note 1) FULL SCHEMA refers to a string representation of the full length schema

file for this fragment.

(Note 2) The COUNT(*) = fragment array.length and GROUP BY clause limit the

results to IO types containing all of the fragments in the given array.

(Note 3) The DISTINCT keyword eliminates repeat fragment names for those frag-

ments that may be present in more than one IO type in the SQL statement.

3.6 Environmental Parameters

This research has been implemented on a JBI configuration where the server,

client and database repository all reside on the same hardware. The proposed mod-

ifications to realize the IO engineering methodology have been implemented with

an application built outside the platform and manual changes and additions to the

MSR. To ensure accuracy of evaluation of both the current and proposed methods,

both were tested outside the platform, because platform processing overhead could

58

impact negatively on the current method and skew the results. To fully realize the

implementation of this proposal, the proposed changes should be integrated with the

JBI core services in a future release.

3.7 Evaluation

There are several ways to evaluate whether this proposed methodology is an

improvement to the current system, although not all of these are quantifiable. For

example, a specific IO engineering methodology has not been proposed for this sys-

tem before this research. Consequently, there is no means for comparison of this

methodology other than that it proposes something standardized, distributable and

reusable.

There is also no means by which to completely measure the impact on the per-

formance of the JBI core services for subscriptions and queries because the overhead

is being measured on the side of the application that has been developed, which is

outside the platform. What can been measured is the time it takes to obtain the

same result set for both systems.

3.8 Hypothesis and Interpretation of Results

It is apparent that a multi-object search method will be an improvement over

the current method of a single object query or subscription. However, the greater

savings are the reduction in time to find all the IO types with identical metadata

fragments. The only way to do this with the current system is through an iterative

search through IO types. The proposed fragment io table is used to index IO types

by fragment, so the time savings should be exponential.

3.9 Summary

The primary goal of this research is to introduce a Fragment-Based Information

Object Engineering methodology and provide standards for the integration of this into

the architecture of the JBI platform. The greatest improvement that will be realized

59

by implementing this proposal is that there will be a defined standard where none has

previously existed. The research includes proposed changes to the MSR, the addition

of CAPI methods to retrieve related IO types and fragment types, and definitions

and methods for versioning and coercion. The methodology included a fragment

definition, proposed revisions for the MSR to store and index the fragments, and

provided standards for fragment and IO type revisions.

Chapter 4 covers the implementation details while Chapter 5 discusses the anal-

ysis of the results of this research. Chapter 6 provides a summary and conclusion as

well as recommendations for future study and platform integration.

60

IV. Implementation

4.1 Introduction

This chapter covers the system implementation of the Fragment-Based Infor-

mation Engineering methodology. To test this proposal, several tasks had to be

accomplished before evaluation. Most of the preparation involved installing and pop-

ulating a sample JBI platform and data repository which is discussed in Preliminary

Operations. Then, an application was written to compare the retrieval performance

for both the current and proposed methods on the same data sets. This is discussed

in Test Application.

Some aspects of the proposal are offered without test or implementation. The

reason for including them is that they may provide a great enhancement to the ar-

chitecture. However, it was not possible to integrate them into the system (and thus

be evaluated), given the research time constraints. In other cases, there was a lack of

a core functionality available in the latest version of the JBI Core Services platform.

For example, coercion techniques were introduced here even though this capability is

not yet part of the JBI Reference Implementation (RI) Version 1.2 (the latest version

of the core services at the time of this research).

4.2 Compromises

Some compromises were required to conduct this research. For instance, im-

provements are proposed to both the storage methods and retrieval mechanisms.

These improvements require substantial platform modifications to fully implement

and test the solutions inside a JBI platform. As such, some improvements were

tested outside the platform. This means that the database repository was manually

changed and then manipulated with an application that did not utilize the platform

core services or Common API methods.

The current platform also had limited functionality to perform actions similar to

the proposed methods. In some cases, the platform also had overhead associated with

the current methods that did not exist in the proposed methods. In most cases, the

61

underlying web service actions were responsible for this overhead. For these reasons,

removing the platform actions provided an opportunity for more accurate evaluations

of current versus proposed methods.

4.3 Preliminary Operations

There were many preliminary operations that had to be accomplished before any

testing could begin. The first order of business was to install and configure the JBI

Core Services and other required programs on a test machine. These specifications and

configurations are discussed in detail in Chapter 5. Other required operations were

related to choosing sample sizes and creating and storing fragments, object schemas,

and object instances.

Before adding actual test data to the Metadata Storage Repository (MSR),

several sample Information Object (IO) type schemas were created and added to help

determine the platform actions and requirements for adding IO type schemas. This

also enabled evaluation and speculation of possible database and platform limitations

for this research.

4.3.1 Fragment Library. To help select a size for the initial fragment library,

a decision was made that the size of the library would determine the number of IO

type schemas stored in the MSR. Every possible combination of fragments would be

used to create IO type schemas. The number of schemas for these combinations for

n fragments is given by Equation 4.1.

n∑
i=1

(n)C(i)− 1 = 2n − 1 (4.1)

Thus, the number of possible schema combinations would approximately double for

each fragment added to the library. While this exhaustive fragment use assumption is

likely not a realistic comparison to an actual JBI repository, it was useful for ensuring

predictable numbers of matching IO types when executing tests. To aid further in

62

the choice of n, it was decided that the same number of object instances would be

published per IO type.

The most limiting factor for the choice of n was the database storage require-

ments. The architecture of the JBI Information Object Repository (IOR) requires

one table for every schema. It was speculative (without a deployed JBI instance), but

it is more likely that there would be a limited number of IO types with many IOs

published per type than many IO types with a limited number of IOs per type. Even

if the entire contents of the Department of Defense Metadata Registry (DODMDR

- refer to Section 2.4) were used, there are only 2300 total schemas in that entire

registry. A single JBI community repository should only represent a small fraction of

the entire DOD information landscape. Also, there was no real world set of fragments

(of a small enough scale) discovered early enough in this research effort to be useful

for testing. The Common Mission Definition (See Section 2.4) would have been very

useful but the working draft was only recently acquired. Recommendations for the

integration of these data components into an initial fragment library are described in

Chapter 6.

Since these elements were not available at These considerations led to a selection

of n=10, and the decision to create a simple set of basic fragments that would be just

sufficient to demonstrate the methodology. The resulting number of IO type schemas

is then given by Equation 4.2

2n − 1 = 210 − 1 = 1023 (4.2)

With an arbitrary selection of 500 objects per schema, this would result in approx-

imately 500,000 stored objects. Since the goal of this research was not to test the

storage limitations of the database, this was sufficient to test the viability of the

proposed method.

63

Table 4.1: Fragment Schema Distribution
Number of Fragments Number of IO Types

1 512
2 256
3 128
4 64
5 32
6 16
7 8
8 4
9 2
10 1

For 1 to n, Equation 4.3 determined the number of IO type schemas which had

the given number of fragment combinations in its schema. Table 4.1 shows the IO

type schema distribution by number of fragments in the schema for 1 through n.

2(n−1) (4.3)

4.3.2 Platform Limitations. The first sample IO type schemas were added

through the platform interface. This was done so that the database could be analyzed

to determine what actions were performed when a new IO type was added to the MSR,

and also to see how prohibitive in terms of time it would be to add more than 1000

schemas one at a time. Each of these IO type schemas took less than a minute to add

through the platform interface. However, as the number of stored schemas grew, the

platform delays grew much longer (because the platform had to update an increasingly

larger IO type schema package tree). This reinforced the decision that it would be

necessary to manually add the schemas to the repository. As such, an examination

was made of the platform actions taken when a new schema was added. The actions

prompted by this study are discussed in the next section.

64

4.3.3 Populating Database Tables. The database study revealed that there

were three basic database actions performed by the platform when any new schema

was added:

• Insert the schema and other related data into the database table:

mdr.ior repository. The name of this table is a misnomer because it resides

in the MSR (which stores IO type schemas), instead of the IOR (which stores

information objects (IOs)).

• Insert security permissions data into the database table:

security.privilege store.

