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Abstract 

In many pattern recognition applications, significant costs can be associated with 

various decision options.  Often, a minimum acceptable level of confidence is required 

prior to making an actionable decision.  Combat target identification (CID) is one 

example where the incorrect labeling of Targets and Non-targets has substantial costs; 

yet, these costs may be difficult to quantify.  One way to increase decision confidence is 

through fusion of data from multiple sources or from multiple looks through time.  

Numerous methods have been published to determine optimal rules for the fusion of 

decision labels or to determine the Bayes’ optimal decision if prior probabilities along 

with decision costs can be accurately estimated.  This research introduces a mathematical 

framework to optimize multiple decision thresholds subject to a decision maker’s 

preferences.  The decision variables may include rejection thresholds to specify Non-

declaration regions and ROC thresholds to explore viable true positive and false positive 

Target classification rates.  This methodology yields an optimal class declaration rule 

subject to decision maker preferences without using explicit costs associated with each 

type of decision. 

This optimization framework is demonstrated using various generated and 

collected sensor data.  The experiments using generated data were performed to gain 

insight of the potential effects of fusing data with various degrees of correlation.  The 

optimization framework is then applied to assess two competing fusion systems across 

four test sets of radar data.  The fusion methods include Boolean logic and probabilistic 

neural networks for the fusion of collected 2-D SAR data processed via 1-D HRR moving 

target algorithms.  Excursions are performed by varying the prior probabilities of Targets 
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and Non-targets and varying the correlation between multiple sensor looks.  In addition to 

optimizing thresholds according to decision maker preferences, an objective function is 

presented to facilitate comparison between CID systems, where the time associated with 

each look is incorporated.  
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INVESTIGATION OF FUSION FOR ATR WITH NON-DECLARATIONS AND 

CORRELATED INPUT DATA 

 

I. Introduction 

1.1 Combat ID Background 

With recent technological advancements in precision engagement and stealth, “if 

the enemy’s key targets, target sets, or COGs (centers of gravity) can be found and 

identified, they are usually within airpower’s reach” (Dept. of AF 2000: 42).  Combat 

target identification (CID) is hence identified by Air Force Doctrine Document (AFDD) 

2-1: Air Warfare, as one of the limiting factors in our ability to engage the enemy.  An 

assessment of the current state of CID by Haspert (2000) concurs with this assessment of 

CID and goes on to state, “CID is often viewed as the weakest part of the military’s kill 

chain.”  The links in the complete kill chain may include: search, detect, track, classify, 

identify, assign, fire control calculations, weapons launch, mid-course guidance, target 

acquisition by the weapon, terminal homing, fuse, target damage, and battle damage 

assessment.  With good Combat ID hostile targets may be engaged with a minimal 

probability of fratricide and with limited unintentional collateral damage of neutral 

forces.  In a recent Air Force Magazine Online article, Cahlink (2004) quotes Lt. Gen. 

Leaf, the USAF liaison to the land component commander during Operation Iraqi 

Freedom (OIF) who states, “in terms of fratricide, zero is the only good score, and we’re 

not there yet.”  Cahlink goes on to state, “preliminary analysis showed that fratricide of 

all types accounted for about 11 percent of 115 US battle deaths” in Gulf War II (OIF).  
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This number of fratricides is lower than those obtained in Desert Storm where, “fratricide 

was blamed for 35 of 148 U.S. battle deaths,” which is about 24 percent (Cahlink, 2004).  

A related article by Hebert (2004) quotes Army Brig. Gen. Robert W. Cone, who led 

Joint Force Command’s (JFCOM’s) lessons learned from Gulf War II.  He states, “In 

terms of CID, I don’t think we’ve made a lot of progress in the last 10 years” (Hebert, 

2004).  Hebert goes on to state, “DoD identified fratricide prevention as its top priority,” 

and “eliminating fratricide requires two advances: accurate CID and better blue-force 

tracking,” (Hebert, 2004).  Thus, Haspert’s statement of CID being considered one of the 

weakest parts of kill chain is currently supported in the DoD community and 

improvement in Combat ID is top research priority for the Department of Defense. 

1.2 Introduction to Automatic Target Recognition 

 Combat ID includes the identification of potential targets using both cooperative 

systems and non-cooperative identification methods.  One example of cooperative 

Combat ID includes a direct question-and-answer identification, friend or foe (IFF) 

system.  This system may be used to interrogate a potential target using electronic 

communication between two friendly systems.  When feedback is not obtained, the 

Combat ID must be made using non-cooperative means.  The non-cooperative means 

may include a man-in-the-loop to make a final decision of whether or not the potential 

target is indeed a hostile.  One potential man-in-the-loop method of Combat ID is the 

visual verification of a ground target by the pilot prior to engagement.  If a non-

cooperative Combat ID is performed autonomously by an identification system, it is 

considered to be an automatic target recognizer (ATR).  Automatic target recognition 
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may include tasks of detecting, tracking, and classifying potential targets.  Such a system 

may be referred to as an Automatic Target Detection/Recognition (ATD/R) system.  With 

the emergence of an increased volume of electronic sensor data, along with an increase in 

the communication bandwidth between platforms, Combat ID research specifically aimed 

at improvements in ATR may have substantial benefits.  For example, Hebert (2004) 

states, “senior officials have noted that some assets, such as Global Hawk are so effective 

at collecting intelligence that they can’t be used at full capacity.”  Improved ATR 

systems would help streamline the Combat ID process and allow the USAF to use Global 

Hawk at more than the one-third capacity used during Operation Iraqi Freedom (Hebert, 

2004).  Thus, while great improvements have been made for the operational use of 

unmanned aerial vehicles (UAVs) to perform reconnaissance in support of the search 

phase of the military kill chain, the current intelligence processing methods are not able 

to utilize the full capacity of these assets.  Hebert (2004) goes on to note, the Link 16 now 

transmits targeting information electronically rather than through voice communication.  

This electronic communication may occur from the Air Operations Center (AOC) to an 

Airborne Warning and Control System (AWACS) to a strike aircraft.  Thus, as electronic 

communication capabilities increase and the volume of data grows, the requirement to 

fuse data automatically from multiple sources is likely to grow.  This sharing and fusion 

of data from multiple sources is a key to netcentric warfare. 

 As identified in the Draft Capstone Requirements Document for CID, “Combat 

Identification is the process of attaining an accurate characterization of detected objects 

in the joint battlespace to the extent that high confidence, timely application of military 

options and weapons resources can occur.”  An example of a notional ATR system is 



 

4 

provided as Figure 1.1.  The primary goal of this system is to provide better battlespace 

characterization from which actionable decisions can be made by the warfighter.  

Decisions may include engagement of Hostile targets, a new allocation for sensors to 

identify a new Region of Interest (ROI) after non-targets have been identified, etc.  Such 

a system could use data from multiple sensors, denoted as A and B in Figure 1.1, in the 

attempt to identify a potential target located in a ROI.   
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Figure 1.1 Notional ATR System with Sensors A & B Collecting Data through Time 

The ROI was selected by at least one sensor, where enough evidence was 

obtained to suggest that a desirable target is likely to be located in the general area.  The 

two sensors may be hosted on the same or different platforms and more than two sensors 

may be used.  As identified in USAF doctrine, the ATR process must obtain enough 

evidence to reach a desired level of confidence in the labeling of the object, prior to 

making a shoot decision (Dept of AF, 1999, 2000).  Thus, if enough confidence is not 
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obtained a “Non-declaration” is a desired output label to the warfighter (Sadowski, 2004).  

In these situations, the ATR system may continue to acquire new information from 

additional looks by one or more sensors.  This new data should then be fused to obtain an 

updated decision for the correct labeling of the object.  With a “Non-declaration” always 

a desired label option, the ATR system would be required to have a minimum of three 

output labels including “Target,” “Non-Target,” and “Non-declaration.”   

Since the ATR system would be employed against potentially moving hostile 

targets, a real-time capability to acquire additional data after a “Non-declaration” label is 

generated is desired.  Since no other platforms may be available to help in the ID process, 

the current ATR system may be forced to take multiple looks of the same potential target 

in a limited time.  These multiple looks across limited differences in viewing angles, 

would likely contain similar information, and may likely be highly correlated.  The 

assessment of fusion methods with data representative of different correlation structures 

is desired to help understand the potential effects of collecting sensor data across various 

correlation levels.   

As will be defined in Chapter 2, one common assessment technique for ATR 

systems is the use of a Receiver Operating Characteristic (ROC) curve (Alsing, 2000).  

The ROC curve shows the trade-off between two performance measures of interest, 

including the probability of true positive target declaration and the probability of false 

positive target declaration, as a decision threshold is varied.  Yet, the standard ROC curve 

only provides insight of a dichotomous decision and does not show any temporal 

relationships.  Although the ROC curve is widely used in the ATR community, the 

additional impact of “Non-declarations” and the ATR system time required to obtain a 
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traditional ROC curve true positive performance values is not readily visible to facilitate 

the comparison of ATR systems.  Thus, to determine a preferred operational ATR 

system, the warfighter not only needs to know the relative true positive and false positive 

rates, but the associated number of re-looks associated with “Non-declarations” and the 

associated time required by the system (Sadowski, 2004). 

Thus, a goal of this research is to develop a ROC-like measure of performance for 

Combat ID ATR systems.  This measure of performance should help evaluate competing 

fusion systems and be inclusive of both time measures and rejection parameters.  Further, 

it is highly desired to perform such evaluation without determining the explicit costs 

associated with incorrect classifications (Sadowski, 2004).  While the literature reviewed 

includes methods of determining an optimal system with respect to misclassifications and 

rejections or “Non-declarations,” this is accomplished by use of a cost function, where 

equivalent units are required for both misclassifications and “Non-declarations.”  For 

example, the relative costs for the misclassification of a friend as a “Hostile,” which may 

contribute to a fratricide is difficult to place in the same cost units as the cost of a “Non-

declaration,” which simply triggers a re-look of an ROI.  Therefore, the evaluation of an 

ATR system without use of explicit costs is highly desired.  Once a methodology is 

determined, evaluation can then be performed using data with various degrees of 

correlation.  This assessment should help determine some of the effects of fusing 

independent data vs. fusing data that may be correlated across sensors or within a sensor 

as it obtains multiple looks through time. 
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1.3 Contributions of this Research 

This research makes several contributions by addressing the research goals 

outlined in the previous section.  First, a comprehensive review of the literature is 

performed to capture the current performance measures used for ATR system assessment.  

From this review, no current ROC-like methodology was found that allowed for a 

temporal assessment of a classification system, inclusive of “Non-declarations.”  Further, 

most assessments of classification accuracy with a “Non-declaration” option were 

optimized to be either compliant to a predetermined number of unlabeled objects, or to 

minimize the overall risk of a Loss function associated with the classification system.  

The Loss functions require estimates of target class prevalence along with costs 

associated with each type of incorrect output label, where “Non-declaration” costs must 

be placed in comparable cost units to all other feasible misclassifications. 

A mathematical framework is developed to determine an optimal ATR system, 

inclusive of a developed temporal objective function.  This objective function extends 

traditional ROC curve analysis, by offering identification of preferred ROC points, using 

assessments of both time and “Non-declarations.”  This measure includes the evaluation 

and optimization of a minimum of two variable thresholds used to make “Target,” “Non-

target,” and “Non-declaration” decisions.  This is accomplished without use of explicit 

costs through a mathematical formulation.  This mixed variable programming framework 

is developed as a new and flexible evaluation method for ATR.  The optimization 

framework is then used to assess and compare different fusion methods using generated 

data.  In performing some of these experiments, a synthetic classifier fusion test 
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environment was established.  This synthetic fusion test environment includes the 

generation of multidimensional Gaussian data with desired correlation structures both 

across simulated sensors and through multiple looks in time.  Justification for use of 

multivariate Gaussian data to represent sensor features is also provided.  The mixed 

variable framework was then demonstrated across two fusion methods with two 

polarimetric channels of radar data fused across time.  This experiment demonstrates the 

utility of the optimization framework on a new data set collected in 2004 and obtained 

from the Air Force Research Lab’s Sensor Directorate (AFRL/SN).   

While the research contained within this document maintains a focus on DoD 

military target applications, this research is applicable across a wide range of 

classification applications.  For example, significant ROC curve research has been 

performed in the medical community, where ROC curves are a commonly employed 

decision tool (Swets et al., 2000; Metz, 1986, 1989).
 
  Medical data may also be derived 

from multiple sensors (X-ray, CT scan MRI) or from multiple diagnostic tests.  This data 

may then be combined to obtain a best fused diagnosis for a patient.  A majority vote is 

one common technique used to fuse independent results for a given disease (Kuncheva, 

2004).  Current medical research also seeks to automatically assess imagery data for the 

determination of cancer vs. benign growths.  As with military applications, 

misclassification costs may significantly outweigh “Non-declaration” costs.  For a 

medical application, a “Non-declaration” may have a small time and monetary cost 

associated with another diagnostic test or image, while a false negative classification may 

lead to substantial lost treatment time and a false positive may lead to substantial 

emotional stress of a patient.  In addition to medical applications, similar applications of 
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classification tasks requiring data to be fused through time may be found in many other 

areas.  This list may include applications for automatic system prognosis, robotics, and 

environmental monitoring, among others (Hall and Llinas, 2001). 

1.4 Organization of this Document 

The remainder of this document is organized as follows.  Chapter 2 provides a 

review of the pertinent literature for the investigation of fusion with unknown class 

designations and correlated input data.  This review contains four main sections.  They 

include an introduction to fusion and fusion process models for ATR, a background of 

sensor features and the potential levels of correlation found in sensors, an introduction to 

some of the models used for sensor fusion, and an overview of potential measures of 

performance used to assess ATR systems.  Chapter 3 provides a methodology for the 

mathematical framework used to compare ATR systems including a proposed objective 

function inclusive of time.  Chapter 4 presents some examples of the optimization 

framework using generated data.  This chapter also includes a multivariate Gaussian data 

generation method and justification for its use.  Chapter 5 presents an illustrative example 

of the optimization framework to compare two competing fusion systems using two 

channels of collected radar data.  This chapter also includes significant sensitivity 

analysis across variables of interest.  The final chapter presents a summary of 

contributions and findings along with thoughts for the continuation of related research. 
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II. Literature Review 

This literature review is arranged with the following primary sections.  Section 

2.1 is an introduction to data fusion for Combat ID and Automatic Target Recognition 

(ATR).  Section 2.2 provides a review of the sensor environment expected for ATR 

systems.  Section 2.3 provides an overview of some of the methods to perform fusion.  

Section 2.4 presents common techniques used to assess ATR performance.  A summary 

of the findings from the literature is the included as Section 2.5. 

2.1 Introduction to Data Fusion for Automatic Target Recognition 

This section provides a basic introduction to key components of Automatic Target 

Recognition as a subset of Combat ID.  Intelligence data sources are first described, 

followed by a discussion of fusion for Intelligence, Surveillance, and Reconnaissance 

(ISR) applications.  Definitions are then presented for different types of correlation that 

may be found within the sources of sensor data to be fused in the ATR process.  An 

overview of sensor fusion process models is then presented, followed by a discussion of 

the relationship between ATR and these fusion models. 

2.1.1 Intelligence Data Sources 

The complete set of ISR images available for analysis and target identification 

over a specific area of interest are likely to be comprised of a mix of sensors collected 

from different ISR platforms.  The intelligence derived from visual photography, infrared 

sensors, lasers, electro-optics, and radar sensors is collectively known as imagery 

intelligence (IMINT), as defined in Air Force Doctrine Document (AFDD) 2-5.2, 
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Intelligence, Surveillance, and Reconnaissance Operations (Dept. of AF, 1999).  Typical 

sensor types include electro-optical (EO), infrared (IR), synthetic aperture radar (SAR), 

high resolution range (HRR) radar, and radar used for moving target indication (MTI), 

along with the more recent addition of multispectral (MSI) and hyperspectral imagery 

(HSI).  While EO, IR, and radar data provide a single image, MSI and HSI data contain 

multiple images of the same region obtained in different frequency bands.  MSI data is 

typically comprised of data in 5-12 spatially disjoint electromagnetic frequency bands 

covering the visible and infrared spectrum, while HSI data may contain upwards of over 

200 frequency bands (Langrebe, 1998) across the same electromagnetic frequencies.  The 

collection of this spectral data for a Region of Interest (ROI) is often referred to as a data 

hypercube.  Analysis of these IMINT sources may integrate or fuse information from two 

or more IMINT sources or other intelligence sources to increase the accuracy of the 

intelligence assessment.  Other intelligence sources include signature intelligence 

(SIGINT), measurement and signature intelligence (MASINT), human resources 

intelligence (HUMINT) and open-source intelligence (OSINT).  SIGINT includes 

communications intelligence (COMINT), electronic intelligence (ELINT) and foreign 

instrumentation signals intelligence (FISINT); MASINT includes scientific and technical 

intelligence derived from sensor types used for IMINT and SIGINT; and OSINT includes 

all publicly available information, such as newspaper, radio and television broadcasts.  

Further discussion of intelligence sources can be found in AFDD 2.5-2 and AFP 14-210, 

the USAF Intelligence Targeting Guide (Dept. of AF, 1998). 



 

12 

2.1.2 Principle of ISR Fusion 

AFDD 2-5.2 identifies and defines 11 guiding Air Force ISR principles as:  

• General • Timeliness • Unity of Effort 

• Integration • Fusion • Interoperability 

• Accuracy • Accessibility 

• Relevance • Security 

• Survivability, 

Sustainability, and 

Deployability 

 

These principles are each defined in operational terms with illustrative examples and 

discussion.  A common theme to all 11 ISR principles is the need for them to work 

synergistically to provide optimal information with maximum utility to commanders and 

decision makers.  Thus, to fully optimize the principle of fusion other principles must also 

be considered.  The USAF Intelligence Targeting Guide (Dept. of AF, 1998: 22) defines 

fusion as, “the process of combining multisource data into intelligence necessary for 

decision making,” and goes on to state: 

Due to limitations inherent in any collection system, and because other 

countries strive to misinform or deny information to intelligence gathering 

agencies, intelligence normally should not be based on single source data.  

Intelligence becomes more useful and more reliable when information 

from all possible sources is collected, combined, evaluated, and analyzed 

in a timely manner. 

 

From the above statement, the principle of fusion works in concert with the other 

principles, such as timeliness, accuracy, integration, etc. to provide optimal information 

to the commanders and decision makers at all levels.   

While both AFDD 2-5.2 and AFP 14-210 clearly state ISR derived information 

shall be combined, evaluated, and analyzed to produce accurate intelligence, neither 

document provides details on how to accomplish this fusion.  To further complicate 

intelligence analysis, growth in the total volume of information available and the 
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resulting dimensionality of data requiring fusion continues to grow.  Technical advances 

in our current “information age” have led to growth in the total data available for fusion, 

where increased sensor resolution, increased bandwidth to share information, increased 

ISR platforms including UAVs and satellites, and new sensor types like MSI and HSI by 

their very nature can add significant amounts of data for any particular region of interest.  

Dasarathy, a leading information fusion researcher, also points out temporal fusion 

increases the dimensionality of the fusion process, and the spectral fusing of information 

acquired across a period of time has not been well recognized (Dasarathy, 1997: 27).  

Two other leading information fusion researchers Hall and Llinas, also recognize the 

growing dimensionality of data available for fusion, where object recognition or target 

identification is dominated by methodologies using a feature vector derived from sensor 

data to represent an object or potential target in a feature space with defined class 

boundaries (Hall and Llinas, 1997: 19-20).  While many techniques for pattern 

recognition using feature vector input are available to the analyst, Hall and Llinas note: 

…the ultimate success of these methods depends upon the ability to select 

good features. (Good features are those which provide excellent class 

separability in feature space, while bad features are those which result in 

greatly overlapping areas in feature space for several classes of targets.) 

 

They then remark, “…more research is needed to guide the selection of features and to 

incorporate explicit knowledge about target classes,” (such as other intelligence 

information).  Guidance for the selection of features can be found in Pattern Recognition 

using Neural Networks, (Looney, 1997: Ch 10 Feature and Data Engineering) with three 

goals for mapping data into a feature space summarized as: 
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1. Retain as much relevant information as possible 

2. Remove as much redundant information and extraneous noise as possible 

3. Render the measurement data to variables more suitable for decision making 

 

To accomplish goal 2 from above, the estimated linear correlation is typically used to 

measure the degree of association and linear dependence between any two random 

variables or features.  This linear correlation between features is a primary measure used 

to indicate possible redundancy or dependence between features, where an increased 

number of independent features can provide greater discrimination power.  However, in 

the presence of noise an increased number of highly correlated features can actually 

decrease the ability to discriminate between objects.   

Thus, as identified in current literature, both fusion of time series data and feature 

selection are two areas of research where advancements in current methodologies could 

aid in the fusion process to derive optimal intelligence information given a set of 

collected data. 

2.1.3 Types of Correlation 

The linear correlation between two data variables of interest (raw data, target 

signatures, or refined features) can be used as a measure to identify linear dependence 

between data sources.  The Pearson product-moment correlation coefficient, ρ, is a 

unitless value within the continuous interval of [-1.0, +1.0], with perfect linear correlation 

indicated by a value of +1.0 or -1.0 (Wilson and Keating, 1994: 75).  For two continuous 

random variables (RVs) x and y to be considered independent, the joint probability 

distribution of x and y, denoted f(x,y), must equal the product of the two marginal 

probability distributions defined as f1(x) and f2(y), such that f(x,y) = f1(x)f2(y) (Hogg and 
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Ledolter, 1987: 100).  In general, if the correlation coefficient between two random RVs 

is not 0, then the independence relationship above is not satisfied and the variables must 

be dependent.  On the other hand, if ρ = 0, the variables may or may not be statistically 

independent (Hogg and Ledolter, 1987: 100).  In practical terms, if two highly correlated 

variables are used to classify an object, they are clearly dependent and knowing the value 

of the second variable provides only a marginal increase in information beyond the first 

variable being used to assess the class membership of the object being studied.  The 

entropy, H, (Shannon, 1948) associated with a probabilistic distribution is one approach 

to quantifying the relative information provided by observations of multivariate data. 

The following section will provide specific definitions of correlation, 

autocorrelation, and crosscorrelation.  The Pearson-product-moment correlation 

coefficient ρ, between two RVs x and y is defined in eq. 2-1 and is also known as the 

correlation across variables or features. 
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From eq. 2-1, xµ and yµ are the population means and 2

xσ  and 2

yσ are the population 

variances of the two RVs and xyσ is the covariance between x and y, and does not include 

a temporal component. 

Let z be a random variable with stationary mean and variance sampled at uniform 

intervals across time.  The autocorrelation in RV z across k uniform time lags is defined 

as: 
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where zµ is the population mean and 2

zσ  the population variance of z.  The 

autocorrelation may also be referred to as correlation within a variable or feature.   

The crosscorrelation between RVs x and y across time lag k is defined as: 
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From the definitions above, eq. 2-1 defines the correlation across variables as the 

crosscorrelation at lag 0 between two RVs and the autocorrelation or within correlation at 

lag k in eq. 2-2 can be derived from eq. 2-3 when x = y.  Further, the “(k)” is often 

dropped if k = 0, indicating the correlation value does not include a temporal component. 

Input features derived from sensors and used for ATR may or may not be 

statistically independent.  For example, some features derived from passive visual or 

thermal sensors and reflected radar energy each containing different noise sources may be 

statistically independent.  Conversely, multiple looks by a single sensor across the time 

continuum are likely to contain significant correlation.  If a fusion algorithm assumes 

independent input data for real-time ATR, violation of this assumption may overestimate 

performance when significant correlation is present.  As stated by Dudgeon (1998: 22): 

The assumption of independence is often justified, but in some cases it is 

not, and it may lead to inaccurate estimates of performance.  Generally, 

independence between two random variables can be used as the limiting 

case where the value of one variable has no correlation with and conveys 

no information about the value of the other. 
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2.1.4 Fusion Process Models 

This section briefly introduces various conceptual models of the data fusion 

process and the associated definitions and taxonomy as reviewed in the literature.  The 

primary goal for each of these models is to facilitate discussion and a common language 

for use by those in the data fusion community including both researchers and 

practitioners.  With numerous common terms used interchangeably with varying 

contextual meaning, the models are essential to establish a common nomenclature of 

definitions and concepts.  Prominent models found in current literature include the UK 

intelligence cycle model, the Boyd control (OODA) loop, the revised Joint Directors of 

Laboratories (JDL) model, Dasarathy’s fusion model, the Waterfall data fusion process 

model and the Omnibus model.  With the exception of Dasarathy’s model, these fusion 

models were developed primarily for military applications with significant interest and 

resource support by the U.S. and UK defense communities in the 1980’s and into the 

1990’s.  In addition to the mentioned models, numerous other similar models appear 

specific to a literature source; yet, most can easily be mapped into the before mentioned 

models. 

By adopting a common model of information fusion and associated definitions, 

advancements made within one research community can more easily be put into practice 

by the growing multidisciplinary data fusion community.  As proposed in (Hall & Llinas, 

1997, 6-7), data fusion has, “…rapidly advanced to an emerging true engineering 

discipline with standardized terminology.”  Some specific definitions of types of fusion 

and their associated “levels” are presented in Table 2.1.  It should be noted, this list of 

definitions is not all inclusive, lacking reference to a commonly referenced level 0 fusion, 
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and these definitions still appear to be dominated by their DoD roots and directly link to 

the JDL fusion model. 

Table 2.1 Data Fusion Terminology as Presented by Hall & Llinas, 1997 

Fusion 

The integration of information from multiple sources to 

produce specific and comprehensive unified data about an 

entity. 

Alignment  

(Level 1) 

Processing of sensor measurements to achieve a common time 

base and common spatial reference. 

Association  

(Level 1) 

A process by which the closeness of sensor measurements is 

completed. 

Correlation  

(Level1) 

A decision-making process which employs an association 

technique as a basis for allocating sensor measurements to the 

fixed or tracked location of an entity. 

Correlator-Tracker  

(Level 1) 

A process which generally employs both correlation and 

fusion component processes to transform sensor 

measurements into updated states and covariance for entity 

tracks. 

Classification  

(Level 1) 

A process by which some level of identity of an entity is 

established, either as a member of a class, a type within a 

class, or a specific unit within a type. 

Situation Assessment 

(Level 2) 

A process by which the distributions of fixed and tracked 

entities are associated with environmental, doctrinal and 

performance data. 

Threat Assessment  

(Level 3) 

A structured multi-perspective assessment of the distributions 

of fixed and tracked entities which result in estimates (e.g.): 

• Expected course of action 

• Enemy lethality 

• Unit compositions and deployment 

• Functional networks (e.g. supply, communication, etc.) 

• Environmental effects. 

 

Of the fusion models, the UK intelligence cycle and the Boyd control loop are 

similar in design, both being functionally oriented and cyclic in nature.  The UK 

intelligence cycle is presented in Figure 2.1 from (Bedworth, 1999) and (Bedworth and 

O’Brien, 2000) where planning and action are encompassed within the dissemination 

process.  The Boyd control loop or OODA loop (Observe, Orient, Decide, Act) is 
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presented as Figure 2.2 with additional details found in (Boyd, 1987).  While first used to 

model the military command process, the OODA loop has been widely adopted by the 

U.S. intelligence community as a framework for various levels of data fusion to operate 

within.  Within both models, information fusion can occur within any of the four 

“blocks” (with the exception of Act block in the OODA Loop) with each block loosely 

representing a different “level” of fusion. 
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Figure 2.1 UK Intelligence Cycle 
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Figure 2.2 Boyd (or OODA) Loop 

 

The JDL model was first proposed by the Data Fusion Working Group established 

for the study of information fusion by the DoD.  This working group was established in 

1986 and subsequently created the JDL model and a Data Fusion Lexicon (Hall & Llinas, 

1997, 11).  With an original focus on DoD applications, and emphasis on tactical 

targeting issues, the initial model was developed for military specific applications, but 

was later revised to encompass the growing nonmilitary applications such as 

manufacturing processes, complex system monitoring, robotics, and medical applications.  

Revisions to the to the JDL data fusion model are presented in (Steinberg et al., 1999) 
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where the presented data fusion levels are intended to be a convenient categorization of 

data fusion functions, with actual data processing performed as required by an individual 

sensor fusion system.  The revised JDL model is presented in Figure 2.3, where the data 

fusion domain includes Levels 0-4 and Database Management.  Various sources of local 

input data have also been included for illustrative purposes corresponding to a military 

application. 
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Figure 2.3 Revised JDL Data Fusion Model 

Steinberg et al. (1999) include the following definitions for the revised JDL model levels:   

Level 0 assessment involves hypothesizing the presence of a signal (i.e. of a common 

source of sensed energy) and estimating its state.  Level 0 assignments include: signal 

detection on the basis of integration of a time-series of data and feature extraction from a 

region in imagery.  A region may correspond to a cluster of closely spaced objects or to 

part of an object. 

 

Level 1 assessment involves associating reports (or ‘tracks’ from prior fusion nodes in a 

processing sequence) into an association hypotheses.  Each such track represents the 
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hypothesis that the given set of reports is the total set of reports available to the system 

referencing some individual entity.  

 

Level 2 assessment involves associating tracks (i.e. hypothesized entities) into 

aggregations.  The state of the aggregate is represented as a network of relations among 

its elements.  Relations may be physical, organizational, informational, perceptual; as 

appropriate to a given system’s mission.  As the class of relationships estimated and the 

numbers of interrelated entities broaden, we tend to use the term ‘situation’ for an 

aggregate object of estimation.   

 

Level 3 assessment is usually implemented as a prediction function, drawing particular 

kinds of inferences from Level 2 associations.  Level 3 fusion estimates the “impact” of 

an assessed situation; i.e. the outcome of various plans as they interact with one another 

and with the environment.  The impact estimate can include likelihood and cost/utility 

measures associated with potential outcomes of a player’s planned actions. 

 

Level 4 processing involves planning and control, not estimation.  Similar to the formal 

duality between estimation and control, a duality between association and planning also 

exists.  Level 4 assignment involves assigning tasks to resources. 

 

Revisions to the JDL model include a generalization away from specific target tracking 

and target identification dominated terminology.  Some noted changes include the new 

label for Level 3 “Impact Assessment” vs. the previous title of “Threat Refinement” and 

changing the “Source Pre-Processing” to the currently labeled “Level 0: Data 

Assessment.” 

 The Waterfall model is similar to the JDL model in that multiple functional 

“levels” where data fusion can occur are clearly established.  Each “level” or block 

represents a point in data refinement in which data from multiple sources can be 

combined and passed up to the next “level.”  Yet, it does not explicitly model feedback 

between levels as is included within the JDL model architecture in the data fusion 

domain.  The Waterfall model has been adopted widely by the UK defense fusion 

community, but has not been significantly adopted elsewhere (Bedworth and O’Brien, 

2000), possibly due to this limitation.  The JDL levels and the Waterfall “levels” from 
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each block of Figure 2.4 are similar.  The JDL level 0 corresponds to sensing and signal 

processing, JDL level 1 maps to feature extraction and pattern processing, JDL level 2 

maps to situation assessment and JDL level 3 maps to decision making. 
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Figure 2.4 Waterfall Data Fusion Model (Bedworth, 1999) 

 Unlike the previous data fusion models based on the tasks or functional use of the 

data, the Dasarathy fusion model identifies levels of fusion based on the type of input 

information being fused and the resulting output, and is thus termed an I/O-based 

characterization model (Dasarathy, 1997).  The three types of input and output include: 

• Decisions: Belief values 

• Features:  Intermediate level values 

• Data:  Observed raw data with minimal manipulation 

 

The three types of input and output lead to five distinct types of fusion, identified in 

Table 2.2. 
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Table 2.2 Five Levels of Information Fusion from the Dasarathy Model 

 

Input Output Notation Description/Analogy 

Data Data DAI-DAO Data-level fusion 

Data Features DAI-FEO 
Feature selection; 

Features extraction 

Features Features FEI-FEO Feature-level fusion 

Features Decisions FEI-DEO 
Pattern recognition; 

Pattern processing 

Decisions Decisions DEI-DEO Decision-level fusion 

 

An assumed complexity for data fusion problems necessitates some level of data 

refinement into features before a decision can be made, thus DAI-DEO level fusion is 

excluded.  The various levels of fusion can be combined to generate a flexible 

architecture for data fusion starting with given input at the Data level and a desired 

output at the Decision level.  Figure 2.5 shows an encompassing framework, whereby 

fusion can occur at the parallel level, which in turn can be used as input to move upward 

from Data to Feature and eventually Decision level output. 
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Figure 2.5 Dasarathy I/O Fusion Model, as derived from (Dasarathy, 1997) 
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A final model recently presented in (Bedworth and O’Brien, 2000) is the 

Omnibus fusion model which is based on the Boyd OODA loop and cyclic nature of the 

UK intelligence model. This Omnibus model incorporates the finer definitions from the 

Waterfall model and can be mapped to both the JDL model based on tasks and can also 

be mapped to the Dasarathy model based on the input/output characteristics of the fusion 

occurring within any of the four Omnibus model levels of fusion to include: sensor data, 

feature, soft decision, and hard decision.  To note, feature level fusion is included within 

the Orient process, with the selection of correct features for pattern processing identified 

as one of the current limitations of feature fusion. 
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Figure 2.6 Omnibus Model for Data Fusion (Bedworth and O’Brien, 2000) 

 Table 2.3 is provided to compare and summarize levels where fusion occurs 

within each of the described models.  This table was inspired by a similar table presented 

by Bedworth and O’Brien (2000) but has been modified with respect to the activity titles, 

inclusion of the Omnibus and Dasarathy I/O models and minor differences in how the 

fusion levels are mapped to the activities.  An appropriate mapping between the activity 

being performed in a decision making process was made after reviewing each model 
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individually and, if available, reviewing the mapping presented by Bedworth and O’Brien 

(2000).  It should be noted each model is an abstract to facilitate discussion and should be 

used only as a guide with potential grey area between levels.  Also, impact assessment 

can be viewed as a specific subset of situation assessment as identified in Steinberg et al. 

(1999). 

Table 2.3 Comparison of Fusion Model Components as a Function of Activity 

 

Activity 
UK  

Intelligence  
Cycle 

Boyd  
OODA  
Loop 

Revised  
JDL model 

Waterfall  
model 

Dasarathy 
model 

Omnibus 
 model 

Action Act HCI   Act 

Decision  
making 

Disseminate 
Decide Level 4 

Decision  
making 

Impact 
 assessment 

Level 3 

DEI-DEO  
FEI-DEO 

Decide 

Situation 
 assessment 

Evaluate 

Level 2 

Situation  
assessment 

Pattern  
processing Information  

processing 

Orient 

Level 1 
Feature  

extraction 

FEI-DEO 
FEI-FEO 
DAI-FEO 

Orient 

Data processing 

Collate 

Level 0 
Signal  

processing 

Detection Collect 

Observe 

Input Sensing 

DAI-FEO 
DAI-DAO 

Observe 

 

2.1.5 ATD/R Models as Related to Fusion Process Models 

While a requirement for military automatic target recognition (ATR) was 

identified 1960’s, autonomous operational systems have still not been fielded (Nasr, 

2003).  Extensive advancements in theory and algorithms for target recognition have 

been made; yet by comparison, little focus has been placed on the testing and evaluation 

of these systems.  The United States Air Force (USAF) Air Combat Command (ACC) is 

especially interested in objectively evaluating various ATR systems with a focus on 

operational goals.  As discussed by Varner (2002),
 
the warfighter is predominately 
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concerned with a “vertical” analysis of ATR system results, i.e. conditioned on the 

number of class declarations.  In contrast, engineers tend to focus on a “horizontal” 

analysis of the system, i.e. conditioned on the number of actual objects from each class 

tested.  The “horizontal” analysis may include receiver operating characteristic (ROC) 

curves which can be obtained from a confusion matrix representing the classification of 

all objects being tested under set classification rules (Ross et al., 2002).
 

With prior discussion focused on information fusion models and a recent 

transition from military applications to a global encompassment of industrial, medical 

and other fields, the relationship of sensor fusion models to automatic target detection 

and recognition (ATD/R) models will be briefly examined.  A general representation of 

the military ATD/R process is provided in (Schroeder, 2002) and is included as Figure 

2.7.  The process components in the ATD/R application should not be confused with the 

general processes identified in the fusion models, although some literature identifies 

levels of fusion based on an application specific model such as this.  In general, process 

models of ATD/R will map into the fusion models.  For example, each block of the 

ATR/D process model requires some decision with potential action and can be 

represented by a full cycle of the OODA loop.  Progressing from Detect to Identify, 

increased levels of data resolution or data from multiple looks or sources may be required 

to further refine the assessment of a potential target.  Therefore, as many of the previous 

fusion models indicate, this ATD/R application requires an iterative process, embodied 

within the blocks of Figure 2.7. 
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Detect Discriminate Classify Recognize IdentifyDetect Discriminate Classify Recognize Identify
 

Figure 2.7 Process Model of ATD/R as Presented by Schroeder (2002)  

The process blocks are defined as: 

  

• Detect: Identify a Region of Interest (ROI) for analysis of a potential target 

• Discriminate: Binary decision-target either present or not present in ROI 

• Classify: Targets grouped into general class, e.g. Tank, Armored Personnel 

Carrier 

• Recognize: Subdivision of class types, e.g. T-72 tank 

• Identify: Unique identification of a target, e.g. assignment of serial number 

 

Further, as presented by Sadowski (2001), the draft Capstone Requirements Document 

for CID shows five ways to characterize objects.  This nomenclature includes hierarchical 

characterization, with “Friend/Enemy/Neutral” (FEN), refined to include “class” and 

“type.”  Yet, it also includes “nationality” and “intended mission” to provide a more 

complete characterization of battlespace objects.  
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Figure 2.8 Five ways to “characterize objects,” Sadowski (2001)  
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2.2 Sensor Features and Correlation for Fusion Research 

This section is divided into three main themes and is then summarized.  An 

overall goal is to obtain a general knowledge of the techniques involved with generating 

features from different sensors and what levels of correlation may be expected.  To gain 

familiarity of potential feature extraction algorithms, a review of some current feature 

generation techniques for sensor data was undertaken and is presented in Section 2.2.1.  

After obtaining some working knowledge of the potential methodologies associated with 

feature generation, a review of Hyperspectral feature generation and challenges is 

addressed, since the features derived from the use of hundreds of adjacent frequency 

bands in the electromagnetic spectrum contain significant inherent correlation.  A review 

of the literature was then performed in the attempt to discover what levels of correlation 

may be expected with different features extracted from different sensors.  General 

conclusions are then drawn for the potential affects of correlated sensor data for ATR. 

2.2.1 Sensor Features for ATD/R and Fusion 

The intent of this section is to present some representative unclassified “open-

literature” methods of obtaining target features from both SAR and MSI/HSI imagery 

data files.  In doing so, an exhaustive review of feasible feature processing is not 

presented.  This section does document some of the algorithms that may be used to 

generate target features for use as input data for classification algorithms.  These features 

may be used as input data for feature level Fusion where multi-sensor features are 

presented to one classification model.  The same input data may also be used as input for 
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different classification algorithms and then fused after posterior probabilities or class 

labels are determined for decision level Fusion.  

As previously mentioned, good features should provide for optimal separability 

between classes, and typically involve the removal of redundant information and noise.  

Unlike many remote sensing applications with each individual pixel assigned to a class of 

land use (Langrebe, 1998, 2001), military target imagery collected from aerial platforms 

is likely to contain many pixels of information for each object to be classified and will be 

affected by the alignment and distance between sensor and target and possibly by 

luminance.  The physical imagery differences obtained from aerial sensors and a target 

due to different angles and ranges from the same type of sensor, lead to the additional 

desired property of invariance for target features.  Invariant feature generation should 

yield consistent feature space representation of a target image regardless of translation to 

a desired origin, rotation to a different axis and scale of the image.  Several approaches of 

generating invariant features for optical and radar data are well documented in the 

relevant literature and include applications of the Fourier transform, the Karhunen-Loéve 

transform or principal component analysis (PCA), singular value decomposition (SVD), 

and methods of developing invariant histogram representations of 2D images.  The 

following discussion contains a few potential feature generation methodologies. 

Numerous image processing techniques incorporate the Fourier transform of an 

image from the spatial to frequency domain.  One beneficial characteristic of a two-

dimensional Fourier transform is that the frequency magnitude is invariant to translation 

and if a Fourier-Mellon transform in log-polar coordinates is performed, the magnitude is 

both rotation and scale invariant (Suvorova and Schroeder, 2002).  While limited feature 
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extraction methodologies are presented in current literature specific to MSI and HSI data, 

feature extraction of visible optical data and SAR images are abundant and can be used as 

a starting basis to identify potential techniques that may be used for the observed energy 

in the smaller MSI/HSI frequency bands within the visible and IR spectrum.  A Fourier 

based invariant feature generating technique proposed in (Wang et al., 1994) is the 

moment Fourier descriptor (MFD) which is shown to be independent of an object’s 

translation, rotation and scale.  To generate the MFD features, N angularly equispaced 

radial vectors with an angular step of 2π/N are first generated from an object’s centroid 

and end points located at the object’s boundary.  This initial mapping of the image leads 

to a periodic representation of the object.  Moments for this periodic representation are 

then calculated, from which Fourier coefficients are obtained that are invariant to an 

object’s rotation, translation and scaling.  Use of MFD features is compared to traditional 

Fourier descriptors (FD) using classification accuracy as a metric, where fewer MSD 

features were required and obtained better classification accuracy for complex patterns 

when compared to FD features.  The phase Fourier transform for invariant feature 

generation is described in (Paquet et al., 1995) with sample range imagery classified with 

high accuracy by a neural network.  The phase Fourier transform is used to segment 

planar and quadradic surfaces from a rigid object by using a limited number of normals.  

These normals were then grouped into a histogram to generate an invariant representation 

of an object.  A final example of Fourier-type feature extraction from imagery is the 

exponential chirp transform (Bonmassar and Schwartz, 1997).  The ECT is defined as a 

new linear integral transform combining space-invariance properties of the Fourier 

transform with internal image space-variant properties.  In doing so, the Fourier 
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transform is generalized to the log-polar domain with an efficient order of operation.  A 

unique property of the ECT is the ability to generate features which are equivalent to 

traditional Fourier transforms used for template matching and filtering, yet retain 

additional characteristics of the original image that are spatially variant, while remaining 

computationally efficient.  Thus, while invariant features are desired, as can be obtained 

from Fourier transform methods, the ECT may also contain useful information for use by 

a more sophisticated pattern recognition technique such as artificial neural networks. 

While widely used as an efficient linear projection of high dimensional data into 

lower dimensions, a PCA projection does not guarantee optimal separability among 

classes for pattern recognition applications.  PCA projection is used to account for a 

desired amount of the observed variance by projecting the data via “rotation” into a new 

coordinate axis, where only the projection of data into axes accounting for a desired 

amount of the total data variability are retained.  For example, the largest eigenvector in 

PCA produces the axis along which an entire image has maximum variance, but no 

guarantee is provided that the variance is maximized along the same eigenvector for all 

classes, or that a significant difference in class means will facilitate optimal 

discrimination between classes.  Even with these drawbacks, PCA or the Karhunen-

Loéve transform (KLT) has been successfully used for data reduction and feature 

generation in ATD/R environments.  Efforts for ATR by (Schroeder, 2002) indicate KLT 

features are an integral part of generating invariant features from SAR data.  A detailed 

methodology of such feature extraction is found in (Suvorova and Schroeder, 2002) 

where an initial step requires the calculation of rigid transformation invariant features 

(RTIF).  The RTIF features are obtained by taking a Fourier-Mellin transform of the 
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image as the image is rotated through (0, 2π) and sampled at uniform intervals.  The KLT 

eigenvectors corresponding to the largest eigenvalues or variance are then retained as 

features.  Experimental results indicate these features provide for good discrimination 

using a Mean Square Error (MSE) classifier for similar target types from the MSTAR 

data set including T-72 tanks, BMP-2 infantry fighting vehicles, and BTR-70 armored 

personnel carriers. 

Similar to PCA, singular value decomposition has also been used in conjunction 

with Fourier transforms to produce a feature set of reduced dimensionality from imagery 

data.  Research by (Bhatnagar et al., 1998) indicates that data range-space eigenvectors 

account for 90% of target energy in High Range Radar (HRR) data, where radar returns 

for 100 frequencies were analyzed across 360
o
 look angles sampled at 0.04

o
.  The 

resulting 100 x 9000 matrices for each target were transformed by taking a Fourier 

transform and Power transform retaining the same dimensionality (100 x 9000).  This 

matrix was then partitioned into 2.5
o 
sectors with SVD used to generate 144 template 

vectors of dimension 100 x 1 corresponding to the largest singular value of the range 

space.  Matched filters were then used for ATR target classification and were shown to be 

superior to using a feature extraction technique based on similar normalized mean values.  

Target recognition research performed using HRR and SAR radar imagery by (Cooke et 

al., 2000) also demonstrates good discrimination between targets and clutter using SVD 

preprocessed radar data.  While the initial radar feature preprocessing was not 

“documented in the open literature,” reduction of these initial radar features was 

performed using SVD with a recursive Fisher discriminant used to select a further 

reduced set of 6 features derived from 27 x 27 pixel images with a false alarm rate just 
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over 1%.  Thus, as part of an integrated feature engineering process, SVD is a 

demonstrated tool for feature-space reduction. 

One form of invariant histograms is introduced by (Ikeluchi et al., 1996) and is 

generated using weak invariants which are defined to be a feature generated by a pair of 

primitive target features.  The primitive point and line features are first extracted from a 

SAR image with subsequent estimation of six translation features as a function of a 

reference angle between features.  These pair-wise features include: displacement and 

direction, angle and slope of a bisecting line, and orthogonal direction and orthogonal 

distance.  To increase the robustness of an ATD/R system against camouflage and 

surrounding noise, the authors recommend against using properties of peaks or edges, 

such as the maximum brightness or area or a peak intensity which may be more 

susceptible to concealment tactics.  Template matching is used for target 

classification/identification with good performance reported.  In particular, this method of 

ATR is shown to be robust to dense target environments, partially occluded targets and to 

targets under camouflage. 

In summary, a limited review of the literature has identified several state-of-the-

art approaches to generating invariant features from SAR and MSI or HSI data, many of 

which incorporate some form of linear transformation. 

2.2.2 Current HSI Data Feature Research  

One area of current research identified in the literature is the reduction of HSI 

features to assess the underlying dimensionality of this data and possibly indicate optimal 

frequency bands on the order of those collected by MSI sensors.  Because high levels of 
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correlation are present for neighboring spectral bands, HSI data collected for hundreds of 

frequency bands may be no better for classification problems than MSI data (Gat et al. 

1996).  Collection of HSI data also often produces very sparse data that can be projected 

into lower dimensions with minimal loss of information (Landgrebe, 1997: 24).  Further, 

from an information theoretic viewpoint, Hughes (1968) showed for a given finite sample 

of data, the mean classification accuracy obtainable will theoretically decrease as the 

number of input features increases.  The Hughes phenomenon, suggests feature 

engineering methods to generate a reduced subset of input variables, for use by a 

classification model, is highly desired.  

With HSI collected at a high spectral resolution, it can be easily tailored to a 

desired application by combining or eliminating any number of bands to generate more 

desirable features.  One potential method of HSI data reduction is simply binning HSI 

bands into wide groups to enhance the signal to noise ratio.  This may be performed using 

different numbers of initial HSI bands or by combining discontinuous bands of HSI to 

generate new features within the visible and IR spectrum.  Research of determining 

optimal frequency bands may use PCA or Factor Analysis in combination with 

classification model feature screening techniques in attempt to determine the underlying 

dimensionality of those features providing for best class separation.  If optimal bands 

within the visible and IR spectrum are determined, a multispectral system can then be 

used or designed that is less expensive, produces smaller datasets and has a greater signal 

to noise ratio (Gat et al., 1996).  Thus, some current research of HSI sensor data seeks to 

select optimal spectral band parameters (band position and widths) to reduce noise and 

focus on salient classification information.  In summary, with the potential of MSI or HIS 
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data to be used by ATR systems, the investigation of fusing highly correlated data across 

features must be addressed for these sensors to maximally contribute to the ID process. 

2.2.3 Levels of Correlation in Radar, MSI and HSI Data 

A literature review was performed in attempt to find to obtain a better 

understanding of the “real-world” correlation levels which may be encountered.  In 

general, the use of MSI and HSI imagery is new to the ISR community, but is very 

similar to more traditional electro-optical (EO) and IR sensors, with an increased ability 

to collect data within smaller frequency bands.  A major advantage of the MSI and HSI 

data imagery is the simultaneous gathering of sensor data across a full spectrum of visible 

and IR electromagnetic frequencies for an object of interest.  This reduces registration 

issues and the potential uncertainty that two different sensors are observing the same 

object.  No characterization of the correlation obtained from multiple sensors across 

multiple looks was found in the literature.  Specifically, no published work has been 

found addressing potential correlation levels between radar imagery and EO, IR, MSI or 

HSI data, although it is suspected research of this nature is currently or has been 

performed but is classified and potentially proprietary to DoD contractors.   

The literature does present some indications of how correlation issues are 

addressed for multiple looks of radar data, and that potential high levels of correlation 

exist within HSI data. The HSI data will inherently possess significant correlation 

between ‘close’ frequency bands, will all frequency band information collected during a 

single look of an object.  It should be noted, that the predominant published literature for 

MSI and HSI data analysis is for remote sensing applications, e.g. data collected by 
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satellites with relatively low resolution > 10m
2
 and may not be directly applicable to an 

Combat ID application where a warfighter is relying on an ATR system for fire control 

assistance, at lower elevations and with much better resolution. 

As mentioned, the open literature is relatively sparse with respect to sensor 

correlation observed for military applications, most likely due to the fact that publishing 

this information may benefit US adversaries, and thus remains classified and/or 

proprietary to DoD contractors.  DARPA’s Multisensor Exploitation Testbed (MSET) 

program is one example of current research in the area of sensor fusion for CID.  An 

ITAR restricted FOUO analysis of MSET data performed by Young et al. (2001) for 

sensor fusion across radar and MSI data was reviewed, but does not report any measures 

of the correlation between features.  Some preliminary results of feature level fusion 

using SAR and MSI data is presented, where significant improvement in probability of 

detection and reduction in false alarms were obtained when SAR and MSI data were 

fused in an algorithmic ATD architecture.  While results are FOUO, they are presented 

for three levels of occlusion (target in open, partially occluded, and heavily occluded by 

trees) and demonstrate the effectiveness of sensor fusion relative to varying levels of 

Camouflage, Concealment and Deception (CC&D). 

Initial analysis of the MSET data was limited to a subset of the collected SAR and 

MSI imagery.  The multispectral scanner collected data in 12 channels operating in 

visible and infrared wavelengths between 0.4 and 10.5 micrometers.  The specific 

wavelength bands corresponding to each channel is shown in Table 2.4.  While 12 MSI 

channels are available, a subset of 5 channels was used by Young et al., (2001) including 

channels 3, 5, 7, 9 and 10.  Use of this subset of five disjoint MSI channels is 
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hypothesized to help produce relatively less dependent data, and avoid potential problems 

of fusing the highly correlated adjacent bands. 

 

Table 2.4 Measured Multispectral Imagery (MSI) Frequency Bands 

 

Channel Band Wavelength (µµµµm) 

1 Violet/Blue 0.42-0.45 

2 Blue/Green 0.45-0.51 

3 Green/Yellow 0.51-0.59 

4 Orange 0.58-0.62 

5 Red 0.61-0.66 

6 Red/NIR 0.65-0.73 

7 Near-IR 0.71-0.82 

8 Near-IR 0.81-0.95 

9 SWIR 1.60-1.80 

10 SWIR 2.10-2.40 

11 (alt) MIR 3.16-5.20 

11 TIR 8.28-10.67 

12 TIR 8.28-10.67 

 

 

No military ATR applications of HSI data were found in the open literature; but, 

relatively recent research of HSI data has led to a special issue of IEEE Transactions on 

Geoscience and Remote Sensing dedicated to the analysis of hyperspectral image data.  

