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Abstract 

In the first ever neutron irradiation study of AlGaN/GaN MODFETs, devices 

were irradiated to a total fluence of 1.2x1016 n-cm-2 1 MeV equivalent (Si) neutrons. 

Devices irradiated at 80 K exhibit significant persistent electrical degradation at  

5.4 rad (Si), whereas those irradiated at elevated temperatures exhibit transient increases 

in gate and drain current up to 392 krad (Si).  

I-V measurements indicate that substantial radiation-induced increased gate and 

drain currents occur only at low-temperature irradiations. The introduction of a high 

density of donor defects is hypothesized as the primary cause of both increased values. 

The defects are persistent at temperatures <300 K. However, subsequent irradiations at 

temperatures >300 K accelerate annealing. The primary mechanism of accelerated 

annealing is thought to be a combination of device self-heating and high temperature 

ambient during irradiation. Irradiating at temperatures >300 K effectively nullifies 

accumulated dose at 1.2x1016 n-cm-2. 

Analysis of the Schottky contacts has determined that the devices are tunneling 

dominated at all temperatures. A high density of surface states introduced at the  

metal-semiconductor junction following irradiation facilitates defect-assisted tunneling 

across the barrier. Current-voltage characteristics in a wide temperature range are used to 

determine the Schottky barrier height and associated diode parameters utilizing a unique 

six-parameter fitting routine. 
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TEMPERATURE DEPENDENT CURRENT-VOLTAGE MEASUREMENTS OF 

NEUTRON IRRADIATED Al0.27Ga0.73N/GaN MODULATION DOPED FIELD 

EFFECT TRANSISTORS 

 

I. Introduction 

Semiconductor electronics have penetrated nearly all aspects of human existence. 

Ubiquitous acceptance of such devices is attributable to unremitting evolutionary change. 

Consumer demand for faster, smaller, and more economical electronics has fueled near 

exponential growth in processing power. Radiation susceptibility, however, remains a 

fundamental attribute of semiconductor electronics that is principally extraneous to 

terrestrial users. Although terrestrial sources of radiation are typically negligible, device 

operation in the harsh space or nuclear radiation environment “can cause severe 

degradation of the device performance and of its operating life. These radiation effects 

are of both practical and scientific interest [1].” 

III-V Nitride Revolution 

Consisting of greater than one-fourth of the earth's crust by weight, Silicon (Si) 

has been the predominant choice of material for the microelectronics industry during the 

past half century. In addition to profuse availability, Si readily forms an insulating oxide 

and large crystal growth of pure Si is more economical and straightforward to that of 

other materials. Therefore, it logically follows that the preponderance of efforts and 
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advancements in material processes and radiation effects testing on semiconductors 

focuses on Si. 

Although Si remains the accepted choice of material for most terrestrial uses, 

there are opportunities for specialty compound materials to evolve for niche aerospace, 

telecommunications, and high-power computing applications for use in radiation 

environments. Interest in these materials has greatly increased recently as commercial 

foundries struggle with diminishing returns on investments in attempts to further reduce 

Si device feature sizes. Unable to exploit economies-of-scale, hardened-by-design 

devices remain costly and inefficient [2]. 

Wide bandgap (WBG) III-V (group-III nitrides) material systems such as 

Aluminum Nitride (AlN), Gallium Nitride (GaN), and Aluminum Gallium Nitride 

(AlGaN), are fast gaining traction as practical cure-alls for applications that demand 

high-power, temperature-insensitive, fast, and radiation tolerant devices. Previously 

thought useful only as insulating materials, III-V materials specifically exhibit material 

properties that make it well suited to applications in harsh environments. Demonstrating 

high thermal conductivity, chemical inertness and exceptional mechanical stability, III-V 

semiconductors can function in environments where common silicon or gallium arsenide 

(GaAs) based devices will not operate or at least need to be protected by specially 

designed packages [3]. 

In addition to possessing favorable mechanical properties, III-V nitride  

material systems have large direct bandgaps that range from 4.2 eV for GaN to 6.2 eV for 

AlN, making them immune to many thermally activated processes [4]. Other favorable 
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electrical properties include large heterojunction conduction band discontinuities, high 

charged carrier saturation velocity, and low dielectric constants [5].    

Because the study of III-V devices is still in its formative years, many reports 

offer only anecdotal evidence of dramatically improved radiation hardness. Bulk AlGaN 

and GaN is apparently more radiation hard than both Si and GaAs, primarily owing the 

hardness to the WBG and high nitrogen displacement energy [6]. Furthermore, published 

reports by various authors have all concluded that irradiated III-V-based devices exhibit 

more radiation hardness than both Si and GaAs-based devices [7], [8]. However, many 

reports are device and radiation dependent, providing coherent yet inconclusive results. 

Of particular interest is the effect of neutron irradiation on Al0.27Ga0.73N/GaN  

modulation-doped field-effect transistors (MODFETs) with wide gate widths and 0.27 

aluminum mole fraction. To date, there is no published report documenting the hardness 

of these transistor devices to neutron irradiation. 

Given that many satellite systems are required to operate in the high radiation 

environment of space for between five to fifteen years, a clear understanding of radiation 

effects is essential for successful and confident integration of MODFETs into  

space-borne systems. Such an endeavor requires prior knowledge and characterization of 

device and material responses to radiation. In characterizing the problem, one must ask 

the following questions:  What environment is the device likely to encounter, and how do 

radiation interactions within the device alter its behavior?  Theory, modeling, and 

experimentation are employed as a threefold approach to answer these questions. It is 

now appropriate to establish the problem statement, which will be the focus of this thesis. 
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Problem Statement 

What are the effects of 1 MeV Equivalent (Si) Neutrons on the transport 

mechanism of charged carriers within Al0.27Ga0.73N/GaN MODFETs?  

Specifically, what is the temperature dependence of the current-voltage 

characteristics and what is the neutron damage constant of GaN for 

transconductance? 

Hypothesis 

The introduction of a high density of defect donors by neutron irradiation result in 

an increased two-dimensional electron gas, gate leakage, and drain current. 

Sufficiently high densities of donor defects cause total failure of the transistor 

action. Additionally, the introduction of dislocations and surface states 

significantly increase defect-assisted tunneling current through the Schottky 

contact and AlGaN layer. Limited by the creation, persistence, and location of 

defects, these particular AlGaN/GaN MODFETs are intrinsically radiation 

hardened with respect to Si or GaAs-based field-field-effect transistors. 

Objectives 

1. Determine the effects of a long-term room temperature anneal on previously 
electron irradiated Al0.27Ga0.73N/GaN MODFETs. 
2. Determine neutron fluences and doses that change MODFET operation and 
induce failure of transistor action. 
3. Correlate radiation induced damage with possible change in carrier transport 
mechanism. 
4. Determine the neutron damage constant of GaN for transconductance as a 
function of neutron fluence. 
4. Determine post neutron irradiation annealing behavior.  
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Scope 

This research is limited to a specific study on the effects that 1 MeV equivalent 

(Si) neutrons have on Al0.27Ga0.73N/GaN MODFETs. Experimentation consists of  

current-voltage (I-V) measurements in the wide temperature range of 80-300 K. 

Irradiations within the Ohio State University Research Reactor (OSURR) are conducted 

at both 80 K and ambient core temperature. A determination of the dominant carrier 

transport mechanism at various neutron fluences is made along with the first ever neutron 

damage constant of GaN for transconductance. Other useful measurement techniques 

such as capacitance-voltage (C-V), Hall Effect, or deep level transient spectroscopy 

(DLTS) must be considered outside the scope of this study. Instead, all conclusions will 

be resolved from experimental results, modeling, and theoretical considerations as they 

relate to the transport of charged carriers from the gate metal interface through the 

AlGaN layer and into the conduction channel.  

Approach 

The approach of this research endeavor includes a threefold methodology of 

continuous theoretical development, modeling, and experimental measurements. 

Theoretical development primarily consists of utilizing and modifying existing theory to 

create a more complete representation of observed MODFET behavior. No new 

theoretical considerations are established. Instead, measurements are interpreted within 

the framework of existing knowledge, and applied innovatively. Modeling consists of 

fitting experimentally obtained Schottky diode current measurements to expected 

mechanisms of charged carrier transport over/through the Schottky barrier. Experimental 
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measurements involve a full suite of temperature-dependent I-V (I-V-T) characteristics 

including: drain and gate current, threshold voltage, transconductance, and the extraction 

of relevant Schottky diode parameters.  

The overall measurement approach requires both pre- and post-irradiation 

characterization baselines. Initiated the day preceding an irradiation, measurements 

typically take 8-12 hours. The primary disadvantage of this technique is the risk of device 

breakage prior to irradiation and potential loss of preirradiation characterization baseline 

measurements. That is to say, twelve-hour lead-time is desired for all testing, however, 

compressed schedules dictate otherwise. 

An initial approach to device irradiation requires a continuous irradiation and 

measurement capability at 80 K. Low temperature irradiations are desired to reduce 

thermally activated annealing effects within the semiconductor material. Within the 

framework of the radiation test plan, the initial approach involves irradiating-to-failure 

testing and subsequent irradiations to a fluence less than failure levels. The OSURR 

facility capable of accommodating in situ measurements at cryogenic temperatures is the 

beam port (BP). However, unless stringent radiation safety requirements are met, facility 

managers mandate an alternate approach.  

One such alternate approach is the abandonment of the cryogenic and continuous 

measurement requirements. Irradiations conducted within the pneumatically actuated 

rabbit tube (PART) are accommodative of the relaxed requirements. When irradiating 

within the PART, the overall experimental approach is only slightly changed. Because 

devices are pneumatically transported close to the core, fluences are five  
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orders-of-magnitude (OOM) greater than the BP and temperatures only slightly elevated 

above 300 K (maximum temperature is approximately 305 K with a continuous 

circulation of 300 K ambient air.)  Therefore, shorter irradiations can be conducted to 

achieve fluences in a wide range. The initial plan called for irradiations at extremely high 

neutron fluences in order to bracket a fluence region of interest. This method yielded 

results contrary to the previously stated assumption and no upper limit was found. 

Instead, at increasing fluences, annealing was accelerated and successive irradiations 

became less and less effective. At sufficiently high neutron fluences of 1015 to  

1016 n-cm-2, irradiations acted to anneal devices at a faster rate than damage could be 

introduced. 

The final experimental approach was to return to the beam port and conduct  

in situ measurements at 80 K. Alterations to the experimental apparatus yielded a 

decreased radiation hazard. However, an anomalous electrical behavior was observed 

once the system was loaded into the beam port. Although this method is optimal, a 

combined failure mechanism of static-discharge damage to the heterostructure and 

packaging epoxy breakdown rendered this entire data set unusable.  

Throughout the research endeavor, both irradiation approaches are utilized. 

Discussion of each individual irradiation run and methodology is described in  

Chapter IV. 
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Assumptions/Limitations 

Throughout experimentation, assumptions based on accepted practices of 

radiation testing of electronics are made. They are:   

1) In situ measurements are short with respect to overall irradiation time. 

Thereby the assumption of negligible accumulated dose during measurements 

is valid.  

2) Accumulated dose from intended and unintended reactor power changes are 

negligible. During irradiation, negative feedback mechanisms tend to decrease 

overall RX reactivity and decrease power output. Therefore, all unintended 

power changes are conservative in nature. Additionally, intended power 

changes occur quickly on the time scale of irradiation times that may be hours 

in length.   

3) Accumulated dose from fission gamma rays and gamma rays originating from 

within the device are negligible. During irradiation, gamma production from 

fission product decay and activation can add significant dose to a device. 

However, a simplifying assumption is that the device dimensions are 

significantly small in comparison to the mean free path of a gamma-ray and 

little energy is deposited in the region of interest. 
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Sequence of Presentation 

Divided into six chapters and three supporting appendices, the thesis is laid out in 

a manner in which a reader with an average understanding of semiconductor physics will 

find this document comprehensible. Chapter I is a cursory introduction to AlGaN/GaN 

MODFETs and is intended to give the reader a big-picture overview of the motivating 

factors for conducting this research endeavor. Chapter I includes the information 

necessary to determine what the research is attempting to answer, the scope of the 

research, assumptions necessary to conduct the experiment, and the author’s hypothesis. 

Chapter II is an elucidation of the current state-of-technology relevant to this discourse. 

Included is further explanation for the motivation of using AlGaN/GaN MODFETs and 

summaries of current or critically important radiation effects studies that provide context 

for results reported within this document. Chapter III details the theory behind 

AlGaN/GaN MODFET charge control and Schottky gate contacts. Chapter IV provides 

important experimental procedures including details of the fabrication process, irradiation 

experiments, and dosimetry. Chapter V presents the results of the irradiations and 

provides relevant analysis and discussion. Finally, the conclusions and recommendations 

for further work are presented in Chapter VI. Appendix A presents a table of common 

GaN and AlN parameters. Appendix B contains a tutorial on Schottky diode parameter 

extraction methods. Since typical methods have many limitations, an alternate Schottky 

contact charge carrier transport model is introduced and explained in full detail. 

Appendix C contains the results of an annealing study conducted at 80 K following a 

nine-month room temperature anneal. 
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II. Current State of Technology 

Purpose 

Although a complete literature review has been conducted, not all of the literature 

review objectives are presented in this format. However, within the present chapter, a 

review of the current state-of-technology is presented along with a summary of 

relevant irradiation studies.  

The Need for Group-III Heterostructures 

The continuous need for high speed, high-power-density electronic devices 

requires analysis of advanced structures on new semiconductor materials. Among those 

materials are GaN, indium nitride (InN), and AlN of the group-III nitride family of 

semiconductors. When alloyed with their ternary and quaternary alloys, a new class of 

material systems with bandgaps that range from 1.9 to 6.2 eV becomes possible. 

Furthermore, the wide direct bandgap is ideal for band-to-band light generation, making 

group-III nitrides particularly advantageous for the fabrication of optoelectronic devices 

such as short wavelength light emitting diodes (LED) and lasers working in the blue and 

near ultraviolet (UV) spectral ranges [9]. In addition to the optoelectronic applications of 

the III-V nitrides, radio and microwave frequency high-power-density transistors may 

become the enabling technology for myriad of sophisticated systems such as broadband 

wireless networks, electric hybrid vehicles, compact collision avoidance radars for 

vehicles, and others. Exhibiting low thermal generation rates, a high breakdown field  

(>5 MV/cm), high saturation velocity, and the ability to operate at frequencies up to  

140 GHz, nitride systems are an important endeavor for the military, with particular 
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regard to radiation hardened terrestrial and space systems. The ability to operate such 

devices in high temperature, high power/voltage, and radiation environments is critical. 

To date, no material/device combination can satisfy all of these requirements. 

A wide bandgap alone does not make a good semiconducting material. Other 

figures of merit, such as the intrinsic carrier concentration and mean displacement energy 

(Ed) are both essential descriptors of the robustness and advantage of group-III nitrides 

over traditional material systems. Figure 1 illustrates the temperature dependency of 

various frequently used semiconductor materials, showing that nitride semiconductors are 

more robust at higher temperatures and in a wider range than their commonly used 

counterparts Si and GaAs. Figure 2 shows the empirical relationship of the displacement 

threshold energy with reciprocal lattice constant. Each figure clearly demonstrates the 

advantage of group-III nitride materials with respect to traditional semiconductors in 

terms of both temperature and purported radiation hardness, respectively. 

 
Figure 1. Intrinsic Carrier Concentration of commonly used semiconductor 

materials [10]. 
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Figure 2. Empirical relationship between Ed and reciprocal lattice constant [11]. 

 

Recent advancements in the understanding of fundamental device physics 

operation and materials processing techniques have made a wide array of group-III 

nitride heterostructures possible. These include surface-acoustic wave devices, solar blind 

UV detectors, Bragg reflectors, waveguides, UV and visible LEDs, laser diodes, and 

quantum devices such as high electron mobility transistors [12].  

An application under intense investigation is sensing. Sensing is a multifaceted 

discipline requiring both passive and active systems to characterize some predetermined 

parameter of interest. Often, difficulties arise when the signal of importance lies in a 

narrow band, signal intensity changes by OOM, the environment is awash with ambient 

radiation, and the environment is harsh and uncontrollable. Many times, surviving the 

inhospitable environment can be the main obstacle to successful sensor deployment and 

excessive ancillary protection equipment can make an entire design prohibitive.  
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The large band gap of GaN and other nitride semiconducting materials ensure that 

problems from unwanted thermal or optical interferences are minimized [13].  

“UV sensors that operate in the solar blind region (260-290 nm) have high detectivity 

because the ozone layer absorbs solar radiation at those wavelengths, thus virtually 

eliminating the radiation noise [12].”   In addition to being able to detect terrestrial 

sources of UV radiation, the APA Optics Group demonstrated a three OOM drop in 

responsivity over 10 nm (past the desired wavelengths) for their UV sensitive detector 

[12]. The high selectivity of GaN in comparison to silicon-based devices negates the need 

for bulky supplementary filtering equipment, freeing valuable platform space [12]. 

Another distinctive advantage of GaN UV detectors is the so called ‘automatic gain 

control’. Honeywell has demonstrated a detector design in which the gain decreases 

rapidly with increasing UV intensity and has very low resistance at low light levels [12]. 

Additionally, strong chemical bonding between Gallium and Nitrogen widens the 

forbidden gap in the electronic density of states, giving rise to exceptionally 

advantageous mechanical, thermal, and chemical stability [14]. 

Currently, the most commercially viable application of III-V semiconductor 

materials is in the area of light emitting diodes. Until recently, applications of LEDs were 

limited by their inability to produce intense light as well as their limited range of 

wavelengths. However, LEDs have undergone a tremendous advancement in 

performance and now are compact, reliable, inexpensive light sources. 

The primary advantage of GaN LEDs is that there is a direct energy bandgap for 

optical emission. Meaning, the highest energy point of the valence band is directly below 
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the lowest energy point of the conduction band at the same value of momentum. Energy 

released during band-to-band electron-hole (e-h) recombination is converted primarily 

into radiation (radiant recombination) of wavelength determined by the energy gap. 

Although the band-edge emission of GaN is in the UV region, appropriate alloying with 

nitrides such as AlI or InN pushes the emission into the yellow or even red. The new 

breed of GaN-based LEDs exhibit brightness levels and longevities that exceed the 

requirements for many high demand applications. For the first time, full color, all 

semiconductor displays are possible when red LEDs are combined with blue and green 

[15]. Furthermore, by covering LEDs with phosphorescent dye, white light LEDs with an 

equivalent blackbody temperature of 6000 °C are possible [16]. When used in place of 

incandescent light bulbs, group-III nitride based LEDs consume 80-90% less power, last 

ten times as long, and produce virtually no waste heat [12]. 

Although LEDs currently represent the primary market for GaN, the coming years 

will see rapid expansion and integration of both radio and microwave frequency nitride 

transistors. Silicon and GaAs control nearly 100% of the $5 Billion USD radio and 

microwave frequency semiconductor market [16]. However, because group-III nitrides 

exhibit superior material properties, the total GaN electronic-device market is expected to 

reach $500 million USD by the end of this decade. Radio frequency (RF) and microwave 

applications are likely to be the largest share of the GaN device market, targeting both 

military and commercial applications. Table 1 describes the competitive advantages of 

GaN devices over conventional technologies such as Si or GaAs-based devices. In every 

single category, GaN devices excel over conventional technology. 
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Table 1. Advantages of GaN-Based Transistors [17]. 
Need Enabling Feature Performance Advantage 

High Power/Unit 
Width 

Wide Bandgap, High 
Field 

Compact, Ease of 
Matchinga 

High Voltage 
Operation 

High Breakdown 
Field 

Eliminate/Reduce Step 
Downb 

High Linearity MODFET Topology Optimum Band Allocation 

High Frequency High Electron 
Velocity 

Bandwidth, µ-Wave/mm 
Wave 

High Efficiency High Operating 
Voltage 

Power Saving, Reduced 
Coolingb 

Low Noise High Gain, High 
Velocity 

High Dynamic Range 
Receivers 

High Temperature 
Operation Wide Bandgap Rugged, Reliable, 

Reduced Cooling 

Thermal 
Management SiC Substrate 

High Power Densities 
with Reduced 
Cooling Needs 

Technology 
Leverage 

Direct Bandgap 
Allows 

for Lighting 

Driving Force for 
Technology; 

Low Cost 
 

                                                 

a “The high power per unit width translates into smaller devices that are not only easier to fabricate, but 
also offer much higher impedance. This makes it much easier to match them to the system, which is often a  
complex task with conventional devices in GaAs (for e.g., a matching ratio ten times larger might be 
needed for a GaAs transistor, increasing overall complexity and cost) [17].” 
b “The high-voltage feature eliminates or at least reduces the need for voltage conversion. Commercial 
systems (e.g., wireless base station) operate at 28 V and a low-voltage technology would need voltage step 
down from 28 V to the required voltage. However, GaN devices can easily operate at 28 V and potentially 
up to 42 V. The higher efficiency that results from this high operating voltage reduces power requirements 
and simplifies cooling, an important advantage, since cost and weight of cooling systems is a significant 
fraction of the cost of a high-power microwave transmitter [17].” 
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The need for GaN-based heterojunction devices is clear and their importance to 

the DoD and private sectors are enormous. Group-III nitride compound semiconductors 

far exceed the physical properties of silicon and  “as a result, its capabilities - such as 

amplifying (without distorting) high-frequency RF signals, withstanding high 

temperatures, emitting blue and green light - make GaN ideally suited for a wide range of 

electronic and optoelectronic applications [18].”  As seen in Figure 3, the commercial 

applications for Gallium Nitride are wide-ranging and nearly limitless. Although 

commercial integration of GaN-based devices can occur on a short timescale, 

militarization requires further investigation before its benefits are accepted. Additionally, 

the use of GaN-based devices in radiation rich environments necessitate a greater 

understanding of their radiation response, warranting additional studies. 