• Create a new table for the IOs in the ior database with the unique table name:

IOTypeName majorVersion minorVersion

Each of these actions were examined in detail. The schema table was a simple

structure with one row per schema with very descriptive field names. Thus, updating

this table required a single SQL statement to insert a row into the table for each

schema. The structure of this table was introduced in Figure 2.3. Specific programs

written for creating and populating tables are covered in Section 4.3.8.

The other two required actions required a bit more examination to determine

what would need to be added to the database. These evaluations are discussed in the

next two sections.

4.3.4 Permissions. The examination of the security permissions table se-

curity.privilege store revealed that this security table required 18 tuples per IO

type for a sample user. The large number of rows needed per schema were required to

grant a user full permissions to add, delete and update schemas, and publish, delete

and subscribe to objects. This large number of security rows meant that for 1023

schemas, the size of this table would be greater than 18000 rows for this test.

4.3.5 IOR Table Fields. The storage format for IOs in the JBI IOR was

discussed in Section 2.2.3.1. The hash methods for generating field names was not

65

Table 4.2: Fragment Names
Fragment Number Fragment Name

0 geospatial frag
1 target frag
2 weapon frag
3 ato frag
4 aircraft frag
5 personnel frag
6 bldg frag
7 sensor frag
8 vehicle frag
9 report frag

available, so steps had to be taken to decipher the actual mapping for the metadata

element nodes in each of the fragments. This was accomplished by adding each

single fragment IO type schema to the MSR through the JBI-provided interface, then

publishing some sample IOs to the IOR. This technique enabled a reverse mapping of

table field names to IO type schema elements. This mapping was also accomplished

for each of the base object fields which were also required by the platform. If these

base object fields were not added, the platform would not properly recognize and

store the IOs when they were published.

After the mapping of every column was done, a file containing create table

statements for each of the schemas was created. The program utilizing these create

table statements is covered in Section 4.3.8.

4.3.6 Combination Generator. Fragments were given descriptive names and

were associated with a number as shown in Table 4.2. A naming convention was

chosen for IO type schemas that would allow a mathematical algorithm to be used to

generate all schemas, instances and file names from the fragment numbers.

A combination generator program was used to create all possible fragment com-

binations of the fragment based IO type schemas. This program was used as a helper

class for the java programs which created the many IO type schema and IO instance

66

files, populated the MSR and security tables, created IO storage tables, and ran a

publishing sequence for the sample objects.

The CombinationGenerator.java class was obtained, which used a program de-

rived from a discrete mathematics algorithm for generating every possible combina-

tions (in-order) of a given string [14, 23]. The java source code for this program is in

Section B.2.

Using a string array of the assigned fragment numbers (0 to 9), and the naming

convention defined in the next section, the generator enabled the assignment of unique

and descriptive IO type names, unique file names, proper file contents for schemas

and instances, and proper arguments for create, insert, and update SQL statements.

4.3.7 Creating Fragment Schemas and Instances. Each of the fragments

was assigned from 3 to 10 metadata elements. These elements were assigned sample

values for the instance documents. Each combination of fragments would have only

one of five possible object instance configurations for published objects. Fragment

metadata elements, their mapped hashed field names, and the five possible instance

combinations are shown in Figure A.1.

For simplicity, every schema using fragments was assigned to the same package

(fragment) and had the same name prefix (fragSchema). The number combination

appended to the name prefix matched the in-order number combination of the frag-

ments present in this schema. For example, the schema containing the geospatial,

target and weapon fragments was named fragSchema012. The combination generator

and a switch/case statement with a case for each number string was used to determine

file names, file contents and SQL statements.

Every schema first contained the base object data (as required by the platform),

and then the fragments in numerical order. Fragment schemas were also not assigned

to any actual XML namespace. The schemas were originally assigned to a fictional

namespace, but the platform would not properly support either a schema or instance

containing any namespace declaration except xsi:noNamespaceSchemaLocation in the

67

instance documents. This is because namespaces are not yet recognized by the JBI

Reference Implementation (RI).

Since the platform also did not support the include or import schema declara-

tions, a separate MSR (frag.ior repository table) was created to exactly mirror the

current MSR, with the exception that the schemas would only contain references to

fragments (using include and import) rather than the full fragment declarations. This

table was included in the database “frag”, which contained the other fragment tables.

The storage modification did not add any proposed functionality, but the reduced

storage size per schema and referential integrity benefits have been evaluated in the

analysis of the benefits of this new storage format in Chapter 5.

4.3.8 Creating and Populating Files and Tables. Using the aforementioned

numbering and naming conventions, several small java programs were written to create

the .xsd schema files and .xml object instance files, using the Combination Generator

helper class and a file writer method. The programs and their function are listed

in Table 4.3. Where the Database.Table column data is prefixed with a “FOR”,

that indicates the program generated a file that was then used by another program to

insert the file data into that database table. There are also five instance file generators

for the five different fragment instance values per fragments (as shown in Figure A.1).

Finally, some update programs were necessary when it was discovered that a new

column was needed or the data in a column would be more suitable in a different

format. These programs are also included.

4.4 Test Application

A java application was written to perform a comparison of IO type retrieval

times for the current and proposed MSR formats. The comparison is based on mea-

suring the execution time to retrieve the same data using the techniques available for

each configuration. The following sections discuss the test parameters and methods

used to perform the evaluation.

68

Table 4.3: Preprocessing Programs

4.4.1 Evaluation Parameters. To compare the current IO type storage

architecture to the proposed fragment-based method, the parameters were as follows.

For the proposed (fragment-based MSR) system:

• The MSR has a library of n fragments.

• There is a theoretical maximum of 2n−1 possible fragment combinations (schemas)

from these fragments (all schemas are only composed of fragments and all pos-

sible combinations are represented as IO types in the MSR), so there are 2n− 1

IO type schemas in the MSR.

• Each fragment is present in 2n−1 of the schemas.

For the current (non fragment-based MSR) system:

69

• The MSR contains no fragment library but the platform in which the user is

operating maintains a directory of IO types, which are of the same format of

those that have been proposed in the fragment system.

• There are 2n − 1 IO type schemas in the MSR

For both the current and proposed systems, the user is assumed to have the

same information needs to retrieve IOs (with the same predicates) and that other

than some metadata element standardization, the user does not know exactly which

IO types may contain these elements.

4.4.2 Current MSR Evaluation Modifications. When selecting an iterative

search method for the current MSR, it was discovered that there was no database

field in the current MSR for validating a relative XML metadata path against an

instance schema without complex parsing of the stored XML schema (because the

XPath predicates are instances and the database contains a stored schema). For this

reason, a blank XML instance document was created for every IO type schema and

inserted into the current MSR. This instance is not an object per se, because there

were no values assigned to any of the metadata elements. Furthermore, this instance

would be stored in a single table field for rapid retrieval and evaluation of relative

metadata paths. This would allow the most rapid evaluation for matching schemas

during the iterative search. Accordingly, this would ensure that the only execution

time for the current MSR search was due to the actual cost of the iteration rather

than the additional time for parsing the schema prior to the evaluation. The name of

the new column added to the mdr.ior repository table was schema instance.

This new schema instance field is not a proposed integration to the MSR, as it

was just needed for comparing the current architecture against the fragment solution.

However, it has been considered as a possible improvement to the fragment table

structure as discussed in the analysis in Chapter 5.

70

4.4.3 Current MSR IO Type Search. For the current system, for each array

of 1 to n fragments, the application conducted a search on each IO type to see whether

it contained (at a minimum) the fragments of interest. This resulted in an iteration

through all 1023 IO types. The current Common API has no method to match a

metadata path of an instance document to a stored IO type schema. Consequently,

this search required the “blank” XML instance templates discussed in Section 4.3.7

to be used for relative XML path comparisons.

There were two options for performing the iterative search of the current MSR.

The first option was:

• For each type in an array of all the IO type names in the MSR, perform a SQL

query to retrieve its schema instance,

• Store the schema instance in a local string variable,

• Compare the fragment predicate to the instance string,

• Save matching IO type name to an IO type array to return to the calling function

after completing the iteration of all IO types.

The second option was:

• Perform one SQL query to retrieve all schema instances and IO type names in

the MSR,

• For each instance in the result set, store it in a local string variable,

• Compare the fragment predicate to the instance,

• Save matching IO types to an IO type array to return to the calling function

after completing the iteration of the entire result set.

