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Abstract 

 
 The structures of aerated-liquid jets injected into a supersonic crossflow have been 

studied experimentally.  Aerated-liquid injectors with diameters of 0.020” (0.5 mm), 0.040” (1.0 

mm) and 0.060” (1.5 mm) were flush mounted on the bottom plate of a supersonic wind tunnel 

to provide normal and angled injection.  Freestream Mach number and temperature were held 

constant at 1.94 and 500 °F (960 °R), respectively.  Water at room temperature was used as the 

liquid injectant and nitrogen gas used as the aerating gas.  Wide ranges of test conditions for 

injection angle (θ), injector orifice diameter (d0), jet-to-air momentum flux ratios (q0), and gas-

to-liquid ratios (GLR), were studied.  Injection angles were varied from 45° downstream to 90° 

(normal to freestream).  Jet-to-air momentum flux was varied from 1% to 15% of the freestream 

and gas-to-liquid ratios from 0% (pure-liquid injection) to 10%.  Shadowgraph and laser sheet 

illumination techniques were used for spray visualization while a phase Doppler particle 

analyzer (PDPA) was utilized to quantitatively measure droplet and spray plume properties.  The 

data from all three methods were used to develop correlations for the droplet and spray plume 

properties for aerated-liquid jets using a linear fit of the base-10 logarithm coefficients.  

Correlations relating penetration height and spray plume width of the injected spray to the above 

listed parameters, as well as the normalized axial distance downstream of the injector, x/d0, were 

formulated based on all three measurement techniques.  Results indicate that a reasonable 

prediction of penetration height, spray plume cross sectional area, and local equivalence ratio 

can be obtained from PDPA data, while other visualization techniques tend to under-predict such 

quantities. 
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                   STRUCTURES OF ANGLED AERATED-LIQUID JETS IN MACH 1.94 
                                                     SUPERSONIC CROSSFLOW
  
 INTRODUCTION 
 
 In the pursuit of aviation advances, three main goals have dictated much of the research 

to date: higher, faster, and farther.  Atmospheric flight has consistently striven to reach far above 

the ground, to fly at the utmost speed, and to span the vast distances that separate the peoples of 

the earth.  Particularly in the pursuit of speed, hypersonic airbreathing propulsion has been a key 

focus in the last several decades. 

 Hypersonic atmospheric flight is nothing new; the USAF X-15 regularly flew greater 

than Mach 5 during its ten year testing phase.  However, until recently, hypersonic velocities in 

powered atmospheric flight have only been obtainable through the use of rocket propulsion.  

This required the vehicles to carry large amounts of heavy oxidizer on board, limiting payload 

and/or crew capacity.  By developing an airbreathing hypersonic propulsion system, more 

internal space and weight-carrying capacity is available for accomplishing the mission. 

 To achieve such great speed, a method of capturing and compressing the incoming air is 

needed that will not generate excessive drag.  Thus, the rotating turbomachinery of turbojet (and 

later turbofan) engines could not be used to travel faster than high supersonic speeds, perhaps as 

high as Mach 2.5.  The ramjet engine was developed to achieve higher velocities without the 

drag penalty of the turbomachinery.  The ramjet uses its own high momentum to compress air 

from the atmosphere, combusting it with the fuel carried on board.  In a ramjet engine, the 

incoming air is compressed and slowed to subsonic speeds in order to mix and combust with the 

fuel.  Problems arise in speeds greater than about Mach 5, where temperature increases due to 

deceleration and compression of the incoming air heat the engine and/or vehicle above operable 

limits. 
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 The concept of a supersonic combustion ramjet (scramjet), a type of ramjet in which the 

incoming air is slowed to a low supersonic speed, rather than subsonic, was hypothesized in the 

early 1900’s, shortly after the advent of heavier-than-air flight, and explored in the years 

following World War II.  While the concept is fairly simple and straightforward, implementation 

has hardly been considered easy by the aeronautical community.  Rather, many key technical 

hurdles have been discovered and overcome in the pursuit of hypersonic atmospheric flight. 

 Of the many technological hurdles facing airbreathing hypersonic flight, a key stumbling 

block that still requires extensive research is the problem of igniting and maintaining the 

combustion process in the scramjet engine.  With current experimental engines measuring on the 

order of one meter in length, and internal flow velocities on the order of one kilometer per 

second, residence times of captured air approach one millisecond.  The ability to mix and ignite a 

combustible mixture in such an environment has been likened to “lighting a match in a 

hurricane.” 

 Of pivotal importance to achieving ignition and sustained combustion of a liquid fuel/air 

mixture is the ability to atomize the fuel spray as it is injected into the freestream air.  

Atomization processes reduce the droplet size of the injected fuel, promoting evaporation of the 

fuel into a gaseous phase, which is required for combustion.  Many different techniques have 

been utilized in liquid spray systems to accomplish atomization, though because of weight and 

size limitations, the aeration (a.k.a. barbotage or effervescent) technique has been chosen for 

scramjet considerations. 

 The aeration technique involves a process by which small, highly-pressurized bubbles of 

a gas are injected into a liquid flow.  These bubbles have the effect of 1) breaking up the liquid 

column prior to injection into the freestream air, and 2) adding momentum to the liquid spray, 
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thereby increasing its penetration height into a crossflow of air.  In typical scramjet fueling 

configurations, the liquid fuel would most likely be kerosene or a derivative, and gaseous 

hydrogen the aerating gas.  In this configuration, the choice of hydrogen as the aerating gas has 

the added benefit of promoting the ignition process because of the volatile nature of hydrogen 

gas, as well as introducing OH- radicals into the reaction, further promoting burning of the larger 

hydrocarbon chains. 

 In order to fully capitalize on the potential benefits of such a fueling scheme, the 

fundamental physics underlying the technique must be understood.  Studies have been conducted 

to determine the characteristics of aerated-liquid jets, from quiescent to subsonic to supersonic 

environments.  While studies conducted in quiescent environments have been helpful in 

understanding the basic phenomena involved in the liquid column breakup process as initiated 

by the aeration method, such studies are not representative of the types of environments 

encountered in a scramjet combustor.  By the nature of its design, the freestream flow is 

supersonic through a scramjet combustor, thereby requiring the study of aerated-liquid sprays in 

a supersonic environment.  However, previous studies conducted in subsonic environments still 

yield useful data, due to the presence of a localized subsonic region behind the flame-induced 

shock front during the combustion process. 

 Penetration height is a key factor in determining the effectiveness of a fuel injector in a 

scramjet combustor.  Because the incoming freestream air has a large amount of momentum 

itself, any fuel spray injected into it must have sufficient momentum to penetrate the boundary 

layer and provide sufficient fueling to the core flow.  Studies conducted with pure-liquid jets in a 

supersonic crossflow have shown that they lack sufficient momentum to penetrate deeply into 

the core flow, particularly when droplet sizes are small, starving the core of fuel and leading to 
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inefficient combustion.  Aerating the liquid jet introduces an effective net gain in momentum, as 

well as aiding in the atomization process, and therefore introduces greater amounts of small fuel 

droplets into the core flow. 

 It has been found through previous study that the angle of injection, the size and shape of 

the injection orifice, the ratio of jet to freestream air momentum flux, and the amount of aeration 

added to the spray all contribute in varying degrees to the amount of penetration height gained.  

However, these factors have not been thoroughly investigated, especially since the introduction 

of more highly detailed data collection techniques, such as phase Doppler particle anemometry.  

As such, it is necessary to investigate these contributing factors and develop a more thorough 

knowledge base of their effects on aerated-liquid sprays.  To aid in the future development and 

design of aerated-liquid injectors, correlations between these factors and spray penetration height 

are needed. 

 The objective of this study is to further characterize the spray plume emanating from an 

aerated-liquid injector and to develop more accurate correlations between penetration height of 

the spray plume, and the following four parameters: injection angle, injector orifice diameter, jet-

to-freestream momentum flux ratio, and gas-to-liquid ratio.  These correlations will prove useful 

in the future design of scramjet fueling mechanisms and should result in more effective ignition 

and more efficient combustion in the scramjet engine.  The following chapters provide a review 

of the work done previously in this field, a description of the test setup and methods of the 

present study, an analysis of the data collected, and conclusions arrived at from the data. 
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LITERATURE REVIEW 

 In order to combust, a fuel/air mixture must be in a gaseous phase.  As such, liquid fuels 

must first be atomized to create small droplets which will evaporate quickly, and thus react with 

the present oxidizer.  Kanury[1] gives a relationship of the amount of time it takes for a droplet of 

fuel to burn to physical properties of the fuel and air (see Eq. 1 below). 

( )1ln
8

2
0

+
≡

B

dt

l

gg
b

ρ
αρ  

Eq. 1

 
Because burning time of a droplet is directly related to the square of the droplet diameter, 

droplet size must be kept to a minimum in order to achieve a fast burning time.  It is evident that 

a fast burning time is conducive to quick initiation of a flame front, which is necessary in the 

short residence times encountered in scramjet combustors. 

Numerous methods have been employed to atomize liquid sprays in a variety of 

applications, ranging from agriculture to household products to the aerospace industry.  The 

most frequently employed atomization methods are pressure atomization, pneumatic 

atomization, and impinging jets.  Pressure atomizers work by simply injecting the liquid spray 

through an orifice at high velocity, typically with swirl, into relatively quiescent air.  This 

process forms an unstable conical film of liquid, which in turn leads to the generation of holes 

and waves in the film, initiating the break up of the film into drops.  These types of atomizers are 

commonly found in gas automotive applications. 

Pneumatic atomization uses a high velocity stream of air (or other gas) flowing by a 

relatively low velocity jet of liquid.  The resulting surface drag between the air and liquid flows 

produces distortions in the liquid jet and promotes the break up of the jet into fine droplets.  This 

type of atomization can be found in everyday use in items such as a paint spray gun or gas 
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turbine engines.  With the impinging jets technique, two jets of liquid are made to collide head-

on into each other, forming a sheet at the stagnation point with an unstable nature.  Alternatively, 

a single jet may be made to collide with a solid wall, with the same results.  Impinging jet 

atomizers have been widely used in liquid-fueled rocket motors in the past, though modern 

rocket motors now use pressure atomizers.[1] 

Of these three, the pneumatic atomizer produces the smallest average droplet sizes.  

