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Abstract 

 
The “maneuverable re-entry vehicle” concept involves a re-entry vehicle capable of 

performing preplanned flight maneuvers during the re-entry phase.  This study investigated 

the atmospheric re-entry profiles of a maneuverable re-entry vehicle.  The re-entry vehicle 

was modeled as a point mass with aerodynamic properties.  Equations of motion were 

identified as derived by Nguyen Vinh, and the system of equations numerically integrated, 

giving the time histories of position, velocity and flight path angle.  The algorithm is able to 

generate a complete and feasible entry trajectory of approximately 25-minute flight time in 

about 5 to 10 seconds on a desktop computer, given the entry conditions and values of 

constraint parameters.  The concept of modeling a re-entry trajectory using MATLAB 

software is an effective method for predicting the flight characteristics of an unknown 

vehicle entering the earth’s atmosphere.   Although the entry altitude was chosen to be 122 

km, atmospheric effects are essentially negligible until the vehicle reaches an altitude near 80 

km. Until 80 km altitude, the velocity and flight path angle remain essentially constant.  This 

preliminary study shows the feasibility of identifying and further exploring the technical 

challenges involved in using a mathematical model to simulate the performance 

characteristics of an unknown re-entry vehicle.   
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INVESTIGATION OF THE PERFORMANCE 

CHARACTERISTICS OF RE-ENTRY VEHICLES 
 

 
I. Introduction 

 
 
 
Background:  

This study of Re-entry Vehicle (RV) 

systems and their associated operations 

was conducted in support of such 

agencies as the National Air and Space 

Intelligence Center.  NASIC is the sole 

national center for integrated intelligence 

on aerospace systems, forces, and 

threats.  They produce integrated, 

predictive air and space intelligence 

 

Figure 1-1: Reentry vehicles from a 
recent Peacekeeper flight test streak into 
the Kwajalein target zone. 

to enable military operations, force modernization and policymaking.  NASIC has a long line 

of success stories that until recently could not be told outside of the Intelligence Community.   

NASIC products and services play a key role in assuring that American forces avoid 

technological surprise and can counter the foreign air and space threat (12). 

The purpose of this study was to investigate and identify performance characteristics 

from re-entry to impact of an atmospheric re-entry vehicle. This includes re-entry vehicle 
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system background, description of re-entry systems, and mathematical simulation of 

performance characteristics. 

We are at an early stage in the development of sound approaches, analytic tools and 

appropriate measures for assessing military competition in space, either today or in coming 

decades.  In fact, we may not have even found the right metaphors and historical analogies 

for thinking about the military use of near-earth space.  Today “the importance of the space 

mission to our national security cannot be overstated,” Marine Gen. James E. Cartwright said 

in his April 4 testimony before the Strategic Forces subcommittee of the Senate Armed 

Services Committee (2:5). The United States is very dependant upon the use of space.  Any 

threat to our ability to use it as desired deserves significant study.  One such threat is through 

the use of a re-entry vehicle as a weapons delivery system.   

The development of re-entry vehicles began in the late 1950's due to the need for 

Department of Defense and Central Intelligence Agency photo reconnaissance of Soviet 

ICBM sites.  Film return capsules were used to retrieve photographs taken of intelligence 

targets on Earth from space.  Part of a once-secret program known as Corona, the film 

"buckets" returned more than 800,000 images taken by Corona's KH-series cameras between 

August 1960 and May 1972, when the program ended (13:167-73) . The capsules and 

cameras were ejected by Corona's Agena spacecraft in orbit, reentered the atmosphere, and 

were retrieved in midair. During the Cold War, Corona photographs eased fears that the 

Soviet Union might be preparing a nuclear surprise attack.  NASA has also been involved in 

the use of re-entry vehicles since the early 1960's, including manned space programs 

Mercury, Gemini and Apollo (13:167-173).   
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Atmospheric entry is the transition from the vacuum of space to the atmosphere of 

any planet or other celestial body.  The term is not used for landing on bodies which have no 

atmosphere; e.g. the Moon.  Atmospheric re-entry refers to the return to an atmosphere 

previously left for space.  Often in this study the word "atmospheric" is dropped and the term 

re-entry is taken to mean atmospheric re-entry in context. 

One way to classify re-entry vehicles is by their ballistic coefficients.  Early U.S. 

ballistic re-entry vehicles had a low ballistic coefficient, or beta.  The ballistic coefficient is a 

combination of weight, drag, and cross-section of a vehicle (β = W/CDS).  Figure 1-2 shows 

the Apollo 15 and the Gemini command modules to give the reader an idea of the vehicle 

shape and size as it relates to a ballistic coefficient.   

 

 
Fig 1-2: Re-entry Vehicle Dimensions 

 

The drag coefficient (CD) for the Gemini is .26 and for the Apollo it is .157.  Using 

these values and the dimensions in Figure 1-2 the ballistic coefficients are calculated to be 

1,472 kg/m2 for the Apollo command module and 474 kg/m2 for the Gemini module 
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(19:1;20:1) .  For the purpose of this study our model vehicle will have a CD of 1.3 and a 

ballistic coefficient of 1,827 kg/m2.   

Vehicles with a low beta do most of their slowing down in the thin upper atmosphere, 

above 120 km (7).  They take longer to slow down and generate less heat, but experience this 

heat over a longer period of time.  But missile designers wanted vehicles with a high beta, 

which are usually slender and smoother and generate less drag.  They zip through the upper 

atmosphere without decelerating much and reach the ground still traveling very fast.  This is 

desirable for missile re-entry vehicles (RVs) because the faster a warhead approaches its 

target, the harder it is for an enemy to shoot it down (7:1).  Figure 1-3 is a graphical 

representation of the air density of the earth’s atmosphere.  As we will find in this study 80 

km denotes the altitude at which the atmospheric density begins to effect the aerodynamics of 

the re-entry vehicle.  An algorithm was developed in MATLAB to generate this plot and can 

be found in Appendix C. 
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   Fig: 1-3: Air Density of the Earth’s Atmosphere 
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In 1968 the Boost Glide Re-entry Vehicle was a classified United States Air Force 

program to investigate missile maneuvering at hypersonic speeds after re-entry into the 

atmosphere.  Upon re-entry, flight control was achieved by using aft trim flares and a 

reaction jet system commanded from an onboard inertial guidance system.  It was launched 

from an Atlas missile booster and served to provide much data on hypersonic maneuvering 

flight characteristics.  This data was of great value in developing later maneuvering re-entry 

vehicles. Upon re-entry into the earth's atmosphere, flight control was achieved through the 

use of the aft trim flares and a reaction jet system commanded from an on-board inertial 

guidance system instead of by aerodynamic controls (7:23).  Figure 1-4 is a photograph of an 

actual Boost Glide Re-entry Vehicle (7:20).   

 

 
 

Figure 1-4: The Boost Glide Re-entry Vehicle investigated related 
technological problems, particularly hypersonic maneuvering after re-
entry into the atmosphere. The test was flown on 26 February 1968 from 
Vandenberg AFB, California to the area of Wake Island in the Pacific 
Ocean.   

 

The evolving Soviet threat involved not just the development of ballistic missiles 

capable of intercontinental flight, but also the development of re-entry vehicles capable of 
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carrying nuclear warheads through the atmosphere to the target (the Soviets had also 

demonstrated fusion bomb technology in atmospheric tests).  Furthermore, in the late 1960s 

and 1970s, Soviet missile systems became accurate enough to raise concern about their 

ability to destroy hardened targets in the United States, as did the Soviet deployment of large 

missiles capable of carrying multiple independently targeted re-entry vehicles.  At the same 

time the Soviets were developing antiballistic missile systems, and in the mid-1960s actually 

deployed long-range interceptor batteries around Moscow together with the radars necessary 

to track re-entry vehicles at great ranges.  It is this series of threats that the U.S. ballistic 

missile and re-entry system programs had to address (7:4).  

In answering this threat, important improvements were made in areas such as 

guidance and control, command of missile systems in the field, and propulsion.  

Improvements to the missiles created opportunities for better re-entry systems, which was the 

focus of the Air Force's Advanced Ballistic Re-Entry Systems (ABRES) group (7:4).  

Initially, the objective of ABRES was to derive systems to penetrate Soviet antiballistic 

missile systems, which were undergoing significant testing and development at the time.  

U.S. intelligence indicated that the Soviets were developing a long-range exoatmospheric 

system based on an early-warning radar that would detect objects in its threat corridor and 

cue a second radar that tracked them with sufficient accuracy to launch a long-range 

interceptor.  Defense penetration programs progressed in tandem with research and 

development of ballistic re-entry vehicles.  The idea was to provide a number of options for 

neutralizing both current and anticipated Soviet antiballistic missile systems (7:5). 
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Today there are limited threats.  But it’s just a matter of time until the center of 

gravity of US military and commercial space will be challenged. We need to invest in 

methods for us to detect and understand when our systems are being threatened or attacked.  

A Military Utility Analysis (MUA) conducted during 1998 and 1999 showed the capabilities 

of a Space Maneuver Vehicle (SMV) would most likely be used for force enhancement, 

space control, and space test in the near future (15:9-10).  Comparison of the SMV 

capabilities against the Air Force Space Command Strategic Master Plan (SMP) for 2000 

showed the SMV to have a “direct and substantial” effect on 4 of the top 10 priorities in the 

near-term, and 6 of the top 10 priorities in the mid-term (15:11).  When a non-US re-entry 

vehicle enters the earth’s atmosphere, having the ability to accurately determine its 

performance profile is a primary concern.  