 
Figure 3. Potential Applications of GaN-based devices [18]. 
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Radiation Effects on Al0.27Ga0.73N/GaN Heterostructures 

Previous radiation characterizations conducted on various group-III nitride 

materials have revealed intrinsic radiation hardness. However, the distinction between 

material radiation hardness and device radiation hardness is often lost on those not 

intimately familiar with radiation effects in complex material systems. The review of the 

current state-of-technology will focus on device level testing of AlGaN/GaN 

heterostructure devices. Results of previous material testing are integrated into the 

discussion of device behavior as appropriate. 

Although there have been advancements in the fundamental understanding of 

some aspects of MODFET operation, overall, the results can best be described as 

inconclusive (see the following sections pertaining to various irradiation experiments). 

Most previous efforts have focused on proton irradiations with less frequent discussion of 

photon, electron, and neutron radiation studies. In fact, to date, no device-level neutron 

irradiation studies have been published on AlGaN/GaN MODFETs. Additionally, there is 

a noticeable dearth of information regarding the current transport mechanisms in 

AlGaN/GaN heterostructures and radiation induced changes.  

Since no means of mass producing high-quality AlGaN/GaN MODFETs has been 

formulated, it comes to no surprise that radiation damage studies are often device 

dependent and frequently raise more questions than they answer. However, it is 

particularly noteworthy to mention one irregularity that is present in all radiation studies 

of GaN-based devices. Namely, although the presented results are commonly in 

opposition to each other (i.e. drain-to-source current increase/decrease, Schottky barrier 
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height increased/decreased, threshold voltage shift direction and magnitude, etc.), the 

common consensus is that GaN-based heterostructures are radiation hard. That is to say, 

whether authors observe contradictory results or not, both are able to argue the intrinsic 

radiation hardness of GaN. The following sections broken down by radiation type will be 

my attempt to summarize the current state of radiation testing on GaN-based devices. In 

no way can this be a complete regurgitation of all previous radiation testing on 

AlGaN/GaN devices. Instead, only articles of key importance are highlighted.  

Photon Radiation 

GaN-based devices exhibiting high power/temperature capabilities are of interest 

for space-borne applications such as satellite communication systems in addition to the 

nuclear industry and military uses. Therefore, it should come to no surprise that some of 

the earliest radiation experiments sought to characterize the ionizing radiation response of 

AlGaN/GaN MODFETs. 

“The mechanism of damage creation by gamma photons is well known. At the 
energy of 60Co gamma photons, the interaction of gamma radiation with the 
material occurs mainly through generation of high energy Compton electrons, 
which in turn dissipate their energy through various mechanisms creating a large 
number of secondary electron-hole pairs. … The secondary carriers’ main 
influence on the device behavior occurs by changing occupancy of traps in 
insulating layers. …In addition to the effects of secondary carriers, displacement 
of atoms may also result from the absorption of a gamma photon through 
interaction of the Compton electron with nuclei. The displacement damage results 
in reduction in carrier lifetimes at low doses and reduction in mobility and 
compensation of dopants at higher doses. Previous investigations of the effects of 
60Co radiation … has shown that the irradiation results in generation of defects, 
with the defect creation rates depending on sample quality and doping level. 
Possible creation of nitrogen vacancies and desorption of nitrogen from [the] 
surface were indicated. It was suggested … that irradiation results in simultaneous 
generation of mutually compensating defects. A possible candidate is the 
generation of nitrogen vacancies, and interstitials. … The generation rates for 
these defects were found to be the same. Theoretical studies have also shown that 
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nitrogen vacancies create donor states in the conduction band, and the interstitials 
create acceptor states in the mid-gap [19].” 

 
Using a 60Co gamma source, Luo et al. irradiated MODFETs of different gate 

dimensions up to 600 Mrad total gamma dose at 298 K [20]. At doses less than  

300 Mrad, little change in the reverse breakdown voltage ( bV ), threshold voltage ( thV ), or 

transconductance ( mg ) was observed [20]. However, at the maximum dose of 600 Mrad, 

bV  became more negative by a factor of two, thV  shifted negative an unspecified 

magnitude, mg  decreased 20-45% depending on the gate dimensions, and the saturation 

drain-source current ( dsI ) increased slightly [20]. 

Post irradiation I-V characteristics show that “gate leakage is significantly 

decreased in the low-bias region ( 0.5V< ) where surface generation recombination is 

dominant and also at higher voltage, due to an increase in channel resistance [20].”  It can 

be shown that the resistivity of the GaN layer is inversely proportional to both the carrier 

density and electron mobility in the two-dimensional electron gas (2DEG). Therefore, a 

decrease in either parameter will result in an increase in resistivity. Luo et al. asserts that 

the decrease in bV  is consistent with a reduction of effective doping in the 2DEG due to 

radiation induced deep state trapping [20]. 

Figure 4 illustrates the transfer characteristics for a 1.2 x 200 µm2 MODFET pre 

and post gamma irradiation. The threshold voltage is given by Equation 1. 

 
2/2N N aTdV V eth bi

ε⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
+

= −  (1) 

where biV  is the built-in voltage, dN  is the donor density in AlGaN, TN  is the trap 

density, a  is the active layer thickness, and ε  is the dielectric constant. Therefore, in 
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order for the threshold voltage to increase in magnitude, the net of d TN N+   must also 

increase [20]. The net term of d TN N+  is trap density dominated [20]. Figure 4 

illustrates a decrease in the maximum extrinsic transconductance. Since the 

transconductance can be represented as d gI Vδ δ , the decrease must originate from a 

reduced drain current. Luo et al. theorizes that the reduced drain current is due to a 

reduction of carrier density in the 2DEG. This is consistent with their assertion that a 

decrease in either the carrier mobility or carrier density is the mechanism responsible for 

the decrease in bV  [20].  

 
Figure 4. Transfer characteristics for a 1.2 x 200 µm2 MODFET pre and post 600 

Mrad total dose gamma irradiation [20]. 
 

In addition to the aforementioned effects of gamma irradiation, the authors 

observed a ‘slight’ increase in the drain-source saturation current (Figure 5). Remaining 

self-consistent in their reasoning, Luo et al. suggest that dsI  increases due to increased 

GaN resistivity. The increased resistivity reduces the gate bias seen by the 2DEG due to 

screening by the high resistance AlGaN layer [20]. A decrease in the initial slope of dsI  at 
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low biases accompanied the increase of dsI  at higher gate biases, suggests a change in 

either the carrier mobility or density [20]. 

 
Figure 5. Ids-Vds characteristics for a 1.2 x 200 µm2 MODFET pre and post 600 

Mrad total dose gamma irradiation [20]. 
 

The variation of gate dimensions has a pronounced effect on both bV  and mg . For 

a gate length of 1.2 µm, at 600 Mrad total dose, bV  decreased by a factor of nearly three 

when the gate width was decreased from 200 to 100 µm. Similarly, mg  decreased by a 

factor of three for the same change in gate width. Both relationships are nearly linear 

[20]. 

In attempting to drawl decisive conclusions from the results published by Luo et 

al., two difficulties arose that limit direct comparisons to other publications: sample 

specific results and missing dosimetric information. As stated previously, 

manufacturability is a fundamental issue preventing widespread deployment of  

GaN-based devices. This leads to experimental results that are highly dependent on the 
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specific device structure, Aluminum molar fraction, contact types, material quality, 

processing methods, and particularly transistor dimensions. Secondly, dosimetric 

information is incomplete and the experiment cannot be replicated or independently 

verified. Units of dose must be related to a specific material. A ‘rad’ is the amount of 

energy deposited in a material (i.e. Si or SiO2 is typically referenced). Additionally, 

proper dosimetric information must include the rate at which the energy is deposited. 

Since this basic information is lacking, the stated doses may be off by a factor of two and 

specific dose rate effects cannot be addressed. This shortcoming is not isolated to the 

referenced research. One study that attempts to address these issues is by Aktas et al.  

Aktas et al. irradiated Silicon nitride (SiNx) passivated AlGaN/GaN MODFETs 

with 60Co gamma rays to a total dose of 600 Mrad (Si) at 343 K. Using dosimetric 

polymer films, the nominal dose rate was determined to be about 2 Mrad (Si)/hr [19]. 

Overall, the I-V and mg  characteristics exhibited similar behavior to that reported by Luo 

et al.. This can be seen in Figure 6 and Figure 7.  
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Figure 6. ID–VDS characteristics of a 0.25 x 150 µm2 AlGaN/GaN MODFET at 

various gamma irradiation doses [19]. 
 

 
Figure 7. Transfer characteristics of a 0.25 x 150 µm2 AlGaN/GaN MODFET at 

various radiation doses. The anomalous spike is an artifact of taking the derivative 
of the saturation drain current as a function of the gate voltage [19]. 

 

Aktas et al. report a maximum thV  shift of -0.1 V and a maximum mg  decrease of 

only 3%. In conjunction with the threshold voltage shift, the saturation current at constant 

gate bias also increased [19]. Luo et al. suggested that the changes were due to a decrease 
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in effective carrier density in the 2DEG. In contrast, Aktas et al. hypothesized an 

increased carrier density is responsible. In order to determine the mechanism of 

radiation-induced changes, Aktas et al. used Hall Effect and Transmission Line Method 

(TLM) measurements to gain further insight. Surprisingly, the sheet carrier density 

remained constant at all doses. The contact resistance, sheet resistivity, and Hall mobility 

exhibited no significant changes at all doses up to 600 Mrad (Si) [19]. In order to explain 

these phenomena, Aktas et al. suggests that the threshold voltage shift is due to an 

increase in carrier density that is localized under the gate [19].  

“Depending on the AlGaN mole fraction and the thickness of the AlGaN layer, 
the band alignment may be such that the acceptors would be negatively charged 
under the SiNx passivation, but be partially neutral close the metal interface under 
the gate. Thus, under the gate, some of the donors generated by irradiation will 
contribute electrons to the channel. The reduction in mobility through remote and 
local ionized impurity scattering would be limited, since the fields from the 
compensating defects will tend to cancel each other far away from the defects. 
From this model, we also see that the effect of radiation may depend on the 
parameters of the AlGaN barrier layer [19].”   
 
This model depends on the assumption of mutually compensating acceptor and 

donor defects that have been previously reported by Look et al. [21]. 

Atkas et al. has formulated a theory to explain the increased drain current by 

hypothesizing an increase in carrier density locally below the gate. The hypothesis is 

based on experimental data obtained from SiNx passivated AlGaN/GaN MODFETs. 

However, a recent study conducted by Mishra et al. does not report the same drain 

current behavior as seen by Atkas et al., but does support measurements of both constant 

carrier concentration and mobility [22].  
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Mishra et al. irradiated both passivated and unpassivated (0.7 and 0.5 x 100 µm2  

gate dimension respectively) AlGaN/GaN MODFETs to total doses from 1.5 to 20 Mrad 

(Si) at a nominal dose rate of 2krad (Si)/min at 300 K [22]. The authors report that the 

passivated device had an approximately 12% decrease in drain current at 5 Mrad (Si) 

compared to an 8% drop for the unpassivated device. Both devices showed nearly the 

same gate leakage increase of approximately 200% at 10 Mrad (Si) total dose [22]. 

The radiation hardness of GaN to ionizing radiation is nearly an accepted fact. 

That is, radiation-induced defect production rates for GaN are lower than for Si and GaAs 

[22]. It can be seen in Figure 8 that 10 keV x-rays have little effect on the transfer 

characteristics or mg  up to a total dose of 30 Mrad (SiO2) in AlGaN/GaN MODFETs 

[23]. A study conducted by Umana-Membreno et al. reports findings that support this 

supposition. GaN is intrinsically radiation hard, but device hardness may be limited by 

the electrical contacts [24]. 

 
Figure 8. Transfer characteristics for AlGaN/GaN MODFETs before and after  

10-keV X-ray irradiation at fluences up to 30 Mrad (SiO2) [23]. 
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Using a combination of I-V, C-V, and DLTS measurements, Umana-Membreno 

et al. was able to characterize the radiation response of Ni/n-GaN Schottky diodes. The 

authors found that the Schottky barrier height (SBH) extracted from C-V measurements 

( C-V
Bφ ) increased a maximum of 15% at a total dose of 21 Mrad (Si) and the barrier height 

extracted from I-V measurements ( I-V
B0φ ) remained unchanged at all doses [24]. This 

analysis presumes an intimate, homogeneous and defect-free metal-semiconductor (m-s) 

junction, which is typically not the case. Non-idealities are thought to arise from effects 

associated with metal-induced gap states, dislocation-related leakage paths, and 

interfacial defects. The high density of dislocations act as efficient current leakage paths 

that increase total current transport (so called defect-assisted tunneling). Thus, the true 

SBH is underestimated and the ideality factor becomes greater than unity for pure 

ballistic injection over a potential barrier.  

Radiation induced defects were monitored using isothermal DLTS. Upon 

irradiation, three defects with activation energies of 88, 104, and 144 meV were produced 

at a combined rate of 2.12 x 10-3 cm-1. These defects are consistent with the activation 

energies of nitrogen-vacancy-related defects found in electron irradiated n-GaN diodes 

[24]. In addition to the aforementioned radiation-induced defects, three deep-level defects 

with activation energies of 265, 355, and 581 meV were detected within the sample prior 

to irradiation. However, these defects did not manifest any noteworthy change in 

concentration during irradiation up to a total dose of 21 Mrad (Si) [24]. 

Mishra et al. report work on gamma-irradiated n-GaN Ni/Au Schottky diodes. 

The accumulated total dose ranged from 0.2 to 21 Mrad (Si) at a dose rate of 2 krad/min 
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[25]. The reverse I-V characteristics showed degradation for doses above 5 Mrad (Si) and 

at the maximum dose of 21 Mrad (Si) the reverse leakage current density increased nearly 

four OOM [25]. In addition to the tremendous degradation of the reverse I-V 

characteristics, the SBH increased from 1.14 eV to 1.30 eV at 300K for a 21 Mrad (Si) 

total dose [25]. Finally, Mishra et al. reported the ability to anneal out the reverse I-V 

degradation at low temperature with no effect on the radiation induced defects. However, 

the increased SBH is persistent to temperatures greater than 350 °C [25]. This study 

illustrates the importance of whole device testing in conjunction with material testing. 

Subsequent studies on the effects of gamma radiation on AlGaN/GaN Schottky 

structures and MODFETs have provided strong evidence that the GaN material is 

intrinsically hard and that the degradation of device characteristics is highly dependent 

upon electrical contacts at the metal gate/AlGaN interface.  

Electron Radiation 

Ionascut-Nedelcescu et al. observed the radiation hardness of GaN LEDs and 

films and reported a two OOM increase of radiation hardness of GaN when compared to 

GaAs [11]. Ionascut-Nedelcescu et al. attribute this radiation hardness to strong bond 

between Gallium and Nitride.  

“A measure of this bond strength is the energy required to displace an atom from 
its lattice position or simply the atomic displacement energy, denoted by dE . This 
parameter has been measured in several semiconductors and empirically 
determined to be inversely proportional to the volume of the unit cell. … 
Independent of this empirical method, it was deduced by analyzing the transport 
properties of electron-irradiated GaN films, that ( )dE Ga  is 20.5 eV and ( )dE N  
10.8 eV. In the case of GaAs, dE  was directly measured and found to be 9.8 eV 
[11].” 
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Ionascut-Nedelcescu et al. set out to determine dE  for GaN by irradiating with 

relativistic electrons. The method entailed measuring the displacement damage constant 

associated with the electroluminescence signal as a function of electron energy. By 

determining the electron threshold energy for damage creation, dE  could then be 

deduced. The authors obtained a threshold energy of 440 keV, which corresponded to an 

dE  value of 19 ± 2 eV [11]. As you can see from Figure 2, the experimental value of 

GaN falls within the expected range when using only the reciprocal of the lattice 

constant. The empirical relationship and experimental results both support the assertion 

that GaN is a radiation hard semiconductor material. 

Additional authors have published results from experiments on electron irradiated 

GaN. They include Z-Q Fang et al., D.C Look et al., and S. A. Goodman et al. to name a 

few. Through a series of papers entitled “Deep centers in as-grown and  

electron- irradiated n-GaN” [26], “Defect Donor and Acceptor in GaN” [21], “On the 

Nitrogen Vacancy in GaN” [27], and “Electron irradiation induced defects in n-GaN” 

[28], the authors were able to identify defects created by electron irradiation and classify 

them as either shallow or deep and as either acceptor or donors. Fang et al. discovered 

that 1 MeV electrons are capable of creating nitrogen vacancy (VN) related centers with 

thermal activation energies of 0.06 eV [26]. Look et al. studied the effects of  

high-energy (0.7-1 MeV) electron radiation on GaN and observed that irradiation 

produced shallow donors and deep or shallow acceptors at equal rates [21]. Additionally, 

Look et al. were able to determine that an electrically active dominant defect in GaN 
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could be produced by 0.42 MeV electrons. The defect is a 70 meV donor and is most 

likely an isolated nitrogen vacancy [27]. 

Although these studies offer great insight into the radiation hardness of GaN, 

device level testing is necessary in order to evaluate the hardness of GaN-based devices 

for integration into complex systems. As part of an intensive study, J.M. Sattler 

conducted the first ever study of the effects of electron irradiation of AlGaN/GaN 

MODFETs. J.M. Sattler irradiated AlGaN/GaN MODFETs at 80 K with 0.45 to 1.2 MeV 

electrons to fluences up to 6×1016 e--cm-2. Following irradiation, low temperature I-V 

measurements were recorded, providing dose-dependent measurements. Additionally,  

I-V-T measurements were made following room temperature (RT) annealing [29].  

J.M. Sattler reported three significant radiation induced changes in AlGaN/GaN 

MODFETs:  1) increased gate current, 2) increased drain current, and 3) RT annealing of 

induced damage.  

Through a process of deduction and elimination, Sattler proposes an explanation 

for the increased gate current. Sattler reasoned that defect-assisted tunneling is more 

likely the dominant transport mechanism than that of either direct tunneling or thermionic 

emission [29]. Sattler makes an assumption that the traps are uniformly distributed 

throughout the AlGaN layer and that they are located in an energy band within the barrier 

height. This assumption is supported by a study conducted by Karmalkar et al. [30]. 

Additionally, in a study of ohmic contacts to AlGaN/GaN heterostructures, Qiao et al. 

found that tunneling of electrons from the 2DEG can dominate carrier transport across 

the AlGaN barrier layer [31]. Additional supporting evidence is reported by Khan et al., 



 

 30

who reported a six OOM reduction in gate leakage resulting from the integration of an 

oxide region between the gate contact and the AlGaN layer in metal-oxide-semiconductor 

heterostructure field-effect transistors (MOS-HFETs) [32]. The addition of an oxide layer 

and subsequent reduction in gate leakage is evidence that the AlGaN layer is vulnerable 

to carrier transport. 

