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Abstract

The U.S. Air Force is researching the fusion of multiple sensors and classifiers. Given a finite

collection of classifiers to be fused one seeks a new classifier with improved performance. An estab-

lished performance quantifier is the Receiver Operating Characteristic (ROC) curve, which allows

one to view the probability of detection versus the probability of false alarm in one graph. Previous

research shows that one does not have to perform tests to determine the ROC curve of this new

fused classifier. If the ROC curve for each individual classifier has been determined, then formulas

for the ROC curve of the fused classifier exist for certain fusion rules. This will be an enormous sav-

ing in time and money since the performance of many fused classifiers can be determined without

having to perform tests on each one.

In reality only finite data is available so only an estimated ROC curve can be constructed. It

has been proven that estimated ROC curves will converge to the true ROC curve in probability.

This research examines if convergence is preserved when these estimated ROC curves are fused. It

provides a general result for fusion rules that are governed by a Lipschitz continuous ROC fusion

function and establishes a metric that can be used to prove this convergence. This framework is

then applied to the OR fusion rule, as well as an example study. The study examines two ROC

curves, estimated both parametrically and non-parametrically, fused with the OR rule.

x



CONSISTENCY RESULTS FOR THE ROC CURVES OF
FUSED CLASSIFIERS

I. Introduction

1.1 General Discussion

Combat identification (CID), the ability to detect and classify friend versus foe, has moved to

the forefront of technological challenges facing the U.S. military today. Even while the military

superiority of coalition forces has been overwhelming in recent conflicts, and losses have been rela-

tively low, an increasing percentage of losses has been due to friendly fire. The U.S. military has

invested a large amount of resources to solve this problem. Reduced, ideally zero, fratricide rate

and increased lethality are the goals. To that end, new sensors are being developed and fielded that

can more effectively exploit target signature data to more confidently make the determination of

hostile or friendly. Building hardware capable of extracting this signature information is one part

of the solution, the other part is properly classifying it.

Many different classification techniques have been developed over the years. One popular

technique is Fisher’s linear discriminant, where multi-dimensional data from two classes are projected

onto a one-dimensional space making for easy discrimination [7]. Another approach is to utilize a

neural network that learns how to classify data [24]. Along the same lines, Support Vector Machines,

borrowing a page from statistical learning theory, develop a classifier by minimizing the training set

error [21]. With the availability of many sensors and many classification techniques, military CID

systems generally do not employ just a single classifier system, but seek to optimize performance by

fusing the classification decisions of multiple systems.

1.2 Problem Description

1.2.1 Background.

A classifier system in its most elementary form consists of a sensor, a processor, and a classifier.

Figure 1.1 depicts this notional classifier system. The sensor starts by collecting raw data on an

event it observes. This could be a thermal sensor collecting temperature data or a radar collecting

radio frequency returns. The processor then extracts a feature from this raw data that is salient to



discrimination. This could be a temperature profile or a radar cross section. Finally the classifier

applies its decision logic to the feature set, classifying the observed event. The system depicted in

Figure 1.1 is a two-state classifier, where the decision label is either target or non-target.

Multiple classifier systems (MCSs) seek to increase the performance of individual classifiers by

intelligently fusing their outputs [17]. Figure 1.2 depicts a notional MCS. In the depicted MCS,

two single classifier systems each classify an observed event and their decision labels are fused using

some fusion rule. In general the classifiers are assumed to be independent, although a significant

amount of research has been done for the case where classifiers are correlated [15].

There are many advantages to MCSs. For example, each individual classifier system can focus

on a different type of feature data, such as length or temperature gradient. They can also be

specifically trained to classify different target types; one could specialize in identifying trucks while

another could specialize in tanks. With this in mind, it is important that fusion strategies optimize

the strengths and minimize the weaknesses of the individual classifiers.

Researchers can compare classifier performance by constructing receiver operating characteris-

tic (ROC) curves from experimental data. To generate the ROC curve for an MCS would typically

require additional experiments beyond those used to produce the ROCs for the individual classifiers.

Oxley and Bauer, however, demonstrated that this is not always required and that for certain fusion

rules, the ROC curve for an MCS can be determined solely from the ROC curves of the individual

classifiers [16]. Hill further contributed to this area by devising a matrix-based approach for fusing

ROC curves with any Boolean rule [13].

Event SetEvent Set Feature Set Label Set
Sensor Classifier

Data Set
Processor

Figure 1.1. Single classifier system.
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Feature Set

Label Set

Label Set

Sensor
X

Classifier A

Fusion

Sensor
Y Classifier B

Label Set

Data Set

Data Set

Processor 1

Processor 2

Figure 1.2. Multiple classifier system with label fusion.
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1.2.2 Problem Statement.

In real world applications, the true ROC curve is seldom, if ever, known. ROC curves must

be estimated, based on sample data. This fact is generally disregarded, and an estimated ROC

curve is treated as if it were the true ROC curve representing the true performance of the classifier.

Alsing examined this assumption and proved that estimated ROC curves do converge to the true

ROC curve in the probability sense [1]. This thesis extends Alsing’s convergence work to the ROC

curves of fused classifiers.

1.3 Research Objectives

The goal of this research is to provide consistency results for the ROC curves of fused classifiers.

The approach requires a mathematical framework to be developed that can be used to prove that

fused empirical ROC curves do converge to the true fused ROC curve. A general class of fusion rules

will be investigated using this framework, in addition to a specific examination of the OR fusion

rule. For this research, independence of the classifiers is assumed.

4



II. Literature Review

2.1 Overview

This chapter reviews the literature pertinent to receiver operating characteristic (ROC) curves

and their use in evaluating classifier performance. Section 2.2 provides a description of ROC curves,

demonstrates how their graphical representation enables a quick visual comparison of classifier per-

formance, and provides a mathematical description of their construction. Section 2.3 discusses the

notion of ROC convergence and introduces the metrics needed to compare ROC curves. Much of

the work done with ROC curves assumes that a limiting or true ROC curve exists, so this is an im-

portant contribution. Finally Section 2.4 reviews different methods of fusing classifiers and presents

an important result that allows two ROC curves to be fused analytically.

2.2 ROC Curves

2.2.1 Description.

Consider a two-class classifier system that attempts to classify targets of interest (tar class) and

non-targets (non class). There are four possible outcomes when this system attempts to classify

an object. When a tar class object is observed, it can be correctly labeled a tar or incorrectly

labeled a non. Likewise, when a non class object is observed, it can be correctly labeled a non or

incorrectly labeled a tar. Table 2.1 summarizes these outcomes with their associated terminologies

and conditional probabilities.

Table 2.1. Classification outcomes.

Outcome Terminology Conditional Probability
tar labeled tar True Positive (TP) PTP = Pr(labeled tar | tar present)
non labeled tar False Positive (FP) PFP = Pr(labeled tar | non present)
tar labeled non False Negative (FN) PFN = Pr(labeled non | tar present).
non labeled non True Negative (TN) PTN = Pr(labeled non | non present).

The ROC curve provides a visual description of classifier performance by graphically represent-

ing the trade-off between PTP and PFP (Figure 2.1). Commonly, the probability of true positive

5



is referred to as the hit rate or the probability of detection, while the probability of false positive is

often referred to as the false alarm rate or probability of false alarm (as in the figure). The ROC

curve is constructed by varying the decision thresholds internal to the classifier system and measur-

ing the observed hit and false alarm rate. A very conservative decision threshold will yield a low

hit rate and low false alarm rate. An aggressive decision threshold will yield a high hit rate, but

generally at the expense of a high false alarm rate.

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1
Probability of False Alarm

Pr
ob

ab
ili

ty
 o

f D
et

ec
tio

n

Conservative

Aggressive

Figure 2.1. A typical ROC curve.

When considering the total probability for each condition (i.e., the condition when a tar is

present and the condition when a non is present), the following relationships are observed,

PTP + PFN = 1

PFP + PTN = 1.

So not only does the ROC curve graphically relate PTP and PFP , but, by virtue of their complements,

provides information about PTN and PFN as well.