An article by Serpico and Bruzzone (2001) documents the difficulty of dealing with the 

spectrally close HSI bands with redundant information.  Similar findings are presented in 

(Kumar et al., 2002), who state high positive correlation is to be expected in HSI 

frequency bands that are in very close spectral proximity.  HSI object images are 

constructed from observed data from one frequency channel, and are similar to one of the 

MSI bands presented in Table 2.4, but contain a much smaller frequency range.  For 
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example, an IR image may be generated from channel 12 of Table 2.4, the Thermal IR 

frequencies (TIR).  For HSI images each channel may be subdivided into 10 or even 20 

sub-channels each with its own slightly different ‘picture’ of the object of interest.  These 

HSI images in spectrally close bands would appear very similar because of the 

continuous nature of observed energy emitted across the continuous time and frequency 

domains.  Thus, the energy emitted by a potential target and sensed by HSI frequency 

bands with very similar frequencies would be correlated.  As stated in (Serpico and 

Bruzzone, 2001), “as hyperspectral sensors acquire images in very close spectral bands, 

the resulting high-dimensional feature sets contain redundant information.”  Kumar et al. 

(2002) similarly state, “the response of bands that are spectrally ‘near’ each other tend to 

be highly correlated,” and go on to note that, to generate features from the bands of HSI 

data, it should first be, “partitioned into groups of highly correlated adjacent bands.”  

This potentially indicates a practical projection back down into MSI size frequency 

bands, but this projection would now be optimized for the pattern recognition task at 

hand.   

With the possibility of obtaining high levels of correlation between IR frequency 

ranges, Thomas (1994) used correlation values > 0.99 for adjacent MSI IR spectral bands 

to determine potential targets from background clutter.  This high correlation in IR 

spectral bands was found to correspond to man-made objects, while significantly lower 

correlation levels were obtained for natural clutter.  Thus, while and HSI data sets were 

not found in the open literature with reported values of correlation, the literature does 

suggest high levels of positive correlation would be expected between ‘close’ bands of 
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spectral frequency data.  This may be especially true for man-made targets, and 

exploiting this high level of correlation may help for some classification efforts. 

Since radar has a longer history of use for ATR and other military uses, more 

literature is available, but still appears relatively ‘filtered’ as to not give away classified 

capabilities of systems.  The following discussion summarizes some of the findings 

reported in the literature.  It is not exhaustive, yet it does provide good insight as to the 

expected levels of correlation in multi-look SAR data and for the within feature 

correlation that would be observed for multiple features given by one radar sensor.  In 

research by Chitroub et al. (2002), for the statistical characterization and modeling of 

SAR images, the authors point out that multi-looks of SAR imagery are typically used to 

reduce noise, and multiple images result in only a single target image.  In performing 

such noise reduction and SAR image fusion, the authors note that if k = krka  pixels are 

averaged where kr denotes the range direction and ka denotes the azimuth direction, then 

the effective number of looks is somewhat smaller due to dependence of neighboring 

pixels.  Related research by Gierull and Sikaneta (2002) estimate the effective number of 

looks in interferometric SAR data, and document adjacent pixel information obtained is 

statistically dependent due to the filtering process and go on to state, “the number of 

looks is usually smaller than the number of samples averaged.”  Hauter et al. (1997) also 

reported in their research of polarimetic fusion for SAR target classification, that multiple 

SAR imagery polarized channels are, “inherently more correlated than the sources from 

independent sensors.”  Although, they do not indicate the actual levels of correlation 

observed between these within SAR data polarized imagery features.  Costantini et al. 

(1997) look to obtain a better knowledge of an object through fusion of SAR images by 
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fusion of different resolution SAR images.  This research acknowledges the inherent 

dependences between the multi-looks obtained at differing resolutions and generates a 

single fused image via a least square deviation from the finest resolution image, subject 

to constraints obtained from courser resolution images.  Unfortunately, the process is 

demonstrated for generated data and does not indicate the levels of correlation that may 

be observed between true SAR images.  Lee et al. (1994) also address SAR correlation 

issues for the intensity and phase statistics of multilook polarimetric and interferometric 

SAR imagery.  In this research, they rigorously document how multilook processing 

reduces statistical variation when combining multiple SAR images to produce a single 

image of higher resolution.  Some theoretical examples are presented for a correlation 

level set at ρ = 0.5.  Unfortunately, these papers are primarily theoretical, void of 

observed within radar sensor correlation levels, but the EE community appears to be 

addressing the SAR within sensor correlation issue by reducing the noise and producing a 

better single estimate SAR image from multiple looks. 

2.2.4 Summary of Sensor Data Correlation Issues for ATR 

While features derived from passive visual or thermal sensors or reflected radar 

energy each contain different noise sources and may be statistically independent, multiple 

looks by a single ATR system across the time continuum may yield significantly 

correlated scores (Jacques, 1998).  Some research addresses the case of fusing correlated 

probabilities (O’Brien, 1998, 1999), but a difficulty arises if a fusion algorithm assumes 

independence is implemented for real-time multi-look ATR.  Yet, ATR applications for 

combat ID may require additional information to increase confidence after obtaining 
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“Non-declaration” for an object of interest (Dept. of the AF, 1998, 1999, 2000).  Real 

time re-looks by a sensor in close temporal proximity for the same object may be the only 

source of new target information.  These multiple looks are hypothesized to have high 

levels of positive correlation and may provide relatively little new information about the 

object.  Literature from the radar community (Chitroub et al., 2002; Costantini et al., 

1997; Lee et al., 1994) indicates high correlation levels are indeed expected between 

SAR imagery obtained from continuous re-looks of an area.  Current image processing 

techniques use these multiple correlated looks to refine a single image by reducing noise 

as additional data are obtained.  While this SAR imagery refinement is primarily done for 

visual interpretation and methods are not presented to make class declarations, they 

suggest a basic framework for dealing with temporally collected sensor data.  Similar to 

SAR image refinement, as correlated temporal information is gathered, ATR may benefit 

from algorithms designed to update and refine class estimates based on obtaining new, 

albeit correlated, information.  Thus, a primary research goal is the investigation of fusion 

to obtain optimal class declarations when correlated input data is used. 

2.3 Fusion Methodologies  

To perform fusion at the various levels, numerous quantitative techniques are 

available.  As an emerging field of research, the data fusion community does not 

uniformly agree as to which fusion method is necessarily best for a given application 

(Hall and Llinas, 2001).  For example, each fusion algorithm may have its own particular 

limitations, challenges, and advantages for use in a given situation.  Hall and Llinas 

(1997) list current challenges for JDL Level 1 fusion techniques to include: addressing 
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correlation and maneuvering target problems for the complex multisensor, multi-target 

case with co-dependent sensor observations, and the need to integrate identity and 

kinematics data.  Other indicated challenges for object identification include difficulties 

created by dense target environments, rapid target movement, complex signal 

propagation and background clutter.  Thus, research aimed at understanding the impact of 

correlated input data on given fusion techniques for feature or decision level fusion of an 

object of interest is desired. 

Review of the recent literature has identified several methodologies to perform 

fusion in the attempt to refine a class estimate for an individual object under 

investigation.  If feature level fusion is being performed, then a feature vector 

representation of the object may be used by any standard pattern recognition algorithm to 

obtain a class estimate (Hall and Llinas, 1997, 2001; Klein, 2004).  It is assumed that the 

feature vector is comprised of features from at least two different sensors, or from 

multiple looks by the same sensor.  Hall and Llinas (1997) indicate methods for 

estimating an object’s identity are dominated by feature based approaches, which include 

the use of neural networks, cluster algorithms, and other pattern recognition methods.  

Pattern recognition techniques may include template based approaches and other 

statistical and probabilistic methods.  If the individual sensor data if first refined to 

generate a class label, then Boolean voting logic is a standard fusion methodology to 

determine a single class estimate (Varshney, 1997; Klein, 2004; Waltz, 1990).  Rule-

based expert systems are also identified by Hall and Llinas (1997), with the addition of 

fuzzy logic and neural networks for multisensor fusion at this slightly higher level.  The 
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voting logic may also be determined optimally by use of probabilistic methods, such as 

those presented by (Ralston, 1999) and (Haspert, 2000).   

The next two subsections of fusion methodology include a discussion on Boolean 

logic fusion methods and the use of neural networks for fusion.  These sections will 

support the experiments undertaken in future chapters of the document, where research of 

fusion with unknown class declarations in the presence of correlated input data is 

performed.  

2.3.1 Boolean Fusion Methodologies 

One method of combining output labels of different identification systems is to 

use Boolean rules.  One such rule may conclude a Hostile target is present if and only if 

all of the sensor labels indicate the target is a “Hostile.”  This rule may simply be referred 

to as the AND rule.  Another simple Boolean rule is for the system to conclude an object 

under investigation is a “Hostile” target if any of the sensors being fused label it as a 

“Hostile.”  This rule may be called a simple OR rule.  With more than two sensors fused 

to generate a final output label, many combinations of simple Boolean logic are possible.  

For the case of fusing K sensors with two output labels, 22
K

Boolean fusion rules may be 

obtained (Haspert, 2000).   

An illustration of potential Boolean logic fusion rules is depicted in Figure 2.9 for 

the use of three Sensors (S
A
, S

B
 and S

C
).  These diagrams are similar to those presented 

by Liggins (2001).  The labeled areas of the Venn diagrams show seven mutually 

exclusive sets for the declaration of a potential target as “Hostile.”  Each set is identified 

by a two-class output label associated with sensors A, B and C.  Thus, 32 8=  different 
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sensor labels associated with the three sensor outputs may be obtained for any given 

assessment of a potential target.  Further, as noted by Haspert (2000), each of these 

sensor states may be included in a final “Hostile” declaration rule, and a logical OR 

combination of these sensor output states results in 82 256=  different feasible logical 

fusion rules.  An eighth combined sensor output state may be added to each of the five 

Venn diagrams, where no sensor indicates the target is “Hostile.”  This completes the 

feasible sensor output states for each of the Boolean fusion rule presented in Figure 2.9.  

The grey areas show where a positive declaration of a “Hostile” target would result for 

each of the Boolean fusion rules.  Logical AND and OR rules follow from the previous 

discussion.  Majority Vote logic requires a majority of the sensors to declare the target as 

“Hostile.”  Thus, 2 or more “Hostile” labels are required for a three sensor suite to 

declare “Hostile.”  Majority Vote logic is perhaps the oldest strategy for decision making 

with roots tracing back to the era of ancient Greek city states (Kuncheva, 2004).  The 

logic associated with ‘sensor corroboration’ requires sensor A to declare a target as 

“Hostile” and to corroborate this label with either sensor B or C.  As described by Hill 

(2003), such a fusion rule may be appropriate when sensors perform different functions.  

For example, sensor A may represent a Moving Target Indicator (MTI) with good 

detection rates, but low resolution; while sensors B and C may represent cued sensors 

with high resolution and good target discrimination  The final Boolean rule shown is 

‘sensor dominance.’  This logic may be appropriate if sensor A is known to perform 

much better than sensors B and C.  Thus, sensor A may have high confidence and result 

in a fused “Hostile” label regardless of the labels from sensors B and C.  With lower 

accuracy, when sensor A does not indicate “Hostile,” sensors B and C may only yield a 
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fused “Hostile” label if they agree.  Other Boolean fusion rules may be generated for a 

given ensemble of sensors and classification task at hand. 
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Figure 2.9 Examples of Various Boolean Fusion Rules with Venn Diagrams 

Overall, current sensor and classifier fusion texts (Klein, 2004; Varshney, 1997; 

Kuncheva, 2004) provide significant discussion of these simple Boolean fusion rules.  

This focus in current fusion texts provides evidence as to their general use and acceptance 

as easy to implement fusion rules.  

While easy to implement, Boolean logic has some significant limitations for the 

fusion of decision labels.  Robinson and Aboutalib (1989) provide a mathematical proof 

showing Boolean fusion for decision labels is suboptimal for the fusion of two or more 

sensors when the sensors are not independent.  This proof uses a cost function and known 

priors.  In their proof, they show an optimal declaration threshold is a function of the joint 
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pdf of the combined sensor data.  They conclude, “decision level fusion is in general 

suboptimal to feature level fusion in terms of classification performance.”  Robinson and 

Aboutalib (1989) go on to state, “…in order to achieve a global optimum decision, the 

classifier of sensor S1 should know the entire decision process for the classifier of sensor 

S2.”  If each sensor is optimized independently, as may be the case when sensors are 

initially developed and fielded as independent ISR assets, the fusion of the two sensors 

will in general be suboptimal to their combined potential.  Robinson and Aboutalib 

(1989) also note Boolean fusion logic selection is a key to good performance.  For 

example, if the thresholds are optimally tuned for each sensor and a particular Boolean 

rule, a different Boolean rule may provide better system results. 

Overall, Boolean logic is a common method to perform fusion at the decision 

level.  Yet, selecting an optimal Boolean fusion rule and tuning each individual sensor to 

achieve an optimal identification system across potentially correlated, dependent 

information remains a challenge. 

2.3.1.1 Optimal Boolean Fusion Methodologies 

To determine the optimal Boolean fusion rule associated with the fusion of K 

sensors, Ralston (1999) and Haspert (2000) use an Identification System Operating 

Characteristic (ISOC) curve to determine the optimal system performance associated with 

all potential Boolean fusion rules.  This fusion method determines the optimal fusion rule 

when each sensor uses a set decision label threshold.  The determination of the optimal 

Boolean logic is obtained from a novel algorithm using a likelihood ratio associated with 

each of the mutually exclusive and collectively exhaustive sensor label output states.  The 
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likelihood ratio is generated as the ratio of probabilities associated with a desired true 

class, compared to all other classes, for each of the unique sensor label output states.  For 

this algorithm, sensors are assumed to be independent and a cost associated with each 

type of misclassification error is required to determine the optimal point on the ISOC 

curve which is associated with an optimal Boolean fusion rule (Haspert, 2000).  An 

approach to obtaining “Non-declaration” labels using a minimum cost function and 

estimated misclassification costs for K sensors with any number of output labels is also 

presented by Haspert (2000). 

While Ralston (1999) and Haspert (2000) seek to determine the optimal fusion 

rule given sensors with set thresholds, Oxley and Bauer (2002) determine the optimal 

thresholds for a predetermined Boolean fusion rule across conservative to aggressive 

declaration labels.  This novel ROC fusion methodology provides an analytical means to 

obtain the best fused ROC curve for logical AND and OR rules; yet, does so under the 

assumption of independent sensors.  While Oxley and Bauer (2002) present an example 

of their ROC fusion for a two-class problem with two sensors, research by Hill (2003) 

shows the ROC fusion using AND and OR logic may be extended to include any number 

of classifiers and output labels.  While conceivable, the inclusion of the third output label 

for “Non-declarations” does not appear to be a readily practicable extension of the ROC 

fusion.  Thus, the inclusion of “Non-declarations” and potentially more than two input 

classes or output labels may warrant additional research to extend the current ROC fusion 

methodologies. 
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Recent research by Storm (2003), Leap (2004) and Clemans (2004) compared use 

of ISOC and ROC within fusion using a logical OR rule across various sensor correlation 

levels.  While these methods assume independent sensor data, in general, the ISOC and 

ROC within fusion methods were found to be robust to sensor correlation (Storm et al., 

2003; Leap et al., 2004).  These fusion rules did not gain significant performance 

improvement above the best fused sensor, but were found to mitigate the risk associated 

with the potential use of a poor sensor in the available sensor ensemble.  This conclusion 

agrees with Boolean fusion research by Dasarathy (2004), where different distance 

measures were used by fused classification algorithms under given Boolean logic and a 

risk mitigation effect was also observed.  While both ISOC and ROC fusion methods 

were robust to correlation, fusion using neural networks, without an assumption of 

independent input data, was found to perform better in the presence of induced sensor 

correlation (Leap et al., 2004). 

2.3.2 Artificial Neural Networks for Sensor Fusion  

As identified in (Hall and Llinas, 1997) neural networks have been successfully 

employed for feature and decision level fusion.  As identified in the next three sections, 

artificial neural networks may be sub-divided.  Subdivisions may include feed forward 

multilayer perceptrons (FF MLPs), recurrent neural networks (RNNs) and the use of 

radial basis neural networks (RBNNs).  A section is then devoted to some current 

methods of feature selection as applicable to MLP ANNs and RNNs. 
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2.3.2.1 Feed Forward Multilayer Perceptron ANNs 

To perform fusion, neural network models may be selected for several reasons.  

Figure 2.10 represents a fully connected multilayer perceptron (MLP) ANN.  While often 

viewed as a black box, these models are theoretically capable to perform any 

mathematical mapping from an input to output space with any desired degree of accuracy 

provided the number of hidden nodes is sufficiently large enough (Hornik et al., 1989, 

1990).  MLP ANNs offer a nonparametric approach to generate a mapping for input data 

to a desired output space, with no assumed distribution or independence requirement 

between variables.  In addition, ANNs learn and may even adapt to new training data to 

obtain optimal parameter settings.  Some drawbacks of ANNs include the expense of an 

available training data set fully representative of desired input and output spaces, along 

with the computational complexity of the training process, and a lack of decision insight.  

Yet, because they do not require assumptions of the input data structure, they are fully 

capable of integrating sensor features, estimated class probabilities and binary class 

labels, each of which may contain significant correlation between and across features.  

Thus, ANNs allow for flexible sensor fusion via a one big net model. 
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Figure 2.10 Multilayer Perceptron (MLP) Artificial Neural Network (ANN) 
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The output from such a MLP ANN for the nth input vector (z
n
) can be computed as: 
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where, 

• J is the number of hidden nodes 

• f (a) = 1/(1 + e
–a

) is a typical sigmoidal activation function 

• 2

,kjw is the weight from hidden node j to output node k 

• 1

0x is the hidden layer bias term and is set equal to 1 

• 1

jx  = f (Σ n

iji xw
1

, ) is the output of hidden node j and is summed from i = 1 to M 

• M is the number of input features 

• 1

, jiw is the weight from input node i to hidden node j 

• n
x0  is the input layer bias term and is set equal to 1 

• n

ix  is the i
th

 input feature of the n
th

 input vector 

 

MLP ANNs are typically trained using a nonlinear optimization algorithm in which the 

error gradient is estimated from the current model parameters for training data with 

known desired output.  A standard approach for training ANNs uses the error in an 

iterative fashion to adjust the connection weights of the ANN until a stopping criteria has 

been reached (Bishop, 1995).  These algorithms are commonly referred to as 

backpropagation training algorithms.  Additional background for FF MLP ANNs may be 

found within (Looney, 1997) and (Bishop, 1995). 

2.3.2.2 Recurrent Neural Networks (RNNs) 

While an ANN with proper architecture has been proven capable of universal 

function approximation, it may only explicitly model temporal relations in static time.  

Since a strong temporal component may be hypothesized for many pattern recognition 

applications, such as financial forecasting or target tracking and identification, an ANN 

model may be desired that allows for the implicit encoding of time.  The Elman RNN 
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includes internal feedback and the ability to model temporal patterns (Elman, 1990).  

With an architecture similar to ANNs, an Elman RNN adds internal feedback to the 

model with each hidden layer output from time t included as input model at time t+1.  

Figure 2.11 shows an Elman RNN, with I input features, J context nodes, J hidden nodes 

and K outputs, where feedback is accomplished by the context nodes in Figure 2.11.   
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Figure 2.11 Elman Recurrent Neural Network (RNN) 

Similar to MLP ANNs, Elman RNN hidden and output layer perceptrons have 

associated activation functions, typically nonlinear sigmoid, hyperbolic tangent, or linear 

depending on the application.  The hidden layer output is included as context node input 

for the next data observation to facilitate a dynamic memory for temporal patterns.  By 

having internal feedback, the Elman RNN implicitly models temporal patterns (Elman 

1990) and has been proven to have the computational power of any finite state machine 

given a sufficiently large enough architecture (Giles & Omlin, 2001; Kremer, 1995).  

Further, the Elman RNN has increased modeling flexibility over another common RNN, 

the Jordan RNN, which uses the final network output from time t as context node input at 
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time t+1 (Calvert and Kremer, 2001).  Further details for the training of RNNs along with 

use of a similar time delayed neural network (TDNNs) to model temporal patterns may 

be found within (Kolen and Kremer, 2001). 

2.3.2.3 Radial Basis Function (RBF) Neural Networks 

Radial Basis Function (RBF) neural networks (NN) are commonly used neural 

networks to perform classification tasks.  Unlike standard MLP ANNs and RNNs with 

sigmoidal or linear activation functions, RBF NNs use activation functions with an 

exponential neuron response which is not supported by biological neural systems 

(Wasserman and Nostrand, 1993).  They may require more neurons to perform a given 

classification task as compared to FF MLP ANNs, but because they may be trained using 

deterministic methods, the associated training time may be far less than that of MLP 

ANNs (Bishop, 1995).  RBF neural networks may be designed as exact interpolation 

functions with an activation (basis) function associated with every training exemplar.  

Perhaps the biggest difference between RBF NN and MLP ANNs is use of activation 

functions with local vs. global influence.  A typical basis function used by these networks 

is, 
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where σ  is the spread or variance associated with each basis function, xi is the location 

of each of i basis functions and 1 2( , ,..., )
T

nx x x=x  is an input vector of dimension n.  The 

spread may be adjusted, where larger values have more global influence, and smaller 

values limit influence and cause these functions to behave in a nearest neighbor fashion 
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(Demuth and Beale, 1998).  The RBF NNs use a set of distributed basis functions each 

with a radially uniform symmetric local response.  A training algorithm then adjusts a 

weighted response for each of the basis functions to estimate the underlying function of 

the input data (Bishop, 1995).  A basis function may be used for every training exemplar, 

or may be added in an iterative manner until a desired level of performance is achieved 

(Demuth and Beale, 1998).  Two common neural networks using radial basis functions 

include the generalized regression neural network (GRNN) and the probabilistic neural 

network (PNN).  The general regression neural network (GRNN) is a probabilistic neural 

net (PNN) augmented by a normalizing factor (Specht, 1991) and may be used for 

function approximation for arbitrary non-linear functions (Specht, 1991).  

The probabilistic neural net (PNN) is an ANN implementation of the Parzen 

windows method.  The output is a weighted sum of all training features, where the 

weighting is exponential according to the distance to given training point (Specht, 1990).  

The PNN is based upon work performed in the 60’s by Specht, but due to computational 

limitations has only recently been implemented for a variety of classification problems 

(Wasserman and Nostrand, 1993).  The PNN offers many advantages for classification 

compared to a FF MLP ANN.  These advantages include rapid training performed in one 

pass of the training data, robustness to noise, and guaranteed convergence to Bayes-

optimal decision boundaries given enough training data (Specht, 1990).  One 

disadvantage is a large computational storage requirement by the PNN, with a basis 

function included for every training exemplar.  As presented by Wasserman and Nostrand 

(1993: 52), Figure 2.12 shows the architecture of a PNN for a two-class decision. 
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Figure 2.12 Probabilistic Neural Network (Wasserman and Nostrand, 1993: 52). 

Starting at the top of Figure 2.12, a normalized input vector 1 2( , ,..., )
T

nX x x x= with n-

input features is presented to the PNN.  The distribution layer is a connection point and 

no calculations are performed (Wasserman and Nostrand, 1993).  The set of weights for 

the pattern layer neurons are equivalent to the components of the training input vectors, 

and are grouped by the known labels.  Each pattern layer sums the weighted inputs from 

the distribution layer neurons and applies the nonlinear basis function to produce output 

Zci., where the appropriate activation function is given as,   
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For this calculation, 1 2( ,  ,  ... ,  )T

Ri R R Rn
X x x x=  is a training exemplar, where i is an index 

for the number of training exemplars, R indicates a training vector, and c denotes the 

class (Wasserman and Nostrand, 1993).  The summation layer sums all Zci for each class.  

The output of this layer for class c is given as follows (Wasserman and Nostrand, 1993), 
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( )
2

1

1
exp

t

Ri

c

i

X X
S

σ=

 −
 =
  

∑ .     (2-7) 

The decision layer compares Sc for all classes and assigns the input vector to the class 

with the largest corresponding Sc.  In summary, the PNN assigns a new input exemplar to 

the decision label with the largest probability of membership.  A PNN can model any 

number of classes, and the probabilities of class membership may be obtained from the 

values associated with the class summation layers.   

Overall, the PNN has been found to be an effective method for the fusion of 

multivariate Gaussian data across different correlation structures.  These correlation 

structures may represent the correlation between sensor features as presented by research 

performed by Storm (2003), Clemans (2004), Leap (2004) and Mindrup (2005).  In each 

of these investigations, PNN fusion was found to be equivalent or preferred to Boolean 

fusion techniques where decision labels were forced.  A “Non-declaration” 

implementation was applied by Mindrup (2005), in which similar performance was 

obtained by use of a PNN for fusion across correlation structures as compared to a 

preferred ‘optimal’ Boolean fusion rule identified by a heuristic approach. 

2.3.2.4 Feature Selection for Artificial Neural Networks 

While properly configured neural networks can approximate any function, they 

are dependent on the quality of input data from which they learn or adjust their weight 

parameters.  For statistical pattern recognition applications, it is well documented that too 

many features may decrease classification performance, since the number of observations 

must grow exponentially as the number of features increases to maintain the same 
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sampling density.  This “curse of dimensionality” (Bishop, 1995) phenomenon parallels 

findings by Hughes (1968) and suggests feature reduction should be performed to 

improve results when limited data observations with sparse, high-dimensional input data 

are collected (Jackson and Landgrebe, 2001).  

In order to improve a neural network model’s accuracy, a reduced feature set 

representative of the underlying salient input feature space is desired.  Feature 

engineering includes the extraction of salient features by finding a mapping to project P-

dimensional input data onto M-dimensional space where M < P.  A review was first 

undertaken to identify methodologies for RNN feature selection, with feature selection 

defined as a special case of feature extraction whereby the M-dimensional space 

corresponds to a subset of P collected potential input features.  Research by Greene 

(1998), Greene et al. (1997, 2000), Utans et al. (1995) and Moody (1998) use RNN 

saliency metrics based on model weights and output error associated with input features.  

Since limited RNN saliency methods were identified, a broader review was undertaken of 

recent ANN feature selection techniques that may be applicable to RNNs.  Similar to the 

methods of Greene et al. and Moody et al., other recent research is divided between 

techniques using ANN model weights (Castellano and Fanelli, 2000; Lazzerini and 

Marcelloni, 2002; Mak and Blanning, 1998) or model output (Feraud and Clerot, 2002; 

Kwak and Choi, 2002; Piramuthu, 1999; Verikas and Bacauskiene, 2002; Zhang and Sun, 

2002) with entropy measures associated with model output used by Piramuthu (1999) and 

Verikas & Bacauskiene (2002) and a tabu search based on observed model output 

employed by Zhang & Sun (2002). 
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Two representative feature screening techniques for use with ANNs inclusive of 

Elman RNNs are the Signal-to-Noise Ratio (SNR) feature screening introduced for ANN 

use by Bauer et al. (2000) and first applied to an Elman RNN by Greene (1998) and 

Sensitivity Based Pruning (SBP) as developed by Moody and presented in (Moody 1998; 

Utans et al. 1995) for general neural network use.  These methods represent proven 

network parameter and output based saliency measures.   

The SNR saliency measure is computed using the first layer weights of a trained 

RNN as, 
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where SNRi is the value of the SNR saliency measure for feature i, J is the number of 

hidden nodes, 1

,i j
w  is the first layer weight from input node i to hidden node j, and 1

,N jw  is 

the first layer weight from an injected noise input node N to hidden node j.  All feature 

inputs, including the randomly generated noise, are normalized.  The scaled logarithmic 

transformation of the ratio converts the saliency measure to a decibel scale.  The idea 

behind the SNR saliency measure is relevant features will have a SNRi significantly 

greater than 0, while noise-like features will have a SNRi saliency value close to or less 

than 0.  The SNR saliency measure provides a way to rank order features from most 

relevant to least relevant and has been shown to be is statistically equivalent (Greene 

1998) to Ruck’s partial derivative based saliency measure (Ruck et al., 1990) and Tarr’s 

weight based saliency measure (Tarr 1991) for ANNs.  In addition, SNR feature selection 

has been successfully employed for fusion of correlated features derived from multiple 
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sensors with an ANN (Laine et al., 2002; Greene, 1998), and feasibility has been 

demonstrated for time delayed neural nets (TDNNs) and RNNs by Greene (1998).  

Overall, the use of weight based saliency measures are well documented in the literature 

and have Bayesian foundations as shown by Priddy et al. (1993), who demonstrate 

effective weight based Bayesian selection of salient forward looking infrared (FLIR) 

features for a combat ID application. 

Like the SNR saliency measure, Sensitivity Based Pruning (SBP) associates a 

saliency measure to each input feature.  The sensitivity measure Si for each of i features is 

calculated by assessing the effect of replacing each input feature with the mean value of 

that feature (Moody 1998; Utans et al. 1995) and can be calculated once a classification 

model is trained as, 

( ) ( )i i ipS MSE x MSE x= −  ,     (2-9) 

 

where MSE(xip) is the mean square error of the RNN for all p exemplars and MSE( ix ) is 

the MSE when an average value is assigned to input feature i.  If using the average value 

of a feature for all exemplars increases the MSE, Si will be positive and considered 

salient, and the feature associated with the largest value of Si is deemed the most salient 

feature.  Thus, Si values can be used to rank order the relative saliency of input features 

for any classification model.  If the input features have been normalized with a mean of 

zero prior to training the network, Si can be computed simply by evaluating the trained 

ANN and setting each input feature to 0.  Applications of SBP by Moody (1998) for 

continuous financial time series prediction compute Si for the training data, iteratively 

train and remove a feature from the network, then seek to select a parsimonious subset of 
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features that minimizes prediction risk of a forecast.  The SBP metric may be 

implemented similar to the SNR measure, with Si calculated from the training-test set to 

provide a measure of an ANN’s ability to generalize well to new patterns and CA is 

calculated as: 

Number exemplars classified correctly

Total number of exemplars
CA = .   (2-10) 

 

Therefore, instead of prediction risk, CA may be used to determine a final set of 

parsimonious salient features to retain for effective discrimination between two or more 

target classes. 

SNR and SBP screening methods use the saliency metrics as previously defined to 

obtain parsimonious sets of salient features while retaining good classification accuracy 

as features are removed stepwise backward.  Following are the steps to determine 

reduced salient feature sets: 

1. Introduce a Uniform (0,1) noise feature, xN, to the initial features (for SNR only). 

2. Preprocess all features with mean zero and unit variance. 

3. Initialize the RNN weights via the Nguyen & Widrow (1990) method. 

4. Initialize input layer weights as uniform [-0.01, 0.01] (for SNR only). 

5. Train the RNN and retain the weights that minimize the MSE of the test set. 

6. Identify the least salient feature with the lowest SNRi or Si saliency metric. 

7. Remove the least salient feature from the ANN. 

8. Repeat steps 5, 6, and 7 until all features in the initial set have been removed. 

9. Plot the training-test set classification accuracy (CA) as individual features are 

removed. 
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10. Retain the first feature whose removal caused a significant decrease in the 

training-test set CA, as well as all features removed after the first salient feature 

was identified. 

Both screening methods seek to find a parsimonious set of input features 

representative of the underlying input feature space dimensionality.  This is accomplished 

by reducing the features used to discriminate between classes, such as removing one of 

two highly correlated input features.  In previous research the SNR screening method has 

produced a reduced number of input features for an ANN while maintaining or improving 

classification accuracy for independent validation sets (Bauer et al., 2000; Greene et al., 

2000; Laine et al., 2002). 

2.3.3 Other Methods for Sensor Fusion  

As mentioned in the introduction to this section of fusion methods, numerous 

other quantitative methods are available for fusion at the feature or decision level for an 

individual object under investigation.  Some of these methods include Bayesian 

Techniques, parametric statistical modeling, non-parametric techniques, support vector 

machines, Hidden Markov Models (HMMs), etc.  Current sensor fusion texts by Hall and 

Llinas (2001), Klein (2004), and Varshney (1997) and a classifier fusion text by 

Kuncheva (2004) provide overviews of many of the quantitative techniques that may be 

applied for fusion at this level.  In addition, from their IEEE Proceedings article, 

“Introduction to Multisensor Data Fusion,” Hall and Llinas (1997), indicate any pattern 

recognition techniques may be applicable for feature level fusion.  Thus, all 

methodologies for performing pattern recognition of an object may also be used to 

perform fusion if the input data for the algorithm is derived from multiple sensors.  An 
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overview of pattern recognition techniques may be found in texts by Duda et al. (2001) 

and Fukunaga (1990). 

2.4 Measures of Performance for Classification Algorithms 

A review of the literature indicates most classifier metrics do not provide an 

efficient framework for optimization of conservative to aggressive decision strategies 

when more than two output labels are possible for a fusion system. While the traditional 

ROC curve does facilitate optimization across decision thresholds, it is only applicable 

for a two-class assignment problem with forced decisions (Alsing and Bauer, 1998).  This 

research seeks to extend the use of ROC like performance indicators inclusive of “Non-

declarations.”  A limiting component to most of the metrics available is that only a single 

metric is reported for a given classification system and comparisons between systems are 

then made based on a single set of thresholds.  These thresholds or parameters may have 

been chosen optimally for each sensor individually, based on a particular test data set, but 

may not be optimal for the system as a whole (Robinson and Aboutalib, 1990).  For 

example, recent research by Haspert (2000), Varner (2002) and Dasarathy (2003, 2000b) 

all provide a framework for non-forced decisions, but do not provide for an optimization 

of the Non-declaration thresholds associated with each sensor. 

While the literature is dominated by metrics to assess ATR systems performing a 

two-class decision, many of these are not applicable to a three or more output labels.  

Recent research performed at AFIT provides many sources documenting potential 

methods for the comparison of competing classification algorithms.  Included in this list 

are technical reports by Alsing and Bauer (1998 and 1999) along with the literature 
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review and subsequent research of ROC curve metrics and use of a multinomial selection 

procedure (MSP) documented by Alsing (2000).  A more recent literature review of 

current ATR evaluation techniques is included in (Bassham, 2002).  As presented in 

Section 2.3.2 “Automatic Target Recognition Performance Measures” (Bassham, 2002), 

measures of classifier evaluation include the following visual techniques: confusion 

matrices, error-reject curves, error histograms and classification trees.  Statistical 

techniques are also summarized by Bassham (2002) and include: confidence intervals, 

hypothesis testing, ROC curve performance measures, the multinomial selection 

procedure, linear goal programming, and decision analysis.  From the classification 

metrics above, further discussion will follow for the potential use of classification 

accuracy (CA) as related to confusion matrices (CMs), and ROC curves.  A limited 

review of fuzzy logic, Dempster-Schafer analysis, the multinomial selection procedure 

(MSP), linear goal programming (LGP), and decision analysis (DA) is also presented.  

All of these methods may be applicable to the required trichotomous ATR decision.   

In addition to these measures of classifier performance accuracy, Blasch et al. 

(2004) suggest other measures of performance should also be included for a fusion 

system.  They state, “it is important to develop metrics as part of a test and evaluation 

strategy,” and suggest, “a minimum set should include feasible metrics of accuracy, 

confidence, throughput, timeliness and cost” (Blasch et. al, 2004).  Thus, while the 

classification performance of an ATR system is important, the temporal and monetary 

costs along with system confidence and efficiency are important as well.  

As mentioned, many performance measures require misclassification cost and 

other information to determine optimal “Non-declarations.”  For example, Ralston (1999) 
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presents an approach for the Boolean fusion of labels inclusive of “Non-declarations.”  

His strategy is premised on prior knowledge, including prior probabilities of true class 

membership and decision maker costs associated with all possible decisions.  Thus, a cost 

associated with each type of correct and incorrect classification along with the prior 

probabilities and likelihoods of class membership must be specified (Ralston, 1999; 

Haspert, 2000).  As pointed out by Mahler (2001), while many algorithms claim to be 

Bayes-optimal, they may be incorrectly doing so since the true likelihood ratios to be 

encountered may not be sufficiently characterized.  Finally, when Non-declaration labels 

are implemented for classification systems, use of standard performance metrics tend to 

just report the percentage of objects correctly, incorrectly, or rejected for classification.  

These values may be presented in a confusion matrix (CM).  As the number of potential 

class labels increases and if a parameter associated with “Non-declarations” is allowed to 

be adjusted, visual analysis to compare CMs, or to perform confidence interval testing of 

just a handful of the reported accuracies would quickly become overwhelming.  As a 

research goal, a ROC-like metric is desired for ATR applications where “Target,” “Non-

target” and “Non-declaration” are valid outputs. 

2.4.1 Confusion Matrices (CMs) 

One limitation to CMs is that they represent the classification accuracy and the 

misclassifications obtained when the classifier uses set rules or decision thresholds, often 

at a Bayes optimal point.  With CMs, each object is uniquely labeled into one of any j-

output labels.  The matrix can then be examined to see where misclassifications are most 

likely to occur.  Within each cell of the CM the number of correct classifications and/or 
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the associated percentage of classifications are included.  The confusion matrix cells can 

be used to estimate the probability of true Target detects and the percentage of Friends 

misclassified as Targets, which are the two measures needed to produce a standard ROC 

curve.  A ROC curve could be generated by varying a decision threshold between 

conservative to aggressive parameter values to obtain a sequence of points used to 

estimate the ROC curve associated with a two-class pattern recognition algorithm.  

Figure 2.13 extends standard “Target” and “Non-target” output labels to include “Non-

declarations.”  Visual analysis of CMs like this, or with an extended number of true 

classes and output labels, as seen in Figure 2.14, may provide insight to an analyst to 

compare competing classification systems and to identify where misclassifications are 

likely to occur.  This may help facilitate determining what classifier parameters may be 

adjusted to produce more desirable results.  Summary measures to assist in the evaluation 

of CMs are presented by Ross et al. (2002) with a general discussion for ATR confusion 

matrix evaluation.   

If training data sets are fairly well balanced and if an adequate number of training 

examples are available, then many classification algorithms, inclusive of neural networks 

will train and approach a Bayes optimal error rate (Bishop, 1995).  If competing models 

are all trained approaching the optimal error rates, visual comparison of CM elements 

may help discriminate between classifiers or identify significant deficiencies.  Yet, a 

warfighter may not be interested in the Bayes optimal values for an ATR system since the 

cost of certain misclassifications and prior ratios may change depending on the specific 

mission. 
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Figure 2.13 Sample Confusion Matrix with Rejection (Unique Values are Typical 

for Each Threshold, θ) 

When performing confusion matrix analysis, the warfighter is interested in good 

horizontal classification accuracy as reported by most research efforts, but is more 

concerned with a vertical analysis of the output labels.  The vertical analysis of a 

confusion matrix is conditioned on the output label declarations of a classification 

system, from which actionable decisions are made by the warfighter (Sadowski, 2001, 

2004).  Varner (2002) discusses the “horizontal” and “vertical” analysis of a confusion 

matrix for ATR systems using this philosophy.  A sample confusion matrix with two 

different “Non-declaration” options is presented as Figure 2.14 as presented by Sadowski 

(2001).  A row is associated with each true class and a column is used for each Combat 

ID system output label.  For most applications, engineers perform “horizontal” confusion 

matrix analysis, independent of true class prior probabilities, as depicted by the 

probabilities summing to 1 for each row of Figure 2.14.  
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Truth FEN Library

Target 

1-Friend                  

2-Neutral             

3-Ambig                       

4-Enemy

1-In       

2-Not In "F15" "F16" "Mig 29" "Su 27"

Not in Lib       

"Unknown" No Rpt

F15 1 1 0.800 0.040 0.010 0.000 0.010 0.140

F16 1 1 0.010 0.850 0.010 0.030 0.010 0.090

Mig 29 3 1 0.010 0.010 0.820 0.010 0.030 0.120

Su 27 4 1 0.035 0.010 0.005 0.850 0.030 0.070

Mig 21 4 2 0.001 0.000 0.001 0.001 0.200 0.797

Mig 15 4 2 0.300 0.300 0.050 0.010 0.300 0.040

Report:                                                                                                        

CID System Output

 

Figure 2.14 Sample Confusion Matrix with 2 Types of Non-declarations: “Not in Lib 

Unknowns” and “No Report” 

The “vertical” analysis of the confusion matrix will yield estimates conditioned 

on the probability of label declarations.  For example, horizontal analysis shows the 

system’s F15, classification accuracy is 0.8/(0.8+0.04+0.01+0.00+0.01) = ~93%.  In 

contrast, vertical analysis would report the CID system label accuracy of “F15” as 

0.8/(0.10+0.10+0.035+0.001+0.30) = 0.80/1.156 = 69%, given the prevalence of each 

true target type is equal.  This “vertical” analysis may reveal different performance with 

different prior probabilities of the true target types.  The same estimate of “F15” output 

label accuracy may be computed for different true target prior probabilities.  For 

example, first let PF be the prior probability of Friendly fighters (F15s or F16s) and PH is 

the prior probability of Hostile fighters (Mig 29, Su 27, Mig 21 and Mig 15).  Let the 

probability across fighter types for the Friendly and Hostile classes be equal.  Then, since 

the label events are mutually exclusive across true classes and collectively exhaustive, 

using the total Law of Probability, vertical analysis may be performed using different 

prior probabilities.  Vertical analysis to estimate the label accuracy (LA) of a given 
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“output” yields the following for { }" 15"," 16"," 29"," 27"," "j F F Mig Su Unknown∈ and 

6n =  true target types,  

1
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(  ) (  | "  ")

i i

n

i i

i

P true type P true type label j
LA label j

P true type P true type label j
=

=
∑

.  (2-11) 

 

With a hostile sparse ratio of PF :PH = 4:1, the priors for each true target type are (0.4, 0.4, 

0.05, 0.05, 0.05 and 0.05).  This provides an estimate of the LA(“F15”) as, 

(0.4)(0.8) 0.32
(" 15") 

(0.4)(0.8+0.1)+(0.05)(0.10+0.035+0.001+0.30) 0.36 0.0218
LA F = =

+
 = 84%. 

Using the reversed probability of PF :PH = 1:4 representative of a hostile rich environment 

yields, 

(0.1)(0.8) 0.08
(" 15") 

(0.1)(0.8+0.1)+(0.2)(0.10+0.035+0.001+0.30) 0.09 0.0872
LA F = =

+
 = 45%. 

 

Thus, this small example shows the classification accuracy of a system yields reasonably 

good results of 93% from horizontal analysis for the classification of a F15 as a “F15.”  

Yet, vertical analysis indicates a less favorable evaluation of the system.  With 

warfighters acting on the output decision labels of the Combat ID system, a label of 

“F15” may be inaccurate over 50% of the time if operating in a hostile rich environment.  

This label accuracy of the system is shown to vary from 45% to 84% by varying the 

ration of PF :PH priors from just 1:4 to 4:1. 

2.4.2 Classification Accuracy 

As presented for use by some ANN feature saliency identification methods, 

classification accuracy may be calculated as  
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Number exemplars classified correctly

Total number of exemplars
CA = .   (2-12) 

 

Alsing (2000, chapter 7) offers insight for the interpretation of classification accuracy as 

a measure of classifier performance.  CA is typically, reported for the Bayes optimal 

point, where, “the Bayes optimal point is the decision threshold for which the total 

misclassification error (1-CA) is a minimum” (Alsing, 2000: 7-2).  The CA is the average 

of all objects being classified and may not be applicable to an ATR system where the cost 

of misclassifying a Friendly as a Target is extremely high.  While CA may not be the best 

measure for comparing competing ATR systems, it is still frequently presented in the 

literature as a simple metric to show the performance of a system.  For example, Simone 

et al. (2002) only present the optimal mean classification accuracy obtained for each of 

three classes when using image fusion techniques for remote sensing applications.  

Catlin, et al. (1999) also use the probability of correct ID’s for the evaluation of ATR 

systems.  Similarly, for a three-class pattern recognition effort (Laine et al., 2002) simply 

report the classification accuracy when making comparisons of competing classifiers 

based on differing feature sets.  Yet, these average CA measures were obtained from 

confusion matrices with insight obtained for the specific types of misclassifications 

between three classes observed from the Confusion Matrix cells, which are included 

within the original research in (Laine, 1999). 

2.4.3 Confidence Testing 

In addition to the CA obtained from the diagonal elements of the CMs, the 

probabilities of misclassification are also obtainable from the off diagonal cells.  A 

second order statistic of variability would add value to these estimated mean CA and 
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probability of misclassification values.  With a measure of the expected variance about 

the mean CA obtained, a classifier with high variance may be undesirable, even if it were 

to have a higher mean CA than a competing classifier.  For two class problems, 

Classification Accuracy estimates can be modeled as binomial random variables.  This 

facilitates the calculation of confidence intervals on this random variable, where an 

approximate (1-α ) confidence interval for random variable p̂ may be calculated from n 

samples as: 

( )1 / 2

ˆ ˆ(1 )
ˆ

p p
p Z

n
α−

−± ,     (2-13) 

where a normal approximation is assumed for large sample size with n > 30 (Wackerly et 

al., 1996).  For other measures of performance, confidence intervals may be obtained 

using multiple replications of an experiment.  From the experimental replications, the 

mean and variance of a desired measure of performance may be estimated.  A confidence 

interval could then be generated using,  

( )1 / 2
Y Z

n
α

σ
−± ,     (2-14) 

where, Y is the estimated mean value of some performance value, and σ is the observed 

standard deviation for Y (Wackerly et al., 1996). 

 Some standard measures of performance associated with an ATR include the 

probability of true target declaration, false target declaration and with the inclusion of 

“Non-declarations,” the probability of rejecting to declare, or the related probability of 

declaration.  These standard measures of performance are estimated as follows: 

• Probability of True Positive ( ˆ
TPP ):  probability an object is declared “Target” 
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given it is a Target, 

number of Targets declared  "Target"ˆ
total number of Targets declared

TPP =  .   (2-15) 

• Probability of False Positive ( ˆ
FPP ):  probability an object is declared “Target” 

given it is a Non-target, 

number of Non-targets declared  "Target"ˆ
total number of Non-targets declared

FPP =  .  (2-16) 

• Probability of Declaration ( ˆ
DecP ):  probability an object is not too difficult to label 

and is declared as “Friend” or “Target”, 1- probability of rejection, ˆ ˆ1Dec REJP P= − : 

ˆ ˆ1Dec REJP P= − , where 
number of objects not declaredˆ

total number of objects evaluated
REJP =  . (2-17) 

Along with a binomial approximation to estimate the associated variance and 

confidence intervals for each of these measures of performance, other methods may also 

be used.  For example, the associated variance may be estimated through repeated 

training of a classifier if the parameters are determined stochastically, as is the case with 

some ANNs.  Resampling techniques could also be used to create a stochastic process by 

training and or evaluating the classifiers with different sets of validation data.  In 

addition, Bishop (1995: Ch 10, Bayesian Techniques) offers a means of computing the 

variance of a trained neural network function using a Bayesian approach that could be 

used to place a confidence interval about the estimate of class prediction for a specific 

model input.  Further, if a region of feature space is of particular interest where 

misclassifications are likely to occur, the confidence intervals could be computed at 
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designed points to compare competing models and would provide a measure of their 

robustness across the input feature space. 

Overall, when reports of a single measure of performance associated with a 

particular classification system are reported, confidence intervals provide additional 

information to determine if one system is statistically different from the other at a desired 

level of confidence. 

2.4.4 ROC Curve Analysis  

 ROC curve analysis is a common evaluation tool for ATR systems and has been 

extensively applied to many dichotomous decision problems (Swets, 1964; Swets et al.; 

2000a, 2000b).  Given a finite data set, a standard ROC curve, f, can be thought of as a 

function of estimated performance measures (Alsing, 2000).  A typical ROC curve 

illustrates the estimated feasible range of false positive,
FP

P̂ , vs. true positive, 
TP

P̂ , 

detection probabilities. A ROC curve, f, can be generated empirically by varying θ  over 

its range, Θ , as shown in eq. 2-18: 

( ) ( ) ( )( ){ }ˆ ˆ, |FP TPf f P Pθ θ θ θ= = ∈Θ     (2-18) 

 

The resulting set of points ( ) ( ){ }ˆ ˆ,FP TPP Pθ θ  start at the lower left corner and move 

toward the upper right corner as a decision threshold varies through a range of 

conservative to aggressive values.  A notional ROC curve is shown in the following 

figure. 
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Figure 2.15 Typical Receiver Operating Characteristic (ROC) Curve 

ROC analysis was developed from statistical decision theory as a tool for 

electronic signal detection (Peterson et al., 1954) and has been extensively applied to 

decision making problems (Swets, 1964; Swets and Picket, 1982; Swets et al., 2000)
 
and 

is commonly used in biomedical research (Metz, 1986, 1989).
 
  Alsing (2000) provides a 

comprehensive review of the use of ROC curves in ATR research.  The interested reader 

is referred to Alsing et al. (1999) for an example of generating a standard ROC curve, 

Lloyd (2002) for determining a theoretic ROC function, while an in-depth discussion of 

ROC curves is presented by Egan (1975) and Swets & Pickett (1982). 

Standard ROC curves can be generated from conditional data labels, where values 

of PTP and PFP are estimated only using non-rejected data.  Yet, these curves do not 

indicate the associated number of “Non-declarations.”  If a collection of ROC curves are 

generated with different rejection levels, ROC curve may be compared using the area 
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under the curve (AUC).  The AUC may be approximated using a trapezoidal 

approximation of the area, where a larger area indicates a ROC curve may be preferred 

(Egan, 1975; Bradley, 1997), although it does not account for rejection.  The average 

metric distance developed by Alsing (2000) is an alternative means to compare ROC 

curves.  The average distance measure, MD, as developed by Alsing (2000) is, 

( ) ( )( ) ( )
1

1

, ,
n

TP i FP i i i

i

P P

MD
n

θ θ θ θ
=

−
=
∑

,   (2-19) 

where ( ) ( )( ),
TP i FP i

P Pθ θ  is the i
th

 data point sampled from the ROC curve and 
1
i is the 

1-norm.  But, as stated by Alsing and Bauer (1998: 18) ROC curves have limitations: 

ROC curves are only generated for the simple two class "top layer" problem of 

differentiating between clutter and targets.  Our literature review failed to find any 

research into the use of ROC curves for the "lower layer" problems of target 

group classification and specific target identification.  

 

Thus, from the statement above, the standard ROC curves does not appear readily 

applicable to ATR identification efforts where three or more output labels may be 

desired, and standard comparison techniques do not account for “Non-declarations.” 

2.4.4.1 ROC Curve Extensions to Multiple Classes  

While development of ROC analysis was can be traced back to the 1950’s 

(Peterson et al., 1954), limited research has been identified in the literature for ROC like 

analysis for more than two variables of interest.  Mossman (1999) and Hand & Till 

(2001) suggest the volume under a ROC like surface using three performance estimates 

may be of value to compare trichotomous decision models.  Yet, neither incorporates a 

rejection option nor a means to determine the associated optimal threshold values.  
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Varner (2002) introduces use of two thresholds with a reject option to generate a family 

of ROC curves, but does so via a predetermined number of test objects to be labeled 

“Non-declaration” for each ROC curve.  Threshold assessment is accomplished through 

analysis of numerous confusion matrices, which may be partially summarized by ROC 

curves. 

Current literature does offer some extensions to the standard ROC curve with 

either trajectories or surfaces extending into 3-dimensions.  Alsing et al., (1999) 

introduce use of a third measure to be plotted to generate a ROC trajectory.  This 

trajectory shows the traditional ROC performance with a system allowed to reject hard to 

classify objects.  While the traditional ROC curve is only suited to facilitate a 2-class 

target recognition classifier assessment, Hand and Till (2001) present a methodology to 

extend ROC area under the curve (AUC) for multiple classes.  They provide a 

generalization of the area under the ROC curve for multiple class classification problems.  

This extension is made by averaging pair-wise comparisons between class assignments.  

Another possible performance metric for a three-class, “Target,” “Non-target,” “no-

declaration,” trichotomous decision task is the use of the Volume Under the Surface 

(VUS) obtained from a three-way ROC surface as presented by Mossman (1999).  The 

surface is obtained by plotting the correct identification rates obtained from a 

contingency table or Confusion Matrix under a set classification rule.  By systematically 

changing a single decision threshold for a given classifier a three-way ROC surface could 

be generated to facilitate visualization of the possible correct classification accuracies.  

The volume under such a surface is then suggested to use as a metric of comparison. 
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If used to plot the classification accuracy for “Target,” “No-target” and “no-

declaration” labels, the optimal point on the plot would then be at 100% Target 

declaration, 100% No-target declaration and 0% No-declarations.  Thus, as presented, the 

volume under the surface may not be an appropriate metric, but modifications could 

probably be made to include false positives and no-declaration rates, rather than just the 

classification accuracy percentages.  This may then overcome one shortcoming of the two 

volume metrics, i.e. the limited plotting of the true positive rates without including false 

positive rates within the 3-D plots.  Such a 3-D ROC surface may then be useful for 

decision-making when the consequences of a false positive could be substantial including 

friendly fire. 

