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Abstract 

Groundwater contamination by petroleum products poses a potential human 

health and safety risk.  Methyl tert-butyl ether (MTBE) was a commonly used fuel 

oxygenate that was added to gasoline to meet environmental regulations.  The widespread 

use of MTBE resulted in significant contamination of drinking water supplies across the 

United States.  Increased scrutiny regarding the use of MTBE has sparked efforts to 

replace MTBE with alternative fuel oxygenates. 

The purpose of this research was to evaluate the degradation characteristics of 

potential alternative fuel oxygenates in the vadose zone.  One fuel oxygenate that is being 

seriously considered as an alternative to MTBE is diisopropyl ether (DIPE).  Specifically, 

this thesis sought to answer three research questions: what is the potential for DIPE 

degradation in soil without prior microbial augmentation, how does the presence of co-

contaminants, such as ethanol and toluene, impact the biodegradation of DIPE, and will 

the increased use of DIPE represent a potential environmental risk?  Previous research 

related to fuel oxygenates has focused primarily on oxygenates currently used, such as 

MTBE and ethanol.  This research focused on a potential alternative to MTBE prior to its 

widespread implementation and use. 

An experiment was run for 30 days to assess degradation characteristics for DIPE, 

ethanol, and toluene in the vadose zone.  Due to the short length of the experiment, as 

well as the experimental difficulties encountered, it is not possible to determine if DIPE 

degradation occurred.  Recommendations for future research to address potential fuel 

oxygenate impacts on the subsurface environment are discussed.  
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EVALUATION OF FUEL OXYGENATE DEGRADATION IN THE 
 

VADOSE ZONE 
 
 
 
 

1.0 Introduction 
 
 
 

1.1 Motivation 
 
 

The automobile has impacted the environment since its invention and continues to 

play a major role in current environmental issues.  From the invention of the automobile 

until the mid 1970's, tetra ethyl lead was added to gasoline as an octane enhancer and to 

reduce engine knock (Kovarik, 2003).  However, by the early 1970's, high atmospheric 

lead levels, ozone depletion and global warming were factors that motivated the 

Environmental Protection Agency (EPA) to mandate a reduction in the use of lead 

(USEPA, 2003).  In 1979, low levels of methyl tertiary butyl ether (MTBE) replaced lead 

in gasoline as an octane enhancer and to reduce engine knock.  MTBE helped reduce 

atmospheric lead levels and kept the consumer satisfied.  However, in the 1990's, the 

Clean Air Act Amendments mandated additional changes to gasoline.  These changes led 

to widespread and increased use of MTBE and other fuel additives to increase oxygen 

content.  These fuel additives were aptly named fuel oxygenates.   
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The widespread use of fuel oxygenates increased opportunities for environmental 

releases to occur.  Releases are inevitable and occur from storage tanks, distribution 

systems, at the point of use, and also in air emissions (Ahmed, 2001).  However, the 

widespread use of fuel oxygenates was not supported with adequate characterization 

regarding their environmental fate and transport.   

MTBE does not readily degrade in the environment.  When released to the soil 

and subsurface, MTBE is relatively mobile with a relatively high solubility.  As a result, 

significant MTBE surface and groundwater contamination has occurred (Squillace et al., 

1996).  Additionally, limited understanding of MTBE health effects have shifted 

regulatory efforts to reducing or even banning MTBE in gasoline.     

 An alternative fuel oxygenate is needed to fill the void created by MTBE 

reductions and bans.  However, the performance of any replacement is critical to 

maintain customer satisfaction and continued compliance with regulatory requirements.  

Several fuel oxygenate alternatives exist and a thorough evaluation, including 

degradation characteristics under various conditions, is warranted prior to widespread 

use.  The fuel refineries and distributors will ultimately decide the fuel oxygenate that 

replaces MTBE.  Understanding the fate of any replacement oxygenates will not only 

allow for an informed decision but also provide strategies to control the inevitable 

releases.   

 Many different environmental factors affect the degradation of chemicals released 

to the environment.  A chemical would likely encounter both aerobic and anaerobic 

conditions, each of which has different degradation processes.  However, it is likely that 

most fuel oxygenate releases will initially occur in an aerobic environment.  Hence, 
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aerobic degradation is a good choice to start for an evaluation.  An experiment conducted 

in a laboratory environment affords limited control of certain environmental variables 

such as whether an aerobic or anaerobic environment exists.  Ultimately, the research will 

provide results that can guide additional research, laboratory or field, eventually leading 

to an understanding on the environmental fate and transport of a particular chemical.  

 
 
 

1.2 Research Objective 
 
 
 Research accomplished by Mares (2004) used a series of eight soil columns to 

assess potential aerobic degradation of ethyl alcohol, or ethanol.  The results indicated 

ethanol did degrade in the aerobic environment.  

 To extend this research, the soil columns were maintained in an aerobic state, and 

an alternative fuel oxygenate, diisopropyl ether (DIPE) was evaluated for potential 

aerobic degradation.  The impact of the presence of co-contaminants, ethanol and 

toluene, on the aerobic biodegradation of DIPE, was also evaluated.  The research 

addressed the following questions. 

1. Does DIPE degradation occur in soils without microbial augmentation? 
 

2. How does the presence of co-contaminants, such as ethanol and toluene, impact 
the biodegradation of DIPE? 

 
3. Based on the above results, would the use of DIPE as a fuel oxygenate represent 

an increased long term pollution risk? 
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1.3 Study Limitations 
 
 

The experiment was conducted in a laboratory setting which inherently introduces 

limitations.  Key limitations to the study are addressed. 

The focus of the study is strictly aerobic degradation.  While aerobic degradation 

is likely to be encountered initially, large or repeated releases can quickly deplete soil 

oxygen.  Anaerobic degradation may still occur, however, anaerobic degradation was not 

considered in this study.   

Due to the short duration of the experiment, optimal microbe adaptation may not 

have occurred.  Microbial populations require adaptation periods to use available 

substrates.  For example, MTBE aerobic degradation can occur, but may require several 

months, possibly due to slow microbial adaptation and growth (Schirmer et al., 2003).  

 Since this was a laboratory experiment, the substrate application may not 

represent a realistic environmental release and therefore any results beyond a controlled 

laboratory setting may not be represented.  The purpose of the laboratory experiment is to 

determine if degradation can be measured.  
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2.0 Literature Review 

 
 
 

2.1 Fuel Oxygenate History 
 
 

Automobiles used gasoline blended with lead prior to 1979 primarily to boost 

octane levels (USEPA, 2003).  In 1970, anthropogenic vehicle emissions included 

nitrogen oxides, sulfur oxides, particulate matter, carbon monoxide, and lead.  Vehicle 

emissions were a major source of atmospheric lead (Godish, 2004).  Deteriorating air 

quality, combined with ozone depletion and global warming, spawned regulatory efforts 

to control vehicle emissions.  In 1973, the Environmental Protection Agency (EPA) 

issued lead reduction standards requiring the gradual phase down of lead to 0.1 gram per 

gallon by 1986 (USEPA, 2003).  However, lead reductions reduced gasoline octane 

ratings and increased engine knock.  Fuel oxygenates were introduced to replace lead.  

When blended with gasoline, fuel oxygenates boost octane rating, and reduce engine 

knock.   

In 1990, the Clean Air Act Amendments (CAAA) mandated use of fuel 

oxygenates to be blended in all grades of gasoline for areas that did not meet ambient air 

quality standards for carbon monoxide or ozone (Squillace et al., 1996).  Two programs, 

the winter oxygenated fuels program and the reformulated gas program were created to 

attain these ambient air quality standards.  However, a specific fuel oxygenate was not 

mandated by the CAAA but left to the discretion of the gasoline manufacturers.    
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The winter oxygenated fuels program requires oxygenated gasoline, also known 

as oxyfuel, in areas that do not meet carbon monoxide (CO) air quality standards.  Started 

on November 1, 1992, the program included 39 metropolitan areas (USEPA, 2001).  

Oxyfuel is traditional gasoline blended with at least 2.7% oxygen added by weight 

(USEPA, 1994).  It was used as early as winter 1988 in Denver, CO and in five other 

metropolitan areas prior to 1992 (USEPA, 1993). 

The reformulated fuels program began January 1, 1995, and targeted nine 

metropolitan areas with the worst ozone pollution.  Reformulated gasoline (RFG) is a 

different chemical formulation than traditional gasoline and contains at least 2.0% 

oxygen by weight, a maximum of 1.0% benzene, and a maximum of 25% aromatic 

hydrocarbons by volume (USEPA, 1994).  The program was implemented in two phases 

with the overall goal to reduce vehicle emissions.  Phase two of the reformulated fuels 

program was implemented on January 1, 2000 with additional emissions reductions 

requirements. 

 
 
 

2.2 Fuel Oxygenate Functional Groups 
 
 

Fuel oxygenates are chemical compounds containing oxygen and hydrogen atoms 

that are blended with gasoline to increase the oxygen content.  Oxygenates increase 

octane ratings and improve the operating combustion efficiency vehicles.  Increased 

combustion efficiency reduces vehicle carbon monoxide emissions (Godish, 2004).  
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Additionally, oxygenates reduce the vapor pressure of the mixture, reducing volatilization 

of aromatic compounds (USEPA, 2003). 

Oxygenates include methyl tertiary-butyl ether (MTBE), diisopropyl ether 

(DIPE), ethyl-tertiary-butyl ether (ETBE), tertiary-amyl-methyl ether (TAME), tertiary-

amyl alcohol (TAA) and tertiary-butyl alcohol (TBA), methyl alcohol and ethanol and 

can be separated into two categories, alcohols and ethers. 

Alcohols are derived from aliphatic hydrocarbons by replacing one or more 

hydrogen atoms with a hydroxyl group, -OH.  Alcohols can be produced from naturally 

occurring substances or synthetic substances.  Naturally occurring substances involve 

fermentation of a carbohydrate source, such as grains, followed by distillation (Boggan, 

2005).  Synthetic alcohols can be created from natural gas, coal, or oil.  Synthetic 

alcohols are created using ethylene and an acid as a catalyst for hydration (Boggan, 

2005).  Naturally occurring alcohols can be used in the production of beverage alcohol 

while synthetic alcohols can only be used for industrial purposes.  Due to the polar nature 

of the oxygen-hydrogen bond, alcohols are more soluble in water than hydrocarbons, 

however as the carbon chain length increases, the solubility decreases (Brown et al., 

1997).  

Ethers are two hydrocarbon groups bonded in a carbon-oxygen-carbon sequence 

and created by a reaction of two alcohol molecules with a strong acid that leads to the 

elimination of water (Pauling, 1988).   
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2.2.1 MTBE. 

MTBE is an aliphatic ether manufactured by the chemical reaction of methanol 

and isobutylene.  MTBE is a volatile, flammable, colorless liquid that is miscible in 

gasoline, and soluble in water, alcohol, and other ethers (Squillace et al., 1996).  MTBE 

was originally introduced into gasoline at low levels in the United States in 1979 as an 

octane enhancer during the phase down of leaded gasoline (USEPA, 2003).  Since 

implementation of the winter oxygenated fuels program, MTBE has been used in 

gasoline at higher levels.   Low-cost, ease of production, and transfer and blending 

characteristics make MTBE a popular fuel oxygenate (Mormile et al., 1994).  MTBE can 

be produced at a refinery and blended with gasoline prior to distribution without phase 

separation.  The blended gasoline can then be transported through the existing 

distribution infrastructure (Squillace et al., 1996).  To meet the minimum requirements 

for oxygenated fuels and RFG, gasoline must contain about 15% MTBE by volume 

(USEPA, 1998).  Approximately 30% of all fuel in the United States is blended and 

MTBE accounts for more than 80% of oxygenated fuels (USEPA, 1998).  The structural 

formula of MTBE is provided below in Figure 2.1. 

 

Figure 2.1 Structural Formula of MTBE 

8 



2.2.2 ETHANOL. 

Ethanol, or ethyl alcohol, can be manufactured from a wide range of naturally 

occurring materials such as corn, barley or wheat.  Early automotive experiments by 

Nicholas Otto, Henry Ford and others used ethanol (Kovarik, 2003).  Ethanol is a 

volatile, flammable, colorless liquid that is miscible in water.  Ethanol used in gasoline 

requires separate manufacturing near the point of use or must be transported via rail 

(USEPA, 1998).  Distribution systems may contain water and other impurities that 

ethanol will bring into solution rendering the ethanol-gasoline mixture unusable (USEPA, 

1998).  Ethanol is the second most common oxygenate in use following MTBE and is 

used in approximately 15% of oxygenated fuels (USEPA, 1998).  The structural formula 

of ethanol is provided below in Figure 2.2. 

 
Figure 2.2 Structural Formula of Ethanol 

2.2.3 DIPE. 

Diisopropyl ether (DIPE) is a byproduct in the production of isopropyl alcohol 

made from propylene and water (Arce et al., 2000).  DIPE is a volatile, highly 

flammable, colorless liquid that is miscible with most organic solvents, soluble in 

oxygenated solvents and has limited solubility in water.  While MTBE dominates the 

current fuel oxygenate market, insufficient MTBE supply can increase the interest in the 

heavier ether DIPE as a suitable replacement (Arce et al., 2000).  The structural formula 

of DIPE is provided below in Figure 2.3. 
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Figure 2.3 Structural Formula of DIPE 

 
 
 

2.3 Fuel Oxygenate Health Effects 
 
 

Risk assessments are a systematic process of hazard identification, dose-response 

assessment, exposure assessment, and risk characterization.  Risk assessments are used to 

establish an acceptable level of risk which can lead to regulatory guidelines.  Reference 

dose (RfD) for ingestion and reference concentration (RfC) for inhalation are two 

important values the EPA uses when establishing regulatory guidelines.  RfD and RfC are 

estimates of the levels at which no significant health effects are anticipated due to 

exposure over a lifetime (USEPA, 2002). 

Gasoline blended with fuel oxygenates can be released to the environment via air 

emissions, accidental discharges, leaking underground storage tanks and others pathways.  

Potential human exposures to a chemical release can occur through inhalation, ingestion, 

or dermal contact.  For non-occupationally exposed individuals, exposure to gasoline is 

usually limited to daily activities such as driving, vehicle refueling, parking garages, and 

homes with attached garages (Ahmed, 2001).  Inhalation and dermal contact represent 

primary exposure risks for non-occupationally exposed individuals.  However, the 

chemical properties of oxygenates combined with accidental discharges and leaking 

underground storage tanks, has led to the contamination of many surface waters and 
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drinking water aquifers.  If contaminants are not removed from the drinking water, 

ingestion then becomes a potential pathway.   

Traditional gasoline has over 1000 components including fuel oxygenates and 

aromatic hydrocarbons known as BTEX (benzene, toluene, ethylbenzene, and xylene) 

(USEPA, 1994).  For BTEX and oxygenate components, benzene is the only component 

classified as a known human carcinogen.  MTBE is classified as a confirmed animal 

carcinogen, but has not been validated as a human carcinogen (ACGIH, 2001).  Limited 

epidemiological and clinical data exists on human health effects related to oxygenate 

exposures (Ahmed, 2001).  Most health effect-related studies use laboratory animals 

exposed to high dose.  Data collected are then extrapolated from an animal exposure to 

human exposure which would be anticipated to be several orders of magnitudes lower.  

This dose response assessment produces uncertainty when defining an acceptable risk 

level for establishing regulatory guidance (Masters, 1998). 

 
 
 

2.4 Regulatory Environment for Fuel Oxygenates 
 
 

Regulatory guidance for non-occupational exposures for fuel oxygenates is 

limited.  MTBE has received the most widespread attention due to its potential as a 

human carcinogen.  However, recommended occupational exposure thresholds for 

MTBE, DIPE and ethanol do exist.  The Occupational Health and Safety Administration 

(OSHA) is the responsible government organization for establishing occupational 

exposure limits.  The American Conference of Governmental Industrial Hygienists 
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(ACGIH) augments OSHA limits by providing annually updated recommended exposure 

thresholds.  These thresholds are generally established as either a time weighted average 

(TWA) or a short term exposure limit (STEL).  A TWA is used to define a limit for an 

occupational employee who works a typical eight hour workday, 40 hours per week.  A 

STEL also establishes a recommended exposure threshold but is for exposure durations 

over a 15 minute period.  STEL values are typically higher than TWA values as the 

exposure duration is significantly shorter.  Table 2.1 is a summary of occupational 

exposure limits related to several fuel oxygenates and BTEX components. 

Table 2.1 Occupational Exposure Standards (ACGIH, 2002) 

Component Standard 
MTBE 50 ppm (TWA) 
DIPE 250 ppm (TWA) 

310 ppm (STEL) 
Ethanol 1000 ppm (TWA) 
Benzene 0.5 ppm (TWA) 

2.5 ppm (STEL) 
Toluene 50 ppm (TWA) 
Ethylbenzene 100 ppm (TWA) 

125 ppm (STEL) 
Xylene 100 ppm (TWA) 

150 ppm (STEL) 
 

Since most individuals do not experience oxygenate exposures in an occupational 

setting these standards are not designed to protect the general population.  As previously 

mentioned, the bulk of non occupational exposures to BTEX and fuel oxygenates occur 

through inhalation, dermal contact, and ingestion on an intermittent basis.  The EPA has 

established regulations related to BTEX exposures, however fuel oxygenates do not 

currently have any regulatory requirements at the national level due to the uncertain 
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health effects.  In December 1997, the EPA issued a drinking water advisory 

recommending 20-40 μg/L for MTBE to mitigate potential taste and odor effects 

(USEPA, 1997). This advisory is not enforceable, but many states have used this 

guidance to establish their own regulatory requirements for MTBE.  The standards range 

from none in Montana to 240 μg/L in Michigan (Delta Environmental Consultants, 

2004). 

