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Abstract

This thesis develops and illustrates a methodology for the selection of proba-

bility distributions and distortion functions associated with risk scenarios resulting

from military capability shortfalls. Distorted (or transformed) risk measures are an-

alyzed and applied to account for loss scenarios that may occur with low frequency

but result in catastrophic outcomes. After reviewing the rudimentary concepts of

distortion, four well-known continuous distributions, suitable for modeling risk sce-

narios, are chosen using defined criteria. Based on subject matter expert inputs, a

simple method for assigning exactly one of the four distributions to any risk scenario

is proposed. Four parametric distortion functions from the finance and insurance

literature are then selected and applied to each of the chosen distributions. The

distortion effects are examined analytically, graphically, and empirically, and broad-

based recommendations are recorded as to the instances when one distortion function

might be preferred over others. An end-to-end notional problem – in which a sub-

set of available mitigation measures are selected to counteract a multi-faceted risk

environment – illustrates the means by which the proposed methodology may be

used to affect future systems acquisition through the Capabilities Review and Risk

Assessment (CRRA) process of the United States Air Force.
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SELECTION AND APPLICATION

OF DISTORTED RISK MEASURES

1. Introduction

International politics and conflict have seen a period of tremendous upheaval

since the breakup of the Soviet Union. In that time, the U.S. Air Force (USAF),

a fulcrum of the U.S.’s position as the world’s preeminent military power, has nec-

essarily shifted its focus to include global operations of virtually every conceivable

type, from combat to humanitarian efforts to satellite communications. Recognizing

this wide range of requirements, the USAF has released a planning document en-

titled The U.S. Air Force Transformation Flight Plan [8]. From the Foreword, the

document states that

... new national security realities have forced us to redefine our enemies
as well as our concepts of defense. ... America’s armed forces must
be re-balanced for future operations. What we require is a capability
mix consistent with pre-defined operational concepts and effects-driven
methodology. Future programs must be conceived with this mix in mind.
Systems or capabilities based on arguments that do not consider the
emerging joint character or the asymmetric nature of warfare will find
themselves obsolete, irrelevant, and candidates for elimination.

The desirable systems referred to in this quote take advantage of the rapid advances

in materials and information technologies that greatly increase the systems’ capa-

bilities but also their expense, complexity, and production times. With new global

operations strapping the Department of Defense (DoD) budget, there is little room

for error when making decisions regarding weapons systems acquisitions; the USAF

needs to derive substantial benefit from every weapons system it acquires and oper-

ates.
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1.1 Background

To better manage escalating weapons systems’ cost, complexity, and produc-

tion time, the acquisitions process has also changed. Rather than focusing on all the

things a new weapons system can do, decisions are to be based on filling the gaps

where USAF capability is lacking. To aid in locating the gaps (or shortfalls), the

Air Force has developed six Concepts of Operations (CONOPS). These are simply

the general areas in which the service desires proficiency: Global Mobility, Global

Response, Global Strike, Homeland Security, Nuclear Response, and Space and Com-

mand, Control, Communications, Computers, Intelligence, Surveillance, and Recon-

naissance (C4ISR) [8:61].

In order to precisely assess each CONOPS, the Capabilities Review and
Risk Assessment (CRRA) identifies and analyzes current and future ca-
pabilities, capabilities’ shortfalls, health, risks, and opportunities. The
CRRA is a two-fold process: each CONOPS executes a CRRA within
its effects and capability purview. Then, an integrated CRRA assesses
capabilities and capability shortfalls across all CONOPS. The CONOPS
first identify desired warfighting effects and then develop top-level ca-
pabilities required to generate those effects. The CRRAs then identify
capability gaps, overlaps, and robustness within each top-level capability.
Finally, the Integrated CRRA identifies an acceptable level of risk and
risk mitigation measures within each capability. This assessment helps
the CONOPS Champions articulate any disconnects between required
capabilities and programs [8:47].

The USAF’s list of desired warfighting effects and top-level capabilities is called

the Master Capabilities Library (MCL). The following is a list of the nine top-level

capabilities which the USAF examines via the CRRA process.

1. Surveillance and Reconnaissance. The capability to successfully conduct surveil-

lance and reconnaissance missions to satisfy Commanders’ Priority Intelligence

Requirements (PIRs).

1-2



2. Intelligence. An integrated capability to provide accurate, timely information

and thereby achieve the Predictive Battlespace Awareness (PBA) required to

plan and conduct operations.

3. Command and Control. The exercise of authority and direction by a properly

designated commander over assigned and attached forces in the accomplish-

ment of the mission.

4. Communications. The ability to represent transfer, compute, and assure data

among persons and machines.

5. Force Application. Capability to survive and engage a variety of targets through-

out the battlespace by kinetic (nuclear and non-nuclear) and non-kinetic means.

6. Force Projection. The ability to project and extend national power (military

and non-military) around the globe in a timely manner.

7. Protect. The integrated application of offensive and defensive actions that

detect, assess, predict, warn, deny, respond, and recover, preempt, mitigate,

or negate from threats against or hazards to air and space operations, critical

infrastructure, and assets, and personnel based on an acceptable level of risk.

8. Prepare and Sustain. Activities required to establish operating locations, gen-

erate the mission, support and sustain the mission, and posture responsive

forces.

9. Create the Force. Organize, train, and equip the combat and support capa-

bilities of the Total Force to meet global combatant commander requirements.

Maintain sufficient capacities of created forces. [1]

Each capability is further divided into sub-capabilities to aid in identification of

“gaps, overlaps, and robustness.” The opinions of subject matter experts (SMEs) are

required in assessing where the Air Force currently stands in relation to the desired

capabilities of the MCL (i.e., in assessing the current levels of risk). Evaluating the
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risk reduction alternatives, however, can be done objectively once the SMEs have

contemplated the scenarios and recorded their opinions.

To standardize the method SMEs use within the CRRA to express their opin-

ions, the USAF defined eight severity factors and crossed them in a table with six

consequence categories. The severity factors are “macro-vulnerabilities” which must

be considered during hostilities with another nation or entity:

1. Achievement of (military) objectives

2. Friendly casualties

3. Friendly (military) capabilities

4. Friendly (homeland) infrastructure

5. Collateral damage (over all geographic areas)

6. Enemy escalation, to include weapons of mass destruction (WMD)

7. U.S. national integrity

8. U.S. government function.

The ordered consequence categories include minor, modest, substantial, major, ex-

tensive, and catastrophic; forty-eight separate, verbal definitions are provided in the

table, one for each distinct cross-reference (e.g., a major compromise in U.S. national

integrity) [27].

As described above, a CRRA team is assembled for each of the nine top-level

capabilities. For shortfalls within that specific capability, the team assigns a weight

to all eight of the severity factors, indicating the likelihood of the worst consequence

coming from that particular severity factor. All of the assigned weights are like

probabilities in that they must sum to unity. Assuming, one by one, that each of the

severity factors is realized, a consequence score of 1 (minor) to 6 (catastrophic) is

assigned to each particular severity factor. The severity score for the entire CRRA
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top-level capability is then the sum of the individual severity factor probabilities

times their associated consequence scores.

This description of the CRRA risk analysis process highlights an important

aspect of any mathematical description of risk: it is typically defined as the proba-

bility of a negative consequence in conjunction with the “harshness” (severity) of the

consequence. (This thesis will not consider situations in which there are “positive”

or “desirable” consequences.) This definition is directly in line with the concept of

expected value from probability and statistics; as a matter of fact, mathematical

expected value is a popular risk measure.

Of course, in any subjective assessment of risk there is almost always some

uncertainty. If twenty SMEs were asked to assess the risk involved in the service’s

current position relative to the highest standard defined by any one of the MCL’s

top-level capabilities, there might exist twenty distinct opinions, depending on the

degree of precision in the response scale. The range of opinions of the SMEs could,

therefore, be said to be probabilistically distributed over some (hopefully narrow)

interval, so that the service could have some quantifiable degree of confidence in

the risk mitigation measures it enacts. Reasonably, then, a case can be made for

considering a continuous aspect to risk, as opposed to a discrete one.

1.2 Problem Definition

As previously established, the mathematical formulation for the CRRA in-

volves assigning a single, discrete point value to the risk assessments. Conversely,

Woodward [32], in his examination of the CRRA process, proposed a method for

assigning continuous probability distributions to the opinions of the SMEs, and then

described four different risk measures that can be used to summarize the assigned

distribution. Making some key simplifying assumptions, the risk measure he recom-

mends for the CRRA process is the expected value of a “distorted” risk distribution.
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The selected risk measure is subsequently used to establish the value of potential

risk mitigators (e.g., new weapons systems) in terms of the ranked capability gap

risks, and then to solve a mathematical program which selects a subset of the po-

tential acquisitions. Given a few simplifying assumptions, Woodward [32] presents

a complete, top-to-bottom methodology for the CRRA process.

However, many questions remain unanswered in the risk analysis literature.

First, for the CRRA process and many other similar applications, what comprises a

reasonable set of continuous distributions from which to choose? While the exponen-

tial and Weibull distributions are popular and practical choices for many applications

in the fields of risk analysis and reliability engineering (see, for instance, [9] and [11]),

other distributions should also be considered if one desires a more versatile set of

choices for describing a specific risk scenario. For instance, the exponential and

Weibull distributions can only model a nonnegative random variable; other proba-

bility distributions may offer capabilities which complement those two distributions.

Second, if a distortion function is used to transform the risk distribution and

therefore change the risk measure(s), which distortions should be considered? The

concept of “distorting” (or transforming) a risk distribution is a relatively recent

development originating in the field of insurance and financial portfolio risk analysis.

The general concept of distortion is to aid in those situations where the expected

value of a risk distribution fails to adequately consider the very harsh (but unlikely)

consequences included in the risk distribution’s tail. By reallocating density toward

the tail using a distortion function, the expected value better reflects the higher

severities. The open literature mentions at least eight distortion functions, each

having one, two, or three parameters, but there is no specific guidance provided

for selecting a distortion function or its parameters. Each distortion function can

transform the risk distribution in different ways, depending on the parametric values

selected.
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1.3 Problem Statement and Research Objectives

Clearly, questions remain as to what constitutes an appropriate methodology

for risk analysis over a wide variety of applications, including reliability and industrial

engineering, medicine, finance, and national defense. For instance, which theoretical

risk distributions, other than the exponential and Weibull, should be considered?

What effects do different distortion functions have on those risk distributions that

constitute a versatile set of choices? In those situations where risk analysis involves

measuring deficits in current capability, is one distortion function more effective

than another when applied to a specific distribution? Can a generalized rule base

be established for choosing a proper distribution/distortion combination? Finding

answers to these questions aids in bridging some important gaps in the risk analysis

literature.

The problem of this research is to propose a methodology for selecting appro-

priate probability distributions and distortion functions, including distortion param-

eters, that decision makers can apply in prioritizing risks associated with shortfalls

in capabilities. While the primary backdrop here is the USAF’s CRRA process,

the contribution of this research is applicable to risk analysis in a wide variety of

disciplines.

The thesis has three primary objectives:

1. To propose a concise (but versatile) list of theoretical distributions that can be

used to model a wide variety of risk scenarios;

2. To investigate the interactions between four specified parametric distributions

and four primary distortion functions included in the literature, based on the

manipulation of the distortion parameters over a given set of parameter ranges;

3. To establish a generalized rule base for selecting the “best” combination of

distribution and distortion function for a specific risk scenario.
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1.4 Assumptions and Limitations

One of the primary assumptions of this work is that the mathematical ex-

pectation is the risk measure of choice among those presented in the thesis; other

candidates, for example, would include mean-variance methods and conditional ex-

pectation. Another important assumption is that the decision maker trusts the rec-

ommendations of his SMEs, which has an effect on the amount of distortion applied

to a given distribution.

An important limitation of this thesis is that only four distortion functions

and four probability distributions are considered in modelling risks. While virtually

no limits are placed on the possible values for the distribution parameters (the lone

exception is the case of the Weibull, where the shape parameter is held to 3.5 or

less), the distortion parameters cover only a portion of their full ranges. This is done

so distortions can be compared over regions in which they are shifting approximately

equal amounts of density.

Because expectation is the risk measure used in this thesis, and only four dis-

tortion functions are considered, the fact that analytical expressions for the math-

ematical expectation could only be obtained in a subset of all the cases is also a

significant limitation. Additionally, no simple numerical method could be found for

computing the expectation of the one multi-parameter distortion under study.

1.5 Outline of the Thesis

The next chapter introduces background literature on risk and selected prob-

ability distributions used in risk analysis, and surveys the current landscape in the

theory of distorting transformations and their applications. In Chapter 3, a small-

yet-versatile set of four probability (severity) distributions is selected for use in the

thesis, and a methodology for assigning one probability distribution to each risk sce-

nario (as based on SME-inputs) is described. Four common distortion functions are
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applied to the selected distributions in Chapter 4, their effects within specified pa-

rameter ranges analyzed, and some broad-based recommendations on the appropri-

ateness of each distortion in different circumstances recorded; the recommendations

come from two primary methods of measurement. Chapter 5 applies the distribu-

tion selection methodology and the distortions to a specific notional problem which

could be encountered during the CRRA process. Chapter 6 summarizes the thesis

and suggests future research based on the scope and limitations of the results.
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2. Review of the Literature

In a general sense, most people have a basic idea of what is meant by risk – one

formal definition is “the chance of injury, damage, or loss” [10:1228]. Risk manage-

ment includes many different activities, from identifying to reporting to assessing,

analyzing, and handling risks [14]. Risk assessment and risk analysis, unfortunately,

are sometimes interchanged in the literature. According to the International Council

on Systems Engineering (INCOSE),

Risk assessment is the process of characterizing or quantifying both the
likelihood of occurrence and the severity of the consequences of identified
risks. Risk analysis is the process of evaluating alternatives for handling
the assessed risks [14].

Thus the retrieval of SME opinions can be classified as a risk assessment venture;

the primary focus of this thesis, however, is risk analysis.

2.1 Risk Concepts, Distributions, and Measures

Risk, and the mathematical approaches to quantifying it, have been the subject

of a great number of books and journal articles. Many of these works consider risk

in the fields of finance, health, and reliability engineering. While the goal of this

chapter is not to review the entire field of risk, some background information on risk

concepts, probability distributions, and numerical measures is required.

2.1.1 General Concepts of Risk

Haimes [11:19] defines risk as “a measure of the probability and severity of

adverse effects.” A somewhat similar definition is offered by Modarres et al. [20:18],

whose concept of risk includes three parts: the “scenario of events that lead to hazard

exposure,” the likelihood or probability of the scenario, and “the consequence (or
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evaluation measure) of (the) scenario, e.g., a measure of the degree of damage or

loss.” The difference between these definitions is that Modarres et al. [20] include the

event scenarios which may (or may not) lead up to a negative outcome. Otherwise,

both include the probability of an event occurring and its harshness, given that the

event has occurred.

Correspondingly, Woodward [32:3-1] makes a clear but subtle distinction be-

tween risk and severity. He defines the severity distribution as a conditional probabil-

ity, where it is assumed that a negative consequence of some severity will occur with

certainty. Similarly, the risk distribution includes all of the severity distribution, but

also the possibility of no negative consequence whatsoever (i.e., it is uncertain that

any event will occur). Hence, when the occurrence of an adverse effect is known

with certainty, the risk and severity distributions are equivalent. Haimes [11] is, in

effect, describing the severity distribution, while Modarres et al. [20] are describing

the risk distribution. Note that other names are frequently attached to the severity

and/or risk distributions, such as survivor function, reliability function, decumulative

distribution function (d.d.f.), and complementary cumulative distribution function

(c.c.d.f.).

The severity distribution can be envisioned as a curve which plots each poten-

tial severity of a scenario against the probability of experiencing a severity at least

as harsh, given that some event has occurred (or will occur). Let the non-negative

random variable X be defined as the severity that could be experienced in a scenario

(given that an undesirable outcome occurs), and let x be a realization of that random

variable. If F (x) is the standard cumulative distribution function for X, then the

severity distribution is

S(x) = 1 − F (x) = P (X > x). (2.1)

The distribution S(·) satisfies the following properties:
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1. X is continuous on R+.

2. S(x) ∈ [0, 1] for all x ∈ R+.

3. S(0) = 1.

4. lim
x→∞

S(x) = 0.

5. S(x) is continuously decreasing; i.e., if x, y ∈ R+, and x < y, then S(x) > S(y).

As previously mentioned, the risk distribution, R(x), is also defined as the

probability of experiencing a severity at least as harsh as x, but without the condi-

tional aspect of an assured event occurrence. The risk distribution is more difficult

to work with, since it is a mixed discrete-continuous random variable with a discrete

point mass representing the probability of no adverse effect occurring (see Figure

2.1 for an example of a risk distribution). Due to this difficulty, the thesis will work

primarily with the severity distribution, although the risk distribution will return to

prime importance in Chapter 5.
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Figure 2.1 A sample risk distribution plot, with P (X = 0) = 0.70 and an exponen-
tial tail.
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2.1.2 Risk Distributions

In the study of risk, many different parametric probability distributions are en-

countered. While some are identified with specific disciplines, a few of them are seen

across virtually all fields of study. (Because the theory behind distortion functions

does not support discrete probability distributions, only continuous distributions will

be considered.)

In the field of reliability engineering, probability distributions usually describe

lifetimes for individual components and complete systems of components, and many

textbooks discuss the most common distribution choices. Ebeling [9] uses only four

parametric distributions to model failure times: exponential, Weibull, normal, and

log-normal. Modarres et al. [20] add the gamma distribution to Ebeling’s list; the

gamma is directly related to the exponential distribution, specifically as the sum of

a given number of identically distributed exponential random variables.

The health sciences use risk distributions to model safe/unsafe exposure and

dosage amounts, and to make predictions about an individual’s predisposition to

specific medical conditions. Spread throughout Cox’s [6] text are applications of

the beta, exponential, Gaussian (normal), Weibull, log-normal, and Pareto distri-

butions. Neely [22], primarily concerned with chemical exposure risk, demonstrates

models based on the normal, exponential, and logistic curves. Finally, Hallenbeck’s

[12] work on occupational health mentions the log-normal, log-logistic, and Weibull

distributions.

Financial applications of risk distributions are observed primarily in investment

and portfolio theory and actuarial science, where accurate risk assessments are the

difference between solvency and bankruptcy. Some key continuous distributions in

the actuarial sciences, as per Kaas et al. [16], include the uniform, normal, gamma,

exponential, beta, log-normal, and Pareto.
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Although his text covers primarily reliability engineering, Leemis [18] presents

one further consideration than the previously mentioned authors. In discussing dif-

ferent reliability distributions, his goal is not to simply give examples showing how

specific distributions can be applied, but rather to discuss the range of modelling

capabilities one can achieve using different distributions. Specifically, Leemis [18:94]

makes the point that each reliability distribution has specific shapes it is capable of

modelling in regards to the hazard rate function.

The hazard rate function, defined as h(x) = f(x)/S(x) (i.e., the ratio of the

probability density to the survivor function), is popular in reliability engineering

because it can be interpreted as the expected number of failures per unit time at

time x [18]. In risk applications, the need for the hazard function is not as clear.

According to Leemis [18], a “probabilistic interpretation” of the hazard function is

h(x)∆x = P (x ≤ X ≤ x + ∆x |X ≥ x). (2.2)

As applied to risk analysis, this is the conditional probability of being within some

specified interval of severity [x, x + ∆x], for small values of ∆x. While this defini-

tion has meaning, the hazard function is not usually observed in the risk literature

(especially that related to finance).

The concept of shape is still important in risk analysis, but more so as it

applies to the density function, f(x). For a risk scenario, the SME(s) may be able

to provide both a range (either finite or infinite) and a mode, the most frequently

expected outcome. In the risk case, we would like to have a selection of distributions

available that can reflect symmetric densities and various degrees of skewness in both

directions.

Leemis [18] also sorts distributions by the number of parameters required to

define them. All other things being equal, he implies that a distribution with fewer
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parameters is generally preferable to one with more parameters, since having more

parameters means that more parameters must be statistically estimated.

As a final observation regarding risk distributions, Hershauer and Nabielsky

[13] list nine “situations for knowledge” which reflect an ever-increasing amount of

doubt in the potential distribution of a risk. On one end of this continuum, a very

similar risk scenario is already established and an accurate distribution, reflecting

repeated historical data, has already been assigned to the similar scenario. At the

other end, only the slightest amount of knowledge is known about the scenario

(extreme uncertainty); this case is one step worse than the SMEs knowing only the

range of potential risks. We should therefore select distributions which may reflect

this continuum regarding the amount of information the SMEs might actually be

able to provide about the risk scenario.