2.2.2 ROC Curve Construction.

Consider a simple two-class classifier system, like the one from Section 2.2.1, that evaluates a

single feature x ∈ R. Figure 2.2 shows the distribution of this feature for both the tar and non

6



classes. Let X be a real-valued random variable and p(x) represent its probability density function

(pdf). The distribution of x for the tar class is the conditional pdf p(x|tar) and the distribution of

x for the non class is the conditional pdf p(x|non).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

p(x)

-1 1 2 3 4 5 6 7 8 9x

Target pdf Non-target pdf

p(x|tar) p(x|non)

θ decision threshold

labeled target labeled non-target

Figure 2.2. Target and non-target pdfs for a two-class system.

In this feature space, lower values of x are considered a stronger indication of a target. So the

decision labels are

tar if x < θ,
non if x ≥ θ,

where θ is the decision threshold. The horizontal shaded area represents the probability of true

positive at θ, while the vertical shaded area represents the probability of false positive at θ. The

ROC curve simply is the plot of each probability pair (PFP , PTP ) for all θ values.
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2.2.3 Mathematical Description of ROC Curves.

Since PFP and PTP are functions of θ, the ROC curve is actually the projection of a three-

dimensional trajectory in (θ, PTP , PFP )-space onto the two-dimensional (PTP , PFP )-plane. This

is depicted in Figure 2.3. The 3-dimensional trajectory is known as the ROC trajectory. Alsing

defines the ROC trajectory as

t = {(θ, PFP (θ), PTP (θ)) : θ ∈ Θ},

where Θ is the admissible threshold set [1]. The admissible threshold set for the random variable

X is the set Θ = (a, b) ⊂ R such that

lim
θ→a+

PFP (θ) = 0 and lim
θ→a+

PTP (θ) = 0,

lim
θ→b−

PFP (θ) = 1 and lim
θ→b−

PTP (θ) = 1.

The ROC curve f is defined as the projection of t onto the (PTP , PFP )-plane,

f = {(PFP (θ), PTP (θ)) : θ ∈ Θ} . (2.1)

Some other properties of the ROC curve are that f is a non-decreasing and upper semi-continuous

function of θ.

0
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Figure 2.3. ROC trajectory and ROC curve projection.
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In applications, the probabilities PTP and PFP cannot be determined exactly since only finite

data is available. Hence, the true ROC curve cannot be generated, but must be estimated. These

estimated ROC curves are constructed empirically. There are three methods commonly used to

determine the estimates P̂TP and P̂FP :

1. Assume the family of the underlying distribution (binomial or normal, for instance) [10] is
known.

2. Estimate the unknown distribution based on the sample data [12].

3. Calculate the observed true positive and false positive frequencies for varying θ.

Methods 1 and 2 are referred to as parametric methods, since they require key parameters of

the statistical distribution to be known or estimated. Method 3 is referred to as a non-parametric

method, since it does not specifically require knowledge of the underlying distribution. This last

method is the one most commonly used in practice, although this research will investigate both

parametric and non-parametric methods.

The estimated probabilities, P̂TP and P̂FP , are random variables since they depend on the data

used to estimate them. Let ω be the specific instantiation of this data drawn from all possible sets

of observed data Ω (also known as the uber-event set or population set). The observed data itself

can be represented as a set of feature vectors xi, i = 1 to 2n, where there are n observations from

both classes. The classifier evaluates the feature vectors for a specific decision threshold θ ∈ Θ.

Therefore, each probability estimate can be expressed as a function of ω and θ, for n observations:

P̂
(n)
TP (ω, θ) and P̂

(n)
FP (ω, θ).

The estimated, or empirical, ROC curve then is given by

f̂ (n)(ω) = {(P̂ (n)TP (ω, θ), P̂
(n)
FP (ω, θ)) : θ ∈ Θ}.
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2.3 ROC Curve Comparison

2.3.1 ROC Metrics.

In the automatic target recognition community, it is a commonly held assumption that in

the case of unlimited data, a limiting ROC curve exists [2]. As n becomes large, f̂ (n)(ω) should

converge to this limiting ROC curve f . Alsing provided a proof for ROC convergence and in doing

so developed some very valuable metrics for ROC comparison [1].

Fristedt and Gray, with a slight difference in notation, provide the following definition of a

metric and metric space [8].

Definition 2.1 (Metric Space.) A metric space (S, d) consists of a function d : S × S → R
defined on set S that satisfies the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ S;
2. d(x, y) = 0 if and only if y = x;

3. d(x, y) = d(y, x) for all x, y ∈ S;
4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y ∈ S.

The function d is called the metric.

As an example, consider the following family of metrics defined on S = R2 = {x = (x1, x2)|xi ∈

R},

ρq(x,y) = (|x1 − y1|q + |x2 − y2|q)
1
q (2.2)

for each q ∈ [1,∞). This family of metrics will be used extensively in this research. A function that

adheres to all but property 2 is known as a pseudo-metric and is associated with a pseudo-metric

space. As an example, area under the curve (AUC), is commonly used to compare ROC curves.

The difference in AUC for two curves, f and g, is a pseudo-metric since the difference could equal

zero for some f 6= g.

Definition 2.2 (Equivalent Metrics.) Let dα and dβ be two metrics defined on S. The metrics
dα and dβ are equivalent if there exists constants k,K > 0 such that

kdβ(x, y) ≤ dα(x, y) ≤ Kdβ(x, y) for all x, y ∈ S.
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Furthermore, it can be shown that all metrics on R2 are equivalent [1].

Consider two ROC curves f and g with the same threshold set Θ and represented by

f = {(P (f)TP (θ), P
(f)
FP (θ)) : θ ∈ Θ}

= {P(f)(θ) : θ ∈ Θ},

g = {(P (g)TP (θ), P
(g)
FP (θ)) : θ ∈ Θ}

= {P(g)(θ) : θ ∈ Θ}.

Alsing proposed the following metric on ROC curves for 1 ≤ r <∞, where ρ is any metric on R2,

dρ,r(f, g) =

µZ
Θ

ρ
³
P(f)(θ),P(g)(θ)

´r
dθ

¶ 1
r

. (2.3)

One metric from this family,

dρ1,1(f, g) =

Z
Θ

ρ1

³
P(f)(θ),P(g)(θ)

´
dθ (2.4)

provides the total metric distance between f and g. This metric can be normalized to a value between

0 and 1 by dividing by the measure of Θ, µ(Θ). This is known as the average metric distance. Like

the difference in AUC pseudo-metric, average metric distance takes on values between 0 and 1. For

both metrics, smaller values indicate similar overall performance between two classifier systems, and

larger values indicate differing overall performance. The important distinction though is that an

average metric distance of 0 implies that f and g are the same curve; while, as stated previously, a

difference in AUC of 0 is ambiguous as to the difference. This last fact is why dρ1,1 is utilized in

proving convergence. For empirical ROC curves, the discrete form is often employed,

average metric distance ≈

mP
i=1

ρ1
¡
P(f)(θi),P

(g)(θi)
¢

m
, (2.5)

where m is the total number of evenly spaced discrete θi values in Θ.
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2.3.2 ROC Convergence.

If empirical ROC curves do not converge to a limiting ROC curve, then there is no guarantee of

consistency in ROC comparisons [1]. To that end, Alsing developed the ROC Convergence Theorem

to prove that empirical ROC curves do, indeed, converge provided certain conditions. The most

important condition is that as more feature data is collected, it is collected in such a way that it

adequately fills the feature space.

Let S ⊂ Rv, where v is the number of elements in the feature vector x, and S is the total

feature set. Let D(n) ⊂ S be the set of n feature vectors collected per class, i.e., D(n) = {xi ∈ S :

i = 1, ..., 2n} when there are two classes. To ensure that as more feature data is collected it spans

across the entire feature space and not just a single subset associated with one label, Alsing requires

the sequence of sets, {D(n)}, to converge to S in the Hausdorff metric [4]. Under this condition,

the sequence of empirical ROC curves, {f̂ (n)}, converges to a limiting ROC curve f .