MTBE has received significant attention for its potential health effects.  For this 

reason, the use of MTBE as a fuel oxygenate has been severely restricted in many states.  

Thirteen states have partially banned MTBE to less than 1% by volume of gasoline; one 

state is phasing out MTBE; and five have complete MTBE bans (USEPA, 2004).  All of 

these restrictions will be implemented by mid-2005. 

 
 
 

2.5 Fate and Transport of Fuel Oxygenates 
 
 

The 1990 CAA oxygenated fuels and RFG mandate increased the use of 

oxygenates.  The chemical properties of oxygenates and BTEX components are important 

factors in how much and how far a release will travel in a groundwater aquifer.  Two 

factors that directly impact chemical transport are the pure-phase solubility of the 

chemical and the octanol-water partition coefficient (KOW).  Pure-phase solubility 

determines how much product can be dissolved into a water solution before free product 

exists.  The partition coefficient provides an indication of the tendency of a solute to 

partition between an organic medium and water (Clark, 1996).  A low KOW indicates a 
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chemical is unlikely to dissolve in an organic medium.  Additionally, the vapor pressure 

and Henry's Law Constant (KH) provide valuable information regarding the ability of an 

oxygenate to reach the soil and stay in the soil.  Most oxygenates generally have high 

vapor pressures that result in volatilization (API, 2000).  However, relatively low KH 

values cause fuel oxygenates to partition into soil moisture readily (API, 2000). Table 2.2 

provides solubility, octanol-water partition coefficient, vapor pressure, and Henry's Law 

Constant information for common fuel oxygenates as well as toluene. 

Table 2.2 Chemical Properties of Common Fuel Oxygenates and Toluene 

(Howard et al., 1997) 

Pure Phase 
Solubility

Henry's Law 
Constantlog K  

(log l/kg)
Vapor Pressure 
(25ºC, mm Hg)

OWOxygenate     (mg/L) (Dimensionless)  
Methanol miscible -0.75 121.58 1.087E-4 
Ethanol miscible -0.16 49-56.5 2.522E-4 

-0.31 
TBA miscible 0.35 40-42 4.803E-4 
MTBE 43,000 - 

54,300 
1.20 245-256 2.399E-2 

DIPE 2,039 1.52 149-151 5.191E-2 
ETBE ~26,000 1.74 152 1.087E-1 
Toluene 534.8 2.73 28.4 2.428E-1 

  

Due to blending characteristics, ease of distribution, and cost, MTBE became the fuel 

oxygenate of choice (Mormile et al., 1994).  However, due to its relatively high solubility 

and low KOW, MTBE in the environment dissolves readily in water, and its subsurface 

transport is not retarded by sorption to soil organics.  In areas where MTBE has been 

used in gasoline at greater than five percent by volume, groundwater detection is five 

times more likely (Grady, 2001).  It is estimated that approximately 5-10 % of 
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community drinking water supplies in high oxygenate areas have detectable MTBE 

(USEPA, 1999).  Adequate understanding of the attenuation of fuel oxygenates is critical 

for their continued use.  Possible attenuation processes includes sorption, volatilization, 

abiotic degradation and biodegradation.  While the first three are possible with fuel 

oxygenates, it is unlikely that attenuation by these processes is significant, based upon 

their chemical properties (Mares, 2004). 

 
 
 
2.6 Attenuation of Fuel Oxygenates 
 
 

Most fuel oxygenate research has focused on the degradation of MTBE, MTBE 

intermediates, ethanol, and BTEX components as mono-substrates.  Past research has 

identified MTBE as potentially degradable under aerobic and anaerobic conditions.  

However, these studies sometimes are contradictory and indicate site specific conditions 

are important to degradation capabilities (Schmidt et al., 2003).  Mares (2004) 

summarized significant aerobic and anaerobic degradation research accomplished 

pertaining to MTBE, ethanol, and BTEX components.  Degradation research continues 

on MTBE, ethanol, BTEX and also alternative oxygenates.   

Schirmer et al. (2003) evaluated soil microcosms extracted from the shallow, 

aerobic sand aquifer located at Canadian Forces Base, Borden Ontario.  Soil samples 

were collected from both uncontaminated and MTBE-contaminated locations in the 

subsurface.  Batch microcosm studies of these soil samples were conducted to evaluate 

the potential for microbial use of MTBE as a primary carbon source, as well as the 

potential for MTBE cometabolic degradation with fuel hydrocarbons as the primary 
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substrate.  Results indicated there was potential for MTBE to serve as the primary carbon 

source; however, this was rare and only occurred after an extended period of at least 68 

days.  The extended period for degradation could be the result of slow microbial growth 

or possible genetic mutation changes to utilize MTBE as a sole source of carbon 

(Schirmer et al., 2003).  MTBE degradation by hydrocarbon cometabolism also occurred 

readily except when toluene and methane were the primary substrates.  Additional 

research into MTBE degradation as a primary carbon source in an aerobic environment 

could lead to identification of microorganisms that potentially may be capable of 

degrading alternative oxygenates too.  

Other recent MTBE research efforts have focused on identification of 

microorganisms responsible for the biodegradation of MTBE.  Most bacteria are unable 

to degrade MTBE as the primary growth substrate (Liu et al., 2001).  Francois et al. 

(2002) evaluated Mycobacterium austroafricanum IFP 2012 for potential MTBE 

biodegradation.  The strain was grown on both MTBE and TBA.  Results indicated 

strains grown on TBA were able to effectively degrade MTBE and that biomass 

production using TBA was good (Francois et al., 2002).  More importantly, 

Mycobacterium austroafricanum IFP 2012 was identified as only the third pure bacterial 

strain able to grow on and mineralize MTBE as the sole carbon source.   

Sedran et al. (2002) evaluated the effect of the presence of BTEX on MTBE and 

TBA degradation.  Continuous feed reactor experiments with and without BTEX, 

indicated the presence of the BTEX compounds did not inhibit the degradation of MTBE 

or TBA.  Batch studies were accomplished using the reactor effluent and biomass.  The 

batch samples were spiked with MTBE, MTBE and BTEX, TBA, and TBA and BTEX.  

16 



Batch study results indicated BTEX was preferentially degraded over MTBE and TBA.  

The BTEX degraded rapidly, and did not impact the MTBE degradation rates.  However, 

the rapid degradation of BTEX may impose a significant oxygen demand that could limit 

aerobic degradation of MTBE (Sedran et al., 2002). 

The degradation of ethanol in an aerobic environment has been previously 

reported (Da Silva and Alvarez, 2002; Mares, 2004).  Ruiz-Aguilar et al. (2002) 

evaluated the effect of ethanol versus MTBE on the degradation of BTEX components.  

Soil samples were collected from four sites that were either uncontaminated, or had 

previous exposures to MTBE, BTEX, and ethanol.  Aerobic microcosms of these soil 

samples were studied to evaluate degradation of BTEX alone, BTEX plus ethanol, and 

BTEX plus MTBE.  Results indicated ethanol degradation occurred rapidly in an aerobic 

environment and that ethanol was more readily degraded than the BTEX compounds.  

BTEX degradation was inhibited by the presence of ethanol (Ruiz-Aguilar et al., 2002).  

Additionally, the results indicated the presence of MTBE was not likely to affect ethanol 

or BTEX degradation (Ruiz-Aguilar et al., 2002). 

Lovanh et al. (2002) also evaluated ethanol and BTEX degradation in an aerobic 

environment.  The experiment used four chemostats with ethanol and BTEX compounds 

exposed to various bacterial cultures.  Results indicated ethanol degradation inhibited the 

degradation of the BTEX compounds.  Limited BTEX attenuation due to the presence of 

ethanol can lead to expanded BTEX plumes if ethanol is used as an oxygenate (Lovanh et 

al., 2002).   

Park et al. (2001) evaluated the degradation of toluene in an aerobic environment.  

Using a known toluene degrading bacteria, Ralstonia pickettii PKO1, batch studies and 
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continuous flow column experiments evaluated toluene degradation when the bacteria 

were exposed to fluctuating concentrations of toluene.  The experiments were conducted 

in a homogenous saturated sandy porous medium.  Michaelis-Menten kinetics were 

assumed, and kinetic parameters were derived from the batch study data.  These 

parameters were then used to model the continuous flow experimental results.  The 

continuous flow experiments showed significant degradation of toluene.  However, when 

the toluene influent concentrations fluctuated, the observed degradation rates were not 

consistent with Michaelis-Menten kinetics.  Reducing influent toluene concentrations 

resulted in increasing toluene effluent concentrations.  This increased toluene effluent 

was driven by starvation of the microbial population (Park et al., 2001).  When the 

influent toluene concentrations were increased again, degradation activity increased, 

thereby reducing effluent concentrations.  It appears there is a threshold concentration of 

toluene required to maintain the microbial population. These results indicated that 

previous substrate exposure and fluctuating concentrations can significantly impact the 

degradation capabilities of the microorganisms (Park et al., 2001).  

Limited detailed research into DIPE degradation exists.  However, an experiment 

conducted by Church and Tratnyek and reported at a workshop on biodegradation of 

MTBE in February 2000 (EPA, 2001), used mixed cultures to identify aerobic 

biodegradation rates of various fuel oxygenates including DIPE.  The results of the 

experiment indicated aerobic degradation rates for DIPE were on the same order of 

magnitude as the rates for the aerobic degradation of MTBE.  The similarity of the 

chemical structures suggested that similar biodegradation characteristics and constraints 

would be expected for DIPE and MTBE (EPA, 2001).  
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3.0 Methodology 
 
 
 

3.1 Experiment Design 
 
 
 Operation of the experiment can be broken into 5 categories: the column setup; 

the feed system; the control system; monitoring equipment; and sampling methods.  

Mares (2004) discussed specific column construction and equipment details.  A brief 

overview of the system and equipment is provided in this chapter, including system 

modifications accomplished during the current research.   

3.1.1 Column Setup. 

 The experiment consisted of eight separate soil columns of polyvinyl chloride 

(PVC) tubing.  Each column was constructed in a similar manner and setup to minimize 

variability from column to column.  The columns were eight feet tall and eight inches in 

diameter.  Each column was constructed with one foot of course drain rock at the bottom, 

followed by approximately six feet of sandy soil on top.  Ports were installed in each 

column at three different elevations, the top, middle, and bottom of the column. The top 

and middle ports were to sample oxygen and carbon dioxide conditions inside the 

columns.  The bottom port provided column drainage.  The sampling ports accessed three 

3-foot silicon tubing loops buried in the soil during construction.  The top port had two 

loops, one reinforced with nylon and one with silicon only.  The middle port had only one 

reinforced loop. Silicon is permeable to oxygen and carbon dioxide, allowing an 

19 



exchange of gas between the surrounding soil and the silicon loop.  Decreased oxygen 

and increased carbon dioxide indicates microbial activity within the columns.  Gas from 

the top port reinforced loop was pumped to an external oxygen sensor from Japan Battery 

Co. Ltd.  Gas in the remaining loops was analyzed by a Columbus Instruments Micro-

Oxymax respirometer.  Equipment limitations prevented the use of Micro-Oxymax in 

previous research. 

3.1.2 Feed System. 

A chemical and tap water mixture was fed to the soil surface at the top of the 

column that was open to the atmosphere.   Water, in five gallon buckets, was pumped to 

the columns using a single fixed-speed pump.  Test chemicals were stored in a separate 

reservoir and pumped using a variable speed pump.  Mares (2004) recommended 

increasing the chemical reservoir from a 40 mL vial to ensure a constant chemical feed.  

A 250 mL amber narrow mouth bottle reservoir capped with a Teflon lined septum 

replaced the original chemical storage vials.  A needle tip was inserted into the septa as 

had previously been done with the 40 mL vials to equalize pressure.  The test chemicals 

and water were mixed just prior to column application.  Previously, the water and 

chemical feed lines were connected to a 5/16 inch inside diameter (I.D.) tube which then 

fed the mixture through a stainless steel in-line static tube mixer.  This setup created a 

mini reservoir that was difficult to maintain at consistent water and chemical flow rates.  

To alleviate the potential flow rate fluctuations, a stainless steel reducing T-connector 

replaced the 5/16 inch tubing, reducing the volume of the mini reservoir to negligible.  

The T-connector was then attached to the in-line static tube mixer that fed to the column 
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top.  The feed system pumps were run by a specially developed computer program. (C.G. 

Enfield, personal communication, August 19, 2004). 

3.1.3 Control System. 

A dedicated computer, running a visual basic program created by Dr. Enfield, 

operated the feed system and recorded data from the external oxygen sensor.  Originally, 

the computer program operated the pumps, using data from oxygen sensor.  Mares (2004) 

detailed the pump operation.  For the current research, the computer program was revised 

to operate the pumps for a specified time period independent of the oxygen data.  

Columns one through four pumped a volumetric flow at 2 % of the volumetric flow rate 

at saturation, while columns five through eight pumped at 10% of the volumetric flow 

rate at saturation.  The different flow rates were selected to assess potential degradation 

of the contaminants under varied conditions.  The volumetric flow rate at saturation was 

determined using the constant-head permeameter method described in section 3.2.2. 

3.1.4 Monitoring Equipment. 

The monitoring equipment consisted of the external Japan Battery Co. Ltd oxygen 

sensor and the Micro-Oxymax respirometer.  Mares (2004) detailed the setup of the 

external oxygen sensors.  As previously discussed, the top and middle ports were also 

designed to collect oxygen and carbon dioxide data using the Micro-Oxymax 

respirometer.   

The Micro-Oxymax respirometer data can be used to assess microbial activity 

within the columns.  The respirometer was operated as a closed circuit system to measure 

oxygen and carbon dioxide changes in the experiment.  The system was equipped with an 
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oxygen sensor, range 10-21 percent, and a carbon dioxide sensor, range 0-1 percent.  The 

respirometer had an expansion interface to monitor up to 20 chambers. 

The respirometer's primary function was to measure consumption or production 

of oxygen and carbon dioxide.  Once the consumption or production is known, a 

corresponding rate can then be calculated using Equations 1 and 2 below.  These 

calculations were accomplished by the respirometer. 

 

  (1) ( )Consumption Gas concentration change
   = Gas Volume *

(or production) between 2 consecutive readings
⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 

Consumption(or production)Consumption Rate=
Elapsed time between interval

 (2)  

During operation, gas is pumped from a test chamber through the gas sensors for 

measurement, returning the air to the test chamber.  The three foot silicon loops within 

each column represented a test chamber in this experiment.   

The measured gas concentrations at the sensors can be influenced by temperature 

fluctuations, barometric pressure changes, and sensor drift.  To compensate for these 

fluctuations, the system can periodically refresh the air in the sensor with external 

ambient or bottle air.  The periodic sensor refresh can be both automatic and user defined. 

Since the system operates as a closed circuit, it is critical to eliminate any leaks 

that could result in measurement errors.  Therefore, each connection to the respirometer 

represents a potential leak.  The initial column construction used 1/8 inch I.D. copper 

tubing to connect the respirometer to the column ports.  Each inlet line to the 

respirometer had a Millipore, Millex-FG 0.20 µm hydrophobic PTFE 50 mm filter with 
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quick connect fittings, installed to prevent moisture and contaminants from reaching the 

respirometer.  The copper tubing leaked air at the connections into the respirometer 

sample chambers rendering the system unusable.  The copper tubing was replaced with 

1/8 inch I.D. nylon tubing.  Figure 3.1 below is the soil column experiment.   

Figure 3.1 Soil Column Experiment 

 
 

3.1.5 Sampling Methods. 

 Influent and effluent water was sampled daily.  Zero headspace samples were 

collected into Agilent two mL clear sample vials with PTFE/silicone/PTFE septa screw 

tops.  Influent samples were collected from the influent discharge tube at the top of the 
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columns.  Prior to sample collection, each tube was wiped clean to prevent soil grains 

from entering the sample vial.  Effluent samples were collected using a five mL Hamilton 

Gastight high performance luer tip syringe with a 22 gauge removable needle.  The 

sample was collected from the effluent discharge tee connector as detailed in Mares 

(2004).  For each sample, a five mL syringe volume was withdrawn and discarded.  A 

second five mL syringe volume was withdrawn and used to fill the two mL vial.   The 

syringe was rinsed three times with deionized water between each sample.  Samples were 

analyzed using an Agilent Gas Chromatograph (GC) 6890 series with a flame ionization 

detector (FID).  Specific GC-FID operating parameters are discussed later in Chapter 3.   

 
 
 

3.2 Column Properties 
 
 
 The objective of the research was to determine potential degradation of various 

organic carbon substrates.  Knowledge of the column properties, such as hydraulic mean 

residence time and pore volume, were important factors in modeling processes in the 

columns (Mares, 2004).  Column properties are needed to establish substrate application 

rates and determine sampling frequency.  These columns were constructed to be identical, 

but in fact, their properties were different, as discussed in Mares (2004).  The goal of this 

research was to replicate previous results and confirm the following properties for each 

column: total porosity and pore volume at saturation, hydraulic conditions at saturation, 

mean residence time and pore volume at less than saturation.  
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3.2.1 Porosity and Pore Volume at Saturation. 

