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Abstract 

Effects of temperature and shot-peening intensity on fretting fatigue behavior of 

Ti-6Al-4A were investigated in this study.  S-N curves were obtained for both room and 

elevated temperatures (260 °C) for two different shot-peened intensities (4A and 10A). 

Stress relaxation behavior under both fretting fatigue at elevated temperature and 

temperature exposure only were also investigated after their measurements were 

calculated using X-ray diffraction method. The crack initiation location and the crack 

angle orientation along the surface were determined using optical and scanning electron 

microscopy (SEM). Cracks initiated near the trailing edge of the tested specimens. Cracks 

initiated on the contact surface for both specimens with 4A and 10A shot-peened 

intensities tested at elevated temperature.  Finite element analysis was preformed by 

commercially available software, ABAQUS, to obtain contact region state variables such 

as stress, strain and displacement. Those state variables were needed for the computation 

of fretting fatigue parameters. Fatigue parameters, such as stress range, effective stress 

and modified shear stress range (MSSR), were analyzed. It was found that there was 

relaxation of residual compressive stress during fretting fatigue at room and elevated 

temperature, greater stress relaxation occurred when higher temperature was applied. 

Also, both 4A and 10A specimens had the same percentage of residual stress relaxation 

due to temperature exposure only. Further, elevated temperature conditions negate the 

effect of shot-peening, thereby providing no improvement in fatigue life. On the other 

hand shot-peening at room temperature conditions improved fatigue life due to shot-

peening. Both shot-peening intensities at room temperature provided an improvement to 
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fatigue life with the 10A intensity providing the greatest extension to fatigue life. Also, 

the (MSSR) parameter was effective in characterizing the fretting fatigue behavior in 

terms of fatigue life, crack initiation location and orientation.  
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 EFFECTS OF TEMPERATURE AND SHOT-PEENING INTENSITY ON FRETTING 

FATIGUE BEHAVIOR OF TITANIUM ALLOY TI-6AL-4V 

 
 
 
 

I. Introduction 

1.1. Fretting Fatigue 

Fretting fatigue is a phenomenon that causes damage in components under 

vibratory load due to their localized relative motion. This motion leads to premature 

crack initiation and failure, causing reduction in fatigue life. Fretting fatigue is the cause 

of high cycle fatigue failure which is common in turbine engines; therefore it is of a great 

interest for the United States Air Force. Fretting fatigue can occurs at the interface of 

components such as the disk slot and blade attachment (Figure 1) in the fan, compressor 

or turbine section of a turbine engine and could reduces the service life of components 

and if not detected could lead to a catastrophic failure. In order to prevent such failures 

severe reduction in service life of components had to be implemented to insure safe 

operation. This resulted in high maintenance cost and reduced operation hours. Research 

in the fretting fatigue area could provide a better understanding on the crack initiation 

mechanism that will help to develop techniques that will be able to decrease maintenance 

cost and increase operating hours for newly designed components. Many studies have 

been conducted on different areas of fretting fatigue in an effort to better understand this 

phenomenon and provide solutions. Researchers formulated different fatigue parameters 
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to investigate and predict crack initiation mechanism. In Chapter II  formulation and 

parameters effecting fretting fatigue will be discussed. 

1.2. Shot-peening  

One of the most common cold working processes used to enhance the plain 

fatigue and fretting fatigue performance is shot-peening. This process involves the 

bombardment of the material surface with small, hard steel balls. This action causes a 

biaxial yielding, which creates a residual compressive stress and grain distortion near the 

shot-peened surface. At the same time a compensatory tensile stress within the interior is 

also created. The residual compressive stress plays a critical role in fretting fatigue crack 

initiation and crack propagation retardation [1]. There are several factors/variables in 

shot-peening process which can have considerable effect on the fatigue performance. One 

of them is the shot-peening intensity. It was observed the higher the intensity from 4A to 

10A leads to higher level of tensile stress and moves the boundary between negative and 

positive stress to a larger depth. It was also observed that an increase in intensity 

practically did not affect the maximum value of residual compressive stress on the 

contact surface. Moreover, it has been reported that the residual stress is subject to 

relaxation during fretting fatigue cycles [2]. Original residual stress along with stress 

relaxation phenomenon modifies contact stress profiles and causes different operating 

performance in fretting fatigue life.  

