
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2020

Meta Learning Recommendation System for Classification Meta Learning Recommendation System for Classification

Clarence O. Williams III

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Williams, Clarence O. III, "Meta Learning Recommendation System for Classification" (2020). Theses and
Dissertations. 3629.
https://scholar.afit.edu/etd/3629

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholar.afit.edu%2Fetd%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3629?utm_source=scholar.afit.edu%2Fetd%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Meta Learning Recommendation System for
Classification

THESIS

Clarence O. Williams III, 1st Lieutenant, USAF

AFIT-ENS-MS-20-M-181

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-20-M-181

META LEARNING RECOMMENDATION SYSTEM FOR

CLASSIFICATION

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Clarence O. Williams III, BS

1st Lieutenant, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-20-M-181

META LEARNING RECOMMENDATION SYSTEM FOR

CLASSIFICATION

THESIS

Clarence O. Williams III, BS
1st Lieutenant, USAF

Committee Membership:

Dr. J. D. Weir, PhD
Chairman

Capt Phillip R. Jenkins, PhD
Member

AFIT-ENS-MS-20-M-181

Abstract

A data driven approach is an emerging paradigm for the handling of analytic prob-

lems. In this paradigm the mantra is to let the data speak freely. However, when

using machine learning algorithms, the data does not naturally reveal the best or even

a good approach for algorithm choice. One method to let the algorithm reveal itself is

through the use of Meta Learning, which uses the features of a dataset to determine

a useful model to represent the entire dataset. This research proposes an improve-

ment on the meta-model recommendation system by adding classification problems to

the candidate problem space with appropriate evaluation metrics for these additional

problems. This research predicts the relative performance of six machine learning

algorithms using support vector regression with a radial basis function as the meta

learner. Six sets of data of various complexity are explored using this recommendation

system and at its best, the system recommends the best algorithm 67% of the time

and a “good” algorithm from 67% to 100% of the time depending on how “good” is

defined.

iv

AFIT-ENS-MS-20-M-181

To my wife and two daughters.

v

Acknowledgements

I would like to thank the members of my committee, my research advisor, Dr.

Jeffery Weir and my reader, Capt Philip Jenkins PhD, for their guidance throughout

this arduous journey.

Clarence O. Williams III

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . x

I. Introduction . 1

Problem Statement . 2

II. Literature Review . 3

Overview . 3
Rice’s Model . 3
Meta Learning Framework . 4
Meta-Features . 5
Machine Learning Algorithms . 6

Multiple Linear Regression . 6
Regularized Regression . 7
K Nearest Neighbor . 8
Support Vector Regression . 11
Naive Bayes Classifier . 12
Principal Component Analysis . 13

Evaluation Metrics . 15
Precision . 17
Recall . 17
F1 Score . 18

III. Methodology . 19

Overview . 19
Datasets . 19
Meta Learning Framework . 21
Evaluation . 26

IV. Analysis and Results . 27

Overview . 27
Meta Features . 27

V. Conclusion . 50

vii

Page

Appendix A. Additional Figures . 52

Appendix B. Confusion Matrices . 55

Appendix C. Source Code . 61

Bibliography . 88

viii

List of Figures

Figure Page

1. Rice’s Model [3] . 4

2. Meta Learning Based Recommendation System
Framework [8] . 5

3. Meta Learning Framework [31] . 21

4. Principal Component Analysis of Meta Features . 30

5. Meta Features Projected in Principal Component Space 32

6. SVR Credit Card Fraud F1 vs Threshold . 39

7. SVR Credit Card Fraud Precision Recall vs Threshold 42

8. Credit Card Fraud Recall vs Time . 48

9. SVR Bank Personal Loan F1 Score vs Decision Threshold 52

10. Ridge Regression Bank Personal Loan F1 Score vs
Decision Threshold . 52

11. Linear Regression Bank Personal Loan F1 Score vs
Decision Threshold . 53

12. SVR Bank Personal Loan Precision/Recall vs Decision
Threshold . 53

13. RR Bank Personal Loan Precision/Recall vs Decision
Threshold . 54

14. LR Bank Personal Loan Precision/Recall vs Decision
Threshold . 54

ix

List of Tables

Table Page

1. Confusion Matrix . 17

2. Dataset Descriptions . 19

3. Algorithm Execution Time in Seconds . 28

4. Meta Features . 29

5. Scaled Meta Features . 29

6. Principal Component Loading Vector . 31

7. Meta Features in Principal Component Space . 32

8. Algorithm Execution Time in Seconds . 33

9. Dataset Actual NRMSE . 34

10. Dataset Actual NRMSE Ranking . 34

11. Dataset Predicted NRMSE . 34

12. Dataset Predicted NRMSE Rankings . 35

13. NRMSE Recommendation Rating . 35

14. Dataset Actual NRMSE using Class Probabilities 36

15. Dataset Actual NRMSE using Class Probabilities
Ranking . 36

16. Dataset Predicted NRMSE using Class Probabilities 37

17. Dataset Predicted NRMSE using Class Probabilities
Ranking . 37

18. NRMSE using Class Probabilities Recommendation
Rating . 38

19. Dataset Actual F1 Score . 39

20. Actual F1 Score Rankings . 40

21. Dataset Predicted F1 Score . 40

x

Table Page

22. Predicted F1 Score Rankings . 41

23. F1 Score Recommendation Rating . 41

24. Dataset Actual Precision . 43

25. Dataset Actual Precision Rankings . 43

26. Dataset Predicted Precision . 43

27. Dataset Predicted Precision Ranking . 44

28. Precision Recommendation Rating . 44

29. Dataset Actual Recall . 45

30. Dataset Actual Recall Rankings . 46

31. Dataset Predicted Recall . 46

32. Dataset Predicted Recall Rankings . 46

33. Recall Recommendation Rating . 47

34. Recall Classification Algorithms Actual Ranking . 48

35. Recall Classification Algorithms Predicted Ranking 49

36. Credit Card Fraud Evaluation Metrics Comparison 49

37. Credit Card Fraud: SVM Confusion Matrix . 49

38. Credit Card Fraud: SVR Confusion Matrix . 49

39. Heart: SVM Confusion Matrix . 55

40. Heart: KNN Confusion Matrix . 55

41. Heart: Naive Bayes Confusion Matrix . 55

42. Heart: SVR Confusion Matrix . 55

43. Heart: Ridge Regression Confusion Matrix . 55

44. Heart: Linear Regression Confusion Matrix . 56

45. Spam: SVM Confusion Matrix . 56

xi

Table Page

46. Spam: KNN Confusion Matrix . 56

47. Spam: NB Confusion Matrix . 56

48. Spam: SVR Confusion Matrix . 56

49. Spam: Ridge Regression Confusion Matrix . 56

50. Spam: Linear Regression Confusion Matrix . 57

51. Bank: SVM Confusion Matrix . 57

52. Bank: KNN Confusion Matrix . 57

53. Bank Personal Loan: Naive Bayes Confusion Matrix 57

54. Bank Personal Loan: SVR Confusion Matrix . 57

55. Bank Personal Loan: Ridge Regression Confusion Matrix 57

56. Bank Personal Loan: Linear Regression Confusion
Matrix . 58

57. Framingham: SVM Confusion Matrix . 58

58. Framingham: KNN Confusion Matrix . 58

59. Framingham: Naive Bayes Confusion Matrix . 58

60. Framingham: SVR Confusion Matrix . 58

61. Framingham: Ridge Regression Confusion Matrix 58

62. Framingham: Linear Regression Confusion Matrix 59

63. Math Placement: SVM Confusion Matrix . 59

64. Math Placement: KNN Confusion Matrix . 59

65. Math Placement: Naive Bayes Confusion Matrix . 59

66. Math Placement: SVR Confusion Matrix . 59

67. Math Placement: Ridge Regression Confusion Matrix 59

68. Math Placement: Linear Regression Confusion Matrix 60

xii

Table Page

69. Credit Card Fraud: KNN Confusion Matrix . 60

70. Credit Card: Naive Bayes Confusion Matrix . 60

71. Credit Card Fraud: Ridge Regression Confusion Matrix 60

72. Credit Card Fraud: Linear Regression Confusion Matrix 60

xiii

META LEARNING RECOMMENDATION SYSTEM FOR

CLASSIFICATION

I. Introduction

Operations Research (OR) has it origins in World War II, where throughout the

war, upwards of 250 analysts were employed to solve complex problems like target

assignment and bombing accuracy. The term OR itself owes its name to the British

Royal Air Force, who used it to improve operations against German forces. The field’s

usage in the United States Department of War is a product of United States Army

Air Forces Commanding General Henry “Hap” Arnold who championed the creation

of the Operations Analysis Division of Air Staff Management Control Division on 31

December 1942. He saw the value in the integration of civilian experts and military

officers in operational planning at the staff level [1].

Today, the field of OR has grown immensely with over 12,500 members of the

Institute for Operations Research and the Management Sciences (INFORMS) society

alone and with this growth, the scope of problems being investigated has exponentially

grown in complexity due to revolutions in the storage and collection of information.

A data driven approach is a new paradigm for handling analytical problems [2]. Meta

Learning is considered using the features of a dataset to develop an overarching model

about the features. The usage of meta learning for algorithm selection originates from

Rice’s model in which the purpose is to select a good or best algorithm for a particular

problem [3].

One of the first usages of meta learning for regression problems was the METAL

Project, where the purpose was used to select the most appropriate machine learning

1

algorithm for a given dataset using features extracted from the dataset [4]. Other cur-

rent applications of meta modeling include multivariate time-series load forecasting,

where meta learning is used to predict future electricity consumption and the iden-

tification of the appropriate load forecast model for building electricity consumption

[5] [6].

Problem Statement

This research proposes an improvement on the meta-model recommendation sys-

tem by adding classification problems to the candidate problem space with appropri-

ate evaluation metrics for these additional problems. In its current implementation

the meta learner has algorithms suited for continuous responses. Therefore, to add

classification problems, classification algorithms will be added to the framework. The

intent of this thesis is not to predict the absolute expected performance for algorithm

recommendation but rather predict the relative performance among algorithms [7].

Additionally, the research seeks to answer the following questions:

1. Can the meta learner correctly make recommendations when classification and

prediction are included as available algorithms? In order to assess this ques-

tion, the algorithms suited for regression will have its output treated as class

probabilities and the threshold will be set for class prediction.

2. Is normalized root mean square error (NRMSE) a suitable evaluation metric

when using the meta learning recommendation system to rank algorithm selec-

tion for classification problems?

3. If NRMSE is insufficient, what are suitable evaluation metrics for the meta

learning recommendation system to employ for ranking algorithm selection for

classification problems?

2

II. Literature Review

Overview

This chapter reviews previously published literature on machine learning algo-

rithms used for the meta recommendation framework and performance metrics. Rel-

evant meta-modeling techniques will be discussed as well as an overview of meta

features of interest for this study. The machine learning algorithms presented here

are not an exhaustive list of all available algorithms but are only the techniques

relevant to the framework.

Rice’s Model

Rice proposed a formulation of abstract models to guide the selection of a best or

good algorithm. This abstraction is shown in Figure 1 and it seeks to determine the

selection mapping S(f(x)). In this model for algorithm selection, the four elements

are the problem space P, feature space F, algorithm space A and performance space

Y. For a meta learner, the problem space is the collection of all datasets used for

training the learner. The feature space is all of the quantifiable properties. This

model assumes that problems with the same features will have similar performance

when applying algorithms. However, the selection of the best features to characterize

a problem is a nebulous task. These features are essential to predict a best performing

algorithm. For example, for solving a system of equations Ax = b, Rice states that an

analyst can select a good algorithm to solve this system by examining the features of

the system, such as sparsity, diagonally dominant, positive definite, condition number,

etc. The algorithm space A,is all algorithms under consideration for the construction

of the meta learner. Lastly, the performance space consists of all metrics used to

evaluate the algorithms a ∈ A against the problems x ∈ P . The model’s usage of

3

meta learning is to frame the problem in order to give better results then randomly

picking a algorithm [3].

Figure 1. Rice’s Model [3]

Meta Learning Framework

The Meta Learning Based Recommendation System was first proposed by Cui et

al. and is shown in Figure 2 [8]. This new framework is a modification of Rice’s

model shown in Figure 1 and modifies the model by adding the feature reduction of

the meta-features and the usage of members of the performance space to rank the

algorithms in the algorithm space.

In the framework present in Figure 2, the model-based algorithm refers to the

usage of an artificial neural network as the meta learner. While, the instance based

algorithm refers to the usage of k nearest neighbors with k ∈ {1, 3} as the meta

learner.

4

Figure 2. Meta Learning Based Recommendation System Framework [8]

Meta-Features

In order to properly select a model framework, a body of features are identified

that can explain the underlying structure of the dataset. Meta features are classified

as simple, statistical or information theoretic [9]. Some meta features of interest are:

• Number of discrete columns

• Minimum number of factors among discrete columns

• Maximum number of factors among discrete columns

• Average number of factors among discrete columns

• Number of continuous columns

• Gradient average

For an N dimensional array A, the gradient is the derivatives of A with respect

to each dimension. This measures the steepness of A in each dimension [8].