2.1.3 Risk Measures

Once a severity (or risk) distribution has been selected, a simple way to charac-

terize the distribution is required so that it can be compared to scenarios presented

by other choices. Many methods seek to quantify (summarize) the entire severity

distribution in a single risk measure. Some of the most popular risk measures will

be reviewed here to set the stage for the principle subject of this thesis, distortion

functions.

Due to its widespread use, a logical place to begin the discussion of risk mea-

sures is the mathematical expectation or expected value, a basic concept found in

any elementary probability and statistics text. For a non-negative continuous ran-

dom variable X with probability density function (p.d.f.) f(x) and survivor function

S(x), the expected value is

E(X) =

∫ ∞

0

x f(x)dx =

∫ ∞

0

S(x)dx. (2.3)
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The problem with expected value as a risk measure is that it serves only as the center

of mass for the distribution, meaning it is generally “dampened out” by the values

with the greatest relative frequency. For instance, a very unlikely yet catastrophic

consequence will likely be more than counterbalanced (even almost totally hidden)

by more mild yet highly likely consequences, thus deceiving the decision maker as to

what truly constitutes a reasonable risk. The other well-known measures of central

tendency, median and mode, also deserve mention. While the mode (the severity with

the highest relative frequency) does have specific applications, it is undesirable as a

stand-alone risk measure because it fully ignores any low-frequency events reflected in

the tails of the distribution. The median (or middle value) of the severity distribution

is generally recommended for use when the given distribution is asymmetric to avoid

the influence of values which exist in the extended tails of a distribution. Thus, of

the three primary measures of central tendency, only the (unconditional) expectation

measure is able to weight the tails of the distribution to any extent; it is therefore

the most appropriate of the three in these cases, despite its flaws.

A more developed option, then, might also include the variance (or standard

deviation) of the distribution. Using the variance or standard deviation in isolation

has the obvious flaw (in general) of not revealing the expectation of the risk, even

though most people would agree that smaller variance around a risk should reduce

risk overall because the outcome is “more certain.” A better method might simply

use the variance as a “tie-breaker” among those severity distributions with equal

or nearly equal expected severities [16:223], but this is a relatively unlikely case

and the definition of “nearly equal” is situation-dependent. (When both the mean

and variance of the risk distribution are equal, the third moment, or “skewness,” of

the distribution is sometimes used as another tie-breaker [7].) As a more sophisti-

cated mean-variance methodology, Sarin and Weber [23] discuss an entire class of

“risk-value models,” the most basic of which mathematically combine variance (the

measure of risk) with expected value (the measure of value) as a single risk measure.
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Many such models from the financial arena incorporate the use of economic utility

functions, which reflect the value of “the next dollar” to the subject’s risk analysis;

as one might expect, more advanced risk measures frequently require such decision

maker input.

Conditional expectation is a risk measure entirely devoted to considering the

events in the tail of a distribution, with the definition of “tail” left open to the

analyst. One conditional risk measure that appears prominently in the financial

literature is Value at Risk (VaR). VaR is not a classic mathematical expectation;

rather, the analyst chooses a value, α ∈ (0, 1), corresponding to the certainty he or

she wishes to have over his or her ability to cover a potential loss, much like α in

statistical hypothesis testing. On a scale of net worth [24], if the (100 × α)% point

in the distribution is to the right of zero, then VaR reflects a “safe” position, while

to the left of zero further assets must be added to consider the position safe. Some

of the main advantages of VaR include its ease of calculation and comprehension; a

significant disadvantage will be discussed shortly.

True conditional expectation, sometimes called “conditional VaR” (CVaR),

is very similar to VaR, but instead of simply marking the risk distribution at the

(100 × α)% point, the mathematical expected value of the entire tail “isolated”

beyond the (100 × α)% mark is considered. This measure, then, is actually more

conservative than VaR.

Mathematical expectation of parametrically distorted survivor functions is the

last of the risk measures to be discussed. Due to their prominence in the thesis,

distortion functions will be addressed more completely in the following section.

2.2 Parametric Distortion Functions

As a specific mathematical approach to measuring financial risk, there is a

relatively small amount of work in parametric distortion functions (although this is
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an active area of research). Most papers either describe the mathematics behind the

science, show specific applications, or compare distortion to other financial risk mea-

sures. The focus of this section is to present the rudimentary concepts of distortion

functions, with a slight emphasis on literature that may aid in selecting a distortion

function or specific distortion parameters.

A function g is a distortion function if it satisfies the following [31:338]:

1. g : [0, 1] → [0, 1] is an increasing function,

2. g(0) = 0, and

3. lim
u→1

g(u) = 1.

Since any function g which meets the above criteria is a distortion function, there are

theoretically an infinite number of them. However, Wang [30] specifically works with

only a few, and all are directly related to a single transform known as the gamma-beta

distortion. The most extensive listing of distortion functions in the literature comes

from McLeish and Reesor [19], who formally define eight specific transformations:

gamma-beta, beta, proportional hazard, dual power, gamma, exponential, normal,

and Esscher.

Since the distributions under consideration in the thesis are assumed to be

parametric functions themselves, the combination of a distortion function g and

its subject c.c.d.f. S(x) is a composition of functions, also resulting in a survivor

function denoted by

g(S(x)) ≡ (g ◦ S)(x). (2.4)

A distortion function (transformation) pushes risk density toward the tail of the

probability distribution under consideration. In this way, rather than “cutting off” a

portion of the distribution to emphasize the tail (as per conditional expectation), the

entire distribution is re-shaped so the standard mathematical expectation can still

be employed. A wide variety of re-shaping effects and degrees of effect are possible.
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2.2.1 Coherency

In the literature, distortion is closely tied to the concept of “coherency,” out-

lined by Artzner et al. in [2] and further developed in [3]. The impetus behind

coherency stems from the popularity (in the financial fields) of the VaR risk mea-

surement (previously described). Artzner et al. [2], in essence, noticed that in

calculating VaR, if a firm makes k investments that are below the (100 × α)% risk

threshold, the total amount invested is still subject to Bonferroni’s inequality, i.e.,

the overall risk involved is greater than the firm’s stated risk limit. In this situation,

a large firm would be required to always have a tremendous amount of cash on hand

to cover potential losses, while k individual firms, each holding one of the invest-

ments, would not be required to hold any cash at all. From this scenario, Artzner et

al. [2:69] establish four relations that a coherent risk measure must possess, with co-

herent meaning that the risk measure accurately portrays the way financial markets

operate. (In the following statements, ρ is a risk measure, X and Y are non-negative

random variables of risk severity, n is a number, and t is a positive number.)

i. Sub-additivity. ρ(X + Y ) ≤ ρ(X) + ρ(Y )

ii. Homogeneity. ρ(t · X) = t · ρ(X)

iii. Monotonicity. ρ(X) ≥ ρ(Y ), if X ≤ Y

iv. Risk-free condition. ρ(X + r · n) = ρ(X) − n

The four properties listed above establish necessary properties for measuring risk

[4:576]. Property (i), as alluded to in the VaR discussion, assures that the sum of

the individual risk measures serves as an upper bound for the risk measure of the

sum [2:69]. Convexity of the risk measure comes from the combination of (i) and

(ii). Property (iv) allows a financial institution to reduce risk by investing n dollars

at r%, risk-free. Property (iii) is a direct result of the characteristics of the c.c.d.f.

Once established that a risk measure ρg is coherent, McLeish and Reesor [19:138]
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prove that the associated distortion function g is concave – in fact, either one implies

the other (mathematically, concavity ⇔ coherency).

2.2.2 Gamma-Beta Family of Distortions

The distortions that are most frequently mentioned in the literature are the

gamma-beta distortion and its close relatives, all of which are included in McLeish

and Reesor [19]. The gamma-beta distortion is defined as

gGB(u) =

∫ u

0

Kta−1(1 − t)b−1 exp(−t/c)dt, (2.5)

where

K−1 =

∫ 1

0

ta−1(1 − t)b−1 exp(−t/c)dt (2.6)

and

u ≡ S(x). (2.7)

The gamma-beta does not appear to be used frequently in practice; rather it serves

as a baseline for distortions with fewer parameters.

Of the six listed here, the gamma-beta is the only three-parameter distortion

function having parameters a, b, and c. A very important item to note is that any

non-negative values may be selected for a, b, and c, but McLeish and Reesor [19]

show that using ranges of 0 ≤ a ≤ 1, b ≥ 1, and c ≥ 0 are sufficient to ensure

concavity – and coherency – of the distorted risk measure.

The beta distortion,

gβ(u) =

∫ u

0

1

β(a, b)
ta−1(1 − t)b−1dt (2.8)

where

K−1 = β(a, b) =
Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

ta−1(1 − t)b−1dt, (2.9)
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is the gamma-beta distortion when c → ∞. With c held constant, the beta is a

two-parameter distribution, and Wirch and Hardy [31:342] note that the parameters

a and b can be used to manipulate both the initial gradient and the convergence rate

of the survivor function.

The proportional hazards (PH) distortion is widely used in the literature, and

is derived from the beta distortion (and naturally the gamma-beta) by holding b = 1

and allowing c → ∞. Thus

gPH(u) = ua, (2.10)

and the result is a very simple distortion to work with in practice. While the similar-

ity is not obvious, a multivariate hazard model of the same name is used frequently

in the biological sciences.

The dual power (DP) distortion is the other distortion which stems from the

beta. In this case, a = 1 and c → ∞, and with the single parameter b = κ free to

vary the resulting distortion is

gDP (u) = 1 − (1 − u))κ. (2.11)

Within the literature, this distortion has the most clear interpretation: Wirch and

Hardy [31:340] state that for an integer value of κ, the risk measure equates to “the

expected value of the maximum of a sample of κ observations of X.”

The gamma distortion, defined as

gγ(u) =

∫ u

0

Kta−1 exp(−t/c)dt (2.12)

where

K−1 =

∫ 1

0

ta−1 exp(−t/c)dt, (2.13)

is another two-parameter transformation. In this case the fixed value is b = 1,

allowing a and c to be manipulated.
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Finally, the exponential (EX) distortion also has but a single parameter:

gEX(u) =
1 − e−u/c

1 − e−1/c
. (2.14)

This distortion is the recognizable exponential CDF restricted to [0, 1].

There is almost no published literature available regarding the selection of a

distortion function or its associated parameter values for a given set of circumstances.

Other than their specific interpretation of κ, Wirch and Hardy [31:342] come closest,

making two general observations regarding transformation parameters. First, they

associate the parameters with a decision maker’s risk aversion level toward risk in

the far right tail of the distribution. Second, they state an opinion that the selection

of distortion parameters is mostly a “political” decision [31:347].

2.3 Summary

The chapter has defined general concepts of risk and differentiated between risk

and severity. Various disciplines were mentioned in which risk plays a prominent role,

and the common distributions observed in those disciplines were listed as a prelude

to Chapter 3. Afterwards, some popular risk measures were examined, including

expectation, mean-variance models, conditional expectation (including VaR from

financial circles), and finally parametric distortion functions. Due to the leading role

they play in the thesis, distortions were subsequently examined in further detail,

and the apparent lack of information regarding distortion function and parameter

selection noted. Coherency was also discussed, especially in terms of how it affects

the selection of distortion parameters.
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3. Assigning Distributions to Risk Scenarios

The primary objectives of this thesis are to propose a concise list of theoretical

distributions that can be used to model a wide variety of risk scenarios; conduct a

formal investigation of the effects of distortion functions on probability distributions

(based on the manipulation of the distortion parameters); and establish generalized

guidelines for selecting specific combinations of distortion and distribution. This

chapter will address the first of those objectives by discussing the criteria used in

selecting a set of four distributions suitable for risk analysis and then providing a

simple method an analyst might employ in assigning one of those distributions (and

specific parameter values) to SME-provided data.

3.1 Selection of Severity Distributions

Some basic considerations can aid in selecting a set of distributions to use

in modelling risk scenarios. In addition to those criteria provided in Chapter 2,

it should be recognized that a risk scenario may or may not cover the full range

of potential severity, and thus both bounded (finite) and unbounded (infinite) dis-

tributions should be included. Combining these criteria, the selected distributions

should:

1. represent useful distributions from a variety of risk disciplines, including relia-

bility engineering (RE), health sciences (HS), and finance and insurance (FI);

2. cover a range of p.d.f./c.c.d.f. shapes;

3. cover both finite and infinite risk/severity ranges of the random variable; and

4. allow for parameter choices that correspond to information that is likely to be

available from an SME, while simultaneously limiting the number of parameters

that must be estimated.
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Table 3.1 summarizes the distributions initially considered as candidates for the

parametric analysis; all of the distributions mentioned in Chapter 2 are included here,

and a few additional ones have been added. The first column lists the distribution

name and parameters [15], the second column the corresponding p.d.f., and the

third the disciplines where the distribution is most frequently observed (as per the

abbreviations in consideration 1).

While the table presents a set of distributions to consider, the problem with

including all of the listed distributions is simply one of combinatorics. If all 11 of

the distributions and all six of the gamma-beta distortion functions were examined,

there would be 66 possible combinations even before varying the individual distor-

tion parameters. When including distortion parameter levels, if three levels were

chosen for each, we would have in effect 54 different distortions (using the number

of parameters for each of the gamma-beta family), and 11 × 54 = 594 individual

combinations. Thus, the number of distributions under examination was held to

four, including one single-parameter distribution, two dual-parameter distributions,

and one three-parameter distribution. The selected distributions satisfy the criteria

set forth by considerations 1 through 4 (particularly in terms of p.d.f. shapes and

ranges) and are now described in greater detail.
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Table 3.1 Common continuous distributions.

Distribution (parameters) Probability Density Fct. (p.d.f.) Disciplines

Beta (α, β) fX(x) =
[

Γ(α+β)
Γ(α)Γ(β)

]

xα−1(1 − x)β−1 HS, FI

Exponential (λ) fX(x) = λe−λx RE, HS, FI

Gamma (λ, κ) fX(x) = λ(λx)κ−1e−λx

Γ(κ) RE, FI

Logistic (m, b) fX(x) = e−(x−m)/b

b[1+e−(x−m)/b]2
HS

Log-logistic (λ, κ) fX(x) = λκ(λx)κ−1

[1+(λx)κ]2 HS

Log-normal (µ, σ) fX(x) = 1
σx

√

2π
e

−(log x−µ)2

2σ2 RE, HS, FI

Normal (µ, σ) fX(x) = 1
σ
√

2π
e−

1
2σ2 (x−µ)2 RE, HS, FI

Pareto (λ, κ) fX(x) = κλκ

xκ+1 HS, FI

Triangular (θ1, θ2,m) fX(x) =











2(x−θ1)
(θ2−θ1)(m−θ1)

if θ1 ≤ x ≤ m
2(θ2−x)

(θ2−θ1)(θ2−m) if m < x ≤ θ2

0 otherwise

FI

Uniform (θ1, θ2) fX(x) = 1
θ2−θ1

FI

Weibull (β, θ) fX(x) = β
θ (x

θ )β−1e−(x/θ)β

RE, HS
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The exponential distribution is a continuously decreasing density function char-

acterized by a single parameter, λ. This distribution is generally used in lifetime

modelling applications, especially involving electronic components, but is one of the

most commonly encountered distributions across all disciplines. The exponential is

also the only continuous distribution with the memoryless property, and the only

single-parameter distribution among those mentioned in the table. The single pa-

rameter λ can be used to directly compute both the mean (µ = 1/λ) and variance

(σ2 = 1/λ2) of the distribution. If the SME only knows that some severity will occur

and can provide an estimated mean severity, the exponential is likely the modelling

distribution of choice. As such a core distribution to the field of probability, the

exponential is a logical selection as one of the four distributions for the study. See

Figure 3.1 for an example of an exponential density function.
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Figure 3.1 Example exponential probability density function (p.d.f.), λ = 3.5.

The Weibull distribution can take a variety of shapes, from exponential to

approximately normal, and thus can be used to model a range of risk/severity dis-

tribution shapes. The Weibull displays this versatility through two parameters, β
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and θ. The β parameter is typically called the shape parameter, since it determines

whether the distribution more closely resembles an exponential (β = 1) or (possibly

right-skewed) normal distribution (1 < β ≤ 3.5); θ is the scale parameter, which

influences both the distribution’s mean and dispersion. Like the exponential, the

Weibull is encountered in many fields (including the health sciences), but perhaps

most frequently in reliability engineering, where it sometimes models lifetimes of

mechanical components. As Johnson et al. [15] state that the Weibull “is undeni-

ably the (continuous) distribution that has received maximum attention during the

past (32) years,” it should be included for study. See Figure 3.2 for an example of a

Weibull density function with specific shape and scale parameters.
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Figure 3.2 Example Weibull probability density function (p.d.f.), β = 2, θ = 2.

The uniform distribution is most frequently observed in the generation of ran-

dom numbers, but it also has applications in finance and insurance, life testing, and

traffic flow problems, among others [15]. The uniform is another two-parameter

distribution, where θ1 and θ2 define the range of possible values for the uniformly-

defined random variable to assume. Within the defined range, all values have equal
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likelihood of occurrence. The Weibull and exponential distributions differ from the

uniform in that the random variables they describe can take on any value x ≥ 0,

whereas the uniform sets limits on both the upper and lower values the random

variable can assume, θ1 ≤ x ≤ θ2. Thus the uniform distribution is appropriate

for modelling risks/severities where definite upper and lower bounds on severity are

known, and especially in the case where no other information except the bounds is

available. For these reasons, the uniform is a reasonable selection. See Figure 3.3

for an example of a uniform density function.
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Figure 3.3 Example uniform probability density function (p.d.f.), θ1 = 1, θ2 = 7.

Finally, the triangular distribution offers many of the same advantages of the

uniform and is used in a similar set of disciplines, but includes additional information.

The triangular distribution has parameters θ1, θ2, and m, where θ1 and θ2 are defined

as in the uniform distribution, and m is the most frequently observed occurrence

(θ1 ≤ m ≤ θ2), or the mode. Like the uniform, the triangular is easy to use and

explain; it presents a useful option in risk analysis and will be the final distribution

selected. See Figure 3.4 for an example of a triangular probability density function.
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Figure 3.4 Example triangular probability density function (p.d.f.), θ1 = 1, θ2 = 7,
m = 4.
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3.2 Risk Scales

With a reasonable set of severity distribution choices selected, the analyst’s

next goal is to assign one of them to SME-provided data and specify its distribution

parameters. Before that task can begin, however, a brief discussion of risk scales

is required. The risk scale provides a context by which the SMEs can convey their

opinions.

A natural scale people use in rankings is “an integer from 1 to 10.” This, or

any other linear scale, can serve as a starting point for discussion. One problem with

“1 to 10” as a severity scale is the implication that, for instance, two events which

rate a 5 might be worth a single one which rates a 10, which may or may not be

true. This problem can be overcome by mapping the “1 to 10” score to another scale

using a function. If x represents the “1 to 10” score and y is the space of “correct”

severity weighting, some typical functions that might be used to map x → y include

y = x2 or y =
√

x, depending on how the linear inaccuracy of the scale should be

corrected. A second problem is that the discrete scale does not allow a continuous

score. By releasing this restriction to allow, for example, any continuous score in the

interval [0,10], the ability to draw small distinctions between severities is improved.

Of course, the concept of “limiting” the greatest consequence to a ranking of 10 is

artificial; one can allow risks to be scored on a [0,∞) scale while only describing

risks within the context of [0,10]. In this fashion, if some negative outcome needs to

be called a “14.7,” the freedom exists to do so.

For the remainder of this chapter and the next, a continuous version of the

CRRA risk scale will be used as a basis for examples. This scale is fully enumerated

in Table 3.2.
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Table 3.2 Continuous version of CRRA severity scale.

Severity Factor Minor Modest Substantial Major Extensive Catastrophic

CRRA Range [0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6+)

3.3 Fitting Severity Distributions to Expert Data

With a risk context in-hand, assigning a severity distribution to a specific risk

scenario requires several considerations from the SMEs. First, we would like to

know the severity limits on the consequences related to the risk scenario. In many

instances, any severity from minor to catastrophic might be observed, i.e., on the

range [0,∞). Conversely, however, the SMEs might believe that only a segment of

the entire severity range could be realized, say [0.5,3] on the continuous scale.

