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Abstract

One’s choice of estimation technique is highly dependent upon the application.

In this dissertation, regression techniques are developed for batch estimation and

applied to three specific areas, namely, ballistic trajectory launch point estimation,

adaptive flight control, and radio-frequency target triangulation. Specifically, linear

regression with an intercept is considered in detail. First, an augmentation formu-

lation is developed. Then, linear regression similar to UD factorization in Kalman

filtering is considered, in which an intercept is determined from the average of mea-

surements and is subtracted from these measurements. Extensions of theory are

applied to nonlinear regression applications as well. Examples of linear and nonlinear

regression with an intercept are used to consider passive parameter estimation appli-

cations. Further examples use the intercept parameter estimate to identify the effects

of trim change that are associated with the occurrence of a control surface failure.

Then, these estimates are used to adjust the inner loop control gains via a feed-

forward command, hence providing an automatic reconfigurable retrim of an aircraft.

Finally, the author uses the developed linear regression algorithms to consider reduced

information applications, such as initial position target determination from bearings-

only measurement data. Problem reformulation is considered such that estimation

errors due to modelling error assumptions are minimized. Additionally, linearization-

induced-truncation errors are avoided altogether; hence, the method eliminates the

need for an intercept parameter in this particular application. In total, this disserta-

tion develops algorithms for batch processes that broaden the envelope of successful

estimation within the three aforementioned application areas. Additionally, the de-

veloped batch algorithms do not adversely impact the estimation ability in cases that

are already estimated successfully by conventional approaches.

iv
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Nonlinear Regression Methods for Estimation

I. Introduction

Batch estimation hinges on the solution to a regression problem. In particular, a

linear regression with intercept c [28] is considered:

Z = H · θ + e · c + V , V ∈ N (0, R) (1.1)

Z, V ∈ RN , R ∈ RN×N , θ ∈ Rn, c ∈ R1

in which the regressor H is an N × n matrix, Z is the measurement vector, θ is the

parameter vector of interest, and e is an N-vector of ones

e =




1
...

1




N×1

.

The equation error V is zero-mean, Gaussian-distributed with equation error covari-

ance R. The equation error covariance R is an N×N real, symmetric positive definite

matrix. A closed-form solution for the linear regression with intercept is developed in

Section 3.1 and summarized in Theorem 3.

One should consider two major areas of application for the batch estimation

paradigm described herein. First, the presence of a bias c could signal a failure,

resulting in an offset of the nominal dynamics equation. In the context of aircraft

flight control, control surface failure will induce a change in trim. Specifically, in

Chapter V, the pitch control channel of an aircraft is considered. The pertinent flight

control equation is [9], [30]

q̇ = Mα · α + Mq · q + Mδ · δ, 0 ≤ t ≤ T (1.2)

1



The measured variables are: δ(t), q(t), α(t), q̇(t), in which δ represents an

elevator deflection, q represents pitch rate, α denotes angle of attack, and q̇ is the

pitch acceleration. The parameter is defined: θ = (Mα, Mq, Mδ)
T ∈ R3, in which

Mα and Mq are stability derivatives and Mδ is the control derivative of the pitch

plane. The possible change in trim is quantified as:

c = Mδ · δ̄

in which δe, δ−δ̄. The dynamics equation becomes

q̇ = Mαα + Mqq + Mδδe + c .

Measurements are obtained for delta deflection δe, pitch rate q, angle of attack

α, and pitch acceleration q̇. Measurement noise is assumed as zero-mean, Gaussian-

distributed. Hence, measurements, denoted by the subscript m, are

q̇m = q̇ + vq̇m

qm = q + vqm

αm = α + vαm

δm = δe + vδm

One can rearrange these measurement equations and insert them into the pitch plane

flight control equation to obtain

q̇m = [αm qm δm] · θ + e · c + vq̇m −Mα · vα −Mq · vq −Mδ · vδ (1.3)

in which the parameter θ ,




Mα

Mq

Mδ


 and e is an N -vector of ones. One should note

that N indicates the window size or, equivalently, the number of measurements within

the batch. One can now relate (1.3) to (1.1). The measurement vector is

2



Z =




q̇m1

...

q̇mN




the regressor matrix H is

H =




αm1 qm1 δm1 1
...

...
...

...

αmN
qmN

δmN
1




and the equation error V is

V =




vq̇m1
−Mα · vαm1

−Mq · vqm1
−Mδ · vδm1

...

vq̇mN
−Mα · vαmN

−Mq · vqmN
−Mδ · vδmN


 .

The determination of the equation error covariance R is saved for later chapters. In

Chapters III and V, novel batch estimation algorithms are developed to address ap-

plications that require the modelling of a bias. Examples are presented that highlight

the effectiveness of the estimation methodology herein developed. Estimating ĉ af-

fords automatic retrimming using feed-forward control, as opposed to relying solely

on feedback control and integral action.

Second, the dissertation research gives attention to nonlinear regression, which

is the primary focus of Chapter IV and is also considered in Chapter VI. The nonlinear

regression is:

Z = h(θ) + V , V ∈ N (0, R) (1.4)

3



in which Z is a RN -valued measurement random vector, θ ∈ Rn is the parameter,

N ≥ n, and h is a nonlinear function of the parameter θ. The equation error V is

a RN -valued random vector that is zero-mean, Gaussian-distributed with covariance

R, which is an N × N real, symmetric positive definite matrix. In the conventional

approach, an Iterative Least Squares algorithm is used to obtain the parameter esti-

mate [15]. An iterative parameter estimation algorithm is developed. Thus, suppose

that a preliminary parameter estimate θ̂(k) is available. One then expands the non-

linear differentiable function h(θ) about the current parameter estimate θ̂(k),

h(θ) = h(θ̂(k) + θ − θ̂(k))

= h(θ̂(k)) +
∂h

∂θ
(θ̂(k)) = θ̂(k) · (θ − θ̂(k)) + r .

One can insert the results of this expansion into (1.4) in order to yield

Z + Hk · θ̂(k) − h(θ̂(k)) = Hk · θ + r + V . (1.5)

The N -vector residual r is the truncation error, which is explicitly included in the

derivation, and the N × n regressor matrix is the Jacobian

Hk , ∂h
∂θ

(θ̂(k)) .

Notice that this derivation pursues a regression in terms of total variables; hence,

the left-hand side of (1.5) (i.e., the measurement) assumes the expanded form of

Z + Hk · θ̂(k)− h(θ̂(k)). Using an intercept in nonlinear regression is meant to account

for the truncation error r caused by linearization. In the case of a strong nonlinearity,

estimates benefit by accounting for the nonlinearity presence by using an intercept

ĉ [22].

In order to put this into context, one can consider the “clean measurement”

relation for azimuth angle φ at a time t = k∆T , as discussed in Chapter 4.3. By clean,

the author asks the reader momentarily to assume that the bearing measurement φ is

free of noise. This assumption will enable the author to relate geometric relation to the
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assumed truth kinematics first, before reinserting the noise corrupted measurements.

For ballistic trajectory determination from battlefield radar measurements [2]

tan (φ(k ·∆T )) =
yo + Vyok∆T

xo + Vxok∆T

in which k = 1, . . . , N . The parameter in this equation is the launch information

θ = (xo, yo, Vxo , Vyo)
T ∈ R4, in which (xo, yo) are the launch point coordinates

and (Vxo , Vyo) are the velocity coordinates. The measurement record is

φm(k ·∆T )=φ(k ·∆T ) + vφ(k)

in which the subscript m denotes measured variables and vφ is additive zero-mean,

Gaussian-distributed noise quantified by the radar’s measurement uncertainty stan-

dard deviation σφ. The radar measurement equation for azimuth is rearranged and

inserted into the clean measurement equation to obtain

tan (φm(k ·∆T )− vφ(k)) =
yo + Vyok∆T

xo + Vxok∆T
(1.6)

in which k = 1, . . . , N . The reader should note that the left-hand side of (1.6) is

a nonphysical mathematical construction that provides a convenient form to pursue

the components of (1.5) that pertain to the observation relation. For instance, one

attains the vector h(φ)(θ) from the nonlinear observation function h defined by

h(φ)(θ) ,




yo

xo

yo+Vyo∆T

xo+Vxo∆T
...

yo+Vyo∆T (N−1)

xo+Vxo∆T (N−1)




.
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The observation equation h(θ) is linearized about the current parameter estimate θ̂(k)

at step k. Section 4.4.4 determines the components of the linearized regressor matrix

in detail.

The strength of the nonlinearity r in (1.5) that is neglected depends on the rel-

ative position between radar and projectile launch point, the sampling rate, and the

data window size. The presence of a strong nonlinearity in the regressor corresponds

to rapid movement in the azimuth angle relative to the characteristic time scale. The

reader should consider a case with large azimuth angle excursions within the data

window, such as that portrayed in Figure 4.14(a) between ∼0.45 to 0.65 nondimen-

sional time units. The plot shows the radar rotating over 100o in this relatively short

time interval. Because the standard ILS parameter estimation algorithm neglects the

higher order residual r, parameter estimation is unobtainable when enough measure-

ments from this time interval are included in the batch data window, as shown in

Figures 4.19(a) and 4.20(a).

In this dissertation, one attempts to mitigate the source of this linearization-

induced truncation error by estimating the residual r that was previously neglected

in (1.5) by estimating an intercept c. The theory for including the residual using an

intercept parameter is developed in Chapter IV and applied in Chapters IV and VI.

The result is to achieve valuable parameter estimates for problem geometry scenarios

that were formerly unobtainable, as in the aforementioned example culminating in

Figures 4.19 and 4.20.

The dissertation is organized as follows. Chapter II contains a literature review

of material concerned with batch estimation, and then addresses material specific

to ballistic trajectory launch point estimation, adaptive aircraft flight control, and

radio-frequency (RF) target triangulation. These specific applications are important,

as they correspond to the application areas considered later in Chapters IV-VI. In

Chapter III, the augmentation of the parameter space with an intercept is motivated

and a novel linear regression method for parameter estimation is analyzed. The thesis
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then considers linear regression with an intercept in a non-augmented form. The batch

estimation, linear regression, and two new methods that incorporate an intercept to

account for unmodelled bias, are used in the context of estimating the frequency of

a sinusoidal waveform. When a DC offset is present, parameter estimates converge

to the correct true parameter values when the two new estimation methods are used,

while estimates do not converge while using standard Iterative Least Squares (ILS)

[[23], [24], and [28]]. It is also important to note that the augmented ILS algorithm

with an constrained intercept does not adversely impact estimate quality in the nearly

linear case when compared to standard ILS, provided that sufficient data is available.

Chapter IV addresses specific applications in which using nonlinear regression

for parameter estimation and augmenting the parameter with an intercept is ben-

eficial. The need for balancing the linearization-induced truncation error with the

measurement-noise-induced equation error using a Ridge Regression argument from

statistics [[13], [14]] is discussed. Constraining the intercept is discussed in detail.

The herein developed parameter identification process is demonstrated in the con-

text of a ballistic trajectory determination using radar measurements. Consistently

improved estimation performance by the novel parameter estimation algorithm over

conventional Iterative Least Squares estimation is achieved. The simulation results

demonstrate that the estimation error covariance is reduced, the predicted estimation

error is commensurate with the experimentally obtained covariance, and the envelope

of measurement geometries in which good estimation is possible, despite a strong non-

linearity, is expanded. Additionally, estimation results do not degrade from standard

ILS performance in cases in which the nonlinearity strength is weak.

Chapter V highlights the main features of the novel aircraft parameter estima-

tion methodology and makes the case for using feed-forward control derived from the

on-line intercept estimate, as opposed to relying on feed-back control and integral

action for disturbance rejection under control effector failure. An F-16 class aircraft

model is presented, narrowing the scope of the modelling effort to the inner loop

control system for the pitch channel short period dynamics. An elevator failure is
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considered that reduces the control surface effectiveness by 50%. Section 5.3 develops

the augmented linear regression specific to parameter estimation of the F-16 critical

stability and control derivatives using the pitch channel’s q̇ equation. In Section 5.4,

simulation results are presented and discussed. The simulations demonstrate that

the real-time parameter estimation methodology developed herein improves on the

parameter estimate quality when the intercept parameter is included to account for

a possible trim change during and after failure. After the failure, an automatic re-

trimming method which uses system identification for feed-forward control produces

superior aircraft response over the conventional approach of exclusively relying on

feedback and integral action for retrimming. In addition, the simulation results verify

that the proposed reconfigurable flight controller does not adversely impact aircraft

handling and response under unfailed conditions.

Chapter VI is concerned with obtaining an RF emitter’s position estimate from

bearings-only measurements using triangulation. Standard approaches assume az-

imuth angle measurements, and an ILS algorithm is used to calculate the emitter’s po-

sition. The modified triangulation approach developed in this chapter is based on the

insight that, in practice, the bearing measurement’s phasor (cos φ, sin φ) is available

directly. Hence, incorporating the phasor into the estimation algorithm represents the

measurement hardware more accurately when compared to the conventional azimuth

angle measurement assumption. This approach also allows for the use of an efficient

linear regression algorithm and avoids equation error due to linearization. As a result,

the modified formulation for emitter geo-location using bearings-only measurements

produces superior parameter estimates, that is, improved emitter geo-location, com-

pared to the standard formulation and ILS algorithm. Concluding remarks follow in

Chapter VII.
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II. Literature Review

Most of the estimation work currently performed entails recursive algorithms

that handle a wide variety of applications. However, this dissertation is con-

cerned with batch estimation that successfully addresses the applications discussed in

Chapters III through VI, namely, ballistic trajectory launch point estimation, adap-

tive aircraft flight control, and RF target triangulation. Batch estimation may well

provide the methodology of choice for cases in which a closed-form solution to the

dynamics equations is available. Novel batch estimation algorithms are developed

and employed for the aforementioned applications. These methods may prove use-

ful in additional applications, such as those in which a bias caused by failure might

appear and applications featuring a strong nonlinear observation equation and lin-

ear dynamics. Thus, related research on batch estimation using linear regression is

reviewed.

This chapter is organized as follows. First, estimation methods in current use

are outlined. Then, a brief overview of batch estimation is provided. Next, literature

and overview material related to each application discussed in this dissertation is

considered. Specifically, Chapter III develops two methods of augmenting the linear

regression with an intercept. A vibration’s frequency is estimated while the single-

tone signal is offset with a DC component. Chapter IV discusses projectile launch

point estimation. Chapter V considers using linear regression in order to provide fault

detection for an aircraft flight control system. Moreover, one can use the intercept

that is identified on-line in order to retrim the aircraft using feed-forward control

rather than relying on integral action solely. The magnitude of the estimated change

in trim is used to retrim the aircraft using feed-forward control. In Chapter VI, it

is shown how one could use bearings-only/angle-of-arrival measurements in order to

triangulate a radar’s position efficiently. Finally, a summary section is provided.
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2.1 Estimation Techniques

Deterministic approaches are typically appropriate for applications in which the

dynamics are well known and the operating environment is predictable. For example,

one could consider satellite orbit determination. The satellite’s orbit is governed by

a nearly deterministic process, that is, orbital mechanics. As a result, a satellite’s

position and velocity states are obtainable to a high fidelity with deterministic esti-

mation techniques [[35], [36]]. One approach entails a batch least squares algorithm

[ [18], [36]]. Alternatively, a recursive approach typically used for deterministic es-

timation is Bayes filtering. Wiesel summarizes this recursive process in [36]. This

is similar to inverse covariance Kalman filtering [19], except the presence of process

noise in the dynamics model of the inverse covariance Kalman filter is ignored.

A second class of estimation paradigms acknowledges the stochastic nature of

dynamic processes. One is then inclined to use a recursive estimation approach. Nu-

merous researchers have explored the benefits of recursive algorithms such as Kalman

filtering. In stochastic systems, Kalman filtering is fully equivalent to inverse covari-

ance Kalman filtering. This methodology is suited nicely to incorporate uncertainty

into the system’s assumed dynamics, such as in a system identification application

on-board a fighter aircraft. The standard and extended Kalman filter are derived and

aptly demonstrated in Maybeck [[18], [19], [20]].

The aforementioned methods are well suited for some classes of applications.

Numerous factors influence the estimation technique one may chose to use, including

the desired precision of the estimate, the desired quality of the estimate, computa-

tional resource availability, knowledge about the problem/modelling issues, such as

how close the assumed dynamics and assumed measurement relations match reality,

and the environment’s uncertainty. The desired precision of the estimate refers to the

degree of repeatability of estimation convergence to the truth parameter value. This

is measured by the standard deviation of the experimentally determined estimate.

One is also interested in the filter-predicted estimation error covariance. It is very
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important that the filter-predicted parameter estimation error covariance reflects the

actual parameter estimation error covariance. When considering the specific classes

of problems discussed in Chapter I, one is motivated to reconsider the conventional

recursive estimation methods and batch estimation.

2.2 Standard Linear Regression

First, one should consider the standard linear regression framework from statis-

tics:

Z = Hθ + V , V ∈ N (0, R) (2.1)

in which Z is the measurement vector, H is the regressor, θ represents the parameters,

and V is the Gaussian-distributed equation error. The least squares method yields

the parameter estimate θ̂ that minimizes the norm of the residual vector r, in which

Z−Hθ̂ = r. As a result, the parameter estimate is θ̂ = (HT H)−1HT Z for an identity

weighting matrix. The minimum variance estimate of the standard linear regression

is derived in [36]. The minimum variance parameter estimate for (2.1) is

θ̂ = (HT R−1H)−1HT R−1Z

for R−1 as weighting matrix in quadratic cost, in which

R = E(V · V T )

The equation error covariance matrix reflects the difference between is the error be-

tween the parameter estimate and the true parameter values.

Pθ̂ = E((θ̂ − θ)(θ̂ − θ)T )

so that [36]

Pθ̂ = (HT R−1H)−1 .

This is also the maximum likelihood parameter estimate.

Now one should reconsider the two primary problem types that are addressed in

this dissertation. First, Chapters III and V consider the impact of bias, or trim change,

11



that often times, is neglected. The standard estimation methods are oblivious about

the occurrence of a bias, and therefore, produce incorrect estimates. For example,

it is demonstrated in Chapter III that the estimate of a vibration frequency in the

presence of a neglected DC signal is wrong, as shown in Figure 3.4. The true harmonic

frequency is ω = 0.5 rad
s

, hence θ̂ = ω̂2 should approach 0.25 rad2

s2 . However, the

parameter estimate using standard ILS approaches zero while the single tone vibration

is impacted by the DC offset. Hence, one must plan for the possibility of a DC offset.

In Chapter V, the impact of using the standard linear regression in adaptive

flight control is discussed. By adaptive, the author reveals that when a trim change

occurs at the onset of failure, the estimation process must accommodate the change

in order to still produce satisfactory stability and control derivative estimates. When

a control surface failure occurs, the standard linear regression is not able to accom-

modate a trim change that will likely accompany the onset of failure, as shown in

Figures 5.13 through 5.15. For instance, Figure 5.13(a) shows an erratic, rapidly

varying parameter estimate M̂α after the onset of failure at t = 5 seconds. The

impact of poor estimates is significant in reconfigurable control. The trim change

is captured by the intercept c that is introduced in the novel estimation algorithm.

Moreover, in the reconfigurable flight control work, the estimate of the intercept c is

used to calculate a feed-forward command, such that no change in trim is experienced.

In turn, the feed-forward control further improves the estimates of the stability and

control derivatives. Feed-forward control is clearly superior to traditional, nonadap-

tive flight control that relies solely on integral action for retrimming the aircraft, as

illustrated in Figure 5.34. The figure shows that the reconfigurable flight control sys-

tem produces superior pitch rate tracking after failure at 5.0 seconds when compared

to the traditional flight control system.

Second, one should consider the linearization-induced-truncation error caused

by neglecting the residual r in (1.5). The standard Iterative Least Squares estimation

method is introduced in Chapter I. The implications for the ballistic launch point

determination problem are discussed. The conclusion is that standard ILS restricts
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the operational envelope of successful estimation, particularly in those cases in which

the post-linearization-neglected residual is large, that is, the nonlinearity is strong.

Chapter VI discusses the application of obtaining an emitter’s position estimate

from bearings-only measurements using triangulation. The scenario considered en-

tails receivers on aircraft, pinged by an emitter at an unknown location. The data is

accumulated from the various platforms; hence, the process is cooperative and takes

advantage of measurements of opportunity. In this case, the failure of the standard

ILS approach to capture the effect of linearization is compounded by the measure-

ment modelling error. Figure 6.8(b) shows the inability of standard ILS to obtain

reasonable estimates when typical noisy measurement data is used. The ten Monte

Carlo experiments reveal an average parameter estimate varying between 500 to 1000

meters from the adjusted true emitter position. On the other hand, Figure 6.8(a)

shows good position estimates for the emitter position that approach the true emitter

position as the window size increases. This provides additional motivation to pursue

augmented linear regression that handles the demands of these applications.

2.3 Application Areas

This section presents reference material pertinent to the development for the

applications discussed in Chapters III to VI. In order to encourage the reader, the

author reveals significant intermediate results pertinent to the reference material.

In addition, the author provides figures of significant results to indicate the overall

objectives of this research.

2.3.1 Previous Work Using Linear Regression with Intercept for Identification.

Current research [[7], [9], [11], [25]] considers the benefits and potential applications

of static system identification and batch parameter estimation, using modified linear

regression techniques instead of conventional batch methods [[15], [36]]. This litera-

ture motivates efforts to formalize the batch process estimation theory in Chapter III,

which culminates in deriving the explicit solution to the augmented linear regression

13



with intercept. Batch parameter estimation is successfully used in [7] for the identifi-

cation of distributed aircraft control derivatives in real-time. A regularized minimum

variance estimate of the stability and control derivatives is obtained at each time

step. In [25], a stochastic framework is developed to derive a rigorous centralized

Differential Global Positioning System estimation algorithm for a formation of air

vehicles. The users’ positions and velocities are estimated using kinematic GPS and

batch nonlinear regression.

Several efforts address additional applications that allow for the presence of

bias and use batch linear regression. Concerning the inclusion of an intercept in the

estimation algorithm [11], an adaptive control problem is considered that uses data

generated by a linear regression model in which intercept and slope coefficients are

unknown. An assumed certainty equivalence based control rule using estimates of

the intercept and slope coefficients is proposed. In [9], a control surface failure is

considered in the context of a reconfigurable flight control system. This particular

application is now described in detail in order to show how the system identification

does in fact reduce to a linear regression problem. The estimates and filter-predicted

equation error covariance are obtained without iteration [9]. The research presented

in this dissertation will use this simplification concept in order to produce the es-

timates from the augmented linear regression techniques developed in Chapter III.

The rigorous solution to Theorem 3 enables an effective reconfigurable flight control

system that counters the change in trim condition that may occur with control surface

failure.

Specifically, linear regression is used in the system identification/parameter es-

timation algorithm. Thus, the linear regression is

Z = Hθ + V , V ∈ N (0, R(θ))

in which the regressor H is in augmented form, i.e., an intercept is incorporated and

the equation error V is Gaussian with parameter dependent equation error covariance
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[9]

R(θ) = r(θ)I .

The reader should recall the pertinent flight control equation (1.2) for the pitch plane

mentioned in Chapter I. Measurements are obtained for delta deflection δ, pitch rate

q, angle of attack α, and pitch acceleration q̇. Measurement noise is assumed as

zero-mean, Gaussian-distributed. Hence:

q̇m = q̇ + vq̇m (2.2)

qm = q + vqm

αm = α + vαm

δm = δ + vδm

One can rearrange these measurement equations and insert them into the pitch plane

flight control equation to obtain

q̇m = [αm qm δm] · θ + vq̇m −Mα · vα −Mq · vq −Mδ · vδ (2.3)

in which the parameter is θ ,




Mα

Mq

Mδ


. As one of the key developments in [9], the

equation error covariance matrix is then calculated as

R(θ) = E[V · V T ]

=E







v2
q̇1
−M2

αv2
α1

+ M2
q v2

q1
+ M2

δ v2
δ1

...

v2
q̇N
−M2

αv2
αN

+ M2
q v2

qN
+ M2

δ v2
δN


 ·




v2
q̇1
−M2

αv2
α1

+ M2
q v2

q1
+ M2

δ v2
δ1

...

v2
q̇N
−M2

αv2
αN

+ M2
q v2

qN
+ M2

δ v2
δN




T 


=
(
σ2

q̇ + M2
ασ2

α + M2
q σ2

q + M2
δ σ2

δ

) · IN×N
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in which Mα and Mq are the aircraft’s stability derivatives in the pitch channel,

Mδ is the control derivative, and σα, σq, σδ, and σq̇ are the corresponding standard

deviations associated with each measurement, and N represents the number of mea-

surements in the batch. Hence,

R(θ) = r(θ) · IN×N

is homoscedastic (a scaled identity matrix), in which the scalar r(θ) is defined as

r(θ) = σ2
q̇ + M2

ασ2
α + M2

q σ2
q + M2

δ σ2
δ .

The ability to express the equation error covariance R(θ) as an identity matrix mul-

tiplied by a scalar enables the minimum variance estimate determination to reduce

from

θ̂ = (HT R−1H)−1HT R−1Z

to the simplified least squares form

θ̂ = (HT H)−1HT Z . (2.4)

Similarly, the filter-predicted estimation error covariance now reduces to

P = (HT R−1H)−1

= r(θ)(HT H)−1 . (2.5)

Since the regressor H is not parameter-dependent, both the parameter estimate θ

and the predicted equation error covariance P are obtained without iteration. This

important result is used in the dissertation work presented in Chapter V.
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2.3.2 Previous Work of Theory for Nonlinear Applications. Chapter IV ad-

vances the novel idea of including an intercept parameter in the nonlinear regression

equations in order to account for linearization-induced truncation errors. Chapter IV

extends the linear estimation theory developed in Chapter III into nonlinear regres-

sion. The research presented in this thesis provides an attack on nonlinearity by in-

cluding an intercept parameter in nonlinear regression that accounts for linearization-

induced truncation error. It is shown that the estimation performance is enhanced,

particulary when the nonlinearity is strong. Specifically, the envelope of successful

estimation for batch processes is expanded when the modified ILS algorithms incor-

porate an intercept c to account for the higher order residual r previously neglected in

(1.5). Also, when the nonlinearity is weak, the results do not degrade from standard

ILS.

This section now discusses observations from [24] about the parameter estima-

tion processes described earlier in Chapter I. The modified iterative least squares

algorithm recognizes the presence of an intercept multiplied by an N -vector of ones

in order to represent the residual r shown in (1.4), in which N represents the num-

ber of measurements within the batch window. Namely in Section 4.1, the nonlinear

regression of the following form

Z + Hk · θ̂(k) − h(θ̂(k)) = Hk · θ ·+e · c + W + V (2.6)

is considered in which V and W are independent. Rearranging (2.6) and using the

vector of ones notation e, one obtains the reformulated linear regression at the kth

iteration step

Z + Hk · θ̂(k) − h(θ̂(k)) = (Hk
... e)




θ

. . .

c


 + Ṽ

= Hk · θ + Ṽ (2.7)
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in which the equation error becomes Ṽ , W + V and the equation error covariance

matrix R(k) = E(Ṽ Ṽ T ) = R + q(k) · IN . The solution of the linear regression (2.7)

augmented with the intercept is

θ̂
(k+1)

= (HT
k R(k)−1

Hk)
−1HT

k R(k)−1

[Z + Hkθ̂
(k) − h(θ̂(k))]

in which k = 0, 1, · · · , N . This formulation is now referred to as augmented iterative

least squares with unconstrained intercepts.

The algorithm that implements the augmented ILS with unconstrained inter-

cepts is demonstrated in the context of ballistic trajectory determination from radar

measurements, the results of which are shown in Section 4.5.2. This application is

relevant on today’s battlefield, as demonstrated by the British armed forces’ recent

acquisition of the Mobile Artillery Monitoring Battlefield Radar (MAMBA) [2] to

track enemy projectiles and geo-locate the enemy artillery position. The developed,

nonlinear regression methodology is also applicable to a variety of other applications,

including satellite trajectory determination.

Clearly, the Monte Carlo simulation experiments in [24] show that, by modelling

the linearization/truncation error of the ILS procedure as a constant c, improved

estimation results were obtained in two ways. The impact of the bias caused by the

neglected nonlinearity during linearization is reduced and the percentage of successful

cases that converge to the correct parameter estimate increases, even in the presence

of a strong nonlinearity. Figure 4.8 shows an example of one case in which successful

estimation convergence case for the augmented ILS algorithm with unconstrained

intercepts is obtained while the standard ILS algorithm does not converge for all

batch sizes. In all examples in which both estimation algorithms converge, standard

ILS converges with a shorter data record when compared to augmented ILS with

unconstrained intercept. In addition, when the nonlinearity is weak as in Figure 4.12,

the augmented ILS with unconstrained intercept yields noticeable increases in the

variance of the parameter estimate when compared to standard ILS, particularly if
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too short of a measurement data record is used. In this particular example, the dash-

dot and solid lines, corresponding to the estimates produced by the augmented ILS

with constrained intercept methods, do not approach the true position value until the

window size N >∼ 85 measurements. On the contrary, the standard ILS algorithm,

as shown by the dashed line, produces a good estimate of the position when N < 20.

One could conclude that this increase in variance is a direct result from augmentation

with the linearization error/intercept parameter, as the intercept would not have much

“bias” to absorb in the near-linear case. Again, Monte Carlo simulation experiments

summarized within the Section 4.5.2 support this conjecture.

The proposed extension addresses the aforementioned deficiencies with aug-

mented ILS with unconstrained intercepts directly. A concept from statistics, Ridge

Regression [13], [14], is adapted to the solution of nonlinear estimation problems.

In [14], a new signal processing technique is proposed for improving navigation system

accuracy when the geometric dilution of precision (GDOP) causes collinearity, which

in turn brings about poor position estimates. The main goal is smaller Mean Square

Error (MSE) rather than minimizing the residual. This objective is accomplished by

finding an estimator with a parameter estimation variance of [HT H + κI]−1.

This dissertation presents a successful application of Ridge Regression con-

straints to the linear regression in order to overcome the predicted parameter es-

timation error variance increase as shown when the augmented ILS algorithm with

unconstrained intercept is employed. Additionally, the proposed application of Ridge

Regression addresses the data record size issue for achieving rapid convergence: an

issue that plagues augmented ILS with unconstrained intercepts. Ridge Regression

is used to acknowledge the smallness of a intercept parameter c by enforcing a con-

straint in the form of prior information. The Ridge Regression constraints balance

the linearization-induced truncation error and the measurement-noise-induced equa-

tion error that occurs during the linearization of the nonlinear observation function

‖c‖ ∼= σ; Specifically, in the projectile launch point estimation application previously

mentioned in Chapter I, recall that there are three measurement equations in a three-
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dimensional example, one for range, azimuth, and elevation. Ridge Regression-type

constraints are introduced to enforce the noise balancing requirement; hence, the

nonlinear regression is augmented with the three linear equations:

0 = cR + ξR , ξR ∈ N (0, σ2
R)

0 = cφ + ξφ , ξφ ∈ N (0, α̃2σ2
φ)

0 = cθ + ξθ , ξθ ∈ N (0, σ2
E)

Thus, while acknowledging the presence of nonlinearity, these equations constrain the

intercept magnitude in the nonlinear regression and are conducive to good parameter

estimates. In addition, the application of Ridge Regression goes beyond addressing

matrix noninvertibility due to the singularity of an ill-conditioned system [32].

This enhanced method improves the estimates greatly, as illustrated for a strongly

nonlinear case by comparing the results in Figures 4.8 and 4.19. The use of Ridge

Regression expands the envelope of measurement geometries in which good estimation

performance is achieved despite a strong nonlinearity. Parameter estimates converge

more rapidly than in standard Iterative Least Squares when the nonlinearity is strong.

Even with a short measurement data record, the experimentally determined param-

eter estimation error variance is reduced compared to the predicted equation error

variance for augmented ILS with constrained intercepts, as shown in Figure 4.19(b).

Figure 4.19(a) also shows that the exact opposite is true for the standard ILS esti-

mation method when the nonlinearity is strong. For the strong nonlinear example,

neglecting the residual r, originally introduced in (1.5) represents a significant mod-

elling error. Additionally, when given sufficient data in the batch regression process,

the constrained augmented ILS methodology does not adversely impact estimate qual-

ity in the near-linear case compared to standard ILS. This is important because the

modified ILS method proposed in this thesis does not lose the ability to provide

good estimates in test cases in which standard ILS already succeeds, as validated by

extensive simulation trials, the highlights of which are summarized in Section 4.5.
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The research conducted in Chapter IV highlights a few other points that are

important to implementation of the estimation methods. First, nondimensionaliza-

tion improves the conditioning of the estimation process in this example. Because

the inversion of HT R−1H is required, proper scaling is important, particularly when

parameter numerical values could range as much as 106 in dimensional units. Matlab

computational precision then becomes an issue.

Second, the application presented in Chapter IV deals with an estimate of an

initial state. Traditional recursive approaches are formulated such that a smoother is

required to obtain such estimates. In this case, a benefit of batch data processing is

that one can formulate the estimation problem to obtain the initial state estimates

directly, obviating the need for the mechanics required to smooth using recursive

techniques. This is even more significant when the desired parameter estimates (i.e.,

those values corresponding with the launch time) proceed the measurements included

in the data window (i.e., the first measurement occurs when the launch is detected,

where tdetection > tlaunch) [24]. The initial estimates of ẑ and V̂z are used to determine

the launch time estimate from

ẑ = zo + (V̂z + cb · g · t̂) · t̂− 1

2
· cb · g · t̂2 .