5

• Gradient maximum

• Gradient standard deviation

• Gradient minimum

Additional meta features could be the Mean of response values, [8]

f̄ = 1/N
N∑
i=1

fi, (1)

or the standard deviation of response values, [8]

SD(f) =

√√√√1/(N − 1)
N∑
i=1

(fi − f̄)2, (2)

which is the square root of variance which is the measure of the variability or amount

of spread in the distribution of the response [10].

Machine Learning Algorithms

The machine learning algorithms used in this research are presented next. Any of

the following algorithms can used for the construction of the meta learner.

Multiple Linear Regression.

Linear regression is used when a input vector is used to predict a response. They

have the form

f(X) = β0 +

p∑
j=1

Xjβj, (3)

where Xj is the input vector and βj is the regressor coefficients. One method to

estimate the regressor coefficients is to employ least squares, which finds the regressor

6

coefficients that minimize the residual sum of squares.

RSS(β) =
N∑
i=1

(yi − f(xi))
2. (4)

Since X is a N × (p+ 1) matrix and y is a (N × 1) matrix, Equation (4) is rewritten

as follows:

RSS(β) = (y −Xβ)T (y −Xβ). (5)

Differentiating Equation (5) with respect to β and setting the derivative equal zero

yields,

∂RSS

∂β
= −2XT (y −Xβ) = 0. (6)

The solution to Equation (6) is, [11]

β̂ = (XTX)−1XTy. (7)

Regularized Regression.

Like linear regression, ridge regression is used when a input vector is used to

predict a response. The key difference is that an additional term has been added to

the objective function to penalize large regressor coefficients. The objective function

for ridge regression is shown in Equation (8).

min
N∑
i=1

(yi − f(xi))
2 + λ

N∑
i=1

β2
i . (8)

In Equation (8), λ is known as the tuning parameter. Varying this parameter will

change the regressor coefficients. Typically, λ is tuned using a grid search[11].

7

K Nearest Neighbors.

K Nearest Neighbors (KNN) classification is a supervised machine learning algo-

rithm that was first used by Fix and Hodges in 1951 [12]. It is a lazy learner which

means it is an instance based learning algorithm in which no model is fit [13].

The algorithm for KNN classification is as follows [13]:

1. Choose k and a distance metric. The most commonly used distance metric is

the 2 norm, which is euclidean distance. This metric is defined in Equation (9)

[11].

d(i) = ||xi − x0||2 =
√

(xi − x0)2. (9)

2. Find the k -nearest neighbors of the training example for classification

3. Assign class label

The algorithm uses the conditional probability of an observation belonging to

class j based on the fraction of training examples in the training set who belong

to class j, that is,

P (Y = j|X = x0) =
1

K

∑
i∈N

I(yi = j). (10)

The algorithm then predicts the label of the observation by assigning it to the

class that has the largest probability [14]. In Equation (10), the summation is

used with indicator function to count observations that are have class j label.

The optimal value of k is problem dependent and has been explored in Hall’s pa-

per [15]. Per training observation, KNN classification requires Np operations, where

N are the observations and p are the predictors to find the neighbors [11]. There-

fore, KNN classification will be slow when there are ten of thousands of observations

because each observation has a distance metric calculated.

8

Support Vector Machines.

Support Vector Machines (SVM) is a supervised machine learning technique that

is used for classification. The algorithm creates the maximal separating hyperplane

between two or more classes. Its current implementation to allow the classification

of nonlinear separable data was created by Vladmir Vapnik and colleagues at AT&T

Bell Labs [16]. In SVM, the objective is to find the hyperplane that creates the biggest

margin between the training points for the classes. The margin is the distance between

the separating hyperplane and the closest training examples for each class[13].

Let,

wTx = 1, (11)

wTx = −1, (12)

be the positive and negative hyperplane respectively. These hyperplanes can be

rewritten using the equation for a plane as follows:

w0 + wTxpos = 1, (13)

w0 + wTxneg = −1. (14)

In Equations (13) and (14), xpos and xneg are training examples that fall behind the

hyperplane that bears the name of the subscript. Subtracting Equation (14) from

Equation (13) yields,

wT (xpos − xneg) = 2. (15)

Normalizing Equation (15) by dividing it by the norm of w gives,

wT (xpos − xneg)
||w||

=
2

||w||
. (16)

9

Equation (16) is the margin that will be maximized using nonlinear optimization.

Typically, the reciprocal of the right hand side of Equation (16) is minimized [13].

Therefore, the formulation to find the margin is written as,

min
1

2
||w||2 (17)

subject to y(i)(xTi w + w0) ≥ 1 ∀i. (18)

Equation (18) means that observations that belong to the positive and negative classes

should fall behind the corresponding hyperplane [13]. In 1995, Vapnik introduced ξ,

which is a slack variable, to allow the relaxation of the linear constraints in equation

18. This new classification method is called soft-margin classification [16] [13].

Equations (19) and (20) give the non-linear program to find the margin for soft-

margin classification. In Equation (20), ξ allows some points to be on the outside

of the margin, if the classes overlap in the feature space. Additionally, ξ is the total

proportional amount by which predictions fall on the outside of their margin. w is

the support vector which is orthogonal to the hyperplane.

min
1

2
||w||2 + C

N∑
i=1

ξi (19)

subject to ξ ≥ 0, yi(xTi w + w0) ≥ 1− ξi∀i (20)

Using Lagrange multipliers, the solution for w in the non-linear program presented

in Equations (19) and (20) is

ŵ =
n∑

i=1

α̂iyixi. (21)

In Equation (21), α̂i is the lagrange multiplier, 0 ≤ α̂i ≤ C, and C is a cost param-

10

eter that influences the width of the boundary for classification. Larger values of C

result in a smaller classification boundary. Regardless of their correct or incorrect

classification, points near classification boundary are the support vectors [11].

Additionally, SVM uses a kernel function to increase the dimension of the features

to create a linear boundary in a higher dimensional space [11]. A popular kernel used

for this classifier is the radial basis kernel which is given in Equation (22).

k(x, y) = exp(−γ||x− y||2), where y > 0. (22)

In Equation (22), x is the input data and y is the response. γ is a scaling parameter

that influences the value of C [11].

Lastly, support vector classifiers have a time complexity of O(m2×n) to O(m3×n).

Therefore, when the training data has hundreds of thousands of observations, the

algorithm execution will be slow [17].

Support Vector Regression.

SVMs have also been adapted for regression by Drucker et al. in 1997 [18]. In

this case the objective is to minimize the function

H(β, β0) =
N∑
i=1

V (yi − f(xi)) +
λ

2
||β||2. (23)

The function V in Equation (23) is given by Equation (24). Its purpose is to only

consider errors larger than ε which is analogous to the points being on the outside of

the margin in the Support Vector Classifier [11].

Vε(r) =

 0, if |r| < ε

|r| − ε, otherwise.
(24)

11

The regressor coefficients are

β̂ =
N∑
i=1

(α̂∗i − αi)xi, (25)

and predictions ŷ are given by

ŷ =
N∑
i=1

(α̂∗i − αi)〈x, xi〉+ β0. (26)

Clarke et al. has shown that SVR is an effective algorithm for meta modeling due

to its ability to approximate the phenomenon under study by providing a prediction

equation [19].

Naive Bayes Classifier.

The naive bayes classifier is a supervised machine learning algorithm for classi-

fication problems. For this algorithm, consider training examples x1, x2, . . . , xn and

class y that is binary. The probability of the training example belonging to class y

can be found using Bayes Theorem which is shown in Equation [20].

P (y|(x1, x2, . . . , xn) =
P ((x1, x2, . . . , xn)|y)P (y)

P ((x1, x2, . . . , xn)
. (27)

The class assignment uses the naive assumption, which is all features xi are inde-

pendent. Using this information,

P ((x1, x2, . . . , xn)|y) =
n∏

i=1

P (xi|y). (28)

The predicted class ŷ is simply the class that has the largest probability given the

12

input features.

ŷ = argmax
y

P (y)
n∏

i=1

P (xi|y). (29)

Principal Component Analysis.

Principal Component Analysis (PCA) was invented in 1901 by Karl Pearson [21].

It is currently employed as an unsupervised machined learning technique to reduce the

dimensionality of the data, in order to decrease the execution time of other machine

learning algorithms. In PCA, the unit eigenvectors, U , of the covariance matrix are

used to project the data into the linear subspace spanned by the set of k vectors of

U . The number of principal components is denoted by k. The objective function of

PCA, given in Equation (30), is to minimize the reconstruction error [11].

Min ||
n∑

i=1

(xi −UTxi)||2. (30)

In Equation (30), UT is a projection matrix formed from the k eigenvectors of the

covariance matrix. The steps for the PCA algorithm are as follows [13]:

1. Standardize the data

Center feature columns to have zero mean with standard deviation one.

x
(i)
std =

x(i) − µx

σx
. (31)

2. Compute the covariance matrix Σ

Σ =
1

m

n∑
i=1

(x(i))(x(i))T . (32)

13

3. Obtain the eigenvalues and eigenvectors of the matrix Σ

This is typically accomplished by using singular value decomposition (SVD).

SVD will return the eigenvalues in descending order with associated eigenvectors

in the same order [22]. Equation (33) shows the decomposition of a m×n matrix

A using SVD.

A = USV T . (33)

In Equation (33), U is an m×m orthogonal matrix and V is an n×n orthogonal

matrix. The first r singular values of A are the diagonal entries of S. By

definition an orthogonal matrix U is a matrix such that,

UTU = I. (34)

Since U is invertible, the columns of U are linearly independent and form a basis

[22]. The unit eigenvectors of the covariance matrix Σ are called the principal

components.

4. Find the variance explained by each principal component.

The variance explained of principal component j is,

λj
n∑

j=1

λj

, (35)

where λj is the eigenvalue of principal component j. Typically for dimension

reduction chose the number of principal components so that the total variance

explained by all of the components is at least 95% [17].

5. Let the k be the number of principal components chosen for change of basis.

Project X into the linear subspace spanned by the set of k vectors of U by

14

choosing the number of principal components k.

Let the first k vectors of U be the change of coordinates matrix, UB.

x = U [x]B. (36)

Left multiplication of x = U [x]B by U −1 = U T gives,

[x]B = U Tx. (37)

In Equation (37), U is the change of coordinate matrix and [x]B is the coor-

dinate vector relative to B [22]. Let Ureduce be the matrix formed from the k

vectors of U . The vectors of Ureduce are called the principal component loading

vectors. The projection of x, in this new space is,

z = UT
reducex. (38)

The entries in the columns of z are called the principal component scores.

6. Project z back into original space to approximate x if all principal components

were not used.

xapprox = Urz. (39)

Equation (39), is the key step employed before implementing any other machine

learning algorithms. It is the dimension reduction.

Next the evaluation metrics for each problem in the problem space is presented.

Cui et al. has shown that NRMSE is a suitable performance metric for datasets with a

continuous response [8]. Therefore, that metric is included here as well. Additionally,

the proposed performance metrics for the classification datasets are defined.

15

Evaluation Metrics

the model effectiveness for each algorithm a ∈ A is evaluated using the perfor-

mance metrics presented in this section. The meta learner employed by Cui et al.

used Normalized Root Mean Square Error which is given in Equation (40) as a per-

formance metric. Therefore, that metric will be used in this research to see if it is a

suitable performance metric for classification problems.

Normalized Root Mean Square Error

√∑N
i=1(yi − ŷi)2

N
/(ymax − ymin). (40)

Classifier Evaluation Metrics

There exists myriad potential evaluation metrics for the recommendation system

for datasets which have binary output. A subset of these metrics are given in following

sections.

Confusion Matrix.

The confusion matrix shows the classification of all training examples. In Table 1,

C0,0 is the number of true negatives, C0,1 is the number of false positives, C1,0 is the

number of false negatives and C1,1 is the number of true positives [23]. Additionally,

the total classifier accuracy is given in the confusion matrix by dividing the sum of

the entries in the main diagonal by the sum of each entry in the matrix.

16

Table 1. Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 C0,0 C0,1

Class 2 C1,0 C1,1

Precision.

Let TP, FP, FN be true positive, false positive and false negative rate respectively.

Precision, which is the accuracy of positive predictions, is defined in Equation (42)

[17].

precision =
TP

TP + FP
. (41)

Using the entries of Table 1, precision is,

precision =
C1,1

C1,1 + C0,1

. (42)

Recall.

Recall is the ratio of positive instances that are correctly detected by the classifier.

It is also called true positive rate (TPR) or sensitivity and is defined in Equation (43)

[17].

recall =
TP

TP + FN
. (43)

Again using the entries of Table 1, recall is,

recall =
C1,1

C1,1 + C1,0

. (44)

17

A classifier with high recall but low precision will have many predicted labels that

are incorrect when compared to the training labels. This classifier predicts many pos-

itives instances. On the other hand, a classifier with high precision but low recall will

have many correct predictions when compared to the training labels but the classifier

is predicting many negative instances [24]. Note, there is a precision recall trade off.

Increasing recall will reduce precision and vice versa [17].

F1 Score.

Another metric to evaluate classifiers is the F1 score. It is a single metric that is

useful if one value is desired to compare two classifiers. The F1 score is the harmonic

mean of precision and recall and is defined in Equation (45) [17].