2.4.4.2 ROC Curve Analysis under Uncertain Costs 

In general, selection of a unique optimal point suggests perfect knowledge of 

priors and the associated costs of correct and incorrect decisions.  On the other hand, use 

of a metric, such as the Area Under the Curve (AUC) or average metric distance (MD) 

suggests no prior information on the relative costs of errors or the prior probabilities of 

class types likely to be encountered.  For most classification problems, including Combat 

ID, the assumption of perfect or no a priori information is probably poor at best, since 

some information with respect to costs and priors can probably be obtained or deduced.  

While certainly not perfectly known, the prior probability of Friend, Enemy and Neutral 

targets within a given area of interest can probably be identified within an order of 

magnitude using existing Intelligence data.  Similarly, the associated costs for different 

potential classification error can probably be at least rank-ordered, where the cost of 
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misclassifying natural clutter as an Enemy target is certainly less than misclassifying an 

Enemy target as a Friend which may likely be less costly than classifying a Friendly 

target as an Enemy. 

Similar findings have been recently addressed in the machine learning 

community.  For example, Fawcett (2001) investigates different strategies for evaluating 

rule sets to maximize ROC performance, when class distributions are skewed and the 

costs associated with misclassifications are unequal.  These flexible rule sets provide a 

means to determine a combined or fused ROC curve, where one classification method or 

a combination of methods may be preferred across a given range of PFP.  More details for 

the development of a hybrid classifier are found in (Provost and Fawcett, 2001), where 

the combination of two or more classifiers is assessed using a ROC curve.  Multiple 

classifiers may be combined to generate a preferred ROC convex hull.  The convex hull 

will then yield a PTP value as good, or potentially better, than each individual classifier 

across the range of PFP values.  This is useful for real world applications, where the 

misclassification costs along with the prior probabilities of true classes are uncertain.  

This type of ROC fusion may be useful for the fusion of sensors and associated 

classifiers, which were initially developed independently.  As environmental information 

about costs and priors is refined, a preferred classification model may then be identified.  

While only presented for a two-class identification effort, the authors note a potential for 

extension to multiple classes (Provost and Fawcett, 2001).  Additional examples and 

background are found within (Provost et al., 1998) and (Provost and Fawcett, 1997).  

Within these works the authors note, “Often in real-world domains there are no ‘true’ 
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target costs and class distributions” (Provost et al., 1998), and in fact, estimation of such 

costs may change across time and across different situations. 

To address some of the issues associated with comparing classifiers when 

misallocation costs are uncertain, Adams and Hand (1999) suggest use of a loss 

comparison (LC) index.  This LC index ranges from -1 to +1, with a value of +1 

indicating preference for one classifier across all feasible cost values.  Since the AUC 

implicitly assumes implies equal misclassification costs, Adams and Hand (1999) suggest 

at a minimum, a subject matter expert may help to determine potential costs by 

estimating the minimum, maximum, and most likely cost ratios associated with a 

classification effort.  By incorporating this cost information via a triangular distribution, 

the LC index may then show preference for one classification system across the feasible 

range of costs.  Further suggestions for improving the practice of classifier performance 

assessment are contained within (Adams and Hand, 2000).  Within this article, Adams 

and Hand state, “in many applications, assessment criteria are chosen that do not match 

the problem very well.”  In addition to presenting discussion against use of the AUC due 

to its inherent assumptions of equal and unknown costs, they suggest it is likely that costs 

may change over time.  They also note, even when the AUC is used, further 

complications may arise if appropriate confidence bounds are not used.  Thus, any 

performance measure used to determine a preferred classification model should not only 

incorporate all relevant decision information, such as the best estimates of costs, but 

should also estimate the variance associated with the measures being used, to ensure a 

reported difference is significant.   
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Overall, review of the literature for ROC curve analysis under uncertain costs 

indicates determining a preferred classifier via analysis of ROC curves may be 

performed.  This analysis is typically dependent on either implied equal costs or a range 

of costs should be considered.  Further, if the true class environment is uncertain with 

respect to the prevalence of different classes, then similar arguments may be used to 

suggest evaluation across a range of prior probabilities.  Such analysis may try to 

incorporate available information to define a triangular or another parametric distribution 

associated with the priors of each class, or excursions may be performed to assess 

competing classifiers across a range of potential prior class probabilities. 

2.4.5 Other Potential Evaluation Methods 

The following sections will briefly introduce other potential methods of 

performing classifier assessments with the required addition of “Non-declarations.”  

These methods include fuzzy logic, Dempster-Shafer (DS) analysis, multinomial 

selection procedure (MSP), linear goal programming (LGP), and decision analysis (DA). 

2.4.5.1 Fuzzy Logic and Dempster-Shafer (D-S) Analyses 

One possible way to model the new inclusion of “Non-declarations” is to retain a 

traditional binomial decision, “Target” or “Non-Target,” but now if desired confidence is 

not obtained a “Non-declaration” is made.  The use of fuzzy logic or Dempster-Shafer 

(DS) theory could be applied to this type of classification effort.  While literature 

supports binomial classification performed in this manner, it does not appear to offer 

significant metrics to compare competing systems across various conservative to 

aggressive ROC-like thresholds.  Many articles simply report the classification accuracy 
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(CA) obtained for two classes and also report a single measure for the number or 

percentage of Unknowns that were not included as one of the two default classes.   

An overview for the use of fuzzy logic can be found in (Clutz, 2003).  Magnus 

and Oxley (2002) present use of fuzzy logic in their investigation of the fusion and 

filtering of “arrogant classifiers.”  The three-value logic presented is an example of fuzzy 

logic with values associated with an object being classified in {false, uncertain, true}.  

They also present four-value expertise logic which further divides the uncertain class 

between {uncertain interpolation and uncertain extrapolation}.  Thus, three or four class 

logic can be applied to indicate areas of uncertainty, possibly more useful than the two-

value logic forced decision between {false, true} or {Target, Friend}.  In summary, fuzzy 

or three-value expertise logic and the four-value logic presented could be used to expand 

a 2-class ATR label set to include “Non-declarations.”  These “Non-declaration” could 

then be reported in an appropriate confusion matrix and associated ROC curves may be 

generated to compare competing ATR classification systems. 

Dempster-Shafer (D-S) analyses may also be applicable to classification problems 

where modeling uncertainty is desired.  As stated by Simone et al. (2002: 6), “the 

Dempster-Shafer evidence theory…has been applied to classify multi-source data by 

taking into account the uncertainties related to the different data sources involved.”  

Milisavljevic et al. (2003) apply D-S analysis in an iterative manner in their research to 

improve mine recognition through Dempster-Shafer fusion of ground penetrating radar 

data.  Within this research, imaged objects are first screened as definitely Friendly, with 

high confidence, or as potential mines.  Further pattern recognition analysis is then 

performed to classify an object as a mine, with the goal being to correctly identify 100% 
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of the mines while minimizing the false positives.  As with the fuzzy logic encountered in 

the literature, typically only the mean classification values are presented.   

Overall, fuzzy logic and D-S theory can be used to model uncertainty and the 

inclusion of “no-declarations.”  Both fuzzy and D-S theory may be applicable to an ATR 

system to indicate when more information is needed to make a decision.  The reduced 

classification of Targets and Friends could be reported conditioned on declarations and 

traditional ROC curves could still be produced, yet optimization between declarations, 

PTP and PFP would still need to be determined. 

2.4.5.2 Multinomial Selection Procedure (MSP) 

A multinomial selection procedure for evaluating competing classifiers is 

presented by Alsing et al. (2002) and summarized in (Kuncheva, 2004: 34-35).  While 

only two-class identification efforts are presented within (Alsing et al., 2002), feasible 

use of a MSP procedure is demonstrated and provides a metric of the strength of 

conviction or “probability of being the best” among competing classifiers.  Bassham 

(2002: 2-56) notes that MSP may be used to compare k competing classifiers across n 

classes, and is not limited to the binomial declaration of target/non-target.  Kuncheva 

goes on to state,  

…the objective of the MSP is to find the best system, given a limited amount of 

data, which is most likely to be the best performer in a single trial among systems, 

rather than identifying the best average performer over the long run. 

 

Kuncheva (2004:35) further states MSP has been demonstrated to, “be very sensitive in 

picking out the winner, unlike the traditional error-based comparisons.”  Thus, use of 
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MSP inclusive of the assessment of “no-declaration” labels may provide a reasonable 

comparison procedure to assess competing ATR identification systems.   

2.4.5.3 Linear Goal Programming 

 A good review of linear goal programming (LGP) as applicable to ATR system 

evaluation is found in (Bassham, 2002).  The objective of LGP is to solve multivariable, 

multigoal problems, which is applicable to determining an optimal ATR system.  In 

determining the optimal ATR system, trade-offs must be assessed between different 

declaration levels of Hostiles as “Targets” and Friendlies as “Targets” and “Non-

declarations.”  An objective function must be specified, as applicable to ATR evaluation 

task at hand, and prioritized goals must be determined.  For accurate assessment of the 

system, the prioritized goals require subject matter expert or decision maker input, which 

may be difficult to obtain or reproduce in a consistent manner. 

2.4.5.4 Decision Analysis 

Significant contributions for the use of decision analysis (DA) including a 

framework of assessing measures of effectiveness (MOEs) obtained from a combat 

model were developed by Bassham (2002) for the comparison of competing ATR 

systems.  Like goal programming, decision maker input is required and may lead to 

biased comparisons based on a particular decision maker’s preferences.  Such differences 

were seen through a differing value structure obtained from decision makers in different 

AF MAJCOMS (ACC and AFMC).  Since the DA framework used metrics from the 

MOEs obtained from a combat model, the lower level measures of performance (MOPs) 

were not directly compared.  The resulting MOEs may only be useful for a particular 
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combat engagement with set concepts of operation (CONOPS) and where a 

predetermined Hostile environment is used.  Sensitivity analysis was also presented to 

characterize the robustness of the DA value model parameters for comparison of the ATR 

systems.  Of significant applicability is that the DA framework can be used with any 

ATR system incorporated into a combat simulation, where measures of combat 

effectiveness (MOEs) derived from the lower level decisions of declaring an object of 

interest as “Target,” “Friendly” or “Non-declaration” show a net effect on the battlefield. 

2.4.6 Classifier Performance with an Error-Reject Tradeoff 

 While ROC analysis is a standard tool for ATR research evaluation (Alsing, 

2000), an operational ATR system should, at a minimum, provide two output labels plus 

a “reject to declare” option.  A rejection parameter establishes a region where samples are 

considered too difficult to classify (Chow 1970); thus, declared “unknown.”  A 

classification algorithm for N–true classes and Di decision labels with i = 1,2,….,N seeks 

to assign patterns from true class 
i

ω to decision space Di, by maximizing the 

classification accuracy.  As presented by Fumera et al. (2000), this accuracy is given as, 

( )
1

( ) ( | )
i

N

i i
D

i

Accuracy P correct p x P dxω ω
=

= =∑∫ ,   (2-20) 

where ( )iP ω  is the prior probability of true class 
i

ω , and x is a pattern to be classified.  

Similarly, the goal of classification systems may be stated as the minimization of 

classification error as defined by,  
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(Fumera et al., 2000).  These decision rules may be referred to as Bayes-optimal, since 

they assign each pattern x to the class with the maximum a posteriori probability, 

( )|iP xω .  Rejection offers a means to obtain an increase in the classification accuracy, 

with an associated decrease in misclassification errors.  This performance improvement 

may be obtained by allowing for the “Non-declaration” of difficult to identify patterns 

(Chow, 1970).  While rejection offers classification improvement, this performance 

improvement comes at a cost.  This cost includes a trade-off between ID system accuracy 

and the cost of obtaining more information and lengthening the classification process if 

an initial “Non-declaration” is made.  By Using Chow’s rule, a pattern x is rejected if,  

( ) ( )
1,2,...,
max | |

k i
k N

P x P xω ω θ
=

= <    (2-22) 

for [ ]0,1θ ∈ .  Patterns are accepted to be labeled as other than “Non-declaration,” if, 

( ) ( )
1,2,...,
max | |

k i
k N

P x P xω ω θ
=

= ≥ .   (2-23) 

Chow (1970), shows if all misclassification costs, Ce, rejection costs, Cr, and correct label 

costs, Cc, are equal for all K classes, then the optimal θ  may be obtained as,  

r c

e c

C C

C C
θ −=

−
.     (2-24) 

where, typically Ce, > Cr, > Cc.  By noticing that the prior probabilities associated with a 

declaration of each of the true classes may vary according to the rejection thresholds and 
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may vary for estimates obtained from sampled data sets, Fumera, et al. (2000), propose 

the use of multiple thresholds.  Equations 2-22 and 2-23 are now slightly modified to 

allow for different rejection thresholds for each true type.  These equations thus become: 

( ) ( )
1,2,...,

ˆ ˆreject if: max | |k i i
k N

P x P xω ω θ
=

= < ,  and   (2-25) 

( ) ( )
1,2,...,

ˆ ˆlabel as class  if: max | |i k i i
k N

P x P xω ω ω θ
=

= ≥ .  (2-26) 

In these equations, ( )ˆ |iP xω  is the new estimate for the posteriori probability associated 

with pattern vector x for class 
i

ω .  In addition, by using these class related thresholds, 

Fumera et al. (2000), have proven that the classification accuracy achieved for any 

rejection rate is equal to or higher than use of a single rejection thresholds as presented by 

Chow (1970).  To determine the best values of the class related thresholds, a constrained 

maximization problem is proposed to maximize the overall classification accuracy.  The 

constraints simply include the maximum total rejections allowed across all classes.  

Further optimization of class-related rejection thresholds, may involve the optimization 

of a risk or cost function.  To minimize the total risk, a sum of all costs associated with 

correct, incorrect and rejection of each true class may be optimized across all class-

related rejection thresholds.  Thus, optimal rejection rates may be determined by an a 

priori defined percentage of rejection allowed, or through the use of costs and a risk 

function, where the costs may be difficult to quantify.  In addition to presenting the 

theoretical framework for use of class-related rejection thresholds, Fumera et al. (2004) 

apply class related thresholds for the rejection and classification for text categorization.  

Fumera and Roli (2004) also show the utility of such analysis when combining multiple 
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classifiers.  In this research the classifiers are fused using simple averaging and linear 

weighting, where the error-reject trade-off is shown to improve.  Some practical 

guidelines for combining classifiers with a reject option are presented, whereby 

individual classifier performance without a rejection option may be used to help assess 

reasonable weights for the linear combination of the same classifiers with a reject-option 

(Fumera and Roli, 2004).  Thus, as desired by the warfighter, current error-reject research 

is being performed to allow for Non-declaration of potential targets with low levels of 

identification confidence. 

 By varying the rejection thresholds associated with a classification system, a 

family of ROC curves associated with different rejection criteria may be generated.  

These ROC curve present a visual means to see the improvement obtained via use of an 

error-reject option.  If assessments are made across a range of all feasible thresholds, then 

the point associated with the optimal error-reject thresholds will be contained on the 

current plot of ROC curves.  Several authors: Chow (1970), Devijer & Kittler (1982), 

Fumera et al. (2000) and Haspert (2000) use a Bayes optimal classification strategy to 

determine preferred classification and rejection rules by minimizing a Loss function.  

This will simply identify a single point on the ROC curve that is defined as best.   A Loss 

function may include costs of rejection, correct and incorrect decisions all in equivalent 

units and incorporates prior probabilities of class membership.  However, since ATR 

systems are likely to operate in a variety of conditions, the expected prior probability of 

Targets to Non-Targets may vary greatly (Ross et al., 2002).  Further, costs of “Non-

declarations,” that initiate ATR re-looks may be difficult to place in comparable cost 

units to false positive target IDs, which may lead to friendly fire.  Thus, a Loss function 
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may not be appropriate to determine optimal classifier settings, and an alternative 

measure of effectiveness is sought. 

Some rejection strategies set a predetermined number of objects as “non declared” 

based on a priori decision to have a set percentage undeclared.  This method was used for 

the generation of 2-threshold ROC curves by Varner (2002), and is suggested by Fumera 

et al. (2000).  Rather than assuming a certain percentage should be rejected for 

declaration, perhaps, a more appropriate strategy may use the posterior model class 

estimates to determine whether enough confidence is obtained to make a class label 

declaration.  In addition to finding an optimal rejection level, research has been identified 

to incorporate more than 2 classes for ROC like analysis.  Hand and Till (2001) and 

Mossman (1999) suggest the volume under a ROC like surface may be an appropriate 

metric to compare classifiers.  From their plots, an increased volume may generally 

indicate robustness, but since “Non-declaration” labels are desired, the volume of these 

surfaces may not be an effective measure.  Similar to the 3-D trajectory presented by 

Alsing et al. (1999) a 3-D ROC surface, which extends the standard ROC curve by 

adding a third performance measure that reflects the ability of the ATR algorithm to 

“reject” unknown or difficult to classify objects may be a useful aid in ATR analysis.  

This analysis includes use of two or more thresholds to tune an ATR system for the 

minimum trichotomous decision, with performance measures estimated using Test data. 

Research by Dasarathy (2003, 2000b) includes sensor fusion with “Non-

declaration” in a sensor system inclusive of re-looks, but is limited to the assumption that 

all sensor data is independent.  The research was performed for the fusion of sensor 

decisions with designed PcorrectID, PfalseID, Pno ID levels, such that PcorrectID + PfalseID, + Pno ID 
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= 1 for each sensor.  Asymptotic properties associated with sensor “re-looks” are then 

reported where a re-look was triggered if the final output label from a suite of sensors 

was “no ID.”  The primary performance measures presented were plots with the 

percentage of correct ID and false alarm by the number of re-looks for sensors with the 

three predetermined probability characteristics.  Asymptotic properties could then be 

observed after a finite number of looks, usually less than 10, for any given sensor 

characteristics. 

2.5 Literature Review Summary 

Overall, relevant background was presented to provide a foundation for the 

investigation of ATR system performance when “Non-declaration” labels are always an 

option and when sensor data may be correlated.  Methods of feature extraction were 

reviewed, where limited observed correlation levels were found documented in the 

literature.  A high level of desired confidence associated with ATR system labels was 

identified, where use of fusion is a prescribed means to increase identification 

confidence.  Use of Boolean rules and neural networks to perform fusion were then 

introduced.  While many analytical techniques are available to assess ATR and fusion 

algorithms with a “Non-declaration” option, some methods may be preferred.  The 

preferred performance assessments should require minimal variation from more 

traditional ATR analysis.  In particular, the use of confusion matrices and ROC curves 

are prevalent in the literature for the assessment of current ATR research.  Thus, 

modification to these methods, by including warfighter “vertical” preferences and “Non-

declaration” output labels is sought. 
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III. Mixed Variable Programming Formulation 

As identified in the literature review, AF doctrine requires a certain level of 

confidence prior to declaring a target may be engaged.  Thus, ATR systems must at a 

minimum make trichotomous decisions, where an object under consideration can be 

labeled as a “Target”, “Non-target”, or “No-declaration.”  Review of literature has not 

found methodologies that seek to optimize such a decision, without use of explicit cost 

information.  Figure 1.1 is presented again to show this general process, where more than 

two sensors may be used and need not collect data at the exact same time.  For an ATR 

system, a fusion rule should be chosen to combine data from two or more sensors, or 

determine an output label for a single sensor at each instance in time.  The process may 

continue until a declaration is made or some upper time constraint or number of looks has 

been reached to label an ROI as a class other than “Non-declaration.”   
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Figure 3.1 Notional ATR Process Model for Two Sensors through Time 
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3.1 Introduction to 3-D ROC Surface Generation via a Reject Option 

 By expanding the 3-D trajectory presented by Alsing et al. (1999), a 3-D ROC 

surface, extends a standard ROC curve by adding a third measure to reflect ATR 

declaration performance when difficult to classify objects are rejected.  For a given finite 

data set, a 3-D ROC surface, s, is a function of  represented in 3-space by three 

estimated probabilities: true positive detection, ˆ
TP

P , false positive detection, ˆ
FP

P , and 

rejection, ˆ
REJ

P .  The relations for the estimated performance measures are given as 

follows: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ),      ( )     and     ( ) 1 ( )
TP TP FA FP FP Dec Dec REJ

P P P P P P P P= = = = = −    (3-1) 

 

Figure 3.2 Family of ROC Curves Generated with Increased Rejection.  The Arrow 

Pointing to the Upper NW Corner of the Plot Indicates General Performance 

Improvement as a Rejection Window is Increased 
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where ˆ
Dec

P  is the estimated probability of declaration and ˆ
FP

P  is equivalent to false 

alarms, ˆ
FA

P .  The three performance measures are functions of , where  may be 

defined as ( , )T

low upθ θ= .  A 3-D ROC surface, s , is generated empirically by varying  

over its entire range, : 

 
( ){ }ˆ ˆ ˆ( )  ( ),  ( ), ( ) |TP FP Decs s P P P= = ∈  .  (3-2) 

Rejection should improve ATR performance by only declaring those objects with high 

likelihood of class membership (Chow, 1970).  Classification can be delayed until 

additional data are obtained and efficient sequential analysis (Wald, 1947) is performed 

to limit data requirements.  The 3-D ROC surface may be a useful tool for understanding 

tradeoffs between ˆ ˆ ˆ,   & 
TP FP Dec

P P P .  To generate a 3-D ROC surface the ATR thresholds, 

, needs to be further defined.  For a trichotomous decision,  may include the size or 

width of the rejection zone along with a conservative to aggressive ROC threshold.  To 

illustrate use of the varying rejection zone, consider the two-class detection problem 

between hostile Targets and Friendly non-targets.  Let ATR outputs, ppT & ppF, be 

estimated posterior probabilities for the Target and Friend classes, such that: 

1ppT ppF+ = .     (3-3) 

Since ppT ppF+  sum to one, decisions may be made based on just ppT:  

{ } " "  if   ,  " "  if   ,  " "  if    
up low low up

label T ppT F ppT ND ppTθ θ θ θ= > < ≤ ≤  (3-4) 

where 
up

θ and 
low

θ  are upper and lower thresholds.  These thresholds are functions of the 

ROC threshold, 
ROC

θ , and a rejection threshold, 
REJ

θ , as shown in Figure 3.3 and defined 
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by following equations: 

 
low ROC

θ θ=  and  
up ROC REJ

θ θ θ= + .   (3-5) 

An example of the ROC and rejection thresholds is included in Figure 3.3.  This shows 

the declaration labels for a set of two-class data represented by the histograms of different 

grayscale along an x-axis corresponding to the posterior probability of “Target.” 

 

Figure 3.3 Example Relations and Labels for given Values of  and 
low up

θ θ  

To generate a 3-D ROC surface, 
REJ

θ  is varied from 0 (no rejections) to some 

upper limit,
REJ

θ
 
≤ 1.0, for estimated label probability scores.  The ROC threshold, 

ROC
θ , 

is then systematically varied from 1-
REJ

θ  down through 0.0.  This facilitates evaluation of 

the full conservative to aggressive ROC trade space associated with a given rejection 

window.  Thus, for a dichotomous decision plus rejection, a 3-D ROC surface reflects the 

available performance across a threshold decision space, as can be seen in Figure 3.4. 
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Figure 3.4 Family of ROC Curves Plotted with the % Declared, 1 indicates 100% 

Declaration Rate with 0% Rejected 

While a classical knee in the curve can be seen in the above 3-D ROC surface, 

determining the single optimal point associated with specific threshold values is visually 

difficult.  Further, no methods to determine the associated optimal point were identified 

in the literature, which do not include the use of explicit costs or a predetermined 

maximum rejection probability.  A predefined maximum level of rejection would always 

yield a given percentage of objects to be “non declared,” even if enough confidence was 

available to make label decisions.  On the other hand, use of explicit costs requires all 

misclassifications, including “no-declarations” to be placed in equivalent cost units, 

which this research seeks to avoid. 
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3.2 Background Definitions and Assumptions for ATR System Evaluation 

New research is suggested to use nonlinear optimization of the feasible decision 

space generated across all potential classifier label mappings associated with variable 

thresholds.  An optimization strategy may be performed that is required to meet certain 

requirements, such as minimum error rates, and could then seek to maximize the 

percentage of Targets correctly identified.  The number of total targets being labeled as 

“Non-declaration” offers one degree of freedom to meet the minimum error rate, by 

allowing some targets to be rejected when confidence is low.  This may also help to 

obtain fewer false negative declarations, where targets that look similar to non-targets are 

“non declared.”  Non-linear optimization may be performed across multiple time periods 

with sensors allowed to acquire multiple looks of a target.  The fusion strategy may allow 

for multiple looks if a “Non-declaration” is made, or may force a minimum number of 

looks to help achieve a required level of confidence prior to making a decision.  For 

example, the basic framework to determine the optimal rejection and ROC thresholds 

settings could be obtained by maximizing the percentage of true positive target 

declarations subject to other error constraints, without the use of explicit cost 

information.  This is similar to using a Neyman-Pearson criterion for ROC curve analysis 

(Varshney, 1997), in which an acceptable false positive probability of error is established, 

and the parameter settings associated with the corresponding maximum percentage of 

true positive declarations are used by the system. 
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3.2.1 Definitions 

Before the formal development of the mathematical programming formulation, it 

is useful to first define some of the key terminology to be used.  The following is a list of 

basic definitions used to be later used in the development of a mathematical 

programming formulation for the optimization of a Combat ID ATR systems with fusion. 

• ATD/R:  Automatic Target Detection and Recognition.  ATD/R includes the task 

of initially detecting a region of interest (ROI) that may potentially have a target of 

interest. 

• ATR:  Automatic Target Recognition without a man-in-the-loop.  Use of an ATR 

system assumes time critical identification is being performed.  At a minimum, an ATR 

system is defined by a fusion rule to combine data, the sensors used to collect data and 

the associated parameters or thresholds used at either the sensor level or at the fusion 

level to make output label declarations. 

• Class:  A desired level of fidelity to group true objects of interest by the 

identification system.  For example, the set of {Friend, Enemy, Neutral} identifies three 

true classes. 

• Clutter: natural objects that may degrade sensor performance including the 

environmental background consisting of foliage, rocks, etc. 

• Confuser: man-made objects with similar feature space representation to in-LIB 

Targets and Friends. 

• Extended operating condition (EOC):  Physical or environment settings 

significantly different from the data used to train an identification system.  For example, 
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radar data collected at a depression angle not within the database used to train a classifier, 

physical modifications of targets to include different configurations of a T-72 Main Battle 

Tank (MBT) not included with training data, or even different levels of environmental 

concealment by foliage, mud, etc., which may alter the data derived from a given sensor. 

• In-LIB (in-Library):  Samples of known target types similar to the representation 

of targets in the data set used to train an ATR identification system. 

• Label:  A desired level of fidelity to specify output decisions of interest by the 

identification system.  For example, the set of {“Hostile,” “Friend,” “no-declaration”} 

identifies a minimum set of potential output labels. 

• NiL (Not in-Library):  Target types significantly different than those used to train 

an ATR system.  These targets of interest may be detected by an ATR system, but are 

sufficiently different from the list of known target types to match against.  These targets 

should be labeled as “NiL,” “Non-declaration” or “unknown” by an ATR system. 

• ROI:  Region of Interest.  The area under investigation for the identification task-

at-hand after a positive cue for a man-made object of interest is communicated to an ATR 

system or made by the ATD/R system. 

• Target Type:  Classification of an object of interest based on physical properties 

at a high level of fidelity for discrimination.  Objects of the same target type will only 

vary slightly by serial number, tail number, etc.  For example, all variations of a T-72 

MBT are considered the same target type as are all variations of an F-15.  As such, 

similar feature vector representations may be used to represent objects of the same target 

type. 
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• ij     = Vector of all decision thresholds associated with traditional ROC (PTP and 

PFP tradeoffs), rejection and other decisions.  These thresholds are unique to a specific 

application ij, where the application includes all thresholds associated with an entire 

fusion system i and the associated individual sensor j, where either i or j may be dropped, 

if the threshold is clearly associated with only the fusion rule or sensor. 

3.2.2 Initial Background Assumptions 

It is assumed for this research that an ATR system under evaluation is developed 

sufficiently to meet certain initial requirements.  First, a Combat ID ATR system is 

assumed to filter naturally occurring background clutter sufficiently to only provide 

positive detection of an ROI if a man-made object is present.  In other words, natural 

clutter ROI’s should not be detected as an ROI under question, although confuser classes 

may be considered.  Further, individual sensors being fused are assumed to be mature 

with reasonable performance accuracy.  As such, fusion of two sensors should yield new 

information for the classification task-at-hand.  Next, from the previous definitions, an 

ATR system is only trained with representations of in-LIB target types.  As depicted in 

Figure 3.1, the ATR system relies on a sequential process with “Non-declarations.”  A 

feature-space vector, posterior probabilities, or an output label associated with each ROI 

may be reused or updated by an ATR system, after an initial “Non-declaration” label.  

The sequential process updates are made after the acquisition of new data.  Further, it is 

assumed, at some level in the ATR system, a continuous value associated with the desired 

label decisions may be assessed to estimate the posterior probabilities of label 

membership prior to making a label assignment.  This may be performed at either an 
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individual sensor level or after fusion of multiple sensors or looks has occurred for some 

fusion methods. 

In order to determine an optimal point on a 3-D ROC surface, or to determine the 

preferred ROC and rejection thresholds, it is first important to assess the different levels 

of error as they impact the mission.  As viewed by the warfighter, Combat ID errors may 

be deemed as Critical or Non-critical errors (Sadowski, 2003).  When identification errors 

do not meet the requirements of being a Critical or Non-critical error, the Combat ID 

errors may be defined as Lesser errors.  The primary similarity between these error labels 

is an associated actionable decision, which may be analyzed through subsequent vertical 

analysis of the ATR system output labels.  Thus, in contrast to evaluating a system’s 

performance using standard ROC measures such as PTP and PFP, the prevalence of each 

true target class will affect the performance of a system, as would be the case when an 

ATR system is fielded operationally.  Brief definitions and examples of the error types 

follow: 

• Critical Errors:  These errors are characterized by an incorrect positive or 

incorrect negative shoot decision.  They have the potential to lead to grave consequences 

and may contribute to undesirable “CNN events.”  Examples include a Friend labeled as 

“Enemy” leading to fratricide, Neutral/Civilians labeled as “Enemy” leading to collateral 

damage, or the lost opportunity to engage the enemy and preempt an enemy strike. 

• Non-Critical Errors:  These errors are characterized by less than optimal use of 

weapons and sorties without the potential of grave consequences.  Examples include 

weapons expended on non-desired targets of the day that do not lead to the loss of lives 
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for non-combatants or coalition forces, a weapon suboptimally matched to a target, or 

expending weapons on decoys, etc.  In some cases an Enemy labeled as “Friend,” without 

the display of imminent hostile intent, may still be correctly labeled by a future CID 

system.  Thus, in some circumstances an incorrect negative shoot decision may be 

deemed as a non-critical error, depending on the situation and associated risk. 

• Lesser Errors:  These errors do not fall into the critical or non-critical definitions 

and are characterized as having little or no-impact to a warfighter decision (e.g. friend 

classified as “clutter” is still a non-shoot decision).  Lesser errors may also include lucky 

classification, such as correctly declaring any NIL target types as an appropriate label, 

even though the ATR system has not been trained to recognize them.  Lesser errors are 

not directly analyzed. 

3.2.3 Analysis of Confusion Matrices with Unknown Class Labels 

 Initial analysis is performed at the Friend, Enemy and Neutral (FEN) level to 

assess the impact of “Non-declaration” labels, and to determine the contributions of the 

different Critical and Non-critical misclassification errors.  From the confusion matrix 

presented next, misclassification of Friends as “Neutral” or vise versa yields minimal 

performance impact with no direct analysis of this Lesser error. 
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True Classes "Enemy" "Friend" “Neutral” “No declaration”
Horizontal 

Totals

Enemy
Enemy labeled 

"Enemy"

Enemy labeled  

"Friend"

Enemy labeled 

“Neutral”

Enemy labeled 

“ND”

Enemy 

evaluated

Friend
Friend labeled 

“Enemy”

Friend labeled 

"Friend"

Friend labeled 

“Neutral”

Friend labeled 

“ND”

Friend 

evaluated

Neutral   
Neutral labeled 

“Enemy”

Neutral labeled 

"Friend"

Neutral labeled 

“Neutral”
N labeled “ND”

Neutral 

evaluated

Vertical 

Totals

"Enemy" 

declared
"Friend" declared

"Neutral" 

declared
"ND" declared

Legend Contribution Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Lesser Error No direct

Classifier “Labels”

 
 

Figure 3.5 Confusion Matrix Error Assessments for FEN Classes 

Further, if Critical errors include both the incorrect labeling of Friends or Neutrals 

as “Enemies,” and the incorrect labeling of Enemies as “Friends” or “Neutrals,” non-

critical errors are not obtained for these given output labels.  Since, misclassification of 

an Enemy may not directly have a potentially grave consequence based on the location 

and threat of the Hostile force, a revised confusion matrix at the FEN level including both 

Critical and Non-critical errors may be developed as shown in Figure 3.6.  Analysis of 

this confusion matrix provides a two-class problem with representations of both a Critical 

error and a Non-critical error obtained when the Enemy targets do not present an 

imminent threat. 
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Classifier “Labels”

True Classes "Enemy" "FN" “No declaration”
Horizontal 

Totals

Enemy
Enemy labeled 

"Enemy"

Enemy labeled  

"FN"

Enemy labeled 

“ND”
Enemy evaluated

Friend or 

Neutral

F or N labeled 

“Enemy”
F or N labeled "FN"

F or N labeled 

“ND”
F or N evaluated

Vertical 

Totals

"Enemy" 

declared
"FN" declared "ND" declared

Legend Contribution Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Totals H or V Analysis  

Figure 3.6 Revised Confusion Matrix Error Assessments for FEN Classes 

If labeling a hostile Enemy as a “Friend or Neutral,” should be included in the 

calculation of critical error, due to an increased threat to friendly forces, then the Enemy 

class must be subdivided to obtain both Critical and Non-critical errors.  This is shown in 

Figure 3.7, where The Enemy class is divided between a desired Target of the Day 

(TOD) and Other Hostile (OH) Targets.  The calculation of Non-critical error now 

requires discrimination between types of enemy targets, where a specific ground target 

such as a high threat Surface-to-Air missile may be the primary Target of the Day, to be 

neutralized by current air tasking order (ATO) sorties. 
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True Classes "TOD" "Other Hostile"
“Friend / 

Neutral”
“No declaration”

Horizontal 

Totals

TOD
TOD labeled 

"TOD"

TOD labeled 

"Other Hostile"

TOD labeled 

“FN”

TOD labeled 

“ND”
TOD evaluated

Other      

Hostile

Other Hostile 

labeled “TOD”

Other Hostile labeled 

"Other Hostile"

Other Hostile 

labeled “FN”

Other Hostile 

labeled “ND”

Other Hostile 

evaluated

Friend or 

Neutral

F or N labeled 

“TOD”

F or N labeled 

"Other Hostile"

F or N labeled 

“FN”

F or N labeled 

“ND”

F or N 

evaluated

Vertical Totals
 "TOD" 

declared

"Other Hostile" 

declared
"FN" declared "ND" declared

Legend Assessment Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Totals H or V Analysis

Classifier “Labels”

 

Figure 3.7 Confusion Matrix Error Assessments for Multiple Hostile Classes 

Similar confusion matrix analysis may be performed, where the labeling of each 

true class as one of the classifier output labels maps to a correct ID, Critical error, Non- 

critical error, or Lesser error.  Consolidated classes may be determined as was done with 

the combination of Friend and Neutral classes.  This occurs for limited cases where the 

incorrect label between true classes is a Lesser error and all other errors are the same for 

the two true classes.  An example of adding a new class is as follows.  If enemy decoys or 

confusers are desired to be added as a fourth true class and fifth ATR classifier output 

label, then assignment of the TOD as “enemy confuser” may result in a Critical error with 

a lost opportunity to engage a high threat Enemy.  The misidentification of an Other 

Hostile as “enemy confuser” would likely be considered a Lesser error, since the current 

sortie would not engage an Other Hostile or enemy Decoy, and would continue with the 

current mission to seek the desired TOD.  Misidentification of a Friend or Neutral as 
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“Decoy / Confuser” may be a Non-critical error, since no substantial impact was made 

with respect to the shoot decision, but potential incorrect intelligence information may be 

shared to generate faulty battlespace awareness.  This battlespace awareness may add risk 

to future missions.  Analysis may continue and yield a confusion matrix as shown in 

Figure 3.8.  Since the errors obtained for Other Hostile and Decoy or Confuser classes 

include symmetric Lesser errors, they are a candidate for class consolidation.  Yet, 

because the errors are not equivalent for “TOD” or “Friend or Neutral” labels, they may 

not be combined. 

True Classes "TOD" "Other Hostile"
“Decoy / 

Confuser”

“Friend / 

Neutral”

“No 

declaration”

TOD
TOD labeled 

"TOD"

TOD labeled 

"Other Hostile"

TOD labeled 

“DC”

TOD labeled 

“FN”

TOD labeled 

“ND”

Other      

Hostile

Other Hostile 

labeled “TOD”

Other Hostile labeled 

"Other Hostile"

Other Hostile 

labeled “DC”

Other Hostile 

labeled “FN”

Other Hostile 

labeled “ND”

Decoy or 

Confuser

D or C labeled 

“TOD”

D or C labeled 

"Other Hostile"

D or C labeled 

“DC”

D or C labeled 

“FN”

D or C labeled 

“ND”

Friend or 

Neutral

F or N labeled 

“TOD”

F or N labeled 

"Other Hostile"

F or N labeled 

“DC”

F or N labeled 

“FN”

F or N labeled 

“ND”

Legend Assessment Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Lesser Error Vertical

Classifier “Labels”

 

Figure 3.8 Confusion Matrix Error Assessments for Four True Classes 

In addition, it is of importance to note, an “Unknown” or “Non-declaration” 

would be the correct label for all NIL objects being assessed.  Further, ATR systems 

should be validated against both in-LIB and NIL samples to examine system robustness 

and the ability to sufficiently make “Non-declarations.” 
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3.3 Development of a Mathematical Programming Formulation 

To develop a mathematical programming framework, the primary goals and 

objectives of an ATR system are first defined.  The primary goal of an ATR system can 

be considered to help neutralize the enemy more efficiently by delivering more “bombs-

on-target.”  Any system helping with Combat ID should also help to minimize friendly-

fire and collateral damage, as may be associated with some critical errors.  Thus, either 

maximizing bombs-on-target or minimizing critical error might be the primary objective 

for an ATR system, depending on the specific situation and rules of engagement.  

Because the warfighter will act on the ATR output labels, optimization of an ATR system 

should be performed to support the warfighter via vertical analysis of the Critical and 

Non-critical errors.  The initial optimization formulation will focus on maximizing bombs 

on target, given acceptable wartime constraints, as shown in Table 3.1.  Initial values for 

the presented goals reflect a general order of magnitude desired and are not official 

requirements.  These values are a reasonable estimate obtained from communication with 

a Combat ID Principal Systems Architect (Sadowski, 2004) at Air Combat Command 

(ACC) and may be considered reasonable assessments by an ATR subject matter expert. 
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Table 3.1 Initial Mathematical Programming Formulation Goals and Objectives 

Goals: Implementation: Objective function impact: 

maximum TP's per time to obtain 

more bombs-on-target Maximize TPR(x) the True 

Positive Rate per time/look 

max TPR(x) 

 attempt to quantify TP vs. time to 

ID relationship 

Other goals accomplished by 

meeting constraints 

Desired order of 

magnitude Impact for constraints: 

Minimize Critical Errors 

 

ECR < ~0.02 

( < a few %) 

limits feasible label declarations 

obtained by different ROC 

thresholds though vertical 

analysis of true class prior 

probabilities and error estimates 

Minimize Non-critical Errors 

 

ENC < ~0.05 

( < a few %) 

secondary concern to critical 

errors, further restricts feasible 

operating space of traditional 

ROC curve via vertical analysis 

Maximize system declarations 

(for in-Lib) targets 
PDec> ~0.70 

allows system to reject difficult 

to identify objects with low 

classification confidence so long 

as a minimum declaration level is 

achieved  

 

3.3.1 Mathematical Program Decision Variables 

To determine the best ATR system through optimization and mathematical 

programming, decision variables must first be defined.  The following is a description of 

key decision variables for the optimization of ATR Combat ID systems.  With multiple 

looks required to gain confidence in a decision prior to engagement, a fusion rule must be 

selected.  Let Fi be an indicator variable associated with the selection of the i
th 

of f total 

fusion rules under consideration.  Then, { }1 2, ,...,
i f

F F F F∈ , where Fi = 1 if the fusion 

rule is selected, and Fi = 0 if the fusion rule is not selected.  Next, assume that s total 

sensors may be selected for use by the ATR system.  Let Sj be an indicator variable 
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associated with the selection of the j
th 

of s total sensors under consideration.  Then, 

{ }1 2, ,...,j sS S S S∈ , where Sj = 1 if sensor j is selected, and Sj = 0 if the sensor is not used.  

The selection of a limited number of sensors may be imposed by different design 

constraints.  Design constraints may also include a minimum number of desired sensors.  

The design of an ATR system should also address obtaining a minimum level of 

confidence, prior to generating output labels.  Fusion of sensor data will be used to 

increase this confidence.  A minimum number of looks may a priori be unknown to 

obtain this confidence for systems under development.  Thus, when evaluating ATR 

systems, where the required minimum number of looks, ML, is unknown, a constraint 

may be added to assess systems using different required minimum-forced looks.  The 

required value of ML may be varied as a categorical variable and may be considered part 

of a fusion rule.  This particular parameter associated with a fusion rule is highlighted, 

because depending on the operational mission and environment, it is assumed different 

levels of confidence may be required and the fusion of multiple looks is a key to 

obtaining this confidence (Dept. of AF, 1998, 1999).  Different costs may be associated 

with the fusion rule and sensor variables, and included as design constraints.  These 

design constraints may include the monetary costs associated with the lifecycle of the 

ATR system and include research and development (R&D), procurement of ATR fusion 

systems and sensors, along with the cost of maintaining the system (Feuchter, 2000).  

Physical cost constraints may also be imposed.  These may include a maximum weight of 

a sensor ensemble, size associated with the sensors, the communication bandwidth 

requirements associated with sensor and fusion rule combination, etc. 
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A final set of decision variables includes all continuously valued thresholds and 

parameters used by a fusion rule or by a sensor.  The use of thresholds may assume an 

available posterior probability estimate in [ ]0,1  can be obtained within the ATR system 

for all desired output labels.  These posterior probability estimates may be obtained at the 

sensor or fusion rule level within an ATR system.  Let ij

decision
θ indicate a threshold 

associated with a specific fusion and sensor application, denoted by ij, along with a 

specific decision.  By convention, let sensor j = 0 denote those thresholds associated at 

the fusion algorithm level.  These thresholds include the ROC threshold for conservative 

to aggressive Target declarations and a rejection threshold to determine a region to make 

“Non-declarations.”  In summary, each threshold may be associated with a unique fusion 

rule, sensor, and decision.   

For n-correct output labels, the inclusion of “Non-declarations” yields n+1 total 

output labels.  Label decisions may be made using n thresholds to obtain n+1 labels.  

Starting with a minimum of three output labels, any “Non-declaration,” “Friend” or 

“Target” labels may be further divided.  For example, it may be of value to subdivide the 

“Non-declarations,” as definitely “NiL,” or “potentially in-LIB,” for those cases when 

separation between two classes is not sufficient to make a decision.  Another example of 

a hierarchical subdivision includes the separation of “Targets” as “Target of the Day” 

(TOD) or “Other Hostile” (OH) output labels.  The threshold 
TOD

θ  may be used to 

determine “TOD’s”, with labels determined as: 

{ } " " if   ,  " " if   TOD TODlabel TOD ppTOD OH ppTODθ θ= ≥ < ,    (3-6) 
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where ppTOD is an appropriate estimated prior probability of membership to “TOD.”  

Using appropriate estimates, a sequential strategy could be used to further divide all 

“Friends” and “Targets” into n total labels.  Each of these
decision

θ thresholds may be varied 

to make a dichotomous decision using estimated posterior probabilities of any two 

classes, or of any two consolidated classes.  In addition to these thresholds, other 

parameters may be included in the formulation.  For instance, some continuous valued 

threshold associated with identifying out-of-library objects could be varied to trade-off 

performance for the initial detection of an in-library target being in the Region of Interest 

(ROI).  Or, as used by Fumera and Roli (2000), a different rejection threshold may be 

associated with each output label. 

3.4 Mixed Variable Programming (MVP) Formulation 

To perform non-linear optimization of the fusion systems using mixed variable 

programming, decision variables must be further defined.  Let x define a vector of all the 

decision variables, which will be partitioned into continuous and discrete parts, x
c
 and x

d
, 

respectively as defined by Audet and Dennis (2000) for their pattern search algorithm 

used to solve mixed variable programs.  Next, let n
c
 and n

d
 denote the maximum 

dimensionality of continuous and discrete variables.  Since the dimensionality of (x
c
, x

d
) 

may vary within a given formulation, let x
c
 ∈ 

c
nℜ and x

d
 ∈ 

d
nZ

  be the maximum 

dimensionality of continuous and discrete variables.  By convention (Abramson, 2002), 

simply ignore unused variables where cX
 ⊆

c
nℜ  and dX ⊆

d
nZ .  Thus, the decision 

variable space may be defined as c dX X X= × .  For the continuous threshold space, let 
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cX  be equivalent to the threshold-space, Θ .  The maximum dimensionality of Θ  is then 

n
c
.  The discrete decision space is defined as dX

 
 and includes the available fusion-space, 

F, ×  sensor-space, S.  If only optimizing across fusion models and sensors, X
d
 = F×S.  

Further categorical variables may be included.  One example is the predetermined 

number of minimum looks required to obtain confidence in a target label prior to making 

a final decision.  In this case the categorical variable decision space is simply expanded to 

include F×S×ML.  In this specific example, ML includes all potential levels of 

minimum looks by an ATR system.  Equivalently, the number of minimum looks could 

be subsumed by different fusion algorithms under consideration, where a different 

number of ML would be considered a different fusion algorithm.  Thus, for these decision 

variables, the best solution of x ∈ 
d

nZ ×
c

nℜ ; is obtained by optimization across all 

feasible F×S×ML× Θ . 

The primary goal of the mixed variable programming is the determination of the 

optimal fusion rule, with the optimal selection of sensors, forced looks and thresholds.  

This goal is obtained through the optimization of a desired objective function for the 

ATR system, such as maximizing the probability of True Positive Target declarations 

across time, via an estimated True Positive Rate ( ˆTPR ).  A secondary assessment of a 

given ATR system, as defined by the categorical combination of fusion rule, sensor, and 

minimum looks, may be to identify the range of feasible operating thresholds and other 

internal system variables.  The assessment of feasibility across decision variables may 

help show system robustness across assumptions of priors, EOC’s and NIL targets.  A 
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mixed variable formulation to assess competing ATR systems involving the different 

categorical variables as described above is then defined as follows: 

Objective Function: 

ˆ ( )ˆmax   ( )
ˆ ( ( ))

TP

x X
TP

P x
TPR x

E time x∈
=   maximize TPR(x), the True Positive Rate   (3-7) 

Subject to: 

Initial Warfighter Operational Constraints: 

ˆ ( )
CR

E x  < Π1 limit incorrect fire decisions (vertical analysis) 

ˆ ( )
NC

E x  < Π2 limit lower impact incorrect decisions (vertical analysis) 

ˆ ( )RejP x  < Π3 limit Non-declarations (horizontal analysis) 

Fusion Rule constraint: 

1

1
f

i

i

F
=

=∑  limit selection of a single Fusion Rule 

where 




=
otherwise  0

used RuleFusion  th  if  1 i
Fi  

Sensor Selection constraints: 

1

s

j

j

S s
=

≤∑  limit selection of Sensors selected to those available 

1

1
s

j

j

S
=

≥∑  ensure selection of at least 1 Sensor 

where 




=
otherwise  0

selected isSensor  th  if  1 j
S j  
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Minimum Look Constraint: 

minML Looks≥  require minimum looks prior to label declaration 

Monetary Budget Constraints: 

R&D Budget Constraint: 

& & &

1 1

ji

f s
SF

R D i R D j R D

i j

C F C S B
= =

+ ≤∑ ∑  limit R&D costs 

where,  &
iF

R D
C is the R&D cost associated with fusion system i 

&
jS

R D
C is the R&D cost associated with sensor j 

Procurement Cost Budget Constraint: 

1 1

ji

f s
SF

PC i PC j PC

i j

C F C S B
= =

+ ≤∑ ∑   limit Procurement Costs 

where,  iF

PC
C is the procurement cost associated with fusion system i 

jS

PC
C is the procurement cost associated with sensor j 

 

Operation and Maintenance (O&M) Budget Constraint: 

& & &

1 1

ji

f s
SF

O M i O M j O M

i j

C F C S B
= =

+ ≤∑ ∑  limit O&M costs 

where,  &
iF

O M
C is the procurement cost associated with fusion system i 

&
jS

O M
C is the procurement cost associated with sensor j 
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Physical System Constraints: 

Physical Weight Constraint: 

1 1

ji

f s
SF

W i W j W

i j

C F C S B
= =

+ ≤∑ ∑  limit physical weight of ATR system 

where,  iF

W
C is the weight associated with fusion system i 

jS

W
C is the weight associated with sensor j 

Physical Space/Size Constraint: 

1 1

ji

f s
SF

SZ i SZ j SZ

i j

C F C S B
= =

+ ≤∑ ∑  limit size of ATR system 

where,  iF

SZ
C is the size associated with fusion system i 

jS

SZ
C is the size associated with sensor j 

Communication Bandwidth Constraint: 

1 1

i j

f s
F S

BW i j BW

i j

C F S B
= =

≤∑∑   limit communication bandwidth 

where,  i jF S

BW
C is the bandwidth requirement for fusion system i using sensor j 

Threshold Constraints:   

For the top-level decision, depicted in Figure 3.3 by “Target,” “Friend,” or “Non-

declaration” decisions, specific constraints for these thresholds may be written as: 

 0   ,ij

low
i jθ ≥ ∀   satisfy lower threshold requirement 

    ,ij ij

low up i jθ θ≤ ∀    satisfy ordinal requirement  

1    ,ij

up i jθ ≤ ∀    satisfy upper threshold requirement 
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Basic constraints for any pair-wise decision using posterior probability estimates of two 

desired labels or consolidated groups of labels may be included as: 

0   ,ij

decision
i jθ ≥ ∀   satisfy lower threshold requirement 

1    ,ij

decision
i jθ ≤ ∀   satisfy upper threshold requirement 

Other constraints may be developed specific to each continuous parameter.  For example, 

it may be desired to add threshold constraints associated with time as either a continuous 

or discrete value.  Variable thresholds across time may be useful to obtain a more 

efficient ATR system.  For example, a minimum of n-looks or sensor duration greater 

than a predefined minimum number of seconds may usually be required before an ATR 

system can provide a reasonable label assessment.  The rejection threshold associated 

with these looks should be large enough to promote additional looks to acquire new data 

when the identification confidence is low.  If a target can be labeled with high confidence 

after 1 or 2 looks, the ATR system may operate more efficiently if this label is declared, 

and the ATR system is now available to assess the next ROI.  Subsequent label updates 

may be obtained with a smaller rejection window, when a limited amount of new sensor 

information, with diminishing returns for the improvement of classification accuracy, is 

obtained by additional sensor looks.  Specific constraints would then need to be 

developed across discrete or continuous time periods for each ( )ij

decision
tθ where new 

constraints may force a minimum rejection window size.  The decision space would now 

include optimization across all feasible F×S×ML× Θ ×T, where T is the associated 

feasible finite time-domain. 
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3.5 Variations to Initial MVP ATR System Optimization  

An objective function inclusive of temporal system performance has been 

proposed, along with desired operational constraints followed by an initial formulation of 

potential ATR system design constraints.  The selection of this objective function is 

flexible and may be replaced to optimize one of the warfighter operational constraints, 

such as minimizing the Critical error.  As stated by Brown (2004), when performing 

optimization for military applications, “expect any constraint to become an objective, and 

vice versa.”  This may be particularly true in the case of using an ATR system for 

Combat ID in a politically sensitive situation, where minimizing collateral damage may 

be more important than maximizing bombs-on-target.  This change in the objective 

function would require some measure of TP or TPR to be included as a constraint, to 

ensure an acceptable number of targets are declared.  In addition, constraints may be 

modified, added or deleted depending on situation specific objectives.  For example, if 

research is desired to design an optimal ATR system with respect to the time required to 

make an initial detection of an ROI containing a man-made object of interest, the 

formulation may focus on different internal ATR system thresholds.  These thresholds 

may be used to determine if sufficient evidence is obtained from an initial surveillance 

look of an area to warrant an increase in allocated sensor time for the area or to cue 

additional ISR assets as part of the optimization across a netcentric system of multiple 

fused assets. 
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3.6 Limitations and Concerns for ATR System Optimization  

One limitation of the optimization framework presented within this chapter, is that 

it focuses on the optimization of one objective function, while simply meeting the 

requirements of the levied constraints.  The maximization of TPR was presented as a 

useful objective function for obtaining more “bombs-on-target,” but it was noted that in 

some circumstances other objective functions, such as minimizing the Critical Error may 

be preferred.  Analysis across two or more highly desired objectives may be undertaken 

to understand the trade-offs between competing objectives.  Thus, a better understanding 

of the relationship between TPR and Critical Error for an ATR system may be sought.  