Theorem 2.3 (ROC Convergence [1].) If {D(n)} converges to S in the Hausdorff sense, i.e.,
given ε > 0, there exists N such that for all n > N , dH(D(n), S) < ε, then {f̂ (n)(ω)} converges to f
in probability, i.e., given ε > 0, there exists N such that for all n > N ,

Pr
³n

ω ∈ Ω : dp,r
³
f̂ (n)(ω), f

´
≥ ε

o´
< ε.

The proof is rather lengthy, so only an outline will be provided. The proof involves four steps:

1. Prove that P̂ (n)TP (ω, θ) is a consistent estimator for PTP (θ) and that P̂
(n)
FP (ω, θ) is a consistent

estimator for PFP (θ).

2. Prove pointwise convergence for the estimated probability pair
³
P̂
(n)
TP (ω, θ), P̂

(n)
FP (ω, θ)

´
.

3. Prove that the integral of a real-valued random variable converges.

4. Prove that the sequence of ROC curves {f̂ (n)(ω)} converges.

2.4 Classifier and ROC Fusion

2.4.1 Classifier Fusion Rules.

There is often a performance advantage to be gained by fusing the results of individual classi-

fiers. Consider Bayesian classifiers that estimate the posterior probability of a particular observa-

tion belonging to a certain class. Since this estimate is based on observed data, there is inherent
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sample variance associated with these estimates. When these estimates are averaged over several

Bayesian classifiers, this variance is reduced [18]. Also, certain classifiers may have better perfor-

mance against specific targets or in certain situations [20]. In this case, a fusion strategy could be

devised that weights a specific classifier’s decision more heavily under certain conditions.

According to Dasarathy, classifier decision fusion is simply a subset of sensor fusion [6]. He

notes that fusion can be accomplished at the data, feature, or decision level with the following inputs

and outputs:

1. Data in 7−→ Data out,

2. Data in 7−→ Feature out,

3. Feature in 7−→ Feature out,

4. Feature in 7−→ Decision out,

5. Decision in 7−→ Decision out.

Thorsen describes data fusion using category theory [19]. In category theory, objects are

represented by boxes and mappings are represented by arrows. Referencing Figure 1.2; data, feature,

and label fusion then is the fusion of objects; while sensor, processor, and classifier fusion is the fusion

of mappings. It is interesting to note that with the exception of sensor fusion, Dasarathy’s and

Thorsen’s fusion categories parallel each other (Table 2.2). Sensor fusion would be the equivalent

of “Event in → Data out” fusion, which Dasarathy does not categorize.

Table 2.2. Fusion categories.

Dasarathy’s I/O Category Thorsen’s Object/Mapping Fusion

Data/Data Data Fusion
Data/Feature Processor Fusion
Feature/Feature Feature Fusion
Feature/Decision Classifier Fusion
Decision/Decision Label Fusion

Decision, or label, fusion is the focus of this research. There are many advantages to this type

of fusion. There is no concern about the compatibility of the data, nor the specific architecture used

to design individual classifiers when the fuser only considers discrete decision values. A practical

consideration may also be the amount of bandwidth or processing capability the fusion center has
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[22]. Once again, a decision fuser is not burdened by having to transmit or process a large amount

of raw or feature data.

The simplest method for fusing data is to use Boolean rules. Consider the case where there are

two classifiers, A and B. A fusion approach that wants to maximize the number of true positives,

at the possible expense of an increased false positive rate, will make a target declaration if either A

or B indicates a target. This is known as the OR fusion rule and will be denoted as A∨B. A more

conservative approach that tries to maintain a low false positive rate will make a target declaration

only if both A and B indicate a target. This is known as the AND fusion rule and will be denoted

as A ∧ B. Fusion can be extended to include a third classifier C. In this case, the majority vote

fusion rule can be used. The majority vote, in the three classifier case, requires two of the three

individual classifiers to agree. The formula for this rule is (A ∧B) ∨ (A ∧C) ∨ (B ∧C). Table 2.3

summarizes these fusion rules. Of course, these rules can be extended to any number of classifiers.

Table 2.3. Boolean fusion rules.

Fusion Rule Notation
2-classifier OR A ∨B
2-classifier AND A ∧B
3-classifier Majority Vote (A ∧B) ∨ (A ∧C) ∨ (B ∧C)

2.4.2 Within and Across Fusion.

Hill discusses two types of fusion on MCSs: across and within [13]. Figures 2.4 and 2.5 show

the block diagrams that Hill developed for both ROC fusion types. In the within-MCS, the event

set E is partitioned into two event subsets: targets of interest (Etar) and non-targets (Enon). Each

individual classifier system seeks to classify the same type of target. The decision from each classifier

is then sent to the fusion center. In the across-MCS, the event set E is partitioned into three subsets:

target type 1 (Etar,1), target type 2 (Etar,2), and non-targets (Enon). Each individual classifier

system seeks different types of targets (e.g., one is trained to detect tanks, while another is trained

to detect troop carriers). The decision from each classifier is sent to the fusion center. Note that

for ease of notation, the processor is assumed to be part of the sensor in these MCS representations.
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Figure 2.4. Within-MCS.
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Figure 2.5. Across-MCS.

15



For both types of MCSs, a compact notation can be defined. Figure 2.6 shows the block

diagram. Classifier Aθ maps feature set X to label set L and classifier Bφ maps feature set Y to

label set M . More formally Aθ : X → L for θ ∈ Θ, where Θ is the admissible threshold set for Aθ,

and Bφ : Y → M for φ ∈ Φ, where Φ is the admissible threshold set for Bφ. The fused classifier

Cθ,φ is the result of the fusion rule r acting on the labels or

Cθ,φ(x, y) = r(Aθ(x), Bφ(y)),

where (x, y) ∈ X × Y and (θ,φ) ∈ Θ × Φ. This can also be stated in terms of the label fusion as

r: L×M → N .

One final item on notation is presented. When referring to the families of classifiers for Aθ,

Bφ, and Cθ,φ, the following notation is used

A = {Aθ : θ ∈ Θ} ,

B = {Bφ : φ ∈ Φ} , and

C = {Cθ,φ : θ ∈ Θ,φ ∈ Φ} .

This is relevant when referring to the ROC curves for these classifiers, since the ROC curve represents

the performance of the entire classifier family, not just the classifier for a given threshold.

Event Set

Ε
Event Set

Ε
Feature Set

Z = X x Y
Feature Set

Z = X x Y

Threshold Set

Ψ = Θ x Φ

Fused Label Set

N = L x M

Z = (X,Y) Cθ,φ = (Αθ,Βφ)

Figure 2.6. Compact notation for MCS.
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2.4.3 Independence.

When analyzing multiple classifier systems (MCSs) it is often assumed that the classifiers are

statistically independent [14]. More accurately, it is assumed that the measurements of the classifiers

are independent. Two events, E1 and E2, are statistically independent if the following condition is

met,

Pr(E1 ∩E2) = Pr(E1) · Pr(E2).

To extend this idea to the independence of classifiers, consider classifiers A,B : X → L. Classifiers

A and B are said to be independent if for every subset of labels L1, L2 ⊂ L,

Pr(A−1[L1] ∩B−1[L2]) = Pr(A−1[L1]) · Pr(B−1[L2])

where A−1[L2] and B−1[L2] are the inverse images of the classifiers. That is,

A−1[L1] = {x ∈ X : A(x) ∈ L1} and B−1[L2] = {x ∈ X : B(x) ∈ L2}.

With this assumption, analysts can more easily compute the joint probabilities of an MCS by

not having to consider the correlation between the classifiers. Any in-depth analysis of a specific

MCS should examine whether this assumption is valid.

In some situations it is appropriate to assume that two classifiers are conditionally independent.

Two events, E1 and E2, are said to be conditionally independent if they are independent with respect

to the same condition G. In other words,

Pr(E1 ∩E2|G) = Pr(E1|G) · Pr(E2|G).

Similar to statistical independence this can be very helpful when calculating joint conditional proba-

bilities, but once again, the validity of this assumption should be examined for any specific analysis.