 Soil porosity indicates how much liquid a soil can hold.  Porosity is typically 

determined by taking a soil sample, saturating the sample with water, and weighing the 

sample.  The sample is then completely dried and reweighed.  The weight difference is 

used to determine the volume of water in the saturated sample.  A traditional porosity 

determination could not be accomplished for this experiment.  The column porosity was 

estimated from work conducted by a contractor, Jason Lach.   

An estimate of the column soil porosity assumed the columns were dry.  Influent 

flow to each column was stopped in the spring of 2004 and only a small amount of water 

was drained at the base of the column in August 2004 when the contract work was 

accomplished.  Each column was reverse saturated by forcing water up the column 

through the effluent drain until water completely covered soil at the top of the column.  

The volume of water used to fill the column was recorded.  This volume of water is the 

volume of voids for the column, or the pore volume.  The total volume of the column was 

calculated using the volume of a cylinder equation.  The total porosity was estimated 

using Equation 3 below. 

V

T

v

T

Vn=
V

n= Total porosity
V =Volume of Voids
V =Total Volume of Column

  (3) 

 

The estimated porosity and pore volume determined using this process assumed 

100% soil saturation.   
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3.2.2 Hydraulic Conditions at Saturation. 

The hydraulic conductivity and volumetric flow rate at saturation were 

determined by the constant-head permeameter method as detailed in Day (2000).  Water 

was forced up the column through the effluent drain until water completely covered the 

soil at the top of the column.  The column was then drained for one-half hour.  The 

column was immediately filled again until the water completely covered the soil.  The 

effluent drain was plugged and additional water added at the top of the column to bring 

the water level up to one and half inches below the top of the PVC column.  A 1000 mL 

graduated cylinder completely filled with water and plugged with a rubber stopper was 

then inverted and immersed into the water at the top of the column.  When the rubber 

stopper was removed, the water in the graduated cylinder remained.  The height of the 

water at the top of the inverted graduated cylinder was recorded.  The effluent drain plug 

was then removed.  The change in volume and water height for the graduated cylinder 

and time required was recorded.  The volumetric flow rate was calculated using Equation 

4 below.   

ΔVQ=
Δt

Q=Volumetric flow rate
ΔV=Change in Volume of Graduated Cylinder
Δt=Change in time

  (4) 
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The hydraulic conductivity of the soil was then determined using Equation 5 below. 

QLK=
ΔhAt

Q=total discharged volume (ml) in a given time t
L=Length of soil column
Δh=total head loss for the constant head permeameter
A=Area of soil column
t=time for change in height
K=Hydraulic Conductivity

 (5)  

 

3.2.3 Hydraulic Conditions at 2% and 10% of the Volumetric Flow Rate at 

Saturation. 

A non reactive tracer test, using sodium chloride (NaCl), was used to determine 

the hydraulic mean residence time and pore volume for each column.  The volumetric 

flow rates for the tracer test were 2% of the volumetric flow rate at saturation for columns 

one through four, and 10% of the volumetric flow rate at saturation for columns five 

through eight.  Three grams of NaCl, A.C.S. crystals from Fisher Scientific, were added 

to one liter tap water and then stirred for three to five minutes using a stirring plate.  A 

reading was then taken using a Yellow Springs Instrument (YSI) 85 oxygen, 

conductivity, salinity and temperature probe.  The NaCl solution was then fed into the 

pump system as a pulse input.  The duration to feed the pulse was recorded.  At the 

completion of the pulse, the pump line was immediately returned to the five gallon 

reservoir containing tap water that was run for the duration of the tracer test.  Specific 

conductivity readings were collected at regular time intervals from the effluent discharge 

using the YSI conductivity probe.  Initially, readings were taken at three hour intervals.  
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Readings were taken hourly when the effluent conductivity started to increase.  This was 

done to capture the peak concentrations related to the pulse input.  Data collected from 

the tracer test for each column was then used to calculate the discrete residence time 

density function and the mean residence time as detailed in Clark (1996).  Additionally, 

the pore volume and a mass balance for each column were determined using the method 

of moments as discussed in Mares (2004).  The residence density function (Equation 6) 

and the mean residence time (Equation 7) are listed below.   

( ) ( )

( ) ( ) ( )

( )
( )

i
i

imax-1
i+1 i

i+1 i
i=0

i

i i

i

c t
f t =

Area

c t +c t
where Area= t -t

2

f t =Discrete residence time density function

c t =Effluent concentration at t
t =Time of effluent sample

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑
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 (7)  

 
The biodegradation rate in the soil columns can be estimated assuming 

degradation kinetics can be modeled as a first-order reaction.  As such, the mean 

residence time, and the measured influent (C0) and effluent (C) concentrations can be 

used to determine the first-order rate constant (k) using Equation 8 below.  Knowing k, 

the first-order reaction model can then be used to estimate effluent concentrations for any 
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combination of influent concentration and mean hydraulic residence time.  The model 

can be validated by varying the influent concentration and mean residence time, and 

comparing how well the first-order model-predicted effluent concentrations compare to 

measured effluent concentrations.  A validated model can be used to develop bench or 

pilot scale experiments, as well as predict chemical fate in the field due to natural 

attenuation or engineered processes.   

 

C
C

t
k

RTD

0ln1
=  (8) 

The water filled pore volume (Vw) for each column during the tracer test was 

calculated by multiplying the mean residence time calculated in Equation 7 by the 

volumetric flow rate.   

To validate the tracer test and identify any potential problems with the data, a 

degree of saturation during the tracer test was calculated for each column.  Also, to 

validate the assumption that the porosity data was collected at saturation, a degree of 

saturation using Mares (2004) tracer test data was calculated.  The degree of saturation 

was calculated using Equation 9 below. 

 

w

V

w

v

VDegree of Saturation=
V

V =Water Filled Pore Volume
V =Volume of Voids

  (9) 

The water filled pore volume calculated by the tracer tests was used to estimate 

the volume of water in the column and the volume of voids was measured as described in 

Section 3.2.1.  
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3.2.4 Organic Substrates. 

The substrates ethanol, toluene, and DIPE were used in this experiment.  Four 

columns received all three chemicals while four columns received only toluene and 

DIPE.  Table 3.1 provides the specific substrate additions to each column. 

Table 3.1 Substrates Added to Each Column 

Column Toluene DIPE Ethanol 

1 X X  

2 X X X 

3 X X X 

4 X X  

5 X X X 

6 X X  

7 X X  

8 X X X 

Note:  X = chemical added to column 

 
 
 

3.3 Flow Rates 
 
 
 The constant-head permeameter test results were used to calculate volumetric 

flow rates for 2 % and 10% of the volumetric flow rate at saturation.  The 2% volumetric 

flow rate was pumped to columns one through four using 1/16 inch I.D. Norprene tubing 

for the tap water.  The 10% volumetric flow rate was pumped to columns five through 

eight using 1/8 inch I.D. Norprene tubing for the tap water.  As previously discussed, the 
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control program was revised to allow a specified time period for operation.  Based upon 

manufacturer specifications for pump revolutions per minute and tube flow per revolution 

for the tap water delivery system, an on/off pump cycle time was calculated.  The 

volumetric flow for the chemical feed system to each column operated at less than 0.05 

mL/min.  Due to negligible flows for the chemical feed system, these values were not 

included in the on/off pump cycle calculations.  The computer program cycle lasted one 

minute and for columns one through four the pumps were on 0.4 minutes.  For columns 

five through eight, the pumps were on for 0.44 minutes.  These values were entered into 

the on-screen computer display that controlled the pump operation.   

 The flow rate of each column was then manually verified using a graduated 

cylinder and scale.  The tap water feed and chemical feed lines were each evaluated 

separately.  For ease of weight conversion, tap water was also used in the chemical feed 

lines during this portion of work.  Each line was sampled three times using a Nalgene 25 

ml graduated cylinder (Plastic, Measure, Pour).  For each sample, two complete pump 

cycles were collected into the graduated cylinder.  Two pump cycles were collected to 

minimize possible variations in pump flow.  An OHAUS Analytical Plus scale, Model # 

AP250D was used to weigh the cylinder and water.  The scale was zeroed with the dry 

graduated cylinder prior to taking any samples.  The weight was converted as one gram 

of water equivalent to one milliliter water.  A mean flow was calculated for each column.  

The flow was then divided by two to obtain a mean flow for one pump cycle for each 

column.   
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3.4 Calibration Standards 
 
 

A response-concentration curve for the YSI conductivity probe was created.  The 

curve converted a measured response from the tracer test to a concentration.  Certified 

Fisher Scientific A.C.S. NaCl crystals were added to a one liter graduated cylinder of tap 

water in increments of 0.01, 0.1, 0.5, 1.0, 1.5, and 2.0 grams.  The mass additions 

correspond to 10, 100, 500, 1000, 1500, and 2000 mg/L of NaCl respectively when added 

to one liter.  The conductivity probe response was then plotted against the concentration 

added to the tap water.  The zero concentration point for the curve used only the tap water 

conductivity response.  Using Microsoft Excel, a best fit line and equation was created.   

The equation, y=0.5172x - 484.07 with an R2 value of 0.9999, was calculated for 

the conductivity-concentration response curve.  Since deionized water was not used, this 

was not a true calibration standard, but provided a good estimation for conductivity 

values.  Tap water was used to eliminate the need to subtract the baseline effluent 

concentrations throughout the tracer tests.  The conductivity-concentration response 

curve is shown in Appendix B. 

Calibration curves for toluene, diisopropyl ether (DIPE), and ethanol were created 

to correlate a GC-FID response to a known concentration.  All chemicals were 

manufactured by Sigma Aldrich of Milwaukee, WI.  Table 3.2 summarizes the chemical 

grades used in the experiment. 
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Table 3.2 Chemical Grade Information 

Chemical CAS Number Grade 

Toluene 108-88-3 HPLC grade 99.8% 

Diisopropyl 
Ether 

108-20-3 Reagent Plus, 99% 

Ethanol 64-17-5 HPLC/Spectrophotometric 
grade (200 proof) 

 

Chemical standards from 1 mg/L to 1000 mg/L were prepared.  The upper limit 

for the toluene standard was 400 mg/L to ensure the toluene solution was below the 

solubility limit and provided reproducible results.  Each standard was prepared 

individually using a Finnpipette with disposable 200 μL pipette tips, deionized water, and 

a 50 mL volumetric flask.  The standard solution was gently agitated and then allowed 

three minutes to reach equilibrium.  The standard was then transferred to a 40 mL sample 

vial with zero headspace and sealed with a Teflon lined septum.  A 5 mL Hamilton 

Gastight high performance luer tip syringe with a 22 gauge removable needle was used to 

transfer standard solution to a two mL amber sample vial sealed with a PFTE/rubber 

lined crimp cap.  Six samples were analyzed for each standard concentration using the 

Agilent 6890 GC-FID.  The GC-FID response was plotted against the known 

concentration for each standard.  Using Microsoft Excel, a best fit line and equation was 

developed. 

The toluene calibration curve produced the equation y=37021x + 2E+06, with an 

R2 value 0.8984.  Toluene standards at 1, 10, 100, and 400 mg/L were analyzed.  The 

DIPE calibration curve produced the equation y=115832x + 984100 with an R2 value 

0.9953.  DIPE standards at 1, 10, 100, 724, and 1000 mg/L were analyzed.  The ethanol 
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calibration curve produced the equation y=101297x + 636001 with an R2 value 0.9979.  

Ethanol standards at 1, 10, 100, 789, and 1000 mg/L were analyzed. 

Initially, 36 calibration standards for each chemical were created and analyzed 

using the GC autoinjector.  This process lasted approximately six hours and the samples 

at the end of the analysis showed potential loss due to volatilization.  To minimize loss 

due to volatilization, standards were run again, and only two concentrations were 

prepared at a time for analysis.  This improved the linear concentration-response.  

However, all of the calibration curves were not consistent. 

The toluene calibration curve R2 value indicated potential calibration standard 

issues.  First, the GC analytical method could be incorrect.  While the GC parameters 

provided consistent analytical results for the DIPE and ethanol calibration standards, 

daily GC calibration failed by exceeding the upper and lower 95% confidence limit.  

Second, and also related to the GC analytical method, was the split inlet used to minimize 

matrix interference.  Split inlets provide good analytical results for higher concentrations.  

However at low concentrations, a splitless inlet is advantageous.  A splitless inlet option 

was originally considered, however, due to FID difficulties and matrix interference, the 

analytical method chosen used a split inlet.  Third, if the standard had not reached 

equilibrium when originally placed into the sample vial, some variability could have been 

introduced.  While this possibility exists, the sample standard deviation at a each 

respective concentration was small.  Another possibility included a potentially damaged 

capillary column.  However, GC analysis accomplished for different research during the 

same period used the same column without any variations.  Finally, the most likely 

explanation for faulty calibration standards was an incorrect GC analytical method 
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capable of reproducible results across a wide spectrum of concentrations.  Therefore, the 

data collected can only be estimated using the calibration curves.  The calibration curves 

are shown in Appendix B. 

 
 
 

3.5 Equipment Settings 
 
 

3.5.1 Micro-Oxymax Respirometer. 

 The Micro-Oxymax respirometer allows the user to define variables such as the 

number of chambers, or in this case tubing loops to sample, sampling interval and 

duration, refresh frequency, refresh threshold, and refresh duration.   

 The respirometer samples the chambers, in order, from one to twenty.  If a 

chamber is not functioning properly or is not used it will still be sampled.  A chamber not 

in use is "short circuited" by placing a short length of tube from the input directly to the 

output on the expansion interface.  The experiment sampled all 20 chambers, but only 18 

chambers were used for experimental data purposes.  The columns required a total of 16 

chambers, two chambers per column.  The remaining two chambers provided reference 

points external to the columns that could be used to determine if the system was 

functioning properly.  One external chamber used a single 3 foot loop of silicone tubing 

exposed to laboratory air.  The final external chamber was connected to a 250 mL sealed 

sample jar.   

 The sampling interval and duration can be automatically determined by the 

respirometer or can be user defined.  The sample interval determines the sample cycle 
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frequency.  A cycle samples all 20 chambers.  Since conditions in the soil columns did 

not change rapidly, the sampling interval was extended to improve the sensor response 

capability.  

 As previously discussed, the user can define the instrument refresh parameters.  

Refresh frequency, refresh threshold, and refresh duration are three parameters that can 

be user defined.  Refreshing the chamber for every measurement increases the sample 

cycle time.  This can also improve measurement consistency by maintaining a fresh air 

supply in the sensor to mix with chamber air.  A refresh was used for each measurement 

since the experiment interval was not time constrained.  Refresh threshold defines an 

acceptable upper and lower limit concentration for consecutive samples.  If the measured 

concentration exceeds the upper or lower limit, then the sensor air will be refreshed.  This 

refresh occurs after the current chamber measurement and before the next chamber 

measurement.  The system default parameter was used for the refresh threshold.  The 

refresh duration defines the amount of time the sensor chamber is refreshed with ambient 

air.  This time should be long enough to completely flush the sensor.  Specific experiment 

settings are provided in Appendix A. 

 Weekly calibration of the oxygen and carbon dioxide sensors was accomplished 

using a calibration gas from Weiler Welding Company.  The gas contained 20.4% 

oxygen, 0.704% carbon dioxide, and the balance nitrogen.  Additionally, all chambers 

were tested each week to ensure they continued to meet minimum leakage and restriction 

requirements.  If excessive leakage or restriction was identified, the sample chamber 

required correction.  Detailed data regarding the sample chamber's restriction, volume, 

and leakage are listed in Appendix A.   
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3.5.2 Agilent 6890 Gas Chromatograph with Flame Ionization Detector. 

 A gas chromatograph with flame ionization detector (GC-FID) was used to 

analyze influent and effluent samples.  Sample vials were collected, as previously 

discussed, and placed on a sample vial tray to be analyzed with the Agilent 7683 Auto 

Injector.  The auto injector used a 10 μL gastight syringe rinsed with acetone and 

deionized water between each sample injection.  The capillary column used for analysis 

was a J&W Scientific DB-624 (#123-1334, Length: 30 m, ID: 0.32 mm, Film: 1.8 um) 

with a DuraGuard deactivated fused silica column guard (#160-2325-5,  Length: 5 m, ID: 

0.32 mm).  The GC-FID was controlled by a remote computer using the MSD 

Chemstation Build 75, dated August 26, 2003.   

 The MSD Chemstation was used to develop calibration curves and also to 

evaluate influent and effluent concentrations.  The software translated the GC-FID 

response into an area.  This area was then converted to a concentration using the linear 

equations developed from the calibration curves as previously discussed.   

 The particular GC-FID operating parameters were originally selected based upon 

Mares (2004).  However, due to matrix interferences during elution, the method was 

revised.  The revised method provided for more distinct elution of the three chemicals.   

The specific parameters of GC-FID operation are detailed in Appendix A. 

 The method detection limit (MDL) was determined per the Code of Federal 

Regulations (CFR) (40 CFR 136, 1993).  The MDL identifies the lowest quantifiable 

analytical results for the particular GC method and was determined using Equation 10 

below. 
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  (10) 

A MDL for the GC analytical method was determined for each chemical.  

However, due to limited reproducibility, the MDL values are also estimated.  The MDL 

values range from 1.14-3.99 mg/L.  The MDL calculations are shown in Appendix B. 

 
 
 

3.6 Assumptions 
 
 
 The soil column experiment is designed to assess degradation of fuel oxygenates.  