F1 =
2

1
precision

+ 1
recall

=
TP

TP + FN+FP
2

. (45)

In order to have a high F1 score the precision and recall must be high [17]. From

Equation (45), it is apparent that the metric is bounded on the interval (0, 1]. How-

ever, by definition if precision and recall are undefined, F1 score is considered 0.

18

III. Methodology

Overview

This chapter describes the datasets used for this research and the steps to imple-

ment the meta learning framework. In this research, each dataset presented forms the

candidate problem space. The machine learning algorithms K- Nearest Neighbors,

Support Vector Machines, Naive Bayes Classifier, Linear Regression, Ridge Regres-

sion and Support Vector Regression are the algorithms implemented within this meta

learning framework. Additionally, the evaluation criteria for the ranking of each al-

gorithm for every dataset is provided.

Datasets

In order to assess the meta learner’s ability to perform recommendation on clas-

sification problems, six datasets with a discrete response form the problem space..

These six datasets have a binary output and may have continuous and/or discrete

features. The names of the datasets are provided in Table 2.

Table 2. Dataset Descriptions

Dataset Name Response
1 Heart target
2 Spam yesno bin
3 Bank Personal Loan Personal Loan
4 Framingham TenYearCHD
5 Math Placement CourseSuccess
6 Credit Card Fraud isFraud

Dataset 1, Heart, originates from Kaggle and is a complete dataset. It has 303 rows

and 14 columns including the response. The goal of this dataset is to predict the

presence of heart disease in a patient [25]. Dataset 2, Spam, comes from Python’s

19

pydatasets, which is a python implementation of R datasets found in the R Project

for Statistical Computing software [26]. In the online documentation, the dataset is

named spam7. This dataset is also complete and contains 460 rows and 7 columns

including the response. This dataset’s purpose is to predict if an email is spam.

Dataset 3, Bank Personal Loan, originates from Kaggle and is again a complete

dataset [27]. It has 5000 rows and 14 columns including the response. The goal

of this dataset is to predict if a customer will accept a personal loan. Dataset 4,

Framingham, originates from Kaggle [28]. This dataset contains missing records and

in its original form, it has 4238 rows and 16 columns including the response. The goal

of this dataset is to predict a person’s ten year risk of future coronary heart disease

where the prediction is binary.

Dataset 5, Math Placement, originates from pydatasets like Dataset 2 [29]. This

dataset is missing records and in its original form, it has 2696 observations and 16

variables including the response. To produce dataset 5, the columns UID student is

dropped because it is a unique identifier. The columns Gender, PSTAM and STAM

are also dropped due to missing 2116, 1560, and 1460 records respectively. Next, the

column grade is dropped because it is the letter grade associated with the response.

Finally, the column Recommends is dropped because the information contained within

this feature is redundant due to the presence of other features related to recommend.

The goal of this dataset is the classification of Course Success.

Lastly, dataset 6, Credit Card Fraud, is available on Kaggle [30]. To construct

Dataset 6, the following steps are completed. Two data sets, Transaction and Iden-

tity are provided to classify transactions as fraudulent. First, the Identity dataset

and the Transaction dataset are joined on the unique identifier, TranactionID. Next,

features that are not 60% filled are subsequently dropped and then rows that are in-

complete are removed. Lastly, the joined dataset from step 2 contained 17 categorical

20

features which are dropped along with the unique identifier column. The response

of this dataset is the column isFraud which is used to label a credit card transac-

tion as fraudulent. The goal of this dataset is to predict if credit card transaction is

fraudulent.

Meta Learning Framework

The Meta Learning Recommendation framework was first proposed by Cui et al.

and is further refined in the AFIT Master’s Thesis of Megan Woods [31]. The new

framework in Figure 3 is a modification of Cui’s framework shown in Figure 2. The

current framework, is similar to Cui’s framework in regards to extracting meta fea-

tures f of members of the problem space P. However, it modifies the existing frame-

work by implementing data cleaning and filtering of candidate problems C. These

c ∈ C may not meet the criteria to enable successful algorithm recommendation

using the framework and are filtered out before implementation.

Figure 3. Meta Learning Framework [31]

21

The meta learning recommendation system for classification problems consists of

two phases. The steps of phase one are as follows:

1. Candidate Problem Space

The Candidate Problem space C is all problems suitable for classification. Since

this set is large, it is subsetted to form the problem space P which contains the

problems under study for this thesis.

2. Algorithm Prediction Space

The machine learning algorithms K Nearest Neighbors, Support Vector Ma-

chines, Naive Bayes Classifier, Linear Regression, Ridge Regression and Support

Vector Regression form the algorithm space A. The six algorithms are subse-

quently applied to each member of the problem space with normalized root

mean square error (NRMSE), F1 score, precision and recall being the perfor-

mance metrics captured for each dataset. NRMSE is calculated by comparing

the output of the respective algorithm to the class labels. Since Linear Regres-

sion, Ridge Regression and Support Vector Regression are not naively suited

for classification, the output of these three algorithms are treated as class prob-

abilities and the threshold for class prediction is set to 0.5.

Since the default parameters of each algorithm may change over time, the spe-

cific parameters used to for algorithm are as follows:

• Support Vector Machine:

sklearn.svm.SVC(kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001,

C=1.0, epsilon=0.1, shrinking=True, cache size=200, verbose=False, max iter=-

1) Scale is given by Equation 46.

Scale =
1

(number of features ∗X.var())
. (46)

22

• K- Nearest Neighbors

sklearn.neighbors.KNeighborsRegressor(n neighbors=5, weights=’uniform’,

algorithm=’auto’, leaf size=30, p=2, metric=’minkowski’,

metric params=None, n jobs=None

• Naive Bayes Classifier sklearn.naive bayes

.GaussianNB(priors=None, var smoothing=1e-09)

• Support Vector Regression

The settings are the same as as SVM.

• Ridge Regression

sklearn.linear model.Ridge(alpha=1.0, fit intercept=True, normalize=False,

copy X=True, max iter=None, tol=0.001, solver=’auto’,

random state=None)

• Linear Regression

sklearn.linear model.LinearRegression(fit intercept=True, normalize=False,

copy X=True, n jobs=None)

3. Recommendation

Each algorithm has its performance ranked when applied to each of the six

datasets in the problem space. This ranking is repeated for each performance

metric to give a separate ranking for each metric. When using NRMSE, the

best algorithm is the one with the lowest value. This algorithm r is given by

Equation (47).

r = argmin
a∈A

(z(a(x))). (47)

When F1 score, precision or recall is the performance metric, the best algorithm

is the one with the largest value. In this case, the best algorithm r is given by

23

Equation (48).

r = argmax
a∈A

(z(a(x))). (48)

In phase 2 of the meta learning recommendation system, the following steps occur

1.1 Meta Feature Extraction

Each of the members of the problem space have information extracted to provide

information about it’s structure. The following meta features are extracted:

• Number of Rows

• Number of Columns

• Rows to Columns Ratio

• Number of Discrete Columns

• Maximum number of factors among discrete columns

• Minimum number of factors among discrete columns

• Average number of factors among discrete columns

• Number of continuous columns

• Gradient average

• Gradient minimum

• Gradient maximum

• Gradient standard deviation

1.2 Dimension Reduction

The feature space is reduced using principal component analysis to remove

multicollinearity.

24

2. Meta Learning

A new dataset is formed where each row is the collection of the 12 meta features

extracted from one dataset of the six datasets. These twelve features together

form the feature space F. Since there are six datasets in the problem space, this

new dataset has dimensionality 6× 12.

3. Recommendation System Construction

Support Vector Regression (SVR) is the meta learner that trains the recommen-

dation system using the meta features as inputs with a metric of the performance

space for each algorithm as output. Leave one out (LOO) validation gives the

final performance metric prediction for each algorithm. In this instance of LOO,

five out of the six datasets trains the recommendation system and one dataset is

withheld for the test set. For example, for dataset 1, the meta features extracted

from datasets 2 through 6 are the training datasets to build the recommenda-

tion system. SVR fits a model for the six algorithms in the algorithm space

using NRMSE as the response. This process is then repeated using F1 score

and any other member of the performance space as the response when training

the linear regression meta modeler.

4. Performance Prediction and Recommendation

The recommendation system predicts the performance of the machine learning

algorithms K Nearest Neighbors, Support Vector Machines, Naive Bayes Clas-

sifier, Linear Regression, Ridge Regression and Support Vector Regression for

each member of the problem space. Each algorithm, a ∈ A, has its perfor-

mance ranked when applied to each of the six datasets in the problem space.

This ranking is repeated for each performance metric to give separate rankings.

Similar to phase one, when using NRMSE, the best algorithm is the one with

25

the lowest value, that is the recommendation r’ is given by Equation (49),

r′ = argmin
a∈A

(v(̂f(x′))). (49)

When F1 Score is the performance metric, the best algorithm is the one with

the largest value, that is the recommendation r’ is given by Equation (50).

r′ = argmax
a∈A

(v(̂f(x′))). (50)

Furthermore, NRMSE is calculated in two different manners. The first uses the

class predictions, ŷ ∈ {0, 1} for the calculation of the metric. In the second,

the class probabilities, ŷ ∈ [0, 1], returned by each a ∈ A, are used to calculate

the metric. In either case, the difference between ymax and ymin is always one

and this metric is equivalent to root mean square error.

Evaluation

The meta learner recommendation systems final evaluation is the hit ratio when

using each predicted metric. For a given dataset, the hit ratio is the number of

matches of the best performing algorithm with recommended best algorithm. Addi-

tionally, the hit ratio is relaxed to consider a hit if the recommended best algorithm’s

actual performance metric is within 0.01%, 0.05% and 0.10% of the actual best algo-

rithm.

26

IV. Analysis and Results

Overview

In this chapter, each dataset in the candidate problem space forms the prob-

lem space P. The machine learning algorithms K-Nearest Neighbors, Support Vector

Machines, Naive Bayes Classifier, Linear Regression, Ridge Regression and Support

Vector Regression forms the algorithm space A. Each algorithm a ∈ A is applied to

all candidate problems in the problem space and performance is evaluated using the

performance measurements, normalized root mean square error, F1 score, precision

and recall.

Meta Features

The following features are extracted from each candidate problem to construct

the meta learning recommendation system.

• Number of Rows

• Number of Columns

• Rows to Columns Ratio

• Number of Discrete Columns

• Maximum number of factors among discrete columns

• Minimum number of factors among discrete columns

• Average number of factors among discrete columns

• Number of continuous columns

27

• Gradient average

• Gradient minimum

• Gradient maximum

• Gradient standard deviation

Table 8 gives the time in seconds to execute each algorithm a ∈ A for each problem

p ∈ P .

Table 3. Algorithm Execution Time in Seconds

Dataset SVM KNN
Naive
Bayes

SVR
Ridge

Regression
Linear

Regression
Heart 0.0060 0.0080 0.0050 0.0060 0.0070 0.0060
Spam 0.1899 0.0790 0.0080 0.2019 0.0120 0.0130

Bank Personal Loan 0.1139 0.1459 0.0080 0.1879 0.0180 0.0130
Framingham 0.2588 0.1799 0.0100 0.2828 0.0130 0.0150

Math Placement 0.0630 0.0500 0.0080 0.0770 0.0100 0.0100
Credit Card Fraud 746.88 508.85 0.5577 639.77 0.2858 1.0366

Table 4 shows the meta features extracted from each problem p ∈ P . These meta

features are scaled using Python standard scaler before training the meta modeler.

28

T
a
b

le
4
.

M
e
ta

F
e
a
tu

re
s

D
at

a
R

ow
s

C
ol

u
m

n
s

R
ow

s-
C

ol
s

R
at

io
N

u
m

b
er

D
is

cr
et

e
M

ax
N

u
m

F
ac

to
rs

M
in

N
u

m
F

ac
to

rs
A

v
g

N
u

m
F

ac
to

rs
N

u
m

b
er

C
on

ti
n
u

ou
s

G
ra

d
ie

n
t

A
v
g

G
ra

d
ie

n
t

M
in

G
ra

d
ie

n
t

M
ax

G
ra

d
ie

n
t

S
td

H
ea

rt
30

3
13

23
.3

07
7

11
49

2
14

.0
90

9
2

-6
.0

07
9

-2
82

28
1

64
.9

57
9

S
p

am
46

01
6

76
6.

83
33

6
96

4
14

2
47

2.
66

67
0

-7
0.

79
83

-1
58

41
13

.7
39

29
7.

08
71

B
an

k
P

er
so

n
al

L
oa

n
50

00
12

41
6.

66
67

12
46

7
2

99
.2

5
0

-4
.8

17
7

-4
83

25
.4

48
32

5
19

01
7.

37
93

F
ra

m
in

gh
am

36
56

15
24

3.
73

33
14

24
1

2
65

.1
42

9
1

7.
26

88
-2

53
31

9
46

.5
08

0
M

at
h

P
la

ce
m

en
t

17
88

9
19

8.
66

67
8

23
7

2
44

.7
5

1
-1

.7
39

9
-4

31
.5

43
2

88
.8

45
0

C
re

d
it

C
ar

d
F

ra
u

d
75

98
8

22
9

33
1.

82
53

22
6

86
94

1
84

1.
51

77
3

13
11

0.
43

-7
90

35
95

15
66

66
82

57
30

53
.3

88
7

T
a
b

le
5
.