Current technology being developed to demonstrate the feasibility of the SMV 

concept is the NASA and Boeing X-37.  The Air Force is also contributing funds to the X-37 

program to demonstrate technologies for future reusable military spacecraft.  The X-37, 

shown in Figure 1-5, is being designed to operate on orbit as well as during the reentry phase 

of flight. The X-37 is capable of fitting into the Space Shuttle payload bay for launch into 

orbit, or it can be carried to orbit by an expendable launch vehicle (11:17). 

A review of past research quickly led to a concentration on the operation of a 

maneuverable re-entry vehicle similar to the X-37.  The “maneuverable re-entry vehicle” 

concept involves an RV capable of performing preplanned flight maneuvers during the re-

entry phase.  During a controlled re-entry, the vehicle’s aerodynamic loads are maintained 

within acceptable limits by controlling the effect of lift and drag forces on the vehicle 
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Fig 1-5: X-37 Reusable Spaceplane (11) 

 
throughout the flight.  Maneuvering Reentry Vehicle (MaRV) concepts include both un-

powered and powered vehicles.  Once a powered MaRV concept enters earth’s atmosphere, a 

propulsion system would be used to control descent and direct the RV to a landing site.  For 

the purposes of this study we will consider only the non-powered reentry case, using the 

aerodynamic properties of the vehicle to evaluate its performance characteristics.  Therefore, 

the vehicle characteristics important to this study will be velocity, altitude, flight path angle, 

lift to drag ratio, surface reference area, and vehicle mass.  These characteristics will be used 

to evaluate the profile or trajectory of the vehicle as it progresses through the earth’s 

atmosphere.   

The goal of this study was to develop an algorithm capable of accurately 

characterizing the profile of a maneuverable re-entry vehicle through atmospheric re-entry to 

a final destination point on the ground.  Predicting re-entry time and impact location relies on 

 
  8 

 



AFIT/GSS/ENY/05-S01 

 

observational data of the re-entry vehicle based upon the position and velocity of the orbital 

path and ideally from observations equally distributed over that path.  For this reason we 

have chosen the known parameters of the X-37, a Space Maneuver Vehicle, to test the 

validity of the algorithm developed through this study.   

This research begins by validating Vinh’s classic first order solutions to the basic 

equations of planar entry trajectories.  The plots generated will show how the changes to the 

lift-to-drag ratio affects the performance of the re-entry vehicle.  Chapter II of this study will 

focus on setting up the re-entry problem.  In Chapter II, we will validate the first order 

equations of motion governing a point-mass vehicle reentering the earth’s atmosphere as 

developed by Vihn (17).   

Chapter III will set up the atmospheric re-entry problem for the Re-entry Vehicle 

(RV) being modeled.  First, the equations of motion for a point mass re-entering the earth’s 

atmosphere will be stated. Next, the aerodynamic properties of the re-entry vehicle will be 

approximated and finally, assumptions will be made concerning the earth’s atmosphere and 

gravitational field.  Chapter IV will analyze the data by making lift-to-drag ratio changes at 

400, 800 and 1200 seconds into the trajectory.  In Chapter IV data from a published source 

document will also be run through the MATLAB® algorithm developed in this work and 

compared to the results generated by a FORTRAN algorithm developed in the source 

document.  Chapter V will then summarizes the results and note recommendations for future 

areas of study.  A general literature search that included the Office of Commercial Space 

Transportation's (OCST) data base, NASA, Air Force, and other technical libraries was 

performed.   
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II. The Re-entry Problem 
 
 

Assumptions for Planar Entry Trajectories 

 Planar entry is defined as the motion confined to the plane of a great circle.  Such a 

plane contains the vehicle’s radius and velocity vectors and the earth’s center point.  The 

relevant geometry is depicted in Figure 2-1 and the 3-dimensional view in Figure 2-2.  For 

the purpose of this study there is no consideration of flight controls to create a bank angle  

and therefore it is appropriate to consider planar entry. 

 
 
 
 

Fig. 2-1: Re-entry Coordinate System (14:101) 
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                             Fig. 2-2: Three-Dimensional View of Planar Entry (8:33) 

 

Physical Assumptions 

 Along the entry trajectory the aerodynamic force plays an important role as a braking 

force to reduce the speed of the vehicle such that at the terminal phase of the flight the 

landing can be conducted as a vertical free fall using parachutes for a soft landing for a 

vehicle with no lift capability or as a gliding flight at low speed as an ordinary aircraft 

(17:100).  The atmosphere is assumed to be strictly exponential, based on the surface density, 

ρ, and only a function of altitude (h).  Thus, the atmosphere as a function of altitude is given 

by (14:38); 

     ρ = ρs *e- βh     (1) 
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where β-1 is a scaling height selected to best fit  the atmosphere to the assumed exponential 

form.  The parameters used to model the atmosphere for the purpose of this study are 

identified in Table 2-1.   

 
Table 2-1: Atmospheric Re-entry Model Parameters (14:39) 

Conditions Value 
Sea Level Density (ρs) 1.725 kg/km3 
Entry Altitude (h0) 122 km 
Earth’s Radius (Re) 6378 km 
Flight Path Angle at Entry  -.01 rad 
Earth’s Gravitational Parameter (μ=ge*Re2) 3.99*105 km3/s2 
Distance of Vehicle from Center of Earth (r= Re + h0) 6500 km 

9.8*10-3 km/s2 Acceleration of Gravity at Earth’s Surface (ge) 
 
 

This atmospheric model is in agreement with the 1976 Standard Atmosphere to an 

altitude of approximately 120 km (14:29).  The nonlinear differential equations which model 

the lifting re-entry vehicle are those for a unit point mass having lift and drag terms to 

represent the aerodynamic forces acting on the vehicle during re-entry given by (17:35);  

 
       D =       * ρ * CD * Rv2 * S    (2) 1  

2     

 
       L =       * ρ * CL * Rv 2 * S           (3) 1  

2     

where; 

   D = Drag (km/s2) 

   L = Lift (km/s2) 

 CL = Lift coefficient  

 CD = Drag coefficient  
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      Rv = Earth-relative velocity (km/s) 

         S = Surface reference area 

The trajectory convention used for forces and angles are shown in Figure 2-1 (8:106). 

 
Equations of Motion 

The first step in examining a body re-entering the earth’s atmosphere is to develop 

a set of equations to describe the motion.  If the RV is subjected to drag only, or ballistic 

flight, the restriction of planar results in no loss of generality; however, if the RV is capable 

of generating lift forces, then restricting it to a planar trajectory does limit the utility of the 

result.  Nevertheless, planar trajectory analysis can lead to closed-form expressions that can 

be very useful in assessing re-entry vehicle performance.  The coordinate system used is 

constructed with one axis aligned with the earth relative velocity vector.  The position of the 

vehicle is defined by a vector from the center of the earth to the vehicle.  Then, the plane 

formed by this vector and the velocity vector is perpendicular to the second axis, with the 

third axis completing the right-handed coordinate system (1:53).  The motion of the vehicle 

is measured by its velocity v and the flight path angle γ, between the velocity vector and the 

local horizontal.  The equations of motion developed in this coordinate system are (17:35): 

 
      r = Rv * sin(γ)             (4) ·

 
    Rv = -         - g * sin(γ)     (5) D  ·

m    
  
    Rvγ = -        - g * cos(γ) +     cos(γ)        (6) L  

m    
 

Rv 2  
  r 

·
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where: 

 Rv = Earth-relative velocity (km/s) 

  g = Gravitational acceleration (km/s2) 

  γ = Flight path angle (rad) 

  r = (Re + h) (km) 

  Re = Radius of earth (km) 

  h = Altitude of vehicle (km) 

     m = Mass of the vehicle (kg) 

 In this section there is no iteration, all equations have already been reduced and 

integrated by Vinh and will not be duplicated here (17).  For the analysis of these first-order 

solutions, it is convenient to write the equations in non-dimensional form (17:48-54).  Thus, 

the graphs developed are dimensionless and will merely show a trend relationship of the 

performance of one characteristic to another that is increasing or decreasing.  A MATLAB® 

script was developed using the parameters in Table 2-1.  The   CL/CD ratios are representative 

of a minimum lift-to-drag ratio of .1 and maximum of 6.6 with three addition equal step sizes 

between the range determined by the algorithm and identified in Table 2-2. 

 
    Table 2-2: CL/CD Run Scenarios 
    

CL/CD ratio RUN 
Run 1 .1 
Run 2 1.725 
Run 3 3.35 
Run 4 4.975 
Run 5 6.6 
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The derived parameters are given by (17:48-54):  

 2

γ =                 (7)         -2        
C

    √go*ro 
L/CD*β*ro          v  

 
 
    βr0η =                   (8) 

 
             

         =    ln         (9)   

            

 
                         =         (10) 

go*ro 

 
 
where: 

η is a non-dimensional altitude variable  proportional to the density.  

Rve is the earth-relative velocity at entry. 

CL/CD is the lift to drag ratio. 

β is a scaling height selected to best match the atmosphere (.14 km-1).           

go is the acceleration of gravity at entry altitude. 

ro is the distance of the vehicle at entry from the earth’s center. 

   s is the glide distance of the vehicle (range). 

   adecel is the deceleration experienced during shallow, gliding entry. 
 