Several assumptions must be made to determine the amount of degradation, if any that 

occurs.   

The first assumption is that flow and influent concentrations are constant.  The pump 

system is designed to cycle on/off for a specified time each minute.  This is done to 

achieve a desired flow rate, and it is assumed consistent flows and concentrations are 

applied to the system using this mechanism.  Second, it is assumed chemical loss due to 

volatilization at the top of the columns is negligible.  As discussed in Chapter 2, the fuel 

oxygenates have relatively high vapor pressures which can lead to volatilization of pure 

phase oxygenate.  However, because of the low Henry's Law Constants, we would expect 

that dissolved oxygenate would largely remain in the aqueous phase.  Finally, it is also 
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assumed the chemical sorption within the soil is minimal.  The low KOW associated with 

the fuel oxygenates indicates the chemicals are unlikely to substantially partition into an 

organic medium. 
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4.0 Results and Discussion 

 
 
 

4.1 Experimental Results 
 
 
 The research used a series of eight previously constructed soil columns and was 

accomplished in three phases.  Phase one consisted of developing a GC-FID analytical 

method and creating calibration standards for the equipment used.  Next, column 

properties were determined.  Phase three evaluated potential fuel oxygenate degradation. 

 
 
 

4.2 Soil Column Properties 
 
 
 Column properties evaluated during the research included the porosity, pore 

volume, volumetric flow rate and hydraulic conductivity at saturation.  The mean 

residence time and pore volume at less than saturation was also determined.  The 

methods used to evaluate these properties were discussed in Chapter 3.   

4.2.1 Porosity and Pore Volume at Saturation. 

 The columns are constructed with one foot of course drain rock (approximately 1 

inch diameter) at the base with 5.5 feet of sandy soil (Mares, 2004).  Typical porosity 

values for sandy soils range from 26 - 53 % total porosity (Domenico and Schwartz, 

1998).  Porosity values obtained for the columns were 23.2 - 29.7 %.  The pore volumes 
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obtained were 14.9 - 19.1 L. A summary of the porosity and pore volume for each 

column is provided in Table 4.1.  Tabulated porosity values are in Appendix B.   

4.2.2 Hydraulic Conditions at Saturation. 

 The constant-head permeameter method was used to estimate two properties, the 

volumetric flow rate at saturation and the hydraulic conductivity.  The volumetric flow 

rate at saturation was used to establish a volumetric flow rate at 2% and 10% for the 

experiment.  Volumetric flow rates at saturation were 96.6 - 209 ml/min.  Columns one 

through four were pumped at a volumetric flow rate equal to 2% of volumetric flow at 

saturation, while columns five through eight pumped a volumetric flow rate equal to 10% 

of volumetric flow at saturation..  At 2%, the calculated volumetric flow was 3.2 ml/min.   

At 10%, the calculated volumetric flow was 11.8 ml/min.   

Typical hydraulic conductivity values for a sandy soil range 2x10-5 - 0.6 cm/s 

(Domenico and Schwartz, 1998).  The estimated average hydraulic conductivity values 

for the columns were 4.40x10-3 - 9.40x10-3 cm/s.  A summary of the hydraulic conditions 

at saturation is provided in Table 4.1 below with detailed data and calculations located in 

Appendix B. 
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Table 4.1 Summary of Hydraulic Conditions at Saturation 

Column
Porosity

(%)
Pore Volume 
at Saturation

Average 
Volumetric 

Flow
(ml/min)

Average 
Hydraulic 

Conductivity
(cm/s)

1 28.3 18.2 158 7.27E-03
2 23.2 14.9 143 6.37E-03
3 29.7 19.1 209 9.40E-03
4 25.1 16.1 131 5.91E-03
5 26.6 17.1 96.6 4.40E-03
6 28.3 18.2 103 4.54E-03
7 24.7 15.9 102 4.51E-03
8 27.0 17.4 170 7.49E-03

Hydraulic Properties at Saturation

 
 
 

4.2.3 Hydraulic Conditions at 2% and 10% of Volumetric Flow Rate at 

Saturation. 

Columns 1-4 were pumped at 2% of the volumetric flow rate at saturation during 

the tracer experiment.  The input pulse for each column lasted from a minimum of 4.8 

hours to a maximum of 5.0 hours.  

A breakthrough curve was plotted for each column.  Columns 1-4 all exhibited an 

extended tailing after reaching a peak effluent concentration.  These extended tailings 

affected the pore volume calculation, mean residence time, and mass balance.   

The mean residence times were 63.6 - 77.9 hours and the pore volumes were 12.3 

- 15.2 liters.  The range of values for the mean residence time and pore volume was 

narrow and indicated the columns are similar, but not identical, as previously discussed in 

Chapter 3.  A mass balance was also accomplished during the tracer test.   
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The mass balance errors were -11.1 - 36.0 percent.  The wide mass balance 

fluctuation could be the result of several factors.  First, a typical tracer response curve in 

a saturated medium replicates a bell shaped curve.  As the tail extends, the extended area 

under the curve increases mass recovery for longer than a traditional tracer response 

curve.  Second, the conductivity-concentration curve could also affect the extended 

tailing.  The conductivity-concentration curve used tap water as a base line, establishing 

924 μS as the zero point.  Columns one, three, and four all had initial effluent 

concentrations greater than the zero point.  The result was positive mass recovery from 

the start of the tracer experiment.  Additionally, at the tail end of the curve, effluent 

samples were measured until the conductivity dropped below the zero point of the 

conductivity-concentration curve.  This too recovered mass in the effluent.  Mares (2004) 

also hypothesized the extended tailing could be due to inconsistent and low flows.  This 

is most likely.  Padilla et al. (1999) found that NaCl transport in an unsaturated porous 

media does not exhibit a traditional breakthrough curve as the degree of saturation 

decreased, and that both an earlier initial NaCl arrival and an extended tailing were 

observed.  These observations resulted from greater velocity variations and slower solute 

mixing in the unsaturated media and could result in erroneous calculations (Padilla et 

al.1999).   

Columns 5-8 were pumped at 10% of the volumetric flow rate at saturation during 

the tracer experiment.  The input pulse for each column lasted a minimum of 81 minutes 

to a maximum of 86 minutes. 

A breakthrough curve was plotted for each column.  Columns 5-8 all exhibited a 

typical tracer response curve that replicated a bell shaped curve.  The mean residence 
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times were 17.8 - 26.9 hours and the pore volumes were 13.3 - 19.6 liters.  The range of 

values for the mean residence time and pore volume was narrow and also indicated 

column similarities.  The mass balance errors were -20.5 to -34.1 percent.  

The pore volumes calculated from the tracer tests conducted during this research 

effort, were expected to be lower than the pore volumes obtained at saturation.  These 

lower values were assumed since the tracer tests were conducted at less than saturation.  

For pore volume data collected during this research, the assumption was correct with the 

exception of columns five and seven.  As discussed above, velocity variations and slower 

solute mixing could lead to erroneous calculations for tracer tests conducted at less than 

saturation.  This is the most likely cause for the results in columns five and seven.  When 

the pore volume data at saturation was compared against the tracer test pore volume data 

from Mares (2004), columns two, four, and five through eight all were greater than the 

pore volumes calculated at saturation.  Again, as discussed previously, the differences in 

pore volume data could be the result of velocity variations and slower solute mixing.  

Erroneous assumptions related to the pore volumes calculated at saturation should also be 

considered as a possible reason.  The calculated pore volumes at saturation and from the 

tracer tests are compared below in Table 4.2.  Results for the tracer test for columns 1-8 

are detailed in Appendix B. 
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Table 4.2 Estimated Pore Volume Comparison 

Column
Saturated 

Column Test
Tracer Tests

(Nov/Dec 2004)
Tracer Tests

(Mares, 2004)
1 18.2 14.0 17.0
2 14.9 12.3 15.7
3 19.1 14.5 17.5
4 16.1 15.2 19.3
5 17.1 19.6 27.3
6 18.2 13.3 23.4
7 15.9 17.5 27.8
8 17.4 14.6 23.8

Pore Volume, L

 
 
 

 
The degree of saturation during the tracer test was also determined for each 

column as discussed in Chapter 3.  Again, the results indicated errors in columns five and 

seven for the tracer data collected during the current research, as these two columns 

exceeded 100% saturation which is not possible.  When the degree of saturation was 

calculated using tracer test pore volume data from Mares (2004), columns two and four 

through eight, indicated errors within the data collected.  Table 4.3 below provides degree 

of saturation results.   
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Table 4.3 Estimated Pore Volume Comparison 

Column

Tracer Test
(Nov/Dec 2004)

Degree of Saturation 
(%) 

Tracer Test
(Mares, 2004)

Degree of Saturation 
(%)

1 76.9 93.5
2 82.3 105.3
3 76.1 91.7
4 94.3 119.9
5 115 159.7
6 73.2 128.3
7 110 174.7
8 84.2 136.9  

 
 
 

4.3 Respirometer Results 
 
 

Respirometer data were collected for only one week during the experiment.  Setup 

of the system required extensive time and effort to eliminate leaks both inside the column 

and with the connecting tubing.  The original setup used copper tubing to connect the 

respirometer to the sample loops inside the column.  As previously discussed, the copper 

tubing leaked air into the respirometer sample chamber rendering the system unusable, 

and the copper tubing was changed to nylon tubing.  The nylon tubing worked well and 

eliminated leaks with the respirometer at exterior connections.  However, internal 

connections with the silicon tubing leaked.  Water was visible in column four tubing and 

air leaked excessively in columns five and seven.  Approximately one foot of soil was 

removed from the top of each column to repair the tubing.  The leaks in these three 

columns were repaired.  Also, near the conclusion of the experiment, column three 

developed an internal leak, and rendered chamber three data unusable.  Other problems 

46 



encountered with the respirometer included the oxygen sensor.  When the respirometer 

was placed in service, the original oxygen sensor configuration quickly reached the lower 

limit of detection, 19%.  The sensor was replaced with an oxygen sensor capable of 10-

21% oxygen detection.  This provided a good range to observe potential aerobic activity 

in the columns.  If aerobic activity occurred near the top of the columns, it was 

anticipated that the available oxygen in the soil would continue to decrease as the depth 

of the column increased.  However, the oxygen content actually increased with depth in 

columns two through eight indicating potential equipment problems.  Additionally, the 

respirometer top sensor data and the external oxygen sensor data for each column were 

compared.  Only column five data had comparable values for both the respirometer and 

external oxygen sensor.  The remaining columns indicated either the respirometer or 

external sensor was not functioning properly.  Data results for the respirometer and 

external oxygen sensor are provided in Appendix B.   

 
 
 

4.4 Organic Substrate Analysis 
 
 

Organic substrate was added to the columns in December 2004 for 14 days.  Due 

to a chemical shortage, the chemical additions were stopped for approximately two 

weeks.  During this time, tap water continuously pumped through the columns.  When 

sufficient chemicals were available, the chemicals ran continuously for the duration of 

the experiment.   
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Thirty days of data were collected during the experiment.  Influent and effluent 

samples were analyzed for DIPE, toluene, and ethanol.  Daily samples were taken rather 

than sampling based upon estimated pore volumes to determine when the system 

stabilized.  

Due to fluctuations in the influent concentration, the system did not fully stabilize.  

Column seven toluene influent and effluent concentrations provided a good example of 

the complexity for the substrate application.  The toluene influent concentrations during 

the 30 days fluctuated between 28 mg/L and 200 mg/L.  A peak sample influent 

concentration of 678 mg/L was even recorded one time.  However, the toluene effluent 

sample concentrations consistently exceeded 500 mg/L during the experiment and only in 

the last week of data collection, did toluene effluent concentrations approach influent 

concentrations indicating potential column stabilization.  The high effluent concentrations 

could be the result of possible sorption associated with the December 2004 initial 

substrate application.  Unfortunately, no influent data exist to substantiate this possibility.  

Figure 4.1 below highlights the difference between the toluene influent and effluent 

concentrations. 
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Figure 4.1 Column 7 Toluene Influent and Effluent Concentrations 

 
 

Previous research using the soil columns evaluated ethanol degradation.  Mares 

(2004) reported ethanol degradation did occur, therefore, it was anticipated that ethanol 

would degrade again in the soil columns during this experiment.  Ethanol degradation did 

occur in all four columns within approximately one week after sampling started.  

However, due to the short experiment length, toluene and DIPE degradation were not 

observed in any column.  The potential inhibition of DIPE degradation due to the 

presence of toluene and ethanol could not be resolved.  Table 4.4 below provides a range 

of influent and effluent concentrations for each soil column.  Tabulated influent and 

effluent data and charts for each column are provided in Appendix B. 
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Table 4.4 Influent and Effluent Concentrations Summary  

Column Toluene DIPE Ethanol Toluene DIPE Ethanol
1 22.2-333 120-406 155-1.63x103 303-822
2 277-792 385-900 757-1.48x103 0-339 278-850 0-265
3 0-929 0-635 0-1.22x103 0-134 0-684 0-1.79x103

4 49.1-356 110-423 0-364 0-1.50x103

5 0-411 0-277 0-564 0-182 0-994 0
6 36.9-257 57.6-233 156-816 118-296
7 28.7-679 83.1-339 394-1.01x103 139-485
8 76.5-500 82.5-387 33.8-623 152-790 97.5-470 0-490

Influent, mg/L Effluent, mg/L
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5.0 Conclusions 

 
 
 

5.1 Summary 
 
 
 The focus of this research was to evaluate aerobic degradation of alternative fuel 

oxygenates.  The hydraulic properties provided insight into the possible environmental 

fate and transport of the substrates applied.  Unfortunately, due to equipment limitations 

and time, the full focus of the research was not accomplished. 

 
 
 

5.2 Conclusions 
 
 

Does DIPE degradation occur in soils without microbial augmentation? 
 

Due to the short length of the experiment, as well as the experimental difficulties 

encountered, it is not possible to determine if DIPE degradation will occur in soils 

without microbial augmentation.  However, aerobic degradation of DIPE in soils without 

microbial augmentation may still occur.  As previously discussed, aerobic degradation of 

MTBE was originally believed to not occur but recent studies have proven MTBE 

degradation over periods greater than sixty days.  DIPE may also require extended 

periods for the microbial population to grow and adapt for adequate degradation to occur. 
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How does the presence of co-contaminants, such as ethanol and toluene, impact 

the biodegradation of DIPE? 

 

 The introduction of toluene did not show any impact on the degradation process.  

Degradation of the ethanol was evident.  Multiple substrates have the potential to impact 

degradation processes and the preferential degradation of ethanol likely inhibits the 

growth of a microbial population capable of degrading DIPE and toluene.  It is likely that 

DIPE degradation would occur last for the three substrates.    

  

Based on the above results, would the use of DIPE as a fuel oxygenate represent 

an increased long term pollution risk?  

 

 Again, due to the short length of the experiment, as well as the experimental 

difficulties encountered, any conclusions regarding the potential long term risks related to 

DIPE would be difficult to support.  As previously discussed in Chapter 2, MTBE does 

not degrade rapidly under aerobic conditions and MTBE and DIPE potentially share 

similar degradation characteristics.  Therefore, we can speculate that DIPE, like MTBE, 

will not rapidly degrade under aerobic conditions.  
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5.3 Future Research 
 
 

Initially, research efforts should focus on long term aerobic studies to determine if 

DIPE or other fuel oxygenate degradation can occur.  If degradation does occur over 

extended periods, additional potential research topics could be addressed.    

First, batch studies using soil from the columns could be accomplished to evaluate 

potential degradation of the contaminants.  Data collected from the batch studies could 

then be used to determine substrate utilization rates.  The batch studies could also be used 

to evaluate the types of microorganisms responsible for degradation.  Knowing the 

microbial population responsible for degradation and substrate utilization rates could lead 

to potential soil bioaugmentation as a cleanup method.  Second, various combinations of 

fuel oxygenates, BTEX compounds, and various degradation intermediates are likely to 

be encountered at a contaminated site.  Understanding how multiple contaminants impact 

attenuation rates is critical.  Finally, if aerobic degradation does occur, studying the 

potential degradation effects under anaerobic conditions would provide valuable 

information.   

Within the scope of the column experiment, four areas could be improved.  First, 

is substrate application.  The current setup does not provide consistent influent 

concentrations.  Variations in the concentrations make it difficult to establish when, if 

any, degradation occurs.  A modified system to provide consistent concentrations is 

recommended.  Second, the respirometer will only provide carbon dioxide respiration to 

one percent.  Beyond this value it is not possible to determine how much biological 

activity is occurring within the soil columns.  To provide useful data that can be 
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correlated with analytical results, the carbon dioxide sensor range will need to be 

extended.  Third, any points of potential leaks for the respirometer need to be adequately 

repaired including the internal sampling loops.  Finally, a method to allow for water 

supply and adequate drainage will allow the system to be operated at various flow rates 

with minimal maintenance.  The current system is manually filled and drained each day.  

If the application rates are increased, the existing setup would become cumbersome and 

difficult for a single individual to maintain.  This could limit potential experiment 

variations. 
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Appendix A  
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Table A.1 Micro-Oxymax Respirometer Experiment Settings 

Parameter Value 

Start Channel 1 

Stop Channel 20 

Sample Interval 5 hours 

Sample Duration 0 

Refresh Interval 1 

Refresh Threshold 0.5 

Refresh Window 30 

Auto Volume Measurement No 

Purge Sensor Enabled No 

Switch Drier Enabled N.A. 

Gas Data Units μL 

Time Units Min 

Normalization Units N.A. 