S
c
a
le

d
M

e
ta

F
e
a
tu

re
s

D
at

a
R

ow
s

C
ol

u
m

n
s

R
ow

s-
C

ol
s

R
at

io
N

u
m

b
er

D
is

cr
et

e
M

ax
N

u
m

F
ac

to
rs

M
in

N
u

m
F

ac
to

rs
A

v
g

N
u

m
F

ac
to

rs
N

u
m

b
er

C
on

ti
n
u

ou
s

G
ra

d
ie

n
t

A
v
g

G
ra

d
ie

n
t

M
in

G
ra

d
ie

n
t

M
ax

G
ra

d
ie

n
t

S
td

H
ea

rt
-0

.5
01

5
-0

.4
32

1
-0

.7
97

1
-0

.4
29

6
-0

.5
17

1
-0

.4
43

4
-0

.7
12

0
-0

.1
76

8
-0

.4
38

4
0.

45
17

-0
.4

48
8

-0
.4

65
5

S
p

am
-0

.3
46

3
-0

.5
18

6
1.

99
24

-0
.4

91
6

-0
.2

26
9

2.
23

60
0.

74
32

-1
.2

37
4

-0
.4

51
6

0.
44

64
-0

.4
48

9
-0

.4
64

4
B

an
k

P
er

so
n

al
L

oa
n

-0
.4

94
8

-0
.4

44
5

-0
.7

31
6

-0
.4

42
0

-0
.4

98
0

-0
.4

43
4

-0
.6

60
9

-0
.1

76
8

-0
.4

38
2

0.
43

54
-0

.4
40

7
-0

.3
76

2
F

ra
m

in
gh

am
-0

.3
80

4
-0

.4
07

4
0.

02
99

-0
.3

92
4

-0
.4

56
2

-0
.4

43
4

-0
.5

50
0

-0
.7

07
1

-0
.4

35
7

0.
45

17
-0

.4
48

8
-0

.4
65

5
M

at
h

P
la

ce
m

en
t

-0
.5

08
6

-0
.4

32
1

-0
.8

53
9

-0
.4

79
2

-0
.5

26
3

-0
.4

43
4

-0
.7

34
1

1.
94

45
-0

.4
72

0
0.

45
09

-0
.4

48
8

-0
.4

63
4

C
re

d
it

C
ar

d
F

ra
u

d
2.

23
17

2.
23

47
0.

36
04

2.
23

49
2.

22
44

-0
.4

62
5

1.
91

38
0.

35
36

2.
23

59
-2

.2
36

0
2.

23
61

2.
23

49

29

Due to potential redundant information being contained within the meta features

and the number of features being greater than the number of datasets, the dimen-

sionality of the meta features is reduced using PCA. Figure 4 graphs the variance

explained by each principal component. Four principal components explain 100% of

the variability in the meta features. However, three principal components are chosen

for the dimension reduction to graph the meta features in 3-dimensional space. These

three principal components explain 99.7% of the variability in the data. The loading

vectors for these principal components are shown in Table 6.

Figure 4. Principal Component Analysis of Meta Features

30

T
a
b

le
6
.

P
ri

n
c
ip

a
l

C
o
m

p
o
n

e
n
t

L
o
a
d

in
g

V
e
c
to

r

P
ri

n
ci

p
al

C
om

p
on

en
t

L
oa

d
in

g
V

ec
to

r

R
ow

s
C

ol
u
m

n
s

R
ow

s-
C

ol
s

R
at

io
N

u
m

b
er

D
is

cr
et

e
M

ax
n
u
m

fa
ct

or
s

M
in

n
u
m

fa
ct

or
s

A
v
g

n
u
m

fa
ct

or
s

N
u

m
b

er
C

on
ti

n
u
ou

s
G

ra
d
ie

n
t

A
v
g

G
ra

d
ie

n
t

M
in

G
ra

d
ie

n
t

M
ax

G
ra

d
ie

n
t

S
td

1
0.

32
57

0.
32

65
-0

.0
03

0
0.

32
65

0.
32

49
-0

.0
67

7
0.

28
07

0.
25

55
0.

32
66

-0
.3

26
6

0.
32

66
0.

32
63

2
0.

03
32

-0
.0

11
8

0.
64

58
-0

.0
07

6
0.

06
62

0.
59

97
0.

33
14

-0
.3

28
1

0.
00

26
-0

.0
07

1
0.

00
59

0.
00

69
3

0.
11

26
0.

05
55

0.
29

98
0.

06
50

0.
05

56
-0

.6
28

0
-0

.1
40

8
-0

.6
76

5
0.

04
59

-0
.0

50
3

0.
04

70
0.

09
15

31

The projection of the meta features into the principal components space is shown

in Figure 5. Additionally, Table 7 gives the coordinates for each dataset shown in

Figure 5.

Figure 5. Meta Features Projected in Principal Component Space

Table 7. Meta Features in Principal Component Space

Dataset PC1 PC2 PC3
Heart -1.2211 -1.7051 -0.7891
Spam -1.3708 3.1317 -0.4216

Bank Personal Loan -1.4891 0.1232 0.9887
Framingham -1.3349 -0.7152 0.1298

Math Placement -1.4249 -0.8649 0.0637
Credit Card Fraud 6.8408 0.0303 0.0285

All datasets except Credit Card Fraud are nearly coplanar in the Principal Compo-

nent 1 plane. The euclidean distance between the Framingham and Math Placement

32

datasets is 0.1868. Therefore, the algorithms are expected to perform similarly on

these two datasets if the distribution of the response is similar between the two.

Table 8 gives the time to execute each a ∈ A for each p ∈ P . Since KNN, SVM

and SVR scale poorly with the size of the dataset, Credit Card fraud dataset has the

worst time performance.

Table 8. Algorithm Execution Time in Seconds

Dataset SVM KNN
Naive
Bayes

SVR
Ridge

Regression
Linear

Regression
Heart 0.0060 0.0080 0.0050 0.0060 0.0070 0.0060
Spam 0.1899 0.0790 0.0080 0.2019 0.0120 0.0130

Bank Personal Loan 0.1139 0.1459 0.0080 0.1879 0.0180 0.0130
Framingham 0.2588 0.1799 0.0100 0.2828 0.0130 0.0150

Math Placement 0.0630 0.0500 0.0080 0.0770 0.0100 0.0100
Credit Card Fraud 746.88 508.85 0.5577 639.77 0.2858 1.0366

NRMSE

In this section, the six datasets in the problem space P, have their algorithm

performance predicted using the metric NMRSE. The true algorithm performance is

ranked for each dataset using this metric and the algorithm ranking returned by the

meta learner recommendation system are evaluated.

Table 9 shows each algorithms’ performance using the metric NRMSE. Note that

this metric is not normally to evaluate classifiers. The rankings of each algorithm

a ∈ A is given in Table 10. Using NRMSE, SVR is the true best performing algo-

rithm in 50% of the datasets, while its classification counterpart SVM is the worst

performing algorithm in 33.33% of the datasets. Overall, SVR is always in the top

third performing algorithms, while SVM is in the bottom two, in 66.7% of the datasets.

33

Table 9. Dataset Actual NRMSE

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.4149 0.4527 0.3841 0.4049 0.4049 0.4049
Spam 0.3787 0.3670 0.4950 0.3801 0.4736 0.4736

Bank Personal Loan 0.1987 0.2145 0.3178 0.1857 0.2500 0.2500
Framingham 0.5638 0.4076 0.4167 0.3904 0.3904 0.3904

Math Placement 0.5493 0.5364 0.5403 0.4930 0.5138 0.5138
Credit Card Fraud 0.2740 0.2196 0.2979 0.2088 0.2454 0.2459

Table 10. Dataset Actual NRMSE Ranking

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 5 6 1 3 3 3
Spam 2 1 6 3 4.5 4.5

Bank Personal Loan 2 3 6 1 4.5 4.5
Framingham 6 4 5 2 2 2

Math Placement 6 4 5 1 2.5 2.5
Credit Card Fraud 5 2 6 1 3 4

To predict the performance metric NRMSE, SVR is the meta learner with the meta

features as the input and each algorithms’ NRMSE as the target variable. Leave one

out validation gives the final predicted NRMSE of each dataset.

The final predicted NRMSE of the meta models is given in Table 11 and the

predicted algorithm ranking is given in Table 12. The meta learner ranks SVR as the

top performing algorithm for 66.7% of the datasets, which could be due to the true

performance of that algorithm ranking in the top three for all datasets.

Table 11. Dataset Predicted NRMSE

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.5857 0.5044 0.4508 0.4552 0.4520 0.4520
Spam 0.2010 0.2472 0.4026 0.2290 0.3138 0.3139

Bank Personal Loan 0.4593 0.4290 0.4376 0.3877 0.4095 0.4095
Framingham 0.4328 0.4237 0.4377 0.3815 0.4071 0.4071

Math Placement 0.4471 0.3353 0.3964 0.2959 0.3487 0.3487
Credit Card Fraud 0.3815 0.3755 0.4290 0.3394 0.3819 0.3819

34

Table 12. Dataset Predicted NRMSE Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 6 5 1 4 2 3
Spam 1 3 6 2 4 5

Bank Personal Loan 6 4 5 1 2 3
Framingham 5 4 6 1 3 2

Math Placement 6 2 5 1 3 4
Credit Card Fraud 3 2 6 1 4.5 4.5

The evaluation of the meta learner using NRMSE as a performance metric for

classification problems is given by Table 13. Using NRMSE as the performance metric

with classification problems, causes the system to recommend the usage of the actual

best performing algorithm in two out of the six datasets. A priori knowledge of each

a ∈ A performance for all p ∈ P , allows the NRMSE of the recommendation to be

compared with the known best algorithm. In Table 13, relaxing the tolerance of a hit

to be within 10% of the actual best NRMSE, improves the hit rate to 50%.

Table 13. NRMSE Recommendation Rating

Epsilon

Model
Actual Best

NRMSE
Best Algorithm

Recommended
Algorithm

NRMSE of
Recommendation

0.01 0.05 0.1

Heart 0.3841 NB NB 0.3841
Spam 0.3670 KNN SVM 0.3787

Bank Personal Loan 0.1857 SVR SVR 0.1857
Framingham 0.3904 SVR SVR 0.3904

Math Placement 0.4930 SVR SVR 0.4930
Credit Card Fraud 0.2088 SVR SVR 0.2088

35

NRMSE using Class Probabilities

In this section, the six datasets in the problem space P, have their algorithm

performance predicted using the metric NMRSE calculated using class probabilities.

In this case, the predicted values ŷ ∈ [0, 1]. The true algorithm performance is ranked

for each dataset using this metric and the algorithm ranking returned by the meta

learner recommendation system are evaluated.

Table ?? shows each algorithms performance using the metric different calculation

of NRMSE. Like the previous section, note that this metric is not normally to evaluate

classifiers. The rankings of each algorithm a ∈ A is given in Table ??.

Table 14. Dataset Actual NRMSE using Class Probabilities

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.3436 0.3781 0.3514 0.3456 0.3390 0.3390
Spam 0.3303 0.3403 0.4809 0.3380 0.4020 0.4020

Bank Personal Loan 0.1593 0.1909 0.2901 0.1573 0.2232 0.2232
Framingham 0.3484 0.3691 0.3946 0.3527 0.3452 0.3452

Math Placement 0.4119 0.4473 0.4762 0.4259 0.4232 0.4232
Credit Card Fraud 0.2083 0.2087 0.2973 0.2030 0.2167 0.2165

Table 15. Dataset Actual NRMSE using Class Probabilities Ranking

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 3 6 5 4 1 2
Spam 1 3 6 2 5 4

Bank Personal Loan 2 3 6 1 5 4
Framingham 3 5 6 4 1 2

Math Placement 1 5 6 4 2 3
Credit Card Fraud 2 3 6 1 5 4

To predict the performance metric, NRMSE calculated using the class probabili-

ties, SVR is the meta learner with the meta features as the input and each algorithms’

NRMSE as the target variable. Leave one out validation gives the final predicted

NRMSE of each dataset.

The final predicted NRMSE using class probabilities of the meta models is given

in Table ?? and the predicted algorithm ranking is given in Table ??. SVM ranks

36

in the top three for all datasets and Naive Bayes ranked last in 5⁄6 datasets. Due to

SVM’s performance on the datasets, the recommendation system predicted it as top

performing algorithm in 66.67% cases.

Table 16. Dataset Predicted NRMSE using Class Probabilities

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.3436 0.3794 0.3855 0.3674 0.3229 0.3229
Spam 0.2335 0.2625 0.3832 0.2236 0.3217 0.3216

Bank Personal Loan 0.3116 0.3448 0.3891 0.3245 0.3228 0.3228
Framingham 0.3063 0.3410 0.3855 0.3187 0.3232 0.3232

Math Placement 0.2538 0.2845 0.3855 0.2550 0.3094 0.3093
Credit Card Fraud 0.2856 0.3191 0.3855 0.2916 0.3232 0.3232

Table 17. Dataset Predicted NRMSE using Class Probabilities Ranking

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 3 5 6 4 2 1
Spam 2 3 6 1 5 4

Bank Personal Loan 1 5 6 4 3 2
Framingham 1 5 6 2 3 4

Math Placement 1 3 6 2 5 4
Credit Card Fraud 1 3 6 2 5 4

The evaluation of the meta learner using this different NRMSE as a performance

metric for classification problems is given by Table ??. Using NRMSE as the perfor-

mance metric with classification problems causes the system to recommend the usage

of the actual best performing algorithm in only one out of the six datasets. However,

despite this low hit ratio, the actual NRMSE of the recommendation is within 5% of

the true best. Thus, once the hit ratio is relaxed to the recommendation being 5% of

the true best, then it is improved to 100%.