The derivation of these equations is presented in Hypersonic and Planetary Entry 

Flight Mechanics and will not be duplicated in this writing (17:36-54).  Certain assumptions 

have been employed to simplify the equations to the form presented above.  Assuming a non-

a
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rotating earth, and therefore a non-rotating atmosphere, in other words, the Coriolis and 

centripetal acceleration have been neglected.  The Coriolis acceleration has an important 

effect in a high speed, long-range flight.  For an accurate analysis of the problem of 

computing a trajectory for a ballistic missile this term should be included (17:27).  However, 

for a first run analysis it will be ignored in this study.  This assumption is appropriate since 

the effects of the rotating atmosphere on the vehicle are small compared to the aerodynamic 

forces due to the vehicle’s velocity (14:3).  This approach is also consistent with the 

equations used in Shuttle Entry Guidance (6:106).  

 
Shallow Gliding Entry 

At this point Equations (7) – (10) were coded in MATLAB® to examine the classic 

first order solutions to the basic equations of planar entry.  This algorithm can be found in 

Appendix A.  This step is important to demonstrate how altitude, speed, deceleration and 

other parameters interact during atmospheric entry.  It is important to understand what should 

be expected of the trajectory for a lifting-body re-entry vehicle before considering the lifting 

re-entry problem in Chapter III.  In Chapter III the equations of motion are not dimensionless 

and represent a specific vehicle model.   

The first order analysis of a shallow gliding entry assumes the RV produces enough 

lift to maintain a lengthy hypersonic glide given a small flight path angle (γ = -.01 radians).  

Referring to Figure 2-1 the flight path angle (γ) is the angle formed between the vehicles 

velocity vector and the local horizontal plain.  It can be thought of as describing how much 

the velocity vector contributes to moving “in and out” along the radius.  
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 This allows the use of the small angle assumption where cos(γ) ≈ 1 and sin(γ) ≈ γ.  

This type of entry is an idealization; in reality it is not practical to maintain a small entry 

angle at hypersonic speeds all the way to the ground.  However, it can be used to study large 

portions of the entry profile for a gliding entry.  The Space Shuttle uses such an entry for its 

initial phase of re-entry, from entry interface to about 24 km in altitude (6:106). 

Equations (7)-(10) were run through a MATLAB® loop to create an array of data for 

each flight characteristic (i.e. γ(n,m)).  In the array each column represents the values 

calculated with a given CL/CD at each increment of altitude, one column for each CL/CD run 

scenario.  A circular orbit at the reference radius has a velocity of √go*ro.  If it is assumed this 

reference velocity is the maximum speed at which entry begins, then Figure 2-3 shows the 

altitude-velocity relationship in Equation (8) over the span of 0 < Rv < √go*ro for the various 

values of CL/CD.  As altitude decreases η increases, the resulting range of βr0η has not been 

limited to those that can be physically obtained.   In Figure 2-3 we can see that if the CL/CD 

remains unchanged the flight path angle becomes steeper over the course of the glide. 

Figure 2-4 shows the flight path angle-velocity relationship in Equation (7) for 

various CL/CD ratios, bearing in mind that the assumption of a small flight path angle begins 

to breakdown as the angle increases.  As the flight path angle gets larger cos(γ) no longer 

equals one and the sin(γ) no longer equals γ. 
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    Fig 2-3: Velocity/Altitude Relationship 

 

 
       Fig 2-4: Velocity/Flight Path Angle Relationship 
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To determine the distance covered during the glide the expression for the velocity 

along the trajectory is given by integrating the arc-length from the entry velocity to the 

velocity relative to a particular instant in time to get the relationship expressed in Equation 

(9) and graphically displayed in Figure 2-5 (17:111).  It is clear that the range can be 

maximized by using the largest lift-to-drag ratio available.  An upper boundary on that limit 

can be found by artificially assuming the velocity can decrease to zero (17:111). 

 

 
   Fig 2-5: Max Glide Distance for Given Entry Speed 

 
Similarly taking a final velocity of Rv = 0 and integrating with respect to velocity 

yields a maximum flight time expressed by (17:112);  
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As expected, Figure 2-6 shows that more lift results in more ‘hang’ time.  For any prescribed 

speed the total time of flight is maximized by using the maximum lift-to-drag ratio. 

 

 
      2-6: Max Glide Time for Given Entry Speed 

  
Finally, while deceleration is more of a concern in developing a guidance algorithm 

and not a focus of this study,  an expression for the deceleration experienced during a 

shallow, gliding entry can be expressed in terms of altitude and velocity by Equation (10) 

(17:113).  Surprisingly Figure 2-7 shows that deceleration becomes larger as the vehicle 

slows and it continues to get larger throughout the trajectory.  Equation (10) and Figure 2-7 

also show that lift reduces the maximum deceleration.  As the speed decreases, the 

deceleration increases continuously along the descending trajectory and it is minimized by 

using the maximum lift-to-drag ratio.   
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     2-7: Velocity/adecel Relationship 

Velocity (V/sqrt(goro)) 

 

Summary 

 The equations and plots in this section have assisted in understanding the variations in 

altitude, speed, and the acceleration of the vehicle during entry into the earth’s atmosphere.  

The first-order approximate solutions used in this chapter are designed for a specific and 

limited type of entry.  The main assumption for this type of entry was a small flight path 

angle, which allowed the use of the small angle assumption where cos(γ) ≈ 1 and sin(γ) ≈ γ. 

In examining the trajectory of the re-entry vehicle using the MATLAB® script it can 

be seen that the range can be maximized by using a larger lift-to-drag ratio and the speed 

decreases as the altitude decreases during the glide.  It is shown that for any final speed the 

total time of flight is maximized by using the maximum lift-to-drag ratio.   

One challenge with re-entry is deceleration from high orbital speeds.  To avoid the  
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re-entry vehicle performing a meteor-style landing, it has to slow down.  An obvious way of 

slowing down is through atmospheric friction and drag (i.e. using wind resistance).  The key 

challenge with successful reentry then is to brake as much as possible while still in higher 

atmospheric layers and avoid plunging downwards too quickly.  While deceleration is more 

of a concern in developing a guidance algorithm and not a focus of this study it was shown 

that the deceleration increases continuously along the descending trajectory and is minimized 

by using the maximum lift-to-drag ratio. 

The plots help to identify the expected performance of the trajectories given the 

changes in parameters.  We can now use this information to aid in understanding what to 

expect when analyzing the equations of motion in the subsequent chapters.   

 

 

 

 

 

 

 

 

 

 

 

 

 
  22 

 



AFIT/GSS/ENY/05-S01 

 

III. Lifting Re-entry Vehicle 

 
 Chapter II focused on the first-order approximate solutions for a specific and limited 

type of entry.  This chapter will explore the re-entry problem being considered and the theory 

discussed will be applied.  In this chapter we consider a re-entry vehicle that is capable of 

producing lift and how that lift might be used to shape the trajectory.  The problem being 

considered is a medium CL/CD lifting re-entry vehicle.  A general phenomenon in lifting 

entry at high speeds is what is called the quasi-equilibrium glide condition (QEGC).  The 

range of flight conditions in which the QEGC is valid depends on the lifting capability of the 

vehicle.  For vehicles with medium or higher lift-to-drag (L/D) ratios, such as the Shuttle, the 

range could cover the entire entry flight (7:23). 

 The atmosphere model used for this problem is the same model identified in Chapter 

II, Table 2-1.  The atmospheric density will be expressed by (14:38); 

   ρ = ρs *e- h/H       (12) 

where the atmospheric scale height (H) is a measure of how rapidly the atmospheric density 

is changing with altitude (h).  In the previous chapter for the classic first order equations β-1 

was used to represent the scale height.  In this chapter H = β-1 = scale height.   

The position of the vehicle will be measured by the down range distance, s, from the 

re-entry point and the altitude, h.  The motion of the vehicle is measured by its velocity, v, 

and the flight path angle, γ.  The initial state vector is therefore x = [vo γo ψo ho so no eo θ0 λ0]T.  

The system of differential equations for the re-entry problem is (17:27): 

 
   v = - go * sin(γ) -       (13) CDSv2ρ-h/H ·

     2m 
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s = v * cos(γ)       (14) ·

   h = v * sin(γ)       (15) ·

   γ =   * cos(γ) -    *  cos(γ) +   * cos(φ) (16) v 
r  

 
   ψ =       * sin(ψ) * tan(θ) -      *  * sin(φ)  (17) 
 
   n = v * cos(γ) * cos(ψ)      (18) 
 
   e = v *  cos(γ) * sin(ψ)      (19) 
 
   θ =  * cos(γ) * cos(ψ)     (20) 
   
   λ =  *  cos(γ) * sin(ψ)     (21)  

where; 

   ho = initial entry altitude   

vo = initial entry velocity 

ψo = initial heading angle measured from north 

so  = 0; initial down range distance from entry point 

no = 0; initial distance traveled toward north 

eo = 0; initial distance traveled toward east  

θo = initial latitude 

λo = initial longitude 

These equations assume planar entry and a non-rotating earth. 

 
Vehicle Model 

The equations presented in the preceding section act to model the dynamics of 

atmospheric re-entry.  The purpose of this study is to examine the dynamics of a particular 

v 
r 

go 
 v 

CLSvρ-h/H 
     2m 

·

v 
r 

   1 CLSvρ-h/H 
     2m 

·
cos(γ) 

·
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r * cos(θ) 
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lifting-body reentry vehicle that enters the earth’s atmosphere at approximately 122 km at an 

entry velocity of 7.6 km/s and descends through a non-rotating atmosphere on a planar 

trajectory using angle of attack, α, as the control variable. 