Aux Temp Start at Ch 0 

Enable Open Flow No 
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Table A.2 Typical Micro-Oxymax Respirometer Values 

Volume Restriction Leakage Channel 
Label Channel (mL) (mmHg) (ml/min) 

1 - Top 1 76 38.7 -0.141 

2 - Top 2 66 32.5 -0.174 

3 - Top 3 68 38.8 -0.190 

4 - Top 4 65 31.5 -0.138 

Short Circuit 5 10 19.7 -0.871 

1 - Bottom 6 47 35.1 -0.118 

2 - Bottom 7 41 32.9 -0.162 

3 - Bottom 8 49 38.7 -0.143 

4 - Bottom 9 35 28.5 -0.139 

Exterior 
Silicon Loop 

10 47 23.7 -0.352 

5 - Top 11 70 38.2 -0.202 

6 - Top 12 72 38.5 -0.198 

7 - Top 13 78 41.6 -0.242 

8 - Top 14 71 40.8 -0.110 

Closed 250 
mL Jar 

15 320 22.9 -0.241 

5 - Bottom 16 43 33.6 -0.243 

6 - Bottom 17 36 28.7 -0.238 

7 - Bottom 18 46 36.7 -0.232 

8 - Bottom 19 45 39.0 -0.169 

Short Circuit 20 1 20.1 -0.118 

Note:  Values for January 30, 2005 
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Table A.3 Agilent 6890 Gas Chromatograph with Flame Ionization Detector Instrument 
Control Parameters 

 
6890 Gas Chromatograph 
Serial Number US 10339021 
 
Oven 
 
Initial temperature 50 'C (On) 
Maximum temperature 260 'C 
Initial time 1.00 min 
Equilibration time 1.00 min 
Post temperature 0 'C 
Post time 0.00 min 
Run time 10.00 min 
 

 Ramp Rate (ºC/min) Final Temperature (ºC) Final Time (min)
 1 10.00 110 1.0 
 2 20.00 130 1.0 
 

Front Inlet (Split/Splitless) 
Mode Split                   
Initial temperature 75 'C (On) 
Pressure 13.00 psi (On) 
Split ratio 15:1 
Split flow 42.8 mL/min 
Total flow 48.3 mL/min 
Gas saver Off  
Gas type Helium 
 
Capillary Column 
Model Number DB-624, Agilent part number 123-1334 
 
Inside Diameter 0.32 mm 
Length 30 m 
Film Thickness 1.8 um 
 
Dura-Guard deactivated silica column guard 
Inside Diameter 0.32 mm 
Length 5 m  
 
Maximum temperature 260 'C 
Nominal length 30.0 m 
Nominal diameter 320.00 um 
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Table A.3 Agilent 6890 Gas Chromatograph with Flame Ionization Detector Instrument 
Control Parameters (Continued) 

 
Nominal film thickness 1.80 um 
Mode Constant Pressure 
Pressure 13.00 psi 
Nominal initial flow 2.9 mL/min 
Average velocity 44 cm/sec 
Inlet Front Inlet 
Outlet Front Detector 
Outlet pressure Ambient 
 
Flame Ionization Detector               
Temperature 250 'C (On) 
Hydrogen flow 40.0 mL/min (On)    
Air flow 400.0 mL/min (On)     
Mode Constant makeup flow Makeup flow 25.0 
mL/min (On) 
Makeup Gas Type Nitrogen 
Flame On 
Electrometer On 
Lit offset 2.0 
 
SIGNAL 1                             
Data rate 20 Hz 
Type Front Detector 
Save Data On 
Zero 0.0 (Off) 
Range 0 
Fast Peaks Off 
Attenuation 0 
 
 
7673 Auto Injector Parameters 
Serial Number US 33821606 
Injector Location Front 
Sample Washes  3 
Sample Pumps 6 
Injection Volume 1.0 microliters 
Syringe Size 10.0 microliters 
Post Injection 
  Solvent A Washes (Acetone) 3 
Post Injection 
  Solvent B Washes (Deionized Water) 9 
Viscosity Delay 6 seconds 
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Plunger Speed Slow 
Pre Injection Dwell 0.00 minutes 
Post Injection Dwell 0.00 minutes 
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Table B.1 Estimated Porosity 

Column 1 2 3 4 5 6 7 8
Water Added to Dry Column, L 18.2 14.9 19.1 16.1 17.1 18.2 15.9 17.4

Total Column Volume, L 64.3 64.3 64.3 64.3 64.3 64.3 64.3 64.3

Total Porosity, % 28.3 23.2 29.7 25.1 26.6 28.3 24.7 27.0  
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Table B.2 Hydraulic Conductivity and Volumetric Flow Rates at Saturation 

Column

Column
Length

L
(cm)

Distance 
from top of 
column to 
soil (cm)

ΔL 
(cm)

Distance 
from top of 
Column to 
water (cm)

Height 
at 

effluent 
flow 
(cm)

Head
ΔH

(cm)

Permeameter 
Volume 
Change

(ml)

Column 
Area
(cm2)

Elapsed 
Time

(s)

Hydraulic 
Conductivity

K (cm/s)

Volumetric 
Flow Rate
Q (ml/sec)

Volumetric 
Flow Rate
Q (ml/min)

10% Vol 
Flow 
Rate

(ml/min)

2% Vol 
Flow 
Rate

(ml/min)
1a 254 26.7 227 3.8 36.8 213.4 1000 324.3 375 7.34E-03 2.67 160 16.0 3.20
1b 254 26.7 227 3.8 36.8 213.4 1010 324.3 394 7.06E-03 2.56 154 15.4 3.08
2a 254 31.8 222 3.8 36.8 213.4 970 324.3 412 6.31E-03 2.35 141 14.1 2.83
2b 254 31.8 222 3.8 36.8 213.4 1000 324.3 422 6.35E-03 2.37 142 14.2 2.84
3a 254 30.5 224 3.8 36.8 213.4 1000 324.3 296 9.12E-03 3.38 203 20.3 4.05
3b 254 30.5 224 3.8 36.8 213.4 1010 324.3 292 9.33E-03 3.46 208 20.8 4.15
4a 254 30.5 224 3.8 36.8 213.4 830 324.3 389 5.76E-03 2.13 128 12.8 2.56
4b 254 30.5 224 3.8 36.8 213.4 1000 324.3 440 6.13E-03 2.27 136 13.6 2.73
5a 254 27.9 226 3.8 36.8 213.4 1010 324.3 655 4.22E-03 1.54 92.5 9.25 1.85
5b 254 27.9 226 3.8 36.8 213.4 980 324.3 677 3.96E-03 1.45 86.9 8.69 1.74
6a 254 34.3 220 3.8 36.8 213.4 1010 324.3 589 4.53E-03 1.71 103 10.3 2.06
6b 254 34.3 220 3.8 36.8 213.4 830 324.3 517 4.24E-03 1.61 96.3 9.63 1.93
7a 254 34.3 220 3.8 36.8 213.4 990 324.3 551 4.75E-03 1.80 108 10.8 2.16
7b 254 34.3 220 3.8 36.8 213.4 960 324.3 551 4.60E-03 1.74 105 10.5 2.09
8a 254 34.3 220 3.8 36.8 213.4 990 324.3 355 7.37E-03 2.79 167 16.7 3.35
8b 254 34.3 220 3.8 36.8 213.4 990 324.3 345 7.58E-03 2.87 172 17.2 3.44

Run 1
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Table B.2 Hydraulic Conductivity and Saturated Flow Data (Continued) 

Column

Column
Length

L
(cm)

Distance 
from top of 
column to 
soil (cm)

ΔL 
(cm)

Distance 
from top of 
Column to 
water (cm)

Height 
at 

effluent 
flow 
(cm)

Head
ΔH

(cm)

Permeameter 
Volume 
Change

(ml)

Column 
Area
(cm2)

Elapsed 
Time

(s)

Hydraulic 
Conductivity

K (cm/s)

Volumetric 
Flow Rate
Q (ml/sec)

Volumetric 
Flow Rate
Q (ml/min)

10% Vol 
Flow 
Rate

(ml/min)

2% Vol 
Flow 
Rate

(ml/min)
1a 254 26.7 227 3.8 36.8 213.4 1000 324.3 385 7.15E-03 2.60 156 15.6 3.12
1b 254 26.7 227 3.8 36.8 213.4 990 324.3 345 7.90E-03 2.87 172 17.2 3.44
2a 254 31.8 222 3.8 36.8 213.4 990 324.3 425 6.24E-03 2.33 140 14.0 2.80
2b 254 31.8 222 3.8 36.8 213.4 970 324.3 410 6.34E-03 2.37 142 14.2 2.84
3a 254 30.5 224 3.8 36.8 213.4 1010 324.3 276 9.87E-03 3.66 220 22.0 4.39
3b 254 30.5 224 3.8 36.8 213.4 1010 324.3 279 9.77E-03 3.62 217 21.7 4.34
4a 254 30.5 224 3.8 36.8 213.4 1000 324.3 426 6.33E-03 2.35 141 14.1 2.82
4b 254 30.5 224 3.8 36.8 213.4 1010 324.3 483 5.64E-03 2.09 125 12.5 2.51
5a 254 27.9 226 3.8 36.8 213.4 980 324.3 602 4.45E-03 1.63 98 9.8 1.95
5b 254 27.9 226 3.8 36.8 213.4 970 324.3 541 4.90E-03 1.79 108 10.8 2.15
6a 254 34.3 220 3.8 36.8 213.4 1000 324.3 518 5.10E-03 1.93 116 11.6 2.32
6b 254 34.3 220 3.8 36.8 213.4 940 324.3 483 5.14E-03 1.95 117 11.7 2.34
7a 254 34.3 220 3.8 36.8 213.4 960 324.3 578 4.39E-03 1.66 99.7 9.97 1.99
7b 254 34.3 220 3.8 36.8 213.4 980 324.3 567 4.57E-03 1.73 104 10.4 2.07
8a 254 34.3 220 3.8 36.8 213.4 980 324.3 350 7.40E-03 2.80 168 16.8 3.36
8b 254 34.3 220 3.8 36.8 213.4 1000 324.3 346 7.64E-03 2.89 173 17.3 3.47

Run 2
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TableB.2 Hydraulic Conductivity and Saturated Flow Data (Continued) 

Column

Column
Length

L
(cm)

Distance 
from top of 
column to 
soil (cm)

ΔL 
(cm)

Distance 
from top of 
Column to 
water (cm)

Height 
at 

effluent 
flow 
(cm)

Head
ΔH

(cm)

Permeameter 
Volume 
Change

(ml)

Column 
Area
(cm2)

Elapsed 
Time

(s)

Hydraulic 
Conductivity

K (cm/s)

Volumetric 
Flow Rate
Q (ml/sec)

Volumetric 
Flow Rate
Q (ml/min)

10% Vol 
Flow 
Rate

(ml/min)

2% Vol 
Flow 
Rate

(ml/min)
1a 254 26.7 227 3.8 36.8 213.4 960 324.3 364 7.26E-03 2.64 158 15.8 3.16
1b 254 26.7 227 3.8 36.8 213.4 940 324.3 375 6.90E-03 2.51 150 15.0 3.01
2a 254 31.8 222 3.8 36.8 213.4 990 324.3 417 6.36E-03 2.37 142 14.2 2.85
2b 254 31.8 222 3.8 36.8 213.4 990 324.3 400 6.63E-03 2.48 149 14.9 2.97
3a 254 30.5 224 3.8 36.8 213.4 970 324.3 284 9.22E-03 3.42 205 20.5 4.10
3b 254 30.5 224 3.8 36.8 213.4 960 324.3 285 9.09E-03 3.37 202 20.2 4.04
4a 254 30.5 224 3.8 36.8 213.4 970 324.3 461 5.68E-03 2.10 126 12.6 2.52
4b 254 30.5 224 3.8 36.8 213.4 1000 324.3 458 5.89E-03 2.18 131 13.1 2.62
5a 254 27.9 226 3.8 36.8 213.4 970 324.3 651 4.07E-03 1.49 89.4 8.94 1.79
5b 254 27.9 226 3.8 36.8 213.4 980 324.3 556 4.82E-03 1.76 106 10.6 2.12
6a 254 34.3 220 3.8 36.8 213.4 990 324.3 635 4.12E-03 1.56 93.5 9.35 1.87
6b 254 34.3 220 3.8 36.8 213.4 990 324.3 641 4.08E-03 1.54 92.7 9.27 1.85
7a 254 34.3 220 3.8 36.8 213.4 980 324.3 591 4.38E-03 1.66 99.5 9.95 1.99
7b 254 34.3 220 3.8 36.8 213.4 950 324.3 578 4.34E-03 1.64 98.6 9.86 1.97
8a 254 34.3 220 3.8 36.8 213.4 1000 324.3 354 7.47E-03 2.82 169 16.9 3.39
8b 254 34.3 220 3.8 36.8 213.4 1010 324.3 356 7.50E-03 2.84 170 17.0 3.40

Run 3
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Table B.3 Spreadsheet Cell Formulas for Table B.2 
B C D E F G H I J K L M N O P

Column

Column
Length

L
(cm)

Distance 
from top 
of column 

to soil 
(cm) ΔL (cm)

Distance 
from top 
of column 
to water 

(cm)

Height at 
effluent 

flow (cm)

Head
ΔH
(cm)

Permeameter 
Volume 
Change

(ml)
Column Area

(cm2)

Elapsed 
Time

(s)
Hydraulic Conductivity

K (cm/s)

Volumetric 
Flow Rate
Q (ml/sec)

Volumetric 
Flow Rate
Q (ml/min)

10% Vol 
Flow Rate
(ml/min)

2% Vol 
Flow Rate
(ml/min)

1a 254 26.67 =+C3-D3 3.8 36.8 =+C3-F3-G3 1000 =+((4*2.54)^2)*PI( ) 375 =+(M3*(E3-G3))/((C3-F3-G3)*J3)=+I3/K3 =+M3*60 =+N3*0.1 =+N3*0.02
1b 254 26.67 =+C4-D4 3.8 36.8 =+C4-F4-G4 1010 =+((4*2.54)^2)*PI( ) 394 =+(M4*(E4-G4))/((C4-F4-G4)*J4)=+I4/K4 =+M4*60 =+N4*0.1 =+N4*0.02
2a 254 31.75 =+C5-D5 3.8 36.8 =+C5-F5-G5 970 =+((4*2.54)^2)*PI( ) 412 =+(M5*(E5-G5))/((C5-F5-G5)*J5)=+I5/K5 =+M5*60 =+N5*0.1 =+N5*0.02
2b 254 31.75 =+C6-D6 3.8 36.8 =+C6-F6-G6 1000 =+((4*2.54)^2)*PI( ) 422 =+(M6*(E6-G6))/((C6-F6-G6)*J6)=+I6/K6 =+M6*60 =+N6*0.1 =+N6*0.02
3a 254 30.48 =+C7-D7 3.8 36.8 =+C7-F7-G7 1000 =+((4*2.54)^2)*PI( ) 296 =+(M7*(E7-G7))/((C7-F7-G7)*J7)=+I7/K7 =+M7*60 =+N7*0.1 =+N7*0.02
3b 254 30.48 =+C8-D8 3.8 36.8 =+C8-F8-G8 1010 =+((4*2.54)^2)*PI( ) 292 =+(M8*(E8-G8))/((C8-F8-G8)*J8)=+I8/K8 =+M8*60 =+N8*0.1 =+N8*0.02

Note:Datum is the height of the effluent drain
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Table B.4 Maximum, Minimum and Averages for 2%, 10% and Saturated Column Flow 

COLUMN MAX MIN MEAN
1 3.44 3.01 3.17
2 2.97 2.80 2.85
3 4.39 4.04 4.18
4 2.82 2.51 2.63
5 2.15 1.74 1.93
6 2.34 1.85 2.06
7 2.16 1.97 2.05
8 3.47 3.35 3.40

1-4 4.39 2.51 3.21
5-8 3.47 1.74 2.36

COLUMN MAX MIN MEAN
1 17.2 15.0 15.8
2 14.9 14.0 14.3
3 22.0 20.2 20.9
4 14.1 12.5 13.1
5 10.8 8.7 9.7
6 11.7 9.3 10.3
7 10.8 9.9 10.2
8 17.3 16.7 17.0

1-4 22.0 12.5 16.0
5-8 17.3 8.7 11.8

COLUMN MAX MIN MEAN
1 172 150 158
2 149 140 143
3 220 202 209
4 141 125 131
5 108 87 97
6 117 93 103
7 108 99 102
8 173 167 170

1-4 220 125 160
5-8 173 87 118

2 % OF VOLUMETRIC FLOW AT 
SATURATION (ml/min)

VOLUMETRIC FLOW, SATURATION 
(ml/min)

10 % OF VOLUMETRIC FLOW AT 
SATURATION (ml/min)
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Figure B.1 Conductivity Meter Response Curve 
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Table B.5 Average Water Flows 

1 2 3 4 5 6 7 8
Run 1 6.52 6.12 6.47 6.36 24.3 25.0 24.4 24.8
Run 2 6.27 6.61 6.64 6.54 24.3 25.2 24.2 24.8
Run 3 6.74 6.58 6.66 6.61 24.1 24.8 24.4 24.8
Mean 6.51 6.44 6.59 6.50 24.2 25.0 24.3 24.8

