
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2020

Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion

Scotland Yard Game with Rendezvous Spaceflight Operation Scotland Yard Game with Rendezvous Spaceflight Operation

Applications Applications

Joshua A. Daughtery

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Daughtery, Joshua A., "Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion Scotland Yard
Game with Rendezvous Spaceflight Operation Applications" (2020). Theses and Dissertations. 3625.
https://scholar.afit.edu/etd/3625

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Fetd%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholar.afit.edu%2Fetd%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3625?utm_source=scholar.afit.edu%2Fetd%2F3625&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

MONTE CARLO TREE SEARCH APPLIED TO A MODIFIED
PURSUIT/EVASION SCOTLAND YARD GAME WITH RENDEZVOUS

SPACEFLIGHT OPERATION APPLICATIONS

THESIS

Joshua A. Daugherty, Master Sergeant, USAF

AFIT-ENG-MS-20-M-000

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-000

MONTE CARLO TREE SEARCH APPLIED TO A MODIFIED PURSUIT/EVASION
SCOTLAND YARD GAME WITH RENDEZVOUS SPACEFLIGHT OPERATION

APPLICATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyberspace Operations

Joshua A. Daugherty, BS

Master Sergeant, USAF

June 2020

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-000

MONTE CARLO TREE SEARCH APPLIED TO A MODIFIED PURSUIT/EVASION
SCOTLAND YARD GAME WITH RENDEZVOUS SPACEFLIGHT OPERATION

APPLICATIONS

Joshua A. Daugherty, BS

Master Sergeant, USAF

Committee Membership:

Dr. Kenneth M. Hopkinson
Chair

Dr. Richard G. Cobb
Member

Maj Joan A. Betances, PhD
Member

iv

AFIT-ENG-MS-20-M-000

Abstract

This thesis takes the Scotland Yard board game and modifies its rules to mimic important

aspects of space in order to facilitate the creation of artificial intelligence for space asset

pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat

threats, an understanding of the tactics, techniques, and procedures must be captured and

studied. Games and simulations are effective tools to capture data lacking historical

context. Artificial intelligence and machine learning models can use simulations to

develop proper defensive and offensive tactics, techniques, and procedures capable of

protecting systems against potential threats. Monte Carlo Tree Search is a bandit-based

reinforcement learning model known for using limited domain knowledge to push

favorable results. Monte Carlo agents have been used in a multitude of imperfect domain

knowledge games. One such game was in which Monte Carlo agents were produced and

studied in an imperfect domain game for pursuit-evasion tactics is Scotland Yard. This

thesis continues the Monte Carlo agents previously produced by Mark Winands and Pim

Nijssen and applied to Scotland Yard. In the research presented here, the rules for Scotland

Yard are analyzed and presented in an expansion that partially accounts for spaceflight

dynamics in order to study the agents within a simplified model, while having some

foundation for use within space environments. Results show promise for the use of Monte-

Carlo agents in pursuit/evasion autonomous space scenarios while also illuminating some

major challenges for future work in more realistic three-dimensional space environments.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Kenneth

Hopkinson, for his guidance and support throughout the course of this thesis effort. There

were several times I thought I was not going to be able to make this accomplishment, and

the insight and experience helped push me through those dark times. I would also like to

thank my family for the days, nights and weekends lost while I had to squirrel away and

work through these struggles. Finally, I want to thank the faculty and committee for

providing the patience and resources to ensure I did not fail.

 Joshua A. Daugherty

vi

Table of Contents

Page

Abstract…………………………………………………………………………………...iv

Acknowledgements……………………………………………………………………….v

Table of Contents…………………………………………………………………………vi

List of Figures .. ix

List of Tables ...xx

List of Abbreviations ... xix

I. Introduction ...1

1.1 Motivation ..1

1.2 Research Overview ...2

1.2.1 Research Questions ...3

1.2.2 Research Tasks ..4

1.2.3 Scope and Assumptions ...5

1.3 Thesis Outline ...6

II. Literature Review ...9

2.1 Chapter Overview ...9

2.2 Game Theory ..9

2.2.1 Game Theory Mechanics ...10

2.2.2 Games in Artificial Intelligence ..11

2.2.3 Algorithm Development ..12

2.2.4 Artificial Intelligence Evolution ..12

2.2.5 Game Theory Application ...14

2.3 Machine Learning ...15

2.3.1 Learning Types ..15

2.3.1.1 Unsupervised Learning ..16

2.3.1.2 Supervised Learning ..17

vii

 Page

2.3.1.3 Reinforcement Learning ..17

2.3.2 Monte-Carlo Tree Search Model ...17

2.3.2.1 Selection ..19

2.3.2.2 Expansion ..19

2.3.2.3 Playout ...20

2.3.2.4 Backpropagation ..20

2.4 Relative Satellite Motion ..20

2.4.1 HCW Equations ...22

2.4.2 Pursuit-Evasion Controls ...23

2.5 Scotland Yard ...25

2.5.1 Rules ..25

2.5.2 Gameplay ...26

III. Methodology(+2) ..26

3.1 Chapter Overview ...26

3.2 Research Goals ...26

3.3 MC Agent ...27

3.3.1 Agent Deployment ..27

3.3.2 How Agent Addresses Research Goals ...28

3.4 Scotland Yard ...28

3.4.1 Gameboard Modifications ...29

3.4.2 How Modifications Address Research Goals ..30

3.5 Performance Metrics ..30

3.5.1 MCTS Model Performance ...30

3.5.2 Average Win Time ..31

3.5.3 Average Distance ..31

3.5.4 Average Fuel Consumption ...31

3.6 Summary ..32

IV. Analysis and Results ...34

viii

 Page

4.1 Chapter Overview ...34

4.2 Experiment 1 Results Analysis ...34

4.2.1 Average Win-Rate Analysis ..34

4.2.2 Average Win-Time Analysis ...37

4.2.3 Average Distance Analysis ...37

4.2.4 Average Ticket Analysis ...38

4.3 Experiment 2 Results Analysis ...39

4.3.1 Average Win-Rate Analysis ..39

4.3.2 Average Win-Time Analysis ...40

4.3.3 Average Distance Analysis ...40

4.3.4 Average Ticket Analysis ...41

4.4 Experiment 3 Results Analysis ...42

4.4.1 Average Win-Rate Analysis ..42

4.4.2 Average Win-Time Analysis ...43

4.4.3 Average Distance Analysis ...44

4.4.4 Average Ticket Analysis ...45

4.5 Chapter Summary ...45

V. Conclusions and Recommendations ..46

5.1 Chapter Overview ...46

5.2 Conclusions of Research ..46

5.3 Significance of Research ..47

5.4 Recommendations for Action ...47

5.5 Recommendations for Future Research ...49

5.6 Summary ..49

Bibliography ..51

ix

List of Figures

Page

Figure 2.1. Machine Learning Models ... 14

Figure 2.2. MCTS Design .. 16

Figure 2.3. Relative Hill Frame ... 19

Figure 2.4. Co-Moving Clohessy-Wiltshire Frame ... 20

Figure 2.5. Subgraph of Scotland Yard Gameboard .. 24

Figure 4.1. Win-Rate Among Three Experiments ... 35

Figure 4.2. Experiment 1 Win-Rate Ratio ... 37

Figure 4.3. Experiment 1 Distance By Round ... 38

Figure 4.4. Experiment 2 Win-Rate Ratio ... 40

Figure 4.5. Experiment 2 Distance By Round ... 41

Figure 4.6. Experiment 3 Win-Rate Ratio ... 43

Figure 4.7. Experiment 3 Distance By Round ... 44

x

List of Tables

Page

Table 3.1. Varying Transportation Cost Scenarios ... 29

xi

List of Acronym

Acronym Definition

AI Artificial Intelligence

DLNN Deep Learning Neural Network

ECI Earth-Centered Inertial

GEO Geosynchronous Earth Orbit

HCW Hill-Clohessy-Wiltshire

LEO Low-Altitude Earth Orbit

MC Monte-Carlo

MCD Maximize Closest Distance

MCTS Monte-Carlo Tree Search

ML Machine Learning

RL Reinforcement Learning

RPO Rendezvous Proximity Operation

TTP Tactics, Techniques and Procedures

UCT Upper Confidence Bounds Applied to Trees

1

MONTE CARLO TREE SEARCH APPLIED TO A MODIFIED
PURSUIT/EVASION SCOTLAND YARD GAME WITH RENDEZVOUS

SPACEFLIGHT OPERATION APPLICATIONS

I. Introduction

1.1 Overview

Space is rapidly evolving as a critical warfighting domain, as recognized by the

recent creation of the Space Force. As the number of satellites continues to grow and

their controls become both more autonomous and more sophisticated, the need for

better pursuer/evader mechanisms becomes critical to effectively operate and

maneuver in space. This is true both for the ubiquitous presence of space junk as well

as the possibility of the future need to pursue, evade, and rendezvous between satellites

and other space vehicles. This thesis develops a two-dimensional pursuer-evader

platform, based on the Scotland Yard game, to test and evolve artificial intelligence

and other forms of automation using a simplified set of operating rules to mimic some

of the key aspects of space dynamics. The Scotland Yard game was chosen as an

effective Monte Carlo Tree Search model had been developed and could be modified

within the environment to show how the agent adapts to experimental design changes

that partially account for spaceflight dynamics, a foundational step toward an

autonomous space defense system. A Monte Carlo algorithm is chosen as a proof of

concept in this game environment. The results of this effort shows promise for further

development. They also illuminate some of the challenges that remain in future work

as development shifts to more realistic three-dimensional cases.

1.2 Motivation

2

Cyberspace, the application of software to enhance operations, maintenance, and

security, has been a key component in numerous defensive domains with the most

recent being the addition of space. It is fair to say that computer-based automation and

control has been a key component of space operations from the launch of the first

spacecraft to the manned and unmanned space systems in orbit today. As information

technology has modernized and modularized space systems, more nations have

developed and ran their own space programs. Advancements in cyberspace have also

enabled enhanced security ranging from better cryptography, artificial intelligence to

monitor and secure telecommand structures in orbiting satellites, and a variety of other

enhancements.[1, 2] Additionally, artificial intelligence (AI) and machine learning

(ML) models have been vital in improving and optimizing space system mission

performance.[3, 4] Deep Learning Neural Network (DLNN) models of open-looped

and closed-loop controls were used to determine the best maneuvers for rendezvous

proximity operation (RPO) missions which include space station docking procedures

and close proximity maneuvers of geosynchronous-belt inspection.[5] As the space

domain is now an official warfighting domain and the United States creation of a new

Space Force military branch to contend with adversarial threats, cyberspace is vital

component to achieving and maintaining space superiority.