From these findings Sattler concludes that the increase in gate leakage is caused 

by radiation-induced trap creation [29]. Although the nature of the traps is unknown, the 

electron energy was sufficiently high enough to cause trap creation throughout the 

AlGaN layer. “Furthermore, because electrons have an extremely low non-ionizing 

energy loss (NIEL) it can be assumed that the activation energy of these traps is low 

[29].”  Nozaki et al. report discovering AlGaN traps with an activation energy of only 

0.28 eV [33]. Therefore, it is probable that this particular low energy trap or similar  

yet-to-be discovered traps are created in the AlGaN layer by low energy electron 

radiation.  

Sattler reports that the second major radiation effect observed was the large 

increase in drain current. Sattler narrows down the reason for increased drain current to 

two possibilities:  1) an increase in carrier concentration of the 2DEG, or 2) the carrier 

concentration remained unchanged but the carrier mean velocity of the 2DEG increased 

[29]. Since various authors have reported a relatively constant carrier concentration 

throughout irradiation, by process of elimination, the carrier mean velocity of the 2DEG 

is expected to increase. Other authors have consistently observed behavior in opposition 
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to that of J.M. Sattler and a definitive mechanism responsible for these differences has 

yet to be proposed. 

The third major radiation effect observed was the ability to anneal out  

radiation-induced damage at RT. The annealing behavior supports Sattler’s assertion that 

low activation energy traps created within the AlGaN layer are responsible for the 

increased drain current and subsequently annealed out at higher temperatures [29].  

Appendix C contains a study of the annealing effects following a nine-month 

anneal. The characterized devices are those previously irradiated by J.M. Sattler.    

Proton Radiation 

Luo et al. conducted a device specific investigation on the effects of 40 MeV 

protons on AlGaN/GaN MODFETs [34]. Their motivation is geared toward the 

application of these devices in low earth orbit (LEO) assets. Therefore, doses equivalent 

to over 100 years in LEO were delivered to the devices [34]. Clearly, no thought was 

given to the dose rate effect to these devices. I can only surmise that Luo et al. used 

fluxes much too high to be comparable to the actual space environment. Nevertheless, 

Luo et al. report a greater than 30% decrease in mg , decrease in reverse breakdown 

voltage, decrease in dsI , and decrease in gate leakage at low gate biases. Post irradiation 

annealing at 300 °C resulted in a nearly 70% recovery of the initial mg  and dsI  values and 

the devices still exhibited transistor action [34]. The authors attribute the damage to a 

decrease in carrier concentration of the 2DEG and an increase in the 2DEG resistance 

from the creation of deep electron traps.  
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White et al. examined the effects that 1.8 MeV proton irradiation (nominally 300 

K) had on AlGaN/GaN MODFETs [35]. Figure 9 shows the MODFET source-drain I-V 

characteristics before irradiation and after two successive proton exposures. It can be 

clearly seen that the proton irradiation induces a decrease in the saturation drain current. 

Figure 10 shows plots of both drain-source current and transconductance vs. gate-source 

voltage. Using DLTS, White et al. concluded that proton-irradiation creates spatially 

localized changes in the electronic properties of the heterostructure. Both a reduction of 

the internal electric field strength and creation of charged defects in the AlGaN layer 

were noted [35]. These defects directly reduce the charge density along the 2DEG in 

addition to decreasing the saturation current. White et al. hypothesize that reduction of 

electron concentration within the 2DEG is responsible for the decreased saturation 

current, drain current, and transconductance [35].  

 
Figure 9. Common-Source I-V Curves - Pre-Irradiation (Solid Curves), Post 

1011 p+-cm-2 (Dashed Curves), and Post-1012 p+-cm-2 (Dotted Curves) [35]. 
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Figure 10. Transfer characteristics and mg . Pre-Irradiation (Solid Curves), Post  

1012 p+-cm-2 (Dashed Curves), and post 5x1012 p+-cm-2 (Dotted Curves) [35]. 
 

In follow-up work, White et al. again characterized 1.2 MeV proton irradiated 

MODFETs and corresponding unprocessed materials. Irradiation was carried out at RT 

and all measurements made approximately one week later. White et al. again observed 

decreasing drain saturation current with increasing proton fluence (Figure 11). The 

transistor is essentially operational until 1015 p+-cm-2. Also shown in Figure 12, is the 

catastrophic drop-off in mg  and increase in thV  as a function in increasing fluence. 

Utilizing the same model presented as Equation 6, White et al. hypothesize partial 

changes in the quantities of the SBH, donor/acceptor concentration, conduction band 

discontinuity, and polarization sheet charge density. Small changes in the net polarization 

and/or various degrees of relaxation fully account for the observed shift in thV  up to  

1015 p+-cm-2. Fluences greater than this require a greater than 60% reduction in 

polarization charge to account for the threshold voltage shift. However, the measured 
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reduction in sheet charge does not support this supposition (Figure 13). Therefore, White 

et al. conclude that the observed degradation in saturation current and transconductance 

is a result of decreasing channel mobility. 

 
Figure 11. Drain saturation current as a function of proton fluence [36]. 

 

 
Figure 12. Extracted threshold voltage and peak transconductance as a function of 

proton fluence [36]. 
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Figure 13. Normalized mobility and 2DEG sheet density, extracted from RT Hall 

effect measurements. The initial 2DEG mobility and sheet density were  
987 cm2-V-1-s-1 and 1.03x1013 cm-2 [36]. 

 

The results obtained by White et al. are largely confirmed and reproduced by 

others. Gaudreau et al. investigated the effects of 2 MeV proton irradiation at RT on 

AlGaN/GaN MODFETs. Devices were irradiated in the same fluence range as that by 

White et al.. The irradiation was shown to reduce the carrier density by half and the 

mobility by three OOM [37]. The researchers concluded that changes in mobility are 

more dependent on radiation than sheet charge density. Therefore, systems that derive a 

preponderance of its performance from mobility are likely to function at a constant level 

of irradiation until critical fluence. Additional fluence past the critical fluence is likely to 

cause abrupt catastrophic device failure [37]. 

 Hu et al. report on the response of AlGaN/GaN MODFETs for a range of proton 

energies from 1.8 MeV to 105 MeV [7],[23]. At fluences up to 1013 p+-cm-2 for  

15-, 40-, and 115-MeV protons, the authors report minimal radiation-induced damage 
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that quickly anneals out at RT [23]. However, at fluences as low as 1012 p+-cm-2 of 1.8 

MeV protons, a 10.6% decrease in drain saturation current and 6.1% decrease in the 

maximum transconductance were observed [23]. Both Figure 14 and Figure 15 illustrate 

the effects of 1.8 MeV protons. The authors of this study do not attempt to hypothesize 

the damage or annealing mechanism. Instead, they merely report the experimental results 

and assert that modeling shows that a 1.8 MeV proton is more damaging that a higher 

energy proton. I assert that you do not need modeling to make that statement. It is clear 

that high energy protons will have a very low interaction probability in the 3.54 µm thick 

sensitive area of the reported device. 

 
Figure 14. Transfer characteristics for AlGaN/GaN MODFETs before and after  

1.8-MeV proton irradiation at different fluences [23]. 
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Figure 15. Ids – Vds characteristics for AlGaN/GaN MODFETS before and after  

1.8-MeV proton irradiation at different fluences at RT [23]. 
 

In a subsequent study also conducted by Hu et al., the researchers report the 

effects of 1.8 MeV protons on an AlGaN/AlN/GaN MODFETs [7]. In this study, the 

authors proclaim that GaN-based devices are extremely radiation tolerant and that the 

primary damage mechanism is caused by displacement damage [7]. Hu et al. report no 

significant degradation at fluences of 1013 p+-cm-2 for 15-, 40-, and 105-MeV protons. In 

addition, no degradation was observed for 1.8-MeV protons at fluences below  

1013 p+-cm-2 [7]. The authors observed a positive threshold voltage shift and a 

corresponding decrease of drain current at fluences above 1013 p+-cm-2[7]. At fluences of 

1015 p+-cm-2 and 3x1015 p+-cm-2 the drain saturation current drops to 50% and 80% of its 

original pre-irradiation value respectively [7]. The maximum mg  is nearly constant at all 

proton-energies up to a fluence of about 1014 p+-cm-2 [7]. At 3x1015 p+-cm-2 1.8-MeV 

protons, the maximum mg  is degraded by 55% [7]. Hu et al. also report a positive thV  

shift of nearly 50% [7]. At a fluence of between 1015 p+-cm-2 and 3x1015 p+-cm-2,  an 
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approximately 30% decrease in the carrier mobility and carrier sheet density was 

observed [7]. The authors hypothesize that displacement damage is responsible for the 

decrease in saturation drain current, decreased mg , and positive thV  shift. The degradation 

is likely due to a decrease in both carrier concentration and mobility within the 2DEG 

resulting from carrier scattering and carrier removal [7]. Hu et al. suggest that defect 

centers created within the 2DEG cause the decrease in sheet carrier concentration. 

Research Justification 

Clearly there is a need for GaN-based technology for niche applications. 

However, it will not be long before the beneficial aspects of GaN are desired elsewhere. 

The military is keenly interested in GaN-based devices for both satellite protection 

measures and advanced integrated sensor/computing systems. In addition to the military’s 

interest, GaN is viewed as a commercially important material. Applications of GaN can 

already be found in both the high brightness LED market and high-power microwave 

frequency market for cellular communications. As the applications of GaN-based devices 

expand, the need for understanding their radiation response increases. The best example 

of this can be seen in the desire to use GaN-based devices on space-borne platforms, 

where devices are exposed to an unrelenting barrage of proton, neutron, electron, and 

photon radiations. The current state of technology is uncertain. Although the radiation 

hardness of GaN is nearly universally accepted, contradictory experimental behaviors are 

observed. A neutron irradiation study on AlGaN/GaN MODFETs is the next step in a 

logical progression of radiation testing and would greatly contribute to the general 

knowledge of AlGaN/GaN MODFETs. 
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III. Theory 

This chapter provides a brief background in the theory of AlGaN/GaN 

heterojunctions and radiation interactions with matter. Although the thesis is a  

stand-alone document, the reader is expected to have a thorough understanding of 

semiconductor device physics before attempting to delve into this subject matter. Only 

key areas of interest will be investigated.  

MODFET Charge-Control Model 

An ideal heterojunction consists of a semiconductor crystal in which changes 

between participating atoms are abrupt. Poorly controlled interfaces such as Silicon 

Dioxide/Silicon are not atomically abrupt and have many dislocations in the crystalline 

structure. Such disparities can leave dangling bonds and cause dislocation defects, which 

trap charge carriers and degrade system performance. 

Until recently, accepted wisdom was that lattice constants needed to match in 

order to minimize interface states. However, advancements in material processes have 

shattered that long held belief and created a new class of quantum controlled  

‘strained-layer’ heterojunctions. The essential idea is that if one of the semiconductors 

forming a heterojunction is sufficiently thin, the lattice mismatch is accommodated by a 

deformation (strain) in the thin layer. Within the strained-layer interface, a high mobility, 

high carrier concentration, two-dimensional electron gas forms. The representation of a 

conventional high electron mobility transistor (HEMT, synonymous with MODFET) 

structure shown in Figure 16 illustrates the basic arrangement of 2DEG-controlled 

devices. Variations to the basic structure may include the addition of surface passivation 
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layers (to decrease surface states), alternating layers of doped and unintentionally doped 

(UID) AlGaN and GaN, nucleation layers between the GaN and substrate, and other 

modifications. With respect to an AlGaN/GaN material system, AlGaN is deposited in a 

thin layer typically ten to forty nm thick on bulk GaN. 

 
Figure 16. Basic MODFET structure with the x-axis in/out of the page and z-axis 

top to bottom (not to scale). 
  

Although the 2DEG formation mechanism is thought to be well known, the 

control parameters are still undetermined and hence heterostructure behavior not fully 

understood. There are however, prevailing models that capture many of the observed 

behaviors of 2DEG-controlled systems. The material offered within this section will be 

presented in the following order:  2DEG band structure and formation, derivation of the 

2DEG electron and sheet charge density, and correlation of I-V transfer characteristics to 

the 2DEG formation mechanisms. 

The band structure of complex group-III nitride heterostructures is easiest 

understood by examining band theory. Figure 17 shows the AlGaN/GaN interface and 

subsequent quantum well formation at the interface. Trapped within a sheet-like  
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quasi-triangular quantum well, the nearly two-dimensional gas has a nominal thickness of 

approximately 2.5 nm when the sheet concentration is on-the-order of 1013 e--cm-2 [37]. 

In addition to being nearly two-dimensional, the thickness is less than the de Broglie 

wavelength ( h pλ = ) for an electron within the 2DEG, resulting in 2DEG formation. In 

solving the Schrödinger equation, the potential is separable into both the perpendicular 

and parallel components, setting up standing waves in the thickness direction (z), and 

quantizing the energy [37]. Thus, it becomes possible to collapse the quantum well and 

turn the device off when an integer number of half-wavelengths no longer fit within the 

quantum well.  

AlGaN and GaN are typically as-grown n-type materials. Consequently, the 

majority carriers are electrons. However, two-dimensional hole gas (2DHG) devices have 

been demonstrated, but the reduced mobility (in general) of holes makes them less 

attractive. 2DHG devices are beyond the scope of this discussion [38].  

 
Figure 17. Qualitative description of an AlGaN/GaN interface [37]. 

  

From the band structure, it is easy to visualize quantum-well-confined electrons 

traversing the device with a gas like behavior. However, the band structure alone tells us 

nothing of quantum well formation. Additionally, one must ask how the electrons 

AlGaN GaN
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populate the well and what processes affect the flow of charged carriers in the 2DEG?  In 

order to answer these questions, further investigation into the piezoelectric and 

polarization properties of AlGaN and GaN is necessary.  

Semiconductor materials of the group-III nitrides are pyroelectric in nature: 

meaning they exhibit large nonvanishing spontaneous polarization (SP)  

(polarization at zero strain) constants. Crystallographic polarities of atomic layers are 

observed in tetrahedrally oriented wurtzite group-III nitrides [39], [12]. Figure 18 

illustrates the crystallographic polarity of the binary compound GaN.  

Wurtzite structured binary A-B compounds lack inversion symmetry along the  

c-direction (parallel to the z-axis). Consequently, the sequence of atomic layers is 

reversed along the [0001][0001]  directions. “Because of this non-centrosymmetry and 

large ionicity associated with the covalent metal nitrogen bond, a large spontaneous 

polarization oriented along the hexagonal c-axis occurs [39].”   

 
Figure 18. Crystalline structure of wurtzite Ga-face and N-face GaN [39].  
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Since the lattice constant for GaN is greater than that of AlN, and the AlGaN 

layer is grown intentionally thin, a tensile strain is generated within the AlGaN layer. The 

resulting strain induces a piezoelectric polarization (PE) which adds to the net SP. 

Because the SP and PE constants for AlGaN are larger than GaN, a gradient of net 

polarization points towards the substrate in 2DEG formation for Ga-faced 

heterojunctions. The resulting electric field always points in opposition to the net 

polarization. Figure 19 shows the directions of the spontaneous and piezoelectric 

polarization for given Ga-face, strained AlGaN/GaN heterostructures.  

 
Figure 19. Polarization induced sheet charge density[39]. 

  

The tensile strain caused by the growth of AlxGa1-xN on GaN results in a net 

polarization given by [17] in Equation 2.  

 ( ) ( ) ( ) 20.02 0.019SP PEP x P x P x x x= + = +  (2) 

where x  is the mole fraction of aluminum in the AlxGa1-xN/GaN material system. 

If the polarization induced sheet charge density (σ ) is positive, free electrons will 

migrate and tend to compensate the stationary positive polarization induced charge. Free 

electrons from the n-type AlGaN layer are motiviated to congregate at the AlGaN/GaN 

interface due to the strong electric field, whereas, free electrons from the n-type GaN are 

motivated by diffusion processes alone. It is widely believed that ionized donor 

E
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impurities within the bulk n-AlGaN are the primary contributor of electrons in the 2DEG. 

However, electrons from the n-GaN and ohmic metal contacts are also possible 

contributors to the free electron gas. At extremely high dopant levels, Schottky barriers 

become more ohmic-like and can also contribute via tunneling mechanisms into the 

AlGaN. Assuming that the AlGaN/GaN band offset is reasonably high and the interface 

roughness is low, a 2DEG will form. The polarization induced sheet charge density at the 

interface is then given by:   

 ( ) ( ) ( ) ( )PE x 1-x SP x 1-x SPx = P Al Ga N + P Al Ga N - P GaNσ  [39] (3) 

 ( )
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )13

31 33
33

0
2 0SP SP

a a x C x
x e x e x P x P

a x C x
σ

⎛ ⎞− ⎟⎜ ⎟= − + −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 [39] (4) 

where ( )a x  is the lattice constant, ( )
31e x  and ( )

33e x  are piezoelectric constants, and 

( )
13C x  and ( )

33C x  are the elastic constants. Linear interpolation between the physical 

properties of AlN and GaN yield a set of Aluminum content (Al-content) dependent 

equations for AlxGa1-xN listed in Table 2. 

Table 2. Al mole fraction dependent parameters for AlxGa1-xN/GaN MODFETs. 
Parameter Expression Units Reference 

( )xε  ( ) 120.5 9.5 8.854 10x x −− +  C-m-1-V-1 [39] 
( )

m xφ  ( )1.3 0.84x +  eV [39] 
( )
cE x∆  ( )21.197 0.7x x+  eV [39] 
( )

13C x  ( )5 103x +  GPa [40] 
( )

33C x  ( )32 405x− +  GPa [40] 
( )a x  ( ) 100.077 3.189 10x −− +  m [39] 
( )

31e x  ( )0.11 0.49x− −  GPa [40] 
( )

33e x  ( )0.73 0.73x +  GPa [40] 
( )

SPP x  ( )0.052 0.029x− −  C-m-2 [40] 
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Thus, for a system with Al-content .27x = , the polarization induced sheet charge 

density is approximately 0.019 C-m-2 and the sheet charge ( eσ ) is nearly  

1.2x1013 cm-2 [39]. 

In order to develop a reliable physics based model for MODFETs, an accurate 

estimation of the 2DEG density at the interface is essential. A number of charge-control 

models have been developed and are currently available. Although helpful, many models 

generally require simplifying assumptions (semi-empirical formulations) that may not 

accurately represent observed device behavior. Some models assume a linear dependence 

of 2DEG density with gate bias and tend to underestimate the density near threshold. 

Other models assume nonlinear dependencies, but resort to non-physical fitting 

parameters or use computationally rigorous iterative techniques. Perhaps the most 

commonly used charge-control model involves that of solving Schrödinger’s and 

Poisson’s equations both self-consistently and simultaneously. This method also requires 

excessive computational effort in converging to a solution. The following 

computationally efficient, closed form, physics based charge-control model is proposed 

by Rashmi et al. [41], [42], [43], [44], [45]. 

The 2DEG sheet charge density formed at the heterojunction is given as: 

 ( )
( )

( )
( ) ( )( ),s gs c th

d i

x
n x z V V z V x

q d d d
ε

= − −
⋅ + +∆

[41] (5) 

where q  is the electronic charge, ( )xε  is the Al-content dependent dielectric constant, 

dd  is the AlGaN cap thickness, id  is the UID AlGaN layer thickness, d∆ is the effective 

2DEG thickness, gsV  is the applied gate-to-source voltage, ( )
cV z  is the channel potential 



 

 46

at position z , and ( )
thV x  is the Al-content dependent threshold voltage. All parameters 

are fixed during device fabrication (or possibly changed during irradiation) except that of 

the applied gate-to-source voltage. Therefore, gsV  toggles the 2DEG sheet charge density, 

which results in the desired transistor action.  

The threshold voltage is strongly dependent on the polarization charge density 

and is related as: 

 ( ) ( ) ( )
( )

( )

( )
( )

2

2
pold d

th b c d i

xqN d
V x x E x d d

x x

σ
φ

ε ε
= −∆ − − +  (6) 

where ( )
b xφ  is the Al-content dependent SBH and ( )

cE x∆ is the Al-content dependent 

conduction band discontinuity given in Table 2. The doping density of the AlGaN barrier 

is dN , and ( )
pol xσ  is related to the strained and unstrained layers as in Equation 7 below. 