Second, within the established limits of severity that might be observed, we

would like to know the most likely categorization of severity that might be experi-

enced because of this vulnerability (i.e., the mode). This is critical because knowing

the mode affects the overall symmetry or skewness of the distribution, and not all

distributions can reflect both types of skew. As a relevant example, the Weibull

distribution can reflect a mode of zero if β = 1, and as β is increased the density be-

comes approximately symmetric. However, the Weibull could not be used to reflect

a density where the mode is “toward” the right, i.e., decidedly left-skewed.

Third, we would like to know if the mean of the distribution is available. In

deciding to produce this value, the SMEs must keep in mind that in a left-skewed

distribution, the mean will sit to the left of the mode, and vice versa for a right-

skewed distribution.

Using the selected four distributions, then, a simple method can be devised for

determining which distribution to assign to each risk scenario to model its (potential)
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severity. The responsible SME (or team) for each vulnerability can be asked three

specific questions:

1. What is the range of severities that might be encountered in this risk scenario?

2. Within the specified range, what is the most likely severity or categorization

of severity that might be experienced (i.e., the mode)?

3. Can an expected value be specified?

Where numerical answers are provided, SMEs should be encouraged to provide ac-

curate, decimal responses whenever possible.

These three questions probe for ever-increasing amounts of detail, and only

the first question must be answered (since a uniform distribution can be assigned

at that point). The other questions only increase the analyst’s ability to narrow

down a more “detailed” distribution. Once the first question, at the least, has been

answered, the decision tree shown in Figure 3.5 may be used to select one of the four

distributions under discussion.
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SELECTION

QUESTION #2

Is mode provided?

SELECTION

SELECTION

SELECTION

…includes catastrophic?

ELIMINATION

SELECTION

QUESTION #2

Is mode provided?

SELECTION

QUESTION #1

Range includes minor?

(Can be numerical ELIMINATION

or categorical)

SELECTION

QUESTION #2

Is mode provided?

SELECTION

SME Range

YES

NO

Expo & Weib elim

YES

NO

YES, zero (nil)

Mode not provided

YES, major to catastrophic

Exponential

Triangular

Uniform

YES, minor to substantial

Weibull

YES

NO

Uniform

Triangular

Expo & Weib elim

YES

NO

Uniform

Triangular

Figure 3.5 Decision tree used to isolate specific severity distribution, continuous
CRRA risk scale.
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As an example, suppose that the SME or expert team provides the following

information: the range of possible categories includes substantial to extensive, and

the most likely outcome is extensive. No information about the mean is provided,

and no numerical data can be agreed upon among the SMEs. Entering the tree, since

the category range does not include minor, the exponential and Weibull distributions

are eliminated because they do contain zero, or minor, severity. Since the mode is

known, a triangular distribution can be fit rather than a uniform.

3.4 Determining the Distribution Parameters

Once the distribution is decided upon, its parameters still need to be estab-

lished. The discussion of distribution parameter choices will proceed from the easier

cases (uniform and triangular) to the only slightly more difficult (exponential and

Weibull) in the following discussion.

3.4.1 Uniform and Triangular Parameter Selections

The SMEs can provide either categorical or numerical data in the case of the

uniform and triangular distributions. If numerical data is provided, then that data

may be used directly. If the SMEs provide categorical data, such as a range of modest

to substantial, then the numerical edges of the associated severity “bins” can be used

as the distribution parameters. In this case, the bottom of the modest scale is 1, and

the top of the substantial scale is 3, so if a uniform distribution is fit to the SME

inputs, the random variable X would be distributed uniformly on (1,3).

Now suppose the mode is also provided and is also predicted to be substantial.

Because no information is provided about where in the substantial range the mode

will fall, the midpoint of the range is the most reasonable choice. Thus if a triangular

distribution can be fit, the distribution is tria(1,3,2.5).
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3.4.2 Exponential and Weibull Parameter Selections

The calculations for the “unbounded” exponential and Weibull distributions

are only slightly more involved than the bounded. To begin with the exponential,

we know already that the mode is zero, so attention falls on the mean. To fit

an exponential distribution, information about the mean is essential, because the

exponential is a one-parameter distribution and that one parameter is the reciprocal

of the mean. If only categorical information about the mean is provided, then,

like the uniform and triangular distributions, the midpoint of the category can be

substituted.

The Weibull distribution is the most difficult case, since two parameters must

be specified, β and θ. Suppose first that the mode is provided only in categorical

terms, and let us assume, for example, that the category is modest (recall that minor

(above nil) through substantial categorizations of the mode result in the selection

of the Weibull). On the continuous version of the CRRA scale, we might call the

mode 1.5. How can both of the Weibull parameters be estimated from this single

piece of information? In various references (such as [9]), the shape parameter β is

shown to make the Weibull represent a range of shapes from exponential (β = 1) to

essentially normal (β = 3.5). Beside this range of [1,3.5], we can align the left-half

of the continuous CRRA scale (see Figure 3.6) and, assuming linear rates of change

over each scale, arrive at a β value of 2.25 for this example.

"Normal"
2.25

            Beta scale

1.5 30

Exponential (symmetric)

1 3.5

            CRRA scale

Figure 3.6 Mapping CRRA mode to β parameter scale.
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Now armed with β and the mode of the distribution, [17:303] states that the

mode of the Weibull distribution is

modeWeibull =











θ
(

β−1
β

)1/β

if β ≥ 1

0 if β < 1.

(3.1)

The correct value of θ is obtained by using the β ≥ 1 expression for the mode.

In other words, set the expression equal to the SME-provided value for the mode,

substitute the known value of β into the equation, and solve for θ.

Continuing from the previous example, suppose that β = 2.25 and the mode

is 1.5. Then we would have

θ

(

2.25 − 1

2.25

)1/2.25

= 1.5 ⇒ θ ≈ 1.9478.

3.5 Summary

This chapter has suggested four specific criteria a small-yet-versatile set of

severity distributions should satisfy. Four suitable probability distributions were

then subjectively selected in line with those criteria, namely the exponential, Weibull,

triangular, and uniform. Some considerations regarding what constitutes an effective

risk scale followed, establishing a methodology an analyst can use to assign one of

the four selected distributions to SME inputs. The chapter closed with a discussion

on how distribution parameters can be determined from relatively sketchy SME

“consequence” data. Given the vast number of considerations that must go into

any risk scenario assessment, sketchy SME data may be all that can be reasonably

expected.

3-14



4. Parametric Analysis of Distortion Functions

In Chapter 3, we established a “small-yet-versatile” set of severity distributions

that may be used for risk analysis. The goal of this chapter is to investigate how

four members of the gamma-beta family of distortion functions can affect those

probability distributions (based on the manipulation of the distortion parameters)

and establish generalized guidelines for selecting specific combinations of distortion

and distribution.

4.1 Selection of Distortion Functions

To proceed with distortion function analysis, four of the six distortion functions

from the gamma-beta family were selected to combine with the four probability dis-

tributions of Chapter 3. In the literature, the proportional hazard, dual power, and

beta distortions are frequently examined. However, those three distortions utilize

the a and b parameters only; to better observe the effect of the c parameter, the beta

was excluded among those three in favor of the exponential distortion (which uses

c alone). (Selecting the three, single-parameter distributions is also advantageous

in that expectations can be numerically computed in all cases by using non-integral

forms of the distortions – more will follow on this point later.) While the gamma-beta

distortion is not usually mentioned in the literature in terms of practical application,

it does combine the effects of all three parameters at once. Thus the final distor-

tion function selections are the proportional hazard, dual power, exponential, and

gamma-beta distortions.

As a brief review of all four of the selected distortions, the effect of distorting

the survivor function of the severity distribution is described in Table 4.1.
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Table 4.1 General distortion effects.

Distortion Parameter (g ◦ S)(x)

Proportional Hazard (gPH) 0 < a ≤ 1 Sa(x)

Dual Power (gDP ) b ≥ 1 1 − (1 − S(x))b

Exponential (gEX) 0 < c < ∞ 1−exp(−S(x)/c)
1−exp(−1/c)

Gamma-Beta (gGB) a, b, c (as above)
∫ S(x)
0 ta−1(1−t)b−1e−t/c dt
∫ 1
0 ta−1(1−t)b−1e−t/c dt

4.2 Selection of Distribution Parameters for Experimentation

With four distributions, four distortion functions, and as many as three param-

eters being varied in the case of the gamma-beta distortion, the parameters of the

selected probability distributions were held constant. While thus allowing the focus

to fall on the impact of the distortion parameters, the potential drawback was that

any interactions between the distortion parameters and the distribution parameters

were not considered. The exponential distribution’s single parameter was arbitrarily

set to 3.5. Since the exponential was part of the study, the Weibull distribution

served the experiment best by not mimicking the exponential, i.e., by not setting

the shape parameter β = 1; some typical parameter values from [9] were β = 2 and

θ = 2 (which is actually a Rayleigh distribution, a specific case of the Weibull). The

uniform distribution’s two parameters were arbitrarily set to θ1 = 1 and θ2 = 7.

Since the triangular has upper and lower limits like the uniform, the same limits

were used, and the mode of m = 4 was arbitrarily selected to reflect a symmetric

triangular distribution.
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4.3 Selection of Distortion Parameters for Experimentation

Wherever possible, the resulting change in mathematical expectation was the

desired measure of distortion. In some cases the expectations could not be computed

explicitly and numerical methods were therefore employed. However, in the case

of the gamma-beta distortion, the expectation was incalculable even by numerical

methods, so the establishment of a different standard by which to measure the effects

of distortion was required. This new measure proved useful outside the gamma-beta

distortion context, however, and influenced the choice of distortion parameters.

The selected performance measure uses the median of the distribution, specifi-

cally the point at which the undistorted distribution is partitioned with equal density

on either side. Distortion was then applied, and the amount of density flow from

the left side of the undistorted median value to the right was measured; the formula

used for this measure is

Rg =
(g ◦ S)(ψ)

S(ψ)
, (4.1)

where

ψ ≡ inf{x : S(x) = 0.5}, (4.2)

S(·) is the survivor function, and (g ◦ S)(·) is the distorted survivor function. Re-

calling that all of the distortion functions have the effect of shifting density toward

the right, then 1 ≤ Rg ≤ 2, since by this ratio measurement all of the density on

the left of the median could theoretically be shifted to the right of the median, but

no matter how far to the right the displaced density is pushed the ratio only reflects

that it has been pushed beyond the fixed undistorted median point. If Rg = 1, then

no distortion is present. Table 4.2 shows the undistorted medians for the selected

distributions and their respective parameters.

Because of this “region of sensitivity” of the Rg measure, the values for the

distortion parameters were selected with care. The initial selection of parameters,

based solely on what appeared to be reasonable values, proved to be too rich; many of
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Table 4.2 Undistorted medians for selected distributions.

Distribution Parameter(s) Selected Value(s) Median

Exponential λ 3.5 0.198042

β 2

Weibull

θ 2

1.6666̄

θ1 1

Triangular m 4 4

θ2 7

θ1 1

Uniform

θ2 7

4

the Rg values observed were close to two, meaning the region of sensitivity where the

effects of changes in the distortion parameters could be observed had been exceeded.

Compounding that problem, a 3k-factorial design had been envisioned to study the

effects of each parameter (a, b, and c) in the gamma-beta distortion, and within

the factorial design each of the involved parameters had to have essentially equal

power over the Rg measure so that the interaction effects could be analyzed in a

“fair” manner. Finally, due to the face-centered cube preferred for the experimental

design, the three values of each parameter had to all be equally spaced. After lengthy

experimentation, Table 4.3 shows the distortion parameter values that were selected.

(In reviewing the table, recall that a = 1, b = 1, and c → ∞ result in no distortion
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being applied, and note that distortion increases as a and c are decreased, while the

opposite is true for b.)

Table 4.3 Selected distortion parameter treatments.

Distortion (Parameter) Selected Value(s) Rg (% density shift)

High 0.9 1.07 (7%)

Proportional Hazard (a) Mid 0.75 1.19 (19%)

Low 0.6 1.32 (32%)

Low 1.1 1.07 (7%)

Dual Power (b) Mid 1.3 1.19 (19%)

High 1.5 1.29 (29%)

High 3.6 1.07 (7%)

Exponential (c) Mid 2.2 1.11 (11%)

Low 0.8 1.30 (30%)

4.4 Response Surface Analysis of Gamma-Beta Distortion

A face-centered cube (FCC) was the design choice for response surface analysis

of the gamma-beta distortion. With three levels selected for each of the three param-

eters (a, b, and c) of the gamma-beta, a total of 33 = 27 design points were included

in the experiment, with the limits taken from Table 4.3. Although the responses are

entirely deterministic, the software tool (Design Expert 6.0) allowed for the use of
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five additional center runs, and these were included in the experiment for a total of

32 observations. (Note that in the FCC, however, no additional benefit is derived

after the second center run [21].)

In employing a second-order model including the first-order interactions (i.e.,

A, B, C, A2, B2, C2, AB, AC, and BC, where each distortion parameter is repre-

sented by its corresponding capital letter), the results were nearly identical across all

four of the distributions included for analysis (see Figures 4.1 through 4.4). The A2

term was the only insignificant effect in every case, with A, B, C, and C2 accounting

for about 99% of the error sum of squares throughout. There were no diagnostics

required for any of the four models because none of the basic assumptions of residual

normality, constant error variance, or independence between observations appeared

to have been violated. The means used to test the assumptions included the normal

probability plots of residuals, residuals versus predicted plots, residuals versus run

order plots, residuals versus individual factors plots, Cook’s distances, and predicted

versus actuals plots.
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Figure 4.1 Ordered sums of squares associated with estimated effects of Rg for
gamma-beta distortion, exponential(3.5) distribution.
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Figure 4.2 Ordered sums of squares associated with estimated effects of Rg for
gamma-beta distortion, Weibull(2,2) distribution.
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Figure 4.3 Ordered sums of squares associated with estimated effects of Rg for
gamma-beta distortion, triangular(1,7,4) distribution.
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Figure 4.4 Ordered sums of squares associated with estimated effects of Rg for
gamma-beta distortion, uniform(1,7) distribution.
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Using eight effects in each model (excluding only A2), for every distribution the

coefficient of multiple determination, R2, was equal to 0.9991 and the R2
adj (which

takes into account the number of effects included in the model) was 0.99879. The

fact that the R2 and R2
adj values are so similar, and so close to unity, indicates that

insignificant terms have been correctly excluded and that the model almost entirely

accounts for the variability in the design region. Hence, these models would be very

useful to the decision maker in navigating the design region. The specific quadratic

models produced are included in Table 4.4.

Table 4.4 Summary of model equations for selected distributions, gamma-beta dis-
tortion, in terms of actual factors.

Distribution Final Predictor Equation

R̂g = 1.740 − 1.031A + 0.593B − 0.210C − 0.200B2

Exponential
+ 0.028C2 + 0.344AB − 0.042AC + 0.044BC

R̂g = 1.742 − 1.033A + 0.594B − 0.211C − 0.200B2

Weibull
+ 0.028C2 + 0.344AB − 0.042AC + 0.044BC

R̂g = 1.740 − 1.031A + 0.593B − 0.211C − 0.200B2

Triangular
+ 0.028C2 + 0.344AB − 0.042AC + 0.044BC

R̂g = 1.740 − 1.031A + 0.593B − 0.211C − 0.200B2

Uniform
+0.028C2 + 0.344AB − 0.042AC + 0.044BC
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Figure 4.5 shows a method of representing the equations in Table 4.4 graph-

ically. To create and use a figure such as this, the decision maker must decide to

“discretize” one of the variable parameters. In the figure the b parameter has been

fixed at two distinct values, 1.1 and 1.5. The decision maker first chooses one of

the two values of b; if, in this case, 1.5 is chosen, then the solid line figure is used,

and if 1.1 is chosen the dotted line figure is used. From that entry point, the user

locates the continuous values for the a and c parameters within the applicable b

“framework,” then moves horizontally left and uses the vertical axis to establish the

value of Rg. As an example, if b = 1.5 is selected (solid lines), then also choosing

a = 0.6 and c = 1.2 yields Rg ≈ 1.7.

Figure 4.5 Graphical representation of gamma-beta effects on Rg for exp(3.5) dis-
tribution, holding parameter b constant (solid is b = 1.5, · · ·· is b = 1.1).
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Given fixed distortion parameter values, the gamma-beta distortion produces

the highest Rg values and maximizes the ability to “tweak” the density function

by combining the effects of the single-parameter distortions (these effects will be

discussed in detail shortly). However, the inability to calculate the associated ex-

pectations limits its use for risk analysis to only those (perhaps isolated) scenarios

where the decision-maker is more interested in how the severity density function is

shaped than the change in expectation. Thus, further study of the single-parameter

distortions is more important to the field of risk analysis.

4.5 Effect of Single-Parameter Distortions

Prior to beginning the parametric study of the single-parameter distortions, an

analytical basis for the work was prescribed. For each combination of distribution

and distortion (except the gamma-beta distortion), an attempt was made to establish

an explicit expression for the (distorted) expectation risk measure. These results are

recorded in Tables 4.5 through 4.8. Where results were intractable, the corresponding

entry for the distorted expectation includes an integral. In all of the single-parameter

distortion cases, numerical results for the expectation were achievable even where

the analytical expectation was intractable. As a cross-check, numerical results were

compared to the theoretical ones in all cases, and consistent accuracy to at least four

decimal places was observed.

For the exponential distribution considered in Table 4.5, the survivor function

is

S(x) = e−λx, where x ≥ 0, λ > 0, (4.3)

and the undistorted expectation is µ0 = 1/λ.
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Table 4.5 Summary of distortion and risk measure (X ∼ exp(λ)).

Distortion Ŝ(x) Ê[X]

gPH e−λax (λa)−1

gDP 1 − (1 − e−λx)b
∫ ∞
0

[1 − (1 − e−λx)b] dx

gEX
1−exp(−e−λx/c)

1−exp(−1/c)

∫ ∞
0

1−exp(−e−λx/c)
1−exp(−1/c)

dx
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For the Weibull distribution considered in Table 4.6, the survivor function is

S(x) = exp((−x/θ)β), where x ≥ 0, β > 0, θ > 0, (4.4)

and the undistorted expectation is µ0 = θ
β

Γ( 1
β
), where Γ(·) is the gamma function.

Table 4.6 Summary of distortion and risk measure (X ∼ Weib(β, θ)).

Distortion Ŝ(x) Ê[X]

gPH ea(−x/θ)β θ
β β√a

Γ( 1
β
)

gDP 1 − (1 − e(−x/θ)β
)b

∫ ∞
0

[1 − (1 − e(−x/θ)β
)b] dx

gEX
1−exp(−e(−x/θ)β /c)

1−exp(−1/c)

∫ ∞
0

1−exp(−e(−x/θ)β /c)
1−exp(−1/c)

dx

For the triangular distribution considered in Table 4.7, the survivor function

is

S(x) =







































1, x < θ1

1 − (x−θ1)2

(θ2−θ1)(m−θ1)
, θ1 ≤ x ≤ m

(θ2−x)2

(θ2−θ1)(θ2−m)
, m < x ≤ θ2

0, x > θ2,

(4.5)

where θ1 ≤ x ≤ θ2, θ1 ≤ m ≤ θ2, and θ1 < θ2; the undistorted expectation is

µ0 = (θ1 + θ2 + m)/3.
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Table 4.7 Summary of distortion and risk measure (X ∼ tria(θ1, θ2,m)).

Distortion Ŝ(x) Ê[X]

(

1 − (x−θ1)
2

(θ2−θ1)(m−θ1)

)a

, θ1 ≤ x ≤ m
∫ m

θ1

(

1 − (x−θ1)
2

(θ2−θ1)(m−θ1)

)a

dx

gPH
(

(θ2−x)2

(θ2−θ1)(θ2−m)

)a

, m < x ≤ θ2 + (θ2−m)a+1

(2a+1)(θ2−θ1)a

1 −
(

(x−θ1)
2

(θ2−θ1)(m−θ1)

)b

, θ1 ≤ x ≤ m m − θ1 − (m−θ1)
b+1

(θ2−θ1)b(2b+1)
+

gDP

1 −
(

1 − (θ2−x)2

(θ2−θ1)(θ2−m)

)b

, m < x ≤ θ2

∫ θ2

m

[

1 −
(

1 − (θ2−x)2

(θ2−θ1)(θ2−m)

)b
]

dx

1−exp

(

−1
c +

(x−θ1)2

c(θ2−θ1)(m−θ1)

)

1−exp (−1/c) , θ1 ≤ x ≤ m
∫ m

θ1

1−exp

(

−1
c +

(x−θ1)2

c(θ2−θ1)(m−θ1)

)

1−exp (−1/c) dx

gEX

1−exp

(

−(θ2−x)2

c(θ2−θ1)(θ2−m)

)

1−exp(−1/c) , m < x ≤ θ2 +
∫ θ2

m

1−exp

(

−(θ2−x)2

c(θ2−θ1)(θ2−m)

)

1−exp(−1/c) dx

4-14



For the uniform distribution on [θ1, θ2] considered in Table 4.8, the survivor

function is

S(x) = 1 − x − θ1

θ2 − θ1

, where θ1 ≤ x ≤ θ2, θ1 < θ2; (4.6)

the undistorted expectation is µ0 = (θ1 + θ2)/2.