Many questions exist as to how traditional tactics, techniques, and procedures of

hostile warfighting applications project in the space domain. Without historical data to

complete concrete methods of tactics, techniques and procedures (TTP), simulations

provide the best model to project and predict adversarial behaviors given a mission and

3

circumstantial set of scenarios. Hypothetical situations include, but are not limited to,

destroying enemy intelligence gathering, communication, or navigation satellite

networks, seizing high value assets from space, and other conventional warfare tactics

typically employed in the air domain. These scenarios have expanded problems, such

as how a one-on-one dogfight would differ from many spacecraft of two nations

battling head-to-head. Other considerations include a concentrated effort of defending

a high value space asset against multiple attackers.

AI is a tool to assist answering these complex problems. ML models can quickly

simulate scenarios using game theory mechanics and train over time to find an effective

to optimal solution for the problem at hand. Cyberspace tools, such as AI, are necessary

to leverage superiority in land, sea, air, and space operations. This research focuses on

a foundational reinforcement learning (RL) model with a vision toward an autonomous

defense, counter-offense system to protect high value space systems. RL was the

chosen model for this research as there currently lacks historical data to model the AI

to train with. RL learns by playing itself in a virtual state and providing a choice based

upon the outcomes of the virtual simulation.

1.3 Research Overview

Given a problem of two spacecraft operating in close proximity with imperfect

domain knowledge, this research will demonstrate that a Monte Carlo Tree Search

(MCTS) algorithm is an effective ML model. The goal of this research is to provide

the MCTS foundation using Scotland Yard as a simplified two-dimensional platform

to introduce scenarios of one-on-one to many-on-many simulations.

4

This research begins an effort toward the creation of an autonomous

defensive/counter-offensive system capable of operation with imperfect domain

knowledge as a tool to protect high value space systems. This research looks at using

a Monte-Carlo Tree Search (MCTS) model to train a system under a given set of

conditions to pursue or evade. An evader’s objective is to evade capture from a pursuer.

Likewise, a pursuer’s objective is to capture an evader. Evader position is only given

at specific time-state durations making the mechanics MCTS operates in an imperfect

domain knowledge. This research is focused on Winands and Nijssen’s MCTS

implementation and will operate on the Scotland Yard gameboard they used to create

their model.[6]

By keeping this stage of research to the MCTS developed by Winands and Nijssen

to the Scotland Yard gameboard, we can directly compare how MCTS model

performance differs when the model needs to account for some of the spaceflight

dynamics principles. While the win rate of the MCTS model is the primary means to

measure effectiveness, other factors analyzed in this research include average distance

between pursuers and evaders, the amount of time for pursuers to capture the evader

and the consideration. These are important factors to carry forward in future iterations

as the MCTS models moves into a full three-dimensional simulation where additional

factors are applied to the model. The performance metrics mentioned in this paragraph

will be defined in Chapter 3.

Given the above discussion, the hypothesis of this research is that the MCTS model

created by Nijssen and Winands for the game of Scotland Yard can be employed as an

5

effective RL model to account for a number of spacecraft running a pursuit-evasion

differential game in close proximity.

1.3.1 Research Questions

To support the hypothesis, the following research questions are posed and

answered:

1. How can a MCTS model be used to provide a one-on-one to many-on-many

pursuit-evasion framework of proximal spacecraft?

2. How can the MCTS algorithm be modularized to support the varying

frameworks between one-on-one and many-on-many scenarios?

3. How does the model perform under the following specific circumstances:

one pursuer versus one evader operating in a classically constrained

gameboard, one pursuer versus one evader opening the gameboard such that

all locations are accessible, and five pursuers vs one evader in the classically

constrained gameboard?

1.3.2 Research Tasks

The following tasks will be performed to address the corresponding research

questions:

1. Create a MCTS algorithm in Scotland Yard using the works of Winands

and Nijssen as a model.

6

2. Modify Scotland Yard program to simulate spaceflight dynamics by

programming varying transportation cost between nodes between time states.

Modification will also update all routes to taxi routes.

3. Create three experiments, test conditions to measure MCTS performance:

One pursuer versus one evader where a win is recorded if the pursuer captures the

evader with movement confined to available routes on a classical gameboard, five

pursuers versus one evader with same win condition, and one pursuer versus one

evader with the same win condition, this time opening the gameboard such that all

routes are available between turns.

4. Analyze win rate against Winands and Nijssen’s implementation to

determine MCTS effectiveness.

5. Analyze and report residual factors for consideration in future work.

Residual factors include average node distance between pursuers and evaders from

initialization of the game and each round until the game ends, average time required

for pursuer wins recorded by the number of turns in each game, and fuel (ticket)

consumption during gameplay.

1.3.3 Scope and Assumptions

This research takes the MCTS implementation of Winands and Nijssen in

Scotland Yard and applies some of the spaceflight dynamics principles when

transitioning from one position to another. The surrogate model based upon

Winands and Nijssen provides valid and useful results transferrable to space

7

applications. Three dimensional models are out of scope and will be considered in

future work.

The main principle this MCTS model uses the Scotland Yard environment is a

simplified model of the Hill-Clohessy-Wiltshire orbital relative motion dynamic,

in that satellite nodal positions rotate as Earth completes its orbit around the Sun,

therefore, carrying a varying cost to transition to nodes on different time states.[7]

Graph traversal was simplified so the model can operate on a common consumption

cost (fuel) that would happen in a space environment. With this research limited to

the Scotland Yard gameboard, these principles have been simplified and therefore

are not a perfect mathematical correlation to spaceflight but are assumed sufficient

to mimic the actual behavior.

Other factors considered, but not implemented in this research was the control

objective function for differential pursuit-evasion scenarios and opening the

traversal graph to all game nodes between time states. The control objective

function was considered an out of scope factor due to not being able to fully

integrate the three-dimensional control within a two-dimensional gameboard with

limited nodes. The decision to keep original graph traversal was to maintain

balance on the limited nodes on the Scotland Yard gameboard as compared to

satellite nodal position which are boundless. While graph connectivity was

maintained to original game mechanics, traversal routes were all changed to taxi

routes so that the correlation between two-dimensional and three-dimensional

simulation is more comparable to energy consumption between the two models.

8

Finally, this research is assumed to use imperfect domain knowledge as information

about the evader’s location is only known at certain time intervals to the pursuers

and not known during the full duration of the game.

1.4 Thesis Outline

Chapter 2 provides the background research used to create the MCTS model and

manipulate the Scotland Yard gameboard to account for spaceflight dynamics

necessary to transition AI to three-dimensional simulations. Chapter 3 describes the

methodology to design the tests that examine how the MCTS model performs under

specific conditions. Chapter 4 expands on the results of Chapter 3 to examine MCTS

performance and residual factors. Finally, Chapter 5 describes how results support the

hypothesis and identifies future work toward creating an autonomous defense, counter-

offense model capable of protecting high value space systems from possible adversarial

threats.

9

II. Literature Review

2.1 Overview

Artificial intelligence (AI) has a rich history of aiding research to solve complex

problems. AI has had exponential industry and marketing growth to aid with using big

data mining collections to push product to general commercialized marketing of AI

agents and supercomputing for optimizing corporate operations and profits.

Additionally, AI coupled with game theory has enabled researchers and engineers to

develop innovative tactics and techniques used in communication, industrial, medical

and military operations. This chapter begins by reviewing game theory history.

Section 2.3 describes varying AI models and how reinforcement learning (RL) models

are most useful in game theory applications. Section 2.4 gives an overview of search

algorithms: αβ, Min-Max and Monte-Carlo with Upper Confidence Bounds Applied

to Trees (UCT) are discussed. Section 2.5 introduces spaceflight dynamic applications.

2.2 Game Theory

Game theory has a long-coupled relationship with AI-focused research.[8] This

section describes how game theory is combined with many machine learning models

to inspire and aid researchers to solve complex problems. This section begins by

describing game theory mechanics and focus. Section 2.2.2 outlines a brief but

progressive history of games using AI and evolving AI models. Section 2.2.3 describes

varying search techniques or algorithms AI incorporates to build search trees. Section

2.2.4 expands on the evolution of AI models and how the evolution of techniques has

10

produced more accurate and faster AIs. Finally, section 2.2.5 describes how AI coupled

with game theory produces real-world applications in varying industrial fields.

2.2.1 Game Theory mechanics

Game theory, which has been around since the 1940s, enables new and

refreshing means of learning by incorporating mathematics and coupling with

outlying strategies and competitive environment to increase, improve or optimize

an end objective.[8, 9, 10] There are varying game mechanic models to build

around whether to target leadership or behavioral tactics, data analytical models,

militaristic strategy, among others.[10] This research focuses on game theory

mechanics using imperfect domain knowledge for pursuit-evasion differential

games.

Perfect domain games deal with games where all moves are present from

beginning until end of a game.[6] Examples of perfect domain games include chess

and checkers. Unlike perfect domain games, imperfect domain games have a

limited subset of known information to play at certain times in the game.[6, 11]

Examples of imperfect domain games include Poker, Go, Scotland Yard, and

Battleship. This background focuses on machine learning models effective in using

imperfect domain knowledge to produce effective strategies in meeting desirable

states. Furthermore, this research focuses on expanding the works of

NijssenWinands and Nijssen’s MCTS model employed in the game of Scotland

Yard toward applying the model and game mechanics to operate with spaceflight

dynamics.[6]

11

2.2.2 Games in Artificial Intelligence

As Turning asked “Can machines think”, he proposed a solution to this

question using a game of an interrogator correctly identifying which of a test pair

is male and which of the test pair is female through a series of questions and

answers.[12] This foundational question of “Can machines think” has inspired

researchers to build machines capable of challenging, to outperforming, human

players. This question led to Arthur Samuel building a machine with a Checkers

agent and Alex Bernstein’s Chess playing agent in 1958.[12, 13] While these

agents were rudimentary, they provided the ground work to expand upon machine

learning methods which led to Kaissa, Chinook and Deep Blue AI’s capable of

besting world champions in Checkers and Chess in that time.[14] Other games

which produced machine learning agents include traditional card games such as

Poker and Bridge as well as exponential state case games such as Go, Kriegspiel,

and Scotland Yard.[15] These varying games and the rules and mechanics required

to play and win the games divide into separate problem areas which created a

multitude of machine learning models for which to effectively solve. The

underlying sections will expand upon the history of the algorithms to enhance the

AI agents in creating winning solutions of a game and how branching models of

machine learning converge into an umbrella of Artificial Intelligence, focusing on

a MCTS model implementation using imperfect domain knowledge in pursuit-

evasion games.