In order to study the reentry characteristics of a given vehicle, an aerodynamic model 

of the vehicle must be developed.   For this study the re-entry vehicle considered was 

modeled using the vehicle characteristics of the X-37.  At present, the Space Maneuver 

Vehicle exists in concept only; however, the X-37 program is actively developing 

technologies in support of its development (11:1). What does exist for the SMV are nominal 

values for vehicle dimensions; i.e.  weight, length, wingspan, etc. (11:2).  Table 3-1 below 

presents the dimensions of the SMV taken from the Boeing SMV concept. 

Next, the initial conditions for the reentry trajectory must be determined.  The 

re-entry trajectory will begin at an altitude of 122 km—the same altitude used for Shuttle 

entry guidance (6:99).  The velocity at reentry will be dependent upon the altitude of the 

vehicle orbit.  For this study, the initial orbit of the vehicle will be assumed circular.   

 

11:2) Table 3-1: SMV Parameters (

Parameter Value 
Weight 10000 lb 
Length 29 ft 

Wingspan 15 ft 
Height 9.5 ft 

 
 
Therefore the initial velocity for the RV to enter the atmosphere will be just below circular 

velocity of √μ/r0 or 7.6 km/s. 
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The aerodynamic shape and configuration (ballistic or lifting) of a reentry vehicle 

determines the severity, duration, and flight path of reentry experienced by the vehicle.  A 

MATLAB® algorithm was developed to generate a Graphic User Interface (GUI) to enable 

the user to enter the flight characteristics of the re-entry vehicle.  This along with the 

algorithms that define the atmosphere and integrate Equations (13) – (21) can be found in 

Appendix B.  A screen shot of the GUI menu generated by this algorithm is shown in Figure 

3-1.  Using these vehicle characteristics, Equations (13) – (21) are integrated using the 

MATLAB® function called ODE45.  In this function the time step is set at 1 second. 

 
 

 
                             Fig 3-1: MATLAB® Graphic User Interface  

 
Results 

Once the simulation is run the user has the option to choose, from a drop down menu, 

to plot and examine different flight characteristics as they relate to flight time.  Additional 

plots, not related to time, are available as well.  Figure 3-2 is a plot of altitude vs ground 
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distance and shows the trajectory obtained by numerical integration of Equations (13) – (21) 

when a non-maneuverable vehicle reenters at a velocity of 7.6 km/s and an entry flight path 

angle (γ0) of -.01 radians (-.57°) with a lift-to-drag ratio of .6.  These initial conditions are 

identified in Table 3-2.   

 

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

Ground Distance (km)

A
lti

tu
de

 (k
m

)

Altitude vs. Ground Distance

 
           Fig 3-2: Altitude vs. Range 

 
During a gliding re-entry, a vehicle such as the space shuttle creates enough lift to 

maintain a long hypersonic glide at a small flight path angle.  A measure of the vehicle’s lift 

that influences the descent path is the lift-to-drag ratio (4:242).  For a given set of re-entry 

conditions the motion of a lifting re-entry vehicle with a constant angle of attack is 

determined by a vehicles actual lift and its lift-to-drag ratio.  It should be noted that the more 

gradual descents involve longer times and cover greater ranges than the steeper descents.  For 
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example, starting at the same altitudes and velocities, a direct descent may traverse a distance 

of only a few hundred miles and be accomplished in about 30 seconds; an orbital decay 

might cover a range of a few thousand miles in 5 or 10 minutes; and a lifting descent might 

extend over 5,000 to 10,000 miles in about 2 hours. A gradual descent involves a velocity 

reduction and consequent energy dissipation over a long period of time (7:23). 

 
Table 3-2: Initial Conditions for Re-entry (11:1) 

 
Conditions Value 

Heading (ψ) 57° 
Angle of Attack (α) 55° 

18.73 m2 Reference Area (S) 
Altitude (h) 122 km 
Vehicle Mass (m) 4536 kg 
Velocity 7.6 km/s 
Flight Path Angle (γ) -.01 rad 

 
 

The entry trajectory is divided into three phases: 

1. initial descent phase 

2. quasi-equilibrium glide phase  

3. terminal phase 

As outlined by Figure 3-3, the initial descent is a controlled fall which takes the RV from the 

entry interface at about 120 km in altitude to an altitude of about 80 km where the dynamic 

pressure shown in Figure 3-4 has reached a sufficient level for aerodynamic lift to become 

influential in shaping the trajectory depicted in Figure 3-3.  While dynamic pressure loads are 

more of a concern in developing a guidance algorithm and not a focus of this study Dynamic 
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pressure is an expression of velocity and atmospheric density given by; 

    q =  * v2 * ρ-h/H     (22) 1 
2 
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  Fig 3-3: Altitude vs. Velocity 
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Fig 3-4: Dynamic Pressure vs. Time 
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The quasi-equilibrium glide phase covers the majority of the entry trajectory where 

all the path constraints must be observed and the range achieved must be correct for the RV 

to reach the landing site or impact point.  In the terminal phase, the flight path angle as well 

as the altitude decreases rapidly.  Once an altitude of approximately 80 km is reached, the 

velocity begins to decrease.  At 20 km the velocity begins to decrease in a near linear 

manner. 

 
 Initial Descent Phase 

Above 80–85 km in altitude, the Quasi-Equilibrium Glide Condition (QEGC) is not 

valid because the atmospheric density is too low. The path constraints are not a concern 

above that altitude for the same reason.  Starting at the entry interface, the RV needs to 

descend and enter the entry flight corridor for the trajectory to transit smoothly onto a QEGC 

profile.  This transition point marks the end of the initial descent phase.  To determine the 

initial descent trajectory, the lift and drag coefficients are used to numerically integrate the 

equations of motion (13) – (21) with the given entry conditions. 

 
Quasi-Equilibrium Glide Phase 

It is well known in entry flight mechanics that in a major portion of a lifting entry 

trajectory, the flight path angle is small and varies relatively slowly.  In this phase, the QEGC 

is valid, and the primary objectives in trajectory planning are to ensure observance of the 

path constraints and satisfaction of range requirement.  The required range in the QEG phase 

is defined by Equation (13).  
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Figure 3-5 is a plot of the flight path angle, γ, versus velocity.  The flight path angle 

at initial re-entry (γ0) is - 0.57° (- 0.01 rads) and decreases to a minimum of - 58°.  For the 

majority of the re-entry, the flight path angle remains between 0° and 2° (refer to Chapter IV, 

Figure 4-3).  As the velocity decreases below 2 km/s the flight path angle begins to decrease 

rapidly, and the vehicle’s rate of descent increases. 
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          Fig 3-5: Flight Path Angle vs. Velocity 

 

Terminal Phase 

 A change in velocity can be expected at the end of the QEG phase or start of the 

terminal phase.  In this phase the flight path angle begins to decrease rapidly.  If the 

trajectory planning in the preceding section extends to this phase, the obtained state profiles 

may not be flyable. 
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 This Chapter applied the concepts of numerical integration to a non-maneuvering 

lifting re-entry problem with a constant lift-to-drag ratio.  The developed algorithm produced 

a trajectory that describes the vehicle performance as it descends through the earth’s 

atmosphere.  The next logical step is to analyze the results. 
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IV. Comparison of Non-Maneuvering and Maneuvering Re-entry Vehicle 

 
The primary goal of the algorithm employed in this study is to determine the flight 

characteristics of a re-entry vehicle as it progresses through the atmosphere to a termination 

point.  In this chapter we compare a non-maneuverable re-entry vehicle with a constant .6 lift 

to drag (CL/CD) ratio to a maneuverable re-entry vehicle with a variable CL/CD ratio.  A total 

of three maneuvers were performed in the maneuverable re-entry case.  The CL/CD ratios for 

these maneuvers were found in a report on the optimal control of a space shuttle (3:8-9) and 

identified in Table 4-1. 

 

 

 
As the amount of lift varies with the angle of attack, so too does the drag.  Hence drag 

is the price we pay for lift.  Thus, although it is desirable to obtain as much lift as possible 

from a wing, this cannot be done without increasing the drag.  It is therefore necessary to find 

the best compromise.  Table 4-2 identifies the changes in the CL/CD at the specified time 

intervals.  The trajectory shown in figure 4-1 has an altitude at the bottom of the first dip of 

68 km, which is reached after 400 seconds of flight.  The approach taken for the analysis of 

the developed algorithm was to introduce a change to the lift-to-drag ratio (CL/CD) of the 

vehicle to simulate a maneuver that would level out the vehicle.  The CL/CD was increased 

from .6 to 1.38 at 400 seconds into the trajectory where the dip at 68 km occurs.  After 

Angle of Attack (α) 55° 20° 50° 55° 
CL .8 .336 .655 .8 
CD 1.3 .244 .994 1.3 

CL/CD .6 1.38 .622 .6 

Table 4-1: Lift-to-Drag Parameters (3:8-9) 
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injecting the new CL/CD the vehicle experienced additional lift at 800 seconds at which time 

the CL/CD was reduced to .622.  Then at 1200 seconds the CL/CD was again reduced to .6 for 

the remainder of the flight.  Changes to the CL/CD were done in an effort to simulate a 

possible maneuver that would be performed by a MaRV guidance system (3:8-9).   