Table 4.8 Summary of distortion and risk measure (X ∼ unif(θ1, θ2)).

Distortion Ŝ(x) Ê[X]

gPH

(

1 − x−θ1

θ2−θ1

)a

(θ2 − θ1)
(

1
a+1

)

gDP 1 −
(

x−θ1

θ2−θ1

)b

(θ2 − θ1)
(

b
b+1

)

gEX

1−exp(−(1− x−θ1
θ2−θ1

)/c)

1−exp(−1/c)
(θ2 − θ1)

(

1−c+ce−1/c

1−e−1/c

)

4.6 Graphical Results

All of the chosen distortion functions can be shown to have a different effect on

the probability distributions (densities) and expectation risk measures under study.

The impacts of each of the four distortion functions on each of the four selected

probability distributions are examined individually in the following sections.

4.6.1 Distortion Effects: Exponential Distribution

Figure 4.6 shows the effect of applying the maximum distortion amounts from

Table 4.3 (i.e., a = 0.6, b = 1.5, and c = 0.8) to the exp(3.5) density; hence, each
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of the single-parameter distortions can individually shift approximately 30% of the

density in the p.d.f. to the right, as previously described. The undistorted exponen-

tial density is depicted by the solid line. Among the single-parameter distortions, the

proportional hazard (PH) distortion clearly has the greatest effect on the tail of the

distribution, thickening it considerably. The dual power (DP) distortion, conversely,

while still thickening the right tail slightly, has a much more noticeable effect on

the left side of the distribution, pushing the mode away from zero. The exponential

(EX) distortion can best be described as a combination of the effects of the PH and

DP. Applying all of the distortion parameters at once via the gamma-beta (GB)

distortion, about 75% of the density is moved to the right of the original median,

and the effects on both the left and right sides of the density are drastic. The right

tail is heavily thickened, the relative frequencies of the lesser severities are cut by

nearly two-thirds, and the mode is pushed out from zero to approximately 0.3.
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Figure 4.6 Relative frequency density for severity, exponential(3.5) distribution,
given distortion parameters a = 0.6, b = 1.5, and c = 0.8 (solid is no
distortion, −−−− GB, · · ·· PH, − · −· DP, − · ·− EX) .

Figure 4.7 shows the effects of the single-parameter distortions on the expec-

tation risk measure. “Coded” variables are used so that all three of the distortion
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effects can be observed simultaneously; in this technique, the parameter value re-

sulting in the greatest distortion is assigned the value -1, and the parameter value

resulting in the least distortion is assigned +1. Table 4.9 below summarizes the

coding scheme; note that the b parameter values must be “reversed” from what is

logical in order to make the plot consistent, i.e., to show more effect on the left and

less on the right.

Table 4.9 Linearly coded distortion parameter values for expectation plots.

Distortion Parameter Actual Value Coded Value

0.525 -1

a = [0.525, 0.975] 0.75 0

0.975 +1

1.6 -1

b = [1, 1.6] 1.3 0

1 +1

0.1 -1

c = [0.1, 4.3] 2.2 0

4.3 +1

From Figure 4.7, the most variable effect on the expectation risk measure comes

from the EX distortion. While the effects of the PH and DP distortions are nearly

linear over the selected intervals, the EX distortion shows a very large effect over
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(−0.5,−1). This is primarily due to the amount of density the EX is shifting by the

time c → −1: while the PH and DP distortions (a and b parameters) are shifting

39% and 34% of the original density at their -1 values, respectively, by the time

c = 0.1 in actual value (-1 in coded value) the EX distortion is shifting over 98% of

the original density to the right.

Thus the difference between using the limits specified in Table 4.3 and the

wider ones from Table 4.9 is clearly significant. Once again, the values from Table

4.3 were selected to match up (to the greatest possible extent) the amount of density

(in percent) each distortion function could shift; these tighter limits are depicted in

Figure 4.7 as the severity range between [−2
3
, 2

3
]. From Figure 4.6 (and to some

extent 4.7) it is clear that, given essentially equal percentage shifts in density, the

PH distortion has the greatest effect on the right tail of the exponential distribution,

and generally the expectation. However, outside of that range, control over the

amount of density being shifted is surrendered. As a rule of thumb, the user should

note that if only a limited percentage of density shift is desired, the PH distortion

generally gives the “biggest bang for the buck” within the region under study.
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Figure 4.7 Expected value versus coded distortion parameters, exponential(3.5)
distribution, given distortion parameter ranges a = [0.525, 0.975], b =
[1, 1.6], and c = [0.1, 4.3] (· · ·· PH, − · −· DP, solid is EX).
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4.6.2 Distortion Effects: Weibull Distribution

Figure 4.8 shows the effects of the various distortion functions on the Weibull(2,2)

distribution, again using the maximum distortion amounts from Table 4.3. The

undistorted Weibull density is depicted by the solid line. As in the case of the expo-

nential distribution, the PH distortion thickens the right tail to the greatest extent

among the single-parameter distortions; the DP has the least effect on the right tail,

and the EX is between the others. As before, the GB shifts about 75% of the density

to the right using these parameter selections and vastly changes the appearance of

the distribution tail.
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Figure 4.8 Relative frequency density for severity, Weibull(2,2) distribution, given
distortion parameters a = 0.6, b = 1.5, and c = 0.8 (solid is no distor-
tion, −−−− GB, · · ·· PH, − · −· DP, − · ·− EX) .

The comments associated with Figure 4.7 transfer in full to Figure 4.9.

4.6.3 Distortion Effects: Triangular Distribution

The triangular(1,7,4) distribution is similarly shown as the solid line in Figure

4.10. Applying the single-parameter distortions to the triangular density, there is

4-20



1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

-1.5 -1 -0.5 0 0.5 1 1.5

Coded Distortion Parameter Value

E
xp

ec
te

d 
V

al
ue

Figure 4.9 Expected value versus coded distortion parameters, Weibull(2,2) distri-
bution, given distortion parameter ranges a = [0.525, 0.975], b = [1, 1.6],
and c = [0.1, 4.3] (· · ·· PH, − · −· DP, solid is EX).

consistency in the observed distortion effects from the exponential and Weibull cases.

The effect on the right side of the distribution is again greatest with the PH distor-

tion, followed in order by the EX and DP. After application of the GB distortion,

the density is radically shifted and scarcely resembles a triangular density.

The comments associated with Figure 4.7 transfer in full to Figure 4.11.
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Figure 4.10 Relative frequency density for severity, triangular(1,7,4) distribution,
given distortion parameters a = 0.6, b = 1.5, and c = 0.8 (solid is no
distortion, −−−− GB, · · ·· PH, − · −· DP, − · ·− EX) .
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Figure 4.11 Expected value versus coded distortion parameters, triangular(1,7,4)
distribution, given distortion parameter ranges a = [0.525, 0.975], b =
[1, 1.6], and c = [0.1, 4.3] (· · ·· PH, − · −· DP, solid is EX).
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4.6.4 Distortion Effects: Uniform Distribution

Figure 4.12, as with the previous plots, uses the distortion parameters a = 0.6,

b = 1.5, and c = 0.8. The classic unif(1,7) is observed as the solid line. In this case,

the GB distortion has the effect of nearly eliminating the relative frequency of the

lightest severities altogether while simultaneously increasing those of the harshest

severities approximately fourfold. Among the single-parameter distortions, the PH

emphasizes the far right tail severities most significantly, and the DP and EX distor-

tions retain their roles from the previous test cases. The DP, EX, and PH, in that

order, have the largest effect on reducing the left side of the density; this is again

consistent with previous results.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00 2.00 3.00 4.00 5.00 6.00 7.00

Severity

R
el

at
iv

e 
F

re
qu

en
cy

Figure 4.12 Relative frequency density for severity, uniform(1,7) distribution, given
distortion parameters a = 0.6, b = 1.5, and c = 0.8 (solid is no distor-
tion, −−−− GB, · · ·· PH, − · −· DP, − · ·− EX) .

The comments associated with Figure 4.7 transfer in full to Figure 4.13.

4-23



4

4.5

5

5.5

6

6.5

7

-1.5 -1 -0.5 0 0.5 1 1.5

Coded Distortion Parameter Value

E
xp

ec
te

d 
V

al
ue

Figure 4.13 Expected value versus coded distortion parameters, uniform(1,7) dis-
tribution, given distortion parameter ranges a = [0.525, 0.975], b =
[1, 1.6], and c = [0.1, 4.3] (· · ·· PH, − · −· DP, solid is EX).

4.7 Distortion Effectiveness and Efficiency

The primary risk measure under study is the expectation of the severity random

variable. Recall that expectation has a drawback in that it serves only as the center

of mass for the distribution, meaning it is generally “dampened out” by the values

with the greatest relative frequency.

However, if expectation is the risk measure of choice, distortion functions can

provide the decision maker with the ability to control expectation to minute, yet

predictable, degrees. In choosing a distortion function to apply to an SME-specified

severity distribution, the decision maker would like to know how effective each can-

didate distortion function/parameter combination is in increasing the expectation.

After applying each combination and determining the distorted expectations (µg),

these values can be directly compared to determine which distortion has the greatest

effect on that particular distribution’s mean.
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To develop the idea further, we can normalize all of the µg’s to the original

undistorted expectation, µ0. The resulting ratio,

K = µg/µ0, (4.7)

can, for example, be used to directly compare a unique distortion function/parameter

pairing over different distributions, measuring that pairing’s effectiveness in changing

each distribution’s expectation as a percentage increase. (Since the distortion func-

tions discussed here only move density to the right, then K ≥ 1, where K = 1

means no distortion has been applied.) Similarly, two different distortion func-

tion/parameter combinations applied to two dissimilar severity distributions but

with equal resulting K values are judged equally effective in distorting (increasing)

the expectations.

However, we have observed clear contrasts in the way different distortion func-

tion/parameter pairs shift density. As applied to a single severity distribution, one

combination may require significant density shift before its K matches that of another

pairing which has a greater effect on the distribution’s tail. The classic examples

here are the PH and DP distortions: the PH accumulates density in the right tail

while the DP accumulates it closer to the mode, so the PH generally has a greater

effect on expectation. Of course, a measure to reflect the amount of density shift has

already been established, namely Rg (although the measure can only be employed

over a segment of each distortion’s parameter range(s), as previously described).

Considerable benefit is obtained by combining K and Rg into a single measure.

Using a ratio of the two,

K

Rg

=
% change in µ

% change in density
=

∆µ

∆density
, (4.8)

which can be considered the efficiency of a distortion function/parameter pairing

(not to be confused with statistical efficiency, as related to parameter estimation).
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Intuitively, if a distortion function/parameter combination has a large effect on the

distribution mean while shifting only a small amount of density, then that pairing is

highly efficient when applied to the given distribution.

A logical question to ask next might be, “Why would a decision maker care

about the amount of density being shifted? Why isn’t the effectiveness of the dis-

tortion function/parameter combination all he or she needs to know in making a

selection?” Note that without the efficiency measure, there would be no need to dis-

tinguish between two pairings with identical effectiveness ; the decision maker would

feel that one is just as good as the other, even though the underlying distribution

is being changed in an entirely different manner depending on the choice. As an

example, consider Figure 4.14, which shows an undistorted Weibull(2,2) distribution

along with its PH (a = 0.2) and DP (b = 31) distortions. Both of the distorted

distributions have K ≈ 2.24, but the densities are hardly similar.
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Figure 4.14 Relative frequency for severity, Weibull(2,2) distribution, given distor-
tion parameters a = 0.2 and b = 31 (solid is no distortion, · · ·· PH,
− · −· DP).

Furthermore, assuming that the decision maker wants the “correct” model but

is forced to distort the distribution due to the intolerable far right tail risks involved,

4-26



the decision maker should care a great deal about how much density is being shifted

to achieve a desired increase in expectation. The organization, be it a business or a

government agency, has asked the SMEs for their opinions because the SMEs have

expertise the decision maker lacks; the decision maker may have hand-picked the

individuals who are providing the base severity distribution that he/she wishes to

distort. For every increase in Rg, the decision maker is taking an additional “step”

away from the recommendations of the SMEs. As a clear example of the power

of distortion, again consider Figure 4.14, where the distortions have changed the

SME-provided Weibull distribution into two radically different ones. Thus it seems

likely that the decision maker would prefer one of two possible courses of action in

choosing a distortion function/parameter combination:

1. achieve the maximum amount of increase in the expectation while affecting the

base severity distribution by (no more than) a specified amount (say 20%); or

2. achieve a fixed change in expectation, but affect the base severity distribution

as little as possible.

In either case, efficiency is the measure which provides the “best” answer.

Table 4.10 records the efficiency and effectiveness measures for the severity

distributions and single-parameter distortions studied in this chapter. For each

distribution, the first line shows the distorted expectation, µg, for each distortion

function/parameter setting; the second line is the percentage of density shifted Rg;

the third line is the normalized distorted mean, K; and the last line is the effi-

ciency, K/Rg. In general, as the amount of distortion is increased the efficiency is

reduced. There are three exceptions to the general rule, however, and the efficiency

is highlighted in bold for those three. Specifically, in the case of the exponential

distribution, an increase in distortion results in an increase in efficiency when using

the PH and EX distortions. For the PH distortion applied to the Weibull distribu-

tion, efficiency at first decreases as distortion is increased, then changes course and
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begins to increase again; a brief investigation to verify this result showed that the

least efficiency occurred at about a = 0.72.

Table 4.10 Summary of effectiveness and efficiency measures for distribution and
single-parameter distortion combinations.

Distortion → PH DP EX

Measure ↓ a = 0.9 a = 0.75 a = 0.6 b = 1.1 b = 1.3 b = 1.5 c = 3.6 c = 2.2 c = 0.8

Exponential(3.5), µ0 = 0.285714
µg 0.3175 0.3810 0.4762 0.3036 0.3363 0.3658 0.3058 0.3189 0.3791
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.1111 1.3333 1.6667 1.0625 1.1772 1.2803 1.0704 1.1161 1.3270

K/Rg 1.0367 1.1212 1.2633 0.9958 0.9911 0.9903 1.0010 1.0027 1.0186

Weibull(2,2), µ0 = 1.772454
µg 1.8683 2.0467 2.2882 1.8448 1.9713 2.0788 1.8449 1.8911 2.0971
Rg 1.0719 1.1895 1.3199 1.0670 1.1879 1.2932 1.0694 1.1133 1.3032
K 1.0541 1.1547 1.2910 1.0408 1.1122 1.1729 1.0408 1.0669 1.1831

K/Rg 0.9834 0.9707 0.9781 0.9755 0.9362 0.9069 0.9733 0.9584 0.9079

Triangular(1,7,4), µ0 = 4.000
µg 4.1163 4.3218 4.5777 4.1033 4.2793 4.4246 4.0971 4.1586 4.4275
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0291 1.0804 1.1444 1.0258 1.0698 1.1062 1.0243 1.0396 1.1069

K/Rg 0.9602 0.9086 0.8675 0.9614 0.9007 0.8556 0.9579 0.9340 0.8497

Uniform(1,7), µ0 = 4.000
µg 4.1579 4.4285 4.7500 4.1428 4.3913 4.6000 4.1387 4.2265 4.6093
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0395 1.1071 1.1875 1.0357 1.0978 1.1500 1.0347 1.0566 1.1523

K/Rg 0.9699 0.9310 0.9001 0.9707 0.9243 0.8895 0.9676 0.9492 0.8846

Using Table 4.10, some general rules (within the bounds of this study) can

be established for selecting a distortion function to apply to a distribution. Recall

that a decision maker would likely be interested in either (1) achieving the largest

possible increase in the mean given a specified maximum shift in density, or (2)

shifting the density by the smallest amount required to achieve a specified increase

in mean. Using Table 4.10, some answers may be available when objective (1) is of

primary importance. Table 4.11 was created from Table 4.10 by comparing efficiency

across categorized values of Rg. For example, looking at the triangular distribution

in Table 4.10, the low distortion efficiency values are 0.9602 for the PH (a = 0.9),

0.9614 for the DP (b = 1.1), and 0.9579 for the EX (c = 3.6). Since the DP value

is the highest, this was entered into the appropriate cell of Table 4.11. Thus in the
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case of objective (1) when assuming a triangular distribution, the DP distortion is

the most efficient (although the values are relatively close in this case).

In examining Table 4.11, note once again that the difference in the Rg values

between the PH and DP distortions (Rg ≈ 1.19) and the EX distortion (Rg ≈ 1.11) at

the “medium” distortion level could be significant in the final selection of a distortion

function at that level. Also note that decision maker objective (2) could be answered

just as easily as objective (1), but the original response surface study which facilitated

the distortion parameter choices would have had to fix the distorted expectations

rather than the amount of density shift being applied.

Table 4.11 Preferred distortion functions, by efficiency, for selected distributions.

Low Distortion Moderate Distortion Heavy Distortion
Distribution (0-10%) (11-20%) (21-30%)

Exponential(3.5) PH PH PH

Weibull(2,2) PH PH PH

Triangular(1,7,4) DP EX PH

Uniform(1,7) DP EX PH
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4.8 Guidelines for Selection of Distortion/Distribution Combinations

To complete the goals set out at the beginning of the chapter, we now provide

some general guidelines for selecting distribution/distortion function combinations.

All of the following observations are valid within the limits of the study.

1. Among the selected distortions, given fixed values for distortion parameters a,

b, and c, the gamma-beta distortion has the greatest ability to shift density,

regardless of the severity distribution to which it is applied. However, the over-

all effect is less than additive over the single-parameter distortions, meaning

RGB < RPH +RDP +REX . Furthermore, the inability to compute the distorted

expectation using simple numerical methods makes the GB distortion a less

than appealing choice for risk analysis.

2. When the SME suggests an exponential or Weibull distribution for the risk

scenario, the PH distortion is drastically more efficient than the DP or EX. In

the case of the exponential distribution, the PH also leaves the mode in place

at zero, while other distortions “pull” the mode away from zero.

3. For the triangular and uniform distributions, no distortion appears to be as to-

tally dominant (in efficiency) as the PH is for the exponential and Weibull. For

each of these “bounded” distributions, the DP distortion is the most efficient

in cases where only a small amount of distortion is required; questionably, the

EX is more efficient in the vicinity of Rg = 1.15; and the PH is most efficient

when larger amounts of distortion are required.

4. If more than just the expectation is to be pulled from the distorted distribution

(e.g., the variance may well be of concern), then the DP and EX distortions

may be preferred over the PH. Particularly in the case of the Weibull and

triangular distributions, the DP builds up the area around the mean, likely

reducing the impact on variance.
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5. As stated in Chapter 2, the b parameter of the DP distortion has the advantage

of being interpretable, specifically as the expected value of the worst outcome

when b samples are taken from the random variable [31]. If the decision maker

appreciates this interpretability but wishes to use either the PH or EX dis-

tortion, a value of b can be found which results in a DP match in µg to the

specified a or c parameter. In this manner, the interpretability can be “loaned”

to the PH and EX distortions through a single extra step.

4.9 Summary

This chapter began by selecting a subset of four from the gamma-beta family of

six distortion functions. The selections were motivated primarily by frequency of ref-

erences in the literature and the ability to compute expectations, either analytically

or numerically (except in the case of the gamma-beta distortion itself).

The examination of the gamma-beta distortion and the effects that exami-

nation had on the remainder of the parametric analysis were discussed next. In

particular, the face-centered cube approach used in the 3k factorial design prompted

the creation of the Rg measurement, which then motivated the discussion of effec-

tiveness versus efficiency near the end of the chapter.

For the single-parameter distortions, in all cases it was observed that the PH

distortion has the greatest effect on the right tail of the distribution, while the

DP operated closest to the mode and the EX somewhere between the two. The

importance of tracking the amount of density shifted in comparing distortions was

highlighted in discussions using coded distortion parameter plots.