1.3. Elevated Temperature 

In many applications, mechanical components have to function at elevated 

temperatures. One such important example is blade/disk dovetail joints in a gas turbine 

engine as shown in Figure 1. Unlike certain alloys Ti-6Al-4V showed no significant 
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change in the coefficient of friction and wear rate at elevated temperature [3,4,5]. When 

unpeened components were subjected to fretting fatigue at room temperature and 

elevated temperature 260°C no change in fatigue life was observed [6]. When shot-

peening components are subjected to fretting fatigue at elevated temperature, thermal 

and/or thermomechanical stress relaxation can occur. Thermal relaxation action is 

essentially a thermal recovery process in which elevated temperature foster annihilation 

of crystalline defects, and thermomechanical relaxation is a mechanism, which couples 

thermal and mechanical effects [2]. It was reported that relaxation of residual 

compressive stress occurred during fretting fatigue at room and elevated temperatures, 

which in turn manifested in reduction of fretting fatigue life, and stress relaxation due to 

elevated temperature and mechanical load (i.e. fretting fatigue) were independent 

processes [7]. 

1.4. Purpose and Objectives 

As mentioned earlier fretting fatigue life is significantly reduced when compared 

to plain fatigue enforcing a high cost for operation and maintenance inspections and 

repairs. In order to reduce this cost and improve performance of components undergoing 

fretting fatigue extensive studies have been conducted to analyze different variables such 

as environmental corrosion, elevated temperature, shot-peening process, fretting pad 

geometry, axial load frequency, and contact load frequency [8,9,2,7,10,11,1,12]. Most of 

the previous studies focused more or less on one of the previously mentioned variables. 

In real life application a number of variables could be coupled at the same time. This 

study is focused in that direction where the effect of different shot-peening intensity 

combined with the effect of elevated temperature was investigated.  This investigation 
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was conducted to help engineers better understand the relation between shot-peening 

intensity and elevated temperature.  

The primary purpose of this study is to investigate the fretting fatigue behavior of 

titanium alloy Ti-6Al-4V at elevated temperature (260 ºC) subjected to different shot-

peened intensities (4A and 10A). The elevated temperature was chosen to be (260 ºC) due 

to the fact that titanium alloy Ti-6Al-4V is a material commonly used in turbine engine 

components and its maximum usage temperature is about 275 ºC. Constant amplitude 

fretting fatigue tests were conducted over a wide rang of maximum applied axial stresses 

σmax = 333 to 666 MPa with stress ratio of R = 0.1. A cylindrical-end shape with 50.8 mm 

radius was chosen as the fretting pad geometry which was pressed against the specimen 

surface with a constant normal load of 1335 N. In addition, experiments were conducted 

at both room and elevated temperature 260 °C so that comprehensive comparisons could 

be made based on different shot-peening intensities at two temperatures. Also, shot-

peening intensity effects on the crack initiation location, and crack propagation behavior 

will be investigated in this study. Three magnitudes of shot-peening intensity (Almen) 

were investigated in this study (4A, 7A and 10A) all with 100% surface coverage of the 

specimens. All data for the 7A shot-peened intensity at both room and elevated 

temperatures were obtained in previous studies by Yuskel [1] and Lee [2]. Some of the 

data for the 4A and 10A shot-peening intensity at room temperature was obtained from a 

previous study by Martinez [10] and Sabelkin [11]. In this study S-N curves at room 

temperature for the 4A and 10A shot-peened intensity were completed and full S-N 

curves at elevated temperature for the 4A and 10A specimens were developed.  
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The emphasis of this study was laid down on the correlation between elevated 

temperature, shot-peening intensity and fretting fatigue mechanisms in terms of fatigue 

life, crack initiation location, and crack initiation orientation. Fretting fatigue 

mechanisms at elevated temperature were also compared with those at room temperature. 

In addition, effects of shot-peening intensity were also investigated at room and elevated 

temperature conditions. Effects of thermal load on stress relaxation were also investigated 

using temperature exposure only tests. Shot-peening induced residual stress profiles were 

determined with different stress relaxation rates to investigate the modified shear stress 

range (MSSR) fatigue predictive parameter for its effectiveness in predicting fretting 

fatigue behavior in terms of fatigue life, crack initiation location, and crack initiation 

orientation.   