The estimate of time is now available to propagate forward the initial state estimates

determined by the various ILS methods. Section 4.5 explores this technique to deter-

mine the projectile launch point coordinates.

Finally, the need for higher sampling rates might force the division of the mea-

surement window into smaller data records [24]. Such is the case in projectile launch

point determination when the azimuth and/or elevation angles change too rapidly,

caused by a stressful problem geometry, such as in Figure 4.22. The sampling rate

necessary to capture the nonlinearity demonstrated in this example would produce

a large data window, making batch processing infeasible for the computational re-

sources available for this thesis research. In addition, rapid sampling is not necessary
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for most of the projectile trajectory. Chapter IV uses Monte Carlo simulations to

investigate a sub-batch (Figure 4.23) under the condition that the nonlinearity is rel-

atively weak. For this initial state application, batch nonlinear regression is easily

performed, regardless of the overall size of the data window, as Iterative General-

ized Least Squares (IGLS) results from sub-batches are merged using the proposed

recombination algorithms.

In the proposed launch point estimation example, an appropriate batch process

combines all estimation data from the sub-batches [ [24], [28]]. In the future, the novel

batch algorithms developed in this dissertation are available to enhance estimation

in which a batch algorithm works in conjunction with a recursive algorithm. For

example, [31] describes conventional algorithms that combine batch and on-line (i.e.,

recursive) estimation processes in order to exploit the complementary nature of image

and inertial sensing. The results show that one can use this combined estimation ap-

proach to recover accurate motion estimates, even in cases in which the optimal batch

estimation from image measurements alone is not sufficient to recover accurate mo-

tion estimates. In related estimation applications in which bias and/or linearization

induced truncation error are prevalent, the novel algorithms derived in this disserta-

tion may further enhance overall estimation results, including those techniques that

combine batch and recursive methods.

2.3.3 Adaptive Control Using Static System Identification with Intercept.

Since the 1960s, research efforts have pursued the somewhat elusive goal of adaptive

and reconfigurable flight control. A summary of on-line failure detection work includes

a variety of methods, including those specific to a NASA F-8 testbed [37]. In Willsky’s

literature survey, Chien’s formulation is discussed about appending the “monitoring

system” directly to the feedback control system. The augmented controller does not

disturb the system until the monitor detects the onset of bias within the system.

There are drawbacks to using a fixed bias within a recursive formulation of this

problem which induces a steady-state effect with failure onset. Chien proposes [37]
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z(t) = x(t) + m · ξ(t) + v(t)

in which

ξ(t) = {0 for t < T

1 for t ≥ T
,

T is the time of failure, and m is an unknown constant. One should note that the

measurement equation formulation proposed by Chen is quite similar to the augmen-

tation of an intercept within the linear regression formulation used in this dissertation,

as discussed in Chapters III and V. However, this thesis focuses on batch estimation

processes instead of recursive approaches.

In the 1980s, the Air Force Wright Aeronautical Laboratory (AFWAL), in con-

junction with McDonnel Douglas, General Electric, and Alphatech, undertook the Self

Repairing Flight Control System (SRFCS) program, which included flight tests on a

NASA F-15 [33]. After Failure Detection Indication (FDI) of control surface damage,

an adaptive control algorithm calculated new control effectiveness parameters using

a Kalman filter. The control mixer redistributed the forces and moments among the

remaining healthy surfaces using a pseudo-inverse computation. This is significant

to the research proposed in this thesis in that new control gains are computed us-

ing adaptive control algorithms. The control gain updates are reliant on the best

information available for the system provided by a system identification algorithm.

In addition, the AFWAL Control Reconfigurable Combat Aircraft (CRCA) program

pursued model-based estimation for event driven Fault Detection and Isolation (FDI)

by Grumman, Lear Astronics, and Charles River Analytics [8]. This model-based

framework is incorporated into this dissertation research, as shown by the inner loop

flight control system for the pitch channel in Figure 5.3.
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As previously mentioned in Section 2.3.1, more recent research in the 1990s con-

siders the benefits and potential applications of static system identification and batch

parameter estimation, using linear regression techniques from statistics. Static sys-

tem identification and batch parameter estimation are successfully used in [7] for the

real-time identification of an aircraft’s distributed control derivatives. A regularized

minimum variance estimate of the stability and control derivatives is obtained at each

MT (i.e., time step) using a sliding data window. The parameter estimate information

is used to adjust the flight control system’s gains. When this work transitioned to

industry in the mid-1990s, Barron Associates and Lockheed Martin flight tested an

adaptive flight control system–the Self Designing Controller (SDC)–on the F-16 Vari-

able Stability In-Flight Simulator Test Aircraft (VISTA) [1]. One such approach [34]

considers a receding horizon optimal flight controller using an indirect, self-tuning reg-

ulator, in which an adaptive control law computes gains using parameters provided by

real-time system identification. In [34], a modified sequential least squares algorithm

with additional constraints is used in order to produce the parameter estimates. This

research effort also pursues an indirect, self-tuning architecture in order to update the

inner loop control gains of the flight control system. The research in this dissertation

relies on a modified batch estimation algorithm to produce a parameter estimate that

also allow for removing the trim change caused by failure.

In the late 1990s/2000 time frame, Lockheed Martin and Boeing pursued recon-

figurable flight control work on fighter aircraft via the Air Force Research Laboratory’s

(AFRL) Reconfigurable Flight Control of Tailless Fighter Aircraft (RESTORE) pro-

gram. The Lockheed Martin effort culminated in a real-time demonstration of the

complete adaptive and reconfigurable flight control system [12]. This RESTORE ef-

fort also includes a modified sequential least squares (MSLS) algorithm for system

identification that modifies the cost function for minimization and adds additional

constraints on the permissible values of the parameters. Interestingly, this approach’s

ability to converge on the true parameters is dependent on good constraint selection.

Thus, [12] states that this is the best that one could do using the aforementioned
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approach, given the high levels of collinearity in this complex aircraft model. Also,

the X-36 unmanned air vehicle (UAV) flight test of Boeing’s reconfigurable flight con-

trol system (FCS) demonstrated the successful accommodation of a control effector

failure [5]. This effort employs an on-line neural network to regulate the error in the

plant inversion adaptively in order to overcome modelling uncertainties, failures, or

damage. As in both of the RESTORE efforts, the research presented in this disser-

tation uses indirect adaptive control in order to reconfigure the flight control system

adaptively. The RESTORE approaches differ from the methods proposed in this dis-

sertation by the method chosen to identify the magnitude and impact of the control

surface failure.

In this dissertation, indirect adaptive control for reconfigurable flight control

is advanced by using a modified ILS algorithm for static system identification. This

approach requires the measurement of the pitch acceleration q̇m, as shown in (2.2).

Static system identification renders the parameter estimation problem (2.3) linear

and then yields the estimate (2.4) and predicted estimation error covariance (2.5), as

briefly mentioned in Chapter I. The physical aircraft’s stability and control derivatives

are directly estimated.

For reconfigurable flight control that accounts for control surface failure and

trim change, this dissertation advocates moving away from recursive system identi-

fication and instead using a moving window/batch estimation and linear regression.

The modified algorithm derived within Section 3.1 and summarized in Theorem 3

is required in order to gauge the magnitude of the change in trim caused by a con-

trol surface failure. The rigorous, closed-form solution to the parameter estimation

algorithm gives an “unbiased” estimate and reduces to

θ̂ = (HT H)−1HT Z + 1
eT [I−H(HT H)−1HT ]e

(HT H)−1HT eeT
([

H(HT H)−1
]
HT − I

)
Z

for the reconfigurable flight control problem discussed in Chapter V. The reader

should recall that θ̂ is the parameter estimate, H is the regressor matrix, Z is the
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measurement vector, I is an identity matrix, and e is an N -vector of ones. Also recall

from Section 2.3.1 that this reduced form of Theorem 3 emerges because the equation

error covariance R is homoscedastic. Hence,

R(θ) = r(θ)I

in which r(θ) is a parameter dependent scalar. As a result, the equation error co-

variance term cancels from the equation. Likewise, the parameter estimation error

covariance reduces to

Pθ = r(θ̂)

[
(HT H)−1 +

(HT H)−1HT eeT H(HT H)−1

eT [I −H(HT H)−1HT ] e

]

for the example in Chapter V. These equations effectively augment the linear regres-

sion with an intercept parameter.

In the flight control application, this dissertation advocates minimizing the use

of integral action in a Type-1 inner loop control system and instead feed-forward a

control signal derived from the intercept estimate in order to retrim the aircraft auto-

matically. The reader should analyze the adaptive and reconfigurable flight controller

block of the flight control system in Figure 5.9. The intent of using the static system

identification of the stability and control derivatives, Mα and Mδ, respectively, is to

produce the control gain adjustment that updates the inner loop control gains on-

line. The adaptive and reconfigurable flight control system that relies on the modified

linear regression technique during and after failure. In order to show the reader the

benefits of the proposed flight control system compared to the conventional nonadap-

tive flight control system, consider the scenario presented in Chapter chap:5 in which

a significant failure occurs to an F-16’s horizonal stabilitor. The results are confined

to the pitch axis and are shown for convenience. The proposed method improves pitch

rate tracking significantly over the conventional, nonadaptive flight control system,

as shown after t = 5 seconds in Figure 2.1. Moreover, the inclusion of an intercept
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Figure 2.1: Pitch rate time history. Dash-dot lines (desired pitch rate command)
Dashed lines (Prefiltered pitch rate command) Solid lines (Actual pitch rate) (a)
Relies on conventional Type-1 inner loop controller for disturbance rejection (Same
as Figure 5.26(a)) (b) Reconfigurable flight control that updates both KP and Kα.
(Same as Figure 5.33).

enhances the quality of the aircraft stability and control derivatives’ estimates, as

shown in Figure 5.34.

The research presented in this dissertation uses static system identification be-

cause it allows one to use the modified linear regression algorithm for parameter

estimation. Moreover, the aircraft’s physical parameters, that is, the stability and

control derivatives, are directly obtained. This dissertation advocates using a moving

window batch estimation process [9] instead of recursive estimation. A batch process

using a moving window ensures that fresh data is used, so that changes in parameters

are tracked and adaptive and reconfigurable control action is realized.

Furthermore, the inclusion of an intercept allows the flight control law to use

“total” variables, rather than perturbation variables–“real world” flight control sys-

tems utilize total sensor measurements. While in state space form, the conventional

perturbation dynamics are

ẋ = Ax + Bu .
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In practice, the total variables X = X̄ + x and U = Ū+ u, are used. Here X̄ is the

trim state and Ū is the trim control. In terms of total variables, the trim equation is

AX̄ + BŪ + C = 0

in which C is the change in trim. This equation yields the dynamics with an intercept

Ẋ = ẋ = Ax + Bu

= A(X − X̄) + B(U − Ū)

= AX + BU + C .

The inclusion of an intercept allows one to write the flight control laws using total

variables, rather than perturbation variables. Since sensors measure total variables,

it is convenient to use this sensor information directly in the inner loop flight control

work.

It is also important to note that, under unfailed conditions, the inclusion of an

intercept is not harmful to the parameter estimates [28]. In Section 5.4.3, the case

in which no trim change occurs due to failure is considered. This occurs at flight

conditions in which the aircraft’s aerodynamic center is very close to the aircraft’s

center of gravity. Figure 5.19 shows that the modified linear regression algorithm

estimate of the stability derivative Mα is not adversely impacted by the inclusion

of the intercept c when compared to the estimate produced by the standard linear

regression algorithm.

2.3.4 Bearings-Only Measurements. Chapter VI considers estimation tech-

niques pertaining to limited measurement information. Oftentimes in RF emitter

geo-location work and also in radar tracking, angle measurements are used in the

following form

φ ∈ N (
φm, σ2

φ

)
(2.8)
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in which φ represents the azimuth angle or Angle of Arrival (AOA) and the subscript

m indicates a measured quantity. This notation describes the AOA φ with a measured

azimuth angle mean φm and variance σ2
φ. AOA is defined as the angle measure between

the direction from which the signal arrives at the receiver and some reference line [4].

A source of error [4] in AOA systems is the orientation of the antenna array

relative to the angular reference. The accuracy of the calibration data is an additional

source of angular error. According to [4], the error related to signal-to-noise ratio is

the most significant error source that relates to the scenario described herein. As

the signal strength decreases, the reduced signal-to-noise ratio causes variations in

the measured AOA. Since Root Mean Square (RMS) error reduces the impact of a

few large errors when most errors are small, it is usually accepted as the effective

error of an emitter-location system [3]. By convention, the width of the error area is

determined [3]

W = 2D tan σ

in which W is the distance from the true angle vector to the RMS error vector, D is

the distance from the site to the emitter, and σ is the RMS angle error. As typified

in [3], the conventional approach views each AOA measurement as the angular error

about the true azimuth. Multiple measurements are used to triangulate upon the

measurements in order to determine an elliptical error probable about the emitter.

Oftentimes in practice, one measures the phasor, sin φ and cos φ directly. This

assumption is the case if 1) syncros/resolvers are used in electro-mechanical control

systems, or 2) if a phase angle is electronically measured and one has access to the I

and Q signals, as is the case in RF receivers. In the latter case, and in Digital Signal

Processing (DSP), one then refers to complex sine waveforms to represent the phasor

pair.
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In this dissertation, it is stipulated that the sine and cosine measurements of the

bearing angle, or AOA, are directly available, which dramatically changes the nature of

the estimation problem. The measurement of bearing is illustrated in Figure 2.2. This

Figure 2.2: Bearing Measurement i. The emitter’s position is (x, y). The ith
receivers’ positions is (xi, yi) and is known.

research assumes that the observer’s GPS position is known (xi, yi). The objective

is to investigate the impact of AOA measurement modelling. Even though there is

measurement error on the GPS coordinate position, this error is very small compared

to the measurement error on the azimuth angle [4]. For example, Figure 6.3 reveals

that, when considering a 5o measurement error on φ and perfect observer position, all

estimation methods discussed herein produce estimates with greater than 300 meter

standard deviation error, as determined from the predicted equation error covariance

for a batch size that includes 12 measurements. When the AOA measurement error

is increased to 20o and perfect observer position is assumed, the position estimates

shown in Figure 6.8 include greater than 1000 meter standard deviation error, as

determined from the predicted equation error covariance for the data window that

includes 12 measurements. Hence, the impact of observer position GPS measurement

error is negligible. Instead, this research focuses on the issues pertaining to AOA

measurement.
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The emitter’s position is (x, y). The standard RF emitter geo-location frame-

work assumes using N receivers whose known coordinates, e.g., Global Positioning

System (GPS) coordinates (xi, yi), that are recorded when the bearing measurements

φim are taken, in which i = 1, . . . , N . In the conventional approach, the angle mea-

surement model shown in (2.8) is used.

As previously stated, it is postulated that a syncro’s pair of AOA measurements,

(sin φi)m and (cos φi)m, are available. The two separate syncro measurements have

Gaussian-distributed errors. This dissertation maintains that the proposed formula-

tion better reflects the physics of the measurement situation. In turn, this formulation

allows one to use efficient linear regression for parameter estimation; as a result, the

need for linearization is obviated and the linearization-induced truncation error is

eliminated. Improved emitter geo-location is obtained.

In order to provide a preview of the achieved reduction in lineraization-induced

truncation error explored in Section 6.2, the measurement equation is written in a

form used to represent a straight line in projective geometry

x sin φi + y cos φi = xi sin φi + yi cos φi , i = 1, . . . , N . (2.9)

The approach that is advocated in Chapter VI exploits the access to the phasor

measurements and reflects the true phasor plus a zero-mean, Gaussian-distributed

measurement noise:

(sin φi)m = sin φi + vi , vi ∈ N (0, σ2) (2.10)

(cos φi)m = cos φi + wi , wi ∈ N (0, σ2)

By inserting (2.10) into (2.9), one can rearrange the measurement equations directly

into the form of a linear regression, thus obviating the need for linearization:

(sin φi)m x− (cos φi)m y = xi(sin φi)m − yi(cos φi)m + (x− xi)vi − (y − yi)wi (2.11)
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in which i = 1, . . . , N . Now one should compare the aforementioned development

(2.11) to the conventional approach developed later in Section 6.6 which assumes

that the measured azimuth angle is Gaussian-distributed so that

φi = φmi
+ vi, vi ∈ N (0, σ2

φ) . (2.12)

By inserting (2.12) into (2.9), one rearranges the measurement equation to form

cos(φmi
+ vi)y − sin(φmi

+ vi)x = yi cos(φmi
+ vi)− xi sin(φmi

+ vi) .

Since |vi| ¿ 1, as shown in Table 6.1 in Section 6.7 and according to the ILS paradigm

[36], one then linearizes each of the N equations about φmi
, neglecting higher order

terms. Specifically,

cos(φmi
)y − sin(φmi

)x = yi cos(φmi
)− xi sin(φmi

) + sin(φmi
)y · vi +

cos(φmi
)x · vi − yi sin(φmi

) · vi − xi cos(φmi
) · vi .

This equation is rearranged to fit the form of a linear regression Z = H · θ + V , that

is,

xi sin(φmi)− yi cos(φmi) = sin(φmi)x− cos(φmi)y + [(x− xi) cos(φmi) + (y − yi) sin(φmi)] vi .(2.13)

Hence, linearization-induced truncation error is reduced with the recommended ap-

proach (2.11) which acknowledges access to the measurement phasor instead of the

conventional approach (2.13) that assumes a measured AOA.

2.4 Conclusions of Literature Review

This chapter first reviews some of the most common estimation techniques in

use today. Given the nature of the applications considered in this dissertation, this

research pursues an often overlooked estimation formulation using batch processes. In
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the overview of batch estimation, it is emphasized that standard linear regression is

inadequate to handle a change in trim and/or to overcome the effects of linearization-

induced truncation error when the nonlinearity is strong. Novel approaches are re-

quired to address applications in projectile launch point determination, adaptive flight

control, and emitter geo-location. Previous literature and overview material related

to each of the application areas in this dissertation is discussed.
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III. Linear Regression Technique

Two approaches are developed in this chapter that incorporate an intercept to the

iterative least squares approach to estimation. Simulation results compare the

estimation capability achieved by the two approaches to that produced by standard

ILS.

3.1 Augmented Algorithm

In flight control applications, the presence of an intercept c in a linear or nonlin-

ear regression could signal a failure or a change in trim. Estimating the parameter c

enables automatic retrimming using feed-forward control, as opposed to feedback and

integral action [28]. Moreover, a jump in the parameter estimate ĉ signals the failure

event. Hence, one should consider the generalized linear regression with an intercept

c in (1.1). The linear regression in augmented form is called affine and is written as

follows:

Z =
[

H
... e

]



θ

· · ·
c


 + V

with V of covariance R. This equation is rewritten as

Z = Hθ + V

in which the augmented regressor H =
[

H
... e

]
is an N × (n + 1) matrix and

the augmented parameter θ , (θ, c)T is θ ∈ Rn+1. The minimum variance parameter

estimate [36] is

θ̂ = (HT R−1H)−1HT R−1Z (3.1)
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in which R is assumed invertible and the augmented filter-predicted estimation error

covariance is the (N + 1)× (N + 1) matrix

P = (HT R−1H)−1 . (3.2)

A closed-form solution of the linear regression with intercept is now developed.

First, the aforementioned linear regression is expanded and (3.1) and (3.2) yield




θ̂

· · ·
ĉ


 =







HT

· · ·
eT


 R−1

[
H

... e

]



−1 


HT

· · ·
eT


 R−1Z (3.3)

and

Pθ,c =







HT

· · ·
eT


 R−1

[
H

... e
]




−1

. (3.4)

It is determined that







HT

· · ·
eT


 R−1

[
H

... e
]


 =


 HT R−1H HT R−1e

eT R−1H eT R−1e


 .

The development requires an inverse of this matrix, as now shown.

Lemma 1 .

Let M1, M2, M3, and M4 be matrices such that M1 ∈ Rn×n, M2 ∈ Rn×m,

M3 ∈ Rm×n, M4 ∈ Rm×m and M1, M4 are invertible. One should consider the block

matrix
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M =


M1 M2

M3 M4




and assume that the relevant matrices are invertible. Then

M−1 =

[
(M1 −M2 ·M−1

4 ·M3)−1 −M−1
1 ·M2(M4 −M3 ·M−1

1 ·M2)−1

−M−1
4 ·M3(M1 −M2 ·M−1

4 ·M3)−1 (M4 −M3 ·M−1
1 ·M2)−1

]
. (3.5)

See Appendix A for the proof.

Hence, let







HT

· · ·
eT


 R−1

[
H

... e
]




−1

=

[
HT R−1H HT R−1e

eT R−1H eT R−1e

]−1

,
[

X x

xT a

]
. (3.6)

Using Lemma 1 and the definitions in (3.6):

X = (HT R−1H −HT R−1e
1

eT R−1e
eT R−1H)−1 (3.7)

x = −a(HT R−1H)−1HT R−1e (3.8)

a =
1

eT R−1e− eT R−1H(HT R−1H)−1HT R−1e
. (3.9)

The derivation also requires the Matrix Inversion Lemma.

Lemma 2 .

Let A, B, C, and D be matrices such that A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,

D ∈ Rm×m and A, D are invertible. If (A−BD−1C)
−1

exists, then

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 . (3.10)

The proof is given in Appendix B.
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One can apply Lemma 2 to manipulate X in (3.7):

X=(HT R−1H)−1 + (HT R−1H)−1HT R−1e ·
[eT R−1e− eT R−1H(HT R−1H)−1HT R−1e]−1 · eT R−1H(HT R−1H)−1 .

One should note that the bracketed term in the preceding equation is previously

defined as a in (3.9). Also, one should note that a is a scalar. This implies that

X = (HT R−1H)−1 + a(HT R−1H)−1HT R−1eeT R−1H(HT R−1H)−1 .

Finally, the definition for x is inserted into (3.8) to obtain

X = (HT R−1H)−1 +
1

a
xxT . (3.11)

At this point, the explicit formulae for the parameter estimate θ̂ and the inter-

cept estimate ĉ is derived. Returning to (3.3), the results are combined with (3.6) to

obtain the parameter estimate

θ̂ = (XHT + xeT )R−1Z .

Equation (3.11) is incorporated into the above expression, which gives

θ̂ = (HT R−1H)−1HT R−1Z + x(
1

a
xT HT + eT )R−1Z . (3.12)

Equation (3.12) contains of the parameter estimate
(
HT R−1H

)−1
HT R−1Z that is

obtained when the presence of the intercept is not acknowledged, plus a correction

term due to the inclusion of the intercept, x
(

1
a
xT HT + eT

)
R−1Z. The correction

term is expanded in (3.12) by reinserting the scalar a (3.9) and the vector x (3.8)

expressions, and the explicit result is obtained

θ̂ = (HT R−1H)−1HT R−1Z +
1

eT R−1 [R−H(HT R−1H)−1HT ] R−1e
·

(HT R−1H)−1HT R−1eeT
([

R−1H(HT R−1H)−1
]
HT − I

)
R−1Z .
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The filter-predicted estimation error covariance is resolved from the explicit expansion

in (3.3) and the definition in (3.6). Hence

Pθ = X

= (HT R−1H)−1 +
(HT R−1H)−1HT R−1eeT R−1H(HT R−1H)−1

eT R−1 [R−H(HT R−1H)−1HT ] R−1e
.

Similarly, (3.3) and (3.6) give the intercept estimate of

ĉ = (xT HT + aeT )R−1Z . (3.13)

By inserting (3.8) into the expression for ĉ in (3.13),

ĉ = a
[
eT − eT R−1H(HT R−1H)−1HT

]
R−1Z

is calculated. This equation is rearranged further

ĉ = aeT
[
I −R−1H(HT R−1H)−1HT

]
R−1Z

that is,

ĉ = aeT R−1
[
R−H(HT R−1H)−1HT

]
R−1Z .

Finally, the value of the scalar a from (3.9) is substituted, yielding the explicit inter-

cept formula

ĉ =
eT R−1

[
R−H(HT R−1H)−1HT

]
R−1Z

eT R−1 [R−H(HT R−1H)−1HT ] R−1e
.

The filter-predicted intercept estimation error standard deviation is also resolved from

(3.4) and (3.6) such that

σc = a =
1√

eT R−1 [R−H(HT R−1H)−1HT ] R−1e
.

The derivation is summarized in Theorem 3.

Theorem 3 .
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Assume the hypothesis R and H are matrices such that R ∈ Rn×n and H ∈
Rn×m Assume that Z and e are vectors such that Z ∈ Rm×1, e ∈ Rm×1 and R are

invertible. If
(
HT R−1H

)−1
exists. The explicit closed-form solution to the linear re-

gression with intercept (1.1) is as follows. The minimum variance parameter estimate

is

θ̂ = (HT R−1H)−1HT R−1Z +
1

eT R−1 [R−H(HT R−1H)−1HT ] R−1e
·

(HT R−1H)−1HT R−1eeT
([

R−1H(HT R−1H)−1
]
HT − I

)
R−1Z

with the filter-predicted estimation error covariance

Pθ = (HT R−1H)−1 +
(HT R−1H)−1HT R−1eeT R−1H(HT R−1H)−1

eT R−1 [R−H(HT R−1H)−1HT ] R−1e

and the intercept estimate is

ĉ =
eT R−1

[
R−H(HT R−1H)−1HT

]
R−1Z

eT R−1 [R−H(HT R−1H)−1HT ] R−1e

with the filter-predicted intercept estimation error standard deviation

σc =
1√

eT R−1 [R−H(HT R−1H)−1HT ] R−1e

The vector e is the N -vector of ones.

Corollary 4 .

The minimum variance intercept estimate

ĉ = 0

if and only if

eT R−1(Z −Hθ̂) = 0

in which (Z −Hθ̂) is the return difference.
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One can consider the special case in which the equation error covariance is a

scalar:

R = θ2, a scalar

a =
θ2

N − eT H(HT H)−1HT e
(3.14)

x = − θ2

N − eT H(HT H)−1HT e
(HT H)−1HT e . (3.15)

The parameter estimate becomes

θ̂ = (HT H)−1HT {I − 1
N−eT H(HT H)−1HT e

· eeT [I −H(HT H)−1HT ]}z (3.16)

and the intercept estimate reduces to

ĉ = 1
N−eT H(HT H)−1HT e

eT [I −H(HT H)−1HT ]}z . (3.17)

These equations are derived in Appendix C.

3.2 Algorithm II: Removing the Averages

The linear regression with intercept (1.1) is now considered. One can calculate

the averages z̄ and h̄i defined by

z̄ , 1

N
eT Z

h̄i , 1

N
eT hie

in which

[hi, . . . , hn] = H, hi ∈ RN .

The average measurement vector Z̄ and average regressor matrix H̄ are defined as
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Z̄ , ez̄

=
1

N
eeT Z

H̄ , [eh̄1, . . . , eh̄n]

= [e
1

N
eT h1, . . . , e

1

N
eT hn]

=
1

N
eeT H .

One could assume that the data Z and linear transformation matrix H come

from an experiment under the condition that a dynamic system is excited away from

equilibrium. The data in Z and H represent state and control setting measurements.

It is then plausible to assume the relationship

z̄ = (h̄1, . . . , h̄n) · θ + c . (3.18)

This equation represents the dynamical system’s trim condition (i.e., the dynamical

system’s equilibrium point). Hence, it is argued that confining one’s attention to state

and control perturbations away from trim will remove the presence of the intercept c

from the measurement in (1.1).

Thus, the perturbation variables Z̃ and H̃ are defined as

Z̃ , Z − Z̄

H̃ , H − H̄

The following relations are calculated:

Z̃ = M · Z
H̃ = M ·H

in which M = I − 1
N

eeT is an N ×N matrix. One should note that M is symmetric

and is positive semi-definite. Indeed,
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xT Mx = ‖ x ‖2
2 −

1

N
(xT e) · (eT x)

= ‖ x ‖2
2 −

1

N
(eT x)2

Now, by Schwarz’s inequality [21]:

∣∣eT x
∣∣ ≤ ‖ e ‖2 · ‖ x ‖2

=
√

N · ‖ x ‖2 .

This implies that

(eT x)2 ≤ N · ‖ x ‖2
2 .

Equality holds if and only if x = αe for some α ∈ R1. Hence,

xT Mx ≥ 0

and, in fact

xT Mx > 0 ∀x 6= 0, ∀x 6= αe .

Therefore, the rank of M is N − 1. Hence, it is easy to see that the null space of M

is one-dimensional and is spanned by the vector v = e. Indeed, one has

Me = 0 ⇔
(I − 1

N
eeT )e = 0 ⇔

(eeT )e = Ne .

Hence, in the sequel, one should consider the reduced linear regression

Z̃ = H̃ · θ + V , V ∈ N (0, R) . (3.19)
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The regressor H̃ is rank deficient. The linear regression (3.19) is obtained by sub-

tracting (1.1) from (3.18).

Concerning the rank deficiency of H̃, one can diagonalize M

M = T−1DT

in which D is the diagonal matrix

D =




d1 0 . . . 0

0
. . .

...
... dN−1

...

0 · · · · · · 0




.

One should note that di > 0, for i = 1, . . . , (N − 1). Also, T is a N × N, non-singular

transformation matrix.

Now, M1 and M2 are defined

M1 , T−1 ·




√
d1 0 . . . 0

0
. . .

...
...

√
dN−1

...

0 · · · · · · 0




N×(N−1)

in which the rank of M1 is N − 1,

M2 ,




√
d1 0 . . . 0

0
. . .

...
...

√
dN−1

...

0 · · · · · · 0




(N−1)×N

· T

in which the rank of M2 is N − 1, and

K , M2 ·H
θ1 , K · θ, θ1 ∈ RN−1 .
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Now,

Z̃ = M1M2Hθ + V .

Next, one can solve the reduced full rank linear regression

Z̃ = M1 · θ1 + V .

This implies that θ1 has mean θ̂1 and filter-predicted equation error covariance Pθ1 ,

in which

θ̂1 = (MT
1 R−1M1)

−1MT
1 R−1Z̃

Pθ1 = (MT
1 R−1M1)

−1 .

Finally, the reduced full rank linear system of N-1 equations is solved as

θ1 = Kθ

which implies that

θ = (KT K)−1KT θ1

= (HT MT
2 M2H)−1HT MT

2 θ1 .

This equation implies that the parameter θ has mean (KT K)−1KT θ1 and covariance

(KT K)−1KT Pθ1K(KT K)−1. Therefore, one can write the expanded form of the es-

timate’s mean and covariance. One obtains the parameter that is uninfluenced by c.

Hence, the minimum variance estimate is

θ̂1 = (KT K)−1KT (MT
1 R−1M1)

−1MT
1 R−1Z̃ .

That is,

θ̂1 = (HT MT
2 M2H)−1HT MT

2 (MT
1 R−1M1)

−1MT
1 R−1Z̃

and the filter-predicted estimation error covariance
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Pθ = (HT MT
2 M2H)−1HT MT

2 · (MT
1 R−1M1)

−1M2H(HT MT
2 M2H)−1 .

In summary, by removing the intercept c, the derivation loses one equation. At the

same time, the remaining components of the parameter are estimated.

3.3 Comparing the Two Approaches

In this section, the two approaches for linear regression that handle an intercept,

as developed in Sections 3.1 and 3.2, are compared. In order to demonstrate these

ideas, the following example is discussed. A signal consisting of a single tone vibration

and a DC component is measured. Noisy acceleration measurements are also available.

The objective in this example is to estimate the vibration’s frequency, amplitude,

phase, and the DC component.

3.3.1 Analysis. One can consider the “clean measurement” relation for

the single tone vibration with DC component. By clean, the author asks the reader

momentarily to assume that the measurement is free of noise. This assumption will

enable the author to relate geometric relation to the assumed truth kinematics first,

before reinserting the noise corrupted measurements. Hence, the clean signal is

x(t) = A cos(ωt) + B sin(ωt) + c′ (3.20)

in which the signal’s amplitude is

A =
√

A2 + B2,

its phase is

φ =





tan−1(A
B

) if B 6= 0

π
2

if B = 0, A ≥ 0

−π
2

if B = 0, A < 0

45



and the DC component is c′. Prony’s method [17] is employed; thus, it is readily

verifiable that x(t) in (3.20) satisfies the differential equation

ẍ + ω2x = ω2c′ .

The dynamics for the single tone vibration are

ẍ + ω2x = c . (3.21)

Assuming that ẋ(0) = 0, then B = 0. The solution to this ordinary differential

equation is:

x(t) =
c

ω2
+ A cos(ωt) (3.22)

and

ẍ(t) = −Aω2 cos(ωt) . (3.23)

(The differential equation solution details are shown in Appendix D.)

3.3.2 Stochastic Modelling. Equation (3.21) is rearranged as follows

ẍ = −xω2 + c (3.24)

in which c , ω2c′. Now, the parameter is defined θ , ω2. Thus,

ẍ = −xθ + c . (3.25)

The measured signal and measured acceleration, as indicated by the subscript m, are

xm(t) = x(t) + vx(t)

ẍm(t) = ẍ(t) + vẍ(t)

in which the measurement noise vx(t) ∈ N (0, σ2
x), vẍ(t) ∈ N (0, σ2

ẍ), E[vx(t)vẍ(t)] = 0,

E[vx(t)vx(t + ∆T )] = 0, and E[vẍ(t)vẍ(t + ∆T )] = 0. By inserting (3.24) into (3.25),

one obtains

ẍm(t) = [−xm(t)]θ + c + vẍ + vxω
2 .