The choice between these methods represents a trade-off of SQL query execution

time for local program memory consumption for the large array of IO types. Both of

these techniques were used and evaluated in the analysis of this implementation.

71

For both search methods, the comparison was done by using the same sample

XPath, composed of selections from each fragment’s metadata “and-ed” together to

form the predicate. As matching IO types were found, they were appended to an IO

type vector that was returned to the calling function.

The method used to perform the multiple SQL query iterative search, Vector

getInfoObjectVectorBySearch(String[] allIOTypes, String predicate), is shown in Sec-

tion B.3. The method used to perform the single SQL query iterative search, Vector

getInfoObjectVectorBySearch2(String predicate), is shown in Section B.4. Both meth-

ods used the XPath schema validator class detailed in the next section.

4.4.4 XML Instance to Schema Validator. The XPathEvaluator.java class

contains the method used to do the node matching test on the XPath predicate. This

source code was provided by the Air Force Research Lab (AFRL) in-house JBI Team

and is shown in Section B.5. The method boolean evaluate (String predicate, String

metadata) compares the predicate against a metadata instance string and returns true

if there is at least one match on every relative path in the predicate to the instance.

This method is able to process multiple paths in the predicate string (as in a case

with multiple fragment paths “and-ed” together). The arguments required for this

method are the predicate (fixed by fragment) and the IO type schema instance.

4.4.5 Proposed MSR IO Type Search. For the proposed system, for each

array composed of 1 to n fragments, the application conducted only one SQL query

using the fragment io table as an index. The method used to retrieve the result

set containing all matching IO Types from the fragment io table, Vector getInfoOb-

jectVectorByFragment(String[] fragmentArray), is shown in SectionB.6. This method

uses a single SQL statement to obtain a reference to all of the corresponding IO types.

The calling function must only provide a string array of fragment names.

4.4.6 Application Interface. The test application interface is shown in Fig-

ure 4.1. The number of fragments and the number of iterations could be varied

72

between one and ten each time the test was executed. The application either tested

the current or proposed method for any particular execution sequence. The source

code was modified as needed to change the method which would be called for the two

types of current MSR searches (multiple SQL or single SQL).

Figure 4.1: JBI Fragment Query Tester

4.4.7 Evaluation Measurements. Initially the application was configured

with methods to retrieve the IOs using fixed query sequences and predicates after

determining the proper IO types using either the iterative search or index method.

This was later amended to just retrieve the reference vector of the IO types. The

reasons for this change relate to platform processing overhead and common retrieval

methods as explained in this section.

73

There is a 10 step process to retrieve objects through a query sequence. These

steps are:

1. Create a ConnectionManager

2. Create a connect to a specific JBI platform

3. Authenticate user credentials

4. Connect to the platform

5. Create a query sequence for a specific object type

6. Define query sequence parameters (including result set size for retrieved objects)

7. Activate the sequence

8. Define the predicate for the sequence

9. Issue the query

10. Consume the result set(s)

Integrated into this lengthy sequence is the time it takes to reassemble the objects

from the relational table format into their XML metadata format. This overhead

resulted in a retrieval time of approximately 30 seconds for 500 objects (per IO type)

or 60 milliseconds per object. This time was approximately the same for both the

current and proposed methods because the same platform query sequence methods

were used once an IO type was known, and the tables all contained an equal number of

objects. Furthermore, the queries were scoped to retrieve the same number objects for

every IO type containing one to ten fragments. Due to the many matching IO types

and this query execution overhead, the total execution often took hours to complete.

On the other hand, the execution time to retrieve the reference to all IO types

containing one to ten fragments ranged from approximately 100 milliseconds to 20

seconds. Consequently, the measured improvement of the fragment technique would

be lost in the overhead of the object retrieval if the method went beyond retrieving

only the IO types vector.

74

Therefore, The evaluation only measured the execution time cost to obtain a

single reference vector of every IO type associated with a particular fragment predicate

sequence or fragment array. This ensured that no platform overhead costs for actual

object retrieval were counted for either method. This will result in the most useful

evaluation of the actual time savings of using the fragment index.

To evaluate the cost of these searches within the same context, the client ap-

plication was implemented to retrieve the same subset of IO types with only one

function call, so that the execution time for both methods could be compared in sim-

ilar contexts. For instance, to test the current system cost to retrieve all IO types

with geospatial content, the current method search through every IO type was done

with one function call with a single predicate statement. For the proposed method,

the application retrieved the array of IO types from the fragment table with a single

function call.

The tests were run on every possible fragment combination, so that there would

be a large sample of execution times for each possible fragment combination. How-

ever, because some combinations had small sets or were unique (i.e., for 10 possible

fragments there was only one combination of all 10), there was less data available

from these tests. This shortfall was alleviated by running multiple iterations of the

same fragment combinations, if there was insufficient data to form a conclusion about

the smaller result sets.

Table 4.4 is a simplified prediction of the cost savings of the fragment method.

The number of searches in the table represents the number of evaluations required to

obtain every possible matching combination of IO Types (e.g., if there was only one

predicate composed of one fragment, one composed of two fragments, one composed

of three fragments, etc., for a total of 10 predicate combinations). This comparison

of methods applies to both of the aforementioned current MSR searching techniques,

because each of those requires an evaluation of every IO type for a search. This table

illustrates the obvious predictable outcome of the application test by demonstrating

75

Table 4.4: Cost Comparison of Methods
Proposed Current

Cost(# searches) 10 10230
Savings 1000%

the order of magnitude by which the proposed fragment method would outperform

the current iterative method.

4.5 Summary

This chapter contains an examination of the implementation of the fragment-

based information engineering methodology. The preprocessing required to perform

an evaluation of this research was to install and configure a sample JBI platform. After

that was accomplished, a new Metadata Schema Repository (MSR) was created with

the proposed fragment storage modifications. Additionally, sample data was added

to the MSR and objects were published to the Information Object Repository.

After an evaluation technique was developed for the quantifiable elements of

this research, a sample JBI platform was installed, configured and populated and an

application was constructed to measure the performance of the fragment solution.

The results and analysis of these tests are in Chapter 5. In addition to the applica-

tion performance evaluation, there is a discussion regarding the components of this

research for which the improvements are not measurable. Chapter 6 contains research

conclusions and recommendations for integration of the solution and future work.

76

V. Results and Evaluation

5.1 Introduction

This chapter contains a discussion of the test results and evaluation of the

fragment-based information object type engineering methodology. In addition to the

performance evaluation, there is an analysis of the components of this research for

which the benefits are not measurable, but are qualitative.

To provide contextual understanding of the test application, the testing environ-

ment is discussed first. Evaluation approaches and retrieval options are also explained

before providing test results and analysis.

5.2 Testing

Before discussing the results of the performance evaluation program, the envi-

ronmental factors and evaluation choices must be considered. This section provides

an overview of the reasoning and the approach to the test development and some of

the decisions and compromises that were made.

5.2.1 Testing Environment. The first decision that was made was to install

and configure the platform on the same machine on which the testing would be per-

formed. The reason for this was simply to allow ease of configuration and testing.

Since no web services or traffic patterns would be evaluated, there was no reason to

isolate the server from the client. This would ensure the execution times would only

be limited by the resources of the machine and not network traffic patterns.

The Java programming language was used to build the test application. The

JBI Core Services Reference Implementation Version 1.2 and the test program were

executed on an IBM R©-compatible machine with the following specifications and con-

figuration:

• 1.6GHz Intel R© Pentium R© Processor

• 1.0 GB RAM

77

• Windows R© XP Professional

• MySQL Relational Database System Version 4.0.21

• Java Development Kit (JDK) 1.4.2

• JBoss Application Server 3.2.3 (part of JBI deployment architecture)

5.2.2 Evaluation Approach and Assumptions. One of the goals of this re-

search was to allow for a multiple object type search using fragments. However, there

was no method of comparison of this technique to the platform services. The cur-

rent JBI architecture provides no mechanism for searching the metadata paths within

IO types to find types which may fulfill the information needs of a JBI user. This

would not preclude a platform user with proper privileges from developing a simple

application to perform a linear search of IO types. However, for this to be a useful

tool, the user would at least require some knowledge of metadata standards within

the platform (e.g., geospatial latitude is represented as lat within this platform). For

testing, it was assumed this was the type of user who would be using the current

implementation.