12

2.2.3 Algorithm Development

A popular AI algorithm built into games is Min-Max with Alpha-Beta (𝛼𝛽)

pruning.[16, 17] A reason for the popularity is the method to discretize the search

space at depth levels, returning the best decision value from a certain depth. This

heuristic approach returns the node with the best chance of success against the best

move. A problem with this approach is that as games become more expansive, the

likelihood of the best move becomes more unlikely due to the state having to be cut

off at a much more shallow level than what’s needed to evaluate.[18] This leads to

the focus of this research, MCTS algorithm component.

The algorithm that drives the MCTS search space is the Upper Confidence

Bound applied to Trees (UCT).[6, 11, 15, 18] The general UCT selection strategy

is based on the virtual number of wins of a selected node divided by the number of

times the node is visited. This strategy produces uneven trees, but usually produces

stronger results as nodes are strengthened by the number of times it is visited. A

tree is defined as a non-linear, data structure type to search and retrieve information

in a hierarchical manner. Other heuristics can be scaled into the UCT to leverage

known domain information to build stronger search trees.[6, 11]

2.2.4 Artificial Intelligence Evolution

In Samuel and Bernstein’s Minimax AI implementation based on Checkers,

they were able to create agents capable of playing at an amateur level.[12, 13, 14]

A major contributing factor was the available memory to build and expand the

13

agent’s tree of available states. Bernstein maximized his agent to available memory

by linking a table for current state to a state of pieces that can attack, pieces that

can defend, and informational states such as doubled pieces, self-checking, etc.[16]

The tree was then limited to a width of seven moves, each having seven outcomes,

played out to a maximum depth of four. In this fashion, 2800 states can be

evaluated and scored for which the algorithm can decide to execute the ‘best’ move.

While this method eliminates pieces left ‘en prise’, Bernstein recognized this

evaluation method would summarily eliminate moves not having immediate attack

or defend consequences leaving chance for better solutions throughout the game.

Kaissa expanded on the works of Shannon and Bernstein, by replacing the

width and depth limitations of the depth-first tree traversal and applying the αβ

heuristic algorithm to limit the state-space from overloading available memory.

[16] Moving back to Checkers, work had ceased from Samuel until the early 90’s

when a team from Duke released Chinook.[17] This agent expanded the allowable

depth of the Minimax tree to 19, having a much larger domain set to evaluate at a

current state and provide an optimal solution. While recognized that this agent may

not find the perfect solution at each state, as the depth required to evaluate a perfect

solution is over 60 levels and that amount of computation was unavailable and

unfeasible.

Deep Blue was an AI integrated by IBM that expanded on the Min-Max

theorem to improve depth search to seven levels.[20] Using more computing power

than its predecessor, Deep Blue was able to beat the chess world champion at the

time. While this agent can continually be improved upon over time with the

14

concept of Moore’s law adding computational power and memory, this method

quickly becomes unfeasible for larger game data sets, as the case with Go, and

games with imperfect domain knowledge, such as Kriegspiel and Scotland Yard.

This led to the development of other machine learning models to build and evaluate

optimal moves.

MCTS was a novel method originally devised for the game Go.[21]

Winands and Ciancarini’s work has been instrumental in expanding the UCT

method for imperfect domain games such as Hex, Lines of Action, and

Kreigspiel.[6, 22, 23] What makes a MCTS model effective in its UCT selection

strategy is that the uneven pruning in building the search trees allows the AI to

explore deeper paths and explore better decisions in games with a large memory

space. Additionally, MCTS models have shown modularity and scalability in that

they can be packaged into deep learning neural networks (DLNNs) as well as

adding computational evaluation heuristics into UCT selection strategies to aid

overall decision making.[3, 4, 6, 22] Implementation strategy impacts AI speed

and performance, so model planning should take place to balance the most effective

implementation strategy to environment.[4, 23]

2.2.5 Game Theory Application

Game theory has been instrumental in moving many industries forward.

Cooperative games have helped drive economic and marketing strategies to levels

unseen prior to Nash theory.[9, 24] Game theory has led to novel lifesaving

medical procedures as well as training high quality next generation medical

15

professionals.[25, 26] Game theory and AI have enabled Amazon to dominate the

supply chain.[27, 28] Finally, game theory and AI have been used to produce many

new and improved military applications for ground, sea, air and space

operations.[29]

2.3 Machine Learning

This section provides an overview of machine learning (ML) concepts, focusing on

reinforcement learning applied to spaceflight dynamics. This section begins by

providing details of different types of ML. Section 2.3.2 focuses on MCTS learning.

2.3.1 Learning Types

ML is the programming technique for computers to take statistical raw data

models and form relationships in the data set to predict future behavior of a given

problem.[11] Varying features or algorithms create a model family of machine

learning methods for how the AI behaves and human in-the-loop interactions.[5]

Machine learning concepts have been around since the early 1950’s [11], although,

the last two decades have brought abought a surge of ML-related research.[14] This

surge can be attributed to the rise of computational power, combined with the use

of deep learning Figure 2.1 illustrates the varying ML types.

This subsection details the differences between the machine learning

models. Section 2.3.1.1 provides an overview of unsupervised learning model and

techniques along with some applications. Section 2.3.1.2 gives an overview of

supervised learning techniques and applications. Finally, section 2.3.1.3 describes

16

the reinforcement learning (RL) techniques and its use in game theory.

Figure 2.1: Machine Learning Models[30]

2.3.1.1 Unsupervised Learning

Unsupervised learning is the concept of gaining patterns from a series

of sensory inputs.[31] Unsupervised learning models sort data into recognizable

patterns. This model is used in a lot of big data operations and quantum

computing as data can be clustered in groups designed for a specific purpose.

Marketing is a leading benefactor from unsupervised learning AI models in

personalized advertisements.

17

2.3.1.2 Supervised Learning

Like unsupervised learning, supervised learning also looks at a

pairing/mapping relationship between large amounts of data.[32] Supervised

learning then applies a set of rules and heuristics to produce specific output

based upon its input. Linear regression is a common heuristic in this model.

Supervised learning has numerous applications in the medical, mechanical,

communication fields, among others.

2.3.1.3 Reinforcement Learning

Reinforcement learning models identify a collection of input which

have a desired effect or output.[33] A reward is programmed as the model

learns to achieve the desired state. Reinforcement learning is used in many

game theory applications with many varying models as listed in Section 2.2.

2.3.2 Monte Carlo Tree Search Model

Winands and Nijssen have vast experience creating Monte Carlo (MC)

agents for a multitude of perfect-domain and imperfect-domain knowledge games

including agents built for Go, Lines-of-Action, Scotland Yard and Ms. Pac-

Man.[34] The MC agent built for Scotland Yard has the four basic elements present

for most MCTS schemes: Selection, Expansion, Playout, and Backpropagation;

described in more details in Sections 2.3.2.1 through 2.3.2.4.[6] Additionally, the

MCTS scheme employed by Winands and Nijssen incorporated ε-greedy playouts

for domain knowledge. These playouts add knowledge of node locations for

18

cooperating Detectives, providing a heuristic, Maximize Closest Distance (MCD),

to calculate the probability of evader’s next moves. Another heuristic applied to the

MC agent is Determination. This technique adds hidden information of possible

hider agent locations using a progressive history of last known locations and

transportation ticket cost used to build a list of possible next moves from where the

pursuer agent has limited hider agent possible locations. Next, a bias is applied to

approximate most probable node location of the hider agent based upon Location

Categorization factors, which are minimum-distance, average-distance and station

(number of available routes at each node). As the method of employment is a

cooperative game of pursuers versus a hider, Coalition Reduction was employed to

achieve a level of aggression and cooperation between the pursuers seeking the

hider. This Coalition Reduction creates a score of 1 if the pursuer is the primary

capturer of the hider and a value between 0 and 1 dependent if another pursuer

captures the hider.

Figure 2.2: MCTS Design

19

2.3.2.1 Selection

In the selection phase, the search tree is traversed, starting from the root,

using the Upper Confidence Bound applied to Trees (UCT) selection strategy.

In Winands and Nijssen’s Scotland Yard implementation [6], UCT is enhanced

with Progressive History using Equation 2.1. This is a combination of

Progressive Bias and the history heuristic. The child 𝑖 with the highest score 𝑣

in Equation 2.1 is selected.

𝑣 = �̅� + 𝐶ඨ
ln (𝑛)

𝑛
+ 𝑊

�̅�

𝑛(1 − �̅�) + 1

Here, �̅� denotes the average score of node 𝑖, 𝑛 and 𝑛 denote the total

number of times child 𝑖 and parent 𝑝 have been visited, respectively. 𝐶 is a

constant, which balances exploration and exploitation. �̅� represents the

average score of move 𝑎, i.e. the average score over all playouts in which move

𝑎 was played. 𝑊 is a positive constant that determines the influence of

Progressive History. The larger the value of 𝑊, the longer Progressive History

affects the selection of a node. This selection strategy is applied until a node is

reached that is not fully expanded, i.e. not all of its children have been added to

the tree yet.

2.3.2.2 Expansion

Expansion is the execution of adding a child to the tree.[35] At the

beginning of each turn, the root node begins building the tree by selecting itself

(2.1)

20

and expanding to first available child on the graph. Through each iteration, the

unexplored subset of reachable child nodes is visited at random until all

available children have been explored, or a cutoff point is reached.[36]

2.3.2.3 Playout

In playout, the MC agent plays through the newly created child node,

recording wins and losses from that position as well as whether the node is

terminal (no child states), and if the node yields a better reward state than the

parent node. Here a simulation strategy can be incorporated to make playouts

more realistic.[37, 38] Complexities of the simulation strategy impact the

number of playouts per second the MC agent can execute. Such complexities

include but are not limited to computational heuristics, statistical heuristics and

domain dependent variables.