 ( ) ( ) ( )pol pseudomorphic relaxedx x xσ σ σ= −  (7) 

where ( )pseudomorphic xσ  has the same meaning as Equation 3 and represents the 

polarization of a fully strained system. The polarization in a relaxed system is given by: 

 ( ) ( )
( ) ( )

( )
( ) ( )

( )

( )

13
31 33

33

0
2relaxed

a a x C x
x r x e x e x

a x C x
σ

⎛ ⎞− ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (8) 

where ( )r x  is the Al-content dependent degree of relaxation. The following relaxation 

relationship is valid for AlGaN thickness ranging from 20-40 nm: 

 ( )

0 0 0.38

3.5 1.33 0.38 0.67

1 .67 1

for x

r x x for x

for x

⎧⎪ ≤ ≤⎪⎪⎪⎪= − ≤ ≤⎨⎪⎪⎪ < ≤⎪⎪⎩

                    

   

                    

  [39] (9) 
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Figure 20 is a schematic of the AlGaN/GaN structure used in derivation of the 

presented charge-control model. Although the device shown has a doped cap ( dd ) of  

n-type AlGaN, the model also accurately represents devices in which the doped cap is 

removed. Figure 21 illustrates the energy diagram and the physical meaning of the 

various parameters. In both Figure 20 and Figure 21, m  represents the mole fraction of 

aluminum. 

 
Figure 20. Schematic representation of AlGaN/GaN MODFET design used in 

derivation of the presented charge-control model [44].  
 

 
Figure 21. The energy band profile of the modeled AlGaN/GaN MODFET [44]. 

  

The drain current in the 2-DEG channel can be obtained from the current density 

equation as:  
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 ( ) ( ) ( )
( ) ( ),

, , sc B
ds s

dn x zdV z k T
I x z Wq z n x z

dz q dx
µ

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 (10) 

where W  is the gate width, Bk  is the Boltzmann constant, T  is temperature, and ( )zµ is 

the field-dependent electron mobility given in Equation 11. 

 ( )
( )

0

01 c sat c

c sat

z
E v dV z
E v dz

µ
µ

µ
=

⎛ ⎞− ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (11) 

where 0µ  is the low-field mobility, cE  is the critical electric field, and satv  is the 

saturation drift velocity. Combining Equations 10 and 11 into Equation 12 yields: 
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⎛ ⎞⎟⎜ − − − ⎟⎜ ⎟⎜ ⎟+ +∆ ⎝ ⎠

 

 (12) 

By integrating Equation 12 with boundary conditions 13a/b, the drain-to-source 

current is obtained in the linear region of the I-V characteristics. 

      ( ) ( )
0c ds sz

V z I x R
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=  (13a) 
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=
= − +  (13b) 
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 (15a) 
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 (15c) 

where sR  and dR  are the parasitic source and drain resistances illustrated in Figure 22. 

 
Figure 22. Schematic diagram illustrating the parasitic resistance [12]. 

  

By assuming that the carrier mobility, electric field, and channel potential 

approach 0µ , cE , and ( )
dsatV x  respectively at the onset of saturation, the drain saturation 

current ( )
dsatI x  is obtained. 

        ( )
( )

( ) ( )0 c B
dsat gs th dsat

d i

W x E k T
I x V V x V x

d d d q
ε µ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎟⎜ ⎟⎜ ⎜ ⎟⎟= − − −⎟⎜⎜ ⎜ ⎟⎟ ⎟⎜⎜ ⎜ ⎟⎟ ⎟⎜ ⎜+ +∆ ⎝ ⎠⎝ ⎠⎝ ⎠

 (16) 

where ( )
dsatV x  is the drain saturation voltage obtained when ( )

dsatI x  is equated with 

( )
( )ds dsat

dsat V V x
I x

=
 and is given by: 
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        ( )
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Transconductance is a small-signal parameter that governs the current-driving capability 

of field effect devices and is particularly important in estimating RF and microwave 

performance. 

“The transconductance is the most important parameter for optimization of FET 
high-frequency behavior. The major part of the gain mechanism is embodied in 
the active channel transconductance, which is evaluated as [43]” 
 

      ( )
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ds

ds
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dI x
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dV
=  (19) 

Substitution of Equation 16 into Equation 19 yields the transconductance in the saturation 

region, and is given as: 
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Because the 2DEG is ultimately controlled by the Al-content of the AlGaN 

barrier, it is essential to incorporate both spontaneous and piezoelectric polarization into 

any charge-control model. The model proposed by Rashmi et al. has been rigorously 

developed and confirms well with experimental data. This current model does not include 

the effects of electron traps, surface states, and dislocations, all of which act to reduce 

2DEG concentration and generally degrade performance. Therefore, any observed 

radiation effects can only be interpreted within the structure of this and other presented 

models.  

It should be noted that other AlxGa1-xN/GaN field effect transistor models have 

been proposed and validated against experimental data. Two such models include those 

proposed by Morkoç et al. and Albrecht et al., both of which are more restrictive [12], 

[46].  

Rectifying Contacts and Charged Carrier Transport 

High quality, efficient, thermally stable, reliable electrical contacts are crucial to 

device performance. Electrical contacts are necessary to turn a collection of bulk 

semiconductor materials into useable controllable devices. Contacts to bulk materials can 

be either ohmic or rectifying in nature.  

Ohmic contacts are typically low resistance metal contacts that have linear or 

quasi-linear current voltage characteristics, do not inject minority carriers into the active 

regions of the device, or significantly degrade device behavior in any other manner [47]. 

“An accumulation-type contact is the preferred ohmic contact because electrons in the 

metal encounter the least barrier to their flow into or out of the semiconductor [47].”  
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They are so-called accumulation-type contacts because majority carriers accumulate 

compared to their density in an intrinsic bulk semiconducting material [47].  

Rectifying contacts on the other hand are typically depletion type contacts that 

present a barrier to the flow of electrons into or out of the semiconductor bulk. Rectifying 

or Schottky contacts are an important class of m-s junctions. Schottky structures 

determine the process of charged carrier flow into the semiconductor from the metal and 

vice versa. In the case of AlGaN/GaN MODFETs, Schottky contact gates are the direct 

control mechanism of the current flow within the 2DEG as indicated in Equation 5. The 

three types of m-s contacts are illustrated in Figure 23, where the upper portion shows the 

m-s system before contact and the bottom portion after contact. The work function of the 

metal and semiconductor are represented as the product of the electronic charge and 

potential (φ ), where χ  is the electron affinity, Bφ  is the SBH, and biV  is the built-in 

voltage. 

 
Figure 23. Metal-semiconductor contacts [47]. 



 

 54

  

The nature of the electrical behavior of Schottky structures is still not fully 

understood. Schottky structures can be measured in a variety of ways, including C-V,  

I-V, and photoelectric effect. However, the only measurement method that is within the 

scope of this research project is that of temperature-dependent current-voltage 

measurements. Although I-V-T measurements present specific difficulties, I-V-T is by far 

the most commonly used measurement technique to obtain the effective Richardson 

constant ( **A ). Therefore, there are numerous methods of extracting the commonly 

referenced Schottky structure parameters such as SBH, ideality factor (n), and **A . 

The process in which electrons are ballistically injected over a potential barrier is 

known as thermionic emission (TE). First derived in 1942 by Bethe, TE theory is based 

on three simplifying assumptions that render the shape of the potential barrier immaterial. 

The result of Bethe’s derivation forms the basis of all Schottky contact analysis. Bethe’s 

derived formulation is given in the following equation:   

        0 exp 1
qV

I I
kT

⎛ ⎞⎡ ⎤ ⎟⎜= −⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
 (23) 

where 0I  is the TE saturation current given as: 

        ** 2 0
0 exp bqI AA T

kT
φ⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

where A  is the effective diode area, **A  is the aforementioned Richardson constant, T  

is the temperature, and 0bφ  is the zero bias SBH (apparent barrier height). The effective 

Richardson constant is given by: 
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* 2

**
3

4 qm k
A

h
π

=  (25) 

where *m  is the effective mass of an electron within the semiconductor material and h  is 

Plank’s constant. 

Because practical devices are rarely ideal, an ideality factor is introduced to 

describe deviation from a pure TE scenario. For devices in which all current transport is 

due to TE, 1n = . All other mechanisms act to increase total current and for any 1n > , 

TE will underestimate current flow. The definition of n  is given below as 

        lnq d I
n
kT dV

=  (26) 

The non-ideal TE model then becomes 

  ** 2 exp exp 1 exp
q B qV qV

I AA T
kT nkT kT
φ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − ⎟⎜= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (27) 

where the diode is biased at a sufficiently high voltage (V kT ) to ensure thermionic 

emission. The last exponential in Equation 27 becomes vanishingly small and results in 

the reduced equation: 

 0 exp 1
qV

I I
nkT

⎛ ⎞⎡ ⎤ ⎟⎜= −⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
 (28) 

Use of the TE model of current flow through the m-s interface can cause 

significant deviation in the extraction of the SBH, n, and A** because other transport 

mechanisms are ignored. If accurate parameter extraction is desired, additional current 

transport processes such as generation-recombination, tunneling, and current leakage 

through the contact periphery, must all be properly accounted for. Therefore, detailed 

analysis of the current flow will be taken piecewise to account for various mechanisms. 
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The current transport in m-s junctions is primarily due to majority carriers. Under 

forward bias, electrons from the semiconductor conduction band can be transported to the 

metal by three mechanisms (Figure 24):  1) electrons can traverse the presented barrier by 

ballistic injection over the barrier (TE), 2) electrons can quantum-mechanically tunnel 

through the barrier (field emission: FE), or 3) electrons can undergo a thermally assisted 

tunneling process known as thermionic field emission (TFE). A model of charged carrier 

transport (based on these three types of barrier actions) that agrees well with 

experimental data is presented below [48], [49], [4]. Modification of Bethe’s original 

formulation of TE yields the current density due to both TE and tunneling components.  

   
( )

( )

( )( )
( )0

**
0

0

**

0

exp

1
b

b n
s m

q V

s m

q V VA T
J T d

k kT

A T
FT F d

k

φ

ζ φ
ζ ζ

η η

∞

→

−∆

⎡ ⎤− + + −∆⎢ ⎥= ⎢ ⎥
⎣ ⎦

+ −

∫

∫
 (29) 

where the parameters are illustrated in the energy band diagram of a m-s Schottky contact 

in Figure 25. Descriptions of the relevant parameters used throughout this model are 

explained in Table 3. 
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Figure 24. Conduction mechanisms for m-s contacts. 

 

 
Figure 25. Band diagram of a Schottky barrier contact under forward bias [48]. 
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Table 3. Parameter descriptions for Figure 25. 
Symbol Definition 

fE  Quasi-Fermi level of the semiconductor 

fmE  Fermi level of the metal 

cE  
Bottom of the semiconductor 

conduction band 

E Energy of an electron measured from 
the bottom of the conduction band 

ζ  
Electron energy above the top of 

effective barrier 

( )T ζ  
Quantum transmission coefficient of 
electrons over the effective barrier 

η  
Electron energy below the top of the 

conduction band 

( )T η  
Quantum transmission coefficient of 
electrons below the effective barrier 

(through the barrier) 
V Applied voltage 

n c fqV E E= −  Conduction band and quasi-Fermi 
level difference 

0bqφ  
SBH of the m-s contact 

ignoring image force lowering 
q φ∆  Imaging force lowering of the SBH 

0b bq q qφ φ φ= − ∆  Effective SBH 
0b bqV qV q φ= − ∆  Effective flat band voltage 

sF , mF  
Semiconductor and Metal Fermi-Dirac 

distribution functions 
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From Figure 25, we obtain the following: 

 bqV Eη = −  (30) 

and  

 b b nqV q qV qVφ= − −  (31) 

Rewriting Equation 29 results in the current density in the forward bias regime.  

 

( )
( )

( )( )
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0

**

0

exp exp

1
b

b n
s m

qV

s m

q V VA T
J T d

k kT kT

A T
FT F d A B
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ζ
ζ ζ

η η

∞

→

⎡ ⎤− + ⎡ ⎤−⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

+ − = +

∫

∫        

 (32) 

Assuming that ( ) 1T ζ = , the first term of Equation 32 becomes the case of pure 

thermionic emission. 

 ** 2 exp expbq qV
A A T

kT kT
φ⎡ ⎤ ⎡ ⎤− −

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (33) 

The second term of Equation 32 is for the case of direct tunneling through the 

base of a triangular barrier. Direct tunneling is generally omitted. Instead, other currents 

such as defect-assisted tunneling and others of an ohmic nature are lumped into a single 

current leakage component. This method is used because the total current is the sum of 

the direct current from the metal to the semiconductor and vice versa and implicitly 

implies that resistance is low [49]. Low resistance cannot be assumed and therefore must 

be considered as an additional mechanism adding to total current through a contact when 

assuming pure TE. 
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The current due to quantum-mechanical tunneling for a moderately to heavily 

doped semiconductor or for operation at low temperatures, except very low biases, can be 

written as [50]: 

 
0

exp 1TFE t

qV
I I

E

⎛ ⎞⎡ ⎤ ⎟⎜ ⎢ ⎥ ⎟= −⎜ ⎟⎜ ⎢ ⎥ ⎟⎟⎜⎝ ⎠⎣ ⎦
 (34) 

where It is the saturation value of the current ITFE 

 
( )( ) ( )**

00 0 0

00 0

exp
cosh

b b
t

A T qE V qq
I E kT Ek

kT

π φ η φ ηη⎡ ⎤− − −⎢ ⎥= − −⎢ ⎥
⎣ ⎦

, (35) 

and 0E  is a barrier transparency dependent parameter. The image-charge lowering can be 

included by replacing 0bφ  with bφ . In the derivation provided by Padovani and Stratton, 

0E  and 00E  have the following meanings [50]: 

 00
0 00 coth

E
E E

kT
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

 (36) 

 00 *2
d

s

q N
E

m ε
=  (37) 

00E  is the characteristic direct tunneling energy and is generally used to determine the 

importance of TE current. Thermionic emission is typically dominant when 00E kT , 

FE becomes important when 00E kT , and TFE is important when 00E kT  [51]. 

Here, it is assumed that all of the donors are ionized and the effective mass is that of the 

conduction band for n-type semiconductors. Additionally, if the doping is moderately 

high, η  can be neglected [49]. 
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Another mechanism, which causes diode current to deviate from ideal, is that of 

generation-recombination (GR). Generation-recombination occurs when minority carriers 

are injected across a junction. At zero-bias, the depletion region of a Schottky contact is 

in thermal equilibrium. That is, the generation rate of e-h pairs is balanced by the rate of 

recombination. In the presence of an applied bias, the equilibrium state is perturbed and 

the net generation or recombination rate depends upon the polarity and magnitude of 

applied bias. In a forward bias condition (n-type material), electrons from the neutral bulk 

semiconductor and holes from the Schottky contact are injected into the depletion region. 

The excess e-h pairs recombine in the depletion region and give rise to a forward bias 

recombination current. If on the other hand, the Schottky contact is reverse biased, e-h 

pairs in excess of thermal equilibrium are generated in the depletion region. A reverse 

current arises when the excess e-h pairs are swept out of the depletion region by the 

electric field.  

Similar to that of a p-n junction, the diode current due to GR can be given as 

[49],[52]: 

 exp 1
2gen recomb gr

qV
I I

kT−

⎛ ⎞⎡ ⎤ ⎟⎜= −⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
 (38) 

where 

 
2
i

gr

qn w
I

τ
=  (39) 

and w  is the thickness of the semiconductor depletion region, in  is the intrinsic electron 

concentration, and τ  is the electron effective lifetime [52].  
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Regarding the effects of series and parallel resistances, both mechanisms act to 

increase the ideality factor when assuming pure TE. When assuming pure TE it is proper 

to extract n using the slope of the linear region in a semilogarithmic I-V plot. The slope 

of the linear region is given as: 

 q
m

nkT
=  (40) 

 
Figure 26. Effects of resistance on Schottky diode parameter extraction. 
 

However, as you can see in Figure 26, the upper limit of the interval is effected by 

series resistance while various other mechanisms push the lower interval limit up, thus 

reducing the linear region. From this method, the saturation current for TE can be 

obtained from the y-intercept at ( )0ln I . Series resistance will tend to decrease the slope 

of the curve and result in an artificially high y-intercept for the linear fit, and 

consequently a lower apparent SBH. Similarly, the ideality factor will increase and no 

physical interpretation in calculating the SBH from Equation 28 is justified [53]. Any 
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case in which mechanisms other than TE are active, Equation 28 will overestimate the 

saturation value and importance of TE.  

Schottky contacts formed on AlGaN and GaN experience currents that are many 

OOM greater than predicted by the TE model alone. Large anomalous currents adversely 

affect device performance and are a subject of intense investigation. Many believe that a 

high density of unintentionally introduced defect donors is present near the AlGaN 

surface [54], [55].  

“With regard to the origin of unintentional surface donors, a recent theoretical 
calculation has predicted that the nitrogen vacancy VN and the oxygen in the 
nitrogen site ON behave as donor states near the conduction band [54].” 
 
Because the presented model does not assume pure TE, the excess current is well 

accounted for in the forward bias regime and this model is sufficient for analysis within 

the scope of this research project. Figure 27 is the equivalent circuit used to create a 

model that includes contributions from TE, TFE, FE, GR, resistances, and other 

miscellaneous tunneling effects. In the proposed model shown as Equation 41, Ite, Igr, and 

It are the TE, GR, and tunneling saturation currents respectively, and all other symbols 

have their usual meanings. 

 
Figure 27. Proposed dc equivalent circuit of a Schottky structure [52]. 
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 (41) 

where ( )sV V IR→ − , is the voltage drop across the barrier region. The leakage current, 

1

s
L
V IRI R

−= , is another parallel component of the total current. It is caused by 

surface leakage and can usually be significantly reduced by various designs and 

fabrication techniques. In practice, it is the component which appears to by-pass the m-s 

interface altogether (defect-assisted tunneling) and is often thought of as a large leakage 

resistor, 1R , in parallel to it. 

By choosing the correct saturation currents, resistances, and tunneling parameter, 

a fit to experimental data can be achieved in a wide temperature and applied bias range. 

A robust numerical analysis routine is necessary to fit the six unknown parameters to 

experimental data. An outline of a fitting routine and comparison to the traditional diode 

extraction method is available in Appendix B  
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IV. Experimental Procedures 

Device Fabrication and Packaging 

The transistor structures used throughout this study were manufactured by 

AFRL/SNDD at Wright-Patterson Air Force Base, Ohio on wafers grown by Cree Incc. 

The wafer consisted of a 2 µm thickness of UID GaN grown on a 413 µm 4H-Silicon 

Carbide (4H-SiC) substrate, followed by approximately 25 nm of 27% mole fraction 

Aluminum, AlGaN. The wafer was grown by metal-organic vapor-phase epitaxy 

(MOVPE) and mesa isolated by reactive ion etching. Ohmic  

(Ti/Al/Ni/Au; 35/230/50/20 nm) and Schottky (Ni/Au; 20/280 nm) contacts were 

patterned using photolithography to form MODFETs of varying gate dimensions and 

miscellaneous test structures (C-V ring, Van der Pauw, transfer length, to name a few). 

Figure 28 shows a post-processed wafer with individual reticles visible. An expanded 

view of each reticle is shown as Figure 29. Finally, each diced reticle is packaged (Figure 

30). The open-faced package allows electrons to penetrate the device during electron-

irradiation testing. A more robust packaging system is necessary for future neutron-

irradiation studies. 

                                                 

c Prior to shipping the wafer, Cree Inc. determined the room temperature carrier concentration and mobility 
to be 1.3x1013 cm-2 and 1,300 cm2-V-1-s-1, respectively [29]. 
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Figure 28. AlGaN/GaN/4H-SiC Wafer segment. 

 

 
Figure 29. Reticle containing MODFET and test structures [29]. 

 

 
Figure 30. Packaged reticle [29]. 

Scale to inches 
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Although each reticle contains myriad of useable devices, the only device 

investigated in this study is that of the FATFET. The FATFET is simply a large  

single-gate MODFET that is well suited for irradiation testing. The FATFET has a 

nominal gate width of 50 µm (MODFET gate size is 1.2 µm), small width-to-length ratio, 

and has greater than 20 times the gate surface area of the double-gated MODFETs 

located on the reticle. The large mesa area of a FATFET is ideal for observing  

radiation-induced changes in the 2DEG and eliminating current detection limitations of 

Schottky measurements. A 20x magnification of the FATFET in use is shown in  

Figure 31.  

 
Figure 31. Wired FATFET with appropriate contacts shown. 