1.5. Methodology 

 The complexity introduced by real component geometry and load bearing 

condition of turbine engines might make replicating the exact configuration as a turbine 

engine a complex, time consuming and an expensive task. Therefore, a simplified 

cylinder-on-flat model Figure 2 was adopted as the experimental setup in this study for 

the sake of investigating fretting fatigue behavior. A uni-axial servo-hydraulic machine 

was used to apply desired load conditions and record experimental results. Two heaters, 

placed at the front and back of the specimen, were used to heat and maintain the 

temperature in the gage section of the specimen at (260 ºC) for the elevated temperature 

part of the study. The fatigue life diagrams, i.e. S-N curves were developed to investigate 

the effect introduced by elevated temperature and shot-peening intensity.  A furnace was 

used to conduct temperature exposure only tests at 260 °C. Optical and scanning electron 
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microscopy (SEM) was used to examine the fracture surface, contact half-width, crack 

initiation location, crack initiation orientation. Finite element analysis (FEA) was 

conducted to compute local fretting variables such as stress, strain, and displacement. The 

X-ray diffraction technique was applied to measure the shot-peening induced residual 

stress on the surface, which accompanied with stress relaxation which was superimposed 

into FEA stress solutions for the development of fatigue predictive parameters. X-ray 

diffraction technique was also used to measured residual stress after fretting and 

temperature exposure only tests. The stress evolution, stress concentration, contact half-

width, and other variables were also analyzed.  
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Figure 1.  Blade/Disc Dovetail Joint in a Turbine Engine. 
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Figure 2: Simplified Fretting Fatigue Configuration 
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II. Background  

Many studies have been conducted to understand the mechanism of fretting 

fatigue. This chapter is devoted to the analyses of contact mechanics in terms of contact 

width, Hertzian peak pressure, etc. The effect of shot-peening process and intensity is 

also covered. Also, elevated temperature as a factor contributing in fretting fatigue will 

be discussed. Stress relaxation behavior of shot-peened specimens under fretting fatigue 

is discussed as well. Fatigue parameters are also presented and summarized in this 

chapter.   

2.1. Typical Fretting Fatigue Configuration 

Pervious studies have developed a general and simple test scheme as shown in 

Figure 5 to improve the understanding of the fretting fatigue phenomenon and isolate its 

controlling variables which would lead to a simplification in analysis. In this general 

fretting fatigue configuration, fretting specimen and pads are presented as two 

mechanical components in contact with each other. Axial stress, σaxial, is typically applied 

by a hydraulic test machine at one end of a specimen that is gripped at the other end. The 

applied axial load can be controlled to produce fatigue loads with different frequency, 

waveform, magnitude and stress ratio to simulate the load conditions of interest. At the 

same time the fretting pads are pressed against the specimen by a constant contact load P 

in the direction perpendicular to an applied axial load.  

A tangential load known as shear load (Q) is induced along the contact surface 

when an axial load and a contact load are applied. This tangential load forces pads and 

specimens to move relative to each other in a partial slip condition. The tangential load is 

defined as half of the difference between the applied axial load and the load measured at 



 10

the gripped end of specimens. A contact region along the contact surface of a pad and 

specimen is created by fretting fatigue. The edge of the contact region near the fixed end 

is called the leading edge and the edge of the contact region near the applied axial loads 

is defined as the trailing edge. Contact half-width (a) incorporates both stick-zone (c) and 

partial slip zones and the center of contact width is defined as the origin of x-direction see 

Figure 3 and Figure 4. In this study a similar fretting fatigue configuration were 

cylindrical-end pads in contact with a flat specimen was used.  

2.2. Shot-peening Surface Treatment 

2.2.1. Introduction to Shot-peening   

Surface treatment such as shot-peening is widely known to improve material 

strength under fatigue conditions and is commonly used in aerospace industries where 

most of the main structural components are subjected to cyclic loading. Fretting fatigue 

can damage microstructure on the highly stressed contact surface which fosters crack 

nucleation. In a shot-peening process a high velocity spherical projectiles called shot such 

as iron, glass or ceramic beads are used to bombard material surface, creating plastically 

deformed surface layer constrained by un-deformed interior underneath as seen in   

Figure 6. This action introduces a biaxial residual stress profile on the peened material, 

which is compressive near the peened surface and tensile away from the peened surface 

as shown in Figure 7.  