2.3.2.4 Backpropagation

Backpropagation feeds the results of the playouts back to the root node for

the MC agent to determine best child node to select using the UCT strategy in

the selection phase. Results are updated using the formula in Equation 2.1.

2.4 Relative Satellite Motion

When studying the motion of multiple nearby objects in space, typically satellites,

in close proximity, or a single object’s motion in its local region, the relative coordinate

frame is commonly used, referred to herein as the Hill’s frame, or more formally as the

Hill-Clohessy-Wiltshire frame.[5] In this context, the definition of proximity depends

21

on the employed dynamics model as well as the altitude and time period of interest.

Figure 2.3 shows the relative frame, where x, y, and z represent the relative Hill frame

components in terms of the i, j, k Earth-centered inertial (ECI) frame.

Figure 2.3: Relative Hill Frame [5]

 This section gives an overview of some of the relative spaceflight dynamics

concerning pursuit-evasion tactics, techniques and procedures. Section 2.4.1 gives an

22

overview of Hill-Clohessy-Wiltshire (HCW) model. Section 2.4.2 provides the

mathematical functions for the various pursuit-evasion controls.

2.4.1 HCW Equations

The Hill-Clohessy-Wiltshire model is a linear model which describes the

natural relative motion of objects in close proximity with respect to a circular

reference orbit.[5, 7] For this research, the HCW model is introduced with the

supporting mathematical matrices. Figure 2.4 displays a co-moving HCW frame.

Figure 2.4: Co-moving Clohessy-Wiltshire frame.[7]

The differential equations describing the relative motion in the HCW frame

are defined in Equation 2.2.[5, 7] These unforced equations of motion assume no

acceleration due to thrust and that the origin is in a circular orbit where x, y and z

represent the radial, in-track, and cross-track components with respect to the

origin.[5]

�̈� = 3𝑛ଶ𝑥 + 2𝑛𝑦
�̈� = −2𝑛𝑥

�̈� = −𝑛ଶ𝑧

 (2.2)

23

The mean motion n is defined by Equation 2.3 such that µ is the standard

gravitational parameter and a is the semi-major axis of the specified origin’s orbit,

and for a circular orbit is directly related to orbit altitude.

𝑛 = ඥ𝜇 𝑎ଷ⁄

Equation 2.4 presents the closed-form solution to Equation 2.2 to present an

HCW state transition matrix in Equation 2.5.[5, 7]

𝑥(𝑡) = Φ(𝑡)𝑥(𝑡), 𝑥 = [𝑥 𝑦 𝑧 �̇� �̇� �̇�]்

This state transition matrix can be used to efficiently propagate the

equations of unforced motion.

2.4.2 Pursuit-Evasion Controls

This section addresses initialization model for two spaceflight objects

running pursuit-evasion using collocation method of functions.[39, 40] Equation

2.6 defines the objective function, J, through vectors of evader, E, and pursuer, P.

Equation 2.7 defines the constraints for the pursuer and evader. Equation 2.8

(2.3)

(2.4)

(2.5)

24

defines optimal controls for pursuer and evader. Equation 2.9 defines the

costate/adjoint functions for pursuer and evader. Equation 2.10 defines stationary

functions for pursuer and evader. Finally, equation 2.11 defines the terminal

function for pursuer and evader.

𝐽(𝑢ா𝑢) = Φ ቀ𝑡 , 𝑥ா൫𝑡൯, 𝑥൫𝑡൯ቁ + න ℒ(𝑡, 𝑥ா , 𝑢ா , 𝑥 , 𝑢)𝑑𝑡
௧

௧బ

�̇�ா(𝑡) = 𝑓ா(𝑡, 𝑥ா , 𝑢ா)

�̇�(𝑡) = 𝑓(𝑡, 𝑥 , 𝑢)

These functions form the basis for a pursuit-evasion near-optimal solution.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

25

2.5 Scotland Yard

The following section explains the rules to the boardgame Scotland Yard.[41] This

section begins by describing the rules for playing. Section 2.5.2 describes the gameplay

providing examples of winning strategies.

2.5.1 Rules

Scotland Yard is a boardgame consisting of five detectives (pursuers)

attempting to capture Mr. X (evader) before he escapes from his most recent caper.

The gameboard contains 199 possible locations Mr. X could be hiding. Detectives

are given an initial ticket pool of ten taxi tickets, eight bus tickets and four

underground tickets. Mr. X is given an initial queue of four taxi, three bus and three

underground tickets as well as five black fare tickets and two double-move tickets.

Gameplay begins with the five detectives and Mr. X randomly drawing starting

locations on the gameboard. Mr. X has the first move and the only information

revealed to the detectives is the mode of travel. As detectives spend their fare for

the route they travel on their turn, the ticket is given to Mr. X. On rounds 3, 8, 13,

18, and 23, Mr. X has to reveal his location on the gameboard. Detectives have 24

rounds to attempt to capture Mr. X before he escapes, winning the game.

These rules and mechanics make this game a two-player imperfect domain

knowledge game as detectives work as a team to capture Mr. X, but have limited

knowledge for a period of time. Figure 2.5 shows a subgraph layout for the

Scotland Yard gameboard.

26

Figure 2.5: Subgraph of the Scotland Yard gameboard[6]

2.5.2 Gameplay

An effective strategy for detectives to employ as they gain knowledge of

Mr. X’s location is to surround possible escape routes so that, as a team, they can

close in and capture Mr. X. For example, if Mr. X’s location is 87 on round 3, as

pictured in Figure 2.5, detectives within two nodes should take one of the following

locations to limit escape routes before Mr. X’s location goes dark again: 69, 102,

116, 105, 89, 54 or a closer node if possible. By taking these positions, Mr. X’s

escape routes have chokepoints and detectives can slowly close gap to capture him

for the win.

Conversely, after Mr. X has had to reveal location and detectives employing

routes close to choking escape, that would be the prime opportunity to use one of

27

the two double-move tickets and use the boat that is only available for Mr. X’s use.

As black fare and double-move tickets are the only tickets limited to Mr. X, limiting

use to imminent capture and avoiding use on rounds where Mr. X’s location has to

be revealed are good strategies to maximize winning probability.

2.6 Chapter Summary

This concludes the literature review. The literature review began with research in

the historical use of AI in game theory. Next, the types of AI were studied to determine

that Reinforcement learning models are effective for game simulations. Then, MCTS

research was discussed as the method has been popular with pursuit-evasion games

with imperfect domain knowledge. Following that, Winands and Nijssen’s work with

MCTS in the game Scotland Yard was discussed for an effective model to use for

application in a spaceflight pursuit-evasion game. Next, some spaceflight dynamic

models and controls were discussed to approximate the effects with Winands and

Nijssen’s MCTS model. Finally, the background of Scotland Yard was discussed in

order to recreate the work of Winands and Nijssen, modifying Scotland Yard to

approximate some of the spaceflight dynamics effect to design the experiments

presented in this research.

28

III. Methodology

3.1 Chapter Overview

This chapter details the approach in answering the research questions presented in

Chapter 1. This chapter begins by restating the research goals and provides an

overview on how questions will be answered by this methodology. Section 3.3 details

how Scotland Yard was built and modified to approximate the effects of some

spaceflight dynamics. Section 3.4 outlines the configuration of the MCTS to evaluate

the current state between the pursuer and evader, how the MC agent builds its tree, and

how the continuous space is discretized to provide a best move with known domain

factors for each turn. Section 3.5 defines how Scotland Yard’s rules are transformed

to fit a two-dimensional view of rendezvous space objects in close proximity. Finally,

Section 3.6 describes the performance metrics used to evaluate implemented MCTS

algorithms.

3.2 Research Goals

Recall, given a problem of two spacecraft operating in close proximity with

imperfect domain knowledge, this research will demonstrate that a MCTS algorithm

can be an effective ML model. This goal therefore is to provide the MCTS foundation

using Scotland Yard as a simplified two-dimensional platform to introduce scenarios

of one-on-one and many-on-many simulations.

First a Monte-Carlo Tree Search (MCTS) model is used to train a system under a

given set of conditions to pursue or defend. In this game, evader position is only given

29

at specific time-state durations making the mechanics MCTS operates in imperfect

domain knowledge. Winands and Nijssen’s MCTS implementation is used operating

on the Scotland Yard gameboard they used to create their model.[6]

Experiment 1 tests the MCTS original model created by Winands and Nijssen in a

one evader versus one hider simulation. Experiment 1 was run 2,500 times.

Experiment 1 used the same gameboard transportation restrictions as traditional rules,

only modifying the methods described in Section 3.5 as part of the spaceflight dynamic

approximation. Experiment 1 results were calculated using the performance metrics

detailed in Section 3.6.

Experiment 2 worked the same as Experiment 1, only removing the restrictions of

gameboard routes. The entire gameboard is accessible to players between each turn

from initialization to the end of the game. Due to the computational burden of this

design, only 100 simulations were able to be collected in this design. Results were

calculated as detailed in Section 3.6.

Experiment 3 used the classical player team of Scotland Yard of five pursers trying

to capture one evader. Gameplay modifications were the same as described in

Experiment 1. 2,500 simulations were collected in this design. Results were calculated

as described in Section 3.6.

3.3 Scotland Yard Program Design

This section details the basic components to simulate Scotland Yard. Scotland Yard

was created in Java as a text-based program of the boardgame. The program is built in

30

four main modules, the Main module which initializes each instantiation of the game,

the Gameboard, Players and Strategies. Then there is the Winands and Nijssen MCTS

model imported into the game. Section 3.3.1 will describe the game modules in more

detail. Section 3.3.2 will describe the components for the MCTS integration.

3.3.1 Game Components

As outlined above, there are four modules to the game creation, the Main

module, the Gameboard module, the Player module, and the Strategies module.

Sections 3.3.1.1 through 3.3.1.4 will describe each module in detail, respectively.