 
Table 4-2: Lift to Drag Ratio Change 

 Time CL/CD 
0 – 400 .600  

400 – 800 1.38 
 800 – 1200 .622 
 1200 – end of flight .600 
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                        Fig 4-1: Analysis of Non-Maneuverable vs. Maneuverable Trajectory  
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The first maneuver was based on the vehicle’s first encounter with the sensible 

atmosphere at approximately 68 km.  At this point an on-board guidance algorithm would 

most likely perform a maneuver to level out the vehicle.  Figure 4-1 also shows that lift 

significantly increases the ground distance of the entry trajectory.  It also shows that it is 

easier to distinguish a maneuver higher in the less dense atmosphere.  The second and third 

maneuvers were performed at a point in the trajectory where additional atmospheric effects 

were encountered and would most likely be countered with a maneuver.  Maneuvers at lower 

altitudes in the denser atmosphere were much less noticeable.  An algorithm for the 

automated change in CL/CD ratios can be found in Appendix B. 

In Figure 4-2 it can be seen that once again the velocity remains essentially constant 

until an altitude of approximately 80 km.  Figure 4-3 shows the flight path angle as a function 

of velocity.  Again, for the majority of the re-entry, the flight path angle remains between 0° 

and 2°.   
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            Fig 4-2: Analysis of Altitude vs. Velocity 
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      Fig 4-3: Analysis of Flight Path Angle vs. Velocity 

  

Figure 4-4 shows the changes in velocity with each change to the lift-to-drag ratio.   

As the vehicle maneuvers to maintain level flight the velocity does not decrease as quickly.  

Figure 4-5 compares the altitude and flight path angle as they relate to time of the constant 

CL/CD trajectory and the variable CL/CD trajectory.  The MaRV maintains a small flight path 

angle (0 < γ < 2°) for a much longer time.  Figure 4-6 shows there is a slight increase of 

dynamic pressure experienced by the MaRV due to atmospheric density.   
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    Fig 4-4: Analysis of Velocity vs. Time 
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    Fig 4-5: Alt/FPA vs. Time Analysis  
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    Fig 4-6: Dynamic Pressure Analysis  
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Validation 

 To test the validity of the developed algorithm an additional simulation was ran using 

data from a published source (9:4-2).  The plots from the source document were then 

compared to the plots generated by the algorithm developed from this study.  The initial 

conditions, as taken from the source document’s output trajectory file are identified in Table 

4-3 and the vehicle parameters are entered into the graphic user interface menu shown in 

Figure 4-7. 

Table 4-3: Initial Entry Conditions (9:D-12) 
Time  (sec)   Alt (km) Long (rad)    Lat (rad)      Vrel (km/sec)   FP (rad)    Heading (rad)    
0.00000       393.2597     -1.878872    0.590298    18.22000      -1.221730    1.150579      
0.02298       392.8659     -1.878872    0.590298    18.22019      -1.221713    1.150579      

 

 
Fig 4-7: Graphic User Interface Menu 

 
 Figure 4-8 compares a plot of altitude vs. time generated by the MATLAB® algorithm 

developed in this study with the FORTRAN plot developed in a published source document 

 
  38 

 



AFIT/GSS/ENY/05-S01 

 

(9:4-2).  The initial conditions and vehicle parameters from the source document were used 

to generate the MATLAB® plot.  Both plots show an identical decline in altitude over time. 
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Fig 4-8: Altitude vs. Time Comparison 

 
 
 Figure 4-9 compares the MATLAB® plot of the vehicle’s velocity with altitude and 

the source document’s FORTRAN plot.  Again the two plots identify a profile that is very 

similar.  The intersecting dotted lines on the MATLAB® plot identify the lower boundary 

scale of the FORTRAN plot. 
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Fig 4-9: Velocity vs. Altitude Comparison 
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 Figure 4-10 compares plots of the flight path angle over time.  For all practical 

purposes both algorithms generated the same flight path with a 1% error. 
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Fig 4-10: Flight Path Angle vs. Time Comparison 

 
 
 Figure 4-11 is a comparison of plots showing the relationship between the vehicle’s 

velocity and flight time.  It is evident that these comparisons further validate the accuracy of 

the algorithm developed in this work.  Differences can mainly be seen in flight time, which is 

attributed to the rotation of the earth.  The MATLAB® algorithm is based on a non-rotating 

earth while the FORTRAN algorithm is based on a rotating earth. 
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Fig 4-11: Velocity vs. Time Comparison 
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Analysis of Re-Entry Profile Prediction 

The goal of this study was to develop an algorithm to determine the flight 

characteristics of a re-entry vehicle—not to optimize the re-entry profile.  The functionality 

of the algorithm developed in this study is to allow the user to enter new flight characteristics 

with each new maneuver of the MaRV.  The initial analysis was run by changing the lift-to-

drag coefficient within an algorithm loop.  The idea of this analysis was to use the Graphic 

User Interface in Appendix C to enter the new flight characteristics as a result of the 

maneuver at 400 seconds and 74.6 kms and plot the new trajectory.  Then at 800 seconds and 

55 kms perform a second maneuver entering the new flight characteristics again.  The input 

data for each of these post maneuver analysis was taken from the output trajectory file from 

the initial run as explained in Appendix C.  The plots are in agreement with the ones 

generated using the method in the initial analysis. 

Information from the results of the non-maneuvering RV was used to provide the data 

for the maneuvers.  At 400 seconds an altitude of 74.59 km was entered along with flight 

path angle (γ) of -.0158 radians and using the same lift and drag coefficients as defined in 

Chapter IV, Table 4-1.  Figure 4-12 shows the two maneuvers as entered in the menu.  This 

data was taken from the trajectory output file (ydot) generated by the initial run and can be 

found in Appendix B. 

 Figure 4-13 shows the two maneuvers as they relate to altitude as a function of time 

and Figure 4-14 show how the altitude relates to the range.  As expected when maneuvers are 

made to maintain level flight the ground distance is greatly extended.  
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             400 sec           800 sec 

                    
         Fig. 4-12: Graphics User Interface menu 
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         Fig. 4-13: Analysis of Altitude vs. Time 
  
 
The total ground distance shown in right graph of Figure 4-14 agrees with the MaRV 

analysis in the previous chapter. 
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         Fig. 4-14: Analysis of Altitude vs. Range 
 
 
 Figure 4-15 shows how the velocity relates to the flight time and Figure 4-16 shows 

the altitude as it relates to velocity.  As the vehicle descends through the atmosphere it begins 

to slow due to the effects of the atmospheric density on the aerodynamic characteristics of 

the vehicle.  This supports the results of the previous chapter. 
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         Fig. 4-15: Analysis of Velocity vs. Time 
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         Fig. 4-16: Analysis of Altitude vs. Velocity 
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V.  Conclusions and Recommendations 

 
The objective of this study was to develop an algorithm that would accurately model 

the flight characteristics of a maneuverable re-entry vehicle through atmospheric re-entry to a 

termination point.  Having done this, the following conclusions can be drawn from the 

analysis provided in Chapter IV. 

 
1. The concept of modeling a re-entry trajectory using MATLAB software is an 

effective method for predicting the flight characteristics of an unknown vehicle 

entering the earth’s atmosphere.  It would be appropriate to say the studies involving 

maneuverable re-entry vehicles can be done starting at an altitude of 80 km. 

 
2. Although the entry altitude was chosen to be 122 km, atmospheric effects are 

essentially negligible until the vehicle reaches an altitude near 80 km. Until 80 km 

altitude, the velocity and flight path angle remain essentially constant. 

 
3. The maneuver at 74 km showed a greater effect on the trajectory.  At least for the 

case studied, maneuvers performed higher in the less dense atmosphere appear to be 

more observable than those performed in the lower, denser atmosphere.   

 
The following recommendations for further study are given: 

 
1. The analysis conducted herein is somewhat limited by the assumptions made.  

Whereas this analysis could be used as an effective baseline, the fidelity of the 

simulation would have to be improved for an operational prediction method.  In 
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particular, a more robust model of the earth’s atmosphere accounting for cross-winds, 

hemispheric variations, and seasonal variations should be input into the guidance 

algorithm.  The earth’s rotation will need to be considered before any of these 

become important.  Also, a higher order model of the earth’s gravitational field, to 

include variation with altitude, as well as oblateness effects should be incorporated.   

2. The vehicle parameters used are taken from the known parameters of the X-37 

Space Maneuverable Vehicle.  The parameters of mass, surface area and 

aerodynamics will require modification. Construction of a higher-fidelity model than 

the one used herein for use in determining the aerodynamic coefficients is one 

possible approach.  