The shot-peening induced compressive stress plays a critical role in crack 

initiation and propagation retardation mechanism under plain and fretting fatigue 

conditions. This residual compressive stress can close a pre-existing crack tip at the early 

stage of fatigue life and can reduce crack propagation rate by compensating detrimental 
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tensile stress applied by global loads [13]. In order to optimize shot-peening induced 

fatigue strength, shot-peening controlling parameters should be manipulated carefully 

including shot-peening media, shot velocity or pressure, angle of impingement, shot 

hardness and shape and intensity.  In this study, 4A and 10A shot-peened specimens were 

used to investigate elevated temperature and shot peening intensity effect on fretting 

fatigue behavior. Also, shot-peening induced residual stress was superimposed into 

results from finite element analysis in order to evaluate the effectiveness of fatigue 

predictive parameters.  

2.2.2. Shot-peening Intensity   

The shot-peening intensity, known as Almen intensity, is a measurement of shot-

peening stream energy and is directly related to the induced residual stress magnification 

and distribution. Using larger beads and/or increasing shot velocity of shot stream can 

increase Almen intensity. Martinez [10] and Sabelkin et al. [11] investigated fretting 

fatigue behavior under shot-peening specification 4, 7, and 10 Almen intensity. They 

showed that the residual stress on a peened surface was not significantly different under 

different Almen. On the other hand underneath the peened surface, a significant 

difference in the residual stress profile was observed. Also, the greater the peening 

intensity the greater the compressive depth and magnitude were for specimens under 

different Almen intensity. It was also shown that the crack initiation location occurred on 

the peened surface under 4A and 7A, but in the interior under 10A due to the greater 

residual tensile stress magnitude induced by the 10A shot-peening process. In this study 

all shot-peened specimens were peened under 4 and 10 Almen intensity to investigate the 
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effects of elevated temperature and shot-peening intensity under fretting fatigue 

configuration. 

2.2.3. Residual Stress Relaxation Behavior 

Relaxation behavior has been reported to be a resultant of the cyclic loading 

conditions. This relaxation effect reduced the improvement on material fatigue strength 

under fretting fatigue conditions [2,10,14]. Martinez et al [10,14] used specimens peened 

with specification of 7A±1 under 100% surface coverage to investigate the contribution 

of fretting fatigue on residual stress relaxation behavior. It was shown that before a 

specimen failed due to fretting fatigue cycles, residual stress profile became non-uniform 

and anisotropic within a fretting scar on the contact surface. Moreover, stress relaxation 

increased with the increase of fretting fatigue cycles until a specimen failed. After failure 

occurred, full relaxation of residual stress was measured at crack location, accompanied 

with no relaxation far away from the contact region. As a fretting region was approached, 

residual stress was observed under some degree of relaxation on the contact surface. Lee 

et al. [2,7] showed that, under fretting fatigue at laboratory temperature, the same 

percentage of stress relaxation was measured to occur from the contact surface 

throughout different depths of peened specimens. Also, stress relaxations due to elevated 

temperature and mechanical load were found to be independent processes. 

In other researches [1,2,15,16] it was found that residual stress relaxation due to 

fretting fatigue cycles affected fatigue life and crack initiation location significantly. 

Larger relaxation caused more fatigue life reduction and might shift crack initiation 

location from the interior of specimens to the contact surface. 
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Figure 32. Crack Initiation Orientation for a 10A specimen, θ = -55˚  
 
 
Photo Taken from Test 13, load condition: σmax=444.44 MPa, σmin=44.44 MPa 
(equivalent to θ = 35˚) 
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Figure 33. Effects of temperature exposure (260° C) and exposure time on the stress 
relaxation at the specimens’ surface. 
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Figure 34. Residual stress profile along the surface of the top half of a failed 4A 
specimen fatigued at elevated temperature 
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Figure 35. Normalized residual stresses (NRS) versus relative fretting fatigue cycle (N/Nf) 
for both room temperature and elevated temperature 260° C 

 
Note: 
The fitting curve shown in Figure 35 is used to approximately demonstrate the trend 
observed from (NRS). 
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Figure 36 Variation of stress at the contact surface of the fretting specimen. 

 
Note: 
125 and 95 GPa of elastic moduli was used for the specimen fatigued at room 
temperature and 260˚ C, respectively. Load Condition: σmax =390 MPa, σmin =39 MPa 
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(a) σxx Stress Profile at Different Depths with 0% RS (Full relaxation) 
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(b) σyy Stress Profile at Different Depths with 0% RS ( Full relaxation) 
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(c) σxy Stress Profile at Different Depths without 0% RS (Full relaxation) 

Figure 37. Comparison of Stress Profile at Different Depths for Test 2, Step 4 

Load Condition: σmax =555 MPa, σmin =55 MPa 
4A specimen tested at 260° C 
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(a) σxx Stress Profile on Contact Surface with Different amount of Residual Stress 
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(b) σyy Profile on Contact Surface with Different amount of Residual Stress 
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(c) σxy Profile on Contact Surface with Different amount of Residual Stress  