It was also assumed that there were too many IO types to know which IO types

contained any given metadata (other than some naming conventions and relative XML

paths). This may be assuming more or less of what the typical user knowledge would

be, but given the lack of any empirical data, this would be sufficient for a comparison

of the current and proposed architectures.

5.2.3 Retrieval Options. As discussed in Section 4.4.7, the evaluation appli-

cation was initially configured to retrieve a large set of information objects for each

matching IO type, instead of just the IO type references. Since the object retrieval

followed the same method for both the current and proposed architectures and was

much more costly than the type retrieval, the application was modified to just retrieve

the IO type references and insert each reference into a vector.

78

The choice of a matching IO type search method for the current system re-

quired an iteration through every type in the Metadata Schema Repository (MSR).

As discussed in Section 4.4.2, there was a complication with regard to the validation

of an XML schema against an XML instance. The other consideration (discussed in

Section 4.4.3) was whether to use a single SQL or multiple SQL database query for

this iterative search. Due to the absence of a method for IO type searching in the

current platform architecture and interface methods, the current MSR evaluation was

configured to provide the fastest possible performance using an iterative searching

technique. Thus, the validation issue was resolved by inserting a blank instance of

every schema into the MSR. This would provide the fastest method of evaluation,

with only a minor MSR modification. The SQL query issue was resolved by compar-

ing both methods against the proposed fragment solution. Using the blank instance

and two SQL techniques demonstrates that the fragment methodology provides an

improvement that could not be realized solely through the introduction of an iterative

metadata searching technique.

5.2.4 Limitations and Validity. The test application was developed to eval-

uate this proposal “outside” the JBI platform. This means that the program would

communicate directly with the MySQL database without the core web services or

Common API (CAPI) methods. As discussed in Section 4.4.7, the platform requires

quite a few steps to create a query, which is lengthier than the list of tasks required

by the test evaluation methods. Furthermore, the testing conditions are idealized in

the respect that every IO type has the same naming convention of a constant prefix

and a suffix composed of a sequence of numbers identifying the fragments which are

contained in that IO type. This fixed naming constraint eliminated the need to query

the database for the list of IO type names. These generalities do not detract from the

evaluation because the testing applies the same enhancements and limitations to all

methods.

79

The choice of a 10 fragment initial library was a good choice to illustrate the

hypothesized exponential savings of the fragment method, even though this is a much

smaller library than may normally occur in practice. On the other hand, the absence

of deployment statistics of the JBI RI limits the ability to speculate whether the

1023 IO type schemas tested here is large enough to explore the plausibility of this

implementation and focus on whether the proposal addresses platform scalability.

The exhaustive use of every fragment combination was only a test parameter,

and the ratio of the number of fragments in a platform library to the number of

IO types in the platform MSR is likely to be much larger because some fragments

will be used in very few schemas while others will be used in many. Thus, in an

actual implementation, there will likely be many more fragments and the number of

distinct IO type schemas tested here does not approximate the expected fragment

distributions.

These questions illustrate the greatest challenge in this research endeavor–to

evaluate and improve a system that is still under development. Compounding the

lack of deployment statistics is the fact that some of the technologies used are still

in their relative infancy (i.e., XML Schema Evolution and Web Services). The test

application was built and scoped to provide the most accurate evaluation in spite

of these limitations. For the areas which could not be quantitatively evaluated, this

analysis includes substantial explanations for the hypothesized improvements.

5.2.5 Testing Procedure. Given an array of fragment names or a predicate

expression composed of a random selection of each fragment’s metadata, the test

application was run for the three different MSR scenarios:

1. Query the fragment-based MSR fragment io table to retrieve the matching IO

types for the given fragment array. Store these matching IO types in a vector.

2. Execute a single SQL query to the MSR to retrieve a large result set contain-

ing a schema instance, IO type name and version number for every IO type.

80

Iterate through the result set, testing each IO type in turn using the XPath

validator method to see which types have matches for every metadata path in

the predicate expression. Populate a vector with all of the matching IO types.

3. Iterate through the current MSR configuration with one SQL query to the MSR

per IO type to retrieve a schema instance for that type. After each query, test

the retrieved IO type instance using the XPath validator method to see if it

matches every metadata path in the predicate expression. If there is a match,

add the IO type to a vector of all matching IO types.

To allow for the two different techniques for evaluating the current MSR, the calling

function was modified after testing the first method to evaluate the second method.

As explained in Chapter 4, every fragment combination was tested. Due to the

varying number of schemas containing a given number of fragments, two iterations

were performed for each combination of fragments. This provided additional sample

data when there was a smaller number of combinations. Table 5.1 shows the number of

samples for each possible number of fragments for two iterations. The near symmetry

of this table is due to the exhaustive use of every possible fragment combination and

thus, the calculations shown. Where the execution time varied by more than 10%

for the smallest sample size (2), the tests were re-accomplished for both samples to

achieve a higher level of confidence for the execution time.

5.2.6 Test Results. Preliminary SQL tests were done in the MySQL Control

Center database environment. These tests isolate the cost of the database interac-

tions from the Java program overhead. For the proposed fragment method the SQL

statement was the “SELECT...” statement developed for the “Get an array of IO

Types for a given set of fragments” CAPI method discussed in Section 3.5.12, which

contained the selection statement and a search predicate (the “WHERE” clause). For

the current MSR multiple SQL query, a single full iteration of SQL statments was

used to select each of the blank schema instances with the “known” IO type names

(known because of the IO type naming conventions used in this research). For the

81

Table 5.1: Number of Samples per Number of Fragments

current MSR single SQL query, a sample of 75 “SELECT *...” statement queries was

executed which retrieved the schema instances, IO type names and versions of every

IO type in the MSR. The average of these execution times is shown in Table 5.2.

In this table, the values are the same for both of the current MSR tests because

the SQL statement did not depend on the number of fragments in the query. Since

the multiple SQL query only varied by the IO type name in the search predicate

and the execution times showed very little variation, only one iteration through all

1023 IO types was done for this method (each individual query took either 10 or 20

milliseconds). For the single SQL query, the execution time ranged between 160 and

200 milliseconds, per query, for the 75 identical test statements executed. The cost for

these queries was much greater than any of the individual times for the multiple SQL

queries because of the larger result set retrieved and the selection of multiple columns

in the SQL query. There was a small enough variation between the 75 queries to

accept the average execution time of 180 milliseconds. The proposed fragment MSR

was the only case where variations in execution time must be considered. This is

because each time a fragment is added to the search, the search predicate contains an

additional test expression.

The results for the three scenarios tested in the Java program are shown in Fig-

ure 5.1. The longest execution times were for the multiple SQL query configuration.

82

Table 5.2: SQL Execution Times (sec)

This was expected due to the base SQL query time for this method shown in Ta-

ble 5.2. Much improvement was realized by the single SQL query method, although

approximately 90% of the execution time was due to the iteration through the result

set in the program. The proposed fragment method had the lowest execution time

and most of that time was attributable to the SQL query. The program method cost

only accounted for an average of 12% of the overall execution time. The fact that

the fragment execution time increases with the number of fragments in the query is

attributable only to the corresponding increase in the number of components in the

search predicate of the SQL query. This factor will be discussed in greater detail in

Section 5.3.

Using the slowest performance configuration as a baseline, Table 5.3 shows the

improvement of the fragment method over both of the current MSR options. As

hypothesized, the fragment solution provides improvement over the iterative search

methods by at least a factor of 8. The execution time increases as the number of

fragments in a query increases. This corresponds to an increase in the number of

arguments in the search predicate. This will be examined further in the analysis of

these test results to see if the execution time approaches a limit. If that is the case,

the minimum improvement can be stated.

83

Figure 5.1: Info Object Type Search Time Comparison

5.3 Observations and Analysis

For the analysis of the test results, it is important to consider the actual mea-

sured improvement, as well any possible questions raised by the results and a cost/ben-

efit analysis for implementation. In addition, the non-quantifiable elements of the pro-

posal must be considered in any speculation about the comprehensive performance

enhancements.