 
3.  While the shuttle entry guidance is highly successful, search has been continued 

for entry guidance methods that enable fully autonomous and adaptive entry 

guidance.  Currently the Shuttle’s guidance algorithm is calculated on a known entry 

interface point and a known landing location.  A key requirement for a system that 

allows full autonomous and adaptive entry guidance is to not rely on a reference 

trajectory generated on the ground.  This study focused on the profile prediction 

method aimed at iteratively determining a trajectory leading from the current 

condition to the ground.  This could be a first step in a fully autonomous and adaptive 

entry guidance system. 
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APPENDIX A 

MATLAB CODE FOR FIRST ORDER ANALYSIS 

 

Parameters 
 
beta =.........................................................0.14 km-1 

earth radius =............................................6378 km  

surface density =......................................1.217 kg/m3 

surface gravity =...................................0.00981 km/s2 

circular velosity =...................................7.8354 km/s 

entry altitude =.............................................122 km 

radius at entry altitude =............................6500 km 

reference surface for lift/drag =..................18.7 m2 

mass of the vehicle =.................................4536 kg 

gravity at altitude =...........................0.0094452 km/s2 

Velosity at entry =............................................8 km/s 

Flight Path angle at entry.......................... -0.05 radians 

eta at entry =...................................1.9542e-010 (non-dimensional) 

CL/CD(1) at entry.............................................0.1 (non-dimensional) 

CL/CD(2) at entry.........................................1.725 (non-dimensional) 

CL/CD(3) at entry...........................................3.35 (non-dimensional) 

CL/CD(4) at entry.........................................4.975 (non-dimensional) 

CL/CD(5) at entry............................................6.6 (non-dimensional) 

 

Script to Define Parameters and Environment 

 
%%%                    First Order Equation verification 

clc; clear all; close all 
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% ASSUMPTIONS:  Spherical, non-rotating Earth. 

%               Constant Gravity 

%               Exponential Atmosphere 

%               Point mass re-entry vehicle 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Parameters: 

alt = 122;            %km 

h = alt:-1:0; 

vMIN = 0; 

vMAX = 8; 

vSTEP = length(h)-1; 

v=linspace(vMAX,vMIN,vSTEP); 

v_e = v(1); 

gamma_e = -.05; 

ClCdMIN = 0.1; 

ClCdMAX = 6.6; 

ClCdSTEP = 5; 

ClCd=linspace(ClCdMIN,ClCdMAX,ClCdSTEP); 

Cd=1 

m = 8500;                          % kg - mass of vehicle  

S = 10;                            % m^2 - reference surface for lift/drag 

S_km = S/10^6;    % km^2 

beta = .14;                        % km^-1 

rho_s = 1.217;                     % kg/m^3 - earth's density at surface 

rho_s_km = rho_s*10^9;            % kg/km^3 

r_earth = 6378;                    % km 

gravity_s = 9.81e-3;               %km/sec^2 
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r_not = r_earth+alt;               % km 

g_not = (gravity_s) * (r_earth / r_not)^2;     % km/sec^2 

mu = g_not*r_not^2;                % km^3/s^2 

v_c = sqrt(mu/r_not);    % circular velocity 

T = .5*(v_e/v_c).^2;               % km^3/s^2 

alpha=0:10:50;    % Angle of Attack 

Br0 = (beta * r_not); 

eta_e =((rho_s*S*Cd)/(2*m*beta)) * exp(-beta * alt);  %Initialize counter 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Call function to calculate re-entry characteristics 

[eta, gamma, Br0n, Glide_Dist, Glide_Time, a_decel] = Shallow(v, v_e, h, S, m, Cd, eta_e, 

Br0,  ClCd, beta, r_not, rho_s, g_not) 

% Call function to plot re-entry performance 

A = ShallowRngOutput(v, Br0n, gamma, ClCd, r_not, g_not, Glide_Dist, Glide_Time, 

a_decel) 

 

Function to Evaluate Equations of Motion 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [eta, gamma, Br0n, Glide_Dist, Glide_Time, a_decel] = Shallow(v, v_e, h, S, m, 

Cd, eta_e, Br0, ClCd, beta, r_not, rho_s, g_not) 

% Shallow, gliding entry 

  

eta =((rho_s*S*Cd)/(2*m*beta)) * exp(-beta * h);  

%Initialize counter 

p=1; 

for m = 1:length(ClCd)                %counter #3, loops the # of lift/drag ratio values tested (5 

times in this case) 
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    n=1; 

    while n < (length(eta)); 

        %Build 2-dimensional matrices, where each column is the value 

        %starting at entry altitude and going to h=0 

  

        %Flight Path Angle, gamma 

        gamma(n,p) = (-2/(ClCd(m)*Br0))*((sqrt(g_not*r_not)/v(n))^2); 

  

        %Altitude with repect to eta 

        Br0n(n,p) = (((g_not*r_not)/v(n)^2)-1)/ClCd(m); 

  

        %Max Glide Distance 

        Glide_Dist(n,p) = .5*ClCd(m)*log(1/(1-(v(n)/sqrt(g_not*r_not))^2)); 

  

        %Max Glide Time 

        Glide_Time(n,p) = .5*ClCd(m)*log((1+(v(n)/sqrt(g_not*r_not)))/(1-

(v(n)/sqrt(g_not*r_not)))); 

  

        %Deceleration 

        a_decel(n,p) = (1-(v(n)^2/(g_not*r_not)))/ClCd(m); 

        n=n+1; 

    end 

    p=p+1; 

end 

end 

Output Function 
 
% Plot re-entry performance 

function A = ShallowRngOutput(v, Br0n, gamma, ClCd, r_not, g_not, Glide_Dist, 

Glide_Time, a_decel) 
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A=(v/sqrt(g_not*r_not))' 
  
figure(1) 

xlabel('Velosity (V/sqrt(g_o/r_o)))') 

ylabel('Altitude (Br_0\eta)') 

title('Velosity/Altitude Relationship') 

axis([0 1 0 10]) 

hold on 

for i = 1:length(ClCd) 

    plot(A(:,1), Br0n(:,i)) 

end 
  
figure(2) 

xlabel('Velosity (V/sqrt(g_o/r_o))') 

ylabel('Flight Path Angle (\gamma)') 

title('Velosity/FPA Relationship') 

%axis([0 1 0 -.5]) 

hold on 

for i = 1:length(ClCd)  

    plot(A(:,1), gamma(:,i)) 

end 

hold off 

figure(3) 

xlabel('Velosity (V/sqrt(g_o/r_o))') 

ylabel('Limiting Arc Length (S/r_0)') 

title('Max Glide Distance for Given Entry Speed') 

axis([0 1 0 12]) 

hold on 

for i= 1:length(ClCd) 

    plot(A(:,1), Glide_Dist(:,i)) 
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end 

hold off 
  
figure(4) 

xlabel('Velosity (V/sqrt(g_o/r_o))') 

ylabel('Limiting Flight Time(sqrt(g_o/r_0)*t)') 

title('Max Glide TIme for Given Entry Speed') 

axis([0 1 0 12]) 

hold on 

for i= 1:length(ClCd) 

    plot(A(:,1), Glide_Dist(:,i)) 
 
end 

hold off 

  
figure(5) 

xlabel('Velosity (V/sqrt(g_o/r_o))') 

ylabel('a_d_e_c_e_l_//g_o') 

title('Velosity/a_d_e_c_e_l Relationship') 

axis([0 1 0 10]) 

hold on 

for i= 1:length(ClCd) 

   plot(A(:,1), a_decel(:,i)) 

end 

hold off 

end 
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APPENDIX B 

ALGORITHM FOR RE-ENTRY TRAJECTORY 

 

Function to Generate Graphic User Interface 

 

function reentrygui(varargin) 

  

global A B C D E F G H N W L T t q y x pu 

global Vnot ydot hnot m CL CD ClCd psiinit totalt rhoe rho AoA alpha alphanot psinot 

gammanot 

  

if nargin > 0, command = varargin{1}; end 

if nargin >= 3, handles = varargin{3}; end 

if nargin < 1 

  

figure('color','b','units','normalized','position',[.6 .5 .2 .3],...  

        'resize','off',...  

        'menubar','None','name','Reentry Control Panel',...  

        'numbertitle','Off','visible','on');  

  

edit3 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .890 .2 .060],... 

            'string',' ',... 

            'Tag','Head',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

  

edit4 = uicontrol('Style','Edit','Units','Normalized',... 
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            'Position',[.58 .830 .2 .060],... 

            'string',' ',... 

            'Tag','Lat',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

edit5 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .770 .2 .060],... 

            'string',' ',... 

            'Tag','Long',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

edit6 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .710 .2 .060],... 

            'string',' ',... 

            'Tag','Sref',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

edit7 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .650 .2 .060],... 

            'string',' ',... 

            'Tag','Alt',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

edit8 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .590 .2 .060],... 
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            'string',' ',... 

            'Tag','Mass',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

edit9 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .530 .2 .060],... 

            'string',' ',... 

            'Tag','Vel',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

  

edit10 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .470 .2 .060],... 

            'string',' ',... 

            'Tag','FPA',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

             

edit11 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .410 .2 .060],... 

            'string',' ',... 

            'Tag','Cl',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

             

edit12 = uicontrol('Style','Edit','Units','Normalized',... 

            'Position',[.58 .35 .2 .060],... 

            'string',' ',... 
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            'Tag','Cd',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2  .890 .38 .060],... 

            'String','Heading (deg)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

  

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2  .830 .38 .060],... 

            'String','Latitude (deg)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2  .770 .38 .060],... 

            'String','Longitude (deg)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .710 .38 .060],... 

            'String','Ref Area (S) m^2',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

             

uicontrol('Style','text','Units','Normalized',... 
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            'Position',[.2 .650 .38 .060],... 

            'String','Altitude (Km)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

        

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .590 .38 .060],... 

            'String','Vehicle Mass (Kg)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

             

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .530 .38 .060],... 

            'String','Velocity (Km/s)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

           

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .470 .38 .060],... 

            'String','Flt Path Angle (rad)',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

             

uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .410 .38 .060],... 

            'String','Lift Coefficient',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 
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uicontrol('Style','text','Units','Normalized',... 

            'Position',[.2 .35 .38 .060],... 

            'String','Drag Coefficient',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center'); 

         

T1=[... 