Finally, recommendations were made regarding distortion function selection

based on the chosen severity distribution and the degree of density shift required (or

requested) by the decision maker. An argument was made that the decision maker

should seek to limit the amount of distortion applied to the distributions.
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5. Numerical Results

Chapters 3 and 4 have described a methodology for selecting probability distri-

butions and illustrated the effect of different distortion functions on those distribu-

tions. In this chapter, those ideas will be illustrated and applied to solve a resource

allocation problem. First, the original “real-world” results from the Capabilities

Review and Risk Assessment (CRRA) process will be reviewed, and some interpre-

tation of them provided. Notional SME data, based on those interpretations, will

then be used to select specific risk distributions. To complete the example, the a

priori stated policies of a fictitious decision maker will be implemented using selected

distortion functions.

5.1 Declared Shortfalls in Air Force Capabilities

In a December 17, 2003 press release, the USAF listed six critical shortfalls

(identified by the CRRA) that the service needs to address in both current and future

budget planning [28]. The six main points from this public release is summarized in

Table 5.1.

We will assume that the far right column of the table identifies those numbered

top-level capabilities of the Master Capabilities Library (MCL) which the USAF is

targeting with the corresponding statement; note the prominent roles of capabili-

ties 1, 2, and 3 (corresponding to surveillance and reconnaissance, intelligence, and

command and control), and to some extent 4 (communications). Note also, for this

notional interpretation, that capabilities 5, 6, and 7 receive only limited consider-

ation, while capabilities 8 and 9 are not included at all among the current CRRA

shortfalls.
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Table 5.1 Recent capability shortfalls identified by USAF leadership.

CRRA Shortfall Top-Level MCL Item(s)

Base defense: The service needs to clarify the roles and responsi-
bilities between the Air Force and the other services.

7

Battle space management : The service must create a common
operational picture and implement an effects-based approach to
war planning.

1, 2, 3, 4

Cargo airlift : The Air Force should begin a formal review of re-
quirements and prepare for possible force structure changes.

6

Battle damage assessment : The Air Force should build a toolkit
and definitions for commanders to determine effects-based deci-
sions.

1, 2, 3

Fleeting and mobile targets: The service must reduce the time it
takes to find, track and destroy enemy forces.

1, 2, 3, 4, 5

Global information grid : The Air Force must create a massive
system to collect, process, store, disseminate and manage infor-
mation for war fighters, policy-makers and support personnel.

1, 2, 3, 4

5.2 Scenarios Reflecting the Range of Severities

Using the information from the third column of Table 5.1, assume that the

number of “references” to each of the top-level capabilities roughly reflects the po-

tential severity of having a shortfall in that area. For example, since MCL items

1, 2, and 3 receive the most mention in the table, assume that capability shortfalls

in those areas will result in higher severities, given that a shortfall will result in a

consequence.

In this section we will examine some real-world and notional manifestations of

these shortfalls. To facilitate some of the upcoming discussion, the complete cross-

reference of severity categories and descriptions, first mentioned in Chapter 1, is

included in this chapter as Tables 5.2 and 5.3.
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Table 5.2 CRRA severity categories and descriptions.

Severity Factor

Consequence
Category ↓ Minor (1) Modest (2) Substantial (3)

Achievement of
Objectives

All major objectives
achieved. Strong initial
strategy requires few/no
adjustments. Objectives
achieved on time.

All major objectives
achieved. Strong initial
strategy requires modest
adjustments. Few opera-
tional delays. Few delays
in achieving campaign
objectives.

All major objectives
achieved, but strategy ad-
justments required along
the way. Some operations
slowed. Achievement of a
major objective delayed.

Friendly Casu-
alties

Few citizens/troops killed
or injured. Citizens over-
seas threatened.

Tens of citizens/troops
killed or injured. Citizens
overseas attacked and/or
injured.

Hundreds of citi-
zens/troops killed/injured.
Citizens overseas at-
tacked/taken hostage.

Friendly Capa-
bility

Air/land/sea/space con-
trol unchallenged. No
combat losses. All mutual
support requests fulfilled.

Superiority achieved
in/over all areas on time;
no holdout areas. Enemy
capabilities do not disrupt
any missions. Almost
all requests for mutual
support fulfilled.

Superiority in/over enemy
territory delayed; a few
holdout areas avoided. En-
emy capabilities disrupt
some missions. Most re-
quests for mutual support
fulfilled.

Friendly Infras-
tructure

No loss of critical infras-
tructure.

Local/limited damage to
critical infrastructure. No
regional damage or loss.

Local damage to critical in-
frastructure. No regional
damage or loss.

Collateral
Damage

Few to dozens killed
or injured in collat-
eral damage. Local
damage/destruction to
buildings/infrastructure.

Dozens to hundreds killed
or injured in collateral
damage. City-wide dam-
age/destruction to build-
ings/infrastructure.

Hundreds to thousands
killed or injured in col-
lateral damage. Regional
damage/destruction to
buildings/infrastructure.

Enemy Escala-
tion/ WMD

Enemy offensives stopped
as they are started. No
threats to friendly bases.
Continuous monitoring of
known CBRNE sources.

Enemy offensives stopped
in their early stages. Di-
rect, credible threats to
friendly bases. Threat of
CBRNE use/attack possi-
ble.

Enemy offensives make
some gains before being
driven back. A friendly
base attacked and dam-
aged. Credible threat of
CBRNE use/attack.

U.S. National
Integrity

No enemy advances toward
US territory/airspace. No
terror attacks/incidents on
US territory.

No enemy advances toward
US territory/airspace. No
terror incidents on US ter-
ritory.

Embassies fired on.
Conventional enemy
forces observe US terri-
tory/airspace; are pre-
vented from encroaching.
Terror attack with conven-
tional arms/explosives on
US territory.

U.S. Govern-
ment Function

State or federal first re-
sponders may go on height-
ened alert. No recovery ac-
tion(s) required.

State government(s) exe-
cutes well prepared re-
covery actions. Federal
government assistance not
needed.

State government falters
occasionally in executing
recovery plans. Federal
government assistance nec-
essary.
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Table 5.3 CRRA severity categories and descriptions (cont’d).

Severity Factor

Consequence
Category ↓ Major (4) Extensive (5) Catastrophic (6)

Achievement of
Objectives

One or more major objec-
tives in jeopardy of not
being achieved. Sev-
eral major strategy ad-
justments required. Ad-
vances toward objectives
slowed/stalled. Delayed
achievement of campaigns
major objectives.

One or more major objec-
tives not achieved. In-
adequate strategy requires
many major adjustments.
Advances toward objec-
tives stalled. Major time
pressures to achieve objec-
tives and end campaign.

Major objectives not
achieved. No strategy
adjustments will allow
objectives to be achieved.
Time pressures force a
decision to end the cam-
paign without achieving
objectives.

Friendly Casu-
alties

Hundreds to thou-
sands of citizens/troops
killed/injured. Citizens
overseas killed/taken
hostage.

Thousands to tens of thou-
sands of citizens/troops
killed/injured. Citizens
overseas killed/taken
hostage.

Hundreds of thou-
sands of citizens/troops
killed/injured. Many citi-
zens overseas killed/taken
hostage.

Friendly Capa-
bility

Superiority in/over enemy
territory not completely
achieved; a few areas con-
tinuously avoided. A
few unanswered challenges
from enemy capabilities.
Mutual support only for
high priority needs.

Superiority in/over enemy
territory limited in area
or duration; some areas
avoided. Some unanswered
challenges from enemy ca-
pabilities. Mutual support
very limited.

Superiority limited to
friendly territory or
achieved only for spe-
cific missions; significant
areas avoided. Major
unanswered challenges
from enemy capabilities.
Unable to provide mutual
support.

Friendly Infras-
tructure

Local damage/loss of crit-
ical infrastructure. Re-
gional infrastructure af-
fected.

Some damage to friendly
centers of gravity. Re-
gional damage/loss of crit-
ical infrastructure.

Friendly centers of gravity
damaged or destroyed.
Widespread damage/loss
of critical infrastructure.

Collateral
Damage

Thousands to tens of thou-
sands killed or injured in
collateral damage. Re-
gional damage/destruction
to buildings/ infrastruc-
ture.

Tens of thousands killed or
injured in collateral dam-
age. Multi-region dam-
age/destruction to build-
ings/ infrastructure.

Hundreds of thousands
killed or injured in collat-
eral damage. Widespread
damage/destruction to
buildings/infrastructure.

Enemy Escala-
tion/ WMD

Enemy offensives make sig-
nificant gains before being
driven back. More than
one friendly base attacked.
Some CBRNE attacks, but
we have adequate detection
and warning.

Enemy offensives make sig-
nificant gains. Widespread
attacks on friendly bases.
Some enemy use of
CBRNE weapons. No
warning for half the at-
tacks; adequate warning
for half the attacks.

Enemy offensives make
gains we cannot counter.
Widespread attacks on
friendly bases. Widespread
use of CBRNE weapons
with no warning for most
attacks. Detection occurs
after attack.

U.S. National
Integrity

Conflict is non-nuclear but
involves terrorism, chem-
ical, bio, or radiologi-
cal strikes on US terri-
tory. Embassies occupied.
Conventional enemy forces
encroach upon US terri-
tory/airspace, but do not
fire on it.

US survives as a na-
tion. Active conflict
where enemies fire on US
territory/penetrate US
airspace. Single nuclear
strike on US territory.
CBRNE incidents.

National survival threat-
ened, loss of territorial in-
tegrity. Long term ex-
hausting war. Entire na-
tion focused on resolving
conflict. Some nuclear
strikes on US territory.

U.S. Govern-
ment Function

Attack recovery is diffi-
cult. Federal government
focuses on it above all else.
State government focuses
on it above all else. Fed-
eral government assistance
required for response.

Federal and state govern-
ments struggle to cope
with attack(s). Losing
war would mean ideolog-
ical and cultural realign-
ment.

Survival of a functioning
government is threatened.
Losing war would mean
ceding sovereignty or occu-
pation.
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5.2.1 “Minor” to “Modest” Severity Scenario

We will assume that senior USAF leaders categorize capability shortfalls in

preparing, sustaining, and creating the force (MCL items 8 and 9) as holding the

potential for primarily minor to modest severity. There are several possible reasons

for the lack of emphasis on these areas. While shortfalls in MCL areas 8 and 9

certainly could affect achievement of objectives and capabilities of friendly forces,

selective service (i.e., drafting of civilians into the military) is available as a fall-back

position for force creation; the government would likely not allow a lack of volunteers

to prevent the USAF from accomplishing its mission. Due to the overall wealth of

the United States, the cost of training and equipping forces and supplying bases

for operations has been a minimal hindrance to military objectives; the policy is

simply not to send untrained or under-equipped forces into battle. The thrust into

Iraq during Operation Iraqi Freedom (OIF) in 2003 faced some reported shortfalls in

supplies and equipment, yet the available supplies and the technological superiority

of friendly forces were sufficient to end the force-on-force campaign successfully and

with little delay. These situations likely meet the criteria of minor or modest severity.

5.2.2 “Substantial” Severity Scenario

Shortfalls in force application, force projection, and force protection capa-

bilities (MCL items 5, 6, and 7) will be assumed to result in substantial sever-

ity outcomes. A notional scenario (based on a real-world deployment) which fits

this category occurred in conjunction with Operation Enduring Freedom (OEF) in

Afghanistan. During that period, the USAF deployed 24 bombers to Andersen AFB,

Guam, as a hedge against other potential enemies in the region deciding to take ag-

gressive action while our attention was focused elsewhere. The primary concern for

the USAF in terms of force protection, as identified by the December 2003 CRRA,

is the clarification of base defense roles between the USAF and other services. If an

enemy at that time had launched an attack from the sea with the intent of destroy-
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ing the bombers deployed on Guam (perhaps using just a few incendiary projectiles

fired from the sea with the intent of causing secondary explosions on the flightline),

the U.S. Navy may or may not have been able to detect or stop the enemy before

significant damage to the aircraft had taken place. In such an event, operations may

have been disrupted, tens or even hundreds of servicemen and civilians killed on

base, and achievement of objectives in the region delayed. All of these consequences

fall into the range of substantial severity.

5.2.3 “Major” to “Extensive” Severity Scenario

In the December 2003 CRRA evaluation Table (5.1), communications is in-

voked three times among the six areas requiring improvement. Communications in

the USAF sense deals (to a large extent) with hardware – the physical components

of command and control (including computers). Due to the number of times com-

munications is singled out on the list, we might assume that the USAF sees commu-

nication as potentially having more grave consequences than force application, force

projection, or force protection, but not quite as harsh as intelligence, surveillance,

and reconnaissance (ISR), and command and control (C2). As communications also

includes the protection and assurance of data resident on computers and other com-

munications systems, a straightforward example of a crisis with major to extensive

severity is a large-scale “hacker” attack on a federal computer system where some

critical infrastructure element is shut down. Recall the widespread power outages

suffered in the northeastern U.S. during the summer of 2003, which resulted in tem-

porary loss of critical regional infrastructure and were rampantly assumed to be the

result of such an attack, even though this idea was later proven false.

5.2.4 “Extensive” to “Catastrophic” Severity Scenario

Again citing the December 2003 list, we will assume that the USAF believes

that the greatest threats to national security will be caused by shortfalls in ISR and
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command and control of forces (MCL items 1, 2, and 3). An example of the effects

of shortfalls in ISR, albeit from more of a law enforcement perspective, is the 9/11

terrorist attacks using hijacked airliners. Since 9/11, the clear emphasis on change

has involved the military and federal ISR systems and organizations, and the USAF

plays a major role in providing those assets. The USAF and the DoD have built

a vision for the battlefield of the future which centers around the ability to gather

intelligence and transmit it quickly to military decision makers and forces in the

field (this is known as network-centric warfare, or NCW – see [26] or other sources

for further information). At the same time, advances in ISR systems can also aid

intelligence professionals here at home in ascertaining the plans of adversaries before

they are able to attack the homeland.

5.2.5 Uniform Severity Scenario

In some scenarios, all categories of severity could have an equal likelihood of

occurrence. As an example, consider the illegal entry into the United States by a few

persons from a terrorist organization with the intent of causing harm. The scope of

what they might be able to accomplish could include everything from a kidnapping

to the detonation of a tactical weapon (e.g., chemical, biological, radiological, or

nuclear) in their possession. If some prior knowledge about the group’s capability to

strike or their intent is known, then there may exist some specific range of severity

over which all possibilities are equally likely, but which only includes a portion of

the entire range.

5.3 Decision Maker Policies

The CRRA’s MCL mentions nine specific top-level categories. A decision

maker within the CRRA process is required to define acceptable levels of risk for

shortfalls in each of those nine categories. Assume that a single decision maker –

perhaps the Secretary of the Air Force or the Chief of Staff – must bound the limits
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of “acceptable risk,” thereby placing his or her influence on the CRRA process. Var-

ious weighting schemes exist to accurately capture the decision maker’s risk aversion

emphasis areas; see [5] or similar references for a discussion of such methods.

For this example, suppose the decision maker has seen the list of shortfall areas

produced in December of 2003, and the shortfall interpretations offered earlier reflect

his or her opinions. Assume he or she is least risk averse in MCL areas 8 and 9,

slightly risk averse in areas 5, 6, and 7, and most risk averse in areas 1 through 4.

Table 5.4 shows the notional “risk-aversion” weights assigned by the decision maker

to each of the MCL areas.

Table 5.4 Notional MCL point allocations reflecting decision maker policies.

MCL Item Assigned Weight

Surveillance & Recon 20

Intelligence 30

Command & Control 19

Communications 13

Force Application 6

Force Projection 6

Protect 6

Prepare & Sustain 0

Create 0
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5.4 CRRA Risk Scales

The risk scale associated with the CRRA was mentioned in Chapters 1 and 4,

and the detailed list of consequence categories and severity factors is shown in Table

5.2; that scale, in its discrete form, features all of the drawbacks discussed in Chapter

4. On the positive side of the ledger, however, Table 5.2 does offer a solution to the

problem of “correct” scaling. For the consequence category “Friendly Casualties,”

the number of deaths listed is a reflection of how its creator(s) may have intended

to weight the severity factors 1-6. This information is summarized in Table 5.5.

Table 5.5 Fatalities associated with severity factors.

Severity Factor Specified Fatalities Interpretation log10

Minor “Few” 1 - 10 [0, 1]

Modest “Tens” 10 - 100 (1, 2]

Substantial “Hundreds” 100 - 1,000 (2, 3]

Major “Hundreds to Thousands” 1,000 - 10,000 (3, 4]

Extensive “Thousands to tens of thousands” 10,000 - 100,000 (4, 5]

Catastrophic “Hundreds of thousands” 100,000 - 1,000,000+ (5, 6+)

Note that the fourth column of Table 5.5 shows that the base 10 logarithm of

the fatalities interpretation column corresponds (in essence) to the CRRA’s original

scale, only now it is allowed to take on continuous scores over [0,6+]. With some

improvements and interpretations, then, a continuous version of the original scale

devised by the CRRA planners is a perfectly usable one for SME tabletop discus-

sions; once an appropriate score for a severity, call it x, has been determined on the
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continuous [0,6+) scale, the weighted severity, call it y, can be easily recovered by

the simple relationship y = 10x.

5.5 Example SME Data

While the decision maker is weighting the MCL areas to reflect his or her areas

and amounts of greatest risk aversion, suppose that nine teams of SMEs are asked

to evaluate the risks associated with any shortfalls they identify in their respective

major emphasis areas of the MCL (using the unweighted CRRA risk scale). After

much deliberation, the data in Table 5.6 is returned from the process. Note that in

some cases, the assessed complexity of the risk scenario causes the SMEs to return

only categorical data.

5-10



Table 5.6 Notional SME-provided data.

SME-Provided Information

MCL Item 1 − p Low High Mode Mean

Surveillance & Recon 0.025 0 Catastrophic 3 N/A

Intelligence 0.002 0 4.67 3.2 N/A

Command & Control 0.0075 Minor Major N/A N/A

Communications 0.01 0 4 2 N/A

Force Application 0.36 Minor Catastrophic 1.25 N/A

Force Projection 0.03 Minor Catastrophic Substantial N/A

Protect 0.375 Minor Modest N/A N/A

Prepare & Sustain 0.24 Minor Catastrophic 0 2.2

Create 0.5 Minor 1.875 Minor N/A
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To review the need for the 1 − p column, recall the discussion from Chapter 2

regarding the difference between the risk distribution and the severity distribution.

Let the non-negative random variable X be defined as the severity that could be

experienced in a scenario (given that an undesirable outcome occurs), and let Y be

a binary random variable such that

Y =











1 if outcome occurs

0 if outcome does not occur.

(5.1)

Now let p be the probability that no undesirable outcome occurs, so that

P{Y = 0} = p (5.2)

and

P{Y = 1} = 1 − p. (5.3)

The severity distribution,

S(x) = 1 − F (x) = P (X > x | Y = 1), (5.4)

is a conditional probability, where it is assumed that a negative consequence of some

severity will occur with certainty (p = 0). When p 6= 0, we have the unconditional

risk distribution

R(x) ≡ P (X > x) = P (X > x | Y = 0) · p

+ P (X > x | Y = 1) · (1 − p) (5.5)

= P (X > x | Y = 1) · (1 − p), (5.6)

since P (X > x | Y = 0) = 0. Thus the risk distribution includes all of the severity

distribution, but also the possibility of no negative consequence whatsoever (i.e., we
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are uncertain that any event will occur). Now that the center of discussion is risk

rather than simply severity, the expectation must include the constant 1 − p, so

E[X | Y = 1] = (1 − p) E[X]. (5.7)

Using the methodology described in Chapter 4, the distributions reflecting

both the CRRA scale [0,6+) and the “weighted” scale (y = 10x) are determined

and recorded in Table 5.7. (For an example of corresponding CRRA and “weighted”

distributions plotted on the same axes, see Figure 5.1.) In the case of the weighted

Weibull distributions, note that the value of the mode must first be mapped to the

weighted scale before θ can be determined.

5-13



Table 5.7 Notional distributions from SME-provided data.

MCL Item Distribution (CRRA) Distribution (Weighted)

Surveillance & Recon Weibull(3.5,3.3) Weibull(3.5,1101)

Intelligence Tria(0,4.67,3.2) Tria(1,46773,1585)

Command & Control Unif(0,4) Unif(1,104)

Communications Tria(0,4,2) Tria(1,104,100)

Force Application Weib(2.04,1.74) Weib(2.04,24.73)

Force Projection Weib(3.08,2.84) Weib(3.08,359.1)

Protect Unif(0,2) Unif(1,100)

Prepare & Sustain Exp(0.45) Exp(0.0063)

Create Tria(0,1.875,0.5) Tria(1,75,3.16)
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Figure 5.1 Notional CRRA scale and “weighted” scale distributions for Force Ap-
plication (· · ·· is CRRA, solid is weighted).