Some researchers are less concerned with the classifiers being independent and more concerned

with the classifiers making independent errors. For classifiers to make independent errors, they
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must satisfy the following conditions,

PFP (A
−1[Ltar]∩B−1[Ltar]|x ∈ Xnon) = PFP (A−1[Ltar]|x ∈ Xnon) ·PFP (B−1[Ltar]|x ∈ Xnon), and

PFN (A
−1[Lnon] ∩B−1[Lnon]|x ∈ Xtar) = PFN (A−1[Lnon]|x ∈ Xtar) · PFN (B−1[Lnon]|x ∈ Xtar).

A number of researchers have used this assumption [9], [11]. Kuncheva contends however, that

negatively correlated errors can actually improve the performance of an MCS [15].

2.4.4 ROC Fusion.

Oxley and Bauer demonstrated that one can analytically construct a ROC curve for an MCS

simply by using the ROC curves of the individual classifiers [16]. They begin by providing the

following definition for ROC curves. The ROC curve fA is defined as

fA(p) = max{PTP (Aθ) : θ ∈ Θ and PFP (Aθ) = p} (2.6)

for each p ∈ [0, 1]. In other words, if there are multiple θ values for which PFP (Aθ) = p, then the

highest associated PTP (Aθ) value is chosen to construct the ROC curve.

Similarly, the ROC curve fB is defined as

fB(q) = max{PTP (Bφ) : φ ∈ Φ and PFP (Bφ) = q} (2.7)

for each q ∈ [0, 1].

Finally, the ROC curve fC is defined to be

fC(r) = max{PTP (Cθ,φ) : (θ,φ) ∈ Θ×Φ and PFP (Cθ,φ) = r} (2.8)

for each r ∈ [0, 1].

For the across-OR, Oxley and Bauer showed that

PFP (Cθ,φ) = PFP (Aθ) + PFP (Bφ)− PFP (Aθ)PFP (Bφ), (2.9)
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and

PTP (Cθ,φ) =
(1− α)β

α+ β − αβ
PFP (Aθ) +

α

α+ β − αβ
PTP (Aθ) +

(1− α)β

α+ β − αβ
PFP (Bφ)

+
β

α+ β − αβ
PTP (Bφ)− (1− α)β

α+ β − αβ
PFP (Aθ)PTP (Bφ)

− (1− α)β

α+ β − αβ
PTP (Aθ)PFP (Bφ)− αβ

α+ β − αβ
PTP (Aθ)PTP (Bφ),

where α = Pr(Xtar) and β = Pr(Ytar) are the a priori probabilities.

Considering Equation (2.9) and using the notation from the ROC curve definitions, it is seen

that

r = p+ q − pq

for a choice of p and q. For a given r ∈ [0, 1] then, p or q will be constrained such that if q ∈ [0, 1],

then p ∈ [0, r]. In particular, for each r,

q = Q(p, r) =

½ r−p
1−p for 0 ≤ p < r when r < 1
1 for p = r when r = 1

.

Using this relationship and Equation (2.8), it was derived in [16] that the formula for the fused

across-OR ROC curve is

fC(r) =
1

γ
− (1− γ)r

γ
− (2.10)

1

γ
min
0≤p≤r

½
[1− (αfA(p) + (1− α)p)] ·

∙
1−

µ
βfB

µ
r − p
1− p

¶
+ (1− β)

µ
r − p
1− p

¶¶¸¾

where γ = α+ β − αβ.

In similar fashion, it was derived in [16] that the fused within-OR ROC curve is

fC(r) = max
0≤p≤r

½
fA(p) + fB

µ
r − p
1− p

¶
− fA(p)fB

µ
r − p
1− p

¶¾
. (2.11)

Again, both of these formulas assume that the classifiers Aθ and Bφ are independent.
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III. Derivation and Methodology

3.1 Introduction

This chapter extends Alsing’s ROC convergence theorem by demonstrating that convergence

is preserved when two empirical ROC curves are fused. Section 3.2 introduces the framework and

notation that will be used in demonstrating this convergence. Section 3.3 provides the general

result that convergence of a fused ROC curve is guaranteed when the ROC fusion is accomplished

by a Lipschitz continuous transformation. Section 3.4 applies this result to the within-OR and

across-OR fusion.

3.2 Framework and Notation

A classifier fusion rule, r, establishes how classifiers A and B are combined into a fused classifier

C, so that C = r(A,B). As Oxley and Bauer demonstrated, for certain fusion rules there may

be a mapping or transformation, T, that relates the fused ROC curve, fC, to the ROC curves of

the individual classifier families, fA and fB, so that fC = fr(A,B) = T(fA, fB). Furthermore, this

transformation may have a function g associated with it that allows for a pointwise evaluation of the

fused ROC curve. Considering the individual ROC curves as functions of p ∈ [0, 1], the following

relations hold true

fC(p) = fr(A,B)(p) = T(fA, fB)(p) = g(fA(p), fB(p)).

Thus, the transformation T is a substitution transformation.

3.3 Convergence for Continuous Substitution Transformation

This section looks at a class of substitution transformations, S, that satisfy the Lipschitz

condition. If a particular fusion rule, r, yields a Lipschitz continuous substitution transformation,

S, then convergence of the fused ROC curve for that rule is guaranteed by this result. A number

of definitions and theorems will be required to establish the framework to prove this result.

The ROC curve f has been discussed in some detail to this point, but a few more remarks

should be made before proceeding with this analysis. The ROC curve f has been referred to
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primarily as a relation. Apostol defines a relation as any set of ordered pairs [3]. This is consistent

with Equation (2.1). For this analysis, however, it will be more useful to think of f as a function,

such that for (x, y) ∈ f , there exists a unique value y = f(x) for a given x. With this in mind, the

following ROC curve definition is stated.

Definition 3.1 (ROC Curve.) The function f : [0, 1]→ [0, 1] is said to be a ROC curve if the
domain of f is [0, 1] and f is non-decreasing and upper semi-continuous. Let < denote the collection
of all ROC curves, that is

< = {f : [0, 1]→ [0, 1] | f is non-decreasing and upper semi-continuous}.

For f, g ∈ <, the following mapping is introduced,

dρ1,1(f, g) =

Z 1

0

ρ1(f(p), g(p))dp, (3.1)

where ρ1 is the standard metric on R. Note this is the same mapping defined by Equation (2.4),

but is generalized from θ-space to p-space. If P (f)FP (θ) = P
(g)
FP (θ) for all θ ∈ Θ, then Equation

(2.4) and Equation (3.1) are equivalent. This would seem to imply that Equation (3.1) is a special

case of Equation (2.4), however it actually has more general applicability. Since the dρ1,1 mapping

from Equation (3.1) is defined over the projected ROC curves as a function of p, it does not require

specific knowledge of the θ ∈ Θ used to construct the ROC curves. This is very important when

the threshold sets for A and B are not equal (i.e., Φ 6= Θ). The following theorem proves that the

dρ1,1 mapping is a metric on <.

Theorem 3.2 (<, dρ1,1) is a metric space.

Proof. For fA, fB ∈ <, it must be shown that dρ1,1(fA, fB) exists and satisfies the four required

properties of a metric (Definition 2.1). Since fA, fB ∈ <, then fA−fB has bounded variation. Hence

|fA − fB| has bounded variation and is therefore Riemann integrable. Thus,

dρ1,1(fA, fB) =

Z 1

0

|fA(p)− fB(p)|dp

exists for every fA, fB ∈ <.
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1. Nonnegativity. Since |fA(p) − fB(p)| ≥ 0. This implies
R 1
0
ρ1(fA(p), fB(p))dp ≥ 0. Therefore

dρ1,1(fA, fB) ≥ 0 for all fA, fB and so dρ1,1 satisfies nonnegativity.
2. Definiteness. Assume dρ1,1(fA, fB) = 0. Then

R 1
0
|fA(p) − fB(p)|dp = 0. This implies

|fA(p) − fB(p)| = 0 for almost every p ∈ [0, 1], but |fA(p) − fB(p)| of bounded variation on
[0, 1] implies there are only a finite number of discontinuities. Since fA, fB are upper semi-
continuous, then fA = fB.
Now assume fA = fB, then |fA(p) − fB(p)| = 0 for all p ∈ [0, 1] and implies R 1

0
|(fA(p) −

fB(p)|dp = 0. So, dρ1,1(fA, fB) = 0. Therefore dρ1,1 satisfies the definiteness property.
3. Symmetry. Since ρ1 is a metric on R, then ρ1(x, y) = ρ1(y, x) for all x, y ∈ R. This implies

ρ1(fA(p), fB(p)) = ρ1(fB(p), fA(p)) for all p = [0, 1]; hence,

dρ1,1(fA, fB) =

Z 1

0

ρ1(fA(p), fB(p))dp =

Z 1

0

ρ1(fB(p), fA(p))dp = dρ1,1(fB, fA).