Gretzinger et al.[2] were the first to thoroughly characterize the sprays of pneumatic nozzles and 

arrive at correlations between droplet size and nozzle parameters.  Not only was it confirmed that 

pneumatic atomization methods more efficiently produced smaller droplets than mechanical 

means, but it was also observed that the thinner the liquid jet is squeezed by the co-flowing air, 

the smaller the droplets produced. 

It is unclear as to who may have first theorized the idea of aerating the liquid stream or 

when, but Lefebvre et al.[3] were among the first to attempt a detailed characterization of this 

new and innovative method of achieving atomization.  Whereas in pneumatic atomization, a 

relatively high velocity air stream is introduced to an already-formed liquid jet, the aerating 

method instead introduces bubbles of relatively low velocity gas into the liquid prior to the liquid 

spray being ejected from the nozzle orifice.  This method should not be confused with 

supercritical injection, which relies on the flash vaporizing of dissolved gas in the liquid.  It has 

been found that the bubble growth rate from dissolved gasses in the liquid is relatively slow and 

usually requires the use of an expansion chamber in the nozzle (thus creating the need for excess 

volume).  Because of this limitation, both the slow bubble growth (which relates directly to slow 

atomization processes) and the need for additional volume where volume surplus is extremely 

limited, supercritical injection methods are not well suited to use in scramjet applications. 
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Lefebvre et al.[3] experimented by injecting water from an aerated-liquid injector into air 

at normal atmospheric pressure and temperature.  Measurements were taken using a Malvern 

particle size analyzer, which is based on the Fraunhofer diffraction theory.  It was found that the 

aerated-liquid injector produced better atomization characteristics at lower injection pressures 

than similarly sized pressure swirl or air-assist atomizers.  It was also observed that the Sauter 

Mean Diameter (SMD) of droplets was almost entirely below 100 µm at gas-to-liquid mass 

ratios (GLR) of 2% or greater (by mass), and that increasing the amount of aerating gas would 

continue to reduce droplet size.  Thus, a relatively small amount of aerating gas can drastically 

reduce the mean droplet size in the spray, especially when compared with more traditional 

atomization techniques.  Lefebvre et al. concluded that the aerated-liquid injector system offered 

the following advantages over pressure swirl or air-assist atomizers: relatively large holes and 

passages throughout the nozzle which greatly reduce the problems of plugging and coking, 

alleviation of soot formation and exhaust smoke due to the presence of air bubbles in the spray, 

and ease of maintenance and low cost because of the simplicity of the design. 

To better understand the fundamental physics involved in aerated-liquid sprays, Lin et 

al.[4] manufactured a clear aerated-liquid injector nozzle to study the two-phase internal flow and 

the near-field structures of the corresponding spray.  From their observations, it was realized that 

the overall appearance (spray plume height, width, cross-sectional area) of the aerated-liquid 

spray is strongly related to the structure of the two-phase flow inside the discharge passage.  

They found that, as the amount of aerating gas is increased, the two-phase mixture has an 

increasingly co-annular flow structure where the gas forms a core inside a hollow column of 

liquid.  The more aerating gas injected, the thinner the column walls of the liquid tube.  As the 

near-field spray was observed, it was found that the thinner the column walls of the liquid tube, 



 8

the smaller the droplets produced when the liquid column shattered.  This observation concurred 

well with the observations made by Lefebvre et al.[3] 

In regards to fueling a scramjet combustor, two schools of thought have arisen, the use of 

fuel injecting pylons that project into the flow, or the use of flush-mounted wall injectors.  Both 

types of fuel injection schemes have seen successful implementation, but the trend seems to be 

toward flush-mounted injectors, in part because of the success of aerated-liquid injection.  Pylon 

injectors have the disadvantage of obstructing flow in the combustor section, thereby creating 

drag, which in turn not only causes a thrust penalty in the engine, but also creates localized 

heating on the pylon itself, necessitating a cooling system in each pylon.  Flush-mounted 

injectors present no obstruction to the flow through the combustor.  Pylon injectors do have an 

advantage in that they are capable of injecting fuel at any vertical station in the combustor, 

including directly into the core flow.  Combined with the pylon’s ability to act as a flameholder 

device due to the recirculating flow behind it, the design was a good first candidate for piloting 

and fueling the combustion section of a scramjet engine. 

Sabel’nikov et al.[5] performed a study in which they compared a tube-micropylon 

injecting aerated-liquid kerosene at 45° downstream with a fin-pylon injecting parallel to the 

freestream.  Their measurements were based on combustion efficiency derived from axial static 

pressure distributions and calculated pressure-area integrals.  Their findings suggested that the 

angled tube-micropylon injector had better mixing characteristics than the fin-pylon, which may 

have been attributed to the fin-pylon shielding the high momentum freestream air from fully 

interacting with the injected stream.  A part of their study also focused on the use of hydrogen 

gas and air as different aerating mediums and found that hydrogen produced slightly better 

combustion efficiencies.  This is to be expected because of hydrogen’s volatile nature and the 
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extreme close proximity of the hydrogen molecules to the liquid fuel droplets, as well as the 

addition of OH- radicals to the fuel/air mixture. 

Mathur et al.[6] achieved successful sustained combustion in a direct-connect scramjet 

engine fueled by warm liquid JP-7.  Liquid JP-7 is the fuel of choice for the United States Air 

Force because of its relatively high energy density, existing logistics (from previous use with the 

SR-71 airframe), and ease of handling.  While similar in nature to kerosene, JP-7 was specially 

formulated for high thermal stability and consists of long hydrocarbon chains, which must be 

cracked, or broken into smaller chains.  Cracking occurs at high temperatures, a feature of JP-7 

that, along with its endothermic nature, has made JP-7 in particular a good candidate as not only 

a fuel, but also as a heat sink for vehicle and engine cooling.  In a closed-loop system, JP-7 could 

be run through cooling channels in the vehicle and engine skin, absorbing heat from 

aerodynamic friction drag on the body and the combustion process inside the engine, which 

would in turn crack the fuel and prepare it for injection into the combustion chamber.  

Experiments conducted by Mathur et al.[6] involved injecting liquid JP-7 from flush-mounted 

orifices on the top and bottom walls of a two-dimensional scramjet combustor simulating flight 

Mach numbers between 4 and 8.  Their experiments were repeatable and sustainable, producing 

net positive thrust as measured by a load cell mounted to the thrust stand and calculated through 

the use of calorimetry of the combustor exhaust gases.  Oxygen was introduced as an aerating 

gas in the bottom mounted injectors and it was observed that combustion efficiency was slightly 

greater for these injectors than for the pure-liquid injectors on the top wall. 

Figure 1 shows the typical breakup process encountered in aerated-liquid injection into a 

supersonic crossflow.  This type of breakup process has been observed consistently in 

experiments conducted in the supersonic regime.  Of note is the co-annular flow of gas and 
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liquid at the injector orifice exit, which aids in the aerodynamic shearing of the liquid wall by 

compressing the liquid column wall into a thinner sheet.  The liquid column is then further 

broken apart into ligaments and droplets by the supersonic crossflow. 

Concurrently and following the successful use of aerated-liquid fuel sprays in a scramjet 

engine, Lin et al.[7-12] studied aerated-liquid injection in a variety of environments and over a 

wide range of parameters to better understand the fundamental flow characteristics.  Many of 

these studies were conducted in supersonic crossflows, an environment more typical of a 

scramjet combustor.  In a study by Lin et al.[7], water, alcohol, and a 33% alcohol/water solution 

were injected into Mach 1.85 supersonic crossflow through an aerated-liquid injector.  Spray 

visualization was accomplished through the use of shadowgraphy and laser sheet illumination.  

During this effort, the effect of jet-to-air momentum flux ratio on penetration height of the spray 

was studied.  Virtually no difference was noted in the penetration heights of the different 

injectant liquids, despite the differences in their physical properties, which suggests that liquids 

of varying viscosity, surface tension, and density may be used and still be within a reasonable 

range of predictable behavior.  The following correlation was determined from measurements of 

spray plume height in the various imagery[7]: 
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Lin et al.[8] examined the effect of various injection angles on penetration height of the 

aerated-liquid spray.  Again, water, alcohol, and an alcohol/water mixture were used as the test 

injectants and injection angles of 90° (normal to the freestream flow), 60°, and 30° downstream 

were tested.  Shadowgraphy provided spray visualization while laser Doppler velocimetry was 
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used to measure the freestream velocity profile at the injection location.  From the data, the 

following correlation was hypothesized, taking into account injection angle: 
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=  Eq. 3 

 
From inspection, it can be seen that this correlation does not provide useful predictions 

for parallel injection (θ=0).  In later work, Lin et al.[9] injected water and alcohol from an 

aerated-liquid injector into a subsonic crossflow.  While the purpose of a scramjet engine is to 

avoid the losses encountered in a traditional ramjet engine when decelerating the flow to 

subsonic speeds, there are instances, particularly at low flight Mach numbers (M<6), where a 

scramjet combustor may experience localized pockets of subsonic flow.  An example would be 

the region behind the flame-induced shock train, exactly the portion of the engine which would 

see fuel injection.  From measurements of the spray boundary taken up to 90 diameters 

downstream of the injector centerline, the following correlation was derived to relate penetration 

height of the spray to the momentum flux and downstream axial distance for normal injection: 
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For the studies conducted by Lin et al.[10], pure- and aerated-liquid jets in subsonic (up to 

Mach 0.4) and supersonic (Mach 1.94) crossflows were explored using traditional shadowgraphy 

and laser sheet illumination techniques, as well as a phase Doppler particle analyzer (PDPA).  A 

compilation was made of recent attempts to correlate penetration height of a spray to various 

injection parameters.  The compiled correlations for pure-liquid jets in subsonic crossflows are 

listed below, along with the new PDPA-derived correlations: 
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Table 1:  Historical correlations for pure-liquid jets in subsonic crossflows 

Year Author(s) Correlation Method 

1969 Geery and 
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The correlations for pure-liquid jets in supersonic crossflows are as follows: 

Table 2:  Historical correlations for pure-liquid jets in supersonic crossflows 

Year Author(s) Correlation Method 
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The correlations for aerated-liquid jets in subsonic crossflows are as follows: 
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Table 3:  Historical correlations for aerated-liquid jets in subsonic crossflows 

Year Author(s) Correlation Method 

2002 Lin et al. 56.049.0
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0
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Because of limitations with the PDPA equipment used in the studies of Lin et al.[10], 

accurate and reliable data could not be obtained in the supersonic environments, due to the 

inability of the PDPA equipment to measure the high-velocity particles. 