Figure 38. Comparison of Stress Profile under the Influence Different amount of Stress     
Relaxation along Contact Surface for Test 2, Step 4 

 
Load Condition: σmax =555 MPa, σmin =55 MPa 
4A specimen tested at 260 ºC 
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(a) σxx Stress Profile at a Depth of 256 μm with Different amount of Residual Stress  



 111

-300

-250

-200

-150

-100

-50

0

50

100

150

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x/aRuiz,max

σ
yy

 (M
pa

)

0%RS

50%RS

100%RS

 
(b) σyy Stress Profile at Depth of 256 μm with Different amount of Residual Stress  
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(c)  σxy Stress Profile at a Depth of 256 μm with Different amount of Residual Stress  

Figure 39. Comparison of Stress Profile under the Influence of Different amount of Stress 
Relaxation at 256 μm Depth for Test 2, Step 4 

Load Condition: σmax =555 MPa, σmin =55 MPa 
4A specimen tested at 260˚ C 
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(a) MSSR under Influence of Residual Stress at Different Depths for 4A specimen tested 
at room temperature from a previous study [5] 
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(b) MSSR under Influence of Residual Stress at Different Depths for 4A specimen tested 
at 260° C for Test 2 

 
Figure 40. Comparison between MSSR under Influence of Residual Stress at Different 

Depths for 4A specimen at room temperature and 260° C   
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(a) MSSR under Influence of Residual Stress at Different Depths for 7A specimen tested 
at room temperature from a previous study [2] 
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(b) MSSR under Influence of Residual Stress at Different Depths for 7A specimen tested 
at 260° C from a previous study [2] 

 
Figure 41. Comparison between MSSR under Influence of Residual Stress at Different 

Depths for 7A specimen at room temperature and 260° C   
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(a) MSSR under Influence of Residual Stress at Different Depths for 10A specimen 
tested at room temperature from a previous study [5] 
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(b) MSSR under Influence of Residual Stress at Different Depths for 10A specimen 
tested at 260° C for Test 2 

 
Figure 42. Comparison between MSSR under Influence of Residual Stress at Different 

Depths for 10A specimen at room temperature and 260° C   
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(a) MSSR –Nf for 4A Specimens with 0% Residual Stress 
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(b) MSSR –Nf for 4A Specimens with 50% Residual Stress 
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(c) MSSR –Nf for 4A Specimens with 100% Residual Stress 

 
Figure 43. Comparison of MSSR-Nf for 4A Specimen tested at room temperature and 

260° C with 0%, 50% and 100% Residual Stress 
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(a) MSSR –Nf for 7A Specimens with 0% Residual Stress 
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(b) MSSR –Nf for 7A Specimens at 50% Residual Stress 
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(c) MSSR –Nf for 7A Specimens at 100% Residual Stress 

  

Figure 44. Comparison of MSSR-Nf for 7A Specimen tested at room temperature and 
260° C with 0%, 50% and 100% Residual Stress 
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(a) MSSR –Nf for 10A Specimens at 0% Residual Stress 
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(b) MSSR –Nf for 10A Specimens at 50% Residual Stress 
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(c) MSSR –Nf for 10A Specimens at 100% Residual Stress 

  

Figure 45. Comparison of MSSR-Nf for 10A Specimen tested at room temperature and 
260° C with 0%, 50% and 100% Residual Stress 
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(a) MSSR –Nf for 4A, 7A and 10A Specimens at 0% Residual Stress 
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(b) MSSR –Nf for 4A, 7A and 10A Specimens at 50% Residual Stress 
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(c) MSSR –Nf for 4A, 7A and 10A Specimens at 100% Residual Stress 
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(d) Comparison between MSSR –Nf for 4A, 7A, 10A Specimens tested at RT with 

50%RS and 4A,7A,10A Specimens tested at 260° C with 0% RS 
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(e) Comparison between MSSR –Nf for 4A, 7A, 10A Specimens tested at RT with 
50%RS, 4A,7A,10A Specimens tested at 260° C with 0% RS, and Unpeened 

specimens tested at RT 

 

Figure 46. Comparison of MSSR-Nf for 4A, 7A and 10A Specimens tested at room 
temperature and 260° C with 0%, 50% and 100% Residual Stress 
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Table 1. Summary of Experimental Results 
Test 