 

100 µm 
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Neutron-Specific Experimental Considerations 

Unlike other radiation sources, the considerations necessary to conduct neutron 

experiments are unique. The issue of utmost concern with neutron irradiation is 

activation. Devices, cables, sample holders, etc. with large activation cross sections (e.g. 

copper, gold, nickel) may become radioactive upon neutron bombardment. In addition to 

issues of safety, activated devices may hinder the ability to run desired tests and may 

require a considerable “cool off” period. Therefore, in order to reduce activation, samples 

are cadmium (Cd) shielded. As seen in Figure 32, Cd has nearly a 4 decade decrease in 

absorption cross section over one decade of increasing energy past the cutoff of 0.2 eV 

[56],[57]. Ignoring resonance absorption, neutrons of energy greater than about 1.5 eV 

pass through Cd with little attenuation. 

Although activation can be reduced with proper choices of shielding, fission 

gamma rays are a significant source of additional accumulated dose and are difficult to 

avoid. Gamma loading during neutron irradiation can be reduced with shielding by lead 

and other high Z materials (although it also reduces the neutron fluence). Although the 

scope of this research limits detailed analysis of accumulated gamma dose, at a maximum 

NIEL dose of 392 krad (Si), the gamma dose is expected to be significantly less than that 

the gamma doses of 600 and 21 Mrad (Si) reported by Luo et al. and Mishra et al., 

respectively. No further discussion is given to this matter.  
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Figure 32. Absorption cross section of Cadmium. 

 

Pre-irradiation Characterization 

Prior to conducting irradiation experiments, newly packaged devices were 

characterized and all experimental equipment exercised to ensure proper working order. 

The equipment necessary for this phase of testing included an Omega temperature meter 

configured for a type-K thermocouple, two Keithley 237 Source Measurement Units 

(SMU), a National Instruments General Purpose Interface Bus (GPIB), and laptop 

computer for computer control and data acquisition. Figure 33 shows the equipment used 

for electronic measurements throughout this research. Although initial testing included 

only I-V characteristics, expansion of testing capabilities eventually necessitated a 

measurement-type switch box (discussion to follow) shown as Figure 34. A schematic 

diagram of the setup in its final form is shown as Figure 35. Although not specifically 
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stated, every measurement was conducted in darkness and consisted of a minimum of 

four measurements for in situ irradiations or eight measurements for PART irradiations.  

The computer control and data acquisition program written in Visual Basic is 

available in electronic form upon request. 

 
Figure 33. Experimental setup showing electronic measurement equipment. 

 

 
Figure 34. Measurement-type control switch. 
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Figure 35. Schematic representation of experimental equipment setup. 

 

Characterization of FATFETs can generally be broken down into four distinct 

categories: single temperature I-V characteristics, single-temperature transfer 

characteristics, single-temperature Schottky characteristics, and temperature-dependent 

Schottky characteristics.  

The physical device configuration for both the I-V and transfer measurements is 

identical. In each case, one SMU applies a gate-to-source voltage bias  

(measures gate-to-source current) and the other SMU applies a drain-to-source voltage 

bias (measures drain-to-source current). In both measurement types, the SMUs are 

referenced to a common source/ground. Typically, in an I-V measurement the applied 

gate bias is stepped in increments from -4.0 to 0.0 V as the drain voltage is swept from 

0.0 to 15.0 V at each gate voltage. In a transfer measurement however, the  

drain-to-source voltage is held constant in the saturation region (≈ +6.0 V) as the gate is 

swept from -4.0 to +3.0 V.       
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Measurements of the Schottky contact require a different physical configuration 

altogether. In order to measure the Schottky diode behavior, the source and drain are tied 

together (ground) as the gate voltage is swept from -4 to +3 V. Only one SMU is required 

for Schottky measurements. However, in order to accomplish quick changes between I-V 

and Schottky measurements, a measurement-type switch box is utilized. Effectively, in 

the I-V configuration, only the source is used as the common ground. However, in the 

Schottky configuration, both the drain and source are referenced as common grounds. 

The SMU tied to both the source and drain is placed in standby mode. Bench top testing 

demonstrated that the affect of using such a switch box is negligible.  

The final measurement is that of the temperature-dependent Schottky 

characteristics. This measurement differs very little from the single temperature 

measurement. Since no active temperature control systems are employed, the 

temperature-dependent Schottky characteristics are simply a continuous loop of single 

measurements with an accompanying temperature reading during an unaided liquid 

nitrogen (LiN) burn off. Sample mounting was achieved through careful placement of the 

individual devices on the cold finger using thermally conductive grease. The device was 

secured to the block by placing unused package leads under a washer and nut. Wire 

contacts were isolated to avoid shorting and the block slowly lowered into a LiN bath. 

Typical burn off cycles last between 8-12 hours. Due to the increased humidity, 

condensation formed on the device during warm up. To prevent this from occurring, the 

precharacterization temperature ramps conducted at Wright-Patterson Air Force Base 

were made under dry nitrogen ambients.  
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The resultant data is analyzed with a data-conditioning program written in 

Fortran. The program sorts and averages the data appropriately, outputs the temperature 

profile, and creates both Mathematica and Excel friendly input files. The program is 

available in electronic form upon request.  

In addition to the electronic equipment required for measurements, a plethora of 

Dewar designs accompanied this research. Figure 36 and Figure 37 show a wooden 

cradle designed to fit within the 7” section (outer section) of the BP. A borosilicate 

evacuated-glass Dewar surrounded by cadmium sheeting is supported by the cradle. With 

the Dewar, an Aluminum cylinder approx 1” diameter by 2.5” high acts as a cold finger. 

As a large thermal mass, the block is ideal for mounting both the device, thermocouple 

sensor, and grounding lead. Additionally, when the system is not within the BP, dark 

conditions are maintained with a Styrofoam lid. Figure 40 shows a Dewar system 

designed to operate within the 6” BP section.  



 

 74

 
Figure 36. Dewar shown in wooden cradle designed to fit within the 7” section of the 

beam port. Inset shows Cadmium shielded thermal block. 
 

 
Figure 37. Wooden cradle used for both in situ beam port measurements and 

benchtop characterizations at 80 K in darkness. 
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Figure 38. 6” Dewar system for in situ measurements at 80 K within the BP. 

 

Long Term Anneal Study 

Upon successful completion and fielding of a robust acquisition program, 

previously electron irradiated FATFETs were analyzed. Devices A0408 and A0409 were 

irradiated by J.M. Sattler and placed in storage at RT. Following a nine month anneal, 

both devices were again characterized at RT and 80 K. The results of this annealing study 

are available in Appendix C. 

Irradiation Experiments 

Essentially six distinct reactor runs were utilized to gather enough data to 

coherently discuss and confirm observed device behavior. Each run was marked with 

specific difficulties that degraded the overall quantity and quality of data. Each run is 

discussed in detail below. 
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All irradiations utilized the OSURR. The OSURR is a 500 kW, natural 

convection, pool-type reactor. During operation at high loads, two supplementary cooling 

loops and an auxiliary water supply can be used to force cool the pool. The OSURR is 

loaded with approximately 3.9 kg of 19.5% enriched uranium silicide. The irradiation 

facilities used include a 2” diameter PART and BP . Both have ‘direct look’ to the core 

(Figure 39). Standard methods of dosimetry are employed for spectrum determination 

and are discussed in detail in later section within this chapter.  

 
Figure 39. OSURR core and relative placement of irradiation facilities. 

  

Devices irradiated by J.M. Sattler were bracketed between 1x1014 e--cm-2 and 

1x1016 e--cm-2. The relationship of the NIEL rate loss for electrons and neutrons is well 

characterized for Silicon. Taking advantage of this relationship allows for a ballpark 

estimate of the starting fluence of neutrons, which should roughly correspond to Sattler’s 

previous work. In Si, 1 MeV neutrons are roughly 100 times more effective at causing 

displacement damage than an electron of equal energy. That is to say, the number of 

damage-equivalent 1 MeV electrons per particle is >100 for 1 MeV neutrons. Therefore, 
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assuming non-ionizing energy loses only, the required neutron fluence is two OOM lower 

than previously reported electron fluences. Finally, because the relationship for electrons 

and neutrons in GaN is unknown, the fluence is further reduced by an OOM. Two 

advantages arise from the method. 1)  Direct comparisons of 1 MeV Eq (Si) fluences for 

GaN and Si-based devices can be made and 2) Doses are easily reported in rad (Si).    

The first irradiation experiment conducted on 20DEC04 was designed to 

scrutinize the proposed radiation test plan. The Dewar apparatus was placed in the BP to 

characterize the setup and obtain a spectrum of the BP (Figure 40). An initial spectrum is 

critical to ensure that the fluence is a) not too high as to make irradiation times 

exceedingly short, and b) not too low as to bound the upper limit. The essential issue with 

this setup is that the gamma-shutter of the beam port must remain open when using the  

7” section. This essentially turns the BP into a neutron-howitzer. In order to reduce the 

potential radiation hazard, a polyurethane (poly) plug capped with Cd was placed within 

the 6” section, ahead of my apparatus. The first layer of Cd effectively absorbs already 

thermalized neutrons, allowing only epi-Cd neutrons to traverse the poly plug. The poly 

plug has a high hydrogen content, which effectively thermalizes neutrons, which in turn 

get absorbed by the second layer of Cd. Additionally, the Dewar is Cd covered and has a 

high boron concentration. Finally, the BP was heavily shielded with lead and concrete 

bricks interlaced with Cd sheets (Figure 41). The reactor (Rx) was run at 100 kW  

(10% power) for 30 minutes. Neutron and gamma levels appeared to be in a safe range. 
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Figure 40. Insertion of Dewar apparatus into beam port for in situ measurements 

(LEFT) and polyurethane plug to moderate streaming neutrons (RIGHT). 
 

 
Figure 41. Shielding of the beam port with lead bricks (LEFT) and concrete blocks 

(RIGHT) to attenuate neutron-induced gamma radiation.  
 

The second experiment was conducted from 04-05JAN05. On 04JAN05, device 

A12 was prepared for an overnight characterization run. The device was mounted to the 

thermal block, cooled to 80 K, and successfully characterized. The device functioned 

throughout the evening and completed the 14 hour temperature ramp from 80 K to 295 K. 

On 05JAN05, A12 was cooled down again and prepared for in situ irradiation 

measurements. However, final testing indicated an anomalously large gate leakage 

current indicative of static-discharge damage. The device became gate leakage dominated 

and rendered unusable. In its place, device A25 was prepared for in situ irradiation 
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measurements. A25 has no temperature-dependent precharacterization Schottky data due 

to the failure of A12. Only a baseline characterization at 80 K was completed. 

Almost as soon as Rx steady-state was achieved at 7.5 kW, a serious neutron 

hazard was discovered and power was limited to a maximum of 5 kW. The power 

reduction was necessary to maintain safe neutron radiation levels outside of the Rx and 

Rx building. The total irradiation time was 148 minutes and a total NIEL dose of only  

5.4 rad (Si) was achieved. At 5 kW it would take nearly 15 hours to achieve only  

33 rad (Si) total NIEL dose and nearly 16.5 years for 326 krad (Si).  

In order to speed the process, an entirely new irradiation plan was devised. 

Instead of in situ measurements at 80 K within the BP, subsequent irradiations would be 

conducted at ambient temperature within the PART (Figure 42). Since the total flux of 

the PART is five OOM greater than the BP configuration, nearly 5 decades of fluence are 

obtainable simply by altering the power level.  

The third irradiation experiment consisted of reusing device A25 and was 

conducted over a two day period from 05-06JAN05. A25 was rebaselined so that a fresh 

starting point was known. A full suite of I-V, transfer, and Schottky measurements was 

made at 80 K. In addition, a complete temperature-dependent Schottky measurement was 

made from 80 K to 292 K. On 06JAN05, NASA had use of the BP and I piggybacked off 

their power settings to irradiate A12 in the PART.  
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Figure 42. Pneumatically actuated rabbit tube with automatic timer shown. 

 

The device packaging for irradiation in the PART was relatively straightforward. 

The device was loaded in to a small plastic vial and the leads secured. The vial was 

wrapped in Cd sheeting, placed within a PART sample carrier, and packed with cotton 

(Figure 43). Irradiation time was set on the automatic timer with an additional half 

second added for travel time for short irradiations. Upon completion of the desired 

fluence, the device was surveyed and then immediately immersed in LiN. Two small 

holes were cut into the plastic vial on the top and bottom to allow LiN to reach the 

device. While in the LiN bath, leads were soldered to the exposed wires. After thermal 

equilibrium was reached a full measurement suite was conducted and the process 

repeated.  

Table 4 shows desired fluence, power setting, and subsequent radiation times for 

device A25.  Following irradiation to 6x1012 n-cm-2, a broken package lead rendered A25 

inoperable. The pacage can be repaired however; any application of heat effectively 

nullifies irradiation-induced damage. Therefore, A25 was no longer used. 
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Figure 43. Rabbit Tube sample carrier. 

 

Table 4. A25 PART Irradiation Experiment Summary (06JAN05). 
Desired 1MeV 

Eq Fluence [n-cm-2] % Rx Power Successive 
Irradiation Times [sec] 

2x1011 0.40 3 
4x1011 0.40 3 
6x1011 0.40 3 
8x1011 0.80 2 
1012 0.80 2 

2x1012 0.80 8 
4x1012 0.80 16 
6x1012 1.60 8 
1012 1.60 16 

2x1012 1.60 41 
4x1012 3.20 41 
6x1012 3.20 41 

 
The fourth irradiation experiment was conducted over three days (10-12JAN05) 

and utilized two devices, A27 and A29. A27 was irradiated in the PART in a similar 

manner as A25. A27 also did not have temperature-dependent pre-irradiation Schottky 
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data due to the failure of another device during precharacterization. During the  

cool-down phase the devices are extremely sensitive to the different thermal expansion 

coefficients of the 4H-SiC, epoxy, and package. Apparently, the epoxy bond between the 

reticle and package is sensitive to thermal gradient induced strains. Upon weakening of 

the epoxy, catastrophic separation and destruction of the wire bonds ensue.  

Table 5. A27 PART Irradiation Experiment Summary (10JAN05). 
Desired 1MeV 

Eq Fluence [n-cm-2] % Rx Power Successive 
Irradiation Times [sec] 

1011 0.05 13 
5x1011 0.2 13 
1012 0.2 16 

5x1012 1.6 16 
7.5x1012 1.6 10 

1013 6.4 3 
2.5x1013 6.4 15 
5x1013 6.4 26 

7.5x1013 12.8 13 
1014 12.8 13 

2.5x1014 25.6 39 
 

Table 5 shows a summary of the radiation plan conduced for device A27. During 

cool-down after 2.5x1014 n-cm-2 the device catastrophically failed due to the 

aforementioned mentioned epoxy problem. However, up to this point, no significant 

radiation induced changes were observed.  

Many devices appeared to be failing due to the repeated cool-down phase and the 

highest fluences were never reached. Therefore, a test device would be irradiated in the 

PART and measured at 80 K only four times. A29 was precharacterized at 80 K and 

irradiated according to the plan listed as Table 6. 
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Table 6. A29 PART Irradiation Experiment Summary (10JAN05). 
Desired 1MeV 

Eq Fluence [n-cm-2] % Rx Power Successive 
Irradiation Times [sec] 

1015 25.6 257 
2.5x1015 50 197 
5x1015 60 274 
1016 90 365 

  

At a total accumulated fluence of 1016 n-cm-2, the NIEL dose is 326 krad (Si). At 

1016 n-cm-2 and 90% Rx power, the devices become highly activated and the Cd 

thermally warm to the touch. Because the maximum Rx power is 90%, any increased 

doses from this point will require increasingly long irradiation times. From the real-time 

data obtained during characterization, it was clear that the increased fluence was not 

having the desired effect. That is, no discernable radiation-induced changes were 

observed. Therefore, I decided to stop at 1016 n-cm-2. Device A29 was remeasured after a 

24 and 48 hour RT anneal. 

The fifth radiation experiment was conducted on device A30 to confirm the 

results observed in A29. The experiment spanned 3 days from 10-12JAN05. A full suite 

of I-V, transfer, and Schottky measurements were made at 80 K. In addition, a complete 

temperature-dependent Schottky measurement was made from 80 K to 292 K. On 

11JAN05 device A30 was irradiated according to the plan listed as Table 7. Upon 

completion of the test plan, A30 was again fully characterized, including a complete 

temperature-dependent Schottky measurement was made from 80 K to 292 K. This is the 

only device in which a pre- and post-irradiation temperature-dependent Schottky 

measurement could be conducted. 
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Table 7. A29 PART Irradiation Experiment Summary (10JAN05). 
Desired 1MeV Eq 
Fluence [n-cm-2] % Rx Power Successive 

Irradiation Times [sec] 
1011 0.1 7 

2x1011 0.1 7 
5x1011 0.5 4 
1012 0.5 7 
1013 10 6 

4x1015 90 292 
8x1015 90 292 

1.2x1016 90 292 
 

The final experiment took place on 13-14JAN05. The experiment utilized a 

modified Dewar system that fit within the 6” section of the BP for in situ measurements. 

The updated system contained two devices and a single gold wire for spectrum unfolding 

scaling. Of the two devices, only one was electrically active and continuously measured. 

The other device was to be used for a further annealing study after returning to  

Wright-Patterson AFB. Both devices were packaged similarly to the PART packaging 

scheme. Each device was stored in a plastic vial and wrapped in Cd. After the apparatus 

was loaded into the BP the electrically active device was given a final checkout test. 

Once the Rx became critical I attempted to measure the device again, I noticed about a 

three OOM increase in gate leakage and the Schottky contact appeared to be resistance 

dominated. This behavior is indicative of a static-discharge related destruction 

mechanism and failure was not radiation-induced. Throughout the remainder of the 

experiment I used this device to observe when it would fail due to increasing neutron 

dose. At about the 2nd hour, the device reached the measurement system current 

compliance for drain and gate current. At this point, the Rx was shutdown and the 
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devices allowed to radioactively “cool”, whilst remaining cryogenically cooled to 80 K. 

Upon removal from the apparatus, visual inspection revealed that the reticle had fallen 

from the package. Upon inspection of the secondary device, I observed the same 

catastrophic failure mechanism. This method is optimal and desired. However, due to 

unforeseen difficulties the entire data set and devices were rendered useless.  

Dosimetry 

Determining the amount of energy deposited within an irradiated device is both 

challenging and essential. Without accurate dose determination, others may have 

difficulties in reproducing important research. Irreproducible results cast doubt on the 

validity of an experiment and may undermine high-quality research. Three key factors in 

reporting accurate dosimetric data are: 1) prior knowledge of the radiation source and 

consequential measurement limitations, 2) understanding of basic radiation interactions 

with matter principles, and 3) comprehension of the expected damage mechanism. These 

issues are particularly misunderstood and misreported because typical device dimensions 

are OOM smaller than nominal stopping distances. Classically, doses are overestimated. 

Monte Carlo simulations are an effective means of determining an actual deposited dose. 

Although simulations are beyond the scope of this research, well-known dose 

relationships for Silicon are exploited for comparative purposes.  

The OSURR neutron energy spectrum is determined by foil spectroscopy and 

unfolding techniques. American Society for Testing and Materials (ASTM) approved 

methodologies are used for spectrum analysis. Gold, Copper, and Cobalt wires (bare and 

Cd covered) were irradiated for 30 minutes at 100 kW in the Dewar system shown 
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(Figure 36) in the beam port. From the six samples, a spectrum can be unfolded using the 

SAND-II program (see Figure 44). Limited by the error in gamma-spectroscopy and 

subsequent unfolding, the reported spectrum has error of greater than 25%. 

 
Figure 44. OSURR Neutron Spectrum at 500 kW. 

 

In order to determine the displacement damage effectiveness of various neutron 

sources (or locations within the reactor), the neutron energy spectrum is reduced to a 

monoenergetic source with a damage effectiveness equivalent to the entire spectrum. For 

purposes of radiation testing of electronics, the 1 MeV equivalent neutron fluence for 

Silicon (1 MeV Eq (Material) or simply 1 MeV Eq) is reported. 

The 1 MeV Eq is determined by using MIL-STD-750D METHOD 1017.1. The 

DoD approved method is outlined in the ASTM E722(1992) standard [58], [59]. The  

1 MeV Eq is the fluence required of 1 MeV monoenergetic neutrons to cause the same 

amount of damage as the entire spectrum for a given material. ASTM E722(1994) 
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provides the damage functions of both Si and GaAs. Using Equation 42, 1 MeV 

equivalents can be determined. 
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where ( )Eφ  is the energy-dependent incident neutron energy-fluence spectral 

distribution, ( ),D MATF E  is the energy-dependent neutron displacement damage function 

for the material of interest (Figure 45), and ,1 ,D MeV MATF  is the displacement damage 

reference value at 1 MeV. ,1 ,D MeV SiF  and ,1 ,D MeV GaAsF  are 95 and 70 MeV-mb 

respectively [59]. Table 8 illustrates the effect of collapsing the spectrum to a 1 MeV Si 

and GaAs equivalent.  