Lin et al.[10] discovered that traditional imaging techniques, such as shadowgraphy and 

laser sheet illumination under-predicted the penetration height of the spray plume by up to 43% 

for pure-liquid jets in subsonic flows, and up to 35% in supersonic flows.  The PDPA system 

was again used to investigate the spray plumes by Lin et al.[11], and it was discovered that the 

structure of the spray plume transitioned from concentric to horseshoe-shaped once aeration was 

added.  It was hypothesized that the horseshoe-shaped liquid distribution was a result of the 

freestream vortical motion, which is induced by the increased blockage of the plume.  Lin et 

al.[11] also observed that the droplet size decreased as GLR and freestream Mach number 

increased.  It is hypothesized that the increased aeration enhances atomization and that the 

increased freestream Mach number imparts greater momentum to the liquid column ligaments 

exiting the injector, thus enhancing liquid column breakup.  According to their data, there 

appears to be no significant effect of the jet-to-air momentum flux ratio to droplet size.  It was 

found that SMD is fairly constant beyond x/d0=50, suggesting that the atomization process was 

complete upstream of this axial location.  Thus, aeration can fully atomize the liquid spray in a 
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relatively short axial distance.  Finally, it was observed that the cross-sectional area of the plume 

increased with GLR, q0, and x/d0 and decreased as freestream Mach number increased. 

In a first of its kind use of a two component phase Doppler particle analyzer, Lin et al.[12] 

probed an aerated-liquid spray in a Mach 1.94 supersonic crossflow, with water as the test 

injectant.  In this study, it appeared that atomization processes were completed at x/d0<100 and 

that SMD was fairly constant beyond x/d0=100 on the order of 10 µm.  Concurrently, Sallam et 

al.[14] reexamined the primary breakup of aerated-liquid jets in a supersonic crossflow using 

single- and double-pulsed shadowgraphy and holography.  It was found that for finite aeration 

levels, the cone angles and surface breakup properties were similar on the upstream and 

downstream sides of the jet, suggesting a weak aerodynamic effect from the crossflow.  

Ligament and droplet sizes after primary breakup are relatively constant and independent of 

injector orifice size, GLR, q0, or liquid properties for finite aeration levels.  The average droplet 

diameter as measured in these studies was on the order of 40 µm. 

To further the knowledge of aerated-liquid injection and enable better design data for 

future work, the current study investigates the spray plumes of aerated-liquid injectors and 

derives correlations for penetration height based on a number of design and injection parameters.   

Penetration height of the spray plume is vital, due to the large amount of momentum that can be 

dissipated by the boundary layer. The study uses shadowgraphy and laser sheet illumination 

techniques to establish a baseline similarity between the current study and past work, then 

employs the use of modern PDPA equipment to better characterize the spray plume.  The derived 

correlations will allow more detailed designs of aerated-liquid injectors with more predictable 

spray characteristics. 
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EXPERIMENTAL SETUP 
 

Experiments were carried out inside Test Cell 19 of the Air Force Research Laboratory, 

Wright-Patterson Air Force Base.  Liquid injectors were flush mounted on the bottom plates of 

the high-speed wind tunnel.  A complete description of the supersonic wind tunnel in Test Cell 

19 was presented by Gruber et al.15  This facility is a continuous-run, open-loop, rectangular 

supersonic wind tunnel with a height of 127 mm, width of 152 mm, and length of 762 mm. There 

are three quartz windows installed on the top and both sides of the test section to provide optical 

access.  A series of compressors capable of providing up to 15 kg/s of air, with total pressures 

and temperatures up to 4.9 MPa and 920 K, respectively, supply air to the facility.  For this series 

of experiments, total temperature was kept at 500 °F (533 K).  An exhaust system lowers and 

maintains the backpressure for smooth starting and safe operation.  A supersonic nozzle with 

performance Mach number of 1.94 is installed to provide a supersonic air stream.  Air pressures 

and temperatures are measured using strain gauges and k-type thermocouples.  Figure 2 shows a 

schematic of the wind tunnel. 

A plain-orifice aerated-liquid injector, consisting of an internal tube for liquid flow and 

an external tube for aerating gas flow was flush mounted on the bottom plate of a supersonic 

wind tunnel to provide normal and angled injection.  Figure 3 shows a schematic of the 

assembled injector.  Injection angles of 45°, 60°, 75° and 90° (normal) were tested.  The aerating 

gas flowed through the annular region between inner and external tubes and then passed through 

several small orifices (250 µm diameter) to mix with the liquid.  Three interchangeable nozzles 

with orifice diameters of 0.5mm (0.020”), 1.0mm (0.040”), and 1.5mm (0.060”) were tested for 

each injection angle to investigate the effects of nozzle diameter on the structure of aerated-

liquid jets.  The nozzle passage length to the injector diameter ratio (L/d0) was kept constant at 
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L/d0=8 for each adapter.  Nitrogen was used as the aerating gas throughout the test program.  

Even though flammable gases, such as hydrogen and ethylene, can be good candidates for 

aerating gas and have the capability for combustion enhancement, they were not used in the test 

series, due to safety requirements. 

The liquid and aerating gas injection system consisted of a large liquid tank, two flow 

meters, and a nozzle unit.  A schematic of the liquid supply system is included (see Figure 4).  

The injection tank had an internal volume of 0.144 m3 and is rated for 3 MPa.  The relatively 

large volume of the injection tank ensured a constant liquid supply pressure.  Test liquids were 

filled into the liquid tank and pressurized with high-pressure nitrogen before each experiment.  

Liquid and aerating gas volumetric flow rates were controlled by pressure regulators and 

measured by flow meters.  The flow meters were calibrated to an uncertainty of less than 2%.  

Measured liquid volumetric flow rates were used to derive liquid injection velocities based on 

the nozzle exit diameter. 

Spray penetration height measurement and spray visualization were performed using 

shadowgraphs.  A CCD camera (Redlake ES4.0); Epix, Inc., PC interface card and software 

(Xcap) was used to record images.  Laser sheet illumination was utilized to visualize the spray 

cross-sectional structure.  A laser sheet with a height of 50 mm and a thickness of about 200 µm 

intersected the spray at a 90-degree angle from the side.  The light scattered from droplets within 

the spray plume was captured by the Redlake ES4.0 CCD camera, which was positioned at an 

angle from the freestream air and was facing upstream; images were then corrected for 

perspective distortion using a reference image (a dotcard with 0.25” dot spacing).  Location of 

the laser sheet relative to the injector exit was varied between 5 to 200 diameters downstream the 

injector and 50 images of the light scattered by the droplets were captured at each location.  A 
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frequency-doubled Nd:YAG laser with a wavelength of 532 nm and a pulse duration of 10 ns 

was used as the light source for these measurements.  The short laser pulse duration was 

sufficient to freeze the motion of the liquid column and the droplets.  The entire optical setup 

was mounted on an optical table capable of traversing in all three dimensions in order to 

accommodate the rigidly mounted wind tunnel.  The traversing system has a positioning 

accuracy of 0.1 mm. 

A two-component phase Doppler particle analyzer (PDPA), along with a 5-W argon iron 

laser and a TSI FSA4000 burst correlator, was also used to determine properties of droplets and 

spray plumes.  The clear aperture and focal length of the transmitter were 50 and 500 mm, 

respectively.  The initial beam diameter was 1.77 mm.  Beam separation was 20 mm.  A beam 

expander with an expansion ratio of 2 was used to reduce the size of the probe volume.  The 

waist diameters of the probe volume for 488- and 514.5-nm wavelengths were 91.4 and 92.5 µm, 

respectively.  The receiver has a clear aperture of 106 mm in diameter and a collecting lens with 

a focal length of 370 mm.  The collected light was passed through a 25-µm slit to further reduce 

the probe volume.  Light was collected at 30° from the transmitter (refractive scattering).  

Droplet size, axial velocity, and volume flux were measured in the transverse and spanwise 

directions across the spray plume.  Measurements were performed at several downstream 

locations, i.e., x/d0=10 to 200.  A spatial increment of 1.27 mm was used for measurement in the 

cross stream (z) direction and an increment of 1.27 or 2.54 mm was employed for measurement 

in the jet injection (y) direction, depending on the spray structure.  Regions with unbroken liquid 

core, irregular ligaments, and non-spherical drops, where PDPA measurements can not be 

carried out reliably, were avoided for the determination of detailed structures of the entire cross-

sectional area. For penetration height measurement, the edge of the spray plume was probed, 
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even though the entire spray structure is not suitable for detailed PDPA measurement.  For spray 

plume areas with high number density, droplet properties were averaged over more than 30,000 

droplets at each location to reduce the experimental uncertainties.  Otherwise, a constant 

duration of 10 seconds was used for data acquisition.  Measurements were stopped when the 

measured liquid volume flux was below 0.01 cc/s/cm2.  Matrices detailing the test conditions 

explored are below: 

Table 4:  Test conditions for shadowgraphy.  Jet-to-air momentum flux ratio (q0) is given as a ratio 
and gas-to-liquid mass ratio (GLR) is given in percentage. 