By accumulating a data record over time, one can form the linear regression
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Z = Hθ + ec + V

in which the measurement vector is

Z =




ẍm(0)
...

ẍm((N − 1)∆T )




the regressor is

H = −




xm(0)
...

xm((N − 1)∆t)




and the equation error is

V =




vẍ(0) + ω2vx(0)
...

vẍ((N − 1)∆T ) + ω2vx((N − 1)∆T )


 .

Next, the equation error covariance matrix is calculated as

R = E[V V T ]

= E[(vẍ + θvx)(vẍ + θvx)
T ] .

The noise of the acceleration and position measurements are uncorrelated. The mea-

surement sets at each time increment are independent. Hence, the expectation for

the entire data batch reduces to

R = E[vẍv
T
ẍ + θ̂2vxv

T
x ]

= (σ2
ẍ + θ̂2σ2

x) · I .
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Thus, the equation error covariance matrix R is a scaled identity matrix. Be-

cause R is determined by an unknown parameter, it would appear that the parameter

estimation requires iteration. Fortunately, this is not the case. The parameter de-

pendence in the following equation is cancelled out because R is a diagonal matrix.

Hence, the parameter estimate is

θ̂ = (HTH)−1HT Z

in which θ̂ ,




θ̂

· · ·
ĉ


 and H =

[
H

... e
]
. The augmented parameter estimate is

determined without iterations. Finally, the filtered-predicted estimation error covari-

ance is obtained directly as

P = (HTH)−1 · (σvẍ
+ σxθ̂

2) · I

without iteration, in which θ̂2 = ω̂4.

3.3.3 Simulation Experiment. In order to simplify the example so that the

results clearly show the impact of the DC offset, this dissertation now considers the

special case in which B = 0, so that A = A and φ = π
2
. The following variables are

selected: A = 1, c′ = 1, and ω = 1 rad/s. With the same rationale as discussed in

Section 3.3.1, a clean signal is used

x(t) = cos(t) + 1 .

The synthetic measurement vectors are now generated:

xm(k∆T ) = cos(k∆T ) + vx(k) (3.26)

ẍm(k∆T ) = − cos(k∆T ) + vẍ(k), k = 1, . . . , N − 1

under the condition that vx(k) and vẍ(k) are two separate Gaussian-distributed random

sequences with variances σ2
x and σ2

ẍ, respectively, in which σẍ À σx. The sequences

in (3.26) are used to form the Z and H vectors. Finally, having obtained c and ω, the
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(b) Harmonic Acceleration Measurement.

Figure 3.1: The Measurement Noise and Noise on Regressor are Depicted on Single
Tone Vibration. No Bias Case. The true harmonic frequency is 1 rad/s. In (a), the
noise on the regressor measurement is zero-mean, Gaussian-distributed with an error
of 0.1 m. In (b), the measurement noise is zero-mean, Gaussian-distributed with an
error of 1 m/sec2.

DC component ĉ′ = ĉ
ω̂2 and the amplitude A are calculated by solving a least squares

problem:

xm(k∆T ) = [cos(k∆T )]A + vx(k∆T ), k = 1, . . . , N .

The two linear regression methods are now compared. First, a single Monte

Carlo baseline case is depicted in which no DC offset is included. The measurement

and regressor are each sampled every tenth of a second, as shown in Figure 3.1. The

sample noise is zero-mean, Gaussian-distributed. Identical noise scripts are used in

each of three batch estimation experiments: standard linear regression and the linear

regression with intercept methods described in Sections 3.1 and 3.2, respectively.

The results of the three batch estimation algorithms for a single Monte Carlo

experiment are depicted in Figure 3.2. There are negligible differences between the

harmonic frequency squared parameter estimates θ̂ after about 2 seconds (or 20 sam-

ples). In fact, the regression algorithm augmented with an intercept and the averaging

regression algorithm produce estimates that overlay each other in Figure 3.2(a). All
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Figure 3.2: No Bias Case. The parameter estimate is for the harmonic frequency

squared ω̂2. The measurement noise and the noise on the regressor are depicted in
Figure 3.1. In (a), the true squared harmonic frequency is shown at 1 rad2/sec2.
In (b), the dashed lines show ±1 standard deviation from the truth parameter, as
calculated via the filter-predicted equation error covariance matrices.

three techniques converge on the appropriate parameter value ω2. The linear regres-

sion with augmented intercept method also identifies that the bias is 0. The averaging

regression methodology encounters matrix singularity problems that are repressed for

some batch sizes. This algorithm only converges at some window sizes, as depicted by

the ∗s in the bottom plot of Figure 3.2(b). For a given batch size N available at some

time t = N∆t, the lack of an ∗ indicates the inability of this estimation methodology

to produce an estimate.

Additionally, Figure 3.3 shows estimation results for 10 Monte Carlo experi-

ments using the standard linear regression and the linear regression augmented with

an intercept. The averaging regression algorithm is omitted because of the aforemen-

tioned singularity problems. Again, the figure shows negligible differences between

techniques after about 2 seconds (or 20 samples). This figure also shows that the stan-

dard deviation from the experimentally determined variance between the parameter

estimates converges to the standard deviation from the predicted equation error co-
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Figure 3.3: 10 Monte Carlo Simulations for No Bias Case. In (a), the parameter

estimate is for the harmonic frequency squared ω̂2 (solid lines) ±1σ from the exper-
imentally determined standard deviation of the estimates (dashed lines). The true
squared harmonic frequency is shown at 1 rad2/sec2 (solid lines with4s)±1σ from the
filter-predicted equation error covariance (dashed lines with 4s). In (b), the intercept
estimate ĉ for the regression augmented with intercept frequency squared ω̂2 (solid
lines) ±1σ from the experimentally determined standard deviation of the estimates
(dashed lines). The true bias on the acceleration measurements is 0 (solid lines with
4s)±1σ from the filter-predicted equation error covariance (dashed lines with 4s).
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variance. For completeness, Figure 3.3(b) shows that the intercept estimate ĉ behaves

as expected for the linear regression algorithm augmented with an intercept.

Next, a single tone vibration with significant DC offset is considered in a single

Monte Carlo experiment. The harmonic frequency ω is reduced to 0.5 rad/s. A, as

defined in (3.20), equals 1. Finally, the true bias c equals 2. The results of all three

batch estimation algorithms for a single Monte Carlo experiment are depicted in Fig-

ure 3.4. First, the results show that the standard linear regression is oblivious to the

bias. Hence, the parameter estimate is produced based on a faulty dynamics equa-

tion assumption. This estimate is not usable. The regression algorithm augmented

with an intercept and averaging regression algorithm identify the parameter correctly

after about 10 seconds (100 samples), in which ω2 = 0.25 rad2/ sec2. The averaging

regression technique again experiences matrix singularity problems at certain batch

sizes. Again, this algorithm only converges at some window sizes, as depicted by the

∗s in the bottom plot of Figure 3.4(b). AS before, the lack of an ∗ indicates the

inability of this estimation method to produce an estimate for a given batch size N

available at some time t = N∆t. Additionally, the large matrices involved in this

batch process make this method computationally intensive. Finally, the augmented

regression methodology correctly estimates the bias state at approximately 2 meters

(Figure 3.4(c)).

Figure 3.5 shows estimation results for 10 Monte Carlo experiments using the

standard linear regression and the linear regression augmented with an intercept. One

should note that the true harmonic frequency ω2 = 1 and DC offset c = 4 depicted in

Figure 3.5 are not the same as in the single Monte Carlo single tone vibration with

DC offset depicted in Figure 3.4. Figure 3.5 is intended for comparisons with results

in Section 3.4.

Clearly, Figure 3.5(a) shows that the estimates produced by the linear regres-

sion algorithm augmented with an intercept behave as expected even with a DC offset

present. Again, the standard deviation from the experimentally determined variance
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Figure 3.4: Presence of Bias. The parameter estimate is for the harmonic frequency

squared ω2. In (a), the frequency squared is 0.25 rad2/sec2. The parameter estimates
form the standard linear regression and the two linear regression methods with inter-
cept are plotted for comparison. Clearly, the standard linear regression method fails
to identify the parameter, while the derived algorithms that account for an intercept
identify the harmonic frequency squared value. In (b), the same parameter estimates
are plotted individually versus the truth harmonic frequency squared value. In ad-
dition, the dashed lines show ±1 standard deviation from the truth parameter, as
calculated via the filter-predicted equation error covariance. In (c), the bias in the
truth model bias 2. The bias estimate is determined by regression augmented with
an intercept (Method I, augmented algorithm).
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Figure 3.5: 10 Monte Carlo Simulations for single tone Vibration with DC offset.
In (a), the parameter estimate is for the harmonic frequency squared ω̂2 (solid lines)
±1σ from the experimentally determined standard deviation of the estimates (dashed
lines). The true squared harmonic frequency is shown at 1 rad2/sec2 (solid lines with
4s)±1σ from the filter-predicted equation error covariance (dashed lines with 4s).
In (b), the intercept estimate ĉ for the regression augmented with intercept frequency
squared ω̂2 (solid lines) ±1σ from the experimentally determined standard deviation
of the estimates (dashed lines). The true bias on the acceleration measurements is 0
(solid lines with 4s)±1σ from the filter-predicted equation error covariance (dashed
lines with 4s).
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between the parameter estimates converges to the standard deviation from the pre-

dicted equation error covariance. The standard linear regression technique fails to

identify the parameter correctly in the presence of the DC offset. For completeness,

Figure 3.5(b) shows that the intercept estimate ĉ behaves as expected for the linear

regression algorithm augmented with an intercept.

In summary, this subsection demonstrates the regression algorithms in the con-

text of a single tone vibration example with DC offset. The linear regression algorithm

augmented with an intercept and the algorithm that removes the averages both yield

the correct solution to a linear regression with intercept. However, only the linear

regression algorithm augmented with an intercept is useable in all cases. As one would

suspect, the standard linear regression is oblivious to the presence of an intercept and

a biased estimate is obtained.

3.4 Linear Regression with Only Linear Acceleration Measurements

One can consider the special case in which access to both acceleration and po-

sition measurements are available; however, the regression is formed using only the

linear acceleration measurements. One should obtain superior estimates by incorpo-

rating all available measurement data at each time increment, especially when the

position measurement is less noisy than acceleration. As discussed in Section 3.3, the

key to using position measurements is to recognize from (3.22) that the position is

susceptible to bias. Equation (3.23) shows that acceleration is inherently unbiased in

this example.

One can form the linear regression

Z = H · θ + e · c + V

in which the measurement vector is
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Z =




ẍm(0)

ẍm(1)
...

ẍm((N − 1)∆T )




The regressor is

H = −




c
θi

+ A · cos(
√

θi · 0)

c
θi

+ A · cos(
√

θi · 1)
...

c
θi

+ A · cos(
√

θi · (N − 1))




and the equation error is

V =




vẍ(0)

vẍ(1)
...

vẍ((N − 1)∆T )




.

The linear regression produces a non-parameter-dependent estimate covariance

matrix R. This approach only incorporates one measurement for each time step,

namely for the typical measurement vector Z. As a result, the parameter estimate

produced by this methodology is not susceptible to intercept bias introduced in the

position measurement. This method requires an initialization routine. One should

assume momentarily that a “perfect” measurement vector is obtained. In other words,

for the purpose of initialization, one can assume that zm = zo and use fsolve.m in

Matlab to solve for the least squares solution of

Zm = −A · ω2
t cos(ωt · t) .
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Figure 3.6: 10 Monte Carlo Simulations For Single Tone Vibration With DC Offset.
Linear regression only incorporates the acceleration measurements and neglects biased
position measurements. In (a), the parameter estimate is for the harmonic frequency
squared ω̂2 (solid lines) ±1σ from the experimentally determined standard deviation
of the estimates (dashed lines). The true squared harmonic frequency is shown at 1
rad2/sec2 (solid lines with 4s)±1σ from the filter-predicted equation error covariance
(dashed lines with 4s). In (b), the intercept estimate ĉ for the regression augmented
with intercept frequency squared ω̂2 (solid lines) ±1σ from the experimentally de-
termined standard deviation of the estimates (dashed lines). The true bias on the
acceleration measurements is 0 (solid lines with 4s)±1σ from the filter-predicted
equation error covariance (dashed lines with 4s).

This method always results in forming an unbiased estimate, but a trade-off is

involved. First, one is not using all of the measurement information available. The

estimation algorithm employed in this section is not using the additional position

measurement information each time step. One should note that the neglected position

measurement is the “cleaner” measured signal, as the measured variance for position

σ2
x is much less than that for the measured variance for acceleration σ2

ẍ. Figure 3.6

clearly shows the degradation of the parameter estimates when relying only on the

noisy acceleration measurements, when compared to the estimates produced by the

linear regression algorithm augmented with an intercept shown in Figure 3.5. The

algorithms used to produce Figures 3.5 and 3.6 are derived from the same 10 Monte

Carlo experiments containing identical noise scripts. In fact, to make this point about
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degradation perfectly clear, the acceleration measurements are only five times worse

than the position measurements (i.e. σx = 0.1rad, σẍ = 0.5 rad
s2 ). This assumption is

much more favorable than the assumptions about the acceleration measurement error

in all previous Monte Carlo experiments. Hence, it is important to use all available

measurement-types, especially the less noisy position estimates.

Second, this approach requires an iteration process, whereas one was not re-

quired before in Section 3.3. In the simple harmonic frequency example, this may

seem relatively insignificant. However, this factor becomes much more significant as

the magnitude of the problem increases, such as in estimation for an aircraft flight

control system later explored in Chapter V.

3.5 Conclusion

Two estimation algorithms are developed in this chapter that acknowledge the

presence of a change in trim to produce superior estimates compared to the estimate

produced by standard linear regression. The regression algorithms are successfully

demonstrated in a single tone vibration example in which a DC offset is included.

Standard linear regression is oblivious to the presence of an intercept, and a biased

estimate is obtained. The linear regression algorithm augmented with an intercept

and the algorithm that removes the averages both yield the correct solution to a lin-

ear regression with intercept. The parameter is correctly identified. The algorithm

that removes the averages can induce poor conditioning. Additionally, this method

is computationally intensive. The linear regression method augmented with intercept

also correctly estimates the magnitude of the DC offset. The algorithm that is de-

veloped for solving linear regressions with an intercept also performs well in those

cases in which a DC offset is not present. Finally, simulation is used to demonstrate

the value of using available position measurements in the regressor H in addition to

acceleration measurements in the measurement vector Z.
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IV. Parameter Space Augmentation for Nonlinear System

Identification

Parameter identification using batch estimation is pursued using nonlinear regres-

sion augmented with an intercept in order to address nonlinearity effects. The

intercept parameter is constrained to balance the linearization-induced truncation er-

ror with measurement-noise-induced equation error. When compared to conventional

Iterative Least Squares (ILS), the novel algorithm reduces the estimation error covari-

ance and expands the envelope of measurement geometries in which good estimation

is possible despite strong nonlinearity. Additionally, estimation performance does not

degrade from standard ILS when nonlinearity strength is weak.

4.1 Nonlinear Regression

The nonlinear regression is considered

Z = h(θ) + V , V ∈ N (0, R) (4.1)

in which Z ∈ RN is the measurement vector, θ ∈ Rn is the parameter, N ≥ n,

and h is the nonlinear function of the parameter θ. The equation error V ∈ RN

is zero-mean, Gaussian-distributed equation error with covariance R, which is an

N × N real, symmetric positive definite matrix. An iterative parameter estimation

process is employed. One can suppose that a preliminary parameter estimate θ̂(k)

is available. The function h(θ) is assumed continously differentiable and expanded

about the current parameter estimate θ̂(k):

h(θ) = h(θ̂(k) + θ − θ̂(k))

= h(θ̂(k)) +
∂h

∂θ
(θ̂(k)) · (θ − θ̂(k)) + r

in which θ̂(i) is the current parameter estimate and the N -vector residual r is the

truncation error, which is included explicitly in the derivation. Hence,
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h(θ) = h(θ̂(k)) +
∂h

∂θ
(θ̂(k)) · θ − ∂h

∂θ
(θ̂(k)) · θ̂(k) + r .

Inserting this expansion into (4.1) yields

Z = h(θ̂(k)) +
∂h

∂θ
(θ̂(k)) · θ − ∂h

∂θ
(θ̂(k))θ̂(k) + r + V .

This equation implies

Z + Hk · θ̂(k) − h(θ̂(k)) = Hk · θ + r + V (4.2)

in which the N × n regressor matrix is

Hk , ∂h
∂θ

(θ̂(k)) .

Using an intercept in nonlinear regression is meant to account for the truncation error

r caused by linearization. It is claimed that the estimates benefit by accounting for

the presence of a strong nonlinearity using an intercept c [22]. This claim is now

examined in detail.

In the “conventional” approach, an Iterative Least Squares algorithm is used

to obtain the parameter estimate. The presence of truncation error, r, is ignored, so

Equation (4.2) simplifies to

Z + Hk · θ̂(k) − h(θ̂(k)) = Hk · θ + V

and iterates as in [36]:

θ̂(k+1) = (HT
k R−1Hk)

−1HT
k R−1[Z + Hkθ̂

(k) − h(θ̂(k))] (4.3)
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Also, one can recall that at step k, Hk is θ̂(k)-dependent. At the instant of convergence,

in which θ̂(k) → θ̂ as i →∞, one finally calculates the predicted parameter estimation

error covariance

P = (HT
∞R−1H∞)−1

in which H∞ describes the limit of the regressor.

In fact, the preceding iteration (4.3) is akin to a Gauss-Newton algorithm. In

actual standard ILS [15], one “sets” Hk · θ̂(k) = h(θ̂(k)); that is, one uses the simplified

iteration

θ̂(k+1) =
(
HT

k R−1Hk

)−1
HT

k R−1Z .

It is fair to say that standard, or conventional, ILS perform very well, for example, in

the GPS algorithm, in which the geometry is very good.

Now, one should consider a modified ILS algorithm–in fact, a Gauss Newton

algorithm approach to (4.1) that now acknowledges the presence of truncation error,

r. The intercept c is defined as

c , 1

N

N∑
i=1

ri

as are fluctuations wi in the residual ri

wi , ri − c, i = 1, . . . , N .
Then

h(θ) = h(θ̂(k)) +
∂h

∂θ
|θ=θ(k) · (θ − θ̂(k)) + e · c + W

in which e is a vector of ones and
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W ,




w1

...

wN


 .

Assuming that the fluctuations wi in the residual r about their average c are random,

and making a 1st order ergodic assumption, W is considered a zero-mean random

vector in this dissertation. The 1st order ergodic assumption is to justify the complete

description of the fluctuation wi using the first two moments, which is probably not

accurate. However, this assumption enables one to eventually use Theorem 3, as is

discussed shortly.

The tuning parameter q(k) are scalars that quantify the strength of the fluc-

tuations in nonlinearity at the kth iteration step. Thus, the tuning parameter q(k)

sequence is defined as

q(k) > 0 (4.4)

such that

lim
k→∞

q(k) = 0

for k = 1, 2, . . . . In addition, the derivation stipulates that W ∈ N (0, q(k) · IN). .

One should note that the equation error has increased to W + V , Ṽ , such that W

and V are independent. Hence, the equation error covariance matrix is augmented as

follows:

R(k) = R + q(k) · IN . (4.5)

The magnitude of q(k) is related to the distance of the current parameter estimate θ̂(k)

from true θ.
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In summary of the modified ILS algorithm, the presence of the nonlinearity is

acknowledged. The strength of nonlinearity manifests itself through the remainder’s

average value c, and the magnitude of its fluctuations about c, which is captured

by the tuning parameter q(k). As one approaches convergence, the magnitude of the

step away from the point of linearization decreases. Therefore, one should notice

that the sequence q(k) → 0 as k → ∞ and, as discussed in Section 4.2, c is made

commensurate with the measurement-noise-induced equation error (a.k.a. augmented

ILS with constrained intercepts).

Finally, (4.1) is rewritten as

Z + Hk · θ̂(k) − h(θ̂(k)) = Hk · θ ·+e · c + W + V (4.6)

in which V , W are independent. Rearranging (4.6) and using the vector of ones

notation e, the reformulated linear regression is obtained at the kth iteration step

Z + Hk · θ̂(k) − h(θ̂(k)) = (Hk
... e)




θ

. . .

c


 + Ṽ

= Hk · θ + Ṽ (4.7)

in which the equation error becomes Ṽ , W +V . The solution of the linear regression

(4.7) augmented with the intercept is

θ̂
(k+1)

= (HT
k R−1Hk)

−1HT
k R−1[Z + Hkθ̂

(k) − h(θ̂(k))] (4.8)

in which k = 0, 1, · · · , N . (See Section 3.1.) The expansion of (4.8) is given in

Appendix E. As k increases and ‖θ̂(k+1) − θ̂
(k)‖ decreases, the tuning parameter q(k)

is reduced. After convergence is achieved (i.e., when θ̂
(k) → θ̂, Hk → H∞, and

Rk → R∞ as k → ∞), one can verify that the intercept estimate ĉ is small. Even

in the absence of an intercept, the new augmented ILS algorithm proposed in this

section is not the conventional ILS algorithm
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θ̂(k+1) =
(
HT

k R−1Hk

)−1
HT

k R−1Z .

Explicitly stated, the measurement vector shown in (4.8) includes the correction

terms in the measurement vector, namely Hkθ̂
(k) and h(θ̂(k)). For large values of k,

the parameter θ̂ does not change much. This observation is in stark contrast to the

initial iterations. Thus, initially, the effects of the nonlinearity are pronounced (i.e.,

the truncation error c 6= 0). Hence, in order to assist convergence for the nonlinear

regression with intercept case, the block diagonal terms of the covariance R in (4.8)

were doubled for early iterations. As the iteration continues for 12 iterations, the

extra uncertainty weighting is gradually reduced to 1. Although this implementation

procedure is ad hoc, it helps to facilitate convergence of the iterative least squares

algorithm while addressing strong nonlinearities. After convergence is achieved (i.e.,

when θ(k) → θ as k →∞), one obtains the filter-predicted estimation error covariance

P = (HT
∞R−1

∞ H∞)−1 . (4.9)

The significant factors that influence the quality of the parameter estimate are mea-

surement arrangement geometry and the duration of the measurement interval, which

is reflected with the condition number of the regressor H.

One should consider the development of the intercept c in (4.7) more closely.

If one composes a nonlinear regression based on measurements over time using one

nonlinear measurement equation only, then the intercept c is a scalar and e consists

of an N vector of ones. Hence, when setting up a nonlinear regression formed from

scalar measurements recorded over time, one can think of an average truncation error

via the intercept c, and some additional random error:
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


r1

r2

...

rN




N×1

= c · e + W (4.10)

as in (4.6). When m nonlinear measurement equations are used, in which m > 1,

one can include up to m separate intercepts within the parameter c ∈ Rm. This is

significant because one can account for each residual ri introduced by nonlinearity

within a each measurement equation.

4.2 Balancing the Linearization

When an intercept parameter c is introduced into a nonlinear regression to ad-

dress the truncation effects of linearization, this research uses the following adaptation

of the Ridge Regression [[13], [14]] concept from statistics. A general observation from

working with nonlinear applications; the unconstrained intercepts within the iterative

least squares algorithm from converging to the correct solution as problem complex-

ity increased. The Ridge Regression constraints enable the intercepts to obtain an

appropriate magnitude. During the augmented ILS iterations, the derivation requires

that, at the point of convergence, the residual truncation error due to the nonlinear-

ity is commensurate with the equation-error-induced measurement noise. Hence, the

derivation balances the linearization-induced truncation error and the measurement-

noise-induced equation error by requiring

|c| ∼= σ (4.11)

in which σ quantifies the intensity of the measurement noise. The latter is reflected

in the equation error covariance R = σ2R̃, in which R̃ is the nondimensional equation

error covariance. The requirement expressed in (4.11) is enforced by including prior

information on the intercept, that is, the derivation stipulates that

c ∈ N (0, σ2) . (4.12)
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Thus, for every intercept component, an additional fictitious measurement equation

is introduced as follows

0 = (0, . . . , 0, 1)θ + ξ (4.13)

in which ξ ∈ N (0, σ2), Ṽ is the equation error in the regression (4.7), and E(Ṽ ξ)=

0. Thus, the parameter space is augmented with additional constraints equal to the

number of measurements at each time step. One can recall that the parameter is now

augmented as

θ =




θ

. . .

c


 .

Two implementation approaches to the previously introduced constraint are

now considered. The first method entails augmenting the constraints directly to the

regression equation (4.7). The measurement vector Z and regressor matrix H formerly

used in (4.8) are augmented according to the tuning parameter discussed in (4.4)

ZR =


Z + Hkθ̂

(k) − h(θ̂(k))

0(M×1)




(M ·N+M)×1

(4.14)

HR =




H(M ·N×(n+M))

. . . . . . . . .

0(M×n)
... I(M×M)




and are used in the batch estimation iteration. One should note that M is the number

of nonlinear measurement equations potentially requiring an intercept, N is the batch

size, and n indicates the number of parameters, excluding the intercepts. In order to

determine the new equation error covariance matrix RR, one uses (4.5) to calculate

the expectation
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RR = E(


 Ṽ

ξ


 ·

(
Ṽ ξ

)
) (4.15)

=




RM ·N×M ·N 0M ·N×M

. . . . . . . . .

0M×M ·N Rridge(M×M)




in which Rridge is determined by the measurement noises associated with the specifics

of the problem. This framework lacks the flexibility of enabling the user to apply the

intercept constraint at the time of his choosing within the iteration process. From an

implementation standpoint, a framework that permits this flexibility is desirable.

An alternative method of augmenting the intercept constraints into the non-

linear regression is now described. First, the two-step algorithm determines the es-

timate θ̂ and its corresponding predicted estimation error covariance matrix P =
 Pθ Pθ c

Pc θ Pc


, by assuming an unconstrained intercept using (4.8) with the estima-

tion error covariance (4.9). One should note that the Pθ portion of P corresponds to

the parameter portion of the filter-predicted equation error covariance matrix and is

of interest here. Next, a linear regression formed using the aforementioned estimate

(4.8), covariance matrix (4.9), and intercept constraint (4.12) is considered:


 θ̂

0


 =





 θ̂

ĉ




0


 =





θ

c




c


 +




Ṽ

ξ


 (4.16)

ZR = HR + VR , VR ∈ N (0,RR) .

This final linear regression is then solved using the measurement vector ZR, regressor

matrix HR, and equation error covariance RR:
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ZR =




θ̂

ĉ

0


 , HR =


 I(n+M),(n+M)

0(M×n)
... I(M×M)




RR =




Pθ(n×n) 0(n×M)

0(M×n) Diag







σ2
1

...

σ2
M










Thus, the final parameter estimate and predicted parameter estimation error covari-

ance are obtained. The intercept augmented linear regression using Ridge Regression

constraints is solvable in one-step, but the aforementioned two-step process provides

additional flexibility during implementation to help ensure convergence in a strongly

nonlinear problem, such as the first example presented in Section 4.5. For a given

batch size, the user determines an appropriate number of iterations that perform

the linear regression calculations shown in (4.8) and (4.9). Then, one applies the

Ridge Regression constraints appended in (4.16) after an appropriate number of it-

erations. This method is preferable to a one-step Ridge Regression implementation,

since experience shows that it increases the percentage of instances of convergence to

the correct parameter estimate in strongly nonlinear cases [23]. For cases in which

the nonlinearity’s impact is less significant, as that presented in the second example

in Section 4.5, Ridge Regression yields the correct parameter estimate regardless of

whether a one-step or two-step implementation is used.

One can now choose to implement the intercept constraints embedded in (4.14)

and (4.15) at any point during the iteration process. As previously stated, the two-step

method provides the flexibility of enabling the user to apply the intercept constraint at

the time of his choosing within the iteration process. This flexibility of implementation

expands the envelope of successful estimation for these batch processes. In addition,
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individual estimates approach the true parameter values closer than those estimates

achieved by the one-step method. If one wants to match the result obtained by

the one-step method, one can incorporate the constraints immediately following the

first iteration of (4.8) in the two-step method, and continue to apply the intercept

constraint throughout the iteration process for a given batch size. The cons of using

a two-step method versus the one-step method are insignificant. The difference in

computational requirements for implementation is negligible.

4.3 Ballistic Trajectory Tracking

The novel nonlinear parameter estimation process is demonstrated in the context

of a ballistic trajectory determination from battlefield radar measurements [2]. The

objective is to track enemy projectiles and geo-locate the enemy firing position. The

developed methodology is also directly applicable to satellite trajectory determination

[36].

The ballistic trajectory is modelled by using a kinematic model [24] typically

used in fire control systems:

x(t) = xo + Vxot (4.17)

y(t) = yo + Vyot

z(t) = zo + Vzot−
1

2
cbgt2

in which xo, yo, and zo are the unknown launch point coordinates, Vxo , Vyo , and Vzo are

the projectile’s muzzle velocity components in the corresponding Cartesian direction,

cb is the known ballistic coefficient of the projectile, and t is time. Since the example

assumes to know the type of projectile that the enemy is firing, cb is assumed known

in this development. One should have interest in the parameter vector

θ = (xo, yo, zo, Vxo , Vyo , Vzo)
T ∈ R6 . (4.18)
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The measurement situation at hand is carefully modelled and nonlinear regression is

used to estimate the parameter θ in order to obtain the launch position.

Radar measurements are comprised of range R, azimuth φ, and elevation θ.

Without loss of generality, one can assume that the radar is located at the origin, as

shown in Figure 4.1. Thus, perfect noise-free data satisfies the nonlinear measurement

Figure 4.1: Ballistic Tracking Commences at (xo, yo, zo).

equations for t ≥ 0:

R(t) =
√

x2(t) + y2(t) + z2(t) (4.19)

tan (φ(t)) =
y(t)

x(t)
for x(t) 6= 0

R(t) sin (θ(t)) = z(t)

The projectile’s launch point is not known; hence, this is the estimation objective of

the nonlinear regression. During the iteration and upon convergence, the strength of

the nonlinearity in h is reduced using this formulation.
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Table 4.1: Summary of Nondimensional Variables.

xo → xo

VoT
yo → yo

VoT
zo → zo

VoT
R → R

VoT

vR → vR

VoT
σR → σR

VoT
Vxo → Vxo

Vo
Vyo → Vyo

Vo

Vzo → Vzo

Vo
∆T → ∆T

T
t → t

T
cb → cb

gT
Vo

The trajectory is sampled. At this point in this chapter, all variables are nondi-

mensionalized for this example with combinations of the following scaling factors, as

appropriate: T is the duration of the measurement interval and Vo is the muzzle ve-

locity of the projectile. Since the simulation assumes to know the type of projectile

fired at the friendly target, one can use the nominal Vo for nondimensionalization.

Nondimensionalization in estimation is important, as it allows one to gauge the con-

ditioning of the regression objectively. Reasons for using nondimensionalization for

this projectile launch point application are discussed in Section 2.3.2. Because Mat-

lab is selected to perform the simulations, computational precision becomes an issue

when parameter numerical values range more than 106 in dimensional units. Table

4.1 shows the nondimensional variables.

Considering (4.17) and (4.19), this implies that at time t = k∆T :

R(k ·∆T ) =
√

(xo + Vxok∆T )2 + (yo + Vyok∆T )2 + (zo + Vzok∆T − 1
2cbk2∆T 2)2 (4.20)

tan (φ(k ·∆T )) =
yo + Vyok∆T

xo + Vxok∆T

R(k∆T ) · sin (θ(k ·∆T )) = zo + Vzok∆T − 1
2
cbk

2∆T 2

in which k = 0, 1, . . . , N − 1. The measurement record is

Rm(k ·∆T )=R(k ·∆T ) + vR(k) (4.21)

φm(k ·∆T )=φ(k ·∆T ) + vφ(k)

θm(k ·∆T )=θ(k ·∆T ) + vθ(k)
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in which the subscript m denotes the measured variables and vR, vφ, and vθ are

additive Gaussian white noise quantified by the radar’s measurement uncertainties’

standard deviations σR, σφ, and σθ respectively. The derivation carefully models the

measurement situation at hand and uses nonlinear regression to estimate the param-

eter, θ, and to obtain the projectile launch position. Finally, in order to acquire a fix

on projectile launch position, knowledge of launch point elevation is assumed known

via contour map in the example. An iterative “outer loop” process that accounts for

the possible elevations could enable the algorithms to obtain a reasonable estimate

of the launch point coordinates, with some uncertainty bound. The character of the

terrain might indicate how large of a bomb one might choose to respond, as flat ter-

rain would not impact the uncertainty of the launch point coordinates much whereas

hilly terrain would increase the level of uncertainty.

The radar measurement equations (4.21) are rearranged and inserted into (4.20)

in order to obtain

Rm(k ·∆T )− vR(k) =
√

(xo + Vxok∆T )2 + (yo + Vyok∆T )2 + (zo + Vzok∆T − 1
2
cbk2∆T 2)2 (4.22)

tan (φm(k ·∆T )− vφ(k)) =
yo + Vyok∆T

xo + Vxok∆T

(Rm(k ·∆T )− vR(k)) · sin (θm(k ·∆T )− vθ(k)) = zo + Vzok∆T − 1

2
cbk

2∆T 2

in which, k = 1, . . . , N . The reader should note that the left-hand side of (4.22) is

a nonphysical mathematical construction that provides a convenient form to pursue

the components of (4.2) pertaining to the observation relation. The equations are left

in this form, as they are now ready for linearization.