37

Table 18. NRMSE using Class Probabilities Recommendation Rating

Epsilon

Model
Actual Best

NRMSE
Best Algorithm

Recommended
Algorithm

NRMSE of
Recommendation

0.01 0.05 0.1

Heart 0.3390 RR LR 0.3390
Spam 0.3303 SVM SVR 0.3380

Bank Personal Loan 0.1573 SVR SVR 0.1593
Framingham 0.3452 RR SVM 0.3484

Math Placement 0.4119 SVM SVM 0.4119
Credit Card Fraud 0.2030 SVR SVM 0.2083

F1 Score

In this section, the six datasets in the problem space P, have their algorithm

performance predicted using the metric F1 score. F1 score is a single metric that is

useful if one value is desired to compare two classifiers. It is the harmonic mean of

precision and recall.

Since the algorithms support vector regression, linear regression and ridge regres-

sion are not normally used for classification, a threshold is set to assign class labels.

Figure 14 shows that a decision threshold of 0.5 is not optimal for the Credit Card

Dataset using SVR. Additional, graphs of the F1 score versus the decision threshold

for the other dataset algorithm combinations are included in Appendix A.

38

Figure 6. SVR Credit Card Fraud F1 vs Threshold

Table 19 shows each algorithms performance using the metric F1 score. The

rankings of each algorithm a ∈ A is given in Table 20. SVM and KNN are typically

the top performing algorithms except for the Heart dataset.

Table 19. Dataset Actual F1 Score

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.8346 0.8175 0.8636 0.8485 0.8551 0.8551
Spam 0.8101 0.8166 0.5933 0.7966 0.6158 0.6158

Bank Personal Loan 0.8159 0.6993 0.5511 0.7890 0.5247 0.5247
Framingham 0.3708 0.1413 0.2743 0.0823 0.0089 0.0089

Math Placement 0.7494 0.7972 0.7649 0.8362 0.8219 0.8219
Credit Card Fraud 0.5994 0.6206 0.4970 0.6490 0.4298 0.4292

39

Table 20. Actual F1 Score Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 5 6 1 4 2.5 2.5
Spam 2 1 6 3 4.5 4.5

Bank Personal Loan 1 3 4 2 5.5 5.5
Framingham 1 3 2 4 5.5 5.5

Math Placement 6 4 5 1 2.5 2.5
Credit Card Fraud 3 2 4 1 5 6

Like the previous performance metrics, to predict F1 score, SVR with a radial ba-

sis function kernel is the meta learner with the meta features projected to 3-dimension

space as the input and each algorithms’ F1 score as the target variable. Additionally,

the default parameters of python’s implementation of SVR are used and the hyper-

parameter gamma is set to scale which is given by Equation (46) and the penalty

hyperparameter C is set to one. Leave one out validation gives the final predicted

F1 score of each dataset. The final predicted F1 score of the meta models is given in

Table 21 and algorithm ranking is given in Table 22. Similar to the usage of NRMSE

as performance metric, the recommendation gives SVR as the best or second best

performing algorithm for all six datasets because its true performance is in the top

three in 66.67% of the datasets used to construct the meta learner.

Table 21. Dataset Predicted F1 Score

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.6143 0.7181 0.5824 0.7520 0.5609 0.5607
Spam 0.7716 0.6392 0.5403 0.6741 0.5699 0.5698

Bank Personal Loan 0.5899 0.6789 0.5690 0.7045 0.6653 0.6653
Framingham 0.7324 0.7191 0.7084 0.7487 0.7119 0.7119

Math Placement 0.6952 0.6257 0.5857 0.6877 0.5704 0.5704
Credit Card Fraud 0.7323 0.6984 0.6703 0.7371 0.6894 0.6894

40

Table 22. Predicted F1 Score Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 3 2 4 1 5 6
Spam 1 3 6 2 4 5

Bank Personal Loan 5 2 6 1 3 4
Framingham 2 3 6 1 5 4

Math Placement 1 3 4 2 6 5
Credit Card Fraud 2 3 6 1 4.5 4.5

The evaluation of the meta learning recommendation system using F1 score as a

performance metric is given by Table 23. Using F1 score as the performance met-

ric with classification problems results in a worse hit ratio than using NRMSE. The

recommendation system correctly selects the true best performing algorithm in one

case. If the criteria for a hit is relaxed to the system’s recommendation being within

5% of the actual best algorithm, then the hit ratio improves to 66.67%. Addition-

ally, relaxing the tolerance of a hit to being within 5% of the actual best algorithm,

improves the hit rate to 66.67%.

Table 23. F1 Score Recommendation Rating

Epsilon

Model
Actual Best

Precision
Best Algorithm

Recommended
Algorithm

Precision of
Recommendation

0.01 0.05 0.1

Heart 0.8636 NB SVR 0.8485
Spam 0.8166 KNN SVM 0.8101

Bank Personal Loan 0.8159 SVM SVR 0.7890
Framingham 0.3708 SVM SVR 0.0823

Math Placement 0.8362 SVR SVM 0.7494
Credit Card Fraud 0.6490 SVR SVR 0.6490

41

Precision

In this section, the six datasets in the problem space P, have their algorithm

performance predicted using the metric precision. As stated in the literature review,

precision is the accuracy of positive predictions and there is a trade off of this metric

and recall.

Since the algorithms SVR, LR and RR are not normally used for classification, a

threshold is necessary to assign class labels. Figure 7 shows that a decision threshold

of 0.5 is not optimal for the Credit Card Dataset using SVR. Additional, graphs of

the precision and recall versus the decision threshold for the other dataset algorithm

combinations are included in Appendix A.

Figure 7. SVR Credit Card Fraud Precision Recall vs Threshold

42

Table 24 shows each algorithms performance using the performance metric pre-

cision. The rankings of each algorithm a ∈ A is given in Table 25. The regression

algorithms used classification true precision ranks in the top three of the algorithms

used for 66.67% of the datasets.

Table 24. Dataset Actual Precision

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.8689 0.7887 0.8636 0.8485 0.8194 0.8194
Spam 0.8466 0.8804 0.8568 0.8937 0.9457 0.9457

Bank Personal Loan 0.7384 0.9386 0.4806 0.9556 0.9718 0.9718
Framingham 0.2655 0.3333 0.3780 0.5000 0.5000 0.5000

Math Placement 0.8568 0.7627 0.8416 0.7695 0.7569 0.7569
Credit Card Fraud 0.5272 0.8528 0.4587 0.9301 0.9163 0.9068

Table 25. Dataset Actual Precision Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 1 6 2 3 4.5 4.5
Spam 6 4 5 3 1.5 1.5

Bank Personal Loan 5 4 6 3 1.5 1.5
Framingham 6 5 4 2 2 2

Math Placement 1 4 2 3 5.5 5.5
Credit Card Fraud 5 4 6 1 2 3

Like the previous performance metrics, to predict precision, SVR with a radial ba-

sis function kernel is the meta learner with the meta features projected to 3-dimension

space as the input and each algorithms’ precision as the target variable. Leave one

out validation gives the predicted precision of the dataset.

The final predicted precision of the meta models is given in Table 26 and algorithm

ranking is given in Table 27.

Table 26. Dataset Predicted Precision

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.7359 0.5616 0.6238 0.5676 0.5368 0.5359
Spam 0.6480 0.9286 0.5260 0.9406 0.9621 0.9621

Bank Personal Loan 0.7261 0.6590 0.7126 0.6301 0.6404 0.6393
Framingham 0.7659 0.8507 0.7256 0.8625 0.8585 0.8585

Math Placement 0.6759 0.7244 0.5783 0.7641 0.7563 0.7563
Credit Card Fraud 0.7432 0.7751 0.7037 0.8131 0.8186 0.8186

43

Table 27. Dataset Predicted Precision Ranking

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 1 4 2 3 5 6
Spam 5 4 6 3 1.5 1.5

Bank Personal Loan 1 3 2 6 4 5
Framingham 5 4 6 1 2.5 2.5

Math Placement 5 4 6 1 2.5 2.5
Credit Card Fraud 5 4 6 3 1.5 1.5

The evaluation of the meta learning recommendation system using precision as a

performance metric is given in Table 28. Using precision as the performance metric

with classification problems causes the system to recommend the usage of the actual

best performing algorithm in half of the datasets used for this thesis. Relaxing the

criteria for a hit does not improve the hit ratio.

Table 28. Precision Recommendation Rating

Epsilon

Model
Actual Best

Precision
Best Algorithm

Recommended
Algorithm

Precision of
Recommendation

0.01 0.05 0.1

Heart 0.8689 SVM SVM 0.8689
Spam 0.9457 RR RR 0.9457

Bank Personal Loan 0.9718 RR SVM 0.7384
Framingham 0.5000 SVR SVR 0.5000

Math Placement 0.8568 SVM SVR 0.7695
Credit Card Fraud 0.9301 SVR RR 0.9301

44

Recall

In this section, the six datasets in the problem space P, have their algorithm

performance predicted using the metric recall. Recall is the ratio of positive instances

that are correctly detected by the classifier. It is also called true positive rate or

sensitivity. A classifier with high recall but low precision will have many predicted

labels that are incorrect when compared to the training labels. This classifier predicts

many positives instances. On the other hand, a classifier with high precision but low

recall will have many correct predictions when compared to the training labels but

the classifier is predicting many negative instances [24]. Note, there is a precision

recall trade off. Increasing recall will reduce precision and vice versa [17].

Table 29 shows each algorithms performance using the metric recall. Since recall is

the accuracy of the positive predictions, it will low for algorithms that do not predict

many positive instances. This is why the recall for the Framingham and Credit Card

data sets are much lower for the algorithms SVR, LR and RR. The rankings of each

algorithm a ∈ A is given in Table 30. SVM is the true best performing algorithm in

66.67% of the datasets.

Table 29. Dataset Actual Recall

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.8030 0.8485 0.8636 0.8485 0.8939 0.8939
Spam 0.7766 0.7614 0.4538 0.7186 0.4566 0.4566

Bank Personal Loan 0.9115 0.5573 0.6458 0.6719 0.3594 0.3594
Framingham 0.6143 0.0897 0.2152 0.0448 0.0045 0.0045

Math Placement 0.6660 0.8351 0.7010 0.9155 0.8990 0.8990
Credit Card Fraud 0.6945 0.4878 0.5423 0.4984 0.2807 0.2811

45

Table 30. Dataset Actual Recall Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 6 4.5 3 4.5 1.5 1.5
Spam 1 2 6 3 4.5 4.5

Bank Personal Loan 1 4 3 2 5.5 5.5
Framingham 1 3 2 4 5.5 5.5

Math Placement 6 4 5 1 2.5 2.5
Credit Card Fraud 1 4 2 3 6 5

Like the previous performance metrics, to predict recall, SVR with a radial basis

function kernel is the meta learner with the meta features projected to 3 - dimensional

space as the input and each algorithms’ recall as the target variable. Like the previous

sections, the hyperparameters are set to the defaults. The predicted recall of the

dataset that is left out during leave one out validation is the predicted precision of

the meta modeler.

The final predicted recall of the meta models is given in Table 31 and algorithm

ranking is given in Table 32.

Table 31. Dataset Predicted Recall

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 0.6417 0.6699 0.5991 0.6494 0.4059 0.4061
Spam 0.8879 0.6133 0.5802 0.6246 0.3693 0.3693

Bank Personal Loan 0.7087 0.6807 0.4649 0.6759 0.6603 0.6603
Framingham 0.7708 0.7273 0.7279 0.8113 0.6710 0.6710

Math Placement 0.7208 0.5743 0.6343 0.6368 0.4285 0.4285
Credit Card Fraud 0.7628 0.6978 0.6228 0.7380 0.6033 0.6033

Table 32. Dataset Predicted Recall Rankings

Dataset SVM KNN Naive Bayes SVR Ridge Regression Linear Regression
Heart 3 1 4 2 6 5
Spam 1 3 4 2 6 5

Bank Personal Loan 1 2 6 3 5 4
Framingham 2 4 3 1 6 5

Math Placement 1 4 3 2 6 5
Credit Card Fraud 1 3 4 2 5.5 5.5

46

Table 33 shows evaluation of the meta learning recommendation system using

recall as the performance metric. The meta learning recommendation system recom-

mends the actual best performing algorithm 50% of the time. Additionally, relaxing

the tolerance of a hit to being within 10% of the actual best algorithm, improves the

hit rate to 66.67%.