Flow
(ml/min) 3.26 3.22 3.30 3.25 12.1 12.5 12.2 12.4

1 2 3 4 5 6 7 8
Run 1 6.59 6.45 6.70 6.38 22.8 23.6 23.6 23.3
Run 2 6.45 6.49 6.74 6.48 22.8 23.7 23.7 23.7
Run 3 6.47 6.57 6.71 6.65 23.1 23.6 23.6 23.4
Mean 6.50 6.50 6.72 6.50 22.9 23.6 23.6 23.4

Flow
(ml/min) 3.25 3.25 3.36 3.25 11.4 11.8 11.8 11.7

Note:Each run collected a sample from two pump cycles.  The final flow is the 
mean of three runs divided by two

Column

Column

Pre Tracer Test - 27 Nov 04

Post Tracer Test - 4 Dec 04

 
 

Table B.6 Average Chemical Flows 

1 2 3 4 5 6 7 8
Run 1 0.0701 0.0720 0.0630 0.0674 0.0769 0.0745 0.0745 0.0733
Run 2 0.0739 0.0718 0.0647 0.0668 0.0794 0.0720 0.0778 0.0805
Run 3 0.0735 0.0695 0.0645 0.0653 0.0772 0.0745 0.0690 0.0756

Mean 0.0725 0.0711 0.0641 0.0665 0.0778 0.0737 0.0738 0.0765

ml/min 0.0363 0.0356 0.0320 0.0333 0.0389 0.0368 0.0369 0.0382

Column

9 Dec 04  
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Figure B.2 Column 1 Tracer Results (27 Nov 04) 
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Table B.7 Column 1 Tracer Results (27 Nov 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass
(g)

Mass Balance
Error

6650 2955.3 2.9 3.5

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 946 5.2 0.0 734.7 0.0000 0.1
188 941 2.6 0.0009 457.7 0.0000 0.1
363 941 2.6 0.0009 284.5 0.0000 0.1
543 937 0.5 0.0002 51.8 0.0000 0.0
723 936 0.0 0.0000 -534.9 0.0000 -0.5
913 925 -5.7 -0.0019 -1986.1 0.0000 -2.2
1088 903 -17.0 -0.0058 -2215.6 0.0000 -2.9
1250 916 -10.3 -0.0035 -1735.1 0.0000 -2.6
1448 922 -7.2 -0.0024 -928.0 0.0000 -1.6
1638 931 -2.6 -0.0009 -599.9 0.0000 -1.1
1818 928 -4.1 -0.0014 -879.2 0.0000 -1.8
1998 925 -5.7 -0.0019 -1614.9 0.0000 -3.7
2177 912 -12.4 -0.0042 -3160.0 0.0000 -7.9
2357 892 -22.7 -0.0077 -2818.6 0.0000 -7.6
2539 920 -8.2 -0.0028 -79.0 0.0000 -0.2
2561 938 1.1 0.0004 169.0 0.0000 0.5
2582 965 15.0 0.0051 987.6 0.0000 2.8
2617 1016 41.4 0.0140 3244.6 0.0000 9.5
2677 1065 66.7 0.0226 5719.6 0.0001 17.1
2743 1142 106.6 0.0361 7154.6 0.0001 21.8
2803 1191 131.9 0.0446 9683.9 0.0001 30.2
2868 1257 166.1 0.0562 13499.8 0.0002 43.2
2941 1330 203.8 0.0690 6370.2 0.0002 20.7
2971 1363 220.9 0.0747 12227.1 0.0002 40.4
3024 1401 240.5 0.0814 15688.4 0.0003 52.8
3084 1482 282.4 0.0956 5042.9 0.0003 17.2  
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Table B.7 Column 1 Tracer Results (27 Nov 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

3101 1537 310.9 0.1052 16112.2 0.0003 55.5
3151 1581 333.6 0.1129 20638.0 0.0004 72.3
3211 1621 354.3 0.1199 21987.9 0.0004 78.5
3271 1668 378.6 0.1281 23198.2 0.0004 84.3
3331 1699 394.7 0.1335 24175.7 0.0004 89.5
3391 1731 411.2 0.1391 24982.5 0.0005 94.1
3451 1751 421.5 0.1426 22847.3 0.0005 87.5
3505 1757 424.7 0.1437 30867.3 0.0005 120.4
3578 1750 421.0 0.1425 30187.7 0.0005 120.1
3651 1721 406.0 0.1374 30169.2 0.0004 122.6
3728 1666 377.6 0.1278 45420.3 0.0004 189.6
3853 1611 349.1 0.1181 132255.2 0.0004 589.3
4241 1579 332.6 0.1125 49988.0 0.0004 237.7
4396 1540 312.4 0.1057 94596.0 0.0003 476.6
4756 1348 213.1 0.0721 73220.2 0.0002 399.7
5161 1223 148.5 0.0502 49921.1 0.0002 294.3
5547 1149 110.2 0.0373 35146.8 0.0001 221.5
5899 1109 89.5 0.0303 26649.5 0.0001 177.9
6225 1079 74.0 0.0250 28034.2 0.0001 198.6
6645 1051 59.5 0.0201 20081.3 0.0001 151.2
7035 1020 43.5 0.0147 12920.6 0.0000 102.3
7351 1010 38.3 0.0130 21501.0 0.0000 183.0
8113 971 18.1 0.0061 8247.7 0.0000 77.0
8836 945 4.7 0.0016 321.2 0.0000 3.2
9235 930 -3.1 -0.0010 0.0000

Area
(mg*min/L)

Retention 
Time

tRTD(min)
Pulse Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass
(g)

Pore 
Volume

(L)
908234 4302.4 297 3.3 3.0 14.0  
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Figure B.3 Column 2 Tracer Results (27 Nov 04) 
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Table B.8 Column 2 Tracer Results (27 Nov 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6730 2996.7 2.8 -11.1

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 919 -8.8 -0.0029 -1793.3 0.0000 -0.2
188 916 -10.3 -0.0034 -2121.9 0.0000 -0.7
363 909 -13.9 -0.0047 -2554.9 0.0000 -1.5
543 908 -14.5 -0.0048 -2648.0 0.0000 -2.1
723 907 -15.0 -0.0050 -3777.8 0.0000 -4.0
913 888 -24.8 -0.0083 -5289.7 0.0000 -6.8
1088 867 -35.7 -0.0119 -5106.2 0.0000 -7.6
1250 883 -27.4 -0.0091 -6087.4 0.0000 -10.5
1448 870 -34.1 -0.0114 -5350.1 0.0000 -10.6
1638 893 -22.2 -0.0074 -3951.3 0.0000 -8.7
1818 894 -21.7 -0.0072 -4137.5 0.0000 -10.1
1998 889 -24.3 -0.0081 -4901.4 0.0000 -13.1
2177 877 -30.5 -0.0102 -3299.7 0.0000 -9.6
2357 924 -6.2 -0.0021 8430.0 0.0000 26.4
2539 1127 98.8 0.0330 2560.8 0.0001 8.4
2561 1195 134.0 0.0447 2840.8 0.0002 9.4
2582 1200 136.6 0.0456 5241.6 0.0002 17.4
2617 1251 162.9 0.0544 12042.2 0.0002 40.8
2677 1397 238.5 0.0796 17991.2 0.0003 62.4
2743 1529 306.7 0.1024 19241.6 0.0004 68.3
2803 1583 334.7 0.1117 24005.2 0.0004 87.2
2868 1717 404.0 0.1348 31414.8 0.0005 116.9
2941 1819 456.7 0.1524 13949.8 0.0006 52.8
2971 1851 473.3 0.1579 25138.0 0.0006 96.5
3024 1855 475.3 0.1586 28737.4 0.0006 112.4
3084 1869 482.6 0.1610 8124.7 0.0006 32.2  
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TableB.8 Column 2 Tracer Results (27 Nov 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

3101 1851 473.3 0.1579 23404.8 0.0006 93.7
3151 1831 462.9 0.1545 26891.0 0.0006 109.5
3211 1774 433.4 0.1446 25292.8 0.0006 105.0
3271 1728 409.7 0.1367 24486.0 0.0005 103.5
3331 1722 406.5 0.1357 24020.5 0.0005 103.4
3391 1698 394.1 0.1315 22686.1 0.0005 99.4
3451 1636 362.1 0.1208 19440.0 0.0005 86.6
3505 1628 357.9 0.1194 25789.2 0.0005 117.0
3578 1610 348.6 0.1163 24618.8 0.0004 114.0
3651 1566 325.9 0.1087 24514.2 0.0004 115.8
3728 1537 310.9 0.1037 37888.6 0.0004 183.9
3853 1507 295.4 0.0986 96635.7 0.0004 500.9
4241 1328 202.8 0.0677 31549.8 0.0003 174.5
4396 1331 204.3 0.0682 69553.2 0.0003 407.6
4756 1288 182.1 0.0608 63899.0 0.0002 405.8
5161 1194 133.5 0.0445 43432.8 0.0002 297.8
5547 1113 91.6 0.0306 28046.7 0.0001 205.6
5899 1067 67.8 0.0226 18977.8 0.0001 147.3
6225 1030 48.6 0.0162 15761.0 0.0001 129.9
6645 987 26.4 0.0088 7172.0 0.0000 62.8
7035 956 10.4 0.0035 2215.6 0.0000 20.4
7351 943 3.6 0.0012 -2342.4 0.0000 -23.2
8113 917 -9.8 -0.0033 -11383.9 0.0000 -123.6
8836 894 -21.7 -0.0072 -10409.7 0.0000 -120.5
9235 877 -30.5 -0.0102 0.0000

Area
(mg*min/L)

Retention 
Time

tRTD(min)

Pulse 
Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass

(g)

Pore 
Volume

(L)
780838 3816.2 293 3.2 2.5 12.3  
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Figure B.4 Column 3 Tracer Results (27 Nov 04) 
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Table B.9 Column 3 Tracer Results (27 Nov 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass
(g)

Mass Balance
Error

6670 2965.7 2.8 15.5

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 924 -6.2 -0.0021 5.5 0.0000 0.0
188 948 6.2 0.0021 1046.0 0.0000 0.3
363 947 5.7 0.0019 936.2 0.0000 0.4
543 945 4.7 0.0016 796.6 0.0000 0.5
723 944 4.2 0.0014 -191.0 0.0000 -0.2
913 924 -6.2 -0.0021 -1216.8 0.0000 -1.2
1088 921 -7.7 -0.0026 -1503.4 0.0000 -1.8
1250 915 -10.8 -0.0037 -1837.5 0.0000 -2.5
1448 921 -7.7 -0.0026 -731.5 0.0000 -1.1
1638 936 0.0 0.0000 5.3 0.0000 0.0
1818 936 0.0 0.0000 -134.4 0.0000 -0.3
1998 933 -1.5 -0.0005 -1244.6 0.0000 -2.6
2177 912 -12.4 -0.0042 -1996.3 0.0000 -4.6
2357 917 -9.8 -0.0033 -182.9 0.0000 -0.5
2539 951 7.8 0.0026 279.4 0.0000 0.7
2561 970 17.6 0.0059 456.8 0.0000 1.2
2582 986 25.9 0.0087 1023.8 0.0000 2.7
2617 999 32.6 0.0110 2375.7 0.0000 6.4
2677 1026 46.6 0.0157 4046.9 0.0000 11.1
2743 1083 76.1 0.0256 5261.7 0.0001 14.7
2803 1128 99.3 0.0335 7229.8 0.0001 20.7
2868 1174 123.1 0.0415 10366.0 0.0001 30.4
2941 1247 160.9 0.0542 5237.5 0.0002 15.6
2971 1300 188.3 0.0635 10651.0 0.0002 32.2
3024 1349 213.6 0.0720 13857.5 0.0002 42.7
3084 1416 248.3 0.0837 4581.3 0.0003 14.3  
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 Table B.9 Column 3 Tracer Results (27 Nov 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

3101 1498 290.7 0.0980 15323.5 0.0003 48.4
3151 1559 322.2 0.1087 20265.6 0.0003 65.1
3211 1619 353.3 0.1191 21910.3 0.0004 71.7
3271 1665 377.1 0.1271 23446.4 0.0004 78.2
3331 1718 404.5 0.1364 24858.4 0.0004 84.4
3391 1756 424.1 0.1430 25603.2 0.0004 88.4
3451 1766 429.3 0.1448 23336.1 0.0004 82.0
3505 1777 435.0 0.1467 31773.5 0.0004 113.6
3578 1778 435.5 0.1469 31150.5 0.0004 113.7
3651 1744 417.9 0.1409 31204.7 0.0004 116.3
3728 1695 392.6 0.1324 48749.8 0.0004 186.6
3853 1685 387.4 0.1306 145399.4 0.0004 594.2
4241 1636 362.1 0.1221 53194.7 0.0004 232.0
4396 1563 324.3 0.1094 102043.7 0.0003 471.5
4756 1405 242.6 0.0818 84426.6 0.0002 422.7
5161 1273 174.3 0.0588 58106.3 0.0002 314.2
5547 1181 126.7 0.0427 39789.2 0.0001 229.9
5899 1128 99.3 0.0335 29853.0 0.0001 182.7
6225 1098 83.8 0.0283 32052.8 0.0001 208.3
6645 1069 68.8 0.0232 24619.8 0.0001 170.1
7035 1047 57.4 0.0194 17006.5 0.0001 123.5
7351 1033 50.2 0.0169 30368.4 0.0001 237.1
8113 993 29.5 0.0100 14604.6 0.0000 125.0
8836 957 10.9 0.0037 2075.3 0.0000 18.9
9235 935 -0.5 -0.0002 0.0000

Area
(mg*min/L)

Retention 
Time

tRTD(min)

Pulse 
Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass

(g)

Pore 
Volume

(L)
990281 4413.3 289 3.295 3.3 14.5  
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Figure B.5 Column 4 Tracer Results (27 Nov 04) 
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Table B.10 Column 4 Tracer Results (27 Nov 04) 

Specific
Conductivit

y
(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6780 3022.5 2.9 36.0

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 988 26.9 0.0089 5013.0 0.0000 0.4
188 987 26.4 0.0087 4394.8 0.0000 1.0
363 982 23.8 0.0079 4334.2 0.0000 1.6
543 983 24.3 0.0081 4194.6 0.0000 2.2
723 979 22.3 0.0074 3199.3 0.0000 2.1
913 958 11.4 0.0038 1498.5 0.0000 1.2
1088 947 5.7 0.0019 716.9 0.0000 0.7
1250 942 3.1 0.0010 1081.0 0.0000 1.2
1448 951 7.8 0.0026 1823.5 0.0000 2.3
1638 958 11.4 0.0038 2193.0 0.0000 3.1
1818 961 13.0 0.0043 2379.2 0.0000 3.7
1998 962 13.5 0.0045 1949.4 0.0000 3.3
2177 952 8.3 0.0027 982.8 0.0000 1.8
2357 941 2.6 0.0009 664.2 0.0000 1.3
2539 945 4.7 0.0015 97.4 0.0000 0.2
2561 944 4.2 0.0014 152.7 0.0000 0.3
2582 956 10.4 0.0034 299.7 0.0000 0.6
2617 949 6.8 0.0022 482.7 0.0000 1.0
2677 954 9.3 0.0031 1162.5 0.0000 2.6
2743 986 25.9 0.0086 2018.8 0.0000 4.6
2803 1016 41.4 0.0137 3447.7 0.0000 8.0
2868 1061 64.7 0.0214 6666.0 0.0001 15.8
2941 1164 118.0 0.0390 3996.2 0.0001 9.6
2971 1223 148.5 0.0491 8814.4 0.0001 21.5
3024 1292 184.2 0.0609 12569.7 0.0001 31.2
3084 1390 234.8 0.0777 4449.5 0.0002 11.2  
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Table B.10 Column 4 Tracer Results (27 Nov 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

3101 1494 288.6 0.0955 15427.0 0.0002 39.2
3151 1571 328.5 0.1087 20932.8 0.0003 54.2
3211 1650 369.3 0.1222 23415.4 0.0003 61.7
3271 1731 411.2 0.1360 26549.6 0.0003 71.3
3331 1852 473.8 0.1568 29544.2 0.0004 80.8
3391 1924 511.0 0.1691 31328.6 0.0004 87.2
3451 1967 533.3 0.1764 29117.4 0.0004 82.4
3505 1990 545.2 0.1804 39721.0 0.0004 114.5
3578 1986 543.1 0.1797 37871.0 0.0004 111.4
3651 1892 494.5 0.1636 36123.0 0.0004 108.4
3728 1794 443.8 0.1468 52046.9 0.0004 160.5
3853 1688 389.0 0.1287 137171.7 0.0003 451.7
4241 1551 318.1 0.1052 47903.7 0.0003 168.3
4396 1516 300.0 0.0993 97761.3 0.0002 364.0
4756 1406 243.1 0.0804 95318.9 0.0002 384.6
5161 1376 227.6 0.0753 78170.0 0.0002 340.5
5547 1279 177.4 0.0587 57448.4 0.0001 267.5
5899 1224 149.0 0.0493 45702.1 0.0001 225.4
6225 1190 131.4 0.0435 51059.9 0.0001 267.3
6645 1152 111.7 0.0370 40151.3 0.0001 223.5
7035 1118 94.2 0.0312 28937.3 0.0001 169.4
7351 1108 89.0 0.0294 62488.1 0.0001 393.1
8113 1081 75.0 0.0248 47884.9 0.0001 330.2
8836 1047 57.4 0.0190 18377.9 0.0000 135.1
9235 1003 34.7 0.0115 0.0000