 d0=0.02” d0=0.04” d0=0.06” 
θ=45° q0= 
 GLR= 

3 7 10 14 3 3 3 3 5
0 0 0 0 3 5 7 10 3 

3 6 10 15 6 3 3 4
0 0 0 0 1 3 5 4 

3 6 1 1 3 3 3
0 0 0 4 1 2 3 

    
θ=60°  q0= 
 GLR= 

3 7 10 14 3 3 5 7
0 0 0 0 3 5 5 2 

3 6 10 15 3 3 4
0 0 0 0 3 5 3 

3 6 1 1 3 3 3
0 0 0 4 1 2 3 

    
θ=75°  q0= 
 GLR= 

3 7 10 14 3 3 3 3 5
0 0 0 0 3 5 7 10 3 

3 6 10 15 3 3
0 0 0 0 3 5 

3 6 1 1 3 3 3
0 0 0 4 1 2 3 

    
θ=90°  q0= 
 GLR= 

3 7 10 14 7 3
0 0 0 0 2 5 

3 6 10 15 3 3 4
0 0 0 0 3 5 4 

3 6 1 3 3 3 1
0 0 0 1 2 3 4 

 
Table 5:  Test conditions for laser sheet illumination.  Jet-to-air momentum flux ratio (q0) is given 
as a ratio and gas-to-liquid mass ratio (GLR) is given in percentage. 

 d0=0.02” d0=0.04” d0=0.06” 
θ=45° q0= 
 GLR= 

3 7 14 3 3 3 7
0 0 0 3 5 7 5 

  

    
θ=60°  q0= 
 GLR= 

3 7 14 3
0 0 0 7 

  

    
θ=75°  q0= 
 GLR= 

3 3 3 
0 5 7  

  

    
θ=90°  q0= 
 GLR= 

3 7 14 3 3 3 3 3 7
0 0 0 3 5 7 4 8 2 

3 7 10 3 3
0 0 0 3 5 

1 3 7 3 3
0 0 0 3 1 
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Table 6:  Test conditions for phase Doppler particle analyzer (PDPA).  Jet-to-air momentum flux 
ratio (q0) is given as a ratio and gas-to-liquid mass ratio (GLR) is given in percentage.  Test 
conditions listed in red were used for plume cross-section measurements while test conditions 
listed in black were used for penetration height measurements. 

 d0=0.02” d0=0.04” d0=0.06” 
θ=45° q0= 
 GLR= 

7 7 3
0 5 7 

3 2
0 7 

 

    
θ=60°  q0= 
 GLR= 

14 3 5 6
0 5 5 2 

5 4
0 3 

 

    
θ=75°  q0= 
 GLR= 

3 10 3 5
0 0 7 3 

4 7
0 1 

 

    
θ=90°  q0= 
 GLR=  7

0 
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RESULTS AND DISCUSSION 
 
Shadowgraphy Results 

To obtain a penetration height measurement from the shadowgraph imagery, an intensity 

profile was taken at locations of x=2.54 mm (0.1”), 5.08 mm (0.2”), 12.7 mm (0.5”), 25.4 mm 

(1.0”), and 50.8 mm (2.0”) using a Matlab script  (see Appendix A).  These axial locations 

corresponded to those at which laser sheet illumination images were recorded, allowing for 

direct comparisons at each axial station between the two penetration height predictions.  To 

measure the spray penetration height from the shadowgraph images, the average background 

intensity value (I0) was calculated from a rectangular region above the spray plume and behind 

the dark region in the left-hand side of every image, in order to calculate the most representative 

background intensity without the interference of undesired noise, such as shock patterns, dirt, 

scratches, and condensation.  An example shadowgraph image showing this rectangular region is 

shown in Figure 5.  The intensity profile at each x location was then normalized by the average 

background intensity.  However, certain background artifacts still remained and had the effect of 

offsetting the background value for I/I0 from unity.  To compensate, I/I0 was further normalized 

by the average value of I/I0 where the curve asymptotically approached a constant linear value.  

This asymptotic value was found by visual inspection of the intensity profile.  The boundary of 

the spray plume was assumed to be where the intensity value was 90% of the background 

intensity, or when I/I0=0.9.  An interesting result of using the average value of I/I0 is that the 

actual mean value of the background intensity no longer matters for penetration height 

measurements.  Because the intensity is then normalized by the average value of the asymptotic 

region, the same penetration height is obtained regardless of whether the mean intensity value is 

changed.  The penetration height correlations were found by finding a linear fit of the powers on 
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each term.  The base 10 logarithm of each term was found and, using a linear fit algorithm in 

Microsoft Excel®, the power for each term was calculated. 

Figure 6 is an example of shadowgraph imagery obtained in this study.  The progression 

of images compares the effects of injection angle, θ, as well as overlaying the penetration height 

predicted by the various correlations derived in this study.  These figures indicate that increasing 

the injection angle towards normal injection enhances spray penetration, which agrees well with 

past observations.  Data gleaned from the shadowgraph imagery resulted in the following 

correlation for pure liquid jets: 
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Figure 7 shows the effect of increasing d0 on spray penetration height for jets with θ=90°, 

q0=3, and GLR=0.  As d0 increases, the spray plume penetrates further into the core flow.  The 

increase in cross-sectional area of the orifice allows more mass to flow though and thereby 

increases the overall effective momentum of the jet.  Finally, the effect of increasing the 

momentum flux ratio of the water spray can be seen in Figure 8.  As q0 increases, h/d0 also 

increases slightly.  However, as can be seen from the figure, the correlation over-predicts the 

influence of the liquid jet momentum flux on penetration height beyond x/d0≈25. 

The correlation for aerated-liquid jets as derived from the shadowgraph images was 

found to be: 
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In previous work, correlations accounted for spray angle by the inclusion of a sin(θ) 

term.  It was found in this study that a better correlation could be arrived at by introducing the 
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spray angle term as (1+sin(θ)).  This allows the angle term in the correlation to always be non-

zero, which allows this correlation to be used for injection angles close to and at parallel to the 

freestream.  However, it is assumed that injection angles close to parallel to the freestream will 

result in different spray characteristics, since there would be a considerable amount of freestream 

momentum acting in the same direction as the spray momentum. 

In an effort to characterize the spray plume penetration height in one correlation, 

incorporating both pure- and aerated-liquid jets, a new correlation was found in which the GLR 

term was replaced with (100+GLR), which allows the correlation to be used with pure-liquid jets 

because the term is always non-zero.  The choice of the constant added to the GLR term is 

consistent with the use of GLR in percentage.  Therefore, a gas-to-liquid mass ratio of 3% would 

translate to (100+3) in the GLR term of the correlation.  The unified shadowgraph-derived 

correlation is found below: 
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In Eq. 16 and Eq. 17 GLR is in percentage.  Figure 9 shows the effect of increasing GLR 

in the spray penetration height.  While increasing GLR seemingly has little effect on the 

penetration height of the spray in these shadowgraph images, PDPA measurements suggest that 

penetration height is greatly affected by the amount of aeration, as will be discussed later.  The 

unified shadowgraph correlation seems to be a poor match at low injection angles and high 

values of GLR.  However, the unified correlation seems to better match the asymptotic behavior 

of the spray plume as it moves further downstream.  Physically, it is intuitive that the spray 

plume will cease to grow in height at some finite point downstream where aerodynamic drag 

forces and gravity have dissipated the vertical spray momentum imparted at the injection site. 
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The combined data used to formulate the correlations for pure liquid jets and aerated-

liquid jets in a supersonic crossflow are plotted in Figure 10 through Figure 13.  As can be seen 

from the graphs, the penetration height correlation is much closer to experimental results for the 

aerated-liquid jets than for the pure-liquid jets in all cases.  As can be seen from these figures, 

there is an extreme outlying data point corresponding to the 45° angled pure-liquid (GLR=0%) 

injection with a 0.5 mm orifice diameter, and jet-to-air momentum ratio (q0) of 3.  Because of the 

low angle of injection and jet momentum in this particular case, it can be reasonably assumed 

that the boundary layer along the test section floor dissipated much of the jet momentum, 

resulting in a lower measured penetration height than the correlation predicted.  Future work 

should either investigate the effects on the spray plume if the boundary layer influence is 

removed, possibly accomplished by boundary layer bleed through a porous floor, or investigate 

the use of a boundary layer correction factor. 

Laser Sheet Illumination Results 

Due to the unsteady nature of the spray plume in the transverse direction, the 50 laser 

sheet illumination images from each x location were averaged together.  An example of this 

unsteady phenomenon can be seen in the progression of images in Figure 14.  Note that a 

reflection of the spray plume can be seen in the lower center portion of each image and should 

not be considered any portion of the spray itself.  Appendix A contains the Matlab code used to 

perform this and other transformations on the laser sheet imagery.  For the measurements of 

spray penetration height and plume width, a linear transformation was applied to the averaged 

images, in which a dotcard pattern of known dimensions was used as a reference to correct for 

the skewness of the images due to the offset angle of the camera.  Figure 15 shows an example of 

the original dotcard image, the unskewed dotcard image, and a sample of a skewed and 
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unskewed spray plume image.  Note that there is negligible change in the overall size and shape 

of the spray plume.  The measured change in height and width of the spray plume due to the 

unskewing of the image was less than 1% in either direction.  Also note that the bottom of the 

image is transported to the top in the unskewed images.  This is due to the unskewing algorithm 

relocating the pixels so that no image information is lost in the transformation.  These pixels 

were measured to be below the injection orifice, and therefore could be ignored.  These images 

were then converted to black and white images using a consistent gray-level threshold value of 

2.5% of the total gray-level range (65,536 in the case of 16-bit images, 256 in the case of 8-bit 

images).  This level was found through inspection to eliminate background noise while 

enhancing the contrast of the spray plume and revealing low-intensity level droplets on the 

fringes. 

Figure 16 shows an image converted from intensity (grayscale) to black and white.  The 

figure shows that much of the spray plume was invisible to the naked eye due to the small, low-

intensity droplets at the fringes of the plume.  A sensitivity analysis was performed on the choice 

of intensity level to determine the effect of changing this value on penetration height and spray 

plume width measurements.  The intensity value was reduced by half (to 1.25%) and doubled (to 

5%) and new measurements for height and width were taken for a representative sample of 

images.  Figure 17 shows the results of the sensitivity analysis graphed against x-location.  It was 

found that halving the intensity value in the conversion to black and white imagery produced an 

average 18% increase in penetration height and 45% increase in spray plume width.  However, 

the background horizontal scan lines from the camera’s photoreceptors became visible at the 

edges of the spray plume at this decreased intensity threshold and therefore skewed the width 

results considerably.  It was also found that doubling the intensity value produced an average 
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15% decrease in penetration height and 32% decrease in spray plume width.  At this high 

intensity threshold, some of the image data was lost completely at the furthest downstream x 

locations, particularly for the aerated-liquid jets.  The low intensity level light reflected from 

these small droplets is below the intensity threshold at 5% intensity.  From the black and white 

imagery, the boundary of the spray plume was found and the penetration height was measured 

directly through visual inspection.  Again, as with the shadowgraph images, correlations were 

computed using a linear fit of the power of each term. 