4.4 Nonlinear Regression

In this section, the nonlinear regression (4.1) is composed in which the solution

renders the projectile’s launch point coordinates. The generalized ILS algorithms

developed in Sections 4.1 and 4.2 are exercised.
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4.4.1 Measurements. In this ballistic trajectory problem, the measurement

vector is composed as follows

Z
(R)
N×1,




Rm(0)

Rm(∆T )
...

Rm((N − 1)∆T )




Z
(φ)
N×1,




tan (φm(0))

tan (φm(∆T ))
...

tan (φm((N − 1)∆T ))




Z
(R,θ)
N×1 ,




Rm(0) · sin (θm(0))

Rm(∆T ) · sin (θm(∆T ))
...

Rm((N − 1)∆T ) · sin (θm((N − 1)(∆T ))




and finally

Z(3N)×1 ,




Z(R)

Z(φ)

Z(R,θ)


 .

One can note that the third component of the measurement vector Z(R,θ) reflects

regression formulation described in (4.19) and(4.20).

73



4.4.2 Equation Error. Concerning the equation error associated with the

nonlinear measurement equations (4.20), let

V
(R)
N×1,




vR(0)

vR(∆T )
...

vR((N − 1)∆T )




(4.23)

V
(φ)
N×1,




1
1+φ2

m(0)
vφ(0)

1
1+φ2

m(∆T )
vφ(∆T )

...

1
1+φ2

m((N−1)∆T )
vφ((N − 1)∆T )




V
(R,θ)
N×1 ,




sin (θm(0)) · vr(0) + Rm(0) cos (θm(0)) · vθ(0)

sin (θm(∆T )) · vr(∆T ) + Rm(∆T ) cos (θm(∆T )) · vθ(∆T )

.

..

sin (θm(N − 1)∆T ) · vr((N − 1)∆T ) + Rm((N − 1)∆T ) cos (θm(N − 1)(∆T )) · vθ((N − 1)∆T )




in which vR(k∆T ) is the range measurement error at time k∆T , vφ(k∆T ) is the

azimuth measurement error at time k∆T , and vθ(k∆T ) is the elevation measurement

error at time k∆T . These components yield the equation error vector

V(3N)×1 ,




V (R)(θ)

V (φ)(θ)

V (R,θ)(θ)


 .

Again, one can note that the third component of the measurement equation error vec-

tor V (R,θ) reflects the impact of the regression formulation described in (4.19) and(4.20).

The explicit nonlinear regression is obtained in terms of the parameter stated in (4.18),

which consists of 3N equations for (4.7).
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Next, the measurement error vector v(3N×1) is now considered. One should note

that vRN×1
is already specified in (4.23), as V

(R)
N×1 = vRN×1

. In addition,

vφN×1
,




vφ(0)

vφ(∆T )
...

vφ((N − 1)∆T )




and

vθN×1
,




vθ(0)

vθ(∆T )
...

vθ((N − 1)∆T )




.

Therefore, the measurement error vector is

v(3N)×1 ,




vRN×1

vφN×1

vθN×1


 .

Finally, the N ×N diagonal matrices are defined:

D
(φ)
N , Diag

(
1

1 + φ2
m(k∆T )

)(N−1)

k=0

(4.24)

D
(E)
N , Diag (sin (θmk∆T ))

(N−1)
k=0

D
(R,E)
N , Diag (Rm(k∆T ) · cos (θmk∆T ))

(N−1)
k=0

in which the subscript m denotes measured variables. Next, the (3N)× (3N) matrix

is composed

75



Γ(3N)×(3N) ,




IN 0 0

0 D
(φ)
N 0

D
(E)
N 0 D

(R,E)
N




and one can write the reformulated linear regression (4.1) in the form

Z = h(θ) + Γv

in which the equation error V = Γv.

In this reformulated linear regression, the equation error covariance is deter-

mined

R = E(V · V T ) = E(Γv · (Γv)T ) .

Hence, one can calculate

R = E(




vR

D
(φ)
N · vφ

D
(E)
N · vR + D

(R,E)
N · vθ


 ·

(
vR D

(φ)
N · vφ D

(E)
N · vR + D

(R,E)
N · vθ

)
)

=




R(1, 1) R(1, 2) R(1, 3)

R(2, 1) R(2, 2) R(2, 3)

R(3, 1) R(3, 2) R(3, 3)


 .

The equation error covariance R is explicitly given by a nondiagonal matrix:
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R(1, 1) = E[vRvT
R] (4.25)

R(1, 2) = Dφ
NE[vRvT

φ ]

R(1, 3) = DE
NE[vRvT

R] + D
(R,E)
N E[vRvT

θ ]

R(2, 1) = D
(φ)
N E[vφv

T
R]

R(2, 2) = D
(φ)2

N E[vφv
T
φ ]

R(2, 3) = D
(φ)
N D

(E)
N E[vφv

T
R] + D

(φ)
N D

(R,E)
N E[vφv

T
θ ]

R(3, 1) = D
(E)
N E[vRvT

R] + D
(R,E)
N E[vθv

T
R]

R(3, 2) = D
(E)
N D

(φ)
N E[vRvT

φ ] + D
(R,E)
N D

(φ)
N E[vθv

T
φ ]

R(3, 3) = D
(E)2

N E[vRvT
R] + D

(R,E)
N D

(E)
N E[vθv

T
R]

+D
(E)
N D

(R,E)
N E[vRvT

θ ] + D
(R,E)2

N E[vθv
T
θ ]

One should note that

E[vRvT
R] = σ2

R · IN

E[vφv
T
φ ] = σ2

φ · IN

E[vθv
T
θ ] = σ2

θ · IN .

Assuming that range, azimuth, and elevation measurement noises are independent,

all other expectations shown in (4.25) are equal to zero. Hence, the equation error

covariance R reduces to

R =




σ2
R · IN 0 σ2

R ·D(E)
N

0 σ2
φ ·D(φ)2 0

σ2
R ·D(E)

N 0 σ2
R ·D(E)2

N + σ2
θ ·D(R,E)2

N


 .

77



Since R is symmetric, one only needs to calculate R(1, 1), R(1, 2), R(1, 3), R(2, 2),

R(2, 3), and R(3, 3).

Identical noise realizations are used to compare the performance of the standard

ILS algorithm with the augmented nonlinear regression with intercept. As mentioned

near the end of Section 4.1, near the point of convergence, the parameter θ̂ does not

change much. This is in stark contrast to the initial iterations. Thus, initially, the

effects of the nonlinearity are pronounced (i.e., the truncation error c 6= 0). Figure 4.2

yields insights into the iteration process used to obtain the parameter estimate, x̂o.

The asterisks ∗s show the final iteration values at selected window sizes for a standard
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Figure 4.2: Refinement Iteration Process of Parameter Estimate for Selected Batch
Estimation Size. The asterisks ∗s denote the final iteration and the ×s denote are
intermediate iteration estimates. One should note that the standard ILS algorithm
typically converges after 3 iterations in this Monte Carlo run.

ILS algorithm Monte Carlo run. As the figure shows, the standard ILS algorithm

typically achieves solution convergence after four iterations in the example. However,

experience with these algorithms shows that the modified ILS algorithm requires more

iterations in order to converge upon an estimate. In order to assist the convergence of

the nonlinear regression with intercept, the presence of the nonlinearity/fluctuating

intercept is acknowledged. As previously mentioned at the end of Section 4.1, the
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block diagonal terms of the covariance R in (4.26) are doubled for early iterations.

As the iteration proceeds, the extra uncertainty weighting is gradually reduced to one

after 12 iterations. As stated in Section 4.1, this ad hoc implementation procedure

helps to facilitate convergence of the iterative least squares algorithm while addressing

strong nonlinearities.

4.4.3 Nonlinear Observation Function. Next, the nonlinear observation

function h is formed. The vectors are defined

h(R)(θ) ,




√
x2

o + y2
o + z2

o√
(xo + Vxo∆T )2 + (yo + Vyo∆T )2 + (zo + Vzo∆T − 1

2
cb∆T 2)2

..

.√
(xo + Vxo (N − 1)∆T )2 + (yo + Vyo (N − 1)∆T )2 + (zo + Vzo (N − 1)∆T − 1

2
cb∆T 2(N − 1)2)2




h(φ)(θ),




yo

xo

yo+Vyo∆T

xo+Vxo∆T
...

yo+Vyo∆T (N−1)

xo+Vxo∆T (N−1)




h(R,θ)(θ),




zo

zo + Vzo∆T − 1
2
cb∆T 2

...

zo + Vzo∆T (N − 1)− 1
2
cb∆T 2(N − 1)2




and

h(θ)(3N)×1 ,




h(R)(θ)

h(φ)(θ)

h(R,θ)(θ)


 .
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Again, one can note that the third component of the nonlinear observation relation

h(R,θ) reflects the impact of the regression formulation described in (4.19) and(4.20).

4.4.4 Linearization. The observation equation h(θ) is now linearized in this

sub-section. One can suppose that θ̂(k) is the current parameter estimate at step k.

The observation relation is linearized about θ̂(k). Let

Hk , ∂h

∂θ
|θ=θ̂(k) .

In view of (4.8), the regressor matrix Hk is composed as follows:

Hk =




∂h(R)(θ)
∂θ

|θ=θ̂(k)

∂h(φ)(θ)
∂θ

|θ=θ̂(k)

∂h(R,θ)(θ)
∂θ

|θ=θ̂(k)




in which the parameter vector is specified in (4.18).

First, one should consider the components that make up ∂h(R)(θ)
∂θ

|θ=θ̂(k):

H(1, 1) =
∂h(R)

∂xo

=
xo√

(x2
o + y2

o + z2
o)

H(1, 2) =
∂h(R)

∂yo

=
yo√

(x2
o + y2

o + z2
o)

H(1, 3) =
∂h(R)

∂zo

=
zo√

(x2
o + y2

o + z2
o)

in which H(1, 4) = ∂h(R)

∂Vxo
= 0, H(1, 5) = ∂h(R)

∂Vyo
= 0, and H(1, 6) = ∂h(R)

∂Vzo
= 0. For all

additional range measurements after the initial measurement, the following equations

explicitly yield the linearized regressor:
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H(2 : N, 1) =
∂h(R)

∂xo

=
xo + Vxo(k − 1)∆T

Den

H(2 : N, 2) =
∂h(R)

∂yo

=
yo + Vyo(k − 1)∆T

Den

H(2 : N, 3) = ∂h(R)

∂zo
=

zo+Vzo(k−1)∆T− 1
2
cb(k−1)2∆T 2

Den

H(2 : N, 4) =
∂h(R)

∂Vxo

= xo+Vxo (k−1)∆T (k−1)∆T

Den

H(2 : N, 5) =
∂h(R)

∂Vyo

= yo+Vyo (i−1)∆T (i−1)∆T

Den

H(2 : N, 6) =
∂h(R)

∂Vzo

= zo+Vzo(k−1)∆T (k−1)∆T− 1
2
cb(k−1)2∆T 2

Den

in which

Den =
√

(xo + Vxo (k − 1)∆T )2o + (yo + Vyo (k − 1)∆T )2o + (zo + Vzo (k − 1)∆T − 1
2
cb(k − 1)2∆T 2)2 .

Next, one should consider the components that make up ∂h(φ)(θ)
∂θ

|θ=θ̂(k):

H(N + 1, 1) =
∂h(φ)

∂xo

= − yo

x2
o

H(N + 1, 2) =
∂h(φ)

∂yo

=
1

xo

in which H(N + 1, 3) = ∂h(φ)

∂zo
= 0, H(N + 1, 4) = ∂h(φ)

∂Vxo
= 0, H(N + 1, 5) =

∂h(φ)

∂Vyo
= 0, and H(N + 1, 6) = ∂h(φ)

∂Vzo
= 0. For all additional azimuth measurements

after the initial measurement, the linearized regressor entries are:
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H(N + 2 : 2N, 1) =
∂h(φ)

∂xo

= − yo+Vyo (k−1)∆T

(xo+Vxo (k−1)∆T )2

H(N + 2 : 2N, 2) =
∂h(φ)

∂yo

=
1

xo + Vxo(k − 1)∆T

H(N + 2 : 2N, 3) =
∂h(Φ)

∂zo

= 0

H(N + 2 : 2N, 4) =
∂h(φ)

∂Vxo

= − (yo+Vyo (k−1)∆T )(k−1)∆T

(xo+Vxo (k−1)∆T )2

H(N + 2 : 2N, 5) =
∂h(φ)

∂Vyo

=
(k − 1)∆T

xo + Vxo(k − 1)∆T

H(N + 2 : 2N, 6) =
∂h(φ)

∂Vzo

= 0

Finally, the components that make up ∂h(R,θ)(θ)
∂θ

|θ=θ̂(k) are considered. One should

note that H(2N + 1, 3) = ∂h(R,θ)

∂zo
= 1, while the remaining components are:

H(2N + 1, 1)=
∂h(R,θ)

∂xo

= 0

H(2N + 1, 2)=
∂h(R,θ)

∂yo

= 0

H(2N + 1, 4)=
∂h(R,θ)

∂Vxo

= 0

H(2N + 1, 5)=
∂h(R,θ)

∂Vyo

= 0

H(2N + 1, 6)=
∂h(R,θ)

∂Vzo

= 0

For all additional measurements after the initial increment, the following equations

yield the linearized regressor entries:
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H(2N + 2 : 3N, 1) =
∂h(R,θ)

∂xo

= 0

H(2N + 2 : 3N, 2) =
∂h(R,θ)

∂yo

= 0

H(2N + 2 : 3N, 3) =
∂h(R,θ)

∂zo

= 1

H(2N + 2 : 3N, 4) =
∂h(R,θ)

∂Vxo

= 0

H(2N + 2 : 3N, 5) =
∂h(R,θ)

∂Vyo

= 0

H(2N + 2 : 3N, 6) =
∂h(R,θ)

∂Vzo

= (k − 1)∆T

4.4.5 Intercept. At this point, one can recall the generalized intercept equa-

tion shown in (4.10). One can incorporate a separate intercept for each measurement

equation. In the case of projectile launch point determination considered here, a

separate intercept could apply for the range, azimuth, and elevation nonlinear mea-

surement equations in the respective observation relations, namely the multivariable

intercept parameter

c =




cR

cφ

cθ




3×1

and

e =




eR 0 0

0 eφ 0

0 0 eθ




3N×3

.
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As recognized in [22], there is an inherent tradeoff in estimation between the

number of parameters in the regression and estimate quality. Hence, the author

originally proposed that a single intercept parameter c is multiplied with a vector of

ones.

e =




1
...

1




3N×1

. (4.26)

The length of e corresponds to the number of physical measurements; namely N range

measurements, N azimuth measurements, and N elevation measurements. This ap-

proach assumes that the resulting equation error caused from the nonlinear approx-

imation is negligibly small compared to existing equation error Ṽ , as previously de-

veloped in Sections 4.3 and 4.4. There is good reason to assume this. Previous work

with linear dynamic simulations reinforce this assumption about the intercept [22].

After considering new Monte Carlo simulations, the linear regression algorithm aug-

mented with and intercept performs poorly under these conditions. Figures 4.3 and

4.4 show widely varying estimates for this approach, until the batch size is ∼160

data points. This implies that the intercept from the range, azimuth, and elevation

measurements itself is strongly nonlinear. Likewise, disappointing estimation perfor-

mance also result while using multiple intercepts, one for range, one for azimuth, and

one for elevation. However, when one considers a generalized intercept that addresses

elevation error and neglects error contributions from range and azimuth, the estima-

tion process for the nonlinear regression augmented with an unconstrained intercept

greatly improves as shown by simulation. This implementation result reflects the fact

that the elevation measurement equation is more nonlinear than the range or azimuth

measurement equations. In order to avoid interference between three unconstrained

intercepts which results in convergence on an incorrect estimate, this approach focuses

on addressing the strong nonlinearity in the elevation measurement equation. In this
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Figure 4.3: Augmented ILS vs. Standard ILS Position Estimate. Strongly nonlinear
launch point estimation example. Typical Monte Carlo run. In (a), the solid line is
the estimate from the augmented ILS with single intercept (vector of ones shown in
(4.26)) algorithm x̂o. Dashed line from standard ILS. Dash-dot line–Truth value. In
(b), the solid line represents the parameter estimate, while the dashed lines represent
the estimated ±1σ.
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Figure 4.4: Augmented ILS vs. Standard ILS Velocity Estimate. Strongly nonlinear
launch point estimation example. Typical Monte Carlo run. In a), the solid line is
the estimate from the augmented ILS with single intercept (vector of ones shown in
(4.26)) algorithm V̂xo . Dashed line from standard ILS. Dash-dot line–Truth value. In
(b), the solid line represents the parameter estimate, while the dashed lines represent
the estimated ±1σ.
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case, the estimation process contains the vector e is

e =




0
...

0

· · ·
1
...

1




2N × 1

N × 1

In effect, this generalized intercept approach includes an intercept in order to impact

the nonlinear elevation measurement equation only. Results from the augmented ILS

with an unconstrained intercept approach are presented later in Section 4.5.2.

4.4.6 Including Intercept Constraints. The Ridge Regression type constraint

introduced in (4.13) enforces the requirement that, at the point of convergence, the

residual truncation error due to the nonlinearity in the measurement equations is of

the same magnitude as the equation error caused by measurement noise. As pre-

viously stated in Section 4.2, implementation of the augmented ILS algorithm with

unconstrained intercepts is hindered from converging to the correct solution as prob-

lem complexity increases. The Ridge constraints enable the intercepts to obtain an

appropriate magnitude. Specifically, the nonlinear regression that incorporates inter-

cepts for range, azimuth, and elevation is augmented with the three linear equations:

0 = cR + ξR , ξR ∈ N (0, σ2
R) (4.27)

0 = cφ + ξφ , ξφ ∈ N (0, α̃2σ2
φ)

0 = cθ + ξθ , ξθ ∈ NN(0, σ2
E)

Conforming with the 1st order ergodic assumption concerning the temporal behavior

of truncation error introduced by linearization, define
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α̃ , 1

N

√
Trace(D

(φ)2

N )

σE , 1

N

√
σ2

RTrace(D
(E)2

N ) + σ2
θTrace(D

(R,E)2

N )

in which N indicates the batch size, and the matrices D
(φ)
N , D

(E)
N , and D

(R,E)
N are

previously introduced in (4.24). σR, σφ, and σθ represent measurement uncertain-

ties’ standard deviations. The 1st order ergodic assumption is used here to justify a

complete description of the equation error noise using the first two moments, which

is probably not accurate. However, this provides a constraint that is conducive to

implementation.

One should consider the specifics for the two approaches used to implement the

Ridge Regression for this application, as previously described in Section 4.2. The one-

step method entails augmenting the constraints directly to the regression equation

in (4.7). It is assumed that the user wishes to implement three intercepts for the

given regression, namely for range (ρ), azimuth (φ), and elevation (θ). The vector

and matrix components formerly used to solve for θ̂ in (4.8) are replaced with the

following and used in the iteration for the batch estimation, namely,

ZR =




Z + Hiθ̂
(i) − h(θ̂(i))(3N×1)

. . .

0

0

0




(3N+3×1)

(4.28)

and
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HR =




H3N×9

. . . . . . . . .

03×6
... I3×3


 .

In order to determine the new equation error covariance matrix RR, one must consider

the following expectation expression

RR = E(




Ṽ

wR

wφ

wθ



·
(

Ṽ wR wφ wθ

)
)

=




R3N×3N 03N×3

. . . . . . . . .

03×3N Rridge




in which

Rridge =




σ2
R 0 0

0 α̃2 · σ2
φ 0

0 0 σ2
(R,E)


 . (4.29)

As previously stated in Section 4.2, there is no correlation between Ṽ and the noise

components of the Ridge constraints. Hence, the off-axis terms of RR are zeros.

As previously stated in Section 4.2, this one-step framework lacks the flexibility

of enabling the user to apply the intercept constraint at the time of his choosing within

the iteration process. Applying a constraint too early may hinder the convergence

process. A framework that permits flexibility in applying the constraint is desirable.

The two-step Ridge Regression approach for this missile launch point determi-

nation is now described. First, the two-step algorithm determines the estimate θ̂ and

88



its corresponding predicted estimation error covariance matrix P =


 Pθ Pθ c

Pc θ Pc


,

by assuming an unconstrained intercept using (4.8) with the estimation error covari-

ance (4.9). One can recall from Section 4.2 that the Pθ portion of P corresponds to

the parameter portion of the filter-predicted equation error covariance matrix and is

of interest here. The parameter estimate corresponds to that given in (4.8), with the

covariance given in (4.9).

Next, one can perform a linear regression using the aforementioned estimate

(4.8), covariance matrix (4.9), and Ridge Regression intercept constraints presented

in (4.27). Explicitly, one can write


 θ̂

0


 =





 θ̂

ĉ




0


 =





θ

c




c


 +




V

w


 .

One should note that c is defined as any combination of the intercepts mentioned in

(4.27). The two-step algorithm then performs the linear regression using the “mea-

surement”

ZR =




θ̂

ĉ

0




the regressor

HR =


 I(6+3)×(6+3)

0(3×6)
... I(3×3)



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Table 4.2: Battlefield Radar Measurement Error Standard Deviations

σθ σφ σR

0.1o 0.1o 10m

and the equation error covariance matrix

RR =




Pθ(6×6) 0(6×3)

0(3×6) Diag







σ1

σ2

σ3










.

Now, one can choose to implement the Ridge Regression intercept constraints at

any point during the iteration process . If someone wants to match the previous result

determined by (4.28) and (4.29), one can incorporate the constraints immediately

following the first iteration of (4.8), and continue to use the intercept constraint

throughout the iteration process for a given batch size.

Finally, in order to enhance the ability of the augmented ILS algorithm with

intercept to converge upon the parameter θ, an ad hoc implementation strategy is

used. The diagonal of the R matrix is doubled during early iterations as stated

previously in Section 4.4.2. Then, the additional uncertainty that was added to the

R matrix is gradually reduced.

4.5 Simulation

This chapter’s scenario entails an enemy that is launching artillery shells from

an unknown location onto the friendly base. The truth trajectory and measurements

data vector are generated. Noise is added to the measurement data vector. The noise

on the measurements is zero-mean, Gaussian-distributed, according to the statistics

given in Table 4.2. The measurement error standard deviations used in the simulation

experiments reflect current near state-of-the-art hardware specifications for battlefield
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radars. Angle and range measurements are taken at some fixed rate. An expanding

data window of length t = N ·∆T is used.

4.5.1 Initial Parameter Estimate. An initial guess of the parameter θ starts

the iteration process for each successive batch. Poor initialization can lead to problems

in the iteration process. A parameter initialization concept adapted from [ [26], [29]]

is used for both standard ILS and augmented ILS. By setting R = IN , one readily

obtains an initial guess for the parameter

θ̂(0) = (HT ·H)−1HT Z . (4.30)

The regressor H in (4.30) is constructed using all measurement data available within

the given batch to determine the initializing parameter θ̂(0). H is derived as

H , ∂h

∂θ
|xm,ym,zm .

The linearization of the observation relation h(θ) is determined exclusively by the

values of the first three components of θ, namely xo, yo, and zo. For the purpose of

initialization, set

xo , xm, yo , ym, zo , zm

in which xm, ym, and zm are obtained using (4.19). In other words, for the purpose

of initialization, the effects of measurement noise are neglected and used directly in

the least squares initialization equation presented in (4.30).

The regressor matrix H for initialization is composed as follows:

H =




∂h(R)(θ)
∂θ

|xm,ym,zm

∂h(φ)(θ)
∂θ

|xm,ym,zm

∂h(θ)(θ)
∂θ

|xm,ym,zm


 .
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Specifically, the components that make up ∂h(R)(θ)
∂θ

|xm,ym,zm are

H(1 : N, 1) =
∂h(R)

∂xo

=
xm(k)√

xm(k)2+ym(k)2+zm(k)2

H(1 : N, 2) =
∂h(R)

∂yo

=
ym(k)√

xm(k)2+ym(k)2+zm(k)2

H(1 : N, 3) =
∂h(R)

∂zo

=
zm(k)√

xm(k)2+ym(k)2+zm(k)2

H(1 : N, 4) =
∂h(R)

∂Vxo

=
xm(k)(k−1)∆T√

xm(k)2+ym(k)2+zm(k)2

H(1 : N, 5) =
∂h(R)

∂Vyo

=
ym(k)(k−1)∆T√

xm(k)2+ym(k)2+zm(k)2

H(1 : N, 6) =
∂h(R)

∂Vzo

=
zm(k)(k−1)∆T√

xm(k)2+ym(k)2+zm(k)2

in which k = 1, . . . , N . Similarly, the components that make up ∂h(φ)(θ)
∂θ

|xm,ym,zm are

provided now. The linearized regressor entries for azimuth are:

H(N + 1 : 2N, 1) =
∂h(φ)

∂xo

= − ym(k)

xm(k)2

H(N + 1 : 2N, 2) =
∂h(φ)

∂yo

=
1

xm(k)

H(N + 1 : 2N, 3) =
∂h(Φ)

∂zo

= 0

H(N + 1 : 2N, 4) =
∂h(φ)

∂Vxo

= −ym(k)(k−1)∆T
xm(k)2

H(N + 1 : 2N, 2) =
∂h(φ)

∂yo

=
(k − 1)∆T

xm(k)

H(N + 1 : 2N, 6) =
∂h(φ)

∂Vzo

= 0

in which k = 1, . . . , N . Finally, for ∂h(R,θ)(θ)
∂θ

|xm,ym,zm , the following equations yield the

linearized regressor entries:
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H(2N + 1 : 3N, 1) =
∂h(R,θ)

∂xo

= 0

H(2N + 1 : 3N, 2) =
∂h(R,θ)

∂yo

= 0

H(2N + 1 : 3N, 3) =
∂h(R,θ)

∂zo

= 1

H(2N + 1 : 3N, 4) =
∂h(R,θ)

∂Vxo

= 0

H(2N + 1 : 3N, 5) =
∂h(R,θ)

∂Vyo

= 0

H(2N + 1 : 3N, 6) =
∂h(R,θ)

∂Vzo

= (k − 1)∆T

in which k = 1, . . . , N . A significant benefit of using this initialization process is that

it is not computationally burdensome, as large matrix inversions are not required.

For comparison purposes, one should consider an initial guess of the parameter

θ used to start the iteration process for each successive batch estimate that relies

entirely on the first two measurement observations.

θ̂ =




xm(1)

ym(1)

zm(1)

xm(2)−xm(1)
∆T

ym(2)−ym(1)
∆T

zm(2)−zm(1)+ 1
2
g·∆T 2

∆T




.

This approach appears simple and adequate for initialization, but this is not neces-

sarily the case in nonlinear applications. An unsuccessful augmented ILS algorithm

with unconstrained intercept iteration using an initialization method that relies on

the first two measurements only is shown in Figure 4.5. Figure 4.6 shows the pa-

rameter estimation results using the same measurements and modified ILS algorithm
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Figure 4.5: Using the first two measurements to find the initial parameter estimate.
The figure shows the x̂t parameter using constrained intercepts for range, azimuth,
and elevation (solid line). The standard ILS produced result is also plotted (dashed
line). The truth model’s value for x at t = 0.180 non-dimensional time units is the
straight line at 3.267 non-dimensional position units (dash-dot line).

augmented with an unconstrained intercept when the initialization in (4.30) is used.

Clearly, the initialization scheme is important. Table 4.3 shows the impact of the ini-

tialization schemes for a representative Monte Carlo experiment. At the same time,

the calculation time required in order to obtain the initial parameter is negligible.

4.5.2 Standard ILS and Augmented ILS with Unconstrained Intercept. This

subsection now reports 2-D scenario results of standard ILS and augmented ILS with-

out intercept constraints, for the nonlinear regression, developed in Sections 4.1 and

4.4.1 through 4.4.5. In order to compare the estimation methods, the simulation ex-

periments are confined to a 2-D scenario–(x, z) plane. Hence, for this subsection, the

reduced parameter vector is considered:

θ = (xo, zo, Vxo , Vzo)
T ∈ R4 .
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Figure 4.6: Expanding measurement window used in nonlinear regression to find
the initial parameter estimate. The figure shows the x̂t parameter using constrained
intercepts for range, azimuth, and elevation (solid line). The action of standard ILS
using only the first two measurements is also shown (dashed line). The truth model’s
value for x at t = 0.180 non-dimensional time units is pictured as the straight line at
3.267 non-dimensional position units (dash-dot line).

Table 4.3: Example Monte Carlo Run: Initial Parameter

x(0) y(0) z(0) Vx(0) Vy(0) Vz(0)

Truth 3.267 1.164 0.09816 -6.634 -3.830 4.468

Two Measurements 4.483 0.00180 17.741 621.5 -106.6 -222.1

Window Length N=20 2.910 2.163 0.1046 -4.513 3.499 -0.00394

Window Length N=400 2.902 2.188 0.1830 -5.121 -6.857 -0.8776

Initial Position Parameters (in non− dimensional position units)

Initial Velocity Parameters (in non− dimensional velocity units)

95



The truth model and measured data vector are generated. The noise on the

measurements has zero mean and is Gaussian-distributed. The measurement errors

reflect current near state-of-the-art hardware accuracy specifications for battlefield

radars. Angle and range measurement noises are assumed independent at each sample.

These measurements are taken every tenth of a second. At each time increment, the

parameter estimate is derived in batch using all previous measurements. Thus, an

expanding data window is used. The scenario considers an enemy opposition that

is launching unguided artillery shells from an unknown location. Hence, in order to

start the iteration process for each successive batch, one derives the initial parameter

guess entirely from measurement observations.

4.5.2.1 Example 1: Radar Overflight. This example demonstrates the

major benefits of the novel ILS algorithm augmented with an intercept compared to

standard ILS. By overflying the radar and landing just beyond its location, the geom-

etry causes the nonlinearity in the incoming projectile’s elevation angle measurement

equation to strengthen. (See Figure 4.7.) The ballistic coefficient associated with this
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Figure 4.7: Typical Ballistic Trajectory. a) Truth model position and measured
position. b) Shows a large excursion in θ, which accentuates the nonlinearity.

projectile is relatively large at cb = 1.35, which further accentuates the nonlinearity
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in the θ measurement equation. The increased drag on the projectile exaggerates the

curvature of the projectile’s trajectory. The projectile is fired from the same elevation

as the radar and target; however, there is a 0.127 nondimensional time unit delay in

initiating radar measurements. Measurement error standard deviations are σθ = 0.30

and σR = 10 meters, respectively.

As one can see from Figures 4.8 and 4.9, standard ILS diverges when 80 or

more data increments are considered, corresponding to the first 0.506 nondimensional

time units of the data (from .127 to .633 nondimensional time units of projectile

flight). This standard ILS divergence results directly from neglecting the nonlinear-
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Figure 4.8: Result of 20 Monte Carlo Runs for Strongly Nonlinear Case. The figure
shows: (1) the position parameter estimate x̂o (solid line) (2) ± the experimentally
determined standard deviation 1σ determined from the variation between parameter
estimates in the 20 MC runs(dashed line) and (3) xtrue = 0.3116 (solid line with 4)
(4) ±1σ determined from the filter-predicted estimation error covariance R (dash-dot
line).

ity in the elevation angle measurement equation. Interestingly, the augmented ILS

case with generalized intercept requires approximately 65 measurements (from .126

to .538 nondimensional time units of projectile flight) for convergence to the true po-

sition parameter and true velocity parameter, respectively. Increasing the covariance
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Figure 4.9: Result of 20 Monte Carlo Runs for Strongly Nonlinear Case. The figure

shows: (1) the velocity parameter estimate V̂xo (solid line) (2) ± the experimentally
determined standard deviation 1σ determined from the variation between the esti-
mates in the 20 MC runs (dashed line) and (3) Vxtrue = −0.4226 (solid line with 4)
(4) ±1σ determined from the filter-predicted estimation error covariance R (dash-dot
line).
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R causes slower convergence to the true parameter values, as expected. One main

inference that is introduced here and is developed at the end of Section 4.5.3.1 is that

a relation exists between the nonlinearity and the measurement noise level. Specif-

ically, when a strong nonlinearity exists in a particular test case, the measurement

variance will dictate the amount of benefit obtained using an augmented ILs algo-

rithm with intercept as opposed to a standard ILS algorithm. Measurement variance

that is either extremely good, or quite bad, will diminish the benefit of the augmented

ILS algorithm with contrained intercepts compared with the conventional approach.

Engagement geometry may dictate using the more sophisticated augmented ILS with

intercept algorithm, particularly as the strength of the nonlinearity increases com-

pared to the measurement noise level.

One should note that the projectile launch point estimate is really the primary

interest. Up until this point, the estimation algorithm determines parameter esti-

mates corresponding to the beginning of the batch. One of batch regression’s main

advantages in the launch point determination problem when compared to sequential

(i.e. Kalman filtering) type estimation is that smoothing is not required in order to

obtain estimates of a parameter set prior to the first measurement within the batch.