# 
Temp

. 
Shot 

peened σmax σmin 

 
Δσ 

 

 
σeff 

 
Qmax Qmin Nf fFEA 

  (Almen) (MPa) (MPa) (MPa) (MPa) (N) (N) (Cycles)  

1 260°C 4A 666.66 66.66 600 635.8 722.99 -410.64 17625 1 

2 260°C 4A 555 55 500 529.53 1072.41 -279.93 134935 1 

3 260°C 4A 444.44 44.44 400 423.86 1153.08 -660.12 108065 1 

4 260°C 4A 390 39 351 371.94 1111.08 -625.69 254929 1 

5* 260°C 7A 666.66 66.66 600 635.8 843 -715 14682 1 

6* 260°C 7A 555 55 500 476.85 1178 -452 37962 1 

7* 260°C 7A 444.44 44.44 400 423.86 1139 -439 157554 1 

8* 260°C 7A 390 39 351 371.94 1113 -567 286684 1 

9* 260°C 7A 333.33 33.33 300 317.89 702 -412 4010000 1 

10 260°C 10A 666.66 66.66 600 635.8 751.63 -290.97 5201 1 

11 260°C 10A 555 55 500 529.54 978.16 -597.41 80161 1 

12 260°C 10A 444.44 44.44 400 423.86 1242.5 -609.38 297463 1 

13 260°C 10A 390 39 351 371.94 1114.15 -601.69 1541799 1 

14 260°C 10A 666.66 66.66 600 635.79 1401.21 -540.39 7818 1.1 

15 RT 4A 666.66 66.66 600 635.8 1489.76 -465.31 92650 1.2 

16 RT 4A 500 50 450 476.85 1364 -666 1950000 1.1 

17 RT      4A 400 40 360 381.48 1012.99 -662.62 5222001 1 

18 RT 4A 600 60 540 572.22 1846.5 -639.88 73024 1.4 

19** RT 7A 666.66 66.66 600 635.8 1013.29 -583.06 62501 1 

20** RT 7A 555 55 500 529.54 1643.35 -793.07 124222 1.3 

21** RT 7A 500 50 450 476.85 1482.76 -741 155545 1.2 

22** RT 7A 444.44 44.44 400 423.86 631.99 -483.64 2415267 1 

23** RT 7A 422.22 42.22 380 402.67 916.52 -577.16 3562668 1 

24 RT 10A 666.66 66.66 600 635.8 1953.19 -768.46 162154 1.5 

25 RT 10A 600 60 540 572.22 1488.94 -614.54 247213 1.2 

26*** RT 10A 500 50 450 476.85 1607 -440 3995527 1.3 

27*** RT 10A 465 46.5 418.5 443.47 1278 -603 4561168 1 

Note:  
* Data from lee’s tests [2] 
** Data from Yuksel’s tests [1] 
*** Data from Martinez’s tests [3] 
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Table 2. Summary of maximum MSSR from this Study with full relaxation (0%RS) 

TEST MSSRmax Δτ Δτcrit θ RΔτ σmax σmin depth x/amax 
# (MPa^0.5) (MPa) (MPa) (deg)  (MPa) (MPa) μm  

1 36.40 648.6332 587.35 38.9 -0.20 590.44 -103.64 0 0.93 

2 35.41 617.4917 554.25 38.2 -0.22 560.23 -102.83 0 0.91 

3 33.88 595.8301 511.10 37.4 -0.32 509.07 -145.26 0 0.91 

4 32.77 557.1208 475.45 37.5 -0.33 479.36 -144.11 0 0.92 

10 38.41 634.192 578.32 40 -0.18 600.18 -93.70 0 0.94 

11 35.32 622.3181 546.21 39.1 -0.27 563.04 -130.95 0 0.93 

12 34.09 606.2007 523.00 36.6 -0.31 510.22 -142.02 0 0.89 

13 32.73 554.7164 474.53 37.5 -0.33 477.89 -139.96 0 0.92 

14 38.64 733.0206 650.34 38.1 -0.24 677.16 -123.78 0 0.89 

15 40.60 833.2374 731.63 36.8 -0.27 734.22 -142.59 0 0.89 

16 33.00 749.1522 650.92 36.9 -0.29 690.19 -126.26 0 0.88 

17 34.00 622.9717 522.89 37.8 -0.37 508.01 -176.84 0 0.93 

18 42.60 916.7398 781.84 36.5 -0.34 832.89 -154.56 0 0.89 

24 39.90 981.8623 837.29 35 -0.34 856.19 -159.68 0 0.86 

25 41.60 812.1402 701.14 37.6 -0.31 714.89 -163.35 0 0.91 
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 VII. Summary, Conclusions, and Recommendations 