5.6 Application of Distortion Functions

With the SME data channelled into actual distributions and a specified value

for p, the first calculations of shortfall priority, based on expectation, can be com-

pleted. For the results shown in Table 5.8, the first column labelled (1−p)µ0 reflects

the distributions derived from the raw CRRA scale parameters. The second such

column reflects distributions with parameters translated to the weighted scale.
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Table 5.8 Risk expectations for undistorted distributions, SME-provided data.

CRRA Scale Weighted Scale

MCL Item µ0 1 − p (1 − p)µ0 µ0 1 − p (1 − p)µ0

Surv & Recon 2.969 0.025 0.074 990.622 0.025 24.766

Intelligence 2.623 0.002 0.005 16119.670 0.002 32.239

Cmnd & Cntrl 2.000 0.008 0.015 5000.500 0.008 37.504

Communications 2.000 0.010 0.020 3367.000 0.010 33.670

Force App 1.542 0.360 0.555 21.910 0.360 7.887

Force Proj 2.539 0.030 0.076 321.049 0.030 9.631

Protect 1.000 0.375 0.375 50.500 0.375 18.938

Prepare/Sustain 2.200 0.240 0.528 158.730 0.240 38.095

Create 0.792 0.500 0.396 26.387 0.500 13.193
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Using the expectation risk measure from the raw CRRA scale data, the short-

falls would receive emphasis in the following order:

1. Force application

2. Prepare and sustain

3. Create the force

4. Protect

5. Force projection

6. Surveillance and reconnaissance

7. Communications

8. Command and control

9. Intelligence.

Using the weighted scale, however, the shortfalls would receive these rankings:

1. Prepare and sustain

2. Command and control

3. Communications

4. Intelligence

5. Surveillance and reconnaissance

6. Protect

7. Create the force

8. Force projection

9. Force application.
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5.7 Applying Distortion to Risk Distributions

The significant differences between the two lists demonstrate the importance

of an accurately weighted scale. If instead of y = 10x the weighted scale’s creators

had used y = 5x or y = 2x, the order of importance might well again be different.

One artificiality of the methodology described in [32] is that the same distortion

function/parameter combination is applied to all of the risk distributions to “re-

order” the MCL areas. This would not occur in the general case. As the distance

between categories grows large (and y = 10x is certainly a “large” scale), the ability

to apply distortion in this fashion and re-order the risk areas grows weaker. Hence,

this thesis proposes applying distortion on a selective, distribution-by-distribution

basis, using more limited amounts of distortion according to the will of the decision

maker.

To proceed, the decision maker has provided information on his or her priori-

ties, or areas of greatest risk aversion. In Chapter 4 it was stated that the decision

maker would likely hold one of two primary objectives: (1) maximize the increase

in mean given a specified shift in density, or (2) minimize the amount of density

shift required to achieve a specified increase in mean. While either objective could

be applied here, we will proceed on the assumption that the decision maker prefers

objective (1), and that the weighting given to an area corresponds to a specific

shift in density Rg. Since a weighted scale would certainly be used in a real-world

application, it will be used here.

For MCL area 1, surveillance and reconnaissance, a Weib(3.5,1101) distribution

was fit, and the decision maker-prescribed amount of distortion was 20%, or Rg ≈
1.20. At this level, the PH distortion is the most efficient, using the definition set

forth in Chapter 4. Setting a = 0.735 results in µg = 1081.7, and (1−p)µg = 27.043.

We continue in this fashion for all of the risk distributions, applying distortions based

on the recommendations of Table 4.11. Table 5.9 summarizes the results of selectively

distorting as per the a priori instructions of the decision maker. In the table, column
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(1 − p)µ0 is the original undistorted risk expectation, Rg is the decision maker’s

desired amount of distortion, “Combination” is the selected distortion function and

its associated parameter value, and (1 − p)µg is the risk measure after distortion is

applied.

Table 5.9 Results for application of selected distortion functions to notional risk
distributions, weighted scale.

MCL Item Distribution (1 − p)µ0 Rg Combination (1 − p)µg

Surv & Recon Weib(3.5,1101) 24.766 1.20 PH, a = 0.735 27.043

Intelligence Tria(1,46773,1585) 32.239 1.30 PH, a = 0.62 42.641

Cmnd & Cntrl Unif(1,104) 37.504 1.19 EX, c = 1.3 42.264

Communications Tria(1,104,100) 33.670 1.13 EX, c = 1.9 37.189

Force App Weib(2.04,24.73) 7.887 1.06 PH, a = 0.915 8.238

Force Proj Weib(3.08,359.1) 9.631 1.06 PH, a = 0.915 9.913

Protect Unif(1,100) 18.938 1.06 DP, b = 1.09 19.737

Prepare/Sustain Exp(0.0063) 38.095 1.0 N/A 38.095

Create Tria(1,75,3.16) 13.193 1.0 N/A 13.193
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Using the weighted scale, Table 5.10 provides a side-by-side comparison of

pre- and post-distortion priorities. Compared to the original weighted, undistorted

risk measure, intelligence has vaulted to the top of the rankings through selectively

applied distortion.

Table 5.10 Comparison of pre- and post-distortion priorities using weighted scale,
SME-provided data.

MCL Item Pre-distortion Post-distortion

Surveillance & Recon 5 5

Intelligence 4 1

Command & Control 2 2

Communications 3 4

Force Application 9 9

Force Projection 8 8

Protect 6 6

Prepare & Sustain 1 3

Create 7 7
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5.8 Selection of Systems to Counter Capability Shortfalls

One of the objectives of the CRRA process is to propose risk mitigation mea-

sures, making connections between acquisitions programs and required capabilities.

In [32], Woodward addressed this goal by using an integer programming (IP) method-

ology and expectation risk measures; the key difference is that he uniformly applies

the DP distortion function with a constant parameter b value across all areas of the

MCL. A comparison between the results in [32] and those here will be presented

after a review of Woodward’s [32] procedure and application of the current results

to his methodology.

First, a small set of notional acquisitions programs are presented, and the

“percent shortfall mitigation” each program addressed in all nine areas of the MCL

is provided. The notional programs mentioned in [32] are

1. an intelligence database with global access capability;

2. a new heads-up display (HUD) to improve situational awareness in fighter

aircraft;

3. a stand-off missile system with the capability to track and destroy moving

targets;

4. an unmanned aerial vehicle (UAV) designed for battle damage assessment

(BDA);

5. advanced equipment for detecting the presence of chemical, biological, radio-

logical, nuclear, and high-yield explosives (CBRNE); and

6. additional air-to-air refueling aircraft (“tankers”).

Table 5.11 reflects data similar to that found in [32]. To interpret the table, the

fighter HUD, for example, reduces the shortfall in surveillance and reconnaissance

by 19%.
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Table 5.11 Notional acquisitions programs and percent shortfall mitigation per
MCL top-level area [32].

Intel Fighter Standoff BDA CBRNE
Database HUD Missile UAV Detection Refuelers

MCL Item (1) (2) (3) (4) (5) (6)

(1) Surv & Recon 0 0.19 0 0.26 0.26 0

(2) Intelligence 0.46 0.21 0 0.12 0 0

(3) Cmnd & Cntrl 0.34 0.19 0 0.05 0 0.23

(4) Communications 0.14 0.42 0 0.36 0 0.05

(5) Force App 0.10 0.21 0.92 0.30 0 0.10

(6) Force Proj 0 0 0.54 0 0 0.11

(7) Protect 0.16 0 0 0 0.25 0

(8) Prepare/Sustain 0.19 0 0 0 0.31 0.48

(9) Create 0 0 0 0 0.33 0.36

Cost, k 7 7 10 8 8 9
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The last line of Table 5.11 reflects a cost associated with the purchase of the

complete system. The assumptions for the upcoming discussion are that not all of

the systems can be afforded (suppose a budget of 25 units), and that fractions of

each system can be purchased. The last point is a change from [32], which used an

integer program (“all or nothing”) in solving the problem; this change is justifiable

due to the recent USAF/DoD emphasis on “spiral development,” where very basic

capabilities are purchased as they become available and improvements are made over

the life of the system.

Let mij denote the percent shortfall mitigation to MCL area i derived from

system j, where i = 1, 2, . . . , 9 and j = 1, 2, . . . , 6. If all areas of the MCL were

viewed as equally important, then the overall contribution of any complete system

j to the USAF, Cj, would be the sum of its percent shortfall mitigation measures

from Table 5.11, i.e., Cj =
∑9

i=1 mij. To optimize the solution in that case, we

would implement a linear program for which the objective function coefficients are

the Cj’s and the objective function variables are the “amounts” of each system to be

purchased, xj. If the cost of any complete system j is kj, then the only acquisition

constraints are
6

∑

j=1

kj xj ≤ 25 (5.8)

and

0 ≤ xj ≤ 1, (5.9)

since the total costs of the procured systems cannot exceed 25 units and either none,

some, or all of a complete system can be purchased.

Of course, a main point of this thesis has been that not all risks have equal

consequences, and that the risk distributions can be summarized and distorted. It

seems reasonable, then, to weight each mij with the risk expectations which accom-

pany each MCL area i, and these will be denoted as Si. Including these weights, the
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entire LP becomes

Maximize

9
∑

i=1

6
∑

j=1

Si mij xj

subject to

6
∑

j=1

kj xj ≤ 25

0 ≤ xj ≤ 1, j = 1, 2, . . . , 6, (5.10)

which is directly comparable to the mathematical program of [32].

Both the “weighted with undistorted expectation” and “weighted with dis-

torted expectation” solutions to the example problem were solved, meaning that the

LPs were identical except for the values of Si. The resulting “purchases” recom-

mended by each of the two LPs are shown in Table 5.12, along with the unweighted

solution using the Cj’s as the objective function coefficients.

Table 5.12 Notional acquisitions programs purchase recommendations, by type of
expectation applied.

Intel Fighter Standoff BDA CBRNE
Expectation Applied Database HUD Missile UAV Detection Refuelers

None 1 1 0.2 0 0 1

Weighted, Undistorted 1 1 0 0 0.25 1

Weighted, Distorted 1 1 0 0.25 0 1

While all of the different purchase plans recommend the intel database, fighter

HUD, and refuelers be bought first, the fractional expenditures change over all three:

when no expectation is applied, initial expenditure in the standoff missile system is

recommended; when weighted, undistorted expectation is applied, some investment
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in CBRNE detection is part of the solution; and using weighted, distorted expecta-

tion, remaining funds should be directed toward the BDA UAV.

For all three of the solutions, a decrease of more than two units in the budget

will result in a change to the optimal mix of systems. A budget increase of eight units

for the unweighted solution – or six for both the weighted, distorted and weighted,

undistorted solutions – can be absorbed before a change is observed in the mix of

systems. Among the objective coefficient ranges, the smallest changes that will result

in a new solution to the LP are included in Table 5.13.

Table 5.13 Notable objective coefficient sensitivities for system mix LP with vari-
ous expectations applied.

Current Allowable Allowable
Expectation Applied Variable Coefficient Increase Decrease

None x3 1.46 0.0178 0.0225
None x5 1.15 0.018 ∞
None x6 1.33 ∞ 0.016

Weighted, Undistorted x4 240.033 5.998 ∞
Weighted, Undistorted x5 246.031 35.51 5.998

Weighted, Distorted x4 271.087 21.149 17.929
Weighted, Distorted x5 253.157 17.929 ∞
Weighted, Distorted x6 328.765 ∞ 23.793

5.9 Flowchart of Proposed Methodology

To summarize the entire process described by the thesis and aid the reader, a

flowchart of the proposed methodology is included in Figure 5.2.
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Figure 5.2 Flowchart of proposed methodology.
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5.10 Comparison with Previous Results

To form a complete picture, a comparison with Woodward’s [32] results is in

order. To begin, Woodward used the same systems but slightly different values for

shortfall mitigations and costs; his exact values are reproduced in Table 5.14.

Table 5.14 Exact notional acquisitions programs and percent shortfall mitigation
per MCL top-level area, as listed in [32].

Intel Fighter Standoff BDA CBRNE
Database HUD Missile UAV Detection Refuelers

MCL Item (1) (2) (3) (4) (5) (6)

(1) Surv & Recon 0 0.19 0 0.26 0.26 0

(2) Intelligence 0.46 0.21 0 0.12 0.68 0

(3) Cmnd & Cntrl 0.34 0.19 0 0 0 0.23

(4) Communications 0.14 0.42 0 0.36 0 0.05

(5) Force App 0.10 0.21 0.92 0.30 0 0.10

(6) Force Proj 0 0.16 0.54 0 0 0.11

(7) Protect 0.16 0 0 0 0.25 0

(8) Prepare/Sustain 0.19 0 0 0 0.31 0.48

(9) Create 0.1 0.05 0 0 0.33 0.36

Cost, k 7 7 10 9 6 9
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Additionally, Woodward [32] used an integer programming (IP) approach to

the problem (meaning portions of a system could not be acquired), a total budget of

23 units (instead of 25), and his own derived distributions on a log2 severity index

(meaning severity doubles for each categorical step increase). Since all of his chosen

distributions are either exponential or Weibull, Table 4.11 will always recommend

the PH distortion when using the methodology advocated here, but the value of

distortion parameter a will differ for each distribution based on the decision maker’s

inputs.

With these modifications, the selective application of distortion can be directly

compared to Woodward’s “blanket” application of only the DP distortion using b = 5

and b = 10 (sequentially) to all of the risk distributions at once [32]. Table 5.15

shows the distributions Woodward used for each risk area of the MCL, associated

data, and the undistorted risk measures, while Table 5.16 provides the expectations

and rankings for each area after the application of different distortion functions, with

both “blanket” and selective methods examined.
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Table 5.15 Distributions assigned to MCL items by [32], associated data, and
undistorted expectation risk measures and rankings.

Distribution
MCL Item Distribution Mean (µ) 1 − p (1 − p)µ0 (Rank)

Surveillance & Recon Weib(1.453,28.99) 26.27 0.5375 14.1 (1)

Intelligence Exp(0.102) 9.77 0.48 4.7 (9)

Command & Control Exp(0.042) 23.64 0.43 10.17 (5)

Communications Weib(1.136,23.53) 22.48 0.5275 11.8 (3)

Force Application Weib(1.639,28.49) 25.49 0.5225 13.3 (2)

Force Projection Weib(0.98,15.55) 15.69 0.4325 6.8 (8)

Protect Exp(0.040) 24.75 0.3475 8.6 (7)

Prepare & Sustain Weib(1.702,30.58) 27.28 0.385 10.5 (4)

Create Exp(0.034) 29.85 0.34 10.15 (6)
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Table 5.16 Distorted expectation risk measures and rankings for MCL item distri-
butions [32].

Woodward [32] Proposed Methodology

DP, b = 5 DP, b = 10 Selective
MCL Item Mean (Rank) Mean (Rank) Distortion Applied Mean (Rank)

Surveillance & Recon 26.7 (1) 32.1 (1) PH, a = 0.735 17.5 (1)

Intelligence 10.7 (9) 13.7 (9) PH, a = 0.62 7.6 (8)

Command & Control 23.2 (4) 29.8 (3) PH, a = 0.75 13.6 (4)

Communications 25.3 (2) 31.7 (2) PH, a = 0.82 14.12 (2)

Force Application 23.9 (3) 28.1 (5) PH, a = 0.915 14.06 (3)

Force Projection 15.7 (8) 20.2 (8) PH, a = 0.915 7.4 (9)

Protect 19.6 (6) 25.2 (6) PH, a = 0.915 9.4 (7)

Prepare & Sustain 18.5 (7) 21.7 (7) N/A 10.5 (5)

Create 23.2 (5) 29.7 (4) N/A 10.15 (6)
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Table 5.16 shows that all of the methods of applying distortion have the ability

to change the rankings of the MCL items, but it does not state whether or not the

subset of mitigating systems recommended for purchase is changed based on the

distortion applied. That information is included in Table 5.17, where it is observed

that undistorted expectation, the “blanket” application of the DP distortion with

b = 5, the “blanket” DP approach with b = 10, and the selective distortion method

all result in the same purchase plan.

Table 5.17 Comparison of notional acquisitions programs purchase recommenda-
tions, by type of expectation applied, using selective distortion and
“blanket” distortion methodologies (1 is “buy,” 0 is “do not buy”).

Total Intel Fighter Standoff BDA CBRNE
Expectation Applied Cost Database HUD Missile UAV Detect Refuelers

Undist. expectation 23 0 1 1 0 1 0

All DP, b = 5 [32] 23 0 1 1 0 1 0

All DP, b = 10 [32] 23 0 1 1 0 1 0

Selective distortion 23 0 1 1 0 1 0

Although the end solution to the problem is the same in all cases when the sit-

uation is governed by Woodward’s “rules,” there are at least two distinct advantages

to the current methodology as compared to [32]. First, in the proposed methodology

there is more freedom in the selection and shape of the probability distributions used

to model risk scenarios. While the method of selecting distributions presented here is

rudimentary, the data requested from the SMEs is similarly straightforward (specif-

ically the range and mode of the expected consequence, and perhaps the mean).

Second, the proposed methodology attempts to apply distortion for the purpose of
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imposing the will of the decision maker on the SME-provided risk distributions,

rather than applying distortion en masse and observing the effects. While it may

seem on the surface that the application of the same distortion function/parameter

combination to all distributions is more objective, in reality the effect of a distortion

on a given distribution is predictable to some degree. For instance, recall in the

case of the exponential distribution that an increase in distortion generally results in

an increase in distortion efficiency, while other distributions experience the opposite

effect; hence, the risk scenarios described by the exponential should be expected to

move up in the rankings as more distortion is applied.

5.11 Summary

This chapter presented real-world background material and analysis that formed

the basis of a notional example. A method for turning decision maker prioritization

policies into specific distortion function and parameter combinations was examined,

and these pairings were applied to probability distributions based on the notional

analysis of fictitious SMEs. Using a mathematical programming methodology first

described in [32], the selectively distorted risk measures were used as weights in a lin-

ear programming problem to determine an optimal subset of risk mitigating systems

given a limited budget. To complete the chapter, the methodology of this chapter

was applied directly to the exact scenario and distributions from [32] and the results

compared.
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6. Conclusions and Future Research

6.1 Summary of Contributions

In examining and quantifying risk, the researcher in the field must make a

clear distinction between risk and severity. Risk includes both the severity in the

event of occurrence and the probability that no event occurs at all, while severity

assumes that some negative occurrence will happen with certainty. Many different

probability distributions are used in the disciplines of health, finance, and reliability,

where measuring risk is of high importance. Regardless of the distribution in use,

however, mathematical expectation (either by itself or combined with another mea-

sure) remains the dominant risk measure across all fields. Distorted expectation can

be considered another way of measuring risk. Distortion functions are a relatively

new area of research in financial risk analysis; they produce a predictable, positive

shift of density in a distribution. However, very little information has been published

regarding which situations signal the appropriateness of one distortion function over

another.

A well-defined risk scale is essential to risk analysis. In most real-world cases,

the risk scale should be continuous, infinite, and appropriately scaled. The idea

that some distributions are defined over a finite range and others over an infinite

range is an important distinction to make in selecting a risk distribution to model a

risk scenario; the amount and directions of skewness a distribution can take on are

also discriminating factors. A simple decision tree can be formulated to pinpoint an

appropriate severity distribution if the potential distributions have unique charac-

teristics of range and shape, as is the case with the exponential, Weibull, triangular,

and uniform distributions. For those four distributions, distribution parameters can
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be determined with just an assessment of the mode (or mean in the case of the

exponential distribution).

In examining the effects of distortion, the amount of density shift should be

considered when a change in expectation is desired. This is because the more density

that is shifted, the more the risk distribution differs from that prescribed by the

subject matter experts. Therefore, the decision maker should either shift density

as little as possible while achieving a maximum amount of gain in expectation, or

increase expectation as much as possible given a set amount of density shift.

Multi-parameter distortions such as the gamma-beta have the capacity to

change a distribution in more than one way simultaneously (by not focusing on

just a single tail of the distribution). The primary difficulty involved with using

the multi-parameter distortions is the intractability of the resulting integrals when

the expectations are pursued using the survivor function (even some of the single-

parameter distortions presented apparently intractable integrals).

The single-parameter proportional hazard, dual power, and exponential dis-

tortions all shift density in different ways, with the PH typically having the greatest

effect on the right tail of the distribution and the DP generally having the least.