3.3.1.1 Main Module

The main module manages the execution of each game. It houses the

methods to call the other modules when needed to play the game. It is

configured such that a human could interact as either pursuer or evader to test

functionality. The main module is also where the score is kept for overall

pursuer and evader wins. For each of the three experiments, the main module

executes the simulation of PlayOneGame from one to k. PlayOneGame

initializes gameboard with players and begins to control the game, having the

evader move first followed by each pursuer player initialized as described in

the experiments in Section 3.2. When the PlayOneGame concludes with a

winner, the win is recorded for either evader or pursuer and the next instance of

PlayOneGame is executed until the kth game is played and recorded. Upon

31

conclusion of the kth game and the score updated accordingly, the results are

displayed, and program terminates.

3.3.1.2 Gameboard Module

The Gameboard module contains all the information to play each game

of Scotland Yard. The gameboard module ties into the players module to put

players on the gameboard, and the strategies module so that MC agent players

can move about the gameboard on their turn with limited knowledge to make

decisions as that respective player, evader or pursuer. The gameboard module

contains three submodules to play the game, the PlayersOnBoard, State, and

Resources.

The PlayersOnBoard submodule contains the information of each

Player entity on the gameboard along with the information known for that

player. This information includes the amount of fuel available for all players.

Other player location is limited knowledge and provided as follows:

Pursuer players have the known location for other pursuer players.

Pursuer players then have a distance list that has probable evader locations

based upon last known location. Evader player always has the location of all

players.

The State submodule contains the information of what the round is, the

evaluation methods for determining if the game has been won, and the turn of

the current active Player entity. The evaluation method examines a win under

32

two conditions. The first condition is a pursuer win if a pursuer moves to the

same node as the evader. The second condition is an evader win if all players

have made their 23rd move without capturing the evader.

The Resources submodule contains the map for Player entities to make

a move on their turn. The corresponding map is available in the Resources

submodule as listed in the experimental design listed in Section 3.2 and the

modifications to the routes as described in Section 3.5. Additionally, the

appropriate distance list for pursuer or evader entities are kept in the Resources

submodule.

3.3.1.3 Players Module

The Players module houses the entity information to initialize Player

entities within the PlayersOnBoard submodule of the Gameboard module. The

Player entity includes the type of player the entity is: evader or pursuer. The

information within the Player entity module include the amount of fuel

available and the index of the player so that the player can move when the index

matches the current player.

3.3.1.4 Strategies Module

The Strategies module contains the MCTS model strategies employed

by the MC agents as discussed in Chapter 2. This module supports the MCTS

UCT evaluation heuristics in the selection, playthrough and backpropagation

phases of training.

33

3.3.2 Monte Carlo Tree Search Modules

This section describes how the MCTS is integrated into the Scotland Yard

program. As discussed in Section 3.3.1, the Main module is built to run MC agents

as either evader, pursuer or both player entity types. Section 3.3.2.1 describes the

MCTS module and how the module is called. Section 3.3.2.2 describes the MC

agent module. Section 3.3.2.3 describes the MCTS state module. Finally, Section

3.3.2.4 describes the MCTS tree module.

3.3.2.1 Monte Carlo Tree Search Module

The MCTS model module has the information necessary to make a deep

copy or clone of the current state of the game to pass to the MC agent player on

their turn. This module copies the entire gameboard and state information and

passes the information into the MC agent’s virtual state root node. The model

module enables the agent module to train by playing itself in its four-phase

iterative style as described in Chapter 2. In the four-phase training cycle, the

MCTS tree module is used to build a tree hierarchy of virtual states from

simulated play. This module is also linked to the Strategies module for the MC

agent to execute its UCT heuristics.

3.3.2.2 Monte Carlo Agent Module

This module contains the Player entity information to act as the player

when the player index matches the current state. The MC agent module begins

by receiving a deep copy or clone of the current state as the root node of the

34

MCTS tree module. The MC agent module then uses the MCTS model module

to execute its four-phase iterative training cycle to build child nodes virtual

states using the MCTS state module and link back to the root node within the

MCTS tree module. The MC agent module moves from training to decision by

selecting the child node immediately following the root node with the highest

UCT score.

3.3.2.3 Monte Carlo Tree Search State Module

The MCTS state module provides virtual state information to load into

child nodes of the MCTS tree module. Virtual state information includes the

results of that iteration of playthrough as described in Chapter 2. This method

allows the MC agent module to train without impacting current state of the

game.

3.3.2.4 Monte Carlo Tree Search Tree Module

The MCTS tree module contains the information for the MC agent to

build its search tree. It has the parent node which for the root node is null, and

any child nodes produced during the expansion phase of training. As discussed

in Chapter 2, a tree in an abstract data type creating a hierarchical data structure.

Each node within the MCTS tree module contains the MCTS state module

information as the MC agent trains the best move from its four-phase iterative

training method.

35

3.4 NijssenMonte Carlo Agent

This section details how the MCTS agent built by Winands and Nijssen [6] is

modified to support a one-versus-one and many-versus-many playout of pursuers and

evaders. This section begins describes how the MC agent is deployed. Section 3.3.2

describes how this MC agent accomplishes research goals.

3.4.1 Agent Deployment

MC agents are deployed as evader and pursuer agents in three testing

conditions. The first experiment is designed to test performance between one

pursuer versus one evader within Scotland Yard’s location accessibility as depicted

in the subgraph in Figure 2.5. The second experiment tests the one hider versus

one pursuer, with an open accessibility between all locations between each turn.

The third experiment tests the performance of one evader versus five pursuers.

Winning parameters and other metrics analyzed are described in detail in Section

3.6, Performance Metrics.

3.3.2 How agent addresses research goals

The MC agent developed here creates a building block for yielding optimal

controls for terminally constrained, proximal spacecraft maneuvers scalable to one-

on-one to many-on-many pursuit-evasion framework. Scotland Yard was

successful as a training tool in developing MC agent to work in a simplified two-

dimensional environment. This MC agent is a first step toward an autonomous

defense, counter-offense system capable of protecting high-value space systems.

36

The next step will be to expand the framework built here in an actual three-

dimensional space simulation capable of testing agent performance with all

dependent spaceflight dynamic principles at work.

3.5 Scotland Yard

This section describes how Scotland Yard was manipulated to support the

development of a MCTS model capable of employment on space systems. Section

3.4.1 describes how the gameboard and gameplay mechanics were manipulated to

account for some of the spaceflight dynamic principles within a two-dimensional

environment. Section 3.4.2 describes how the changes to Scotland Yard accomplish

research goals.

3.5.1 Game modifications

Implementing Winands and Nijssen’s MCTS model for spaceflight

dynamics, the Scotland Yard gameboard was heavily modified to account for some

of these fundamental principles. In particular, the transportation between the nodes

on the gameboard was altered to correlate fare consumption of Scotland Yard

gameplay to fuel expenditure of space systems. This was accomplished by first

streamlining fare consumption for all routes to be taxi routes. By making this

conversion, the available taxi fare can directly correspond to available ∆𝑉 of space

systems.

The next modification was a simplified method to approximate HCW

dynamics. This was accomplished by dividing the 24 rounds of Scotland Yard’s

37

gameplay into one of three scenarios: Rounds divisible by two, rounds divisible by

three, and rounds not divisible by two or three. Table 3.1 details the transportation

costs in each of these three cases.

 Table 3.1: Varying Transportation Cost Scenarios
Case 1: Round Modulus 2 Node IDs Modulus 2 cost 1 taxi ticket

Node IDs Modulus 3 cost 2 taxi tickets
Node IDs not Modulus 2 or 3 cost 3 taxi tickets

Case 2: Round Modulus 3 Node IDs Modulus 3 cost 1 taxi ticket
Node IDs not Modulus 2 or 3 cost 2 taxi tickets

Node IDs Modulus 2 cost 3 taxi tickets

Case 3: Rounds not Modulus 2 || 3 Node IDs not Modulus 2 or 3 cost 1 taxi tickets
Node IDs Modulus 2 cost 2 taxi tickets
 Node IDs Modulus 3 cost 3 taxi ticket

3.5.2 How modifications address research goals

The modifications detailed above provide the foundational testbed to

directly compare how the MC agent deployed above compare against the well-

designed model initially created by Winands and Nijssen. These modifications

address some of the spaceflight dynamics in a simplified environment with a

modular MC agent that can be then employed in a fully functional three-

dimensional space simulation model to further test performance with full pursuit-

evasion tactics.

3.6 Performance Metrics

An algorithm’s win ratio provides the best metric for measuring agent’s success.

Other factors contributing to MC agent’s effectiveness include average game length,

38

average distance, and average ticket consumption to make moves. This section details

how results will be analyzed.

3.6.1 MCTS model performance

WinRate provides the primary means to measure MCTS performance.

Equation 3.2 shows how the WinRate is calculated. A win is scored for each time

the pursuer is able to capture the hider. For Block 3, the win is recorded for

capturing 7 of the 10 hiders. Each block will have their own WinRate calculation.

𝑊𝑖𝑛𝑅𝑎𝑡𝑒 =
𝑛𝑢𝑚𝑊𝑖𝑛𝑠

𝑛𝑢𝑚𝐺𝑎𝑚𝑒𝑠

3.6.2 Average Win Time

Average win time is the number of rounds it takes the game to produce a

winner. In runs that the hider wins, the win time is 24. Therefore, pursuer will

have wins between 1 – 23. The average will be the sum of these wins divided by

2,500 runs. Equation 3.3 details the calculation.

𝑊𝑖𝑛𝑇𝑖𝑚𝑒 =
(𝑡ଵ + 𝑡ଶ + ⋯ + 𝑡ଶହ)

2500

3.6.3 Average Distance

Location Categorization, as listed in Section 2.3.2, incorporates probable

locations to look at distance as a measure of performance within the MCTS model.

For the evader agent, further distances are awarded favorably as where the pursuer

(3.2)

 (3.3)

39

agent is awarded for minimal distances. Going from initialization to terminal state,

nodal position of evaders to closest pursuer will be calculated in part by the

subgraph depicted in Figure 2.5. Using the information of the gameboard map, an

adjacency matrix was built. The adjacency matrix if a 199 by 199 matrix showing

the distance between the 199 gameboard nodes in a source node, destination node

layout. Using this design, the adjacency matrix will have a diagonal line of zero’s

as the source and destination node is the same node. Figure 3.1 shows a sample of

the adjacency matrix. Using the adjacency matrix, average distance will be taken

between each round and each experiment and calculated to see how well evader

and pursuer were able to maximize or minimize distance, respectively.