Similar to observations made in the shadowgraph imagery, increasing the injection angle 

toward normal injection increases the penetration height of the spray plume (see Figure 18).  It 

can also be seen from these images that there is a large concentration of liquid spray in the center 

of the plume, which penetrates farther from the wind tunnel floor as angle increases (note high 

intensity region at the top of each spray plume).  Figure 19 shows the effect of increasing the 

liquid spray momentum flux on the penetration height and width.  These images show much the 

same trend as the shadowgraph imagery (see Figure 8).  However, of note in the laser sheet 

illumination imagery is that momentum flux seems to have little effect on the spray plume width.  

This is to be expected because the momentum is almost exclusively in the z-direction when 

injected. 

In Figure 20, the effect of increasing the liquid aeration is seen.  Unlike the shadowgraph 

imagery, theses images do show an increase in penetration height as GLR is increased, as well as 

an increase in spray plume width.  It is worthwhile to note that the horseshoe shape present in 

previous studies by Lin et al.12 is also observed here.  However, when investigating imagery 

from test conditions using the 1.5 mm diameter injector orifice, the horseshoe structure of the 
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spray plume could not be seen, since these sprays are too dense for laser light to pass through to 

expose the cross-sectional structures. 

The following correlations were found for h/d0 and ws/d0 for pure liquid jets: 
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The following correlations were found for h/d0 and ws/d0 for aerated-liquid jets: 
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In Eq. 20 through Eq. 23 GLR is in percentage.  As with the shadowgraph-derived 

correlations, the data from the laser sheet illumination imagery for pure- and aerated-liquid jets 

was also combined to formulate a unified correlation for penetration height and spray plume 

width, given below: 
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These correlations are plotted versus the various test parameters in Figure 21 through 

Figure 28.  Although it seems that the correlations have a wide margin of error, it can be seen 

from Figure 24 and Figure 28 that it is the pure-liquid injection cases where the correlations are 

most unreliable.  All of these graphs show that the aerated-liquid correlations derived from the 
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laser sheet illumination imagery are the most accurate at predicting penetration height and spray 

plume width. 

Phase Doppler Particle Analyzer Results 

The method described in the experimental setup was used to obtain measurements for 

penetration height using the phase Doppler particle analyzer (PDPA).  Two correlations for the 

penetration heights of pure- and aerated-liquid jets are derived from the combined PDPA 

measurements in the present study and in the study by Lin et al.[12] for normal injection.  To 

validate the current test setup against previous measurements taken with PDPA equipment, 

several test conditions investigated by Lin et al.[12] in 2002 were repeated and found to match 

almost precisely.  The obtained correlations are as follows: 
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31.0
0

33.0

0

1.2

0

0 **))sin(1(*98.0 q
d
x

d
h

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= θ  Eq. 24 

 
For the aerated-liquid jets: 
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 As with the previous two techniques, a third correlation for the penetration height was 

derived, replacing the GLR term with (1+GLR) in order to combine the pure- and aerated-liquid 

jets into one correlation, which is below: 
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 These correlations were computed using the same linear power fit as the correlations 

derived from shadowgraphy and laser sheet illumination imagery.  These correlations are plotted 
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against the test parameters in Figure 31 through Figure 34.  Figure 33 and Figure 34 especially 

show the accuracy of these three correlations.  Most of the correlation predictions fit within 10% 

of the measured penetration heights, suggesting that the PDPA data and the PDPA derived 

correlations are more accurate for defining and predicting spray plume penetration height than 

the previous two techniques.  Because the PDPA equipment is capable of detecting much smaller 

droplets in areas of low concentrations, it is expected that this would be the case.  Figure 29 

shows a comparison between the correlations for penetration height derived from this study and 

historical correlations for pure-liquid jets in supersonic crossflow.  The correlations by Yates 

(1972) and Baranovsky and Schetz (1978) under-predict the penetration height by up to 83.3% 

and 83.7%, respectively and the correlation by Lin et al. (2002) under-predicts the penetration 

height by up to 55.5% in the region of x/d0≤100. 

 Figure 30 shows a comparison of sample laser sheet illumination imagery to PDPA 

measurements.  Because the amount of laser light reflected by the plume is directly related to the 

droplet number density in the spray plume, the laser sheet illumination images are compared to 

plots of the droplet number density as measured by the PDPA system.  While the laser sheet 

images appear to pick up most of the general features of the spray plume, they fall short of 

characterizing the fine details captured by the PDPA system.  However, it should be noted that 

the PDPA system took measurements over a short interval at each y, z location while the laser 

sheet images were averaged from 50 consecutive shots.  This discrepancy in the techniques used 

to generate imagery makes it difficult to perform a true comparison of the resulting data. 

Applications for Scramjet Operation 

 The results of the work by Mathur et al.[6] show promise that JP-7 is a viable fuel for 

scramjet operations.  Work done by Sallam et al.[14] suggests that, though the physical properties 
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of JP-7 and water are vastly disparate, the physical properties of the injectant liquid seemingly 

have little effect on the atomization processes inside an aerated-liquid injector, and therefore the 

results obtained from studies using water as the test injectant can be readily applied to JP-7.  In 

an effort to characterize the actual performance of the aerated-liquid injector in a scramjet 

combustor, the PDPA measurements of volume flux in the spray plume cross-section were used 

to estimate a local equivalence ratio, based on the density of liquid JP-7 at 298K.  A global 

equivalence ratio was calculated using the volumetric flow rate of the liquid as measured from 

the liquid flow meters, multiplied by the density of liquid JP-7, and the mass flow rate of air 

through the wind tunnel, as calculated from the known total temperature and pressure.  To 

determine the mass flow rate of air at the spray plume site in the tunnel, isentropic relations were 

used to calculate flow properties downstream of the facility nozzle and oblique shock relations 

were used to calculate the flow properties behind the bow shock upstream of the injector orifice.  

Several assumptions were made which make these local equivalence ratios only accurate to a 

rough order of magnitude.  Among these assumptions is a neglect of the blockage of the 

freestream flow created by the spray plume itself, and an assumption that the oblique bow shock 

coming from the spray plume is two dimensional.  There is also no accounting for boundary 

layer effects or skin friction slowing of the freestream flow.  Finally, due to the relatively small 

amount of time a droplet travels from injector orifice to the downstream measurement site 

compared to the evaporation time, droplet evaporation is neglected.  Sample calculations of 30-

40 µm diameter droplet evaporation times put these times at more than 20 times the time of flight 

of a droplet. 

 Figure 35 shows the plots of local equivalence ratios for six test conditions where PDPA 

measurements were taken across the cross-section of the spray plume.  Because the local 
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equivalence ratio at each point in the plume was normalized by the global equivalence ratio, the 

scale to the side of each image represents a multiple of the global equivalence ratio.  Therefore, 

as can be seen in the images, local equivalence ratios inside the dense sections of the spray 

plume may reach over 100 times the global equivalence ratio.  However, it is useful to note the 

average Sauter Mean Diameter (SMD) of the droplets in these regions is typically on the order of 

10-20 µm.  From Eq. 1, droplet burning time for droplets with this diameter is calculated to be 

on the order of 0.1 to 0.5 thousandths of a second, giving ample time for complete combustion 

before exiting the combustion section. 
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SOURCES OF ERROR 

The shadowgraph imagery was plagued by background noise and dirt that affected the 

background intensity levels.  While efforts were made to eliminate this background noise as 

much as possible, some artifacts still remained which may have slightly skewed penetration 

height measurements. 

In recording data for the laser sheet illumination imagery, 30% of the test conditions 

were recorded at 8-bits per pixel, while the rest were recorded at 16-bits per pixel.  The 8-bit 

images contained less intensity information, which may have resulted in the removal of smaller 

droplets at the fringes of the spray plume when they were converted to black and white.  This 

loss of boundary data would result in a smaller measured plume height and width.  Another 

source of error from the laser sheet illumination technique is that the intensity of the laser was 

not increased as a function of x distance from the injection site.  Because droplets sizes 

decreased and droplet scatter increased with increasing x distance, less laser light was scattered 

by the droplets and therefore received by the camera.  Plume size measured beyond the x=1.0 in 

position was artificially small due to the low level of laser intensity recorded by the camera. 

In all test conditions there was an oblique shock present in the flow approximately 12.7 

mm downstream of the injector orifice centerline.  This oblique shock was created by a step in 

the wind tunnel floor, measuring approximately 0.13 mm in height.  In some of the data it is 

clear that this oblique shock interfered with the spray plume, particularly when the injection 

angle was low (θ=45°) and when the momentum flux of the jet (both pure liquid and aerated-

liquid) was also low (q0=3). 
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CONCLUSIONS 

Comparisons were made of various techniques for visualizing the structures of pure- and 

aerated-liquid jets injected into a supersonic crossflow.  Correlations were derived from the data 

for penetration height and spray plume width.  These correlations can be used to more precisely 

design aerated-liquid injectors to create the desired spray plume characteristics.  It was found 

that, because of its ability to detect smaller, less densely concentrated particles, the phase 

Doppler particle analyzer (PDPA) system better characterizes the spray plume in the area far 

downstream of the injector.  However, because the spray plume is too dense to get accurate 

readings from the PDPA system in the areas close to the injection site (within ~100 x/d0), the 

laser sheet illumination and shadowgraph data are better suited for characterizing the spray. 

Because droplet evaporation time is on an order with the residence time in the combustor, 

it is vital to efficient combustion to atomize the fuel spray as quickly as possible.  As can be seen 

from the data presented in this study, aeration of the spray provides adequate atomization to 

ensure that droplets are fully evaporated and burned before exiting the combustor. 