The test application used in this research required the introduction of a search

method to the current MSR to demonstrate the improvement of the fragment method.

Initially, this might be considered to be a cursory exercise because it is not a stretch

to theorize that almost any technique would be an improvement over a linear search

84

Table 5.3: Performance Improvement

method. However, the methodology must be considered in a broader sense by an

additional evaluation of the peripheral benefits of the suggested implementations.

5.3.1 Search Time Improvement. Although the testing demonstrated that

a fragment-based MSR provided better execution time performance for predicate

searches than the current architecture, the level of this improvement must be evalu-

ated. The first question that should be considered is the decreasing level of improve-

ment corresponding to a greater number of fragments searched for in the query.

The lengthier execution time is not due to an increase in the database size, which

was constant for all tests. The number of expressions in the search predicate and the

aggregation required by the “GROUP BY” function are the factors which affected the

increase in response time. Of course, that is not to say that an increase in database size

will not cause an increase in execution time, because database growth will certainly

impact the execution time. The degree to which this growth will increase execution

time is not predictable because the maximum database size cannot be approximated.

However, in this testing database size was not a factor in the increase in execution

time because the database size remained constant.

What must be considered is whether there is a predictable maximum number

of fragments and what is the cost to execute a search with this number of fragments

85

in the predicate. This number should represent the maximum number of fragments

contained in any particular IO type schema in a JBI platform MSR. Otherwise, there

would be no reason for a user to search for matching IO types with more than this

number of fragments (as there could be no IO type with more fragments). The

challenge is that there is no way to accurately predict this number. However, the

structure of the information object is that only searchable metadata fragments should

be present in the IO type schema (other elements can be part of the object payload).

If an analogy can be made to other searching techniques (such as an internet search

engine), an assumption can be made that the initial scope of the query (i.e., the

number of fragments in the query) would be smaller than the maximum size to allow

the broadest search and that additional fragments would be added only to scale down

a large result set. As this is only speculation, another test was conducted to expand

the query results and allow a more confident conclusion.

A test was done to examine the limits of expanding the fragment io search

predicate. For this evaluation, 10 new test fragments were added to the fragment table

and the frament io table size was doubled with the addition of new test fragment-

IO type pairs. These new pairs contained existing IO types paired with the new

fragments. The goal was to create a valid search predicate containing 20 elements

arguments. This would provide results which could be used to evaluate whether the

increase in table size or the search predicate would cause the SQL execution time to

continue to increase or level out.

The testing was a series of 100 queries with a 20 argument search predicate

executed within the MySQL Control Center database environment. The average

execution time for queries was 300 milliseconds. Comparing this to the execution time

for 10 fragments in Table 5.2, it is clear that the execution time does not continue to

grow even though the number of elements and the table size were both doubled.

This test affirms that the fragment-based MSR greatly outperforms (by at least

a factor of 8, as previously shown) the two iterative MSR searches with at least 1,000

86

IO type schemas containing a total of at least 10,000 fragments within the fragment io

table. The fact that there was no change to the maximum execution time allows that

there may be room for many more IO types and fragments with no performance

degradation. The cost of the iterative search will certainly increase with the addition

of IO types, making the fragment choice even more advantageous in that situation.

5.3.2 Schema Revision Efficiency. The use of fragments allows the use of

“includes” and “imports” in IO type schema development. This preserves referential

integrity by allowing the use of fragment types and versions to track element and

attribute changes. IO types only need to have version number changes in their new

version files (noting the fact that schema file names must be unique within a names-

pace and included fragment file names will also have changed). The fact that there

may be many IO types with a given fragment makes this much more efficient than

making many changes to multiple schemas.

5.3.3 Schema Storage Improvements. While there are no proposed changes

to the table field name in the MSR where the full IO type schema is stored, the

use of includes and imports will make the IO type definitions only a fraction of the

size of a fully expanded schema. For example, the base object fragment, which is

part of every IO type, has 17 elements (many of which have element annotations),

and is approximately 75 lines. The inclusion of this complex type as a fragment in

a schema requires only 2 lines–one for the include or import declaration, and one

for the complex type element declaration. A schema composed of fragments is also

easier to immediately visually scan and identify the main components, because even

with many fragments, it may still be viewable on a single page. Conversely, the base

object alone spans almost 3 pages. The database implications of the reduced schema

storage size requirements are that many more rows can be loaded into cache on a

query because the row size will be smaller.

87

5.3.4 Reduced IO Type Knowledge Requirements. One of the best advan-

tages to the fragment methodology is that it provides an additional mechanism to

relate IO types apart from the package tree structure. The fragment io table allows

the introduction of multiple object type search techniques into the platform services.

There will be no ambiguity with respect to inheritance because fragments will be level

building blocks of IO type schemas. Rather than forcing IO types into a difficult to

classify parent-child structure, fragments can be placed at parallel levels within an IO

type schema and be equally identifiable and searchable.

This improvement also allows a user to identify fragments of interest without

having to manually find IO types and identify their structure to build a query or sub-

scription. The entire metadata path knowledge required to build an XPath predicate

on all IO types with a particular fragment is contained within a fragment definition.

All fragments will be defined at the same level within a schema (nested parallel to

one another just one level inside the “metadata” element).

5.3.5 Versioning, Coercion and Namespaces. The benefits realized by the

introduction of the standards and methods for versioning and coercion are not easily

analyzed. First, neither technique is yet supported in the latest version of the JBI

core services. However, both are in the planning stages for a later release. It was

not difficult to envision the complexity in both areas that would be introduced by

the addition of fragments. This research included basic standards and techniques

for implementation to address the most complex issues. By formulating standards

that allow IO type version changes to be directed by fragment version changes, this

issue was greatly simplified. The table structure and example provided for coercion

instructions also provides a basic framework for coercion implementation.

Full custom namespace support is not yet implemented into the JBI core ser-

vices. Schema validation is supported as an option as deployed. The schema valida-

tion option provides for checking for schema well-formedness, ensuring the presence

of compliant base object information, and making sure that a schema contains only

88

supported simple types as elements. Instance validation is also supported and has

various configuration options, including on or off, and how many IOs should be vali-

dated. Until namespace methods are implemented, it will not be feasible for platforms

to properly support versioning because version changes will cause rejection of non-

conforming schemas which may just be older, newer or platform specific versions of

an IO. There are mechanisms to ensure unique IO type names within a platform, but

full namespace support will allow a central namespace to contain a basic fragment

library and prevent IO type and fragment name collisions. An additional benefit to

the support of multiple and central namespaces is to allow multiple platforms to use

similar or identical descriptive names for fragments and IO types. The uniqueness

of a namespace ensures there will be no collisions in these situations. The fragment

proposal also requires platform support for complex types in all namespaces, as this

is the defined data type for all fragments.

5.3.6 Integration Issues. The integration of the fragment methodology

requires changes to the query and subscription process. The positive aspect of this

challenge is that the current method of querying and subscribing by IO type can

remain unchanged. Whereas the current process requires an IO type and optional

XPath predicate, the fragment change would require a fragment array and the optional

search predicate. The flowchart for the new process is shown in Figure 5.2. An

optional additional user input would be an array of acceptable payload types (e.g.,

string, image, etc.). This is not an explicit platform requirement, as the burden of

acceptance or refusal of information objects (IOs) by payload type can be placed

on the client side. This is not absolutely burdensome on the client, as there are

potential benefits to this option, such as no requirement to modify subscriptions when

requirements or processing capabilities change (only their IO processing applications

would need to change). In any case, there are few new requirements for users and

the platform integration requires that the current process flow be prepended with

fragment processing methods. An important consideration for the payload format

89

issue is that some disadvantaged nodes (discussed in Section 2.2.1.4) may not have

the ability to distinguish between payload formats to refuse or ignore the formats

which they cannot process. In this case, a Guardian Agent should perform this

filtering [24,25].