Figure 3.1: Adjacency matrix sample

3.6.4 Average Fuel Consumption

Average fuel consumption will look at the tickets used between each move

for each player agent in each experiment. Fuel is an important factor for space

systems requiring longer longevity and mission parameters could scale to become

40

a biased priority within the UCT selection strategy, although not for this research.

For the purpose of this research, this variable is only to describe how the agent is

consuming the resource during gameplay.

3.6 Summary

The methodology laid out in this chapter described the block design to test MC

agent performance accounting for simplified spaceflight dynamics. This methodology

outlines how research goals are accomplished within the experiments design for testing

performance of one-on-one with gameboard travel restrictions, one-on-one with an

open gameboard, and one-versus-five confining travel to gameboard routes. This

methodology provided how the Scotland Yard environment was created to run the

experiments. This methodology described how the Scotland Yard rules were

manipulated to approximate some of the effects of spaceflight dynamics. Finally, this

methodology describes how performance metrics were to be gathered for analysis.

41

IV. Analysis and Results

4.1 Overview

This chapter presents the results of the experiments and performance metrics

described in Chapter 3. This chapter begins by breaking down the performance metrics

described in Chapter 3 in Experiment 1. Section 4.3 details the performance metrics in

Experiment 2. Section 4.4 completes the performance metric analysis for Experiment

3. Section 4.5 summarizes the results along with providing some general observations

as the MCTS model presented in this research is migrated into 3D space simulations.

4.2 Experiment 1 Result Analysis

This section expands on the performance metrics described in Chapter 3 in

Experiment 1. Section 4.2.1 analyzes the win ratio in terms of the pursuer agent along

with general observations how the experimental design impacted this metric. Section

4.2.2 analyzes the gameplay in terms of win-time providing general observations.

Section 4.2.3 analyzes the average distance between pursuer and hider agent as the

game progresses giving general observations noticed in analysis. Finally, Section 4.2.4

analyzes ticket consumption noting general observations.

4.2.1 WinRate Analysis

This section describes how agents performed in Experiment 1 and gives general

observations in how experimental design impacted performance. Analyzing pursuer

WinRates among the three experiments provided the following results: Experiment 1

42

yielded a 1.2% ± .43% WinRate, Experiment 2 was 10% ± 5.9%, and Experiment 3

was 93.88% ± .94%. Figure 4.1 displays the WinRate among the three experiments.

Results show experimental design was a major factor with Experiment 1 having a low

win-rate among the 3 experiments.

Figure 4.1: WinRate among three experiments showing confidence bounds

Experiment 1 was designed to be advantageous to the evader with limited

time states of visibility to the pursuer and a contained movement gameboard to

operate between each turn (e.g. pursuer on Node 53 can only move to nodes 69 or

54 as depicted in Figure 2.5). This advantage was evident as the pursuer was only

able to win 30 of the 2,500 runs for a win percentage of 1.2% ± .43%. The analysis

in Section 4.2.2 of average distance highlights how the experimental design

impacted pursuer agent’s ability to score wins.

0.012

0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

Win Perct

Win-Rate Analysis

Experiment 1 Experiment 2

43

Analyzing the statistics behind the WinRate produced the following results.

The squared deviation (𝑥ଶ) for the population produced by this simulation was

29.64 by taking the sum of the difference wins/losses from the sample mean

squared. As we are calculating using sample population, the sample variance (�̂�ଶ)

was derived by dividing 𝑥ଶ by the population (n) minus 1 degree of freedom giving

a result of .01186. Finally, the sample deviation is the square root of �̂�ଶ which was

.1089. Equation 4.1 shows the calculation for sample deviation.

�̂� = ඨ
∑ (𝑥 − �̅�)ଶ

ୀଵ

𝑛 − 1

Using the information of the sample deviation, a t-test was calculated on the

results using Equation 4.2. The t-value produced -338.36, using Winands and

Nijssens’ results of 74.9% for the null hypothesis (𝜇). Given the 2,500-sample size,

the corresponding p-value shows less than a .00001, rejecting the null hypothesis

and giving significance to the experimental design impacting win-rates.

𝑡 =
�̅� − 𝜇

�̂�√𝑛

With this information, the confidence interval was calculated for 95%. 95%

confidence, produces a Z-score of 1.96. With this information and Equation 4.3,

the negative confidence bound was .0077 and the positive confidence bound was

.0163. Figure 4.2 provides a zoomed graphical view of this data.

𝐶𝐼 = �̅� ± 𝑍(�̂� √𝑛⁄)

(4.1)

(4.2)

(4.3)

44

Figure 4.2: Experiment 1 WinRate showing confidence bounds

4.2.2 Average Win Time Analysis

Due to the nature of experimental design, pursuers were only able to

score 2 wins on round 23 with the other 28 wins observed on round 24. As

noted above, the gameboard travel restriction was the primary factor in this low

result. With both wins on round 23, the evader ran out of fuel to move allowing

purser to capture the hider. However, it was only seen in 7 of the 28 wins on

round 24 where the evader ran out of fuel to move.

4.2.3 Average Distance Analysis

 In this design, transportation on the gameboard is a significant contribution

toward poor results for pursuer agent. An observation while having one human

pursuer against an evader agent running a maximum distance bias for decision

making, it was difficult for the human player to get any closer than two nodes away

45

in any turn. Analysis of the MC purser agent shows the same struggle to close the

distance as the game progresses toward conclusion. Figure 4.2 shows the scatter

point average by round in this round. In a more balanced design, the desirable

effect would be for the adjacency between hider and pursuer converge toward 0 as

the game progresses. Figure 4.3 shows that the pursuer agent plateaued at an

adjacency of 2.5 during entirety of simulation.

Figure 4.3: Experiment 1 average distance by round

4.2.4 Average Fuel Consumption

General observation of fuel consumption showed good balance between

aggression and available fuel for the duration of gameplay for both evader and

pursuer agents. Both agents observed a mean consumption of 1.67 fuel per round.

The evader observed a slightly wider range of average fuel use per observed game

with a low range of 1.21 tickets per round during an observed game to 1.8 tickets.

46

Likewise, the pursuer had an average ticket use ranging from 1.3 tickets per round

to 1.8 tickets in an observed game.

4.3 Experiment 2 Result Analysis

This section expands on the performance metrics described in Chapter 3 in

Experiment 2. Section 4.3.1 analyzes the win ratio in terms of the pursuer agent along

with general observations how the experimental design impacted this metric. Section

4.3.2 analyzes the gameplay in terms of win time providing general observations.

Section 4.3.3 analyzes the average distance between pursuer and evader agent as the

game progresses giving general observations noticed in analysis. Finally, Section 4.3.4

analyzes fuel consumption noting general observations.

4.3.1 Average WinRate Analysis

Experiment 2’s design showed to have better balance for the pursuer as the

observed win-rate improved to 10 wins from 100 simulations. Experiment 2 needed

a smaller sample due to the computational time of the agents between each move.

The 100 runs took 2.5 times to complete as the 2,500 runs of Experiment 1 and 3.

A big reason is there is a massive state space expansion of an open map for the MC

agents to traverse. The available states in this design were 199ଵଽଽ while available

states were limited in Experiments 1 and 3 to the traditional gameboard routes.

Using Equations 4.1 – 4.3, the following statistics were observed. The

sample deviation was .302, t-test result was -21.47, yielding a p-value of less than

.00001. Therefore, Experiment 2 is significant and null hypothesis is rejected. The

47

negative confidence bound was .041 and the positive confidence bound was .159.

Figure 4.4 provides the graphical view for Experiment 2’s win ratio.

Figure 4.4: Experiment 2 WinRate showing confidence bounds

4.3.2 Average Win Time Analysis

Results show that in this design, pursuer agent was able to expand the

breadth of its search tree and win some games in earlier rounds. These results also

showed that diligence must be taken into consideration to better prune the state

space to allow deeper searches and improve overall responsiveness. While the

agent in this design was able score a win in rounds 2 and 4 in a simulation, most

wins still came in the latter half in gameplay. The average win-time was 23.06, but

the computation and response time made simulation run 2.5 times longer than

Experiments 1 and 3 only having 1/25 of the samples.

48

4.3.3 Average Distance Analysis

Applying the traditional gameboard adjacency matrix to look at the average

distance between each turn showed that the pursuer agent relied more on the

progressive history to predict next move more than a progressive attempt to close

the gap as the game progresses. The average distance in this experiment stayed

consistently around 4.6 for duration of the game. Figure 4.5 shows the average

distance seen in Experiment 2 by round.

Figure 4.5: Experiment 2 average distance by round

4.3.4 Average Fuel Analysis

Average fuel use in this experiment showed more aggressiveness by both

evader and pursuer with an open gameboard. Evader average fuel usage per round

increased to 1.74 and pursuer increased to 1.76. Game ranges increased as well

with evaders having low averages of 1.5 fuel per round games and high of 3.

Pursuer also had peak fuel usage games of 3 but observed a lower floor of 1.31 fuel

49

per round games. The increased aggression in this experiment shows the need to

configure favorability to conserve energy within the UCT algorithm when moving

to 3D space simulations in future work.

4.4 Experiment 3 Results Analysis

This section expands on the performance metrics described in Chapter 3 in

Experiment 3. Section 4.4.1 analyzes the win ratio in terms of the pursuer agent along

with general observations how the experimental design impacted this metric. Section

4.4.2 analyzes the gameplay in terms of win time providing general observations.

Section 4.4.3 analyzes the average distance between pursuer and evader agent as the

game progresses giving general observations noticed in analysis. Finally, Section 4.4.4

analyzes fuel consumption noting general observations.

4.4.1 Average WinRate Analysis

This experimental design drew on the traditional implementation of

Winands and Nijssen’s MCTS implementation of Scotland Yard.[6] Results to win-

rate were vastly improved over traditional game mechanics for pursuer agents.

Pursuers observed 74.9% ± 2.7% under traditional rules implementation.[6]

Experiment 3 observed 2,347 wins of 2,500 simulations for a 93.88% WinRate. It

was expected to be closer to original observations with changes to mechanics being

balanced on both sides.