Depending on the distribution and how much change in expectation is required or

requested by the decision maker, different distortion functions may therefore be more

efficient over different amounts of change in mean, where efficiency is defined as the

change in expectation over the shift in density.

Some references in the past have applied the same distortion function/parameter

combination to all of the risk distributions at once. This thesis holds that a superior

method is for the decision maker to pick his areas of emphasis and apply distortion

on a case-by-case basis without prior knowledge of the expectations. By using just

the single-parameter distortion functions within the coherent parametric limits, a

decision maker has the power to shift density within a risk distribution by a precise

amount and put a personal stamp on the resulting measures.
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6.2 Future Research Considerations

Since this thesis appears to be the first attempt at providing recommendations

for selecting distortion function/parameter and distribution combinations, there are

many options available for future study. The following list provides only a few of

them.

1. An efficient technique to compute the expectation of the gamma-beta distorted

random variable (and the other multi-parameter distortions) must be found. In

particular, the beta distortion is referenced in the literature, but the inability

to calculate the expectation made it difficult to comment about it within the

thesis.

2. Measures other than Rg should be considered; perhaps a measure of the move-

ment of the mode along the severity (x) axis would be preferable. The limita-

tions of Rg in terms of the “region of sensitivity” weaken it as a measure.

3. Ways to quantify/assess decision maker hesitancy in deviating from the rec-

ommendations of his SMEs should be examined. While it seems that a 30%

shift in density is considerable, no simple method of explaining this concept to

the decision maker has been presented here.

4. A formal study of the relationship between the skewness of a distribution (per-

haps using Pearson’s skewness coefficient) and either the percent change in

expectation or the Rg should be undertaken. There is some correlation be-

tween Pearson’s coefficient and the normalized mean; it appears that certain

distributions (the exponential is one case) provide more change in mean than

others when distortion is applied. This is easily observable in Table 4.10 along

the exponential distribution data.

5. The application of distortion functions to other primary distributions across

various fields should be examined, not just the four distributions listed in

this thesis. One particular limitation of the selected distributions is that no
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left-skewed, infinite-tailed distribution is included (meaning left-skewed only

over the defined range of severity). Also, the potential of interactions between

distribution parameters and distortion parameters should be considered.

6. If the variance of a distorted distribution can be easily computed, then risk-

value models discussed in [23] may have some utility as a way to summarize a

distribution after distortion has been applied, rather than simply being a com-

petitor to distorted expectation beforehand. More generally, further research

regarding the effects of distortion on variance may have a major effect on what

constitutes the “best” distortion function to apply to a given risk scenario.

6.3 Final Observations

This thesis has only scratched the surface of forming a rule base for the selection

of a distortion function. It does seem clear that in SME-examined risk scenarios,

unbounded distortion does not well-serve the decision maker or the institution which

hired the SMEs, as more distortion further discounts SME opinions. Additionally,

applying the same distortion function/parameter combination to all risk scenarios,

which seems on the surface to be a way of using distortion without “looking at the

data” first, will in fact have a predictable effect on the risk scenarios. A superior

method is believed to be using distortion selectively to push individual risk scenarios

ahead of others on a case-by case basis in accordance with the wishes of the decision

maker.

Given the budgetary importance of the CRRA process, distortion should be

given considerable attention as a way to objectively rank risk scenarios while still al-

lowing the “gut instincts” of senior-level decision makers to influence the acquisitions

process.
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Appendix A. MatLabr Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The following code is used in the creation of Table 4.10.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% call_others_efef.m

% Author: Maj Edwin J. Offutt

% This m-file is used to call other m-files in the construction of Table

% 4.10 in the thesis document. Other m-files called by this one are

% included below.

clear all; clc; table = []; table = zeros(16,9);

% 1

[op] = efexpoph(0.9,0.198042,3.5,10^-5,10^6); table(1:4,1) = op;

% 2

[op] = efexpoph(0.75,0.198042,3.5,10^-5,10^6); table(1:4,2) = op;

% 3

[op] = efexpoph(0.6,0.198042,3.5,10^-5,10^6); table(1:4,3) = op;

% 4

[op] = efexpodp(1.1,0.198042,3.5,10^-5,10^6); table(1:4,4) = op;

% 5

[op] = efexpodp(1.3,0.198042,3.5,10^-5,10^6); table(1:4,5) = op;

% 6

[op] = efexpodp(1.5,0.198042,3.5,10^-5,10^6); table(1:4,6) = op;

% 7

[op] = efexpoex(3.6,0.198042,3.5,10^-5,10^6); table(1:4,7) = op;

% 8

[op] = efexpoex(2.2,0.198042,3.5,10^-5,10^6); table(1:4,8) = op;

% 9

[op] = efexpoex(0.8,0.198042,3.5,10^-5,10^6); table(1:4,9) = op;

% 10

[op] = efweibph(0.9,1.66666667,2,2,10^-5,10^6); table(5:8,1) = op;

% 11

[op] = efweibph(0.75,1.66666667,2,2,10^-5,10^6); table(5:8,2) =

op;

% 12

[op] = efweibph(0.6,1.66666667,2,2,10^-5,10^6); table(5:8,3) = op;

% 13

[op] = efweibdp(1.1,1.66666667,2,2,10^-5,10^6); table(5:8,4) = op;

% 14
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[op] = efweibdp(1.3,1.66666667,2,2,10^-5,10^6); table(5:8,5) = op;

% 15

[op] = efweibdp(1.5,1.66666667,2,2,10^-5,10^6); table(5:8,6) = op;

% 16

[op] = efweibex(3.6,1.66666667,2,2,10^-5,10^6); table(5:8,7) = op;

% 17

[op] = efweibex(2.2,1.66666667,2,2,10^-5,10^6); table(5:8,8) = op;

% 18

[op] = efweibex(0.8,1.66666667,2,2,10^-5,10^6); table(5:8,9) = op;

% 19

[op] = eftriaph(0.9,4,1,7,4,10^-5); table(9:12,1) = op;

% 20

[op] = eftriaph(0.75,4,1,7,4,10^-5); table(9:12,2) = op;

% 21

[op] = eftriaph(0.6,4,1,7,4,10^-5); table(9:12,3) = op;

% 22

[op] = eftriadp(1.1,4,1,7,4,10^-5); table(9:12,4) = op;

% 23

[op] = eftriadp(1.3,4,1,7,4,10^-5); table(9:12,5) = op;

% 24

[op] = eftriadp(1.5,4,1,7,4,10^-5); table(9:12,6) = op;

% 25

[op] = eftriaex(3.6,4,1,7,4,10^-5); table(9:12,7) = op;

% 26

[op] = eftriaex(2.2,4,1,7,4,10^-5); table(9:12,8) = op;

% 27

[op] = eftriaex(0.8,4,1,7,4,10^-5); table(9:12,9) = op;

% 28

[op] = efunifph(0.9,4,1,7,10^-5); table(13:16,1) = op;

% 29

[op] = efunifph(0.75,4,1,7,10^-5); table(13:16,2) = op;

% 30

[op] = efunifph(0.6,4,1,7,10^-5); table(13:16,3) = op;

% 31

[op] = efunifdp(1.1,4,1,7,10^-5); table(13:16,4) = op;

% 32

[op] = efunifdp(1.3,4,1,7,10^-5); table(13:16,5) = op;

% 33

[op] = efunifdp(1.5,4,1,7,10^-5); table(13:16,6) = op;

% 34

[op] = efunifex(3.6,4,1,7,10^-5); table(13:16,7) = op;

% 35

[op] = efunifex(2.2,4,1,7,10^-5); table(13:16,8) = op;
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% 36

[op] = efunifex(0.8,4,1,7,10^-5); table(13:16,9) = op;

table

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The following 12 programs (one for each combination of the

% single-parameter distortion functions and the featured

% distributions) can be used to compute the effectiveness and

% efficiency values shown throughout Chapters 4 and 5.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 1. Exponential distribution and DP distortion

function [op] = efexpodp(b,mval,lda,ep,N)

% efexpodp(b,mval,lda,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the DP distortion

% as applied to the exponential distribution. The user enters values for b

% (the distortion parameter), mval (the undistorted median), lda (lambda,

% the exponential parameter), ep (the precision in the numerical integration,

% typically 10^-14), and N (the upper limit of the range of integration,

% typically 10^5 or more).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp(-’ num2str(lda) ’*x)’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);
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% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (1-t_01(k1))^(b-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (1-t_0S(k2))^(b-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’1-((1-(exp(-’ num2str(lda) ’.*x))).^(’ num2str(b) ’.*1))’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 2. Exponential distribution and EX distortion

function [op] =

efexpoex(c,mval,lda,ep,N)

% efexpoex(c,mval,lda,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the EX distortion

% as applied to the exponential distribution. The user enters values for c

% (the distortion parameter), mval (the undistorted median), lda (lambda,

% the exponential parameter), ep (the precision in the numerical integration,

% typically 10^-14), and N (the upper limit of the range of integration,

% typically 10^5 or more).
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format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp(-’ num2str(lda) ’*x)’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = exp(-t_01(k1)/c);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = exp(-t_0S(k2)/c);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’(1-(exp(-((exp(-’ num2str(lda) ’.*x))./

’ num2str(c) ’))))/(1-(exp(-(1./’ num2str(c) ’))))’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

A-5



op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 3. Exponential distribution and PH distortion

function [op] = efexpoph(a,mval,lda,ep,N)

% efexpoph(a,mval,lda,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the PH distortion

% as applied to the exponential distribution. The user enters values for a

% (the distortion parameter), mval (the undistorted median), lda (lambda,

% the exponential parameter), ep (the precision in the numerical integration,

% typically 10^-14), and N (the upper limit of the range of integration,

% typically 10^5 or more).

format compact format long

% create array

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp(-’ num2str(lda) ’*x)’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (t_01(k1))^(a-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;
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% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (t_0S(k2))^(a-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’(exp(-’ num2str(lda) ’.*x)).^(’ num2str(a) ’.*1)’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 4. Triangular distribution and DP distortion

function [op] = eftriadp(b,mval,a1,b1,c1,ep)

% eftriadp(b,mval,a1,b1,c1,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the DP distortion

% as applied to the triangular distribution. The user enters values for b

% (the distortion parameter), mval (the undistorted median), a1 (the lower

% limit of the triangular distribution), b1 (the upper limit), c1 (the mode)

% and ep (the precision in the numerical integration, typically 10^-14).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);
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t_0S = []; func_0S = [];

% ep = 10^-6;

S1=inline([’1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(c1) ’-’ num2str(a1) ’)))’]);

S2=inline([’((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(b1) ’-’ num2str(c1) ’))’]);

if mval <= c1

Seval=feval(S1,mval);

else

Seval=feval(S2,mval);

end

Seval = double(Seval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (1-t_01(k1))^(b-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (1-t_0S(k2))^(b-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS1 = inline([’1-((1-( (1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-’ num2str(a1) ’

).*(’ num2str(c1) ’-’ num2str(a1) ’)))) )).^(’ num2str(b) ’.*1))’]);

gS2 = inline([’1-((1-( (((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-’ num2str(a1) ’).*(

’ num2str(b1) ’-’ num2str(c1) ’))) )).^(’ num2str(b) ’.*1))’]);

xpec1 = quad(gS1,a1,c1,ep);

xpec2 = quad(gS2,c1+ep,b1,ep);

xpec = a1 + xpec1 + xpec2;

mu01 = quad(S1,a1,c1,ep);

mu02 = quad(S2,c1+ep,b1,ep);

mu0 = a1 + mu01 + mu02;

Z = xpec/mu0;
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op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 5. Triangular distribution and EX distortion

function [op] =

eftriaex(c,mval,a1,b1,c1,ep)

% eftriaex(c,mval,a1,b1,c1,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the EX distortion

% as applied to the triangular distribution. The user enters values for c

% (the distortion parameter), mval (the undistorted median), a1 (the lower

% limit of the triangular distribution), b1 (the upper limit), c1 (the mode)

% and ep (the precision in the numerical integration, typically 10^-14).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S1=inline([’1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(c1) ’-’ num2str(a1) ’)))’]);

S2=inline([’((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(b1) ’-’ num2str(c1) ’))’]);

if mval <= c1

Seval=feval(S1,mval);

else

Seval=feval(S2,mval);

A-9



end

Seval = double(Seval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = exp(-t_01(k1)/c);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = exp(-t_0S(k2)/c);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS1 = inline([’(1-(exp(-(( (1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’).*(’ num2str(c1) ’-’ num2str(a1) ’)))) )/’ num2str(c) ’

))))/(1-(exp(-(1./’ num2str(c) ’))))’]);

gS2 = inline([’(1-(exp(-(( (((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’).*(’ num2str(b1) ’-’ num2str(c1) ’))) )/’ num2str(c) ’

))))/(1-(exp(-(1./’ num2str(c) ’))))’]);

xpec1 = quad(gS1,a1,c1,ep);

xpec2 = quad(gS2,c1+ep,b1,ep);

xpec = a1 + xpec1 + xpec2;

mu01 = quad(S1,a1,c1,ep);

mu02 = quad(S2,c1+ep,b1,ep);

mu0 = a1 + mu01 + mu02;

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% 6. Triangular distribution and PH distortion

function [op] = eftriaph(a,mval,a1,b1,c1,ep)

% eftriaph(a,mval,a1,b1,c1,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the PH distortion

% as applied to the triangular distribution. The user enters values for a

% (the distortion parameter), mval (the undistorted median), a1 (the lower

% limit of the triangular distribution), b1 (the upper limit), c1 (the mode)

% and ep (the precision in the numerical integration, typically 10^-14).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S1=inline([’1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(c1) ’-’ num2str(a1) ’)))’]);

S2=inline([’((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-

’ num2str(a1) ’)*(’ num2str(b1) ’-’ num2str(c1) ’))’]);

if mval <= c1

Seval=feval(S1,mval);

else

Seval=feval(S2,mval);

end

Seval = double(Seval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (t_01(k1))^(a-1);

end

Q = trapz(t_01,func_01);
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Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (t_0S(k2))^(a-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS1 = inline([’(1-(((x-’ num2str(a1) ’).^2)/((’ num2str(b1) ’-’ num2str(a1) ’

).*(’ num2str(c1) ’-’ num2str(a1) ’)))).^(’ num2str(a) ’.*1)’]);

gS2 = inline([’(((’ num2str(b1) ’-x).^2)/((’ num2str(b1) ’-’ num2str(a1) ’

).*(’ num2str(b1) ’-’ num2str(c1) ’))).^(’ num2str(a) ’.*1)’]);

xpec1 = quad(gS1,a1,c1,ep);

xpec2 = quad(gS2,c1+ep,b1,ep);

xpec = a1 + xpec1 + xpec2;

mu01 = quad(S1,a1,c1,ep);

mu02 = quad(S2,c1+ep,b1,ep);

mu0 = a1 + mu01 + mu02;

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 7. Uniform distribution and DP distortion

function [op] =

efunifdp(b,mval,t1,t2,ep)

% efunifdp(b,mval,t1,t2,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the DP distortion

% as applied to the uniform distribution. The user enters values for b

% (the distortion parameter), mval (the undistorted median), t1 (the lower

% limit of the uniform distribution), t2 (the upper limit),

% and ep (the precision in the numerical integration, typically 10^-14).
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format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’-’ num2str(t1) ’))’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (1-t_01(k1))^(b-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (1-t_0S(k2))^(b-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’1-((1-( 1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’

-’ num2str(t1) ’)) )).^(’ num2str(b) ’.*1))’]);

xpec = t1 + quad(gS,t1,t2,ep);

mu0 = t1 + quad(S,t1,t2,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;
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op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 8. Uniform distribution and EX distortion

function [op] =

efunifex(c,mval,t1,t2,ep)

% efunifex(c,mval,t1,t2,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the EX distortion

% as applied to the uniform distribution. The user enters values for c

% (the distortion parameter), mval (the undistorted median), t1 (the lower

% limit of the uniform distribution), t2 (the upper limit),

% and ep (the precision in the numerical integration, typically 10^-14).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’-’ num2str(t1) ’))’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = exp(-t_01(k1)/c);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;
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% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = exp(-t_0S(k2)/c);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’(1-(exp(-(( 1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’-

’ num2str(t1) ’)) )./’ num2str(c) ’))))/(1-(exp(-(1./’ num2str(c) ’))))’]);

xpec = t1 + quad(gS,t1,t2,ep);

mu0 = t1 + quad(S,t1,t2,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 9. Uniform distribution and PH distortion

function [op] = efunifph(a,mval,t1,t2,ep)

% efunifph(a,mval,t1,t2,ep)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the PH distortion

% as applied to the uniform distribution. The user enters values for a

% (the distortion parameter), mval (the undistorted median), t1 (the lower

% limit of the uniform distribution), t2 (the upper limit),

% and ep (the precision in the numerical integration, typically 10^-14).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);
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t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’-’ num2str(t1) ’))’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (t_01(k1))^(a-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (t_0S(k2))^(a-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’( 1 - ((x-’ num2str(t1) ’)/(’ num2str(t2) ’-

’ num2str(t1) ’)) ).^(’ num2str(a) ’.*1)’]);

xpec = t1 + quad(gS,t1,t2,ep);

mu0 = t1 + quad(S,t1,t2,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 10. Weibull distribution and DP distortion

function [op] = efweibdp(b,mval,be1,t1,ep,N)
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% efweibph(b,mval,be1,t1,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the DP distortion

% as applied to the Weibull distribution. The user enters values for b

% (the distortion parameter), mval (the undistorted median), be1 (the beta

% parameter of the uniform distribution), t1 (the theta parameter),

% ep (the precision in the numerical integration, typically 10^-14), and

% N (the upper limit of the range of integration, typically 10^5 or more).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp((-1)*((x/’ num2str(t1) ’).^’ num2str(be1) ’))’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (1-t_01(k1))^(b-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (1-t_0S(k2))^(b-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation
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gS = inline([’1-((1-( exp((-1).*((x/’ num2str(t1) ’).^

’ num2str(be1) ’)) )).^(’ num2str(b) ’.*1))’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 11. Weibull distribution and EX distortion

function [op] = efweibex(c,mval,be1,t1,ep,N)

% efweibph(c,mval,be1,t1,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the EX distortion

% as applied to the Weibull distribution. The user enters values for c

% (the distortion parameter), mval (the undistorted median), be1 (the beta

% parameter of the uniform distribution), t1 (the theta parameter),

% ep (the precision in the numerical integration, typically 10^-14), and

% N (the upper limit of the range of integration, typically 10^5 or more).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp((-1)*((x/’ num2str(t1) ’).^’ num2str(be1) ’))’]);

Seval=feval(S,mval);

A-18



Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = exp(-t_01(k1)/c);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = exp(-t_0S(k2)/c);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’(1-(exp(-(( exp((-1).*((x/’ num2str(t1) ’).^

’ num2str(be1) ’)) )./’ num2str(c) ’))))/(1-(exp(-(1./’ num2str(c) ’))))’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;

op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 12. Weibull distribution and PH distortion

function [op] = efweibph(a,mval,be1,t1,ep,N)

% efweibph(a,mval,be1,t1,ep,N)

% Author: Maj Edwin J. Offutt

% This m-file calculates efficiency and effectiveness of the PH distortion

% as applied to the Weibull distribution. The user enters values for a

% (the distortion parameter), mval (the undistorted median), be1 (the beta

% parameter of the uniform distribution), t1 (the theta parameter),

% ep (the precision in the numerical integration, typically 10^-14), and
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% N (the upper limit of the range of integration, typically 10^5 or more).

format compact format long

% create required arrays

op=[]; op=zeros(4, 1);

t_01 = []; t_01 = 0.000002:0.000002:1.0; func_01 = []; func_01 =

1:length(t_01);

t_0S = []; func_0S = [];

% ep = 10^-6;

S=inline([’exp((-1)*((x/’ num2str(t1) ’).^’ num2str(be1) ’))’]);

Seval=feval(S,mval);

Seval = double(Seval);

t_0S = 0.000002:0.000002:Seval;

func_0S = 1:length(t_0S);

% figure integral value over [0,1]

for k1 = 1:length(t_01)

func_01(k1) = (t_01(k1))^(a-1);

end

Q = trapz(t_01,func_01);

Q = double(Q);

K = 1/Q;

% figure integral value over [0,S(x)], where S(x)=Seval

for k2 = 1:length(t_0S)

func_0S(k2) = (t_0S(k2))^(a-1);

end

geval = K*trapz(t_0S,func_0S);

geval = double(geval);

rat = geval/Seval;

% compute the expectation

gS = inline([’( exp((-1).*((x/’ num2str(t1) ’).^

’ num2str(be1) ’)) ).^(’ num2str(a) ’.*1)’]);

xpec = quad(gS,0,N,ep);

mu0 = quad(S,0,N,ep);

Z = xpec/mu0;

op(1) = xpec;

op(2) = rat;
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op(3) = Z;

op(4) = Z/rat;

op

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The following four programs can be used to produce the distortion

% effects plots shown in Figures 4.6, 4.8, 4.10, and 4.12.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 1. Exponential distribution

function output = expo_plot_all4(a,b,c,lda,step,N)

% Author: Major Edwin J. Offutt

% User enters distortion parameter values of 0 < a <= 1, b >= 1,

% c >= 0, lambda (lda) > 0, step size for the numerical derivative (typically 0.05),

% and N (the upper limit of the range of integration, typically 10^5 or more).