Penetration height is one key design parameter of aerated-liquid injectors.  It is necessary 

to ensure the liquid fuel spray is able to escape the boundary layer of the combustor wall and 

deliver sufficient amounts of fuel to the entire combustor cross-section.  Gruber et al.[16] 

measured the boundary layer thickness at the injection site (approximately 5.875” downstream of 

the facility nozzle exit plane) to be approximately 0.2”.  It can be seen from the imagery that this 

boundary layer thickness is a significant fraction of the penetration height of most of the sprays, 

particularly the pure-liquid jets.  Furthermore, it can be seen from the PDPA imagery that if the 

spray does not have sufficient momentum to penetrate the boundary layer, much of the liquid is 
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trapped inside the boundary layer, where it is unable to mix properly with the freestream air for 

complete and efficient combustion. 

From this study, it can be seen that spray penetration height can be enhanced by 

increasing any of the four parameters tested.  Spray penetration height correlations derived from 

PDPA measurements offer the most accurate predictions of penetration height behavior, so it is 

suggested that these correlations be used in future designs.  It is clear from the included figures 

of this study that more investigation needs to be performed into possible correction factors to 

account for boundary layer and bow shock interactions, particularly for the low injection angle 

and low momentum flux cases. 

It was observed that normal injection produced the best penetration into the core flow of 

the wind tunnel.  However, future work should investigate the potential of forward-angled 

injectors, i.e. θ>90° in this study’s reference frame, to provide even greater penetration height at 

a smaller x/d0.  Because some of the aerated-liquid jet’s momentum is acting counter to the 

freestream momentum and must therefore be overcome by the freestream before being blown 

downstream, the spray should achieve the same penetration height in less x distance. 

Future work should also include a study to determine the amount of liquid entrained into 

a flameholding device typical of that implemented in current scramjet combustor designs, such 

as cavity-based flameholders.  Such studies will examine the tradeoffs between spray penetration 

of the core flow and starving the flameholder of fuel.  Either a balance between the two will need 

to be found or a hybrid fueling system requiring one set of injectors for core penetration and 

another for flameholder fueling will be needed.  Furthermore, future studies should focus on 

using actual hydrocarbon fuels versus water, since liquid hydrocarbons vary physically from 

water in density, surface tension, viscosity, boiling point and other properties.  While previous 
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studies have found that the physical properties of the liquid injectant seem to have little effect on 

the atomization process, any changes in density, which in turn affect mass, could potentially 

affect penetration height, since more momentum would be required to move a larger mass the 

same distance. 

Sufficient studies have not yet been performed to determine whether more combustion 

efficiency is gained using a non-reacting aerating agent, a fueling aerating agent, or an oxidizing 

aerating agent.  It is assumed that the use of a fuel or oxidizer will result in better efficiency over 

an inert gas; however, there is still debate over the benefits of using a fuel over an oxidizer to 

effervesce the liquid fuel.  Using a fuel, such as gaseous hydrogen, may promote combustion 

because gaseous hydrogen is much easier and quicker to ignite than liquid hydrocarbons, 

therefore introducing the flame to the liquid spray faster.  On the other hand, using an oxidizer, 

such as gaseous oxygen, creates a flammable mixture within the liquid spray plume itself, 

expediting combustion by reducing mixing times.  A major disadvantage to using an oxidizer as 

an aerating agent is that, when combined with a hot liquid fuel, there is a large potential for 

coking. 

Finally, more research should be conducted into the actual effects of these parameters 

presented here in this paper on combustion efficiency.  In particular, few studies have been made 

on actual combustion processes in environments representative of those encountered in high 

supersonic to hypersonic flight.  These studies may include more detailed investigations into the 

local equivalence ratios of the spray plume and a correlation of equivalence ratio to various 

injector design parameters.  Until such studies are made, the effects of aerated-liquid injection 

are still only speculative. 
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It should be noted that the correlations derived in this study are somewhat deficient in 

that they do not account for different freestream Mach numbers or total temperatures.  That is, 

these correlations have not been verified outside of the freestream conditions tested in this series 

of experiments.  In addition to the previously mentioned future work suggestions, it is also 

recommended that future work determine the effect of varying freestream Mach number and 

total temperature, to include these parameters also in future correlations. 

The results of this study provide useful data for detailed design of future pure- and 

aerated-liquid injectors for a variety of applications, particularly when injecting into a supersonic 

crossflow.  Because of the wide variety of parameters investigated, injectors may now be 

designed to generate a specific spray plume size and shape, to a great degree of accuracy.  In 

particular, this will allow future scramjet combustor designs to be fully optimized for 

combustion efficiency, paving the way for greater thrust-to-drag ratios and higher payload 

capacities. 
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 Table 7:  Useful properties of JP-7 

Molecular Weight 0.1734 kg/mol
Density 0.792 Mg/m3 at 298 K
Vapor Pressure 0.048 kPa at 298 K
Surface Tension 2.255 x 10-3 mN/m at 298 K
Kinematic Viscosity 1.775 mm2/sec at 298 K
Autoignition Temperature 514 K at 1 atm
Flammability Concentration Limits (fuel vapors in air) 
(vol%) 
 Lower (lean) limit 
 Upper (rich) limit 

0.6
4.6

Stoichiometric Fuel/Air Ratio 0.06719
Heat Capacity (Cp) 2.025 kJ/(kg-K)

 

 

Figure 1:  Typical aerated-liquid breakup process in a supersonic crossflow.  (Reprinted here 
without permission.) 
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Figure 2:  Schematic of AFRL/PRA Test Cell 19 supersonic wind tunnel facility 

 

 
Figure 3:  Aerated-liquid injector schematic 
(typical). 

 
Figure 4:  Schematic of liquid and aerating gas 
injection system 

 
 

 
Figure 5:  Typical shadowgraph image showing the rectangular region used to compute the 
average intensity value of the background. 
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Figure 6:  Shadowgraphy comparison of injection angles (θ).  For these test conditions, d0=0.060”, 
q0=3, and GLR=3%.  Penetration height is measured on the y-axis and axial distance is measured 
on the x-axis, in inches. 
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Figure 7:  Shadowgraphy comparison of injection orifice diameters (d0).  For these test conditions, 
θ=90°, q0=3, and GLR=0%.  Penetration height is measured on the y-axis and axial distance is 
measured on the x-axis, in inches. 
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Figure 8:  Shadowgraphy comparison of the effect of increasing jet-to-air momentum flux ratio 
(q0).  For these test conditions, θ=90°, d0=0.020”, and GLR=0%.  Penetration height is measured on 
the y-axis and axial distance is measured on the x-axis in inches. 
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Figure 9:  Shadowgraphy comparison of the effect of increasing gas-to-liquid ratio (GLR).  For 
these test conditions, θ=90°, d0=0.040”, and q0=3.  Penetration height is measured on the y-axis 
and axial distance is measured on the x-axis, in inches. 
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Shadowgraph Penetration Height Correlation
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Figure 10:  Spray penetration height correlation (h/d0 correlation) derived from shadowgraphy, 
normalized by the measured penetration height (h/d0 measured), graphed versus injection angle 
(θ). 
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Figure 11:  Spray penetration height correlation (h/d0 correlation) derived from shadowgraphy, 
normalized by the measured penetration height (h/d0 measured), graphed versus injector orifice 
diameter (d0). 
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Shadowgraph Penetration Height Correlation
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Figure 12:  Spray penetration height correlation (h/d0 correlation) derived from shadowgraphy, 
normalized by the measured penetration height (h/d0 measured), graphed versus jet-to-air 
momentum flux ratio (q0). 
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Figure 13:  Spray penetration height correlation (h/d0 correlation) derived from shadowgraphy, 
normalized by the measured penetration height (h/d0 measured), graphed versus gas-to-liquid 
ratio (GLR). 
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Figure 14:  Consecutive laser sheet illumination images (unaltered).  For these test conditions, 
θ=90°, d0=0.060”, q0=3, GLR=0%.  Images taken at axial location of x=0.2”.  Flow is out of the page. 

 

 
Original Dotcard Image 

 
Unskewed Dotcard Image 

 
Original (Averaged) Spray Plume Image 

 
Unskewed Spray Plume Image 

Figure 15:  Comparison of original (skewed) laser sheet illumination images to unskewed images.  
For these test conditions, θ=90°, d0=0.060”, q0=3, GLR=0%.  Images of the spray plume taken at 
axial location of x=0.2”.  (Note that the spray plume images have been zoomed 4x to focus on the 
spray plume itself.)  Flow is out of the page. 



 45

 

 
Grayscale Image 

 
Black and White Image 

Figure 16:  Comparison of grayscale laser sheet illumination image to black and white image.  For 
these test conditions, θ=90°, d0=0.060”, q0=3, GLR=0%.  Images taken at axial location of x=0.2”.  
Flow is out of the page. 

Laser Sheet Illumination Sensitivity Analysis
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Figure 17:  Sensitivity analysis showing the effects of increasing or decreasing the chosen 
intensity value for converting grayscale images to black and white images.  The vertical axes 
show the new measured penetration height (both at half intensity and double intensity), 
normalized by the original measured penetration height, and the new measured spray plume 
width (both at half and double intensity), normalized by the original spray plume width. 
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 x/d0=10 x/d0=25 x/d0=50 x/d0=100 

θ=45° 

    

θ=60° 

    

θ=75° 

    

θ=90° 

    
Figure 18:  Laser sheet illumination imagery comparison of injection angles (θ).  For these test 
conditions, d0=0.020”, q0=3, and GLR=0%.  (Contrast enhanced to show detail.)  Flow is out of the 
page. 
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 x/d0=10 x/d0=25 x/d0=50 x/d0=100 

q0=3 

    

q0=7 

    

q0=14 

    
Figure 19:  Laser sheet illumination imagery comparison of the effect of increasing jet-to-air 
momentum flux ratio (q0).  For these test conditions, θ=90°, d0=0.020”, and GLR=0%.  (Contrast 
enhanced to show detail.)  Flow is out of the page. 

 
 x/d0=10 x/d0=25 x/d0=50 x/d0=100 

GLR=0% 

    

GLR=3% 

    

GLR=7% 

    
Figure 20:  Laser sheet illumination imagery comparison of the effect of increasing gas-to-liquid 
ratio (GLR).  For these test conditions, θ=90°, d0=0.020”, and q0=3.  (Contrast enhanced to show 
detail.)  Flow is out of the page. 
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Laser Sheet Illumination Penetration Height Correlation
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Figure 21:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 correlation) 
derived from laser sheet illumination, normalized by the measured penetration height (h/d0 
measured), graphed versus injection angle (θ). 
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Figure 22:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 correlation) 
derived from laser sheet illumination, normalized by the measured penetration height (h/d0 
measured), graphed versus injector orifice diameter (d0). 
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Laser Sheet Illumination Penetration Height Correlation
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Figure 23:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 correlation) 
derived from laser sheet illumination, normalized by the measured penetration height (h/d0 
measured), graphed versus jet-to-air momentum flux ratio (q0). 
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Figure 24:  Spray penetration height correlation for pure- and aerated-liquid jets (h/d0 correlation) 
derived from laser sheet illumination, normalized by the measured penetration height (h/d0 
measured), graphed versus gas-to-liquid mass ratio (GLR). 
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Laser Sheet Illumination Spray Plume Width Correlation
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Figure 25:  Spray plume width correlation for pure- and aerated-liquid jets (ws/d0 correlation) 
derived from laser sheet illumination, normalized by the measured spray plume width (ws/d0 
measured), graphed versus injection angle (θ). 