It is assumed that the launch point elevation is known via contour map in this sub-

section’s example. One can then use the estimate of ẑ and V̂z in order to determine

the launch time estimate from

ẑ = zo + (V̂z + cb · g · t̂) · t̂− 1

2
· cb · g · t̂2 . (4.31)

The estimated parameter position x̂L is now projected back in time to the launch

point using (4.31) for 20 Monte Carlo simulations. Figure 4.10 shows the experimen-

tally determined estimate for each successive batch size. As the projectile enters the

4th second of recorded flight (corresponding to the 40th data point), the measure-

ments are increasingly afflicted by the nonlinearity in the elevation relation in this

example. As these data points compose an increasingly larger portion of the data

window, the standard ILS approach is unable to form reasonable estimates. However,
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Figure 4.10: Result of 20 Monte Carlo Runs. The figure shows (1) the launch
position parameter estimate x̂L (solid line) (2) ± the experimentally determined 1σ
from the variation betweeen the parameter estimates (dashed line). (3) xLtrue is also
shown (solid line with 4).

the augmented ILS algorithm with unconstrained intercepts is able to cope with the

nonlinearity. The estimates produced by the algorithm converge upon the true param-

eter value when a large enough data window has accumulated. The plot also shows

the experimentally determined standard deviation of the parameter estimate. If the

equation error covariance for the launch point estimates is desired, one could increase

R to reflect the uncertainty in the time estimate. Additional results associated with

this example problem are located in Appendix F.

4.5.2.2 Example 2: Stressful Geometry. In this scenario, the radar

and enemy projectile launch location are both on two hilltops, 1500 meters apart. A

projectile is fired towards the radar, but falls short into a ravine separating the two

hilltops (Figure 4.11). Also, there is little movement in elevation angle for the first

120 measurements.

Figures 4.12 and 4.13 show the results of the estimation process. The esti-

mation problem is not impacted by the nonlinearity, which is weak compared to the
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Figure 4.11: Near-linear Example of Typical Monte Carlo Ballistic Trajectory Pro-
file. (a) Shows the truth model position, as well as the position measurements. The
stars ∗ indicate the artillery piece position and the radar location. (b) Shows little
movement in θ for the first ∼75% of the tracked projectile’s flight.

20 40 60 80 100 120 140 160 180 200

0.829

0.83

0.831

0.832

0.833

0.834

0.835

0.836

0.837

0.838

Parameter Estimate of x, Using 10Hz Sampling

Successive Batch Size of Regression

E
st

im
at

e 
of

 P
ar

am
et

er
, x

 (
nd

)

Figure 4.12: Position estimate is provided by a typical Monte Carlo Run with near-
linear changes in elevation. Standard ILS quickly renders a good estimate (dashed
line). The augmented ILS with intercept (dash-dot line) and the augmented ILS
estimate determined with increased uncertainty in R (solid line) also produce good
estimates after ∼90 measurements. The truth value is denoted by the solid line with
a 4.
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Figure 4.13: Velocity estimate is provided by a typical Monte Carlo Run with
near-linear changes in elevation. Line types are the same as in Figure 4.12.

strong measurement noise. The battlefield radar specifications include measurement

uncertainties’ standard deviations of σθ = 0.1o and σR = 10 meters, respectively,

and the ballistic coefficient cb is 1.0 in this particular example. Standard ILS estab-

lishes a good estimate quickly, after incorporating as few as 10 samples. All three

estimation methods develop a good estimate by ∼90 data samples, given the 10 Hz

sampling rate.

The delay in the augmented ILS algorithm with intercept is caused by the lack

of information in the elevation measurement, as the elevation measurement moves

little from 0◦ for the first 0.8 nondimensional time units of projectile flight (Figure

4.11). The intercept is allowed to float in an unconstrained fashion throughout the

iteration process. This causes the increased estimate convergence time when compared

to Example 1, even though the elevation measurement noise statistics are greatly

enhanced in the latter example. It is important to note that, after data is accumulated

for 0.444 nondimensional time units, the augmented ILS with generalized intercept

does not hurt the estimate.
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Finally, the best position estimate x̂ is obtained when the block diagonal terms

of the covariance matrix R are slightly increased and one uses ∼140 or more measure-

ments in the batch. The estimates are generated with the covariance block diagonal

terms at 25% above their typical level. The estimates are quite invariant compared

to their counterparts when the batch size contains at least 140 data points. The final

∼40 data points correspond to the last four seconds of the projectile flight. The geom-

etry in Example 2 accentuates two effects in the observations, as the elevation angle

in Figure 4.11(b) begins to change rapidly, corresponding to the projectile crashing

into the ravine. First, the measurement errors can cause quite erratic “movement”

in the ballistic projectile’s final decent. The added uncertainty to the diagonal terms

deemphasizes this erratic movement in the measurement data. Second, this increase

in uncertainty accounts for equation error Ṽ previously neglected, as shown in (4.10).

Hence, the additional uncertainty reduces the impact of the nonlinear dynamics that

are linearized during the estimation process. The reduction in estimate variation that

is achieved from increasing the uncertainty in the covariance matrix R in the 2-D case

does not extend readily to the 3-D case.

4.5.2.3 Conclusions About Augmented ILS with Unconstrained Intercepts.

The algorithms used to generate the estimates presented in this subsection employ

batch data processing and nonlinear regression augmented with an intercept, and

demonstrate the novel algorithm in a ballistic trajectory tracking scenario. Aug-

mented ILS with generalized intercept clearly expands the operational envelope of

these batch estimation algorithms. It is also important to note that the enhanced

augmented estimation method does not adversely impact the estimation ability in

the nearly linear estimation cases, if the batch estimation algorithm is given enough

measurements.

The estimation performance of standard ILS is improved by incorporating two

key features. First, the research recognizes that the intercept is a multi-variable pa-

rameter. Each nonlinear measurement equation provides an opportunity to introduce
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a scalar intercept. In this case, the best estimation results are obtained when the

intercept is only applied to the critical angle measurement equation in which the non-

linearity is strongest. Indeed, the method is extremely effective in cases under the

condition that the magnitude of the nonlinearity is large compared with the measure-

ment noise level. In addition, the method does not adversely impact the estimation

for nearly linear cases, if given enough measurements within the batch. The results

presented so far only show these two extremes. Additional inferences about about

the relationship between the strength of the nonlinearity and measurement noise are

discussed later in Section 4.5.3.1.

Second, it is recognized that when one linearizes a nonlinear system, there is

increased uncertainty above and beyond the equation error caused by measurement

noise. Hence, “tuning” by increasing the diagonal terms of the equation error covari-

ance matrix R may assist estimation convergence in some cases, particularly when

problem geometry amplifies the deleterious effects of nonlinearity. The benefits on

estimation performance accrued by including prior information on the muzzle velocity

require investigation. See Appendix G.

4.5.2.4 Reasons for Constraining the Augmented Intercepts. Even

though the novel augmented ILS algorithm augmented with unconstrained intercepts

realizes an expansion of the envelope of successful estimation over standard ILS, one

can observe two motivations to include intercept constraints via Ridge Regression

approach. First, in all cases that the estimation iteration converged, standard ILS

converged with a shorter data window record when compared to augmented ILS with

unconstrained intercept. When using the augmented ILS with unconstrained inter-

cept, estimation results deteriorate–more bias and higher variance–if too little mea-

surement data is present, a direct result from augmentation of the parameter vector

θ with an intercept c to account for linearization-induced truncation error. Second,

when the nonlinearity is weak, augmented ILS with unconstrained intercept yields a

noticeable increase in the variance of the parameter estimate when compared to stan-
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dard ILS. The benefits of using augmented ILS with unconstrained intercepts still

outweigh the cost when compared to using standard ILS. However, better estimation

results are achievable, as discussed in Section 4.5.3. The proposed extension addresses

this covariance issue directly while expanding on the two aforementioned benefits.

4.5.3 Standard ILS and Augmented ILS with Constrained Intercept. Now,

consider 3-D scenario results of standard ILS and augmented ILS with constrained in-

tercepts. The Ridge Regression constraints are previously developed in Sections 4.2 and 4.4.6.

One can recall that, for this 3-D scenario, the parameter vector is as shown in (4.18).

The scenario is as described in the prelude of Section 4.5.2.

4.5.3.1 Trajectory with Significant Nonlinearity due to Geometry. A

trajectory profile in which measurements of azimuth and elevation (Figure 4.14) vary

considerably within the data window, particularly from 0.360 to 0.676 nondimen-

sional time units, is considered. The azimuth plot indicates an artifical 360o jump,
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Figure 4.14: Azimuth and Elevation Time History. The augmented ILS algorithm
with constrained intercepts is used in an example with strong nonlinearity. The
projectile’s ballistic coefficient cb = 1.2.

which results from the defined domain. The projectile is launched from (xo, yo) =
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∼(−0.287,−0.0878) nondimensional position units towards a target located at (x, y) =

∼ (0.200, 0.139) nondimensional position units. The measurement data vectors are

generated and noise is added to the measurements. The measurement errors used

in the simulation experiments reflect current near state-of-the-art hardware specifica-

tions for battlefield radars, as reflected in the previous Table 4.2.

First, the results of a single Monte Carlo experiment with data measurements

sampled at 31
3
Hz are considered. This sampling frequency was selected to account for

the projectile trajectory and the desired computational capabilities used to process

the ILS algorithms. In practice, one would not have this luxury; however, one could

use whatever data is available. Figures 4.15 and 4.16 clearly show the performance

of ILS augmented with constrained intercepts for range, azimuth, and elevation as

superior to that of standard ILS. ILS augmented with constrained intercepts yields
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Figure 4.15: Position parameter estimate x̂t using constrained intercepts for range,
azimuth, and elevation (solid line). The standard ILS results are also shown (dashed
line). The truth value for x at t = 0 is at -0.0282 nondimensional distance units
(dash-dot line).

a good position estimate for all batch sizes shown in the figures, particularly when

the batch includes measurements that are impacted by the strong nonlinearity in the

azimuth and elevation measurement equations. The 45th through 65th data points
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Figure 4.16: Position parameter estimate x̂t using an constrained intercepts for
range, azimuth, and elevation (solid line). The standard ILS is also shown. Dashed
lines represent plus minus one standard deviation from the filter-predicted equation
error covariance from the true x (dash-dot lines).

correspond to the 0.360 through 0.676 nondimensional time units of projectile flight.

The measurements are increasingly afflicted by the nonlinearity in the elevation re-

lation in this example. As these data points compose an increasingly larger portion

of the data window, the standard ILS approach is unable to form reasonable esti-

mates. However, the augmented ILS algorithm with constrained intercepts is able

to cope with the nonlinearity. Additionally, the Augmented ILS algorithm with con-

strained intercepts overcomes the two shortcomings described in the Section 4.5.2.

Specifically, Figure 4.16 shows that the estimates obtained by the augmented ILS

algorithm with constrained intercepts converge with a short data window, superior

to that achieved by the standard ILS algorithm. One should note that the early

measurements within the data window are quite linear. The same assessment applies

to the velocity parameters, such as V̂xt , as shown in Figures 4.17 and 4.18. The

standard ILS velocity estimate degrades significantly for the corresponding batches,

since the algorithm does not account for nonlinearity in the measurement equation.

As these increasingly nonlinear data measurements compose an increasingly larger
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Figure 4.17: Velocity parameter estimate V̂xt using constrained intercepts for range,
azimuth, and elevation (solid line). The standard ILS is also shown (dashed line).
The truth model’s value for Vx at t = 0 is pictured as the straight line at 0.487
nondimensional velocity units.
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Figure 4.18: Velocity parameter estimate V̂xt using an constrained intercepts for
range, azimuth, and elevation (solid line). The standard ILS is also shown. Dashed
lines represent plus minus one standard deviation from the filter-predicted equation
error covariance from the true Vx (dash-dot lines).
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portion of the data window, the standard ILS approach is unable to form reasonable

estimates when N = 50 (Figures 4.17 and 4.18). The augmented ILS results are

greatly improved when compared to previous simulation results presented to the aug-

mented ILS algorithm with unconstrained intercepts in Section 4.5.2. The augmented

ILS algorithm incorporates constraints on the intercepts to limit their value to the

noise magnitude for a given batch size, as explained in Section 4.2. Additional results

associated with this example are shown in Appendix H.1.

The results from 20 Monte Carlo runs shown in Figure 4.19 clearly demon-

strate superior estimation performance achieved by ILS augmented with constrained

intercepts for range, azimuth, and elevation, over that of standard ILS. Results for ad-
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Figure 4.19: 20 Monte Carlo Experiments. Position estimates produced by the
augmented ILS algorithm with constrained intercepts are superior to estimates pro-
duced by conventional ILS when nonlinearity is strong. The figure shows: (1)
xotrue = −0.287nd ± 1σ determined from the filter-predicted covariance estimation
error (lines with 4s). (2) Parameter estimate x̂o± experimentally determined stan-
dard deviation 1σ from the variation between the parameter estimates within the 20
Monte Carlo runs. (lines without 4s).

ditional parameter estimate values are shown in Appendix H.2. As previously shown,

as measurements afflicted by strong nonlinearity compose an increasingly larger por-

tion of the data window, the standard ILS approach is unable to form reasonable
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estimates for N ≥ 50. The augmented ILS algorithm with constrained intercepts

produced good estimates for all data window lengths. Figure 4.19 also shows that

the standard deviations experimentally determined from the variation on the pa-

rameter estimates are smaller than the standard deviations of the filter-predicted

equation error covariances, demonstrating the augmented ILS method’s performance

when the nonlinearity is strong relative to the measurement-noise-induced equation

error. Constraining the intercepts enables quick convergence to the truth values, with

fewer than 20 measurements included in the batch. The figure shows that the op-

posite is true for the standard ILS algorithm. Additionally, this compares favorably

to the performance of the augmented ILS algorithm with unconstrained intercept,

which typically required at least 65 measurements in the batch for the convergence.

Hence, the augmented ILS with constrained intercepts has clearly overcome the two

shortfalls associated with the augmented ILS algorithm with unconstrained intercepts

presented in Section 4.5.2. The same assessment applies to the velocity parameter

estimates, such as V̂xt , as shown in Figure 4.20.

An extreme case is shown here, in which the geometry causes strong nonlinearity

in the measured equation. Numerous scenarios were considered that show the impor-

tance of the interplay between nonlinearity strength and measurement noise. The

observations about this relationship between nonlinearity strength and measurement

noise are summarized in Figure 4.21. In general, estimation for problems with signifi-

cant nonlinearity benefits when one uses the augmented ILS algorithm with intercepts

as opposed to standard ILS. The benefit diminishes when either the measurement er-

ror standard deviation is either really low or really high. In the former case, both

algorithms benefit from the good measurements with low measurement error, such

that the marginal difference between estimation methods diminishes. Likewise, when

measurement error degrades significantly, both methods would produce poor results,

hence removing any benefit from the choice of estimation approach. The second major

generalization is that the derived benefit from using augmented ILS algorithm with

constrained intercepts over standard ILS is dependent on the problem geometry. As
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Figure 4.20: 20 Monte Carlo Experiments. Velocity estimates produced by the
augmented ILS algorithm with constrained intercepts are superior to estimates pro-
duced by conventional ILS when nonlinearity is strong. The figure shows: (1)
Vxotrue = −0.4873nd ± 1σ determined from the filter-predicted covariance estima-

tion error (lines with 4s). (2) Parameter estimate V̂xo± experimentally determined
1σ from the variation between the parameter estimates within the 20 Monte Carlo
runs (lines without 4s).
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Figure 4.21: Qualitative assessment of improvement to estimate quality. Aug-
mented ILS with constrained intercepts vs. conventional ILS

the nonlinearity increases for the specific geometry case, the estimates increasingly

benefit by using the augmented ILS algorithm with constrained intercepts. There

is a limit to the envelope in which estimation is possible using either of these ap-

proaches. Clearly, the envelope in which estimation is possible is expanded using the

augmented ILS algorithm with constrained intercept. Section 4.5.3.2 will address how

to deal with such a case, in addition to showing results associated with a near-linear

portion of the projectile trajectory.

4.5.3.2 Aggressive Trajectory. The need for higher sampling rates,

and consequently long data windows, might require division of the batch into smaller

data records. In some batches, the 31
3
Hz sampling rate is too slow to capture rapid

excursions in azimuth and elevation, such as in the aggressive scenario from [27],

which is now considered. In the second scenario, the energetic projectile is fired at a

relatively steep ascent and very close to the radar. The projectile nearly overflies the

radar. As a result, the azimuth angle slews ∼80 degrees in 0.0153 nondimensional time
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units and changes ∼130 degrees over a 0.0429 nondimensional time unit period, while

the entire projectile flight time lasts 1 nondimensional time unit (Figure 4.22(a)). In
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Figure 4.22: Azimuth and Elevation Angles Versus Time for the Aggressive Tra-
jectory.

addition, the elevation angle is also changing rapidly during this time as it climbs

from launch (Figure 4.22(b)).

If one samples range, azimuth, and elevation at the frequency required to char-

acterize the dynamic portion of this projectile’s flight, the batch size increases sig-

nificantly. Consequently, the size of the R matrix increases to the point that the

computational capabilities are overwhelmed; the solution is to subdivide the batch

into sub-batches. The length of each sub-batch is limited to reflect computational

capabilities. The author finds that data windows of ∼400 measurements require a

reasonable amount of time in order to perform the calculations for the nonlinear

regression, given his computational resources available for simulation.

Specifically, estimates and predicted estimation error covariances are obtained

for each sub-batch within a single Monte Carlo run. The complete sub-batch informa-

tion is captured by its initial state estimate and predicted estimation error covariance.
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These are used in a final linear regression when the initial launch point is calculated,

which is discussed near the end of this subsection.

Figure 4.23 reveals one particular sub-batch of interest, which occurs between

0.184 and 0.208 nondimensional time units and requires a 100 Hz sampling rate.

This sub-batch is a near-linear part of the rapidly changing portion of the overall
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Figure 4.23: Truth Model Angles Versus Time for the Chosen Near-linear Sub-batch
Within the Aggressive Trajectory.

trajectory. Figure 4.24 shows the estimated y position parameter for the particular

sub-batch of interest. The parameter estimates derived for each sub-batch are then

combined. Because the sub-batches do not overlap, the noise corruptions associated

with the parameter estimates are uncorrelated batch-to-batch. Therefore, they are

easily combined to yield the final parameter estimate, which captures the information

in the entire batch. The results presented here are from a typical Monte Carlo run.

A significant point here is that augmented ILS with constrained intercept provides

parameter estimates that do not degrade when compared to standard ILS, even when

the nonlinearities are relatively weak compared to the measurement noise intensity,

as presented here in the near overflight case. Additional results for this example are

shown in Appendix H.3.
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Figure 4.24: Position parameter estimate ŷo for particular near-linaer sub-batch
example using augmented ILS with constrained intercepts for range, azimuth, and
elevation (solid line). The standard ILS estimate is also shown (dashed line). The
truth model’s value for y at t = 0.178 non-dimensional time units is pictured as the
straight line at approximately 0 non-dimensional position units (dash-dot line).

Estimates and predicted estimation error covariances are obtained for each sub-

batch within a single Monte Carlo experiment. However, one is really interested in

the projectile launch point estimate. The estimates and covariances from each sub-

batch are converted back to project an estimate of the launch point. If one assumes

a known launch time, one can project the estimate directly back to the start of the

trajectory profile. In this case, one directly uses the calculated parameter estimates

and covariances from each sub-batch to estimate the launch point. This assumption

is very unreasonable, in that it would require precise knowledge of when the enemy

is going to fire the projectile.

Alternatively, the estimate of ẑ and V̂z are used to determine the launch time

estimate using knowledge of the terrain via contour map, as previously shown in

(4.31). Figure 4.25 shows the results of using (4.31) to obtain the estimate. In effect,

the estimates from each sub-batch are projected into a “common launch time” (i.e.,

the time of launch). This estimated launch time projects directly into determining the
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Figure 4.25: Estimate of the launch time prior to the start of the selected near-linaer
sub-batch example. The solid line represents the time estimate using the augmented
ILS algorithm with constrained intercepts for range, azimuth, and elevation (solid
line). The time estimate produced from the standard ILS algorithm is also shown
(dashed line). The truth model’s value for time at t = 0.184 non-dimensional time
units (dash-dot line).
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launch position. An iterative process can “look up” known elevations relative to the

0 50 100 150 200 250 300 350 400
−0.802

−0.8

−0.798

−0.796

−0.794

−0.792

−0.79

Derived Estimate of Nondimensionalized Launch Position Coordinate

Successive Batch Size of Regression

y L (
nd

)

Figure 4.26: Position estimate at launch ŷL using augmented ILS with constrained
intercepts for range, azimuth, and elevation (solid line). The standard ILS estimate
is also shown (dashed line). The truth model’s value for yL at launch is pictured as
the straight line at -0.0193 non-dimensional position units (dash-dot line).

radar location via contour map, thus enabling solution convergence. After solving for

t̂, one can determine ŷL at launch, as shown in Figure 4.26. One should then augment

the filter-predicted equation error covariances (i.e., increase diagonal components of

P ) in order to reflect the uncertainty in the time estimate.

At this point, one can solve a linear regression to fuse the information effectively

into an estimate of the launch position:




θ̂1

...

θ̂k


 =




I
...

I


 · θ + V

(4.32)

Z = Hθ + V

in which
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R =




P1 −0−
. . .

−0− Pk


 .

Estimates 1, 2, . . . , k correspond to the respective sub-batches as previously described.

The best results for the augmented ILS algorithm with intercepts are obtained when

the information pertaining to the intercept is stripped from the filter-predicted equa-

tion error covariances Pj, in which j = 1, . . . , k. One can recall that the intercept

reflects the error size associated with the linearization of the nonlinearity. This infor-

mation is not needed in the data fusion. The solution of this linear regression is now

performed [36] and the finite parameter estimate is calculated

ˆ̂
θ = (HT R−1H)−1HT R−1Z .

The double hat signifies that
ˆ̂
θ is the data fused parameter estimate of the previously

obtained sub-batch estimates.

4.5.3.3 Conclusion of Augmented ILS with Constrained Intercepts. A

parameter estimation method is developed using batch data processing and nonlinear

regression augmented with a constrained intercept. The inclusion of an intercept is

aimed at addressing the significant nonlinearity effects, namely, linearization-induced

truncation error. The size of the estimated intercept is made commensurate with the

measurement-noise-induced equation error, using a Ridge Regression argument. Also,

careful modelling and nondimensionalization are employed, and large batch sized are

accommodated as necessary. As a result, and as thoroughly validated by extensive

numerical experiments, the estimation performance is improved beyond that achieved

by standard ILS in three measures. First, the parameter estimation error variation is

reduced, particularly when the nonlinearity is strong. Second, the predicted param-

eter estimation error standard deviation corresponds to the experimentally recorded
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parameter estimation error standard deviation. Third, the probability of the itera-

tion converging to the correct estimate is increased, particularly in formerly difficult

measurement geometries and when the nonlinearity is strong; hence, expanding the ef-

fective estimation envelope. Additionally, augmented ILS with a constrained intercept

does not degrade estimation results when the nonlinearity is relatively weak compared

to the measurement noise–the novel parameter estimation algorithm is robust for this

important consideration. The method clearly mitigates some vulnerability caused

by neglecting nonlinearity, as in standard ILS, while maintaining high quality esti-

mates in geometric situations in which standard ILS also does well. The augmented

ILS method is conducive to good parameter estimates in an expanded measurement

geometry envelope and without an increase in the estimation error covariance.

4.6 Conclusions for Nonlinear Regression

This research discusses the importance of interplay between strength of nonlin-

earity and measurement noise level. Augmented ILS with generalized unconstrained

intercept clearly expands the envelope of successful estimation for these batch pro-

cesses. Augmented ILS with unconstrained intercepts does not adversely impact the

estimation ability in the nearly linear cases, if the batch estimation algorithm is

given a long enough data window. Parameter estimation can benefit by artificially

increasing the equation error covariance matrix R diagonal terms in some cases. This

acknowledges an elevated level of equation error uncertainty.

Adding the Ridge Regression constraints clearly resolves some vulnerability as-

sociated with the augmented ILS algorithm with an unconstrained intercept presented

in Section 4.5.2. Specifically, augmented ILS algorithms with a constrained intercept

achieves convergence with short data windows. Also, variance of the parameter esti-

mate is greatly reduced. Augmented ILS with constrained intercepts further expands

the geometry cases in which obtaining good estimates is possible, compared to stan-

dard ILS. Augmented ILS with constrained intercepts is superior when nonlinearity
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is dominant. In addition, the methodology maintains the high quality of estimation

in “near-linear” geometric cases in which conventional ILS also performs well.
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V. Reconfigurable Flight Control

This chapter uses augmented linear regression with unconstrained intercept algo-

rithm developed in Chapter III to improve on system identification performance

under trim change when compared to the iterative least squares estimation approach.

The adaptive and reconfigurable flight control system then uses the system identifi-

cation results to adjust the inner loop control gains by actively using a feed-forward

control input. This chapter develops the adaptive reconfigurable flight control system.

Pitch rate tracking is demonstrated under a sizeable control surface failure. The adap-

tive reconfigurable flight control system pitch rate tracking performance surpasses the

tracking performance produced by the conventional flight control system that solely

relies on integral feedback control in terms of ability to counter the failure.

5.1 Introduction to Flight Control

One should consider a batch estimation process with an expanding window and

the important special case in which the equation error covariance matrix, while a

function of the unknown parameter θ, is a scaled unity matrix [10],

R(θ) = r(θ) IN×N

in which r(θ) is a scalar. In the flight control application discussed in the sequel, the

equation error covariance matrix R(θ) is a scalar multiple of an identity matrix as

shown in Section 2.3.1. From Theorem 3, the parameter estimate reduces to:

θ̂ = (HT H)−1HT Z + 1
eT [I−H(HT H)−1HT ]e

(HT H)−1HT eeT
(
H(HT H)−1HT − I

)
Z .

The unknown scalar r(θ) does not impact the parameter estimate and no iterations

are required. From Theorem 3, the parameter estimation error covariance reduces to

Pθ = r(θ̂)

[
(HT H)−1 +

(HT H)−1HT eeT H(HT H)−1

eT [I −H(HT H)−1HT ] e

]
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and it is easily obtained once θ̂ is calculated.

The function r(θ) of the parameter θ is application-specific. The stability and

control derivative’s estimation process for the pitch channel of an F-16 class aircraft

is considered. The focus of this chapter is on the short period dynamics, ignoring the

phugoid and elastic modes. Keeping the length of the system identification window

sufficiently short validates this assumption. The “q̇ equation” is

q̇ = Mα · α + Mq · q + Mδ · δ (5.1)

in which α is the angle of attack, q is the pitch rate, δ is the elevator deflection, Mα

and Mq are the stability derivatives, while Mδ is the control derivative. The measured

variables, denoted by the subscript m, are αm = α+ vα, qm = q + vq, δm = δ + vδ, and

the measured pitch acceleration is q̇m = q̇ + vq̇. The v quantities denote white, zero-

mean Gaussian-distributed noise on the measured variables: E[v2
α] = σ2

α, E[v2
q ] = σ2

q ,

E[v2
δ ] = σ2

δ , and E[v2
q̇ ] = σ2

q̇ . Substituting these measured quantities into (5.1) yields

q̇m = Mααm + Mqqm + Mδδm −Mαvα − (Mqvq + Mδvδ − vq̇) . (5.2)

The complete linear regression is considered in detail later in Section 5.3. For now,

one should consider the equation error vector for the accumulated data record over

time, which is pertinent to the crucial calculation of the equation error covariance

matrix R. The equation error V is the vector

V =




Mαvα(0)−Mqvq(0)−Mδvδ(0) + vq̇(0)

Mαvα(∆T )−Mqvq(∆T )−Mδvδ(∆T ) + vq̇(∆T )
...

Mαvα((N − 1)∆T )−Mqvq((N − 1)∆T )−Mδvδ((N − 1)∆T ) + vq̇((N − 1)∆T )




. (5.3)

The equation error covariance matrix assumes independence of individual measure-

ment noises and is evaluated as
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R = E[V V T ]

= (M2
ασ2

α + M2
q σ2

q + M2
δ σ2

δ + σ2
q̇ ) · IN

= r(θ) · IN

in which

r(θ) = (M2
ασ2

α + M2
q σ2

q + M2
δ σ2

δ + σ2
q̇ )

= θT




σ2
α 0 0

0 σ2
q 0

0 0 σ2
δ


 θ + σ2

q̇ .

The direct calculation of the parameter estimate without the need of iteration

is a key feature of static system identification. The calculated parameter estimate is

then used in the calculation of the predicted parameter estimation error covariance.

Furthermore, the standard deviation σ ,
√

r(θ) is estimated from the measurement

record according to [10]

σ̂ =

√(
(Z̃T Z̃)/(N − n)

)

in which Z̃, the return difference, is Z̃ = Z −Hθ̂. N is the number of measurements

and n is the number of parameters, in which N > n. Hence, the data driven estimate

of the filter-predicted estimation error covariance matrix for a sliding window batch

process is

P = σ̂2
(
HT H

)−1
.

One should note that static system identification requires the measurement of the

aircraft’s pitch acceleration, q̇.
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Table 5.1: Stability and Control Derivatives. Flight Condition: h = 10,000 ft.,
M = 0.7. Healthy Aircraft.

Mα = 3.724 Mq = −1.26 Mδ = −19.5

Zα = −1.15 Zq = 0.9937 Zδ = −0.1770

5.2 Flight Control System

The parameter estimation process and the design of an adaptive and reconfig-

urable pitch axis flight control system is demonstrated in the context of a F-16 class

aircraft. The focus is on the short period dynamics, ignoring the phugoid and elas-

tic modes. Keeping the length of the system identification window sufficiently short

validates this assumption. The dynamics are

α̇ = Zα · α + Zq · q + Zδ · δ (5.4)

q̇ = Mα · α + Mq · q + Mδ · δ

as stated before, and α is the angle of attack, q is the pitch rate, δ is the elevator

deflection, Mα, Mq, Zα, and Zq are the stability derivatives, and Mδ and Zδ are the

control derivatives. The truth model stability and control derivatives for a healthy

F-16 aircraft and the flight condition h = 10000 ft and M = 0.7 [10] are given in

Table 5.1. One should note that the stability derivative Mα is positive. Hence, the

bare aircraft pitch channel is not stable and one depends on feedback control for

stabilization.

The actuator dynamics are modelled as a first order lag with a 20 rad
sec

corner

frequency. That is, the actuator transfer function is

A(s) = 20
s+20

.

The actuator dynamics are incorporated into the state space truth model by aug-

menting the dynamics (5.4) with the differential equation

δ̇e = −1

τ
δ +

1

τ
δc (5.5)
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in which τ = 1
20

seconds and the subscript c denotes the commanded elevator

deflection.

The latter is determined by the control law

δc = KP · (qc − qm) + KI
1

s
· (qc − qm) + Kα · αm (5.6)

in which qc is the commanded pitch rate, qm is the measured pitch rate, KP is the

proportional gain, KI is the integral gain, and Kα is a linear gain applied to the angle

of attack for the purpose of damping the pitch dynamics. The subscript m denotes

measured quantities, that is

αm , α + vα (5.7)

qm , q + vq (5.8)

in which vα and vq are zero-mean, white Gaussian-distributed measurement noise.

The measurement error statistics are σα = 0.1 deg and σq = 0.02 deg/s [16]. One now

rewrites the control law (5.6) in terms of the truth variables

δc = KP · (qc − q − vq) + KI
1

s
(qc − q − vq) + Kα · (α + vα) . (5.9)

An additional differential equation is appended to the truth model using the “inte-

grator charge” variable z to capture integral action in state space

ż = qc − qm .

Again, incorporate (5.8) and rewrite the ż equation in terms of truth variables

ż = qc − q − vq .
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As demonstrated later, feed-forward control obviates the need for sizable integral

action and a reduced KI gain will suffice, thus precluding integrator windup.

In order to incorporate the controller (5.6) into the state space model of the

flight control system, one should incorporate (5.9) directly into (5.5) using the defined

variable z

δ̇ =−1

τ
δ +

1

τ
[KP · (qc − q − vq) + KI · z + Kα · (α + vα)]

=−1

τ
δ − KP

τ
q +

KI

τ
z +

Kα

τ
α +

KP

τ
qc − KP

τ
vq +

Kα

τ
vα .

Figure 5.1 shows the inner loop of the pitch control channel. Typically, when α

Figure 5.1: Typical F-16 class aircraft inner loop flight control system for pitch
plane.

feedback is included in a pitch rate control augmentation system, the measured signal

is filtered with a low-pass, low-order filter before application to the PI controller

[30]. This filtering is typically used because the measured alpha signal is typically

relatively noisy. In this research, a filtered signal is not used. The important thing

to know for later system identification is that one must remain consistent in using

measured variables. If the α variable is filtered, one must filter the other inputs to

the regressor, namely q and δ, and the measurement vector consisting of q̇, in the

same manner. Failing to do so will introduce lags to some variables and not to others,
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Figure 5.2: Short Period Dynamics for Healthy Aircraft. Solid lines represent the
truth model variables, namely α, q, δ, and q̇. In (b), the dashed line indicates the
commanded elevator deflection. In (c), the dash-dot line indicates the pitch rate
command, while the dashed line indicates the prefiltered pitch rate command.

which deleteriously effects the parameter estimate’s quality. The method relies on

batch size to wash-out the measurement noise effects. In this research, variables are

not filtered, whether for flight control or system identification. The reconfigurable

flight control system relies on batch size to wash-out the measurement noise effects.