Assessment of a pareto-optimal boundary across these two performance estimates may be 

insightful to further evaluate a system if desired Critical error constrain values are not 

known with certainty.  If constraint levels can not be determined, goal programming or 

multi-objective decision making may also be helpful to understand such tradeoffs.  These 

analyses may be used to compare two competing systems to see if one system dominates 

the other, across different regions of the measures of performance.  Alternatively, these 

analyses may assist decision makers, who have a broader knowledge of the requirements 

of an ATR system, by providing insight and helping them to determine specific values for 

the operational constraints of an ATR system.   

A potential modification, to the mathematical formulation presented, may seek to 

use constraints more similar to the objective function.  Since the proposed objective 

function is an estimated rate across time, having some operational constraints inclusive of 

time may also be of value.  Yet, this is a first step beyond traditional static time ROC 
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analysis, and as such it is desirable to limit the modifications of currently accepted 

performance measures.  Standard reported measures of an ATR system performance 

include PTP and PFP (Alsing, 2000; Bassham, 2002; Ross et al., 1999; Ross and Mossing 

1999).  These measures of performance are currently accepted within the ATR 

community and should be reported along with the newly developed optimal TP Rate.  

Further steps away from the current measures of performance should only be made after 

an initial acceptance of the proposed methodology within this chapter is received as a 

means to gain further insight of ATR performance. 

In addition, since the vertical analysis of the error constraints is highly dependent 

on the prior probabilities or prevalence of class types, analysis should be performed to 

evaluate competing systems of the preferred system parameters across a range of priors.  

Sensitivity analysis may be useful to perform this task.  This may be accomplished by 

assessing an ATR system across a range of priors to determine its performance 

limitations given different class prevalence.  These estimates may be evaluated by 

analyzing the performance associated with each desired class prior, averaging 

performance across chosen priors, or weighting the performance across a range of 

foreseeable prior probabilities using a parametric distribution. 

Other concerns, for the use of this mathematical programming assessment of ATR 

include the determination of a preferred system with a desired level of confidence.  It 

should be noted, that the objective function as well as the operational constraint values 

are all estimated measures of system performance and may be modeled as random 

variables.  These random variables are typically estimated using different data sets.  If a 
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stochastic process is used to obtain a fusion model, as may be required for training certain 

fusion algorithms, then additional variability may be associated with each measure of 

performance.  While measures of performance associated with a dichotomous decision 

may be modeled as a binomial random variable, no standard parametric distributions may 

be applicable to an objective function that incorporates time.  As noted by Catlin et al. 

(1999) ATR test data is expensive.  Thus, limited data sets may be available to obtain 

accurate estimates and confidence bounds for the performance of these systems.  

Research by Ross et al. (1997) suggests assessments may vary considerably across data 

sets which are associated with different extended operating conditions (EOC).  Thus, 

confidence intervals are desired, yet may be difficult to obtain without evaluation of the 

ATR systems across numerous expensive data sets. 

3.7 Summary of MVP Optimization 

Overall, the use of mathematical optimization to determine a best ATR system is 

presented.  A best ATR system is defined by a preferred fusion rule, sensor ensemble and 

the associated thresholds.  The preferred ATR system is obtained without use of explicit 

misclassification costs.  An objective function that incorporates the time associated with 

making declarations is incorporated.  Constraints are outlined to account for the 

warfighter preferences and are flexible, where new ones may be added or current ones 

may be modified or deleted.  A flexible objective function may be changed to fit different 

operational goals.  The explicit use of “no-declaration” labels is highlighted as a top 

decision priority by the ATR system.  The results obtained from assessing different ATR 
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systems using this formulation should offer some insights as to the operational utility of a 

proposed ATR system without assessment by modeling and simulation (M&S) methods.  

The use of combat models to evaluate competing systems should still be accomplished, 

from which the impact of the ATR’s performance may be evaluated for measures of 

effectiveness at the mission or campaign level (Feuchter, 2000; Bassham, 2002).  The 

optimization method presented within this chapter may help limit the number of ATR 

systems to be compared, across specific missions or scenarios using M&S, where the 

ATR parameters are just one of many systems to include as input for a combat model.  

The overall utility of this optimization framework may be viewed as a new means to 

accomplish two different objectives.  First, ATR system performance can be tuned 

toward a known operating condition.  Second, comparisons across competing systems 

can be made at a design level.  The comparison of ATR systems using various fusion 

strategies may then be performed through a range of test data. 

The following two chapters present a variety of ATR system experiments using 

the MVP optimization presented within this chapter.  Chapter 4 presents experiments 

using generated data representative of two true output labels plus the option for rejection.  

Chapter 5 presents a comprehensive experiment, with three desired ATR system output 

labels.  This experiment includes individual fusion algorithm optimization with 

subsequent comparison of the fusion systems, using collected radar data of ground 

targets.  Both chapters use the warfighter operational constraints and threshold 

constraints.  The thresholds are held constant through time and no examples of budgetary 

monetary or physical design constraints are illustrated.  For one of the initial experiments, 
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investigation was performed using the proposed mathematical framework to assess the 

impact of different data correlations of known parametric design.  For this experiment, 

only a single fusion algorithm was used for a set number of sensors.  Thus, only the 

decision thresholds were included as decision variables and no categorical variables are 

presented in the first application of this optimization formulation. 
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IV. Mathematical Optimization for the Fusion of Generated 

Data 

This chapter summarizes two primary research efforts undertaken to demonstrate 

the utility of the mathematical optimization framework and gain insight for the fusion of 

data with synthetically generated features with various degrees of correlation.  This 

chapter contains three primary sections, the development of the mathematical 

optimization and constraints for a two-class problem with “Non-declarations,” 

application to generated Gaussian data for multiple sensors and multiple looks, and to 

generated temporal signatures representing data patterns observed from imaging two-

satellite classes.  More details of the Gaussian data fusion experiments can be found in a 

SPIE conference proceeding (Laine and Bauer, 2004a).  Specifics for the second 

experiment involving the fusion of generated temporal signatures via an Elman RNN can 

be found in three references.  Feature selection using an RNN is documented in an IEEE 

International Joint Conference on Neural Networks ( IJCNN) proceeding, (Laine and 

Bauer, 2003), application of the optimization framework is documented in an Artificial 

Neural Networks in Engineering (ANNIE) proceeding ( Laine and Bauer, 2004b), while a 

more thorough discussion for use of an RNN and fusion is found in an invited journal 

article submitted to Military Operations Research (Laine and Bauer, 2005). 

4.1 Introduction to 2-Class Data Fusion Experiments  

Many classification problems can be modeled at the top-level using 2-classes, 

where either the desired class is identified or not.  For example, an ATR system may 
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declare an unknown object as “Target” or “Non-target,” where “Target” includes enemy 

assets and “Non-Target” may include clutter, neutral or friendly forces.  Yet, before a 

target is declared and engaged, the USAF requires a minimum level of confidence (DAF, 

1998, 2000).  Consequently, an ATR system forcing two decision labels is inadequate.  A 

minimum of three output classes, including “Target,” “Non-target” and “Non-

declaration” is required to account for those cases when the confidence is not met.  

Intelligence fusion is identified as a guiding principle to obtain increased confidence for 

combat identification (Dept. of AF, 2000). 

A sample 2-class confusion matrix with a “Non-declaration” option is presented 

as Figure 4.1, with a row for each true class and a column for each model label.  As 

previously mentioned, for most applications, engineers perform “horizontal” confusion 

matrix analysis, independent of class membership prior probabilities.  In contrast, 

warfighters are predominately concerned with ATR output labels (Sadowski, 2004).  

“Vertical” analysis of the confusion matrix yields error estimates from the number of 

class declarations.  These estimated values may be obtained from the confusion matrix 

frequency counts associated with the tested prior probabilities of classes.  Equivalently, 

the error rates may be calculated as conditional probabilities using Bayes rule with other 

prior probabilities of class membership (denoted PT and PF).   
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Classifier “Labels”

True Classes "Target" "Friend" “No declaration”
Horizontal 

Totals

Target
Target labeled 

"Enemy"

Target labeled  

"Friend"

Target labeled 

“Unknown”
Target evaluated

Friend
Friend labeled 

“Target”

Friend labeled 

"Friend"

Friend labeled 

“Unknown”
Friend evaluated

Vertical 

Totals

"Target" 

declared
"Friend" declared

"Unknown" 

declared

Legend Contribution Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Totals H or V Analysis   

Figure 4.1 Confusion Matrix with Rejection and Error Contributions 

With only two classes, the Critical and Non-critical errors will be defined as follows: 

• Probability of a Critical Error: the probability a “Target” declaration is actually a 

Friend (i.e. those cases which may result in friendly-fire), 

( )
ˆnumber of Friends declared as "Target"ˆ

ˆ ˆtotal numer of "Target" declarations

F FP
CR

F FP T TP

P P
P E

P P P P
= =

+
 , (4-2) 

• Probability of a Non-Critical Error: the probability a “Friend” declaration is 

actually an enemy Target (i.e. lost opportunities to engage the enemy), 

( )
ˆnumber of Targets declared as "Friend"ˆ

ˆ ˆtotal number of "Friend" declarations

T FN
NC

F TN T FN

P P
P E

P P P P
= =

+
 ,  (4-3) 

and the probabilities of False Negatives and True Negatives are ˆ ˆ ˆ( ) 1 ( )
FN FN TP

P P P= = −  

and ˆ ˆ ˆ( ) 1 ( )
TN TN FP

P P P= = − .  Assuming all objects belong to one of the true classes, the 

probability of declaration, ˆ
Dec

P , can be used as a performance measure of the “Non-
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declaration” labels.  The probability of rejecting a sample is related as: ˆ ˆ1REJ DecP P= − .  The 

probability of a declaration is then: 

• Probability of a Declaration:  the probability of either class being declared “ND”  

# of objects declared as "ND"ˆ ˆ ˆ
total objects evaluated 

Dec T UT F UF
P P P P P= = + ,  (4-4) 

where ˆ ˆ ˆ ˆ(" " | ) and (" " | )
UT UF

P P ND T P P ND F= = .  Table 4.1 summarizes the probability 

estimates associated with horizontal analysis of each row, and the vertical analysis 

metrics in terms of the confusion matrix cells, CM(row, col), from Figure 4.1.  With all 

probabilities estimated from test data, the “hat” has been dropped, and ˆP P=  will be 

assumed for the remainder of this chapter. 

Table 4.1 Typical Performance Measures Associated with the Confusion Matrix Cells, 

CM(row,col) from Figure 4.1 

           Classifier “Labels” 
  

“Target” | declaration “Friend” | declaration “Non-declaration” 

T
ar

g
et

 

(1 1)

(1 1) (1 2)
TP

CM ,
P

CM , CM ,
=

+
 

(1 2)

(1,1) (1, 2)

1

FN

FN TP

CM ,
P

CM CM

P P

=
+

= −
 

(1 3)

(1 4)
UT

CM ,
P

CM ,
=  

T
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e 
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F
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d
 (2 1)

(2 1) (2, 2)
FP

CM ,
P

CM , CM
=

+
 

(2 2)

(2,1) (2, 2)

1

TN

TN FP

CM ,
P

CM CM

P P

=
+

= −
 

(2 3)

(2 4)
UF

CM ,
P

CM ,
=  
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F FP
CR

F FP T TP

P P
E

P P P P
=

+
 T FN

NC

F TN T FN

P P
E

P P P P
=

+
 

REJ T UT F UF
P P P P P= +

1Dec REJP P= −  

 

 Optimization may be performed across two thresholds to obtain a desirable 

objective, such as a maximum true positive declaration rate, ( )TPR , or in the case 
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without temporal assessment, ( )TPP , subject to meeting other constraints identified by 

the decision maker.  With limited categorical variables in this chapter, the optimization 

framework can be presented across just the continuous valued thresholds.  A basic 

framework to determine optimal ROC and declaration thresholds can be obtained by 

solving the following mathematical program: 

( )
max  ( )

( )

TP

timeDec

P
TPR

µ∈Θ
=θ        maximize TPP per mean time to declare (4-1) 

or, max  ( )TPP   to maximize the probability of true positive declarations without time  

s.t.  1( )CRE < Π  limit potential friendly fire 

2( )NCE < Π  limit lost opportunities to engage the enemy 

3( )DecP > Π  limit Non-declarations 

 

Each iΠ  is set at a tolerable limit < 1.  The expected number of looks is 

( ) ( ( ))timeDec E Lµ = , and 2{ : ( , ) 0 1}T

low up low upθ θ θ θ= = ∈ℜ ∋ ≤ ≤ ≤ , is as shown in 

Figure 3.3.  Given a data set, the associated function is estimated by varying the 

thresholds, , across all the desired ranges to determine the associated performance 

values.  The performance measures are then analyzed to determine which settings yield 

feasible design points and the optimal point.  To aid in visual analysis, connecting the 

estimated values of ,   & 
TP FP Dec

P P P  will generate a 3-D ROC surface, as introduced in 

Chapter 3.  For these preliminary two-class investigations,  includes the width of the 

rejection window along with a ROC threshold to facilitate conservative to aggressive 

settings.  As presented in Chapter 3, two-class ATR outputs, ppT & ppF, will be used as 

estimated posterior probabilities for Target and Friend classes, with: 
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1ppT ppF+ = .     (4-5) 

Since ppT ppF+  sum to one, decisions may be made based on just ppT:  

{ } " "  if   ,  " "  if   ,  " "  if    up low low uplabel T ppT F ppT ND ppTθ θ θ θ= > < ≤ ≤  (4-6) 

where upθ and lowθ  are upper and lower thresholds, functions of the ROC, ROCθ , and 

rejection threshold, REJθ : 

 low ROCθ θ=     and  up ROC REJθ θ θ= +    (4-7) 

A 3-D ROC surface may then be generated to help visualize the different declaration 

trade-offs as presented in Chapter 3.  Optimization of the thresholds is then performed to 

obtain the maximum TPR or maximum TPP , subject to other constraints identified by a 

decision maker.  The framework used within this chapter is a subset of that presented in 

Chapter 3, with optimization focused primarily on these two thresholds.  Limited 

categorical decision variables are incorporated to determine a preferred fusion method or 

ensemble of sensors.  One categorical variable assessment includes use of three different 

methods of generating posterior probabilities from temporal looks and is presented in 

Section 4.3.4.  Each of the three posterior probability assessments may be representative 

of a fusion rule.  The next categorical variable under investigation is the determination of 

a preferred set of sensor data.  In Section 4.4, each fusion rule is defined by the set of 

input features used by an RNN model with optimization performed across the two 

continuous thresholds to compare the two ATR systems. 
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4.2 Gaussian Data Generation for Classifier and Fusion Testing  

The generation of data with known correlation is desired to determine the effects 

various correlation levels may have on different sensor fusion techniques.  A desirable 

fusion technique will yield optimal target classification in terms of maximum true 

positive target identification (ID) and minimum false positive target ID, regardless of the 

correlation levels between input data.  One particular research topic of interest is how 

correlated data affects the classification results for fusion algorithms that may or may not 

assume independent data is being fused.  This may provide insight for the design of 

fusion systems forced to operate in an environment with various degrees of correlated 

input data.  One approach to assessing the impact of correlated data is to design an 

experiment with generated data with known levels of correlation.  The primary or first-

order levels of correlation to control are the correlation across any two features stationary 

in time and the autocorrelation within a feature observed across the first time lag.  A first 

step toward the exploration of the effects of correlation across features in a synthetic 

classifier fusion-testing environment was performed by Storm (2003) in which three 

classifier fusion techniques were explored.  Further investigations using a synthetic 

classifier fusion-testing environment were performed by Clemans (2004) and Leap 

(2004).  In the research performed by Clemans (2004), effects of correlation across 

features were analyzed across three sensor/classifier algorithms using an optimization 

framework to compare different fusion methods.  The research performed by Leap (2004) 

assessed the impact of sample size, across feature correlation, and the within or temporal 

feature correlation.  Each research effort used multivariate Gaussian data generated using 

a process similar to that described in Section 4.2.2 to follow. 



 

126 

 Multivariate Gaussian data has been used as a synthetic classifier fusion-testing 

environment for the assessment of ATR systems.  Such assessment may be desired across 

multiple looks of each potential Target or Non-Target.  In addition to being able to easily 

model known correlation levels with generated multidimensional Gaussian data, use of a 

Gaussian distribution is well supported to represent a “final” ATR score which may be 

derived from one or more sensors to include radar or spectral data.  First, during a feature 

extraction process, signal processing typically includes a linear transformation with 

subsequent linear operations to refine features.  Specifically, for real time ATR, feature 

extraction must be performed quickly while vast amounts of radar or spectral data are 

being collected and processed.  Thus, linear operators are prevalent for ATR feature 

generation as discussed by Cooke et al. (2000), Meyer (2003), Nasr (2003), Schroeder 

(2002) and Suvorova & Schroeder (2002).  Further, if data of high dimensionality is 

mapped to a much lower dimension through a linear transformation such as principal 

component analysis (PCA) or singular value decomposition (SVD), the resulting low 

dimensional data will tend to be normally distributed with probability approaching one 

(Diaconis and Freedman, 1984; Hall and Li, 1993).  If an appropriate non-Gaussian 

distribution of the data is known based on governing physical properties or observations, 

a Gaussian representation may still be appropriate since a Power Transform (PT)
 

(Fukunaga, 1990; Bhatnagar et al., 1998) can be used to convert many distributions close 

to normal using z = x
v
, with 0 < v < 1.  For example, an application of a PT to high range 

radar (HRR) data has been shown to result in Gaussian distributed variables (Bhatnagar 

et al., 1998).   
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Use of multivariate Gaussian data may also be justified from an information 

theoretic point of view.  For a measured mean and covariance of sample data set, the 

Gaussian distribution provides for a parametric modeling with the maximum entropy 

(Duda et al., 2001), where entropy is originally defined within (Shannon, 1948).  Thus, 

use of a Gaussian distribution should be a conservative estimate of the information 

associated with a given generated data feature.  Finally, by using a multivariate Gaussian 

representation of sensor data, designed correlation structures both across sensors and 

within a sensor through time can be quickly generated to test fusion algorithms for 

numerous designed levels.  Overall, experiments performed using generated 

multidimensional Gaussian data appears reasonable.   

4.2.1 Generation of Univariate Gaussian Data with Autocorrelation 

A univariate stochastic process can be represented as: 