Laser Sheet Illumination Spray Plume Width Correlation

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Injector Orifice Diameter (d0) [in]

(w
s/

d0
 c

or
re

la
tio

n)
/(w

s/
d0

 m
ea

su
re

d)

Pure-Liquid Jets Aerated-Liquid Jets Unified Correlation  

Figure 26:  Spray plume width correlation for pure- and aerated-liquid jets (ws/d0 correlation) 
derived from laser sheet illumination, normalized by the measured spray plume width (ws/d0 
measured), graphed versus injector orifice diameter (d0). 
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Laser Sheet Illumination Spray Plume Width Correlation
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Figure 27:  Spray plume width correlation for pure- and aerated-liquid jets (ws/d0 correlation) 
derived from laser sheet illumination, normalized by the measured spray plume width (ws/d0 
measured), graphed versus jet-to-air momentum flux ratio (q0). 
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Figure 28:  Spray penetration height and plume width correlations for pure- and aerated-liquid jets 
(h/d0 correlation, ws/d0 correlation, respectively), normalized by the measured penetration height 
and plume width (h/d0 measured, ws/d0 measured, respectively), graphed versus gas-to-liquid 
mass ratio (GLR). 
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Figure 29:  Comparison of historical correlations to current PDPA-derived correlations.  For this 
test condition, θ=90°, d0=0.060”, q0=3, and GLR=0%.  (Note that the Yates 1972 and the 
Baranovsky & Schetz 1978 correlations align exactly on this graph.) 
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a) 

 

b) 

 

c)* 

 
Figure 30:  Comparison of laser sheet illumination imagery to phase Doppler particle analyzer 
data.  The test conditions for each of these plots are as follows: a) θ=45°, d0=0.020”, q0=3, 
GLR=7% , b) θ=45°, d0=0.020”, q0=7, GLR=5%, c) θ=90°, d0=0.020”, q0=7, GLR=2%.  (Contrast 
enhanced on laser sheet images  to show detail.)  (Spray plumes shown half-width.)  *Denotes 
PDPA measurements taken by Lin et al.[12] included for completeness. 
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PDPA Penetration Height Correlation
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Figure 31:  Spray penetration height correlations for pure-and aerated-liquid jets (h/d0 correlation), 
normalized by the measured penetration height (h/d0 measured), graphed versus injection angle 
(θ). 
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Figure 32:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 
correlation), normalized by the measured penetration height (h/d0 measured), graphed versus 
injector orifice diameter (d0). 
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PDPA Penetration Height Correlation
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Figure 33:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 
correlation), normalized by the measured penetration height (h/d0 measured), graphed versus jet-
to-air momentum flux ratio (q0). 

 
PDPA Penetration Height Correlation

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7 8 9

Gas-to-Liquid Mass Ratio (GLR) [%]

(h
/d

 c
or

re
la

tio
n)

/(h
/d

 m
ea

su
re

d)

Pure-Liquid Jets Aerated-Liquid Jets Unified Correlation  
Figure 34:  Spray penetration height correlations for pure- and aerated-liquid jets (h/d0 
correlation), normalized by the measured penetration height (h/d0 measured), graphed versus gas-
to-liquid mass ratio (GLR). 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g)* 

 

h)* 

 
Figure 35:  Half-plume plots of local equivalence ratios derived from PDPA measurements.  The 
test conditions for each of these plots are as follows: a) θ=45°, d0=0.020”. q0=3, GLR=7%, b) θ=45°, 
d0=0.020”. q0=7, GLR=5%, c) θ=60°, d0=0.020”. q0=5, GLR=5%, d) θ=60°, d0=0.020”. q0=6, GLR=2%, 
e) θ=75°, d0=0.020”. q0=5, GLR=3%, f) θ=75°, d0=0.020”. q0=10, GLR=0%, g) θ=90°, d0=0.020”. q0=3, 
GLR=0%, h) θ=90°, d0=0.020”. q0=3, GLR=8%.  (Plumes are shown half-width.)  *Denotes PDPA 
measurements taken by Lin et al.[12] included for completeness. 
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APPENDIX A 
 
Shadowgraph Intensity Profile Script 
cd c:\thesis\Shadowgraph\Day1 
 
DNames = dir; 
 
MeanMatrix = double(zeros(length(DNames)-2,2)); 
 
for i = 3:length(DNames) 
    eval(['cd c:\thesis\Shadowgraph\Day1\',DNames(i).name]); 
    eval(['I = imread(''',DNames(i).name,'sg.tif'');']); 
    eval(['I',DNames(i).name,' = uint16(zeros(1023,5));']); 
    for j=1:1023 
        I(1,:) = []; 
    end 
    A = uint16(zeros(274,1500)); 
    for j=1:274 
        for k=549:2048 
            A(j,k-548) = I(j,k); 
        end 
    end 
    M = mean2(A); 
    MeanMatrix(i-2,1) = str2num(DNames(i).name); 
    MeanMatrix(i-2,2) = M; 
    eval(['I',DNames(i).name,'(:,1) = I(:,319);']); 
    eval(['I',DNames(i).name,'(:,2) = I(:,374);']); 
    eval(['I',DNames(i).name,'(:,3) = I(:,538);']); 
    eval(['I',DNames(i).name,'(:,4) = I(:,812);']); 
    eval(['I',DNames(i).name,'(:,5) = I(:,1361);']); 
    eval(['I',DNames(i).name,'(:,6) = I(:,319)/uint16(round(M*65535));']); 
    eval(['I',DNames(i).name,'(:,7) = I(:,374)/uint16(round(M*65535));']); 
    eval(['I',DNames(i).name,'(:,8) = I(:,538)/uint16(round(M*65535));']); 
    eval(['I',DNames(i).name,'(:,9) = I(:,812)/uint16(round(M*65535));']); 
    eval(['I',DNames(i).name,'(:,10) = I(:,1361)/uint16(round(M*65535));']); 
    eval(['dlmwrite(''c:\thesis\Shadowgraph\',DNames(i).name,'.txt'', I',DNames(i).name,', 
''delimiter'', ''\t'', ''precision'', 8);']); 
    eval(['clear I',DNames(i).name,';']); 
end 
 
dlmwrite('c:\thesis\Shadowgraph\Day1Means.txt', MeanMatrix, 'delimiter', '\t', 'precision', 8); 
 
clear all; 
 
cd c:\thesis\Shadowgraph\Day2 
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DNames = dir; 
 
MeanMatrix = double(zeros(length(DNames)-2,2)); 
 
for i = 3:length(DNames) 
    eval(['cd c:\thesis\Shadowgraph\Day2\',DNames(i).name]); 
    eval(['I = imread(''',DNames(i).name,'sg.tif'');']); 
    eval(['I',DNames(i).name,' = uint16(zeros(1023,5));']); 
    for j=1:1023 
        I(1,:) = []; 
    end 
    A = uint16(zeros(274,1500)); 
    for j=1:274 
        for k=549:2048 
            A(j,k-548) = I(j,k); 
        end 
    end 
    M = mean2(A); 
    MeanMatrix(i-2,1) = str2num(DNames(i).name); 
    MeanMatrix(i-2,2) = M; 
    eval(['I',DNames(i).name,'(:,1) = I(:,319);']); 
    eval(['I',DNames(i).name,'(:,2) = I(:,374);']); 
    eval(['I',DNames(i).name,'(:,3) = I(:,538);']); 
    eval(['I',DNames(i).name,'(:,4) = I(:,812);']); 
    eval(['I',DNames(i).name,'(:,5) = I(:,1361);']); 
    eval(['I',DNames(i).name,'(:,6) = I(:,319)/M;']); 
    eval(['I',DNames(i).name,'(:,7) = I(:,374)/M;']); 
    eval(['I',DNames(i).name,'(:,8) = I(:,538)/M;']); 
    eval(['I',DNames(i).name,'(:,9) = I(:,812)/M;']); 
    eval(['I',DNames(i).name,'(:,10) = I(:,1361)/M;']); 
    eval(['dlmwrite(''c:\thesis\Shadowgraph\',DNames(i).name,'.txt'', I',DNames(i).name,', 
''delimiter'', ''\t'', ''precision'', 8);']); 
    eval(['clear I',DNames(i).name,';']); 
end 
 
dlmwrite('c:\thesis\Shadowgraph\Day2Means.txt', MeanMatrix, 'delimiter', '\t', 'precision', 8); 
 
clear all; 
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8bit Image Averaging Script 
ImgMatrix = uint8(zeros(1024,1024,50)); 
 
    FileNames = dir('*.tif'); 
     
    for i=1:6 
        for j=((i-1)*50)+1:i*50 
            ImgMatrix(:,:,j-((i-1)*50)) = imread(FileNames(j).name); 
        end 
         
        AvgImg = uint8(mean(ImgMatrix,3)); 
        eval(['imwrite(AvgImg,''average0',num2str(i),'.tif'',''TIFF'')']); 
    end 
clear all; 
 