The current flight control system of operational F-16 aircraft uses a PI control

law with minimal gain scheduling. As in [16], pilot pitch rate doublet commands are

considered that persist as 1.0 second duration pulses with a 0.2 rad/s (11.46 deg/s)

amplitude and with input polarities of +, -, +, and - at 0.0, 3.0, 6.0, and 9.0 seconds

respectively. This is depicted by the dash-dot line in Figure 5.2(c). This subfigure

also shows the pilot input r that is prefiltered with F (s) = 3
s+3

(solid line). So,

q̇c = −3qc(t) + 3r(t)

in which r(t) is the square wave input from the pilot and qc is the filtered pilot

command input. The sampling rate of the controller is 100Hz.

In summary, the dynamics equations that describe the pitch channel are:
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Table 5.2: Controller Gains

KP KI Kα

−1.1912 −3.45032 0.4

α̇ = Zα · α + Zq · q + Zδ · δ (5.10)

q̇ = Mα · α + Mq · q + Mδ · δ
δ̇ =−1

τ
δ +

1

τ
[KP · (qc − q − vq) + KI · z + Kα · (α− vα)]

ż = qc − q − vq

q̇c =−3qc(t) + 3r(t)

Hence, in matrix notation, the (healthy) aircraft flight control system is

ẋ = Ax + bu + Γw

in which x =




α

q

δ

z

qc




, A =




Zα Zq Zδ 0 0

Mα Mq Mδ 0 0

Kα −KP KI − 1
τ

1
τ

0 −1 0 0 1

0 0 0 0 3




, b =




0

0

0

0

3




, Γ =




0 0

0 0

Kα −KP

τ

0 −1

0 0




,

and w =


 vα

vq


.

The gains of the inner loop controller were optimized to obtain good tracking perfor-

mance, that is, to minimize the variation in pitch rate q from the commanded pitch

rate qc. These gains are given in Table 5.2. The variables of interest are shown in

Figure 5.2.
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Table 5.3: Stability and Control Derivatives. Failed Condition

MαF
= 7.448 MqF

= −0.84 MδF
= −9.75

ZαF
= −2.3 ZqF

= 0.99685 ZδF
= −0.0885

Failure

At this point, the failure is introduced – a 50% control effector area loss, that

is, a 50% horizontal stabilator control surface area loss. The failure is introduced at

5.0 seconds into the flight, causing two significant changes. First, the stability and

control derivatives change, as shown in Table 5.3. The loss of a control surface area

causes both the stability and control derivatives to change, as opposed to an actuator

failure, which would cause only the control derivatives to change. Furthermore, the

loss of a horizontal stabilator increases the degree of open loop aircraft instability,

as the stability derivative Mα increases from +3.724 to +7.448. Thus, a particularly

challenging control problem is addressed here.

Second, a change in trim occurs. One can model the change in trim as follows:

Ftail · lt = mg ·∆xCG

and

Ftail = q̄ · η · St · δtrim .

The variables are defined as follows: Ftail is the aerodynamic force exerted on the

tail, lt is the distance between the aircraft’s center of gravity and the tail, m is the

mass of the aircraft, g is the acceleration of gravity, ∆xCG is the distance between

the aircraft’s aerodynamic center and center of mass, q̄ is the dynamic pressure, η is

an aerodynamic efficiency coefficient, which captures the fact that the airflow at the

tail is less energetic after it has been slowed down by friction while flowing over the

wing, and St is the tail’s surface area. Hence, the disturbance is
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d , δtrim =
mg ·∆xCG

lt · q̄ · η · St

.

For the flight condition considered, the unfailed horizontal tail setting for trim is 2o.

The loss of one horizontal tail is therefore modelled by a 1o elevator deflection, bearing

in mind that, after the failure, the control effectors’ surface area has been reduced by

50%. Hence, at the flight condition under consideration, the change in trim resulting

from the failure is δd ' −1.0 degrees. This value is used for the first series of

tests that involve a sizeable trim change. Figure 5.3 depicts the revised F-16 aircraft

simulation, in which δd is a step elevator setting change that models the change in

trim caused by the control surface area loss due to the failure, which occurs at 5.0

seconds into the flight.

Figure 5.3: Inner loop flight control system for the pitch channel. Trim change due
to 50% horizontal stabilator area loss is modelled with the input disturbance d = δd.

The differential equations for the failed aircraft model are:
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α̇ = ZαF
· α + ZqF

· q + ZδF
· δ + ZδF

· δd

q̇ = MαF
· α + MqF

· q + MδF
· δ + MδF

· δd

δ̇ =−1

τ
δ +

1

τ
(KP · (qc − q − vq) + KI · z + Kα · (α + vα))

ż = qc − q − vq

q̇c =−3qc(t) + 3r(t)

The equations are rewritten as follows:

ẋ = Ax + bu + Γw + Γd d

in which A =




ZαF
ZqF

ZδF
0 0

MαF
MqF

MδF
0 0

Kα −KP KI − 1
τ

1
τ

0 −1 0 0 1

0 0 0 0 −3




, x =




α

q

δ

z

qc




, b =




0

0

0

0

3




, Γ =




0 0

0 0

Kα −Kp

τ

0 −1

0 0




,

w =


vα

vq


, and Γd =




ZδF

MδF

0

0

0




.

Figure 5.4 depicts the flight control system dynamics when the failure is encoun-

tered at 5 seconds into the flight. The onset of failure triggers the reconfiguration

of the controller, such as readjusting the system identification window length and

subsequently the inner loop’s control gains. A retrimming signal is also generated.

In reality, one does not have access to the truth model; rather, one only has

access to the sensor measurements. Two more measurements of interest, elevator

deflection δe and pitch acceleration q̇ are now discussed. Table 5.4 includes the in-
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Figure 5.4: Short period dynamics. Failure is induced at tf = 5s (vertical dotted
lines). See the Figure 5.2 caption for line type description.

Table 5.4: Noise Statistics

σδ σα σq σq̇

0.08deg 0.1deg 0.02deg/s 1.3deg/s2

formation provided in [16], which was used in (5.7) and (5.8). For completeness,

Figures 5.5 through 5.8 depict the truth variables, as shown in Figure 5.4, along with

the corresponding measured variables. One of the main points of showing all of

these plots is that only the pitch acceleration measurement q̇m in Figure 5.8(b) clearly

signals the failure occurrence among the measured variables [10]. The magnitude of

the jump varies depending on the magnitude of the trim change, as reflected in δd.

Careful simulation analysis shows that the jump in q̇m takes 0.03 seconds to develop.

This realization is important to the Failure Detection Identification (FDI) module,

which will eventually trigger the post-failure system identification (described in Sec-

tions 5.3, 5.4.1 through 5.4.3) and the feed-forward control algorithm (described in the

remainder of Section 5.3) used to cope with the control surface failure. As previously

mentioned, the controller sampling rate is 100Hz. Hence, after three time steps, the

jump in q̇ is evident and is used to readjust the identification window length.
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Figure 5.5: (a) Angle of attack response for pitch rate doublet input (b) Measured
angle of attack includes error with σα = 0.1 deg. In both subplots, the vertical dotted
line indicate the onset of control surface failure.
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Figure 5.6: (a) Pitch rate response for pitch rate doublet input (b) Measured pitch
rate includes error with σq = 0.02 deg/s. In both subplots, the vertical dotted line
indicate the onset of control surface failure.
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Figure 5.7: (a) Elevator deflection for pitch rate doublet input (b) Measured eleva-
tor deflection includes error with σδ = 0.08 deg. In both subplots, the vertical dotted
line indicate the onset of control surface failure.
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Figure 5.8: (a) Pitch acceleration for pitch rate doublet input (b) Measured pitch
acceleration includes error with σq̇ = 1.3 deg/s2. In both subplots, the vertical dotted
line indicate the onset of control surface failure.
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5.3 System Identification

As discussed in Section 5.1, the attention is confined to the pitch axis and the

short period dynamics. Equation (5.2) is obtained by substituting the measured quan-

tities into (5.1). The augmented linear regression (1.1) is considered and Theorem 3

is applied. The measurement vector is composed as follows

ZN×1,




q̇m(0)

q̇m(∆T )
...

q̇m((N − 1)∆T )




.

The regressor matrix is

HN×3 ,




αm(0) qm(0) δm(0)

αm(∆T ) qm(∆T ) δm(∆T )
...

...
...

αm((N − 1)∆T ) qm((N − 1)∆T ) δm((N − 1)∆T )




.

The parameter vector is

θ = (Mα, Mq,Mδ)
T ∈ R3 .

The equation error V given by (5.3) was discussed in Section 5.1.

There is interest in estimating the intercept c, which absorbs the unknown trim

condition. As a result of the failure, the intercept changes abruptly. The algorithm

presented in Theorem 3 is used to estimate the stability and control derivatives and

the intercept c. Using the stability and control derivative estimates, the controller’s

gains are adjusted on-line to preserve the bandwidth of the closed loop control system.

The feed-forward command

δt = ∆ĉ
M ′

δ
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is also calculated. The complete adaptive and reconfigurable flight control system is

shown in Figure 5.9.

Figure 5.9: Adaptive and reconfigurable flight control system. System identifica-
tion is used to estimate the stability and control derivatives and the intercept. This
information is given to the online controller design module, which recalculates the
control gains and a feed-forward control signal δt that mitigates a possible change in
trim caused by failure.

5.4 Simulation

Pitch doublets over a 12 second time interval are applied. The failure at 5

seconds into the flight entails the loss of one of the horizontal stabilators, thus re-

ducing control surface effectiveness by 50%. This failure also causes a change in the

stability and control derivatives and the application of an input disturbance signal.

The truth trajectory and clean measurement data vectors are generated. Zero-mean,
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Table 5.5: Inner Loop Controller Gains

KPF
KIF

KαF

−1.7868 0 0.2

Gaussian-distributed noise is added to the measurements using the variances shown in

Table 5.4. The measurement errors used in the simulation experiments reflect current

state-of-the-art hardware specifications. Sensor measurements for α, q, δ, and q̇ are

assumed independent at each sample, and are taken at a rate of 100 Hz. This, in turn,

affords static system identification, i.e., linear regression. At each time increment, the

parameter estimate is derived in batch using either an expanding or a sliding data

window. The data window is reset when the failure occurs. This is tripped by a jump

in the measured q̇ and/or a jump in the running intercept estimate ĉ provided by the

system identification module.

Current aircraft typically rely on inherent flight control system robustness to

maintain stability during unanticipated disturbances, achieved primarily from integral

action provided by a Type-1 inner loop controller. One can compare the results from

the conventional F-16 class flight control system that encounters the major control

surface failure with the results from the reconfigurable flight control system discussed

in this development. One wants to “reject” the disturbance resulting from a 50%

loss of control surface. Hence, one wants to double the effective proportional gain

KP associated with a “tuned” Type-0 flight control system at the onset of failure.

So, the inner loop controller optimization development generated from (5.10) and

summarized in Table 5.2 is revisited. Table 5.5 shows the appropriate control gains

for a tuned Type-0 controller, which implies that KI = 0. Next, one feeds forward the

control derivative estimate information after control surface failure in order to adjust

the proportional gain KPF
as follows

KPF
, KPUF

· M̂δUF

M̂δF

(5.11)
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in which the subscript F indicates the value of the proportional gain and control

derivative after failure and UF indicates the value of the proportional gain and control

derivative before failure.

Throttling the proportional gain KP according to the system identification

module-provided plant information is the most important contributor. In fact, Sec-

tion 5.4.4 presents simulation results from two adaptive control algorithms that solely

use on-line KP gain adjustment, while the pitch damping gain Kα is set to the non-

failed Type-0 control gain after control surface failure and the integral action control

gain KI is reduced to zero. The impact of adaptively setting the damping gain Kα

is also explored, in addition to KP in Section 5.4.5. One wishes to ensure that the

aircraft flight control system damping authority is the same before and after the onset

of the control surface failure. Hence,

MαUF
· α + MδUF

KαUF
· α = MαF

· α + MδF
KαF

· α .

This implies that

KαF
=

MαUF
+ MδUF

KαUF
−MαF

MδF

KαF
=

MαUF
−MαF

MδF

+
MδUF

MδF

KαUF
(5.12)

as previously stated, the subscript F indicates values after control surface failure and

UF indicates values before failure. As Section 5.4.5 reports, implementation strategy

is important when on-line adjustments (5.11) and (5.12) are applied to KPF
and KαF

,

respectively.

5.4.1 System Identification: Unfailed Baseline Case. First, system identifi-

cation results are shown for the F-16 class aircraft using a pitch doublet input over

the 12 second interval, unimpeded by failure. An expanding data window is used in

this section to produce parameter estimates for comparison with results presented in

Sections 5.4.2 and 5.4.3, in which the failure is modelled. Figures 5.10 through 5.12
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Figure 5.10: System identification of stability derivative parameter M̂α using ex-
panding window batch process. No failure case. (a) Uses standard linear regression,
(b) Uses novel augmented linear regression method derived in Section 3.1. Solid lines–
estimates, Dash-dot lines–true parameter value about which the 1-σ bounds from the
filter-predicted equation error covariance (dashed lines) are depicted.

show the parameter estimates for this case. It is important to note that each of the

stability and control estimates are biased. Interestingly, the magnitude of the estimate

bias scales proportionally with the magnitude of the stability and control derivative.

For example, when Mδ instantaneously adjusts with the onset of the control surface

failure, Tables 5.1 and 5.3 reveal a 50% reduction in the control moment. Likewise,

the system identification module shows a 50% reduction of the control moment bias.

When considering this feed-forward application, one should notice that the magnitude

of the proportional control gain KPF
described in (5.11) is not impacted by the bias

estimates produced by the system identification. The biased nature of the estimates

will have a small impact on the feed-forward damping gain Kα described by (5.12);

however, this impact is negligible.

When considering the augmented linear regression compared to the standard

linear regression, no significant degradation of estimation performance is observed,

even though there is no trim change to accommodate. This is important because in

the unfailed case, the augmented estimation process is over-parameterized, which is

usually catastrophic in system identification.
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Figure 5.11: System identification of stability derivative parameter M̂q using ex-
panding window batch process. No failure case. (a) Uses standard linear regression,
(b) Uses novel augmented linear regression method. Solid lines–estimates, Dash-dot
lines–true parameter value about which the 1-σ bounds from the filter-predicted equa-
tion error covariance (dashed lines) are depicted.
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Figure 5.12: System identification of control derivative parameter M̂δ using ex-
panding window batch process. No failure case. (a) Uses standard linear regression,
(b) Uses novel augmented linear regression method. Solid lines–estimates, Dash-dot
lines–true parameter value about which the 1-σ bounds from the filter-predicted equa-
tion error covariance (dashed lines) are depicted.
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5.4.2 System Identification: Failure with Sizeable Trim Change. Next, sys-

tem identification results are presented for the F-16 class aircraft subject to the same

input. The failure occurs at t = 5.0 seconds and causes a significant trim change.

Blindly using an expanding batch window as in Section 5.4.1 for estimation produces

poor post-failure stability and control derivatives and intercept estimates. This would

result because the measurements within the batch from before the failure onset would

interfere with the system identification of the stabilty and control derivatives after

the failure. The first method of system identification is now described. An expand-

ing batch window is initially used for the first 225 measurements (2.25 seconds) and

subsequently, a sliding batch window is used until failure detection. One can notice a

minor degradation in parameter estimation performance between expanding window

(Figures 5.10 and 5.12) and sliding window (Figures 5.13 and 5.15) system identifica-

tion when comparing the time range of 2.25 to 5 seconds perfect failure trigger which

allows one to freeze the estimates at t = 5.0s. This is how the simulation was actually

conducted in this dissertation research. As previously noted, in practice, three time

increments are required to acknowledge the trigger event. Hence, one should delay

the parameter freeze by 0.03 seconds. The stability and control derivatives do not

significantly vary between t = 5.0-5.03s, so this assumption is of little consequence.

From the trigger point on, an expanding window is filled for the next 225 increments.

The estimates are unfrozen after 1.4 seconds. This is the experimentally determined

time duration required to obtain reliable estimates using the expanding window batch

process after the failure is detected. So, in effect, an expanding window is used for

estimation between 6.4 to 7.25 seconds. After 7.25 seconds, the sliding window is used

for the remainder of the estimation process.

The simulation results are presented in Figures 5.13 through 5.16. When com-

pared to the results presented in Section 5.4.1, one notes some minor degradation re-

sulting from using a sliding window versus an expanding window between 2.25 to 5.0 sec-

onds. When considering the estimation performance of the two methods after control

surface failure and removal of the parameter freeze (i.e., after 6.4 seconds), the novel
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(b) Augmented Linear Regression, Using 100Hz Sampling
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Figure 5.13: Estimate of stability derivative M̂α using sliding window batch pro-
cess. 50% of the horizontal stabilator surface is lost at t = 5s. (a) Uses standard
linear regression, (b) Uses novel augmented linear regression algorithm derived in
Section 3.1. Solid lines–estimates, Dash-dot lines–true parameter value about which
the 1-σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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(b) Augmented Linear Regression, Using 100Hz Sampling

Time (sec)

^
P

ar
am

et
er

 E
st

im
at

e,
 M

q

Figure 5.14: Estimate of stability derivative M̂q using sliding window batch pro-
cess. 50% of the horizontal stabilator surface is lost at t = 5s. (a) Uses standard
linear regression, (b) Uses novel augmented linear regression algorithm. Solid lines–
estimates, Dash-dot lines–true parameter value about which the 1-σ bounds from the
filter-predicted equation error covariance (dashed lines) are depicted.
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(b) Augmented Linear Regression, Using 100Hz Sampling
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Figure 5.15: Estimate of control derivative M̂δ using sliding window batch pro-
cess. 50% of the horizontal stabilator surface is lost at t = 5s. (a) Uses standard
linear regression, (b) Uses novel augmented linear regression algorithm. Solid lines–
estimates, Dash-dot lines–true parameter value about which the 1-σ bounds from the
filter-predicted equation error covariance (dashed lines) are depicted.
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Figure 5.16: Estimate of the intercept ĉ (= M̂ ′
α ∗ δd) using sliding window batch

process. 50% of the horizontal stabilator surface is lost at t = 5s. Solid line–estimate,
Dash-dot line–true parameter value about which the 1-σ bounds filter-predicted equa-
tion error covariance (dashed lines) are depicted.
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augmented linear regression is clearly superior. The intercept-augmented linear re-

gression handles the change in trim of δd = 1.0o, while the standard linear regression

is unable to provide reliable estimates of the stability and control derivatives and the

intercept, even when a sliding window is used.

It is important to note that each of the stability and control estimates are

biased, as recognized in Section 5.4.1. The magnitude of the estimate bias scales

proportionally with the magnitude of the stability and control derivative. When

considering this feed-forward application, one should notice that the magnitude of

the proportional control gain KPF
described in (5.11) is not impacted by the bias

estimates produced by the system identification. This is the important control gain

when considering aircraft stability and pitch rate tracking. The biased nature of the

estimates will have a small impact on the feed-forward damping gain Kα described by

(5.12); however, results presented in the later subsections will show that the impact

is negligible.

There a reason to continue a sliding batch window for a short period after the

trigger (currently q̇ [10]) detects a failure within the failure detection identification

module. One should consider the estimate of the bias shown in Figure 5.17 which

demonstrates this scenario. There is a quick jump in the intercept estimate ĉ before

significant movement in the other three parameter estimates, one of which is shown

in Figure 5.18. Additional stability derivative results are shown in Appendix I.1.

In other words, ĉ is more sensitive than the other parameter estimates. In fact, a

sizeable jump in ĉ is triggered at 0.10s after the failure. One can recall from previous

explanation that some time must elapse in order to produce reliable estimates using

the expanding window batch process after the failure is detected; hence, the parameter

freeze is essential for the feed-forward control algorithm. This information is used as

a corroborating trigger event, in addition to monitoring q̇. One could design the

estimation process to freeze the parameter estimates at the initial trigger event in q̇.
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Figure 5.17: Estimate of the intercept ĉ (= M̂ ′
α ∗ δd) using sliding window batch

process. 50% of the horizontal stabilator surface is lost at t = 5s. Sliding window is
not reset after failure. Solid line–estimate, Dash-dot line–true parameter value about
which the 1-σ bounds from the filter-predicted equation error covariance (dashed lines)
are depicted.
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Figure 5.18: Estimate of control derivative M̂δ using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s. Sliding window is not reset
after failure. Solid line–estimate, Dash-dot line–true parameter value about which
the 1-σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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Calculations continue to use the sliding batch window that monitors an unfrozen

ĉ. In the next section, ĉ may trend towards 0, depending on the size of δd. The

results will show that this event is smoothly handled by standard linear regression

and augmented linear regression. The trigger event for q̇ is clearly identifiable for

this case. However, for some other cases in which δd 6= 0 or δd 6= −1.0, the trigger

event magnitude equals a jump in q̇; hence, the failure trigger signature may not

appear in the data. So, one could incorporate some decision logic into the failure

detection module that monitors trigger events in q̇ and ĉ, initiating the need for a

reconfigured system identification window, with the actual delay ranging from 0.03

and 0.10 seconds.

5.4.3 Failure Case with No Trim Change. Next, one should consider the re-

sults of system identification using the pitch doublet input in the case in which no trim

change occurs due to the failure. This situation happens at flight conditions in which

the aircraft’s aerodynamic center is very close to the aircraft’s center of gravity and

therefore the tail is not loaded. In this case, δd = 0. The system identification win-

dow size adjustment scheme is the same as that previously described in Section 5.4.2.

The results are presented in Figures 5.19 through 5.22. Both methods adequately

estimate the stability and control derivative parameters. This result is important for

the novel augmented linear regression method, in that over-parameterization does not

adversely impact the estimation process. Also, there is a negligible impact of using

the sliding window versus the expanding window in the unfailed case between 2.25

and 5.0 seconds.

The same argument is made about using ĉ as a trigger for failure detection

holds here, as it did in Section 5.4.2. This is extremely interesting, since there is no

trim change induced during this special case failure. (See Figures 5.23 and 5.24. One

should note that additional stability estimates are shown in Appendix I.2.) This

methodology provides a valuable second corroborating event to back up the q̇ trigger

event for setting the data window noted earlier in [10].
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Figure 5.19: Estimate of stability derivative M̂α using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s, but there is no trim change.
(a) Uses standard linear regression, (b) Uses novel augmented linear regression al-
gorithm derived in Section 3.1. Solid lines–estimates, Dash-dot lines–true parameter
value about which the ±1σ bounds from the filter-predicted equation error covariance
(dashed lines) are depicted.
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Figure 5.20: Estimate of stability derivative M̂q using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s, but there is no trim change.
(a) Uses standard linear regression, (b) Uses novel augmented linear regression algo-
rithm. Solid lines–estimates, Dash-dot lines–true parameter value about which the
±1σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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Figure 5.21: Estimate of control derivative M̂δ using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s, but there is no trim change.
(a) Uses standard linear regression, (b) Uses novel augmented linear regression algo-
rithm. Solid lines–estimates, Dash-dot lines–true parameter value about which the
±1σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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Figure 5.22: System identification of the intercept ĉ (= M̂ ′
α ∗ δd) using sliding

window batch process. 50% of the horizontal stabilator surface is lost at t = 5s, but
there is no trim change. Solid line–estimate, Dash-dot line–true parameter value about
which the ±1σ bounds from the filter-predicted equation error covariance (dashed
lines) are depicted.
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Figure 5.23: Estimate of the intercept ĉ (= M̂ ′
α ∗ δd) using sliding window batch

process. 50% of the horizontal stabilator surface is lost at t = 5s, but there is no
trim change. Sliding window is not reset after failure. Solid lines–estimates, Dash-
dot lines–true parameter value about which the ±1σ bounds from the filter-predicted
equation error covariance (dashed lines) are depicted.
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Figure 5.24: Estimate of control derivative parameter M̂δ using sliding window
batch process. 50% of the horizontal stabilator surface is lost at t = 5s, but there
is not trim change. Sliding window is not reset after failure. Solid lines–estimates,
Dash-dot lines–true parameter value about which the predicted ±1σ bounds from the
filter-predicted equation error covariance (dashed lines) are depicted.
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5.4.4 On-line Adjustment of the Proportional Gain KP . Two methods of

on-line adjustment for KP are presented. As previously stated, the pitch damping

gain Kα is set to the nonfailed Type-0 control gain after control surface failure, while

the integral action control gain KI is set to zero. This configuration is important, in

that enables the flight control system to rely on the feed-forward control gain adjust-

ments, rather than relying to integral action when the control surface failure occurs.

The reconfigurable control design reflected in Method A relies on the easiest way to

implement (5.11). The M̂δUF
value is allowed to equal the frozen estimate M̂δ shown

in Figure 5.15 between 5 and 6.4 seconds. One can recall from previous explanation

that some time (i.e. 1.4 seconds) must elapse in order to produce reliable estimates

using the expanding window batch process after the failure is detected; hence, the

parameter freeze is essential for the feed-forward control algorithm. The M̂δF
value

is assigned to the instantaneous parameter estimate calculated via augmented regres-

sion, as developed in Section 5.4.2. Figure 5.25 shows the implemented strategy for the

proportional gain. The proportional gain after failure KPF
switches from the original
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Method A:  Feedforward Control of Proporational Gain
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Figure 5.25: Proportional gain KP during flight simulation experiment, as deter-
mined by Method A (solid line). The dashed line indicates the ideal gain switch.

gain KP when the parameter estimate shown in Figure 5.15 unfreezes at 6.4 seconds.
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Figure 5.26: Pitch rate time history. Dash-dot lines (desired pitch rate command)
Dashed lines (Prefiltered pitch rate command) Solid lines (Actual pitch rate) (a) Relies
on conventional Type-1 inner loop controller for disturbance rejection (b) Method A
reconfigurable flight control.

The damping gain after failure KαF
is fixed at 0.2 after 6.4 seconds, as prescribed

by the Type-0 controller gains summarized in Table 5.5. The reconfigurable control

command tracking methodology clearly surpasses the results achieved by the conven-

tional flight control system, which relies entirely on integral action for disturbance

rejection, as shown after t = 6.4 seconds in Figure 26(a). The impact of using recon-

figurable control is immediate. The reconfigurable flight control system encounters a

transient at 6.4 seconds when the gain switch occurs, as shown by the pitch rate track-

ing (solid line) in Figure 26(b). When considering the pitch rate tracking between t=

5-9 seconds, the pilot’s aggressive maneuvering prevents near instantaneous matching

of the commanded pitch rate by the reconfigurable flight control system. Perhaps

if the pilot was less aggressive in his choice of maneuvering during the failure, the

pitch rate tracking might better match the pitch rate command. By approximately 9

seconds into the flight, the reconfigurable flight control system compensates very well

for the system failure. Also, the overall system identification quality of the stability

and control derivatives improves with reconfigurable control–see Figure 5.27 versus

Figures 5.13 through 5.15.
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Figure 5.27: Estimate of stability derivative parameter estimates that accompany
Method A reconfigurable control design. 50% of the horizontal stabilator surface is lost
at t = 5 seconds. Solid lines–estimates, Dash-dot lines–true parameter value about
which the predicted ±1σ bounds from the filter-predicted equation error covariance
(dashed lines) are depicted.

There are two primary drawbacks to using Method A. First, using the final M̂δ at

failure as a single contributor to the new proportional gain shown in (5.11) introduces

more uncertainty than is necessary. This results in an offset in KP from the desired

proportional gain that varies quite a bit from one Monte Carlo run to the next.

Likewise, letting M̂δF
equal the instantaneous value of M̂δ after failure introduces too

much variation into KP , as shown in Figure 5.25. However, this methodology was

extremely easy to implement and vastly outperforms the conventional approach that

relies solely on integral action.

Several improvements are incorporated into the reconfigurable control approach

described as Method B. First, M̂δUF
as shown in (5.11) now uses the last 100 control

derivative estimates prior to the failure at t = 5 seconds. This mechanism reduces

the amount of variation in M̂δUF
between Monte Carlo simulations when compared

to Method A. With successful trigger event recognition, this is easily recovered from

the real-time system identification module.
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Second, the reconfigurable control Method A relies solely on integral action

between 5 and 6.4 seconds. Simulation experiments show that reconfigurable control

is far superior to integral action via feedback, so one should implement the feed-

forward methodology as soon as a “decent” gain adjustment is possible. As reflected

in Figure 5.28, this condition occurs 0.3 seconds after failure, as the linear regression

has 30 measurements in an expanding batch window by this time.
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Figure 5.28: Proportional gain KP during flight simulation experiment, as deter-
mined by Method B (solid line). The dashed line indicates the ideal gain switch.

Third, a “trailing average” technique is incorporated to smooth M̂δF
used in

(5.11) for the reconfigurable control Method B. In order to pursue the competing

objectives of (a) revising KPF
quickly and (b) revising KPF

accurately, the follow-

ing strategy to produce the realtime KP shown in Figure 5.28 is adopted. From the

analysis in Section 5.4.2, one realizes that M̂δ provides a good estimate of the control

derivatives after the expanding system identification window size achieves 140 mea-

surement. So, KP is allowed to switch at t = 5.3 seconds. The M̂δF
value, as given

by (5.11), uses the instantaneous control derivative estimate between t = 5.3 and 6.4

seconds. Then, M̂δF
reflects an average of an expanding window of control derivative

estimates Mδ for the next 100 measurements. From t = 7.4 seconds onward to the
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end of the simulation, M̂δF
reflects an average of the trailing 100 control derivative

estimates at each time increment. The damping gain after failure KαF
remains fixed

at 0.2 as previously described in this section.

Again, improved tracking is achieved using the reconfigurable control system

described in Method B, as shown in Figure 5.29. There are improvements visible
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Figure 5.29: Pitch rate time history. Method B reconfigurable flight control used.
Solid line (Actual pitch rate) Dash-dot line (desired pitch rate command) Dashed line
(Prefiltered pitch rate command)

in pitch rate tracking, particularly between 5.3 and 6.4 seconds, as Method B relies

on the “best available” on-line controller design methodology instead of solely rely-

ing on controller robustness provided by integral action, as shown in Figure 5.26.

Also, Figure 5.28 shows a significant reduction in the reconfigurable proportional

gain KP variation when compared to Figure 5.25, and nearly achieves the “desired”

KP value. Figure 5.30 shows similarly improved overall system identification of the

stability and control derivatives with reconfigurable control when compared to Fig-

ures 5.13 through 5.15. Finally, the reconfigurable control Method B shows that the

fact that Mδ in Figure 5.15 is a biased estimate does not adversely impact the deter-

mination of KP . The bias in Mδ is proportional to the control surface effectiveness.
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Figure 5.30: Estimate of stability derivative parameter estimates that accompany
Method B reconfigurable control design. 50% of the horizontal stabilator surface is lost
at t = 5 seconds. Solid lines–estimates, Dash-dot lines–true parameter value about
which the predicted ±1σ bounds from the filter-predicted equation error covariance
(dashed lines) are depicted.

5.4.5 Expanded On-line Controller Design. One can now consider results

from simulation experiments when both adaptive control gains KPF
and KαF

are ad-

justed on-line and thus allowed to vary according to (5.11) and (5.12). Both KP and

Kα are adjusted on-line similar to Method B described in Section 5.4.5. The results

of this approach show a neglible impact on KP (Figure 5.31) while Kα approaches

the ideal gain value (Figure 5.32) after failure. Incorporating on-line adjustment

methodology for both KP and Kα produces definite improvements in tracking perfor-

mance over the previous methodology presented in Section 5.4.4 and the flight control

system that relies solely on integral action to reject the control surface failure-induced

“disturbance.” The resulting improvements to the pitch rate tracking (Figure 5.33)

are evident between 5.3 to 7 seconds, when compared to results displayed in Fig-

ure 5.29. The increased damping gain resulting from the adjustment of Kα prevents

the pitch rate from overshooting the prefiltered pitch rate command. In addition,

the overall system identification of the stability and control derivatives (Figure 5.34)
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Figure 5.31: Proportional gain KP during flight simulation experiment, as deter-
mined by reconfigurable flight control that updates both KP and Kα (solid line). The
dashed line indicates the ideal gain switch.
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Figure 5.32: Damping gain Kα during flight simulation experiment, as determined
by reconfigurable flight control that updates both KP and Kα (solid line). The dashed
line indicates the ideal gain switch.
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Figure 5.33: Pitch rate time history. Reconfigurable flight control that updates
both KP and Kα is used. Solid line (Actual pitch rate) Dash-dot line (desired pitch
rate command) Dashed line (Prefiltered pitch rate command)

with this reconfigurable control law are again improved over results presented in Fig-

ure 5.30, particularly between 5.3 and 6.4 seconds. This improved identification, in

turn, further helps the on-line controller adjustment process and pitch rate tracking.