tptpttt zzzz εφφφ ++= −−−
~~~~

2211 …  .    (4-8) 

This describes an autoregressive (AR) process of order p where the model 

coefficients iφ can be estimated from the data (Box and Jenkins, 1976: Ch 3), tε  is the 

associated error of the AR process and is modeled as white noise at time t, and tz~  is the 

deviation from the expected value µ  such that µ−= tt zz~ .  The random variable zt is an 

observation from random series zk represented by a univariate normal or Gaussian 

distribution with population or class mean kµ , standard deviation kσ  and probability 

density function (pdf), 
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where f(z) is the probability density function of a sample observation from class k.  While 

z is approximated by a Gaussian distribution, the observations are not independent, with 

each zt represented by a linear combination of previous observations and a white noise 

component.  The white noise series tε is also assumed to be Gaussian, with 0=εµ  and 

variance 2

εσ , and is independent across time and is denoted i.i.d. ~norm(0, 2

εσ ). 

To generate a series of autocorrelated observations with a desired mean and 

variance, a first-order autoregressive process AR(1) can be used, where eq. 4-8 can be 

written as a recursive relation such that each observation is a function of the white noise: 

…+++=+= −−− 2

2

11111
~~

tttttt zz εφεφεεφ  ,   (4-10) 

where -1 < φ1  < 1 for the process to be stationary with a constant mean and variance, and 

the influence of prior observations will decay across time.  The autocorrelation between 

two consecutive observations can be estimated as 

)1()( 1 −= kk ρφρ  for k > 0.            (4-11)  

With (0)ρ = 1, eq. 4-11 can be used recursively to obtain the autocorrelation at any 

desired time lag k and is calculated as 

kk 1)( φρ =  for k ≥ 0.            (4-12)  

Eq. 4-12 produces an exponential decay toward zero when φ1 is positive and oscillating 

decay when φ1 is negative.  In addition, the maximum likelihood estimate (MLE) of φ1 = 

(1)ρ and the variance of the AR(1) process is (Box and Jenkins, 1976, p. 58), 



 

129 

2

2

1

2

2

)1(1)1(1 ρ
σ

φρ
σσ εε

−
=

−
=z  .    (4-13) 

Thus, a stationary Gaussian univariate process zt with t = T new observations, starting 

value z0, mean µz, variance 2

zσ , and lag 1 autocorrelation ρρ =)1( , can be generated as: 

1. Generate E1, E2,…, ET from a standard normal distribution, i.i.d. ~norm(0,1) 

2. Let )1( 22 ρσε −= ztt E ,  (Solving eq. 4-13 for 2

εσ yields )1( 222 ρσσ ε −= z ) 

3. Starting with t = 1, let tztzt zz εµρµ +−+= − )( 1  

4. Repeat steps 2 and 3 until t = T 

 

Note, if 2

zσ = 1.0, then a white noise series with variance of 22 1 ρσ ε −= will generate a 

stationary series with a constant variance of 1.0, and if µ = 0 the series can be post-

processed using 'zz kk σµ +=  where 'z  represents standardized data, µk is the desired 

mean and σ k is the desired standard deviation for population k.   

4.2.2 Generation of Multivariate Gaussian Data with given Correlation 

The multivariate vector autoregressive, VAR(p), model is an extension of the 

univariate AR(p) model, where a p
th

 order VAR(p) model is defined as (Lütkepohl, 

1993:9), 

tptptt zAzAz ++++= −− …11  ,    (4-14) 

where zt is an n-dimensional random variate, where each zi at a given time t represents a 

feature observed in time and any observation T

nzzz ),...,,( 21=z has expected values 

T

n ),...,,( 21 µµµ= and standard deviations T

n ),...,,( 21 σσσ= where T)(⋅ denotes the 

transpose and z, , and are column vectors.  Each Ai  is a fixed n x n matrix of 

coefficients,  is the n x n covariance matrix, and t is a n-dimensional column vector of 



 

130 

stationary white noise, representing the part of zt not linearly dependent on past 

observations.  Observation z is now modeled by a multivariate Gaussian distribution with 

pdf, 

( ) ( )1

1/ 2/ 2

1 1
( ) exp

22

T

k k kn

k

f
π

− = − − −  
z z z ,   (4-15) 

where f(z) is the probability z was a sample taken from population class k.  After 

dropping the class indicator for a given population, ρij is defined to be the correlation 

across features zi and zj, R is defined to be the matrix of correlation coefficients, and the 

covariance matrix can be expressed as TR= as shown below. 
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 (4-16) 

For a complete discussion of VAR(p) and vector autoregressive moving average 

VARMA(p) processes a good source is (Lütkepohl, 1993). 

This section will now describe use of a VAR(1) model to generate multivariate 

data with a desired mean, correlation, and covariance structure.  A first order VAR(1) 

model derived from eq. 4-14 is defined as: 

ttt zAz ++= −11      (4-17) 

The autocovariance matrix )(t is a symmetric n x n matrix of correlations across 

features i and j measured between t time lags.  If t = 0, then =)0( .  If the features are 

standardized with σσσσ = 1, then R==)0( .  The Yule-Walker equations (Lütkepohl, 
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1993:21) can be used to compute )(t  recursively if A1 and are known, and are 

presented as equations 4-18 and 4-19, 

εε AA +=+−= )'1()1()0( 11   for t = 0    (4-18) 

and  )1()( 1 −= tt A    for t > 0.    (4-19) 

The multivariate Gaussian data observations may be standardized to be unitless with µi = 

0 and σi = 1 ∀ i = 1,2…n of the multivariate features via, 

i

ii

i

z
z

σ
µ−

='  or in matrix notation 2/1)(' −−= Dzz T ,  (4-20) 

where D is the n x n matrix of feature variances, 
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and may then be transformed back to the desired units using, 

iiii zz 'σµ += or in matrix notion 2/1'Dzz += .   (4-21) 

It is then sufficient to generate a standardized VAR(1) series with the desired level of 

autocorrelation and across feature correlation structure for each desired population or 

target class.  This standardized data may then be transformed to obtain the desired feature 

means and covariance structure using (4-21).  Using standardized data, equation (4-17) is 

reduced to ttt zAz += −11  and R==)0( . The lag 1 autocovariance matrix )1( = 

R(1) is a matrix of correlation values across 1 time step and includes each feature’s 

autocorrelation on the main diagonal.  To generate data with desired correlation R and 

lag 1 autocorrelation and crosscorrelation R(1), starting with eq. 4-18 1A  is obtained as 
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1)0()1( −RR .  The corresponding covariance of the VAR series zt is εAA += T

zz 11 .  

For the VAR process to be feasible, T

zz 11 AA−=ε  must result in a positive 

semidefinite matrix for the white noise process to have a feasible constant variance 

structure (Duda et al., 2001: 618). 

With a defined positive definite covariance matrix ε , Cholesky decomposition 

can be used to generate random vectors from a Gaussian distribution with mean µµµµ and 

covariance .  A single observation can be generated starting with a vector of n i.i.d. 

~norm(0,1) RVs, such that Et  = (E1, E2,…, En)
T
 with associated µµµµE = 0 and E = I, the 

identity matrix.  Since covariance and correlation matrices are symmetric and positive 

definite they can be factored as (Strang, 1988: 195), 

TTT CCLDLDLDL === ))(( 2/12/1 .   (4-22) 

Matrix C is known as the Cholesky decomposition or matrix “square root” of , L is a 

lower triangular matrix and D is a diagonal matrix.  Starting with vector E as described 

above, a random vector z with mean  and covariance structure , can be generated as 

(Law and Kelton, 2000: 480),  

CEz += ,      (4-23) 

with C being the lower triangular Cholesky decomposition of the desired white noise 

covariance , where T T T

ε = = =C C CIC CC . 

The steps to generate 1 observation with a desired within feature correlation 

across 1 time period for M observations of n-dimensional multivariate data are 

summarized below.  The process may be repeated for k = 1…K times to represent any 

number of classes with different population means, covariance and correlation structures: 
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1. Set the desired population mean µµµµk, variances k  and correlations: R(0)k and 

R(1)k. 

2. Generate M standardized random starting observations using CEz =m
~ , for m = 

1…M with CC
T
= R(0)k and E = (E1, E2,…, En)

T
 where Ei is i.i.d. ~norm(0,1). 

3. Using equation 4-17 let
1

1 )0()1(
−= kRRA  

4. For each of M observations generate Et = (E1, E2,…, En)
T
 where Ei is i.i.d. 

~norm(0,1) 

5. Let tkt EC= to induce the desired correlation structure in the white noise tε , 

where T

kk

T

kk 11 )0()0( ARARCC −== ε  

6. For each observation let ttt zAz +=+
~~

11 to obtain a new observation across 1 time 

step with standardized unit variance while maintaining the desired correlation 

structure. 

7. For each observation transform the standardized data using 
2/1~

ktkt Dzz +=  to 

obtain the desired class mean and covariance.  

 

While the preceding steps can be used to generate data with given covariance and 

correlation, two areas of caution should be considered.  First, given a covariance 

structure , not all lag 1 correlation structures R(1) are feasible.  Arbitrary assignment of 

desired R(1) values may not be feasible, but if )0()1( RR ρ=  where ρ is a scalar constant 

of a desired positive correlation (0 < )1<ρ , a feasible solution is guaranteed.  Solving 

eq. 4-18, IRRRRA ρρ === −− 11

1 )0()0()0()1( , thus A1 is a diagonal matrix of ρ , and 

the associated covariance of the VAR(1) process is εε ρARA +=+ 2

11 )0( .  The 

VAR(1) process will then have stationary covariance  if white noise is generated 

as =t , where B is a diagonal matrix of 2 −1 ρ , with covariance =ε .  The 

VAR(1) process covariance is AA =−+=+ )1( 22

11 ρρ .  In addition, the 

white noise covariance matrix ε will be positive definite and can be factored using 

Cholesky decomposition, since it is a scalar multiple of the positive definite matrix , 
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with positive eigenvalues  (Strang, 1988: 245).   Thus, ε will be positive definite with 

positive eigenvalues αλλλλ, since xxx ααε ==  for any fixed vector x and arbitrary 

constant α. 

If a limited amount of data observations are to be generated, the correlation values 

should be estimated to determine if the data are adequate for the research experiment to 

be accomplished.  For a multivariate distribution, the estimate of correlation between two 

features, ρ̂ , has a standard error approximated by 
n

)ˆ1( 2

ˆ

ρσ ρ
−≅  where n is the number 

of samples generated (Schmeizer, 1990: 311).  Thus, to obtain two-place accuracy for ρ̂ , 

10,000 data points may be required to generate data with a desired correlation level.  If a 

small sample of data is generated, unacceptable levels of random variability are possible.  

These small data generation sets may require multiple sets be created, to obtain one set 

with correlation levels within a desired tolerance or to test fusion algorithms on multiple 

test sets.  For example if a single time step is used to create 100 additional correlated 

“looks” with a desired correlation of 0.1, ρσ ˆ would be 9.9%, while a desired correlation 

level of 0.9 would have a standard error of 1.9%.  If only 25 observations are generated 

the standard error increases to 19.8% and 3.8% respectively. 

Overall, the generation of multivariate Gaussian data can be performed quickly, 

but the levels of desired correlation obtained from an initial random vector may vary 

significantly depending on sample size, and even vary as a function of the desired levels 

of correlation across variables and correlation through time within each variable.  Finally, 

if information is available that suggests use of a parametric distribution other than a 
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Gaussian should be used to model a specific sensor’s features, the literature offers several 

techniques to generate different distributions with desired correlation structures.  Most 

techniques involve the generation of normally distributed random variables for error 

terms, which are then combined with previously generated data points through a linear 

transformation.  Some of the available techniques are found within (Song and Hsiao, 

1993), (Nelson and Yamnitsky, 1998), (Deler et al., 2001), and (Cario and Nelson, 1996, 

1998).  Use of other generated parametric distributions with desired levels of correlation, 

would also yield samples with observed correlation significantly affected by the sample 

size and desired correlation levels. 

4.3 Generated Gaussian Two Class Fusion Experiments 

These experiments will demonstrate the utility of the mathematical programming 

methodology introduced in Chapter 3 to optimize rejection and ROC thresholds given 

decision maker preferences and operational constraints.  The maximum PTP or TPR will 

be used to assess the effects of correlation in a predetermined fusion process.  By 

performing this research insight may be gained for fusion in an ATR system where “Non-

declaration” is a valid output label, and when the source of data being fused from 

different sensors may be correlated at various levels.  This initial fusion research using 

generated Gaussian data was presented at three conferences, including the SPIE 

sponsored Multisensor, Multisource Information Fusion: Architectures, Algorithms, and 

Applications 2004 where the initial application of the optimization framework was 

presented (Laine and Bauer, 2004a).  Further experiments fusing additional looks of 

Gaussian data collected through time were the presented at the 72
nd

 Military Operations 
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Research Society (MORS) Symposium in 2004 and at the ATR Systems and Technology 

Symposium in 2004.  Overall, this research uses the optimization framework of Chapter 3 

to explore the fusion of Gaussian scores across various correlation levels and reports 

some interesting properties as presented in the next four sections. 

4.3.1 Multivariate Gaussian Data Properties 

 It has been proven (Johnson & Wichern, 1998), if two populations are known 

multivariate Gaussian populations with equal covariance Σ , then the optimum error rate 

(or minimum Total Probability of Misclassification, TPM) given equal misclassification 

costs and prior probabilities may be calculated as follows:  

2
TPM

∆ = Φ − 
 

 ,     (4-24) 

where, ( )Φ ⋅  is the cdf of a standard normal distribution and,  

( ) ( )2 1

1 2 1 2

T −∆ = − Σ −       (4-25) 

is the Mahalanobis distance squared between 1 2&  .  Since it has been hypothesized 

multi-look ATR information may include significant levels of correlation, it is of interest 

to examine the extrema associated with the Mahalanobis distance as a function of ρ .  For 

bivariate Gaussian data with  1 2

1

1

ρ
ρ
 

Σ = Σ =  
 

, differentiating the Mahalanobis distance 

with respect to ρ yields: 

 
2 2 2

1 2 1 2 1 2

2 2

2( )

( 1)

d

d

µ µ µ µ ρ µ ρ µ ρ
ρ ρ

− + − −∆ =
−

, with extrema at 1 2

2 1

&
µ µρ
µ µ

=  (4-26) 
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But, since 1ρ ≤  for feasible solutions (Duda et al., 2001) only a single solution is 

obtained.  Without loss of generality (wlog) let 1 2µ µ< .  Evaluating the Mahalanobis 

distance for 1 2/ρ µ µ=  yields 2µ∆ = .  Thus, under the assumption of bivariate 

normality, the TPM of two correlated variables is always better than or equal to the 

univariate TPM associated with the better of the two scores.  This also leads to an initially 

non-intuitive property, where the TPM associated with two correlated scores may be 

lower than two independent scores, when the individual variable means are not equal. 

Yet, as expected, the maximum TPM occurs as ρ  approaches 1.0 for two scores of equal 

means.  Overall, while the decreased TPM associated with high correlation is 

theoretically feasible in some cases of fusion, it is unknown if real world applications 

may realize or capitalize on such correlation values. 

4.3.2 Fusion of 2 ATR Target Scores Modeled by Gaussian Data 

 This experiment will identify targets as two labels: targets specified for attack 

(class 1 “Targets”) and non-targets or friends (class 2 “Friends”).  As a demonstration of 

the TPM phenomena above, consider a two population experiment with two ATR 

systems modeled by two Gaussian distributions.  The variance is held stationary as ρ  

varies between 0 and 1.  The data for two classes is generated as bivariate Gaussian with 

1 (0,0)T= , 1 (1.8, 2.2)T= , and 1 2

1

1

ρ
ρ
 

Σ = Σ =  
 

.  This Gaussian data has a mean 

separation of two standard units, resulting in a system with ~84% correct classification 

accuracy for any single variable.  To show the value of fusing a 2
nd

 ATR system look 

with increased performance, possibly through a decrease in range, the data is generated to 
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represent two classes with a separation 10% worse than average for the 1
st 

look and 10% 

better than average for the 2
nd

 look.  The associated TPM for the 1
st
 look is 0.184 and 

0.136 for the 2
nd

 look.  Figure 4.1 shows the quadratic nature of the bivariate Gaussian 

TPM as a function of ρ , where the largest TPM = 0.136 is obtained when ρ  = 0.818 = 

1.8/2.2.   
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Figure 4.2 Total Probability of Misclassification (TPM) as a Function of Correlation 

(ρ
 = rho) for given 1 , 2 and 1 2Σ = Σ  

To show this phenomenon geometrically, the Fisher Discriminant line 

representing the optimal class boundary (Duda et al., 2001) is plotted in Figure 4.3 for the 

values of ρ  identified by circles in Figure 4.2 ( ρ  varies between 0.0 and 0.992 across 

increments of 0.124).  It is of interest to note, that while some research (Dudgeon, 1998) 

identifies independence of fused data as generally the limiting case of performance; 

theoretically, an increase in performance may be obtained in some cases of very high 

correlation due to the quadratic nature of the Mahalanobis distance, as demonstrated 

when ρ > 0.98, since TPMrho=0.98 ≅ TPMrho=0.0  ≅ 0.078.  This agrees with finding by 
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Willett, et al. (2000), who note correlation levels may hinder or help a classification 

effort depending on the location of class means for multivariate Gaussian populations. 

 

Figure 4.3 Fisher Discriminant Lines for Optimal Class Boundaries with the 

Minimum Total Probability of Misclassification (TPM) as a Function of Correlation 

(ρ
 = rho) for Specified Multivariate Gaussian Populations 

4.3.3 Results Obtained using Optimization Framework 

 For the 2-D Gaussian data generated, the fusion strategy will maximize the 

probability of True Positive Target Declarations, ( )TPP , subject to decision maker 

constraints as outlined in eq 4-1.  Since this investigation seeks to discover differences 
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across data correlation, only a single fusion algorithm is used.  The thresholds were 

optimized for test data generated across the desired correlation structures.  The first of 

two ATR scores is generated as the posterior probability of class membership obtained 

from a single value of 1-D Gaussian data with known distribution parameters.  If the 1
st
 

ATR score is not declared as a “Target” or “Friend” a 2
nd

 score is then obtained.  The 

posterior probabilities of the second score are then evaluated using the score obtained 

from both the 1
st
 and 2

nd
 look.  By performing the fusion in this manner, a maximum of 

information is preserved and used for the final decision.   

 Thirty projected 2-D ROC curves are presented in each subplot of Figure 4.4.  

Each ROC curve was generated using 30 uniformly spaced ROC thresholds, for each of 

30 different rejection thresholds.  The test data included 20K multivariate Gaussian data 

points with 9 levels of correlation.  In all subplots, the benefit of allowing a 2
nd

 look is 

illustrated by comparing the single lower ROC curve associated with the 1
st
 look and no 

reject option, with improvement observed after allowing any 2
nd

 look for the “non 

declared” observations.  In general, the ROC improvements are observed as the dark 

region in the upper left-hand area of each plot, representing the projection of 29 ROC 

curves onto the subplot.  While improvements are clearly seen after allowing “Non-

declarations” ( REJθ  > 0), further visual analysis is difficult.  For example, differences 

between ROC curves when the declaration threshold, REJθ , is above 0.0 blend together, 

and the identification of a preferred ROC and declaration threshold associated with a 

visual ‘knee’ in the ROC curve is difficult to identify.  In addition, for the case of ρ  = 

0.992, all 30 ROC curves appear to project onto either of two curves representing the 
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ROC curve with no 2
nd

 look ( REJθ = 0) and the alternative case where any second look 

( REJθ  > 0) yields an almost perfect ROC curve. 
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Figure 4.4 Thirty Projected ROC Curves Generated using 30 Uniformly Spaced 

ROC Thresholds for each of 30 Uniformly Spaced Rejection Thresholds for 20K 

Multivariate Gaussian Data Observations with 9 Levels of Correlation (  = rho) 

 

 To determine the feasible and optimal thresholds:  = ( lowθ , upθ )
 T

, with respect to 

the decision maker preferences presented in eq. 4-1, ( )TPP  is maximized with the 

constraints shown in eq. 4-27. 
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max ( )TPP
∈

θ Θ   Maximize probability of true positive declarations  (4-27) 

s.t.  ( )CRE  < 0.02  limit potential friendly fire 

( )NCE  < 0.05  limit lost opportunities to engage the enemy 

( )DecP  > 0.70  limit the number of re-looks & Non-declarations 

 

Plotting ( )TPP  and ( )FPP  from Figure 4.4 along with ( )DecP  leads to the ROC surfaces 

in Figure 4.5.  Feasible points, meeting all decision maker constraints, are then identified 

by the dark areas.  The optimal thresholds maximizing ( | )TPP ρ  are identified in Tables  

4.2 and 4.3 for two ratios of prior probabilities.  In addition to generating the 3-D ROC 

surfaces in Figure 4.5, similar plots were examined across a range of prior probabilities 

where PT:PF = 1:4 through 4:1.  As expected, if limiting feasible points to include the 

entire range of priors, additional constraints are imposed and fewer viable operating 

thresholds are obtained.  These points tended to emerge on the classical “knee” in the 

ROC curve.   

 

Table 4.2 Performance Measures of the 3-D ROC Surfaces Obtained from 20K 

Generated Data Observations for PT:PF = 4:1 ρ  % feas max PTP PFP ECR ENC PDec REJθ  lowθ  upθ  

0.000 4.60% 99.79% 11.34% 1.65% 1.60% 70.87% 0.585 0.014 0.599 

0.124 1.83% 99.55% 10.80% 1.69% 3.08% 71.03% 0.630 0.025 0.655 

0.248 0.17% 99.29% 11.31% 1.84% 4.63% 70.20% 0.630 0.037 0.667 

0.372 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.496 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.620 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.744 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.868 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.992 87.1% 100.00% 0.11% 0.02% 0.00% 86.60% 0.90 0.010 0.910 
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Figure 4.5 ROC Surfaces with Feasible Points (%feas) Identified by Dark Areas for 

20K Data Observations across 9 Levels of Correlation (  = rho) for Specified 

Multivariate Gaussian Populations with Prior Probabilities, PT:PF = 4:1 
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Table 4.3 Performance Measures of the 3-D ROC Surfaces Obtained from 20K 

Generated Data Observations for T:F = 1:4 ρ  % feas max PTP PFP ECR ENC PDec REJθ  lowθ  upθ  

0.000 0.50% 87.41% 0.24% 1.89% 1.79% 71.39% 0.585 0.401 0.986 

0.124 0.67% 83.52% 0.22% 1.79% 2.33% 71.79% 0.495 0.488 0.983 

0.248 0.17% 77.69% 0.22% 1.99% 3.04% 70.74% 0.450 0.532 0.982 

0.372 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.496 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.620 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.744 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.868 0.00% none N/A N/A N/A N/A N/A N/A N/A 

0.992 65.67% 100.00% 0.11% 0.38% 0.00% 86.60% 0.90 0.010 0.910 
 

With a target sparse environment (T:F = 1:4) conservative threshold settings below the 

“knee” in the ROC surface were obtained.  For a target rich environment (T:F = 4:1) 

more aggressive threshold settings were feasible with points slightly above the “knee” in 

the ROC surface, as can be seen in the top 2 subplots of Figure 4.5 with lowest 

correlation. 

4.4.4 Two Sensor Multilook Fusion Experiment with Gaussian Data  

 After the initial use of the optimization framework for the limited two-look 

example, a subsequent natural extension involved applying the optimization framework 

to a scenario in which two ATR systems were fused across multiple looks.  Since the 

ATR system performance improved considerably by fusion of the two ATR scores, the 

multi-look experiment in this section forces two ATR looks at each time period.  

Gaussian data was generated across ATR correlations and across time for up to 10 looks 

using the procedures outlined in Section 4.2.2.  The data was generated to represent two 

sensors with equal performance, where 1 2 (0,0) ,  (2.0,2.0)T T= = , the covariance is 
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equal for both ATR systems, where 1 2

1
(0)   

1

x

x

ρ
ρ
 

Γ = Σ = Σ =  
 

, and for looks across 

one time lag, (1) (0)
t t x

t

t x t

ρ ρ ρ
ρ

ρ ρ ρ
 

Γ = Γ =  
 

 with & {0.0,0.24,0.48,0.72,0.96}t xρ ρ ∈ .  

The Theoretic Total Probability of Misclassification (TPM) modeled by each 1-D 

Gaussian ATR system is ~15%, and the 2-D TPM associated with the fusion of the two 

systems each taking 1-look varies from 7.8% to 15.6% as the correlation ( xρ ) varies 

between the ATR systems from 0 to 0.96.  The associated TPM using all 10-looks for 

each of the two ATR scores is presented in Table 4.4.  From this table, low 

misclassification levels, < 2%, are observed for all correlation less than xρ  = 0.48 across 

systems.  Highly desirable misclassification, < 0.5%, is highlighted in bold, while the 

least desirable TPM, > 10%, is indicated by the gray background. 

 

Table 4.4 Theoretic Probability of Total Misclassification as a Function of Sensor 

Correlation and Autocorrelation with 10 Looks 

Equal feature means

TPM for 10 looks

Across Temporal Correlation

Correlation 0 0.24 0.48 0.72 0.96

0 0.0% 0.0% 0.0% 0.0% 0.1%

0.24 0.0% 0.1% 0.2% 0.3% 0.5%

0.48 0.2% 0.5% 0.9% 1.4% 2.0%

0.72 1.3% 2.3% 3.4% 4.5% 5.6%

0.96 6.2% 8.4% 10.3% 12.0% 13.6%  

 

 With data generated using known Gaussian parameters, the fused ATR scores 

were computed directly from the two Gaussian scores associated with each ATR system.  

For a single look the posterior probability of being a hostile target was computed by 
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normalizing the two probability estimates associated with either of the two classes using 

a 2-D multivariate Gaussian pdf.  After the first look had occurred, posterior probabilities 

were generated in three different manners to assess the value of information through time.  

The first method always used a 2-D Gaussian approximation, where only the current 

ATR system scores were fused to determine a combined score.  If a fused system label 

was “Non-declaration” another two looks would be taken.  The second method generated 

a fused posterior probability score by using the two most current looks from each system.  

This required using a 4-D multivariate Gaussian distribution to represent the associated 

probability of Hostile vs. Friendly class membership.  The final method of generating a 

fused posterior ATR score used all available ATR system scores including the current 

look.  Thus, a 2 n looks× −  Gaussian distribution was used obtain the final ATR score, 

with the potential to reach the low levels of TPM reported in Table 4.7 if all 10 looks 

were used.  The True Positive declaration rate was then maximized subject to the 

constraints identified in eq. 4-28. 

arg max ( )TPR
∈

θ Θ   Maximize true positive declaration rate   (4-28) 

s.t.  ( )CRE  < 0.02   limit potential friendly fire 

( )NCE  < 0.05   limit lost opportunities to engage the enemy 

( )DecP  > 0.70   limit the number of re-looks & Non-declarations 

 

To perform the fusion across the two ATR systems, the following sequential fusion 

strategy was implemented using the three different posterior probability scores. 

1. Vary low ROCθ θ=  and  up ROC REJθ θ θ= + uniformly across the feasible range, where 

a constant REJθ yields a single ROC curve. 

2. Attempt to classify 4,000 generated potential targets using the 1st fused ATR 

score, with the posterior probability of “Hostile” target, derived from the 2-D 

Gaussian data. 
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- If ppH < lowθ declare as “Friend”.  

- If ppH > upθ declare as “Hostile”. 

- If lowθ < ppH < upθ  declare as “Non-declaration” and obtain another look from 

each ATR system to generate a fused ATR score. 

- Continue until current target is declared “Hostile” or “Friend” or until 

maximum (10th) ATR score is used. 

- Using the same values of lowθ and upθ attempt to classify all objects. 

3. Identify feasible points across all lowθ and upθ . 

4. Determine the optimal thresholds associated with the maximum TPR( ). 

 The next figure shows the collection of ROC curves generated using all available 

ATR scores to generate a final ATR system score for the lowest correlation levels on the 

left and the highest correlation levels of the right.  Each individual ROC curve is 

generated from a different value of REJθ  as ROCθ varies.  The black region in the left plot 

shows feasible PTP and PFP values associated with feasible thresholds and a star shows 

where the maximum TPR( ) is achieved. 

 

Figure 4.6 ROC Curves for Lowest (0,0) vs. Highest Correlation Levels (0.96, 0.96) 
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Figure 4.7 shows the associated ROC surfaces by plotting the ROC curves from Figure 

4.6 along with the associated probability of declaration.  The black cluster of points 

shows where feasible thresholds are obtained in the left plot with the lowest level of 

correlation.  The right plot, with the highest levels of correlation shows the general 

dispersion of the ROC curves generated across different rejection thresholds with no 

feasible points.   

 

Figure 4.7 ROC Surfaces for Lowest (0,0) vs. Highest Correlation Levels (0.96, 

0.96), across ATR Systems and through Multiple Looks 

A summary for all three different methods to generate the final fused ATR system 

score is included in Table 4-5.  Both the maximum TPR( ) obtained and the percentage 

of feasible thresholds evaluated is included for each correlation structure.  Significant 

performance degradation is indicated for high levels of correlation across all three 

techniques.  The infeasible correlation structures are indicated by the ‘---‘ max TPR and 

an associated light gray 0% for  % Feasible.  From these tables, significant feasibility 

improvement is observed when using the information from more of the available looks to 
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assess the current posterior probability, as indicated by an increased number of feasible 

correlation structures and an increase in the percentage of feasible evaluated thresholds.  

If all three methods were feasible, limited differences in the maximum obtainable 

TPR( ) were observed.  Thus, the primary advantage for incorporating all available ATR 

scores to generate the current class estimate is an increase in feasibility, subsequently 

providing a feasible ID system with a positive max TPR( ).   

Table 4.5 Maximum TPR and Percentage of Feasible Thresholds by Correlation using 

Posterior Probabilities Generated with 1-look, 2-looks or All n-looks 

max TPR % Feasible
Posterior Probability derived from 1 looks

Across Temporal Correlation Temporal Correlation

Correlation 0 0.24 0.48 0.72 0.96 0 0.24 0.48 0.72 0.96

0 0.77 0.68  ---  ---  --- 0 7.8% 2.5% 0.0% 0.0% 0.0%

0.24 0.65 0.55  ---  ---  --- 0.24 2.5% 0.5% 0.0% 0.0% 0.0%

0.48 0.53  ---  ---  ---  --- 0.48 1.0% 0.0% 0.0% 0.0% 0.0%

0.72  ---  ---  ---  ---  --- 0.72 0.0% 0.0% 0.0% 0.0% 0.0%

0.96  ---  ---  ---  ---  --- 0.96 0.0% 0.0% 0.0% 0.0% 0.0%

Posterior Probability derived from 2-looks

Across Temporal Correlation Temporal Correlation

Correlation 0 0.24 0.48 0.72 0.96 0 0.24 0.48 0.72 0.96

0 0.78 0.70 0.57  ---  --- 0 10.0% 4.3% 0.5% 0.0% 0.0%

0.24 0.66 0.61 0.52  ---  --- 0.24 4.8% 2.3% 0.3% 0.0% 0.0%

0.48 0.58 0.48  ---  ---  --- 0.48 1.8% 0.5% 0.0% 0.0% 0.0%

0.72 0.50  ---  ---  ---  --- 0.72 0.5% 0.0% 0.0% 0.0% 0.0%

0.96  ---  ---  ---  ---  --- 0.96 0.0% 0.0% 0.0% 0.0% 0.0%

Posterior Probability derived from n-looks

Across Temporal Correlation Temporal Correlation

Correlation 0 0.24 0.48 0.72 0.96 0 0.24 0.48 0.72 0.96

0 0.78 0.72 0.61 0.53 0.29 0 11.5% 6.5% 2.8% 2.8% 3.0%

0.24 0.67 0.62 0.55 0.33 0.15 0.24 5.8% 3.8% 1.8% 0.8% 0.8%

0.48 0.57 0.52 0.40  --- 0.15 0.48 2.0% 1.8% 0.3% 0.0% 0.5%

0.72 0.51  ---  ---  ---  --- 0.72 1.0% 0.0% 0.0% 0.0% 0.0%

0.96 0.46  ---  ---  ---  --- 0.96 0.5% 0.0% 0.0% 0.0% 0.0%  

 

To help answer the question of, “What is preferred, high TP obtained by fusing 

independent data or a lower TP obtained in less time by fusing more correlated data?” 

Table 4.6 was produced to show relative TPR equivalence.  This provides a rough 
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assessment of an ATR system’s operational utility, by providing the relative number of 

looks required to make a positive Hostile ID when compared to the best system.  Since 

the best TPR( ) is achieved by data independent across sensors and through time, the 

upper left hand value with 0x tρ ρ= = is used to scale all other TPR( ) scores associated 

with different correlation structures.  These values were generated using a Hostile:Friend 

ratio of 1:1 and 4:1 and all available n-looks of ATR scores.  From this table, two 

observations are made.  First, when the ratio of H:F is increased, an increase in feasible 

correlation structures occurs.  Next, if highly correlated feasible data can be obtained 

more quickly than less correlated data, it may be preferred.  For example, if the data 

associated with 0.48x tρ ρ= = can be obtained in half the time as the data with 

0x tρ ρ= = , an effective TPR( ) would be higher for the correlated data since the time 

required would be less than the associated time for the independent data.  Thus, analysis 

of the maximum TPR( ) or associated looks per true positive hostile ID may be useful 

analysis and provide insight of preferred data collection strategies by fused ATR systems. 

 

Table 4.6 Temporal Equivalence Indicated by the Number of Looks Required in the 

Same Time Period used to Collect One Look of Independent Data 

 

"Temporal Equivalence" "Temporal Equivalence"

(# of looks required vs. best TPR) (# of looks required vs. best TPR)

Across H:F=1:1 Temporal Correlation H:F=4:1 Temporal Correlation

Correlation 0 0.24 0.48 0.72 0.96 0 0.24 0.48 0.72 0.96

0 1.00 1.09 1.29 1.47 2.66 1.00 1.02 1.19 1.23 1.72

0.24 1.17 1.26 1.43 2.34 5.18 1.09 1.12 1.25 1.58 2.21

0.48 1.37 1.50 1.94 --- 5.19 1.20 1.30 1.43 2.10 3.10

0.72 1.54 --- --- --- --- 1.34 1.48 1.87  ---  ---

0.96 1.68 --- --- --- --- 1.44 1.61 2.13  ---  ---  
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4.3.5 Summary of Gaussian Data Experiment 

 In these Gaussian data experiments the mathematical programming framework 

from Chapter 3 was used to optimize thresholds and a 3-D ROC plot was used to help 

visualize the effects of tuning rejection and ROC thresholds to maximize a decision 

maker’s preferred objective while constrained by other requirements.  The 3-D ROC 

surface was generated by adding the probability of declaration.  This methodology may 

be useful for the comparison of classification algorithms across operating conditions with 

different potential prior probabilities of class membership, where the percentage of 

feasible operating thresholds tested can help measure a system’s robustness.  The 

mathematical optimization framework can also be easily modified, as was done with the 

objective function being modified to initially determine the maximum ( )TPP across 

correlation levels and then to determine the True Positive rate, ( )TPR , across multiple 

looks.  In addition, some properties were shown for the classification of bivariate 

Gaussian data, and a justification for modeling ATR scores by Gaussian data was 

presented. 

4.4 Investigation of RNN Fusion using an Optimization Framework 

 The following experiment applies the mathematical programming framework to 

compare two RNN models used to fuse sequential data obtained from generated data.  

Each of the generated input features is representative of the output data from a different 

sensor.  The only differences in the fusion models were the number of input features used 

for classification.  The initial feature saliency research is documented within Laine and 

Bauer (2003), and was included as an illustrative example of fusion via one-big-net at the 
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71
st
 Military Operations Research Society (MORS) Symposium, where the paper was 

selected as the best in the Air Power and Combat ID Analysis Working Group.  Reviews 

have recently been received from a subsequent invited submission to MOR (Laine & 

Bauer, 2005).  The demonstrated application of the mathematical programming 

framework was then documented in Laine and Bauer (2004b), and will be summarized in 

the following sections. 

4.4.1 Overview of Data Generation, Feature Selection and RNN Fusion Model 

For this experiment, an ATR system is simulated and allowed to obtain up to 10 

looks of each object known to be a satellite of class “Target” or “Friend.”  The objective 

is to identify as many enemies as possible with a limited sensing resource, constrained by 

allowable false IDs.  The generated data was inspired from data collected for 2 

geosynchronous satellite types observed through time and processed by a Johnson filter.  

The real data included the magnitude, corrected for distance, in red and blue frequency 

bands, with temporal trends associated with the rotation of the earth, reflection from the 

sun and other atmospheric effects.  Three features were generated from a known 

parabolic "red" signature corrupted with 3 levels of noise.  Similarly, 3 features were 

generated from a decreasing logarithmic "blue" signature.  Since the data were generated 

as continuous functions of time with noise added, autocorrelation was statistically 

significant, as was crosscorrelation between variables derived from the same "color".  

Two “noise” features were constructed with no difference between classes.  No feature 

provided linear separation of classes.  An example of the underlying “truth” signal 

functions and data with the lowest level of noise follows in Figure 4.8. 
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Figure 4.8 Truth and Low Noise Data for “red” (Parabolic Pattern) and “blue” 

(Nonlinear Decreasing) Features for Target 1 (R1 & B1) and Target 2 (R2 & B2) 

Eight total input features, representative of the data obtained by eight different 

sensors, were generated for 10 time units each.  Data sets were comprised of 10 

sequences of each class, resulting in 200 total observations in each data set.  Twenty data 

sets were generated for use as Training, training-Test, and Validation sets.  Training data 

with all available observations was used to calculate error and update network weights, 

the training-Test set was used to assess the trained RNN to stop training before over-

fitting occurred, and the validation set was held as an independent test set to assess the 

RNNs ability to generalize. 

Since a strong temporal component may be hypothesized for an ATR system 

processing multiple looks in close spatial-temporal proximity, a neural fusion model was 

sought with the capability to fuse input features with a single architecture with any 

number of re-looks.  An Elman RNN (Elman, 1990) was selected since it includes 
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internal feedback and the ability to model temporal patterns without restrictions on the 

structure of input data correlation or number of temporal samples obtained (Kolen & 

Kremer, 2001).  The RNN’s input features consisted of either all 8 input features or a 

parsimonious subset of 3 features, as determined by Laine and Bauer (2003).  The 

reduced features were determined with both a Signal-to-Noise weight based saliency 

measure (Bauer et al., 2000) and an output error based saliency measure (Moody, 1998).  

The reduced features included “red” & “blue” features with low noise plus “blue” with 

medium noise. 

The experiment was performed using Matlab 6.1 with the Neural Network 

Toolbox.  RNNs were initialized with 8 hidden nodes and 2 output nodes with hyperbolic 

tangent and sigmoid transfer functions respectively.  The desired outputs were set to 0.9 

and 0.1 for correct and incorrect classes.  All networks were trained using gradient 

descent with momentum and an adaptive learning rate for a maximum of 2500 epochs.  

Most training stopped early after the training-Test set MSE failed to improve after 500 

epochs.  The RNN weights associated with the minimum training-Test set MSE were 

retained to be used as the trained fusion model. 

 The fusion strategy attempts to maximize the probability of true positive target 

declarations per time, TPR( ), subject to constraints as outlined in eq. 4-1.  The t
th

 ATR 

score for a potential target was generated as the posterior probability of class membership 

obtained from the outputs of a trained RNN using the current input exemplar and the 

previous t-1 input features.  For example, if the 2
nd

 observation is not declared as a 

“Target” or “Non-Target” a 3
rd

 observation is obtained for RNN input data and updated 

posteriors are obtained.  Class updates continue until a declaration is made or the 10
th
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observation is left “undeclared.”  Thirty Training and Test set ROC curves are presented 

in each subplot of Figure 4.9.  Each curve was generated as a function of 30 uniformly 

spaced ROC thresholds, repeated for 30 different rejection thresholds.  The left plot in 

Figure 4.9 is created from Training data, while the right plot, without feasible points, is 

generated from Test data, with PT:PF = 1:1.  An “O” is plotted for each feasible threshold 

vector.  A “star” is plotted for the optimal ( ) 0.61TPR = for the Training data on the left.  

The output data from 20 trained RNNs were combined to provide 400 data sequences 

with an equal number of class samples to generate each ROC curve. 

 

Figure 4.9 An RNN with 8 Input Features Assessed to Generate One ROC Curve for 

30 Uniform ROC Thresholds for Each of 30 Uniform Rejection Thresholds 

4.4.2 RNN Fusion Experiment Results 

The benefit of additional looks is illustrated by comparing the single lowest ROC 

curve associated with use of only 1
 
observation and no rejection option, with 

improvement observed after allowing rejection.  In general, the curves generated with 

larger rejection regions converge toward the upper left-hand plot area, indicative of 
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improved ROC performance.  To determine feasible and optimal thresholds, ( )TPR was 

maximized with the constraints from eq. 4-1 set at 1 2 30.05,   0.20  &  0.70Π = Π = Π = .  

Plotting ( )TPP , ( )FPP  and ( )RejP  leads to the 3D ROC surfaces in Figure 4-10 for 

Training and Test sets of the RNN using all 8 input features.   

 

Figure 4.10 Thirty ROC Curves Connected across ˆ
RejP Values.  With Equal Priors, 

the Feasible Points Appear Concentrated around a “knee” in the Training Set ROC 

Surface, with Feasible Points Located on the Vertical Surface below the “knee” 

 Feasible points, meeting all decision maker constraints, are identified by the dark 

circles in both Figures 4.10 and 4.11.  The associated optimal thresholds and performance 

parameters are identified in Table 4.7, along with performance and threshold values for 

other data sets with various ratios of Targets to Friends.  Excursions in PT:PF were 

performed to obtain additional feasible points.  In general, at the optimal thresholds 
CRE  

was found to be a binding constraint across low PT:PF priors and either set of input 

features.  Therefore, increasing target density provided a means to obtain feasible points 

and compare classifiers.  A pattern of decreased feasibility across thresholds from 
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Training, to Test, to Validation data sets highlighted similar RNN behavior observed with 

a forced 2-class decision using the same data with a winner-take-all decision rule (Laine 

and Bauer, 2003). 
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Figure 4.11 ROC Surfaces Generated for Validation Data using All 8 Features on 

the Left and 3 Features on the Right for PT:PF = 10:1.  The max ( )TPR  is Shown by 

a “star.”  Aggressive Feasible ROC Thresholds Classify Most Objects as “Targets” 

 

In addition to generating the 3D ROC surfaces in Figure 4.10, similar plots were 

examined for the RNN using 3 input features with various priors.  At both  PT:PF = 1:1 & 

4:1 about 4% of the Training data thresholds resulted in feasible points as compared to 

about 20-30% of the 8 feature model.  Evaluation of the Test data yielded no feasible 

points.  A new prior ratio of PT:PF = 10:1 was assessed for both the complete and reduced 

feature Test data sets and is included in Table 4.7.  Analysis of the independent 

Validation set showed significant performance degradation in both RNN fusion models.  

With PT:PF = 4:1, no feasible operating points were obtained for either feature set, 
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indicative of poor model generalization outside of the Training and Test data sets.  

Validation data was then optimized in target rich environments with PT:PF = 10:1, as seen 

in Figure 4.11.  A final ratio of PT:PF = 20:1 identified optimal thresholds that 

aggressively labeled almost all declared objects as hostile “Targets,” as may be seen in 

the bottom rows of Table 4.7. 

Table 4.7 Optimal Thresholds for the Maximum TPR and Associated Performance 

Values for Training (TR), Test (TE) and Validation (VA) Data 

feats data P T :P F P TP P FP E CR E NC P Dec θ l θ u ID/time max TPR % Feas

8 TR 1:1 78% 4% 4.9% 19% 100% 0.52 0.70 0.79 0.61 29.30%

3 TR 1:1 78% 4% 4.9% 18% 92% 0.35 0.83 0.27 0.21 4.80%

8 TE 1:1 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0%

3 TE 1:1 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0%

8 TR 4:1 96% 18% 4.5% 16% 100% 0.21 0.51 0.54 0.51 20.30%

3 TR 4:1 97% 27% 4.8% 16% 84% 0.17 0.59 0.25 0.25 3.70%

8 TE 4:1 97% 31% 4.8% 20% 75% 0.07 0.73 0.20 0.19 0.50%

3 TE 4:1 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0%

8 TE 10:1 100% 59% 4.1% 15% 83% 0.05 0.56 0.25 0.25 1.40%

3 TE 10:1 100% 100% 4.9% 0% 75% 0.00 0.51 0.24 0.24 0.30%

8 VA 10:1 100% 100% 4.7% 0% 71% 0.00 0.54 0.22 0.22 0.10%

3 VA 10:1 100% 91% 5.0% 0% 75% 0.03 0.54 0.23 0.23 0.90%

8 VA 20:1 100% 100% 4.8% 0% 100% 0.00 0.00 1.00 1.00 2.00%

3 VA 20:1 100% 97% 4.6% 0% 100% 0.07 0.07 1.00 1.00 6.90%  

 

Noticeable differences in Training and Test sets indicate all 8 features may be 

preferred based on the max ( )TPR or if evaluating robustness by the percentage of 

feasible operating thresholds.  Yet, both feature sets failed to generalize well to an 

external Validation set with no feasible thresholds when PT:PF = 4:1.  Further 

performance evaluation of the Validation data for PT:PF = 10:1 and PT:PF = 20:1 resulted 

in minimal differences between the two input feature sets.  These results are comparable 

with those obtained by Laine and Bauer (2003), where forced declaration was analyzed 

after each look and no statistical difference could be declared for any data set.  Similarly, 

steady degradation was observed between Training, Test, and Validation sets, and the 

apparent differences between the complete and reduced feature set diminished.  Thus, for 
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classification of data independent of RNN training, use of the reduced feature set appears 

reasonable.  In addition, a reduced feature set may be more efficient for ATR in terms of 

requiring less data to be collected and processed in near real-time.  Overall, additional 

analysis should be performed for the optimization framework to help identify a preferred 

model when neither yields feasible thresholds compliant with the initial levied constraints 

across desired priors. 

4.4.3 RNN Experiment Conclusion 

 In this RNN fusion experiment, a mathematical programming framework was 

used to optimize rejection and ROC thresholds to maximize a preferred objective while 

constrained by the operational warfighter constraints.  To visualize some key 

performance relations a 3-D ROC surface was presented.  An objective function to 

maximize ( )TPR  was selected.  One advantage of the optimization framework is 

development of acceptable constraints vs. quantifying difficult misclassification costs, 

leading to feasible regions across the multiple projected ROC curves in addition to 

optimal points.  The percentage of feasible operating thresholds may help measure a 

system’s robustness and only gives credit to acceptable portions of a ROC curve.  This 

may be useful for comparison of systems desired to perform across untested extended 

operating conditions (EOC) with potential deviations from the training data (Ross et al., 

1997). 
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4.5 Initial Findings & Contributions for Two-Class Generated Data 

 In general, these generated 2-class experiments show the optimization framework 

from Chapter 3 has the potential to be a helpful diagnostic tool in ATR when TPP and 

FPP are not sufficient to compare competing classifiers.  Such is the case for USAF 

applications where a minimum level of confidence, as reflected by the operational 

constraints, is required before making an actionable decision to engage enemy targets.  

The optimization of thresholds may be performed based on a preferred objective function 

subject to other constraints.  Visualization of the ROC surface, generated from the same 

thresholds, may aid in a better understanding of the tradeoffs between true positives, false 

positives, and declarations; along with providing an image representative of traditional 

ROC performance variables.  Further, the values of TPP and FPP which satisfy the decision 

maker’s constraints are highlighted on traditional ROC curves and show feasible 

operating regions.  To gain more insight of classification systems, sensitivity analysis of 

the constraints and the operating environment identified by the ratio of PT:PF or through 

use of EOC test data may be performed.  Subsequent adaptation of ATR systems across 

operational settings, possibly through the tuning of the rejection and ROC thresholds, 

may contribute toward ATR system utility in which systems may adapt to the operating 

environment.  This type of adaptation is currently being supported by research performed 

at AFRL/SN as documented by Wise et al. (2004). 

 The mathematical programming framework was illustrated with simple ATR 

examples using simulated data.  While limited examples with up to 10-looks of generated 

data were presented, some general observations were made.  For all experiments, an 
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increase in the ratio of Targets to Friends facilitated the feasible use of aggressive 

thresholds.  Under these conditions many of the Friendly targets were classified as “no-

declaration,” to obtain a desired Critical error performance.  This was accomplished by 

allowing up to 30% of all targets to be undeclared, with a desired Declaration constraint 

of 70% or greater.  This mathematically supports “Blue-Force tracking” and cooperative 

ID.  These two systems may effectively change the prior ratio of “unidentified” potential 

targets, since those targets being assessed by an ATR system typically do not provide a 

response to electronic interrogation as used in cooperative ID, and are not yet tracked as a 

positive friendly force. 

 Overall, this mathematical optimization may be a significant aid for the evaluation 

and comparison of competing ATR systems, which are required to fuse data to reach 

desired levels of correct class declarations.  The proposed methodology goes beyond the 

traditional ATR system evaluation methods and determines the preferred ATR operating 

thresholds and other system parameters without use of explicit costs and may optimize 

TPR, a proposed measure of performance, to account for the time involved to collect and 

analyze sensor data.  This measure can then be used to help determine the relative value 

of obtaining correlated data quickly or of obtaining less correlated data across a longer 

time period.  In summary, the optimization methodology incorporates a flexible 

framework to establish a decision maker’s primary objective, subject to constraints, and 

does so across both the warfighter’s “vertical” view of declared targets and the engineer’s 

“horizontal” view of actual types of objects classified. 
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V. MVP Optimization Application to DCS Radar Data 

The goal of this chapter is present an illustrative example of the utility of the 

mixed variable optimization formulation to assess and compare different fusion systems.  

The specific task at hand is to determine which fusion system would be preferred by the 

warfighter, for a given a specific collection of radar data.  This chapter is organized in the 

following manner.  Section 5.1 presents an overview of the fusion experiment and 

introduction to the DCS radar data collection used by the fusion systems within this 

chapter.  Section 5.2 gives the specific details of the optimization formulation as applied 

to the for DCS data set.  Specific information on the generation of sensor level data 

features from the collected DCS radar imagery is then provided in Section 5.3.  The two 

competing fusion methodologies are then described in Section 5.4 for the Majority Vote 

Boolean (MVB) Fusion Method and in Section 5.5 for the Probabilistic Neural Network 

(PNN) Fusion Method.  Section 5.6 provides an initial comparison of fusion systems, 

followed by sensitivity analysis in Section 5.7.  Section 5.8 then introduces a temporal 

comparison across correlation levels for a limited number of cases.  Finally, potential 

future experimental excursions are briefly identified in Section 5.9, and a summary of 

findings is included as Section 5.10. 

5.1 Overview of DCS Radar Data Fusion Experiment 

The primary objective of this chapter is to perform an experiment using collected 

radar imagery data to demonstrate the potential utility of the MVP optimization 

framework.  This optimization framework will facilitate gaining insight of fusion 
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preferences for an ATR system with two input sensors used to make unforced decisions 

through time.  In general, warfighter perspectives are incorporated by maximizing the 

objective function, TPR(x), subject to meeting the desired Critical Error, Non-critical 

Error and Declaration constraints.  The decision variables identified by x include the 

categorical fusion rules under investigation and the continuously valued threshold 

variables, .  For this experiment, the ATR system is designed to provide the warfighter 

one of four output labels.  The desired output labels include “Target of the Day,” “Other 

Hostile,” “Friend/Neutral” and “No-declaration.”  Figure 5.1 provides a general 

description of the task-at-hand, where two sensors will be used to make the label 

assessments, and additional data may be collected through time. 

 

Figure 5.1 Overview of the ATR Process with Four Desired ATR Output Labels 

The DCS radar data collection includes 2–dimensional X-band radar imagery 

collected on 15 different ground targets located in the same general area.  The imagery 

was collected using both HH and VV radar polarizations, which will be used to represent 



 

164 

sensors A and B.  The targets are all different ground vehicles with representation of 

potential Friend, Enemy and Neutral targets.  Table 5.1 provides a description of the 15 

different vehicles.  A subset of five Hostile enemy vehicles and five Friend/Neutral 

vehicles was selected to generate a balanced data set for this experiment.  The selected 

Hostile targets include the SCUD, SMERCH, SA-6 Radar, SA-6 TEL and T-72, as 

indicated by first five rows of Table 5.1.  The next five rows with a grey background 

show the selected Friend/Neutral targets include the Zil-131 (medium Budget truck), 

HMMWV, M113, Zil-131 (small Budget truck) and M-35 (large Budget truck).  In 

addition, the SCUD will be designated the desired Target of the Day (TOD).  The 

SMERCH is the same relative size as a SCUD; yet, differs in that it has a Multiple 

Launch Rocket System (MLRS) as opposed to a single large missile on the SCUD.  Since 

the SMERCH is built on the same chassis as the SCUD, it is a potential TOD confuser.  

Five unused targets are shown in the last five rows of the table. 

Table 5.1 Description of 15 Targets Imaged by DCS Radar 

DCS Radar Collection 

Location Type Target Description tracks wheels gun

1 SCUD Single Large Missile N 8 N

2 SMERCH MLRS & Scud Confuser N 8 N

5 SA-6 Radar Similar to SA-6 TEL Y 0 N

10 T-72 Main Battle Tank Y 0 Y

13 SA-6 TEL 3 Medium SAMs Y 0 N

6 Zil-131 Medium Budget Truck N 4 N

7 HMMWV Jeep like SUV N 4 N

11 M113 Armored Personnel Carrier Y 0 Y

12 Zil-131 Small Budget Truck N 4 N

15 M35 Large Budget Truck N 4 N

3 SA-8 TZM SA-8 Reload vehicle N 6 N

4 BMP-1 tank w/small turret Y 0 Y

8 BTR-70 8-wheeled transport N 8 N

9 SA-13 turret SAMs Y 0 N

14 SA-8 TEL integrated radar & exposed SAMS N 6 N  
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Additional information on the targets is provided in Section 5.3 as sensor features are 

developed.  The basic experiment will seek to determine which of two fusion methods is 

preferred.  The two competing fusion schemes include a Majority Vote Boolean (MVB) 

fusion method and use of a Probabilistic Neural Network (PNN) for fusion.  These two 

methods provide for different levels of fusion to occur.  The MVB Boolean fusion 

combines labels generated by each sensor, while the PNN neural fusion combines 

continuous valued probability estimates from sensors A and B associated with the three 

desired labels.  The two sensors being fused include the DCS radar collected with HH-

polarization and processed by an HRR algorithm developed by Çetin (2001) and the VV-

polarized data processed with an HRR algorithm described within (Williams et al., 1999) 

and obtained from the authors associated with AFRL/SN.  A set of training data will be 

used to estimate aspect angle templates to provide initial sensor estimates of the posterior 

probabilities associated with each target type and to train the PNNs used for fusion. 

5.2 MVP Formulation for DCS Data Experiment 

As developed in Chapter 3, optimization of a mixed variable mathematical 

programming formulation will be the used to determine the preferred fusion method.  The 

objective function will seek to maximize TPR subject to constraints.  The applicable 

constraints include the warfighter operational constraints, the fusion rule constraint, 

minimum look constraint, and threshold constraints.  Decision variables are identified by 

x and include categorical fusion rule and minimum look variables, and the variable 

thresholds, .  The formulation is as follows: 
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Objective function: 

ˆ ( )ˆmax ( )
ˆ ( ( ))

TP

x X
TP

P x
TPR x

E time x∈
=   maximize the rate of hostile target detection  (5-1) 

Subject to: 

Initial warfighter operational constraints: 

ˆ ( )CRE x  < Π1 = 0.02 limit incorrect fire decisions (vertical analysis) 

ˆ ( )NCE x  < Π2 = 0.05 limit lower impact incorrect decisions (vertical analysis) 

ˆ ( )DecP x  > Π3 = 0.70 limit Non-declarations (horizontal analysis) 

Fusion Rule constraint: 

2

1

1i

i

F
=

=∑  indicate MVB or PNN fusion 

where 
1  if  th MVB or PNN fusion used

0  otherwise
i

i
F


= 


 

Sensor Selection constraints: 

 For this experiment, fusion of both Sensors A and B will be used at each time t 

Minimum Look constraint: 

minML Looks≥  = {1,2,3,4,5} to require a minimum number of looks prior 

to making a final label declaration 

Threshold constraints: 

(( ) , ( ) )MVB SA T SB T T= , where SA and SB refer to Sensors A and B, 

( , )  and ( , )SA SA SA T SB SB SB T

low up low upθ θ θ θ= = for MVB fusion, and 

( , )PNN PNN PNN T

low upθ θ=  for PNN fusion, and 
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{ : 0 1}ij ij ij

low upθ θΘ = ≤ ≤ ≤  and { , , }ij SA SB PNN∈ is the set of all feasible 

thresholds used by PNN fusion or used by a single sensor for MVB fusion. 

The Critical error and Non-critical error warfighter operational constraints are 

computed by vertical analysis of a confusion matrix consisting of the true classes and the 

classifier output labels.  Figure 6.2 shows the associated confusion matrix for this 

experiment.  The true classes include the Hostile Target of the Day (TOD), Other 

Hostiles (OH), and a consolidated Friend/Neutral class (FN).  The classifier labels 

include “TOD,” “OH,” “FN” and “ND,” for the rejection option of “Non-declaration.”  

As indicated by the legend, Critical errors occur for an incorrect Hostile (TOD or OH) vs. 