Table 33. Recall Recommendation Rating

Epsilon

Model
Actual Best

Recall
Best Algorithm

Recommended
Algorithm

Recall of
Recommendation

0.01 0.05 0.1

Heart 0.8939 RR KNN 0.8485
Spam 0.7766 SVM SVM 0.7766

Bank Personal Loan 0.9115 SVM SVM 0.9115
Framingham 0.6143 SVM SVR 0.0448

Math Placement 0.9155 SVR SVM 0.6660
Credit Card Fraud 0.6945 SVM SVM 0.6945

Figure 8 shows recalls versus the time to execute each algorithm for the Credit

Card dataset. Since the dataset is large SVR, SVM and KNN had a slow execution

time. The algorithm Naive Bayes Classifier dominates RR, LR, KNN and SVR. Naive

Bayes does not dominate SVM but there is a practical difference in execution time.

SVM had that best recall of 0.6945 but it took 12.45 minutes to execute that algorithm

versus Naive Bayes which has a recall of 0.5423 but execute instantaneously on this

dataset.

47

Figure 8. Credit Card Fraud Recall vs Time

Comparison

Table 34 and Table 35 show the actual and predicted algorithm ranking for each

dataset when the regression algorithms are removed. The hit rates improves to

66.67%.

Table 34. Recall Classification Algorithms Actual Ranking

Dataset SVM KNN Naive Bayes
Heart 3 2 1
Spam 1 2 3

Bank Personal Loan 1 3 2
Framingham 1 3 2

Math Placement 3 1 2
Credit Card Fraud 1 3 2

48

Table 35. Recall Classification Algorithms Predicted Ranking

Dataset SVM KNN Naive Bayes
Heart 2 1 3
Spam 1 2 3

Bank Personal Loan 1 2 3
Framingham 1 3 2

Math Placement 1 3 2
Credit Card Fraud 1 2 3

Table 36. Credit Card Fraud Evaluation Metrics Comparison

NRMSE NRMSE Probabilitiesbilities Precision Recall F1 Score
SVR SVM RR SVM SVR

Table 36 shows the comparison of the recommendation r′ of the Credit Card

Fraud dataset for each the member of the performance space z. For this dataset, the

recommendation system gives the true best algorithm when NRMSE, Recall and F1

Score are the performance metric used to rank the algorithms. When using NRMSE

as the evaluation metric, SVR is the recommended algorithm. This recommendation

is correct. However, inspecting the confusion matrix for SVR shown in Table 72 shows

that the algorithm is only classifying 49.84% of the fraudulent credit card transactions

correctly. The performance metric recall changes the recommendation r′ to SVM. In

this case, the confusion matrix shown in Table 37, reveals the amount of fraudulent

transactions correctly classified improves to 69.45%. Additional, confusion matrices

for every dataset, algorithm combination are in Appendix B.

Table 37. Credit Card Fraud:
SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 26407 1531
Class 2 751 1707

Table 38. Credit Card Fraud:
SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 27846 92
Class 2 1233 1225

49

V. Conclusion

Meta Learning is considered using the features of a dataset to develop an overar-

ching model about the features. The usage of meta learning for algorithm selection

originates from Rice’s model in which the purpose is to select a good or best algorithm

for a particular problem [3].

This research shows that there is empirical evidence to suggest that NRMSE or

precision or recall could be the performance metric of choice to rank algorithm selec-

tion for classification datasets when using the meta learning recommendation system.

The meta learning recommendation system is able to recommendation the true best

algorithm most frequently when NRMSE is the performance space metric. However,

in this case, the performance metric NRMSE favors algorithms the minimize incor-

rect predictions which can led to a recommendation r′ that only considers accuracy.

Therefore, the performance metric of choice should be based on whether one wants

to accept more Type I error, which is false positives, or Type II error, which is false

negatives.

There are multiple areas for future research. First since algorithms that are nor-

mally suited for continuous output can perform well for binary classification, separate

meta learners could be created for the two differing sets of algorithms. Once these

new meta learners are created, they should contain the algorithms that are exclusive

for that particular output. For example, a meta learner for classification datasets

should only contain algorithms that are suitable for discrete output. This will allow

the meta learner to employ functions native to python or any other programming

language without overriding standard behavior. Another area that was not explored

in this thesis was model adequacy for the algorithms that were ranked. F-tests or

other statistical tests can be used to determine if the recommended algorithms are

a good fit to the respective dataset. Another area of further research, is to add dif-

50

ferent machine learning algorithms like neural networks, decision tree and logistic

regression, etc to the available algorithms for ranking by the framework. Subsequent

research can also use design of experiments to sample datasets of varying complexity

to tune the meta learner. Theses sample datasets can be generated using real valued

unimodal or multimodal function. Also, different meta features can be explored to

predict the absolute expected performance for algorithm recommendation.

51

Appendix A. Additional Figures

Figure 9. SVR Bank Personal Loan F1 Score vs Decision Threshold

Figure 10. Ridge Regression Bank Personal Loan F1 Score vs Decision Threshold

52

Figure 11. Linear Regression Bank Personal Loan F1 Score vs Decision Threshold

Figure 12. SVR Bank Personal Loan Precision/Recall vs Decision Threshold

53

Figure 13. RR Bank Personal Loan Precision/Recall vs Decision Threshold

Figure 14. LR Bank Personal Loan Precision/Recall vs Decision Threshold

54

Appendix B. Confusion Matrices

Table 39. Heart: SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 48 8
Class 2 13 53

Table 40. Heart: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 41 15
Class 2 10 56

Table 41. Heart: Naive Bayes Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 47 9
Class 2 9 57

Table 42. Heart: SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 46 10
Class 2 10 56

Table 43. Heart: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 43 13
Class 2 7 59

55

Table 44. Heart: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 43 13
Class 2 7 59

Table 45. Spam: SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1014 102
Class 2 162 563

Table 46. Spam: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1041 75
Class 2 173 552

Table 47. Spam: NB Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1061 55
Class 2 396 329

Table 48. Spam: SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1054 62
Class 2 204 521

Table 49. Spam: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1097 19
Class 2 394 331

56

Table 50. Spam: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1097 19
Class 2 394 331

Table 51. Bank: SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1746 62
Class 2 17 175

Table 52. Bank: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1801 7
Class 2 85 107

Table 53. Bank Personal Loan: Naive Bayes Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1674 134
Class 2 68 124

Table 54. Bank Personal Loan: SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1802 6
Class 2 63 129

Table 55. Bank Personal Loan: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1806 2
Class 2 123 69

57

Table 56. Bank Personal Loan: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1806 2
Class 2 123 69

Table 57. Framingham: SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 861 379
Class 2 86 137

Table 58. Framingham: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1200 40
Class 2 203 20

Table 59. Framingham: Naive Bayes Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1161 79
Class 2 175 48

Table 60. Framingham: SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1230 10
Class 2 213 10

Table 61. Framingham: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1239 1
Class 2 222 1

58

Table 62. Framingham: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 1239 1
Class 2 222 1

Table 63. Math Placement: SVM Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 177 54
Class 2 162 212

Table 64. Math Placement: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 105 126
Class 2 80 405

Table 65. Math Placement: Naive Bayes Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 167 64
Class 2 145 340

Table 66. Math Placement: SVR Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 98 133
Class 2 41 444

Table 67. Math Placement: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 91 140
Class 2 49 436

59

Table 68. Math Placement: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 91 140
Class 2 49 436

Table 69. Credit Card Fraud: KNN Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 27731 207
Class 2 1259 1199

Table 70. Credit Card: Naive Bayes Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 26365 1573
Class 2 1125 1333

Table 71. Credit Card Fraud: Ridge Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 27875 63
Class 2 1768 690

Table 72. Credit Card Fraud: Linear Regression Confusion Matrix

Predicted
Truth Class 1 Class 2

Class 1 27867 71
Class 2 1767 691

60

Appendix C. Source Code

1 Author Megan Woods

2 Modified on 22 Feb 2020

3 by Clarence Williams

4 Added classification dataset functionality

5

6 This script contains inputs that the user will need to change to run

with

7 his/her system , as well as options that the user may want to edit.

8

9 It is called in

10 - _03_prepare_data

11 - _04_algorithms

12 - _05_main

13 """

14 # Constants

15

16 # Directories

17 current_dir = "C:\\ Users \\c3_wi \\ Desktop \\ Python"

18 data_dir = current_dir + "data"

19 documentation_dir = current_dir

20

21 # Current ...

22 #documentation_dir = "C:\\ Users \\megan.woods \\ Desktop \\Megan Woods \\

AFIT\\ Thesis \\ recommendation_tool \\2019.07.07 _start \\

documentation /"

23

24 # Don’t touch

25 sigDig = 4 # number of significant digits

26 min_rows = 7 # minimum number of rows a dataset must contain

Listing C.1. Constantsṗy

61

1 This script contains helper functions. Placed here to declutter

other scripts.

2

3 It is called in

4 - _04_algorithms

5 - _05_main """

6

7 # Helper functions for the recommendation system

8

9 def unique(list1):

10 # intilize a null list

11 unique_list = []

12 # traverse for all elements

13 for x in list1:

14 # check if exists in unique_list or not

15 if x not in unique_list:

16 unique_list.append(x)

17 return unique_list

18

19 def find_ranks(performance_dict , return_sorted = False):

20 """ Function to find rankings of the algorithms

21

22 Parameters

23 ---------

24 performance_dict: dictionary

25 performances calculated per algorithm

26 return_sorted = boolean

27 False: return ranks ordered by order of algorithms

in calculate_accuracies function

28 True: return ranks ordered from highest to lowest

29

30 Returns

62

31 -------

32 dictionary , where keys are algorithms and values are

ranks

33 """

34 perf = performance_dict.copy()

35 ranks_dict = {key: rank for rank , key in enumerate(sorted(set(

perf.values ()), reverse=True), 1)}

36 ranks = {k: ranks_dict[v] for k,v, in perf.items ()} # unordered

ranks

37

38 if return_sorted == True:

39 num = 1

40 ranks_ordered = {}

41 ranks_temp = ranks.copy()

42 while num != len(ranks)+1:

43 h_rank = min(ranks_temp.items(), key=lambda x: x[1]) #

find key , value with highest rank

44 ranks_ordered[h_rank [0]] = h_rank [1] # add key , value to

new dictionary

45 ranks_temp.pop(h_rank [0]) # remove key , value from temp

dictionary

46 num = num + 1 # update indicator

47 return ranks_ordered

48 else:

49 return ranks

50

51 # OTHER_____________________________

52 # __________________________________

53 def extract(myDict , keys = [], values = []):

54 """ Function to get a subset of dictionary from a dictionary

55

56 Parameters

63

57 ----------

58 myDict: dict

59 the dictionary from which to extract

60 keys: list

61 names of keys to subset on

62 values: list

63 values to search for

64

65 Returns

66 -------

67 subset of dictionary

68 """

69 if len(values) != 0:

70 return dict((k, myDict[k]) for k, v in myDict.items() if v

in values)

71 if len(keys) != 0:

72 return dict((k, myDict[k]) for k in keys if k in myDict)

73

74 def is_number(s):

75 """ checks to see if data in file is a number or not

76 """

77 try:

78 float(s)

79 return True

80 except ValueError:

81 pass

82 try:

83 import unicodedata

84 unicodedata.numeric(s)

85 return True

86 except (TypeError , ValueError):

87 pass

64

88 return False

89

90 def maybe_float(s):

91 try:

92 return int(s)

93 except (ValueError , TypeError):

94 return s

95

96 # find all values in df that are in datasets

97 def intersection(lst1 , lst2):

98 temp = set(lst2)

99 lst3 = [value for value in lst1 if value in temp]

100 return lst3

Listing C.2. my functions.py

65

1 # -*- coding: utf -8 -*-

2 """

3 Created on 01 March 2019

4 Author Megan Woods

5 Modified on 22 Feb 2020

6 by Clarence Williams

7 Added classification dataset functionality

8

9 This script is used to set up a single dataset. It

10 - Loads the dataset

11 - Preprocesses

12 - Determines target column

13 - Creates training and testing sets

14 - Finds meta -features

15

16 It is called in

17 - _05_main

18

19 """

20 import os

21 import numpy as np

22 import pandas as pd

23

24 from pydataset import data as pydata

25 from sklearn.model_selection import train_test_split

26 from sklearn import preprocessing

27 from sklearn.preprocessing import StandardScaler

28

29 import _01_constants as constants

30

31 # Prepare the data_________

32 # *************************

66

33 # *************************

34 class Prep_Data ():

35 """ For setting up a new data instance

36

37 Parameters

38 ----------

39 name: string

40 a string to identify this dataset

41 target: string

42 name of target column to predict

43 directory: string

44 location of csv file

45 csv_file: string

46 name of data to load

47 dataframe: dataframe

48 already loaded dataframe to pass in (optional)

49 train_test: binary

50 whether or not to split into training and testings

sets

51

52 """

53 def __init__(self , name , target_col="", directory="", csv="",

dataframe="", train_test=True):

54 # init functions_______________________

55 # _____________________________________

56

57 def compute_test_train(target , df):

58 """ Function that computes the train and test datasets

59 """

60 sc = StandardScaler ()

61 x_df = df.drop(target ,1)

62 y_df = df[target]

67

63 x_df_scaled = sc.fit_transform(x_df)

64 X_train , X_test , Y_train , Y_test = train_test_split(

x_df_scaled , y_df , test_size =0.4, random_state =1, stratify=y_df)

65 return X_train , X_test , Y_train , Y_test

66

67 def read_documentation ():

68 os.chdir(constants.documentation_dir)

69 filename = name+".txt"

70 if os.path.isfile(filename):

71 file = open(filename , "r", encoding="utf -8")

72 contents = file.read()

73 file.close()

74 else:

75 contents = "DNE"

76 os.chdir(constants.current_dir)

77 return contents

78

79 def determine_int_vs_float(df):

80 float_col_list = []

81 int_col_list = []

82

83 for col in df.columns:

84 if all(isinstance(x,float) for x in df[col])==True:

85 float_col_list.append(col)

86 elif all(isinstance(x,int) for x in df[col])==True:

87 int_col_list.append(col)

88 float_df = df[float_col_list]

89 int_df = df[int_col_list]

90 return float_df , int_df

91

92 def separate_cont_and_discrete(df):

93

68

94 """ Question: How do we know if the data is discrete?