Applying Equations 4.1 – 4.3 as with Experiments 1 and 2, observations

show significance with experimental design rejecting the null hypothesis. Sample

50

deviation was .24 with a sample variance of .057. T-value was recorded at 39.576

resulting in a p-value less than .00001. Looking at the upper and lower 95%

confidence interval, the negative confidence bound was .929 and the positive

confidence bound was .948. Figure 4.6 shows a graphical view of the WinRate

results.

Figure 4.6: Experiment 3 WinRate showing confidence bounds

4.4.2 Average Win Time Analysis

As stated earlier, Experiment 3 performed really well with traditional

Scotland Yard play modified for spaceflight dynamics. 5 wins were recorded from

the first move and the most frequent round won was round 8 with 386 recorded

wins. The distance with the 5 wins were all only 2 nodes away when initialized.

The average win was 9.8 rounds of play. Initial distance did not appear to be a

problem with wins or losses as evader wins were recorded within the same distances

as recorded seeker wins at 8 rounds. Given these observations, it appears that the

51

loss of double evader moves may have been the contributing factor resulting in

improved seeker performance in this design.

4.4.3 Average Distance Analysis

The manipulations for traditional rules to account for spaceflight dynamics

was expected to be balanced for hider and pursuer agents. While all routes became

taxi routes and location deduction would be unable to be made with method of

travel, balance was applied with removal of black-fare, double-move and balanced

queue of tickets to navigate on modified gameboard with varying ticket cost as

detailed in Chapter 3. Among the available results, the removal of the double-move

fare for hider is the most leading contributor for the observed win increase for

pursuer agents.

Moving to the average distance, averages quickly converged toward 0 until

the rounds progressed toward the average win time. Then, as many winning

simulations had ended, the average distances began to rise. Figure 4.7 shows the

average distances for Experiment 3 by round.

52

Figure 4.7: Experiment 3 average distance by round

4.4.4 Average Fuel Analysis

Experimental design did not appear to have an impact on average fuel use.

Both evader and pursuer agents were able to balance their fuel between aggression

and conservation without issue. This result is not an indication though that

diligence can be spared when the agent is migrated to 3D space simulations. The

average fuel use by evaders and pursuers appear to be centered between

Experiment 1 which was the lowest among the 3, and Experiment 2, the highest.

4.5 Summary

This chapter analyzed data from each of the three experiments as outlined in

Chapter 3. The results show MC agents are effective autonomous players given a

limited set of information. The agents employed as described in Chapter 3 showed

competent level of play between the three experiments. This chapter analyzed the

53

experimental design’s impact on win ratio, game length, average distance between

hider and pursuer, and average ticket use. This chapter then analyzed how the

performance metrics effect gameplay at large. Finally, the results presented in this

chapter show this MCTS model is capable of handling spaceflight dynamics, while

presenting challenges which need to be planned and accounted for.

54

V. Conclusions

5.1 Chapter Overview

This thesis has created a new platform to test autonomous pursuer-evader

algorithms using a simplified two-dimensional environment with some approximated

spaceflight dynamics. A MC search algorithm was used as a proof of concept for the

platform. The results show promise for further development while also highlighting

challenges to be addressed in the future.

5.2 Research Conclusions

To address the hypothesis of a MCTS algorithm as an effective ML model problem

for two spacecraft operating in close proximity with imperfect domain knowledge

running a pursuit-evasion scenario, the following research questions were posed:

1. How can a MCTS model be used to provide a one-on-one to many-on-many

pursuit-evasion framework of proximal spacecrafts?

This research showed that the model employed by Nijssen/Winands can be

expanded to account for spaceflight dynamics to achieve objective. The 3

experiments employed in this research highlighted challenges which must be

further explored to ready an autonomous defensive, counter-offensive system,

and this research is a foundational step toward achieving this state.

2. How can the MCTS algorithm be modularized to support the varying

frameworks between one-on-one and many-on-many scenarios?

55

The MCTS algorithm can be deployed as an agent within the player or system

to act autonomously. This research simulated this effect by giving the resource

to the agent to act on their turn.

3. How does the model perform under the following circumstances: one pursuer

versus one evader and five pursuers vs one evader?

This research found that the MC agents were able to act based upon known

information. This research also showed that as the state space expands,

considerations to prune the iterative tree building process must be planned and

accounted for decisions to be made effectively. Experiment 2 held a poor

response time requiring sacrifice in the number of simulations that could be

performed in this research. Modifying the UCT to prune the width to better

approximate movement will help increase responsiveness within the agent to

better act in real-time as research progresses to 3D space.

5.3 Significance of Research

This research provides a foundational baseline toward equipping an autonomous

defense, counter-offense system for agents operating in space. MCTS is a proven

reinforcement learning method for effectively making decisions based upon limited

domain information. This research expanded upon an effective agent created for

Scotland Yard to account for spaceflight dynamics.[6]

56

5.4 Recommendations for Action

As this research is a foundational product, it is recommended to expand upon

lessons learned during implementation. First, it is recommended any implementation

of a MC agent be done on the system itself over a master controller. The MC agent

presented in this research simulates separate entities for each hider and pursuer when

the program tracks their turn. Should there be a need for a system to defend itself in a

hypothetical dogfight, the agent is best suited to function on the system implemented

to perform actions real-time.

Next, state space must be truncated to best approximation over defined timeframes

for the UCT algorithm to provide decisions in necessary real-time. Experiment 2

showed the need for this truncation as simulations had to be cut to 100 trials to gain

results in necessary timeframe. As research expands into 3D space simulations,

planning on state truncation is necessary to handle an infinite state traversal from any

direction. It is recommended to truncate tree to a maximum width of 10 possibilities

of one direction to allow deeper searches before reaching computational limits.

The third recommendation is a bias should be added to UCT algorithm to decide

how much fuel is allowable in a set duration. Delta-velocity (∆𝑉) is a finite resource

and care is necessary to sustain the system’s mission while simultaneously managing

incoming threat or threats. This bias should be applied toward maximum consumption

for an immediate time state. The bias also needs a delimiter to manage available ∆𝑉

while defending against persistent threats.

57

Finally, the MCTS model is a modular RL toolset, that can be paired with a Deep

Learning Neural Network (DLNN). It is recommended adding an expandable DLNN

as more historical TTPs are presented toward hostile pursuit-evasion scenarios are

presented in the space domain. This will aid the speed for MC agent’s decision making

in its UCT algorithm.

5.5 Recommendations for Future Research

As this iteration of MCTS model is a foundational, expansion based upon the MC

agents created for Scotland Yard, it is recommended to take the actions presented in

Section 5.4 and move toward a 3D space simulator. The MC agent presented with this

research showed the capability to handle introductory spaceflight dynamics, however,

a true space simulator will test the MCTS model’s performance with more realistic

scenarios. This research was limited to test full spaceflight dynamics keeping within

the Scotland Yard gameboard.

As discussed in Section 5.4, it is recommended to research how the DLNN aids the

MC agent’s decision-making performance by pairing known recommended TTPs to

observations outlined in a certain time state. DLNNs have been paired with MCTS

models in parallel avenues of research and can be borrowed toward implementation as

research progresses in pursuit-evasion tactics of spacecraft.

5.6 Summary

This concludes the thesis research for the development of a MCTS model designed

for rendezvous spaceflight operations. This research began by introducing threats

58

happening in the space domain and the need toward creating an autonomous defense,

counter-offense systems to protect vital space systems as threats increased. Chapter 2

provided background of relevant fields of research necessary to create an autonomous

defense, counter-offense system, focusing on AI and ML models in use today combined

with game theory to help produce and optimize TTPs for realistic scenarios. Chapter

2 also provided relevant spaceflight dynamics the MC agent would need to handle to

successfully traverse between states. Chapter 3 created the framework and design to

test the MC agent in three experiments and provided performance metrics to evaluate

successfulness of the agents. Chapter 4 presented the results from the three

experiments and analyzed the performance metrics under each experiment as well as

the performance metric applied across all experiments to evaluate how the metric

changed performance. Finally, Chapter 5 addressed the outcomes from this research

as well as laid the framework for future work toward the creation of the autonomous

defense, counter-offense system.

59

Bibliography

[1] Coates, G.M., Hopkinson, K.M., Graham, S.R. and Kurkowski, S.H. “A Trust

System Architecture for SCADA Network Security.” IEEE Transactions on Power

Delivery, 25(1), pp.158-169, 2009.

[2] Duncan, M.C., Hopkinson, K.M., Trias, E.D. and Humphries, J.W. “Trust

Management Approach to Satellite System Telecommanding Security.” Journal of

Aerospace Information Systems, 11(1), pp.19-34, 2014.

[3] Ferreira, P., Paffenroth, R., Wyglinski, A., Hackett, T.M., Bilén, S., Reinhart, R.

and Mortensen, D. “Multi-Objective Reinforcement Learning for Cognitive Radio-

-Based Satellite Communications.” In 34th AIAA International Communications

Satellite Systems Conference (p. 5726), 2016.

[4] Ferreira, P.V.R., Paffenroth, R., Wyglinski, A.M., Hackett, T.M., Bilén, S.G.,

Reinhart, R.C. and Mortensen, D.J. “Multi-Objective Reinforcement Learning for

Cognitive Satellite Communications Using Deep Neural Network Ensembles.”

IEEE Journal on Selected Areas in Communications, 36(5), pp.1030-1041, 2018.

[5] George, B.C. “Optimal and Robust Neural Network Controllers for Proximal

Spacecraft Maneuvers.” Air Force Institute of Technology, Wright-Patterson AFB,

OH Graduate School of Engineering and Management, 2019.

[6] Nijssen, P. and Winands, M.H. “Monte Carlo Tree Search for the Hide-and-Seek

Game Scotland Yard.” IEEE Transactions on Computational Intelligence and AI

in Games, 4(4), pp.282-294, 2012.

60

[7] Curtis, H. “Orbital Mechanics for Engineering Students.” Amsterdam:

Butterworth-Heinemann, 2005.

[8] Colman, A. “Game Theory and its Applications.” New York, NY, USA: Routledge,

2003.

[9] Watson, J. “Strategy, an Introduction to Game Theory.” New York, London. W.

W. Norton & Company, 2013.

[10] Hamman, S., Hopkinson, K., Markham, R., Chaplik, A., Metzler, G. “Teaching

Game Theory to Improve Adversarial Thinking in Cybersecurity Students.” IEEE

Transactions on Education, Vol 60(3), pp 205-211. 2017.