Therefore dρ1,1 satisfies the symmetry property.

4. Triangle inequality. Let fA, fB, fD ∈ <. Since ρ1 is a metric on R, then ρ1(x, y) ≤ ρ1(x, z) +
ρ1(z, y) for all x, y, z ∈ R. Therefore ρ1(fA(p), fB(p)) ≤ ρ1(fA(p), fD(p)) + ρ1(fD(p), fB(p)) for
all p = [0, 1]; hence,

dρ1,1(fA, fB) =

Z 1

0

ρ1(fA(p), fB(p))dp

≤
Z 1

0

ρ1(fA(p), fD(p))dp+

Z 1

0

ρ1(fD(p), fB(p))dp

= dρ1,1(fA, fD) + dρ1,1(fD, fB).

So dρ1,1 satisfies the triangle inequality property.

Definition 3.3 (Average metric distance.) For fA, fB ∈ <, the mapping

dρ1,1(fA, fB) =

Z 1

0

ρ1(fA(p), fB(p))dp (3.2)

is defined to be the average metric distance.

Note that when this metric was defined over θ (See Equation (2.4).), dρ1,1(fA, fB) was referred

to as the total metric distance. Since the measure of the interval [0, 1] is 1, then for Equation (3.2)

the total metric distance and average metric distance are equivalent, and the dρ1,1(fA, fB) notation

will be used to refer to both.

Two metrics in R2 will also be used. The first is the Manhattan metric on a 2-element vector.

For S = [0, 1]2 = [0, 1] × [0, 1] = {x = (ξ, η) ∈ R2 | 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}, the following metric is

defined

ρ
(2)
1 (x1,x2) = |ξ1 − ξ2|+ |η1 − η2|.
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The metric space
³
[0, 1]2, ρ

(2)
1

´
is commonly used and is stated without proof. Similarly for S =

<2 = <×<, the following metric is defined

d
(2)
ρ1,1
[(fA, fB), (fA0 , fB0)] = dρ1,1(fA, fA0) + dρ1,1(fB, fB0).

The proof that (<2, d(2)ρ1,1
) is a metric space is a simple extension of Theorem 3.2. These metrics

will be used in conjunction with the following definitions.

Definition 3.4 (Lipschitz continuous mapping.) Let (S, dS) and (T, dT ) be metric spaces.
The mapping σ : S → T is said to be a Lipschitz continuous mapping if there exists some L > 0
such that

dT (σ(s1),σ(s2)) ≤ LdS(s1, s2) for all s1, s2 ∈ S.

Lip(S, T ) is used to denote the collection of all Lipschitz continuous mappings from (S, dS) into
(T, dT ).

Definition 3.5 (ROC fusion function.) The function, g : [0, 1]2 → [0, 1] is said to be a ROC
fusion function if the domain of g is [0, 1]× [0, 1] and g is non-decreasing in both variables. Let G
denote the collection of all ROC fusion functions, that is

G = {g : [0, 1]2 → [0, 1] | g is non-decreasing in both variables}.

Notice that if there exists an L > 0 such that

ρ1(g(x1), g(x2)) ≤ Lρ(2)1 (x1,x2)

for all x1,x2 ∈ [0, 1]2, then g : [0, 1]2 → [0, 1] is a Lipschitz continuous mapping from
³
[0, 1]2, ρ

(2)
1

´
into ([0, 1], ρ1), or g ∈ Lip([0, 1]2, [0, 1]).

Definition 3.6 (Substitution transformation.) For g : [0, 1]2 → [0, 1], the substitution trans-
formation, Sg : <2→ <, is defined as

Sg(fA, fB)(p) = g(fA(p), fB(p)) for all p ∈ [0, 1].

Notice that if there exists an L > 0 such that

dρ1,1[Sg(fA, fB),Sg(fA0 , fB0)] ≤ Ld(2)ρ1,1
[(fA, fB), (fA0 , fB0)]

for all (fA, fB), (fA0 , fB0) ∈ <2, then Sg : <2→ < is a Lipschitz continuous mapping from
³
<2, d(2)ρ1,1

´
into

¡<, dρ1,1¢, or Sg ∈ Lip(<2,<).
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With this framework developed, the main result can now be proven. The approach will be to

demonstrate that if a ROC fusion function is Lipschitz continuous, then the associated substitution

transformation is also Lipschitz continuous. When this Lipschitz substitution transformation is

used to fuse two individual ROC curves that converge in probability, it is proven that the fused

ROC curve will converge in probability as well.

Theorem 3.7 Let g ∈ Lip([0, 1]2, [0, 1]) ∩ G, then Sg ∈ Lip(<2,<).

Proof. Let (fA, fB), (fA0 , fB0) ∈ <2 and

dρ1,1[Sg(fA, fB),Sg(fA0 , fB0)] =
Z 1

0

|Sg(fA, fB)(p)− Sg(fA0 , fB0)(p)|dp.

Show that the Lipschitz condition is met.

dρ1,1[Sg(fA, fB),Sg(fA0 , fB0)] =

Z 1

0

|Sg(fA, fB)(p)− Sg(fA0 , fB0)(p)|dp

=

Z 1

0

|g(fA(p), fB(p))− g(fA0(p), fB0(p))|dp

≤
Z 1

0

L(|fA(p)− fA0(p)|+ |fB(p)− fB0(p)|)dp

= L

Z 1

0

|fA(p)− fA0(p)|dp+ L
Z 1

0

|fB(p)− fB0(p)|dp

= L[dρ1,1(fA, fA0) + dρ1,1(fB, fB0)]

= Ld
(2)
ρ1,1
[(fA, fB), (fA0 , fB0)]

So as desired, the Lipschitz condition on Sg is met

dρ1,1[Sg(fA, fB),Sg(fA0 , fB0)] ≤ Ld(2)ρ1,1
[(fA, fB), (fA0 , fB0)],

and Sg ∈ Lip(<2,<).

Theorem 3.8 Assume T :
³
<2, d(2)ρ1,1

´
→ ¡<, dρ1,1¢ is a Lipschitz continuous mapping. Assume

{f̂ (n)A }, {f̂ (m)B } ⊂ < converge in probability to fA and fB, respectively, then f̂
(n,m)
C = T(f̂ (n)A , f̂

(m)
B )

converges in probability to fC = T(fA, fB).
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Proof. Let L > 0 be the Lipschitz constant for T. For ε > 0, there exists an Nε such that

for all n,m > Nε,

Pr
n
ωA ∈ ΩA : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
<

ε

2

and

Pr
n
ωB ∈ ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
<

ε

2
.

To prove f̂ (n,m)C converges in probability to fC, the following must be shown

Pr
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m,n)C (ωA,ωB), fC) ≥ ε

o
< ε.

Consider the set

n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m,n)C (ωA,ωB), fC) ≥ ε

o
and the relationship from Theorem 3.7 yields

dρ1,1(f̂
(m.n)
C (ωC), fC) ≤ Ldρ1,1(f̂ (n)A (ωA), fA) + Ldρ1,1(f̂

(m)
B (ωB), fB).

It can be seen that

n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m,n)C (ωA,ωB), fC) ≥ ε

o
⊂

n
(ωA,ωB) ∈ ΩA ×ΩB : Ldρ1,1(f̂ (n)A (ωA), fA) + Ldρ1,1(f̂

(m)
B (ωB), fB) ≥ ε

o
⊂

n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
∪
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
.