Area
(mg*min/L)

Retention 
Time

tRTD(min)

Pulse 
Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass

(g)

Pore 
Volume

(L)
1229034 4675.1 299 3.3 4.0 15.2  
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Figure B.6 Column 5 Tracer Results (1 Dec 04) 
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Table B.11 Column 5 Tracer Results (1 Dec 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6580 2919.1 3.0 -20.5

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti
0 911 -12.9 -0.0044 -5133.0 -0.0001 -4.2

326 900 -18.6 -0.0064 -9328.4 -0.0001 -25.1
746 886 -25.8 -0.0088 -1235.8 -0.0001 -4.8
792 882 -27.9 -0.0096 -1720.5 -0.0001 -7.1
852 879 -29.5 -0.0101 -1751.6 -0.0001 -7.7
912 880 -28.9 -0.0099 -1842.0 -0.0001 -8.7
974 877 -30.5 -0.0104 -1483.2 -0.0002 -7.5
1032 896 -20.7 -0.0071 94.8 -0.0001 0.5
1092 982 23.8 0.0082 1179.3 0.0001 6.5
1123 1037 52.3 0.0179 2130.7 0.0003 12.1
1152 1119 94.7 0.0324 3561.8 0.0005 20.8
1182 1212 142.8 0.0489 5035.8 0.0007 30.2
1212 1309 192.9 0.0661 6758.9 0.0010 41.6
1243 1406 243.1 0.0833 7627.7 0.0012 48.1
1272 1483 282.9 0.0969 9023.4 0.0014 58.2  
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Table B.11 Column 5 Tracer Results (1 Dec 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

1302 1552 318.6 0.1092 9954.4 0.0016 65.7
1332 1603 345.0 0.1182 1416.2 0.0017 9.5
1336 1638 363.1 0.1244 11768.3 0.0018 79.8
1368 1656 372.4 0.1276 10485.5 0.0019 72.6
1396 1664 376.6 0.1290 11281.0 0.0019 79.8
1426 1662 375.5 0.1286 11133.6 0.0019 80.4
1456 1645 366.7 0.1256 10831.0 0.0018 79.9
1486 1623 355.3 0.1217 10419.9 0.0018 78.4
1516 1592 339.3 0.1162 65989.7 0.0017 546.1
1786 1225 149.5 0.0512 39307.6 0.0007 391.5
2188 1025 46.1 0.0158 10260.6 0.0002 122.0
2555 955 9.9 0.0034 838.9 0.0000 11.5
2911 926 -5.1 -0.0018 -7107.9 0.0000 -110.8
3310 877 -30.5 -0.0104 -0.0002

Area
(mg*min/L)

Retention 
Time

tRTD(min)
Pulse Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass

(g)

Pore 
Volume

(L)
199497 1616.4 86 12.1 2.4 19.6  
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Figure B.7 Column 6 Tracer Results (1 Dec 04) 
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Table B.12 Column 6 Tracer Results (1 Dec 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6600 2929.5 3.0 -32.5

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 906 -15.49 -0.0053 -5807.4 -0.0001 -5.9
326 897 -20.14 -0.0069 -11609.2 -0.0001 -38.9
746 868 -35.14 -0.0120 -1711.6 -0.0002 -8.2
792 860 -39.28 -0.0134 -2217.0 -0.0002 -11.4
852 869 -34.62 -0.0118 -1022.3 -0.0002 -5.6
912 937 0.55 0.0002 3625.3 0.0000 21.4
974 1161 116.40 0.0397 11325.8 0.0007 71.0
1032 1466 274.15 0.0936 20436.3 0.0017 135.6
1092 1723 407.07 0.1390 13180.2 0.0025 91.2
1123 1793 443.27 0.1513 13342.3 0.0028 94.8
1152 1858 476.89 0.1628 14609.2 0.0030 106.5
1182 1897 497.06 0.1697 14616.9 0.0031 109.3
1212 1859 477.40 0.1630 14535.0 0.0030 111.4
1243 1826 460.34 0.1571 13072.3 0.0029 102.7
1272 1789 441.20 0.1506 12654.2 0.0028 101.7  
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Table B.12 Column 6 Tracer Results (1 Dec 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

1302 1714 402.41 0.1374 11521.5 0.0025 94.8
1332 1643 365.69 0.1248 1373.8 0.0023 11.4
1336 1557 321.21 0.1096 9682.9 0.0020 81.8
1368 1485 283.97 0.0969 7335.7 0.0018 63.3
1396 1400 240.01 0.0819 6696.0 0.0015 59.0
1426 1335 206.39 0.0705 5788.3 0.0013 52.1
1456 1283 179.50 0.0613 4942.7 0.0011 45.4
1486 1226 150.02 0.0512 4143.6 0.0009 38.8
1516 1180 126.23 0.0431 22979.3 0.0008 237.0
1786 1021 43.99 0.0150 7080.8 0.0003 87.9
2188 919 -8.76 -0.0030 -6158.2 -0.0001 -91.2
2555 888 -24.80 -0.0085 -10300.5 -0.0002 -175.8
2911 872 -33.07 -0.0113 -14021.0 -0.0002 -272.4
3310 864 -37.21 -0.0127 -0.0002

Area
(mg*min/L)

Retention 
Time

tRTD(min)
Pulse Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass
(g)

Pore 
Volume

(L)
160095 1067.1 81 12.5 2.0 13.3  
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Figure B.8 Column 7 Tracer Results (1 Dec 04) 
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Table B.13 Column 7 Tracer Results (1 Dec 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6580 2919.1 3.0 -34.1

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 905 -16.0 -0.0055 -7324.9 -0.0001 -7.4
326 880 -28.9 -0.0099 -13021.2 -0.0002 -43.2
746 872 -33.1 -0.0113 -1545.1 -0.0002 -7.3
792 870 -34.1 -0.0117 -2015.3 -0.0002 -10.2
852 872 -33.1 -0.0113 -1627.4 -0.0002 -8.9
912 895 -21.2 -0.0073 370.6 -0.0001 2.2
974 1000 33.1 0.0113 3961.4 0.0002 24.6
1032 1136 103.5 0.0354 8318.3 0.0006 54.6
1092 1272 173.8 0.0595 5957.2 0.0011 40.8
1123 1343 210.5 0.0721 6495.3 0.0013 45.7
1152 1395 237.4 0.0813 7339.9 0.0015 53.0
1182 1423 251.9 0.0863 7658.0 0.0016 56.7
1212 1436 258.6 0.0886 8137.8 0.0016 61.8
1243 1451 266.4 0.0913 7770.2 0.0016 60.4
1272 1457 269.5 0.0923 8139.0 0.0017 64.8  
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Table B.13 Column 7 Tracer Results (1 Dec 04) (Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

1302 1464 273.1 0.0936 8239.9 0.0017 67.1
1332 1470 276.2 0.0946 1099.7 0.0017 9.1
1336 1465 273.6 0.0937 8764.4 0.0017 73.3
1368 1466 274.1 0.0939 7668.8 0.0017 65.6
1396 1465 273.6 0.0937 8193.3 0.0017 71.5
1426 1463 272.6 0.0934 8185.6 0.0017 73.0
1456 1464 273.1 0.0936 8092.5 0.0017 73.6
1486 1451 266.4 0.0913 7789.9 0.0016 72.3
1516 1425 252.9 0.0866 50559.0 0.0016 516.3
1786 1171 121.6 0.0416 29119.8 0.0008 357.9
2188 981 23.3 0.0080 2952.8 0.0001 43.3
2555 922 -7.2 -0.0025 -5237.1 0.0000 -88.5
2911 893 -22.2 -0.0076 -12370.1 -0.0001 -238.0
3310 859 -39.8 -0.0136 -0.0002

Area
(mg*min/L)

Retention Time
tRTD(min)

Pulse 
Duration

(min)
Flow Rate
(ml/min)

Calculated 
Mass

(g)

Pore 
Volume

(L)
161672 1442.0 84 12.2 2.0 17.5  
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Figure B.9 Column 8 Tracer Results (1 Dec 04) 
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Table B.14 Column 8 Tracer Results (1 Dec 04) 

Specific
Conductivity

(uS/cm)

Initial
Concentration

(mg/L)
Mass

(g)
Mass Balance

Error
6580 2919.1 3.0 -31.3

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

0 903 -17.0 -0.006 -6228.9 -0.0001 -6.1
326 895 -21.2 -0.007 -9871.4 -0.0001 -31.8
746 886 -25.8 -0.009 -1235.8 -0.0002 -5.7
792 882 -27.9 -0.010 -1596.4 -0.0002 -7.9
852 887 -25.3 -0.009 219.0 -0.0002 1.2
912 999 32.6 0.011 5661.5 0.0002 32.1
974 1226 150.0 0.051 11715.8 0.0009 70.6
1032 1427 254.0 0.087 16991.8 0.0015 108.4
1092 1540 312.4 0.107 9909.4 0.0019 66.0
1123 1568 326.9 0.112 9607.6 0.0020 65.7
1152 1585 335.7 0.115 10156.1 0.0020 71.2
1182 1596 341.4 0.117 10225.9 0.0021 73.6
1212 1594 340.3 0.117 10462.6 0.0020 77.2
1243 1583 334.7 0.115 9630.1 0.0020 72.8
1272 1573 329.5 0.113 9783.7 0.0020 75.7  
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Table B.14 Column 8 Tracer Results (1 Dec 04)(Continued) 

Time
(min)

Specific
Conductivity

(uS/cm)
Concentration

(mg/L)
Relative

Concentration Area f(t) ti

1302 1560 322.8 0.111 9519.9 0.0019 75.3
1332 1539 311.9 0.107 1218.6 0.0019 9.8
1336 1511 297.4 0.102 9285.7 0.0018 75.4
1368 1483 282.9 0.097 7712.3 0.0017 64.1
1396 1454 267.9 0.092 7758.9 0.0016 65.8
1426 1418 249.3 0.085 7138.2 0.0015 61.8
1456 1374 226.6 0.078 6478.8 0.0014 57.3
1486 1333 205.4 0.070 5920.2 0.0012 53.4
1516 1302 189.3 0.065 35407.6 0.0011 351.3
1786 1077 73.0 0.025 16333.0 0.0004 195.0
2188 952 8.3 0.003 -2646.7 0.0000 -37.7
2555 892 -22.7 -0.008 -9656.1 -0.0001 -158.6
2911 875 -31.5 -0.011 -13505.1 -0.0002 -252.5
3310 866 -36.2 -0.012 -0.0002

Area
(mg*min/L)

Retention Time
tRTD(min)

Pulse Duration
(min)

Flow Rate
(ml/min)

Calculated 
Mass
(g)

Pore 
Volume

(L)
166396 1181.9 83 12.4 2.1 14.6  
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Figure B.10 Toluene Calibration Curve 
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Figure B.11 Diisopropyl Ether Calibration Curve 
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Figure B.12 Ethanol Calibration Curve 
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Table B.15 Method Detection Limit Calculations for Toluene, DIPE, and Ethanol 

Toluene Concentration xi-X (xi-X)2

1 -38.29 0.25 0.06
2 -38.37 0.16 0.02
3 -38.67 -0.13 0.02
4 -38.08 0.45 0.20
5 -38.97 -0.43 0.19
6 -38.82 -0.28 0.08

Total -231.19 0.58
X= -38.53

SD= 0.34
t99(n=6)= 3.37

MDL= 1.14

DIPE Concentration xi-X (xi-X)2

1 44.24 0.78 0.61
2 43.67 0.22 0.05
3 43.77 0.32 0.10
4 43.98 0.53 0.28
5 43.99 0.54 0.29
6 41.07 -2.39 5.69

Total 260.73 7.02
X= 43.45

SD= 1.18
t99(n=6)= 3.37

MDL= 3.99

Ethanol Concentration xi-X (xi-X)2

1 8.71 0.27 0.07
2 8.92 0.48 0.23
3 8.16 -0.27 0.07
4 7.78 -0.66 0.43
5 8.85 0.41 0.17
6 8.20 -0.23 0.05

Total 50.63 1.04
X= 8.44

SD= 0.46
t99(n=6)= 3.37

MDL= 1.53  
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Table B.16 Column 1 Influent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Toluene

Effluent mg/L
DIPE

Effluent mg/L
12-Jan-05 164.67 337.07 205.25 483.71
13-Jan-05 332.90 260.33 346.82 822.20
14-Jan-05 47.84 157.24 284.05 596.12
15-Jan-05 90.07 263.32 283.37 619.32
16-Jan-05 189.22 387.07 196.95 530.05
17-Jan-05 221.82 374.37 1631.00 503.43
18-Jan-05 224.32 333.27 182.90 459.79
19-Jan-05 203.12 286.65 217.34 537.70
20-Jan-05 141.33 271.93 200.33 528.12
21-Jan-05 71.82 240.35 216.03 558.41
23-Jan-05 204.14 382.75 200.03 546.49
24-Jan-05 95.14 248.12 286.32 624.49
25-Jan-05 300.95 362.68 251.72 571.88
26-Jan-05 143.58 304.59 199.05 532.82
28-Jan-05 142.14 239.83 257.45 575.61
29-Jan-05 188.01 231.77 193.70 464.19
30-Jan-05 22.23 144.42 233.16 520.56
31-Jan-05 245.16 120.50 272.79 597.24
1-Feb-05 298.85 406.35 257.90 556.69
3-Feb-05 158.32 347.94 203.99 408.66
4-Feb-05 150.69 353.73 225.21 398.43
5-Feb-05 76.81 293.62 226.39 360.61
6-Feb-05 111.63 324.83 183.09 302.80
7-Feb-05 281.83 157.49 195.08 317.72
8-Feb-05 116.88 182.94 180.28 306.59
9-Feb-05 116.08 226.92 186.10 333.34

10-Feb-05 183.06 275.37 203.22 381.30
11-Feb-05 134.91 270.81 177.32 373.83
12-Feb-05 134.83 304.30 179.03 360.32
13-Feb-05 226.56 356.59 154.94 329.49  
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Figure B.13 Column 1 Influent Concentration 
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Figure B.14 Column 1 Effluent Concentration 
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Table B.17 Column 2 Influent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Ethanol

Effluent mg/L
12-Jan-05 394.24 576.30 1261.97
13-Jan-05 791.54 862.26 1478.75
14-Jan-05 549.50 689.00 1199.82
15-Jan-05 660.75 821.55 1373.90
16-Jan-05 605.25 899.94 1380.16
17-Jan-05 553.56 808.48 1239.14
18-Jan-05 433.40 668.41 1271.64
19-Jan-05 547.24 745.00 1037.81
20-Jan-05 496.79 409.65 947.83
21-Jan-05 526.81 641.72 990.32
23-Jan-05 536.18 612.89 1152.91
24-Jan-05 377.51 420.08 864.70
25-Jan-05 357.16 474.82 873.71
26-Jan-05 505.54 715.65 1042.05
28-Jan-05 620.02 690.12 1049.03
29-Jan-05 352.92 522.40 891.35
30-Jan-05 343.86 428.00 862.39
31-Jan-05 340.73 496.48 990.03
1-Feb-05 579.55 646.98 1074.84
3-Feb-05 570.81 548.50 948.83
4-Feb-05 526.41 549.76 934.98
5-Feb-05 384.67 482.36 934.41
6-Feb-05 516.34 585.12 983.51
7-Feb-05 445.71 621.11 1122.62
8-Feb-05 325.52 414.15 889.64
9-Feb-05 305.45 387.29 879.12
10-Feb-05 447.54 478.52 981.19
11-Feb-05 401.21 457.62 930.38
12-Feb-05 294.71 440.94 897.44
13-Feb-05 277.07 384.82 756.79  
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Table B.18 Column 2 Effluent Concentrations 

Date
Toluene

Effluent mg/L
DIPE

Effluent mg/L
Ethanol

Effluent mg/L
12-Jan-05 -36.57 566.37 -1.60
13-Jan-05 338.99 850.31 2.99
14-Jan-05 -32.54 487.41 -4.77
15-Jan-05 -18.92 460.84 11.59
16-Jan-05 -0.35 475.05 30.84
17-Jan-05 -2.79 423.96 133.45
18-Jan-05 27.01 548.00 204.18
19-Jan-05 46.62 549.20 254.70
20-Jan-05 50.43 570.02 264.94
21-Jan-05 76.72 617.95 210.00
23-Jan-05 82.35 512.86 27.65
24-Jan-05 115.94 557.42 4.75
25-Jan-05 146.37 515.62 -6.28
26-Jan-05 133.57 537.35 -6.28
28-Jan-05 177.02 527.41 -6.28
29-Jan-05 157.18 421.22 -6.28
30-Jan-05 170.37 381.14 -6.28
31-Jan-05 187.83 395.68 -6.16
1-Feb-05 163.02 353.79 -6.28
3-Feb-05 201.52 346.56 -6.12
4-Feb-05 213.56 329.98 -6.28
5-Feb-05 188.09 308.83 -6.16
6-Feb-05 191.70 313.05 -6.28
7-Feb-05 176.79 290.22 -6.28
8-Feb-05 163.04 287.85 -6.28
9-Feb-05 160.43 283.24 -6.28
10-Feb-05 157.41 292.15 -6.28
11-Feb-05 142.96 280.32 -6.28
12-Feb-05 139.98 291.96 -6.28
13-Feb-05 148.48 278.43 -6.28  
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Figure B.15 Column 2 Influent Concentration 
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Figure B.16 Column 2 Effluent Concentration 
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Table B.19 Column 3 Influent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Ethanol