% The m-file returns a plot of all four thesis distortions applied to the exponential

% distribution on a single set of axes, as well as the undistorted PDF.

clc

format compact

format long

% S=inline([num2str(lda) ’ * exp((-1)*’ num2str(lda) ’*x)’])

S=inline([’exp((-1)*’ num2str(lda) ’*x)’]);

% ********************************************** gamma beta

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’) end

% a, b, c

X=[]; G=[]; for m = 0:step:N

X = [X; m];

end K=1/quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’

num2str(b) ’-1)).*(exp(-x./’ num2str(c) ’))’]),0,1); for n =

0:step:N

z=feval(S,n);

z=double(z);

A-21



G=[G; K*quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’ num2str(b) ’-1)).

*(exp(-x./’ num2str(c) ’))’]),0,z)];

end X=double(X); G=double(G);

% plot(X,Y);

% hold on;

Gpdf = [];

for k = 2:length(G)

Gpdf=[Gpdf; G(k-1)-G(k)];

end

Gpdf=Gpdf*20; plot(X(1:length(X)-1),Gpdf,’k’); hold on;

% ********************************************** proportional hazard

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

P=[];

% for m = 0:step:N

% X = [X; m];

% end

K=1/quad(inline([’x.^(’ num2str(a) ’-1)’]),0,1); for n = 0:step:N

z=feval(S,n);

z=double(z);

P=[P; K*quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,z)];

end P=double(P);

% plot(X,Y);

% hold on;

Ppdf = [];

for k = 2:length(P)

Ppdf=[Ppdf; P(k-1)-P(k)];

end

Ppdf=Ppdf*20; plot(X(1:length(X)-1),Ppdf, ’--k’);
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% ********************************************** dual power

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

D=[];

% for m = 0:step:N

% X = [X; m];

% end

K=1/quad(inline([’(1-x).^(’ num2str(b) ’-1)’]),0,1); for n =

0:step:N

z=feval(S,n);

z=double(z);

D=[D; K*quad(inline([’(1-x).^(’ num2str(b) ’-1)’]),0,z)];

end D=double(D);

% plot(X,Y);

% hold on;

Dpdf = [];

for k = 2:length(D)

Dpdf=[Dpdf; D(k-1)-D(k)];

end

Dpdf=Dpdf*20; plot(X(1:length(X)-1),Dpdf, ’-.k’);

% ********************************************** exponential

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

E=[];

% for m = 0:step:N

% X = [X; m];

% end
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K=1/quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,1); for n =

0:step:N

z=feval(S,n);

z=double(z);

E=[E; K*quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,z)];

end E=double(E);

% plot(X,Y);

% hold on;

Epdf = [];

for k = 2:length(E)

Epdf=[Epdf; E(k-1)-E(k)];

end

Epdf=Epdf*20; plot(X(1:length(X)-1),Epdf, ’:k’);

% ********************************************** no distortion

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

M=[];

% for m = 0:step:N

% X = [X; m];

% end

K=1/quad(inline([’(x.^0)’]),0,1); for n = 0:step:N

z=feval(S,n);

z=double(z);

M=[M; K*quad(inline([’(x.^0)’]),0,z)];

end M=double(M);

% plot(X,Y);

% hold on;

Mpdf = [];

for k = 2:length(M)

Mpdf=[Mpdf; M(k-1)-M(k)];

end
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Mpdf=Mpdf*20; plot(X(1:length(X)-1),Mpdf, ’--k*’);

title(’EXPONENTIAL DENSITY, solid=GB, ----=PH, -.-.=DP, ....=EX,

--*-=None’)

% ********************************************** create output to file

% *************************************************************************

op = [X(1:length(X)-1) Gpdf Ppdf Dpdf Epdf Mpdf];

save MLout\expplot4.out op -ASCII

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 2. Triangular distribution

function output = tria_plot_all4(a,b,c,b1,c1,step,N)

% Author: Major Edwin J. Offutt

% User enters distortion parameter values of 0 < a <= 1, b >= 1,

% c >= 0, b1 (lower limit of the triangular distribution, c1 (mode

% for the triangular) step size for the numerical derivative (typically 0.05),

% and N (the upper limit of the range of integration, typically 10^5 or more).

% The m-file returns a plot of all four thesis distortions applied to the

% triangular distribution on a single set of axes, as well as the undistorted PDF.

clc

format compact

format long

a1=1;

N=b1;

S1=inline([’1-(((x-’ num2str(a1) ’)^2)/((’ num2str(b1) ’-’ num2str(a1) ’

)*(’ num2str(c1) ’-’ num2str(a1) ’)))’]);

S2=inline([’((’ num2str(b1) ’-x)^2)/((’ num2str(b1) ’-’ num2str(a1) ’

)*(’ num2str(b1) ’-’ num2str(c1) ’))’]);

% ********************************************** gamma beta

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)
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disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

X=[]; G=[]; for m = 1:step:b1

X = [X; m];

end K=1/quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’

num2str(b) ’-1)).*(exp(-x./’ num2str(c) ’))’]),0,1); for n =

1:step:c1

z=feval(S1,n);

z=double(z);

G=[G; K*quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’ num2str(b) ’-1))

.*(exp(-x./’ num2str(c) ’))’]),0,z)];

end for n = c1+step:step:b1

z=feval(S2,n);

z=double(z);

G=[G; K*quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’ num2str(b) ’-1))

.*(exp(-x./’ num2str(c) ’))’]),0,z)];

end X=double(X); G=double(G);

% plot(X,Y);

Gpdf = [];

for k = 2:length(G)

Gpdf=[Gpdf; G(k-1)-G(k)];

end

Gpdf=Gpdf*10; plot(X(1:length(X)-1),Gpdf, ’k’); hold on;

% ********************************************** proportional hazard

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

P=[];

% for m = 1:step:b1

% X = [X; m];

% end

K=1/quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,1); for n =

1:step:c1
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z=feval(S1,n);

z=double(z);

P=[P; K*quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,z)];

end for n = c1+step:step:b1

z=feval(S2,n);

z=double(z);

P=[P; K*quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,z)];

end P=double(P);

% plot(X,Y);

Ppdf = [];

for k = 2:length(P)

Ppdf=[Ppdf; P(k-1)-P(k)];

end

Ppdf=Ppdf*10; plot(X(1:length(X)-1),Ppdf, ’--k’);

% ********************************************** dual power

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

D=[];

% for m = 1:step:b1

% X = [X; m];

% end

K=1/quad(inline([’((1-x).^(’ num2str(b) ’-1))’]),0,1); for n =

1:step:c1

z=feval(S1,n);

z=double(z);

D=[D; K*quad(inline([’((1-x).^(’ num2str(b) ’-1))’]),0,z)];

end for n = c1+step:step:b1

z=feval(S2,n);

z=double(z);

D=[D; K*quad(inline([’((1-x).^(’ num2str(b) ’-1))’]),0,z)];

end D=double(D);

% plot(X,Y);

Dpdf = [];
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for k = 2:length(D)

Dpdf=[Dpdf; D(k-1)-D(k)];

end

Dpdf=Dpdf*10; plot(X(1:length(X)-1),Dpdf, ’-.k’);

% ********************************************** exponential

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

E=[];

% for m = 1:step:b1

% X = [X; m];

% end

K=1/quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,1); for n =

1:step:c1

z=feval(S1,n);

z=double(z);

E=[E; K*quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,z)];

end for n = c1+step:step:b1

z=feval(S2,n);

z=double(z);

E=[E; K*quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,z)];

end E=double(E);

% plot(X,Y);

Epdf = [];

for k = 2:length(E)

Epdf=[Epdf; E(k-1)-E(k)];

end

Epdf=Epdf*10; plot(X(1:length(X)-1),Epdf, ’:k’);

% ********************************************** no distortion

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)
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disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

M=[];

% for m = 1:step:b1

% X = [X; m];

% end

K=1/quad(inline([’(x.^0)’]),0,1); for n = 1:step:c1

z=feval(S1,n);

z=double(z);

M=[M; K*quad(inline([’(x.^0)’]),0,z)];

end for n = c1+step:step:b1

z=feval(S2,n);

z=double(z);

M=[M; K*quad(inline([’(x.^0)’]),0,z)];

end M=double(M);

% plot(X,Y);

Mpdf = [];

for k = 2:length(M)

Mpdf=[Mpdf; M(k-1)-M(k)];

end

Mpdf=Mpdf*10; plot(X(1:length(X)-1),Mpdf, ’--k*’);

title(’TRIANGULAR DENSITY, solid=GB, ----=PH, -.-.=DP, ....=EX,

--*-=None’)

% ********************************************** create output to file

% *************************************************************************

op = [X(1:length(X)-1) Gpdf Ppdf Dpdf Epdf Mpdf];

save MLout\triplot4.out op -ASCII

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 3. Uniform distribution

function output = unif_plot_all4(a,b,c,t2,step,N)
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% Author: Major Edwin J. Offutt

% User enters distortion parameter values of 0 < a <= 1, b >= 1,

% c >= 0, t2 (lower limit of the triangular distribution,

% step size for the numerical derivative (typically 0.05),

% and N (the upper limit of the range of integration, typically 10^5 or more).

% The m-file returns a plot of all four thesis distortions applied to the

% uniform distribution on a single set of axes, as well as the undistorted PDF.

clc

format compact

format long

% S=inline([num2str(lda) ’ * exp((-1)*’ num2str(lda) ’*x)’])

S=inline([’1 - ((x - 1) / (’ num2str(t2) ’-1))’]);

% ********************************************** gamma beta

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

X=[]; G=[]; for m = 1:step:t2

X = [X; m];

end K=1/quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’

num2str(b) ’-1)).*(exp(-x./’ num2str(c) ’))’]),0,1); for n =

1:step:N

z=feval(S,n);

z=double(z);

G=[G; K*quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’ num2str(b) ’-1))

.*(exp(-x./’ num2str(c) ’))’]),0,z)];

end X=double(X); G=double(G);

% plot(X,Y);

Gpdf = [];

for k = 2:length(G)

Gpdf=[Gpdf; G(k-1)-G(k)];

end

Gpdf=Gpdf*10; plot(X(1:length(X)-1),Gpdf, ’k’); hold on;
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% ********************************************** proportional hazard

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

P=[];

% for m = 1:step:t2

% X = [X; m];

% end

K=1/quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,1); for n =

1:step:N

z=feval(S,n);

z=double(z);

P=[P; K*quad(inline([’(x.^(’ num2str(a) ’-1))’]),0,z)];

end P=double(P);

Ppdf = [];

for k = 2:length(P)

Ppdf=[Ppdf; P(k-1)-P(k)];

end

Ppdf=Ppdf*10; plot(X(1:length(X)-1),Ppdf, ’--k’);

% ********************************************** dual power

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

D=[];

% for m = 1:step:t2

% X = [X; m];

% end

K=1/quad(inline([’((1-x).^(’ num2str(b) ’-1))’]),0,1); for n =

1:step:N

z=feval(S,n);

z=double(z);
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D=[D; K*quad(inline([’((1-x).^(’ num2str(b) ’-1))’]),0,z)];

end D=double(D);

Dpdf = [];

for k = 2:length(D)

Dpdf=[Dpdf; D(k-1)-D(k)];

end

Dpdf=Dpdf*10; plot(X(1:length(X)-1),Dpdf, ’-.k’);

% ********************************************** exponential

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >= 0’)

end

% a, b, c

E=[];

% for m = 1:step:t2

% X = [X; m];

% end

K=1/quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,1); for n =

1:step:N

z=feval(S,n);

z=double(z);

E=[E; K*quad(inline([’(exp(-x./’ num2str(c) ’))’]),0,z)];

end E=double(E);

Epdf = [];

for k = 2:length(E)

Epdf=[Epdf; E(k-1)-E(k)];

end

Epdf=Epdf*10; plot(X(1:length(X)-1),Epdf, ’:k’);

% ********************************************** no distortion

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,
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and/or parameter "c" must be c >= 0’)

end

% a, b, c

M=[];

% for m = 1:step:t2

% X = [X; m];

% end

K=1/quad(inline([’(x.^0)’]),0,1); for n = 1:step:N

z=feval(S,n);

z=double(z);

M=[M; K*quad(inline([’(x.^0)’]),0,z)];

end M=double(M);

Mpdf = [];

for k = 2:length(M)

Mpdf=[Mpdf; M(k-1)-M(k)];

end

Mpdf=Mpdf*10; plot(X(1:length(X)-1),Mpdf, ’--k*’);

title(’UNIFORM DENSITY, solid=GB, ----=PH, -.-.=DP, ....=EX,

--*-=None’)

% ********************************************** create output to file

% *************************************************************************

op = [X(1:length(X)-1) Gpdf Ppdf Dpdf Epdf Mpdf];

save MLout\uniplot4.out op -ASCII

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 4. Weibull distribution

function output = weib_plot_all4(a,b,c,t1,be1,step,N)

% Author: Major Edwin J. Offutt

% User enters distortion parameter values of 0 < a <= 1, b >= 1,

% c >= 0, theta (t1), beta (be1), step size for the numerical derivative (typically 0.05),

% and N (the upper limit of the range of integration, typically 10^5 or more).

% The m-file returns a plot of all four thesis distortions applied to the

% Weibull distribution on a single set of axes, as well as the undistorted PDF.
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clc

format compact

format short g

xi0=0;

a1=t1;

c1=be1;

S=inline([’exp((-1)*(((x-’ num2str(xi0) ’)/’ num2str(a1) ’)^’ num2str(c1) ’))’]);

% ********************************************** gamma beta

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >=0’)

end

% a, b, c

X=[]; G=[]; for m = ceil(xi0):step:(ceil(xi0)+N)

X=[X; m];

end K=1/quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’

num2str(b) ’-1)).*(exp(-x./’ num2str(c) ’))’]),eps,1); for n =

ceil(xi0):step:(ceil(xi0)+N)

z=feval(S,n);

if z < eps

z = eps;

end

z=double(z);

G=[G; K*quad(inline([’(x.^(’ num2str(a) ’-1)).*((1-x).^(’ num2str(b) ’-1))

.*(exp(-x./’ num2str(c) ’))’]),eps,z)];

end X=double(X); G=double(G);

% plot(X,Y);

% hold on;

Gpdf = [];

for k = 2:length(G)

Gpdf=[Gpdf; G(k-1)-G(k)];

end

Gpdf=Gpdf*10; plot(X(1:length(X)-1),Gpdf, ’k’); hold on;
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% ********************************************** proportional hazard

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >=0’)

end

% a, b, c

P=[];

% for m = ceil(xi0):step:(ceil(xi0)+N)

% X=[X; m];

% end

K=1/quad(inline([’(x.^(’ num2str(a) ’-1))’]),eps,1); for n =

ceil(xi0):step:(ceil(xi0)+N)

z=feval(S,n);

if z < eps

z = eps;

end

z=double(z);

P=[P; K*quad(inline([’(x.^(’ num2str(a) ’-1))’]),eps,z)];

end P=double(P);

% plot(X,Y);

% hold on;

Ppdf = [];

for k = 2:length(P)

Ppdf=[Ppdf; P(k-1)-P(k)];

end

Ppdf=Ppdf*10; plot(X(1:length(X)-1),Ppdf, ’--k’);

% ********************************************** dual power

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >=0’)

end

% a, b, c

D=[];
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% for m = ceil(xi0):step:(ceil(xi0)+N)

% X=[X; m];

% end

K=1/quad(inline([’(1-x).^(’ num2str(b) ’-1)’]),eps,1); for n =

ceil(xi0):step:(ceil(xi0)+N)

z=feval(S,n);

if z < eps

z = eps;

end

z=double(z);

D=[D; K*quad(inline([’(1-x).^(’ num2str(b) ’-1)’]),eps,z)];

end D=double(D);

% plot(X,Y);

% hold on;

Dpdf = [];

for k = 2:length(D)

Dpdf=[Dpdf; D(k-1)-D(k)];

end

Dpdf=Dpdf*10; plot(X(1:length(X)-1),Dpdf, ’-.k’);

% ********************************************** exponential

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >=0’)

end

% a, b, c

E=[];

% for m = ceil(xi0):step:(ceil(xi0)+N)

% X=[X; m];

% end

K=1/quad(inline([’(exp(-x./’ num2str(c) ’))’]),eps,1); for n =

ceil(xi0):step:(ceil(xi0)+N)

z=feval(S,n);

if z < eps

z = eps;

end

z=double(z);

E=[E; K*quad(inline([’(exp(-x./’ num2str(c) ’))’]),eps,z)];
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end E=double(E);

% plot(X,Y);

% hold on;

Epdf = [];

for k = 2:length(E)

Epdf=[Epdf; E(k-1)-E(k)];

end

Epdf=Epdf*10; plot(X(1:length(X)-1),Epdf, ’:k’);

% ********************************************** no distortion

% *************************************************************************

if (a > 1) | (a <= 0) | (b < 1) | (c < 0)

disp(’ERROR: Parameter "a" must be 0 <= a <= 1, parameter "b" must be b >= 1,

and/or parameter "c" must be c >=0’)

end

% a, b, c

M=[];

% for m = ceil(xi0):step:(ceil(xi0)+N)

% X=[X; m];

% end

K=1/quad(inline([’(x.^0)’]),eps,1); for n =

ceil(xi0):step:(ceil(xi0)+N)

z=feval(S,n);

if z < eps

z = eps;

end

z=double(z);

M=[M; K*quad(inline([’(x.^0)’]),eps,z)];

end M=double(M);

% plot(X,Y);

% hold on;

Mpdf = [];

for k = 2:length(M)

Mpdf=[Mpdf; M(k-1)-M(k)];

end

Mpdf=Mpdf*10; plot(X(1:length(X)-1),Mpdf, ’--k*’);
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title(’WEIBULL DENSITY, solid=GB, ----=PH, -.-.=DP, ....=EX,

--*-=None’)

% ********************************************** create output to file

% *************************************************************************

op = [X(1:length(X)-1) Gpdf Ppdf Dpdf Epdf Mpdf];

save MLout\weiplot4.out op -ASCII

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A-38



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

21-03-2005 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 
Apr 2004 – Mar 2005 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
Selection and Application of Distorted Risk Measures 
  
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Offutt, Edwin J., Major, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GOR/ENS/05-14 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 N/A 
  

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
     This thesis develops and illustrates a methodology for the selection of probability distributions and distortion functions associated with risk 
scenarios resulting from military capability shortfalls. Distorted (or transformed) risk measures are analyzed and applied to account for loss 
scenarios that may occur with low frequency but result in catastrophic outcomes.  After reviewing the rudimentary concepts of distortion, four well-
known continuous distributions, suitable for modeling risk scenarios, are chosen using defined criteria. Based on subject matter expert inputs, a 
simple method for assigning exactly one of the four distributions to any risk scenario is proposed. Four parametric distortion functions from the 
finance and insurance literature are then selected and applied to each of the chosen distributions. The distortion effects are examined analytically, 
graphically, and empirically, and broad-based recommendations are recorded as to the instances when one distortion function might be preferred 
over others. An end-to-end notional problem – in which a subset of available mitigation measures are selected to counteract a multi-faceted risk 
environment – illustrates the means by which the proposed methodology may be used to affect future systems acquisition through the Capabilities 
Review and Risk Assessment (CRRA) process of the United States Air Force. 
  
15. SUBJECT TERMS 
       Distortion Function; Distorted Risk Measure; Capability Assessment; Risk Analysis  

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Dr. Jeffrey P. Kharoufeh (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

159 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4306; e-mail:  Jeffrey.Kharoufeh@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Selection and Application of Distorted Risk Measures
	Recommended Citation

	ejo_thesis_template.dvi