Figure 5.2: Fragment Query Process

If the suggested coercion techniques are implemented they will require modifica-

tions to publishing and subscribing processes. Since the proposed coercion rules allow

publishers with active sequences to continue publishing old versions of IO types, the

platform must use the coercion rules to convert the older IO versions to allow storage

in the new table. This will require either an addition or modification to the publishing

sequence. The same situation applies to active subscriptions except clients must be

delivered their subscribed-to versions of IOs. Queries will only be allowed on new

versions since they are only active during a current session and do not have a status

maintained by the platform.

90

The most expeditious way of implementing the coercion rules would be to create

an appropriate sequence for all active subscribers and publishers at the time the new

version is activated. That will allow potentially faster processing than if the coercion is

done “on-the-fly”. Since an update and publishing and subscribing may be happening

at the same time, it is recommended that the old version tables continue to be used to

store and retrieve IOs until all coercion tasks have been accomplished and conversion

sequences have been created.

5.3.7 Shortfalls and Compromises. Some compromises are required to

achieve improvements in the quality of services the JBI provides with these enhance-

ments. For instance, additional storage will be required for the fragment tables. A

user may have to provide some additional information for an object subscription or

query (i.e., payload format), if subscription or query processing is modified to retrieve

more than one IO type through a fragment query. Users should also be given the

option of whether to retrieve objects of all matching IO types or only those that have

payloads which they can process. This additional preprocessing may also be accom-

panied by a lengthier retrieval process for returning only the subscribed-to versions

of objects to the user. However, this can be alleviated by allowing a payload format

filter on all subscriptions.

A user may have to spend additional time to search for relevant fragments (ver-

sus relevant IO types) in other platforms if some cross platform search mechanism is

developed, but right now there is no such searching tool. Therefore, any increased time

for a fragment search must be weighed against not even having IO type information

from unknown platforms without such a tool.

Any of the trade-offs required for implementing fragments and providing cross

platform searching will be worth the cost in a large-scale JBI deployment because the

assumption must be made that the volume of stored information object types will

significantly outgrow any single user’s knowledge of all IO types of relevance to all

topics.

91

5.4 Summary

This chapter contains the results and analysis of a comparison of the MSR

searching execution times for the current and proposed fragment-based MSR. As there

are some improvements from this research that could not be evaluated with quantifi-

able results, the benefits and complications of the fragment implementation are also

discussed to provide a well-rounded examination of the totality of the improvement.

Chapter 6 contains some recommendations for future work and the conclusion of this

research.

92

VI. Conclusion and Future Work

6.1 Introduction

This chapter contains recommendations for future work and research conclu-

sions. The future work section is broken down into recommendations for different JBI

platform architecture areas. Following the recommendations is a summarization of

this research effort.

6.2 Main Research Contributions

The main contributions of this research relate to the new Information Object

(IO) Type engineering methodology. The main improvements are:

• Simpler, componentized IO type development using fragments of metadata

schema complex types,

• Introduction of new MSR storage architecture to include fragment definitions

and fragment-IO type pairings

• Multiple IO type searches by fragments common to multiple types using a

database table index of fragment-IO type pairings,

• Defined versioning and coercion standards for fragment and IO type evolution,

and

• Simpler, distributed schema design and evolution.

6.3 Future Work

Future work opportunities are broken down into four main areas. Each of these

areas contains topics which have been addressed throughout this research discussion.

The focus in this chapter is on recommendations for the direction of future efforts in

these areas.

6.3.1 Common API Expansion. Several new Common API (CAPI) meth-

ods are discussed in Section 3.5.12. A Fragment interface is suggested that will allow

93

the additions of the methods, addFragment, addFragmentIOType, and getInfoObject-

ByFragments. The getFragmentByInfoObject method should be added to the InfoOb-

ject interface.

The current method of creating a sequence on an IO type allows the establish-

ment of publication and subscription exchange criteria between a client and a JBI

platform. The integration of fragments into this sequence can be accomplished by

allowing the creation of sequences on fragments as well as IO types. The fragment

sequences would require the additional step of assigning an array of IO types (rather

than a single IO type) to an activated sequence.

6.3.2 Fragment Library. The DOD Metadata Registry (DODMDR) and

the Common Mission Definition (CMD) were discussed in Section 2.4. While the

DODMDR does not contain a library of schemas in a common form, their Standard

Data Element database contains 60,000+ elements with corresponding data types

that are categorized by 9,500+ possible fragment-like groupings. These groupings

contain from 1 to 151 elements per group and could become the initial fragments in a

deployed library, which could be added to the JBI core services deployment platform.

The relational database format of the DODMDR could be exploited to simplify the

creation of the XML fragment schemas through a software program, since the database

table contains fields for the element name, data type and description.

The 88 Common Mission Definition “fragments” are already in the standard

XML schema format and are also already defined as complex types (as is the form of

fragment definitions). Therefore, the only effort required to build a library of these

fragments would be to acquire these schema files from the working group, initialize

the base fragment versions and insert these into a fragment database that could then

deploy with the JBI core services.

6.3.3 Platform Recommendations. The implementation of the versioning

and coercion methods and namespace support must include support for the complex

94

data type and the include and import XML schema standards. As support and

integration for these services is still in development, it would be useful to expand

these efforts to include the fragment methodology.

6.3.4 Additional Exploration. One issue that was not investigated in this

research but that seemed quite worthy of exploration is the use of references or pointers

to IO type and fragment schemas in the database storage fields (instead of the full

textual representation of these schemas). There are many improvements that could

be realized with this change if relational databases continue to be the deployed access

method. For one thing, it may reduce the quite lengthy time it takes to load the

schema tree to the JBI IO Type schema list interface (Figure 2.4). Since the IO types

are categorized by their directory-like package structure, this format is ideally suited

to a basic file storage structure that would allow for faster schema retrieval.

Another issue that must be considered is that there may be fragments defined

within other fragments (if a fragment complex type contains other complex types

within its schema). Some of the CMD schemas are structured this way. At the

initial consideration of this issue, it did not appear to pose any challenges as only

the outer fragment will be stored in the fragment io table pairings and the inner

fragment is still a searchable node within the outer fragment by a properly formatted

XPath predicate. However, if a user wishes to search on the inner fragment with

the getInfoObjectByFragment method, there will not be any matches on fragment-IO

type pairs in the fragment io table. If this is resolved by processing every complex

type within an IO type schema as a fragment, then the suggested coercion table

Element Node field will have to be redefined (since all fragments will no longer be

parallel within a schema).

Most schema validators support the use of includes and imports and homoge-

neous, heterogeneous and chameleon namespaces. For this research, the open source

Xerces parser/validator was tested, although the XPathEvaluator class provided by

the JBI in-house team was used for XPath predicate path validation. Not enough has

95

been investigated about the JBI platform instance validation techniques employed

by the platform to recommend this validation tool as a replacement for the current

method. However, the blank instance validation method used in the test application

proved to be fast enough to warrant further testing and analysis against the current

method.

Another benefit of the schema instance field would be to use this instance to

search for metadata terms in the MSR. The instance is in a simpler format for parsing

and testing for key words or to build an index of metadata to fragments and IO types.

This would be very simple to program and build using the XPathEvaluator method

and would help new users to quickly search the fragment library for key words that

would indicate whether a fragment may be useful for building or searching for IO type

schemas.

6.4 Summary of Research

The main objective of this research was to improve the quality of service deliv-

ered by a JBI by introducing a new information engineering framework for information

object (IO) schemas and thereby improve IO retrieval within a JBI. The introduction

of this methodology provides other improvements, such as a technique for searching

across related objects, more effective use of database storage, and reduction in time

to build schemas, subscribe to and query for objects. In addition to these improve-

ments, techniques were introduced to incorporate proposed versioning standards and

coercion techniques into the platform architecture. The combined effect of promot-

ing common libraries of these fragments across multiple platforms (i.e., in a central

common namespace) will allow the reduction in IO type knowledge by users to do a

more thorough search of objects in the entire available JBI information space.

96

Appendix A. Fragment Data

Figure A.1: Fragment Data

97

Appendix B. Source Code

This appendix contains selected java programs and SQL statements used in this re-

search.