Now considering the probability measure of this event, gives

Pr
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m,n)C (ωA,ωB), fC) ≥ ε

o
≤ Pr

n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
+Pr

n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
.

25



By the independence assumption then,

Pr
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
= Pr

n
ωA ∈ ΩA : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
and

Pr
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
= Pr

n
ωB ∈ ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
.

Therefore,

Pr
n
(ωA,ωB) ∈ ΩA ×ΩB : dρ1,1(f̂ (m,n)C (ωA,ωB), fC) ≥ ε

o
≤ Pr

n
ωA ∈ ΩA : dρ1,1(f̂ (n)A (ωA), fA) ≥ ε

2L

o
+ Pr

n
ωB ∈ ΩB : dρ1,1(f̂ (m)B (ωB), fB) ≥ ε

2L

o
<

ε

2
+

ε

2
= ε

as desired, and f̂ (n,m)C converges in probability to fC.

This is an important result that covers a large class of mappings. Just as important is the

framework that was constructed. This framework provides a valuable tool for the comparison of

ROC curves and classifiers.

3.4 Convergence Framework Application

Since the transformation for the within-OR ROC fusion (Equation 2.11) contains a maximiza-

tion and the transformation for the across-OR ROC fusion (Equation 2.10) contains a minimization,

it will be difficult to show that these are Lipschitz continuous mappings.

Consider first a simpler case, the ROC fusion function g(ζ, η) = ζ + η − ζη so that

fC(p) = g(fA(p), fB (p)) = fA(p) + fB (p)− fA(p)fB (p) .

Since fA and fB are, by definition, non-decreasing functions of p, then for fC evaluated at r

fC(r) = fA(r) + fB (r)− fA(r)fB (r) ≥ max
0≤p≤r

½
fA(p) + fB

µ
r − p
1− p

¶
− fA(p)fB

µ
r − p
1− p

¶¾
.

Therefore, fC is actually an upper bound for the fused OR curve. This is consistent with Clutz’s

research. Clutz showed for the within-OR fusion case, that a point on the fused ROC curve is given
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by

(r, fC(r)) = (p+ q − pq, fA(p) + fB (q)− fA(p)fB (q)),

assuming that the classifiers are independent in their measurements [5]. Clutz states this is a weak

upper bound for the fused ROC curve.

It can be shown that fC is a Lipschitz continuous mapping. The strategy will be to demonstrate

that for some L > 0,

dρ1,1(fC, fC0) ≤ L[dρ1,1(fA, fA0) + dρ1,1(fB, fB0)].

Consider the following,

dρ1,1(fC, fC0)

=

Z 1

0

|fC(p)− fC0(p)| dp

=

Z 1

0

|fA(p) + fB(p)− fA(p)fB(p)− [fA0(p) + fB0(p)− fA0(p)fB0(p)] |dp

=

Z 1

0

|fA(p)− fA(p) + fB(p)− fB0(p) + fA0(p)fB0(p)− fA(p)fB(p)|dp

=

Z 1

0

|fA(p)− fA0(p) + fB(p)− fB0(p) + fA0(p)fB0(p)− fA(p)fB(p) + fA(p)fB0(p)− fA(p)fB0(p)|dp

=

Z 1

0

|fA(p)− fA0(p) + fB0(p) [fA0(p)− fA(p)] + fB(p)− fB0(p) + fA(p) [fB0(p)− fB(p)] |dp

=

Z 1

0

| [1− fB0(p)] · [fA(p)− fA0(p)] + [1− fA(p)] · [fB(p)− fB0(p)] |dp

≤
Z 1

0

|max [1− fB0(p)] · [fA(p)− fA0(p)] + max [1− fA(p)] · [fB(p)− fB0(p)] |dp

=

Z 1

0

1 · |(fA(p)− fA0(p)|dp+
Z 1

0

1 · |fB(p)− fB0(p)|)dp

So,

dρ1,1(fC, fC0) ≤ dρ1,1(fA, fA0) + dρ1,1(fB, fB0)

with L = 1, and as desired the transformation is Lipschitz continuous. Therefore, by Theorem 3.8,

if f̂ (n)A converges in probability to fA and f̂
(n)
B converges in probability to fB, then f̂

(n,m)
C converges

in probability to fC.
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This example demonstrates how the convergence framework can be applied to a ROC fusion

mapping to show it is Lipschitz continuous and therefore convergent. This framework can be applied

to experimental data as well. The conjecture that within-OR and across-OR fusion are Lipschitz

continuous will be examined experimentally in the next chapter.
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IV. Analysis and Findings

4.1 Overview

This chapter provides an experimental analysis of the convergence of a sequence of empirical

ROC curves. As the test sample size n is increased, the convergence is measured using the numerical

approximation of the average metric distance. The average metric distances for the single-classifier

ROC curves as well as the fused-classifier ROC curves are calculated. The relationship between the

two will be examined.

In addition to varying sample size, the number of interpolation points, m, used to approximate

the ROC curve is also varied. In application, interpolation is used to construct a continuous ROC

curve from discrete sample data. As more interpolation points are used, the better this curve

approximates the actual empirical ROC curve. So just as increasing n should make f̂ (n) a better

estimate of f , increasing m should make the interpolated curve a better approximate of the actual

curve. This approximation is sometimes overlooked when doing ROC analysis.

The empirical ROC curves in this experiment are constructed both parametrically and non-

parametrically. In the non-parametric case, the frequency of false positives and true positives is

measured at discrete threshold values, and the resultant ordered pairs are used to construct the

ROC curve. Put more simply, the number of false positives and true positives will be counted at

each n for each threshold. In the parametric case, the underlying statistical distribution of the

data is assumed, or in the case of this experiment, known. The target and non-target sample mean

and standard deviation will be calculated for each n, and the ROC curve will be constructed by

evaluating the cumulative distribution function at each threshold. This process is repeated for five

trials.
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4.2 Experimental Design

4.2.1 Classifiers.

This experiment examines the OR rule applied to two classifiers for both the within and across

fusion cases. Each classifier is a simple two-label classifier, declaring either target or non-target.

Classifier Aθ is defined on the feature set X = R for each θ ∈ Θ = R as:

Aθ(x) =

½
tar if x < θ
non if x ≥ θ

Classifier Bφ is defined on the feature set Y = R for each φ ∈ Φ = (0,∞) as follows:

Bφ(x) =

½
tar if −1− φ < x < −1 + φ
non if otherwise

4.2.2 Feature Data.

Normally distributed feature data for both the target and non-target classes is generated using

the MATLAB normrnd function. One thousand samples are generated for each class. The first n

samples from each class are selected to constitute the sample sets X(n)
tar and X

(n)
non, with X(n) = X

(n)
tar

∪ X(n)
non. This is done for n = 10, 100, 200, 400, and 1000. By choosing the sets in this manner, it

ensures they are nested, that is,

X(10) ⊂ X(100) ⊂ X(200) ⊂ X(400) ⊂ X(1000).

Although this nesting is not strictly necessary in a statistical sense, this is consistent with Alsing’s

work [1].

4.2.3 ROC Estimates.

Classifiers Aθ and Bφ are applied to each X(n) to generate P̂ (n)TP and P̂
(n)
FP at each threshold, θi

and φj , respectively. For the non-parametric case, the number of true positives and false positives

is counted at each threshold and divided by n. For classifier Aθ for each θ ∈ Θ,

P̂
(n)
TP (θ) =

#TP
n

and P̂ (n)FP (θ) =
#FP
n
.

30



More formally this can be expressed as

P̂
(n)
TP (θ) =

card{xi < θ|xi ∈ X(n)
tar}

n
for i = 1, ..., n,

P̂
(n)
FP (θ) =

card{xi < θ|xi ∈ X(n)
non}

n
for i = 1, ..., n.

where card is the cardinality of the set. For classifier Bφ for each φ ∈ Φ,

P̂
(n)
TP (φ) =

#TP
n

and P̂ (n)FP (φ) =
#FP
n
, for given φ.