Table 8. Comparison of total flux to 1 MeV Eq neutrons for Si and GaAs. 

 Total Flux 
[n-cm-2-s-1] 

1 MeV Eq (Si) 
[n-cm-2-s-1] 

1 MeV Eq (GaAs) 
[n-cm-2-s-1] 

Rabbit Tubed 2.63x1012 1.52x1013 1.57 x1013 
Beam Port 1.24x107 1.95x109 2.03x109 

    

To determine the NIEL dose of neutrons, a well-known relationship for Silicon is 

exploited. The neutron NIEL rate at 1 MeV for Silicon is 2.0368 keV-cm2-g-1 [60]. 

Therefore, maximum dose at 1.2x1016 n-cm-2 is 392 krad (Si). 

 

                                                 

d Devices placed within the Rabbit tube were Cd shielded. Therefore, the lower limit of integration in 
Equation 42 is adjusted to the Cd cut-off energy [56].  Devices placed in the beam port need no adjustment 
because the unfolding is unique to the configuration of the Dewar system (Figure 36).     
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Figure 45. Displacement damage KERMA functions for Si and GaAs. 
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V. Experimental Results 

In situ Irradiation Experiment: A25 

The irradiation experiment on device A25 was successful in demonstrating in situ 

measurements at cryogenic temperatures within the BP. Although forced to run at 

reduced power and duration, a number of startling observations are reported at a total 

NIEL dose of only 5.4 rad (Si). 

The transfer characteristics and extrinsic mg  are shown as a function of neutron 

fluence in Figure 46. The maximum extrinsic mg  is within the statistical noise and no 

distinguishable increase observed. However, the slope of the transfer characteristics at the 

maximum transconductance extrapolated to 0V =  yields a decreasing thV   

(Figure 47).   

Even though the total NIEL dose was extremely low, a tremendously large 

increase in drain current is observed without a correspondingly large increase in gate 

leakage. All presented I-V characteristics are the gate leakage adjusted drain currents 

(GLADC). Because the gate leakage is two OOM less than the drain current, adjusting 

the drain current has little effect. The I-V characteristics are presented as Figure 48 and 

Figure 49. Note that for Figure 49, the power was reduced 33% at measurement #5 

(3.5x1010 n-cm-2 or 1.14 rad (Si)). The NIEL dose rate up to measurement #5 is 

nominally 3.44 rad (Si)/hr. After the power reduction, the NIEL dose rate is decreased to 

2.30 rad (Si)/hr. The decrease power is clearly noticeable in the decreased slope of 

increasing drain current after measurement #5 in Figure 49. In fact, nearly 65% of the 
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increased drain current for Vg = -2.0 V occurs in the first 20% of total accumulated NIEL 

dose.  

 
Figure 46. A25:  Drain current versus gate voltage and extrinsic transconductance 

as a function of neutron fluence measured at Vd = +6.0 V. The RSD <1.4 %. 
 

 
Figure 47. A25:  Extracted threshold voltage as a function of neutron fluence. 
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Figure 48. A25:  I-V characteristics as a continuum of accumulated dose.  

The RSD <1.3%. 
 

 
Figure 49. A25:  I-V characteristics shown as a function of neutron fluence. The 
maximum increase in drain current at Vd = +6.0 V is 14%, 20%, and 33% for  

Vg = 0.0, -1.0, and -2.0 respectively. The maximum RSD <0.46%.  
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Measurements conducted from precharacterization (0) to 1.65x1011 n-cm-2 (23). 

Each measurement took ≈120 seconds with ≈3-4 minutes between subsequent 

measurements. 

The gate leakage of device A25 was extremely low and exhibited very little 

change during irradiation. Figure 50 and Figure 51 both show the gate leakage 

characteristics as a function of accumulated dose.  

 
Figure 50. A25:  Gate leakage as a continuum of accumulated dose. The arrow 

denotes a continuous increase of gate current with dose to a maximum increase in 
magnitude of 16% for Vg = -2.0. 
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Figure 51. A25:  Gate leakage shown as a function of neutron fluence. Measurement 

run zero represents the pre-irradiation measurement. 
 

Even though the temperature-dependent Schottky measurement was not 

conducted pre-irradiation, general trends of the single temperature measurement remain 

valid. In order to obtain a SBH for comparative purposes, the areal Richardson constant 

**AA  is assumed to remain unchanged during irradiation. The post-irradiation value for 

**AA  is 1.0199x10-07 ± 6.0978x10-08 [A-K-2] (Table 15). The SBH increased by 

approximately 5% at a maximum dose of 5.4 rad (Si). This increase is rather significant 

given the extremely low NIEL dose. Table 9 is a summary of relevant Schottky diode 

parameters. 
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Figure 52. A25:  SBH alteration during in situ measurements at 80 K. Data points 

removed that had excessive error in the fitting parameter phi. 
 

Table 9. A25:  Summary Table of Observed Schottky behavior. 
 SBH [eV] tI  [A] 0E  [meV] sR  [Ω] 

Average 0.909 
± 1.94 % 

6.22x10-12 
± 10.53 % 

43.9 
± 1.01 % 

27.1 
± 1.75 % 

Trende Increasing Decreasing Stable Stable 
 

Other fitting parameters are shown as Figure 53, Figure 54, and Figure 55. In 

general, grI  and tI  show decreasing saturation currents. In addition, the reduction in tI  

is accompanied by a slight increase in the tunneling parameter 0E . This relationship is in 

agreement with Equation 34 in chapter III and in the underlying physics of the problem. 

That is to say, as the tunneling transparency parameter increases, the barrier becomes 

more opaque to an electron desiring to tunnel through. Furthermore, sR  shows nearly a 

                                                 

e Ite and Igr are on-the-order of 10-65 and 10-34 [A] respectively and generally decreasing with increasing 
fluence. 
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flat response as parasitic resistance decreases. The decrease in parasitic resistance is also 

in agreement with the reduction of tI  and increase in SBH. All of the extracted diode 

parameters are obtained by analysis of data utilizing the six-parameter fitting model 

discussed in Chapter III.  

 
Figure 53. A25:  GR saturation current as a function of increasing neutron fluence. 
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Figure 54. A25:  Tunneling saturation current as a function of increasing neutron 

fluence. 
 

 
Figure 55. A25: The reciprocal of the tunneling parameter, 0E  as a function of 

increasing neutron fluence. 
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Rabbit Tube Irradiation Experiment: A25 

Due to radiation safety hazards and an opportunity to gain an extra day at the 

OSURR, I decided to irradiate at RT within the PART. As previously described, the 

using of a bracketing technique is employed to determine the fluence at which transistor 

action fails. The primary assumption being that RT annealing is a slow process, 

irradiations will be kept short, and measurements made at 80 K “lock in” displacement 

damage. With these criteria in mind, I set out to continue irradiating device A25. 

Before continuing with the radiation plan, device A25 was rebaselined and fully 

characterized. This included a temperature-dependent Schottky measurement. The 

temperature profile is shown as Figure 56.  

 
Figure 56. A25:  Actual unaided nitrogen burn off shown along with optimal 

temperature profile. 
 

The following plots are typical of the data extracted from the  

temperature-dependent experiment (Figure 57, Figure 58, Figure 59, and Figure 60). 
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Further extraction data is available in Appendix B. The areal Richardson constant, 

temperature-independent SBH, and 00E  tunneling parameter were determined to be 

1.0199x10-07 ± 6.0978x10-08 A-K-2,  0.9832 ± 8.5796x10-3 eV, and 50.9 ± 0.396 meV, 

respectively. At 50.9 meV, the system is considered to be FE dominant.  

 
Figure 57. A25:  TE saturation current in a wide temperature range.  
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Figure 58. A25:  Arrhenius plot of GR saturation current. 

 

 
Figure 59. A25:  Arrhenius plot of tunneling saturation current with three distinct 

linear regions shown. 
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Figure 60. A25:  Temperature dependence of series resistance. 

 

Upon characterizing A25 at the end of the temperature profile, no annealing was 

observed. In effect, the irradiation of the in situ measurements would be added to during 

subsequent irradiations at RT in the PART. Irradiation of device A25 was completed to a 

total NIEL dose of 1.3 krad (Si) before mechanical failure of the device packaging 

occurred. The failure mode is similar to static discharge induced damage observed in 

previous experiments. The transfer characteristics are shown as Figure 61. The maximum 

RSD of any measurement was 0.8%. The transconductance is not shown and was 

determined to be statistically unchanged within the entire fluence range. No shift in 

magnitude or location of the maximum extrinsic mg  was observed.  
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Figure 61. A25:  Transfer characteristics at 80 K upon RT irradiation. 

 

 
Figure 62. A25:  Threshold voltage shift as a function of neutron fluence. 

 

The thV  fluctuated about the pre-irradiation value after initially recovering (and 

overshooting) from the -0.2 V shift. The negatively shifted thV  was observed during  

in situ measurements and remained persistent until additional irradiating.  
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The I-V characteristics also showed an “irradiation annealing” effect where the 

first irradiation in the PART effectively annealed out the persistent damage remaining 

from the in situ measurement (Figure 63). Similarly, a doubling of the gate current at low 

fluences levels off with increasing accumulated dose. The gate leakage at the maximum 

dose is statistically equivalent to the pre-irradiation values. 

 
Figure 63. A25:  Drain current as a function of neutron fluence at a fixed drain 

voltage of +6.0 V. The maximum RSD <0.7%. 
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Figure 64. A25:  Gate current as a function of neutron fluence at a fixed drain 

voltage of +6.0 V. The maximum RSD <10%. 
 

Throughout the irradiation, the diode parameters were relatively unchanged and 

FE is dominant. Table 10 is a summary of relevant Schottky diode parameters and trends.  

Table 10. A25:  Summary Table of Observed Schottky behavior. 
 SBH [eV] tI  [A] 0E  [meV] sR  [Ω] 

Average 0.944 
± 1.99 % 

1.65x10-12 
± 14.75% 

46.0 
± 0.66 % 

26.8 
± 4.26 % 

Trendf 5 % Increase Decreasing Stable Stable 
 

Rabbit Tube Irradiation Experiment: A27 

In order to confirm the unexpected “irradiation annealing” behavior observed in 

A25, another device would be irradiated in a similar manner. Device A27 was irradiated 

at RT in the PART to a total NIEL dose of 8.2 krad (Si). All measurements were made at 

                                                 

f Ite and Igr are on-the-order of 10-65 and 10-34 [A] respectively and generally decreasing with increasing 
fluence. R1 fluctuated between 1.5 and 21 MΩ with no discernable trend. 
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80 K. Transfer measurements and extrinsic mg  are shown as Figure 65 (multiple 

accumulated dose values not shown for clarity). No shift in either the magnitude or 

location is observed (outside of statistical uncertainty). Although the transconductance 

shows no change, thV  has a behavior similar to that of A25 (Figure 66). Upon irradiation 

at low fluences the shift is positive and begins to level off at some negative shift with 

increasing fluence.  

 
Figure 65. A27:  Transfer and extrinsic mg . The maximum RSD <0.5 %. 
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Figure 66. A27:  Threshold voltage shift as a function of neutron fluence. 

 

The I-V characteristics of A27 compare well with A25 in the framework of 

“irradiation annealing”. Device A25 experienced an increased drain current of  

14%, 20%, and 33% for Vg = 0.0, -1.0, and -2.0 V, respectively. However, at a dose three 

OOM greater, device A27 experiences half of the increase (Figure 67 and Figure 68). In 

addition, the gate leakage is only nominally changed at the maximum fluence and 

remains an insignificant contribution to drain current (Figure 69 and Figure 70). 
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Figure 67. A27:  Pre- and post-irradiation characteristics. Closed symbols designate 
pre-irradiation measurements, and open symbols designate post-irradiation to the 

specific fluence. Maximum RSD <2%. 
 

 
Figure 68. A27:  Drain current as a function of neutron fluence at a fixed drain 

voltage of +6.0 V. The maximum RSD <1%.  
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Figure 69. A27:  Pre- and post-irradiation gate leakage. Symbols have the same 

meaning as above. 
 

 
Figure 70. A27:  Gate leakage as a function of neutron fluence.  

  

Device A27 exhibited no change in the behavior or mechanism of carrier transport 

up to a total neutron fluence of 2x1014 n-cm-2. The SBH determined by using an arbitrary 
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**AA  = 5x10-8 A-K-2 yields a pre-irradiation value of 0.857 eV. At the maximum 

fluence, the SBH increases to 0.917 eV. Simultaneously, sR  is bounded between  

23-28 Ω, 1R  is bounded between 21-85 MΩ, and the tunneling parameter 0E  is bounded 

between 35.9-38.7 meV and FE is dominant. There is no explanation for the wide ranging 

values of parasitic resistance. Table 11 is a summary of relevant Schottky diode 

parameters and trends.  

Table 11. A27:  Summary Table of Observed Schottky behavior. 
 SBH [eV] tI  [A] 0E  [meV] sR  [Ω] 

Average 0.896 
± 1.90 % 

2.23x10-13 
± 21.68% 

37.6 
± 2.38 % 

24.4 
± 2.37 % 

Trendg 7% Increase Decreasing Stable Stable 
 

Rabbit Tube Irradiation Experiment: A29 

The original intent of using the PART was to bracket the upper fluence at which 

transistor action fails. In order to push the device to extreme limits, an irradiation run was 

conducted that increased the total NIEL dose from 8.2 krad (Si) to 326 krad (Si) at  

1016 n-cm-2. Similarly, to previous PART irradiations, device A29 would be irradiated at 

RT and measured at 80 K. The crucial difference in this run is that the initial fluence is at 

1015 n-cm-2. At this fluence, no change was observed in the transconductance magnitude 

or location. However, the thV  shifted positive and remained positive throughout 

irradiation (Figure 71). In addition to the permanent and positive threshold voltage shift, 

the I-V characteristics exhibited nearly no radiation response. Figure 72 illustrates the 

                                                 

g Ite and Igr are on-the-order of 10-65 and 10-34 [A] respectively and generally decreasing with increasing 
fluence. R1 fluctuated between 21 and 86 MΩ with no discernable trend. 
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pre-irradiation drain current. At a total fluence of 1016 n-cm-2, the drain current is 

statistically unchanged. The neutron fluence dependent behavior is shown as Figure 73 

below. 

 
Figure 71. A29:  Threshold voltage shift as a function of neutron fluence. The 

maximum positive shift in thV  is 2.5 %.  
  

 
Figure 72. A29:  Pre-irradiation I-V characteristics. The maximum RSD <2%.  
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Figure 73. A29:  Drain current as a function of neutron fluence at a fixed drain 

voltage of +6.0 V. The maximum RSD <1.1%.  
 

Perhaps the most surprising result of this irradiation run came from the gate 

leakage behavior. In all previous irradiations, regardless of the temperature during 

irradiation, gate current either increased in magnitude or returned to close to the 

precharacterization value. During this experiment however, the opposite is observed. 

During high fluence irradiation at RT in the PART, the gate leakage decreased in 

magnitude in junction with a consistently flat drain current. The pre-irradiation 

characterization and decreased leakage are shown as Figure 74 and Figure 75.  
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Figure 74. A29:  Pre-irradiation gate leakage characteristics. 

 

 
Figure 75. A29:  Gate leakage as a function of fluence measured at Vd = +6.0 V. The 

maximum decrease in gate leakage is approximately 45% at 5x1015 n-cm-2 for all 
gate voltages. The decrease in leakage at maximum fluence is 20, 25, and 30% for  

Vg = 0.0, -1.0, and -2.0 V, respectively. 
 



 

 112

Upon completion of the maximum fluence, device A29 was stored at RT. The 

device was again measured 24 and 48 hours later. No change in transconductance was 

observed. However, thV   continued to increase in magnitude (more shift negative) by 

17% after 24 hours. At 48 hours no additional shift in either direction is noted. At both 24 

and 48 hours the drain current had shifts of less than 2% and are within statistical 

uncertainty. However, gate current underwent dramatic shifts during both the 24 and 48 

hour measurement. Table 12 denotes both the direction and % increase/decrease in 

magnitude of the gate leakage change. For example, at Vg = 0.0 V after 24 hours, the 

leakage increased in the negative direction by 20%. However, after 48 hours the direction 

reversed and increased by 20%, resulting in a net 48 hour annealing of 5% in the positive 

direction (lower leakage). 

Table 12. A29:  Change of gate leakage magnitude for 24 and 48 hr anneal. 
 Vg = 0.0 V Vg = -1.0 V Vg = -2.0 V 

24 hour Negative 20% Negative 7% Negative 2% 
48 hour Positive 20% Positive 16% Positive 18% 

Net effect 
after 48 hours 

Positive 5% Positive 10% Positive 17% 

 

The Schottky characteristics show a decreased contribution of TE saturation 

current and a corresponding 10% increase in the SBH with increasing neutron fluence 

and anneal time (Figure 76). Other trends are difficult to distinguish. However, sR  is 

bounded between 25-30 Ω, R1 is bounded between 21-85 MΩ, and the tunneling 

parameter 0E  is bounded between 35-39 meV. 
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Figure 76. A29:  Plot of TE saturation current and SBH as a function of neutron 

fluence and time of RT anneal. Arbitrary areal Richardson constant of 5x10-8 A-K-2 
used to determine the SBH.  

  

Device A29 exhibited no change in the behavior or mechanism of carrier transport 

up to a total neutron fluence of 2x1014 n-cm-2. The SBH determined by using an arbitrary 

**AA  = 5x10-8 A-K-2 yields a pre-irradiation value of 0.857 eV. At the maximum 

fluence, the SBH increases to 0.917 eV. Simultaneously, sR  is bounded between  

23-28 Ω, 1R  is bounded between 21-85 MΩ, and the tunneling parameter 0E  is bounded 

between 35.9-38.7 meV and FE is dominant. There is no explanation for the  

wide-ranging values of parasitic resistance. Table 13 is a summary of relevant Schottky 

diode parameters and trends. 
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 Table 13. A29:  Summary Table of Observed Schottky behavior. 
 SBH [eV] tI  [A] 0E  [meV] sR  [Ω] 

Average 0.922 
± 3.19 % 

9.00x10-14 
± 37.42% 

37.7 
± 2.72 % 

27.0 
± 5.23 % 

Trendh 9% Increase Decreasing Stable Stable 
 

Rabbit Tube Irradiation Experiment: A30 

The final irradiation within the PART consisted of confirming the high fluence 

behavior. Both pre- and post-irradiation Schottky measurements were conducted, 

allowing for the first successful comparison of pre- and post-irradiation comparison of 

the extracted Schottky diode parameters. Figure 78 and Figure 88 illustrate the excellent 

agreement of the fit to determine the areal Richardson constant, temperature-independent 

SBH, and 00E  tunneling parameter.  

 
Figure 77. A30:  Pre-irradiation Schottky diode parameter extraction of the areal 

Richardson constant and temperature-independent SBH.  

                                                 

h Ite and Igr are on-the-order of 10-65 and 10-34 [A] respectively and generally decreasing with increasing 
fluence.  
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Figure 78. A30:  Determination of the tunneling parameter 00E  from 0E . 

 

All other extracted parameters follow closely to the plots given for device A25 

and the methodology presented in Appendix B. 

Following a total fluence of 1.2x1016 n-cm-2, the Schottky contact was  

recharacterized and yielded a decreased **AA  and 16% increased SBH and tunneling 

parameter 00E . Assuming that the Richardson constant is fixed for a device, the decrease 

in the areal Richardson constant must be due to the increased effective diode area. My 

hypothesis is that defect-assisted tunneling allows for more current to flow and the 

effective area appears increased to conserve current density. 

Figure 79 through Figure 83 show the comparisons of various Schottky diode 

parameters before and after neutron irradiation to a total fluence of 1.2x1016 n-cm-2. 
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Figure 79. A30:  Comparison of TE saturation current following a total fluence  

of 1.2x1016 n-cm-2.  
 

 
Figure 80. A30:  Comparison of GE saturation current following a total fluence  

of 1.2x1016 n-cm-2. 
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Figure 81. A30:  Comparison of tunneling saturation current following a total 

fluence of 1.2x1016 n-cm-2. 
 