B.1 Fragment Create Table Statements

Listing B.1: fragmenttables.sql(appendix2/fragmenttables.sql)

FRAGMENT CREATE TABLE STATEMENT

CREATE TABLE ‘fragment ‘ (
‘fragment_schema ‘ mediumtext NOT NULL ,
‘fragment_name ‘ varchar (100) NOT NULL default ’’,
‘ID‘ int (11) NOT NULL auto_increment ,
‘fragment_version ‘ varchar (100) NOT NULL default ’0’,
PRIMARY KEY (‘ID ‘));

FRAGMENT_IO CREATE TABLE STATEMENT

CREATE TABLE ‘fragment_io ‘ (
‘ID‘ int (11) NOT NULL default ’0’,
‘fragment_name_version ‘ varchar (200) NOT NULL default ’’,
‘io_type ‘ varchar (200) NOT NULL default ’’,
‘io_type_version ‘ varchar (200) NOT NULL default ’’,

PRIMARY KEY (‘ID‘,‘io_type ‘,‘io_type_version ‘),
FOREIGN KEY (‘ID ‘) REFERENCES ‘fragment ‘ (‘ID ‘));

B.2 Combination Generator

Listing B.2: CombinationGenerator.java(appendix2/CombinationGenerator.java)

/**
* @author Michael Gilleland
* Merriam Park Software
*/

import java.math.BigInteger;

public class CombinationGenerator {

private int[] a;
private int n;
private int r;
private BigInteger numLeft;
private BigInteger total;

//------------
// Constructor
//------------

98

public CombinationGenerator (int n, int r) {
if (r > n) {

throw new IllegalArgumentException ();
}
if (n < 1) {

throw new IllegalArgumentException ();
}
this.n = n;
this.r = r;
a = new int[r];
BigInteger nFact = getFactorial (n);
BigInteger rFact = getFactorial (r);
BigInteger nminusrFact = getFactorial (n - r);
total = nFact.divide (rFact.multiply (nminusrFact)...

);
reset ();

}

//------
// Reset
//------

public void reset () {
for (int i = 0; i < a.length; i++) {

a[i] = i;
}
numLeft = new BigInteger (total.toString ());

}

//--
// Return number of combinations not yet generated
//--

public BigInteger getNumLeft () {
return numLeft;

}

//-----------------------------
// Are there more combinations?
//-----------------------------

public boolean hasMore () {
return numLeft.compareTo (BigInteger.ZERO) == 1;

}

//------------------------------------
// Return total number of combinations
//------------------------------------

public BigInteger getTotal () {
return total;

}

99

//------------------
// Compute factorial
//------------------

private static BigInteger getFactorial (int n) {
BigInteger fact = BigInteger.ONE;
for (int i = n; i > 1; i--) {

fact = fact.multiply (new BigInteger (...
Integer.toString (i)));

}
return fact;

}

//--
// Generate next combination (algorithm from Rosen p. 286)
//--

public int[] getNext () {

if (numLeft.equals (total)) {
numLeft = numLeft.subtract (BigInteger.ONE...

);
return a;

}

int i = r - 1;
while (a[i] == n - r + i) {

i--;
}
a[i] = a[i] + 1;
for (int j = i + 1; j < r; j++) {

a[j] = a[i] + j - i;
}

numLeft = numLeft.subtract (BigInteger.ONE);
return a;

}
public static void main(String []args){

String [] elements = {"0", "1", "2", "3", "4", "5",...
"6", "7", "8", "9"};

int count = 0;
int[] indices;
for(int j = 1; j <= elements.length; j++){

CombinationGenerator x = new ...
CombinationGenerator (elements.length , ...
j);

StringBuffer combination;
while (x.hasMore ()) {

combination = new StringBuffer ();
indices = x.getNext ();

100

for (int i = 0; i < indices.length...
; i++) {

combination.append (...
elements[indices[i]]);

}
System.out.println (combination....

toString ());
count ++;

}
System.out.println ("\ nCount of all ...

combinations is: " + count);
}

}
}

B.3 Current MSR IO Type Search 1

Listing B.3: CurrentMethod.java(appendix2/CurrentMethod.java)

public static Vector getInfoObjectVectorBySearch(String [] ...
allIOTypes , String predicate){

Vector infoObjectVector = new Vector (0);
String thisType = "";
boolean matched;
String metadata = "";
try {

Statement stmt;
ResultSet rs;
Class.forName ("com.mysql.jdbc.Driver ");
String url = "jdbc:mysql :// localhost :3306/ mysql ";
java.sql.Connection con = DriverManager....

getConnection(url ,"ior", "ior");
stmt = con.createStatement ();
for (int l = 0; l < allIOTypes.length; l++){

thisType = allIOTypes[l];
String ioQuery = "Select schema_instance ...

from frag.ior_repository " +
"where ...

information_object_type...
= ’" + thisType + "’";

writeSQLDataToFile(ioQuery + ";\n");
rs = stmt.executeQuery(ioQuery);
while(rs.next()){

String instance = rs.getString ("...
schema_instance ");

matched = XPathEvaluator.evaluate(...
predicate , instance);

if (matched){
infoObjectVector....

addElement(thisType);
}// end if

}// end while loop

101

}// end for
con.close();

}// end try
catch(Exception e){

System.out.println (" Exception on msr query! "+e....
getMessage ()+" "+

e.getLocalizedMessage ());
e.printStackTrace ();

}

return infoObjectVector;
}

B.4 Current MSR IO Type Search 2

Listing B.4: CurrentMethod2.java(appendix2/CurrentMethod2.java)

public static Vector getInfoObjectVectorBySearch2(String predicate...
){

Vector infoObjectVector = new Vector (0);
String thisType = "";
boolean matched;
String metadata = "";
try {

Statement stmt;
ResultSet rs;
Class.forName ("com.mysql.jdbc.Driver ");
String url = "jdbc:mysql :// localhost :3306/ mysql ";
java.sql.Connection con = DriverManager....

getConnection(url ,"ior", "ior");
stmt = con.createStatement ();
String ioQuery = "Select information_object_type , ...

version , schema_instance from frag....
ior_repository ";

writeSQLDataToFile(ioQuery + ";\n");
rs = stmt.executeQuery(ioQuery);
while(rs.next()){

String instance = rs.getString ("...
schema_instance ");

thisType = rs.getString ("...
information_object_type ");

matched = XPathEvaluator.evaluate(...
predicate , instance);

if (matched){
infoObjectVector.addElement(...

thisType);
}// end if

}// end while loop
con.close();

}// end try
catch(Exception e){

102

System.out.println (" Exception on msr query! "+e....
getMessage ()+" "+

e.getLocalizedMessage ());
e.printStackTrace ();

}
return infoObjectVector;

}

B.5 XPath Evaluator

Listing B.5: XPathEvaluator.java(appendix2/XPathEvaluator.java)

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.List;
import org.dom4j.Document;
import org.dom4j.DocumentException;
import org.dom4j.DocumentHelper;
import org.dom4j.Node;
import org.dom4j.xpath.DefaultXPath;

/*
* @author AFRL JBI In-House Development Team
*/

public class XPathEvaluator
{

public static boolean evaluate(String predicate , String ...
metadata)

{
// load appropriate evaluator
DefaultXPath evaluator = new DefaultXPath(...

predicate);
Document doc = null;
try
{

doc = DocumentHelper.parseText(metadata);
}
catch(DocumentException de)
{

System.out.println (" Exception parsing ...
metadata in XPathEvaluator: "+

de.getMessage ());
}
catch(Exception e)
{

System.out.println (" Exception parsing ...
metadata in XPathEvaluator: " + e....
getMessage ());

}

103

Object eval = evaluator.evaluate(doc);
if(eval instanceof List)
{

if(((List)eval).isEmpty ()) return false;
else return true;

}
else if(eval instanceof Node) return true;
else if(eval instanceof Boolean) return ((Boolean)...

eval).booleanValue ();
else
{

// well at this point we have been given ...
an xpath expression that we really

// dont know what to do with ... so... log ...
it and the type returned by the ...
evaluator

// so that we can do postmortem.
System.out.println ("Well at this point we ...