    'plot(Velocity vs. Flt Time)              '; 

    'plot(Alt vs. Flt Time)                      ';  

    'plot(FPA vs. Flt Time)                    ';  

    'plot(Alt/FPA vs. Flt Time)              ';  

    'plot(Velocity vs. FPA)                    ';  

    'plot(Alt vs. Grnd Dist)                    ';  

    'plot(Alt vs. Velocity)                      '; 

    'plot(Grnd Dist vs. Flt Time)           '; 

    'plot(Latitude vs. Longitude)           '; 

    'plot(Grnd Dist North vs. Flt Time) '; 

    'plot(Grnd Dist East vs. Flt Time)   '; 

    'plot(Dynamic Presur vs. Flt Time) ']; 

  

run(1) = uicontrol('Style','togglebutton','Units','Normalized',... 

            'Position',[.265 .23 .5 .1],... 

            'String','Run Simulation',... 

            'Visible','on',... 

            'HorizontalAlignment', 'center',... 

            'CallBack','reentrygui(1,gcbo,guihandles(get(gcbo,''Parent'')))');             

  

pu(2) = uicontrol('Style','Popup','Units','Normalized',... 

            'Position',[.175 .12 .7 .1],... 
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            'String',T1,... 

            'Visible','on',... 

            'HorizontalAlignment', 'center',... 

            'CallBack','reentrygui(2)'); 

  

uicontrol(...  

        'CallBack','close all;',...  

        'Units','normalized',...  

        'Position',[.3 .02 .4 .1 ],...  

        'String','Close',...  

        'Style','pushbutton',...  

        'UserData',''); 

  

return 

end 

  

if command == 1 

    psiinitdeg = str2double(get(handles.Head,'string')); 

    psiinit = psiinitdeg*(pi/180); 

    hnot = str2double(get(handles.Alt,'string')); 

    m = str2double(get(handles.Mass,'string')); 

    Vnot = str2double(get(handles.Vel,'string')); 

    gammanot = str2double(get(handles.FPA,'string')); 

    Latinit = str2double(get(handles.Lat,'string')); 

    Longinit = str2double(get(handles.Long,'string')); 

    Sref = str2double(get(handles.Sref,'string')); 

    CL = str2double(get(handles.Cl,'string')); 

    CD = str2double(get(handles.Cd,'string')); 

    ClCd = CL/CD; 
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    Reentry 

end 

  

if command == 2 

   switch get(gcbo,'value') 

    case 1 

        % Plot of Velocity vs. Time of Flight 

            figure(2),clf, plot(t,A) 

            xlabel('Time (sec)') 

            ylabel('Velocity (km/sec)') 

            title('Velocity vs. Time of Flight') 

    case 2 

        % Plot of Altitude vs. Time of Flight 

            figure(3),clf, plot(t,D) 

            xlabel('Time (sec)') 

            ylabel('Altitude (km)') 

            title('Altitude vs. Time of Flight') 

    case 3 

        % Plot of Flight Path Angle vs. Time of Flight 

            figure(4),clf,  

            plot(t,B*180/pi,'b') 

            xlabel('Time (sec)') 

            ylabel('\gamma (Deg)')  

            title('Flight Path Angle vs. Time of Flight') 

    case 4 

        % Plot of Altitude and Flight Path Angle vs. Time of Flight 

            figure(5),clf,  

            hold on 

            plot(t,D,'r') 
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            plot(t,B*180/pi,'b') 

            hold off 

            legend('Altitude (km)','Flight Path Angle (\gamma in Deg)')  

            xlabel('Time (sec)') 

            title('Altitude/Flight Path Angle vs. Time of Flight') 

    case 5 

        % Plot of Velocity vs. Flight Path Angle   

            figure(6),clf, plot(A,B*180/pi) 

            xlabel('Velocity (km/sec)') 

            ylabel('FPA (\gamma in Deg)') 

            title('Velocity vs. Flight Path Angle') 

    case 6 

         %Plot of Altitude vs. Ground Distance 

            figure(7),clf, plot(E,D) 

            xlabel('Ground Distance (km)') 

            ylabel('Altitude (km)') 

            title('Altitude vs. Ground Distance') 

    case 7 

        % Plot of Altitude vs. Velocity 

            figure(8),clf, plot(A,D)  

            xlabel('Velocity (km/sec)') 

            ylabel('Altitude (km)') 

            title('Altitude vs. Velocity') 

    case 8 

        % Plot Ground Distance vs. Time of Flight 

            figure(9),clf, plot(t,E) 

            xlabel('Time (sec)') 

            ylabel('Ground Distance (km)') 

            title('Ground Distance vs. Time of Flight') 

 
  61 

 



AFIT/GSS/ENY/05-S01 

 

    case 9 

        % Plot of Latitude vs. Longitude 

            figure(10),clf, plot(L,T)  

            xlabel('Longitude (degrees)') 

            ylabel('Latitude (degress)') 

            %title('Latitude vs. Longitude') 

    case 10 

        % Plot North Ground Distance vs. Time of Flight 

            figure(11),clf, plot(t,F) 

            xlabel('Time (sec)') 

            ylabel('Ground Distance North (km)') 

            title('Ground Distance North vs. Time of Flight') 

    case 11 

        % Plot East Ground Distance vs. Time of Flight 

            figure(12),clf, plot(t,G) 

            xlabel('Time (sec)') 

            ylabel('Ground Distance East(km)') 

            title('Ground Distance East vs. Time of Flight') 

    case 12 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % BEGIN SECTION for calculating and plotting Dynamic Pressure(q) 

        % Multiply by (1 km/ 1000m) to get units of N/m^2 

        for i=1:totalt 

           q(i,1)=(1/1000)*(0.5*((y(i,1))^2)*rhoe*exp(-y(i,4)/H)); 

        end 

        figure(13),clf, plot(t,q)  

        xlabel('Time (sec)') 

        ylabel('Dynamic Pressure (N/km^2)') 
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        title('Dynamic Pressure vs. Time of Flight') 

        %%%END SECTION for calculating and plotting Dynamic Pressure(q) 

     end 

end 

 

Script to Define Parameters and Environment 

 

%%%                                       Re-Entry 

%clear all; close all 

% Program to calculate and plot 3-D atmospheric re-entry  

% ASSUMPTIONS:  Spherical, non-rotating Earth. 

%               Constant Gravity 

%               Exponential Atmosphere 

%               Point mass re-entry vehicle 

global m Re ge S CD CL CLCD ClCd beta beta_m H ge rhoe rho phi tstep  

global Vnot ydot hnot totalt rohe AoA alpha alphanot psinot gammanot 

global A B C D E F G H N W L T t y 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Times 

tstep=1;                        % sec 

tfinal=1400;                 % sec                     

phi=0;                           % Initial roll angle 

index=0;                       % Count variable 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Parameters 

mu=3.99*10^5;               % Earth gravitational parameter (km^3/s^2) 

Re=6378;                         % Radius of the Earth in km 

ge=9.81*10^-3;               % Constant gravity in km/s^2 
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S=Sref*10^-6;              % Reference Area km^2 

rhoe=1.752*10^9;           % Surface density (kg/km^3) 

H=6.7;                             % Scale Height in km 

NZmax = 2.5 * ge;          % Maximum Normal Load (expressed in g's) (km/s^2) 

  

% Heat constraint parameters 

Cq=1.65*10^2;                   % Heat Transfer Coefficient (w/m^2) 

vref = .001;                         % Reference Velocity (km/s) 

rhoref=1*10^9;                   % Reference Density (kg/Km^3) 

qdotmax=5.443*10^11;     % Reference density for use in Max heating rate constraint 

(kg/km^3) 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Dynamic Pressure Parameters 

qmax = 1.628*10^10;                               % Max allowable dynamic pressure 342 lb/ft^2 

converted to (N/km^2) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Angle of Attack Profile 

   alphaint=alphanot; 

   alphafinal=20; 

   Valpha1 = 20000*(3.0547e-4); % Velocity where angle of attack modulation begins (km/s) 

   Valpha2 = Valpha1;                  % Velocity where angle of attack modulation begins (km/s) 

   Valpha3 = Valpha1;                  % Velocity where angle of attack modulation begins (km/s) 

   Vfinal  = 2500*(3.0547e-4);   

   CLCDmax=1.4; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Initial conditions for Integration of Equations of Motion 
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Vnot = Vnot;                                % User input for initial velocity in km/s 

gammanot= gammanot;                      % User input for initial Flight Path Angle (rad) 

psinot= psiinit;                            % User input for initial Heading Angle in (rad) 

hnot=hnot;                                  % User input for initial altitude in km 

snot=0;                                     % Initial along-track displacement (km) 

nnot=0;                                     % Initial displacement in North direction (km) 

enot=0;                                     % Initial displacement in East direction (km) 

Longnot= Longinit*(pi/180);              % User input for initial longitude  

Latnot= Latinit*(pi/180);                    % User input for initial latitude  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Integrate the equations of motion 

y0=[Vnot gammanot psinot hnot snot nnot enot Latnot longnot];  % Inital conditions 

options = odeset('RelTol',1e-7,'AbsTol',1e-10*ones(1,9)); 

[t,y] = ode45('Re-entryeoms',0:tstep:tfinal,y0,options);    