Influent mg/L
12-Jan-05 -49.63 -8.50 -6.28
13-Jan-05 -54.02 -8.50 -6.28
14-Jan-05 489.60 575.69 1164.53
15-Jan-05 929.33 607.26 1183.34
16-Jan-05 343.33 550.92 1219.64
17-Jan-05 397.05 515.83 1134.86
18-Jan-05 485.70 634.66 1198.86
19-Jan-05 460.17 514.15 1019.32
20-Jan-05 368.88 450.92 949.51
21-Jan-05 435.17 552.87 876.17
23-Jan-05 454.34 553.90 991.23
24-Jan-05 362.43 525.12 1122.54
25-Jan-05 400.10 496.19 872.46
26-Jan-05 285.67 424.39 962.95
28-Jan-05 338.52 500.81 1131.84
29-Jan-05 261.75 346.38 774.25
30-Jan-05 413.39 387.01 721.19
31-Jan-05 541.61 540.44 862.32
1-Feb-05 272.14 432.09 875.68
3-Feb-05 473.11 497.16 845.08
4-Feb-05 421.90 446.82 936.33
5-Feb-05 478.71 477.12 759.81
6-Feb-05 303.39 342.53 817.55
7-Feb-05 321.79 442.23 869.29
8-Feb-05 437.80 462.07 697.13
9-Feb-05 281.40 372.25 806.84
10-Feb-05 485.37 456.66 635.96
11-Feb-05 243.81 361.97 941.23
12-Feb-05 357.43 257.96 838.02
13-Feb-05 208.19 295.66 810.74  
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Table B.20 Column 3 Effluent Concentrations 

Date
Toluene

Effluent mg/L
DIPE

Effluent mg/L
Ethanol

Effluent mg/L
12-Jan-05 -39.81 -2.37 -6.28
13-Jan-05 -54.02 -2.45 -6.28
14-Jan-05 -19.66 -4.85 -6.28
15-Jan-05 -9.17 -5.14 11.59
16-Jan-05 -54.02 -0.37 132.33
17-Jan-05 -54.02 268.91 1787.97
18-Jan-05 -35.64 494.77 1332.64
19-Jan-05 -49.75 644.65 946.20
20-Jan-05 -49.14 683.54 920.01
21-Jan-05 -52.00 389.84 413.07
23-Jan-05 -50.23 499.38 0.44
24-Jan-05 -43.82 562.21 -6.03
25-Jan-05 -36.05 434.24 -6.28
26-Jan-05 -29.71 559.93 -6.28
28-Jan-05 -3.16 439.82 -6.28
29-Jan-05 15.44 456.63 -6.28
30-Jan-05 37.12 402.43 -3.02
31-Jan-05 54.89 398.92 14.33
1-Feb-05 39.28 402.67 16.47
3-Feb-05 84.28 332.00 -5.69
4-Feb-05 101.87 336.82 -6.10
5-Feb-05 104.32 314.38 -6.28
6-Feb-05 113.37 306.64 -6.28
7-Feb-05 112.74 279.61 -6.28
8-Feb-05 82.06 256.66 -6.28
9-Feb-05 108.71 268.96 -6.28
10-Feb-05 126.60 280.68 -6.16
11-Feb-05 85.67 279.87 -6.28
12-Feb-05 133.93 260.55 -6.28
13-Feb-05 125.99 259.05 -6.28  
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Figure B.17 Column 3 Influent Concentration 
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Figure B.18 Column 3 Effluent Concentration 
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Table B.21 Column 4 Influent and Effluent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Toluene

Effluent mg/L
DIPE

Effluent mg/L
12-Jan-05 121.46 251.84 92.31 1113.39
13-Jan-05 355.85 253.69 126.64 1502.74
14-Jan-05 74.83 109.69 64.97 977.66
15-Jan-05 202.69 290.49 80.27 993.82
16-Jan-05 316.65 336.25 89.96 989.68
17-Jan-05 49.12 204.54 113.89 906.35
18-Jan-05 275.50 361.15 126.70 807.61
19-Jan-05 184.73 392.17 -48.31 -8.50
20-Jan-05 174.17 343.86 185.51 692.37
21-Jan-05 49.89 213.44 231.84 686.20
23-Jan-05 125.50 289.42 265.01 632.27
24-Jan-05 252.80 188.27 244.46 552.56
25-Jan-05 207.50 346.28 322.97 616.10
26-Jan-05 197.72 263.21 345.32 697.35
28-Jan-05 219.34 379.66 305.07 515.05
29-Jan-05 106.08 337.25 309.19 464.97
30-Jan-05 125.28 292.88 349.58 439.34
31-Jan-05 306.50 143.34 351.15 434.64
1-Feb-05 263.91 319.65 364.07 436.52
3-Feb-05 284.69 388.70 335.36 433.03
4-Feb-05 161.90 355.93 348.72 462.78
5-Feb-05 265.75 422.91 319.08 400.06
6-Feb-05 158.91 324.80 310.57 384.42
7-Feb-05 234.27 186.08 357.41 399.93
8-Feb-05 163.61 251.69 326.54 373.98
9-Feb-05 112.77 218.63 309.80 356.80

10-Feb-05 164.43 247.93 297.96 353.43
11-Feb-05 140.41 289.40 312.78 390.68
12-Feb-05 131.35 257.96 350.90 418.18
13-Feb-05 164.01 288.37 294.40 338.78  
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Figure B.19 Column 4 Influent Concentration 
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Figure B.20 Column 4 Effluent Concentration 
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Table B.22 Column 5 Influent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Ethanol

Influent mg/L
12-Jan-05 -50.01 -8.50 -6.28
13-Jan-05 -54.02 -8.50 -6.28
14-Jan-05 82.56 67.75 563.60
15-Jan-05 103.00 101.58 260.13
16-Jan-05 208.01 177.85 165.55
17-Jan-05 89.28 154.82 46.09
18-Jan-05 72.32 143.73 209.40
19-Jan-05 117.66 131.58 272.70
20-Jan-05 184.05 152.05 187.40
21-Jan-05 102.35 143.60 277.09
23-Jan-05 359.36 176.05 304.80
24-Jan-05 88.76 144.63 194.14
25-Jan-05 207.14 190.92 112.78
26-Jan-05 410.76 210.13 298.65
28-Jan-05 119.57 127.31 279.91
29-Jan-05 82.52 114.37 290.46
30-Jan-05 91.84 133.78 271.95
31-Jan-05 236.30 137.76 173.20
1-Feb-05 376.79 277.04 338.85
3-Feb-05 37.69 96.67 198.28
4-Feb-05 65.47 114.67 297.37
5-Feb-05 116.47 130.87 228.76
6-Feb-05 91.51 118.42 263.64
7-Feb-05 204.86 202.63 244.41
8-Feb-05 184.01 163.18 181.54
9-Feb-05 22.84 64.08 114.18
10-Feb-05 94.40 102.41 132.27
11-Feb-05 40.36 80.97 169.38
12-Feb-05 107.11 131.69 171.11
13-Feb-05 50.89 56.99 158.18  
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Table B.23Column 5 Effluent Concentrations 

Date
Toluene

Effluent mg/L
DIPE

Effluent mg/L
Ethanol

Effluent mg/L
12-Jan-05 -21.85 -7.26 -6.28
13-Jan-05 -23.13 -8.50 -6.28
14-Jan-05 -54.02 -7.25 -6.28
15-Jan-05 80.27 993.82 -6.28
16-Jan-05 -34.95 102.87 -0.61
17-Jan-05 -1.43 111.29 -5.23
18-Jan-05 62.41 135.08 -6.28
19-Jan-05 135.35 160.93 -6.28
20-Jan-05 143.86 157.30 -6.28
21-Jan-05 143.68 174.14 -6.28
23-Jan-05 170.25 144.94 -6.28
24-Jan-05 161.55 128.33 -6.28
25-Jan-05 134.86 110.57 -6.28
26-Jan-05 174.16 134.41 -6.28
28-Jan-05 181.80 143.02 -6.28
29-Jan-05 172.80 125.99 -6.28
30-Jan-05 155.28 120.16 -6.28
31-Jan-05 164.81 127.47 -6.28
1-Feb-05 140.16 120.41 -6.28
3-Feb-05 115.34 130.94 -6.28
4-Feb-05 130.35 137.70 -6.28
5-Feb-05 124.63 134.58 -6.28
6-Feb-05 116.78 110.12 -6.28
7-Feb-05 143.26 116.07 -6.28
8-Feb-05 134.09 110.65 -6.28
9-Feb-05 115.70 112.46 -6.28
10-Feb-05 147.90 133.61 -6.28
11-Feb-05 94.53 99.61 -6.28
12-Feb-05 108.50 106.73 -6.28
13-Feb-05 76.60 83.75 -6.28  
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Figure B.21 Column 5 Influent Concentration 
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Figure B.22 Column 5 Effluent Concentration 
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Table B.24 Column 6 Influent and Effluent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Toluene

Effluent mg/L
DIPE

Effluent mg/L
12-Jan-05 36.95 83.56 586.52 246.66
13-Jan-05 100.97 146.61 815.97 296.00
14-Jan-05 71.26 105.76 676.09 184.81
15-Jan-05 155.83 173.04 697.61 214.27
16-Jan-05 174.71 231.47 677.75 219.78
17-Jan-05 87.82 212.38 596.86 200.06
18-Jan-05 49.37 132.32 678.14 217.88
19-Jan-05 80.53 133.86 673.01 275.21
20-Jan-05 89.29 135.01 674.77 286.68
21-Jan-05 125.21 170.58 564.67 213.41
23-Jan-05 150.39 168.98 694.28 267.34
24-Jan-05 256.73 198.21 406.62 178.49
25-Jan-05 123.68 141.73 442.95 148.82
26-Jan-05 59.47 131.22 628.54 231.68
28-Jan-05 76.44 185.74 523.55 197.65
29-Jan-05 133.52 181.68 451.34 190.17
30-Jan-05 89.62 128.18 398.66 191.68
31-Jan-05 53.28 126.56 387.03 231.53
1-Feb-05 73.90 149.97 320.74 201.45
3-Feb-05 207.20 160.87 346.65 207.45
4-Feb-05 61.55 123.88 340.13 217.94
5-Feb-05 221.24 232.38 297.85 178.91
6-Feb-05 128.39 142.65 309.93 198.61
7-Feb-05 62.41 57.60 268.90 190.86
8-Feb-05 240.96 130.29 218.57 130.94
9-Feb-05 38.51 86.35 197.92 117.70
10-Feb-05 100.29 115.16 183.91 117.88
11-Feb-05 79.64 123.09 234.61 117.64
12-Feb-05 122.31 148.84 223.87 130.86
13-Feb-05 84.38 158.62 156.10 126.00  
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Figure B.23 Column 6 Influent Concentration 
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Figure B.24 Column 6 Effluent Concentration 
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Table B.25 Column 7 Influent and Effluent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Toluene

Effluent mg/L
DIPE

Effluent mg/L
12-Jan-05 35.01 127.84 784.31 436.72
13-Jan-05 113.47 245.33 964.67 485.47
14-Jan-05 160.04 164.41 856.17 363.57
15-Jan-05 43.63 90.47 896.37 273.38
16-Jan-05 111.33 197.52 898.88 261.69
17-Jan-05 69.56 197.16 931.75 253.76
18-Jan-05 184.03 231.69 934.71 270.18
19-Jan-05 87.41 110.47 779.76 139.20
20-Jan-05 188.06 224.46 833.40 245.78
21-Jan-05 134.35 219.73 849.47 240.82
23-Jan-05 132.94 139.08 993.62 297.74
24-Jan-05 67.46 115.73 1011.49 317.64
25-Jan-05 119.80 157.47 805.94 222.15
26-Jan-05 678.75 289.22 743.52 203.71
28-Jan-05 200.87 339.17 777.02 233.48
29-Jan-05 228.63 311.32 827.03 264.33
30-Jan-05 28.73 119.92 858.28 283.20
31-Jan-05 242.38 84.68 699.96 226.59
1-Feb-05 203.45 110.73 721.22 185.31
3-Feb-05 163.03 235.13 663.85 150.15
4-Feb-05 207.81 297.68 779.14 197.72
5-Feb-05 186.22 274.15 844.02 230.18
6-Feb-05 68.13 212.65 743.95 224.09
7-Feb-05 188.27 226.38 713.84 223.81
8-Feb-05 205.37 258.34 646.52 226.09
9-Feb-05 29.40 83.08 623.96 208.08
10-Feb-05 196.92 267.10 569.80 190.92
11-Feb-05 293.33 243.08 501.34 187.97
12-Feb-05 122.31 148.84 448.11 185.45
13-Feb-05 149.12 204.67 393.76 197.81  
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Figure B.25 Column 7 Influent Concentration 
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Figure B.26 Column 7 Effluent Concentration 
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Table B.26 Column 8 Influent Concentrations 

Date
Toluene

Influent mg/L
DIPE

Influent mg/L
Ethanol

Influent mg/L
12-Jan-05 160.95 207.64 491.56
13-Jan-05 416.82 316.67 623.33
14-Jan-05 429.09 387.35 471.86
15-Jan-05 254.24 117.31 112.66
16-Jan-05 192.80 196.88 154.24
17-Jan-05 153.41 162.73 170.35
18-Jan-05 83.38 114.57 163.25
19-Jan-05 76.53 82.47 87.25
20-Jan-05 95.62 122.77 146.90
21-Jan-05 149.21 155.34 136.45
23-Jan-05 194.36 185.43 56.91
24-Jan-05 156.59 137.04 227.71
25-Jan-05 108.61 109.92 92.89
26-Jan-05 134.85 159.60 182.95
28-Jan-05 116.39 165.91 270.47
29-Jan-05 83.50 112.18 227.55
30-Jan-05 106.77 143.04 189.38
31-Jan-05 84.27 117.87 164.84
1-Feb-05 500.07 255.31 64.05
3-Feb-05 144.73 165.70 230.06
4-Feb-05 177.92 136.41 55.73
5-Feb-05 143.70 138.30 165.64
6-Feb-05 83.94 110.62 119.50
7-Feb-05 87.60 96.20 185.43
8-Feb-05 115.82 119.83 214.94
9-Feb-05 123.24 95.45 71.82
10-Feb-05 97.66 102.39 33.78
11-Feb-05 108.37 108.00 148.31
12-Feb-05 140.91 96.23 68.91
13-Feb-05 94.83 90.54 79.01  
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Table B.27 Column 8 Effluent Concentrations 

Date
Toluene

Effluent mg/L
DIPE

Effluent mg/L
Ethanol

Effluent mg/L
12-Jan-05 586.83 354.09 190.80
13-Jan-05 578.61 364.49 490.33
14-Jan-05 683.56 469.84 325.99
15-Jan-05 739.89 281.40 183.37
16-Jan-05 660.78 156.17 74.96
17-Jan-05 710.83 136.79 78.22
18-Jan-05 757.05 110.42 81.04
19-Jan-05 790.03 139.20 65.94
20-Jan-05 656.60 120.09 22.02
21-Jan-05 617.28 123.64 36.70
23-Jan-05 464.59 141.00 41.00
24-Jan-05 436.02 148.08 -6.12
25-Jan-05 382.28 113.84 10.86
26-Jan-05 413.71 144.86 4.94
28-Jan-05 343.58 101.00 -6.28
29-Jan-05 330.91 102.61 -6.28
30-Jan-05 365.91 163.71 -6.28
31-Jan-05 240.31 103.32 -6.28
1-Feb-05 241.23 109.62 -6.28
3-Feb-05 214.93 112.44 -6.15
4-Feb-05 247.62 135.12 -6.20
5-Feb-05 230.06 118.20 -6.17
6-Feb-05 238.56 116.98 -6.08
7-Feb-05 221.24 111.78 -6.19
8-Feb-05 209.22 111.60 -6.18
9-Feb-05 173.14 120.01 -6.18
10-Feb-05 166.11 110.75 -6.17
11-Feb-05 190.23 105.53 -6.19
12-Feb-05 203.56 99.81 -6.28
13-Feb-05 152.43 97.45 -6.28  
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Figure B.27 Column 8 Influent Concentration 
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Figure B.28 Column 8 Effluent Concentration 
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Figure B.29 Column 1 Respirometer and External Oxygen Sensor Data 

 
 
 

Column 2 Respirometer and External
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Figure B.30 Column 2 Respirometer and External Oxygen Sensor Data 
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Column 3 Respirometer and External
Oxygen Sensor Data
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Figure B.31 Column 3 Respirometer and External Oxygen Sensor Data 

 
 
 

Column 4 Respirometer and External
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Figure B.32 Column 4 Respirometer and External Oxygen Sensor Data 
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Column 5 Respirometer and External
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Figure B.33 Column 5 Respirometer and External Oxygen Sensor Data 

 
 
 

Column 6 Respirometer and External
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Figure B.34 Column 6 Respirometer and External Oxygen Sensor Data 

 

118 



 

Column 7 Respirometer and External
Oxygen Sensor Data
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Figure B.35 Column 7 Respirometer and External Oxygen Sensor Data 
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Figure B.36 Column 8 Respirometer and External Oxygen Sensor Data 
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Silicon Tube Exposed to Atmosphere Respirometer Data 
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Figure B.37 Silicon Tube Exposed to Atmosphere Respirometer Data, Oxygen Sensor 
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Figure B.38 250 mL Closed Jar Respirometer Data, Oxygen Sensor 
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