More formally this can be expressed as

P̂
(n)
TP (φ) =

card{−1− φ < xi < −1 + φ|xi ∈ X(n)
tar}

n
for i = 1, ..., n

P̂
(n)
FP (φ) =

card{−1− φ < xi < −1 + φ|xi ∈ X(n)
non}

n
for i = 1, ..., n

For the parametric case, the target sample mean bµ(n)tar and standard deviation bσ(n)tar are calculated

for each X(n) as well as the non-target sample mean bµ(n)non and standard deviation bσ(n)non. These are

used in the evaluation of the MATLAB normcdf function at each threshold. For classifier Aθ for

each θ,

P̂
(n)
TP (θ) = normcdf(θ, bµ(n)tar, bσ(n)tar),

P̂
(n)
FP (θ) = normcdf(θ, bµ(n)non, bσ(n)non).

For classifier Bφ for each φ,

P̂
(n)
TP (φ) = normcdf(−1 + φ, bµ(n)tar, bσ(n)tar)− normcdf(−1− φ, bµ(n)tar, bσ(n)tar),

P̂
(n)
FP (φ) = normcdf(−1 + φ, bµ(n)non, bσ(n)non)− normcdf(−1− φ, bµ(n)non, bσ(n)non).

Finally, the true probabilities PFP (θ) and PTP (θ) are calculated for each θ and PFP (φ) and

PTP (φ) are calculated for each φ. Similar to the parametric case, these are calculated with the

normcdf function, this time using the true target and non-target means and standard deviations.
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4.2.4 Empirical ROC Curve Construction.

Using the estimates from Section 4.2.2, ROC curves for each classifier for each n can be con-

structed. Since there are a finite number of threshold values and sample feature data, it is possible

that the ROC trajectory for multiple threshold values could project to the same P̂FP value. In this

case, the ROC curve is constructed using the highest P̂TP value associated with that P̂FP value.

Recall this conforms to Oxley and Bauer’s definition of a ROC curve (See equations (2.6) and (2.7).).

The empirical ROC curve for classifier family A then is defined to be

f̂
(n)
A (p) = max{P̂ (n)TP (Aθ) : θ ∈ Θ and P̂ (n)FP (Aθ) = p}.

Similarly, the empirical ROC curve for classifier family B is defined to be

f̂
(n)
B (q) = max{P̂ (n)TP (Bφ) : φ ∈ Φ and P̂ (n)FP (Bφ) = q}.

Finally, the empirical fused-OR ROC curve for classifier family C is defined to be

f̂
(n)
C (r) = max{P̂ (n)TP (Cθ,φ) : (θ,φ) ∈ Θ×Φ and P̂ (n)FP (Cθ,φ) = r},

and is calculated using Oxley and Bauer’s ROC fusion formulas (See equations (2.10) and (2.11).).

The (P̂FP , P̂TP ) values are interpolated with the MATLAB interp1 function. The MATLAB

interp1 function is a linear interpolation. To measure the effect of the number of interpolation

points on the average metric distance, m = 11, 31, 101, 501 interpolates are used.

4.2.5 Test Metric.

Recall from Definition 3.3 that average metric distance can be defined over p versus θ. The

numerical approximation for average metric distance then is

dρ1,1(f̂
(n), f) ≈

mP
i=1

ρ1

³
f̂ (n)(p), f(p)

´
m

. (4.1)

For the purposes of this experiment, the dρ1,1(f̂
(n), f) metric is always calculated with m = 501.

This is done in order to ensure that the average metric distances calculated for varying m can be

consistently compared to each other. If this is not done, an f̂ (n) approximated with m = 11
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interpolates would only be summed over 11 points in the average metric distance calculation, while

an f̂ (n) approximated with m = 31 interpolates would be summed over 31 points. To be consistent,

an f̂ (n) constructed with 11, 31, or 101 interpolates will always be evaluated at 501 points along the

curve in the average metric distance calculation. Likewise, the true ROC curve f is constructed

with m = 501 interpolates. All estimated ROC curves, regardless of the m used to approximate

them, are compared to this true ROC curve. The average metric distance for each ROC curve,

dρ1,1(f̂
(n)
A , fA), dρ1,1(f̂

(n)
B , fB), and dρ1,1(f̂

(n)
C , fC) is calculated for all n and m.

4.2.6 Within Fusion.

In the within fusion case, classifiers Aθ and Bφ act on the same feature set. Target feature

data is drawn from a normal distribution with µ = −1 and σ = 1/
√
2. Non-target feature data is

drawn from a normal distribution with µ = 1 and σ = 1. Recall the definition of classifier Aθ:

Aθ(x) =

½
tar if x < θ
non if x ≥ θ

.

Figure 4.1 depicts this classifier. The threshold values for Aθ are θ ∈ {−4,−3.9,−3.8, ..., 4}.
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Figure 4.1. Classifier Aθ within fusion case.
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Recall classifier Bφ:

Bφ(x) =

½
tar if −1− φ < x < −1 + φ
non if otherwise

.

Figure 4.2 depicts this classifier. The threshold values for Bφ are φ ∈ {0, 0.05, 0.10, ..., 5}. The
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−1+φ

labeled target

labeled non-target

−1−φ

labeled non-target

Figure 4.2. Classifier Bφ within fusion case.

ROC fusion for Aθ ∨ Bφ is done numerically using Oxley and Bauer’s MATLAB code for within-

OR fusion. Both the parametric and non-parametric experiments use the same feature data and

threshold values.

4.2.7 Across Fusion.

In across fusion, classifiers Aθ and Bφ act on different sets of feature data. For this experiment,

classifier Aθ will use the same target and non-target feature data sets from the within case. Classifier

Bφ acts on new feature set Y = R, with target data drawn from a normal distribution with µ = −1

and σ = 1 and non-target feature data drawn from a normal distribution with µ = 1 and σ = 2.

Figure 4.3 depicts this. Threshold sets are the same as the within fusion case, specifically θ ∈

{−4,−3.9,−3.8, ..., 4} and φ ∈ {0, 0.05, 0.10, ..., 5}.
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Figure 4.3. Classifier Bφ across fusion case.
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4.3 Results

4.3.1 Within-OR (Non-parametric).

Tables 4.1, 4.2, and 4.3 provide the results for the dρ1,1(f̂
(n)
A , fA), dρ1,1(f̂

(n)
B , fB), and

dρ1,1(f̂
(n)
C , fC) metrics. The tables show the averages over 5 trials. Looking down the columns,

as expected, the average metric distance decreases as n increases, with the exception being the

m = 11 column. This column can be subject to additional variability due to the potentially poor

approximation with such a small number of interpolates. The trend down the other columns is

fairly stable. Looking across the rows, next, there is a general downward trend in values from

the m = 11 column to m = 31 column. The average metric distance values seem to stabilize for

m = 31, 101, 501 though. This could be explained by the fact classifiers Aθ and Bφ only evaluate

at 81 and 101 threshold values, respectively. So the rule of thumb from this example would appear

to be to use a number of interpolates similar to the number of threshold values. Anything less may

add variability to the results; anything more may yield diminishing returns. Finally, it is interesting

to note that the average metric distance for fC is on the order of that for fA and fB. In fact, it is

even slightly lower.

Figure 4.4 displays the results graphically. The plots displayed are for the m = 31 case. The

true ROC curve and empirical ROC curve are plotted for A, B, and C. While there is certainly

some difference visually at n = 10; as quickly as n = 100, the empirical ROC curves fall right on

top of their respective true ROC curves. For n = 200, 400, 1000, they are barely distinguishable.

To put these results into perspective and gain an intuitive feel for these values, consider first

that the numerical approximation for the average metric distance (See Equation (4.1).) is very close

to a Midpoint quadrature rule for numerical integration. So the average metric distance can also

be thought of as the area of the difference between f̂ (n) and f . Now consider that an average metric

distance of 1 is the maximum possible difference between two ROC curves and a value of 0 means

the two ROC curves are equivalent. Furthermore, the average metric distance between the chance

line and the ideal ROC curve is 0.5. So in the n = 1000 case, for all three ROC curves, there is
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approximately a 0.5% difference in area. Even at n = 100, the difference is less than 2%, suggesting

that one could construct fairly tight confidence intervals around the curve for relatively small sample

sizes.