In order to differentiate further between pitch rate tracking effectiveness between

methodologies, one should compare results from 10 Monte Carlo simulation sets. First,

Figure 5.35 shows that the proportional gain KP is equivalent when comparing the

on-line controller design methodologies developed in Sections 5.4.4 and 5.4.5. Second,

reconfigurable control can effectively raise the value of the damping gain Kα when

appropriate, as shown in Figure 5.36. The stability derivative Mα is much more

difficult to estimate correctly than the control derivative Mδ. Part of this estima-

tion sensitivity results from the comparative magnitudes between M̂α and M̂δ, where

M̂δ > M̂α. A more influential contributor to the estimation sensitivity of M̂α results

from the implementation decision that limits the sliding window size to 240 mea-

surements. Figure 5.34(a) shows the choppy nature of M̂α with this sliding window

size arrangement versus the smooth estimates obtains in (c) for M̂δ. One can recall
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Figure 5.34: Estimate of stability derivative parameter estimates that accompany
the reconfigurable flight control that updates both KP and Kα. 50% of the horizontal
stabilator surface is lost at t = 5 seconds. Solid lines–estimates, Dash-dot lines–true
parameter value about which the ±1σ bounds from the filter-predicted equation error
covariance (dashed lines) are depicted.
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Figure 5.35: Proportional Gain KP that is determined experimentally from 10
Monte Carlo simulation runs. Comparison of a control system that relies solely on
feedback integral action (a) to feed-forward control that adjusts only the KP gain
(Method B) (b) to feed-forward control that adjusts both KP and the damping gain
Kα (c). The experimental mean is represented by the solid lines, while the dashed
lines represent ± one standard deviation from that experimentally determined mean.
Dash-dot line indicates the ideal gain KP .
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Figure 5.36: Damping Gain Kα that is determined experimentally from 10 Monte
Carlo simulation runs. Comparison of a control system that relies solely on feedback
integral action (a) to feed-forward control that adjusts only the KP gain (Method B)
(b) to feed-forward control that adjusts both KP and the damping gain Kα (c). The
experimental mean is represented by the solid lines, while the dashed lines represent
± one standard deviation from that experimentally determined mean. Dash-dot line
indicates the ideal gain Kα.

that smooth estimates for M̂α are achievable with a large window size (N > 400),

as shown in Figure 5.10 for the unfailed case. However, the feed-forward control

design must prioritize the proportional gain KP first. Hence, Kα, which relies on

both Mα and Mδ knowledge, is much less accurate than the proportional gain KP .

On-line controllers that adjust both KP and Kα clearly minimizes the tracking error

(Figure 5.37). The time interval between 6 and 7 seconds is now considered. When

the first pitch rate doublet occurs after the onset of control surface failure, the on-

line controller design module that adjusts both KP and Kα enables nice command

tracking (Figure 5.37(c)). The adaptive control method clearly removes much of the

oscillatory build-up and overshoot in pitch. Clearly, the conventional flight control

system that relies solely on integral action (Figure 5.37(a)) overshoots the desired

pitch rate command significantly.

Next, one should consider the time interval between 7 and 9 seconds, when the

pilot stick is returned to the neutral position. The on-line controller design module

adjusts both Kα and KP and dampens the pitch rate nicely, allowing it to follow the

pitch rate command qc (Figure 5.37(c)). An interesting event occurs from 9 to 10 sec-
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Figure 5.37: Difference between prefiltered tracking command and actual pitch rate.
10 Monte Carlo simulation runs. Comparison of a control system that relies solely
on feedback integral action (a) to feed-forward control that adjusts only the KP gain
(Method B) (b) to feed-forward control that adjusts both KP and the damping gain
Kα (c). The experimental mean is represented by the solid lines, while the dashed
lines represent ± one standard deviation from that experimentally determined mean.
Dash-dot line indicates the ideal difference.

onds, when the second pitch rate doublet after control surface failure is input. The

on-line controller design module that only adjusts KP (Figure 5.37(b)) yields better

command tracking than other options. One can explain this as resulting from the fact

that Kα is less than in the other methods presented (e.g. Kα = 0.2) Hence, the damp-

ing gain Kα provides the least resistance to enable the flight control system to track

qc at the pitch rate doublet’s onset (See Figure 5.36 from 9 to 10 seconds.) However,

when the doublet is released at 10 seconds, this on-line controller design module (Fig-

ure 5.37(b)) yields more oscillatory behavior when compared to the on-line controller

design module which adjusts both KP and Kα (Figure 5.37(c)).

One final important determination pertains to the method of calculating Kα.

Three on-line controller design methods are compared that adjust both KP and the

damping gain Kα. All approaches use the last 100 blended derivative estimates to

determine MδUF
, MδF

, and MαUF
, as shown in (5.12). The number of inputs provided

to determine MαF
(used to create Kα in Figure 5.39) are 100 derivative estimates

(c), 5 derivative estimates (b), or 1 derivative estimate (a). The experimental mean is
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represented by the solid lines, while the dash lines represent ± one standard deviation

from that experimentally determined mean.

First, Figure 5.38 shows that the proportional gain KP is negligibly impacted

regardless of the smoothing introduced to MαF
. The damping gain Kα varies signif-
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Figure 5.38: Proportional Gain KP that is determined experimentally from 10
Monte Carlo simulation runs. 10 Monte Carlo simulation runs. Comparison of three
feed-forward control methods that adjust both KP and the damping gain Kα. All
approaches use the last 100 blended derivative estimates for MδUF

, MδF
, and MαUF

.
The number of inputs provided to determine MαF

are 100 derivative estimates (c),
5 derivative estimates (b), or 1 derivative estimate (a). The experimental mean is
represented by the solid lines, while the dashed lines represent ± one standard de-
viation from that experimentally determined mean. The dash-dot lines indicate the
ideal gain KP .

icantly, depending on the smoothing approach used for MαF
(Figure 5.39). If one

does not blend the Kα contributions sufficiently, significant variations in the pitch

damping gain result near “transition points” of the pitch rate command. Ironically,

Kα wants to “increase damping” (i.e., Kα rises) at the onset of a pitch rate command

when using on-line adaptive control. This is demonstrated at t = 9 seconds in Fig-

ure 5.39. On the contrary, the on-line adaptive controller tends to decrease damping

(i.e., Kα falls) when the pitch rate command returns to a neutral position, such as at

t = 10 seconds in Figure 5.39. This is the exact opposite of what one wants for best

tracking. Hence, as shown in Figure 5.40, one should blend an appropriate number

of contributions (specifically MαF
) to determine Kα in (5.12). Figure 5.40(c) shows

the best pitch rate tracking.
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Figure 5.39: Damping Gain Kα that is determined experimentally from 10 Monte
Carlo simulation runs. 10 Monte Carlo simulation runs. Comparison of three feed-
forward control methods that adjust both KP and the damping gain Kα. All ap-
proaches use the last 100 blended derivative estimates for MδUF

, MδF
, and MαUF

.
The number of inputs provided to determine MαF

are 100 derivative estimates (c),
5 derivative estimates (b), or 1 derivative estimate (a). The experimental mean is
represented by the solid lines, while the dash lines represent ± one standard devia-
tion from that experimentally determined mean. The dash-dot lines indicate the ideal
gain Kα.
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Figure 5.40: Difference between prefiltered tracking command and actual pitch
rate. 10 Monte Carlo simulation runs. Comparison of three feed-forward control
methods that adjust both KP and the damping gain Kα. All approaches use the last
100 blended derivative estimates for MδUF

, MδF
, and MαUF

. The number of inputs
provided to determine MαF

are 100 derivative estimates (c), 5 derivative estimates
(b), or 1 derivative estimates (a). The experimental mean is represented by the solid
lines, while the dash lines represent± one standard deviation from that experimentally
determined mean. The dash-dot lines indicate the ideal difference.
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5.4.6 Accounting for Control Surface Rate Limits. When employing adap-

tive and reconfigurable control, one may need to account for actuator rate limiting.

The F-16 class aircraft horizontal stabilator rate limit is |δ̇max| = 60 deg/s. At this

point, one should consider Figures 5.41 through 5.44. The methodology that relies

solely on integral action for robustness to reject the failure induced disturbance is

clearly not impacted by actuator rate limits in this case. The three reconfigurable

control methodologies proposed in this paper infringe on the δ̇ limit by ∼10% and

∼25% respectively.
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Figure 5.41: Actuator deflection rate, in which only integral control action is used.

First, one should incorporate an actuator hardware upgrade to allow recon-

figurable flight control. Hardware already exists with significantly higher actuator

rate limits, e.g., the VISTA F-16 aircraft’s actuators are rated for 120deg
s

. Second, if

hardware upgrades are not desirable, one must limit the commanded pitch rate that

reflects the actuator’s capability in order to ensure aircraft stability. In other words,

one limits the pilot’s ability to place commands on qc, (or r), by further reducing

the limits on the already existing command limiter upstream of the prefilter. One is
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Figure 5.42: Actuator deflection rate, in which reconfigurable control Method A
from Section 5.4.4, impacting only the proportional gain KP , is used.
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Figure 5.43: Actuator deflection rate, in which reconfigurable control Method B
from Section 5.4.4, impacting only the proportional gain KP , is used.
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Figure 5.44: Actuator deflection rate, in which reconfigurable control impacting
both KP and Kα, as in Section 5.4.5, is used.

then able to track the reduced pitch rate command, reduced from that shown by the

dashed line in Figure 5.4(c).

5.5 Conclusion for Reconfigurable Flight Control

In this chapter, a workable indirect adaptive and reconfigurable control paradigm

is developed. Specifically, the focus is on the challenging open-loop unstable pitch

plane dynamics of an F-16 class fighter aircraft, considering the possibility of a 50%

control surface loss. The mitigation of the deleterious effects caused by a control

surface area loss due to failure or battle damage is addressed. The aircraft stability

and control derivatives are estimated on-line static system identification. A moving

window/batch estimation process is used and the subsequent linear regression is aug-

mented with an intercept. The intercept parameter is included to address the effect

of trim change associated with control surface failure, in order to monitor for a failure

and to trigger a change that effectively controls the system identification batch size

via an expanding and sliding window. Parameter estimate information on the failed

plant is then used to revise the inner loop control gains on-line. Moreover, the inter-

165



cept estimate is used to calculate a control signal. One can feed-forward this signal

to redress the control surface loss-induced change in trim and to reduce the need for

integral action in the inner loop controller. Simulation results validate the augmented

linear regression’s estimation accuracy. Good parameter estimation performance is

achieved. Since the parameter estimation module is the heart of the adaptive con-

troller, superior reconfigurable control action is demonstrated in simulations. Hence,

the reliance on integral action for retrimming is reduced. A workable adaptive and

reconfigurable flight control system is achievable.

166



VI. Bearing-Only Measurements

This chapter is concerned with obtaining an emitter’s position estimate from

bearings-only measurements using triangulation. Standard approaches assume

azimuth angle measurements and use an Iterative Least Squares algorithm to calcu-

late the RF emitter’s position. This chapter exploits the insight that, in practice,

the bearing measurements phasor (cos φ, sin φ) is available, which more accurately

represents the measurement hardware. This allows the use of an efficient linear re-

gression algorithm and avoids equation error due to linearization. As a result, the

modified estimation algorithm developed herein to address the problem of bearings-

only measurements for emitter geo-location produces superior parameter estimates,

that is, improved emitter geo-location, compared to the standard formulation and ILS

algorithm.

In Section 6.1, the RF emitter geo-location problem is motivated. The lin-

ear homogeneous equation formulation from the projective geometry is introduced

in Section 6.2. This equation formulation provides the basis for both the modified

estimation approach and the conventional ILS approach. In Section 6.3, the modified

triangulation algorithm which considers the impact of available AOA phasor measure-

ments is developed. Since the equation error covariance R is parameter-dependent

(i.e., components of the parameter, x and y, are embedded within R), Section 6.4

expands on the Iterative Generalized Least Squares (IGLS) algorithm, previously

developed in [29], and is required to produce the position estimates. The explicit for-

mulae to determine the geo-location of the emitter are developed in Section 6.5. For

the sake of completeness and comparison purposes, Section 6.6 includes a discussion

of the conventional triangulation paradigm. Simulation results and a comparison of

the modified triangulation and the standard triangulation paradigms, are discussed

in Section 6.7. Section 6.8 provides concluding remarks.
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6.1 Emitter Geo-location

The algorithm for cooperative RF emitter geo-location using bearings-only/AOA

measurements is developed. The scenario is shown in Figure 6.1. When the emitter

Figure 6.1: The emitter’s position is S. The bearings-only measurements are φi,
in which i = 1, . . . , N . The mobile receivers’ positions Ri, in which i = 1, . . . , N , are
recorded at the time of the ping from the emitter.

at an unknown location S = (x, y), pings a receiver, the AOA φi is recorded. The

uncertainty associated with the AOA measurement is typically high. However, over

time, these measurements of opportunity are accumulated and enable the emitter’s

triangulation as shown in Figure 6.1; hence, the cooperative nature of emitter geo-

location. In the planar scenario, two parameters, x and y, the emitter’s coordinates,

are of interest. Hence, in theory, position estimates obtained with as few as N = 2

measurements from an emitter are possible. If an emitter provides more than one

measurement opportunity to a mobile receiver at different times during the same

sortie, these measurements are treated as separate measurements. It is important

to emphasize that in emitter geo-location applications, the measurement error stan-

dard deviation σφ is high. Therefore, many measurements are needed to wash-out the
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measurement noise. Furthermore, the measurement arrangement’s geometry (GDOP)

strongly impacts the achievable emitter geo-location accuracy.

6.2 Geometry

The linear homogeneous equation formulation from projective geometry is ap-

plied to obtaining position estimates using bearing-only measurements. With refer-

ence to Figure 2.2, a linear equation in homogeneous form is considered

x sin φ + y cos φ + c = 0 . (6.1)

Applying (6.1) to the emitter’s position and to the receiver’s position, the following

two relations for each of the N bearings measurements are obtained

x sin φi + y cos φi + ci = 0

xi sin φi + yi cos φi + ci = 0

in which i = 1, . . . , N . By subtracting the two equations, the ith measurement

equation is obtained

x sin φi + y cos φi = xi sin φi + yi cos φi , i = 1, . . . , N . (6.2)

This relation and the observation that phasor measurements of the AOAs are available

is the basis for the modified linear regression-based triangulation method.

6.3 Stochastic Modelling

One can exploit the access to the measurements, (sinφi)m and (cosφi)m, i =

1, . . . , N . The measurements reflect the true phasor plus a zero-mean, Gaussian-
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distributed, measurement noise. Hence

(sin φi)m = sin φi + vi , vi ∈ N (0, σ2) (6.3)

(cos φi)m = cos φi + wi , wi ∈ N (0, σ2) .

in which vi and wi are assumed independent. One can rearrange (6.3) as

sin φi = (sin φi)m − vi

cos φi = (cos φi)m − wi

and insert this into (6.2):

[(sin φi)m − vi] · x− [(cos φi)m − wi] · y = xi · [(sin φi)m − vi]− yi · [(cos φi)m − wi]

in which i = 1, . . . , N . The equation is rearranged this into the form of a linear

regression in x and y,

(sin φi)mx− (cos φi)my = xi(sin φi)m − yi(cos φi)m + (x− xi)vi − (y − yi)wi

in which i = 1, . . . , N . One should note that in this modified approach, linearization

is not required.

By accumulating a data record over time N , one can form the linear regression

Z = H · θ + V (6.4)

in which Z, V ∈ RN , and the parameter vector θ ∈ R2

θ ,


x

y


 .
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The measurement vector Z is

Z =




x1(sin φ1)m − y1(cos φ1)m

...

xN(sin φN)m − yN(cos φN)m




N×1

,

the regressor H is an N × 2 matrix

H =




(sin φ1)m −(cos φ1)m

...
...

(sin φN)m −(cos φN)m




N×2

,

and the equation error vector is:

V =




(y − y1)w1 − (x− x1)v1

...

(y − yN)wN − (x− xN)vN




N×1

.

While the regression (6.4) has the appearance of a standard linear regression, one

should notice that the unknown parameter θ appears in the equation error V .

The equation error covariance

R = E[V V T ]

=




(y − y1)w1 − (x− x1)v1

...

(y − yN )wN − (x− xN )vN


 ·

(
(y − y1)w1 − (x− x1)v1 . . . (y − yN )wN − (x− xN )vN

)

Since vi and wi are independent and if E[vivi] = σ and E[wiwi] = σ, then
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R =




(x− x1)
2σ2 + (y − y1)

2σ2 0
. . .

0 (x− xN)2σ2 + (y − yN)2σ2


 .

which reduces to

R = σ2




(x− x1)
2 + (y − y1)

2 0
. . .

0 (x− xN)2 + (y − yN)2


 (6.5)

One should note that

R = σ2R̃

in which

R̃ = R̃(θ) .

The equation error covariance is parameter-dependent, hence, generating the need

for an iterative generalized least squares algorithm. This parameter dependence is

prevalent, even in the special case in which the observation points (xi, yi) are arranged

on the circumference of a circle with radius ρ, centered on the target. Then, (6.5)

reduces to

R = σ2ρ2IN .

One should note that the nature of the parameter estimation problem will not signif-

icantly change if the phasor measurement noise is correlated, namely E[viwi] 6= 0.
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6.4 Iterative Generalized Least Squares Algorithm

The linear regression is considered

Z = Hθ + V , V ∈ N (0, R(θ))

in which the equation error covariance R is parameter dependent. The classical

minimum-variance solution of a linear regression, in which the equation error co-

variance R is not parameter dependent and is known, [36] is

θ̂ = (HT R−1H)−1HT R−1Z

and the parameter estimation error covariance is

P = (HT R−1H)−1 .

This parameter dependence motivates one to use the Iterative Generalized Least

Squares (IGLS) algorithm [29]

θ̂(k+1) = (HT R−1(θ̂(k))H)−1HT R−1(θ̂(k))Z , k = 0, 1, . . . . (6.6)

The initial parameter guess is obtained from the solution of the LS problem, namely

θ̂(0) = (HT H)−1HT Z . (6.7)

One obtains (6.7) by setting R to a scaled unity matrix, as is the case if the observation

points are arranged on the circumference of a circle centered at the target.

The parameter estimate is θ̂(∞). Having obtained the parameter estimate, one

then calculates the predicted covariance of the parameter estimation error

P = (HT R−1(θ̂(∞))H)−1 . (6.8)
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In this case, (6.6) takes the form

θ̂(k+1) = (HT R̃−1(θ̂(k))H)−1HT R̃−1(θ̂(k))Z , k = 0, 1, . . .

and (6.8) takes the form

P = σ2(HT R̃−1(θ̂(∞))H)−1 .

One should note that the inversion of the N × N R̃ matrix is easy because R̃ is

diagonal.

6.5 Explicit Formulae for AOA–Based Geo-location of Emitters

The following notation is introduced

r2
i , (x− xi)

2 + (y − yi)
2 .

Using the notation ri, the equation error covariance matrix becomes

R̃ =




r2
1 0

. . .

0 r2
N


 .

One can calculate

HT R̃−1 =




1
r2
1
(sin θ1)m · · · 1

r2
N

(sin θN)m

1
r2
1
(cos θ1)m · · · 1

r2
N

(cos θN)m




and then

HT R̃−1H =




N∑
i=1

1
r2
i
(sin θi)

2
m −

N∑
i=1

1
r2
i
(sin θi)m(cos θi)m

−
N∑

i=1

1
r2
i
(sin θi)m(cos θi)m

N∑
i=1

1
r2
i
(cos θi)

2
m


 .
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Inverting this 2× 2 matrix, the equation error covariance matrix is obtained

(
HT R̃−1H

)−1

=
1

4




N∑
i=1

1
r2
i
(cos θi)

2
m

N∑
i=1

1
r2
i
(sin θi)m(cos θi)m

N∑
i=1

1
r2
i
(sin θi)m(cos θi)m

N∑
i=1

1
r2
i
(sin θi)

2
m


 (6.9)

in which

4 ,
(

N∑
i=1

1

r2
i

(sin θi)
2
m

) (
N∑

i=1

1

r2
i

(cos θi)
2
m

)
−

(
N∑

i=1

1

r2
i

(sin θi)m(cos θi)m

)2

(6.10)

and, by the Cauchy-Schwartz inequality [21], is always positive. Note that the pa-

rameter dependence is in the ri. Furthermore, one can calculate

HT R̃−1Z =




N∑
i=1

1
r2
i
[xi(sin θi)

2
m − yi(sin θi)m(cos θi)m]

N∑
i=1

1
r2
i
[yi(cos θi)

2
m − xi(sin θi)m(cos θi)m]


 .

Hence, when N AOA measurements are accumulated, the emitter’s position is explic-

itly calculated as follows:

x̂=
1

4(

(
N∑

i=1

1

r2
i

(cos θi)
2
m

)(
N∑

i=1

1

r2
i

[
xi(sin θi)

2
m − yi(sin θi)m(cos θi)m

]
)

+

(
N∑

i=1

1

r2
i

(sin θi)m(cos θi)m

)(
N∑

i=1

1

r2
i

[
yi(cos θi)

2
m − xi(sin θi)m(cos θi)m

]
)

)

ŷ=
1

4(

(
N∑

i=1

1

r2
i

(sin θi)
2
m

)(
N∑

i=1

1

r2
i

[
yi(cos θi)

2
m − yi(sin θi)m(cos θi)m

]
)

+

(
N∑

i=1

1

r2
i

(sin θi)m(cos θi)m

)(
N∑

i=1

1

r2
i

[
xi(sin θi)

2
m − yi(sin θi)m(cos θi)m

]
)

)
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in which the expression for 4 is given in (6.10). Furthermore, the covariance of the

emitter’s position estimation error is a scaled version of (6.9), namely

P = σ2
(
HT R̃−1H

)−1

=
σ2

4




N∑
i=1

1
r2
i
(cos θi)

2
m

N∑
i=1

1
r2
i
(sin θi)m(cos θi)m

N∑
i=1

1
r2
i
(sin θi)m(cos θi)m

N∑
i=1

1
r2
i
(sin θi)

2
m


 .

The filter-predicted estimation error covariance is evaluated after the parameter θ̂ has

converged.

6.6 Conventional Approach

One should now consider the conventional assumption pertaining to azimuth

angle measurements. It is assumed that the noise on the measured AOA angle is

zero-mean, Gaussian-distributed

φi = φmi
+ vi, vi ∈ N (0, σ2

φ) . (6.11)

Also in the conventional approach, it is advantageous to use (6.2). Thus, by inserting

(6.11) into (6.2), one obtains

cos(φmi
+ vi)y − sin(φmi

+ vi)x = yi cos(φmi
+ vi)− xi sin(φmi

+ vi) .

Since |vi| ¿ 1, as shown in Table 6.1, located in Section 6.7, and according to the

iterative least squares paradigm, one linearizes about φmi
each of the N equations

according to [36], neglecting higher order terms. Specifically,

cos(φmi
)y − sin(φmi

)x = yi cos(φmi
)− xi sin(φmi

) + sin(φmi
) y · vi +

cos(φmi
)x · vi − yi sin(φmi

) · vi − xi cos(φmi
) · vi .
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Then, one can rearrange this to fit the form of a linear regression, that is,

xi sin(φmi
)− yi cos(φmi

) = sin(φmi
)x− cos(φmi

) y + [(x− xi) cos(φmi
) + (y − yi) sin(φmi

)] vi .

The measurement vector Z and regressor matrix H are formed:

Z =




x1 sin(φm1)− y1 cos(φm1)
...

xN sin(φmN
)− yN cos(φmN

)




N×1

, H =




sin(φm1) cos(φm1)
...

sin(φmN
) cos(φmN

)




N×2

and Z = H · θ + V . The equation error covariance matrix is calculated as

R = σ2
φ ·DIAG([(x− xi) cos(φmi

)− (y − yi) sin(φmi
)]2)N×N .

One should note that in conventional ILS [15], one linearizes the nonlinear observation

relation h(θ) and sets h(θ̂(k)) = H · θ̂(k). Hence, one uses the simplified iteration

θ̂(k+1) =
(
HT R(θ(k))−1H

)−1
HT R(θ(k))−1Z .

A more rigorous ILS algorithm [28] would resort to a Gauss-Newton iteration, as

developed here.

The equation error covariance matrix R(θ̂) is dependent on the previous param-

eter estimate. At the instant of convergence, where θ̂(k) → θ̂ as k → ∞, one finally

calculates the filter-predicted parameter estimation error covariance matrix

P = (HT R(θ(∞))−1H)−1 .

At this point, it is important to highlight that there are two sources of error in

the conventional ILS approach. First, the methodology forces a Gaussian-distributed

assumption upon the noise of the measured azimuth angle, instead of reflecting the
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physics of the AOA phasor. Hence, a modelling error is introduced. Second, because

this example is not dealing with a linear relation suitable for linear regression, one

needs to linearize the measurement equation. Hence, linearization-induced truncation

error is introduced.

6.6.1 Augmented ILS with Unconstrained Intercept. In order to cope with

the two sources of error, an approach is developed [[22] - [24], [28]] that includes

an intercept parameter to account for/absorb the linearization-induced truncation

errors. In [24], an unconstrained intercept is augmented to the parameter θ in order

to capture the effects of linearization-induced truncation error. In the triangulation

application discussed here, the unconstrained intercept would capture the effects of

both modelling error and truncation error discussed in Section 6.6.

Thus, a linear regression augmented with an intercept c is considered.

Z = H · θ + e · c + V, V ∈ N (0, R)

in which

Z, V ∈ RN , θ ∈ Rn, c ∈ R1 .

The regressor H is an N × 2 matrix, Z is the measurement vector, and θ =


 x

y


 is

the parameter vector. The equation error V is zero-mean, Gaussian-distributed with

covariance R, which is a N ×N real, symmetric positive definite matrix. Finally, e is

the N × 1 vector of ones

e =




1
...

1




N×1

.
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The linear regression with intercept is transformed into a standard linear regression

in augmented form

Z =
[
H

... e
]



θ

· · ·
c


 + V .

This equation is rewritten as

Z = Hθ + V

in which the augmented regressor H =
[

H
... e

]
is an N × 3 matrix and the

augmented parameter θ̂ =




x

y

c


 ∈ R3. The minimum variance parameter estimate

[36] is

θ̂ = (HT R−1H)−1HT R−1Z (6.12)

and the augmented filter-predicted parameter estimation error covariance is the (N ×
1)× (N × 1) matrix

P = (HT R−1H)−1 . (6.13)

A closed form explicit solution of a linear regression with intercept is given in Chap-

ter III, Theorem 3 in terms of the original regressor H.

6.6.2 Augmented ILS with Constrained Intercept. As highlighted in [23]

and [24], augmented ILS with an unconstrained intercept has a potential problem.

Namely, the estimation error covariance increases if there are insufficient measure-
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ments included in the data window. In order to address this issue, a constrained

intercept c parameter is introduced into a nonlinear regression, as developed in Sec-

tion 4.2. One can recall that Ridge Regression balances the linearization-induced

truncation error and the measurement-induced equation error by requiring

‖c‖ ∼= σ

in which σ quantifies the intensity of the measurement noise standard deviation in

the equation error. So, the augmented ILS with constrained intercept will account for

error induced by linearization, but does not purport to address the modelling error

caused by assuming that the AOA angle is measured instead of the phasor.

Specifically, in the bearing-only measurement estimation problem, one intercept

cφ is used

0 = cφ + wφ , wφ ∈ N (0, α2σ2
φ) (6.14)

in which, conforming with the 1st order ergodic assumption concerning the temporal

behavior of truncation error caused by linearization, one uses

α , 1

N

√
Trace[(x̂− xi) cos(φmi

)− (ŷ − yi) sin(φmi
)]2 . (6.15)

The 1st order ergodic assumption is used here to justify a complete description of

the equation error noise using the first two moments, which is probably not accurate.

However, this provides a constraint that is conducive to implementation. One of the

problems with this constraint is that it is dependent on the parameter estimate. If

the parameter has converged onto a reasonable estimate, the augmented ILS with

constrained intercept via Ridge Regression will improve the estimate. However, the

method is particularly vulnerable to poor estimates in this specific example. The

values xtruth and ytruth are inserted into (6.15) in place of x̂ and ŷ. For this example,

the author wants to use a Ridge Regression constraint that reflects the “upper bound”
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(i.e., the best one can do with this methodology). This assumption enables one to

determine the impact of the two error sources in conventional ILS, namely process

noise and linearization induced error. Hence, for this constraint only, the application

algorithm assumes that the truth model position of the target is known. Also, the

proposed ”naturally linearized” formulation developed in Sections 6.3 through 6.5

produces better estimation results than Ridge Regression’s theoretical “upper bound”

in this application.

Ridge Regression is implemented using the two-step method developed in 4.2.

For the reader’s convenience, a brief explanation of the two-step method is now in-

cluded. First, the estimate (θ̂) and its corresponding covariance matrix Po are deter-

mined by assuming an unconstrained intercept parameter as in [24]. One should recall

that the parameter estimate corresponds to that found in (6.12) with the covariance

as that found in (6.13).

Next, one performs a linear regression using the estimate (6.12), covariance

matrix (6.13), and enforces the Ridge Regression constraints presented in (6.14).

Explicitly, one can write


 θ̂

0


 =





 θ̂

ĉ




0


 =





θ

c




c


 +




V

w


 .
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The linear regression components are:

Z =




θ̂

ĉ

0




H =


 I(2+1),(2+1)

01×2
... I1×1




R =


Pθ(2×2) 0(2×1)

0(1×2) Diag ([σφ])


 .

The Ridge Regression constraint does not fully address the modelling error issue.

One common approach of dealing with this issue when working with Kalman filters is

to “tune” the covariance matrix R, that is, increase R in order to cover for modelling

error. One can attempt to tune the static identification batch process. Also, it is

difficult to tune the equation error covariance matrix R successfully in order to model

the ample measurement error associated with the conventional approach to angle

measurements; namely, the loss of the Gaussian distribution tails about an angle

measurement.

Results from all three methods – conventional ILS, augmented ILS with uncon-

strained intercepts, and augmented ILS with constrained intercepts – are used for

comparison with the geo-location performance of the proposed modified algorithm

developed in Sections 6.3 through 6.5.

6.7 Simulation

The scenario considered entails receivers on Unmanned Air Vehicles (UAVs) or

aircraft, pinged by an emitter at an unknown location. One accumulates the data

from the various platforms; hence, this estimation process is cooperative and takes

advantage of measurements of opportunity. It is assumed that the terrain does not
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affect the data (i.e., no measurements afflicted by multi-path emissions). In the

simulated scenario, the receivers are uniformly distributed within a 10 mile radius

around the emitter. Without loss of generality, the emitter is located at the origin,

that is, its truth position is (0, 0)–see Figure 6.2. Uncertainties associated with the
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Figure 6.2: Global Positioning System coordinates receivers in typical Monte Carlo
run.

measured bearing angle reflect the ranges of measurement accuracy for different types

of hardware, given the nature of the pop-up emitter/threat radar in this scenario, the

distances involved, and the current state of technology/ELINT hardware in use today

– see Table 6.1. In general, the noise is described by vi, wi ∈ N (0, 10−
SNR
20 ), where

the Signal-to-Noise Ratio is in db, and | sin(φ)| ≤ 1 and | cos(φ)| ≤ 1.

The results of 10 Monte Carlo experiments with measurement error standard

deviation of σ = 5o in azimuth are now considered. The purpose of this first set of

experiments is to provide a reference of comparison for later experiments. All ap-

proaches produce the same quality of estimation performance when σ is small, but

not when σ increases. As Monte Carlo experiments show, the relatively accurate mea-

surements included in this test do not contain enough noise to create any significant
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Table 6.1: Summary of Measurement Error

Measurement Error Measurement Error SNR (db)

Standard Deviation (deg) Standard Deviation (rad)

± 5 ± 0.0873 21.179

± 10 ± 0.1745 15.162

± 12 ± 0.2094 13.580

± 13 ± 0.2269 12.883

± 15 ± 0.2618 11.640

± 20 ± 0.3491 9.141

differences in estimation performance between the novel ILS approach (Figure 6.3(a))

and the conventional ILS estimation techniques. Within a single Monte Carlo exper-

iment, the estimation quality of the augmented ILS methods may produce slightly

superior results over standard ILS. This reflects the fact that the error caused by the

linearization is minor at worst.

One starts to see the impact of modelling error within individual Monte Carlo

experiment estimation results when the measurement error standard deviation is in-

creased to σ = 10o. For example, one can consider the single Monte Carlo experiment

result shown in Figure 6.4. The improvements in estimation quality in favor of the

novel approach (Figure 6.4(a)) are due to one particularly poor measurement (out-

side 2σ). Most individual Monte Carlo experiments still show negligible estimation

differences. The process noise effects highlighted in Figure 6.4 are washed out when

the compilation of 10 Monte Carlo runs are viewed, as shown in Figure 6.5.

With σ = 120 in the measured azimuth angle, one can begin to see the impact

of modelling error within a 10 Monte Carlo run case. In the conventional approach to

AOA measurements modelling, one loses the Gaussian distribution’s tails. Thus, in

Figure 6.6, the novel triangulation method developed in this research clearly outper-

forms the standard ILS method. This advantage is accentuated as the measurement
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Figure 6.3: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 5o

Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c) Aug-
mented ILS with unconstrained intercept, (d) Augmented ILS with constrained inter-
cept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–experimentally determined
±1σ bounds, Solid lines (with 4s)–adjusted true coordinate, Dashed lines (with 4s)–
±1σ bounds from the filter-predicted equation error covariance.
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Figure 6.4: Parameter Estimate ŷ from Single Monte Carlo Experiments with
σ = 10o Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c)
Augmented ILS with unconstrained intercept, (d) Augmented ILS with constrained
intercept. Solid lines (no 4s)–estimates, Solid lines (with 4s)–adjusted true coordi-
nate, Dashed lines–±1σ bounds from the filter-predicted equation error covariance.
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Figure 6.5: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 10o

Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c) Aug-
mented ILS with unconstrained intercept, (d) Augmented ILS with constrained inter-
cept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–experimentally determined
±1σ bounds, Solid lines (with 4s)–adjusted true coordinate, Dashed lines (with 4s)–
±1σ bounds from the filter-predicted equation error covariance.
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Figure 6.6: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 12o

Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c) Aug-
mented ILS with unconstrained intercept, (d) Augmented ILS with constrained inter-
cept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–experimentally determined
±1σ bounds, Solid lines (with 4s)–adjusted true coordinate, Dashed lines (with 4s)–
±1σ bounds from the filter-predicted equation error covariance.
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Figure 6.7: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 15o

Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c) Aug-
mented ILS with unconstrained intercept, (d) Augmented ILS with constrained inter-
cept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–experimentally determined
±1σ bounds, Solid lines (with 4s)–adjusted true coordinate, Dashed lines (with 4s)–
±1σ bounds from the filter-predicted equation error covariance.

error standard deviation increases, as in Figure 6.7 when σ = 150 and in Figure 6.8

when σ = 200.