16bit Image Averaging Script 
ImgMatrix = uint16(zeros(1024,1024,50)); 
 
    FileNames = dir('*.tif'); 
     
    for i=1:6 
        for j=((i-1)*50)+1:i*50 
            ImgMatrix(:,:,j-((i-1)*50)) = imread(FileNames(j).name); 
        end 
         
        AvgImg = uint16(mean(ImgMatrix,3)); 
        eval(['imwrite(AvgImg,''average0',num2str(i),'.tif'',''TIFF'')']); 
    end 
clear all; 
 
Image Unskewing Script 
DirNames = dir; 
DNLength = length(DirNames); 
 
T = maketform('projective',[79 31; 955 62; 83 937; 957 895],[79 31; 955 31; 83 937; 957 937]); 
R = makeresampler('cubic','circular'); 
 
for i=3:DNLength 
    eval(['cd c:\thesis\lasersheet\16bit\',DirNames(i).name,'\']); 
    for j=1:6 
        eval(['I',num2str(j),' = imread(''',DirNames(i).name,'avg0',num2str(j),'.tif'');']); 
        eval(['K',num2str(j),' = imtransform(I',num2str(j),',T,R,''Size'',[1024 1024],''XYScale'',1);']); 
        eval(['imwrite(K',num2str(j),',''',DirNames(i).name,'avg0',num2str(j),'unskew.tif'',''TIFF'');']); 
    end 
end     
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Grayscale to Black-and-White Matlab Script 
clear all; 
clc; 
 
cd c:\thesis\lasersheet\8bit\ 
 
% Read the names of the directories and store them in a matrix 
DNames = dir; 
 
% Remove the first two entries from the matrix, which are by default 
% the values "." and ".." 
DNames(1) = []; DNames(1) = []; 
 
% Begin recursing through the directories and reading in the images 
for i = 1:length(DNames) 
    eval(['cd c:\thesis\lasersheet\8bit\',DNames(i).name,'\']); 
    for j=1:6 
        % Read in each of the 6 averaged images, one at a time 
        eval(['I = imread(''',DNames(i).name,'avg0',num2str(j),'unskew.tif'');']); 
        % Convert the image to black and white 
        BW = im2bw(I,0.025); 
        % Write the black and white image to a TIF file 
        eval(['imwrite(BW, ''',DNames(i).name,'avg0',num2str(j),'BW.tif'', ''TIFF'');']); 
    end 
end 
 
clear all; 
clc; 
 
cd c:\thesis\lasersheet\16bit\ 
 
% Read the names of the directories and store them in a matrix 
DNames = dir; 
 
% Remove the first two entries from the matrix, which are by default 
% the values "." and ".." 
DNames(1) = []; DNames(1) = []; 
 
% Begin recursing through the directories and reading in the images 
for i = 1:length(DNames) 
    eval(['cd c:\thesis\lasersheet\16bit\',DNames(i).name,'\']); 
    for j=1:6 
        % Read in each of the 6 averaged images, one at a time 
        eval(['I = imread(''',DNames(i).name,'avg0',num2str(j),'unskew.tif'');']); 
        % Convert the image to black and white 
        BW = im2bw(I,0.025); 
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        % Write the black and white image to a TIF file 
        eval(['imwrite(BW, ''',DNames(i).name,'avg0',num2str(j),'BW.tif'', ''TIFF'');']); 
    end 
end 
 
PDPA Equivalence Ratio Script 
%This file reads in tab delimited text files created from Excel 
%spreadsheets.  The first file read in is a file called 'List.txt' which 
%lists all of the conditions being read in as well as the global 
%equivalence ratio for each condition. 
 
%The second file read in is of the naming convention AADDQQGGVF.txt, where 
%AA=injection angle in degrees, DD=orifice diameter in thousandths of an 
%inch, QQ=jet-to-air momentum flux, and GG=gas-to-liquid ratio in 
%percentage.  This file contains the volume flux measurements made by the 
%PDPA system in cubic centimeters per square centimeter per second. 
 
%The third file read in is a two column file listing the y-locations (in 
%inches) of each measurement in the first column and the z-locations (in 
%inches) of each measurement in the second column.  This file is of the 
%naming convention AADDQQGGArea.txt. 
 
%The fourth file lists the particle concentrations at each location.  Naming 
%convention is AADDQQGGPC.txt. 
 
%Clears all variables. 
clear all; 
 
%Creates an array containing the list of these files in the directory. 
Names = dlmread('List.txt'); 
 
%Begins recursing through the files in the directory. 
for k=1:length(Names) 
 
%Reads the first files in and stores them as arrays. 
    eval(['VF = dlmread(''',num2str(Names(k,1)),'VF.txt'');']); 
    eval(['ATxt = dlmread(''',num2str(Names(k,1)),'Area.txt'');']); 
    eval(['PC = dlmread(''',num2str(Names(k,1)),'PC.txt'');']); 
 
%Creates a contour plot of the particle concentration at each location and 
%saves it as a TIF file. 
    [c,h] = contourf(PC’); 
    colormap default; 
    axis square tight; 
    colorbar; 
    eval(['saveas(h,''',num2str(Names(k,1)),'PC.tif'',''tif'');']); 
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    close 
    clear h; clear c; 
           
%Determines the size of the volume flux array. 
    d = size(VF); 
 
%Begins recursing through the arrays. 
    for i=1:d(1)-1 
        for j=1:d(2)-1 
 
%Takes the average of the volume flux values creating a four point box 
%throughout the array. [cc/(cm^2*s)] 
            VFavg(i,j) = (VF(i,j)+VF(i+1,j)+VF(i,j+1)+VF(i+1,j+1))/4; 
             
%Calculates the equivalence ratio based on liquid mass flux, air mass flux, 
%and a stoichiometric fuel/air ratio of 0.06719, then normalizes it by the 
%global equivalence ratio for each condition. 
            EqRatio(i,j) = ((VFavg(i,j)/22.875)/0.06719)/Names(k,2); 
             
%Creates X matrix of the x coordinates. 
            X(1,j) = (ATxt(j+1,1)+ATxt(j,1))/2; 
        end 
         
%Creates Y matrix of the y coordinates.         
        Y(1,i) = (ATxt(i+1,2)+ATxt(i,2))/2; 
    end 
     
%Creates a contour plot of the equivalence ratio values and saves it as a  
%TIF file.  It was discovered that the axes were reversed in the matrix, thus 
%the transpose of the matrix is plotted and the axes are switched. 
    [c,h] = contourf(Y,X,EqRatio’); 
    colormap hot; 
    axis square tight; 
    colorbar; 
    xlabel('Y Location'); 
    ylabel('Z Location'); 
    title('Local Equivalence Ratio'); 
    eval(['saveas(h,''',num2str(Names(k,1)),'ER.tif'',''tif'');']); 
    close; 
    clear h; clear c; 
     
%Outputs a tab delimited text file containing the local equivalence ratios 
%in the plume. 
 
    eval(['dlmwrite(''',num2str(Names(k,1)),'.txt'',EqRatio,''\t'');']); 
    clear VF; clear EqRatio; clear ATxt; clear PC; clear VFavg; 
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    clear X; clear Y; clear d; 
 
end 
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Particle Concentration and SMD Averaging Script 
%This file reads in tab delimited text files created from Excel 
%spreadsheets.  The first file read in is a file called 'List.txt' which 
%lists all of the conditions being read in as well as the global 
%equivalence ratio for each condition. 
 
%The second file read in is of the naming convention AADDQQGGArea.txt, where 
%AA=injection angle in degrees, DD=orifice diameter in thousandths of an 
%inch, QQ=jet-to-air momentum flux, and GG=gas-to-liquid ratio in 
%percentage.  This file contains is a two column file listing the 
%y-locations (in inches) of each measurement in the first column and the 
%z-locations (in inches) of each measurement in the second column. 
 
%The third file read in has the Sauter Mean Diameter values.  This file is 
%of the naming convention AADDQQGGSMD.txt.  SMD are given in units of 
%micrometers. 
 
%The fourth file lists the particle concentrations at each location.  Naming 
%convention is AADDQQGGPC.txt. 
 
%Clears all variables. 
clear all; 
 
%Creates an array containing the list of these files in the directory. 
Names = dlmread('List.txt'); 
 
%Begins recursing through the files in the directory. 
for k=1:length(Names) 
 
%Reads the first files in and stores them as arrays. 
    eval(['ATxt = dlmread(''',num2str(Names(k,1)),'Area.txt'');']); 
    eval(['SMD = dlmread(''',num2str(Names(k,1)),'SMD.txt'');']); 
    eval(['PC = dlmread(''',num2str(Names(k,1)),'PC.txt'');']); 
 
%Determines the size of the volume flux array. 
    d = size(SMD); 
 
%Begins recursing through the arrays. 
    for i=1:d(1)-1 
        for j=1:d(2)-1 
            
%Takes the average of the SMD values and particle concentration values 
%creating a four point box throughout the array. [cc/(cm^2*s)], [1/cc] 
            SMDavg(i,j) = (SMD(i,j)+SMD(i+1,j)+SMD(i,j+1)+SMD(i+1,j+1))/4; 
            PCavg(i,j) = (PC(i,j)+PC(i+1,j)+PC(i,j+1)+PC(i+1,j+1))/4; 
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%Creates X matrix of the x coordinates. 
            X(1,j) = (ATxt(j+1,1)+ATxt(j,1))/2; 
        end 
         
%Creates Y matrix of the y coordinates.         
        Y(1,i) = (ATxt(i+1,2)+ATxt(i,2))/2; 
    end 
     
%Creates a contour plot of the SMD average values and saves it as a  
%TIF file. 
    [c,h] = contourf(X,Y,SMDavg); 
    colormap default; 
    colorbar; 
    axis equal; 
    eval(['saveas(h,''',num2str(Names(k,1)),'SMD.tif'',''tif'');']); 
 
%Creates a contour plot of the particle concentration at each location and 
%saves it as a TIF file. 
    [c,h] = contourf(X,Y,PCavg); 
    colormap default; 
    colorbar; 
    axis equal; 
    eval(['saveas(h,''',num2str(Names(k,1)),'PC.tif'',''tif'');']);           
     
end 
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