95 12 int64 and 1 float64 column

96

97 number of unique values: 228, 9, 97, 120, 108, 98,

82, 56, 195, 204, 143, 172, 10

98 for i in temp.columns: print (238/ temp[i]. nunique ())

99 1 26 2.5 2 2.2 2.4 2.9 4.3 1 1 1.6

1.4 23

100

101 """

102 sub_df = df.select_dtypes(include =["number"])

103 for i in sub_df.columns:

104 if i == "idp":

105 print(i)

106

107 sub_df = sub_df.drop(self.target ,1).copy()

108 num_rows = len(sub_df)

109 indicator = int(num_rows <30)

110 threshold = 0.25*(1 - indicator) + 0.5* indicator

111 #threshold = 0.25 if numRows >= 30, 0.5 if numRows < 30

112

113 # current method to determine if discrete:

114 discrete = []

115 for i in sub_df.columns:

116 value = "Continuous"

117 if sub_df[i]. nunique ()/num_rows <= threshold:

118 value = "Discrete"

119 discrete.append(i)

120

121 discrete_df = sub_df [[x for x in sub_df.columns if x in

discrete]]

122 continuous_df = sub_df [[x for x in sub_df.columns if x

69

not in discrete]]

123

124 return continuous_df , discrete_df

125

126 def set_target(df):

127 """ Set the target , unless already specified

128 """

129 number_list = list(df.select_dtypes(include =["number"]).

columns)

130 unique_values = list(df[number_list]. nunique ())

131 max_value = max(unique_values)

132 idx = unique_values.index(max_value)

133 target = number_list[idx]

134 return target

135

136 # init variables______________________________

137

138 self.name = name

139 self.documentation = read_documentation ()

140 self.remove = False

141

142 # Load data

143 if directory is not "":

144 temp_df = pd.read_csv("C:\\ Users\\ c3_wi\\ Desktop \\ Python

\\Data\\" + csv)

145 else:

146 temp_df = pydata(name)

147 # Preprocessing_________________________________

148 temp_df = temp_df.dropna(1,how="all").dropna(0,how="any")

149

150

151

70

152 cols = temp_df.columns.copy()

153 for i in cols:

154 # if column is boolean

155 if temp_df[i]. dtype.name=="bool":

156 # change values to 0 and 1

157 temp_df[i] = temp_df[i]. astype(int)

158 # drop columns that have the exact same input for each

row

159 if temp_df[i]. nunique () == 1:

160 temp_df = temp_df.drop(i,1)

161 # drop columns that serve as an index column

162 elif list(temp_df.index) == list(temp_df[i]):

163 temp_df = temp_df.drop(i,1)

164

165 # drop object columns that have all unique values

166 object_cols = temp_df.select_dtypes(include =["object"]).

columns

167 df = temp_df.drop((i for i in object_cols if len(temp_df[i].

unique ())==len(temp_df[i])) ,1)

168

169 # we need at least 3 numeric columns (including the target

column) in order to take a gradient

170 temp_num_cols = temp_df.select_dtypes(include =["number"]).

columns

171 if len(temp_num_cols) <= 2:

172 self.remove = True

173 elif len(temp_df) < constants.min_rows:

174 self.remove = True

175 # elif len(temp_df.columns) < min_cols:

176 # self.remove = True

177 else:

178 num_columns_in_modified_original_df = len(df.columns)

71

179 # set target column

180 if (target_col == "") or (target_col not in

temp_num_cols):

181 #self.target = set_target(df)

182 self.target = target_col

183 else:

184 self.target = target_col

185 target = self.target

186 self.original_data = df.copy()

187

188 # label encode response

189 le = preprocessing.LabelEncoder ()

190

191 df[str(target)] = le.fit_transform(df[str(target)])

192

193 # continuous_df , discrete_df = determine_int_vs_float(df)

194 continuous_df , discrete_df = separate_cont_and_discrete(

df)

195 num_continuous = len(continuous_df.columns)

196 num_discrete = len(discrete_df.columns)

197

198 # find greatest number of unique values in discrete

column

199 disc_num_unique = []

200 for col in discrete_df.columns:

201 disc_num_unique.append(len(discrete_df[col]. unique ()

))

202

203 if len(disc_num_unique) != 0:

204 max_disc_num_unique = max(disc_num_unique)

205 min_disc_num_unique = min(disc_num_unique)

206 avg_disc_num_unique = sum(disc_num_unique)/float(len

72

(disc_num_unique))

207 else:

208 max_disc_num_unique = 0

209 min_disc_num_unique = 0

210 avg_disc_num_unique = 0

211

212 # one hot encoding for categorical variables

213 df = pd.get_dummies(df ,drop_first=True) #dtype = "

float64"

214

215 if len(continuous_df.columns) != 0:

216 df[continuous_df.columns] = (pd.DataFrame(#data=

min_max_scaler.fit_transform(continuous_df),

217 data=

preprocessing.scale(continuous_df),

218 index=

continuous_df.index ,

219 columns=

continuous_df.columns))

220

221 self.numeric_df = df.select_dtypes(include =["number"]).

drop(target ,1)

222 num_df = self.numeric_df

223 self.num_pred_cols = len(num_df.columns)

224

225 gradient = np.gradient(num_df.values) # do we compute

the gradient on the numeric and hot -encoded?

226 horizontal_gradient = gradient [1] # differences computed

per row - pretty sure we want this one

227

228 meta_features = {

229 "Rows": len(df.index),

73

230 "Columns":

num_columns_in_modified_original_df ,

231 "Rows -Cols Ratio": len(df.index)/

num_columns_in_modified_original_df ,

232 "Number Discrete": num_discrete ,

233 "Max num factors": max_disc_num_unique ,

234 "Min num factors": min_disc_num_unique ,

235 "Avg num factors": avg_disc_num_unique ,

236 "Number Continuous": num_continuous ,

237 "Gradient -Avg": horizontal_gradient.

mean(),

238 "Gradient -Min": horizontal_gradient.min

(),

239 "Gradient -Max": horizontal_gradient.max

(),

240 "Gradient -Std": horizontal_gradient.std

()

241 }

242

243 meta_features = pd.DataFrame(data =[[v for v in

meta_features.values ()]],

244 columns =[k for k in

meta_features.keys()],

245 index =[name])

246 self.meta_features = meta_features

247

248 # Training

249 if train_test:

250 self.X_train , self.X_test , self.y_train , self.y_test

= compute_test_train(df=df,target=target)

251 self.num_train = len(self.X_train)

74

252 self.num_test = len(self.X_test)

Listing C.3. prepare data.py

1 # -*- coding: utf -8 -*-

2 """

3 Author Megan Woods

4 Modified on 22 Feb 2020

5 by Clarence Williams

6 Added classification dataset functionality

7

8 - performs regression for algorithms

9

10 It is called in

11 - _05_main

12 - app

13 """

14 import _01_constants as constants

15 import _02_my_functions as mf

16

17 import os

18 import numpy as np

19 from sklearn import linear_model , neighbors , tree

20 from sklearn.metrics import mean_squared_error , r2_score

21 from sklearn import svm

22 from sklearn.neighbors import KNeighborsClassifier

23 from sklearn.naive_bayes import GaussianNB

24 from sklearn.metrics import precision_score , recall_score

25 from sklearn.ensemble import RandomForestClassifier

26 from sklearn.tree import DecisionTreeClassifier

27

28

29 os.chdir(constants.current_dir)

75

30

31 # MODELS_____________________

32 models = {

33 "SVM": svm.SVC(kernel=’rbf’, probability=False , gamma=’

scale ’, class_weight=’balanced ’),

34 "KNN": KNeighborsClassifier(n_neighbors =5),

35 "NB": GaussianNB (),

36 }

37

38 alg_names = list(models.keys())

39 algs_to_scale = ["SVM", "KNN", "NB"]

40 regression_num = 1 # to differentiate regression plots

41

42 class Metamodel ():

43 """ Class to create a (linear or decision tree) regression model

. Can plot

44 the predicted vs. actual plots , residual plots , as well as

display

45 statistical performances of the model

46 """

47 def __init__(self , reg_type , data):

48 self.data = data

49 self.target = data.target

50 self.name = reg_type

51 self.model = models[reg_type]

52 self.model.fit(data.X_train , data.y_train)

53 self.pred_train = self.model.predict(data.X_train)

54 self.pred_test = self.model.predict(data.X_test)

55 self.recall = recall_score(data.y_test , self.pred_test ,

average=’weighted ’)

56

57

76

58 def predict_y(self , point):

59 self.predicted_point = self.model.predict(point)

60

61 class Algorithms_Results ():

62 def __init__(self , data):

63

64 ##### Step 1 #####

65 # feature reduction

66

67 ##### Step 2 #####

68 # run regression on dataset

69 models = {}

70 for i in alg_names:

71 models[i] = Metamodel(i, data)

72

73 ##### Step 3 #####

74 # find recall performances for each algorithm

75 algorithm_results = [models[i] for i in models]

76

77 performances_recall = {}

78

79 for i in algorithm_results:

80 performances_recall[i.name] = i.recall

81

82

83 ##### Step 4 #####

84 # rank the algorithms based on their recall performances

85 ranks = mf.find_ranks(performances_recall)

86 ranks_ordered = mf.find_ranks(performances_recall ,

return_sorted=True)

87

88 self.models = models

77

89 self.name = data.name

90 self.target = data.target

91 self.num_cols = data.num_pred_cols

92 self.num_train = data.num_train

93 self.num_test = data.num_test

94 self.performances_recall = performances_recall

95 self.ranks = ranks

96 self.ranks_ordered = ranks_ordered

Listing C.4. algorithms.py

78

1 # -*- coding: utf -8 -*-

2 """

3 Author Megan Woods

4 Modified on 22 Feb 2020

5 by Clarence Williams

6 Added classification dataset functionality

7

8 It is called in

9 - app

10 """

11 # import packages________________________________

12 import _01_constants as constants

13 import _02_my_functions as mf

14 import _03_prepare_data as prep

15 import _04_algorithms as algs

16

17 import os

18 import pandas as pd

19 import numpy as np

20 from operator import sub , truediv

21 from sklearn.linear_model import LinearRegression

22 from scipy.stats import spearmanr

23 from pydataset import data as pydata

24 from sklearn.svm import SVR

25

26

27 os.chdir(constants.current_dir)

28

29 # SETUP____________________________________

30

31 def get_meta_features(my_list):

32 """ Creates dataframe of datasets and their metafeature values

79

33 """

34 return pd.concat ([i.meta_features for i in my_list])

35

36

37 # def alg_rankings(my_list):

38 # """ Creates dataframe of datasets and their rankings for each

meta -model

39 # """

40 # data = [algs.Algorithms_Results(my_list[i]).ranks.values () for

i in range(len(my_list))]

41 # alg_results = pd.DataFrame(data=data , columns=algs.models.keys

(), index=dataset_names)

42 # return alg_results

43

44 def meta_model(combined_meta , metric_df , target_set , algorithm_name)

:

45

46 idx = metric_df.columns.get_loc(algorithm_name)

47 m, n = combined_meta.shape

48 #pca = PCA(n_components =3)

49 #y_pred = np.zeros(shape =(m, 1))

50 #pca_train_data = pca.fit_transform(X_train)

51 #pca_test_data = pca.transform(X_test)

52 #y_train , y_test = metric_df.iloc[train_index , idx], metric_df.

iloc[test_index , idx]

53 idx = metric_df.columns.get_loc(algorithm_name)

54 y_train = metric_df.iloc[:, idx]

55 # Calculate actual gamma values to test

56 model = SVR(C=1, epsilon =0.1, gamma=’scale ’)

57

58 # model = linear_model.LinearRegression ()

59 model.fit(combined_meta , y_train)

80

60

61 y_pred = model.predict(target_set)

62

63 return y_pred

64

65

66

67

68 def rmse_results(my_list):

69 """ Creates dataframe of datasets and their rmse values for each

meta -model

70 """

71 data = [algs.Algorithms_Results(my_list[i]).performances_rmse.

values () for i in range(len(my_list))]

72 rmse_results = pd.DataFrame(data=data , columns=algs.models.keys

(), index=dataset_names)

73 return rmse_results

74

75 def recall_results(my_list):

76 """ Creates dataframe of datasets and their rmse values for each

meta -model

77 """

78 data = [algs.Algorithms_Results(my_list[i]).performances_recall.

values () for i in range(len(my_list))]

79 recall_results = pd.DataFrame(data=data , columns=algs.models.

keys(), index=dataset_names)

80 return recall_results

81

82

83 def get_normalizer(my_list):