Table 4.1. Within-OR (non-parametric): average metric distances for f̂ (n)A .

nÂm 11 31 101 501

10 0.0461 0.0461 0.0461 0.0461
100 0.0201 0.0179 0.0180 0.0180
200 0.0219 0.0122 0.0120 0.0120
400 0.0231 0.0095 0.0080 0.0082
1000 0.0200 0.0057 0.0042 0.0044

Table 4.2. Within-OR (non-parametric): average metric distances for f̂ (n)B .

nÂm 11 31 101 501
10 0.0604 0.0604 0.0604 0.0604
100 0.0147 0.0173 0.0180 0.0180
200 0.0144 0.0169 0.0171 0.0170
400 0.0153 0.0121 0.0124 0.0126
1000 0.0111 0.0064 0.0066 0.0067

Table 4.3. Within-OR (non-parametric): average metric distances for f̂ (n)C .

nÂm 11 31 101 501
10 0.0353 0.0353 0.0353 0.0353
100 0.0158 0.0156 0.0165 0.0165
200 0.0182 0.0107 0.0115 0.0115
400 0.0229 0.0086 0.0070 0.0071
1000 0.0197 0.0046 0.0035 0.0036

4.3.2 Across-OR (Non-parametric).

Tables 4.4, 4.5, and 4.6 provide the results for the dρ1,1(f̂
(n)
A , fA), dρ1,1(f̂

(n)
B , fB), and

dρ1,1(f̂
(n)
C , fC) metric. The across-OR experiment yields generally similar results to the within-OR

case. The average metric distance values are on par with the within case, and the trends are similar

with respect to increasing n and m. Notice one interesting difference in Table 4.5 for the m = 11

column though. The approximation atm = 11 is better than the approximation atm = 31, 101, 501.

So the rule discussed previously does not appear to be hard and fast, although it still probably is a

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTP

PFP

n=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTP

PFP

n=100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTP

PFP

n=200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTP

PFP

n=400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PTP

PFP

n=1000
___

___

___

fA

fB

fC

_+_+

_o_o

_*_*

( )ˆ nfA

( )ˆ nfB

( )ˆ nfC

Figure 4.4. Average metric distances for the within-OR (non-parametric case) for varying n.
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best practice to choose an optimal m based on the number of θ’s. Another difference is that the

average metric distance for fC is not smaller than that for fA and fB, however, it is still on the same

order. Figure 4.5 displays this graphically. Once again the convergence visually appears to be very

fast.

Table 4.4. Across-OR (non-parametric): average metric distances for f̂ (n)A .

nÂm 11 31 101 501
10 0.0461 0.0461 0.0461 0.0461
100 0.0201 0.0179 0.0180 0.0180
200 0.0219 0.0122 0.0120 0.0120
400 0.0231 0.0095 0.0080 0.0082
1000 0.0200 0.0057 0.0042 0.0044

Table 4.5. Across-OR (non-parametric): average metric distances for f̂ (n)B .

nÂm 11 31 101 501
10 0.1226 0.1226 0.1226 0.1226
100 0.0220 0.0272 0.0282 0.0282
200 0.0162 0.0167 0.0174 0.0175
400 0.0174 0.0165 0.0164 0.0166
1000 0.0087 0.0093 0.0092 0.0093

Table 4.6. Across-OR (non-parametric): average metric distances for f̂ (n)C .

nÂm 11 31 101 501
10 0.0660 0.0665 0.0669 0.0671
100 0.0168 0.0194 0.0207 0.0208
200 0.0193 0.0140 0.0144 0.0146
400 0.0210 0.0120 0.0110 0.0113
1000 0.0162 0.0062 0.0054 0.0055

4.3.3 Within-OR (Parametric).

Tables 4.7, 4.8, and 4.9 provide comparisons of the dρ1,1(f̂
(n)
A , fA), dρ1,1(f̂

(n)
B , fB), and

dρ1,1(f̂
(n)
C , fC) metrics for the parametric and non-parametric cases. The tables show the averages

over 5 trials. For this case only m = 31 interpolates was calculated. The convergence results for

the parametric case are comparable to the results for the non-parametric case. Figure 4.6 displays

this graphically. Aesthetically the parametric ROC curves look much better, but from this data one
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cannot conclude there is a performance advantage over the non-parametric case. The parametric

method is certainly easier to compute, so that may be a consideration for an application where

computing power is at a premium.

Table 4.7. Parametric vs. non-parametric: average metric distances for f̂ (n)A .

parametric non-parametric
nÂm 31 31
10 0.0483 0.0461
100 0.0129 0.0179
200 0.0099 0.0122
400 0.0080 0.0095
1000 0.0061 0.0057

Table 4.8. Parametric vs. non-parametric: average metric distances for f̂ (n)B .

parametric non-parametric
nÂm 31 31
10 0.0483 0.0604
100 0.0113 0.0173
200 0.0098 0.0169
400 0.0070 0.0121
1000 0.0046 0.0064

Table 4.9. Parametric vs. non-parametric: average metric distances for f̂ (n)C .

parametric non-parametric
nÂm 31 31
10 0.0426 0.0353
100 0.0114 0.0156
200 0.0095 0.0107
400 0.0072 0.0086
1000 0.0060 0.0046

4.3.4 Convergence as a Function of Sample Size.

Figures 4.7, 4.8, and 4.9 display the convergence as a function of sample size for the within-

OR fusion (non-parametric and parametric) and the across-OR fusion cases. The convergence rate

appears to be of the order 1√
n
. This is consistent with Tchebysheff’s Theorem [23]. Applying
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Tchebysheff’s Theorem to this analysis, for positive constant k at given p, that is

Pr

µ
|f̂ (n)(p)− f(p)| ≥ k σ√

n

¶
≤ 1

k2

where σ is the standard deviation of the random variable f̂ (n)(p). So Tchebysheff’s Theorem says

at a given confidence level, f̂ (n)(p) should become a better estimate of f(p) as a function of 1√
n
,

consistent with the findings of the experiment. The figures also provide more visual evidence that

the average metric distances for the individual ROC curves and the fused ROC curves are of the

same order. This is a good result, since this implies there is no penalty to the rate of convergence

for fused ROC curves. Finally, observe that this experiment supports the conjecture that the

fused empirical ROC curve converges for within-OR and across-OR fusion. Furthermore, for this

experiment, the observed Lipschitz constant is less than one, and in fact is very close to 0.5.
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V. Summary and Recommendations

5.1 Summary of Contributions

The primary contribution of this thesis is a proof of convergence for fused empirical ROC curves.

It proves that if the individual empirical ROC curves converge and the ROC fusion is accomplished

with a Lipschitz continuous transformation, a large class of transformations, that the convergence

of the fused ROC curve is guaranteed. This is an important contribution since it establishes that

fused empirical ROC curves are consistent estimators of the true fused ROC curve and therefore

comparisons with these curves are valid. This thesis also provides a mathematical framework to

prove this convergence. This framework is applied to a generic ROC fusion transformation, as well

as the OR rule fusion transformation.

The experiment using the OR rule provides valuable insight into how this framework can be

applied. The results of the experiment indicate that the convergence of the fused ROC curve is

on the same order as the individual ROC curves, a nice result. The utility of this framework

also extends beyond establishing convergence and could be used for comparing any two ROC curves.

Finally, the interpolation used to construct the empirical ROC curve should be a consideration when

doing ROC analysis.

5.2 Recommendations for Future Research

There are several candidates for continuing research in this area. There are potentially many

other ROC fusion transformations to which this framework could be applied. In particular, the

convergence under AND fusion, for which a formula is available, could be proven with these results.

This could also be extended to the majority vote, and potentially other fusers, such as artificial

neural nets. Although it was conjectured, and supported experimentally, that OR fusion is Lip-

schitz continuous; a formal convergence theorem could be developed. Finally, this work assumed

statistical independence of classifiers, which may not be a good assumption for many multiple clas-
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sifier systems. There has been much effort in studying the effects of correlated classifiers on ROC

analysis. Convergence of fused correlated classifiers would be a rich area for study.
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