have been given an xpath expression ...
that"+

"we really dont know what ...
to do with: "+

"\n\tXPath Predicate: "+...
predicate+

"\n\tType Returned by ...
evaluator: "+eval....
getClass ().getName ());

return false;
}

}

}

B.6 Proposed MSR IO Type Retrieval

Listing B.6: ProposedMethod.java(appendix2/ProposedMethod.java)

public static Vector getInfoObjectVectorByFragment(String [] ...
fragmentArray){

Vector infoObjectVector = new Vector (0);
// beginning of query statement
String fragQuery = "SELECT distinct io_type , ...

io_type_version , count (*) from frag.fragment_io where ...
fragment_name = ";

//OR’d fragment = clause
for (int i=0; i < fragmentArray.length; i++){

if (i>0) fragQuery = fragQuery + " OR ...
fragment_name = ";

fragQuery = fragQuery + "’" + fragmentArray[i] + "...
’";

}

104

//limit results to io_types which contain ALL the ...
fragments (using count)

fragQuery = fragQuery + " group by io_type , ...
io_type_version having count (*) = " + fragmentArray....
length;

writeSQLDataToFile(fragQuery + ";\n");
try
{

//db connection info
Statement stmt;
ResultSet rs;
Class.forName ("com.mysql.jdbc.Driver ");
String url = "jdbc:mysql :// localhost :3306/ mysql ";
java.sql.Connection con = DriverManager....

getConnection(url ,"ior", "ior");
stmt = con.createStatement ();
rs = stmt.executeQuery(fragQuery);
while(rs.next()){

String ioType = rs.getString (" io_type ");
String ioTypeVersion = rs.getString ("...

io_type_version ");
String ioTypeAndVersion = ioType + "_" + ...

ioTypeVersion;
infoObjectVector.addElement(...

ioTypeAndVersion);
}// end while loop

con.close();
}
catch(Exception e)
{

System.out.println (" Exception on fragment query! ...
"+e.getMessage ()+" "+

e.getLocalizedMessage ());
e.printStackTrace ();

}
return infoObjectVector;

}

105

Bibliography

1. Information Management to Support the Warrior. Technical Report
SAB-TR-98-02, USAF Scientific Advisory Board, Dec 1998. URL
http://www.rl.af.mil/programs/jbi/documents/IMReport.pdf. SAB-TR-
98-02.

2. Mercury Capability Guidelines. Technical report, AFRL/IF, January 2003.

3. “DOD METADATA REGISTRY and CLEARINGHOUSE”, March 2005. URL
http://diides.ncr.disa.mil/xmlreg/user/index.cfm.

4. “IFSE Branch, Systems and Information Interoperability”, May 2005. URL
http://www.if.afrl.af.mil/div/IFS/IFSE/.

5. “Joint Battlespace Infosphere (JBI) Common Application Programming Inter-
face (API) Suggested Format for Version 1.5 (Draft 0.3)”, January 2005. URL
http://www.infospherics.org/api/.

6. XML Inclusions (XInclude) Version 1.0 W3C Recommendation 20 December
2004, May 2005. URL http://www.w3.org/TR/2004/REC-xinclude-20041220/.

7. XML Schema Part 0: Primer Second Edition W3C Recommendation 28 October
2004, May 2005. URL http://www.w3.org/TR/xmlschema-0/.

8. “Zero, One or Many Namespaces?” xFront XML Schemas: Best Practices, Jan
2005. URL http://www.xfront.com/ZeroOneOrManyNamespaces.pdf.

9. AFRL/IFSE. JBI Quick Start Guide JBI Core Services Reference Implementation
Version 1.2, October 2004.

10. Bray, Tim, Dave Hollander, and Andrew Layman. Namespaces in XML. W3C,
Jan 1999. URL http://www.w3.org/TR/REC-xml-names/.

11. Cattell, R.G.G. Object Data Management Revised Edition Object Oriented and
Extended Relational Database Systems. Addison Wesley, 1994.

12. Costello, Roger L. “XML Schemas - XML Technologies Course”. XML-DEV List
Group, 2002. URL http://www.xfront.com/BestPracticesHomepage.html.

13. Eckstein, Robert. XML Pocket Reference. O’Reilly & Associates, Inc., 1999.

14. Gilleland, Michael. “Combination Generator”. Merriam Park Software, Jan 2005.
URL http://www.merriampark.com/comb.htm.

15. Harold, Elliotte Rusty. and W. Scott Means. XML In a Nutshell A Desktop Quick
Reference. O’Reilly & Associates, Inc., 2001.

16. Hirschfield, Stuart H. “Developing Clients for the Joint Battlespace Infosphere”.
URL http://www.rl.af.mil/programs/jbi/docs.cfm.

106

17. Knoth, Briana, Vuhuy Phan, and Jerry Warner. Common Mission Definition
Information Model. Technical report, 2004. Revision Number: Working Draft
v1.291d.

18. Kokar, M.M. Fusion as an Operation on Formal Systems: A Formal Framework
for Information Fusion (FIFF). Technical report, Proposal to Air Force Office of
Scientific Research, 1997.

19. Linderman, Mark H. and Paul T. Webster. “The Joint Battlespace Infosphere”.
URL http://www.afrlhorizons.com/Briefs/June01/IF0018.html.

20. Luo, R.C. and M.G. Kay. Data Fusion and Sensor Integration: State-of-the-Art
1990s in Data Fusion in Robotics and Machine Intelligence. Academic Press,
1992.

21. Marceau, Carla. “The JBI Information Object Type Heirarchy”, June 2004.
ATC-NY.

22. Marsh, Jonathon and David Orchard. XML Inclusions
(XInclude). W3C, version 1.0 edition, Nov 2003. URL
http://www.w3.org/TR/2003/WD-include-20031110/.

23. Rosen, Kenneth H. Discrete Mathematics and Its Applications, 2nd edition.
McGraw-Hill, 1991.

24. Satterthwaite, David E., Charles P. Corman and Thomas S. Herm. “Real-time
Information Extraction for Homeland Defense”. 7th International Command and
Control Research and Technology Symposium. Naval Post Graduate School, June
2002.

25. Satterthwaite, T.W.; Corman D.E.; Herm T.S.; Martens E.J., C.P.; Blocher.
“IEIST force template technology provides a key capability for connecting tactical
platforms to the global information grid”. Digital Avionics Systems Conference,
2004, volume 2, 11.B.2– 11.1–9. Oct 2004.

26. USAF Scientific Advisory Board. Building the Joint Battlespace
Infosphere, volume 1: summary edition, Dec 2000. URL
http://www.rl.af.mil/programs/jbi/documents/JBIVolume1.pdf. SAB-
TR-99-02.

107

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

13–06–2005 Master’s Thesis Sept 2003 — Jun 2005

A JBI Information Object Engineering Environment
Utilizing Metadata Fragments for Refining Searches

on Semantically-Related Object Types

Felicia N. Harlow, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way, Bldg 641
WPAFB OH 45433-7765

AFIT/GCE/ENG/05-03

AFRL
Attn: Mr. Robert Hillman, DSN 587-4961
525 Brooks Rd
Rome, NY 13441
robert.hillman@rl.af.mil

Approval for public release; distribution is unlimited.

The Joint Battlespace Infosphere (JBI) architecture defines the Information Object (IO) as its basic unit of data. This
research proposes an IO engineering methodology that will introduce componentized IO type development. This
enhancement will improve the ability of JBI users to create and store IO type schemas, and query and subscribe to
information objects, which may be semantically related by their inclusion of common metadata elements. Several parallel
efforts are being explored to enable efficient storage and retrieval of IOs. Utilizing relational database access methods,
applying a component-based IO type development concept, and exploiting XML inclusion mechanisms, this research
improves the means by which a JBI can deliver related IO types to subscribers from a single query or subscription. The
proposal of this new IO type architecture also integrates IO type versioning, type coercion and namespacing standards
into the methodology. The combined proposed framework provides a better means by which a JBI can deliver the right
information to the right users at the right time.

JBI (Joint Battlespace Infosphere), XML Schema, Metadata, Namespaces, Information Retrieval, Information Object,
Web Services, Object Versioning, Schema Evolution

U U U UU 122

Michael L. Talbert, Lt Col, USAF

(937) 255–3636, ext 4613

	A JBI Information Object Engineering Environment Utilizing Metadata Fragments for Refining Searches on Semantically-Related Object Types
	Recommended Citation

	tmp.1600117281.pdf._SUze