 

7.1. Summary 

Nearly all work accomplished to date has focused on only one fretting fatigue 

parameter at a time, and only little effort has been devoted to investigate the effects 

resulting from varying a combination of parameters. In reality, some mechanical 

components of a turbine engine are operated under high temperature environment, and 

shot-peening is one of the most comment surface treatments used to improve material 

strength under fatigue conditions. Therefore, a better understanding of how variation of 

shot-peening intensity under elevated temperature conditions affects the fretting fatigue 

behavior which in turn can help engineers to better account for its effects, and hence 

more explorations focusing on elevated temperature and shot-peening intensity effects are 

imperative. The main objective of this study was to investigate the effects of temperature 

and shot-peening intensity on fretting fatigue behavior.  

Fifteen fretting fatigue tests on specimens shot-peened with 4A and 10A 

intensities were conducted, including nine elevated temperature tests and six room 

temperature tests. The thickness for all specimens was 6.35 mm. Also, four temperature 

exposure tests were conducted; the specimens were exposed to a temperature of 260 °C 

for 2 hrs and 24 hrs. X-ray diffraction method was used to measure residual stress values 

for both fretting fatigue tests and temperature exposure tests. Fretting fatigue tests were 

conducted over a wide range of maximum stresses σmax = 333 to 666 MPa with stress 

ration of R = 0.1. These global loads were applied by a computer-controlled uniaxial 

servo-hydraulic test machine, using a peak valley compensator to reduce the variation 
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between control and feedback signals. Applied load outputs were monitored and recorded 

continuously until specimens fractured into two pieces, and induced tangential loads were 

determined as the half of difference between lower axial load and upper axial load. These 

experimental load outputs were then utilized as the load inputs for FEA modeling. 

An optical and a scanning electron microscope were used to examine the fracture 

surfaces, crack initiation locations, and crack orientations. The determination of crack 

initiation location for the specimens was then utilized for superimposing of residual stress 

into MSSR calculation. Also, the crack initiation locations and orientations were used to 

verify the applicability of MSSR predictions on crack initiation mechanism. 

 Since the infinite half space assumption was violated in this study, analytical 

solutions were no longer valid, and FEA, a numerical method that doesn’t require the 

infinite half-space assumption to be satisfied, was imperative. Also, the commercially 

available software, ABAQUS, was used for conducting FEA in this study. For all 

simulations, the experimental contact load was always applied initially as the first step to 

prevent the occurrence of gross slip conditions, followed by the measured maximum 

axial load as the second step. After step 2, the load sequence was applied based on the 

experimental peak/valley values and frequencies. For the experimental elevated 

temperature tests, since the specimens were heated till a stable temperature of 260 °C was 

reached before starting the fretting fatigue cycles, the FEA model simulation of elevated 

temperature was only applied through the material constant at that temperature. The static 

coefficient of friction was chosen as a constant, 1.0, for all tests except for those where 

maximum Q/P < 1.0 from experimental results was not satisfied. For these exceptions, 

the maximum Q/P from experimental observations was applied as the static coefficients 
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of friction instead. The validation of the FEA model was accomplished by comparing 

with the Ruiz solutions for contact half-width, stress profiles and Hertzian peak value. 

Effect of different variables such as the variation of σxx, σyy and σxy and the steady state in 

FEA model were also conducted.  

A shot-peening process introduced residual stresses into peened specimens, which 

was compressive near the peened surface and tensile after some depth within the interior. 

4A and 10A specimen had relatively close compressive residual stress value at the 

surface, but location and value of the zero and maximum tensile residual stress was 

different, the 10A specimen had a zero residual stress at a greater depth location and a 

greater tensile residual stress than the 4A specimen. During fretting cycles, residual stress 

was subjected to relaxation, which was 0% before applying fretting fatigue cycles and 