 
Figure 82. A30:  Comparison of tunneling saturation current following a total 

fluence of 1.2x1016 n-cm-2. 
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Figure 83. A30:  The reciprocal tunneling parameter 0E , before and  

following a total fluence of 1.2x1016 n-cm-2. 
 

At 80 K, the maximum drain current at Vg = 0.0 V is nominally 800 mA/mm. Due 

to increased lattice scattering, the maximum drain current at RT drops to 200 mA/mm. 

Simultaneously, the gate leakage increases fivefold for an increase in temperature from 

80 K to 295 K. These behaviors are demonstrated in Figure 84, Figure 85, and Figure 86. 

This portion of the study is to determine the effects of high fluence neutron irradiation to 

the electrical characteristics at RT. After all, the intended use of GaN-based devices is at 

ambient or elevated temperatures.  
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Figure 84. A30:  GLADC I-V characteristics at 80 K (symbols) and 295 K (solid 

line). The maximum RSD <1% at 80 K and <2% at RT.  
    

 
Figure 85. A30:  Pre-irradiation characterization at 295 K.  
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Figure 86. A30:  Pre-irradiation characterization at 80 K. 

  

Following irradiation to 1.2x1016 n-cm-2, the RT electrical characteristics of A30 

as a function of fluence behave slightly different than device A29. The primary difference 

being the negligible radiation response of A29. Figure 87 and Figure 88 show the effect 

of irradiating to a dose only slightly higher than A29 but A30 exhibits a no vanishing 

radiation response when measured at RT. This is particularly evident in Figure 88, where 

after a maximum dose, the drain current remains 14% higher for Vg = -2.0 V and  

Vd = +6.0 V. Simultaneously, the gate leakage currents exhibit the same behavior. 

However, for Vg = 0.0, at the maximum fluence the gate leakage is unchanged.     



 

 121

 
Figure 87. A30:  Gate leakage adjusted drain current pre-irradiation (solid symbols) 

and post-irradiation (open symbols). The maximum RSD for all measurements 
<1.4%. 

 

 
Figure 88. A30:  GLADC as a function of fluence measured at Vd = +6.0 V. The 

increase in drain current at the maximum dose is approximately 14, 9, and 6.5% for 
gate voltages of -2, -1, and 0 V, respectively. The maximum RSD for all 

measurements is <0.8%. 
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Figure 89. A30:  Gate leakage current pre-irradiation (solid symbols) and post-

irradiation (open symbols). The maximum increase is nominally 14% for  
Vg = -2.0 V and decreases for increasing gate voltage.  

 

 
Figure 90. A30:  Gate leakage as a function of fluence measured at Vd = +6.0 V. The 

increase in gate leakage at the maximum dose is approximately 18.5, 13.75, and  
0% for gate voltages of -2.0, -1.0, and 0.0 V, respectively.  
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Figure 91. A30:  Transfer characteristics and transconductance measured at RT. 

The maximum RSD <1.5%. 
 

The maximum transconductance at RT exhibited no statistically distinguishable 

change over five decades of fluence. However, at RT the maximum transconductance 

location shifts from -1.5 V to +1.0 V. Extrapolation of the transfer curve at the maximum 

transconductance to V = 0.0, yields a threshold voltage that shifted positive nearly 1.0 V 

to -2.4 V. No radiation-induced changes are observed for thV . 

Analysis and Discussion 

AlGaN/GaN MODFETs were neutron irradiated and analyzed with a variety of 

measurement techniques. Most important is the characterization of the Schottky contact 

utilizing a novel six-parameter fitting routine.  

Similar to the results reported by J.M. Sattler, both increased gate and drain 

currents are observed, thus confirming his effort. The first major radiation effect observed 

by both endeavors is that of increasing gate current. The origin of increased gate current 
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(leaky gates) is likely due to a highly doped and/or highly defective surface layer, 

resulting in carrier transport by tunneling across the Schottky barrier. In addition, the 

possibility of the Schottky contacts becoming more ohmic-like should not be dismissed. 

Particularly in light of the fact that RT annealing is virtually non-existent and is expected 

to be an extremely slow process.  

Although multiple processes are likely the source of anomalously large gate 

leakage currents, for purposes of this research, tunneling currents are investigated. 

Qualitatively, tunneling through a Schottky contact consists of two parallel transport 

processes:  defect-assisted tunneling and direct tunneling (FE) [30]. Although expected to 

be dominant at lower temperatures, the tunneling and leakage components of Equation 41 

are found to govern carrier transport at all temperatures and thermionic emission is 

vanishingly small. To account for high leakage currents, various authors theorize a 

variety of multi-step conduction processes with appropriately assumed special defect 

distributions to accommodate inconstancies. Specifically, Karmalkar et al. assume a 

uniform distribution of traps throughout the AlGaN layer and spread over an energy band 

located with the SBH [30].  

Yu et al. and Miller et al. investigated the leakage mechanisms of AlGaN 

Schottky interfaces based on FE tunneling through a triangular Schottky potential. 

However, unreasonably high donor densities were required to achieve observed gate 

leakage values. Therefore, both Yu et al. and Miller et al. expect other processes such as 

defect-assisted tunneling to enhance leakage currents. Other published work, including 

that of  Karmalkar et al., all require an unlikely multi-step tunneling process or defect 
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continuum [55]. Although I confirm that an unreasonably high donor defect density is 

required to account for pure FE, the donor density does not account for the parallel 

conduction mechanism of defect-assisted tunneling. Although the six-parameter fitting 

model is used to analyze the Schottky contact, it is inevitable and unavoidable that 

charged-carrier transport through the insulating AlGaN layer skews the results. A 

proposal to independently analyze neutron irradiated AlGaN Schottky diodes is presented 

in Chapter VI.   

Recently, Hashizume et al. reported on the strength of the proposed Thin Surface 

Barrier (TSB) model of anomalously large gate leakage currents. The TSB model 

indicates that unintentional surface-defect donors reduce the width of the Schottky 

barrier, which enhances tunneling transport processes. The researchers report that various 

processing techniques could cause a serious nitrogen deficiency at the m-s interface, 

resulting in the formation of localized deep donor levels related to the nitrogen vacancy. 

The TSB model requires that defect donors have an exponentially decaying spacial 

distribution. The premise of an exponentially decaying special distribution is based upon 

the observed nature of the nitrogen vacancy, which is assumed to be both a shallow and 

deep-level donor [55]. 

The nature of the traps remains ambiguous. J.M. Sattler determined that trap 

activation energy must be sufficiently low to cause a large increase in the trap 

concentration when irradiated with 0.45 MeV electrons. Furthermore, other probative 

studies conducted by Nozaki et al. report a specific defect activation energy of 0.28 eV.  
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Further evidence of tunneling dominance is derived from the tunneling parameters 

extracted via the six-parameter fitting routine. In particular, the tunneling parameter 00E  

is approximately 40-50 meV for all devices regardless of irradiation level. FE and  

defect-assisted-tunneling are expected to control when 00E kT . Clearly, at 80 and  

300 K, 40 meV is much greater than the thermal temperature kT. Additionally, from 

Equation 37, the mechanism of increasing 00E  is increasing donor density (the only 

variable reasonably expected to change with irradiation). Although TE is negligible at  

T <500 K, its effects are further reduced post-irradiation due to an increasing SBH. The 

increased barrier height further impedes ballistic injection over the barrier. Therefore, the 

contribution of TE is conclusively eliminated as a source of increased gate leakage.  

The second major radiation effect observed and confirmed is that of increasing 

drain current with fluence. Within the framework of the charge-control model presented 

by J.M. Sattler, the increased drain current is caused by two distinct possibilities:  direct 

increase in carrier concentration in the 2DEG or 2DEG carrier concentration remains 

unchanged and the electron mean velocity of the 2DEG increases. However, when using 

the proposed strain-controlled model by Rashmi et al. the possibilities are inestimable. Of 

particular interest is the effect of strain relaxation or enhancement on the magnitude of 

drain current. Rashmi et al. report increased drain current corresponding to enhanced 

strain at the AlGaN/GaN interface [45]. Equation 16 is necessary to determine the drain 

current for strained-heterojunction MODFETs. Use of this full equation is illustrative of 

the difficulties in attributing observed behavior to simply one distinct possibility.  
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From Equation 16, only two of the parameters not fixed during manufacturing are 

known:  the applied gate-to-source voltage and threshold voltage. Equation 6 is the 

simplified model for MODFET threshold voltage that includes the effects of polarization. 

By appropriately choosing further simplifying assumptions, the remaining unknown 

terms in the equation, accounting for doping and polarization charge, are likely to 

dominate changes in the threshold voltage. By choosing a maximum unintentional dopant 

concentration, the effects of polarization charge can be directly toggled to affect thV . 

Although polarization changes could be entirely responsible for observed threshold 

voltage shifts, the other vanishingly small contributions of the SBH and conduction band 

discontinuity may not be ignored. Further insight is necessary to determine the 

dominating parameters for thV . The observed threshold voltage shifts followed no distinct 

pattern and an entire study on this behavior is likely warranted. It becomes increasingly 

difficult to attribute the changes in the drain current to fluctuations in the threshold 

voltage because simultaneous increases in both the drain current and decreased thV  are 

observed. Therefore, the saturation drain voltage must be decreasing or the entire product 

first term of Equation 16 must be increasing as a whole and both large enough to absorb 

fluctuations in threshold voltage. An agglomeration of these effects cannot be overlooked 

as a possible source of increased drain current. White et al. conclude that although small 

changes in the polarization can account for shifts in threshold voltage the largest shifts 

occur at some critical fluence and polarization is unlikely responsible. Instead, mobility 

continually decreases and once the critical fluence is reached the sheet concentration 

dramatically decreases to zero [36]. 
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Returning to the framework originally established by J.M. Sattler, another 

possibility of increased drain current is that of trapped charge in the AlGaN layer. As 

previously stated, the nitrogen vacancy is an excellent candidate to act as both shallow 

and deep level donors. The introduction of defect donors is an essential assumption for 

defect-assisted tunneling and is consistent with increasing drain current. 

The introduction of a high density of donor defects within the AlGaN and GaN 

layers appear as stationary trapped charge. The net effect of a stationary charge beneath 

the gate is the creation of a virtual image charge needed to balance the trapped charge. 

The creation of a virtual gate ensues, which acts as an applied bias to the gate since the 

reference potential is shifted. For n-channel transistors, a net positive trapped charge 

produces positive vertical shifts in I-V curves (increased drain current). In addition, large 

concentrations of trapped positive charge act to increase strain at the AlGaN/GaN 

interface, causing further increase in drain current. Therefore, a mixture of both the 

virtual gate phenomenon and enhanced strain are proposed as a possible mechanism of 

increased current.  

A study of the annealing effects following a nine month RT anneal confirm that 

the anneal process is very slow. After nine months essentially no annealing of the drain 

conduction mechanism occurred. However, the gate leakage recovered to a great extent 

and fully in some cases. Although annealing is a slow process, it was significant enough 

to cause a reversal of transistor failure that had occurred nine months previously. The 

conclusion is that damage is long lived due to the energetically stable Ga and N bonds. 

However, irradiations at high fluences act to reverse induced damage, perhaps due to 



 

 129

joule heating or additional dislocations that knock atoms into their original energetically 

favorable and desired lattice position. In addition to joule heating within the device, I 

believe there may be increased heating of the metallization layer. Heat created throughout 

the bulk semiconductor material can go either to the package or to the metallization. 

Since AlGaN and GaN both have high thermal conductivities, heat may be transported 

out of the bulk and to the substrate and package. This may also explain the epoxy failure 

when cycling the devices in a liquid nitrogen bath. In that case, the substrate heats up and 

creates a thermal gradient between the cold package body and warmer substrate that is 

attempting to dump heat into the epoxy and package.     

Overall, the radiation-hardness appears to be dependent on the temperature 

regime of operation. High-power devices operating within high neutron fluence 

environments are apparently ideally suited for GaN-based devices. However, it is clear 

that reduced temperature operation effectively maintains damage and results in 

significant changes in both the gate and drain current at a dose of only 5.4 rad (Si). 
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VI. Conclusions and Recommendations 

Conclusions 

Neutron irradiation of AlGaN/GaN MODFETs confirm results from  

electron-irradiated devices from the same wafer. Temperature-dependent Schottky 

measurements confirm the presence of a significant contribution to gate leakage from 

tunneling current. In addition, the tunneling parameter 00E , confirms the presence of 

field-emission dominated charged carrier transport. 

Neutron irradiations at cryogenic temperatures show both increased drain and gate 

current at the relatively low dose of only 5.4 rad (Si). However, neutron fluences five 

OOM greater induced comparatively little radiation response when irradiated at RT.  

During irradiation, the SBH and tunneling parameter increased, signifying an 

increase in the density of donor defects and FE tunneling contribution. The effects of 

irradiation on device behavior are as follows: 

• Increased gate leakage current  
• Increased drain current 
• No change in magnitude or location of maximum transconductance 
• Meandering threshold voltage shifts both positive and negative 

 
A study of the annealing effects following a nine month RT anneal confirm that 

the anneal process is very slow. After nine months essentially no annealing of the drain 

conduction mechanism occurred. However, the gate leakage recovered to a great extent 

and fully in some cases. Although annealing is a slow process, it was significant enough 

to cause a reversal of transistor failure that had occurred nine months previous. The 

conclusion is that damage is long lived due to the energetically stable Ga and N bonds. 
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However, irradiations at high fluences act to reverse induced damage, perhaps due to 

joule heating.  

Although I cannot conclusively determine whether FE or defect-assisted tunneling 

is responsible for the increased gate leakage, the large donor-density (1024 cm-3) required 

by FE alone is coherent with the presence of an alternate and parallel conduction 

mechanism. However, the high density of donor defects required for FE supports the 

transition of the Schottky contact from rectifying to more-ohmic like during irradiation. 

This transition would certainly provide an additional source of electrons and enhanced 

drain current. The disjointed nature of the drain and gate current has yet to be determined. 

However, both the drain, gate, and Schottky contact behaviors are well supported by the 

supposition that a high density of donor defects control the current mechanisms. 

Additionally, the donors are effective conduction paths for defect-assisted tunneling, and 

thus lessen the unrealistically high donor density required for pure FE.  

Although Rashmi et al. have proven that enhanced strain can also result in an 

increased drain current, the mechanism of enhancing strain by neutron bombardment is 

unlikely. Simply stated, a fluence of 1.2x1016 n-cm-2 is not sufficient to make the 

argument that enough atoms have been displaced from the lattice into a position that 

would also enhance strain. Although the irradiations at 80 K prove that the persistence of 

such dislocations (even though produced in small amounts) can significantly alter device 

behavior and radiation response.  

Finally, the hypothesis is supported with the observation of the increasing  

Areal Richardson constant. Since the constant is solely dependent on the effective mass 
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of an electron in the conduction band, and not expected to vary, the only conclusion is 

that the effective diode area increased. Although unfounded, I propose that this is wholly 

consistent with defect-assisted tunneling. Since the introduction of defects act as alternate 

conduction paths, the effective area of charged carrier transport is increased. That is to 

say, the higher the donor defect concentration, the greater opportunity an electron has to 

transport to the 2DEG. This supposition is also self-consistent with the proposed 

FATFET failure mechanism at sufficiently high neutron fluences. When a critical number 

of conduction paths are created, the AlGaN layer transitions from an effective insulator to 

a conductor and the conduction area is increased. 

Recommended Further Work 

The possibilities for further investigation into AlGaN/GaN MODFETs are nearly 

endless. However, the most immediate and evident recommendation for further work 

stems from the shortcomings of this particular research endeavor. Although, some 

important behaviors and relationships have been observed, continuing this specific line of 

research can yield valuable information. In particular, a complete in situ measurement 

suite at cryogenic temperatures must be completed. The research has shown that 

irradiating at RT is not the desired method to probe changes in electrical characteristics. 

In addition, radiation-induced failure has probative value that was not exploited in this 

undertaking. Without achieving catastrophic failure of transistor action, little changes in 

transconductance are observed. Without changes in transconductance, the first ever 

neutron damage constant for transconductance for GaN remains elusive. I also 
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recommend further investigation of irradiating devices multiple times to observe the 

hypothesized “irradiation annealing” behavior.  

Measurement of the Schottky contact and subsequent diode parameter extraction 

is difficult and limited in scope. Therefore, it is particularly important to compare the 

obtained results to another method such as C-V. Additionally, there are a plethora of new 

emerging models that require experimental verification. Use of defect-assisted tunneling 

model instead of a TE based model may provide further insight, especially if probed with 

charged particles.  

The examination of Schottky contacts on AlGaN would be of tremendous use in 

sorting out the charged carrier transport through the contact as opposed to transport 

through the AlGaN layer. Although device level testing provides great insight into total 

system behavior, I believe that some more preliminary simple device work would greatly 

value add to these findings. Also proposed is the use of the test structures to obtain 

material baselines as well as device behaviors. 

Perhaps the most compelling question that needs answering is that of annealing. 

Although I generally agree with the reported work of J.M. Sattler, I contend that RT 

annealing is an extremely slow process and negligible on the time scale of this research 

endeavor. In fact, a nine-month anneal study demonstrated competing annealing process 

for the gate and drain conduction mechanisms.  

Temperature-dependent measurements must be made more experimentally robust. 

Use of a temperature controller would facilitate obtaining pre- and post-irradiation 

Schottky characterizations. The addition of a controller would increase the data quality 
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and quantity during temperature ramps, would enable irradiation studies at various 

temperatures, and would allow for rapid annealing experimentation.  

All of these improvements are designed to compliment the current state-of-the-art 

in radiation testing of AlGaN/GaN MODFETs. I have concluded that this research is a 

success if used as the next stepping stone across the river of knowledge.  
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Appendix A – Nitride Parameters 

Property (units) Units GaN AlN 
Density [61] g-cm-3 6.15 3.23 

Static Dielectric Constant 
[61] ,[62]  8.9 8.5 

High Frequency Dielectric 
Constant 

[61] ,[62], [63], 
 5.35 4.77 

Energy Gap (Γ Valley) 
[64],[65] eV 3.39 6.2 

Effective Mass (Γ Valley) 
[62], [63], [61] me .20 .48 

Lattice Constant, a 
[66] Ǻ 3.189 3.11 

Lattice Constant, c 
[66] Ǻ 5.185 4.98 

Electron Mobility 
[67], [68] cm2-V-1-s-1 1000 135 

Hole Mobility [66] cm2-V-1-s-1 30 14 
Saturation Velocity 

[64], [68] cm-s-1 2.5x107 1.4x107 

Peak Velocity 
[64], [68] cm-s-1 3.1x107 1.7x107 

Peak velocity field 
[61], [68] kV-cm-1 150 450 

Breakdown field [66] V-cm-1 >5x106  
Light hole mass [66] me 0.259 0.471 
Thermal conductivity 

[66] W-cm-1-K-1 1.5 2 

Melting temp [66] ºC >1700 3000 

Index of Refraction [4]  2.35 @ 1240nm 
2.85 @ 363nm 

2.15@ 413nm 
2.85 @ 363nm 
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Appendix B – Schottky Diode Parameter Extraction Methods 

 

Thermionic Emission Theory 

The extraction methods of Schottky diode parameters are imprecise and varied. 

Although I-V measurements are by far the easiest to perform, the results obtained from  

I-V characteristics are sensitive to interface defects and are typically the least reliable 

[47]. Diode parameter extraction via I-V methods is limited in accuracy to prior 

knowledge of the Richardson constant and the temperature dependence of TE saturation 

current. Because the Richardson constant varies greatly with processing techniques, an 

independent I-V technique is necessary for accurate parameter extraction. Fortunately, 

A** appears in the “ln” term and an error of two in A** gives rise to an error of 0.7kT/q in 

the SBH. More important, is the temperature dependence of the TE saturation current, 

which dictates the temperature dependence of the SBH (if any). A Richardson plot and 

subsequent extraction of the constant are obtained by measuring the I-V characteristics of 

a Schottky contact in a wide temperature range – the so-called I-V-T method.   