“Friend/Neutral” label or vise versa, while Non-critical errors occur only within the two 

Hostile classes by incorrectly labeling a TOD as “OH” or OH as “TOD”. 

True Classes "TOD" "Other Hostile"
“Friend / 

Neutral”
“No declaration”

Horizontal 

Totals

TOD
TOD labeled 

"TOD"

TOD labeled 

incorrect "Hostile"

TOD labeled 
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“Unknown”
TOD evaluated

Other      

Hostile

Hostile labeled 

“TOD”

Hostile labeled 

"Hostile"

Hostile labeled 

“FN”

Hostile labeled 

“Unknown”

Other Hostile 

evaluated

Friend/   

Neutral

F or N labeled 

“TOD”

F or N labeled 

"Hostile"

F or N labeled 

“FN”

F or N labeled 

“Unknown”

F or N 

evaluated

Vertical Totals
 "TOD" 

declared

"Other Hostile" 

declared

"F or N" 

declared

"Unknown" 

declared

Legend Assessment Analysis

Correct ID Horizontal 

Critical Error Vertical

Non-Critical Error Vertical

Non-Declaration Horizontal 

Totals H or V Analysis

Classifier “Labels”

 
 

Figure 5.2 Confusion Matrix Associated with Four Desired Output Labels 
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Probability estimates can be obtained by horizontal analysis of the confusion 

matrix, where the probability of a specific label given a true class is calculated using the 

frequency of occurrence.  The probabilities associated with “label j” declarations are 

given as: 

#(" "&  )
ˆ(" " |  )

 #   

j i

j i

i

label true class
P label true class

Total true class evaluated
= .  (5-2) 

In some situations, like the assessment of true positive declarations, the probabilities 

associated with the labels excluding the “Non-declarations” may be desired, where: 

#(" "&  )
ˆ(" " |  & )

 #   

j i

j i

i

label true class
P label true class declaration

Total true class declared
= . (5-3) 

For assessment of the probability of declaration, ˆ
DecP , each label is a disjoint event, with 

( )ˆ ˆ " "  " "  " "DecP P TOD OH FN= ∪ ∪  ( )ˆ " "P ND=  = ˆ1 (" ")P ND− . (5-4) 

Because all probabilities and other measures of performance will be estimated using 

different data sets, the “hat” will not be in the remainder of this chapter, but is implied for 

estimated values, such that ˆP P= . 

5.2.1 Critical Error Calculation 

From Figure 5.2, it can be seen that four possible events may be labeled as critical 

error.  These disjoint events include classification as a “Hostile” (“TOD” or “OH”) given 

a true FN or classification as “FN” given one of the two true Hostile classes, TOD or 

Other Hostile (OH).  The probability of Critical Error is defined as probability associated 

with the union of the four output label and true class intersections, given a declaration is 

made, as shown in eq. 5-5. 
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( ) (" " ) (" " )
 |

(" " ) (" " )
CR

P TOD FN P OH FN
P E P declaration

P FN TOD P FN OH

 ∩ ∪ ∩ 
=   ∪ ∩ ∪ ∩  

  (5-5) 

If the probabilities associated with each confusion matrix element are estimated, and the 

prior probabilities of each of the true classes are known, then vertical analysis of the 

appropriate confusion matrix elements may be performed to calculate the Critical Error.  

First, let ( ),  ( ) and ( )P TOD P OH P FN  be the prior probabilities associated with each true 

class, where ( ) ( ) ( ) 1P TOD P OH P FN+ + = .  Similarly, (" ")P TOD , (" ")P OH , 

(" ")P FN  and (" ")P ND  are the unconditional probabilities of the ATR system output 

labels and sum to 1.  Because the four class/label combinations are disjoint events, eq. 5-

5 may be rewritten as, 

( ) ( " " | ) ( " " | )

                ( " " | )  ( " " | )

CRP E P FN TOD declaration P FN OH declaration

P OH FN declaration P TOD FN declaration

= ∩ + ∩
+ ∩ + ∩

.  (5-6) 

Using Bayes rule then provides the following equation,  

( ) ( | " " ) (" " | )

               ( | " " ) (" " | )

                ( | " " ) (" " | )

                ( | " "

CRP E P FN TOD declaration P TOD declaration

P FN OH declaration P OH declaration

P OH FN declaration P FN declaration

P TOD FN declarati

= ∩
+ ∩
+ ∩
+ ∩ ) (" " | )on P FN declaration

.  (5-7) 

Eq 5-7 then reduces to, 

( ) ( | " ") (" " | )

               ( | " ") (" " | )

                ( | " ") (" " | )

                ( | " ") (" " | )

CRP E P FN TOD P TOD declaration

P FN OH P OH declaration

P OH FN P FN declaration

P TOD FN P FN declaration

=
+
+
+

.   (5-8) 

The appropriate conditional probabilities of each “label i” are given as follows, where the 

equalities from eq. 5-4 may be used to obtain the following relationship, 
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(" " )
(" " | )

( )

i
i

P label declaration
P label declaration

P declaration

∩= (" ")

1 (" ")

iP label

P ND
=

−
 ,  (5-9)  

where, (" " | ) (" " | ) (" " | ) 1P TOD dec P OH dec P FN dec+ + = , with dec shorthand for 

declaration.  Substituting eq. 5-9 into eq. 5-8 yields: 

( )

( | " ") (" ") ( | " ") (" ")

 ( | " ") (" ") ( | " ") (" ")

1 (" ")
CR

P FN TOD P TOD P FN OH P OH

P OH FN P FN P TOD FN P FN
P E

P ND

+ 
 + + =

−
.  (5-10) 

Using Bayes Rule for each of the conditional probabilities of eq. 5-10 produces the 

following relations: 

(" " | ) ( )
( | " ")

(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

(" " | ) ( )
( | " ")

(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

(" " | ) ( )
( | " ")

(" " | ) ( )

P TOD FN P FN
P FN TOD

P TOD TOD P TOD P TOD OH P OH P TOD FN P FN

P OH FN P FN
P FN OH

P OH TOD P TOD P OH OH P OH P OH FN P FN

P FN OH P OH
P OH FN

P FN TOD P TOD P

=
+ +

=
+ +

=
+ (" " | ) ( ) (" " | ) ( )

(" " | ) ( )
( | " ")

(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

FN OH P OH P FN FN P FN

P FN TOD P TOD
P TOD FN

P FN TOD P TOD P FN OH P OH P FN FN P FN

+

=
+ +

(5-11) 

Using the Law of Total Probability, unconditional probabilities for each “label” can be 

calculated as, 

(" ") (" " | ) ( ) (" " | ) ( ) (" " | ) ( )

(" ") (" " | ) ( ) (" " | ) ( ) (" " | ) ( )

(" ") (" " | ) ( ) (" " | ) ( ) (" " | ) ( )

(" ") (" " | ) ( )

P TOD P TOD TOD P TOD P TOD OH P OH P TOD FN P FN

P OH P OH TOD P TOD P OH OH P OH P OH FN P FN

P FN P FN TOD P TOD P FN OH P OH P FN FN P FN

P ND P ND TOD P TOD

= + +
= + +
= + +
= (" " | ) ( ) (" " | ) ( )P ND OH P OH P ND FN P FN+ +

. (5-12) 

Substituting equalities from eq. 5-11 and 5-12 into eq. 5-13 shows ( )CRP E  may be 

calculated as: 

( )

(" " | ) ( ) (" " | ) ( )

(" " | ) ( ) (" " | ) ( )

1 (" ")
CR

P TOD FN P FN P OH FN P FN

P FN OH P OH P FN TOD P TOD
P E

P ND

+ 
 + + =

−
,  (5-13) 
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( )

(" " | ) ( ) (" " | ) ( )

(" " | ) ( ) (" " | ) ( )
( )

1 (" " | ) ( ) (" " | ) ( ) (" " | ) ( )
CR

P TOD FN P FN P OH FN P FN

P FN OH P OH P FN TOD P TOD
P E

P ND TOD P TOD P ND OH P OH P ND FN P FN

+ 
 + + =

− + +
(5-14) 

Thus, ECR may be calculated directly from the estimated probabilities generated by the 

standard horizontal analysis of the confusion matrix frequency counts, along with the 

desired prior probability for each class. 

5.2.2 Non-critical Error Calculation 

The non-critical errors (ENC) may be calculated in a similar manner to ECR and 

includes declarations leading to non-optimal sortie performance or weapon selection.  

The ENC events include declarations of true Hostile targets incorrectly as the “TOD” or 

“OH.”  The two desired Hostile target labels include:  

1. “TOD” = Target of the Day (SCUD) 

2. “OH” = Other Hostiles (SMERCH, SA-6 Radar, SA-6 TEL, T-72) 

Non-critical errors occur for incorrect Hostile label declarations, such as labeling a 

SCUD as “OH” or a SMERCH as “TOD” as shown by the following definition: 

( ) ( )( ) (" " ) (" " ) |NCP E P P TOD OH P OH TOD declaration= ∩ ∪ ∩ . (5-15) 

Thus, using the Law of Total Probability and proceeding as was done for eq. 5-6, and 5-7, 

( ) ( | " ") (" " |  )

         ( | " ") (" " |  )

NCP E P OH TOD P TOD declaration

P TOD OH P OH declaration

=
+

   (5-16) 

Using eq. 5-9 for the calculation of (" " | )iP label declaration , 

( ) ( | " ") (" ") ( | " ") (" ")

1 (" ")
NC

P OH TOD P TOD P TOD OH P OH
P E

P ND

+=
−

.  (5-17) 
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Substituting the relationships from eq. 5-12 and use of equations similar to 5-11 shows 

( )NCP E may be calculated as: 

( )
(" " | ) ( ) (" " | ) ( )

( )
1 (" " | ) ( ) (" " | ) ( ) (" " | ) ( )

NC

P OH TOD P TOD P TOD OH P OH
P E

P ND TOD P TOD P ND OH P OH P ND FN P FN

+=
− + +

.(5-18) 

Therefore, an estimate of the non-critical error may be obtained from the probabilities 

calculated from an initial horizontal analysis of an ATR system’s confusion matrix for 

any desired prior probabilities. 

5.2.3 “Non-declaration” Calculation 

The estimated percentage of final fusion system rejections or Non-declarations 

(PND) provides a measure of the total objects being assessed that are left labeled as “Non-

declaration” or “ND” at the end of all potential sensing opportunities.  For the fusion 

experiments in this chapter, a final label of “ND” only occurs after attempting to classify 

the target vehicle using sensor looks during all five time periods available.  Since the 

“Non-declaration” measure is calculated using horizontal analysis of the confusion 

matrix elements, an estimate for PND may be calculated using of the Law of Total 

Probability directly from eq. 5-4 as, 

(" " | ) ( )  (" " | ) ( )  (" " | ) ( )NDP P ND TOD P TOD P ND OH P OH P ND FN P FN= + + . (5-19) 

With the Probability of Declaration, 1Dec NDP P= − , and ND REJP P= . 

5.3 Sensor Level Features Derived from the DCS Radar Data  

The DCS radar data were collected May 2004 at Eglin AFB and was obtained 

through a data request submitted to the Sensor Data Management System (SDMS) 



 

173 

website (https://www.sdms.afrl.af.mil/request/data_request.php) by an on-line data 

request.  Data were collected by a General Dynamics DCS X-band synthetic aperture 

(SAR) radar operating in spotlight mode.  A medium sized Convair 580 with twin 

engines and turbo-propellers was used as a host platform for the DCS radar system.  The 

DCS radar sensor bandwidth was 640 MHz with a peak transmit power of 4 kW.  The 

HH and VV polarized DCS radar 2-D imagery was collected with a resolution of 1.0 ft, 

for both magnitude and phase information.  Spotlight scenes with all 15 targets were 

collected.  All targets were imaged in an open area without concealment, and all vehicles 

were aligned in similar headings, but remained stationary for the data collection.  From 

these full spotlight scenes, individual target region of interest (ROI) chips were extracted.  

The individual target chips are 256 x 256 pixels and centered on each target.  Separation 

between targets provided individual chips to only contain radar returns associated with 

the individual target of interest or the benign background.  All data used in this 

experiment was processed using the individual target ROIs. 

5.3.1 Selection of Training and Test Data  

The DCS radar data collection contained spot radar images collected across 360 

degrees of aspect angle for depression angles of 6, 8 and 10 degrees with multiple flight 

passes collecting data through approximately 90 degrees.  Some additional flight passes 

collected data at varying depression angles of 4-11 degrees and at a depression angle of 

12 degrees.  The data collected at depression angles of 6 and 8 degrees was selected to be 

used as a Training data set.  Data collected at a depression angle of 10 degrees, with 

similar flight passes as those selected for the Training data, was selected to form a Test 
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data set to represent an extended operating condition (EOC), outside the range of 

depression angles used for any training purposes. 

The Training data were collected at an elevation of approximately 3000 and 4000 

feet, while the EOC Test data were collected at an elevation of approximately 5000 feet.  

The Training data included 724 observations of each target type for both HH and VV 

polarizations.  For each flight pass of the aircraft, approximately 4 degrees of aspect 

angle separates consecutively collected radar images.  A total of 32 flight passes with 22 

or 23 looks per flight is included in the Training data set, where each flight pass covers 

approximately 90 degrees.  The Test data includes 446 observations of each target type 

by each polarization, with a desired collection at a depression angle of 10 degrees.  A 

total of 20 flight passes, with 22 or 23 looks per flight, is used to generate all Test sets 

and provides for testing across the full aspect range of 360 degrees.  The specific flight 

passes used to generate the Training and Test data sets are included in Table 5.2 and 

Table 5.3. 
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Table 5.2 Data Selected for Training with a Desired Depression Angle of 6 or 8 Degrees 

looks per Desired

Number Flight Pass Identifier # chips vehicle Dep

1 1 10 FP0110 690 46 6

2 1 11 FP0111 660 44 6

3 1 12 FP0112 660 44 6

4 1 13 FP0113 660 44 6

5 1 15 FP0115 690 46 8

6 1 16 FP0116 690 46 8

7 1 17 FP0117 690 46 8

8 1 18 FP0118 690 46 8

9 1 34 FP0134 690 46 8

10 2 12 FP0212 660 44 6

11 2 13 FP0213 660 44 6

12 2 14 FP0214 690 46 6

13 2 16 FP0216 690 46 8

14 2 17 FP0217 690 46 8

15 2 18 FP0218 690 46 8

16 2 19 FP0219 690 46 8

17 2 32 FP0232 660 44 6

18 2 33 FP0233 660 44 6

19 2 34 FP0234 690 46 6

20 2 35 FP0235 660 44 6

21 2 36 FP0236 660 44 6

22 2 37 FP0237 660 44 6

23 2 38 FP0238 690 46 6

24 2 39 FP0239 660 44 6

25 3 6 FP0306 660 44 6

26 3 7 FP0307 690 46 6

27 3 8 FP0308 690 46 6

28 3 9 FP0309 690 46 6

29 3 11 FP0311 690 46 8

30 3 12 FP0312 690 46 8

31 3 13 FP0313 690 46 8

32 3 14 FP0314 690 46 8

# looks per vehicle 1448

HH looks per vehicle 724

VV looks per vehicle 724

mean aspect sampling 0.50 degrees

Total number of chips processed 21720  
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Table 5.3 Data Selected for Test with a Desired Depression Angle of 10 Degrees 

looks per Desired

Number Flight Pass Identifier # chips vehicle Dep

1 1 20 FP0120 660 44 10

2 1 22 FP0122 660 44 10

3 1 23 FP0123 690 46 10

4 1 25 FP0125 690 46 10

5 2 21 FP0221 660 44 10

6 2 23 FP0223 660 44 10

7 2 24 FP0224 660 44 10

8 2 26 FP0226 660 44 10

9 3 16 FP0316 660 44 10

10 3 18 FP0318 660 44 10

11 3 19 FP0319 660 44 10

12 3 21 FP0321 660 44 10

13 3 28 FP0328 690 46 10

14 3 29 FP0329 660 44 10

15 3 31 FP0331 660 44 10

16 3 32 FP0332 660 44 10

17 3 33 FP0333 660 44 10

18 3 34 FP0334 690 46 10

19 3 35 FP0335 690 46 10

20 3 36 FP0336 690 46 10

# looks per vehicle 892

HH looks per vehicle 446

VV looks per vehicle 446

mean aspect sampling 0.81 degrees

Total number of chips processed 13380  
 

Overall, a total of 35,100 complex SAR chips with 256 x 256 pixels were processed.  

Each chip is approximately 520 KB.  Thus, a subset of the original DCS radar dataset 

including over 18 GB of radar data were processed as described in the following section. 

5.3.2 Generation of HRR Features  

 Once a subset of the original DCS radar data collection was identified for use as 

Training and Test data, the next step was to process the data into reasonable sensor output 

features.  High Range Resolution (HRR) profiles offer enhanced target-to-clutter and 

noise signatures for moving targets through Doppler filtering and the use of clutter 
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cancellation (Williams et al., 2000).  To model the tracking and subsequent identification 

of moving ground targets, each of the images was processed into a HRR profile using two 

different algorithms, followed by template matching using two different angular 

resolutions.  In attempt to generate sensors with different characteristics, the two 

polarizations of radar data were processed using different algorithms for generating the 

HRR range profiles.  Çetin’s point based reconstruction (PBR) algorithm (Çetin, 2001) 

was selected for processing the HH-polarized data and an algorithm developed by AFRL 

with use by the MSTAR program (Williams et al., 1998, 1999, 2000) was selected to 

process the VV polarized data.  An overview of the steps required to process a single chip 

using each method is presented in Figure 6.3 on the following page.  Specific details for 

both processing algorithms can be viewed in the Matlab code used to process all chips 

and is included in Appendix B as files DCS_proc1.m, DCS_proc2.m, and DCS_proc3.m.  

Initial versions of these Matlab files were obtained from Albrecht (2004) and were 

originally used to process MSTAR chips of size 128 128× .  The Matlab files were 

modified to be used as function calls to process the complex 256 256×  DCS radar chips.  

DCS_proc1.m generates an 1 322×  HRR range profile using the AFRL procedure for 

each chip, along with an 1 200×  input profile for use by Çetin’s PBR algorithm.  

DCS_proc2.m generates normalized 1 200×  profiles across all aspect angles and targets, 

and DCS_proc3.m generates the PBR 1 200×  profiles from the normalized profiles. 

 Figures 5.4-5.13 provide samples of HRR profiles obtained by both the AFRL and 

PBR HRR algorithms for each of the 10 target vehicles used in this experiment.  All ten 

figures contain samples of both HH and VV polarization for each HRR algorithm and 

were collected by the DCS radar during one spotlight image of the entire scene.   
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Figure 5.3 DCS Data HRR Processing by AFRL and Çetin’s PBR Algorithms 
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Figure 5.4 Sample SCUD HRR Profile (label: Hostile - TOD)   
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Figure 5.5 Sample SMERCH HRR Profile (label: Other Hostile) 
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Figure 5.6 Sample SA-6 Radar HRR Profile (label: Other Hostile) 
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Figure 5.7 Sample SA-6 TEL HRR Profile (label: Other Hostile) 

SA-6 TEL picture obtained from http://www.fas.org/man/dod-101/sys/land/ 20 Jan 05
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Figure 5.8 Sample T-72 HRR Profile (label: Other Hostile) 

  

Figure 5.9 Sample HMMWV HRR Profile (label: Friend) 
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Figure 5.10 Sample M113 HRR Profile (label: Friend) 

  

Figure 5.11 Sample Small Truck HRR Profile (label: Neutral) 
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Figure 5.12 Sample Med Truck HRR Profile (label: Neutral) 

 

Figure 5.13 Sample Large Truck HRR Profile (label: Neutral) 
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From the single aspect sample of HRR range profiles, significant differences can 

be seen in the two processing algorithms.  The PBR algorithm developed by Çetin (2001) 

generates significantly sharper peaks with greater differences from the background 

returns.  This may be a significant aid in performing target recognition when data quality 

is degraded or reduced (Çetin and William, 2001; Çetin et al., 2003).  Yet, with the DCS 

data collected on a relatively benign background without camouflage, concealment or 

deception, classification advantages of the PBR algorithm may not be realized and may 

need to be tested under more stressing EOC to show advantage over the AFRL algorithm.  

In addition, Çetin’s algorithm includes adjustable parameters, which were set at initial 

values and not changed.  These values appear to generate reasonable profiles for HH 

polarized data, but do not appear to generate VV profiles with a consistent order of 

magnitude or the desired “peaked” profiles.  Overall, the primary reason for use of the 

PBR HRR algorithm appears valid, from which a second sensor that will yield different 

classification from the more extensively used AFRL algorithm is obtained.  This can be 

seen in future analysis of the sensor output by vehicle, where the AFRL and PBR HRR 

algorithms operating on the HH and VV data appear to represent two sensors with 

different output characteristics. 

Once HRR range profiles for each target chip had been processed, features 

representative of processed sensor data were developed.  Standard methods for 

classification using HRR signatures include generation of feature vectors from the entire 

HRR range profile or selection of peak amplitudes within desired range bins (Mitchell 

and Westerkamp, 1998, Williams et al., 2000).  For this research, features were generated 

by taking the peak amplitude for each HRR return from 10 uniformly spaced range bins 
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after the range bins were filtered to include only those range bins with radar returns 

significantly different from ground noise.  The features associated with Sensor A, HH 

polarized SAR data processed by Çetin’s PBR HRR algorithm, included the peak 

magnitudes in bins 70-75, 76-81, 82-87, 88-93, 94-99, 100-105, 106-111, 112-117, 118-

123 and 124-129 from a total of 200 available bins.  The features associated with Sensor 

B, VV polarized SAR data processed by AFRL’s HRR algorithm, included peak 

magnitudes in bins 115-126, 127-138, 139-150, 151-162, 163-174, 175-186, 187-198, 

199-210, 211-222 and 223-234 from a total of 322 bins available. 

With the 256 256× complex radar images reduced to a feature vector of ten 

values, templates were estimated to represent specific ranges of aspect angle for each 

target vehicle.  Figure 5.14 shows the aspect angle convention used by the DCS radar 

collection.  As identified for other template based classification (Duda et al. 2001, Meyer, 

2003), the Mahalanobis distance, was used to assess each HRR feature vector. 

( ) ( )2 1
T

ij ij ij

−∆ = − Σ −x x      (5-20) 

is the Mahalanobis distance squared between feature vector x and ij .  Where, ij  is the 

mean of target vehicle i estimated for angular range j and ijΣ  is the estimated covariance 

for target vehicle i and angular range j.  Training data were used to estimate the Gaussian 

parameters, ij and ijΣ  across all aspect templates, with 360 /#  oj angular templates= .  

In addition, agreement has been found between the use of a multivariate Gaussian 

approximation of features obtained using radar sensor templates and features generated 

from simulation of higher fidelity radar returns (Haspert et al., 2004).  Further, since the 

Gaussian distribution has the maximum entropy associated with an observed mean and 
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variance, it should provide for a conservative estimate (Duda et al., 2001: 631).  Thus, 

use of the Mahalanobis distance appears reasonable. 

Sensor Direction
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Figure 5.14 Aspect Angle Conventions for Collected Radar Data 

With 724 samples of each target processed across 360 degrees, angular templates 

of 10 and 15 degrees were selected by use for the two sensors.  The number of Training 

and Test images per angular template varies slightly for each target vehicle.  The non-

uniformity across angular templates is attributable to both the variability in the DCS 

collection during the numerous flight passes and differences in aspect angles between 

each vehicle up to 8 degrees.  The aspect differences for each vehicle are shown in 

Figures 5.4 – 5.13, where each vehicle was imaged at the same time by the DCS radar in 

spot mode.  From Figure 5.15, the j = 36 angular bins associated with 10 degree 

templates show the number of samples for one particular vehicle.  The number of training 

images range from about 15 to 25, from which ij and ijΣ  are estimated.  With sequential 

looks from one flight pass likely to contribute 2 or 3 data points for each of these 

templates, it should be noted that covariance may be underestimated since the data 

samples are not independent.  Figure 5.15 also shows the number of Test data samples by 

angular bin, where higher variability is shown in the number of samples for each angular 

template. 



 

187 

 

Figure 5.15 Sample Angular Histograms of Training & Test Data for 10
o
 Templates 

With at least 10 samples required to estimate ijΣ , angular templates less than 10 degrees 

were potentially insufficient across certain angles.  Angular templates of 15 degrees were 

used to generate templates for the second sensor.  The associated j = 24 angular ranges 

are shown in Figure 5.16 and show the number samples available for training and test.  

 

Figure 5.16 Sample Angular Histograms of Training & Test Data for 15
o
 Templates 
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To gain initial confidence in the processing of the DCS radar data, the Total 

Probability of Misclassification (TPM) (Johnson and Wichern, 1998) was calculated for 

the Training data.  The mean TPM across 24 or 36 Gaussian templates between any two 

classes is presented in Table 5.4a for sensor A and Table 5.4b for Sensor B.  As desired 

by a fusion system, the two sensors appear to provide slightly different classification 

results based on this initial pair-wise assessment.  From these tables, Sensor A or B may 

perform better for a specific classification task between two vehicles. This offers some 

initial evidence that fusion of these two sensors may be significantly beneficial. 

Table 5.4a Pair-wise TPM for Sensor A for Each of the 10 Target Types using Training 

Data, HH Polarization, Çetin’s PBR HRR Algorithm and 10 Degree Aspect Templates 

SCUD SMERCH SA-6 radar Med Truck HMMWV T-72 M113 Sm Truck SA-6 TEL Lg Truck

SCUD -- 5.9% 2.3% 4.0% 0.4% 1.4% 0.6% 2.4% 2.1% 3.0%

SMERCH 5.9% -- 2.8% 3.2% 0.4% 1.1% 0.4% 2.0% 2.6% 2.3%

SA-6 radar 2.3% 2.8% -- 2.9% 1.0% 3.7% 1.2% 3.4% 8.9% 2.2%

Med Truck 4.0% 3.2% 2.9% -- 1.2% 1.7% 0.8% 2.2% 2.5% 4.7%

HMMWV 0.4% 0.4% 1.0% 1.2% -- 1.6% 4.2% 1.8% 1.1% 1.2%

T-72 1.4% 1.1% 3.7% 1.7% 1.6% -- 1.9% 2.2% 4.3% 1.6%

M113 0.6% 0.4% 1.2% 0.8% 4.2% 1.9% -- 1.5% 1.4% 1.3%

Sm Truck 2.4% 2.0% 3.4% 2.2% 1.8% 2.2% 1.5% -- 3.6% 2.0%

SA-6 TEL 2.1% 2.6% 8.9% 2.5% 1.1% 4.3% 1.4% 3.6% -- 1.5%

Lrg Truck 3.0% 2.3% 2.2% 4.7% 1.2% 1.6% 1.3% 2.0% 1.5% --

TPM sum 22.1% 20.6% 28.4% 23.1% 12.8% 19.5% 13.3% 20.9% 27.8% 19.7%

mean TPM 2.5% 2.3% 3.2% 2.6% 1.4% 2.2% 1.5% 2.3% 3.1% 2.2%  
 

Table 5.4b Pair-wise TPM for Sensor B for Each of the 10 Target Types using Training 

Data, VV Polarization, AFRL’s HRR Algorithm and 15 Degree Aspect Templates 

 
SCUD SMERCH SA-6 radar Med Truck HMMWV T-72 M113 Sm Truck SA-6 TEL Lg Truck

SCUD -- 2.1% 1.1% 3.2% 0.0% 0.2% 0.1% 1.2% 1.1% 1.9%

SMERCH 2.1% -- 2.2% 0.7% 0.0% 0.3% 0.1% 0.5% 1.4% 0.4%

SA-6 radar 1.1% 2.2% -- 2.0% 1.0% 3.1% 0.8% 2.4% 10.0% 2.8%

Med Truck 3.2% 0.7% 2.0% -- 0.4% 2.3% 1.0% 3.0% 1.9% 5.2%

HMMWV 0.0% 0.0% 1.0% 0.4% -- 1.6% 6.2% 3.0% 0.9% 0.9%

T-72 0.2% 0.3% 3.1% 2.3% 1.6% -- 1.8% 1.9% 3.7% 1.0%

M113 0.1% 0.1% 0.8% 1.0% 6.2% 1.8% -- 2.2% 1.2% 0.6%

Sm Truck 1.2% 0.5% 2.4% 3.0% 3.0% 1.9% 2.2% -- 2.5% 3.2%

SA-6 TEL 1.1% 1.4% 10.0% 1.9% 0.9% 3.7% 1.2% 2.5% -- 1.4%

Lrg Truck 1.9% 0.4% 2.8% 5.2% 0.9% 1.0% 0.6% 3.2% 1.4% --

TPM sum 10.8% 7.6% 25.3% 19.6% 14.0% 15.9% 13.9% 19.9% 24.0% 17.3%

mean TPM 1.2% 0.8% 2.8% 2.2% 1.6% 1.8% 1.5% 2.2% 2.7% 1.9%  
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The TPM values presented represent an apparent error rate obtained using the 

same data used to estimate the Gaussian parameters.  These values are useful to 

determine where a majority of misclassifications may occur.  For example the largest 

pair-wise TPM occurs for Sensor B between the SA-6 radar and SA-6 TEL.  This may 

have little operational impact, if neutralizing either of the two vehicles would effectively 

neutralize the system.  Yet, another fairly large TPM occurs for Sensor A between the 

SCUD and SMERCH, which could have an operational impact and contribute to non-

critical error when the desired Target of the Day is the SCUD.   

From visual analysis of these TPM tables, along with others generated using 

different angular template ranges and polarizations of the data, a few insights were 

gained.  First, for each HRR algorithm, TPM tended to increase for templates of 

increased angular range.  Yet, the performance trends for Test data are unknown, with 

respect to template size.  Larger templates may generalize better, especially if 

performance degradation is more significant for smaller templates between Training and 

Test data.  Next, overall vehicle size appears to be a good indicator of potential 

discrimination between targets.  For example, the HMMWV is smallest of the 15 targets 

with low TPM between most other targets.  As the largest vehicles, the SCUD and 

SMERCH also show low TPM between other vehicles, while the PBR HRR algorithm 

TPM between these two vehicles is relatively high at 6%. 

While the TPM associated with the true aspect angles provides a general idea of 

sensor discrimination, perfect aspect angle information is unlikely to be available.  By 

assuming a moving target indicator (MTI) sensor is used to acquire the track of a 

potential target prior to or concurrent with the HRR data collection, the associated target 
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track can be used to estimate the vehicle’s aspect angle within +/- 15 degrees (Williams 

et al., 2000).  Assuming this estimated aspect angle information is available, template 

based matching was performed by computing the Mahalanobis distance for each 

vehicle’s feature vector, x, to each of the angular templates for all ten vehicles.  Template 

matching was performed using the ground-truth of the imaged vehicle to determine the 

first angular template to be searched.  To account for the +/- 15 degrees of aspect angle 

estimation by an MTI system, the Mahalanobis distances from the angular templates 

occurring before and after the true aspect angle were also evaluated.  A total of 30 

templates were used to compute 30 Mahalanobis distances for each imaged vehicle’s 

HRR feature vector.  The minimum Mahalanobis distance for each of the ten target types 

was then used to compute a bounded score associated with each vehicle type.  An one-

dimensional ‘z-score’ [0,1]∈  associated with each target type’s distance measure, i∆ , 

was computed as: 

( )i ip p= ∆ =  
2

1/ 2( )1

2

ie
π

− ∆= .   (5-21) 

While some assumptions of obtaining i.i.d. samples for Gaussian parameters were 

violated in generating these probability scores, such as independence between 

observations, it is used as a mapping to obtain reasonable scores between 0 and 1.   

Posterior probability estimates for each of the three desired output labels were 

then obtained by normalizing probability scores by the sum of all classes for each 

observation. 

TOD posterior probability = 1

10 10

1 1

SCUD

i i

i i

p p
ppTOD

p p
= =

= =
∑ ∑

    (5-22) 
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OH posterior probability = 

6 6 72 2 3 4 5

10 10

1 1

SMERCH SA Radar SA TEL T

i i

i i

p p p p p p p p
ppOH

p p

− − −

= =

+ + + + + += =
∑ ∑

   (5-23) 

FN posterior probability = 

113 6 7 8 9 10

10 10

1 1

HMMWV M SmTruck MedTruck LgTruck

i i

i i

p p p p p p p p p p
ppFN

p p
= =

+ + + + + + + += =
∑ ∑

  (5-24) 

Thus, for any target being assessed, the final posterior probabilities sum to one, 

1ppTOD ppOH ppFN+ + = .   (5-25) 

A plot of the SCUD posterior probabilities associated with a Hostile declaration of 

“TOD” or “OH” is shown in Figure 5.17 for each sensor and both data sets, where 

Hostile (H) posterior probability = ppH ppTOD ppOH= + .      (5-26) 

Viewing the plots in Figure 5.17, in most cases the sensors do a good job of correctly 

estimating the posterior probability of Hostile as close to 1.  Similar figures representing 

all 10 target types are included in Appendix A.  From visual analysis of these plots, it 

appears as if Sensors A and B, provide different target information associated with the 

radar aspect angle.  For example, the posterior probability estimates of being a Hostile 

enemy tend to be correct, except for some side views of the SCUD associated with aspect 

angles centered about 270 degrees and to a lesser extent, at the opposing 90 degree aspect 

angle.  This reduction in sensor performance, when the vehicles are being classified by 

broadside views, using HRR signatures agrees with research by Williams et al., (2000) 

and should be expected since the HRR processing algorithms generate a mean range 

profile across the width of the vehicle.  In contrast, better HRR features may be obtained 
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by imaging vehicles from the front or rear, from which estimates of relative vehicle 

length may aid in the discrimination effort.  While informative, one deficiency of these 

angular posterior probability plots is that the number of incorrect Hostile posterior 

probabilities close to 0 is not ready visible.  Since the figures plot a single dot at any 

probability/angle combination and do not indicate the frequency of occurrence, Tables 

5.5 and 5.6 are presented to summarize sensor performance. 
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Figure 5.17 Sensor A & B Posterior Probability of Hostile by Aspect Angle for All 

SCUD DCS Radar Imagery Included in the Training and Test Data Sets 

To gain further insight of each sensor’s single look performance, assessments 

were made at the dichotomous Hostile vs. Friend/Neutral level by using set thresholds 
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and the posterior probability of Hostile (ppH) as a single value to determine class 

membership from.  For the following table, the mean True Class and False Class 

estimates can be modeled as binomial random variables.  This facilitates calculation of 

confidence intervals on these variables, where an approximate 90% (1-α ) confidence 

interval, with 724 training samples yields an associated CI of approximately +/- 2-3%, 

while the CI associated with the test data with 446 samples is slightly higher at +/- 3-4%. 

 As shown earlier in Figure 3.3, the relations between thresholds and labels are 

depicted in the following figure.  This shows the classification labels for Hostile vs. 

Friend two-class data represented by the two histograms with different grey colors. 

 

Figure 5.18 Example Relations and Labels for given Values of  and low upθ θ  
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Table 5.5 Sample Sensor Performance by Target Type using Training and Test Data for 

θlow = θup = 0.5 (No Rejection Option, Classify as “H” if ppH > 0.5) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 4% 96% 0% 7% 93% 0%

SMERCH OH 7% 94% 0% 3% 97% 0%

SA-Radar OH 6% 94% 0% 15% 85% 0%

T-72 OH 8% 92% 0% 13% 87% 0%

SA-6 TEL OH 5% 95% 0% 15% 86% 0%

Med Truck FN 91% 9% 0% 98% 2% 0%

HMMWV FN 90% 10% 0% 98% 2% 0%

M113 FN 90% 10% 0% 98% 2% 0%

Sm Truck FN 82% 18% 0% 98% 2% 0%

Lg Truck FN 98% 2% 0% 99% 1% 0%

mean True Class 92.2% mean True Class 93.7%

mean False Class 7.9% mean False Class 6.3%

mean rejection 0.0% mean rejection 0.0%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 11% 89% 0% 21% 79% 0%

SMERCH OH 11% 90% 0% 11% 90% 0%

SA-Radar OH 12% 88% 0% 27% 74% 0%

T-72 OH 21% 79% 0% 35% 65% 0%

SA-6 TEL OH 14% 86% 0% 32% 68% 0%

Med Truck FN 70% 30% 0% 92% 8% 0%

HMMWV FN 81% 19% 0% 97% 3% 0%

M113 FN 76% 24% 0% 96% 4% 0%

Sm Truck FN 66% 34% 0% 93% 7% 0%

Lg Truck FN 84% 16% 0% 96% 5% 0%

mean True Class 80.8% mean True Class 84.8%

mean False Class 19.2% mean False Class 15.2%

mean rejection 0.0% mean rejection 0.0%  
 

Thus, without a Rejection option, the sensors each perform Hostile vs. Friend 

classification at an apparent 90% +/-3% or better for training data, while the test data 

shows classification accuracy closer to 80% +/-4%.  Table 5.6 shows considerable 

improvement in classification accuracy given a centered rejection window of width 0.80.  

Test data classification accuracy is now close to 90% +/-4% for each individual sensor.  

Yet, with a desired critical error of 2% or less, significant improvement will need to be 

realized by the fusion systems to obtain feasible solutions. 
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Table 5.6 Sample Sensor Performance by Target Type using Training and Test Data for 

θlow = 0.10 and θup = 0.9 (Rejection Occurs if 0.10 < ppH < 0.90) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 1% 88% 11% 1% 84% 15%

SMERCH OH 1% 83% 16% 0% 91% 9%

SA-Radar OH 1% 81% 18% 4% 65% 31%

T-72 OH 1% 74% 25% 3% 70% 27%

SA-6 TEL OH 1% 77% 23% 4% 67% 29%

Med Truck FN 79% 3% 18% 93% 1% 6%

HMMWV FN 70% 2% 28% 95% 1% 5%

M113 FN 69% 1% 30% 93% 1% 6%

Sm Truck FN 55% 4% 41% 93% 1% 7%

Lg Truck FN 93% 0% 7% 97% 0% 3%

mean True Class | dec 97.9% mean True Class | dec 98.3%

mean False Class | dec 2.1% mean False Class | dec 1.7%

mean rejection 21.7% mean rejection 13.7%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 7% 84% 9% 16% 74% 11%

SMERCH OH 5% 70% 26% 6% 79% 16%

SA-Radar OH 4% 70% 27% 11% 57% 31%

T-72 OH 8% 58% 34% 17% 45% 38%

SA-6 TEL OH 5% 65% 30% 15% 43% 42%

Med Truck FN 54% 15% 31% 83% 5% 12%

HMMWV FN 58% 11% 31% 93% 1% 7%

M113 FN 52% 11% 37% 89% 2% 9%

Sm Truck FN 39% 17% 44% 85% 3% 12%

Lg Truck FN 73% 8% 19% 92% 2% 7%

mean True Class | dec 87.3% mean True Class | dec 90.5%

mean False Class | dec 12.7% mean False Class | dec 9.5%

mean rejection 28.7% mean rejection 18.3%  
 

To provide some insight as to why the test data sensor performance degraded, the number 

of correct angular template matches was assessed for the true target types.  From Table 

5.7, the search of 3 templates by the training data resulted in a correct template match 

approximately 90% of the time, while the test data only selected the correct angular 

template associated with the true target type about 60% of the time. 
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Table 5.7 Correct Matches by Aspect Angle for Training & Test Sets 

3 TEMPLATE SEARCH

SENSOR A - TRAINING SENSOR B - TRAINING

10 deg templates, HH-polar, PBR algorithm 15 deg templates, VV-polar, AFRL algorithm

target correct next previous target correct next previous

type template template template type template template template

SCUD 89.2% 5.4% 5.4% SCUD 85.1% 8.8% 6.1%

SMERCH 93.4% 3.6% 3.0% SMERCH 89.2% 4.3% 6.5%

SA-6 radar 89.0% 6.5% 4.6% SA-6 radar 83.0% 8.7% 8.3%

Med Truck 91.3% 2.9% 5.8% Med Truck 89.1% 7.5% 3.5%

HMMWV 96.1% 1.9% 1.9% HMMWV 90.6% 5.1% 4.3%

T-72 91.9% 3.6% 4.6% T-72 86.7% 6.6% 6.6%

M113 94.2% 3.5% 2.4% M113 86.7% 6.6% 6.6%

Sm Truck 93.7% 3.7% 2.6% Sm Truck 89.5% 4.8% 5.7%

SA-6 TEL 92.3% 3.6% 4.1% SA-6 TEL 85.8% 7.7% 6.5%

Lrg Truck 90.2% 5.4% 4.4% Lrg Truck 92.8% 3.0% 4.1%

mean 92.1% 4.0% 3.9% mean 87.9% 6.3% 5.8%

SENSOR A - TEST SENSOR B - TEST

target correct next previous target correct next previous

type template template template type template template template

SCUD 51.4% 18.4% 30.3% SCUD 55.4% 24.2% 20.4%

SMERCH 62.8% 15.0% 22.2% SMERCH 56.5% 16.8% 26.7%

SA-6 radar 57.4% 22.4% 20.2% SA-6 radar 56.5% 22.2% 21.3%

Med Truck 59.0% 21.8% 19.3% Med Truck 65.3% 20.2% 14.6%

HMMWV 59.9% 22.2% 17.9% HMMWV 62.8% 15.0% 22.2%

T-72 63.9% 19.5% 16.6% T-72 59.0% 19.3% 21.8%

M113 61.9% 20.9% 17.3% M113 61.0% 20.6% 18.4%

Sm Truck 62.1% 18.4% 19.5% Sm Truck 57.2% 20.4% 22.4%

SA-6 TEL 59.6% 21.1% 19.3% SA-6 TEL 59.4% 19.7% 20.9%

Lrg Truck 56.7% 25.6% 17.7% Lrg Truck 64.8% 19.1% 16.1%

mean 59.5% 20.5% 20.0% mean 59.8% 19.8% 20.5%  
 

Overall, the sensor data generated to represent Sensors A and B appears to do a 

relatively good job of classification at the dichotomous Hostile vs. Friend level.  

Classification improvement can be made by allowing rejection as demonstrated by the 

single look mean True class assessments presented in Tables 5.5 (no rejection) and Table 

5.6 (with rejection).  Using these two sensors, with relatively good performance, as input 

for two fusion systems, it is hoped that the desired Combat ID requirements can be 

achieved as identified by the operational constraints levied by the warfighter. 
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5.3.3 Generation of Data Sets with Different Correlation within and across 

Sensor Looks  

In order to assess some of the potential effects of possible observed correlation, 

four different methods were developed to determine the next look by a sensor and to 

determine the relationship between the two different sensors.  The first of these methods 

used the DCS data in the natural order (ord) it was collected to obtain the next look with 

approximately 4 degrees of aspect angle separation between looks.  Sensors A and B 

were also co-registered with simultaneous looks of each ground vehicle.  This natural 

ordering provides for a continuous progression of both aspect and depression angles.  All 

flight passes selected for use by the Training and Test sets included 22 or 23 images in 

each polarization.  Sequences of 5-looks were generated.   This was accomplished by 

starting with the 1
st
 five observations, skipping the 6

th
 observation, then taking another 5-

look sequence, skipping the next if 23 images were available, then selecting the next 5, 

skipping the next, and using the last 5 looks as the final sequence.  Thus, using t # to 

indicate the sequential observation, 

for 22 looks: 1 { 1 5}, 2 { 7 11}, 3 { 12 16}, 4 { 18 22}

for 23 looks: 1 { 1 5}, 2 { 7 11}, 3 { 13 17}, 4 { 19 23}

seq t t seq t t seq t t seq t t

seq t t seq t t seq t t seq t t

= − = − = − = −
= − = − = − = −

 

By including a one-look temporal space between sequences, hopefully effects of 

autocorrelation between naturally occurring sequences will be minimized.  Using this 

method for the 32 flight passes in the Training data set yielded 128 sequences of 5-looks 

for each vehicle, with 1280 total sequences.  The 20 flight passes in the Test data set 

provided 80 five-look sequences for each vehicle, with 800 total sequences.  Three more 
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data sets were generated with different correlation structures within and across sensors.   

All data sets were generated with the same number of training and test sequences. 

 The remaining three data sets were generated to represent sensors with lower 

levels of correlation across sensors at a given time or within each sensor through time.  

Data to represent autocorrelated individual sensors was generated by randomly pairing 

one of the naturally occurring sequences of data from Sensor A with a naturally occurring 

sequence from Sensor B.  This may be representative of two different platforms imaging 

a ground target at the same time with re-looks, but at different aspect angles.  The next 

data set was generated using co-registered aspect angle looks by sensors A and B, but 

instead of using a natural sequence of looks, each of the co-registered looks was 

randomly selected from the available data, without replacement.  This generation of co-

registered data may be representative of the data collected by 5 different flight passes at 

different aspect angles by one platform hosting both sensors A and B.  The final data set 

was generated in an attempt to create independent sensor data both across sensors and 

through temporal looks.  For a given time t, both Sensor A and B represent looks at 

random aspect angles.  Each sensor’s multiple looks are also at random angles.  This data 

set may represent two platforms each hosting a different sensor and each taking five 

different flight passes in the attempt to ID a ground target.  As indicated in Table 5.8, the 

abbreviations of “ord,” “aut,” “cor,” and “ind” will be used to refer to these four data sets 

representing the different correlation structures and are summarized as follows: 

• ord = naturally ordered data, co-registered & autocorrelated through time 

• aut = autocorrelated individual sensors, not co-registered 

• cor = co-registered sensors independent through time 

• ind = independent sensors independent through time. 
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Table 5.8 Summary of Characteristics for Each of the Four Data Sets 

Naturally ordered (ord):

- Sensors A & B collected at same time and same aspect angle

- Temporal looks occurred naturally in data (approximately 4 degrees between looks)

- Both correlation across Sensors and autocorrelation within multi-looks by a sensor

- ex. One 2-sensor platform collecting data with real time re-looks during 1 flight pass

Autocorrelated individual sensors (aut):

- Sensors A & B collected at different aspect angles

- Temporal looks occurred naturally in data (approximately 4 degrees between looks)

- Autocorrelation between multi-looks

- Independence between sensors A & B

- ex. Two 1-sensor platforms collecting data with real time re-looks during 1 flight pass

Co-registered sensors independent through time (cor):

- Sensors A & B collected at same aspect angles (co-registered)

- Temporal looks taken randomly from data

- Independence between multi-looks

- Co-registration between sensors A & B at any time t

- ex. Up to 5 flight passes at different aspects angles by one 2-sensor platform

Independent sensors independent through time (ind):

- Sensors A & B collected at random aspect angles

- Temporal looks taken randomly from data

- Independence between multi-looks of each sensor through time

- Independence between sensors A & B at any time t

- ex. Up to 5 flight passes at different aspects angles by two 1-sensor platforms  
 

5.4 Majority Vote Boolean (MVB) Fusion Methodology  

The Majority Vote Boolean (MVB) fusion method uses predetermined Boolean 

logic to determine the final output label at any time t.  The input for this fusion logic 

includes the labels for Sensors A and B associated with time t along with the labels from 

both sensors for all preceding looks.  With input labels from both sensors, a majority vote 

winner for the 1
st
 look would be a “Non-declaration” unless both sensors concurred as 
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“TOD,” “OH” or “FN.”  In addition, if any ties occur with an equal number of labels 

being fused at a particular time period a “Non-declaration” decision is made.  Another 

situation leading to a “Non-declaration” label is if at time t the majority of labels were 

“ND.”  This Boolean logic allows for many situations in which a “Non-declaration” may 

occur.  Thus, this logic appears to be inherently conservative with many options to 

provide a “ND” rejection label when there is disagreement between the sensor labels. 

Sensor labels were generated from the posterior probabilities associated with each 

HRR profile.  To optimize the Boolean fusion, an upper and lower threshold was varied 

independently between the two sensors to determine the four optimal thresholds for the 

system.  These four thresholds were used to make an initial “Hostile,” “Friend,” or “Non-

declaration” label for each of the two sensors.  Since ppH ppFN+  sum to one, decisions 

for each sensor were made based on just ppH:  

{ } " "  if   ,  " "  if   ,  " "  if  up low low uplabel H ppH F ppH ND ppHθ θ θ θ= > ≤ < ≤  (5-27) 

If an initial label was “H,” then a set threshold was used to determine if a final label of 

“TOD” or “OH” was used, where  

{ } " " if   ,  " " if   TOD TODlabel TOD ppTOD OH ppTODθ θ= > ≤ ,  (5-28) 

ppTOD
ppTOD

ppTOD ppOH
=

+
, and TODθ  was initially set at 0.8 with a ratio of TOD:OH = 

1:4 for the Training data.  The lower and upper thresholds were varied from 0.0 through 

1.0 with a maximum difference of 0.90.  For each sensor, the rejection threshold was 

equal to the difference in the lower and upper thresholds, REJ up lowθ θ θ= − .  The ROC 

threshold, for each sensor, equals the lower bound of the rejection window, ROC lowθ θ= . 
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Figure 5.19 Overview of Majority Vote Boolean Fusion 
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To search the threshold space of { } { }MVB SA SB SA SA SB SB

ROC REJ ROC REJθ θ θ θΘ = Θ ×Θ = × × × , 

the rejection window was varied uniformly across 10 values {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.90} independently for each sensor.  The ROC window was then varied 

independently for each sensor uniformly across 10 values from 0.0 through1 REJθ− .  This 

process provides for systematic generation of “H,” “F,” and “ND” labels for each sensor.  

A “TOD” vs. “OH” declaration was then made using the set threshold if an “H” was 

declared.  A search of { } (10 10) (10 10) 10,000MVB SA SBΘ = Θ ×Θ = × × × =  thresholds was 

evaluated by the MVB fusion for each data set and number of minimum forced looks. 

By forcing a minimum number of looks, the rejection threshold was effectively 

set to 1.0 ( low up1.0,  0.0,  = 0.0 and = 1.0REJ ROCθ θ θ θ= = ) for time periods less than the 

minimum looks.  This allowed for systems to collect a minimum number of looks before 

generating an output label other than “ND.”  The fusion of looks greater than or equal to 

the minimum looks could then be feasible, with declaration rates meeting the operational 

constraints.  For example, if the rejection window was set to 1.0 across all looks, then the 

final output label would always yield “ND” and would never meet the final declaration 

constraint of 70% or better.  While use of the majority vote Boolean logic may not be the 

optimal Boolean logic, it does provide for a reasonable fusion rule.  For this pre-selected 

Boolean logic, optimization of the minimum look and threshold constraints is 

subsequently performed to optimize the fusion algorithm.  This is performed by 

determining the maximum TPR of the system, without use of cost information and 

without assumptions of independence between the sensors. 
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5.5 Probabilistic Neural Network (PNN) Fusion Methodology 

The Probabilistic Neural Network (PNN) fusion method uses multiple trained 

PNN models to determine a fused posterior probability of “TOD,” “OH” or “FN” using 

probability estimates from Sensors A and B as input features.  The final output label at 

any time t, is determined by post processing fused posterior probability estimates of 

“TOD,” “OH” and “FN” for given ROC and rejection thresholds, where 

( ),
TPNN

ROC REJθ θ= .  The input for PNN fusion at time t includes the posterior 

probabilities generated from Sensors A and B associated with time t along with the 

posterior probabilities from both sensors for all preceding looks.  Thus, five total PNNs 

were trained, with one for each time period, to incorporate the 3-class posterior 

probabilities as input features across all available looks (1, 2, 3, 4 or 5). 

Figure 5.19 shows the overall PNN fusion process.  Similar to the label generation 

for each of the two sensors in the Boolean fusion, the final label for the PNN fusion 

began with the top-level “H,” “F” or “ND” decision.  As before, this decision was made 

based on just ppH, where ppH = ppTOD + ppOH, and  

{ } " "  if   ,  " "  if   , " "  if    up low low uplabel H ppH F ppH ND ppHθ θ θ θ= > ≤ < ≤ , (5-29) 

where low ROCθ θ= and up low REJθ θ θ= + .  If the initial label was “H,” then the same 

threshold ( )0.8TODθ = was used to determine a final label of “TOD” or “OH,” where  

{ } " " if   ,  " " if   TOD TODlabel TOD ppTod OH ppTodθ θ= > ≤ ,  (5-30) 
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Figure 5.20 Overview of PNN Fusion 
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and ppTod is the posterior probability of a TOD given a hostile declaration.  As used for 

the generation of sensor labels for Boolean fusion, the lower and upper thresholds were 

varied from 0.0 through 1.0 with a maximum difference of 0.90.  Optimization of TPR  

was performed across { : ( , )} (100) (100) 10,000PNN PNN

ROC REJθ θΘ = = = × =  thresholds 

for each data set and for each number of minimum forced looks. 

The PNN fusion was accomplished using Matlab’s Neural Network Toolbox.  All 

available data from the Training set were used to train each of the five PNNs.  The 

training set included 1280 exemplars for each time period, evenly divided between the 

Hostile and Friend classes, with 1/5 of the Hostile class generated from SCUD data to 

represent the TOD.  Initial training was performed across a range of PNN spread values 

using a subset of the training data.  From these initial runs, the default spread = 0.10 of 

the PNN function appeared to be an appropriate value with good training and test 

classification accuracy at the “H” vs. “F” level.  A sample plot using all 5 looks of 

autocorrelated (aut) data is provided, where 1280 Training data samples were divided 

between a training and test set to assess different values of the PNN spread from 0.05 

through 2.0.  Similar plots were visually assessed across the range of minimum looks and 

across all four data sets with different within and across sensor correlation.  In general, 

perfect CA was obtained by the training set over a large range, while the test set 

performance may start to degrade as the spread value increased.  From these plots, a 

spread value was selected based on the dichotomous top-level Hostile vs. Friend decision 

without assessing the effects of Non-declarations.   
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Figure 5.21 PNN Fusion across a Divided Training Set used to Select the Spread 

The PNN models used for this fusion experiment were then trained using all 1280 

samples of available data for each time period, which may not accurately represent some 

multi-look scenarios, in which only those hard to classify “Non-declaration” vehicles are 

sensed an additional time.  If the multi-look PNN models were trained with only those 

exemplars previously rejected, a limited number of previously “non-declared” 

observations may severely limit data for training the PNN fusion models associated with 

a next look.  The set of “ND” exemplars would also vary significantly by the specific 

values of ROCθ  and REJθ being used by the multi-look fusion scheme.  Therefore, each 

PNN model was trained using all 1280 available Training observations which would 

hopefully converge reasonably to generate unbiased probability estimates of all three 

class labels, regardless of previous “Non-declarations.”  In summary, five PNNs were 

trained for each of the four data sets defined by the sensor correlation structure, and 

subsequent optimization of thresholds will then determine the best PNN fusion model. 
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5.6 Initial Comparison of Fusion Systems 

 The initial comparison of fusion models includes the evaluation of both PNN and 

MVB fusion methods across the range of minimum looks required before making a final 

system declaration and use of Training or Test data with one of the four correlation 

structures.  Evaluation using the training data was primarily performed to validate 

performance of the fusion methods prior to comparing them using the Test data.  The 

initial evaluation of both fusion methods required assessment across 5 levels of minimum 

looks {1,2,3,4,5}, 2 data types {TR,TE}, and 4 data correlation types {ord, cor, aut, ind}, 

for a total of 40 different estimates for each of the two fusion methods.  A total of 80 

evaluations were performed.  The evaluation of the 40 MVB fusion model/data 

combinations required approximately 12 hours to compute sensor labels, fuse the labels, 

and analyze all 10,000 threshold gridpoints.  The mixed variable programming 

formulation was implemented using code developed in Matlab and processed on a 

dedicated 2.66 GHz dual processor desktop with 2.0 GB of RAM.  The PNN fusion was 

completed in two stages.  First, 20 total PNN models were trained with input associated 

with 1 to 5 looks and a given correlation structure.  Next, the output associated with all 5-

looks for each sequence was saved as a single data file for all 40 Training and Test data 

sets.  Finally, a Matlab routine was developed to analyze the output data across all 

threshold values, PNNΘ .  This evaluation was much quicker than the Boolean fusion with 

assessment of all 40 data sets completed in approximately 30 minutes.   

 Some initial results are presented by plotting the ROC curves associated with all 

thresholds evaluated, along with indicating where the maximum TPR occurs, provided a 
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feasible solution could be obtained.  For the training data, only the ROC plots associated 

with a minimum of 1-forced look are presented.  The plot of the ROC curves generated 

for each of the four correlation structures (ord, cor, aut & ind) are included in the next 

figure and show nearly perfect ROC curves obtained using PNN fusion with Training 

data.  The stars indicate the point of maximum TPR while the dark dots behind the stars 

indicate other feasible operating points associated with different thresholds. 

 

Figure 5.22 ROC Curves Generated from Training Data using PNN Fusion 

Each PNN fusion subplot includes 100 ROC curves generated with 100 different Non-

declaration windows.  From the Table 5.9, the optimal TPR is obtained with a rejection 

window set to declare “Friend/Neutral” if the posterior probability is < 0.01, followed by 

a rejection window with a width of approximately 0.25.  “Hostile” declarations are made 

for any PNN hostile probability output above 0.19 – 0.32 depending on the data set.  
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Table 5.9 Training Data Summary for PNN Fusion with 1 Forced Look 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 1.00 1.00 1.00 0.04 0.02 0.00 1.00 0.91 0.01 0.19 0.18

aut 1:1 1.00 1.00 1.00 0.03 0.02 0.00 1.00 0.92 0.01 0.23 0.22

cor 1:1 1.00 1.00 1.00 0.03 0.02 0.00 1.00 0.75 0.01 0.28 0.26

ind 1:1 1.01 0.99 1.00 0.03 0.02 0.00 1.00 0.68 0.01 0.32 0.31  
 

Each MVB fusion subplot in Figure 5.23 includes 1000 ROC curves generated by 

10 different ROC thresholds for Sensor B, while ROC and rejection thresholds are held 

constant for Sensor A across 100 (10x10) values and Sensor B’s rejection threshold is 

held constant at one of ten values.  The optimal TPR is obtained without exercising a 

rejection window.  When comparing the PNN to MVB fusion using Training data, 

slightly higher TPR rates are obtained by the near perfect ROC curves using PNN fusion.  

Also, significantly more variability is apparent for the MVB fusion producing 1000 ROC 

curves from 4 variable thresholds vs. the 100 ROC curves generated for PNN fusion 

using only 2 thresholds.  The slightly higher TPR values obtained by the PNN fusion 

using Training data may be contributable to the fact that PNN fusion may reduce the 

number of “Non-declarations” by optimally selecting a small rejection window.  On-the-

other-hand, even when MVB fusion has no rejection window, as the case with the Test 

data, “Non-declaration” labels are still generated by the fusion system when the sensors 

disagree on the first look or when a majority vote is not obtained.  Each of the “Non-

declaration” labels then forces an additional look which reduces TPR. 
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Figure 5.23 ROC Curves Generated from Training Data using MVB Fusion 

Table 5.10 Training Data Summary for MVB Fusion with 1 Forced Look 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A
low θθθθ A

up θθθθ B
low θθθθ B

up

ord 1:1 1.06 0.94 1.00 0.03 0.02 0.00 0.99 0.68 0.11 0.11 0.11 0.11

aut 1:1 1.06 0.94 1.00 0.03 0.02 0.00 0.99 0.74 0.11 0.11 0.11 0.11

cor 1:1 1.07 0.93 1.00 0.03 0.02 0.00 1.00 0.76 0.11 0.11 0.11 0.11

ind 1:1 1.09 0.92 1.00 0.02 0.01 0.00 1.00 0.76 0.11 0.11 0.11 0.11  
 

The next plots include ROC curves for each of correlation levels using the Test 

data set.  The following figures include results using a minimum of 1 to 5 looks and for 

the prior probability of Hostiles to Friend (H:F) = 1:1 & 10:1.  When generating these 

figures with various prior probabilities, only the overall Hostile to Friend class priors are 

changed.  A constant ratio of TOD:OH is held constant at 1:4, and the use of the term 

Friend implies all five vehicles included in the Friend/Neutral class.  
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Figure 5.24 PNN Fusion Test Data ROC Curves with a Minimum of 1-look 

Table 5.11 Test Data Summary for PNN Fusion with 1 Forced Look 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

ord 10:1 1.15 0.870 1.000 1.000 0.019 0.028 0.917 0.008 0.000 0.191 0.191

aut 10:1 1.09 0.920 1.000 1.000 0.020 0.032 0.922 0.300 0.000 0.236 0.236

cor 10:1 1.16 0.860 1.000 1.000 0.017 0.048 0.924 0.013 0.000 0.355 0.355

ind 10:1 1.06 0.948 1.000 1.000 0.019 0.033 0.928 0.235 0.000 0.091 0.091  
 

From the plots and tables above, the PNN fusion does not generalize well to the Test 

data.  This is indicated by no feasible solutions for equal priors.  A target rich excursion 

with H:F = 10:1 shows feasible regions of the ROC curves denoted by a dark area, with 

the max TPR indicated by a star.  All four optimum thresholds aggressively label all 

objects as “Unknown” or as a “Hostile” as indicated by the values of θθθθ in Table 5.11. 
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Figure 5.25 PNN Fusion Test Data ROC Curves with a Minimum of 2-looks 

Table 5.12 Test Data Summary for PNN Fusion with 2 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

ord 10:1 2.10 0.476 1.000 1.000 0.011 0.009 0.906 0.932 0.000 0.009 0.009

aut 10:1 2.11 0.473 1.000 1.000 0.008 0.009 0.902 0.990 0.000 0.091 0.091

cor 10:1 2.07 0.484 1.000 1.000 0.008 0.018 0.914 0.792 0.000 0.009 0.009

ind 10:1 2.06 0.487 1.000 1.000 0.006 0.016 0.915 0.990 0.000 0.018 0.018  
 

Again, with a minimum of 2-looks, PNN fusion does not generalize well to the Test data.  

The Hostile target rich excursion shows feasible regions of the ROC curves denoted by 

dark areas, and all optimal thresholds aggressively label all objects as “Unknown” or 

“Hostile.” 
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Figure 5.26 PNN Fusion Test Data ROC Curves with a Minimum of 3-looks 

Table 5.13 Test Data Summary for PNN Fusion with 3 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

ord 10:1 3.11 0.321 1.000 1.000 0.007 0.011 0.884 0.990 0.000 0.009 0.009