100% after a specimen broke into two pieces at failure location. This relaxation occurred 

uniformly throughout the specimen at all depths and elevated temperature fostered more 

relaxation. However, the correlation between relaxation rates and fretting fatigue life is 

still unclear. A residual stress relaxation rate hypothesis was postulated by the present 

author for room and elevated temperature 260 °C conditions which was based on 

experimental results of stress relaxation behavior under both room and elevated 

temperatures. This hypothesis assumed that the amount of stress relaxation was greater at 

elevated temperature conditions than that found in the room temperature condition. The 

corresponding stress relaxations to each case were superimposed into FEA stress 

solutions to investigate the performance of fatigue parameters in fretting fatigue 

mechanism prediction.  
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Three fatigue parameters: the stress range, effective stress, and MSSR were 

investigated for their effectiveness on predictions on fatigue life and crack initiation 

mechanisms. The stress range and the effective stress parameters were formulated based 

on global applied axial loads and didn’t take into account residual stress as well as local 

stress distribution. The critical plane-based fatigue parameter, MSSR, incorporates the 

influence from residual stress and contact stress, which should be the case since fretting 

fatigue configuration introduced a non-uniform stress distribution near a contact region. 

MSSR was discussed about its fretting fatigue mechanism predictions including fatigue 

life, crack initiation location, and orientation.     

7.2. Conclusions 

1. Elevated temperature 260 °C negates the effect of shot-peening of 4A, 7A and 10A 

intensities. Elevated temperature condition fostered a greater residual stress 

relaxation than the room temperature condition.  

2. 4A, 7A and 10A shot-peening intensities improved fatigue life under fretting 

fatigue conditions at room temperature. All shot-peening intensities provided an 

extension to fatigue life and the 10A shot-peening intensity provided the greatest 

extension to fatigue life. 

3. Residual stress relaxation could be due to both thermal and mechanical effects. All 

4A, 7A and 10A specimens relaxed by the same percentage under temperature 

exposure only. Thermal and mechanical loads are major contributors in residual 

stress relaxation phenomenon. 

4. Based on the stress range for specimens tested at elevated temperature, fatigue life 

was significantly reduced for the 4A, 7A and 10A. On the other hand, at room 
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temperature the fatigue life was extended due to shot-peening of 4A, 7A and 10A 

intensities.  

5. Based on the effective stress for specimens tested at elevated temperature, fatigue 

life was significantly reduced for the 4A, 7A and 10A. On the other hand, at room 

temperature the fatigue life was extended due to shot-peening of 4A, 7A and 10A 

intensities.  

6. Cracks initiated near the trailing edge in all fretting fatigue tests. For all specimens 

tested at elevated temperature, cracks occurred on the contact surface.  

7. Under fretting fatigue configuration with alternating axial loads applied, the 

maximum stress concentration for σxx was noticed to occur near the trailing edge, 

and the σyy stress distribution was no longer symmetric with respect to the center of 

a contact zone. 

8. The MSSR parameter was effective to collapse fatigue life data into a single curve 

for specimens tested at elevated temperature 260 °C. Similar results were also 

observed for specimens tested at room temperature. When the different stress 

relaxation assumption was imposed into the 4A, 7A and 10A specimens, MSSR 

parameter is effective in collapsing fatigue data from both room and elevated 

temperature conditions within a scatter band.  

9. The MSSR parameter was effective in predicting crack initiation location and crack 

initiation orientation for fretting fatigue behavior under both room and elevated 

temperature conditions. 

10. When room temperature tests were represented by imposing 50%RS (i.e. half 

relaxation) and elevated temperature tests were represented by imposing 0%RS (i.e. 
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full relaxation) the MSSR parameter was most effective it collapsing fatigue life 

data into a single curve for all specimens tested at room temperature and 260° C. 

Also, under these conditions the MSSR was most effective in predicting crack 

initiation location and crack initiation orientation for fretting fatigue behavior 

under room and elevated temperature. 

7.3. Recommendations for Future Work 

This study performed fretting fatigue analysis on titanium alloy under both 

elevated 260 °C and room temperature 25˚ C conditions. Since elevated temperature was 

found to negate the effect of shot-peening in this study, further effort should be devoted 

to investigate different alloys that might have better performance under elevated 

temperature and fretting fatigue conditions. Also, other surface treatments which can 

produce different stress profile such as laser-peening should be investigated under 

elevated temperature conditions.  

Surface treatments such as a shot-peening process produce residual stress 

distribution, and this residual stress is subjected to relaxation due to mechanical and 

thermal loads. Although residual stress would completely relax at failure location, the 

correlation between relaxation rate and fretting fatigue cycles is still a research issue. For 

future work it is recommended that theoretical approaches be developed for examining 

stress relaxation behavior.  
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