The constraint can somewhat mitigate the impact of modelling error such that

only linearization is the real culprit, even in the case when the measurement error

standard deviation is σ = 200. The measurement modelling error of the conventional

estimation approach is accentuated when the AOA φ is near 90 or 270o, in which case

the measurement noise pushes the nonlinear trigonometric functions into rapid change

regions. The singularity for tan φ occurs at these specific angles. Even though sin φ

and cos φ are immune from an outright singularity with the modified linear regression

formulation, these regions foster quick changes within the trigonometric relations. So,

improper handling of the noise distribution via poor modelling around these important

angle regions can produce a significant deleterious effect in estimation.

To prove this point, exclusion zones are incorporated for a given set of batch

data (See Figure 6.9). The exclusion zones pertain to the measured azimuth angle,

so the GPS coordinates associated with the particular measured azimuth angle may

actually indicate the possibility of a φtrue within the exclusion zones. To prevent a

187



0 10 20 30 40 50 60 70 80 90 100

−1000

−500

0

500

1000

(a)

M
ea

n,
 y

 (
m

),
 N

ov
el

0 10 20 30 40 50 60 70 80 90 100

−1000

−500

0

500

1000

(b)

Successive Batch Size of Regression

M
ea

n,
 y

 (
m

),
 IL

S

0 10 20 30 40 50 60 70 80 90 100

−1000

−500

0

500

1000

(c)

M
ea

n,
 y

 (
m

),
 A

ug

0 10 20 30 40 50 60 70 80 90 100

−1000

−500

0

500

1000

(d)

Successive Batch Size of Regression

M
ea

n,
 y

 (
m

),
 R

id
ge

Figure 6.8: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 20o

Measurement Error Standard Deviation. (a) Novel ILS, (b) Standard ILS, (c) Aug-
mented ILS with unconstrained intercept, (d) Augmented ILS with constrained inter-
cept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–experimentally determined
±1σ bounds, Solid lines (with 4s)–adjusted true coordinate, Dashed lines (with 4s)–
±1σ bounds from the filter-predicted equation error covariance.
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Figure 6.9: Typical Monte Carlo Run. Coordinates of receivers. Exclusion zones
are enforced, that is, using measured azimuth angle sectors delimited by 60 to 120os
and 150 to 210o.
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Figure 6.10: Parameter Estimate ŷ from 10 Monte Carlo Experiments with σ = 20o

Measurement Error Standard Deviation. Exclusion zones are enforced with a mea-
sured azimuth angle between 60 to 120os and 150 to 210os. (a) Novel ILS, (b)
Standard ILS, (c) Augmented ILS with unconstrained intercept, (d) Augmented ILS
with constrained intercept. Solid lines (no 4s)–estimates, Dashed lines (no 4s)–
experimentally determined ±1σ bounds, Solid lines (with 4s)–adjusted true coordi-
nate, Dashed lines (with 4s)–±1σ bounds from the filter-predicted equation error
covariance.

particular measurement (an extreme outlier) with a high degree of uncertainty (σ =

200) from corrupting the experiment, exclusion zones (90o ± 30o and 270o ± 30o) are

used. This idea of excluding data points based on some arbitrary reference bearing is

a poor idea for an estimation methodology, given that one is throwing away valuable

measurement data. However, it is used here to demonstrate the vulnerability of

conventional estimation approaches to modelling error.

The results for the 10 Monte Carlo experiment case with σ =20o measurement

error standard deviation and the exclusion band of 90o±30o and 270o±30o are shown

in 6.10. Also, there are small improvements in the N = 10 to 20 data window for

the Augmented ILS with intercept methodologies over the conventional ILS. This is

a reflection of the linerization effects.

6.8 Conclusion

This chapter is concerned with geo-locating an RF emitter using bearings-

only/AOA measurements, that is, triangulation. Standard approaches rely on assum-
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ing azimuth angle measurements and an Iterative Least Squares estimation algorithm.

Revising the conventional model of the measurement situation at hand is advocated.

One recognizes that the AOA phasor, cos θ and sin θ, is available that more accurately

represents the measurement hardware.

By incorporating the phasor, the modelling error invoked by assuming azimuth

angle measurements is avoided. In addition, the modified estimation approach to

handling bearings-only measurements yields a linear regression formulation of the

emitter geo-location problem without linearization. These assumptions enable the

modified estimation algorithm to produce superior parameter estimates using mea-

surements containing significant noise levels compared to conventional geo-location

methods and ILS.
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VII. Conclusions and Recommendations

This final chapter summarizes the completed work thus far and discusses potential

future extensions.

7.1 Summary of Present Work

Specifically, linear regression with an intercept is considered in detail. First,

an augmentation formulation is developed. The dissertation presents the closed form

solution to the linear regression with intercept (Theorem 3). The research then con-

siders a real world application pertaining to reconfigurable and adaptive flight control.

In this application, an intercept is used to capture the trim change caused by a sig-

nificant control surface failure. This dissertation reveals that the intercept estimate

is useable as a corroborating trigger event within the aircraft flight control system’s

failure detection indication module. Finally, the system identification parameter es-

timates produced by using Theorem 3’s closed form solution are used to generate a

feed-forward command that automatically retrims the aircraft. Additionally, the need

for integral action is reduced and pitch rate tracking is greatly enhance compared to

the conventional flight control system tracking performance.

Next, nonlinear regression is addressed. This dissertation derives a Gauss-

Newton-type algorithm for nonlinear regression using the closed form solution for

linear regression with intercept developed in Theorem 1. The intercept accounts for

linearization-induced truncation error. Ridge Regression constraints are developed

in order to balance the linearization-induced truncation error with the measurement-

noise-induced equation error. In addition, the dissertation develops a two-step im-

plementation methodology for the Ridge Regression algorithm, thus providing the

maximum flexibility to address nonlinear problems. At this point, two applications

are considered in detail. First, the nonlinear regression methods are used in pro-

jectile launch point determination. Augmented Iterative Least Squares (ILS) with

intercept is superior to standard ILS when nonlinearity is strong. Additionally, the

augmented ILS algorithm with constrained intercept does not significantly degrade re-
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sults in “near-linear” cases. Second, the nonlinear regression method developed herein

address Radio Frequency (RF) emitter geo-location using Angle-of-Arrivals (AOAs)

measurements. This dissertation recognizes the phasor information that is available

in these applications. The “naturally” linearized estimation approach is superior to

conventional ILS methods when high noise measurements are available.

7.2 Future Work Proposals

One area of opportunity is to explore extensions to Multiple Model Adaptive

Estimation (MMAE) using the linear regression formulation. Much work in the esti-

mation discipline is devoted to working with recursive algorithm. Perhaps one could

apply some of the batch techniques developed within this dissertation and apply them

to one of the more complex implementation approachs.

Second, much of the work in this dissertation is directed at proposals to handle

the need of an intercept, in both linear and nonlinear applications. In the nonlinaer

regression, no proofs of concept are provided. There are numerous opportunities to

address these issues. One could consider the subclass of problems in which convergence

is garuanteed. Opportunities to generalize the use of these methods may also be

available.

In terms of the specific applications presented in this dissertation, there are two

concepts that are available for pursuit. One could consider the benefits relating to

estimation performance afforded by including prior information on the muzzle velocity

(Chapter IV). A rough sketch of the applicable constraint is included in Appendix G.

Second, as pursued in Chapter VI, angle measurements are not necessarily modelled

well by simply including a Gaussian distribution, particularly in a high measurement

noise environment. One should consider the novel approach revealed in Chapter VI

that uses the phasor pair to avoid lineraization and apply this technique to the multiple

measurement type applications, as discussed in the missile launch point determination

within Chapter IV. One could explore the interplay between measurement noise
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levels and the strength of nonlinearity. One could see if further estimation envelope

expansion is possible over standard ILS.

193



Appendix A. Proof for Lemma 1

This proof is shown in numerous sources, such as [18]. The material is rederived here

for completeness.

Let M1, M2, M3, and M4 be matrices such that M1 ∈ Rn×n, M2 ∈ Rn×m,

M3 ∈ Rm×n, M4 ∈ Rm×m and M1, M4 are invertible. One should consider the block

matrix

M =


M1 M2

M3 M4




and assume that the relevant matrices are invertible. Then

[
M1M2

M3M4

]
·
[

M1 M2

M3 M4

]−1

=

[
I 0

0 I

]

=

[
M1 M2

M3 M4

]
·
[

(M1 −M2M−1
4 M3)−1 −M−1

1 M2(M4 −M3M−1
1 M2)−1

−M−1
4 M3(M1 −M2M−1

4 M3)−1 (M4 −M3M−1
1 M2)−1

]
.

Multiplying these matrices, one finds:

=

Upper LHS: M1(M1 −M2M
−1
4 M3)−1 −M2M

−1
4 M3(M1 −M2M

−1
4 M3)−1

Upper RHS:−M1M
−1
1 M2(M4 −M3M

−1
1 M2)−1 + M2(M4 −M3M

−1
1 M2)−1

Lower LHS: M3(M1 −M2M
−1
4 M3)−1 −M4M

−1
4 M3(M1 −M2M

−1
4 M3)−1

Lower RHS:−M3M
−1
1 M2(M4 −M3M

−1
1 M2)−1 + M4(M4 −M3M

−1
1 M2)−1

=

Upper LHS: (M1 −M2M
−1
4 M3)(M1 −M2M

−1
4 M3)−1

Upper RHS:M2(M4 −M3M
−1
1 M2)−1 −M2(M4 −M3M

−1
1 M2)−1

Lower LHS:M3(M1 −M2M
−1
4 M3)−1 −M3(M1 −M2M

−1
4 M3)−1

Lower RHS: (M4 −M3M
−1
1 M2)(M4 −M3M

−1
1 M2)−1

=


I0

0I


 .

Hence,
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[
M1M2

M3M4

]−1

=

[
(M1 −M2 ·M−1

4 ·M3)−1 −M−1
1 ·M2(M4 −M3 ·M−1

1 ·M2)−1

−M−1
4 ·M3(M1 −M2 ·M−1

4 ·M3)−1 (M4 −M3 ·M−1
1 ·M2)−1

]

as shown in (3.5) ¤.
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Appendix B. Proof for Lemma 2

This proof is shown in numerous sources, such as [18]. The proof is rederived here for

completeness.

(A−BD−1C) · (A−BD−1C)−1 = I

= (A−BD−1C)−1 · [A−1 + A−1B(D − CA−1B)−1CA−1]

= AA−1 + AA−1B(D − CA−1B)−1CA−1 −BD−1CA−1 −BD−1CA−1B(D − CA−1B)−1CA−1

= I + (B −BD−1CA−1B) · (D − CA−1B)−1CA−1 −BD−1CA−1

= I + B(I −D−1CA−1B) · (D − CA−1B)−1CA−1 −BD−1CA−1 .

If one assumes that D is a nonzero scalar, then

= I + BD−1D(I −D−1CA−1B) · (D − CA−1B)−1CA−1 −BD−1CA−1

= I + BD−1(D −DD−1CA−1B) · (D − CA−1B)−1CA−1 −BD−1CA−1

= I + BD−1ICA−1 −BD−1CA−1

= I + 0

= I .

Hence,

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

as stated in (3.10).
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Appendix C. Special Case of Linear Regression with Intercept:

Approach I

One can consider the special case where R = θ2. Since this is a scalar quantity,

one can simplify the resulting parameter estimates θ̂ and ĉ. The scalar quantity a is

shown in (3.9), recalling that

a =
1

eT R−1e− eT R−1H(HT R−1H)−1HT R−1e
.

This special case assumption implies that

a =
1

eT 1
θ2 e− eT 1

θ2 H(HT 1
θ2 H)−1HT 1

θ2 e
.

Since θ is a scalar, the quantity is factored out of the equation. Also, the reader

can observe that e · eT = N , where N is the number of observations in the batch

estimation.

a =
θ2

N − eT H(HT H)−1HT e
.

This result was stated in (3.14).

Similarly, one can consider the vector x shown in (3.8), recalling that

x = −a(HT R−1H)−1HT R−1e .

One can insert the scalar θ2 for the equation error covariance R as before. The

simplified result for a as shown in (3.14) is inserted.

x = − θ2

N − eT H(HT H)−1HT e
(HT 1

θ2
H)−1HT 1

θ2
e .

This equation simplifies to the result shown in (3.15).

x = − θ2

N − eT H(HT H)−1HT e
(HT H)−1HT e .

Also, since (HT H)−T = (HT H)−1, xT is
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xT = − θ2

N − eT H(HT H)−1HT e
eT H(HT H)−1 . (C.1)

Now, the reduced form of the parameter and bias estimates is pursued. Return-

ing to (3.3), one can combine the results from (3.6) to obtain the estimate:

θ̂ = (XHT + xeT )R−1z .

Applying the result from (3.11), one obtains

θ̂ = (HT R−1H)−1HT R−1z + x(
1

a
xT HT + eT )R−1z . (C.2)

Starting with the result from (C.2), one can insert the scalar for the equation

error covariance R and the simplified results for a (3.14), x (3.15), and xT (C.1).

θ̂=(HT 1
θ2 H)−1HT 1

θ2 z − θ2

N−eT H(HT H)−1HT e
(HT H)−1HT e ·

[N−eT H(HT H)−1HT e
θ2 ·


− θ2

N−eT H(HT H)−1HT e
eT H(HT H)−1HT]+eT


 1

θ2
z .

This equation reduces to

θ̂ = (HT H)−1HT z − 1
N−eT H(HT H)−1HT e

· (HT H)−1HT e
[
eT H(HT H)−1HT − eT

]
z .

This equation is reorganized to match the result in (3.16).

θ̂ = (HT H)−1HT{I − 1

N − eT H(HT H)−1HT e
· eeT [I −H(HT H)−1HT ]}z .

Similarly for the intercept ĉ, one should consider (3.3) and apply the result from (3.6)

ĉ = (xT HT + aeT )R−1z . (C.3)

The bias estimate equation (C.3) is rearranged

ĉ = a(
1

a
xT HT + eT )R−1z .
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By inserting the scalar for the equation error covariance R = θ2, the simplified result

for a (3.14) and the expression for xT (C.1), the equation becomes

ĉ= θ2

N−eT H(HT H)−1HT e
[N−eT H(HT H)−1HT e

θ2 · (C.4)
(
− θ2

N−eT H(HT H)−1HT e
eT H(HT H)−1

)
HT + eT ] 1

θ2 z .

This equation reduces to the result expressed in (3.17).

ĉ = 1
N−eT H(HT H)−1HT e

eT [I −H(HT H)−1HT ]}z .
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Appendix D. Solution to Example Ordinary Differential Equation

The dynamics shown in (3.21) are considered.

ẍ + ω2x = c .

One can solve the following linear differential equation:

ẍ + ω2x = c .

In order to find the homogeneous solution:

ẍ + ω2x = 0

λ1 = iω

λ2 = −iω .

So xh = C1e
iωt + C2e

−iωt. As described in [6], this is equivalent to:

xh(t) = Ae0 cos(ωt) + Be0 sin(ωt)

xh(t) = A cos(ωt) + B sin(ωt)

Now, solving for the particular solution, one can guess that xp = C3, therefore

x′p = 0

x′′p = 0

so

x′′p + ω2xp = c

becomes

0 + ω2C3 = c
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which implies that

C3 =
c

ω2
.

So, the particular solution is:

xp =
c

ω2
.

The general solution is

x(t) ' A cos(ωt) + B sin(ωt) +
C

ω2
.

If one assumes ẋ(0) = 0, then B = 0 and

x(t) ' A cos(ωt) +
C

ω2

is the solution to the differential equation with the single initial condition. One can

also note that

x′(t) = −Aω sin(ωt)

and

x′′(t) = −Aω2 cos(ωt) .

Hence, the equations match (3.22) and (3.23).
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Appendix E. Nonlinear Regression Augmented With an Intercept

The solution of the augmented linear regression shown in (4.8) is considered and

restated here

θ̂
(i+1)

= (HT
i R−1Hi)

−1HT
i R−1[Z + Hiθ̂

(i) − h(θ̂(i))]

in which the iteration counter is i = 0, 1, . . . . Expanding this equation, one can

observe that


 θ̂(i+1)

ĉ(i+1)


 =


HT

i R−1Hi HT
i R−1e

eT
i R−1Hi eT

i R−1e



−1 

HT
i R−1

eT R−1




[
z + Hiθ̂

(i) − h(θ̂(i))
]

.

The derivation requires

Lemma E.1

Let A be an N×N real symmetric matrix, b be an N×1 real vector and α ∈ R1.

Let
(
A− 1

α
bbT

)−1
exist. Then the inverse of the matrix is


 A b

bT α



−1

=


 X x

xT ξ




in which

X =

(
A− 1

α
bbT

)−1

x =
(
bbT − αA

)−1
b

ξ =
1

α

[
1− bT

(
bbT − αA

)−1
b
]

.

Proof

Multiplying the two matrices yields the identity matrix as
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
 A b

bT α





 X x

xT ξ


 =


 I 0

0 1




¤
which implies that

AX + bxT = I (E.1)

Ax + ξb = 0 (E.2)

bT X + αxT = 0

bT x + αξ = 1 . (E.3)

Equation (E.3) and α 6= 0 implies that

ξ =
1− bT x

α
. (E.4)

Using (E.2), (E.4), and the assumption that
(
A− 1

α
bbT

)−1
exists, yields

x = (bbT − αA)−1b . (E.5)

Next, Equations (E.4) and (E.5) are merged to produce

ξ =
1

α

[
1− bT

(
bbT − αA

)−1
b
]

.

Finally, one can insert (E.1) into (E.5) and rearrange the equation
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AX = I − bbT
(
bbT − αAT

)−1

= I − bbT
(
bbT − αA

)−1

= I − αA
(
bbT − αA

)−1
+ αA

(
bbT − αA

)−1 − bbT
(
bbT − αA

)−1

= I − αA
(
bbT − αA

)−1
+ (αA− bbT )

(
bbT − αA

)−1

= I − αA
(
bbT − αA

)−1 − (bbT − αA)
(
bbT − αA

)−1

= I − αA
(
bbT − αA

)−1 − I

=−αA
(
bbT − αA

)−1

= A

(
A− 1

α
bbT

)−1

.

Hence,

X =

(
A− 1

α
bbT

)−1

.

Using the substitutions: A = HT
i R−1Hi, b = HT

i R−1 e, and α = eT R−1e,

Lemma E.1 yields


HT

i R−1Hi HT
i R−1e

eT
i R−1Hi eT

i R−1e



−1

=


ULHS URHS

LLHS LRHS


 (E.6)

in which

ULHS =
[
HT

i R−1
(
R− 1

eT R−1e
eeT

)
R−1Hi

]−1

URHS =− [
HT

i R−1
(

R
eT R−1e

− eeT
)
R−1Hi

]−1
HT

i R−1e

LLHS =−eT R−1Hi

[
HT

i R−1
(

R
eT R−1e

− eeT
)
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]−1

LRHS = 1
eT R−1e
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(

1
eT R−1e

)2
eT R−1Hi ·

[
HT

i R−1
(
R− 1

eT R−1e
− eeT

)
R−1Hi

]−1
HT

i R−1e .
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Finally, one can insert (E.6) into (E.1) in order to yield the expanded algorithms for

the parameter estimate θ̂ and the intercept estimate ĉ:

θ̂(i+1)=(
[
HT

i R−1
(
R− 1

eT R−1e
eeT

)
R−1Hi

]−1
HT

i

− [
HT

i R−1
(

1
eT R−1e

R− eeT
)
R−1Hi

]−1 ·

HT
i R−1eeT )R−1

[
Z + Hiθ̂

(i) − h(θ̂(i))
]

ĉ(i+1)=eT R−1(I[ 1
eT R−1e

+
(

1
eT R−1e

)2
eT R−1Hi·

[
HT

i R−1
(
R− 1

eT R−1e
eeT

)
R−1Hi

]−1
HT

i R−1e]

−Hi

[
HT

i R−1
(

1
eT R−1e

R− eeT
)
R−1Hi

]−1
)

·
[
Z + Hiθ̂

(i) − h(θ̂(i))
]
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Appendix F. Additional Results: Standard ILS and Augmented ILS

with Unconstrained Intercept

The following results correspond to the 20 Monte Carlo Run example discussed in

Section 4.5.3.1. This simulation contained significant nonlinearity due the problem

geometry. Now, the author can determine the time estimates (Figure F.1) generated

by (4.31) for each batch algorithm. Using this estimate for t̂, one can propagate
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Figure F.1: Launch time estimate t̂, as determined using (4.31).

the sub-batch estimates shown in Figures 4.8 and 4.9 back to the time of launch.

Figure 4.10 shows the result for the position parameter at launch. Figure F.2 shows

the result for the velocity parameter at launch. In summary, this example shows a

case in which envelope of successful estimation is given, while the magnitude of the

estimated equation error covariance is improved over standard ILS, even when the

window size is small. All plots show the inability of the standard ILS to provide

reasonable parameter estimates when the nonlinearity becomes significant.
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Figure F.2: Result of 20 Monte Carlo Runs. Within each plot, the solid line show

the launch velocity parameter estimate, V̂xL
± the experimentally determined 1σ from

the variation between the parameter estimates (dashed lines). VxLtrue
is also shown

(solid line with 4).
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Appendix G. Appending Known Muzzle Velocity Constraint

If the projectile type is known, then it is reasonable to assume that the muzzle velocity

V is known. In this case, one can incorporate the following constraint:

V =
√

V 2
xo

+ V 2
yo

+ V 2
zo

.

Linearization of the nonlinear constant velocity equation yields

V =
1√

V̂ 2
xo

+ V̂ 2
yo

+ V̂ 2
zo

(
V̂xo , V̂yo , V̂zo

)



Vxo

Vyo

Vzo


 .

A noise term v is included to reflect the uncertainty in V in order to keep the regression

nonsingular. Thus,

V =
1√

V̂ 2
xo

+ V̂ 2
yo

+ V̂ 2
zo

(
V̂xo , V̂yo , V̂zo

)



Vxo

Vyo

Vzo


 + v

in which

v ∈ N (0, σ2) .
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Appendix H. Additional Results: Standard ILS and Augmented ILS

with Constrained Intercept

H.1 Single Monte Carlo Run Example: Trajectory with Significant Non-

linearity

The following results correspond to the single Monte Carlo Run example dis-

cussed in Section 4.5.3.1. This simulation contains significant nonlinearity due the

problem geometry. Results in Figures H.1 through H.4 continue to support the ad-

vocacy for using the augmented Iterative Least Squares process with constrained

intercepts using Ridge Regression. This example shows a case in which envelope

of successful estimation is given, while the magnitude of the estimated equation er-

ror covariance is improved over standard ILS, even when the window size is small.

All plots show the inability of the standard ILS algorithm to provide a reasonable

parameter estimate when the nonlinearity becomes significant.
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Figure H.1: (a) Position parameter estimate ŷt using constrained intercepts for
range, azimuth, and elevation (solid line). The standard ILS is also shown (dashed
line). The truth model’s value for y at t = 0 is pictured at -0.0878 nondimensional
distance units (dash-dot line). (b) Position parameter estimate ŷt using an constrained
intercepts for range, azimuth, and elevation (solid line). The standard ILS is also
shown. Dashed lines represent plus minus one standard deviation from the filter-
predicted equation error covariance from the true y (dash-dot lines).
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(a) Harmonic Oscillation.
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(b) Harmonic Acceleration Measurement.

Figure H.2: (a) Velocity parameter estimate V̂yt using constrained intercepts for
range, azimuth, and elevation (solid line). The standard ILS is also shown (dashed
line). The truth model’s value for Vy at t = 0 is pictured as the straight line at

0.227 nondimensional velocity units. (b) Velocity parameter estimate V̂yt using an
constrained intercepts for range, azimuth, and elevation (solid line). The standard
ILS is also shown. Dashed lines represent plus minus one standard deviation from the
filter-predicted equation error covariance from the true Vy (dash-dot lines).
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Figure H.3: Position parameter estimate ẑt using constrained intercepts for range,
azimuth, and elevation (solid line). The standard ILS is also shown (dashed line).
The truth model’s value for z at t = 0 is pictured at 0.03002 nondimensional distance
units (dash-dot line).
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Figure H.4: Velocity parameter estimate V̂zt using constrained intercepts for range,
azimuth, and elevation (solid line). The standard ILS is also shown (dashed line). The
truth value for Vz at t=0 is shown at 0.847 nondimensional velocity units (dash-dot
line).
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H.2 Twenty Monte Carlo Run Examples: Trajectory with Significant

Nonlinearity

The results from 20 Monte Carlo runs shown in Figures 4.19 and 4.20 clearly

demonstrate superior estimation performance achieved by ILS augmented with con-

strained intercepts for range, azimuth, and elevation, over that of standard ILS. The

remaining two parameter plots of interest are included here in Figures H.5 and H.6.
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Figure H.5: 20 Monte Carlo Experiments. Position estimates produced by the
augmented ILS algorithm with constrained intercepts are superior to estimates pro-
duced by conventional ILS when nonlinearity is strong. The figure shows: (1)
yotrue = −0.0878nd ± 1σ determined from the filter-predicted covariance estima-
tion error (lines with 4s). (2) Parameter estimate ŷo± experimentally determined
standard deviation 1σ from the variation between the parameter estimates within the
20 Monte Carlo runs. (lines without 4s).
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Figure H.6: 20 Monte Carlo Experiments. Velocity estimates produced by the
augmented ILS algorithm with constrained intercepts are superior to estimates pro-
duced by conventional ILS when nonlinearity is strong. The figure shows: (1)
Vyotrue = 0.227nd ± 1σ determined from the filter-predicted covariance estimation

error (lines with 4s). (2) Parameter estimate V̂yo± experimentally determined 1σ
from the variation between the parameter estimates within the 20 Monte Carlo runs
(lines without 4s).
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H.3 Single Monte Carlo Run Example: Near-Linear Sub-batch of Ag-

gressive Trajectory

The following results correspond to the single Monte Carlo Run example dis-

cussed in Section 4.5.3.2. This simulation reveals a sub-batch of interest that is a

near-linear part of a rapidly changing portion of the overall trajectory. Figure 4.24

shows the position parameter estimate ŷ for the particular sub-batch of interest. Fig-

ures H.7 through H.9 show the other parameter estimates, namely x̂o, V̂xo , and V̂yo .

Again, a significant point here is that augmented ILS with constrained intercept
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Figure H.7: Position parameter estimate x̂o for particular sub-batch using aug-
mented ILS with constrained intercepts for range, azimuth, and elevation (solid line).
The standard ILS estimate is also shown (dashed line). The truth model’s value for
x at t = 0.178 non-dimensional time units is pictured as the straight line at 1.318
non-dimensional position units (dash-dot line).

provides parameter estimates that do not degrade when compared to standard ILS,

even when the nonlinearities are relatively weak compared to the measurement noise

intensity, as presented here in the near overflight case.

Next, using the launch time estimates determined in Figure 4.25, one can de-

termine x̂L, V̂xL
, and V̂yL

at launch, as shown in Figures H.10 through H.12. One

should recall that ŷL is shown previously in Figure 4.26.
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Figure H.8: Velocity parameter estimate V̂xo for particular sub-batch using aug-
mented ILS with constrained intercepts for range, azimuth, and elevation (solid line).
The standard ILS estimate is also shown (dashed line). The truth model’s value for
Vx at t = 0.178 non-dimensional time units is pictured as the straight line at 0.527
non-dimensional velocity units (dash-dot line).
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Figure H.9: Velocity parameter estimate V̂yo for particular sub-batch using aug-
mented ILS with constrained intercepts for range, azimuth, and elevation (solid line).
The standard ILS estimate is also shown (dashed line). The truth model’s value for
Vy at t = 0.178 non-dimensional time units is pictured as the straight line at 0.1055
non-dimensional velocity units (dash-dot line).
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Figure H.10: Position estimate at launch x̂L using augmented ILS with constrained
intercepts for range, azimuth, and elevation (solid line). The standard ILS estimate
is also shown (dashed line). The truth model’s value for xL at launch is pictured as
the straight line at -2.636 non-dimensional position units (dash-dot line).
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Figure H.11: Velocity estimate at launch V̂xL
using augmented ILS with constrained

intercepts for range, azimuth, and elevation (solid line). The standard ILS estimate
is also shown (dashed line). The truth model’s value for VxL

at launch is pictured as
the straight line at 0.527 non-dimensional velocity units (dash-dot line).
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Figure H.12: Velocity estimate at launch V̂yL
using augmented ILS with constrained

intercepts for range, azimuth, and elevation (solid line). The standard ILS estimate
is also shown (dashed line). The truth model’s value for VyL

at launch is pictured as
the straight line at 0.1055 non-dimensional velocity units (dash-dot line).
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Appendix I. Additional Results: Reconfigurable Flight Control:

Corroborating Trigger

I.1 Additional Stability Derivatives: System ID for Failure with Size-

able Trim Change

In Section 5.4.2, a reason to continue the sliding batch window for a short period

after the trigger (currently q̇ [10]) detects a failure is considered. The author observes

that there is a quick jump in the intercept estimate ĉ (Figure 5.17) before significant

movement in the other three parameter estimates. In other words, ĉ is more sensitive

than the other parameter estimates. The thesis already shows the control derivative

in Figure 5.18. The corresponding stability derivative results are shown in Figures I.1

and I.2.
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Figure I.1: Estimate of control derivative M̂α using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s. Sliding window is not reset
after failure. Solid line–estimate, Dash-dot line–true parameter value about which
the 1-σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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Figure I.2: Estimate of control derivative M̂q using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s. Sliding window is not reset
after failure. Solid line–estimate, Dash-dot line–true parameter value about which
the 1-σ bounds from the filter-predicted equation error covariance (dashed lines) are
depicted.
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Figure I.3: Estimate of control derivative M̂α using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s, but there is not trim change.
Sliding window is not reset after failure. Solid lines–estimates, Dash-dot lines–true
parameter value about which the 1-σ bounds from the filter-predicted equation error
covariance (dashed lines) are depicted.

I.2 Additional Stability Derivatives: System ID for Failure with No

Trim Change

The same argument made about using ĉ as a trigger for failure detection holds

here, as discussed in Section 5.4.3. Figure 5.23 showed the bias estimate, as used for

trigger identification purposes, while Figure 5.24 showed the control derivative. The

additional stability estimates are now shown in Figures I.3 and I.4.

220



0 2 4 6 8 10 12

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

^(a) Parameter Estimate of M
q
, Using 100Hz Sampling

Time (sec)

^
P

ar
am

et
er

 E
st

im
at

e,
 M

q

4.9 4.92 4.94 4.96 4.98 5 5.02 5.04 5.06 5.08
−1.25

−1.2

−1.15

−1.1

−1.05

−1

^
(b) Close−Up of Estimate for M

q

Time (sec)

^
P

ar
am

et
er

 E
st

im
at

e,
 M

q

Figure I.4: Estimate of control derivative M̂q using sliding window batch process.
50% of the horizontal stabilator surface is lost at t = 5s, but there is not trim change.
Sliding window is not reset after failure. Solid lines–estimates, Dash-dot lines–true
parameter value about which the 1-σ bounds from the filter-predicted equation error
covariance (dashed lines) are depicted.
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word. Page numbers in bold represent concept definition or introduction.

actuator dynamics, 124

actuator rate limit, 163

adaptive and reconfigurable flight control

system, 136

adaptive damping gain, 138

adaptive proportional gain, 137

Angle of Arrival, see AOA

Bayes filtering, 10

bearings-only measurement, 8, 28

Differential Global Positioning System, see

DGPS

Digital Signal Processing, see DSP

explicit closed form solution to linear re-

gression augmented with intercept,

39

explicit formulae for AOA geo-location, 174

F-16 dynamics equations, 127

F-16 dynamics equations with actuator fail-

ure, 130

Flight Control System, see FCS

fusion of sub-batch estimates, 117

Gauss Newton algorithm, 61

geometric dilution of precision, see GDOP

initial parameter estimate, 91

iterative least squares, see ILS

Kalman filtering, 10

least squares, 10

linear regression augmented with intercept,

1, 34, 178

linear regression augmented with intercept

– removing the average, 40

measurement phasor, 167

multiple model adaptive estimation, see

MMAE

nonlinear regression, 59

nonlinear regression, conventional approach,

4, 60

nonlinear regression, modified approach,

61

Reconfigurable Flight Control, see RFC

Ridge Regression, 65, 179

short period dynamics, 122, 124

Signal-to-Noise Ratio, see SNR

standard linear regression, 11, 176

sub-batch, 113

system identification, 135

trim change, 135

tuning parameter, 62
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