aut 10:1 3.09 0.323 1.000 1.000 0.005 0.014 0.896 0.990 0.000 0.073 0.073

cor 10:1 3.04 0.329 1.000 1.000 0.003 0.000 0.905 0.990 0.000 0.036 0.036

ind 10:1 3.02 0.331 1.000 1.000 0.002 0.005 0.911 0.990 0.000 0.009 0.009  
 

Similar results are obtained for PNN fusion with a minimum of 3-looks.  The target rich 

excursion shows feasible regions of the ROC concentrated at the upper NW corner 

“knees” in all four ROC curves along with the optimal TPR thresholds denoted by a star.  

Of interest is that 99% of all thresholds assessed for the hostile target rich environment 

occur at those dark areas and at the optimal TPR indicated by the star in the upper NE 

plot corners. 
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Figure 5.27 PNN Fusion Test Data ROC Curves with a Minimum of 4-looks 

Table 5.14 Test Data Summary for PNN Fusion with 4 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

ord 10:1 4.06 0.246 1.000 1.000 0.004 0.014 0.877 0.990 0.000 0.018 0.018

aut 10:1 4.05 0.247 1.000 1.000 0.003 0.009 0.889 0.990 0.000 0.073 0.073

cor 10:1 4.02 0.249 1.000 1.000 0.001 0.000 0.901 0.990 0.000 0.436 0.436

ind 10:1 4.02 0.249 1.000 1.000 0.000 0.000 0.903 0.990 0.000 0.009 0.009  
 

PNN fusion with a minimum of 4-looks indicates very good looking ROC curves, yet 

they remain infeasible for the case of equal priors.  The target rich excursion shows very 

similar results to that using 3-looks, where very aggressive thresholds yield the maximum 

TPR, with 100% TP declaration and 100% FP declarations for all objects declared. 
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Figure 5.28 PNN Fusion Test Data ROC Curves with a Minimum of 5-looks 

Table 5.15 Test Data Summary for PNN Fusion with 5 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ low θθθθ up ∆θ∆θ∆θ∆θ
ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 5.10 0.196 0.980 0.003 0.018 0.000 1.000 0.980 0.099 0.999 0.900  
 

ord 10:1 5.00 0.200 1.000 1.000 0.002 0.002 0.863 0.990 0.000 0.900 0.900

aut 10:1 5.00 0.200 1.000 1.000 0.001 0.007 0.881 0.990 0.000 0.336 0.336

cor 10:1 5.00 0.200 1.000 0.000 0.000 0.000 0.889 0.990 0.000 0.900 0.900

ind 10:1 5.00 0.200 1.000 1.000 0.000 0.000 0.891 0.990 0.000 0.900 0.900  
 

PNN fusion with a minimum of 5-looks finally yields a feasible solution for the case of 

independent (ind) data.  In fact, 98% of the thresholds assessed using ind data and equal 

priors are feasible and occur at the knee in the ROC curve located at the diamond shape.  

Each of the evaluations using the target rich priors indicates the best TPR of 0.20 was 

obtained, with 5 looks used to make every TP Hostile class declaration. 
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The following figures will now be used to present and assess the Majority Vote 

Boolean fusion rule across 1-5 forced looks using Test data. 

 

Figure 5.29 MVB Fusion Test Data ROC Curves with a Minimum of 1-look 

Table 5.16 Test Data Summary for MVB Fusion with 1 Forced Look 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A
low θθθθ A

up θθθθ B
low θθθθ B

up

ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 2.32 0.431 0.988 0.034 0.020 0.008 0.828 0.001 0.033 0.733 0.011 0.911

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 1.77 0.566 0.997 0.078 0.019 0.008 0.710 0.013 0.133 0.533 0.000 0.600  
 

ord 10:1 1.37 0.731 1.000 0.281 0.017 0.012 0.964 0.610 0.222 0.222 0.000 0.100

aut 10:1 1.38 0.726 0.987 0.173 0.015 0.011 0.977 0.725 0.000 0.100 0.111 0.111

cor 10:1 1.32 0.760 0.995 0.548 0.018 0.012 0.938 0.709 0.000 0.100 0.000 0.100

ind 10:1 1.33 0.750 1.000 0.282 0.017 0.012 0.968 0.770 0.111 0.111 0.000 0.100  
 

The plots for MVB fusion with a minimum of 1-look now indicate feasibility using equal 

priors for the case of autocorrelated (aut) and independent (ind) data.  Feasible ROC 

points are indicated by white circles and a diamond is at the optimal TPR.  Significantly 

more feasible points are found for the target rich excursion with feasible dark areas and a 
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star used to denote the optimal TPR.  For a minimum of 1 look, the MVB fusion achieves 

feasibility with equal priors for aut and ind data.  Yet, the PNN fusion achieves a higher 

TPR for the target rich environment.  As in the training data, significantly more 

variability is observed for 1000 MVB ROC curves vs. the 100 PNN ROC curves in 

Figures 5.24-5.28. 

 

Figure 5.30 MVB Fusion Test Data ROC Curves with a Minimum of 2-looks 

 

Table 5.17 Test Data Summary for MVB Fusion with 2 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A
low θθθθ A

up θθθθ B
low θθθθ B

up

ord 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

aut 1:1 2.73 0.366 0.988 0.029 0.019 0.010 0.851 0.002 0.044 0.644 0.011 0.911

cor 1:1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 1:1 2.25 0.445 0.997 0.082 0.019 0.007 0.700 0.016 0.078 0.378 0.000 0.600  
 

ord 10:1 2.11 0.474 1.000 0.279 0.017 0.009 0.963 0.648 0.222 0.222 0.000 0.100

aut 10:1 2.11 0.473 0.997 0.263 0.016 0.014 0.964 0.751 0.222 0.222 0.000 0.100

cor 10:1 2.07 0.483 0.995 0.289 0.018 0.002 0.963 0.742 0.100 0.200 0.000 0.100

ind 10:1 2.06 0.485 1.000 0.282 0.017 0.009 0.968 0.775 0.111 0.111 0.000 0.100  
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The MVB fusion results for 2 forced looks appear similar to that of 1 look.  The ordered 

(ord) and co-registered (cor) data sets remain infeasible, but now the max TPR associated 

with both PNN and MVB appear to be equivalent, with differences less than 0.003. 

 

Figure 5.31 MVB Fusion Test Data ROC Curves with a Minimum of 3-looks 

Table 5.18 Test Data Summary for MVB Fusion with 3 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A
low θθθθ A

up θθθθ B
low θθθθ B

up

ord 1:1 3.24 0.308 1.000 0.081 0.020 0.008 0.713 0.001 0.389 0.889 0.000 0.100

aut 1:1 3.15 0.317 0.980 0.015 0.020 0.005 0.980 0.065 0.222 0.722 0.111 0.111

cor 1:1 3.03 0.330 1.000 0.071 0.020 0.001 0.780 0.267 0.356 0.556 0.000 0.100

ind 1:1 3.01 0.332 1.000 0.041 0.020 0.001 0.994 0.389 0.111 0.111 0.056 0.556  
 

ord 10:1 3.04 0.329 1.000 0.251 0.014 0.012 0.958 0.696 0.222 0.222 0.000 0.100

aut 10:1 3.05 0.328 1.000 0.306 0.018 0.009 0.960 0.768 0.111 0.111 0.000 0.100

cor 10:1 3.01 0.332 1.000 0.408 0.007 0.002 0.926 0.794 0.000 0.200 0.000 0.100

ind 10:1 3.01 0.333 1.000 0.081 0.005 0.002 0.970 0.796 0.444 0.444 0.000 0.100  
 

MVB fusion results for 3 forced looks now begin to show more feasible regions indicated 

by white circles for equal priors and dark areas for the target rich environment.  All four 

test data sets have feasible operating thresholds.  Assessment of the optimal TPR sensor 
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thresholds reveal each sensor has been tuned to perform a different function.  For 

example, the last line in Table 5.18 shows Sensor A declares only “FN” if < θlow = θup 

o.w. “H,” and Sensor B, with θlow = 0, only declares “ND” if < θup or “H” if > θup. 

 

Figure 5.32 MVB Fusion Test Data ROC Curves with a Minimum of 4-looks 

Table 5.19 Test Data Summary for MVB Fusion with 4 Forced Looks  

 
Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A

low θθθθ A
up θθθθ B

low θθθθ B
up

ord 1:1 4.19 0.238 0.989 0.009 0.018 0.005 0.716 0.000 0.711 0.911 0.000 0.300

aut 1:1 4.04 0.247 1.000 0.078 0.020 0.004 0.744 0.074 0.356 0.556 0.000 0.200

cor 1:1 4.00 0.250 1.000 0.053 0.016 0.001 0.805 0.553 0.556 0.556 0.000 0.100

ind 1:1 4.00 0.250 1.000 0.048 0.019 0.000 0.894 0.470 0.000 0.400 0.111 0.111  
 

ord 10:1 4.04 0.248 0.997 0.474 0.010 0.009 0.913 0.707 0.000 0.200 0.000 0.100

aut 10:1 4.02 0.249 1.000 0.137 0.007 0.009 0.953 0.767 0.333 0.333 0.000 0.100

cor 10:1 4.00 0.250 1.000 0.216 0.003 0.002 0.921 0.793 0.000 0.300 0.000 0.100

ind 10:1 4.00 0.250 1.000 0.226 0.016 0.000 0.980 0.796 0.000 0.000 0.111 0.611  
 

With 4 forced looks, MVB fusion obtains close to the maximum obtainable 0.25 TPR as 

calculated by 1 TP per 4 forced looks.  In general, a higher percentage of assessed MVB 

thresholds are feasible.  Again, inspection of the sensor thresholds for the optimal TPR, 
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reveals each sensor has been tuned to perform a different function, with some sensors 

capable of declaring three-class labels, others tuned to two labels and one case where 

only “H” labels are declared (last line of Table 5.19, ind data 0A A

low upθ θ= = ). 

 

Figure 5.33 MVB Fusion Test Data ROC Curves with a Minimum of 5-looks 

Table 5.20 Test Data Summary for MVB Fusion with 5 Forced Looks 

Data P T :P F L_TP maxTPR TP FP E CR E NC P Dec %Feas θθθθ A
low θθθθ A

up θθθθ B
low θθθθ B

up

ord 1:1 5.03 0.199 0.995 0.024 0.019 0.004 0.719 0.000 0.622 0.922 0.000 0.100

aut 1:1 5.00 0.200 1.000 0.037 0.011 0.003 0.786 0.165 0.000 0.500 0.111 0.111

cor 1:1 5.00 0.200 1.000 0.000 0.000 0.000 0.724 0.640 0.044 0.944 0.089 0.989

ind 1:1 5.00 0.200 1.000 0.000 0.000 0.000 0.738 0.498 0.078 0.978 0.089 0.989  
 

ord 10:1 5.01 0.199 0.997 0.519 0.010 0.005 0.907 0.718 0.000 0.100 0.000 0.200

aut 10:1 5.00 0.200 1.000 0.025 0.001 0.002 0.711 0.768 0.089 0.989 0.000 0.200

cor 10:1 5.00 0.200 1.000 0.186 0.014 0.000 0.727 0.782 0.900 1.000 0.000 0.000

ind 10:1 5.00 0.200 1.000 0.154 0.011 0.000 0.733 0.790 0.900 1.000 0.000 0.000  
 

With 5 forced looks, MVB fusion is feasible for all data sets; yet, the percentage of 

feasible thresholds is very limited (1 of 10,000 points is feasible) for equal priors 
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assessed using the naturally ordered (ord) data.  At the optimal TPR, all two sensor 

combinations are tuned to perform slightly different label functions.  With the optimal 

TPR close to 0.20 for all data sets, differences between use of MVB or PNN fusion in the 

Hostile target rich environment appear small, where both fusion methods obtains the 

same optimal TPR solution. 

 The next two tables include Test data summary information sorted by max TPR 

across all minimum looks and all sensor data correlation structures.  From Table 5.21, 

with equal prior probabilities of Hostiles and Friends, the maximum TPR was either 

obtained by MVB fusion or was found to be equivalent when comparing each fusion 

system using the same data correlation structure and the same minimum number of looks.  

For the only point where PNN fusion was feasible, it provided a comparable TPR to 

MVB fusion (0.196 vs. 0.200), which is highlighted in gray.  The bottom four rows with 

gray indicate the four minimum look/data correlation combinations which did not yield a 

feasible solution for either MVB or PNN fusion.  These points are associated with the 

naturally ordered data with the highest level of correlation and the co-registered data with 

the naturally occurring correlation across sensors at each look.  In general, the 

independent and autocorrelated (aut) data tend to yield higher TPR results, while the 

naturally ordered (ord) data tends to provide the lowest TPR.  In addition, while the 

maximum TPR is obtained with the minimum of 1 forced look, by requiring additional 

looks, the MVB fusion gains feasibility across all four data sets.  Thus, robustness to 

obtain a feasible combat ID system across the generated correlation structures is obtained 

by incorporating at least 3-forced looks. 

 



 

222 

Table 5.21 Sorted max TPR Summary for All Test Data and Equal Priors 

minimum data optimal max PNN MVB TPR diff PNN MVB

Looks correlation Fusion TPR max TPR max TPR MVB-PNN % Feas % Feas

1 ind MVB 0.566 0.000 0.566 0.566 0.000 0.013

2 ind MVB 0.445 0.000 0.445 0.445 0.000 0.016

1 aut MVB 0.431 0.000 0.431 0.431 0.000 0.001

2 aut MVB 0.366 0.000 0.366 0.366 0.000 0.002

3 ind MVB 0.332 0.000 0.332 0.332 0.000 0.389

3 cor MVB 0.330 0.000 0.330 0.330 0.000 0.267

3 aut MVB 0.317 0.000 0.317 0.317 0.000 0.065

3 ord MVB 0.308 0.000 0.308 0.308 0.000 0.001

4 cor MVB 0.250 0.000 0.250 0.250 0.000 0.553

4 ind MVB 0.250 0.000 0.250 0.250 0.000 0.470

4 aut MVB 0.247 0.000 0.247 0.247 0.000 0.074

4 ord MVB 0.239 0.000 0.239 0.239 0.000 0.000

5 cor MVB 0.200 0.000 0.200 0.200 0.000 0.640

5 ind MVB 0.200 0.196 0.200 0.004 0.980 0.498

5 aut MVB 0.200 0.000 0.200 0.200 0.000 0.165

5 ord MVB 0.199 0.000 0.199 0.199 0.000 0.0001

1 ord equal 0.000 0.000 0.000 0.000 0.000 0.000

2 ord equal 0.000 0.000 0.000 0.000 0.000 0.000

1 cor equal 0.000 0.000 0.000 0.000 0.000 0.000

2 cor equal 0.000 0.000 0.000 0.000 0.000 0.000  
 

The next table presents the same information summary for the case of a Hostile 

target rich environment.  From this table, all Fusion models were feasible and in the case 

of 5-looks using autocorrelated data both fusion methods obtained the maximum 

achievable TPR of 0.20.  Further, for all 16 comparisons with 2 or more minimum looks 

the maximum TPR achieved was less than 3% different between the two fusion methods.  

Thus, while MVB fusion is optimal for 8 of the 20 comparisons, PNN fusion is optimal 

for the 4 cases with 1 minimum look, where a significant difference is found between 

PNN and MVB fusion  

Since comparison of the fusion methods across two different prior probabilities 

provided some evidence of different fusion preferences based on an assumed prior 

probability of Hostiles and Friends, further excursions should be performed.  By just 
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varying H:F priors, MVB fusion appears preferred for an environment with equal priors.  

Requiring a forced number of looks appears to significantly aid either fusion algorithm to 

meet the warfighter constraints.  The Hostile target rich environment then showed 

optimal performance of the PNN fusion if using only 1-forced look, while the fusion 

algorithms appeared equivalent if requiring more than 1-look prior to labeling a target.  

To gain additional insights of fusion model preferences and differences, sensitivity 

analysis across different priors and other parameters is performed in the next section. 

 

Table 5.22 Sorted max TPR Summary for All Test Data and PT:PF = 10:1 

minimum data optimal PNN MVB TPR diff PNN MVB

Looks correlation Fusion max TPR max TPR max TPR MVB-PNN % Feas % Feas

1 ind PNN 0.948 0.948 0.751 -0.197 0.235 0.770

1 aut PNN 0.920 0.920 0.726 -0.194 0.300 0.725

1 ord PNN 0.870 0.870 0.731 -0.138 0.008 0.610

1 cor PNN 0.860 0.860 0.760 -0.101 0.013 0.709

2 ind PNN 0.487 0.487 0.485 -0.001 0.990 0.775

2 cor PNN 0.484 0.484 0.483 -0.001 0.792 0.742

2 ord PNN 0.476 0.476 0.474 -0.002 0.932 0.648

2 aut equal 0.473 0.473 0.473 0.000 0.990 0.751

3 ind MVB 0.333 0.331 0.333 0.002 0.990 0.796

3 cor MVB 0.332 0.329 0.332 0.003 0.990 0.794

3 ord MVB 0.329 0.321 0.329 0.007 0.990 0.696

3 aut MVB 0.328 0.323 0.328 0.005 0.990 0.768

4 cor MVB 0.250 0.249 0.250 0.001 0.990 0.793

4 ind MVB 0.250 0.249 0.250 0.001 0.990 0.796

4 aut MVB 0.249 0.247 0.249 0.002 0.990 0.767

4 ord MVB 0.248 0.246 0.248 0.001 0.990 0.707

5 aut equal 0.200 0.200 0.200 0.000 0.990 0.768

5 cor equal 0.200 0.200 0.200 0.000 0.990 0.782

5 ind equal 0.200 0.200 0.200 0.000 0.990 0.790

5 ord PNN 0.200 0.200 0.200 -0.001 0.990 0.718  
 

5.7 Sensitivity Analysis of ATR Fusion Systems 

A sensitivity analysis for assessment of the fusion methods is presented next.  The 

focus of this analysis is perturbation of three variables that appear to have the most 
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influence on the operating characteristics of the ID systems, including ATR system 

feasibility and the maximum feasible TPR.  Classical sensitivity analysis using dual 

variables, etc. was not performed, since the assessments of the fusion systems were made 

exhaustively across all thresholds and across all desired sensitivity variables.  This 

exhaustive search facilitated determination of the percentage of feasible thresholds along 

with other summary statistics measured across all threshold gridpoints evaluated.  

Sensitivity analysis performed in this manner is consistent with advice given by Brown 

(2004) for the modeling of military applications, where he states, 

Classical sensitivity analysis is bunk…Just plan on solving a lot of model 

excursions…In our world, it’s more important to seek “scenario- (i.e., warplan-) 

robust” solutions than to worry about individual parameter changes. 

 

Brown’s theme suggests mathematical optimization for military applications needs to be 

robust with ever changing operational needs and models need to consider alternate future 

scenarios from which an overall best solution may be synthesized. 

As shown in the previous section, the ratio of Hostiles to Friends can significantly 

affect the optimal tuning of the thresholds associated with each system.  This tuning, 

performed by the mixed variable optimization, allows for identification of different 

feasible operating points on the same ROC curves associated with a single fusion system 

and data combination.  To further assess the impact of various priors, all systems will be 

assessed under environments of sparse Hostile targets through dense Hostile targets.  In 

addition, to assess the sensitivity of the critical error and declaration rate constraints, 

these right hand side values in the optimization framework will be varied between more 

and less restrictive values than those used in the previous section.  Since all fusion 

systems assessed yielded 93-100% feasibility with respect to the non-critical error 
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constraint, sensitivity analysis of this constraint is not performed.  Initial comparison of 

the critical and non-critical error constraints, shows the critical error constraint as a more 

restrictive, binding constraint.  This is reasonable since these constraints both require 

high classification accuracy for a 2-class problem; yet, the desired critical error is much 

lower with desired rate of 0.02 vs. a non-critical classification error rate of 0.05.  Further, 

for this experiment the non-critical error may be associated with a slightly easier 

classification effort in which a large SCUD vehicle appears significantly different from 

the other four Hostile vehicles when fusing both sensors.  This includes differentiation 

from the SMERCH, which is the closest Hostile confuser, as can be seen by the TPM 

assessments using Sensor B presented in Table 5.4b. 

A full factorial experimental design was used to assess the fusion performance 

across 9 levels of prior probabilities, 4 levels of critical error constraint values (Π1) and 3 

levels of declaration constraint values (Π3).  A total of 108 designed levels were assessed 

for each of the 80 fusion model and data combinations.  The 80 fusion model data 

combinations were identified by the use of PNN or MVB fusion with 1-5 forced looks 

assessed on Training and Test sets composed of the 4 different sensor correlations.  

Performance data associated with each of the 80 fusion model/data combinations was 

generated first, and included the confusion matrix information associated with each of the 

10,000 thresholds evaluated for each fusion model.  Sensitivity analysis was then 

performed by assessing each of the 10,000 thresholds for each fusion model/data 

combination (80), for each of the designed sensitivity analysis levels (108).   
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Table 5.23 Sensitivity Analysis Variables and Levels 

Prior Probabilities (H:F)   Hostile Target Sparse to Target Rich

- Initial assessments performed at 1:1 and 10:1

- Non-uniform sampling at 1:20, 1:10, 1:4, 1:2, 1:1, 2:1, 4:1, 10:1, 20:1

- 9 Levels considered

Critical Error Constraint

- Initial assessment performed with Π1 = 0.02

- Let Π1 = 0.01, 0.02, 0.03, 0.04

- 4 Levels considered

Declaration Constraint

- Initial assessmenst performed with Π3 = 0.70

- Let Π3 = 0.60, 0.70, 0.80

- 3 Levels considered  
 

Assessment of all 80 fusion model/data combinations for each one of the 108 of 

the designed levels required approximately 35 minutes using a dedicated 2.66 GHz dual 

processor desktop with 2.0 GB of RAM.  This assessment included the vertical analysis 

required to determine output label probabilities for each level of prior probability and the 

subsequent assessment of feasibility across constraints for each of the 800,000 (80 

models x 10,000 threshold evaluations) fusion model performance values.  This 

evaluation across all 108 designed levels was accomplished in approximately 65 hours 

using the same dedicated computer.  Output files consisted of 10,000 rows for each 

threshold setting and either 17 of 19 columns.  This size difference was generated 

between saving the 2 PNN fusion thresholds, ( , )PNN T

low upθ θ= , or 4 MVB fusion 

thresholds, ( , , , )MVB SA SA SB SB T

low up low upθ θ θ θ= .  Table 5.24 presents the data saved for 
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each of the 108x80 = 8640 output data files.  For each of the 8640 sensitivity analysis 

computations summary information was also collected.   

 

Table 5.24 Summary of Data Collected by Column for All Sensitivity Analysis 

Fusion ID PNN or PCB

Data correlation ord, cor, aut, ind

Train or Test TR or TE

Hprior Used to calculate prior probability of Hostile and Friendly targets

Fprior Used to calculate prior probability of Hostile and Friendly targets

E_CR Maximum Critical error rate (RHS of constraint)

minDEC Minimum Declaration rate (RHS of constraint)

min Look Minimum Looks to take prior to making a declaration

1.  TPR TPR for given thresholds

2.  H_IDR Hostile ID rate = TP/looks used to assess Hostile & Friendly targets

3.  TP TP associated with thresholds

4.  FN FN associated with thresholds

5.  UT Undeclared Targets associated with thresholds

6.  FP FP associated with thresholds

7.  TN TN associated with thresholds

8.  UF Undeclared Friends associated with thresholds

9.  Ec Critical Error associated with thresholds

10.  En Non-critical error associated with thresholds

11.  PRrej Percentage of objects Not-Declared associated with thresholds

12.  theta 1 Lower threshold for rejection window (Sensor A or PNN)

13.  theta 2 Upper threshold for rejection window (Sensor A or PNN)

14.  theta 3 Lower threshold for rejection window (Boolean Sensor B)

15.  theta 4 Upper threshold for rejection window (Boolean Sensor B)

16.  theta 5 TOD threshold for MVB fusion (column 14 for PNN fusion)

17.  EC Feasible   1 if critical error is feasible, 0 o.w. (column 15 for PNN fusion)

18.  NC Feasible  1 if non-critical error is feasible, 0 o.w. (column 16 for PNN fusion)

19.  ND Feasible  1 if percent rejection is feasible, 0 o.w. (column 17 for PNN fusion)

Identification information, provided in data file name:

Feasibility:

Threshold space used for assessment:

Performance information based on each threshold space evaluated :
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Table 5.25 provides an overview of the summary data.  The summary information 

includes 29 or 31 columns depending of the number of variable thresholds associated 

with PNN or MVB fusion.  Along with fusion method/data information, the levels of the 

three sensitivity analysis parameters are included for identification purposes.  Statistics 

associated with the maximum TPR are included as columns 7-17.  Columns 18-22 

include average performance values across all feasible thresholds.  Columns 23-26 

indicate overall feasibility and feasibility by each of the three operational constraints.  

Finally, the thresholds (theta 1-5) associated with the optimal TPR are included.   
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Table 5.25 Summary Information Collected by Column for Each Designed Run 

1.    Fusion ID
PNN or PCB, correlation structure (ord, cor, aut, ind), Train or Test  (2 

Fusion algorithms) x (4 data structures) x (Train or Test) = 16 IDs

2.    Hprior Used to calculate prior probability of Hostile and Friendly targets

3.    Fprior Used to calculate prior probability of Hostile and Friendly targets

4.    E_CR Maximum Critical error rate (RHS of constraint)

5.    min DEC Minimum Declaration rate (RHS of constraint)

6.    min Look Minimum Looks to take prior to making a declaration

7.    L_TP Mean Looks required to obtain a TP, given assessing a Hostile

8.    maxTPR Maximum TPR from gridspace

9.    L_ID Mean Looks required to obtain a TP, while assessing any object

10.  maxIDR Max hostile ID rate associated with maxTPR (changes with priors)

11.  optTP TP associated with maximum TPR

12.  optFP FP associated with maximum TPR

13.  optCR Critical Error associated with maximum TPR

14.  optNC Non-critical error associated with maximum TPR

15.  optDT Declaration rate associated with maximum TPR

16.  optUH % of Undeclared Hostiles associated with maximum TPR

17.  optUF % of Undeclared Friendlies associated with maximum TPR

18.  meanTPR Mean TPR for all feasible points

19.  meanCR Mean Critical Error for all feasible points

20.  meanDT Mean percentage of objects declared  for all feasible points

21.  meanUH Mean percentage of Hostile targets declared “Unknown”

22.  meanUF Mean percentage of Friendly targets declared “Unknown”

23.  %Feas Percentage compliant to all constraints

24.  %FeasCR Percentage compliant with Critical Error constraint

25.  %FeasNC Percentage compliant with Non-critical error constraint

26.  %FeasND Percentage compliant with Non-declaration constraint

27.  theta 1 Lower threshold for rejection window (Sensor A or PNN) 

28.  theta 2 Upper threshold for rejection window (Sensor A or PNN) 

29.  theta 3 Lower threshold for rejection window (Boolean Sensor B)

30.  theta 4 Upper threshold for rejection window (Boolean Sensor B)

31.  theta 5 TOD threshold (Column 29 for PNN fusion)

Gridpoints associated with maximum TPR :

Performance information based on gridpoint with maximum TPR :

Identification information:

Performance information based on ALL feasible gridpoints:

Feasibility information for all gridpoints:
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Reviewing Tables 5.26 and 5.27 provides a focus to the sensitivity analysis.  Two 

primary goals will be undertaken.  The first goal will seek to determine where each fusion 

method may be preferred.  For example, the sensitivity analysis variables and levels need 

to be identified associated with the 1-look fusion where PNN fusion outperforms MVB 

fusion.  Also, since TPR is estimated by evaluation of the specific fusion algorithm given 

limited data sets, assessment should also include determining where the fusion 

performance is relatively equivalent.  The second goal will attempt to characterize the 

infeasibility space associated with each of the two fusion models and compare these 

conditions. 

Table 5.26 Percentage of Optimal Fusion Method across All Sensitivity Analysis Levels 

by Test Data Correlation Structure and Minimum Number of Looks 

 
PNN Fusion Optimal PNN Fusion Optimal by > 5%

min Looks min Looks 

1-look 2-looks 3-looks 4-looks 5-looks 1-look 2-looks 3-looks 4-looks 5-looks

ord 25.0% 21.3% 0.0% 2.8% 19.4% 25.0% 0.0% 0.0% 0.0% 0.0%

aut 28.7% 18.5% 0.0% 0.0% 8.3% 28.7% 0.0% 0.0% 0.0% 0.0%

cor 33.3% 27.8% 0.0% 0.0% 0.0% 30.6% 0.9% 0.0% 0.0% 0.0%
ind 37.0% 23.1% 0.0% 0.0% 0.0% 37.0% 0.9% 0.0% 0.0% 0.0%

MVB Fusion Optimal MVB Fusion Optimal by > 5%

min Looks min Looks 

1-look 2-looks 3-looks 4-looks 5-looks 1-look 2-looks 3-looks 4-looks 5-looks

ord 19.4% 27.8% 60.2% 56.5% 36.1% 19.4% 16.7% 30.6% 25.0% 23.1%

aut 48.1% 60.2% 100.0% 97.2% 64.8% 48.1% 46.3% 66.7% 60.2% 55.6%

cor 13.9% 23.1% 96.3% 100.0% 80.6% 13.9% 17.6% 57.4% 38.0% 38.0%
ind 39.8% 53.7% 100.0% 100.0% 81.5% 39.8% 39.8% 46.3% 50.0% 32.4%

Equivalent Fusion Fusion Equivalent within 5%

min Looks min Looks 

1-look 2-looks 3-looks 4-looks 5-looks 1-look 2-looks 3-looks 4-looks 5-looks

ord 55.6% 50.9% 39.8% 40.7% 44.4% 55.6% 83.3% 69.4% 75.0% 76.9%

aut 23.1% 21.3% 0.0% 2.8% 26.9% 23.1% 53.7% 33.3% 39.8% 44.4%

cor 52.8% 49.1% 3.7% 0.0% 19.4% 55.6% 81.5% 42.6% 62.0% 62.0%
ind 23.1% 23.1% 0.0% 0.0% 18.5% 23.1% 59.3% 53.7% 50.0% 67.6%  
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Table 5.27 Percentage of Feasible PNN and MVB Fusion across All Sensitivity Analysis 

Levels by Test Data Correlation Structure and Minimum Number of Looks 

 

PNN Fusion Feasibility MVB Fusion Feasibility

min Looks min Looks 

1-look 2-looks 3-looks 4-looks 5-looks 1-look 2-looks 3-looks 4-looks 5-looks

ord 25.0% 32.4% 30.6% 34.3% 35.2% 44.4% 49.1% 60.2% 59.3% 58.3%

aut 28.7% 32.4% 33.3% 37.0% 43.5% 76.9% 87.0% 100.0% 97.2% 98.2%

cor 33.3% 33.3% 38.9% 62.0% 62.0% 47.2% 68.5% 100.0% 100.0% 100.0%
ind 37.0% 37.0% 53.7% 50.0% 67.6% 86.1% 94.4% 100.0% 100.0% 100.0%  

 
Plots were generated to show the preferred fusion method based on TPM using 

data across the minimum number of looks and across all three variables under sensitivity 

analysis investigation.  Each plot shows the performance between PNN and MVB fusion 

across 540 values of 1 3 minpriors Looks× Π ×Π × , with 108 levels for sensitivity analysis 

and 5 levels of minimum looks.  Black areas indicate MVB fusion is preferred, with a 

TPM at least 5% better than PNN fusion.  White areas indicate where PNN fusion is 

preferred, and gray areas indicate a difference of less than 5% between the max TPR 

achieved by each fusion method.  Light and dark gray indicate PNN or MVB fusion is 

preferred, but by less than 5%.  Each plot contains 27 rows.  The y-axis on each plot 

includes the associated prior ratio, starting at H:F = 1:20 along with the three values of 

3Π , required declarations =  80%, 70% and 60%.  The next 3 values on the y-axis are 

associated with priors of H:F = 1:10, and the last three y-axis values are associated with 

the 3-levels of 3Π  for a prior ratio of H:F = 20:1.  The 20 columns on the x-axis 

represent the levels associated with the minimum looks and the maximum allowable 

critical error, 1Π .  The first four values are associated with 1 minimum forced look for 

1Π = 1%, 2%, 3% and 4%, followed by the other minimum looks evaluated for each of 
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the four levels of 1Π .  The most difficult area to obtain feasible solutions and a high TPR 

is in the upper left hand corner, while the least restrictive constraints are in the lower 

right hand corner with high Hostile target densities. 

Figure 5.34 shows how each cell is associated with a specific combination of 

variable settings and indicates the preferred fusion when using the naturally ordered (ord) 

Test data.  The vertical black spikes located at columns 4, 8, 12, 16 and 20 with relatively 

low ratios of H:F, show MVB fusion is preferred when the critical error, 1Π = 4%.  

Medium gray horizontal rows through these spikes show when the declaration rate is 

required to be 80%, MVB and PNN fusion are equivalent, when H:F is low.  With the 

priors at 1:4 and the minimum declaration rate at 70% or 80%, neither fusion method is 

preferred.  The remaining medium gray areas for priors = 1:20 through 1:1 indicates no 

preferred fusion method.  The white area shows PNN fusion is preferred in those limited 

cases with 1 minimum look across the indicated high priors of H:F for different levels of 

maximum critical error, 1Π .  The PNN preference boundary changes systematically as 

the H:F ratio decreases and 1Π  varies.  Finally, with 2 or more minimum looks and a 

prior ratio of 4:1 or higher, the two fusion methods generally yield a maximum TPR 

within 5% of each other, except for a few cases with priors = 4:1 and 3Π = 80% and for 

1Π = 1% for 2-forced looks.  The predominantly dark grey area in the Hostile dense 

region with 2-4 forced looks, shows MVB fusion is preferred for much of these cases, but 

the differences are limited. 
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row H:F Π3 Prefered Fusion based on max TPR for naturally ordered (ord) Test data

1 80%
2 1:20 70%
3 60%
4 80%
5 1:10 70%
6 60%
7 80%
8 1:4 70%
9 60%

10 80%
11 1:2 70%
12 60%
13 80%
14 1:1 70%
15 60%
16 80%
17 2:1 70%
18 60%
19 80%
20 4:1 70%
21 60%
22 80%
23 10:1 70%
24 60%
25 80%
26 20:1 70%
27 60%

Π1 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4%

min Looks 1 2 3 4 5

column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Legend

PNN fusion preferred based on max TPR

PNN fusion preferred, but MVB fusion within 5%

Equivalent TPR for MVB and PNN fusion

MVB fusion preferred, but PNN fusion within 5%

MVB fusion preferred based on max TPR  

Figure 5.34 Identification of Preferred Fusion using ord Test Data across 4 

Variables: Horizontally by Maximum Critical Error (ΠΠΠΠ1111)))) & Minimum Looks and 

Vertically by Minimum Declaration Level (ΠΠΠΠ3333)))) & Priors 

The next figure shows the preferred fusion method for each of the for correlation 

levels using the Training data.  Each of the following four subplots is similar.  A white 

area indicates PNN fusion is definitely preferred if limited to 1-forced look, across most 

values of the maximum critical error, 1Π .  Large light gray areas then indicate for the 
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remaining cases of 1-forced look, 2-forced looks, and 3-forced looks for naturally ordered 

and autocorrelated data, the PNN fusion is preferred, but by less than 5%.  The remaining 

medium gray areas indicate no preference in the two fusion methods.  These areas of 

equivalence were obtained by each fusion method obtaining the best TPR achievable 

using the minimum number of forced looks (3,4 or 5) and PTP = 100% for all Hostile 

target vehicles declared.  The best TPR achievable is 0.333 for 3-forced looks, 0.25 for 4-

forced looks and 0.20 for 5-forced looks.   
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PNN fusion preferred based on max TPR

PNN fusion preferred, but MVB fusion within 5%

Equivalent TPR for MVB and PNN fusion

MVB fusion preferred, but PNN fusion within 5%

MVB fusion preferred based on max TPR  

Figure 5.35 Training Data TPR Comparison across 5 Variables: Data Correlation, 

Minimum Looks, 1Π , 3Π  and Priors 
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From the previous plots, the fusion methods appear robust to priors and minimum 

declaration rate, 3Π , as indicated by little horizontal differences.  Both methods also 

appear robust with respect to the levels of maximum critical error allowable as indicated 

by mostly uniform vertical coloring of the plots.  Finally, differences do appear based on 

the minimum number of forced looks with all fusion methods being equivalent for 4 and 

5 forced looks, while PNN fusion is preferred by less than 5% of the maximum TPR for 2 

or 3 forced looks depending on the data set.  The two light gray cells in the naturally 

ordered data set also indicate that the minimum declaration level, 3Π , effects whether the 

PNN fusion is slightly preferred or equivalent with low priors, 4-forced looks and 1Π  = 

1%. 

As shown by the first example using naturally ordered Test data, significant 

differences in maximum TPR obtained by each fusion method are found as all three 

sensitivity analysis variables change across all five levels of minimum looks.  As in the 

previous figure using Training data, Figure 5.36 presents a subplot associated with each 

sensor correlation data set.  In general, all four subplots show a similar pattern.  

Specifically, PNN fusion is only definitely preferred in a limited number of cases with 1-

minimum look and a high ratio of H:F.  The area associated with definitely preferred 

MVB fusion tends to occur when the ratio of H:F is low (1:20 through 1:1), and with a 

larger number of forced looks.  These areas do change depending on the specific sensor 

correlation data set and are not uniform across the maximum critical error, 1Π , as 

indicated by intermittent vertical patterns.  Limited influence from the minimum 

declaration rate, 3Π , levels are also seen, as indicated by intermittent horizontal patterns 
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for the naturally ordered data set.  For the cases with 2 or more forced looks and a ratio of 

H:F equal to or greater than 4:1, the two fusion methods usually provided a max TPR 

with less than 5% difference.  Although for some cases with 1Π = 1% and 3Π = 80%, the 

most restrictive values, and H:F = 4:1, MVB fusion is preferred as shown by black areas. 
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PNN fusion preferred based on max TPR

PNN fusion preferred, but MVB fusion within 5%

Equivalent TPR for MVB and PNN fusion

MVB fusion preferred, but PNN fusion within 5%

MVB fusion preferred based on max TPR  

Figure 5.36 Test Data TPR Comparison across 5 Variables: Data Correlation, 

Minimum Looks, 1Π , 3Π  and Priors 

The second initial goal of the sensitivity analysis was to characterize the variables 

associated with each fusion method’s ability to obtain a feasible solution.  Plots similar to 
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those generated for the comparison of maximum TPR were generated to show the 

specific variable levels associated with feasibility for each fusion method.  For the 

Training data, all 8 fusion model/data combinations were feasible across all 540 levels 

representing all possibilities of 1 3 minpriors Looks× Π ×Π × .  The next figure shows 

whether both fusion methods were feasible, only MVB fusion was feasible or neither 

fusion method is feasible across all levels of each of the three sensitivity analysis 

variables and the number of minimum forced looks.  The black areas indicate neither 

fusion method was feasible.  The gray areas indicate only the MVB fusion was feasible, 

and the white areas indicate both PNN and MVB fusion is feasible.   

From evaluation of feasibility of both fusion methods with Test data across the 

four sensor correlations, it was discovered if PNN fusion was feasible, then MVB fusion 

was always feasible.  This was true for all 540 levels of 1 3 minpriors Looks× Π ×Π × .  

Thus, PNN fusion was only preferred to MVB, if it achieved a higher maximum TPR 

than MVB fusion.  MVB fusion would be identified as preferred to PNN fusion for all 

cases where MVB was feasible and PNN was not.  Feasibility by MVB fusion when PNN 

fusion is infeasible is indicated by the gray cells in Figure 5.37.  These areas associated 

with different variable levels, coincide with many of the black areas in Figure 5.34 where 

only MVB fusion is feasible.  Insight for areas of TPR equivalence is also obtained from 

viewing the feasibility figures.  The black area in Figure 5.37 shows for H:F less than 1:1, 

most of the 1 3 minpriors Looks× Π ×Π ×  combinations are infeasible for both fusion 

models.  These areas, where neither model is feasible, map to medium gray areas in 

Figures 5.34 and 5.36.  Thus, while maximum TPR equivalence is indicated in the 
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Friendly rich environments, with more restrictive constraints for maximum critical 

error, 1Π , and for minimum declaration, 3Π , neither fusion method is feasible.   

row H:F Π3 Naturally ordered (ord) Test data feasibility

1 80% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1:20 70% 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

3 60% 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

4 80% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1:10 70% 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

6 60% 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

7 80% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1:4 70% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 60% 0 0 0 0.5 0 0 0 0.5 0 0 0.5 0.5 0 0 0.5 0.5 0 0 0 0.5

10 80% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 1:2 70% 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

12 60% 0 0 0 0.5 0 0 0 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5

13 80% 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5 0 0 0 0.5

14 1:1 70% 0 0 0 0.5 0 0 0 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5

15 60% 0 0 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5

16 80% 0 0 0.5 0.5 0 0 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5

17 2:1 70% 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

18 60% 0 0.5 0.5 0.5 0.5 0.5 1 1 0.5 0.5 1 1 0.5 1 1 1 1 1 1 1

19 80% 0 0.5 1 1 0 1 1 1 0.5 0.5 0.5 1 0.5 0.5 1 1 0.5 0.5 1 1

20 4:1 70% 0.5 0.5 1 1 0.5 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1

21 60% 0.5 0.5 1 1 0.5 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1

22 80% 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 10:1 70% 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

24 60% 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

25 80% 1 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

26 20:1 70% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27 60% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Π1 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4%

min Looks 1 2 3 4 5

column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Legend

PNN and MVB fusion feasible

MVB fusion feasible, PNN fusion not feasible

PNN and MVB fusion Not feasible  

Figure 5.37 ord Test Data Feasibility Comparison across 4 Variables: Minimum 

Looks, Maximum Critical Error 1Π , Minimum Declarations 3Π  and Priors 
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This infeasible area with an equivalent TPR of 0.0 appears the same in Figures 5.34 and 

5.36 as obtaining the best TPR achievable by each system, as may occur with 5 forced 

looks and high levels of H:F. 

The next figure shows the feasibility map across all variables for Test data across 

all four sensor correlation levels.  Overall, from the subplots of Figure 5.38, a general 

characterization of feasibility for each fusion method can be deduced.  From these 

subplots, significant improvement in feasibility is observed as the sensor correlation 

structure changes and as the ratio of H:F increases.  The large white and gray regions for 

autocorrelated, co-registered and independent data, indicate MVB fusion is feasible 

across most conditions.  The MVB fusion is not feasible for cases with 1 or 2 minimum 

looks, H:F is low, and constraints are restricted to 1Π = 1% and 3Π = 80%.  Another 

region of MVB infeasibility is observed in the autocorrelated data when H:F = 1:4, 1Π = 

1% and 3Π = 80%, for both 4 and 5 minimum looks 

PNN feasibility appears robust for prior ratios of H:F of 4:1 or greater across 1Π  

and 3Π and across the minimum number of looks.  The top white horizontal line in all 

four data sets indicates PNN fusion is feasible when the ratio of priors is to 2:1, if the 

lowest required declaration rate of 3Π =60% is used.  For the evaluation of feasibility 

using co-registered or independent data, PNN fusion was also feasible across reduced 

levels of H:F for 3-5 minimum looks as indicated by the increasing white vertical bars 

located at columns 15-16 and 18-20 for co-registered data and at columns 10-12, 14-16,  
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PNN and MVB fusion feasible

MVB fusion feasible, PNN fusion not feasible

PNN and MVB fusion Not feasible  
 

Figure 5.38 Test Data Feasibility Across 5 Variables: Data Correlation, Minimum 

Looks, Maximum Critical Error 1Π , Minimum Declarations 3Π  and Priors 

and 17-20 for independent data.  These white bars amidst the gray area are associated 

with a critical error constraint of 1Π = 2-4%.  Thus, while PNN fusion does not require 

any assumptions of input data correlation, it does appear to benefit when the collected 

imagery is not autocorrelated in the naturally collected 4 degree increments.  This is 

shown by the increased feasibility for the co-registered or independent data sets. 

The MVB fusion feasibility also improves as a lower correlation is introduced 

either temporally within or across sensors.  While evaluation with the naturally ordered 
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data shows a large percentage of black area, where MVB fusion is infeasible, evaluation 

with the other three data sets shows significant improvement.  The least improvement in 

feasibility is observed from the naturally ordered to the co-registered data, giving some 

indication that MVB fusion performs better in those cases with reduced correlation 

between sensors.  Since both the autocorrelated and independent data sets use sensor data 

collected at independent aspect angles for any given look at time t, the two sensor labels 

may have a higher likelihood of disagreement and force another look.  While these extra 

looks will reduce TPR, they may facilitate a reduction in critical error as additional looks 

are obtained before declaring a final “TOD,” “OH” or “FN” label.  Finally, as previously 

described for Figure 5.37, MVB feasibility for the naturally ordered data set was 

significantly affected by levels of 1Π , 3Π  and priors, and to a lesser extent, across the 

minimum looks required. 

To gain additional insight of the fusion system operating characteristics, 

additional plots were generated to compare specific values obtained with PNN and MVB 

fusion, given each of the four Test data sensor correlations.  Specific performance 

measures associated with each fusion system include the maximum TPR, the associated 

average looks to obtain a True Positive declaration, the percentage of feasible thresholds, 

the percentage of declared targets after five looks, the percentage of targets declared 

“ND” given assessment of a Hostile and the percentage of targets declared “ND” given 

assessment of a Friend.  Performance for PNN fusion is indicated by circles and MVB is 

indicated by triangles.  Values of the maximum critical error allowed were varied from 

1Π = {1%-4%}.  Each value of 1Π was used to select a different gray scale with the 
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lightest gray being the most restrictive 1Π  = 1% and black indicating 1Π  = 4%.  The 

minimum declaration rate was held at a constant 3Π = 70% for all plots. 

The next figure shows TPR vs. minimum forced looks across priors and 1Π . 

From these plots a TPR value of 0 likely coincides with no feasible operating points.  

From the plots below, with H:F priors of 1:20 and 1:10, the MVB fusion may be feasible 

depending on the level of 1Π with approximately the same maximum TPR  around 0.20 

obtained for 2, 3,4 or 5 forced looks.  For the case of H:F at 1:4, no TPR significantly 

greater than 0 appears for any number of minimum looks.  TPR then shows an increase 

for MVB fusion across priors of 1:2 and up, and the PNN fusion obtains feasibility when  
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Figure 5.39a Comparison of TPR for “ord” Test Data across Priors and ΠΠΠΠ1 
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priors are 4:1 or greater.  In addition, the minimum 1-look Hostile rich environment 

shows PNN fusion as preferred to MVB fusion.  To show how TPR is affected by the 

ratio of priors and minimum looks, the associated looks per True Positive hostile ID are 

plotted below.  These plots show for low H:F priors, on average over 5 looks are required 

to make a TP declaration.  With a maximum of 5-looks per vehicle, this number also 

includes the looks used to misidentify a Hostile.  The plots associated with H:F = 10:1 

and 20:1 then show how both fusion methods obtain the maximum achievable TPR using 

the minimum number of forced looks across all levels of Π1. 
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Figure 5.39b Comparison of Looks per TP for “ord” Test Data across Priors and ΠΠΠΠ1 
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Previous plots have shown conditions across priors, 1Π , 3Π  and the minimum 

number of looks where each fusion method had at least one feasible set of thresholds out 

of 10,000 thresholds assessed.  While the fusion method may be indicated as feasible 

with a very limited number of feasible thresholds, further assessments of the feasibility 

may indicate a more robust system.  Differences in the percentage of feasible thresholds 

is also seen across the four levels of 1Π .  For example, with a prior ratio of 4:1, the 

percentage of feasible thresholds for MVB fusion varies significantly between all four 

values of 1Π .  For the same ratio of H:F = 4:1 the PNN fusion appears to behave in a 

bimodal manner with either close to 0% or 100% of the 10,000 thresholds feasible. 
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Figure 5.39c Comparison of % Feasible for “ord” Test Data across Priors and ΠΠΠΠ1 
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The next plot shows how the percentage of declarations at the optimal TPR varies 

across priors, 1Π  and the minimum number of looks.  These plots are all generated for a 

minimum declaration rate of 3Π = 70%.  Since feasibility requires a minimum declaration 

rate of 70%, all indications with the %Declared at 0 indicate infeasibility.  From the plots 

below, the variation associated with %Declared indicates that this is not always a binding 

constraint value at the maximum TPR.  For low H:F priors, the percent declared does 

look to be close to 70%; yet, for values of H:F at 10:1 and 20:1, when a fusion method is 

feasible, the percent declared appears much higher and may even be close to 100%. 
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Figure 5.39d Comparison of % Declared for “ord” Test Data across Priors and ΠΠΠΠ1 
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To help explain why some of the MVB fusion is feasible at low priors of H:F = 

1:20 or 1:10 and no feasibility is shown for a ratio of 1:4 plots of the percentage of “Non-

declarations” by Hostile and Friendly targets is useful.  The next subplot show how the 

percentage of “ND” declarations is apportioned to Hostile targets for the optimal TPR 

across priors, 1Π , and the minimum number of looks.  From these plots when the ratio of 

H:F is 1:10 or 1:20, almost 100% of the Hostile targets are declared as “ND” or 

“Unknown.”  Low target densities, with Hostiles comprising less than 5% or 10% of the 

total targets, allows for a system to easily classify most of the Hostiles as “ND.”  Other 

plots show little difference in the percentage of Hostile “ND’s” at the max TPR. 
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Figure 5.39e Comparison of % Hostile | “ND” for “ord” Data across Priors and ΠΠΠΠ1 
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To gain insight of the fusion systems at optimal TPR, similar plots of the 

percentage of “ND’s” being Friendly targets is useful.  From these plots, considerably 

more variability is observed as compared to the percentage of Hostile targets labeled as 

“ND.”  Because the objective function seeks to maximize True Positive Hostile 

declaration across looks, the fusion systems appear to increase the proportion of 

Friend/Neutral targets that are labeled “ND” as the ratio of Friends gets lower.  This is 

similar to the Hostile “ND” labels when H:F was either 1:20 or 1:10.  For Hostile target 

rich priors of 4:1 - 20:1, PNN fusion with 4 and 5 minimum looks declares almost 100% 

of Friends as “ND” or “Unknown.” 
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Figure 5.39f Comparison of % Friend | “ND” for “ord” Data across Priors and ΠΠΠΠ1 
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The same figures associated with the autocorrelated, co-registered and independent data 

sets were visually analyzed as well, with comparable findings. 

 As a final means to compare the two fusion models across all sensitivity analysis 

variables and across the five minimum look levels and the four correlation structures, 

grayscale plots associated with the maximum TPR and percentage of feasible thresholds 

are presented next.  These plots are similar to the previous plots where grayscale was 

used across the 3priors×Π on the vertical axis and 1min Looks ×Π on the horizontal axis.  

Instead of plotting an associated winner for each design point, the individual performance 

of each fusion system is given.  To do so, the next two figures include eight subplots 

each, with four MVB subplots and four PNN subplots.  The first value plotted shows the 

optimal TPR associated with each point, as a percentage of the best TPR obtainable.  

Plotting values scaled within [0,1] facilitates plotting across all min Look values across 

the same range and is computed as shown in the next equations. 

1
max

max min% 1 1
1

min

TPR
bestTPR TPR LooksbestTPR

bestTPR

Looks

 − − = − = −   
   

 

 (5-31) 

( ) ( )( )% 1 1 min max min maxbestTPR Looks TPR Looks TPR= − − =i  (5-32) 

For %bestTPR = 1, the fusion model achieved the maximum obtainable TPR of 

( )1/ min Looks  and is indicated by the white areas in the next plot.  Black areas 

correspond to %bestTPR = 0, where no feasible thresholds were obtained.  The gray scale 

indicates performance between these two extremes.  Figure 5.40 shows performance 
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Figure 5.40 % of best TPR across All Variables Obtained by MVB and PNN Fusion 
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of MVB fusion is significantly affected by min Looks and the critical error constraint 1Π .  

Performance of PNN fusion shows less variation from the best TPR, with many cells 

either black or white indicating a bimodal function that is either infeasible or very close 

to the highest TPR achievable.  PNN fusion clearly shows an improvement as the critical 

error constraint is relaxed for cases of 3 or more looks and evaluated using data sets other 

than naturally ordered.  As previously seen, the primary factor influencing PNN 

feasibility appears to be ratio of priors, which gains some feasibility with a prior ratio of 

4:1 and a relaxed declaration constraint of 3Π = 80%.  MVB fusion, with both 

intermittent vertical and horizontal patterns, shows more sensitivity to both 1Π  and 3Π . 

 One goal of the sensitivity analysis is to determine the robustness of solutions, 

given perturbations of the variables of interest.  While Figure 5.35 shows the preferred 

regions of each fusion method, these are based on the single best TPR obtained, given a 

specific Test data set.  To help gain further confidence in fusion system robustness, the 

next eight subplots are offered to show robustness against selection of optimal thresholds.  

For the following figures, black indicates no feasible thresholds, while white indicates 

100% of all assessed thresholds are feasible.  From these plots, patterns across all four 

variables are observed.  A 2-way interaction between priors and minimum looks appears 

to be the most significant relationship for determining feasibility for MVB fusion, 

followed by 1Π  and then 3Π  with the least influence.  PNN fusion feasibility appears 

most influenced by the ratio of priors, followed by a 2-way interaction between forced 

looks and 1Π , with the least variability associated with 3Π .  Also, the variability between 

sensor correlation data sets indicates correlation significantly affects feasibility. 
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Figure 5.41 % Feasible across All Variables for MVB and PNN Fusion 
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These plots also give some insight for the low prior ratios of H:F = 1:20 or 1:10, in which 

MVB fusion was feasible and preferred to PNN fusion.  For the cases of ordered and 

autocorrelated data, very limited feasible thresholds were obtained by the MVB fusion 

model.  This is also true for the case of MVB fusion with 1 or 2 minimum looks, when 

evaluated with co-registered or independent Test data.  In these situations, MVB fusion 

may be preferred, but with potential variations across other test data with slightly 

different EOC’s from the Training data, these feasible points may become infeasible.  

Thus, for these cases of very limited feasible solutions less confidence should be placed 

on declaring one system better than the other.   

 A final sensitivity analysis summary plot is included next.  Each of the subplots 

are generated from evaluation using one of the four Test data sets, and boundaries of 

fusion model preference are indicated by grayscale.  Black denotes both fusion systems 

are infeasible or have less than 0.5% (< 50 of 10,000) feasible thresholds, which may 

correspond to a fusion system that is either ineffective or not robust with respect to 

threshold levels.  White areas denote equivalent fusion performance as determined by 

either system achieving a max TPR within 2.5% of the other system.  The light grey areas 

show where PNN fusion is preferred and the dark gray areas show where MVB fusion is 

preferred.  From these plots, clear differences between data sets are observable; yet, a 

general trend exists.  With low priors and minimal forced looks, neither system performs 

robustly, with few if any feasible thresholds.  With low H:F, more forced looks, and less 

correlated data, the MVB fusion is preferred.  For a limited area associated with high H:F 

and 1 minimum look PNN fusion is preferred.  Then, with high H:F and 2-5 minimum 
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looks, both systems appear equivalent.  The influence of tightening or relaxing 1Π , the 

critical error constraint, or  3Π , the declaration constraint, has increased influence at the 

boundaries of these four general area, where 1Π has significant influence across all priors 

for the three generated correlation levels. 
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Legend

PNN and MVB fusion maxTPR within 2.5%
PNN fusion preferred
MVB fusion preferred
PNN and MVB fusion < 0.5% feasible  

Figure 5.42 Preferred Fusion Method across Variables and Test Data 
 

 Overall, MVB fusion appears to be more robust across the entire range of 

operating conditions and sensitivity analysis variables.  By obtaining feasibility, MVB 

fusion outperforms PNN fusion in many cases.  PNN fusion is significantly hindered by 
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cases of low H:F with limited feasibility.  Yet, when PNN does become feasible, it 

achieves the overall highest max TPR obtainable at close to 1 TP per look, and is 

preferred for some operating conditions. 

5.8 Temporal Comparison across Correlation Levels  

For the evaluation of TPR performed to this point, an assumed equivalent time per 

look was used to calculate the TP rate as: ( )max /  |TPTPR P mean looks Hostile= .  Three 

data sets were generated by randomly ordering some of the samples and may represent 

multiple flight passes collecting less correlated data.  Temporal performance across 

correlation structures and H:F priors is indicated in the next 2 tables, using the minimum 

mean number of looks to indicate the preferred system for each level of priors.  The name 

indicates the fusion method (PNN or MVB) assessed using one of the correlation 

structures of Test data (ord, aut, cor or ind) followed by the number of minimum looks 

required by the fusion algorithm.  The initial constraint values for maximum critical 

error, 1Π = 2%, maximum non-critical error, 2Π = 5%, and minimum declaration rate, 

3Π = 70% were held constant.  Cells with less than two looks required to obtain a True 

Positive Hostile declaration are highlighted gray.  An “InF” in gray print indicates the 

fusion system was not feasible for a given condition.  These 2 tables are sorted by the 

number of looks per TP at the optimal TPR and show the preferences for each level of 

H:F.  In general, the best performance occurs for the independent data followed by co-

registered or autocorrelated data, and finally followed by the naturally ordered data.  

Also, when feasible, fusion models with less forced looks are preferred.  With target 

densities of 1:2 and 1:1, some of the MVB fusion models with independent data and 2 
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forced looks are preferred to other feasible MVB models using data with other within and 

across sensor correlation. 

 

Table 5.28a Mean Number of Looks/TP Associated with max TPR for Each Fusion 

Algorithm Sorted across all Data Correlation and Minimum Looks for Low H:F 

H:F= 1:20 H:F= 1:10 H:F= 1:4 H:F= 1:2 H:F= 1:1

fusion looks/TP fusion looks/TP fusion looks/TP fusion looks/TP fusion looks/TP

MVBind3 3.02 MVBind3 3.02 MVBind3 3.02 MVBind1 2.04 MVBind1 1.77

MVBaut3 3.28 MVBcor3 3.24 MVBcor3 3.08 MVBind2 2.44 MVBind2 2.25

MVBcor3 3.29 MVBaut3 3.28 MVBaut3 3.28 MVBaut1 2.79 MVBaut1 2.32

MVBcor4 4.01 MVBcor4 4.01 MVBind4 4.00 MVBind3 3.02 MVBaut2 2.73

MVBind4 4.01 MVBind4 4.01 MVBcor4 4.01 MVBcor3 3.04 MVBind3 3.01

MVBaut4 4.14 MVBaut4 4.14 MVBaut4 4.13 MVBaut2 3.19 MVBcor3 3.03

MVBaut5 5.00 MVBaut5 5.00 MVBcor5 5.00 MVBaut3 3.24 MVBaut3 3.15

MVBcor5 5.00 MVBcor5 5.00 MVBind5 5.00 MVBind4 4.00 MVBord3 3.24

MVBind5 5.00 MVBind5 5.00 MVBaut5 5.01 MVBcor4 4.01 MVBcor4 4.00

MVBaut1 InF MVBaut2 5.37 MVBaut1 InF MVBaut4 4.07 MVBind4 4.00

MVBaut2 InF MVBaut1 InF MVBaut2 InF MVBaut5 5.00 MVBaut4 4.04

MVBcor1 InF MVBcor1 InF MVBcor1 InF MVBcor5 5.00 MVBord4 4.19

MVBcor2 InF MVBcor2 InF MVBcor2 InF MVBind5 5.00 MVBaut5 5.00

MVBind1 InF MVBind1 InF MVBind1 InF MVBcor1 InF MVBcor5 5.00

MVBind2 InF MVBind2 InF MVBind2 InF MVBcor2 InF MVBind5 5.00

MVBord1 InF MVBord1 InF MVBord1 InF MVBord1 InF MVBord5 5.03

MVBord2 InF MVBord2 InF MVBord2 InF MVBord2 InF PNNind5 5.10

MVBord3 InF MVBord3 InF MVBord3 InF MVBord3 InF MVBcor1 InF

MVBord4 InF MVBord4 InF MVBord4 InF MVBord4 InF MVBcor2 InF

MVBord5 InF MVBord5 InF MVBord5 InF MVBord5 InF MVBord1 InF

PNNaut1 InF PNNaut1 InF PNNaut1 InF PNNaut1 InF MVBord2 InF

PNNaut2 InF PNNaut2 InF PNNaut2 InF PNNaut2 InF PNNaut1 InF

PNNaut3 InF PNNaut3 InF PNNaut3 InF PNNaut3 InF PNNaut2 InF

PNNaut4 InF PNNaut4 InF PNNaut4 InF PNNaut4 InF PNNaut3 InF

PNNaut5 InF PNNaut5 InF PNNaut5 InF PNNaut5 InF PNNaut4 InF

PNNcor1 InF PNNcor1 InF PNNcor1 InF PNNcor1 InF PNNaut5 InF

PNNcor2 InF PNNcor2 InF PNNcor2 InF PNNcor2 InF PNNcor1 InF

PNNcor3 InF PNNcor3 InF PNNcor3 InF PNNcor3 InF PNNcor2 InF

PNNcor4 InF PNNcor4 InF PNNcor4 InF PNNcor4 InF PNNcor3 InF

PNNcor5 InF PNNcor5 InF PNNcor5 InF PNNcor5 InF PNNcor4 InF

PNNind1 InF PNNind1 InF PNNind1 InF PNNind1 InF PNNcor5 InF