[11] Turing, A. M. “Computing Machinery and Intelligence.” Mind, New Series, Vol 59,

No. 236, pp. 433-460, Oxford University on behalf of Mind Assoc., Oct 1950.

[12] Samuel, A. L. “Some Studies in Machine Learning Using the Game of Checkers.

II-Recent Progress” IBM Journal of research and development, 11(6), pp.601-617,

Nov 1967.

[13] Bernstein, A., Arbuckle, T., De V Roberts, M. and Belsky, M.A. “A Chess Playing

Program for the IBM 704.” In Proceedings of the May 6-8, 1958, western joint

computer conference: contrasts in computers (pp. 157-159). ACM, 1958.

[14] Kurenkov, A. “A ‘Brief’ History of Game AI up to AlphaGo.” Andrey Kurenkov,

18 Apr 2016, URL: https://www.andreykurenkov.com/writing/ai/a-brief-history-

of-game-ai/

[15] Ippolito, P. P. “Game Theory in Artificial Intelligence.” Towards Data Science,

Sep 2019, URL: https://towardsdatascience.com/game-theory-in-artificial-

intelligence-57a7937e1b88

61

[16] Shannon, C.E. “XXII. Programming a Computer for Playing Chess.” The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314),

pp.256-275, 1950.

[17] Whaland, N. “A Computer Chess Tutorial.” In Computer chess compendium (pp.

221-232). Springer, New York, NY, 1988.

[18] King Jr, D.W. “Complexity, Heuristic, and Search Analysis for the Games of

Crossings and Epaminondas.” Air Force Institute of Technology, Wright-Patterson

AFB, OH Graduate School of Engineering and Management, 2014.

[19] Goodfellow, I., Bengio, Y.and A. Courville, “Deep Learning.” MIT Press, 2016.

[20] DeCoste, D., “The Future of Chess-Playing Technologies and the Significance of

Kasparov Versus deep Blue. In Deep Blue Versus Kasparov: The Significance for

Artificial Intelligence.” AIAA Technical Report WS-97-04. (pp. 9-13). 1997

[21] Winands, Mark H.M. “6 x 6 LOA is Solved”. ICGA Journal, 234–238, December

2008.

[22] Ciancarini, P., Favini, G., “Monte Carlo Tree Search Techniques in the Game of

Kriegspiel.” In Proceedings of the 21st International Joint Conference on Artificial

Intelligence (IJCAI-09), C. Boutilier, Ed. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2009, pp. 474–479.

[23] J. A. M. Nijssen and M. H. M. Winands, “Enhancements for Multi-Player Monte-

Carlo Tree Search.” In Computers and Games (CG 2010), ser. LNCS, H. J. van den

Herik, H. Iida, and A. Plaat, Eds., vol. 6515. Berlin, Germany: Springer-Verlag,

2011, pp. 238–249.

62

[24] Friedman, D. “On Economic Applications of Evolutionary Game Theory.” Journal

of Evolutionary Economics, 8(1), pp.15-43, 1998.

[25] Hanley, N. and Folmer, H. “Game Theory and the Environment.” Edward Elgar,

1998.

[26] Albino, D., Scaruffi, P., Moretti, S., Coco, S., Truini, M., Di Cristofano, C.,

Cavazzana, A., Stigliani, S., Bonassi, S. and Tonini, G.P. “Identification of Low

Intra-Tumoral Gene Expression Heterogeneity in Neuro-Blastic Tumors by

Genome‐Wide Expression Analysis and Game Theory.” Cancer: Interdisciplinary

International Journal of the American Cancer Society, 113(6), pp.1412-1422,

2008.

[27] Min, H. “Artificial Intelligence in Supply Chain Management: Theory and

Applications.” International Journal of Logistics: Research and Applications,

13(1), pp.13-39, 2010.

[28] Nagurney, A. and Li, D. “A Supply Chain Network Game Theory Model with

Product Differentiation, Outsourcing of Production and Distribution, and Quality

and Price Competition.” Annals of Operations Research, 226(1), pp.479-503, 2015.

[29] Duan, H., Wei, X. and Dong, Z. “Multiple UCAVs Cooperative Air Combat

Simulation Platform Based on PSO, ACO, and Game Theory.” IEEE Aerospace

and Electronic Systems Magazine, 28(11), pp.12-19, 2013.

[30] Cognub, “Cognitive Computing and Machine Learning." http://www.cognub.com/.

[31] Ghahramani, Z. “Unsupervised Learning.” In Summer School on Machine Learning

(pp. 72-112). Springer, Berlin, Heidelberg, 2003.

63

[32] Kotsiantis, S.B., Zaharakis, I. and Pintelas, P. “Supervised Machine Learning: A

Review of Classification Techniques.” Emerging Artificial Intelligence

Applications in Computer Engineering, 160, pp.3-24, 2007.

[33] D. Michie, “Game-Playing and Game-Learning Automata.” Advances in

Programming and Non-Numerical Computation, pp. 183–200, 1966.

[34] Pepels, T., Winands, M.H. and Lanctot, M. “Real-Time Monte Carlo Tree Search

in Ms Pac-Man.” IEEE Transactions on Computational Intelligence and AI in

games, 6(3), pp.245-257. 2014.

[35] N. R. Sturtevant and R. E. Korf, “On Pruning Techniques for Multi-Player Games.”

In Proceedings of the Seventeenth National Conference on Artificial Intelligence

and Twelfth Conference on Innovative Applications of Artificial Intelligence. AAAI

Press / The MIT Press, 2000, pp. 201–207.

[36] L. Kocsis and C. Szepesv´ari, “Bandit Based Monte-Carlo Planning.” In Machine

Learning: ECML 2006, ser. LNCS, J. F¨urnkranz, T. Scheffer, and M.

Spiliopoulou, Eds., vol. 4212. Berlin, Germany: Springer-Verlag, 2006, pp. 282–

293.

[37] Gelly, Sylvain, Levente Kocsis, David Silver, and Csaba Szepesv´ari. “The Grand

Challenge of Computer Go: Monte Carlo Tree Search and Extensions”.

Communications of the ACM, 55(3):106–113.

[38] Bouzy, B. and B. Helmstetter. “Monte Carlo Go Developments”. Heinz, Herik, and

Iida (editors), 10th Advances in Computer Games, 159–174. Kluwer Academic

Publishers, 2003.

64

[39] Carr, R.W., Cobb, R.G., Pachter, M. and Pierce, S. “Solution of a Pursuit–Evasion

Game Using a Near-Optimal Strategy.” Journal of Guidance, Control, and

Dynamics, 41(4), pp.841-850, 2018.

[40] Li, Z.Y., Zhu, H., Yang, Z. and Luo, Y.Z. “A Dimension-Reduction Solution of

Free-Time Differential Games for Spacecraft Pursuit-Evasion.” Acta Astronautica,

163, pp.201-210, 2019.

[41] “Scotland Yard | Board Game | BoardGameGeek,”

http://www.boardgamegeek.com/boardgame/438/scotland-yard, December 2019.

[42] Winands, Mark H.M. “Analysis and Implementation of Lines of Action.” Master’s

thesis, University of Maastricht, August 2000.

[43] Winands, Mark H.M. “Informed Search in Complex Games.” Ph.D. thesis,

University of Maastricht, December 2004.

[44] Winands, Mark H.M., Yngvi Bj¨ornsson, and Jahn-Takeshi Saito. “Monte Carlo

Tree Search in Lines of Action”. IEEE Transactions on Computational Intelligence

and AI Games, 2(4):239–250, December 2010.

[45] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower Bounding Klondike Solitaire with

Monte-Carlo Planning.” In International Conference on Automated Planning and

Scheduling/Artificial Intelligence Planning Systems, A. Gerevini, A. Howe, A.

Cesta, and I. Refanidis, Eds., 2009, pp. 26–33.

[46] G. Van den Broeck, K. Driessens, and J. Ramon. “Monte-Carlo Tree Search in

Poker using Expected Reward Distributions.” In Advances in Machine Learning,

ser. LNAI, Z.-H. Zhou and T. Washio, Eds., vol. 5828. Berlin, Germany: Springer-

Verlag, 2009, pp. 72–83.

65

[47] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot. “Integrating Opponent Models

with Monte-Carlo Tree Search in Poker.” In Interactive Decision Theory and Game

Theory Workshop at AAAI, vol. 10, 2010, pp. 37–42.

66

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services,
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

15-06-2020
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

September 2018 – June 2020

TITLE AND SUBTITLE
Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion
Scotland Yard Game with Rendezvous Spaceflight Operation
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Daugherty, Joshua A., Master Sergeant, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/ENG)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-MS-20-J-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in
the United States.
14. ABSTRACT

Space has become a warfighting domain. To combat threats, an understanding of tactics,
techniques, and procedures must be captured and studied. Games and simulations are
effective tools to capture data lacking historical context. Artificial intelligence models use
simulations to develop proper defensive and offensive TTPs capable of protecting systems
against potential threats. Monte Carlo Tree Search is a bandit-based reinforcement learning
model known for using limited domain knowledge to push favorable results. Monte Carlo
agents have been used in a multitude of imperfect domain knowledge games. One such game
was in which Monte Carlo agents were produced and studied in an imperfect domain game
for pursuit-evasion tactics is Scotland Yard. This thesis continues the Monte Carlo agents
previously produced by Winands and Nijssen, applied to Scotland Yard. In the research
presented here, the rules for Scotland Yard are analyzed and modified to approximate
spaceflight dynamics, providing a foundation for use within space environments. Results
show promise for the use of Monte-Carlo agents in pursuit/evasion autonomous space
scenarios while also illuminating some major challenges for future work in more realistic
three-dimensional space environments.
15. SUBJECT TERMS
 Artificial Intelligence, Monte Carlo Tree Search, Reinforcement Learning, Pursuit-Evasion
16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

78

19a. NAME OF RESPONSIBLE PERSON
Kenneth M. Hopkinson, AFIT/ENG

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4579
(kenneth.hopkinson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Monte Carlo Tree Search Applied to a Modified Pursuit/Evasion Scotland Yard Game with Rendezvous Spaceflight Operation Applications
	Recommended Citation

	Microsoft Word - Daugherty Thesis Template 2014 v3