84 """

85 """

81

86 my_max = [i.y_train.max() for i in datasets]

87 my_min = [i.y_train.min() for i in datasets]

88

89 range_list = list(map(sub , my_max , my_min))

90 return range_list

91

92

93 valid_datasets = []

94 # CSV Datasets

95 d1 = ["heart", constants.data_dir , ’heart.csv’, "target"]

96 d2 = ["spam", constants.data_dir , ’spam7.csv’, ’yesno_bin ’]

97 d3 = ["bank_personal_loan", constants.data_dir , ’Bank_Personal_Loan2

.csv’, ’Personal Loan’]

98 d4 = ["framingham", constants.data_dir , ’framingham2.csv’, ’

TenYearCHD ’]

99 d5 = [’math_placement ’, constants.data_dir , ’math_placement3.csv’, ’

CourseSuccess ’]

100 d6 = [’Credit_Card_Fraud ’, constants.data_dir , ’699. csv’, ’isFraud ’]

101

102 potential_datasets_CSVs = [d1 , d2 , d3 , d4 , d5 , d6]

103

104 # run CSV datasets through PrepData

105 for i in potential_datasets_CSVs [:30]:

106 prepared_data = prep.Prep_Data(name=i[0], directory=i[1], csv=i

[2], target_col=i[3])

107 print(i)

108 if prepared_data.remove == False:

109 valid_datasets.append(prepared_data)

110

111

112 # set variables__________________________

113 datasets = valid_datasets # list of instances of Prep_Data

82

114 dataset_names = [datasets[i].name for i in range(len(datasets))] #

list of dataset names

115 meta_features = get_meta_features(datasets)

116 recall_values = recall_results(datasets)

117 range_list = get_normalizer(datasets)

118 alg_class = [algs.Algorithms_Results(datasets[i]) for i in range(len

(datasets))]

119

120

121

122 excel_data = pd.concat ([meta_features , recall_values], axis =1)

123 excel_data.to_csv(constants.current_dir + "recall.csv")

124

125 spearman_correlation = []

126 relative_performance = [] # higher is better

127 temp_list = []

128 subset_rel_perf = []

129

130 num_rel_perf_equal_0 = 0

131 diff_rel_perf_equal_0 = []

132 diff_rel_perf_equal_0_names = []

133

134 num_correct = 0

135

136

137 def recommend(my_target_dataset):

138 global num_correct

139 global run

140 global num_rel_perf_equal_0

141

142 # Target dataset

143 target_dataset = datasets[my_target_dataset].name # set the

83

target dataset

144

145 target_meta_features = [meta_features.loc[target_dataset]. values

]

146 target_data = meta_features.loc[[target_dataset]] # target ’s

meta_features

147 target_actual_recall = recall_values.loc[target_dataset]

148

149 # training datasets

150 meta_X_train = meta_features.drop(target_dataset , 0)

151 meta_y_train = recall_values.drop(target_dataset , 0)

152

153 # Build SVR model

154 svm_pred = meta_model(meta_X_train , meta_y_train , target_data , ’

SVM’)

155 knn_pred = meta_model(meta_X_train , meta_y_train ,

target_meta_features , ’KNN’)

156 nb_pred = meta_model(meta_X_train , meta_y_train ,

target_meta_features , ’NB’)

157 dt_pred = meta_model(meta_X_train , meta_y_train ,

target_meta_features , ’DT’)

158 rf_pred = meta_model(meta_X_train , meta_y_train ,

target_meta_features , ’RF’)

159

160 frames_pred = [svm_pred [0], knn_pred [0], nb_pred [0], dt_pred [0],

rf_pred [0]]

161 #combined_pred = pd.concat(frames_pred , axis =1)

162

163 # Make recall predictions

164 target_predicted_recall = frames_pred

165 #target_predicted_recall = combined_pred [0]. tolist ()

166

84

167 recall_zippedlist = list(zip(target_actual_recall ,

target_predicted_recall))

168 recall_comparisons = pd.DataFrame(recall_zippedlist ,

169 columns =["Actual Recall", "

Predicted Recall"],

170 index=recall_values.columns)

171

172

173 # Results

174 actual_best = recall_comparisons["Actual Recall"]. idxmax ()

175 predicted_best = recall_comparisons["Predicted Recall"]. idxmax ()

176 actual_best_recall = recall_comparisons["Actual Recall"].max()

177 predicted_best_actual_recall = recall_comparisons.loc[

predicted_best , "Actual Recall"]

178

179

180 temp_relative_performance = actual_best_recall /

predicted_best_actual_recall

181

182 if temp_relative_performance == 0:

183 num_rel_perf_equal_0 += 1

184 diff_rel_perf_equal_0.append(predicted_best_actual_recall -

actual_best_recall)

185 diff_rel_perf_equal_0_names.append(target_dataset)

186

187 if predicted_best_actual_recall == 0:

188 relative_performance.append (1)

189 subset_rel_perf.append (1)

190 else:

191 relative_performance.append(temp_relative_performance)

192 if temp_relative_performance != 0:

193 subset_rel_perf.append(temp_relative_performance)

85

194

195

196 temp_relative_performance = actual_best_recall /

predicted_best_actual_recall

197

198 relative_performance.append(temp_relative_performance)

199 if temp_relative_performance != 0:

200 subset_rel_perf.append(temp_relative_performance)

201

202 print("\n")

203 print(target_dataset + " Actual best ", actual_best)

204 print("Predicted best ", predicted_best)

205 print("Actual best recall ", actual_best_recall)

206 print("Predicted best actual recall ",

predicted_best_actual_recall)

207 print("\n")

208

209 if actual_best == predicted_best:

210 num_correct = num_correct + 1

211

212

213 DATASETS = len(datasets)

214 ITERATIONS = 1 # no point in changing this ...

215 TOTAL_RUNS = DATASETS * ITERATIONS

216

217 for j in range(ITERATIONS):

218 # print(j)

219 for i in range(DATASETS):

220 # print(i)

221 recommend(i)

222

223 print("\n")

86

224 print("Accuracy: ", num_correct / TOTAL_RUNS)

225 print("Number Correct:", num_correct)

226 print("Runs:", TOTAL_RUNS)

227 print("Realtive performance: ", sum(relative_performance) /

TOTAL_RUNS)

228 print("Spearman ’s Rank: ", sum(spearman_correlation) / TOTAL_RUNS)

229

230

231 print("Subset rel performance", sum(subset_rel_perf) / len(

subset_rel_perf))

Listing C.5. main.py

87

Bibliography

1. Mark A. Gallagher and Donald L. Allen, “75 Years (1942 through 2017) of Op-
erations Research in the United States Air Force,” Military Operations Research
Society, vol. 22, no. 4, pp. 5–16, 2017.

2. James J. Cochran, Informs Analytics Body of Knowledge, Wiley, Hoboken, NJ,
2019.

3. John Rice, “The Algorithm Selection Problem,” Purdue University, Department
of Computer Science Technical Reports, Paper 99, 1975.

4. “A Meta-Learning Assistant for Providing User Support in Machine Learning and
Data Mining,” Tech. Rep. 26.357, Esprit, 2001.

5. Marin Matija, Johan A.K. Suykens, and Slavko Krajcar, “Load Forecasting using
a Multivariate Meta-Learning System,” Expert Systems with Applications, vol.
40, no. 11, pp. 4427 - 4437, 2013.

6. Can Cui, Teresa Wu, Mengqi Hu, Jeffery D. Weir, and Xiwang Li, “Short-term
Building Energy Model Recommendation System: A Meta-Learning Approach,”
Applied Energy, vol. 172, pp. 251–263, 2016.

7. Bernhard Pfahringer and Quan Sun, “Pairwise Meta-Rules for Better Meta-
Learning-Based Algorithm Ranking,” Mach Learn, vol. 93, pp. 141–161, 2013.

8. Can Cui, Mengqi Hu, Jeffery D. Weir, and Teresa Wu, “A Recommendation
System for Meta-Modeling: A Meta-Learning based Approach,” Expert Systems
with Applications, vol. 46, pp. 33–44, 2016.

9. Ciro Castiello, Giovanna Castellano, and Anna Fanelli, “Meta-data: Characteri-
zation of Input Features for Meta-learning,” 07 2005, MDAI, Modeling Decisions
for Artificial Intelligence, Second International Conference, pp. 457–468.

10. Lee J. Bain and Max Engelhardt, Introduction to Probability and Mathematical
Statistics, Duxbury, Pacific Grove, CA, 1992.

11. Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie, Elements of Statis-
tical Learning, Springer, 2017.

12. Evelyn Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Dis-
crimination: Consistency Properties,” International Statistical Review / Revue
Internationale de Statistique, vol. 57, no. 3, pp. 238–247, 1989.

13. Vahid Mirjalili and Sebastian Raschka, Python Machine Learning, Packt Pub-
lishing, Birmingham, UK, 2017.

88

14. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An Intro-
duction to Statistical Learning with Applications in R, Springer, 2017.

15. Peter Hall, Byeong U. Park, and Richard J. Samworth, “Choice of Neighbor
Order in Nearest-Neighbor Classification,” The Annals of Statistics, vol. 36, no.
5, pp. 2135–2152, 2008.

16. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik, “A Training
Algorithm for Optimal Margin Classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, New York, NY, 1992, COLT ’92,
pp. 144–152, ACM.

17. Aurelien Geron, Hands-On Machine Learning with Scikit-Learn & TensorFlow,
O’Reilly, Sebastopol, California, 2017.

18. Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, and
Vladimir Vapnik, “Support Vector Regression Machines,” in Advances in Neural
Information Processing Systems 9, pp. 155–161. MIT Press, 1997.

19. Stella M. Clarke, Jan H. Griebsch, and Timothy W. Simpson, “Analysis of
Support Vector Regression for Approximation of Complex Engineering Analyses,”
09 2003, vol. Volume 2: 29th Design Automation Conference, Parts A and B
of International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pp. 535–543.

20. “Scikit Learn Naive Bayes,” World Wide Web Page, Available at
https://scikit-learn.org/stable/modules/naive bayes.html, Accessed 06 August
2019.

21. Karl Pearson, “On Lines and Planes of Closest Fit to Systems of Points in
Space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 2, no. 11, pp. 559–572, 1901.

22. David C. Lay, Linear Algebra and its Applications, Pearson, Boston, MA, 2006.

23. “Scikit Learn Confusion Matrix,” World Wide Web Page, Available at
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion matrix.html,
Accessed 06 August 2019.

24. “Scikit Learn Precision Recall,” World Wide Web Page, Available at
https://scikit-learn.org/stable/auto examples/model selection/plot precision recall.html,
Accessed 03 September 2019.

25. “Heart Disease UCI,” World Wide Web Page, Available at
https://www.kaggle.com/ronitf/heart-disease-uci, Accessed 03 August 2019.

89

26. “Spam 7,” World Wide Web Page, Available at
http://vincentarelbundock.github.io/Rdatasets/doc/DAAG/spam7.html, Accessed
03 August 2019.

27. “Bank Loan Modeling,” World Wide Web Page, Available at
https://www.kaggle.com/itsmesunil/bank-loan-modelling/version/1, Accessed 03
August 2019.

28. “Logistic Regression to Predict Heart Disease,” World Wide Web Page, Available
at
https://www.kaggle.com/dileep070/heart-disease-prediction-using-logistic-
regression#framingham.csv, Accessed 03 August 2019.

29. “Math Placement Exam Results,” World Wide Web Page, Available at
http://vincentarelbundock.github.io/Rdatasets/doc/Stat2Data/MathPlacement.html,
Accessed 03 August 2019.

30. “Data Description (Details and Discussion),” World Wide Web Page, Available
at
https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203#latest-
592110, Accessed 04 August 2019.

31. Megan Woods, “A Metamodel Recommendation System using Meta-Learning,”
M.S. thesis, AFIT-ENS-MS-20-M-182, School of Engineering and Management,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, March 2020.

90

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26-03-2020 Master’s Thesis SEP 2018 - MAR 2020

Meta Learning Recommendation System for Classification

Williams, Clarence, O. 1st Lt, U.S. Air Force

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-20-M-181

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States

A data driven approach is an emerging paradigm for the handling of analytic problems. In this paradigm the mantra is
to let the data speak freely. However, when using machine learning algorithms, the data does not naturally reveal the
best or even a good approach for algorithm choice. One method to let the algorithm reveal itself is through the use of
Meta Learning, which uses the features of a dataset to determine a useful model to represent the entire dataset. This
research proposes an improvement on the meta-model recommendation system by adding classification problems to the
candidate problem space with appropriate evaluation metrics for these additional problems. This research predicts the
relative performance of six machine learning algorithms using support vector regression with a radial basis function as
the meta learner. Six sets of data of various complexity are explored using this recommendation system and at its best,
the system recommends the best algorithm 67% of the time and a “good” algorithm from 67% to 100% of the time
depending on how “good” is defined.

Meta Learning, Meta Modeling, Recommendation System, Algorithm Selection

U U U UU 105

Dr. Jeffery D. Weir, Ph.D., AFIT/ENS

(937) 255-3636, x4523; jeffery.weir@afit.edu

	Meta Learning Recommendation System for Classification
	Recommended Citation

	tmp.1595521849.pdf.3YW27