PNNind2 InF PNNind2 InF PNNind2 InF PNNind2 InF PNNind1 InF

PNNind3 InF PNNind3 InF PNNind3 InF PNNind3 InF PNNind2 InF

PNNind4 InF PNNind4 InF PNNind4 InF PNNind4 InF PNNind3 InF

PNNind5 InF PNNind5 InF PNNind5 InF PNNind5 InF PNNind4 InF

PNNord1 InF PNNord1 InF PNNord1 InF PNNord1 InF PNNord1 InF

PNNord2 InF PNNord2 InF PNNord2 InF PNNord2 InF PNNord2 InF

PNNord3 InF PNNord3 InF PNNord3 InF PNNord3 InF PNNord3 InF

PNNord4 InF PNNord4 InF PNNord4 InF PNNord4 InF PNNord4 InF

PNNord5 InF PNNord5 InF PNNord5 InF PNNord5 InF PNNord5 InF  
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Table 5.28b Mean Number of Looks/TP Associated with max TPR for Each Fusion 

Algorithm Sorted across all Data Correlation and Minimum Looks for High H:F 

H:F= 2:1 H:F= 4:1 H:F= 10:1 H:F= 20:1

fusion looks/TP fusion looks/TP fusion looks/TP fusion looks/TP

MVBind1 1.53 PNNind1 1.22 PNNind1 1.06 PNNind1 1.03

MVBaut1 1.73 PNNcor1 1.27 PNNaut1 1.09 PNNaut1 1.03

MVBcor1 1.74 MVBind1 1.39 PNNord1 1.15 PNNord1 1.06

MVBord1 2.08 MVBcor1 1.44 PNNcor1 1.16 PNNcor1 1.12

MVBind2 2.12 MVBaut1 1.52 MVBcor1 1.32 MVBcor1 1.29

MVBcor2 2.21 MVBord1 1.54 MVBind1 1.33 MVBind1 1.30

MVBaut2 2.27 PNNind2 2.06 MVBord1 1.37 MVBord1 1.34

MVBord2 2.45 PNNcor2 2.07 MVBaut1 1.38 MVBaut1 1.34

MVBind3 3.01 MVBind2 2.07 PNNind2 2.06 MVBind2 2.05

MVBcor3 3.02 PNNaut2 2.11 MVBind2 2.06 PNNind2 2.06

PNNind3 3.05 MVBcor2 2.12 PNNcor2 2.07 PNNcor2 2.07

MVBaut3 3.09 PNNord2 2.13 MVBcor2 2.07 MVBcor2 2.07

MVBord3 3.12 MVBaut2 2.16 PNNord2 2.10 MVBaut2 2.09

MVBcor4 4.00 MVBord2 2.19 MVBord2 2.11 MVBord2 2.10

MVBind4 4.00 MVBind3 3.01 PNNaut2 2.11 PNNord2 2.10

MVBaut4 4.03 MVBcor3 3.01 MVBaut2 2.11 PNNaut2 2.11

PNNcor4 4.06 PNNind3 3.02 MVBind3 3.01 MVBind3 3.00

MVBord4 4.08 PNNcor3 3.04 MVBcor3 3.01 MVBcor3 3.01

PNNind4 4.08 MVBaut3 3.06 PNNind3 3.02 PNNind3 3.02

MVBaut5 5.00 MVBord3 3.08 PNNcor3 3.04 MVBord3 3.03

MVBcor5 5.00 PNNaut3 3.09 MVBord3 3.04 MVBaut3 3.03

MVBind5 5.00 PNNord3 3.11 MVBaut3 3.05 PNNcor3 3.04

MVBord5 5.03 MVBcor4 4.00 PNNaut3 3.09 PNNaut3 3.09

PNNcor5 5.09 MVBind4 4.00 PNNord3 3.11 PNNord3 3.11

PNNind5 5.10 PNNcor4 4.02 MVBcor4 4.00 MVBcor4 4.00

PNNaut1 InF MVBaut4 4.02 MVBind4 4.00 MVBind4 4.00

PNNaut2 InF PNNind4 4.02 PNNcor4 4.02 PNNcor4 4.02

PNNaut3 InF PNNaut4 4.05 MVBaut4 4.02 MVBaut4 4.02

PNNaut4 InF MVBord4 4.05 PNNind4 4.02 PNNind4 4.02

PNNaut5 InF PNNord4 4.06 MVBord4 4.04 MVBord4 4.02

PNNcor1 InF MVBaut5 5.00 PNNaut4 4.05 PNNaut4 4.05

PNNcor2 InF MVBcor5 5.00 PNNord4 4.06 PNNord4 4.06

PNNcor3 InF MVBind5 5.00 MVBaut5 5.00 MVBaut5 5.00

PNNind1 InF PNNaut5 5.00 MVBcor5 5.00 MVBcor5 5.00

PNNind2 InF PNNcor5 5.00 MVBind5 5.00 MVBind5 5.00

PNNord1 InF PNNind5 5.00 PNNaut5 5.00 MVBord5 5.00

PNNord2 InF PNNord5 5.00 PNNcor5 5.00 PNNaut5 5.00

PNNord3 InF MVBord5 5.01 PNNind5 5.00 PNNcor5 5.00

PNNord4 InF PNNaut1 InF PNNord5 5.00 PNNind5 5.00

PNNord5 InF PNNord1 InF MVBord5 5.01 PNNord5 5.00  
 

The fusion performance associated with Hostile rich environments indicates for 

feasible fusion, min look, and correlation combinations; fewer looks per TP are in general 



 

257 

taken by algorithms with fewer forced looks.  Fewer forced looks are thus preferred, as 

indicated by lower mean estimated looks per TP, but may be become infeasible as the 

prior ratio of Hostiles to Friends decreases.  Thus, in a Hostile rich environment both 

PNN and MVB fusion, with 1-forced look, surface to the top of the lists, and the best 

looks per TP are typically associated with the independent data.  The next best 

performance is obtained by autocorrelated data for the PNN, but for MVB fusion, co-

registered data appears to be almost on par with independent data.  For both fusion 

methods, the lowest performance appears to be associated with the naturally ordered data. 

A general preference for data containing less natural correlation is reasonable; yet, 

to obtain less correlated data additional time or another sensor platform may be required.  

If a different time unit is associated with each of the looks the four correlated data sets, 

the mean number of looks may provide additional insight to determine if the extra time 

and assets required to collect data with less correlation is advantageous.  The following 

assessment will use the naturally ordered data as the baseline time unit, where 1 ordered 

look = 1 time unit.  The autocorrelated data may be taken by two platforms at the same 

time.  To facilitate the registration and information flow between two platforms, the time 

per autocorrelated look, may be assumed to be 1.2 ord-time units.  The same registration 

issue arises for the independent data as well, so it to should be penalized to account for 

this extra requirement.  Further, the independent data may be thought of as a new flight 

pass for each look through time, so starting with the second look, an additional 2 ord-time 

units will be added to the mean number of looks for each look greater than 1.  Finally, the 

co-registered data may be thought of as a single platform taking up to 5 flight passes, so it 

is only penalized by the 2 ord-time units for any looks greater than 1. 
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Table 5.29 Example Time/TP Associated with max TPR for Each Fusion Algorithm 

Sorted across All Data Correlation and Minimum Looks for High H:F 

H:F= 2:1 H:F= 4:1 H:F= 10:1 H:F= 20:1

fusion time/TP fusion time/TP fusion time/TP fusion time/TP

MVBcor1 1.74 PNNcor1 1.27 PNNord1 1.15 PNNord1 1.06

MVBind1 1.83 MVBcor1 1.44 PNNcor1 1.16 PNNcor1 1.12

MVBaut1 2.07 PNNind1 1.46 PNNind1 1.27 PNNind1 1.23

MVBord1 2.08 MVBord1 1.54 PNNaut1 1.31 PNNaut1 1.23

MVBord2 2.45 MVBind1 1.67 MVBcor1 1.32 MVBcor1 1.29

MVBaut2 2.72 MVBaut1 1.82 MVBord1 1.37 MVBord1 1.34

MVBord3 3.12 PNNord2 2.13 MVBind1 1.60 MVBind1 1.56

MVBaut3 3.71 MVBord2 2.19 MVBaut1 1.65 MVBaut1 1.61

MVBord4 4.08 PNNaut2 2.54 PNNord2 2.10 MVBord2 2.10

MVBcor2 4.21 MVBaut2 2.59 MVBord2 2.11 PNNord2 2.10

MVBind2 4.54 MVBord3 3.08 PNNaut2 2.54 MVBaut2 2.51

MVBaut4 4.83 PNNord3 3.11 MVBaut2 2.54 PNNaut2 2.54

MVBord5 5.03 MVBaut3 3.67 MVBord3 3.04 MVBord3 3.03

MVBaut5 6.00 PNNaut3 3.71 PNNord3 3.11 PNNord3 3.11

MVBcor3 7.02 MVBord4 4.05 MVBaut3 3.66 MVBaut3 3.64

MVBind3 7.61 PNNord4 4.06 PNNaut3 3.71 PNNaut3 3.71

PNNind3 7.66 PNNcor2 4.07 MVBord4 4.04 MVBord4 4.02

MVBcor4 10.00 MVBcor2 4.12 PNNord4 4.06 PNNord4 4.06

PNNcor4 10.06 PNNind2 4.47 PNNcor2 4.07 PNNcor2 4.07

MVBind4 10.80 MVBind2 4.48 MVBcor2 4.07 MVBcor2 4.07

PNNind4 10.90 MVBaut4 4.82 PNNind2 4.47 MVBind2 4.46

MVBcor5 13.00 PNNaut4 4.85 MVBind2 4.47 PNNind2 4.47

PNNcor5 13.09 PNNord5 5.00 MVBaut4 4.82 MVBaut4 4.82

MVBind5 14.00 MVBord5 5.01 PNNaut4 4.85 PNNaut4 4.85

PNNind5 14.12 MVBaut5 6.00 PNNord5 5.00 MVBord5 5.00

PNNcor1 InF PNNaut5 6.00 MVBord5 5.01 PNNord5 5.00

PNNord1 InF MVBcor3 7.01 MVBaut5 6.00 MVBaut5 6.00

PNNord2 InF PNNcor3 7.04 PNNaut5 6.00 PNNaut5 6.00

PNNord3 InF MVBind3 7.61 MVBcor3 7.01 MVBcor3 7.01

PNNord4 InF PNNind3 7.62 PNNcor3 7.04 PNNcor3 7.04

PNNord5 InF MVBcor4 10.00 MVBind3 7.61 MVBind3 7.60

PNNcor2 InF PNNcor4 10.02 PNNind3 7.62 PNNind3 7.62

PNNcor3 InF MVBind4 10.80 MVBcor4 10.00 MVBcor4 10.00

PNNaut1 InF PNNind4 10.82 PNNcor4 10.02 PNNcor4 10.02

PNNaut2 InF MVBcor5 13.00 MVBind4 10.80 MVBind4 10.80

PNNaut3 InF PNNcor5 13.00 PNNind4 10.82 PNNind4 10.82

PNNaut4 InF MVBind5 14.00 MVBcor5 13.00 MVBcor5 13.00

PNNaut5 InF PNNind5 14.00 PNNcor5 13.00 PNNcor5 13.00

PNNind1 InF PNNord1 InF MVBind5 14.00 MVBind5 14.00

PNNind2 InF PNNaut1 InF PNNind5 14.00 PNNind5 14.00  

From the Table above, a different preference in data sets as indicated by ‘ord’, ‘cor’, ‘aut’ 

and ‘ind’ is now observed.  Because the co-registered and independent data set are not 
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penalized for only one look, they appear to have a relatively low time to Hostile ID if not 

required to take a second look.  In general, for forced minimum looks greater than 1, both 

the autocorrelated and naturally ordered data tend to surface with better performance than 

the other two data sets that would require additional flight passes to collect data at non-

consecutive aspect angles.  The preferred forced look/data correlation assessment, also 

shows that taking more forced looks of autocorrelated or naturally ordered data may be 

preferred to fewer looks of co-registered or independent data, which may require more 

time to obtain a correct Hostile ID.  This simple example using assumed times associated 

with each correlation structure helps to illustrate the utility of using a performance 

measure like TPR or it’s reciprocal (mean looks/TP), to help gain insight and assess the 

utility of a Combat ID system, where the time associated with obtaining the data is 

incorporated.  Thus, by showing TP as a rate, significantly more information is available 

to make decisions about a preferred fusion system, which is not included in a classical TP 

vs. FP ROC curve. 

5.9 Potential Future Experiment Excursions 

The potential for several experimental excursions is supported by the DCS data 

used within this chapter, including variations in the generation of sensor level data from 

the original 2-D radar imagery and investigation of other fusion methodologies.  First, 

investigations could be performed to explore the sensor data parameters.  Specifically, the 

HH and VV polarized data could be processed into features using both AFRL’s HRR 

algorithm and Çetin’s PBR HRR algorithm across numerous different templates, defined 

by the number of range bins used, number of angles included by each template or by 



 

260 

changing internal parameters specific to each of the HRR processing algorithms, etc.  The 

mixed variable optimization formulation could then be employed to determine the best 

“Sensors” to use.  This could be accomplished by including a constraint only allowing n 

of m total available sensors to be selected.  One experiment may seek to determine the 

best algorithm and angular template for each polarization.  Another experimental 

excursion could explore how the final fused system performs if aspect information is 

degraded.  This could be accomplished by varying the number of templates searched 

from an approximate +/- 15 degree search of 3 templates to search 5, 7 or potentially all 

templates available for each target type.  The search of all angular templates would 

represent a case of no usable aspect information.  Out-of-library targets could also be 

introduced by using the 5 held out targets from the DCS radar collection (SA-8 TZM, 

BMP-1, BTR-70, SA-13, and SA-8 TEL).   

Finally, different fusion methods could be assessed.  Other methods could include 

the incorporation of different Boolean rules, other neural network methods, or other 

fusion methods.  Simple modifications to the Boolean logic could require less 

conservative rules for making class declarations, by not requiring a majority vote for 

some labels, or increasing confidence prior to declarations by requiring a majority + n 

vote prior to making a class declaration.  PNN fusion as presented in this chapter could 

also be modified by experimenting with use of a reduced data set for training that may 

help for generalization along with further experimentation with the spread of the basis 

functions, or changing the desired training target values.  Another PNN fusion method 

may also use the posterior probability estimates from all 10 target types as PNN input to 

see if significant information was lost as the posterior probabilities for TOD, OH, and FN 
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were calculated for each sensor.  Use of ten vs. three input posteriors may potentially 

yield better class estimates as more information about specific vehicle likelihoods is used 

as input to the PNN.  Other Boolean fusion schemes may also be assessed, such as trying 

to determine the optimal Boolean logic, rather than using predetermined rules.  For 

example, the ISOC method developed by Haspert (2000) may be modified to fit into the 

optimization framework.  The optimal Boolean logic associated with all labels obtained 

up through time t could be determined using an ISOC optimization routine.  Yet, because 

ISOC fusion requires cost information and assumes independent sensors, many tactical 

issues would need to be addressed.  In addition, no straight forward algorithm appears 

readily available to determine the best Boolean logic, given the previous observation was 

a “ND” and only a limited data sample is available to assess the tuning of sensor 

thresholds to generate the “Non-declarations.” 

5.10 DCS Fusion Experiment Summary and Findings 

 Demonstration of the mixed variable mathematical optimization using this 

collected DCS radar data has resulted in several interesting findings.  First, the fusion of 

two sensors with ~80% accuracy for “Hostile” and “Friendly” identification by a single-

sensor and single-look of Test data were fused across sensors and through time.  With a 

“Non-declaration” option, feasible Combat ID systems were then obtained with respect to 

the warfighter’s operational constraints.  These constraints included a maximum critical 

error less than 2%, which was met across many values of prior probabilities and across 1 

to 5 minimum forced looks prior to making a declaration.  The warfighter’s preferences 

were incorporated as constraints in the process of optimizing TPR.  Preferred fusion 
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methods were then determined without using explicit costs, allowing for “Non-

declarations” and across time, where the number of looks required was used as a 

surrogate of time. 

 Sensitivity analysis revealed general regions of feasibility across the range of 

minimum forced looks, prior probabilities of H:F, the critical error constraint, and the 

required declaration rate constraint.  Assessments were made using EOC Test data 

viewed at a depression angle of 10 degrees vs. the 6-8 degree data used for Training.  

This sensitivity analysis was performed across a full experimental design including 9 

levels of priors, 4 levels of critical error, 3 levels of declaration rate and across the 

minimum forced looks by each fusion model.  The sensitivity analysis facilitated the 

determination of the general boundaries where each fusion system may be preferred.  

This included showing areas where both systems were infeasible with low priors and few 

forced looks, and areas where both fusion methods achieved similar performance at 

higher ratios of priors with more forced looks.  Influence of varying the two constraints, 

1 3 and Π Π , was then more pronounced at these preference boundaries.  Thus, from the 

sensitivity analysis, the operational environment defined by the prior probability of 

encountering a Hostile vs. Friendly target and the predetermined decision to use multiple 

forced looks appears to provide the greatest influence for fusion system feasibility.  This 

has a good intuitive interpretation, where a Combat ID system operating in a Hostile 

target sparse environment is more likely to encounter a Friend or Neutral target, and 

should be required to take extra looks and gain a high level of confidence prior to 

labeling as a “Hostile.”  For Hostile target rich environments, the chance of encountering 
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a Friend or Neutral is much lower, so less confidence may be required before labeling as 

“Hostile” prior to making a subsequent shoot decision. 

In general, the Majority Vote Boolean fusion was able to achieve feasible 

solutions across a larger percentage of all assessed conditions, as shown throughout the 

sensitivity analysis.  The greater feasibility may be attributable to the optimization of the 

two sensors using four variable thresholds for the Boolean fusion vs. only allowing the 

PNN fusion to optimize over two continuous thresholds after fusion had occurred.  The 

PNN fusion optimization was limited to two degrees of freedom, while the Boolean 

fusion used four degrees of freedom to tune each of the 2 sensors to perform a slightly 

different classification task to obtain the maximum TPR.  In addition, even without a 

“Non-declaration” label generated by either sensor, the Boolean fusion rule still forced 

additional looks when the individual sensors were in conflict without a majority vote.  

Thus, in a Hostile rich environment with only one forced look, the MVB fusion had a 

lower maximum TPR compared to the PNN fusion.  In this environment, the PNN fusion 

aggressively labeled most vehicles as “Hostile” on the first look.  For the more difficult 

environments, the nature of the majority vote logic combined with the tuning of each 

sensor, allowed MVB fusion to obtain feasible solutions by taking additional looks.  This 

increased feasibility was demonstrated across significantly more of the excursions using 

different prior ratios across a range of maximum critical errors and declaration rates, and 

using different numbers of minimum forced looks.  The forcing of extra looks, rather than 

incorrectly generating some incorrect labels, was illustrated in the Hostile target sparse 

environments where feasible MVB fusion with only 3 or 4 forced looks, would be seen to 

take an average of 5 or more looks to obtain a correct Hostile target ID.  
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Assessment across the four levels of correlation in the data confirmed that in 

general less correlated data is preferred.  For the more difficult cases with low ratios of 

priors, MVB fusion preference was for the two data sets which were independent across 

the two sensors for any given time t.  This is indicated by the larger feasible region, 

obtained by the MVB fusion for the independent and autocorrelated data vs. the co-

registered or naturally ordered data.  This occurred predominately for data with prior 

ratios of less than 1:1 and for low numbers of minimum forced looks.  These two data 

sets may be preferred by the Boolean fusion logic, since at any time t, the sensors collect 

data at different aspect angles.  Then, if one image is labeled incorrectly, the majority 

vote can not be obtained on the first look and will force an additional look.  Similarly, if a 

target is confused though multiple looks by one sensor, a final fusion output label other 

than “Non-declaration” will not be made until the majority vote is obtained.   

A small illustrative example was presented to highlight the utility of using a 

measure such as TPR or the mean time to TP as a measure of performance for Combat ID 

systems.  For the example in section 5.8, the preferred fusion models were first ordered 

by the mean number of minimum Looks to TP (reciprocal of max TPR), and shows a 

preference for the sensor data structures with less inherent correlation.  Preference was 

also shown for the feasible fusion models based on a lower number of minimum looks.  

After penalizing the less correlated data structures to require more time per look, 

differences arose as to which data set and minimum number of forced looks may be 

preferred.  These preferences were illustrated across the higher levels of H:F, where more 

of the systems were feasible.  Thus, when designing a Combat ID system or trying to 

determine optimal CONOPS for flight passes, the mixed variable optimization provides a 



 

265 

means to compare and assess the value of obtaining data with potentially less inherent 

correlation.  Less correlation may be obtained by altering the flight passes; yet, collecting 

data from another flight pass may take considerably more time.  In the same time period, 

multiple consecutively ordered images may be taken, or if multiple ISR platforms are 

available, real-time fusion across a small formation may be highly desired.  The Hostile 

target rich or target dense boundaries may also be determined, where collection of 

relatively independent data from multiple flight passes may be required to meet the 

desired constraints of a feasible ID system.  Some of these differences are visible from 

the increased feasible solutions when comparing the naturally ordered data vs. the other 

three data sets with less inherent correlation. 

Overall, not only were two fusion systems optimized across ROC and rejection 

thresholds, but this was accomplished through time and without the use of difficult to 

determine costs.  These costs are associated with undesirable critical errors, potentially 

having grave consequence, non-critical error leading to sub-optimal sorties, and “Non-

declarations” requiring additional dedicated ISR asset time before obtaining a final target 

label, and may be difficult to place in comparable units.  This mixed variable 

optimization framework provided a means to assess Combat ID systems with desirable 

performance characteristics, without these cost estimates placed in equivalent units as 

required by many of the reviewed methods to assess classification systems using a 

minimum cost function. 
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VI. Contributions and Avenues for Future Research 

This research was not intended to advocate use of one fusion method over 

another, but to facilitate the future assessment of ATR systems required fusion sensor 

data to obtain a desired level of confidence prior to making a declaration.  These systems 

may always yield a “Non-declaration” output label and the subsequent sensor data 

collected and fused may be highly correlated.  Further, it was highly desired to evaluate 

competing fusion methods without inclusion of explicit costs of misclassification.  While 

all examples presented were focused on military ATR applications, it should be noted, 

this general framework for the evaluation of classification systems may be developed in a 

similar manner for other classification systems.  Other areas employing ATR systems 

with the potential for fused sensors include the medical community for diagnosis, 

automatic system prognosis, financial forecasting, robotics, and environmental 

monitoring. 

6.1 Contributions 

Chapter 1 defined principal research areas and objectives.  The contributions 

made by this research are presented in the context of these areas.   

1.  Comprehensive review of the literature as applicable to the investigation of assessing 

ATR systems with the fusion of correlated data and “Non-declarations” 

2.  Development of a mathematical programming formulation to assess and compare 

fusion systems without explicit misclassification costs and inclusive of temporal 

considerations and “Non-declarations” 
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3.  Development of multivariate data generation for a synthetic classifier fusion-testing 

environment 

4.  Demonstration of the proposed mathematical programming formulation on various 

data sets 

5.  Empirical evidence for some general data correlation effects for ATR systems 

6.1.1 Comprehensive Review of the Literature 

A review of the literature was performed to determine the state-of-the-art methods 

to assess ATR fusion systems, given “Non-declarations,” uncertain misclassification 

costs across known classes and “Non-declarations,” and inclusive of temporal 

assessment.  Some methods were found to assess performance inclusive of “Non-

declarations.”  Yet, this was performed with either a predetermined level of rejection or 

through use of estimated misclassification costs.  Review of the literature also identified 

potential feature generation techniques and general levels of expected correlation, 

although limited measured of correlation were reported in the open literature.  Review of 

the literature also identified Boolean rules as a common fusion method to perform 

decision level fusion, while use of neural networks, was a common method for the fusion 

of feature level sensor data.  Overall, review of the literature showed this specific 

investigation of sensor fusion for ATR with “Non-declarations” and correlated input data 

offers extensions from previously performed fusion research. 

6.1.2 Mathematical Framework for the Evaluation of ATR 

As a proposed research goal, the development of a ROC like measure of 

performance inclusive of “Non-declarations” and temporal assessment of identification 
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systems was developed.  The projection of a set of ATR system ROC curves could then 

be plotted on a traditional 2D axis, or a 3D surface may be used to help show the trade-

offs as rejection levels are varied.  In each of these plots, feasible regions may be 

identified, along with an optimal operating point.  The optimal point was determined 

from optimization of a mixed variable program, and the optimal thresholds associated 

with each ATR system were identified.  Without using explicit cost, the optimization may 

be performed across an entire range of rejection thresholds, which could subsume those 

optimal rejection thresholds identified by rejection methods suggested by Chow (1970) or 

Fumera et al. (2000).  This optimization strategy also included the “vertical” analysis of 

ATR system output labels, from which actionable decisions are made.  Further 

constraints may be added to help in the design process of an ATR system.  Finally, while 

developed using the TP Rate as the preferred objective function, the mathematical 

formulation may easily be modified to include alternative objective functions.   

6.1.3 Multivariate Data Generation for a Synthetic Fusion Test Environment 

As presented in Chapter 4, multivariate Gaussian data may be generated with 

desired correlation levels across features and through time using a VAR process.  This 

data may then be used to represent features associated with different sensors or the output 

associated with an ATR system.  Justification for use of a multivariate Gaussian 

representation of features derived from processed data, inclusive of linear mappings, was 

also presented.  Use of this data then provided an efficient means to test fusion algorithms 

across a variety of data correlation structures.  Different fusion experiments were then 

performed using these data generation techniques.  This data generation also supported 
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recent fusion research with correlated input data as performed by Storm (2003), Clemans 

(2004), Leap (2004) and Mindrup (2005). 

6.1.4 Implementation of the MVP Formulation to Assess Fusion Methods  

Comparison of DCS radar data for 10 target types with fusion of two template 

based classifiers compared a Majority Vote Boolean fusion algorithm with use of a 

Probabilistic Neural Network (PNN) for fusion.  An extended operating condition (EOC) 

test set used to compare fusion methods.  While new to the ATR community, this data set 

was collected to support ATR research and has similar characteristics to the MSTAR data 

set, which has been used to support the research associated with over 150 published ATR 

related articles (Wise et al., 2004).  This new collection of DCS radar data includes a new 

variety of ground targets and offers polarimetric radar data collected for both HH and VV 

channels of X-band radar polarizations.  Within the ground targets are likely friendly and 

neutral target types, with radar data collected on the HMMWV and M113 along with 

three different versions of Budget moving trucks.  The data set also includes both the 

SCUD and SMERCH which offer two targets of the same relative large size.  This 

provides a challenge for classifiers, with the potential confusion of target types if a 

feature relies on the relative size of a target.  Thus, this unclassified data set may be used 

in a similar manner as the MSTAR data which has been used to support a significant 

portion of open-literature ATR research.  In summary, the DCS radar data collection may 

likely continue to be used for significant future ATR and fusion research, with this effort 

being one of the preliminary investigations using this data. 
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6.1.5 Demonstrated Effects of Data Correlation for ATR 

From use of the DCS radar data across four generated data sets several effects of 

sensor correlation were observed.  These observations were made across systematic 

variations to the mathematical programming formulation as sensitivity analysis was 

performed.  In general, lower correlation levels across sensors or through time may 

contribute to increased system performance as measured by the maximum TPR achieved.  

But, more significantly, the lower levels of correlation provided for a significant increase 

in feasible operating conditions.  Thus, given a fusion algorithm such as the PNN or use 

of a Majority Vote with a predetermined number of minimum forced looks, the 

associated feasible operation of these fusion methods varied significantly across different 

variables.  The largest differences in feasibility appeared associated with the ratio of 

Hostile to Friendly targets.  Increases in feasible fusion models were also obtained as 

correlation was reduced from the naturally ordered data set with sensor data collected at 

the same time by two sensors with approximately 4 degrees of aspect angle between 

looks, to sensors generated to represent independent collection across the two sensors and 

within multiple looks by the same sensor through time.  In addition, by using a measure 

of performance such as the TPR which incorporates time, an associated value could be 

placed on a time requirement to obtain independent looks that would yield operationally 

equivalent TPR for the naturally collected data.  This type of analysis was briefly 

demonstrated, and may be of potential help for ATR design and ATR concept of 

operations (CONOPS) development.  This may assist in determining what is ultimately 

preferred in an operational use of ATR, quickly collected data with lower single look 
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performance, or less dependent data, potentially collected across multiple flight passes, 

which requiring more time. 

6.2 Future Research 

The contributions of this research effort immediately suggest several promising 

areas for related research.  Chapter 5 includes several related extensions that may be of 

interest using the DCS radar data collection.  Development of a mixed variable 

programming formulation was presented in Chapter 3, but was solved using complete 

enumeration across the desired discrete variables and a grid of thresholds.  The 

application of mixed variable programming algorithms, such as those presented by 

Abramson (2002), Audet and Dennis (2000) or Sriver (2004), may provide for a more 

efficient optimization.  Yet, these techniques typically just search for a single optimal 

solution.  Thus, associated algorithms to identify all feasible operating points may be 

desired to help assess ATR system robustness.  In addition, to support new sensor fusion 

research, the following two general areas are presented and outlined below. 

6.2.1 Potential Sensor Saliency Research 

Since multi-layer perceptron (MLP) ANNs, time delayed neural networks 

(TDNNs) and recurrent neural networks (RNNs) have all been used to fuse correlated 

input features with successful implementation of saliency screening (Laine and Bauer, 

2003; Laine et al., 2002; Greene, 1998), an extension of saliency screening may be 

developed to measure the relative contribution by each sensor.  This saliency 

investigation would be performed for feature level fusion of an object, with features from 
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multiple sensors fused to generate class estimates.  The goal would be to gain insight as 

to which of the sensors provide salient information to the neural fusion model, and if 

using a TDNN or RNN, relative temporal saliency for information associated with re-

looks could be evaluated.  An initial look at contributions made by different sensors 

under a designed environment with injected noise is presented by Dasarathy (2000a) in 

which Case-Based Reasoning (CBR) is used to determine output class labels based on the 

minimum dissimilarity of an observation from known samples.  A similar experiment 

could be designed building on the current of neural network saliency research.   

For instance, the relative saliency of a group of features (sensor A) could be 

compared to another group of features (sensor B) as a measure of the relative output 

influence by each sensor.  Either weight based saliency measures, such as the signal-to-

noise ratio (SNR) (Bauer et al., 2000) or performance based saliency methods, such as 

sensitivity based pruning (SBP) (Moody, 1998) may be used to obtain a measure of the 

relative value of a sensor’s input or potentially the value of additional looks obtained by a 

sensor.  Unlike previously applied input feature saliency measures, sensor saliency 

measures would need to consider a set of features associated with a sensor.  Under a 

weight based approach, using the sum of SNR values for each feature from a sensor may 

be a first approach.  Likewise, an output based measure such as SBP could use the 

relative change in the model’s output when all values associated with a given sensor are 

set to mean values to assess the relative impact of information provided by each sensor. 
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6.2.2 Potential Research for “Non-declarations” at Various Fusion Levels 

As stated in Chapter 2, research has shown MLP ANNs are capable of performing 

any mapping to a desired degree of accuracy (Hornik et al., 1989, 1990) and a well-

trained ANN yields a posterior probability estimates of class membership (Ruck et al., 

1990; Wan 1990).  Thus, with more information available from input features 

representative of sensor features or estimated class probabilities, one research question is 

whether the search for optimal decision thresholds of the continuous valued neural 

network output space generated from an appropriate “one big net” fusion model may be 

superior to Boolean sensor output fusion.  The experiment presented in Chapter 5 using 

the DCS radar data compared a PNN fusion approach to a predetermined Boolean logic, 

with the majority vote Boolean method preferred in many target sparse environments.  

This preference was achieved by obtaining feasible solutions when the PNN fusion 

remained infeasible.  Determining whether this increased feasibility is associated with the 

Boolean logic or the increased degrees of freedom used to optimize across 4 variable 

ROC and rejection thresholds vs. 2 variable thresholds used by the PNN fusion is of 

interest. 

With “Non-declarations” required, the one-big-net PNN fusion approach was only 

able to generate a “Non-declaration” at the end of the fusion process.  In contrast, the 

Majority Vote Boolean fusion generated “Non-declaration” labels for both the input to 

the fusion rule by individual sensors, and as output from the fusion rule.  Overall, new 

research may look to provide a theoretical basis to explain why preprocessing a sensor’s 

output data may be preferred, prior to fusion by any method.  As was observed from 

analysis of the optimal thresholds, the best Boolean fusion was often obtained by tuning 
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each senor to perform a slightly different classification task.  Experimental approaches 

could attempt to generate “tuned” sensor data more similar to the label generation used 

by the Boolean fusion, but may attempt to retain a continuous value associated with 

different consolidated classes, inclusive of generating a “Non-declaration” input value.  

In performing this research, a defendable answer to whether “Non-declarations” should 

be performed prior to sensor fusion or post sensor fusion under different input 

assumptions is of interest. 

6.3 Final Conclusions 

Overall, the research contained within this document extends the research found 

within the open literature.  As desired, a ROC-like performance measure was developed 

inclusive of temporal assessment for ATR systems.  The ROC-like nature simply 

identifies those feasible points on a ROC curve which meet the warfighter operational 

constraints.  These operational constraints include the analysis of Critical and Non-

critical errors via vertical analysis and the assessment of “Non-declarations.”  Hopefully, 

this mathematical optimization may be a significant aid for the evaluation and 

comparison of competing ATR systems, which are required to fuse data to reach desired 

levels of correct class declarations.  The proposed methodology goes beyond the 

traditional ATR system evaluation methods and determines the preferred ATR operating 

thresholds and other system parameters without use of explicit costs.  This measure can 

then be used to help determine the relative value of obtaining correlated data quickly or 

of obtaining less correlated data across a longer time period.  In summary, the 

optimization methodology incorporates a flexible framework to establish a decision 
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maker’s primary objective, subject to constraints, and does so across both the 

warfighter’s “vertical” view of declared targets and the engineer’s “horizontal” view of 

actual types of objects classified. 
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Appendix A. DCS Experiment Figures and Tables 

The following figures and tables provide more detailed information with respect 

to the experiment using the DCS radar data. 

A.1 Sensor Posterior Probabilities for Training and Test Data by Aspect 

Angle 
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Figure A.1 SCUD Posterior Probabilities by Sensor for Training & Test Data 
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Figure A.2 SMERCH Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.3 SA-6 Radar Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.4 Med Truck Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.5 HMMWV Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.6 T-72 Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.7 M113 Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.8 Small Truck Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.9 SA-6 Posterior Probabilities by Sensor for Training &Test Data 
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Figure A.10 Large Truck Posterior Probabilities by Sensor for Training &Test Data 
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Table A.1 Sample Sensor Performance by Target Type using Training and Test Data for 

θREJ = 0.0 Centered at θROC 0.5 (No Rejection Option) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 4% 96% 0% 7% 93% 0%

SMERCH OH 7% 94% 0% 3% 97% 0%

SA-Radar OH 6% 94% 0% 15% 85% 0%

T-72 OH 8% 92% 0% 13% 87% 0%

SA-6 TEL OH 5% 95% 0% 15% 86% 0%

Med Truck FN 91% 9% 0% 98% 2% 0%

HMMWV FN 90% 10% 0% 98% 2% 0%

M113 FN 90% 10% 0% 98% 2% 0%

Sm Truck FN 82% 18% 0% 98% 2% 0%

Lg Truck FN 98% 2% 0% 99% 1% 0%

mean True Class 92.2% mean True Class 93.7%

mean False Class 7.9% mean False Class 6.3%

mean rejection 0.0% mean rejection 0.0%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 11% 89% 0% 21% 79% 0%

SMERCH OH 11% 90% 0% 11% 90% 0%

SA-Radar OH 12% 88% 0% 27% 74% 0%

T-72 OH 21% 79% 0% 35% 65% 0%

SA-6 TEL OH 14% 86% 0% 32% 68% 0%

Med Truck FN 70% 30% 0% 92% 8% 0%

HMMWV FN 81% 19% 0% 97% 3% 0%

M113 FN 76% 24% 0% 96% 4% 0%

Sm Truck FN 66% 34% 0% 93% 7% 0%

Lg Truck FN 84% 16% 0% 96% 5% 0%

mean True Class 80.8% mean True Class 84.8%

mean False Class 19.2% mean False Class 15.2%

mean rejection 0.0% mean rejection 0.0%  
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Table A.2 Sample Sensor Performance by Target Type using Training and Test Data for 

θREJ = 0.4 Centered at θROC 0.5 (Rejection Occurs if 0.30 < ppH < 0.70) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 3% 93% 4% 4% 89% 7%

SMERCH OH 4% 90% 6% 2% 95% 3%

SA-Radar OH 3% 89% 8% 9% 77% 14%

T-72 OH 4% 85% 12% 8% 82% 10%

SA-6 TEL OH 3% 89% 8% 10% 79% 12%

Med Truck FN 86% 7% 7% 96% 1% 2%

HMMWV FN 85% 6% 9% 97% 1% 2%

M113 FN 84% 4% 12% 96% 1% 3%

Sm Truck FN 69% 10% 21% 96% 1% 3%

Lg Truck FN 97% 1% 2% 99% 1% 1%

mean True Class | dec 95.1% mean True Class | dec 96.1%

mean False Class | dec 4.9% mean False Class | dec 3.9%

mean rejection 8.7% mean rejection 5.6%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 9% 88% 4% 18% 77% 5%

SMERCH OH 7% 82% 11% 9% 85% 7%

SA-Radar OH 6% 81% 13% 18% 67% 15%

T-72 OH 14% 72% 14% 29% 57% 14%

SA-6 TEL OH 8% 79% 13% 24% 59% 17%

Med Truck FN 65% 22% 13% 89% 6% 5%

HMMWV FN 74% 16% 11% 96% 3% 2%

M113 FN 69% 17% 14% 93% 3% 4%

Sm Truck FN 56% 26% 18% 90% 5% 5%

Lg Truck FN 80% 12% 8% 94% 4% 3%

mean True Class | dec 84.4% mean True Class | dec 87.2%

mean False Class | dec 15.6% mean False Class | dec 12.8%

mean rejection 11.9% mean rejection 7.6%  
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Table A.3 Sample Sensor Performance by Target Type using Training and Test Data for 

θREJ = 0.8 Centered at θROC 0.5 (Rejection Occurs if 0.10 < ppH < 0.90) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 1% 88% 11% 1% 84% 15%

SMERCH OH 1% 83% 16% 0% 91% 9%

SA-Radar OH 1% 81% 18% 4% 65% 31%

T-72 OH 1% 74% 25% 3% 70% 27%

SA-6 TEL OH 1% 77% 23% 4% 67% 29%

Med Truck FN 79% 3% 18% 93% 1% 6%

HMMWV FN 70% 2% 28% 95% 1% 5%

M113 FN 69% 1% 30% 93% 1% 6%

Sm Truck FN 55% 4% 41% 93% 1% 7%

Lg Truck FN 93% 0% 7% 97% 0% 3%

mean True Class | dec 97.9% mean True Class | dec 98.3%

mean False Class | dec 2.1% mean False Class | dec 1.7%

mean rejection 21.7% mean rejection 13.7%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 7% 84% 9% 16% 74% 11%

SMERCH OH 5% 70% 26% 6% 79% 16%

SA-Radar OH 4% 70% 27% 11% 57% 31%

T-72 OH 8% 58% 34% 17% 45% 38%

SA-6 TEL OH 5% 65% 30% 15% 43% 42%

Med Truck FN 54% 15% 31% 83% 5% 12%

HMMWV FN 58% 11% 31% 93% 1% 7%

M113 FN 52% 11% 37% 89% 2% 9%

Sm Truck FN 39% 17% 44% 85% 3% 12%

Lg Truck FN 73% 8% 19% 92% 2% 7%

mean True Class | dec 87.3% mean True Class | dec 90.5%

mean False Class | dec 12.7% mean False Class | dec 9.5%

mean rejection 28.7% mean rejection 18.3%  
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Table A.4 Sample Sensor Performance by Target Type using Training and Test Data for 

θREJ = 0.98 Centered at θROC 0.5 (Rejection Occurs if 0.01 < ppH < 0.99) 

Sensor A Training Data Sensor B Training Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 0% 82% 19% 0% 74% 26%

SMERCH OH 0% 75% 24% 0% 82% 18%

SA-Radar OH 0% 72% 28% 1% 47% 52%

T-72 OH 0% 62% 38% 0% 50% 50%

SA-6 TEL OH 0% 64% 36% 0% 45% 55%

Med Truck FN 67% 1% 32% 86% 0% 14%

HMMWV FN 41% 1% 58% 86% 0% 14%

M113 FN 42% 0% 58% 83% 0% 17%

Sm Truck FN 34% 1% 66% 82% 0% 18%

Lg Truck FN 86% 0% 14% 93% 0% 8%

mean True Class | dec 99.6% mean True Class | dec 99.8%

mean False Class | dec 0.4% mean False Class | dec 0.2%

mean rejection 37.2% mean rejection 27.0%

Sensor A Test Data Sensor B Test Data

Type Label "F" "H" % Rej "F" "H" % Rej

SCUD TOD 6% 77% 17% 12% 66% 22%

SMERCH OH 3% 61% 37% 3% 67% 31%

SA-Radar OH 2% 63% 36% 4% 39% 58%

T-72 OH 4% 47% 49% 8% 24% 68%

SA-6 TEL OH 2% 50% 48% 6% 29% 65%

Med Truck FN 45% 10% 45% 74% 2% 25%

HMMWV FN 26% 7% 68% 86% 0% 14%

M113 FN 21% 6% 73% 76% 1% 23%

Sm Truck FN 19% 10% 71% 74% 2% 24%

Lg Truck FN 63% 5% 32% 84% 1% 15%

mean True Class | dec 89.7% mean True Class | dec 94.1%

mean False Class | dec 10.3% mean False Class | dec 5.9%

mean rejection 47.6% mean rejection 34.4%
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Appendix B. Matlab Code 

Appendix B contains some of the code used for the analysis presented within this 

document.  The first section includes the specific procedures used to process the 2D DCS 

SAR image chips into HRR 1D range profiles. 

B.1 Matlab Code used to Process DCS Data into HRR Radar Profiles 

DCS_proc1.m 
function [void] = DCS_proc1(flight_ID) 
% File collects info from Phoenix header of DCS target data for 1 pass 
%  Code modification by T. Laine to read data files Oct 04 
%  Initial code generated by Tim Albrecht Fall 04 to read  
%  MSTAR SAR chips with Phoenix header files 
tic; 
 
% DATA SOURCE: SAR target chips taken from DCS(Public) Targets data DVD,  
% containing 15 ground targets in stationary positions imaged by spot SAR 
 
% form Taylor window, will be used on all chips, so do calculations outside 
% of loops 
w1 = taylorWin(200,5,35); 
w2 = w1; 
w = w2*w1.'; 
 
target_str = ['C:\Documents and Settings\tlaine\My Documents\DCS data\' flight_ID '\Chips\']; 
     
% list the SAR chip files in the current target directory 
% (0) performs AFRL/SN MSTAR to HRR conversion as baseline reconstruction 
%     technique, then performs the following reconstruction steps adapted 
%     from Cetin's dissertation 
file_list = dir(target_str); 
for file_num = 3:size(file_list,1)                          % file "1" == "."  file "2" == ".." 
%     disp(['processing chip #' num2str(file_num-2) ' of ' num2str(size(file_list,1)-2)]); 
        file_str = [target_str, file_list(file_num).name];  % sets file_str as the file name indexed as  
       % disp([file_str ' file #' num2str(file_num-2)]); 
 
        outStruct = struct('type', [], 'serialNum', [], 'aspect', [], ... 
             'rangeProfile', [], 'normProfile', [], 'reconProfile', [], ... 
             'hrrProfile', []);    
 
% read file 
% (1) read in the chip header, magnitude and phase information 
        fid = fopen(file_str, 'r', 'ieee-be'); 
        % read Phoenix header from chip file 
        i=1; 
        headerLine = fgetl(fid); 
        while(~(strcmpi(headerLine,'[EndofPhoenixHeader]'))) 
            [field{i}, value{i}] = strtok(headerLine, '='); 
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            i = i + 1; 
            headerLine = fgetl(fid);    
        end 
        d = cellfun('isempty', value); 
        field = field(~d); 
        value = value(~d); 
        value = cellstr(strjust(strvcat(strrep(value, '=', '')),'left')); 
        numericValue = str2double(value); 
        numericInd = find(~isnan(numericValue)); 
         
        for ii = 1:length(numericInd) 
            value{numericInd(ii)} = numericValue(numericInd(ii)); 
        end 
     
        [nr, nc] = size(value); 
        nfields = max(nr,nc);       
         
% Don't try to read these 6 fields as they get rejected as Matlab fields 
%         field(82) == 'AircraftLocationX-ECEF' 
%         field(83) == 'AircraftLocationY-ECEF' 
%         field(84) == 'AircraftLocationZ-ECEF' 
%         field(85) == 'AircraftVelocityX-ECEF' 
%         field(86) == 'AircraftVelocityY-ECEF' 
%         field(87) == 'AircraftVelocityZ-ECEF' 
%  Thus, load header as 2 separate header files 
       
        header1 = cell2struct(value(1:81), field(1:81), 1); 
        header2 = cell2struct(value(88:nfields), field(88:nfields), 1); 
 
        % get chip information 
        rows = header1.NumberOfRows; 
        cols = header1.NumberOfColumns; 
         
        % read mag and phase blocks 
        [mag,count] = fread(fid,[cols,rows],'float32'); 
        if (count ~= (rows*cols)) 
           error('Error reading the magnitude data'); 
        end 
        [phase, count] = fread(fid,[cols,rows],'float32'); 
        if (count ~= (rows*cols)) 
           error('Error reading the phase data'); 
        end 
 
        Aspect = header2.TargetAz; 
        MDep = header2.MeasuredDepression; 
        MDep=MDep(:,1:6); 
        MDep=str2num(MDep); 
        TargetType = header2.TargetType; 
        TargetPos = header2.TargetPositionNumber; 
        polar_str = header1.Polarization; 
         
        % (2) create the baseline, complex chip (256 x 256 pixels) 
        % form complex chip 
        chip = mag.* exp(j.*phase); 
        chip = flipud(chip.'); % range increases with increasing range bin 
        % close file 
        fclose(fid); 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % AFRL/SN MSTAR to HRR steps % 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
        % MSTAR parameters 
        rangePixelSpacing= 0.202148;  %  0.2032102m == 0.6667 ft   
        xrangePixelSpacing= 0.203125; %  0.2032102m == 0.6667 ft   
        nBar = 5; 
        SLL = 35; 
        BEF = 1.184; % bandwidth expansion factor    
        rangeResolution = .3047;    % .3047m == 1 ft 
        xrangeResolution = .3047;   % .3047m == 1 ft 
        rOsmpl = rangeResolution/rangePixelSpacing; 
        xrOsmpl = xrangeResolution/xrangePixelSpacing; 
        fullSceneFftSize = [2042 1832];      
         
        % remove weighting and oversample 
        orgChip = RemoveTaylor(chip, nBar, SLL, BEF, rOsmpl, xrOsmpl, ... 
            fullSceneFftSize(1), fullSceneFftSize(2)); 
        [orgRow, orgCol] = size(orgChip); 
        hrrRangeResolution = rangeResolution/BEF; 
        hrrRangePixelSpacing = rangePixelSpacing*rows/orgRow; 
     
        % apply range weighting and 2x oversample 
        rngWgts = repmat(taylorWin(orgRow, 6, 40), 1, orgCol);  
        numRngSmp = round(2/1.25*orgRow);   % BEF = 1.25 for Taylor nbar = 6, SLL = 40 
        phaseHistory = fftshift(ifft2(orgChip)); 
        osChip = fft(fft(phaseHistory.*rngWgts, numRngSmp),[],2);    
        [osRow, osCol] = size(osChip); 
        hrrRangeResolution = hrrRangeResolution*1.25;  
        hrrRangePixelSpacing = hrrRangePixelSpacing*orgRow/osRow; 
         
        % covert to range/angle domain without segmenting target 
        hrrVsAspect2 = ifft(osChip,[],2); 
    
        % form profile (detect, normalize, transform and average) for 
        % non-segmented (non-masked) version 
        hrrVsAspect2 = abs(hrrVsAspect2).^2; 
        for kk = 1:osCol 
            hrrVsAspect2(:,kk) = sqrt(osRow)*hrrVsAspect2(:,kk)/norm(hrrVsAspect2(:,kk)); 
        end   
        % hrrVsAspect2 = hrrVsAspect2.^.8; % power transform .2  
        %hrrVsAspect = 10*log10(hrrVsAspect); % dB 
        hrrProfile2 = mean(hrrVsAspect2,2); 
         
                
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % perform chip transforms (Albrecht/Cetin) % 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
% (3) take the 2-D FFT of the chip        
        chip_fft = fft2(chip); 
         
% (4) shift smaller freq to center 
        chip_fft_shift = fftshift(chip_fft); 
        % chip_mag = abs(chip_fft_shift); 
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% (5) crop a 28 pixel wide ban of zero-padding (200 x 200 pixels) 
        % chip_cropped_mag = chip_mag(29:228,29:228); 
        chip_cropped_fft_shift = chip_fft_shift(29:228,29:228); 
         
% (6) remove the Taylor windowing that was performed in the MSTAR 
%     collection. 100 coefficient, 35 dB sidelobe suppresion, n-bar of 4, 
%     yielding an unwindowed phase history of the chip (100 x 100 pixels) 
         
        % remove Taylor windowing 
        chip_unwinPhaseHist = chip_cropped_fft_shift./w; 
 
% (7) take the 1-D FFT to get the complex range profiles (200 x 200 pixels) 
        % form complex range profiles 
        rngProfiles = fft(chip_unwinPhaseHist,[],1); 
 
% (8) form the complex modulus (mag) of the complex range profiles, take 
%     the mean, and normalize using the inf norm 
        % complex modulus of complex range profiles, then mean 
        rngProfiles_mag = abs(rngProfiles); 
        meanProfile = mean(rngProfiles_mag,2); 
         
        % populate outStruct 
        outStruct.type = upper(strtok(strrep(header2.TargetType,'_',' '))); 
        if( isnumeric(header2.TargetSerialNum) ) 
           header2.TargetSerialNum = num2str(header2.TargetSerialNum); 
        end 
         
        outStruct.serialNum = header2.TargetSerialNum; 
        outStruct.aspect = header2.TargetAz; 
        outStruct.rangeProfile = meanProfile; % (200 x 1 vector) 
        outStruct.hrrProfile = hrrProfile2; % (322 x 1 vector) 
 
        % give unique name to the newly formed structured array     
        name_str = outStruct.type; 
        aspect_str = int2str(round(outStruct.aspect)); 
        position_str = num2str(TargetPos); 
         
% (9) save the range profiles according to aspect angle 
        file_str = ['T',position_str,'_',polar_str,'_', aspect_str]; 
        magic_str = [file_str,' = outStruct;']; 
        eval (magic_str); 
    end % end chip files in directory loop 
 
% save the range profiles according to aspect angle 
for targetID = 1:15 
    dname = ([flight_ID, '_T', num2str(targetID)]); 
    dsave =(['T', num2str(targetID), '_*']); 
    save(dname, dsave); 
end 
 
tx=toc; 
disp(['flight ' flight_ID ', time to evaluate = ' num2str(tx) ' seconds']) 
clear 
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DCS_proc2.m 
function [void] = DCS_proc2(flight_ID) 
% Original code by Tim Albrecht 
% AFIT/ENS 
% HMM Fusion Project,  Fall 04 
%  Minor modification by T. Laine to act as a function call Oct 04 
%  applied for DCS data 
 
% this script performs the following batch operations on MSTAR SAR 
% target chips (training data): 
% (1) read in the target data created in 'batch_trn1.m' 
% (2) normalize the range profiles across aspect angle across all targets 
% (3) save normalized profiles to structured arrays 
 
tic; 
%  Read in all data chips associated with one flight 
for tt = 1:15 
    load_str = ([flight_ID, '_T', num2str(tt)]); 
    load(load_str);       
end 
data_list = whos; 
num_profiles = size(data_list,1) - 3 
                                            % there are 3 non-profile  
                                            % related variables in the  
                                            % workspace. they occur at the 
                                            % end of the list of variables 
                                            % so we decrement our list by 
                                            % 3 to avoid indexing into 
                                            % non-profile related data 
                                            % structures 
    % find max val by searching through the target records                                        
    max_val = 0; 
    for i = 1:num_profiles 
        name_str = data_list(i).name; 
        data_str = '.rangeProfile'; 
        temp_profile = eval([name_str data_str]); 
          
        if norm(temp_profile,inf) >= max_val 
            max_val = norm(temp_profile,inf); 
        end 
    end 
      
    % normalize by dividing through by the max_val 
    for i = 1:num_profiles 
        name_str = data_list(i).name; 
        data_str = '.rangeProfile'; 
        temp_profile = eval([name_str data_str]); 
          
        temp_profile = temp_profile./max_val; 
        data_str = '.normProfile'; 
        eval([name_str data_str ' = temp_profile;']) 
    end 
      
    % save data 
    for tt = 1:15 
        save_str = ([flight_ID '_T' num2str(tt)]); 
        save2_str = (['T' num2str(tt) '_*']); 
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        save(save_str, save2_str); 
    end 
    ttp=toc; 
    disp(['Processed Phase 2 of 4 for FP ' flight_ID ' in ' num2str(ttp) ' seconds']) 
    % remove variables from workspace before bringing in the next target 
    clear all 

 
DCS_proc3.m 
function [void] = DCS_proc3(flight_ID); 
% clear all; 
% flight_ID = ('FP0110') 
 
% Original code by Tim Albrecht 
% AFIT/ENS 
% HMM Fusion Project,  Fall 04 
% Modified by T. Laine Oct 04 to process DCS instead of MSTAR data 
 
% this script performs the following batch operations on DCS SAR 
% target chips (training data): 
% (1) reads transformed and normalized range profiles from 'DCS_proc2.m' 
% (2) performs Cetin's point-based reconstruction algorithm 
% (3) saves reconstructed range profile to structured array 
 
tic; 
%  Read in all data chips associated with one flight 
for tt = 1:15 
    load_str = ([flight_ID, '_T', num2str(tt)]); 
    load(load_str);       
     
    data_list = whos; 
    num_profiles = size(data_list,1) - 3; 
    disp([flight_ID ', target #' num2str(tt) ', ' num2str(num_profiles) ' looks']) 
                                            % there are 3 non-profile  
                                            % related variables in the  
                                            % workspace. they occur at the 
                                            % end of the list of variables 
                                            % so we decrement our list by 
                                            % 3 to avoid indexing into 
                                            % non-profile related data 
                                            % structures 
 
    % cetin point-enhancement reconstruction parameters 
    lambdasq = 0;       % region-based (smoothing) regularization parameter 
    lambdasq2 = 20;     % point-based (energy) regularization parameter 
    gamma = 1e-3;       % stopping criterion (try e.g. 10^{-3}) 
    type = 'LP';        % type of potential function used in prior (use 'LP'  
                        % for l_p-norms) 
    p = 0.1;            % determines shape of the lk-norm prior  
                        % p=2 ==> Gaussian prior, Tikhonov-type 
                        % p=1 ==> Laplacian pror, Total variation-type 
    N3 = 30;    % length of data matrix y  
                        % (used just for initialization) 
 
    for i = 1:num_profiles 
            name_str = data_list(i).name; 
            data_str = '.normProfile'; 
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            temp_profile = eval([name_str data_str]); 
 
            % begin Cetin code (point-enhanced reconstruction) 
            N1=size(temp_profile,1); 
            % N3=30; 
 
            q = temp_profile; 
 
            %dftmtx.m should be in the MATLAB signal processing toolbox. 
            %Let me know if you do not have it. 
            %Actually, let me send it anyway. 
            F=dftmtx(N1); 
            F=F(1:N3,:); 
 
            %target phase history 
            h=F*q; 
 
            %addition of observation noise 
            % hn=h+0.1*(randn(N3,1)+sqrt(-1)*randn(N3,1)); 
 
            %conventional HRR profile reconstruction 
            q_conv = F'*h/N3; % q_conv=F'*hn/N3; 
 
            Fthn=F'*h; % Fthn=F'*hn; 
            FF=F'*F; 
            q_point_rec=hrr_point_rec(Fthn,FF,lambdasq,lambdasq2,gamma,type,p,N3); 
 
            data_str = '.reconProfile'; 
            eval([name_str data_str ' = abs(q_point_rec);']) 
    end % end profile loop 
     
    % save data 
        save_str = ([flight_ID '_T' num2str(tt)]); 
        save2_str = (['T' num2str(tt) '_*']); 
        save(save_str, save2_str); 
 
    % remove variables from workspace before bringing in the next target 
    % type 
    data_list = whos; 
    for i = 1:size(data_list,1) 
        if strcmp(data_list(i).name,'path_str') 
        elseif strcmp(data_list(i).name,'target_type') 
        elseif strcmp(data_list(i).name,'data_list') 
        elseif strcmp(data_list(i).name,'i') 
        elseif strcmp(data_list(i).name,'tt') 
        elseif strcmp(data_list(i).name,'flight_ID')     
        elseif strcmp(data_list(i).name,'tic')  
        else clear(data_list(i).name) 
        end 
    end 
    clear data_list i 
end % end target type loop 
 
    ttp=toc; 
    disp(['Processed Phase 3 of 4 for FP ' flight_ID ' in ' num2str(ttp) ' seconds']) 
    % remove variables from workspace before bringing in the next target 
    clear all 
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Appendix C. Glossary of Acronyms and Abbreviations. 

ACC   Air Combat Command 

AF   Air Force 

AFRL   Air Force Research Laboratory 

AGRI   Air-to-Ground Radar Imaging 

ANN  Artificial Neural Network 

AR  Autoregressive 

ATO   Air Tasking Order 

ATR   Automatic Target Recognition 

AUC   Area Under the Curve 

BDA   Battle Damage Assessment 

CA   Classification Accuracy 

CBR  Case Based Reasoning 

CC&D Camouflage, Concealment and Deception  

CI  Confidence Interval 

CID   Combat Identification 

COMINT Communications Intelligence 

COMPASE  Comprehensive ATR Scientific Evaluation 

CPBR   Çetin Point Based Reconstruction 

CS   Classification System 

DA   Decision Analysis 

DAI   Data In 

DAO   Data Out 

DEI   Decision In 

DEO   Decision Out 

DOE   Design of Experiments 

EADSIM  Extended Air Defense Simulation 

ELINT Electronic Intelligence 

EUROC Expected Utility Receiver Operating Characteristic 

F  Friend 

FEI   Feature In 

FEN   Friend, Enemy or Neutral 

FEO   Feature Out 

FN   False Negative or Friend or Neutral 

FP   False Positive 

FSINT  Foreign Instrumentation Signals Intelligence 

GUI   Graphical User Interface 

H  Hostile 

HRR  High Range Resolution 

HSI  Hyperspectral Imagery 

HMMWV High Mobility Multi-purpose Wheeled Vehicle 

HUMINT Human Intelligence 

IFF   Identification Friend or Foe 

IMINT  Imagery Intelligence 

ISOC  Identification System Operating Characteristic 
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ISR   Intelligence, Surveillance, Reconnaissance 

JDL  Joint Directors of Laboratories 

LA   Label Accuracy 

LGP   Linear Goal Program or Programming 

MASINT Measurement and Signature Intelligence 

MBT   Main Battle Tank 

MLP  Multilayer Perceptron 

MOE   Measure of Effectiveness 

MOP   Measure of Performance 

MRLS  Mobile Rocket Launcher System 

MSI  Multispectral Imagery 

MSP   Multinominal Selection Procedure, Multinomial Selection Problem 

MSTAR  Moving and Stationary Target Acquisition and Recognition 

MVB  Majority Vote Boolean 

OBN  One Big Network 

OH  Other Hostile 

OODA Observe, Orient, Decide, Act 

OSINT Open-Source Intelligence 

PBR   Point Based Reconstruction 

PDF   Probability Distribution Function 

PNN  Probabilistic Neural Network  

RBF  Radial Basis Function 

RNN  Recurrent Neural Network 

ROC   Receiver Operating Characteristic 

ROI   Region of Interest 

SAR   Synthetic Aperture Radar 

SDMS  Sensor Data Management System 

SHADE Shallow Hide Airborne Deception Experiment 

SME   Subject Matter Expert 

SNR  Signal to Noise Ratio 

T  Target 

TDNN  Time Delayed Neural Network 

TGT   Target 

TN   True Negative 

TOD  Target of the Day 

TP   True Positive 

TPR  True Positive Rate 

TT   Target Type 

UAV  Unmanned Aerial Vehicle 

USAF   United States Air Force 

VAR   Vector Autoregressive 

VV&A  Verification, Validation, and Accreditation 
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