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Dummy variables used for plots 

totalt=(tfinal/tstep) + 1;    % Dummy variable for use in loops 

A=y(:,1);                      % Velocity 

B=y(:,2);                      % Flight Path Angle 

C=y(:,3)*360/(2*pi);          % Heading Angle 

D=y(:,4);                      % Altitude 

E=y(:,5);                      % Along track Distance           

F=y(:,6);                      % Distance in North Direction 

G=y(:,7);                      % Distance in East Direction 

L=y(:,8)*360/(2*pi);          % Longitude 

T=y(:,9)*360/(2*pi);          % Latitude 

 
end  
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Function used by MATLAB® ODE45to Integrate Equations of Motion 

 
%                             Reentryeoms 

%  Equations of motion for planetary re-entry 

function [ydot]=Reentryeoms(t,y) 

global m Re ge S CD CL H beta rhoe phi psi tstep  

global Vnot ydot hnot totalt rohe AoA alpha alphanot psinot 

% Guidance 
 
% Velocity Equation  

ydot(1,1)= -(1/m)*0.5*CD*S*(rhoe*exp(-y(4)/H))*y(1)^2 -(ge*sin(y(2))); 
 
%  Flight path angle with variable density and constant gravity (gamma) 

ydot(2,1)= (y(1)/(Re+y(4)))*cos(y(2)) - (ge*cos(y(2)))/y(1)… 

 + (1/m)*0.5*CL*S*y(1)*(rhoe*exp(-y(4)/H))*cos(phi); 

% Heading angle of Velocity vector equation (Psi) 

ydot(3,1)= -(1/(Re+y(4)))*y(1)*cos(y(2))*sin(y(3))*tan(y(9))…     

                   + (1/cos(y(2))) * ( 0.5*(1/m)*CL*S*y(1)*(rhoe*exp(-y(4)/H)*sin(phi))); 
 
%  Altitude Equation 

ydot(4,1)= y(1)*sin(y(2)); 
 
%  Along-track Distance Equation (in along track direction) 

ydot(5,1)= y(1)*cos(y(2)); 
 
%  Ground Distance Equation (in North direction) 

ydot(6,1)= y(1)*cos(y(2))*cos(y(3)); 
 
%  Ground Distance Equation (in East direction) 

ydot(7,1)= y(1)*cos(y(2))*sin(y(3)); 
 
% Longitude Equation (Lambda) 

ydot(8,1)= y(1)*cos(y(2))*sin(y(3))/((Re+y(4))*cos(y(9))); 
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% Latitude Equation (Theta) 

ydot(9,1) = y(1)*cos(y(2))*cos(y(3))/(Re+y(4)); 

  
 
Excerpt from Trajectory Ooutput Data File 
 
 

   Heading Altitude Grnd Dist     
Time Velocity FPA (γ) (ψ) (h) (GD) GD North GD East Latitude Longitude 
0 7.60 -0.0100 57.00 122.00 0.00 0.00 0.00 25.00 -140.00 

1 7.60 -0.0101 56.97 121.92 7.60 4.14 6.37 25.04 -139.94 

2 7.60 -0.0102 56.95 121.85 15.20 8.28 12.74 25.07 -139.88 

3 7.60 -0.0104 56.92 121.77 22.80 12.43 19.11 25.11 -139.81 

4 7.60 -0.0105 56.90 121.69 30.40 16.58 25.48 25.15 -139.75 

5 7.60 -0.0106 56.87 121.61 38.00 20.73 31.85 25.18 -139.69 

6 7.60 -0.0107 56.84 121.53 45.60 24.89 38.21 25.22 -139.63 

7 7.60 -0.0108 56.82 121.45 53.20 29.05 44.57 25.26 -139.57 

8 7.60 -0.0110 56.79 121.36 60.80 33.21 50.93 25.29 -139.50 

9 7.60 -0.0111 56.76 121.28 68.40 37.37 57.29 25.33 -139.44 

10 7.60 -0.0112 56.74 121.19 76.00 41.54 63.64 25.37 -139.38 

    :   :      :       :           :         :      :         :             :     : 
    :   :     :       :           :              :      :         :             :     : 
400 6.50 0.0158 43.91 74.59 2956.00 1858.30 2290.60 41.46 -115.77 

401 6.50 0.0156 43.87 74.69 2962.50 1862.90 2295.10 41.50 -115.72 

    :   :      :       :           :         :      :         :             :     : 
    :   :      :       :           :              :      :         :             :     : 
799 3.47 -0.0157 30.72 55.17 5094.20 3549.30 3591.40 56.49 -98.19 

800 3.45 -0.0154 30.70 55.12 5097.70 3552.30 3593.20 56.52 -98.16 

801 3.44 -0.0150 30.67 55.06 5101.10 3555.20 3594.90 56.55 -98.13 

    :   :      :       :           :         :      :         :             :     : 
    :   :      :       :           :         :      :         :             :     : 
1199 0.10 -0.9781 27.23 11.38 5590.20 3983.10 3831.80 60.36 -94.09 

1200 0.10 -0.9788 27.23 11.29 5590.30 3983.10 3831.80 60.36 -94.09 

1201 0.10 -0.9794 27.23 11.21 5590.30 3983.20 3831.80 60.36 -94.09 

    :   :      :       :           :         :      :         :             :     : 
    :   :      :       :           :         :      :         :             :     : 
1398 0.04 -1.0123 27.18 0.52 5597.20 3989.30 3835.00 60.42 -94.04 

1399 0.04 -1.0124 27.18 0.49 5597.20 3989.30 3835.00 60.42 -94.04 

1400 0.04 -1.0124 27.18 0.45 5597.20 3989.30 3835.00 60.42 -94.04 
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Integrate Equations of Motion for Hard Coded CL/CD Changes 

 

%%%%                            Reentryeoms 

%  3-D equations of motion for planetary reentry 

 

function [ydot]=Reentryeoms(t,y) 

global m Re ge S CD CL ClCd CLnot CDnot H beta rhoe phi tstep  

global Vnot ydot hnot totalt rohe AoA alpha alphanot psinot 

  

%Guidance 

%  3-D Velocity Equation  

if t < 400 

    CD = 1.3; 

    ydot(1,1)= -(1/m)*0.5*CD*S*(rhoe*exp(-y(4)/H))*y(1)^2 -(ge*sin(y(2))); 

elseif t >= 400 & t < 800 

    CD = .244; 

    ydot(1,1)= -(1/m)*0.5*CD*S*(rhoe*exp(-y(4)/H))*y(1)^2 -(ge*sin(y(2))); 

elseif t >= 800 & t < 1200 

    CD = .892; 

    ydot(1,1)= -(1/m)*0.5*CD*S*(rhoe*exp(-y(4)/H))*y(1)^2 -(ge*sin(y(2))); 

else 

    CD = 1.3; 

    ydot(1,1)= -(1/m)*0.5*CD*S*(rhoe*exp(-y(4)/H))*y(1)^2 -(ge*sin(y(2))); 

end 

  

% 3-D Flight path angle with variable density and constant gravity (gamma) 

if t < 400 

    CL = .8; 
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    ydot(2,1)= (y(1)/(Re+y(4)))*cos(y(2)) - (ge*cos(y(2)))/y(1) + 

(1/m)*0.5*CL*S*y(1)*(rhoe*exp(-y(4)/H))*cos(phi); 

elseif t >= 400 & t < 800 

    CL = .336; 

    ydot(2,1)= (y(1)/(Re+y(4)))*cos(y(2)) - (ge*cos(y(2)))/y(1) + 

(1/m)*0.5*CL*S*y(1)*(rhoe*exp(-y(4)/H))*cos(phi); 

elseif t >= 800 & t < 1200 

    CL = .655; 

    ydot(2,1)= (y(1)/(Re+y(4)))*cos(y(2)) - (ge*cos(y(2)))/y(1) + 

(1/m)*0.5*CL*S*y(1)*(rhoe*exp(-y(4)/H))*cos(phi); 

else 

    CL = .8; 

    ydot(2,1)= (y(1)/(Re+y(4)))*cos(y(2)) - (ge*cos(y(2)))/y(1) + 

(1/m)*0.5*CL*S*y(1)*(rhoe*exp(-y(4)/H))*cos(phi); 

end 
  

%  Altitude Equation 

ydot(4,1)= y(1)*sin(y(2)); 
  

%  Along-track Distance Equation (in along track direction) 

ydot(5,1)= y(1)*cos(y(2)); 
  

%  Ground Distance Equation (in North direction) 

ydot(6,1)= y(1)*cos(y(2))*cos(y(3)); 
  

%  Ground Distance Equation (in East direction) 

ydot(7,1)= y(1)*cos(y(2))*sin(y(3)); 
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APPENDIX C 

ALGORITHM TO PLOT AIR DENSITY 

 
 
function plot_air_density 

% Plot the density of the Earth's atmosphere (in kg/m^3) as a function 

%   of altitude from 122 km to sea level. 

 

global hnot rhoe rho H D x 

  

% limits of altitude (m) 

  start_altitude = 0; 

  end_altitude = hnot; 

  rhonot = rhoe;  % density of air at sea level (kg/m^3) 

  scale_height = H;  % scale height of the Earth's atmosphere (in meters) 

 

% Walk through the range of altitude, calculating the density at 

    for (i = 1 : length(D)) 

        altitude = D(i); 

        rho(i) = rhonot * exp(-altitude/scale_height); 

    end 

  

  figure(14), clf; 

  semilogx(rho, D, 'b'); 

  xlabel('Density of air (kg/m^3)'); 

  ylabel('Height above sea level (m)'); 

  

end 
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