Analysis of a Schottky contact using only thermionic emission theory results in an 

extreme overestimate of the thermionic emission saturation current and the contribution 

of TE to total current flow. Additionally, when other current transport mechanisms are 

neglected, TE theory alone underestimates the total current flow. The resulting 

discrepancies lead to ideality factors much greater than unity, Schottky barrier heights are 

greatly reduced, falsely temperature dependent, and the effective Richardson constants 

are simply invalid.  
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A simple extraction of the SBH can be obtained from the linear portion of a  

semi-log plot of the current. This process is shown in Figure 92 and Figure 93. The 

barrier height is most commonly calculated from the TE saturation current determined 

from linear extrapolation to V=0.0. This method is illustrated in Figure 93. The one 

drawback is the previously mentioned need for prior knowledge of A**. Therefore, the 

SBH cannot be immediately determined by this method. Using the equations given 

below, the ideality factor and saturation current are calculated. Recall that the non-ideal 

TE emission equation is:   

        0 exp 1
qV

I I
nkT

⎛ ⎞⎡ ⎤ ⎟⎜= −⎢ ⎥ ⎟⎜ ⎟⎜ ⎢ ⎥⎝ ⎠⎣ ⎦
 (B1) 

Fitting this to the equation of a straight line yields: 

        ** 2ln ln exp Bq q
y mx b I AA T V

kT nkT
φ⎡ ⎤−

= + ⇒ = +⎢ ⎥
⎢ ⎥⎣ ⎦

 (B2) 

where 

        ** 2
0ln , , , ln Bq q

y I m x V b AA T
nkT kT

= = = = − φ  (B3) 

The linear portion of the semi-log plot in Figure 93 is current flow due to TE of 

carriers over the Schottky barrier. 
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Figure 92. Sample Schottky diode curve at 80K. 

 

 
Figure 93. Semi-log current plot for Schottky diode parameter extraction.  

 

The ideality factor and saturation current are 6.03 and 1.37x10-12 A respectively 

for Figure 93 at 80 K. Repeating the extraction technique over a wide temperature range 

yields Figure 94 and Figure 95. 
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Figure 94. Temperature dependent ideality factor. 

  

The high values of the ideality factor signify significant deviation from TE theory. 

The increase in ideality factor with decreasing temperature is known as the “T0 effect”. 

As shown in Figure 94, n varies inversely proportionally with temperature as: 

          ( ) 0
0

T
n T n

T
⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜⎝ ⎠

 (B4) 

where n0 is a constant and T0 is known as the excess temperature [69]. Although various 

attempts have been made to explain the temperature dependence of n, perhaps the most 

relevant hypothesis was proposed by Crowell [70]. Crowell proposed that the T0 

anomaly could be obtained when surface states arise due to tunneling of electrons from 

the metal into the forbidden gap of the semiconductor. Although further investigation is 

beyond the scope of this research, it certainly reinforces the use of the proposed  

all-encompassing diode current model.    
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Figure 95. Temperature dependent TE saturation current. 

 

The variation of n with temperature shown as Figure 96 demonstrates the plot of 

nkT/q vs. kT/q. Temperature independent ideality factors should result in a straight line 

with gradient n. However, three distinct linear regions conclusively confirm the 

temperature dependence of n assuming pure TE. 
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Figure 96. Temperature dependency of ideality factor. 

  

The Richardson constant is typically determined from the y-intercept of 

2
0ln( / )I T  verses 1000/T plot. The implicit assumption is that both the SBH and 

Richardson constant are temperature-independent. If either are temperature dependent, 

A** can no long be determined. Non-linearities at low temperatures in Richardson plots 

render accurate parameter extraction impossible. This behavior is observed in Figure 97. 

Linearity can be restored if 2
0ln( / )I T  is plotted verses 1000/nT [69]. 
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Figure 97. Richardson and modified Richardson Plot.  

 

Current transport across an m-s interface is a thermally activated process. At low 

temperatures, electrons are able to overcome low barriers and current transport is 

dominated by current flow through patches of lower barrier heights and higher ideality 

factors. As the temperature increases, electrons gain sufficient energy to overcome the 

higher barriers. It has been proposed that the apparent increase in ideality factor and 

decrease in SBH at low temperatures is due to inhomogeneities of thickness and  

non-uniformity of the interface charges [71]. Figure 98 illustrates the low barrier height 

(perhaps dominated by patches) and the large ideality factor at low temperature. 

Extrapolation of the experimental barrier heights vs. the ideality factor to n=1 yields the 

homogeneous barrier height. Figure 99 shows the extrapolation technique that yields a 

homogeneous SBH of 0.6218 eV. 
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Figure 98. Temperature dependence of the ideality factor and SBH. 

 

 
Figure 99. Zero-bias apparent SBH vs. ideality factor.  

 

Application of a pure TE theory to the experimental data leads to several 

problems. Linearity of the Richardson plot is exceedingly poor at low temperatures, the 

ideality factor is high, and the Schottky barrier heights are low. These features suggest a 
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modified current generating mechanism, which in some cases can amount to greater than 

90% of the total current [72]. A current-voltage relationship in which other current 

generating mechanisms dominate is appropriate.    

Six-parameter Fitting Model 

By measurement of the I-V characteristics of a Schottky diode, the six unknown 

variables in Equation 41 can be determined. The use of a weighted modified least squares 

method leads to suitable agreement between experimental data and the proposed model in 

a wide temperature range. Utilization of this model yields an accurate contribution of 

various current transport mechanisms and the parameters of the analyzed Schottky 

structure are evaluated with higher precision in a wide temperature range.  

Figure 100 shows the well agreement of the model for a Schottky metal contact at 

300 K. A comparison of the extracted parameters from the two methods is listed in  

Table 14. 

   
Figure 100. Six-parameter fitting model extracted via numerical fitting routine. 
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Table 14. TE vs six-parameter fitting model. 

 teI  
[A] 

grI  
[A] 

tI  
[A] 

0E  
[meV] 

sR  
[Ω] 

1R  
[MΩ] 

Pure TE 
Theory 1.37x10-12 N/A N/A N/A N/A N/A 

Proposed 
six-parameter 
fitting model 

8.66x10-64 3.38x10-37 1.50x10-12 41.8 25.6 32.7 

 

The six-parameter fitting model yields a TE saturation current that is at maximum 

52 OOM less than that assumed by pure TE alonei. Also shown is that G-R is essentially 

negligible and that the tunneling current is of the same OOM as the pure TE current. 

Therefore, at 80 K, tunneling and resistive leakage dominate. By repeating the extraction 

technique over a wide temperature range, the SBH and Richardson constant are 

determined with increased precision.  

The TE saturation current (Figure 101) is highly temperature dependent and 

changes nearly 50 OOM in the temperature range of approximately 80 – 300 K. From 

Figure 101 the areal Richardson constant and SBH are determined. The areal Richardson 

constant is determined to be two OOM greater than that determined by TE theory alone 

and the temperature independent SBH is determined to be 1.0509 eV. Use of the  

six-parameter approach yields a SBH that is essentially temperature independent in a full 

range from 80-300 K (Figure 102). Figure 103 simply demonstrates that a straight line on 

a modified Arrhenius plot linearizes the temperature dependence of the TE  

                                                 

i When Ite and Igr are increasingly small (limited to 10-100 [A]), the fitting routine attempts to increase both 
parameters to their maximum values without significantly increasing the fitting error. Without this function, 
the error is minimized with both values reaching their numerically limited minimum value. This behavior is 
a side effect of the minimizing function utilized within Mathematica. 
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saturation current. Similarly, the modified Arrhenius plot of grI  can be used to determine 

the energy gap of the Schottky contact (Figure 104). The tunneling saturation current 

shown in Figure 105 is clearly the dominant transport mechanism at all temperatures. 

However, when plotted against 1000/T, there are three distinct linear regions observable 

(Figure 106). Expected to dominate at low temperatures, tunneling saturation current is 

greatest at low temperatures.  

The tunneling parameter 00E  is determined from Equation 36 and Figure 107. The 

parameter was determined to be 49.801 ± 0.202 meV for this sample device. This is in 

general agreement to other tunneling parameters for Schottky contacts dominated by 

tunneling [52]. Other determined parameters include both series and parasitic resistance 

(Figure 108, Figure 109). Parasitic resistance is dominant at low applied biases and is 

subject to the largest uncertainties in the proposed fitting routine. Large uncertainty in R1 

arises due to both current detection limitations and large relative error in the data at low 

biases. The poor fit at low applied biases cannot be reconciled at this time and an 

appropriate weighting function is used to ensure a sufficiently suitable fit in the linear 

region.  
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Figure 101. TE saturation current in a wide temperature range. 

 

 
Figure 102. Temperature dependence of barrier height determined by the  

six-parameter method and TE only approach. 
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Figure 103. Arrhenius plot of TE saturation current.  

 

 
Figure 104. Arrhenius plot of GR saturation current. 
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Figure 105. Temperature dependence of tunneling saturation current in a wide 

temperature range.  
 

 
Figure 106. Arrhenius plot of tunneling saturation current with three distinct linear 

regions shown.  
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Figure 107. Reciprocal tunneling parameter, 0E . 

 

 
Figure 108. Temperature dependence of series resistance. 
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Figure 109. Temperature dependence of parasitic resistance, 1R . 

 

Table 15. Areal Richardson constant and Temperature-Independent SBH.  

Device ID AA** [A-K-2] Temperature 
Independent SBH [eV] 00E  [meV] R2 

A10 
2.5x10-06 ± 
1.03x10-20 

1.05 ± 
5.02x10-17 

49.8 ± 0.202 1 

A12 
6.23x10-11 ± 

1.7x10-11 
0.95 ± 

3.86x10-3 
43.4 ± 0.987 0.997 

A13 
1.05x10-09 ± 
2.97x10-10 

0.916 ± 
3.95x10-3 

41.6 ± 0.120 0.997 

A24 
3.86x10-08 ± 
1.03x10-08 

0.96 ± 
3.78x10-3 

44.6 ± 0.136 0.997 

A25j 
1.02x10-07 ± 

6.1x10-08 
0.98 ± 

8.58x10-3 
50.9 ± 0.396 0.988 

A30 Pre-
irradiation 

2.8x10-09 ± 
9.9x10-10 

0.94 ± 
5.24x10-3 

42.1 ± 0.044 0.995 

A30 Post-
irradiation 

2.4x10-07 ± 
1.1x10-07 

1.09 ± 
7.15x10-3 

49.0 ± 0.309 0.993 

 

                                                 

j Device irradiated at 80 K. Data taken during annealing process. 
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The experimentally determined values for **AA  fluctuate wildly when using the 

six-parameter fitting model. Since it is unlikely *m  is responsible for the wide-ranging 

value of A**, the only remaining variable parameter is that of the effective diode area (A). 

The effective area can vary widely between devices and is particularly difficult to 

determine in multi-component semiconductor materials [52]. In the case of a very good 

Schottky contact with low leakage, the device area is so small that the detection limit is 

reached for low biases. Although the large structure of the FATFET should eliminate this 

problem, some devices exhibit the characteristic current limit at low bias. Figure 93 

illustrates a device that is not particularly limited by current detection. Devices limited in 

this manner have somewhat disjointed and random current measurement readings at low 

biases and then seem to “turn on” at about 0.5 volts and immediately enter the linear 

region. 
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Appendix C – Nine Month Anneal Study 

Devices A0408 and A0409 were irradiated by J.M. Sattler at 80 K under 

conditions listed as Table 16. At a total dose of 9×1014 e--cm-2, device A0408 exhibited 

no transistor action and all measurements were at current compliance of the SMUs (100 

mA). However, A0409 survived to a total dose of 3.67×1015 e--cm-2. Following 

irradiation, the devices were placed in RT storage. No information on the light intensity is 

available.  

Table 16. Second Irradiation Experiment Summary (28 January 2004) [29]. 
Sample Energy 

[MeV] 
Beam 

Current 
[µA] 

Relative 
Dose 

[e--cm-2] 

Relative  
Irradiation  
Time [min] 

Total  
Dose 

[e--cm-2] 

Total  
Irradiation  
Time [min] 

A0408 0.45 0.13 1014 7 1×1014 7 
A0408 0.45 0.13 2×1014 13 3×1014 20 
A0408 0.45 0.13 6×1014 39 9×1014 59 
A0409 0.45 0.3 3×1014 8 3×1014 8 
A0409 0.45 0.3 6.7×1014 13 9.7×1014 21 
A0409 0.45 0.3 9×1014 18 1.87×1015 39 
A0409 0.45 0.3 1.8×1015 50 3.67×1015 89 

 

Following a nine-month RT anneal, devices A0408 and A0409 were measured at 

RT and 80 K in darkness. To our amazement, A0408 again exhibited transistor action at 

both RT and 80K, apparently having annealed. All presented data measured at 80 K 

agrees well with RT measurements. Figure 110 illustrates the I-V characteristics of 

device A0408 at pre- and post-irradiation, and subsequent annealing at 9-mos. The figure 

shown is the GLADC. When the drain current is not adjusted for gate leakage, the 9-mos 

anneal drain current exhibits a similar pattern as the GLADC characteristics (Figure 111). 
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Table 17 summarizes the observed increase in drain current. Note, that the most off state, 

-3 V, exhibits the greatest percentage increase in drain current. 

Table 17. Percent increase drain current from pre-irradiation baseline 
measurement following irradiation and annealing, A0408. 

 Vg = -1 V Vg = -2 V Vg = -3 V 
Pre-irradiation - - - 
3x1014 e--cm-2 14 45 117 
9x1014 e--cm-2 Current  

Compliance 
Current  

Compliance 
Current  

Compliance 
9-mos anneal 31 64.5 211 

* Measured at +6 V drain voltage 
 

 
Figure 110. A0408:  Solid symbols are pre-irradiation, open symbols are  

3x1014 e--cm-2, open-lined symbols are 9-mos measurements. Data is gate leakage 
adjusted drain current. The maximum RSD <1%. 
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Figure 111. A0408:  Non-Gate leakage adjusted drain current characteristics. The 

maximum RSD <1% and symbols have the same meaning as above. 
  

The gate leakage of device A0408 also exhibited peculiar behavior. As the drain 

current annealed from current compliance, the final 9-mos value was greater than that 

measured post-irradiation at 3x1014 e--cm-2. However, the gate leakage showed 

significantly more annealing. Figure 112, Figure 113, and Figure 114 illustrate the 

increase in gate leakage at the last post-irradiation measurement and subsequent 

annealing to a current less than post-irradiation. Device A0408 has gate leakage that is 

approximately two OOM greater than that of the specific devices used for this research. 

Hence, the GLADC is largely affected by changes in the gate current because they are of 

the same magnitude.  

Table 18 lists the percentage increase from baseline measurements for the gate 

current. The observed gate leakage behavior is in opposition to the observed GLADC 
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differences. The largest deviation from baseline measurements for gate leakage occurred 

during the “most on” voltage of -1 V.  

Table 18. Percent increase gate current from pre-irradiation baseline measurement 
following irradiation and annealing, A0408. 

 Vg = -1 V Vg = -2 V Vg = -3 V 
Pre-irradiation - - - 
3x1014 e--cm-2 1300 1088 831 
9x1014 e--cm-2 Current  

Compliance 
Current  

Compliance 
Current  

Compliance 
9-mos anneal 395 347 339 

* Measured at +6 V drain voltage 
 

 
Figure 112. A0408:  Pre- and post-irradiation gate leakage. Symbols have same 

meaning as above. 
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Figure 113. A0408:  Gate leakage recovery after 9-mos anneal. Symbols have same 

meaning as in previous figures.  
 

 
Figure 114. A0408:  Recovery of gate leakage following a 9-mos RT anneal. Symbols 

have same meaning as in previous figures.   
 

Of particular concern regarding the increased gate leakage is the tremendous jump 

at the initial irradiation and then relatively no additional radiation response. This behavior 
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is similar to the observed behavior when the device is damaged due to static discharge. 

Although discharges can greatly affect the Schottky contact, apparently little deviation 

from normal drain currents are observed. The conclusive evidence that the Schottky 

contact has been damaged comes from the Schottky contact data. A device that has been 

damaged due to static discharge exhibits Schottky diode characteristics with no linear 

region. Meaning, parasitic resistance and series resistance apparently dominate all other 

transport mechanisms. Although the devices are “useable” in the traditional sense, no 

long-term information is available. The mechanism of annealing static discharge 

damaged Schottky contacts is unknown.   

Device A0409 also shows peculiar behavior that can be correlated to device 

A0408 but not confirmed. A particular difficulty in analyzing both devices is that their 

radiation hardness was quite different. Nonetheless, they provide interesting insight to the 

annealing phenomenon. Figure 115 shows the GLADC I-V characteristics for pre- and 

post-irradiation, and subsequent 9-mos RT anneal. Similar to that of A0408, the  

post-irradiation response is that of increasing drain current. However, the 9-mos anneal 

behavior for A0409 is unexpected. Figure 115 clearly shows that the drain current 

following annealing has increased when adjusted for gate leakage. This behavior is 

comparable to A0408 (Figure 110). However, in analyzing A0408, the assumption was 

made that the GLADC following annealing had increased from the post-irradiation values 

due to the device failure at 9x1014 e--cm-2. Quantification of this increased is listed as 

Table 19.  
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Table 19. Percent increase drain current from pre-irradiation baseline 
measurement following irradiation and annealing, A0409 GLADC. 

 Vg = -1 V Vg = -2 V Vg = -3 V 
Pre-irradiation - - - 

3.67x1015 e--cm-2 16 43.6 136 
9-mos anneal 26 63.6 209 

* Measured at +6 V drain voltage 

 

 
Figure 115. A0409:  GLADC I-V characteristics. The maximum RSD <2.5%. 

Symbols have same meaning as above.   
 

The non-GLADC I-V characteristics are shown as Figure 116 and demonstrate 

that there is annealing for low gate biases. From Figure 116 it appears that the nine month 

anneal value is below that of the final irradiation measurement. In fact, the data confirms 

a “recovery” of sorts (Table 20).  
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Figure 116. A0409:  Non-GLADC I-V characteristics. Maximum RSD <2.5%. 

Symbols have same meaning as above.  
 

Table 20. A0409:  Percent increase drain current from pre-irradiation baseline 
measurement following irradiation and annealing, Non-GLADC. 

 Vg = -1 V Vg = -2 V Vg = -3 V 
Pre-irradiation - - - 

3.67x1015 e--cm-2 23 56 139 
9-mos anneal 23 51 100 

* Measured at +6 V drain voltage 
 

From the differences in the GLADA and non-GLADC plots, I contend that gate 

leakage anneals by a different process than that of the mechanism responsible for drain 

current. This is observed in device A0408 and the I-V characteristics of device A0409 

seem comparable. Figure 117 and Figure 118 illustrate “super” recovery of the gate 

currents. At the maximum electron irradiation dose the gate leakage increased by greater 

than 100% for all gate voltages at +6 V Drain Voltage. This is an OOM less increase than 
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A0408. Table 21 lists the percentage increase from pre-irradiation baseline 

measurements.  

 
Figure 117. A0409:  Increased gate leakage following a maximum dose of 3.67x1015 

e--cm-2. Symbols have same meaning as above. 
 

Table 21. A0409:  Percent increase gate current from pre-irradiation baseline 
measurement following irradiation and annealing. 

 Vg = -1 V Vg = -2 V Vg = -3 V 
Pre-irradiation - - - 

3.67x1015 e--cm-2 163 143 144 
9-mos anneal -55 -55 -25 

* Measured at +6 V drain voltage 
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Figure 118. A0409:  Annealing “super” recovery of gate leakage. Symbols have same 

meaning as above.  
 

Although total I-V recovery was not achieved, gate leakage currents showed 

increased recovery effectiveness. When adjusted for gate leakage, it seems as if no 

annealing of the drain current occurred. However, due to gate leakage recovering, much 

more than the drain current and they are both of the same magnitude, the leakage 

dominates the adjusted curves. It appears that annealing is a balance of completing 

processes, namely, annealing of the bulk semiconductor material and properties 

responsible for 2DEG formation and processes pertaining to the Schottky contact. 

Previous work by Mishra et al. demonstrated that increased SBHs following  

gamma-irradiation were persistent at temperatures up 350 ºC [22]. Although Schottky 

measurements are unavailable, I hypothesize the following:  FATFATs have tunneling 

dominant charged carrier transport through the Schottky contact. An introduction of a 

large number of donor defects near the m-s interface increases defect-defect assisted 
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carrier transport. In addition, the introduction of donor defects act to “pump-up” the 

2DEG. However, the increase in density of surface states is not persistent and the gate 

leakage recovers. At the same time, an unknown mechanism acts to recover the 2DEG at 

a slower rate.  

While it is clear that gate leakage currents have significantly recovered, drain 

current recovery remains unclear. Although GaN may be rad-hard, the annealing rate is 

expected to be extremely slow due to energetically stable Ga and N bonds. From the 

standpoint of having to use a device in an integrated system, annealing is essentially 

nonexistent. That is to say, gate leakage is undesired and the device is drain current 

controlled. 
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